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Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution
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We study eccentric equatorial orbits of a test-body around a Kerr black hole under the influence of gravi-
tational radiation reaction. We have adopted a well established two-step approach: assuming that the particle is
moving along a geodesic~justifiable as long as the orbital evolution is adiabatic! we calculate numerically the
fluxes of energy and angular momentum radiated to infinity and to the black hole horizon, via the Teukolsky-
Sasaki-Nakamura formalism. We can then infer the rate of change of orbital energy and angular momentum
and thus the evolution of the orbit. The orbits are fully described by a semilatus rectump and an eccentricity
e. We find that while, during the inspiral,e decreases until shortly before the orbit reaches the separatrix of
stable bound orbits@which is defined byps(e)#, in many astrophysically relevant cases the eccentricity will still
be significant in the last stages of the inspiral. In addition, when a critical valuepcrit(e) is reached, the
eccentricity begins to increase as a result of continued radiation induced inspiral. The two valuesps , pcrit ~for
givene) move closer to each other, in coordinate terms, as the black hole spin is increased, as they do also for
fixed spin and increasing eccentricity. Of particular interest are moderate and high eccentricity orbits around
rapidly spinning black holes, withp(e)'ps(e). We call these ‘‘zoom-whirl’’ orbits, because of their charac-
teristic behavior involving several revolutions around the central body near periastron. Gravitational wave-
forms produced by such orbits are calculated and shown to have a very particular signature. Such signals may
well prove of considerable astrophysical importance for the future Laser Interferometer Space Antenna
detector.
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I. INTRODUCTION

A. Background

Binary star systems, consisting of compact objects suc
black holes and neutron stars, are relatively strong source
gravitational radiation and are expected to be prime sou
for the terrestrial network of kilometer-sized interferomet
gravitational wave detectors, which will soon be fully oper
tional, or for space-based detectors such as the propose
ser Interferometer Space Antenna~LISA! mission@1#. In or-
der to detect gravitational radiation and subsequently st
the physics of these sources it is absolutely necessary to
a prior theoretical knowledge of their dynamics. This is e
pecially true because of the method of matched filtering~see
@2# for a recent review! that is likely to be employed in orde
to identify true gravitational wave signals ‘‘buried’’ insid
the detector’s noisy output. The success of this method
pends on the use of an accurate template of the incom
waveform.

This paper will focus on the case of extreme mass ra
systems, modeling a massive central object which is a s
ning ~Kerr! black hole while the orbiting body is ‘‘light’’ and
compact enough to be considered as a test-particle movin
the gravitational field of its companion. There are two im
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portant reasons for studying such a model.
First, because of the extreme mass ratio, the motion of

small mass can be accurately approximated by a geod
trajectory~which is well known@3#! and the system’s gravi
tational radiation is well described by first-order black ho
perturbation theory techniques. The celebrated Teukol
formalism@4# has proven particularly successful for this tas
One thus has the opportunity to make a detailed study o
fully relativistic celestial system. For this reason, black ho
perturbative studies can be used as a test for numerical
tivity simulations of two-body systems~and vice versa! @5#.

Secondly, in recent years there has been an accumula
of evidence of the existence of supermassive black holes~of
mass range 1062109M () in galactic nuclei~including our
own Milky Way! @6#. It is expected that scattered stellar-ma
;1210M ( compact objects from the surrounding stell
population will be captured by the central black hole as
result of two-body encounters and interactions with the
homogeneities of the background gravitational potential. T
same scenario can of course work equally well for norm
stars; however they will soon be tidally disrupted as th
approach the black hole@7–9#.

Once in a bound orbit, the compact object will slow
inspiral towards the central black hole due to the emission
gravitational radiation. As the frequency of the emitt
waves scales as 1/M ~where M denotes the central blac
hole’s mass!, they will potentially lie in the low-frequency
band (102521021 Hz) where LISA will have its peak sen
©2002 The American Physical Society02-1
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sitivity. The ~still uncertain! estimate for the number of suc
events is around 1/year, or better, out to a distance of 1
and they should be detectable by LISA, with typical signa
noise ratios of 10–100,@7#, assuming the use of some op
mal filtering technique, such as matched filtering@2#.

A huge payoff from direct observations of such events
to be expected,providedwe have an accuratea priori de-
scription of the emitted waveform. In principle, for instanc
the black hole parameters~masses, spins! can be measured t
a high accuracy. Similarly, information on the mass-funct
of compact stellar populations in galactic nuclei could
provided. Because the total luminosity of the source depe
only on its mass it may be possible to work out the dista
to the source, which would be very useful to cosmologis
Moreover, one might be able to identify the massive obj
as a Kerr black hole, as opposed to some other, more sp
lative object~for example a boson star@10#!. This was dem-
onstrated by Ryan@11# who showed in detail how the mas
sive body’s multipole moments are encrypted in t
waveform emitted by an orbiting particle. In the near ter
precise numerical results in the low-mass-ratio limit will
useful for testing the accuracy of post-Newtonian~PN! de-
rived templates aimed at ground based detectors like suc
the Laser Interferometor Gravitational Wave Observat
~LIGO! @12,13#.

LISA will monitor the last year of inspiral of a compac
body into a massive black hole by tracking the phase of
emitted waveform. It has been suggested that for astroph
cally likely scenarios, drag forces operating on the orbit
body due to gas accreting onto the black hole, will oper
on a time scale much longer than the radiation reaction t
scale of the particle@14,15#. Based on requirements that th
initial highly eccentric orbit in which the particle finds itse
as the result of some scattering event should have a s
enough periastron so that the radiation reaction time sca
shorter than the time scale for a second scattering eve
apastron, we expect that the initial periastron should
rather close, so thatr p,20M while the apastron will extend
to a distance 1042106M @9,16,17#. Newtonian order esti-
mates suggest that although radiation reaction will consid
ably reduce this enormous initial eccentricity during t
course of the inspiral, the eccentricity will remain finite a
non-negligible when the particle enters the strong-field
gion of interest to this paper~see Sec. V B below!. Exactly
how much eccentricity remains will depend critically on t
initial periastron distance and is largely insensitive to
initial apastron distance~and thus to the initial eccentricity!.

We can thus argue that for a sufficiently bound orbit t
system of the massive black hole and the orbiting comp
object will evolve under its own spacetime dynamics. T
tends to justify our ‘‘black hole plus particle’’ model. How
ever, even in this simplified picture there are problems. T
particle, in general, will move along a nonequatorial ecc
tric orbit ~as the galactic central stellar population is alm
spherically symmetric, capture orbits of arbitrary inclinati
are to be expected!. The Teukolsky formalism cannot, a
present, deal with such orbits, for reasons discussed in@18#,
in particular the problem of determining the rate of change
the ‘‘Carter constant’’ of the motion due to the emission
04400
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gravitational waves~much effort, towards this goal, is bein
focused on building a framework for calculating the gravi
tional self-force acting on the orbiting particle@19#!. For this
reason we restrict our attention to equatorial orbits arou
the central body. In such a case the rate of change of
orbital parameters can be deduced by reading the gra
tional wave fluxes for the energy and angular momentum
infinity and the black hole horizon.

There is, however, a factor that cannot be accounted
by the previous flux-balance argument which lies at the he
of our approach. As has been observed recently@20,21# the
gravitational self-force contains a conservative piece wh
is not associated with any radiation emission. Although
effect of this conservative force is negligible~scaling as
;m2) over short time scales~say, one orbital period!, it is
conceivable that the same will not be true for the accum
lated effect after 1042105 orbits @21# ~this is, roughly, the
number of orbits that LISA will record!.

Another issue that has arisen recently concerns the
sible difficulty in defining the notion of adiabaticity and av
eraged flux for generic, i.e. eccentric and nonequatorial,
bits in Kerr spacetime. This is related to the belief th
generic orbits have no well-defined orbital periods as th
show an apparently nonperiodic behavior. For that reaso
has been suggested@22# that an ‘‘ergodicity’’ criterion would
be more appropriate. However, recent work suggests@23#
that it is possible, after all, to rigorously define~by means of
Hamilton-Jacobi theory! a triplet of fundamental frequencie
for generic Kerr orbits. Consequently, one may still be a
to define adiabaticity for these orbits too.

Serious complications can also arise at the level of f
motion, where radiation reaction is neglected. In general,
small body will have its own intrinsic spin. In such a cas
due to the coupling of the particle’s spin with the backgrou
gravitational field, the motion is no longer geodesic. A
though the~specific! spin magnitude is small, i.e.S;O(m),
spin-induced effects could become important over ti
scales much longer than, say, one orbital period. A parti
larly dramatic possibility is that when the test-particle is
lowed to have spin, ‘‘chaotic’’ features may appear in t
orbital motion @24#. Presently it is unclear whether chaot
behavior will be important for extreme mass ratio syste
likely to be observed by LISA.

When radiation reaction is ‘‘switched-on’’ in the spinnin
particle case, one finds, not surprisingly, that the radiat
fluxes at infinity and the horizon are inadequate for determ
ing the evolution of the orbit. This is, in part, due to the fa
that there is no known analog of the Carter constant~so there
is one less constant of motion available!, and also due to the
existence of additional spin-degrees of freedom. A Newt
ian order, weak-field estimation for the radiative change
the spin has been worked out by Apostolatoset al. @25#.
Some speculations of what could happen to circular or
under strong field conditions can be found in@26,27#. For
generic orbits, most likely only a self-force calculation w
be able to describe the full orbital evolution.

As we are still far away from dealing with all of thes
challenges we make two major simplifications for this pap
that the orbiting particle has no spin and that it always
2-2
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mains in an equatorial orbit. Although Ryan has shown@28#,
for orbits in the weak field region, that nonequatorial orb
are forced by radiation reaction towards becoming retrogr
equatorial orbits, the effect is small. The effect remains sm
even in the strong field region, as was recently shown
Hughes@18#. Precisely equatorial orbits, pro- or retrograd
will remain equatorial under radiation reaction. Therefore
is reasonable to expect that detectors such as LISA will
tually observe signals from particles in near equatorial orb

Previous studies have shown that slightly eccentric or
of particles around Schwarzschild@29# and Kerr black holes
@30# and arbitrarily eccentric orbits around Schwarzsch
black holes@31# decrease in their eccentricity until short
before the innermost stable circular orbit~ISCO! when a
point is reached after which the eccentricity begins to
crease. The present work comes as an additional piece to
series of papers. Specifically, we consider equatorial ec
tric orbits of particles around a Kerr black hole and stu
their evolution under gravitational radiation reaction. Th
class of orbits is not exactly what we would expect in real
but it is an important step towards a more realistic view
gravitational waves from this type of low-frequency sourc
because it includes two very important features which
know will be present in all or most sources, black hole s
and orbital eccentricity. Our study is, in this respect, a use
companion piece to Hughes’ discussion of nonequatorial~but
circular! orbits @18#. Eccentric equatorial orbits were firs
investigated by Shibata@32# who calculated fluxes and wave
forms, without, however, discussing the impact of radiat
reaction on the orbital motion. Our approach is similar
previous papers investigating eccentric orbits around n
spinning black holes@31#, and nearly circular orbits aroun
spinning black holes@30# and the results are qualitativel
similar to those of both papers. In addition, we comp
gravitational waveforms produced by moderate or high
centricity, strong-field orbits~not discussed in Shibata’
study@32#! which we call ‘‘zoom-whirl’’ orbits. We find that
these waveforms are a very characteristic, though comp
signal that might be important from an observational point
view for the planned LISA space antenna.

In this paper we focus on the final part of the inspir
when the particle is at small radii, relatively close to the l
stable bound orbit. In consequence we deal with orbits w
moderate eccentricities, between 0.1 and 0.7. In a future
per @33# we intend to study the full inspiral, thus expandin
our scope to cover orbits with large radii and larger ecc
tricities, on the order of 1. In that paper we plan to pres
wavetrains and spectra associated with a long stretch o
inspiral, covering many orbital periods, along the lines
@34#.

Our results in this paper can be summarized as follo
Moderate eccentricities will be a feature of the signals fr
many inspiralling compact binaries right up to the fin
plunge. Immediately before plunge there will be an ecc
tricity increasing phase in all cases, particularly noticea
for retrograde orbits. The total amount of eccentricity gain
in this phase will generally be small, on the order of 10%
less for low-eccentricity (e,0.1) prograde orbits, but per
haps as much as 50% for low-eccentricity retrograde orb
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Orbits with moderate eccentricities will gain much less
eccentricity. Wheree.0.3 and the orbit is prograde, zoom
whirl features will be prominent in the waveform in the ve
last stages of the inspiral. Where these orbits are obse
from a position away from the polar axis of the source th
will be a relatively strong high-frequency component to t
signal due to beaming of higher multipoles in the radiation
the direction of the orbiting particle’s motion. One expec
that these signals will present particular problems for sig
analysis, a situation which may be ameliorated when a p
tive detection of the source has been made during the ea
part of the inspiral when the waveform, though highly ecce
tric, will be less complex.

B. Organization of the paper

The remainder of this paper is organized as follows.
Sec. II we discuss the geodesic motion of eccentric equ
rial orbits ~Secs. II A and II B!, paying particular attention to
the so-called ‘‘zoom-whirl’’ orbits~Sec. II C!. In those sec-
tions we define useful orbital parameters such as the se
latus rectump and the eccentricitye. Some analytic approxi-
mations on the orbital periods and number of revolutions
a particle in an orbit close to becoming dynamically u
stable, are presented in Sec. II D. Sections III A and II
contain a review of the Teukolsky-Sasaki-Nakamura form
ism for the calculation of gravitational waveforms an
fluxes. In Sec. III C, we give a preliminary discussion on t
orbital evolution under radiation reaction~definition of adia-
baticity, general formulas for the rate of change of orbi
parameters!. Section IV is entirely devoted to analytic re
sults. Section IV A discusses the weak-field limit for the o
bital parameter’s rates of change. In Sec. IV B we derive
approximate formula relating the energy flux to the angu
momentum flux, emitted by orbits close to becoming u
stable. We subsequently use this formula to find strong-fi
approximate expressions for the rate of change ofp ande. In
Sec. IV C we study the particularly interesting family o
~equatorial! horizon-skimming orbits that can exist around
rapidly rotating black hole. The main~numerical! results of
this paper are contained in Sec. V. In Sec. V A, we sketch
methods used in our numerical code and, moreover, g
estimates for the various introduced errors. In Sec. V B
give results on the averaged rate of change of the param
p,e ~which determine the evolution of any given orbit!. This
allows us to draw conclusions for the ‘‘global’’ behavior o
bound equatorial orbits under the influence of radiation re
tion. Section V C contains calculations of waveforms gen
ated from some zoom-whirl orbits. Section V ends with
presentation of the spectral content of the radiation emitte
infinity and at the black hole horizon~Sec. V D!. Our con-
clusions are summarized in Sec. VI, where we also disc
prospects for future work. Tables with samples of our n
merical data can be found throughout the paper. Three
pendixes are devoted to some technical details. Through
this paper we have adopted geometrized units (c5G51).

II. GEODESIC MOTION

A. Equations of motion

We start by considering a test body moving in a Ke
gravitational field. For the moment, we neglect any radiat
2-3
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reaction effects and focus on purely geodesic motion. Wo
ing in the usual Boyer-Lindquist coordinate frame, the eq
tions of motion, specialized for an equatorial orbit, are giv
by @35#

r 2
dr

dt
56~Vr !

