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We study eccentric equatorial orbits of a test-body around a Kerr black hole under the influence of gravi-
tational radiation reaction. We have adopted a well established two-step approach: assuming that the particle is
moving along a geodesigustifiable as long as the orbital evolution is adiabatie calculate numerically the
fluxes of energy and angular momentum radiated to infinity and to the black hole horizon, via the Teukolsky-
Sasaki-Nakamura formalism. We can then infer the rate of change of orbital energy and angular momentum
and thus the evolution of the orbit. The orbits are fully described by a semilatus recameh an eccentricity
e. We find that while, during the inspira¢ decreases until shortly before the orbit reaches the separatrix of
stable bound orbitevhich is defined byg(e) ], in many astrophysically relevant cases the eccentricity will still
be significant in the last stages of the inspiral. In addition, when a critical aluge) is reached, the
eccentricity begins to increase as a result of continued radiation induced inspiral. The twopgalygs;, (for
givene) move closer to each other, in coordinate terms, as the black hole spin is increased, as they do also for
fixed spin and increasing eccentricity. Of particular interest are moderate and high eccentricity orbits around
rapidly spinning black holes, with(e)~ps(e). We call these “zoom-whirl” orbits, because of their charac-
teristic behavior involving several revolutions around the central body near periastron. Gravitational wave-
forms produced by such orbits are calculated and shown to have a very particular signature. Such signals may
well prove of considerable astrophysical importance for the future Laser Interferometer Space Antenna
detector.
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I. INTRODUCTION portant reasons for studying such a model.

First, because of the extreme mass ratio, the motion of the
small mass can be accurately approximated by a geodesic
Binary star systems, consisting of compact objects such agajectory(which is well known[3]) and the system’s gravi-
black holes and neutron stars, are relatively strong sources tdtional radiation is well described by first-order black hole
gravitational radiation and are expected to be prime sourcgserturbation theory techniques. The celebrated Teukolsky

for the terrestrial network of kilometer-sized interferometric formalism[4] has proven particularly successful for this task.
gravitational wave detectors, which will soon be fully opera-One thus has the opportunity to make a detailed study of a
tional, or for space-based detectors such as the proposed Ladly relativistic celestial system. For this reason, black hole
ser Interferometer Space AntenldSA) mission[1]. In or-  perturbative studies can be used as a test for numerical rela-
der to detect gravitational radiation and subsequently studtivity simulations of two-body system@&nd vice versp[5].
the physics of these sources it is absolutely necessary to have Secondly, in recent years there has been an accumulation
a prior theoretical knowledge of their dynamics. This is es-of evidence of the existence of supermassive black holles
pecially true because of the method of matched filtetsee  mass range £6-10°M,) in galactic nuclei(including our
[2] for a recent reviewthat is likely to be employed in order own Milky Way) [6]. It is expected that scattered stellar-mass
to identify true gravitational wave signals “buried” inside ~1—10M compact objects from the surrounding stellar
the detector’s noisy output. The success of this method dgsopulation will be captured by the central black hole as a
pends on the use of an accurate template of the incomingesult of two-body encounters and interactions with the in-
waveform. homogeneities of the background gravitational potential. The
This paper will focus on the case of extreme mass raticame scenario can of course work equally well for normal
systems, modeling a massive central object which is a spirstars; however they will soon be tidally disrupted as they
ning (Kerr) black hole while the orbiting body is “light”and approach the black holg—9].
compact enough to be considered as a test-particle moving in Once in a bound orbit, the compact object will slowly
the gravitational field of its companion. There are two im-inspiral towards the central black hole due to the emission of
gravitational radiation. As the frequency of the emitted
waves scales as NI/ (where M denotes the central black
*Email address: glampedakis@astro.cf.ac.uk hole’s masg they will potentially lie in the low-frequency
"Email address: danielk@tapir.caltech.edu band (10°—10 ! Hz) where LISA will have its peak sen-

A. Background
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sitivity. The (still uncertain estimate for the number of such gravitational wavesmuch effort, towards this goal, is being
events is around l/year, or better, out to a distance of 1 Gpiocused on building a framework for calculating the gravita-
and they should be detectable by LISA, with typical signal totional self-force acting on the orbiting partidl&9]). For this
noise ratios of 10—-100,7], assuming the use of some opti- reason we restrict our attention to equatorial orbits around
mal filtering technique, such as matched filter[i2dg, the central body. In such a case the rate of change of the
A huge payoff from direct observations of such events isorbital parameters can be deduced by reading the gravita-
to be expectedprovidedwe have an accurate priori de-  tional wave fluxes for the energy and angular momentum at
scription of the emitted waveform. In principle, for instance, infinity and the black hole horizon.
the black hole parametefsasses, spingan be measured to There is, however, a factor that cannot be accounted for
a high accuracy. Similarly, information on the mass-functionby the previous flux-balance argument which lies at the heart
of compact stellar populations in galactic nuclei could beof our approach. As has been observed recdy21] the
provided. Because the total luminosity of the source dependgravitational self-force contains a conservative piece which
only on its mass it may be possible to work out the distanceés not associated with any radiation emission. Although the
to the source, which would be very useful to cosmologistseffect of this conservative force is negligiblscaling as
Moreover, one might be able to identify the massive object~u?) over short time scalegsay, one orbital period it is
as a Kerr black hole, as opposed to some other, more specocenceivable that the same will not be true for the accumu-
lative object(for example a boson stét0]). This was dem- lated effect after 1b-10° orbits [21] (this is, roughly, the
onstrated by Ryafll] who showed in detail how the mas- number of orbits that LISA will record
sive body’s multipole moments are encrypted in the Another issue that has arisen recently concerns the pos-
waveform emitted by an orbiting particle. In the near term,sible difficulty in defining the notion of adiabaticity and av-
precise numerical results in the low-mass-ratio limit will be eraged flux for generic, i.e. eccentric and nonequatorial, or-
useful for testing the accuracy of post-Newtoni@N) de-  bits in Kerr spacetime. This is related to the belief that
rived templates aimed at ground based detectors like such aeneric orbits have no well-defined orbital periods as they
the Laser Interferometor Gravitational Wave Observatoryshow an apparently nonperiodic behavior. For that reason, it
(LIGO) [12,13. has been suggest¢a?] that an “ergodicity” criterion would
LISA will monitor the last year of inspiral of a compact be more appropriate. However, recent work suggeas
body into a massive black hole by tracking the phase of thehat it is possible, after all, to rigorously defifiey means of
emitted waveform. It has been suggested that for astrophysHamilton-Jacobi theopya triplet of fundamental frequencies
cally likely scenarios, drag forces operating on the orbitingfor generic Kerr orbits. Consequently, one may still be able
body due to gas accreting onto the black hole, will operateo define adiabaticity for these orbits too.
on a time scale much longer than the radiation reaction time Serious complications can also arise at the level of free
scale of the particl¢14,15. Based on requirements that the motion, where radiation reaction is neglected. In general, the
initial highly eccentric orbit in which the particle finds itself small body will have its own intrinsic spin. In such a case,
as the result of some scattering event should have a smalue to the coupling of the particle’s spin with the background
enough periastron so that the radiation reaction time scale igravitational field, the motion is no longer geodesic. Al-
shorter than the time scale for a second scattering event #iough the(specifig spin magnitude is small, i.&~O(u),
apastron, we expect that the initial periastron should bepin-induced effects could become important over time
rather close, so that,<<20M while the apastron will extend scales much longer than, say, one orbital period. A particu-
to a distance 10-10°M [9,16,17. Newtonian order esti- larly dramatic possibility is that when the test-particle is al-
mates suggest that although radiation reaction will consideftowed to have spin, “chaotic” features may appear in the
ably reduce this enormous initial eccentricity during theorbital motion[24]. Presently it is unclear whether chaotic
course of the inspiral, the eccentricity will remain finite and behavior will be important for extreme mass ratio systems
non-negligible when the particle enters the strong-field redikely to be observed by LISA.
gion of interest to this papdsee Sec. V B beloy Exactly When radiation reaction is “switched-on” in the spinning
how much eccentricity remains will depend critically on the particle case, one finds, not surprisingly, that the radiative
initial periastron distance and is largely insensitive to thefluxes at infinity and the horizon are inadequate for determin-
initial apastron distancéand thus to the initial eccentricity  ing the evolution of the orbit. This is, in part, due to the fact
We can thus argue that for a sufficiently bound orbit thethat there is no known analog of the Carter constaotthere
system of the massive black hole and the orbiting compads one less constant of motion availahland also due to the
object will evolve under its own spacetime dynamics. Thisexistence of additional spin-degrees of freedom. A Newton-
tends to justify our “black hole plus particle” model. How- ian order, weak-field estimation for the radiative change of
ever, even in this simplified picture there are problems. Thehe spin has been worked out by Apostolasal. [25].
particle, in general, will move along a nonequatorial eccenSome speculations of what could happen to circular orbits
tric orbit (as the galactic central stellar population is almostunder strong field conditions can be found[26,27. For
spherically symmetric, capture orbits of arbitrary inclination generic orbits, most likely only a self-force calculation will
are to be expected The Teukolsky formalism cannot, at be able to describe the full orbital evolution.
present, deal with such orbits, for reasons discussé¢didh As we are still far away from dealing with all of these
in particular the problem of determining the rate of change ofthallenges we make two major simplifications for this paper,
the “Carter constant” of the motion due to the emission ofthat the orbiting particle has no spin and that it always re-
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mains in an equatorial orbit. Although Ryan has sh¢@2@|, Orbits with moderate eccentricities will gain much less in
for orbits in the weak field region, that nonequatorial orbitseccentricity. Wheree>0.3 and the orbit is prograde, zoom-
are forced by radiation reaction towards becoming retrograd@hirl features will be prominent in the waveform in the very
equatorial orbits, the effect is small. The effect remains smallast stages of the inspiral. Where these orbits are observed
even in the strong field region, as was recently shown byfom & position away from the polar axis of the source there

Hughes[18]. Precisely equatorial orbits, pro- or retrograde, Vil b€ a relatively strong high-frequency component to the
will remain equatorial under radiation reaction. Therefore itSlgnal due to beaming of higher multipoles in the radiation in

) bl hat d h LISA wil the direction of the orbiting particle’s motion. One expects
Is reasonable to expect that detectors such as LISA will acy5; these signals will present particular problems for signal

tually observe signals from particles in near equatorial Orbitsanalysis, a situation which may be ameliorated when a posi-

Previous studies have shown that slightly eccentric orbitsjye getection of the source has been made during the earlier
of particles around Schwarzschild9] and Kerr black holes part of the inspiral when the waveform, though highly eccen-
[30] and arbitrarily eccentric orbits around Schwarzschildtric, will be less complex.

black holes[31] decrease in their eccentricity until shortly
before the innermost stable circular orfiISCO) when a
point is reached after which the eccentricity begins to in- . . . )
crease. The present work comes as an additional piece to this 1he remainder of this paper is organized as follows. In
series of papers. Specifically, we consider equatorial eccer#—ec' Il we discuss the geodesic motion of eccentric equato-
tric orbits of particles around a Kerr black hole and study,[;?eI Z:)b-I(t:Sal(Iigc“sz.OI:)ﬁﬁ ?Vr\;ﬂirlll,,%rgﬁg('ggfaﬁtgu'ﬁ: ?ﬁg"srg'ggé?
their evolution under gravitational radiation reaction. This.. ' . : ' .