1/2, ~1!

r 2
df

dt
5Vf[2~aE2L !1

aT

D
, ~2!

r 2
dt

dt
5Vt[2a~aE2L !1

~r 21a2!T

D
, ~3!

u~t!5p/2, ~4!

where T5E(r 21a2)2La, Vr5T22D@r 21(L2aE)2#, D
5r 222Mr 1a2. The two constants of motionE, L denote
the orbit’s specific energy andz-component of angular mo
mentum~for notational simplicity we drop the subscriptz for
the angular momentum!. We have prograde~retrograde! or-
bits according to whetherL.0 (,0) ~note that at certain
points, where there is no danger of confusion, we shall la
retrograde orbits by a negative value for the spin param
a). Moreover, since we shall be discussing bound orbits
,E,1. A general bound equatorial orbit can be equivalen
described@3# either by the constantsE andL or by a semi-
latus rectump and an eccentricitye ~with 0<e,1). The
restriction on the values ofp is discussed below. We defin
these parameters in terms of the two turning points of
orbit (r p is the periastron andr a the apastron, see Fig. 1 fo
a typical illustration!,

r p5
p

11e
, r a5

p

12e
. ~5!

FIG. 1. The radial potentialVr ~in units of M 24) as a function
of r ~in units of M ) for p52.2M , e50.5. The black hole spin is
a50.99M . Motion is permissible at the regimes whereVr>0. It is
easy to distinguish the apastron atr a54.4M and the periastron a
r p51.47M . The event horizon is atr 151.141M .
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A turning point r o by definition satisfiesVr(r o)50, or ex-
plicitly,

~E221!r 312Mr 22~x21a212aEx!r 12Mx250, ~6!

where we have further definedx5L2aE. Writing this poly-
nomial in the form (E221)(r 2r p)(r 2r a)(r 2r 3) we can
immediately write an expression for the energy,

E5F12S M

p D ~12e2!H 12
x2

p2
~12e2!J G 1/2

. ~7!

Similarly, the third rootr 3 of Eq. ~6! is found to be

r 35
2M ~12e2!x2

p2~12E2!
. ~8!

It then follows that

x25
2N~p,e!7Dx

1/2~p,e!

2F~p,e!
. ~9!

The explicit forms of the functionsN, F andDx are given in
Appendix A. In this expression, the upper~lower! sign cor-
responds to a prograde~retrograde! orbit. The same conven
tion will be followed throughout the paper.

The radial coordinate can be parametrized as

r ~x!5
p

11e cosx
, ~10!

wherex is a monotonically varying parameter, running fro
x50 ~at r 5r p) to x5p ~at r 5r a) and finally up tox
52p ~back to r 5r p). The radial motion can be separate
into two distinct branches, namely, the motion fromr p to r a ,
and the ‘‘inverse’’ motion fromr a back tor p again. Integra-
tion of Eq. ~3! gives

t~r !5H t̂~r ! first branch,

Tr2 t̂~r ! second branch,
~11!

where

t̂~r !5E
r 1

r 1

r 2 S dr

dt D 21Fax1
r 21a2

D
~Er22ax!Gdr. ~12!

We have also denoted asTr the period of the radial motion
For thef-motion we similarly write,

f~r !5H f̂~r ! first branch,

Df2f̂~r ! second branch,
~13!

where

f~r !5E
r 1

r 1

r 2 S dr

dt D 21Fx1
a

D
~Er22ax!Gdr ~14!
2-4



ca

s

o
tly
te

ly

c

a

-

to
b

ies
hall
am-

wo
y a

ill
ich

get

se
at

of
d

at a
i-
or-
,

d
of

ner-
ve
pa-

s-

n in
-

the
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and Df is the change off during an intervalTr . Both
integrands in Eqs.~11!,~13! are ~unphysically! divergent at
the turning points, an undesirable feature in a numerical
culation. This difficulty can be avoided by choosingx as the
integration parameter. Using

dr

dt
5

e sinx

p Fx21a212xaE2
2Mx2

p
~31e cosx!G1/2

,

~15!

we get

f~x!5E
0

x

dx8
Ṽf~x8,p,e!

J~x8,p,e!Ṽr
1/2~x8,p,e!

, ~16!

t~x!5E
0

x

dx8
Ṽt~x8,p,e!

J~x8,p,e!Ṽr
1/2~x8,p,e!

,

~17!

where

Ṽr~x,p,e!5x21a212axE2
2Mx2

p
~31e cosx!, ~18!

Ṽf~x,p,e!5x1aE2
2Mx

p
~11e cosx!, ~19!

Ṽt~x,p,e!5a2E2
2aMx

p
~11e cosx!1

Ep2

~11e cosx!2
,

~20!

J~x,p,e!512
2M

p
~11e cosx!1

a2

p2
~11e cosx!2.

~21!

The integrand quantities in Eqs.~16!,~17! are well behaved
and, moreover, these equations are valid for both branche
the radial motion. The radial period is simply given byTr
5t(2p)52t(p), and similarly,Df[f(2p)52f(p).

A general bound equatorial orbit is the combination
two separable motions: the radial motion which is, stric
speaking, periodic~in the sense that the radial coordina
returns to its original value after a certain time intervalTr
has elapsed! and the azimuthal motion which is not pure
periodic ~in the sense that thef-coordinate monotonically
increases but, nevertheless, the orbit returns to the same
figuration afterf has increased by some valueDf). The
former motion is known in classical mechanics@36# as ‘‘li-
bration’’ while the latter motion is called ‘‘rotation.’’ For
such a combination of motions, it is generally known th
there is a fundamental period~the period of libration! which
fully describes the motion~see Appendix B for further de
tails!. We shall, therefore, callTr theorbital period. The fact
that the orbit is periodic in a strict sense will enable us
rigorously define adiabaticity when radiative effects are to
included.
04400
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In line with the foregoing discussion, we define theor-
bital frequencyto beV r52p/Tr . We can similarly refer to
the frequency of thef-motion asVf5Df/Tr . The gravita-
tional waves emitted by our systems will have frequenc
which depend on these orbital frequencies. Below we s
see how they form a spectrum of discrete frequencies par
etrized by the following wave numbers:l, which identifies
the multipole of the emitted waves (l 52 for quadrupole, for
instance!, m which runs from2 l to 1 l , andk which counts
the harmonics created by the linear composition of the t
orbital frequencies. The frequency of the waves emitted b
given harmonick of a given multipolar contributionm is

v5kV r1
mDf

2p
V r . ~22!

In the calculational scheme to be outlined below we w
evaluate the fluxes of energy and angular momentum wh
are carried by waves of a given frequency~that is, a given
multipole and harmonic of the frequency spectrum! and sum
the fluxes for all frequencies of the discrete spectrum to
the total radiated fluxes of these quantities.

B. Separatrix curve

In general Eq.~6! has three distinct real roots. The ca
with r p5r 3 corresponds to a marginally stable orbit: once
the periastron, the particle will enter into a circular orbit
radiusr isbo5r p5r 3 ~ISBO stands for innermost stable boun
orbit!. At this stage the orbit has become unstable, so th
slight inwards ‘‘push’’ will drive the particle to catastroph
cally plunge into the black hole. Therefore, stable bound
bits should satisfyr 3,r p . This translates to the inequality

x2~11e!~32e!,p2. ~23!

We can imagine a division of the (p,e) plane into regions of
stable and unstable orbits. The boundary curveps(e) satis-
fying the equality in Eq.~23!, defines the separatrix of boun
orbits. In Fig. 2 we illustrate separatrices for a variety
black hole spins. A sample of numerical data used to ge
ate this figure can be found in Table I. As one might ha
anticipated, spinning up the black hole will cause the se
ratrix curve for prograde~retrograde! orbits to move to the
left ~right! with respect to the Schwarzschild curveps(a
50)5(612e)M @31#. This behavior can be seen most ea
ily by a slow rotation approximation to Eq.~23!. At leading
order we find

ps5~612e!M78aF 11e

612eG1/2

1O~a2!. ~24!

On the other hand, as can be verified by direct substitutio
Eq. ~23!, for extreme rotation (a5M ) the prograde separa
trix becomesps(e)5M (11e), i.e. for all eccentricities, the
periastron ‘‘descends’’ into the black hole ‘‘throat’’ atr 5M ,
but is still separated by a finite proper distance from
horizon itself@35#.
2-5



ca
tr

ita

th
te
rl
ill
in

d
ti

-

e

eir
es
ears

the
But

case
pi-
he

zi-

a
ve

ed

rix is
. In

r-
the

ate
ild

e
e

t

),
ue

ed
The
i-

KOSTAS GLAMPEDAKIS AND DANIEL KENNEFICK PHYSICAL REVIEW D 66, 044002 ~2002!
C. Zoom-whirl orbits

From the short discussion in the previous section one
imagine that as the orbit gradually approaches the separa
the particle will spend a considerable amount of its orb
‘‘life’’ close to the periastron~see Fig. 3!. An approximation
for Tr asp→ps , derived in the following section, gives

Tr;2 ln~p2ps!, ~25!

which shows that the period will grow~and eventually di-
verge! as the separatrix is approached. In that region,
particle will trace a quasi-circular path before being reflec
back to the apastron. Such behavior will be particula
prominent for high eccentricity orbits: the particle w
‘‘zoom in’’ from its apastron position, and perform a certa
number of quasi-circular revolutions~‘‘whirls’’ ! reaching the
periastron @which should have a value close tor isbo(e)
5ps(e)/(11e)#. Finally, the particle will be reflected an
‘‘zoom out’’ towards the apastron again. We shall heuris
cally ~but quite descriptively! name these orbits ‘‘zoom

FIG. 2. Separatrices on the (p,e) plane for a variety of black
hole spins. From left to right:a/M50.999,0.99,0.5,0.1,0(dashed
20.5. Asa→M the prograde separatrix goes to the limiting val
ps→M (11e).

TABLE I. The separatrixps and the critical valuepcrit where

ė5 ~in parentheses, accurate to the decimals shown! for a variety of
eccentricities and for three different black hole spins,a50.5M , a
50.99M anda520.99M ~retrograde orbits!.

e a50.5M a50.99M a520.99M

0.10 4.377~4.71! 1.516~1.59! 9.266~10.03!
0.20 4.526~4.77! 1.595~1.64! 9.552~10.12!
0.30 4.679~4.85! 1.685~1.71! 9.830~10.24!
0.40 4.836~4.96! 1.782~1.79! 10.102~10.40!
0.50 4.996~5.08! 1.883~1.89! 10.367~10.58!
0.60 5.158 1.988 10.627
0.70 5.323 2.094 10.882
0.80 5.490 2.201 11.133
0.90 5.658 2.310 11.380
1.00 5.828 2.420 11.623
04400
n
ix,
l

e
d
y
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whirl’’ orbits. They resemble a set of orbits known in th
literature as homoclinic orbits@37#. Zoom-whirl orbits can
exist in both Kerr and Schwarzschild geometries, and th
potential significance for the detection of gravitational wav
by space-based instruments was first pointed out some y
ago by Curt Cutler and Eric Poisson,1 who concluded that the
small number of whirls in the Schwarzschild case made
phenomenon less interesting for spinless central bodies.
as we shall shortly see, they are more pronounced in the
of near-extreme Kerr black holes, for prograde orbits. A ty
cal example of such an orbit is illustrated in Fig. 3, for t
case of a rapidly spinning (a50.99M ) black hole.

It is straightforward to calculate the total number of a
muthal revolutionsNr5Df/2p during one orbital period, by
numerically integrating Eq.~16!. Results obtained by such
calculation are presented in Fig. 4. In this figure we ha
considered orbits of a given eccentricity (e50.9 and e
50.3) and for a variety of black hole spins. For all depict
cases, the smallest value ofp resides at the same distancedp
from the corresponding separatrix valueps(e). As can be
seen, the number of revolutions increases as the separat
approached, in agreement with our intuitive expectations
fact, an approximate formula~valid for p→ps) derived in
Sec. II D shows that,

Nr;2 ln~p2ps!. ~26!

We can furthermore deduce that the ‘‘whirling’’ of the pa
ticle near the separatrix becomes more pronounced as
black hole spin increases. Although for small and moder
spins Nr stays close to the corresponding Schwarzsch
value, it grows rapidly asa→M , basically due to the intens
‘‘frame-dragging’’ induced by the black hole’s rotation in th

1The name ‘‘zoom-whirl’’ originated with the work of these two a
Caltech. It may have been suggested by Kip Thorne.

FIG. 3. A zoom-whirl orbit withp52.35M ,e50.9 around an
a50.99M Kerr black hole. In this figure, the particle has perform
more than twenty revolutions in less than three orbital periods.
periastron is atr p51.237M , located close to the hole’s event hor
zon atr 151.141M ~denoted by the dashed line!. The ISBO radius
is r isbo51.216M .
2-6
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ZOOM AND WHIRL: ECCENTRIC EQUATORIAL . . . PHYSICAL REVIEW D 66, 044002 ~2002!
very strong field region close to the horizon which can
reached by particles in prograde orbits. The overall beha
can be understood as an extreme example of perihelion
vance~as in the celebrated case of the planet Mercury!.

In principle, as Eq.~26! suggests, the number of revolu
tions can be made arbitrarily large irrespective of the bla
hole spin, provided the particle approaches the separa
sufficiently closely. However, as we discuss in Sec. III C t
adiabatic assumption upon which our formalism relies bre
down in this regime. Sufficiently close to the separatrix,
diation reaction makes a significant correction to the pa
cle’s motion in each orbital period. Before long this caus
the particle to cross the separatrix and plunge into the b
hole. These transition/plunging regimes have been stu
recently by Ori and Thorne@38# for the case of circular equa
torial orbits in the Kerr geometry. More relevant to th
present discussion is the work of O’Shaughnessy and Th
@39# which concerns the transition regime of zoom-whirl o
bits. They show that for the case of an extreme Kerr bla
hole and eccentricity close to unity, the particle may expe

FIG. 4. Number of revolutions as a function of the semila
rectump for fixed eccentricitye50.9 ~top frame! ande50.3 ~bot-
tom frame!. The black hole spin is, from right to left,a/M
50,0.1,0.5,0.99,0.999. Each curve terminates at a point loc
dp50.01M away from the respective separatrix value. Eviden
zoom-whirl orbits are expected to be more pronounced for rap
rotating black holes.
04400
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ence more than 20 whirls per orbit before plunging. The
have to be added to the number of whirls performed dur
the adiabatic phase of the orbit.

These results make it clear that one does not expect to
the number of whirls become arbitrarily large until the zoo
whirl waveform becomes indistinguishable from the wav
form which would be emitted from the unstable circular or
which exists on the line of the separatrix itself. The ve
instability of such orbits ensures that radiation react
quickly transitions the particle into a plunging orbit befo
this limiting point is approached.

In a realistic scenario, we should not expect to find~apart
from chance cases where the particle enters a near-sepa
orbit as a result of its initial scattering! very high eccentricity
zoom-whirl orbits, as it is well known that the orbit has
general tendency to circularize@40#. However, despite the
decrease in eccentricity over the greater part of the inspira
substantial amount of eccentricity will survive, in man
cases, up to the point where the orbit is about to plun
These orbits will probably become zoom-whirl orbits, esp
cially when a rapidly spinning black hole is involved an
especially for prograde orbits. Keep in mind that many sc
tered particles will be in highly nonequatorial orbits. Zoom
whirl behavior should also be seen in these cases as the
still a separatrix present, close to which the particle c
spend a considerable amount of time.

A compact body in a zoom-whirl orbit will spend a con
siderable fraction of the orbital period in strong field regio
~it can even travel close to the event horizon if the cen
black hole is spinning rapidly enough! and hence will radiate
strongly. Our numerical results together with analytic a
proximations, reveal that a good fraction of the averaged fl
is radiated during the motion near the periastron. As the o
approaches the separatrix it tends to radiate as if it wa
circular orbit of angular frequencyVf ~see also@31# for a
similar statement in the Schwarzschild case!. This is clear
evidence that most of the radiation is coming from the wh
part of the orbit, during which the radius hardly changes a
there is a single dominant frequency characterized by
azimuthal (f-dependent! orbital period. However, the mos
important feature of a zoom-whirl orbit is the characteris
form of the gravitational wave it emits, which is a series
rapid ‘‘quasi-circular’’ oscillations separated by relative
‘‘quiet’’ intervals. In Sec. V C below we calculate som
waveforms of this type.

D. Approximations near the separatrix „I …

Orbits that reside near the separatrix of the (p,e) plane
are amenable to analytic approximation, basically due to
fact that the turning pointr p is close to a local minimum of
the radial potentialVr . In this section we derive approximat
expressions forTr and Df. We already know that@see Eq.
~17!#,

Tr52E
0

p

dx
Ṽt~x,p,e!

J~x,p,e!Ṽr
1/2~x,p,e!

, ~27!

ed
,
ly
2-7
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Df52E
0

p

dx
Ṽf~x,p,e!

J~x,p,e!Ṽr
1/2~x,p,e!

. ~28!

We take the ‘‘distance’’e5p2ps from the separatrix to be
small, i.e.e/M!1. Also, we shall exclude small eccentrici
orbits ~more precisely, orbits withe&e/M ), or marginally
bound orbits (e→1). The former case of nearly circular o
bits has already been discussed in@30#. In what follows,
quantities with an ‘‘s’’ subscript are to be evaluated exactly
the separatrix. From Eq.~18! we get

Ṽr~x,p,e!5
M

ps
$11O~e!%@eS12exs

2~12cosx!

1O„e2,e~12cosx!…#, ~29!

where
t

t
l

no

-
e

a-

04400
t

S52ps2~11e!~32e!S ]x2

]p D
p5ps

. ~30!

We see thatṼr→0 as e→0 and x50 ~i.e. the periastron
‘‘touches’’ the separatrix!. At the same limit,Ṽt andJ remain
nonzero. We can write then, at leading order ine,

Tr'S ps

M D 1/2E
0

p

dx
At~12cosx!

@eS12exs
2~12cosx!#1/2

, ~31!

Df'S ps

M D 1/2E
0

p

dx
Af~12cosx!

@eS12exs
2~12cosx!#1/2

.

~32!

We have defined the functions
At~y!5
@a2Es~11e2ey!222aMxs~11e2ey!3/ps1Esps

2#

~11e2ey!2@122M ~11e2ey!/ps1a2~11e2ey!2/ps
2#

, ~33!

Af~y!5
@xs1aEs22Mxs~11e2ey!/ps#

@122M ~11e2ey!/ps1a2~11e2ey!2/ps
2#

, ~34!
lt
at

is
ra-
In

a-
on

s
ve
with argumenty512cosx. In order to isolate the divergen
pieces in the integrals~31!,~32! we split the functions
~33!,~34!

At,f~y!5At,f~0!1Bt,f~y!. ~35!

These expressions are just Taylor expansions around
regular pointy50 ~with Bt,f containing the first and al
higher derivatives ofAt,f). Not surprisingly, both functions
Bt,f(y) take the form

Bt,f~y!5eyB̃t,f~y!. ~36!

Although we do not write the functionsB̃t,f(y) explicitly
here ~as they do not take a simple form and they are
needed in what follows! we have verified thatB̃t,f(0)Þ0. It
follows that the contribution to the integrals fromBt,f(1
2cosx) is finite whene,x→0. On the other hand, the con
tribution from At,f(0) is found to be divergent at the sam
limit,

E
0

p dx

@eS12exs
2~12cosx!#1/2

5
1

2
~exs

2!21/2lnF64exs
2

eS G1OS e

e
lnFe

eG D . ~37!

Hence at leading order ine ~therefore close to the separ
trix!,
he

t

Tr'At~0!F ~11e!~32e!

eMps
G1/2

lnF 64eps
2

eS~11e!~32e!
G ,

~38!

Df'Af~0!F ~11e!~32e!

eMps
G1/2

lnF 64eps
2

eS~11e!~32e!
G .

~39!

The divergence ofTr andDf at the separatrix is the resu
of the particle being trapped in an unstable circular orbit
the location of the minimum of the radial potentialVr .

III. RADIATION REACTION: FORMULATION
OF THE PROBLEM

A. The Teukolsky formalism

In this paper, we shall employ Teukolsky’s formalism@4#
for the calculation of gravitational fluxes and waveforms. H
eponymous equation describes the evolution of linearized
diative perturbative fields in a Kerr geometry background.
particular, instead of dealing directly with metric perturb
tions, the Teukolsky formalism considers perturbations
the Weyl curvature scalarc4. This quantity is a result of the
projection of the Weyl tensor on the null vectorsna, m̄b

which are members of the Newman-Penrose null tetrad@41#,
that isc452Cabgdnam̄bngm̄d. The feature that makes thi
formalism attractive to our problem is that the radiati
fluxes~at infinity and at the horizon! as well as the two wave
polarizationsh1 , hx can all be extracted fromc4. The
2-8
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‘‘master’’ perturbation equation is separable in the Four
domain by means of a decomposition

c4~ t,r ,u,f!5r4(
lm

E dve22
2 ivt1 imwSlm

av~u!Rlmv~r !,

~40!

wherer5(r 2 ia cosu)21. The radial functionRlmv(r ) sat-
isfies the Teukolsky equation

D2
d

dr S 1

D

dRlmv

dr D2V~r !Rlmv5Tlmv . ~41!

The potentialV(r ) is given by

V~r !52
K214i ~r 2M !K

D
18ivr 1l, ~42!

where K5(r 21a2)v2ma and l5Elm1a2v222amv.
The angular functions22Slm

av(u) are s522 spin-weighted
spheroidal harmonics@42# which satisfy the following eigen-
value equation:

F 1

sinu

d

duH sinu
d

duJ 1a2v2cos2u

2
m2

sin2u
14av cosu1

4mcosu

sin2u
24cot2u22

1ElmG 22Slm
av50. ~43!

We have adopted the following normalization for the sph
roidal harmonics~hereafter we drop the subscript22 for
notational simplicity!:

E
0

p

uSlm
avu2sinudu51. ~44!

The source termTlmv present in Eq.~41! is constructed di-
rectly from the particle’s energy-momentum tensor and t
is the point where the particle’s motion enters explicitly
the perturbation equation. Its explicit form is given belo
Let us now return to the radial equation~41!. A particular
solution of this equation can be found in terms of two ind
pendent solutionsRlmv

in , Rlmv
up of the homogeneous equatio

Rlmv~r !5
Rlmv

up ~r !

W E
r 1

r

dr8
Tlmv~r 8!Rlmv

in ~r 8!

D2~r 8!

1
Rlmv

in ~r !

W E
r

1`

dr8
Tlmv~r 8!Rlmv

up ~r 8!

D2~r 8!
,

~45!

where W the ~constant! Wronskian
W@D21/2Rlmv

in ,D21/2Rlmv
up #. The solutionsRlmv

in , Rlmv
up are
04400
r

-

s

.

-

chosen such as to have, respectively, purely ingoing beha
at the horizon, and purely outgoing behavior at infinity. E
plicitly,

Rlmv
in →H D2e2 ikr* for r→r 1,

r 3Bout eivr* 1r 21Bine2 ivr* for r→1`,
~46!

Rlmv
up →H Couteikr* 1D2Cine2 ikr* for r→r 1 ,

r 3eivr* for r→1`,
~47!

where k5v2ma/2Mr 1 , r 15M1(M22a2)1/2 is the
outer event horizon, andr * is the usual tortoise coordinat
defined bydr* /dr5(r 21a2)/D. From these expressions w
have thatW52ivBin. The solution~45! describes ingoing
waves at the horizon and outgoing waves at infinity as
should be required on physical grounds. That is,

Rlmv~r→r 1!→D2e2 ikr*

2ivBin E
r 1

`

dr8
Tlmv~r 8!Rlmv

up ~r 8!

D2~r 8!

[Zlmv
` D2~r !e2 ikr* ~48!

Rlmv~r→`!→r 3eivr*

2ivBinEr 1

`

dr8
Tlmv~r 8!,Rlmv

in ~r 8!

D2~r 8!

[Zlmv
H r 3eivr* . ~49!

The source termTlmv is given by@12#

Tlmv54E dVdtr25r̄21~B281B28* !e2 imw1 ivt 22Slm
av

A2p
,

~50!

where

B2852
1

2
r8r̄L21@r24L0~r22r̄21Tnn!#

2
1

2A2
r8r̄D2L21@r24r̄2J1~r22r̄22D21Tm̄n!#,

~51!

B28* 52
1

4
r8r̄D2J1@r24J1~r22r̄Tm̄m̄!#

2
1

2A2
r8r̄D2J1@r24r̄2D21L21~r22r̄22Tm̄n!#.

~52!

We have defined the operators

Ls5]u1
m

sinu
2avsinu1s cotu, ~53!

J15] r1 iK /D. ~54!
2-9
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The quantitiesTnn , Tm̄n ,Tm̄m̄ are the result of the projec
tion of the particle’s energy-momentum tensorTmn on the
tetrad vectors, i.e. Tnn5Tmnnmnn etc. The energy-
momentum tensor for a particle in an arbitrary or
„t,r (t),u(t),f(t)… is given by

Tmn5m
umun

Ssinuut
d„r 2r ~ t !…d„u2u~ t !…d„f2f~ t !…,

~55!

whereum5dxm/dt and S5r 21a2cosu. We obtain for the
individual projections@12#,

Tnn5m
Cnn

sinu
d„r 2r ~ t !…d„u2u~ t !…d„f2f~ t !…, ~56!

Tm̄n5m
Cm̄n

sinu
d„r 2r ~ t !…d„u2u~ t !…d„f2f~ t !…, ~57!

Tm̄m̄5m
Cm̄m̄

sinu
d„r 2r ~ t !…d„u2u~ t !…d~f2f~ t !!, ~58!
04400
with

Cnn5
1

4S3 ~ut!21@E~r 21a2!2aL1Sur#2,

Cm̄n52
r

2A2S2
~ut!21@E~r 21a2!2aL1Sur#

3F i sinuS aE2
L

sin2u D1Q~u!G ,

Cm̄m̄5
r2

2S
~ut!21F isinuS aE2

L

sin2u D1Q~u!G2

.

~59!

The quantityQ(u) represents the effective latitudinal pote
tial, i.e., (Suu)25Q(u). Substitution in Eq.~50! yields
Tlmv5
4m

A2p
E

2`

`

dtE
0

p

dueivt2 imw(t)F2
1

2
L1

†$r24L2
†~r3Slm

av!%Cnnr
22r̄21d„r 2r ~ t !…d„u2u~ t !…

1
D2r̄2

A2r
@L2

†Slm
av1 ia~ r̄2r!sinuSlm

av#J1$Cm̄nr22r̄22D21d„r 2r ~ t !…d„u2u~ t !…%

1
1

2A2
L2

†$r3Slm
av~ r̄2r24! ,r%Cm̄nDr22r̄22

3d„r 2r ~ t !…d„u2u~ t !…2
1

4
r3D2Slm

avJ1$r24J1@~ r̄r22Cm̄m̄d„r 2r ~ t !…d„u2u~ t !…!#%G , ~60!

where

Ls
†5]u2

m

sinu
1av sinu1s cotu. ~61!

The u-integration can be performed directly to give

Tlmv5mE
2`

`

dteivt2 imw(t)D2@~Ann01Am̄n01Am̄m̄0!d„r 2r ~ t !…1$~Am̄n11Am̄m̄1!d„r 2r ~ t !…% ,r

1$Am̄m̄2d„r 2r ~ t !…% ,rr #u5u(t) , ~62!

where

Ann05
22

A2pD2
Cnnr

22r̄21L1
1$r24L2

1~r3Slm
av!%, ~63!

Am̄n05
2

ApD
Cm̄nr23F ~L2

1Slm
av!S iK

D
1r1 r̄ D2a sinu~ t !Slm

av
K

D
~r̄2r!G , ~64!
2-10
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Am̄m̄052
1

A2p
r23r̄Cm̄m̄SF2 i S K

D D
,r

2
K2

D2 12ir
K

DG , ~65!

Am̄n15
2

ApD
r23Cm̄n@L2

1Slm
ev1 ia sinu~ t !~ r̄2r!Slm

av#, ~66!

Am̄m̄152
2

A2p
r23r̄Cm̄m̄Slm

avS i
K

D
1r D , ~67!

Am̄m̄252
1

A2p
r23r̄Cm̄m̄Slm

av . ~68!

Note that all functions ofu are evaluated atu5u(t). The amplitudesZlmv
`,H defined in Eq.~49! can be written as

Zlmv
H 5

m

2ivBinE2`

`

dteivt2 imw(t)I lmv
H

„r ~ t !,u~ t !…, ~69!

Zlmv
` 5

m

2ivBinE2`

`

dteivt2 imw(t)I lmv
`

„r ~ t !,u~ t !…, ~70!

where

I lmv
H 5FRlmv

in $Ann01Am̄n01Am̄ m̄ 0%2
dRlmv

in

dr
$Am̄n11Am̄m̄1%1

d2Rlmv
in

dr2
Am̄m̄2G

r 5r (t),u5u(t)

, ~71!

I lmv
` 5FRlmv

up $Ann01Am̄n01Am̄m̄0%2
dRlmv

up

dr
$Am̄n11Am̄m̄1%1

d2Rlmv
up

dr2
Am̄m̄2G

r 5r (t),u5u(t)

. ~72!
r
on

x

-

Up to this point, all expressions listed in this section a
valid for an arbitrary orbit. We now specialize our discussi
to equatorial orbits by settingu(t)5p/2. In this case,I lmv

`,H

are functions ofr (t) only. As discussed in detail in Appendi
B, the quantities

a`,H~ t !5I `,H
„r ~ t !…e2 im[f(t)2Vft] , ~73!

are periodic functions of time~with period equal toTr). Con-
sequently, they can be expanded in a Fourier series

a`,H~ t !5 (
k52`

1`

ak
`,He2 ikVr t, ~74!

with V r52p/Tr . Inverting, we obtain the Fourier coeffi
cients

ak
`,H5

1

Tr
E

0

Tr
dta`,H~ t !eikVr t. ~75!

Using the Fourier series~74! in Eqs.~69!,~70! we arrive at

Zlmv
`,H5 (

k52`

1`

Zlmk
`,Hd~v2vmk!, ~76!
04400
ewherevmk5mVf1kV r and

Zlmk
`,H5

mV r

2ivmkB
inE0

Tr
dt I `,H

„r ~ t !…eivmkt2 imf(t). ~77!

Due to symmetries of the Teukolsky equation~41! we have
the following conjugation relation:

Zl ,2m,2v
`,H 5~21! l Z̄l ,m,v

`,H , ~78!

Zl ,2m,2k
`,H 5~21! l Z̄l ,m,k

`,H , ~79!

where an overbar denotes complex conjugate.
We proceed by writing Eq.~77! as an integral overx,

Zlmk
`,H5

mV r

2ivmkB
inE0

2p

dx
Ṽt~x!

J~x!Ṽr
1/2~x!

3I lmv
`,H

„r ~x!… eivmkt(x)2 imf(x). ~80!
2-11



t the

KOSTAS GLAMPEDAKIS AND DANIEL KENNEFICK PHYSICAL REVIEW D 66, 044002 ~2002!
As in the case of Eqs.~16!,~17!, this expression is well-behaved at the orbital turning points. Moreover, noting tha
x-dependence of the integrand in Eq.~80! appears in terms of the form cosx @in terms withr (x))# and sinx ~in terms withur)
we can write,

Zlmk
`,H5

mV r

2ivmkB
inE0

p

dx
Ṽt~x!

J~x!Ṽr
1/2~x!

3@I lmv(1)
`,H

„r ~x!…eivmkt(x)2 imf(x)1I lmv(2)
`,H

„r ~x!…e2 ivmkt(x)1 imf(x)#. ~81!

The subscripts (6) mean ‘‘sinx→6sinx’’ in the functions I lmv
`,H . The numerical calculation of the amplitudesZlmk

`,H is the
‘‘backbone’’ of our radiation reaction code~see Sec. V!. Finally, we express theA and C amplitudes~59!,~68!, in terms of
x,p,e,

Cnn~x,p,e!5
J~x,p,e!