o . .. “tions we define useful orbital parameters such as the semi-
class of orbits is not exactly what we would expect in reallty,Iatus rectunp and the eccentricitg. Some analytic approxi-
but it is an important step towards a more realistic view of :

itational f hi £ low-f mations on the orbital periods and number of revolutions for
gravitational waves from this type of low-frequency source.5 particle in an orbit close to becoming dynamically un-

because it includes two very important features which Wesiapie  are presented in Sec. 11D. Sections IllA and 11 B
know will be present in all or most sources, black hole spincontain a review of the Teukolsky-Sasaki-Nakamura formal-
companion piece to Hughes' discussion of nonequat@ial  fluxes. In Sec. 11l C, we give a preliminary discussion on the
circulan orbits [18]. Eccentric equatorial orbits were first orbital evolution under radiation reactigdefinition of adia-
investigated by Shiba{@2] who calculated fluxes and wave- baticity, general formulas for the rate of change of orbital
forms, without, however, discussing the impact of radiationparameters Section IV is entirely devoted to analytic re-
reaction on the orbital motion. Our approach is similar tosults. Section IV A discusses the weak-field limit for the or-
previous papers investigating eccentric orbits around nonbital parameter’s rates of change. In Sec. IV B we derive an
spinning black hole$31], and nearly circular orbits around approximate formula relating the energy flux to the angular
spinning black holeg30] and the results are qualitatively momentum flux, emitted by orbits close to becoming un-
similar to those of both papers. In addition, we Computestable._We subseque_ntly use this formula to find strong-field
gravitational waveforms produced by moderate or high ecapproximate expressions for the rate of change afide. In
centricity, strong-field orbits(not discussed in Shibata’s S€c. IVC we study the particularly interesting family of
study[32]) which we call “zoom-whirl” orbits. We find that ~ (€quatorial horizon-skimming orbits that can exist around a
these waveforms are a very characteristic, though complef@Pidly rotating black hole. The maimumerica) results of
signal that might be important from an observational point oftiS Paper are contained in Sec. V. In Sec. VA, we sketch the
view for the planned LISA space antenna. me_thods used in our numencal code and, moreover, give
In this paper we focus on the final part of the ir|Spir(,i|’est|mates for the various introduced errors. In Sec. VB we

when the particle is at small radii, relatively close to the lastd'V® results on the averaged rate of change of the parameters

stable bound orbit. In consequence we deal with orbits Witt{;l’le (which determine the evolution of any given ojbiThis

moderate eccentricities, between 0.1 and 0.7. In a future pa:
per[33] we intend to study the full inspiral, thus expanding jon Section V C contains calculations of waveforms gener-
our scope to cover orbits with large radii and larger eccengteq from some zoom-whirl orbits. Section V ends with a
tricities, on the order of 1. In that paper we plan to presenpresentation of the spectral content of the radiation emitted at
wavetrains and spectra associated with a long stretch of thﬁﬁnity and at the black hole horizo(Sec. V D. Our con-
inspiral, covering many orbital periods, along the lines ofclusions are summarized in Sec. VI, where we also discuss
[34]. prospects for future work. Tables with samples of our nu-
Our results in this paper can be summarized as followsmerical data can be found throughout the paper. Three Ap-
Moderate eccentricities will be a feature of the signals frompendixes are devoted to some technical details. Throughout
many inspiralling compact binaries right up to the final this paper we have adopted geometrized urits G=1).
plunge. Immediately before plunge there will be an eccen-

B. Organization of the paper

tricity increasing phase in all cases, particularly noticeable Il. GEODESIC MOTION
for retrograde orbits. The total amount of eccentricity gained . .
in this phase will generally be small, on the order of 10% or A. Equations of motion

less for low-eccentricity €<<0.1) prograde orbits, but per- We start by considering a test body moving in a Kerr
haps as much as 50% for low-eccentricity retrograde orbitsgravitational field. For the moment, we neglect any radiation
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0.08 - - - y - - - A turning pointr, by definition satisfies/,(r,) =0, or ex-
plicitly,

0.06 1
(E?=1)r3+2Mr?—(x>+a?+2aExr+2Mx*=0, (6)

0.04 1 where we have further defined=L —aE. Writing this poly-
nomial in the form Ez—l)(r—rp)(r—ra)(r—r3) we can
0.02 | . immediately write an expression for the energy,
. M . 2 i 172
\/ E=1-|—|(1-¢€) 1-—(1-e ) 7)
P p
-0.02 | 3 o ) .
Similarly, the third rootr 5 of Eq. (6) is found to be
004, 15 2 25 8 85 4 as 5 (o 2M(1-€?)x? ®
=
FIG. 1. The radial potentiaV, (in units of M %) as a function pz(l_EZ)
of r (in units of M) for p=2.2M, e=0.5. The black hole spin is
a=0.99V. Motion is permissible at the regimes wharg=0. Itis It then follows that
easy to distinguish the apastronrgt=4.4M and the periastron at 1
r,=1.47. The event horizon is at, =1.141M. 2 N(p,e)+A"(p.e) )
2F(p,e) '

reaction effects and focus on purely geodesic motion. Work-

ing in the usual Boyer-Lindquist coordinate frame, the equaThe explicit forms of the functionsl, F andA, are given in

tions of motion, specialized for an equatorial orbit, are givenAppendix A. In this expression, the uppg@ower) sign cor-

by [35] responds to a progradestrograde orbit. The same conven-
tion will be followed throughout the paper.

rzﬂ: (V)12 1) The radial coordinate can be parametrized as
dr
T — (10
, deb B aT 1+ecosy
r E=V¢=—(aE—L)+ N 2 _ _ _ _
wherey is a monotonically varying parameter, running from
x=0 (atr=ry) to y== (atr=r,) and finally up toy
,dt (r’+a?®)T =2m (back tor=r). The radial motion can be separated
r*y; V=—a@E-L)+ —7r—, (3 into two distinct branches, namely, the motion frogto
and the “inverse” motion fronr , back tor, again. Integra-
o(r)= 2, @ tion of Eq. (3) gives

where T=E(r?+a? —La, V,=T?—A[r?+(L—aE)?], A

=r2—2Mr+a? The two constants of motioE, L denote

the orbit’s specific energy anddcomponent of angular mo-

mentum(for notational simplicity we drop the subscripfor ~ Where

the angular momentumWe have progradéretrograde or-

bits according to whethelt >0 (<0) (note that at certain f(r)= fr 1 (dr)l
]

{f(r) first branch,
t(r)= (13)

T,—1t(r) second branch,

2+2

A

ax+ (Er?—ax) |dr. (12

points, where there is no danger of confusion, we shall label dr
retrograde orbits by a negative value for the spin parameter

a). Moreover, since we shall be discussing bound orbits, Qye have also denoted &s the period of the radial motion.
<E<1.Ageneral bound equatorial orbit can be equivalentlyFor the ¢-motion we similarly write,

described 3] either by the constant® andL or by a semi-

1r2

latus rectump and an eccentricite (with 0<e<1). The B(r) first branch,
restriction on the values qf is discussed below. We define ¢(r):[ ) (13
these parameters in terms of the two turning points of the A¢p—p(r) second branch,
orbit (r, is the periastron and, the apastron, see Fig. 1 for
a typical illustration, where
i i $(r) frl(drl + 2 (Er-ax)(dr (14
= = N=1| =\ x+ —(Er“—ax)|dr
T1re "fT1—e ® rr2\dr A

044002-4



ZOOM AND WHIRL: ECCENTRIC EQUATORIA. . .. PHYSICAL REVIEW D 66, 044002 (2002

and A¢ is the change ofp during an intervalT,. Both In line with the foregoing discussion, we define the

integrands in Eqs(11),(13) are (unphysically divergent at bital frequencyto be Q,=2#/T,. We can similarly refer to

the turning points, an undesirable feature in a numerical calthe frequency of the-motion as(2 ,=A ¢/T, . The gravita-

culation. This difficulty can be avoided by choosiggs the  tional waves emitted by our systems will have frequencies

integration parameter. Using which depend on these orbital frequencies. Below we shall
see how they form a spectrum of discrete frequencies param-

dr esiny| , x2 12 etrized by the following wave numberk: which identifies
ar x“+a’+2xak- (3+ecosy)| the multipole of the emitted wave$= 2 for quadrupole, for
(15 instance, m which runs from—1 to +1, andk which counts
the harmonics created by the linear composition of the two
we get orbital frequencies. The frequency of the waves emitted by a
given harmonidk of a given multipolar contributiom is
X Vy(x'.p.e)
¢
¢(X):f dX, , =1/2 , ’ (16) mA
0 X Ix peVIAX p.e) o=k, + 20, (22
Vi(x'.p.e)

In the calculational scheme to be outlined below we will
evaluate the fluxes of energy and angular momentum which
17 are carried by waves of a given frequentlyat is, a given
multipole and harmonic of the frequency spectiuand sum
the fluxes for all frequencies of the discrete spectrum to get
2 the total radiated fluxes of these quantities.

X (3+ecosy), (18

= "dy - ,
o fo X3 eV 2y pe)

where

V,(x,p.e)=x?+a’+2axE—
B. Separatrix curve

_ 2Mx In general Eq(6) has three distinct real roots. The case
Vy(x.p.e)=x+aE— T(1+9COSX)- (19 with r,=r3 corresponds to a marginally stable orbit: once at

the periastron, the particle will enter into a circular orbit of
radiusr igp,=r,=r3 (ISBO stands for innermost stable bound

vt(x p,e)=a’E— 2aMX(1+ecosX)+ Ep’ orbit). At this stage the orbit has become unstable, so that a
” p (1+ecosy)?’ slight inwards “push” will drive the particle to catastrophi-
(20 cally plunge into the black hole. Therefore, stable bound or-
bits should satisfy ;<r . This translates to the inequality,
2M a’ 2(1+e)(3—e)<p? 23
J(X,p,e)zl—T(lJrecosX)Jr E(1+ecosx)2. x“(1+e)(3—e)<p”. (23

(2)  We can imagine a division of thg(e) plane into regions of
. o stable and unstable orbits. The boundary cypye) satis-
The integrand quantities in EqL6),(17) are well behaved  fing the equality in Eq(23), defines the separatrix of bound
and, moreover, these equations are valid for both branches gfpiis 1n Fig. 2 we illustrate separatrices for a variety of
the radial motion. The radial period is simply given By  pjack hole spins. A sample of numerical data used to gener-
=t(2m)=2t(m), and similarly,A = p(2m) =2¢H(m). ate this figure can be found in Table I. As one might have
A general bound equatorial orbit is the combination of ypiicipated, spinning up the black hole will cause the sepa-
two separable motions: the radial motion which is, strictly atix curve for prograderetrograde orbits to move to the
speaking, periodidin the sense that the radial coordinate |of (right) with respect to the Schwarzschild curya(a
returns to its original value after a certain time interval =0)=(6+2e)M [31]. This behavior can be seen most eas-

has elapsedand the azimuthal motion which is not purely jy py 4 slow rotation approximation to E¢23). At leading
periodic (in the sense that the-coordinate monotonically rqer we find

increases but, nevertheless, the orbit returns to the same con-

figuration after¢ has increased by some valdaep). The

former motion is known in classical mechani&$s] as “li- ps=(6+2e)M+8a
bration” while the latter motion is called “rotation.” For

such a combination of motions, it is generally known that

there is a fundamental peridthe period of libratiohnwhich ~ On the other hand, as can be verified by direct substitution in
fully describes the motioiisee Appendix B for further de- EQ. (23), for extreme rotationg= M) the prograde separa-
tails). We shall, therefore, call, the orbital period The fact  trix becomesps(e)=M(1+e), i.e. for all eccentricities, the
that the orbit is periodic in a strict sense will enable us toperiastron “descends” into the black hole “throat” at=M,
rigorously define adiabaticity when radiative effects are to bebut is still separated by a finite proper distance from the
included. horizon itself[35].

1/2
+0O(a?). (24)

6+ 2e

044002-5



KOSTAS GLAMPEDAKIS AND DANIEL KENNEFICK PHYSICAL REVIEW D 66, 044002 (2002

25

20 1
0.8 |

15 E

06 |

0.4 |

02 |

-10 ) ' ' ) ) ' ' ) 1
-25 -20 -15 -10 -5 0 5 10 15 20 25

FIG. 2. Separatrices on the,€) plane for a variety of black FIG. 3. A zoom-whirl orbit withp=2.35M,e=0.9 around an
hole spins. From left to righta/M =0.999,0.99,0.5,0.1,0(dashed), a=0.99M Kerr black hole. In this figure, the particle has performed
—0.5. Asa— M the prograde separatrix goes to the limiting value more than twenty revolutions in less than three orbital periods. The

ps—M(1+e). periastron is at,=1.23M, located close to the hole’s event hori-
zon atr , =1.14IM (denoted by the dashed linéhe ISBO radius
C. Zoom-whirl orbits IS I'igpo= 1.216M.