4p4Ṽt~x,p,e!
@p2E2ax~11e cosx!21epsinxṼr

1/2~x,p,e!#2, ~82!

Cm̄n~x,p,e!5
ixJ~x,p,e!

2A2p3Ṽt~x,p,e!
~11e cosx!@p2E2ax~11e cosx!21epsinxṼr

1/2~x,p,e!#, ~83!

Cm̄m̄~x,p,e!52
x2J~x,p,e!

2p2Ṽt~x,p,e!
~11e cosx!2, ~84!

and

Am̄n0~u!5
2

Ap

Cm̄n

u~122Mu1a2u2!2
@2a2u31$ ia~av2m!24M %u212u1 iv#F]Slm

av

]u
~p/2!1~av2m!Slm

av~p/2!G , ~85!

Am̄m̄0~u!5
1

A2p

Cm̄m̄S
lm
av(p/2)

u2~122Mu1a2u2!2
@22ia3~av2m!u51a~av2m!$6iM 1a~av2m!%u424ia~av2m!u3

12v$ iM 1a~av2m!%u222ivu1v2#, ~86!

Am̄n1~u!5
2

Ap

Cm̄n

u~122Mu1a2u2!
F]Slm

av

]u
~p/2!1~av2m!Slm

av~p/2!G , ~87!

Am̄m̄1~u!52A2

p

Cm̄m̄S
lm
av(p/2)

u2~122Mu1a2u2!
@a2u31$ ia~av2m!22M %u21u1 iv#, ~88!

Am̄m̄2~u!52
1

A2p

Cm̄m̄S
lm
av(p/2)

u2
, ~89!

Ann0~u!52A2

p

Cnn

~122Mu1a2u2!2 F22iaS ]Slm
av

]u
~p/2!1~av2m!Slm

av~p/2! Du1
]2Slm

av

]u2
~p/2!

12~av2m!
]Slm

av

]u
~p/2!1$~av2m!222%Slm

av~p/2!G , ~90!
044002-12
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whereu(x,p,e)5(11e cosx)/p. By means of Eq.~76! one
can obtain the following expressions forc4 at infinity and on
the horizon:

c4~ t,r ,u,f!→H r~r 1!24(
lmk

c lmk
H for r→r 1,

r 21(
lmk

c lmk
` for r→1`,

~91!

where

c lmk
H,`5

1

A2p
Zlmk

`,HSlm
avmk~u!e2 ivmk(t2r

*
)1 imf. ~92!

Once the Weyl scalarc4 is known, we can immediately
relate it to the two polarization componentsh1 ,hx of the
transverse-traceless metric perturbation asr→` @4#,

c4'
1

2 S ]2h1

]t2
2 i

]2hx

]t2 D . ~93!

It follows from Eqs.~93!,~92! that h1,x(t,r ,u,f) are given
by ~here the coordinatest,r ,u,f are referred to the observa
tion point!,

h12 ihx5
2

r (
lmk

Zlmk
H

vmk
2

Slm
avmk(u)

A2p
e2 ivmk(t2r

*
)1 imf. ~94!

Note that the gravitational waveform is exclusively radiat
at harmonics of the two orbital frequenciesV r ,Vf . The
gravitational wave energy and angular momentum flux
infinity can be found in terms of the Landau-Lifshi
pseudotensor@43#,

S dE

dt D
GW

`

5
1

16pE H S ]h1

]t D 2

1S ]hx

]t D 2J r 2dV, ~95!

S dL

dt D
GW

`

52
1

16pE H ]h1

]t

]h1

]f
1

]hx

]t

]hx

]f J r 2dV. ~96!

We define the averaged~over one orbital period! fluxes to be
(C5E,L),

ĊGW[
1

Tr
E

0

Tr
dtS dC

dt D
GW

`

. ~97!

With the help of Eqs.~95!,~96!,~94! we arrive at@44#

ĖGW
` 5 (

l ,m,k

uZlmk
H u2

4pvmk
2

, ~98!

L̇GW
` 5 (

l ,m,k

muZlmk
H u2

4pvmk
3

. ~99!
04400
t

The calculation of the respective fluxes at the black h
horizon is a more complicated issue as it is not possible
use expressions such as Eqs.~95!,~96!. Despite this difficulty,
Teukolsky and Press@44# were able to derive formulas fo
the horizon fluxes using the approach of Hawking and Ha
@45# who studied the deformation of the hole’s event horiz
under the influence of infalling radiation. These formulas a

ĖGW
H 5 (

l ,m,k
a lmk

uZlmk
` u2

4pvmk
2

, ~100!

L̇GW
H 5 (

l ,m,k
a lmk

muZlmk
` u2

4pvmk
3

, ~101!

where

a lmk5
256~2Mr 1!5pmk~pmk

2 14e2!~pmk
2 116e2!vmk

3

Clmk
,

~102!

with e5AM22a2/4Mr 1 and

Clmk5@~l12!214amvmk24a2vmk
2 #

3~l2136amvmk236a2vmk
2 !1~2l13!~96a2vmk

2

248amvmk!1144vmk
2 ~M22a2!, ~103!

is the so-called Starobinsky constant. Note that Eqs.~98!–
~101! have to be divided bym in order to convert them to
fluxes of specific energy and angular momentum. Moreo
we can exploit the conjugation relations~79! in the numeri-
cal calculation of the amplitudesZlmk and reduce by one-hal
the required computational time.

B. The Sasaki-Nakamura equation

From Eq.~81! it is obvious that in order to calculate th
amplitudesZlmk

`,H , which will give us the gravitational wave
form and fluxes~94!,~98!–~101!, we need to evaluate th
quantityBin. In principle, one could numerically integrate th
Teukolsky equation~41! from the horizon out to ‘‘infinity’’
and extract the amplitudesBin,out. But this is a poor strategy
since the effective potentialV(r ) is long-ranged and theBin

term drops off towards infinity much faster than theBout term
and can only be extracted with very low accuracy@46#. A
way to circumvent this difficulty is to integrate, instead, t
Sasaki-Nakamura equation@12,47#

d2X

dr
*
2

2F~r !
dX

dr*
2U~r !X50. ~104!
2-13
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The ‘‘potentials’’ F(r ),U(r ) are given in Appendix C. The
solutions of this equation are related to the solutions of
Teukolsky equation via the transformation

Rlmv~r !5
1

h F S a1
b ,r

D D DXlmv

~r 21a2!1/2

2
b

D

d

dr S DXlmv

~r 21a2!1/2D G . ~105!

The functionsa(r ),b(r ) are also given in Appendix C. Th
key property of Eq.~104! is that it encompasses a sho
-
y,

ng

rin

04400
e
range potential. This can be demonstrated more easily if
shift to the function,

Y~r !5h1/2~r !X~r !. ~106!

Then, Eq.~104! transforms into the Schro¨dinger-type equa-
tion,

d2Y

dr
*
2

1QY50, ~107!

with the effective potential,
Q52U2
1

4
F21

D

2h~r 21a2!2H Dh ,rr 2
D

h
~h ,r !

212Mh ,rS r 22a2

r 21a2D J . ~108!

The functionsF(r ),U(r ) have the following behavior at infinity and at the horizon:

F~r !→H 01O~r 2r 1! for r→r 1,

2r 22c1 /c01O~r 23! for r→1`,
~109!

U~r !→H 2k21O~r 2r 1! for r→r 1,

2v21r 22@l12~11amv2a2v2!2 ivc1 /c0#1O~r 23! for r→1`.
~110!

It follows that,

Q~r * !→H v22r
*
22@l12~11amv2a2v2!2 ivc1 /c0#1O~r

*
23ln r * ! for r * →1`,

k21O~ecr
* ! for r * →2`,

~111!
n

eir
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wherec5(r 12r 2)/2M is a positive constant. From this ex
pression it is obvious thatQ is short-ranged. Consequentl
Eq. ~104! admits a solution~‘‘in’’ mode ! which is purely
ingoing at the horizon and a mixture of ingoing/outgoi
waves at infinity:

Xin→H Adowne2 ikr
* for r→r 1,

Aine2 ivr
* 1Aouteivr

* for r→1`.
~112!

Another useful independent solution to Eq.~104! is the ‘‘up’’
mode,

Xup→H D ine2 ikr
* 1Douteikr

* for r→r 1,

Dupeivr
* for r→1`.

~113!

The relation between the asymptotic amplitudes appea
in Eqs.~46! and ~112! can be deduced from Eq.~105!,

Bin52
1

4v2
Ain, ~114!
g

Bout52
4v2

c0
Aout, ~115!

where the constantc0 is given in Appendix C. Hence, we ca
simply integrate Eq.~104! instead of Eq.~41! and easily
identify the ingoing and outgoing waves and evaluate th
respective amplitudes. We can then simply find the des
amplitudesBin/out from Eq. ~115!. Similarly, knowledge of
the wave functionX(r ) and its derivative at a given poin
immediately leads to the Teukolsky radial functionR(r ) and
its derivative via the rule~105!. In conclusion, all the quan
tities ~apart from the spheroidal harmonics! required for the
calculation of the gravitational flux and waveform, can
obtained by numerical integration of the Sasaki-Nakam
equation~104!.

C. Orbital evolution: Adiabaticity and flux balance

Due to the emission of gravitational radiation the orbit
a particle around a black hole will slowly evolve in time an
the orbital constantsE,L ~or equivalentlyp,e) will no longer
be conserved. Radiation reaction effects become notice
2-14
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on a time scale that scales as;M2/m, i.e. they are always
tiny in a time scale;O(M ), provided the system’s mas
ratio is sufficiently small. We can define as the radiati
reaction time scale,

TRR5min@Tp ,Te#, ~116!

whereTe5e/uėu andTp5p/u ṗu are the radiative time scale
for p and e respectively~approximate expressions for the
time scales are given in the following section!. We will then
say that an orbit evolves adiabatically if

TRR@Tr . ~117!

In other words, it is a good approximation to assume
motion of the particle to be geodesic, as long as we
interested in time scales much shorter thanTRR. On the other
hand, by making this simplification we ‘‘freeze’’ the evolu
tion of the orbit, as if there was no radiation reaction. That
within the adiabatic approximation, we cannot know the e
act evolution of the functionsE(t),L(t) @or of p(t),e(t)#. It
is still possible, however, to calculate an averaged rate
change of such quantities. This can be done by assuming
following ‘‘flux-balance’’ relation:

Ċ52ĊGW52~ĊGW
` 1ĊGW

H !, ~118!

whereC5E,L. We have separately denoted the gravitatio
wave fluxes at infinity and down to the horizon b
ĊGW

` ,ĊGW
H respectively. The overdot symbol stands for t

averaged~over one orbital period! rate, see Sec. III B. We
can equally well describe an orbit by means of the para
eters (p,e) and calculate the relevant averaged rates
change of those quantities. SinceE5E(p,e) and L
5L(p,e) we have that~commas denote partial derivatives!,
-
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Ė5E,pṗ1E,eė, ~119!

L̇5L ,pṗ1L ,eė. ~120!

These relations can be inverted to obtain,

ṗ5H21~2E,eL̇1L ,eĖ!, ~121!

ė5H21~E,pL̇2L ,pĖ!, ~122!

with H5E,pL ,e2E,eL ,p . Eventually, all partial derivatives
of E andL can be found in terms of the corresponding part
derivatives of the functionsF, N and Dx which are given
explicitly in Appendix A. However, the resulting formula
are quite messy so we do not present them here.

Note that although the formalism adopted in our analy
offers only ‘‘local’’ information on the radiative orbital evo
lution, it can be further manipulated in order to obtain ad
tional information. A recipe for ‘‘evolving’’ orbits under ra-
diation reaction, using the known averaged rates of cha
of the relevant orbital constants, was given recently
Hughes@34# in the context of circular nonequatorial orbit
In effect, one is able to construct a series of ‘‘snapshots’
the radiation-induced inspiral, and make predictions of
evolution of the emitted waveform close to the point whe
the orbit becomes unstable~that is until the adiabatic condi
tion no longer holds!.

As we have already mentioned, adiabaticity will even
ally break down near the separatrix, no matter how small
mass ratio is. This can be immediately seen from Eq.~117!
and recalling thatTr→` at the separatrix, as predicted b
Eq. ~38!. For an order-of-magnitude estimation, we can u
the quadrupole approximation for the fluxes~see the next
section! and translate Eq.~117! into a constraint on the mas
ratio,
m

M
!

5

128p S p

M D 5/2

f 3
21~e!F16

a

M S M

p D 3/2

f 3
21~e!S 169

12
1

185

12
e21

223

96
e4D G . ~123!
the

n
ems
ass
rix
ld

in-
The functionf 3(e) is defined in the following section. Equa
tion ~123! is accurate to leading order inM /p anda/M , and
to derive it we have used the corresponding order expres
for the orbital period

Tr52pM ~12e2!23/2S p

M D 3/2

3F17
3a

M S M

p D 3/2

~12e2!G . ~124!

The mass-ratio constraint~123! is automatically satisfied a
the black hole perturbation scheme we employ requ
m/M!1.
on

s

On the other hand, in the strong-field regime near
separatrix we find~using results derived in Sec. IV B!,

m

M
!dHS lnF 64eps

2

eS~11e!~32e!
G D 21

, ~125!

whered is a combination ofAt(0),Af(0),E,p/e ,L ,p/e and is
of order unity. As we discuss in Sec. IV B, the quantityH
also becomes zero whene→0 ~unlessa5M , in which case
it remains finite!. This is clearly the most severe restrictio
for the mass ratio. Fortunately, the real astrophysical syst
we are trying to model are typically characterized by a m
ratio m/M;1026. Therefore we can approach the separat
closely, probably to the point where the physical body wou
begin its plunge into the black hole, in the cases which
terest us.
2-15
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IV. ANALYTICAL RESULTS

A. Weak-field approximations

Orbits with p@M are well described by weak-field ap
proximate results. In particular, the energy and angular m
mentum fluxes should be given with sufficient accuracy
the quadrupole-order formulas as given in@28,32#. However,
these authors make use of a different set of orbital par
eters. For example, Ryan’s semi-major axisā and eccentric-
ity ē @28# are related to our parameters via the transform
tion,

12e25~12ē2!F12
4a

M S M

p D 3/2

e2cosi G , ~126!

p5ā~12e2!F12
2a

M S M

p D 3/2

e2cosi G .
~127!

Note that at a Newtonian level the two sets are consis
with each other. Rewriting Ryan’s fluxes in terms of o
parameters we obtain

Ėquad52
32

5

m2

M2 S M

p D 5

~12e2!3/2

3F f 1~e!2
a

M S M

p D 3/2

f 2~e!G , ~128!

L̇quad52
32

5

m2

M S M

p D 7/2

~12e2!3/2

3F f 3~e!1
a

M S M

p D 3/2

~ f 4~e!2 f 5~e!!G , ~129!

where

f 1~e!511
73

24
e21

37

96
e4, ~130!

f 2~e!5
73

12
1

823

24
e21

949

32
e41

491

192
e6, ~131!

f 3~e!511
7

8
e2 ~132!

f 4~e!5
61

24
1

63

8
e21

95

64
e4, ~133!

f 5~e!5
61

8
1

91

4
e21

461

64
e4. ~134!
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The formulas~128!,~129! can be utilized for order of
magnitude estimations even in the strong field regime tho
becoming increasingly inaccurate with decreasingp/M ~this
has been verified by comparing them to the fully numeri
results!. We can now estimate the time scales of radiat
evolution forp,e. For p@M the energy and angular momen
tum, at leading order inM /p anda/M , are given by

E'12
M

2p
~12e2!7

a

M
~12e2!2S M

p D 5/2

, ~135!

L'6AMp2
aM

p
~31e!. ~136!

Accordingly, Eqs.~121!,~122! become

ṗ52
64

5

m

M
~12e2!3/2S M

p D 3

3F f 3~e!7
a

4M S M

p D 3/2

f 6~e!G , ~137!

ė52
304

15

m

M2
e~12e2!3/2S M

p D 4

3F f 7~e!7
a

M S M

p D 3/2

f 8~e!G , ~138!

where

f 6~e!5
133

12
1

379

24
e21

475

96
e4, ~139!

f 7~e!511
121

304
e2, ~140!

f 8~e!5
879

76
1

699

76
e21

1313

608
e4. ~141!

The equations above demonstrate the well known fact@40#
that, in the weak-field regime, eccentric orbits tend to circ
larize under radiation reaction~while they slowly shrink to-
wards the central body!. For the associated time scales o
finds

Tp

Te
5

19

12S 11
7

8
e2D 21S 11

121

304
e2D F17

a

M S M

p D 3/2

3 f 3
21~e!S 55

114
1

6431

1824
e21

9593

1824
e41

9191

4864
e6D G .

~142!
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According to this equation, in the weak-field regime the e
centricity decays faster than the size of the orbit@31#. The
leading order spin term furthermore implies that this beh
ior is more pronounced for retrograde orbits.

B. Approximations near the separatrix „II …

The previous section discussed results which are alre
familiar from the existing literature@31#. We now present
new results regarding strong-field orbits which reside n
the separatrix.

The analysis of Sec. III A has shown that the gravitatio
wave spectrum will essentially contain harmonics ofV r ,
Vf . We can use the approximate expressions~38!,~39! to
deduce that for orbits near the separatrix, i.e.p2ps(e)5e
!M ~and as long ase is not close to zero and is not unity!,

V r'
2p

At~0! F eMps

~11e!~32e!G
1/2

3S lnF 64eps
2

eS~11e!~32e!
G D 21

, ~143!

Vf'
Af~0!

At~0!
. ~144!

Hence, fore→0 we haveV r→0 and in effect, the spectrum
becomes almost ‘‘circular’’:

vmk'mVf . ~145!

Furthermore, by substitution in Eqs.~98!,~99! we get

ĖGW
`,H'VfL̇GW

`,H . ~146!

We conclude that orbits near the separatrix radiate ene
and angular momentum at rates so that the ratioĖGW /L̇GW is
almost equal to the respective ratio of a circular orbit w
the sameVf . The effective radius of this fiducial orbit is

r eff5M1/3S At~0!

Af~0!
7aD 2/3

. ~147!

For example, for the prograde orbitp52.11M ,e50.7 we
find r eff51.88M.r p51.24M while for the orbit p
52.35M ,e50.9 we findr eff53.90M.r p51.24M ~for both
cases we have takena50.99M ). We note that this equivalen
circular orbit represents astablecircular orbit, from which
one could, in principle, receive gravitational waves. We
not compare the fluxes from zoom-whirl orbits with hyp
thetical unstablecircular orbits on the separatrix because
seems clear that waveforms from such orbits will not be s
in practice, because real orbits will transition rather quic
from the zoom-whirl type of orbit into a plunging orbit int
the gravitational well of the black hole~see@39#!.

Equation~146! suggests that particles in zoom-whirl o
bits lose most of their energy and angular momentum w
they revolve near the periastron, which is what we wo
intuitively expect.
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We next discuss approximations forṗ and ė near the
separatrix. Unfortunately, the lack of a simple analytic e
pression forps(e) makes such a task difficult, and the resu
ing formulas are quite cumbersome with little analytic tran
parency. Nevertheless, we can follow a much simpler p
and still gain some significant insight. Forp'ps and using
Eq. ~146!, Eqs.~121!,~122! become,

ṗ'@H21~L ,eVf2E,e!L̇#p'ps
, ~148!

ė'@H21~2L ,pVf1E,p!L̇#p'ps
. ~149!

By direct substitution of Eq.~23!, it can be shown that the
function H(p,e) becomes exactly zero at the separatrix. O
the other hand, and as long asaÞM , one can verify numeri-
cally that the numerators in Eqs.~148!,~149! remain finite
near and at the separatrix. It follows that for nonextre
Kerr holes bothṗ and ė diverge at the location of the sepa
ratrix. This pathological behavior signals the breakdown
the adiabaticity assumption upon which our method stand
proper discussion of this transition regime should take i
account the rapid radiative evolution of the orbit~which now
varies in a time scale comparable to the orbital period!.

Moving on, we divide Eq.~149! into Eq. ~148! to get,

ė

ṗ
'F ~2L ,pVf1E,p!

~L ,eVf2E,e!
G

p'ps

. ~150!

Exploring the numerical value of this quantity for numero
very near-separatrix orbits and black hole spinsa,M , we
have found it to be always negative andfinite. This means
that ė and ṗ have opposite signs near the separatrix. Sin
the latter is always negative~the orbit always shrinks! we
conclude that very close to the separatrixė.0, i.e. the orbit
gainseccentricity~as previously found, in less general cas
in @29,50,30,31#!. Since weak field orbits always lose ecce
tricity, there must be a critical curvepcrit(e) on the (p,e)
plane at whichė50. As Eq. ~150! is formally accurate
~within the constraints imposed by the adiabaticity conditio!
not only at the separatrix but also in its vicinity, we ca
actually study the behavior ofė in a thin zone near the sepa
ratrix. For a given small or moderate black hole spin, we fi
that the ratio~150! is again negative. However, for high ec
centricities e'1 we initially get a positive value which
gradually passes from zero and becomes negative ap
→pe. With increasinga/M we observe the same behavior
even lower eccentricities, provided we are considering p
grade orbits. The opposite behavior is observed for re
grade orbits. Fora'M , Eq. ~150! becomes negative only
very close to the separatrix for all eccentricities. These
sults suggest that, at least fore'1, the critical curvepcrit(e)
is located close tops(e) ~this has been shown to be true fo
a50 @31#!, and that~for prograde orbits! pcrit(e)2ps(e)
→0 asa→M ~which resembles the situation for nearly ci
cular equatorial Kerr orbits@30#!. All of our ~semi!analytic
predictions are fully supported by the numerical results t
are presented in Sec. V B.
2-17
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Prograde orbits near the separatrix of an extreme K
hole are discussed separately, and fully analytically, in
following section. Here we should emphasize once again
all the approximations presented in this section are valid p
vided e@e/M . This excludes nearly circular orbits, whic
have been explored in detail in@30# ~see Table II!.

We can now write approximate expressions for the ti
scalesTe ,Tp for an orbit close to the separatrix:

Te

Tp
'F e

p

uVfL ,e2E,eu
uE,p2VfL ,puG

p'ps

. ~151!

For example, for ana50.99M Kerr hole, we haveTe /Tp
50.81 for p51.7M ,e50.3 while for p52.11M ,e50.7 we
getTe /Tp54.5 @for both orbits, Eq.~151! is a good approxi-
mation#. This situation is typical for nonextreme holes. A
we move along the separatrix keeping a fixed distance f
it, the ratioTe /Tp tends to increase~and become larger tha
unity! with increasing eccentricity. In comparison, the cor
sponding weak-field time scales ratio, Eq.~142!, is relatively
insensitive to variations of eccentricity.

C. Horizon-skimming orbits

A particularly interesting class of prograde strong-fie
orbits are those that potentially ‘‘graze’’ the black hole ho
zon. These orbits can only exist provided the black hole
near extremally rotating,a'M ~this can be deduced from
Fig. 2!. Circular, nonequatorial horizon-skimming orbi
were first studied by Wilkins@48# and more recently by
Hughes@49#. Here, on the other hand, we discuss equato
horizon-skimming orbits of arbitrary~but not equal to unity
or close to zero! eccentricity around an extreme Kerr blac
hole.

As the separatrix for these orbits takes the very sim
form ps(e)5M (11e) we can duplicate the analysis of th
previous section following a purely analytical path. Expan

TABLE II. The position of the critical radius,r crit in units ofM,
for different black hole spinsa and zero eccentricity. The paramet
q5a/M is defined here to be negative for retrograde orbits a
positive for prograde orbits. This table is provided as an erratum
Table I of Ref.@30#, which was incorrect due to a bug in the part
the code calculating the fluxes of energy and angular momen
radiated to the black hole horizon. These data were produced u
the corrected code from the previous paper, rather than with
code of the present paper.

q rcrit /M Corrected value

20.9 9.64 9.74
20.5 8.37 8.43

0.0 6.68 6.68
0.5 4.70 4.69
0.7 3.76 3.75
0.9 2.56 2.54
0.95 2.03 2.11
0.99 1.47 1.55
1.0 1.0 1.0
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ing Eq. ~9! aroundp5ps5M (11e) we find that

x25M2S 11e

32eD1O~e!. ~152!

We then get for the energy and angular momentum,

E5A11e

32e
1g~e!

e

M
1O~e2!, ~153!

~154!

L52MA11e

32e
1 f ~e!

e

M
1O~e2!. ~155!

The explicit form of the functionsg(e), f (e) is not required
for the following analysis. We use these equations@together
with Eq. ~146!, noting thatVf51/2M on the separatrix for
the orbits under discussion# to obtain

H'
2@2Mg~e!2 f ~e!#

~11e!1/2~32e!3/2
, ~156!

2E,eL̇1L ,eĖ'M @2Mg~e!2 f ~e!#Ė, ~157!

E,pL̇2L ,pĖ'@2Mg~e!2 f ~e!#Ė. ~158!

Here, unlike the nonextreme case, the functionH remains
finite ase→0. The above formulas, as well as the followin
ones, have a fractional errorO(e/eM). Hence for horizon
skimming orbits,

ṗ'
1

2
M ~11e!1/2~32e!3/2Ė, ~159!

ė'
1

2
~11e!1/2~32e!3/2Ė. ~160!

We see that both rates are finite all the way down to
separatrix, unlike thea,M case. However, the adiabaticit
condition ~117! is still invalidated atp5ps .

More interesting is the behavior of the ratio of the rat
~159!,~160!,

ė

ṗ
5

1

M
1O~e/eM!. ~161!

This is always positive, which means that theė.0 region
that exists fora,M shrinks to zero for extreme Kerr blac
holes. In other words, the critical curvepcrit(e) has the same
value of the Boyer-Lindquist coordinate as the separatrix
self. This conclusion completes the discussion of the pre
ous subsection. For the ratio of the respective time scales
get,

Te

Tp
5

e

11e
1O~e/eM!. ~162!

d
to

m
ing
e

2-18



re
t

ed
r

io

nd
se

la
t
o

nd
.
it

at
le

w

th
di
a

r o
e

re
u
i

m
ri

ar

ts
b
e

ic

s

m
d

n-
be-
erg
te-

es.
of

tity
i-

d-
to a

c-
fi-
ex-
cise

o
les
ux
be

ed
ers

ese
at

p
ctor

e

the
s

ZOOM AND WHIRL: ECCENTRIC EQUATORIAL . . . PHYSICAL REVIEW D 66, 044002 ~2002!
As Eq. ~162! predicts, the eccentricity always evolves mo
rapidly than the semilatus rectum, which again is contrary
the situation with weak-field orbits.

V. NUMERICAL RESULTS

A. Method and error estimates

Numerical solution of the Teukolsky equation or relat
equations has been a minor industry for nearly thirty yea
since the pioneering work of Press and Teukolsky@44#, De-
tweiler @46# and Sasaki and Nakamura@47#. Our method is
based on a numerical algorithm outlined in@53# and employs
subroutines found in@54#. It involves the use of Bulirsch-
Stoer integration to solve the Sasaki-Nakamura equat
Our code is a direct descendent of the codes used in@31# and
@30#, since we deal with both arbitrarily eccentric orbits a
black holes of nonzero spin. Romberg integration is u
both to integrate Eqs.~16! and~17! and to integrate Eq.~81!.
To calculate the spheroidal harmonic functionsSlm

av we use
the ‘‘spectral decomposition’’ method described in@18#. The
reliability of these methods in general is well known.

We were able to check our numerical results for circu
equatorial orbits with those of@18#, where our agreemen
was good to 5 or 6 significant digits, and with the codes
which this code was based@31,30#, for eccentric orbits in
Schwarzschild and for nearly circular orbits in Kerr, a
again our agreement was good to 4 to 6 significant digits
similarly good agreement was achieved by comparison w
the published results of Tanakaet al. @50# for equatorial ec-
centric orbits in Schwarzschild and with those of Shib
@51# for circular equatorial orbits in Kerr. We were also ab
to compare our results with those given by Shibata@32# for
equatorial eccentric orbits in Kerr. In this case, however,
did find some disagreement of about;1%. The cause of this
disagreement is not apparent, while it stays roughly at
same level for moderate and high eccentricities. The
agreement does not seem to be due to the problems of m
taining accuracy with the long runtimes and large numbe
harmonics required for moderate/large eccentricities. The
ror introduced by the truncation of thel ,k sums in the flux
calculation does not seem to be the source of the disag
ment. We cannot say at present which code might be at fa

Finally, we have also been able to compare our code w
some results for circular orbits in Kerr from@52#, and again
our agreement is good to several significant figures. Si
larly, comparison with post-Newtonian results for eccent
Kerr orbits ~as found, for example, in@28#! reveals good
agreement in the weak-field regime. In Table III we comp
some sample results.

In view of the lack of any check for strong field orbi
with high/moderate eccentricities and high spins, it is of o
vious importance that we present some estimate of the lik
error in our numerical results. The main sources of numer
error in our code are as follows:

~i! Inaccuracy in the Bulirsch-Stoer integration routine
from @54#. We set the relative accuracy parametereps, which
governs the convergence of the final result, at 1026.

~ii ! Inaccuracies in the Romberg integrator, also fro
@54#. We seteps51026 for the routines which integrate
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Eqs.~17! and~16!. This parameter governs the level of co
vergence which the routine demands in the final result,
fore it stops iterating. However, in the case of the Romb
routine which governed the main program loop, i.e. the in
gration of Eq. ~81!, we typically seteps51025 in many
cases in order to achieve large savings in computing tim
In a few runs designed to produce data for illustration
waveforms only~not numerical data on flux quantities!, we
usedeps51024.

~iii ! Our method requires that we calculate the quan
Bin @see Eq.~81! above#. To do this we integrated the Sasak
Nakamura equation~104! out to r 5100/vmk and then suc-
cessively doubled the limit of integration, until our Richar
son extrapolator told us we had achieved convergence
relative accuracy of 1025.

~iv! Our method for calculating spheroidal harmonic fun
tions Slm

av involved writing them as an expansion of an in
nite set of spherical harmonic functions. Fortunately this
pansion can be truncated at 30 terms and remain very pre
in most cases, but for high black hole spins,a and high
angular frequencies,vmk we were obliged to use 40 terms t
avoid truncation errors causing small high frequency ripp
in the wave forms. However, in our numerical results of fl
rate and orbital evolution this source of error appears to
considerably less than 1026.

~v! In principle our calculation of fluxes must be summ
over an infinite number of harmonics in each of the integ
l,m andk. In practice truncating these sums for thel andm
harmonics was not difficult. Fluxes for a sequence of th
harmonics usually monotonically decrease after a peak
some value ofl and m and so we demanded that the loo
through these variables halt once fluxes went below a fa

TABLE III. Comparing results from our radiation reaction cod
with existing results found in the literature,@42,51,31# ~data in pa-
rentheses!. We find excellent agreement~at the predicted level! for
equatorial circular Kerr and eccentric Schwarzschild orbits. On
other hand, there seems to be a;1% disagreement with Shibata’
results@32# for equatorial eccentric orbits.

a/M e p/M (M /m)2ĖGW
`

0.95 0 10.015 4.96645231025

(4.96624731025)
0.95 0 40.795 5.27746931028

(5.27741531028)
0.95 0 200.698 1.933592310211

(1.933573310211)
0.00 0.7641 8.754 1.5713231024

(1.5713131024)
0.00 0.7446 13.198 1.4362931025

(1.4363231025)
0.90 0.3731 12.152 2.357031025

(2.389331025)
0.90 0.5634 50.513 2.121131028

(2.119231028)
0.30 0.6519 19.969 2.165431026

(2.137531026)
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of 1025 times the peak contribution. However the spectru
of fluxes in thek harmonic was much more complicate
typically involving several peaks~see the figures in Sec
V D! before finally monotonically decreasing after a numb
of peaks which increased for increasingly eccentric orb
We examined spectra ink by hand to confirm the machine’
results and experimented widely to convince ourselves
we had caught all significant contributions to the total fl
from different frequencies.