From the short discussion in the previous section one Ca\?\lhil’l" orbits. They resemble a set of orbits known in the
imagine that as the orbit gradually approaches the SeF)aramﬁterature as homoclinic orbitg37]. Zoom-whirl orbits can

the particle will spend a considerable amount of its orbltalexist in both Kerr and Schwarzschild geometries, and their

fgfreTrcfsSp?iopTedz(reiczcsjtrizrf;gefoﬁllg\}vi g‘ 2 eiﬁi%ﬁxéﬂaetéon potential significe}nce for the detect.ion of _gravitational waves
by space-based instruments was first pointed out some years
T,~—In(p—py), (25)  ago by Curt Cutler and Eric Poissémho concluded that the
small number of whirls in the Schwarzschild case made the
which shows that the period will groand eventually di- phenomenon less interesting for spinless central bodies. But
verge as the separatrix is approached. In that region, th@s we shall shortly see, they are more pronounced in the case
particle will trace a quasi-circular path before being reflectedf near-extreme Kerr black holes, for prograde orbits. A typi-
back to the apastron. Such behavior will be particularlycal example of such an orbit is illustrated in Fig. 3, for the
prominent for high eccentricity orbits: the particle will case of a rapidly spinninga=0.99M) black hole.
“zoom in” from its apastron position, and perform a certain It is straightforward to calculate the total number of azi-
number of quasi-circular revolutiorfswhirls” ) reaching the  muthal revolutions\,= A ¢/27 during one orbital period, by
periastron[which should have a value close tQ{€) numerically integrating Eq(16). Results obtained by such a
=ps(e)/(1+e)]. Finally, the particle will be reflected and calculation are presented in Fig. 4. In this figure we have
“zoom out” towards the apastron again. We shall heuristi-considered orbits of a given eccentricitge=0.9 and e
cally (but quite descriptively name these orbits “zoom- =0.3) and for a variety of black hole spins. For all depicted
cases, the smallest value pfesides at the same distange
TABLE |. The separatrixps and the critical valuep.;; where  from the corresponding separatrix valpg(e). As can be
e= (in parentheses, accurate to the decimals shdwra variety of ~ seen, the number of revolutions increases as the separatrix is
eccentricities and for three different black hole spims;0.5M, a  approached, in agreement with our intuitive expectations. In

=0.9M anda=—0.9M (retrograde orbifs fact, an approximate formulévalid for p—p) derived in
Sec. 11 D shows that,
e a=0.5M a=0.9M a=-0.9M
N,~—In(p—ps). 26
0.10 43774.7)  1.516(1.59 9.266(10.03 ' (P=ps) 26
0.20 4.526(4.77  1.595(1.64 9.552(10.12 We can furthermore deduce that the “whirling” of the par-
0.30 4.6794.85  1.685(1.71) 9.830(10.29 ticle near the separatrix becomes more pronounced as the

0.40 4.836(4.99 1.782(1.79 10.102(10.40 black hole spin increases. Although for small and moderate
0.50 4.996(5.08 1.883(1.89 10.367(10.58 spins N, stays close to the corresponding Schwarzschild

0.60 5.158 1.988 10.627 value, it grows rapidly asa— M, basically due to the intense
0.70 5.323 2.094 10.882 “frame-dragging” induced by the black hole’s rotation in the
0.80 5.490 2.201 11.133
0.90 5.658 2.310 11.380
1.00 5.828 2.420 11.623 1The name “zoom-whirl” originated with the work of these two at

Caltech. It may have been suggested by Kip Thorne.
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25 — - - - - - - - ence more than 20 whirls per orbit before plunging. These
have to be added to the number of whirls performed during
the adiabatic phase of the orbit.

These results make it clear that one does not expect to see
the number of whirls become arbitrarily large until the zoom-

20 |

15 1 whirl waveform becomes indistinguishable from the wave-
form which would be emitted from the unstable circular orbit
w0l i which exists on the line of the separatrix itself. The very

instability of such orbits ensures that radiation reaction
quickly transitions the particle into a plunging orbit before

Number of revolutions

5r ] this limiting point is approached.
g&_ In a realistic scenario, we should not expect to fiapart
o L . . . . . . . from chance cases where the particle enters a near-separatrix
2 3 4 5 6 7 8 9 10 orbit as a result of its initial scatteripngery high eccentricity

P zoom-whirl orbits, as it is well known that the orbit has a

general tendency to circulariZd0]. However, despite the
decrease in eccentricity over the greater part of the inspiral, a
substantial amount of eccentricity will survive, in many
cases, up to the point where the orbit is about to plunge.
20r ] These orbits will probably become zoom-whirl orbits, espe-
cially when a rapidly spinning black hole is involved and
especially for prograde orbits. Keep in mind that many scat-
tered particles will be in highly nonequatorial orbits. Zoom-
10 1 whirl behavior should also be seen in these cases as there is
still a separatrix present, close to which the particle can
5f g 1 spend a considerable amount of time.
&‘_» A compact body in a zoom-whirl orbit will spend a con-
0 : : : : s - s siderable fraction of the orbital period in strong field regions
(it can even travel close to the event horizon if the central
black hole is spinning rapidly enoughnd hence will radiate
FIG. 4. Number of revolutions as a function of the semilatusstrongly. Our numerical results together with analytic ap-
rectump for fixed eccentricitye=0.9 (top framg ande=0.3 (bot-  proximations, reveal that a good fraction of the averaged flux
tom framg. The black hole spin is, from right to lefta/M s radiated during the motion near the periastron. As the orbit
=0,0.1,0.5,0.99,0.999. Each curve terminates at a point |Ocatedpproaches the Separatrix it tends to radiate as if it was a
6p=0.0IM away from the respective separatrix value. Evidently, circular orbit of angular frequenc\gl(j) (See a|3d:31] for a
zoom-whirl orbits are expected to be more pronounced for rapidlysimilar statement in the Schwarzschild caskhis is clear
rotating black holes. evidence that most of the radiation is coming from the whirl
part of the orbit, during which the radius hardly changes and
very strong field region close to the horizon which can bethere is a single dominant frequency characterized by the
reached by particles in prograde orbits. The overall behavioazimuthal @-dependentorbital period. However, the most
can be understood as an extreme example of perihelion aimportant feature of a zoom-whirl orbit is the characteristic
vance(as in the celebrated case of the planet Mergury form of the gravitational wave it emits, which is a series of
In principle, as Eq(26) suggests, the number of revolu- rapid “quasi-circular” oscillations separated by relatively
tions can be made arbitrarily large irrespective of the blacK'quiet” intervals. In Sec. VC below we calculate some
hole spin, provided the particle approaches the separatriwaveforms of this type.
sufficiently closely. However, as we discuss in Sec. Il C the
adiabatic assumption upon which our formalism relies breaks
down in this regime. Sufficiently close to the separatrix, ra- D. Approximations near the separatrix (1)

diation reaction makes a significant correction to the parti-  ~pits that reside near the separatrix of thee) plane

cle's motion in each orbital period. Before long this causes, o amenable to analytic approximation, basically due to the

the particle to cross the separatrix and plunge into the bla‘;&ct that the turning point, is close to a local minimum of
hole. These transition/plunging regimes have been studief,q raqijal potentiaV/, . In this section we derive approximate

recently by Ori and Thornf88] for the case of circular equa- expressions folf, and Aé. We already know thafisee Eq.
torial orbits in the Kerr geometry. More relevant to the 17] '

present discussion is the work of O’Shaughnessy and Thorne
[39] which concerns the transition regime of zoom-whirl or-
T,=2 f

30

25 |

Number of revolutions
-
o

p/M

™ Vi x.p,e
d {x,p,e)

bits. They show that for the case of an extreme Kerr black X =15 ,
o J(x.p.e)Viix.p.e)

hole and eccentricity close to unity, the particle may experi-

(27)
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g Va(x.p.e) _ &XZ)
Ap=21| d a . 28 S—2ps—(l+e)(3—e)(— : (30
¢ Jo X30ap.eV ¥ x.p.e) 29 P/ o,

We take the “distance’e=p—ps from the separatrix to be \ye see thaf?,—0 ase—0 and y=0 (i.e. the periastron

2':;3!’ Jﬁéer/ez M felcli s':A\eIISO'oV:Si tzh\?vliltfeic lljtlj\/?)srg?”rne:rcfr?gl'lc'ty “touches” the separatrix At the same Iimit,\N/t andJ remain
€ P Y, =€ ’ rg Y nonzero. We can write then, at leading ordefejn
bound orbits €—1). The former case of nearly circular or-

bits has already been discussed[80]. In what follows, 12 A(1—cosy)
guantities with an “s” subscript are to be evaluated exactly at Tr%(& f X t X . (3D
the separatrix. From Eq18) we get M 0 " [eS+2ex¢(1-cosy)]M?
Y M V2 rm A,(1—cosy)
Vi(x,p.e)= —{1+O(€)} eS+2exX(1—cosy) Ad)%(&) f dy ¢ X
Ps M 0 "[eS+2exi(1-cosy)]*?
+0O(€?,e(1—cosy))], (29) (32
where We have defined the functions
|
Aly)= [a’E{1+e—ey)?—2aMx{1+e—ey)® ps+Ep?] 3
ty (1+e—ey) 1-2M(1+e—ey)/ps+aX(1+e—ey)2/p?]’
[Xs+taEs—2Mx{(1+e—ey)/pg]
Ay(y)= —— —— eI (34)
[1-2M(1+e—ey)/psta“(l+e—ey)“/ps]
|
with argumenty=1—cosy. In order to isolate the divergent (1+e)(3—e)]¥2 64ep§
pieces in the integralg31),(32) we split the functions T,~A(0) eMp. n S(1+e)(3-9)
(33),(34)
(39)
At,¢(y)=At,¢(0)+Bt,¢(y)- (35) A A 0) (1+e)(3_e) 1/2 64ep§
~ n .
These expressions are just Taylor expansions around the PRl eMp;s eS(1+e)(3—e)
regular pointy=0 (with B, , containing the first and all (39

higher derivatives of\; ,). Not surprisingly, both functions

B, 4(y) take the form The divergence of , andA ¢ at the separatrix is the result

of the particle being trapped in an unstable circular orbit at

~ the location of the minimum of the radial potentid].

B o(Y) =eyB 4(y). (36 potenti|
ll. RADIATION REACTION: FORMULATION

Although we do not write the functionB explicitl
g Lo(y) explicitly OF THE PROBLEM

here (as they do not take a simple form and they are not
needed in what followswe have verified thai, ,(0)+0. It A. The Teukolsky formalism
follows that the contribution to the integrals froiy ,(1 In this paper, we shall employ Teukolsky's formalig#]

—Cosy) is finite whene, x—0. On the other hand, the con- ¢4 the calculation of gravitational fluxes and waveforms. His
tribution from A; ,(0) is found to be divergent at the same gponymous equation describes the evolution of linearized ra-

limit, diative perturbative fields in a Kerr geometry background. In
particular, instead of dealing directly with metric perturba-
f" dx tions, the Teukolsky formalism considers perturbations on
0 [eS+ 2ex§(1—cosX)]1’2 the Weyl curvature scalap,. This quantity is a result of_the
projection of the Weyl tensor on the null vecton§, m?
1 64ex§ e |e which are members of the Newman-Penrose null tefiddd
==(ex) Yn +0| =In|=|]. (37) o @B ys :
2 €S e |e that is y= — C,5,sn“M”n"m°. The feature that makes this

formalism attractive to our problem is that the radiative
Hence at leading order ie (therefore close to the separa- fluxes(at infinity and at the horizoras well as the two wave
trix), polarizationsh,, h, can all be extracted fromy,. The
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“master” perturbation equation is separable in the Fourierchosen such as to have, respectively, purely ingoing behavior

domain by means of a decomposition at the horizon, and purely outgoing behavior at infinity. Ex-
plicitly,
l/l4(t,r,0¢) P4E fd e—lwt+lmcp (G)lew(r) . Aze*ikr* for r—rg,
(40) Ime ™ 3gout giwr* | —1ging=ier*  for r— 4 oo, (46)
wherep=(r—ia cosé) 1. The radial functionR,,,(r) sat- - e
isfies the Teukolsky equation Rip couglkr® 4 A2cing=ikr*  for r—r ., )
o™ r3glor” for r— +,
,d (1 dRp, R T m
ar\a ar |~ VORme=Time- @D where k=w-ma2Mr,, r,=M+(M2—-a?)¥2 js the
outer event horizon, and, is the usual tortoise coordinate
The potentialV(r) is given by defined bydr, /dr=(r?+a?)/A. From these expressions we
have thatW=2iwB™. The solution(45) describes ingoing
K2+4i(r—M)K ] waves at the horizon and outgoing waves at infinity as it
V(r)=- A +8lwr+1, (42) " should be required on physical grounds. That is,
where K=(r’+a?)o—ma and \=E;,+a’w’—2amw. AZe T e T, (F)RImL(T)
: P Rimo(r—=ry)—————| dr’
The angular functions ,S;2(#) are s=—2 spin-weighted 2i BN A%(r")
spheroidal harmonidst2] which satisfy the following eigen-
value equation: EzfomwAZ(r)efikr* (48)
1 d d 3aiwr* 4
Bl el r'e = Timo(r'),Rino (1)
Llnﬂ d0[5|n0d0 +atwicos’s Rimo(r—©)—— inf dr'— A2 =
|CUB r (r )
m +4 g+ MOOF ) oRo—2 zfl e (49
- aw Cos —4cot - =Znel e .
Sirfe Sirf 6 "
The source ternT,,,, is given by[12]
+E|m ,253#]):0. (43) o _2§‘”
T|mw=4f dQdtp®p 1(B,+ Bé*)e"m‘”""tT\/_m,
a
We have adopted the following normalization for the sphe- (50)
roidal harmonics(hereafter we drop the subscript2 for
notational simplicity: where
w 1 4
f |S2|2singd H=1. (44) B,= 5P SpL_1[p “Lo(p 2p Tpan)]
0

The source ternT,,, present in Eq(41) is constructed di-
rectly from the particle’s energy-momentum tensor and this 2
is the point where the particle’s motion enters explicitly in