Clearly there are several significant independent sou
of error, so that we can only offer our best judgement of
total relative error in our code in those cases where we h
no independent check on our results. As we have addre
every systematic source of error that we encountered, an
we are confident that the code is running correctly in all
the cases dealt with in this paper, we estimate the rela
error for numerical results quoted in this paper as no gre
than 102321024, in the case of fluxes,Ė and L̇, and no
greater than 102221023 for quantities such asė and ṗ be-
cause cancellations between terms when converting
numbers into orbital evolution quantities tend to increase
size of the relative errors. This is especially true near
critical point where the rate of change of the eccentric
becomes zero, due to the complete cancellation of th
terms. As an illustration of this, we will note in passing th
the mysterious ‘‘bump’’ seen in Fig. 2 of Ref.@31# turns out
to be due to a rare case where flux errors which appea
significant themselves are greatly magnified when the
merical flux data are combined to produceė and ṗ.

It is useful, in this context, to mention that in comparin
the results from our code to the code in@30#, the flux quan-
tities for radiation emitted toward infinity agree to about
part in 1026, the flux quantities for radiation towards th
horizon agree to about 1 part in 1024 and the position of the
critical curve, as calculated by the two codes, can disagre
about 1%. This suggests that the only way in which o
numerical error is large enough to make a visible differen
in our figures would be as a slight change in the position
the critical curve in Fig. 5~the retrograde case!.

B. Backreaction on the orbit

In this section we present numerical results on the evo
tion of bound equatorial orbits in terms ofp ande. This pair
of parameters is preferable to the equivalent setE,L, because
of their clearer geometrical meaning. We have calculated
averaged ratesṗ, ė for a number of prograde and retrogra
orbits and for two different black hole spins:a50.5M , and
a50.99M . A representative part of our numerical results
presented in Fig. 5. Each individual orbit is represented a
point on the (p,e) plane. At each one of those points w
have attached a vector with components (M /m)( ṗ,Mė) that
indicates the direction at which the orbit adiabatica
evolves under radiation reaction. Moreover, all orbits sho
are chosen so as to be strongly adiabatic for the typical m
ratio 1026 ~the most severe constraint ism/M!1022). These
figures ~together with the analytic approximations of Sec
IV A, IV B, and IV C! lead to the following conclusions:
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~i! The semilatus rectump always decreases~the orbit is

shrinking!. In fact, u ṗu grows monotonically, and finally di-
verges, as the separatrix is reached. This divergence i
artificial feature of our formalism, associated to the brea
down of the adiabatic approximation.

~ii ! The eccentricitye shows a more complicated beha

ior. For sufficiently largep, we always findė,0. However,

as the orbit approaches the separatrix,ė changes sign and
becomes positive, i.e. near the separatrix, eccentricity

creases. As in the case ofṗ,ė will also diverge at the sepa
ratrix, due to the failure of adiabaticity.

~iii ! As the black hole spins up, in the case of progra

orbits the critical radius after whichė.0 moves closer to the
separatrix~in coordinate terms! for a givene. The same is
true for a fixed black hole spin, but for increasinge. For
retrograde orbits, spinning up the black hole tends to m

the ė50 curve away from the separatrix.
~iv! In a sense, the increasing eccentricity regime is

precursor of orbital instability and plunging. This is hinte

by the proximity of the critical curvepcrit , whereė flips sign
and becomes positive, to the separatrix curveps(e) which is
the boundary between stable and unstable bound or
Qualitively speaking, at this stage of the inspiral, the rad
potentialVr is quite ‘‘flat’’ and as a consequence the partic
has more room to move radially, even as it continues
‘‘sink’’ towards the bottom of the potential well~the behavior
which is responsible for the characteristic ‘‘circularizing
tendency!.

These results agree with, and at the same time gener
previous results concerning bound orbits~of arbitrary e)
around Schwarzschild black holes@31# and slightly eccentric
equatorial orbits around Kerr black holes@30#. As we have
discussed in Sec. V C, some of the conclusions above m
be modified when the black hole is extreme (a5M ).

In Table VII we give a sample of our numerical data, f
the energy and angular momentum fluxes as well as forṗ,ė,
for some of the orbits presented in Fig. 5. As we have d
cussed, we believe that these numbers have fractional a
racy at least 1023.

Another important result concerns the significance of
horizon fluxes on the evolution of orbits with relatively sma
periastrii. Specifically, we have encountered very-strong fi
orbits for which uĖGW

H u;0.1uĖGW
` u. However, the most in-

triguing property of the horizon fluxes is that they assist, in
sense, the orbiting body. This is most easily illustrated
plotting the evolution of the set of orbits of the top graph
Fig. 5, without including the horizon flux~represented by
dashed arrows in Fig. 5; the solid arrows represent the t
rates!. For very strong field orbits, when the horizon flux
are taken into account, the shrinking of the orbit is noticea
stalled. Typically, whenĖGW

H is non-negligible it also hap-
pens that it represents energy gain instead of energy los~in
other words the fluxesĖGW

H ,ĖGW
` have opposite signs!. The

orbiting particle is effectively draining energy from the blac
hole itself. This is just a manifestation of the so-called sup
radiance phenomenon, well known in black hole phys
2-20



he

its

ital
in
rticle,
d and the

t the point
f
rve

ZOOM AND WHIRL: ECCENTRIC EQUATORIAL . . . PHYSICAL REVIEW D 66, 044002 ~2002!
FIG. 5. The evolution of a family of eccentric equatorial orbits, illustrated on the (p,e) plane. The black hole spin isa50.99M ~top
graph, prograde orbits; bottom graph, retrograde orbits! anda50.5M ~graph in the middle; prograde orbits!. The dashed curves represent t

separatrix of stable orbits, while the solid curves represent the criticalė50 curve. Each orbit corresponds to a point in the graph, and

~adiabatic! radiative evolution is represented by a vector with components (M /m)( ṗ,Mė). Solid and dashed arrows represent the orb
evolution respectively with and without including the fluxes at the black hole horizon~the difference between these arrows is visible only
thea50.99M case!. When the black hole is rapidly spinning the horizon flux effectively represents gain of energy for the orbiting pa
an effect attributed to superradiance, see discussion in the main text for more details. As a result, the inspiral of the body is stalle
critical curve is slightly pushed outwards. This is the reason for the strong misalignment between the solid and dashed vectors a
p51.9,e50.5 of thea50.99M plane. Note the much more pronounced orbital evolution for the progradea50.99M case~a consequence o
the particle’s motion in very strong field regions! and the approach~diverge! of the relative positions of the separatrix and the critical cu
between thea50.5M case and the prograde~retrograde! a50.99M case.
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@44,55#: waves scattered within the black hole’s ergoreg
and having frequencies~as measured at infinity! that lie in
the interval 0,v,mv1 , effectively appear~for a distant
observer! as emerging from the horizon, and amplified at t
expense of the hole’s rotational energy. The outgoing
flected waves ‘‘push’’ the particle outwards, and this intera
tion is manifested as a gain of orbital energy and angu
momentum. Our result can be easily understood if we re
that the ergoregion is growing for increasing black hole sp
At the same time, because the boundary of instability mo
in to lower radii with increasing spin, a particle can en
04400
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regions with much stronger fields and therefore emit a s
stantial amount of radiation towards the ergoregion~see Fig.
2!. Hence we find a significant negative~superradiant! hori-
zon flux. An alternative way of viewing this phenomenon
as an exchange of energy and angular momentum via
coupling analogous to tidal friction in the Earth-Moon sy
tem ~and elsewhere!. For an exposition of this intuitively
instructive viewpoint see@34#, and references therein.

It was recognized long ago@56# that if the superradiance
effect ever became large enough a floating orbit would re
when it balanced the energy loss due to radiation emi
2-21
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KOSTAS GLAMPEDAKIS AND DANIEL KENNEFICK PHYSICAL REVIEW D 66, 044002 ~2002!
towards infinity. Our results confirm earlier work in collab
ration with Scott Hughes, suggesting that even for orb
very close to the horizon of very rapidly rotating black hole
the gain in energy from superradiance is only 10% of
energy lost by the system as a whole. For further details,
@34#.

The results presented so far in this section, although v
insightful, are still incomplete in the sense that they do
describe the radiative evolution of a single given orbit on
(p,e) plane. Instead, they provide local information on t
evolution of an orbit at a given point. An effort to ‘‘paste
together a sequence of such points, in order to follow the
orbit is currently underway@33#. Meanwhile, we can use
certain approximations to foresee what the full inspiral t
jectory will look like. As a starting point we use the leadin
quadrupole-order expressions forṗ,ė, i.e. settinga50 in
Eqs.~137!,~138! and derive

p~e!5pi S e

ei
D 12/19F 11

121

304
e2

11
121

304
ei

2
G 870/2299

. ~163!

Given some initial valuespi ,ei this relation describes, in th
weak-field limit, the trajectory of the orbit on the (p,e)
plane. Such curves for astrophysically relevant initial para
eters, are shown in Fig. 6@these curves remain essentia
unchanged when the spin terms are retained in E
~137!,~138!#. One feature that is immediately seen in t
Newtonian-order inspiral is the absence of the critical cu
ė50 and the subsequentė.0 behavior. This should no

FIG. 6. The radiative inspiral of a set of equatorial eccen
orbits with initial parameters~solid curves from left to right! r p

55,10,20M and r a5106M , and for black hole spinsa50,0.5M .
An additional set of retrograde orbits withr p514,20,40M and the
same apastron, and fora50.99M is also shown~solid curves on the
right side!. The three dashed lines represent the separatrices
corresponding spins. The dotted curves are the Newtonian-o
predictions, while the solid curves are the result of a more accu
calculation discussed in the main text. Note the significant qua
tave difference between the two calculations at the vicinity of e
separatrix.
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come as a a surprise, as expression~163! is not formally
valid unlessp@M . It is not safe to use weak-field approx
mations in strong field regimes.

A simple way to make better predictions is by using t

exact expressions~121!,~122! for ṗ,ė, but still employing the
weak-field formulas~128!,~129! for the fluxes. The outcome
of this trick is also shown in Fig. 6, for a set of orbits wit
initial parametersr p55,10,20M and r a5106M ~this trans-
lates toe50.99999, 0.99998, 0.99996 andp510,20,40M
respectively! for a50,0.5M . We also considered a set o
retrograde orbits with initialr p57,10,20M and the same
apastron as before, anda50.99M spin. Note that these
curves, like the ones given by Eq.~163!, are shape-invarian
with respect to the mass ratio as long asm/M!1. It is re-
warding to see that these new trajectories do show the e
tence of theė.0 region, and additionally are in good qual
tative and quantitative agreement with the accur
numerical results@57#. This is true as long as we do no
attempt to evolve prograde orbits around rapidly spinn
black holes, because the agreement quickly degrades whp
becomes small. Essentially this approach takes into acc
the correct form of the potential, which is the main cau
behind the change in sign ofė, but the fact that the PN fluxe
are increasingly inaccurate in strong-field regions preclu
precise numerical agreement with the real trajectories.

The new curves clearly predict a higher residual ecc
tricity as compared to the pure Newtonian curves. This
proximate result strongly suggests that many astrophysic
relevant inspiralling orbits will have a significant amount
eccentricity left when they are close to plunging and w
therefore be likely to exhibit zoom-whirl behavior. Our fu
numerical results cannot at present be used to reprod
complete trajectories, but Fig. 5, which displays arro
which are tangential to these trajectories at individual poin
certainly shows that if significant eccentricity remains atp
;5M , this eccentricity will not disappear in the last part
the inspiral before plunge.

The work of Freitag@17# suggests that the initial periastr
of scattered compact bodies which will eventually plun
into the black hole due to radiation reaction will be genera
less than 40M . However below that point the distribution o
their periastra will be fairly flat, so that small initial periast
will be just as likely as large ones. As our figure shows, o
expects, in the case of a Schwarzschild black hole, that b
ies with initial r p.20M will have e,0.1 by the time of
plunge. But for initialr p,20M the final eccentricity will be
e.0.1 and can easily be as great ase;0.7 ~see Fig. 6! or
higher. For instance, forr p510M , the final eccentricity will
be e;0.3 ~see Fig. 6!. We know that retrograde orbits wil
have less time to circularize and a longer ‘‘de-circularizin
time, so eccentricities in this case should be greater. Th
clearly seen in Fig. 6. In the case of prograde orbits
should generally expect smaller eccentricities before plu
ing ~as compared to orbits around Schwarzschild bla
holes! but still at a significant level. Again Fig. 5 sugges
that the change in eccentricity will not be great, despite
longer circularizing and shorter de-circularizing times. Mor
over, near extreme holes allow a wider range of initial pe
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astra ~for prograde orbits!, even down tor p;2M and in
these cases the residual eccentricity will be quite large. O
concludes that eccentricity will play an important role
signal analysis for LISA.

The technique outlined here has been recently applie
constructing approximate, radiation reaction-driven, inspir
of test-bodies in generic Kerr orbits~for which case only
weak-field results are currently available@28#!. For more de-
tails see@57#.

Motivated by the results discussed above, we would l
to obtain simple estimates of the total amount of eccentri
gain and the number of orbits the particle will spend in t
ė.0 region. Such estimates may provide a useful guide
for assessing the observational importance of this phase

The numerical radiation reaction evolution-arrows in F
5 show that the gradientde/dp grows~in the negative sense!
monotonically as soon as the critical curve is crossed. He
the maximum~negative! value is attained exactly at the sep
ratrix. The approximate expression~150! for de/dp is ex-
pected to be very accurate there. We can use this fixed
dient and extrapolate out to the critical curve, at so
eccentricityei , for a given eccentricityef at the separatrix.
Then we have thatde5ef2ei'@ps(ef)2pc(ef)#(de/
dp)ps(ef )

. This number should set anupper limit of the total
increase in eccentricity. Results for some representative c
are given in Table IV. From these numbers we deduce tha
best, there is a fractional increase of 5–50 % in eccentric
the most favorable case being low-eccentricity retrograde
bits around rapidly spinning black holes. This gain decrea
as we move upwards to larger final eccentricities~basically
due to the shrinkage of theė.0 region!. We therefore con-
clude that we should not expect any dramatic increase
eccentricity when the orbit is about to become unstable.

TABLE IV. Upper limits on the total eccentricity gain close t
the separatrix, for given final valuesef for the eccentricity. Using
the gradientde/dp at the separatrix we extrapolate to the critic
curve. In this way we obtain the eccentricityei .

a/M ef ei M (de/dp)ps
de/ei

0.50 0.1 0.086 20.0414 0.16
0.50 0.3 0.28 20.1342 0.073
0.99 0.1 0.086 20.1555 0.16
0.99 0.3 0.29 20.2186 0.019

20.99 0.1 0.066 20.0439 0.52
20.99 0.3 0.28 20.0546 0.083
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A crude estimate on the number of orbits can be made
integrating Eq.~148! to find the time required to cross th
ė.0 region,

tc;
1

L̇
E

pcrit

ps Hdp

~L ,eVf2E,e!
, ~164!

where we have factored out the angular momentum flux a
can be taken as constant within the integration interval~and
recovered by our numerical data!. Similarly we have as-
sumed a fixed eccentricity. The number of orbits is then c
culated by dividingtc with a typical periodTr ~or Tf). We
give some representative results in Table V. We need to
phasize that these numbers should be viewed only as or
of-magnitude estimates, as Eq.~164! is a rough approxima-
tion. Nevertheless, we can still draw some reliab
conclusions. For a small eccentricity our numbers are
agreement with existing results for nearly circular orb
around a Kerr black hole@30#. For e50.1 we should typi-
cally have a few thousand revolutions in theė.0 region
around ana50.99M hole and for a mass ratiom/M;1026.
For the same parameters, but for retrograde orbits, there
order of magnitude increase in the number of orbits. On
other hand, for all cases, there is an order of magnitude~or
more! decrease as we move to eccentricitye50.5. Note that
it is possible to have a small number of full orbits, but ye
significant number of azimuthal revolutions or ‘‘whirls’’~see
for example thea50.99,e50.5 case in Table V!.