\/_p pAZL Adp~ 4pz‘h(p p 2ATITLD,

the perturbation equation. Its explicit form is given below. (5D
Let us now return to the radial equati@dl). A particular 1 -
solution of this equation can be found in terms of two inde- Bj* =~ 7 p®pA%3.[p “3+(p *pTim)]
pendent solution®". ., Ri" of the homogeneous equation,
1 — . _
|mw(r) o Timo(r )R — —=p%pA% [p PP AT 1 (p 7 T,
Rimo(f)= > 2\2
A“(r")
(52)
Rimo r) T'm“’(r JRim(") We have defined the operators
A%(r')
m .
(45) Le=dy+ G —awsing-+scoto, (53
where W the (constank Wronskian
W[A~Y2RIN A-Y2RUP 1. The solutionsR" , R are J, =3, +iK/A. (54)
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The quantitiesT,,,,, T, Tmm are the result of the projec- with
tion of the particle’s energy-momentum tensbt” on the
tetrad vectors, i.e.T,,=T,,n“n" etc. The energy-

momentum tensor for a partlcle in an arbitrary orbit :i ty—1 2., a2 2
(. (1), 0(1), S(1)) is given by c 3(W) B+ a) —aL+2uT,
My v
TM:MEsm So(r—r(1))8(6—0(t))8(d— (1)), o
_ ty—1 24 a2y _ r
(55) Cn= 2\/522(u) [E(re+a)—alL+>u"]
whereu*=dx*/dr and 2 =r2+acosé. We obtain for the L
individual projectiond12], X|ising aE—Snz +®(0)}
Ton=r g 65(r—r<t>)6(e 0(1))8(— (1)), (56) p2 ) ,
—_F _
. Cmm—zz(u) ising| akE = +®(¢9)}
T =t g 8T =1 (1) 8(6 - 6(1) (¢~ B(1)), (57 (59
_ C _ The quantity® () represents the effective latitudinal poten-
Tom= K n65(r r(D)8(6=0(1))s($=h(1)), (58) tial, i.e., Gu??=0(#0). Substitution in Eq(50) yields

4 (= T 1 N N o
Timo= 5= f dt f doe'! 'W“{—ELI{p *LUp*Sim)} Canp ™ 2p™ 8 =1 (1)) (6= 6(1))
V2= Jo

22
D ILiS+ia(p—p)sin 0213, {Crmp~2p 2A~18(r —r (1)) 8(6— 0(1))}

+
V2p

1 _ _
+ m'—E{p3§r§‘{(p2p’4),r}CanAp’zp’z

1 _
X 8(r—r(t))8(6— 6(t))— Zp3A25ﬁ;,”J+{p*4J+[(pp*2Cm5(r —r(t)s6—o0())1}|, (60)
where
Li=d,— — | awsing+scotd (61)
s 7% sing '

The 6-integration can be performed directly to give

Tlmw: /U*fi dteiwtiimw(t)Az[(AnnO_FAEnO+AﬁO) 5(!’ - r(t))+{(Aan1+Aﬁl) 5([‘ - r(t))},r

A2 =1 (D)} lo=o(t) » (62
where
Anno= o Conp %9 L {pLE (0°S), 63)
nn0 \/ﬂA nn

(L+S""m( +ptp aSInﬂ(t)S’m (p=p)|, (64)

2
mno— " —, \/;A Conp ™
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! 3pCrmg (K> K2+2' K (65)
o= — —— —i|l~| —==+2ip—|,
mmo \/EP P mm A . A2 PA
_ 2 —3~— +cew | ; : — ®
Amni=——=_p Cmn[l-z m+|asm‘9(t)(P_P)$am]v (66)
NE
2 — K
—_ -3 of i
mml \/ﬁp pcmm IA +p (67)
— 1 -3 ¢ w
mm2= \/T—WP PCmmSm . (69)
Note that all functions ob are evaluated afi= 6(t). The amplltudesZIm defined in Eq.(49) can be written as
[T grdetimezH (rty. o)) (69)
Imw 2inin o Imw ’ ’
zf:nw— o f dtet=ime®7r (r(t),6(t)), (70)
where
in d2 in
H Imw Imow ,
Ilmw Imw{Ann0+AmnO+Am m 0} {Amn1+Amml}+ ?Ammz ’ (71)
r r=r(t),6=6(t)
|“" “Rim
o Mo . mow ,
Ilmw: Imw{AnnO+Amn0+Amm0} {Amnl mm1}+ d 2 Amm2 (72)
r r=r(t),0=6(t)
|
Up to this point, all expressions listed in this section arewhere wm,=m{,+kQ, and
valid for an arbitrary orbit. We now specialize our discussion
to equatorial orbits by setting(t) = #/2. In this caseZ;, ,mw
are functlons_ pf(t) only. As discussed in detail in Appendix Zlmk mJ' dt Z7H(r (t))elemd =m0  (77)
B, the quantities 2iwmB
a” () =T77H(r(t))e MO0l (73

Due to symmetries of the Teukolsky equati@il) we have
are periodic functions of timewith period equal td,). Con-  the following conjugation relation:

sequently, they can be expanded in a Fourier series
+ o

) %,H _(_1\I7=H
aw,H(t): 2 ar,He—lert' (74) ZI,—m,—w (-1 Zl,m,w! (78)
k*—
with Q,=2#/T,. Inverting, we obtain the Fourier coeffi- ZrH = (=D)'ZE (79)
cients
where an overbar denotes complex conjugate.
ap :_J dtaH(t)elkert, (75) We proceed by writing Eq(77) as an integral ovey,
Using the Fourier serie§4) in Egs.(69),(70) we arrive at o wl), fzw Vt(x)
1) S a—— X7 =i L
" diom@ o X 30V )
Zina = 2 Zii O~ omy, (79 XIH(r(x)) eemi0=imé0o, (80)
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As in the case of Eq916),(17), this expression is well-behaved at the orbital turning points. Moreover, noting that the
x-dependence of the integrand in E§0) appears in terms of the form cgg$in terms withr (x))] and siry (in terms withu'")
we can write,

ac,Hz Iu‘QI' fﬂ' ¥ vt(X)
™ 2iwnB™ o T IV x)
X [Ifnv]':)(ﬂ(r(X))eiwmkt(x)*imﬂx)+Iﬁﬁt')(i)(r(x))e*iwmkt(x)+im¢(x)]_ (81)

The subscripts £) mean “siny—=siny” in the functionsIf"n;t',. The numerical calculation of the amplitudti;ﬁ,;';| is the
“backbone” of our radiation reaction codgee Sec. Y. Finally, we express thé& and C amplitudes(59),(68), in terms of

lelel

J(x,p.e)

—=———[p?E—ax(1+ecosy)’+epsinxV;(x,p.e)1%, (82
4p V'[(X1 pve)

Chnlx,p.€)=

ixJ(y,p,e -
Cin(x,p.€) —(X—p)(l+ e cosy)[ p?E—ax(1+ecosy)?+epsinyVF4 x,p.e)], (83

- 2V2p*V(x.p.e)

x*J(x,p.e)
Crm(x,p,€)=— ——=———(1+ecosy)?, (84)
P ) Y
and
2 Cin . . m
Apno(u)= [2a%u3+{ia(aw—m)—4M}u+2u+iw] (ml2)+ (aw—m)S(7/2)|, (85)

\/_;u(l—ZMquazuz)2 a0

Crm: 39(7/2)

Aﬁo(u)z\/z_ 1 2Mur @ 2)2[—Zia?’(aw—m)u5+a(aa)—m){6iM +a(aw—m)lut—4ia(aw—m)u®
m u(1-2Mu+a?u
+2w{iM +a(aw—m)}u—2i wu+ w?], (86)
2 Cn ISy
Aanl(u)z\/—; S(1—2Mu+ %) j; (7/2)+(aw—m)Si(/2) |, (87
2 Crmsee(/2)
Apm(u)=—\/— [a?u®+{ia(aw—m)—2M}Uu?+u+iw], (88)

Tu?(1—2Mu+a?u?)

1 Cim 30 7/2)

Aﬁz(U)Z—\/T—WT, (89)
_ \/E Cnn . nc;) o 072 n?
Anno(u)=— ;(1—2Mu+azu2)2 —2ia o0 (m/2)+(aw—m)S(7/2) |u+ pye (7/2)
+2(aw—m) M’“(w/2)+{(aw—m)2—2}§nq“(w/2) , (90)
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whereu(x,p,e)=(1+ecosy)/p. By means of Eq(76) one
can obtain the following expressions fgy, at infinity and on
the horizon:

P(r+)_4%k ';bli-r'nk for r—r,
¢4(t1r191¢)_>
r 2> g for r—+o,
Imk
(91)
where

H,oo _ 1 AW Tomt—r )+|m</> 92
‘//Imk_\/z— ImkSm (0)8 * ( )

Once the Weyl scalay, is known, we can immediately
relate it to the two polarization componertis ,h, of the
transverse-traceless metric perturbatiom -asx» [4],

y 1({*h,  &*h,
~ = i :
2l a2 a2

It follows from EQs.(93),(92) thath. ,(t,r,6,¢) are given
by (here the coordinatesr, 6, ¢ are referred to the observa-
tion poin),

(93

2 Z a“’mk(g)

. Imk i _ i

hy—ih,= M g-lomdt-r)+imé  (gg)
* ek wzk N2

PHYSICAL REVIEW D 66, 044002 (2002

The calculation of the respective fluxes at the black hole
horizon is a more complicated issue as it is not possible to
use expressions such as E@5),(96). Despite this difficulty,
Teukolsky and Presgt4] were able to derive formulas for
the horizon fluxes using the approach of Hawking and Hartle
[45] who studied the deformation of the hole’s event horizon
under the influence of infalling radiation. These formulas are

|Zlmk|2
Ecw= Z Ak~ (100
41Twmk
m|zlocmk|2
LH = , 101
GW I%k Amk a0l (101

where

256 2MT ) *piid Pact 4€2) (Pt 1652)wmk
Cimk

A mk=

(102)
with e=+MZ—a?/4Mr , and

Cimc=[ (A +2)%+ 4amo,— 4aw?,]

X (N2 4 36aMwm— 36a%w2,) + (2\ + 3)(96a° w2,

Note that the gravitational waveform is exclusively radiated

at harmonics of the two orbital frequenci€k ,(),. The

—48aMw ) + 14402 (M?—a?), (103

gravitational wave energy and angular momentum flux at

infinity can be found in terms of the Landau-Lifshitz
pseudotensdrd3],

E L R N LT
PR —_— - R r ,

dt/, 167 at at

dL\* 1 [ [oh, oh. , dhy oh, 240, o6
dt/,,, 167) [ at a6 ot | A (96)

We define the averagddver one orbital periodfluxes to be
(C=E,L),

- 1 fﬂdt(dc>“ @
W T Jo dt/ g
With the help of Eqs(95),(96),(94) we arrive at{44]
|Zhid?

Ecw= _ 98
oW I,m,k 47Tw§1k 8

mizH |2
LZ= m (99)

Imk 47wl

is the so-called Starobinsky constant. Note that E§8)—
(102) have to be divided by in order to convert them to
fluxes of specific energy and angular momentum. Moreover,
we can exploit the conjugation relatiolig9) in the numeri-

cal calculation of the amplitudes,,, and reduce by one-half
the required computational time.

B. The Sasaki-Nakamura equation

From Eq. (81) it is obvious that in order to calculate the
amplitudesZ;:" , which will give us the gravitational wave-
form and fluxes(94),(98)—(101), we need to evaluate the
quantityB™. In principle, one could numerically integrate the
Teukolsky equatio(41) from the horizon out to “infinity”
and extract the amplitudé™°". But this is a poor strategy,
since the effective potentidl(r) is long-ranged and thB™
term drops off towards infinity much faster than ®2"term
and can only be extracted with very low accurddg]. A
way to circumvent this difficulty is to integrate, instead, the
Sasaki-Nakamura equati¢mb2,47|

d2x rn X dXx
— —F(r
dr? dr,

*

—U(r)X=0. (104
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The “potentials” F(r),U(r) are given in Appendix C. The range potential. This can be demonstrated more easily if we
solutions of this equation are related to the solutions of theshift to the function,
Teukolsky equation via the transformation

Y(r)=n"Ar)X(r). (106)
N 1 B,r Axlmw . L
Rimo(r)=— a+f T oap Then, Eq.(104 transforms into the Schdinger-type equa-
n (re+a”) tion
ﬂ d AX|mw
-] | 10 d?y
A dr((r2+a2)1’2 (109 — +QY=0, (107)

dr2
The functionsa(r),B(r) are also given in Appendix C. The
key property of Eqg.(104) is that it encompasses a short- with the effective potential,

1 A

A
= — _ g2 _— —_ — 2
Q U 4F +277(r2+a2)2[A77,rr n(n,r) +2M 7r

|,.2 _ a2
—) ] . (108)

r2+a?

The functionsF(r),U(r) have the following behavior at infinity and at the horizon:

c 0+0O(r—ry) for r—r,, 109
(- —r 2¢,/co+O(r=3) for r—+os, (109
K>+ O(r—ry) for r—r,,
Un—1_ 5. a2, 2y -3 (110
o +r  N+2(1+tamw—a‘w’)—iwc /co]+O(r %) for r— +oo.
It follows that,
0?—r, A +2(1+amw—a?w?) —iwc, /co]+ O(r, ®Inr,) for r,—+=,
r,)— 11
Q) k?+O(e"*) for r,——o, D
|
wherec=(r . —r_)/2M is a positive constant. From this ex- . 2 '
pression it is obvious tha® is short-ranged. Consequently, BOY'=— C—OAOU, (115

Eq. (104 admits a solution(*in” mode) which is purely
ingoing at the horizon and a mixture of ingoing/outgoing

waves at infinity: where the constam is given in Appendix C. Hence, we can

simply integrate Eq(104) instead of Eq.(41) and easily
Adowng—ikr, for r—r.,, identify the ingoing and outgoing waves and evaluate their
(112 respective amplitudes. We can then simply find the desired
amplitudesB™°"t from Eq. (115). Similarly, knowledge of
the wave functionX(r) and its derivative at a given point
immediately leads to the Teukolsky radial functigfr) and
its derivative via the rulg105). In conclusion, all the quan-
tities (apart from the spheroidal harmonjiagquired for the

in
X —>{Aine—iwr*+A0uteiwl’* for r— + .

Another useful independent solution to E#j04) is the “up”
mode,

Dine=ikr« 4+ DOUeKrx  for 1y, | calcglation of the g_ravit_ational _flux and wavefor.m, can be
XUt (113  obtained by numerical integration of the Sasaki-Nakamura
DPe'lx for r—+o. equation(104).

The relation between the asymptotic amplitudes appearing
in Egs.(46) and (112 can be deduced from E¢L09), C. Orbital evolution: Adiabaticity and flux balance

Due to the emission of gravitational radiation the orbit of
1 a particle around a black hole will slowly evolve in time and
Bin=— —_ AN (114  the orbital constants, L (or equivalentlyp,e) will no longer
4w? be conserved. Radiation reaction effects become noticeable
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on a time _scale that scales asV /_,u, i.e. they are :';llways E=E p+E e, (119
tiny in a time scale~O(M), provided the system’s mass
ratio is sufficiently small. We can define as the radiation L=L pb+L €. (120

reaction time scale,
These relations can be inverted to obtain,
TRR: min[Tp ,Te], (116) . . .
| | p=H Y(—EL+LE), (121
whereT.=e/|e| andT,=p/|p| are the radiative time scales _ _ _
for p and e respectively(approximate expressions for these e= H’l(E,pL— L oE), (122
time scales are given in the following sectjodVe will then

say that an orbit evolves adiabatically if with H=E L .—E cL ,. Eventually, all partial derivatives

of E andL can be found in terms of the corresponding partial
Tre>T,. (117 derivatives of the function§&, N and A, which are given
explicitly in Appendix A. However, the resulting formulas
In other words, it is a good approximation to assume theare quite messy so we do not present them here.
motion of the particle to be geodesic, as long as we are Note that although the formalism adopted in our analysis
interested in time scales much shorter tiigg. On the other  offers only “local” information on the radiative orbital evo-
hand, by making this simplification we “freeze” the evolu- |ution, it can be further manipulated in order to obtain addi-
tion of the orbit, as if there was no radiation reaction. That istional information. A recipe for “evolving” orbits under ra-
within the adiabatic approximation, we cannot know the ex-diation reaction, using the known averaged rates of change
act evolution of the functiong(t),L(t) [or of p(t),e(t)]. It  of the relevant orbital constants, was given recently by
is still possible, however, to calculate an averaged rate oHughes[34] in the context of circular nonequatorial orbits.
change of such quantities. This can be done by assuming the effect, one is able to construct a series of “snapshots” of

following “flux-balance” relation: the radiation-induced inspiral, and make predictions of the
) ] ) - evolution of the emitted waveform close to the point where
C=—-Cew=—(CowtCaw. (1189 the orbit becomes unstabithat is until the adiabatic condi-

_ . tion no longer holds
whereC=E,L. We have separately denoted the gravitational  As we have already mentioned, adiabaticity will eventu-
wave fluxes at infinity and down to the horizon by gjly preak down near the separatrix, no matter how small the
CZW,CEW respectively. The overdot symbol stands for themass ratio is. This can be immediately seen from @47
averaged(over one orbital periodrate, see Sec. IllB. We and recalling thaff,—« at the separatrix, as predicted by
can equally well describe an orbit by means of the paramgq. (38). For an order-of-magnitude estimation, we can use
eters p,e) and calculate the relevant averaged rates othe quadrupole approximation for the fluxésee the next
change of those quantities. SincE=E(p,e) and L section and translate Eq117) into a constraint on the mass
=L(p,e) we have thaicommas denote partial derivatiyves ratio,

% | (169 185 , 223 ,
o] el et gge

12 12 96 ' (123

w5 [p\*_
M<12&T<M> fs'(e)

1+a
M

The functionf(e) is defined in the following section. Equa-  On the other hand, in the strong-field regime near the
tion (123 is accurate to leading order M/p anda/M, and  separatrix we findusing results derived in Sec. IVB
to derive it we have used the corresponding order expression

for the orbital period w dep? -1
v <M sTreoc-e ) ! (129
T :ZWM(l_ez)Q,Q( B) 3 whereé is a combination 0fA;(0),A 4(0),E ,/e,L pe and Iis
r M of order unity. As we discuss in Sec. IV B, the quantity
32 also becomes zero when-0 (unlessa=M, in which case
% 113_3 M (1-e?)|. (124) it remains finitg. This is clearly the most severe restriction
M for the mass ratio. Fortunately, the real astrophysical systems

we are trying to model are typically characterized by a mass

ratio u/M~ 10" 8. Therefore we can approach the separatrix
The mass-ratio constraii123) is automatically satisfied as closely, probably to the point where the physical body would
the black hole perturbation scheme we employ requiredegin its plunge into the black hole, in the cases which in-
uIM<1. terest us.
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IV. ANALYTICAL RESULTS The formulas(128,(129 can be utilized for order of
magnitude estimations even in the strong field regime though
becoming increasingly inaccurate with decreagmiyl (this
Orbits with p>M are well described by weak-field ap- has been verified by comparing them to the fully numerical
proximate results. In particular, the energy and angular moresult3. We can now estimate the time scales of radiative
mentum fluxes should be given with sufficient accuracy byevolution forp,e. Forp>M the energy and angular momen-

the quadrupole-order formulas as giver{28,32. However,  tum, at leading order iM/p anda/M, are given by
these authors make use of a different set of orbital param-

A. Weak-field approximations

eters. For example, Ryan’s semi-major axiand eccentric- a 5/2
ity e [28] are related to our parameters via the transforma- E~1- E(l—ez)IM(l—eZ)z(F) , (139
tion,
_ 4a[M\32 aM
—e?=(1-e?)|1- 11 o e?cost |, (126) L~*Mp-— T(3+e)' (136
B 28 (M 32 Accordingly, Egs.(121),(122) become
p=a(l—e?) -7l e?cost|.
(127 . B4pu 5l MVP

Note that at a Newtonian level the two sets are consistent

with each other. Rewriting Ryan’s fluxes in terms of our 3/2
parameters we obtain fa(€)+ 1 3 fe(e) |, (137
: 32 pu? (M) 21312
=— = —| — — 4
Equad 5M2(p) (1—e9) é=—3—04ie( B 2)3/2|\/|
15 2 p
al/M 3/2
fie)— a7 | fael, (129 L a (M|
P f7(e)+m —| fg(e)|, (138
p
. 32 u?(M\ 72 where
I-quad: - = /U“_ - (1_62)3/2
5 M\p
a | M\32 f 133 379 , 475
fa(e)+ o 3) (fale)=f5(e))|, (129 (&= " 22" 96" (139
where
2
fo(e)=1+ 304e (140
fi(e)=1 B, 37 130
(e)=1+ 577+ 9—6e (130
fo(e)= 879Jr 699 024 1313 (141)
g(€)=== ——e*
76 ' 76° ' 608
3 823 , 949 N 491 . 131
@)=+ %4 22 32 2 192°" (18D 1pe equations above demonstrate the well known 4@}
that, in the weak-field regime, eccentric orbits tend to circu-
7 larize under radiation reactiofwvhile they slowly shrink to-
fa(e)=1+ -€? (132  Wwards the central bodyFor the associated time scales one
8 finds
61 63 95 T 19 7 -1 121 a(M 3/2
f4(e) +_ez+_e4 (133) _p:_ 1+_eZ) (1+_e ) 15— _)
24" 8" 64 T, 127 '8 304 Mlp
1 55 6431 2 9593 9191
xf37(e) +
61 91 461 , 114 1824° 1824 4864
(e)——+ze + 64e . (134 (142
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ACCOfding to this equation, in the weak-field regime the ec- We next discuss approximations f(pr and e near the
centricity decays faster than the size of the ofBit]. The  separatrix. Unfortunately, the lack of a simple analytic ex-
leading order spin term furthermore implies that this behavpression fop(e) makes such a task difficult, and the result-

ior is more pronounced for retrograde orbits. ing formulas are quite cumbersome with little analytic trans-
parency. Nevertheless, we can follow a much simpler path
B. Approximations near the separatrix (I1) and still gain some significant insight. Fpespg and using

The previous section discussed results which are aIreao@q' (148, Egs.(121),(122) become,
familiar from the existing literatur¢31]. We now present . _ .
new results regarding strong-field orbits which reside near p~[H 1(LveQ¢_Eve)L]P~Ps’ (148
the separatrix. ) )

The analysis of Sec. Ill A has shown that the gravitational e~[H Y(—L Q4+E L]y~ b (149
wave spectrum will essentially contain harmonics (f,
Q,. We can use the approximate expressi¢®8),(39) to By direct substitution of Eq(23), it can be shown that the
deduce that for orbits near the separatrix, pe-ps(e)=¢  function H(p,e) becomes exactly zero at the separatrix. On
<M (and as long as is not close to zero and is not unity the other hand, and as long ag M, one can verify numeri-

1o cally that the numerators in Eq§l48),(149 remain finite

O~ 2m eMps near and at the separatrix. It follows that for nonextreme
" A(0)[(1+e)(3—e) Kerr holes bothp ande diverge at the location of the sepa-
6l ratrix. This pathological behavior signals the breakdown of
S

-1
) (143 the adiabaticity assumption upon which our method stands. A
proper discussion of this transition regime should take into
account the rapid radiative evolution of the orfvithich now

"

eS(1+e)(3—e)

~A¢(O) varies in a time scale comparable to the orbital period
Oy~ A(0) (144 Moving on, we divide Eq(149 into Eq.(148) to get,
Hence, fore—0 we have(),—0 and in effect, the spectrum EN (=L pQy+E)) (150
becomes almost “circular”: b —(L,e9¢— E.) p~psl

Exploring the numerical value of this quantity for numerous

very near-separatrix orbits and black hole spirsM, we

have found it to be always negative afidite. This means

EEW”QJE’\T/ (146) thate and_p have opposite_z signs near the separ_atrix. Since
the latter is always negativéhe orbit always shrinkswe

We conclude that orbits near the separatrix radiate energgonclude that very close to the separagix0, i.e. the orbit
and angular momentum at rates so that the E&Q//Lew is gainseccentricity(qs previously found,' in less general cases,
almost equal to the respective ratio of a circular orbit withi? [29,50,30,3]). Since weak field orbits always lose eccen-
the sameQ) ;. The effective radius of this fiducial orbit is tricity, there must be a critical curvgcii(e) on the (,e)
plane at whiche=0. As Egq. (150 is formally accurate
A(0) 23 (within the constraints imposed by the adiabaticity condjtion
mia) (147 not only at the separatrix but also in its vicinity, we can

actually study the behavior @ in a thin zone near the sepa-
For example, for the prograde orhit=2.11M,e=0.7 we ratrix. For a given small or moderate black hole spin, we find
find rer=1.88M>r,=1.24M while for the orbit p that the ratio(150) is again negative. However, for high ec-
=2.35M,e=0.9 we findr4=3.90M >r,=1.24\ (for both  centricitiese~1 we initially get a positive value which
cases we have taken=0.99M). We note that this equivalent gradually passes from zero and becomes negativep as
circular orbit represents stablecircular orbit, from which ~ — pe. With increasinga/M we observe the same behavior at
one could, in principle, receive gravitational waves. We doeven lower eccentricities, provided we are considering pro-
not compare the fluxes from zoom-whirl orbits with hypo- grade orbits. The opposite behavior is observed for retro-
thetical unstablecircular orbits on the separatrix because itgrade orbits. Fom~M, Eq. (150 becomes negative only
seems clear that waveforms from such orbits will not be seemery close to the separatrix for all eccentricities. These re-
in practice, because real orbits will transition rather quicklysults suggest that, at least fer 1, the critical curve;;(€)
from the zoom-whirl type of orbit into a plunging orbit into is located close t@g(e) (this has been shown to be true for
the gravitational well of the black holesee[39]). a=0 [31]), and that(for prograde orbits p.i(€) — ps(€)

Equation(146) suggests that particles in zoom-whirl or- —0 asa—M (which resembles the situation for nearly cir-
bits lose most of their energy and angular momentum whilecular equatorial Kerr orbit§30]). All of our (semjanalytic
they revolve near the periastron, which is what we wouldpredictions are fully supported by the numerical results that
intuitively expect. are presented in Sec. V B.