C. Waveforms and fluxes from zoom-whirl orbits

Let us now focus on the class of orbits we have nam
zoom-whirl. As we have shown, orbits located near the se
ratrix should radiate in accordance with Eq.~146!, as though
they were nearly circular. In Table VI we list numeric
fluxes for zoom-whirl orbits of various eccentricities. It
clear from these results that as the separatrix is approac
the analytic prediction~146! is indeed confirmed. However
one has to be very cautious when applying Eq.~146! to the
study of a real astrophysical, extreme mass ratio, binary
tem. As our data reveal, in the region where this relation
fractionally accurate at the level of;1022, the adiabaticity
constraint~117! on the mass ratio is quite severe, typica
m/M!102221023.

The zoom-whirl orbits are of interest for future detectio
efforts because of the characteristic waveform they gener
In Figs. 7–9 we show such waveforms@in particular we plot
the quantity (m/r )h1 as a function of retarded timet2r * #
is
TABLE V. Approximate data for the number of orbits in theė.0 regime. The required crossing time
tc and we have definedNr ,f5tc /Tr ,f . We have calculated the periodsTr ,f at p5(ps1pcrit)/2.

a/M e (m/M2)tc Tr /M Tf /M (m/M )Nr (m/M )Nf

0.99 0.1 0.051 216.48 18.03 2.331024 2.831023

0.99 0.5 0.0018 276.84 18.02 6.731026 1.131024

20.99 0.1 5.6 651.48 181.02 8.631023 3.131022

20.99 0.5 0.79 718.32 218.14 1.131023 3.631023
2-23
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KOSTAS GLAMPEDAKIS AND DANIEL KENNEFICK PHYSICAL REVIEW D 66, 044002 ~2002!
for a couple of strong-field zoom-whirl orbits (p52.11M
ande50.7, p51.7M ande50.3) and for a rapidly spinning
black hole witha50.99M . Both orbits would evolve adia
batically if we consider a typical mass ratiom/M;1026.
The corresponding gravitational wave flux data can be fo
in Table VII.

First we shall discuss the waveform as seen by an
server located on the black hole’s equatorial plane, see F
and the top panel of Fig. 9. Clearly, these waveforms hav
very distinct appearance. A rapidly oscillating, high amp
tude signal is radiated during the whirling of the particle ne
periastron. In between these bursts one observes
amplitude signals produced during the particle’s zoom in a
out from apastron. This contrast in amplitudes is greatest
larger eccentricities~compare Fig. 7 and Fig. 9!. An interest-
ing feature of the equatorial waveform is the prominent h
frequency ripples superimposed on the waveforms, ass
ated with the higher multipole components (l 53 and higher;
the illustrated waveform includes all multipoles up tol
518) of the wave. It is noteworthy that the high frequen
features are prominent in both the zoom and the whirl p
of the orbit, although if they are solely the result of beami
we might expect that they would be purely a whirl feature,
the motion is fastest near periastron. However prelimin
results from a time domain code written by one of us~K.G.!
suggest that the high frequency features may be assoc
with quasi-normal modes of the black hole, which are e
cited by the high frequency emissions from the orbit. T
quasi-normal mode ringing results in a continuous and tim
delayed emission at these frequencies.

We also show waveforms seen by an observer on the
lar axis of the black hole, in the top panel of Fig. 8 and t
bottom panel of Fig. 9. In this case both ‘‘plus’’ and ‘‘cross
polarizations are present~only h1 is nonzero for an equato
rial observer! but we illustrate onlyh1 because the ‘‘cross’
waveform is the same except for a phase lag. The p
waveforms have the characteristic features of a hi
amplitude, multi-cycle whirl part and a low-amplitude tw
cycle zoom part, but the high frequency features are abs
This suggests that the high frequency features are assoc
with beaming due to the rapid motion of the particle in t
equatorial plane in the very strong field region, although

TABLE VI. Examining the validity of the approximate, nea

separatrix, formulaĖ5VfL̇ for various zoom-whirl orbits and for
two black hole spins. Here, only the fluxes at infinity have be
considered~the horizon fluxes yield similar results!. Typically, this
relation is found to be accurate to fractional accuracy 102121022.
In such cases the orbit is so close to the separatrix as to req
m/M!102221023 for adiabaticity to hold.

a/M e p/M (ĖGW
` /L̇GW

` )/Vf

0.50 0.3 4.70 1.071
0.50 0.4 4.90 1.128
0.99 0.3 1.70 0.984
0.99 0.3 1.80 0.896
0.99 0.4 1.80 0.976
0.99 0.7 2.11 1.138
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high-frequency features are not associated only with
strongest-field whirl part but are distributed throughout t
whole cycle, including the weaker field~larger radius! zoom
part. The polar waveforms are completely dominated by
quadrupole (l 52) emission. Thel 53 and higher multipoles
do not contribute significantly. In the equatorial waveform
the quadrupolar contribution is not much greater than tha
the l 53 multipole and the fall off, in terms of the amplitud
of h1 , for each subsequent multipolar waveform is slo
The transition between the polar and equatorial wavefo
can be understood by looking at the waveform depicted
the bottom panel of Fig. 8 which corresponds to an obser
tion at angleu5p/4.

n

ire

FIG. 7. The waveform produced by a particle in a zoom-wh
orbit with parametersp52.11M ,e50.7. Specifically, we graph the
quantity (m/r )h1 ~wherer is the distance to the observation poin
which is taken to be on the hole’s equatorial plane! versus the
retarded timet2r * (r ) ~in units of M ). We have set the black hole
spin ata50.99M and included up tol 518 multipoles in order to
generate this figure. The orbital period isTr5236.8M and Nr

510.5. Note the very characteristic shape of the waveform, wh
is a periodic succession of high-amplitude/high-frequency p
~coming from the whirling motion of the particle near the peria
tron! and intervening low-amplitude/low frequency parts~from the
zooming in and out motion!. On the bottom panel, the same wav
form is graphed over a shorter time interval, offering a clearer vi
of its rich structure.
2-24



th
1

(
(
t

ob
n
ri

o-

g
a
a

e
e

irl
a

an
olar
n of

rv

7
ur
po

ZOOM AND WHIRL: ECCENTRIC EQUATORIAL . . . PHYSICAL REVIEW D 66, 044002 ~2002!
One can get an idea of what is going on by looking at
u-dependence of the energy flux from the system. In Fig.
one sees that them52 flux ~dominated by thel 5m52 con-
tribution! is concentrated somewhat towards the poleu
50), but there is a strong shift towards the equatoru
5p/2) in the m53 flux, and further concentrations in tha
direction for each successively higher value ofm. Therefore
one sees the sort of beaming of the higher multipoles
served in the waveforms, although because of the domina
of the quadrupole the amplitude of the polar and equato
waveforms is similar in this case.

Next, in Fig. 11, we show the waveform from the retr
grade zoom-whirl orbit p510.5M ,e50.5, retaining a
50.99M for the black hole spin. The familiar zoom-whirlin
pattern is clear also in this case. However, we do not see
prominent high-frequency structure in these waveforms
the contribution coming from higher multipoles is small~be-
cause the orbit does not reside in a very strong field regim!.
We are not surprised, in this case, that the waveform s

FIG. 8. The same waveform as in Fig. 7, as seen by an obse
along the hole’s polar axisu50 ~top panel! and alongu5p/4
~bottom panel!. A comparison with the equatorial wave of Fig.
reveals a substantial suppression of the high frequency feat
This is a result of the fact that the wave’s higher multipole com
nents ~which are responsible for the small-scale structure! are
mainly ‘‘beamed’’ to directions close to the equatorial plane.
04400
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FIG. 9. The waveform generated by a particle in a zoom-wh
orbit with parametersp51.7M ,e50.3 ~we have again assumed
black hole spina50.99M and l max517). The orbital period isTr

5221.36M and the number of revolutions in one period isNr

512.3. The top and middle graphs show the signal seen by
equatorial observer, while the bottom graph corresponds to a p
observer. The same qualitive behavior discussed in the captio
Fig. 7 is also evident here.
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TABLE VII. Numerical data for the rate of change, under radiation reaction, ofE,L ~separately for infinity and the horizon! and p,e
~total amount! for a selection of strong-field orbits and for two black hole spins,a50.5M ~top!, a50.99M ~middle! and a520.99M
~bottom!. Most of these data were used to generate the vectors in Fig. 5. In the computations we have usedl max510217.

a50.5M

e p/M (M /m)2ĖGW
` (M /m)2ĖGW

H (M /m2)L̇GW
` (M /m2)L̇GW

H (M /m) ṗ (M2/m)ė

0.10 4.60 2.8802931023 26.4167331026 2.8868631022 26.4705831025 25.7961231021 19.6118131023

0.10 5.00 1.8173631023 24.0302131026 2.0672431022 24.5864331025 22.3707931021 23.7306231023

0.10 6.00 7.1066531024 21.2754731026 1.0553931022 21.8824331025 28.4503331022 22.0059531023

0.20 4.70 3.1181231023 25.7188631026 2.9669231022 25.6375931025 25.6518131021 11.0417231022

0.20 5.00 2.0914231023 24.2718531026 2.2122831022 24.5888431025 22.5697131021 27.1937331023

0.20 6.00 7.7854131024 21.4377631026 1.0848731022 21.9730631025 28.5350631022 23.9794031023

0.30 4.70 4.9624131023 22.3425731026 4.0759931022 22.6267031025 22.55152 12.6402131021

0.30 5.00 2.6043931023 23.7984931026 2.4838431022 23.9885631025 23.0374531021 29.6373231023

0.30 6.00 8.8828231024 21.6323531026 1.1298131022 22.0638331025 28.6552331022 25.8767731023

0.40 4.90 4.5259831023 13.0030231026 3.6293631022 19.6984331026 29.1206331021 13.2805031022

0.40 5.00 3.5304331023 25.1853131029 2.9809731022 21.1007131025 24.4134231021 26.7824631023

0.40 6.00 1.0326131023 21.6847231026 1.1825731022 22.0339931025 28.7728531022 27.6262231023

0.50 5.10 4.2159431023 19.1975731026 3.2638331022 15.0197231025 25.4762931021 24.9604531023

0.50 5.50 2.1179731023 16.7725431028 1.8954631022 29.8942031026 21.6097631021 21.4186831022

0.50 6.00 1.1963831023 21.2237431026 1.2297331022 21.6564231025 28.8232431022 29.1064531023

a50.99M

e p/M (M /m)2ĖGW
` (M /m)2ĖGW

H (M /m2)L̇GW
` (M /m2)L̇GW

H (M /m) ṗ (M2/m)ė

0.10 1.55 9.2632531022 27.8515531023 2.6342831021 22.2313431022 21.51950 11.7436131021

0.10 2.00 4.7232531022 23.1655031023 1.7753231021 21.1865031022 24.7344531021 23.7248631022

0.10 3.00 1.1240031022 24.1440431024 6.8334731022 22.5040831023 22.2653431021 21.2604131022

0.20 1.62 9.3001131022 27.6220431023 2.6046431021 22.1308031022 21.46506 11.5719631021

0.20 2.00 5.0665431022 23.4386831023 1.8221431021 21.2254131022 24.7485631021 27.3698631022

0.20 3.00 1.1989331022 24.5937631024 6.9442731022 22.6073331023 22.2531131021 22.4825131022

0.30 1.70 9.5636431022 27.5201031023 2.5979831021 22.0399331022 21.64242 11.7415731021

0.30 2.00 5.6341231022 23.8732331023 1.8994131021 21.2864931022 24.7888131021 21.0851231021

0.30 3.00 1.3154131022 25.2936531024 7.1007031022 22.7612331023 22.2263831021 23.6218631022

0.40 1.80 9.5354831022 27.0688131023 2.5592131021 21.8913231022 21.28174 25.8576731023

0.40 2.00 6.4286131022 24.4392431023 2.0077831021 21.3638831022 24.9060731021 21.4071231021

0.40 3.00 1.4588031022 26.1603831024 7.2543431022 22.9363031023 22.1745531021 24.6197231022

0.50 2.00 7.5084831022 25.1073731023 2.1588531021 21.4508631022 25.3350831021 21.6820031021

0.50 2.50 3.2995731022 21.8330531023 1.2220531021 26.5901531023 23.0283031021 29.4104831022

0.50 3.00 1.6042731022 27.0542431024 7.3260131022 23.0856331023 22.0813431021 25.3925931022

0.70 2.11 9.2984531022 25.0155231023 2.3910231021 21.3076231022 29.5715631021 21.6411531021

a520.99M

e p/M (M /m)2ĖGW
` (M /m)2ĖGW

H (M /m2)L̇GW
` (M /m2)L̇GW

H (M /m) ṗ (M2/m)ė

0.10 9.5 1.2252831024 1.5099131026 23.3142431023 23.9833531025 21.9384631021 14.9455731023

0.10 11.0 4.9950631025 3.3959031027 21.7249731023 21.1384731025 23.0550131022 22.6394431024

0.20 9.7 1.4048431024 2.2140831026 23.5394331023 25.2587131025 22.2030831021 17.7019831023

0.20 11.0 5.6392731025 5.0127931027 21.8066331023 21.4751831025 23.1766231022 25.2460231024

0.30 10.0 1.4971131024 2.9095731026 23.5388531023 26.3356531025 21.7053031021 14.0628431023

0.30 11.0 6.7402431025 8.2993831027 21.9416331023 22.1132831025 23.4015231022 27.7682031024

0.40 10.3 1.5713531024 3.7281631026 23.4710531023 27.4942631025 21.3305231021 11.4935631023

0.40 11.0 8.3366331025 1.4291231026 22.1277031023 23.1807831025 23.7792831022 21.0095431023

0.50 10.4 2.4676331024 8.1556731026 24.7364031023 21.4645931024 25.6268131021 11.9116731022

0.50 11.0 1.0490731024 2.4788531026 22.3629831023 24.8897331025 24.4457731022 21.1958231023
044002-26
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when observing from a point along the hole’s polar axis~see
bottom panel of Fig. 11! is not very different.

Although these zoom-whirl waveforms appear rath
complex, and could present a problem for matched filter
data analyzis techniques, one can take comfort in the
that the number of harmonics of the spectrum which cont
ute significantly to the waveform and overall flux is not th
great. Scott Hughes@34# has suggested that analyzing ind
vidual ‘‘voices,’’ which are monochromatic, of a comple
wave may be an effective way to proceed in data analy
Take the case of the zoom-whirl orbit withp52.11M , e
50.7, anda50.99M . If we look at Fig. 12, which shows the
entire spectrum~up to l 518) of this signal, we see that th
number of individual harmonics, or voices, each correspo
ing to an instance of the three numbersl, m, and k, which
stand out are on the order of a dozen. Each of these vo
has a rather simple waveform, as can be seen from Fig. 1
is only their superposition which is complicated. Therefo
following the chirp of individual voices as the orbit evolve
may not be such a formidable computational task.