Furthermore, by substitution in Eq€8),(99) we get

— n1/3]
Meff=
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TABLE II. The position of the critical radiug,¢;; in units of M, ing Eq. (9) aroundp=ps=M(1+e) we find that
for different black hole spina and zero eccentricity. The parameter
g=a/M is defined here to be negative for retrograde orbits and
positive for prograde orbits. This table is provided as an erratum to
Table | of Ref.[30], which was incorrect due to a bug in the part of

the code calculating the fluxes of energy and angular momentunjye then get for the energy and angular momentum
radiated to the black hole horizon. These data were produced using

x2=M?

1+e

the corrected code from the previous paper, rather than with the 1te €
code of the present paper. E= /ﬁ—f— g(e) "] +O( 52), (153
q Ierit /M Corrected value (154
-0.9 9.64 9.74 1te 6
-05 8.37 8.43 L=2M QH(E)MJFO(GZ)' (155
0.0 6.68 6.68
05 4.70 4.69 The explicit form of the functiong(e),f(e) is not required
0.7 3.76 3.75 for the following analysis. We use these equatiftogjether
0.9 2.56 2.54 with Eq. (146), noting that() ,=1/2M on the separatrix for
0.95 2.03 2.11 the orbits under discussidto obtain
0.99 1.47 1.55
1.0 1.0 1.0
2[2Mg(e)—f(e
L _2[2Mg(e)~(e)] 156

(1+ e)l/2(3_ e)3/2 !

Prograde orbits near the separatrix of an extreme Kerr
hole are discussed separately, and fully analytically, in the —E L+L E~M[2Mg(e)—f(e)]E, (157)
following section. Here we should emphasize once again that ’ ’
all the approximations presented in this section are valid pro-
vided e>¢e/M. This excludes nearly circular orbits, which
have been explored in detail [80] (see Table I\

We can now write approximate expressions for the tim
scalesT,, T, for an orbit close to the separatrix:

E,L-L,E~[2Mg(e)—f(e)]E. (158

Here, unlike the nonextreme case, the functidrremains
Sinite ase—0. The above formulas, as well as the following
ones, have a fractional err@(e/eM). Hence for horizon
T, skimming orbits,

Tp

e |Q¢L,e_ E'e|

— = 151
p |E,p_Q¢L,p| ( )

PrPs p~%M(1+e)1’2(3—e)3’2'E, (159
For example, for ara=0.99M Kerr hole, we haveT /T,

=0.81 forp=1.7M,e=0.3 while forp=2.11M,e=0.7 we 1

getT./T,=4.5[for both orbits, Eq(151) is a good approxi- e~—(1+e)Y33—-e)%%E. (160
mation]. This situation is typical for nonextreme holes. As 2
we move along the separatrix keeping a fixed distance fro
it, the ratioT, /T, tends to increas@nd become larger than
unity) with increasing eccentricity. In comparison, the corre-
sponding weak-field time scales ratio, E§42), is relatively
insensitive to variations of eccentricity.

rKll\le see that both rates are finite all the way down to the
separatrix, unlike the<M case. However, the adiabaticity
condition(117) is still invalidated atp=ps.

More interesting is the behavior of the ratio of the rates
(159,(160,

C. Horizon-skimming orbits 1

zm-i—(’)(e/eM). (161

eNNOR

A particularly interesting class of prograde strong-field
orbits are those that potentially “graze” the black hole hori-
zon. These orbits can only exist provided the black hole is N ) : )
near extremally rotatinga~M (this can be deduced from This is always positive, which means that tee-0 region
Fig. 2. Circular, nonequatorial horizon-skimming orbits that exists fora<<M shrinks to zero for extreme Kerr black
were first studied by Wilking48] and more recently by holes. In other words, the critical curyg,;(€) has the same
Hughes[49]. Here, on the other hand, we discuss equatoria¥@lue of the Boyer-Lindquist coordinate as the separatrix it-
horizon-skimming orbits of arbitrargbut not equal to unity self. This conclusion completes the discussion of the previ-
or close to zerpeccentricity around an extreme Kerr black 0US subsection. For the ratio of the respective time scales we

hole. get,

As the separatrix for these orbits takes the very simple
form py(e)=M(1+e) we can duplicate the analysis of the E: i+O(eIeM) (162
previous section following a purely analytical path. Expand- T, 1l+e '
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As Eg. (162 predicts, the eccentricity always evolves more  TABLE Ill. Comparing results from our radiation reaction code
rapidly than the semilatus rectum, which again is contrary tovith existing results found in the literaturg42,51,3] (data in pa-
the situation with weak-field orbits. rentheses We find excellent agreemetut the predicted levelfor
equatorial circular Kerr and eccentric Schwarzschild orbits. On the
other hand, there seems to be-4% disagreement with Shibata’s

V- NUMERICAL RESULTS results[32] for equatorial eccentric orbits.

A. Method and error estimates

Numerical solution of the Teukolsky equation or relateda“vI ¢ M (M/1)*Egw
equations has been a minor industry for nearly thirty yearsg g5 0 10.015 4.96645210°°
since the pioneering work of Press and Teukolsk4], De- (4.96624% 10°5)
tweiler [46] and Sasaki and Nakamufd7]. Our method is () g5 0 40.795 5.07746910-8
based on a numerical algorithm outlined §8] and employs (5.277415 10°9)
subroutines found i54]. It involves the use of Bulirsch- 0.95 0 200.698 1.93359010~ 1

Stoer integration to solve the Sasaki-Nakamura equation.’ 11
. ' (1.93357% 10" 1Y

Our code is a direct descendent of the codes usggllihand 0.00 0.7641 8.754 15713210~

[30], since we deal with both arbitrarily eccentric orbits and ™ ' ' :

X ; T (1.57131x 10 %)
black holes of nonzero spin. Romberg integration is use% 00 0.7446 13.198 1 2436390°°
both to integrate Eq$16) and(17) and to integrate Eq81). ' : : : .
To calculate the spheroidal harmonic functic®f we use (1.4363X 1q5)
the “spectral decomposition” method described &r8]. The 0.90 03731 12.152 2'357@075
reliability of these methods in general is well known. (2.3893< 1078)

We were able to check our numerical results for circular®-29 0.5634 50.513 2'12161078
equatorial orbits with those dfi8], where our agreement (2.1192<10°°)
was good to 5 or 6 significant digits, and with the codes orP-30 0.6519 19.969 2.165410°°
which this code was basd®1,30, for eccentric orbits in (2.1375¢10°°)

Schwarzschild and for nearly circular orbits in Kerr, and
again our agreement was good to 4 to 6 significant digits. A

similarly good agreement was achieved by comparison withEgs.(17) and(16). This parameter governs the level of con-
the published results of Tanal al. [50] for equatorial ec- vergence which the routine demands in the final result, be-
centric orbits in Schwarzschild and with those of Shibatafore it stops iterating. However, in the case of the Romberg
[51] for circular equatorial orbits in Kerr. We were also able routine which governed the main program loop, i.e. the inte-
to compare our results with those given by Shif@a] for ~ gration of Eq.(81), we typically seteps=10"° in many
equatorial eccentric orbits in Kerr. In this case, however, wecases in order to achieve large savings in computing times.
did find some disagreement of abeull %. The cause of this In @ few runs designed to produce data for illustration of
disagreement is not apparent, while it stays roughly at thavaveforms only(not numerical data on flux quantitiesve
same level for moderate and high eccentricities. The distisedeps=10"*.

agreement does not seem to be due to the problems of main- (i) Our method requires that we calculate the quantity
taining accuracy with the long runtimes and large number oB" [see Eq(81) above. To do this we integrated the Sasaki-
harmonics required for moderate/large eccentricities. The eNakamura equatioi104) out to r =100/, and then suc-

ror introduced by the truncation of tHek sums in the flux —cessively doubled the limit of integration, until our Richard-
calculation does not seem to be the source of the disagre€on extrapolator told us we had achieved convergence to a
ment. We cannot say at present which code might be at faultelative accuracy of 10°.

Finally, we have also been able to compare our code with (iv) Our method for calculating spheroidal harmonic func-
some results for circular orbits in Kerr frofs2], and again tions S involved writing them as an expansion of an infi-
our agreement is good to several significant figures. Siminite set of spherical harmonic functions. Fortunately this ex-
larly, comparison with post-Newtonian results for eccentricpansion can be truncated at 30 terms and remain very precise
Kerr orbits (as found, for example, i128]) reveals good in most cases, but for high black hole spirsand high
agreement in the weak-field regime. In Table 11l we compareangular frequenciesy,,, we were obliged to use 40 terms to
some sample results. avoid truncation errors causing small high frequency ripples

In view of the lack of any check for strong field orbits in the wave forms. However, in our numerical results of flux
with high/moderate eccentricities and high spins, it is of ob-rate and orbital evolution this source of error appears to be
vious importance that we present some estimate of the likelgonsiderably less than 16.
error in our numerical results. The main sources of numerical (v) In principle our calculation of fluxes must be summed
error in our code are as follows: over an infinite number of harmonics in each of the integers

(i) Inaccuracy in the Bulirsch-Stoer integration routines,|,m andk. In practice truncating these sums for thandm
from [54]. We set the relative accuracy parameips which ~ harmonics was not difficult. Fluxes for a sequence of these
governs the convergence of the final result, at®0 harmonics usually monotonically decrease after a peak at

(i) Inaccuracies in the Romberg integrator, also fromsome value of andm and so we demanded that the loop
[54]. We seteps=10° for the routines which integrated through these variables halt once fluxes went below a factor
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of 107 ° times the peak contribution. However the spectrum (i) The semilatus recturp always decreaseshe orbit is

of fluxes in thek harmonic was much more complicated, shrinking. In fact, |p| grows monotonically, and finally di-
typically involving several peakgsee the figures in Sec. verges, as the separatrix is reached. This divergence is an
VD) before finally monotonically decreasing after a numberartificial feature of our formalism, associated to the break-
of peakS which increased for ianeaSingly eccentric OrbitSdown of the adiabatic approximation_

We examined spectra iby hand to confirm the machine’s (i) The eccentricitye shows a more complicated behav-
results and experimented widely to convince ourselves th%r. For sufficiently largep, we always finde<0. However,

we had caught all significant contributions to the total flux ) - .
as the orbit approaches the separatexghanges sign and

from different frequencies. i ) th i ticity i
Clearly there are several significant independent source%ecomes pOSIive, 1.e. near the separatrix, eccentricity in-

of error, so that we can only offer our best judgement of thecreases. As in the case pfe will also diverge at the sepa-
total relative error in our code in those cases where we havealrix, due to the failure of adiabaticity.

no independent check on our results. As we have addressed (iii) As the black hole spins up, in the case of prograde
every systematic source of error that we encountered, and asbits the critical radius after whiok™0 moves closer to the
we are confident that the code is running correctly in all ofseparatrix(in coordinate termsfor a givene. The same is
the cases dealt with in this paper, we estimate the relativeue for a fixed black hole spin, but for increasieg For
error for numerical results quoted in this paper as no greatatetrograde orbits, spinning up the black hole tends to move
than 103—-104, in the case of fluxesE andL, and no  thee=0 curve away from the separatrix.

greater than 10°— 102 for quantities such as andp be- (iv) In a sense, the increasing eccentricity regime is a
cause cancellations between terms when converting fluprecursor of orbital instability and plunging. This is hinted
numbers into orbital evolution quantities tend to increase thgy the proximity of the critical curve,,;; , wheree flips sign
size of the relative errors. This is especially true near thgynq pecomes positive, to the separatrix cysy@) which is
critical point where the rate of change of the eccentriCityihe poundary between stable and unstable bound orbits.
becomes zero, due to the complete cancellation of thesgyajitively speaking, at this stage of the inspiral, the radial
terms. As an illustration of thl_s, we will note in passing that potentialV, is quite “flat” and as a consequence the particle
the mysterious “bump” seen in Fig. 2 of Ref31] tums out  pa5 more room to move radially, even as it continues to
to be due to a rare case where flux errors which appear injny~ towards the bottom of the potential wefthe behavior
significant themselves are greatly magnified when the Nuypich is responsible for the characteristic “circularizing”
merical flux data are combined to produe@andp. tendency.