D. Spectra

The final part of our numerical results concerns the h
monic decomposition of the gravitational radiation fluxe

FIG. 10. This figure shows the angular dependence of the
ergy flux for the orbit withp52.11M , e50.7 and a black hole with
a50.99M ~see Figs. 7 and 8!. The x-axis shows the coordinateu in
radians and the y-axis shows the rate of energy emitted into
angle 0.01 radians wide, as a fraction of the total energy emitted~at
that multipole!. Reading the different curves as they are peak
from left to right ~where the left-hand side of the graph correspon
to the pole of the black hole, and the right-hand side to its equa!
we have the antennae pattern form52, m53, m54, m55, m
56, m57, m58 and at the extreme rightm518 ~including the
negativem contributions in each case!. One notes that abovem52
the polar emission is greatly suppressed and the peak dire
tends ever more towards the equator. In bold, one sees the curv
all multipoles at once (m52 to 18!, but with the bins 0.1 radians
wide, which peaks at aroundu5p/3.
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Specifically, we examine thek distribution of the energy flux,
at infinity and at the horizon, for a given multipole chann
l ,m ~the angular momentum flux spectrum exhibits a simi
behavior!. In all the figures in this section, except Fig. 12, w
plot Ėlmk versusk.

To begin with, in Fig. 14 we present the energy flux spe
trum, at infinity, of thel 5m52, 3, 4 multipoles for an orbit
with parametersp52.11M , e50.7, and for spina50.99M .
As we have already mentioned, for such a strong-field o
the higher multipoles give significant contributions to t
total flux. The spectrum itself is composed of a series
‘‘humps’’ which grow in height ask increases, up to the poin
where the maximum harmonic is reached atk5kmax, after
which the spectrum rapidly fades away. This behav
closely resembles the one found in the Schwarzschild c
@31#, although in the present case the ‘‘humps’’ show a som
what less regular structure. As we are not dealing with a v
high eccentricity orbit, we find thatkmax is not very large.
Moreover, the spectrum peak shifts to higherk values asl
increases.

n-

n

d
s
r
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FIG. 11. The waveforms generated by the retrograde zo
whirl orbit p510.5M , e50.5, a50.99M ~and Tr5709M , Nr

53.2) as viewed by an equatorial observer~top panel! and by a
polar observer~bottom panel!. Note the absence of any small-sca
structure and the similar appearance of the wave from differ
viewing angles, clear evidence of a small contribution from higl
multipoles.
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In Fig. 15 we graph the corresponding horizon fluxes
the same orbit and the same multipoles as in Fig. 14. B
infinity and horizon fluxes peak at a commonkmax value.
Since the selected orbit resides in a strong field regime,
horizon flux is a respectable fraction (;10%) of the flux at
infinity, and moreover, is predominantly negative i.e. sup
radiant, as we should expect from the discussion in the
vious section. Note that the relative contribution of the qu
rupole channel is much larger in the case of horizon fluxe
compared to the infinity fluxes.

The full energy flux spectrum, up tol 518, for the p
52.11, e50.7 orbit is shown in Fig. 12 in terms of fre
quency rather thatk.

Spectra belonging to retrograde orbits appear simila
the prograde spectra with the difference that they pea
negative values ofk. For a typical situation see Fig. 16 fo
the retrograde orbit ofp510.4M , e50.5 and black hole spin
a50.99M .

Before closing this section, we should point out that on
the harmonics aroundkmax ~typically 10–30 of them! give a
significant contribution to the total flux, for givenl ,m. This
statement applies for all eccentricities we examined,
could have an important impact on the computation of wa
forms and fluxes from highly eccentric orbits in which ca
kmax attains very large values. For example, if one could fi

FIG. 12. This figure shows all of the main peaks of the spectr
emitted by the orbitp52.11M , e50.7 for a black hole witha
50.99M ~see Figs. 7 and 8 for the waveform associated with t
orbit!. The flux of total energy emitted per unit time, on the y-ax
and the frequency, on the x-axis, are both given in the geometr
units of this paper~in which 5ms is approximately unity, if the
black hole has a mass of 106M (). The main peaks in each multi
pole are easily read from left to right as (l 5m52,k510); (l 5m
53,k515); (l 5m54;k521); (l 5m55,k526); (l 5m56,k
531); (l 5m57,k537); (l 5m58,k542); (l 5m59,k547); (l
5m510,k553); (l 5m511,k558); (l 5m512,k563); (l 5m
513,k569); (l 5m514,k574); (l 5m515,k580); (l 5m516,k
584); (l 5m517,k590); (l 5m518,k594).
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by other means~for example a time-domain code, see t
discussion in the next section! the location of the main peak
then the calculation of the surrounding harmonics sho
give a sufficiently accurate result for the flux. This strategy
far more economic, from a computational point of view, th
calculating all the harmonics betweenk50 andkmax.

VI. Concluding discussion

We have examined gravitational waves from and radiat
reaction of equatorial orbits of particles in the last stages
inspiral around a central black hole. We expect that su
orbits will often have moderate eccentricities, not circu
but significantly less thane51. As these orbits approach th
point at which they will plunge into the black hole two thing
will happen. The first is that the orbital eccentricity will be
gin to increase, having been decreasing throughout the
ceding inspiral. For retrograde orbits this eccentricity
creasing phase will last for many cycles, while for progra
orbits, especially ones which retain fairly high eccentricitie
this phase will be fairly brief~in the case of rapidly rotating
black holes!. We have found a;10% fractional increase in
eccentricity, for the most favorable situations. Secondly,
the orbit draws closer to the unstable region it will tend

s
,
ed

FIG. 13. The waveform associated with the individual harmo
ics ~or ‘‘voices’’ ! l 5m52 andk5kmax510 ~top!, k59 ~middle!.
The combination of thek59211 voices gives the waveform at th
bottom which already shows some zoom-whirl behavior. The to
l 5m52 signal finally resembles the waveform shown at the
panel of Fig. 8.
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FIG. 14. The distribution of the energy flux~in units ofm2/M2!
in terms of thek harmonic number for an orbit withp52.11M , e
50.7 around ana50.99M Kerr black hole. From top to bottom we
display thel 5m52, 3, 4, 5 multipoles. Note the significant contr
bution of the higher multipole channels to the total flux. The r
evant orbital frequencies areMV r50.02653 andMVf50.2791.
04400
-

FIG. 15. The horizon energy fluxk-spectrum for the orbitp
52.11M , e50.7, a50.99M . As in the previous figure, we graph
from top to bottom, the multipolesl 5m52, 3, 4. Note that both
infinity and horizon fluxes peak at the samek harmonic, for given
l ,m. The latter spectrum, however, is strongly dominated by
quadrupole channel~which is roughly 10% of the flux at infinity!
while the higher multipoles quickly fade away. The fact that t
horizon flux takes, almost entirely, negative values means tha
represents superradiant radiation.
2-29
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spend a longer and longer portion of each orbital period n
periastron. For reasonably eccentric orbits this will prom
the ‘‘zoom-whirl’’ behavior we have described, with its cha
acteristic waveform. Although extreme cases involving h
eccentricities will presumably be rare, it is still likely tha
LISA will be seeing signals with 5210 whirls, and therefore
10220 gravitational wave cycles between each apast
Therefore templates of such signals will be very importan
is worth noting that because the orbital radius changes v
little during these whirls, the whirl part of the waveform
looks, in many respects, like a near circular waveform w
harmonics of a single dominant frequency. This means,
instance, that for orbits with many whirls, the ratio of th
fluxes of energy and angular momentum is close toVf ~re-
call the celebrated relation for circular orbitsĖ/L̇5Vf).

Considering inclined orbits~not confined to the equatoria
plane! for a moment, we expect that zoom-whirl orbits w
be found in cases with small inclination angles, beca
higher inclination angles feature greater plunge radii and
particle cannot ever have a very small periastron radius~as
we see when the orbit is retrograde, which corresponds to

FIG. 16. Thel 5m52 ~top! and l 5m53 ~bottom! spectra for
the p510.4, e50.5 retrograde orbit. The black hole spin isa
50.99M . Note the location of the maximum at some negativek
value and the dominance of the quadrupole component over
octapole~and higher! component.
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largest possible inclination angle!. When the test-particle is
in an inclined and eccentric orbit, close to crossing so
separatrix of bound stable orbits, it will spend a considera
amount of time moving in a quasi-circular nonequatorial t
jectory close to the periastron. It is plausible, by extrapo
ing the results of the present work, that during the ‘‘whi
ing’’ stage, the orbital energy, angular momentum and Ca
constant will approximately evolve in such a way as if t
orbit were circular and inclined. Assuming that most of t
radiated energy, angular momentum and Carter constan
generated near the periastron~which in the present case i
located in a strong field regime! then one might be able to
estimate the otherwise elusive rate of change of the Ca
constant for a near-to-plunge generic Kerr orbit. Such inf
mation could provide a very useful test for the recen
adopted assumption of obtaining the rate of change of
Carter constant by keeping the orbital inclination angle fix
during the inspiral@57#.

Waveforms from prograde orbits residing close to the h
rizon of the black hole will feature significant high frequen
components when seen from a position on the equato
plane of the system~i.e. when the orbit is observed ‘‘edg
on’’ !. This seems to be due to beaming, resulting from
rapid motion of the orbiting particle along the line of sight
the observer. When observed from on or near the polar
the waveform is largely quadrupolar, dominated by a sin
nearly circular frequency. A glance at the equatorial zoo
whirl waveforms presented here suggests that they can
very complex and not necessarily amenable to matched
tering methods following the full wavetrain. But recall that
successful source identification may already have been m
during the previous year of observation by LISA and fro
the source parameters deduced during this period it may
possible to search for the whirl parts of the waveform in
vidually. On the other hand, it is worth noting that this hig
frequency structure could make it possible for LISA to det
late inspiral signals from very large black holes, with mas
above 107M ( , which would otherwise be too low frequenc
~in the low multipole parts of the waveform! for detection.
By contrast, if we are looking down on the system from t
pole then the signal is much ‘‘cleaner,’’ without much co
tribution beyond thel 5m52 multipole. Obviously non-
equatorial motion will introduce further harmonics and,
suggested in@34# it may prove more useful to examine di
ferent harmonics or ‘‘voices’’ of the signal separately, rath
than trying to model the entire complex signal as one te
plate.

It has been recently realized@16# that orbits during the
long inspiral phase, before the radial orbital frequency
within the LISA waveband, will, in principle, emit detectab
radiation. Recall that the periastron is rather close,r p
,20M , so that the frequency of the cycles in the whirl pa
of the waveformdoesfall within the LISA waveband. As the
time between successive bursts~equal to the radial orbita
period! will be very long ~typically up to a century or even
more! these bursts would not be expected to be detectab
practice. However, as the number of objects in this long
spiral stage will be rather great, one does have to take th
into account as a background noise which will tend to hin

he
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LISA’s efforts to detect signals from those objects in the l
stages of their inspiral. In fact, one could in principle exp
to have proper zoom-whirl orbits even at this stage, provid
the central hole is rapidly spinning and the orbit is ret
grade. Then, as we have shown, the corresponding sepa
translates to a minimum periastron value,r isbo'6M , which
falls within the expected periastron distribution.

In a follow-up paper@33# we will study orbits with larger
radii and larger eccentricities. In particular we are plann
to produce~using the method of@34# which was applied for
inspiralling circular inclined orbits! the full inspiral trajec-
tory and the resulting waveform for bound equatorial orb
that could be of importance for LISA. It is of great interest
~a! produce full inspiral waveforms for the kind of orbit
described above and~b! give a good estimate of the tota
inspiral time, and the residual eccentricity~taking under con-
sideration effects like the sign reversal ofė) just before
plunging. However, the calculation of fluxes and wavefor
produced by bodies ine'1 orbits, is currently ranked as
difficult task. When pursued in the frequency domain~as it
was the case in the present work! one has to calculate a
enormous number of individual harmonics, as it is obvio
from the spectra we presented. Moreover, the numer
computation of the integrals~81! is poorly convergent, a
manifestation of the fact that the source term in the Teuk
sky equation~41! diverges asr→` ~that is, when the orbit
tends to become parabolice→1). One way to cure this pa
thology would be to work with the inhomogeneous Sasa
Nakamura equation@32# which has a well behaved sourc
term ~in the sense that it decays at spatial infinity!. However,
the first difficulty outlined above will still be present. A pos
sible way to overcome it could be the calculation of t
waveform/fluxes directly in the time domain by evolving th
time-dependent Teukolsky equation without resorting to a
separation of variables apart fromf. Conceivably, the re-
quired numerical code could be based on the Teukol
codes used to study the dynamics of scalar and gravitati
perturbations in a Kerr background metric@58#, see@59# for
a report on such an attempt. Looking further ahead, s
time-domain codes could be the only practical tool for co
puting the waveform/fluxes generated by bodies orbit
non-black hole massive compact objects~in which case there
is no known Teukolsky-like separable wave equation!. We
are currently working along both of these directions.
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APPENDIX A: FUNCTIONS THAT APPEAR
IN THE SOLUTION FOR x2

The quantityx5L2aE satisfies the quartic equation,

F~p,e!x41N~p,e!x21C~p,e!50 ~A1!

where

F~p,e!5
1

p3
@p322M ~31e2!p21M2~31e2!2p

24Ma2~12e2!2# ~A2!

N~p,e!5
2

p
$2Mp21@M2~31e2!2a2#p

2Ma2~113e2!% ~A3!

C~p,e!5~a22Mp!2. ~A4!

Defining the discriminant

Dx~p,e!5N224FC

5
16a2M

p3
@p424Mp312$2M2~12e2!

1a2~11e2!%p224Ma2~12e2!p1a4~12e2!2#

~A5!

the solution forx2 is,

x25
2N7Dx

1/2

2F
~A6!

where the upper~lower! sign corresponds to prograde~retro-
grade! motion.

APPENDIX B: FUNDAMENTAL FREQUENCIES FOR
BOUND EQUATORIAL ORBITS IN KERR GEOMETRY

The fact that the functionr (t) is periodic in time~with
periodTr) implies that the function

df

dt
5

aT1Dx

~r 21a2!T1axD
~B1!

is also periodic and with the same period. Hence, it can
expanded in a Fourier series,

df

dt
5 (

k52`

1`

bke
2 ikVrt. ~B2!

By integrating this relation we get,

f~ t !5b0t1 (
kÞ0

cke
2 ikVrt1~const! ~B3!
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whereck5 ibk /kV r . This expression clearly shows that th
f-motion is of ‘‘rotation’’ type @36#. Making use of the inte-
gration constant to define the termc0 , we have

f~ t !2b0t5(
k

cke
2 ikVkt. ~B4!

That is, the functionF(t)5f(t)2b0t is periodic with pe-
riod equal toTr . As we have definedDf5f(t1Tr)2f(t)
we find that

b05Vf[
Df

Tr
. ~B5!

APPENDIX C: POTENTIALS OF THE
SASAKI-NAKAMURA EQUATION

We give an explicit listing of the potentialsF(r ),U(r )
that appear in the Sasaki-Nakamura equation~104!:

F~r !5
h ,r

h

D

r 21a2
~C1!

U~r !5
DU1~r !

~r 21a2!2
1G~r !21

DG,r

r 21a2
2F~r !G~r ! ~C2!

where the functionh(r ) is given by

h~r !5c01c1 /r 1c2 /r 21c3 /r 31c4 /r 4 ~C3!
x-
.
,

v,

s

rr

a

.

04400
with the following coefficients:

c05212ivM1l~l12!212av~av2m! ~C4!

c158ia@3av2l~av2m!# ~C5!

c25224iaM ~av2m!112a2@122~av2m!2#
~C6!

c3524ia3~av2m!224Ma2 ~C7!

c4512a4. ~C8!

In addition, the functionsG(r ) andU1(r ) are

G~r !52
2~r 2M !

r 21a2
1

rD

~r 21a2!2
~C9!

U1~r !5V~r !1
D2

b F S 2a1
b ,r

D D
,r

2
h ,r

h S a1
b ,r

D D G
~C10!

with

a52
ibK

D2
13iK ,r1l1

6D

r 2
~C11!

b52D~2 iK 1r 2M22D/r !. ~C12!

The functionsK(r ),V(r ) appear in the Teukolsky equatio
~41!.
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