It is useful, in this context, to mention that in comparing  These results agree with, and at the same time generalize
the results from our code to the code[B0], the flux quan- previous results concerning bound orbitsf arbitrary e)
tities for radiation emitted toward infinity agree to about 1 around Schwarzschild black holf&1] and slightly eccentric
part in 108, the flux guantities for radiation towards the equatorial orbits around Kerr black holg30]. As we have
horizon agree to about 1 part in 19and the position of the  discussed in Sec. V C, some of the conclusions above must
critical curve, as calculated by the two codes, can disagree liye modified when the black hole is extrense=(M).
about 1%. This suggests that the only way in which our |n Table VII we give a sample of our numerical data, for
numerical error is large enough to make a visible differencgy,, energy and angular momentum fluxes as well asb,f'er
in our figures would be as a slight change in the position Offor some of the orbits presented in Fig. 5. As we have dis-

the critical curve in Fig. the retrograde case cussed, we believe that these numbers have fractional accu-
_ _ racy at least 10°,
B. Backreaction on the orbit Another important result concerns the significance of the

In this section we present numerical results on the evoluhorizon fluxes on the evolution of orbits with relatively small
tion of bound equatorial orbits in terms pfande. This pair ~ Periastrii. Specifically, we have encountered very-strong field
of parameters is preferable to the equivalenEsét, because  orbits for which|Ef,|~0.1E&y/. However, the most in-
of their clearer geometrical meaning. We have calculated th&iguing property of the horizon fluxes is that they assist, in a

averaged rate.p, efor a humber of prograde and retrograde sense, the orbiting bOdy This is most easily illustrated by
orbits and for two different black hole spina=0.5M, and  Plotting the evolution of the set of orbits of the top graph of
a=0.99M. A representative part of our numerical results isFig. 5, without including the horizon fluxrepresented by
presented in Fig. 5. Each individual orbit is represented as gashed arrows in Fig. 5; the solid arrows represent the total
point on the p,e) plane. At each one of those points we rates. For very strong field orbits, when the horizon fluxes

have attached a vector with componeri/g)(p,Me) that are taken inro account, the sr]rinking of t'h(? orb.it is noticeably
indicates the direction at which the orbit adiabatically Stalled. Typically, wherEg,y is non-negligible it also hap-
evolves under radiation reaction. Moreover, all orbits showrP€ns that it represents energy gain instead of energy(iloss
are chosen so as to be strongly adiabatic for the typical massther words the fluxegl,,,Eg,, have opposite sighsThe
ratio 10 ® (the most severe constraintigM <10 2). These  orbiting particle is effectively draining energy from the black
figures (together with the analytic approximations of Secs.hole itself. This is just a manifestation of the so-called super-
IVA, IVB, and IV C) lead to the following conclusions: radiance phenomenon, well known in black hole physics
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FIG. 5. The evolution of a family of eccentric equatorial orbits, illustrated on fhe)(plane. The black hole spin B8=0.99M (top
graph, prograde orbits; bottom graph, retrograde orhitsla=0.5M (graph in the middle; prograde orbit§ he dashed curves represent the
separatrix of stable orbits, while the solid curves represent the crtied curve. Each orbit corresponds to a point in the graph, and its
(adiabati¢ radiative evolution is represented by a vector with componemltsﬂ()(b,M'e). Solid and dashed arrows represent the orbital
evolution respectively with and without including the fluxes at the black hole hotthendifference between these arrows is visible only in
thea=0.99M case. When the black hole is rapidly spinning the horizon flux effectively represents gain of energy for the orbiting particle,
an effect attributed to superradiance, see discussion in the main text for more details. As a result, the inspiral of the body is stalled and the
critical curve is slightly pushed outwards. This is the reason for the strong misalignment between the solid and dashed vectors at the point
p=1.9e=0.5 of thea=0.99M plane. Note the much more pronounced orbital evolution for the prograd®99M case(a consequence of
the particle’s motion in very strong field regiorend the approactdiverge of the relative positions of the separatrix and the critical curve
between thea=0.5M case and the progradestrograd¢ a=0.99M case.

[44,55: waves scattered within the black hole’s ergoregionregions with much stronger fields and therefore emit a sub-
and having frequencie@s measured at infinifythat lie in  stantial amount of radiation towards the ergoredisee Fig.

the interval Kw<mw, , effectively appearfor a distant 2). Hence we find a significant negativeuperradianthori-
observer as emerging from the horizon, and amplified at thezon flux. An alternative way of viewing this phenomenon is
expense of the hole’s rotational energy. The outgoing reas an exchange of energy and angular momentum via tidal
flected waves “push” the particle outwards, and this interac-coupling analogous to tidal friction in the Earth-Moon sys-
tion is manifested as a gain of orbital energy and angulatem (and elsewhepe For an exposition of this intuitively
momentum. Our result can be easily understood if we recaiinstructive viewpoint se€34], and references therein.

that the ergoregion is growing for increasing black hole spin. It was recognized long agd®6] that if the superradiance
At the same time, because the boundary of instability movesffect ever became large enough a floating orbit would result
in to lower radii with increasing spin, a particle can enterwhen it balanced the energy loss due to radiation emitted
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come & a a surprise, as expressi@hb3) is not formally
valid unlessp>M. It is not safe to use weak-field approxi-
mations in strong field regimes.

A simple way to make better predictions is by using the

exact expressiond21),(122) for p,e, but still employing the
weak-field formulag128),(129 for the fluxes. The outcome
of this trick is also shown in Fig. 6, for a set of orbits with
initial parameters ,=5,10,20M andr,=10°M (this trans-
lates toe=0.99999, 0.99998, 0.99996 am=10,20,40/
respectively for a=0,0.9M. We also considered a set of
retrograde orbits with initialr ,=7,10,20M and the same
[ apastron as before, ana=0.99M spin. Note that these
Y =eere e N curves, like the ones given by E(.63), are shape-invariant
8 45 6 7 8 910111213 141516 17 18 19 20 ith respect to the mass ratio as long M <1. It is re-
PM warding to see that these new trajectories do show the exis-

FIG. 6. The radiative inspiral of a set of equatorial eccentrictence of thee>0 region, and additionally are in good quali-
orbits with initial parametergsolid curves from left to rightr tative and quantitative agreement with the accurate
=5,10,20M andr,=10°M, and for black hole spina=0,0.M.  numerical result§57]. This is true as long as we do not
An additional set of retrograde orbits witlj=14,20,401 and the attempt to evolve prograde orbits around rapidly spinning
same apastron, and far=0.99M is also showrsolid curves onthe  p|gck holes, because the agreement quickly degrades pvhen
right sidg. The three dashed lines represent the separatrices fQ§acomes small. Essentially this approach takes into account
corresponding spins. The dotted curves are the Newtoniam-ord%e correct form of the potential, which is the main cause

predictions, while the solid curves are the result of a more accurat . L -
calculation discussed in the main text. Note the significant qualiti-Eehlnd the change in sign ef but the fact that the PN fluxes

tave difference between the two calculations at the vicinity of eactff® increasingly inaccurate in strong-field regions precludes
separatrix. precise numerical agreement with the real trajectories.

The new curves clearly predict a higher residual eccen-

towards infinity. Our results confirm earlier work in collabo- ricity as compared to the pure Newtonian curves. This ap-
ration with Scott Hughes, suggesting that even for orbitroximate result strongly suggests that many astrophysically
very close to the horizon of very rapidly rotating black hobs,relevan; |.nsp|raII|ng orbits will have a S|gn|f|can.t amount Qf
the gain in energy from superradiance is only 10% of theeccentricity Ie_ft when thejy.are close to pIung_lng and will
energy lost by the system as a whole. For further details, Ser@erefqre be likely to exhibit zoom-whirl behavior. Our full
[34]. numerical results cannot at present be used to reproduce
The results presented so far in this section, although ver§omplete trajectories, but Fig. 5, which displays arrows
insightful, are still incomplete in the sense that they do notVhich are tangential to these trajectories at individual points,
describe the radiative evolution of a single given orbit on thefertainly shows that if significant eccentricity remainspat
(p,e) plane. Instead, they provide local information on the~5|\_/|, tr_ns eccentricity will not disappear in the last part of
evolution of an orbit at a given point. An effort to “paste” the inspiral before plunge. - _
together a sequence of such points, in order to follow the full The work of Freitad 17] suggests that the initial periastra
orbit is currently underway33]. Meanwhile, we can use Of scattered compact bodies which will eventually plunge
certain approximations to foresee what the full inspiral tra-nto the black hole due to radiation reaction will be generally
jectory will look like. As a starting point we use the leading '€ss than 4B1. However below that point the distribution of
quadrupole-order expressions fpre, i.e. settinga=0 in their periastra will be fairly flat, so that small initial periastra

: will be just as likely as large ones. As our figure shows, one
Bgs.(137),(138 and derive expects, in the case of a Schwarzschild black hole, that bod-
121 870/2299 ies with initial r,>20M will have e<0.1 by the time of
e\ 121 1+ @ez plunge. But for initialr ,<<20M the final eccentricity will be
p(e):pi(—) _ (163 e>0.1 and can easily be as greateas0.7 (see Fig. 6 or
& 1+ Ele_z higher. For instance, far,=10M, the final eccentricity will
304™ be e~0.3 (see Fig. 6. We know that retrograde orbits will

have less time to circularize and a longer “de-circularizing”
Given some initial valuep; ,&; this relation describes, in the time, so eccentricities in this case should be greater. This is
weak-field limit, the trajectory of the orbit on thep(e) clearly seen in Fig. 6. In the case of prograde orbits we
plane. Such curves for astrophysically relevant initial paramshould generally expect smaller eccentricities before plung-
eters, are shown in Fig. Bhese curves remain essentially ing (as compared to orbits around Schwarzschild black
unchanged when the spin terms are retained in Eqsoleg but still at a significant level. Again Fig. 5 suggests
(137),(138)]. One feature that is immediately seen in thethat the change in eccentricity will not be great, despite the
Newtonian-order inspiral is the absence of the critical curvgonger circularizing and shorter de-circularizing times. More-
e=0 and the subsequem>0 behavior. This should not over, near extreme holes allow a wider range of initial peri-
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TABLE IV. Upper limits on the total eccentricity gain close to A crude estimate on the number of orbits can be made by

the separatrix, for given final values for the eccentricity. Using  integrating Eq.(148) to find the time required to cross the
the gradientde/dp at the separatrix we extrapolate to the critical ;

) ) O e>0 region,
curve. In this way we obtain the eccentriciy.

a/M ef g M(de/dp),, selg; f~ ifps Hdp , (164

0.50 0.1 0.086 —0.0414 0.16 LJper(L e —Eee)

0.50 0.3 0.28 —0.1342 0.073

0.99 0.1 0.086 —0.1555 0.16 where we have factored out the angular momentum flux as it

0.99 0.3 0.29 ~0.2186 0.019 can be taken as constant within the integration intetaatl
—0.99 0.1 0.066 —0.0439 052 recovered by our numerical dataSimilarly we have as-
~0.99 0.3 0.28 —0.0546 0.083 sumed a fixed eccentricity. The number of orbits is then cal-

culated by dividingt, with a typical periodT, (or T,). We

give some representative results in Table V. We need to em-
phasize that these numbers should be viewed only as order-
of-magnitude estimates, as E464) is a rough approxima-
ton. Nevertheless, we can still draw some reliable
signal analysis for LISA. conclusions. For a small eccentricity our numbers are in

The techniaue outlined here has been recently aoplied iR9reement with existing results for nearly circular orbits
constructing a?pproximate, radiation reaction-driveX:], i%gpiralsaround a Kerr black holg30]. For e.= 0.1.we.should t.ypl-
of test-bodies in generic Kerr orbitéor which case only cally have a few thousand revolutions in tee-0 region
weak-field results are currently availalj28]). For more de- around ama=0.99M hole and for a mass ratia/M~10"°.
tails sed57]. For the same parameters, but for retrograde orbits, there is an

Motivated by the results discussed above, we would likerder of magnitude increase in the number of orbits. On the
to obtain simple estimates of the total amount of eccentricityther hand, for all cases, there is an order of magnitode
gain and the number of orbits the particle will spend in themore decrease as we move to eccentrigity 0.5. Note that

e>0 region. Such estimates may provide a useful guidelinét.iS _p_ossible to have a s_mall . O.f full orkgits,_ but yet a

for assessing the observational importance of this phase. significant number of azimuthal revo_Iutlons or “whirlgsee
The numerical radiation reaction evolution-arrows in Fig.for example thea=0.99¢=0.5 case in Table ¥/

5 show that the gradiente/dp grows(in the negative senge C. Waveforms and fluxes from zoom-whirl orbits

monotonically as soon as the critical curve is crossed. Hence

the maximumnegative value is attained exactly at the sepa- zoom-whirl. As we have shown, orbits located near the sepa-

ratrix. The approximate expressidfiS0) for de/dp_ IS €X° " ratrix should radiate in accordance with Ef46), as though
pgcted to be very accurate there. We.qan use this fixed grz?ﬁey were nearly circular. In Table VI we list numerical
dient apq extr?polatg out to thg .C”t'cal rc]:urve, al Som&, ves for zoom-whirl orbits of various eccentricities. It is
$(r:]centr|0|tyeri], or ahglvsn_eccentrlcnpf at the separgg/lx. clear from these results that as the separatrix is approached,
en we hi ave that E—(laf—ew[ps(eic.)—'pcf(e;])]( | the analytic predictior{146) is indeed confirmed. However,
dp)p ey - This number should set arpperlimit of the total o6 has'to be very cautious when applying Edié) to the
increase in eccentricity. Results for some representative casggudy of a real astrophysical, extreme mass ratio, binary sys-
are given in Table IV. From these numbers we deduce that, aém. As our data reveal, in the region where this relation is
best, there is a fractional increase of 5-50 % in eccentricityfractionally accurate at the level of 1072, the adiabaticity
the most favorable case being low-eccentricity retrograde Orconstraint(117) on the mass ratio is quite severe, typically
bits around rapidly spinning black holes. This gain decreaseg /M <10"2—102,
as we move upwards to larger final eccentricitibasically The zoom-whirl orbits are of interest for future detection
due to the shrinkage of the=>0 region. We therefore con- efforts because of the characteristic waveform they generate.
clude that we should not expect any dramatic increase itn Figs. 7—9 we show such waveforria particular we plot
eccentricity when the orbit is about to become unstable. the quantity /r)h, as a function of retarded time-r, |

astra (for prograde orbits even down tor,~2M and in
these cases the residual eccentricity will be quite large. On
concludes that eccentricity will play an important role in

" Let us now focus on the class of orbits we have named

TABLE V. Approximate data for the number of orbits in tee-0 regime. The required crossing time is
t. and we have defineN, ,=t./T, ,. We have calculated the periodis , at p=(ps+ Pcrit)/2.

a/M e (u/M?)t, T, /M T4/M (w/MIN, (IM)N,,
0.99 0.1 0.051 216.48 18.03 %304 2.8x1073
0.99 0.5 0.0018 276.84 18.02 &10°© 1.1x10°4

-0.99 0.1 5.6 651.48 181.02 &a6.03 3.1x10°?

-0.99 0.5 0.79 718.32 218.14 X103 3.6x10°°
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TABLE VI. Examining the validity of the approximate, near- 15
separatrix, formula'c_=.Q¢I'_ for various zoom-whirl orbits and for
two black hole spins. Here, only the fluxes at infinity have been 4|
consideredthe horizon fluxes yield similar resultsTypically, this
relation is found to be accurate to fractional accuracy't010 2.
In such cases the orbit is so close to the separatrix as to requino'5 [
u/M<102—10"3 for adiabaticity to hold.

0

a/M e p'M (EGwLEw/Qy

0.50 0.3 4.70 1.071 adl

0.50 0.4 4.90 1.128

0.99 0.3 1.70 0.984 Ar

0.99 0.3 1.80 0.896

0.99 0.4 1.80 0.976 15 - - - - - -

099 07 211 1138 0 100 200 300 400 500 600 700

for a couple of strong-field zoom-whirl orbitp&2.11IM
ande=0.7, p=1.7M ande=0.3) and for a rapidly spinning 1
black hole witha=0.99M. Both orbits would evolve adia-
batically if we consider a typical mass ratjo/M~ 10", 0s L
The corresponding gravitational wave flux data can be found
in Table VII.
First we shall discuss the waveform as seen by an ob- °f
server located on the black hole’s equatorial plane, see Fig. °
and the top panel of Fig. 9. Clearly, these waveforms have eos |
very distinct appearance. A rapidly oscillating, high ampli-
tude signal is radiated during the whirling of the particle near |
periastron. In between these bursts one observes low
amplitude signals produced during the particle’s zoom in and
out from apastron. This contrast in amplitudes is greatest for'%g, 280 200 220 w0 260 80
larger eccentricitiescompare Fig. 7 and Fig.)9An interest-
ing feature of the equatorial waveform is the prominent high FIG. 7. The waveform produced by a particle in a zoom-whirl
frequency ripples superimposed on the waveforms, assocf/Pit with parameterp=2.11M,e=0.7. Specifically, we graph the
ated with the higher multipole components=@3 and higher; quz_mtlty (u/r)h, (wherer is the dlst'ance to thg observation point,
the illustrated waveform includes all multipoles up to Which is taken to be on the hole's equatorial plaversus the
= 18) of the wave. It is noteworthy that the high frequencyct2"ded imé —r,(r) (in units of M). We have set the black hole
features are prominent in both the zoom and the whirl partssloIn ata=0.9M and included up td=18 multipoles in order to

. . . ‘generate this figure. The orbital period 1$=236.8M and N,
of the orbit, although if they are solely the result of beaming_ 10.5. Note the very characteristic shape of the waveform, which

ki m|ght expect that they WOU"?' be purely a whirl feat.urg, 8Ss a periodic succession of high-amplitude/high-frequency parts
the motion is fastest near periastron. However preliminaryc,ming from the whirling motion of the particle near the perias-
results from a time domain code written by one of(KSG.) o) and intervening low-amplitude/low frequency pattom the
suggest that the high frequency features may be associatggoming in and out motion On the bottom panel, the same wave-

with quasi-normal modes of the black hole, which are exform is graphed over a shorter time interval, offering a clearer view
cited by the high frequency emissions from the orbit. Thepf its rich structure.

guasi-normal mode ringing results in a continuous and time-
delayed emission at these frequencies. high-frequency features are not associated only with the
We also show waveforms seen by an observer on the pestrongest-field whirl part but are distributed throughout the
lar axis of the black hole, in the top panel of Fig. 8 and thewhole cycle, including the weaker fieltarger radiuy zoom
bottom panel of Fig. 9. In this case both “plus” and “cross” part. The polar waveforms are completely dominated by the
polarizations are presefonly h, is nonzero for an equato- quadrupole (=2) emission. Thé=3 and higher multipoles
rial observey but we illustrate onlyh, because the “cross” do not contribute significantly. In the equatorial waveforms
waveform is the same except for a phase lag. The polaihe quadrupolar contribution is not much greater than that of
waveforms have the characteristic features of a highthel=3 multipole and the fall off, in terms of the amplitude
amplitude, multi-cycle whirl part and a low-amplitude two of h,, for each subsequent multipolar waveform is slow.
cycle zoom part, but the high frequency features are absenthe transition between the polar and equatorial waveforms
This suggests that the high frequency features are associatedn be understood by looking at the waveform depicted in
with beaming due to the rapid motion of the particle in thethe bottom panel of Fig. 8 which corresponds to an observa-
equatorial plane in the very strong field region, although thdion at angled= =/4.
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FIG. 8. The same waveform as in Fig. 7, as seen by an observer.5
along the hole’s polar axi¥=0 (top panel and alongf#= /4
(bottom pangl A comparison with the equatorial wave of Fig. 7 [
reveals a substantial suppression of the high frequency features. “
This is a result of the fact that the wave’s higher multipole compo- n
nents (which are responsible for the small-scale structusee
mainly “beamed” to directions close to the equatorial plane.

0.5

One can get an idea of what is going on by looking at the
0-dependence of the energy flux from the system. In Fig. 10-05
one sees that the=2 flux (dominated by thé=m=2 con-
tribution) is concentrated somewhat towards the pote ( 4|
=0), but there is a strong shift towards the equatér (
=m/2) in them=3 flux, and further concentrations in that . . . . . . . . .
direction for each successively higher valuenofTherefore 100 50 100 150 200 250 300 350 400 450 500
one sees the sort of beaming of the higher multipoles ob-
served in the waveforms, although because of the dominance
of the quadrupole the amplitude of the polar and equatorial
waveforms is similar in this case.

Next, in Fig. 11, we show the waveform from the retro-  gig 9. The waveform generated by a particle in a zoom-whirl
grade zoom-whirl orbit p=10.9M,e=0.5, retaining a  opit with parameterp=1.7M,e=0.3 (we have again assumed a
=0.99M for the black hole spin. The familiar zoom-whirling pjack hole spira=0.9M and|,,,,=17). The orbital period ig,
pattern is clear also in this case. However, we do not see any221.36M and the number of revolutions in one period Ng
prominent high-frequency structure in these waveforms as-12.3. The top and middle graphs show the signal seen by an
the contribution coming from higher multipoles is sm@le-  equatorial observer, while the bottom graph corresponds to a polar
cause the orbit does not reside in a very strong field regimeobserver. The same qualitive behavior discussed in the caption of
We are not surprised, in this case, that the waveform seelig. 7 is also evident here.
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TABLE VII. Numerical data for the rate of change, under radiation reactiork,bf (separately for infinity and the horizpand p,e
(total amount for a selection of strong-field orbits and for two black hole spis,0.5M (top), a=0.99M (middle) and a=—0.99V
(bottom). Most of these data were used to generate the vectors in Fig. 5. In the computations we hdyg,bssta— 17.

a=0.5M

e PM (M/p)’Eqw  (M/p)’Ey (M/u?)Lgw (M/u?) L& (M/u)p (M?/p)e
0.10 460 2.8802210°° —6.41673<10°° 2.88686x10°2 —6.4705810°° —5.7961% 10! +9.61181x10 3
0.10 500 1.8173810° % —4.03021x10°°% 2.06724<10 2 —458643%10° —2.3707%<10° ' —3.7306210°
0.10 6.00 7.1066810°% —1.27547x10°6  1.0553% 102 —1.88243%10°°> —8.45033«10°2 —2.00595<10 3
0.20 470 3.1181210 % -—5.71886<10°® 296692102 —5.6375%10°° —565181X10 ' +1.04172<10 2
0.20 5.00 2.0914210°% —4.2718510° % 221228102 —4.58884<10°° —256971x10° ' —7.19373% 103
0.20 6.00 7.7854%10°% —1.43776<10°°% 1.08487 102 —1.97306<10°°> —8.53506<10°2 —3.97940x10° 3
0.30 470  4.9624%10° % —2.3425%10°®  4.0759% 10 °? —2.62670x10 ° —2.55152 +2.64021x 107 ¢
0.30 5.00 2.6043910° % —3.7984%10° 6 2.48384<10°2 —3.98856<10°°> —3.03745<10°' —9.6373% 103
0.30 6.00 8.8828210 % —1.63235¢10°° 1.12981x10 %2 —2.0638% 10 ° —8.65523<10° 2 —5.87677% 10 °
0.40 490 4.5259810°% +3.0030%10°® 3.62936<10°2  +9.69843%10°° —9.1206310° ! +3.28050<10 2
0.40 5.00 3.5304810°% —5.18531x10°° 2980971072 —1.10071X10°° —4.4134210°' —6.78246<10°3
0.40 6.00 1.0326410° % —1.6847210°°% 1.1825% 102 —2.0339% 10> —8.77285<10°% —7.6262210 3
0.50 510 4.2159410°% +9.1975%10°% 3.26383< 102  +5.0197%10°° —54762% 101 —4.96045<10 3
0.50 550 2.1179%710° % +6.77254<10°®  1.89546<10° 2  —9.89420<10 6 —1.60976<10° 1 —1.41868<10 ?
0.50 6.00 1.1963810°% —1.2237410°% 1.22973 102 —1.65642%10° —8.82324<10°2 —9.10645<10 3

a=0.9M

e PM  (M/p)Egw  (M/p)’EQy (M/u?)Lgw (M/u?)Lgw (M/u)p (M?/u)e
0.10 155 9.26328102 —7.85155<10°%  2.6342810° ! —2.23134x10°? —1.51950 +1.74361x 1071
0.10 2.00 4.7232810°%2 —3.16550<10°% 1775310 ! —1.18650<10°2 —4.73445<10° ' —3.72486<10 2
0.10 3.00 1.1240010°%2 —4.14404<10°* 6.83347x 102 —2.5040810° % —2.26534<10° 1 —1.26041x10 2
0.20 1.62 9.30012102 —7.62204x10°%  2.60464x10°!  —2.13080<10 ? —1.46506 +1.57196<10° 1
0.20 2.00 5.0665410°2 —3.43868<10°° 1.82214K10 ' —1.22541x10 %2 —4.74856<10° ' —7.36986<10 ?
0.20 3.00 1.1989810°%2 —4.59376<10°* 6.94427% 102 —2.6073%10° % —2.25311x10