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# See, e.g., D. Ter Haar, Elements of Hamiltonian Mechanics
(North-Holland Publishing Company, Amsterdam, 1961), p. 153;
Ref. 17(a), p. 2514.
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Calculation of Transition Probabilities for Collinear Atom-Diatom and Diatom-~Diatom
Collisions with Lennard-Jones Interaction
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AND
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Numerical integration of the close coupled scattering equations is performed to obtain vibrational transi-
tion probabilities for three models of the electronically adiabatic Hy-H; collision. All three models use a
Lennard-Jones interaction potential between the nearest atoms in the collision partners. The results are
analyzed for some insight into the vibrational excitation process, including the effects of anharmonicities
in the molecular vibration and of the internal structure (or lack of it) in one of the molecules. Conclusions
are drawn on the value of similar model calculations. Among them is the conclusion that the replacement
of earlier and simpler models of the interaction potential by the Lennard-Jones potential adds very little

realism for all the complication it introduces.

INTRODUCTION

There is current interest in quantum-mechanical
treatments of molecular collisions involving excitation

of internal degrees of freedom and possibly reaction.
The collision systems pose a multichannel scattering
problem, commonly solved by the coupled channels
(CC) method. The CC equations are coupled differen-
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tial equations derived as follows for a nonreactive sys-
tem: consider a system composed of two asymptotically
isolated parts described by internal coordinates 1y, .
Let the relative coordinate be given by R. Into the
Schrodinger equation,

[T(R)+H(ry, 12)+ Vi(ry, 12, R)—EJ(1y, 1, R) =0
(1)

(where T is the operator for kinetic energy of relative
motion), substitute the state or channel expansion

Y(ry, o, R) = 3 fa(R) (1, 12), (2)

where {¢.} is a complete orthonormal set of the eigen-
functions of H,,
H0¢‘n = €ndn. (3)

Left multiplication of Eq. (1) by ¢»* and integration
over the coordinates 1y, I; yields the CC equations

(—T(R)+E—en)fu(R)= 2 Vau(R)fa(R), (4)
where

Vun(R) = {dm (1, 1) | Vi(1y, 1, R) | @u(1y, 1)), (5)

These equations are solved subject to boundary con-
ditions, generally that asymptotically (| R |— ) the
relative motion becomes iree, i.e.,

Ja(R)~exp(ik,-R)+scattered waves, (6)

The form of the scattered waves depends upon the
dimensionality of the system. The ratio of scattered to
incident flux, with flux defined by

jn(R) = (i/2m) Im( fa*Vfa), (7)

is the transition probability (one dimension) or cross
section (two or three dimensions). As closed-form ana-
lytical solutions of Egs. (4) are not ordinarily obtain-
able, several techniques have been developed for their
accurate numerical integration.'® We developed our
own technique of integration using Dirichlet boundary
conditions and simple one-step Euler integration. This
was the fastest technique available to us at the time
of our calculations, though it is now superseded by
the reference solution methods of Refs. 4 and 5. The
parameters controlling the accuracy of the integration—
step size, end points of the integration in the coordi-
nate R, the number of channels included in the ex-
pansion Eq. (2), and the accuracy of the numerical
integration for the potential matrix elements ¥V, (R)
in Eq. (4)—were chosen such that each individual
transition probability was converged to within 1%, of
its “true” value and detailed balance error, as meas-
ured by the quantity

Emn= [(Pmn—Pmn)/Pmn]X 100%: (8)

was limited to 0.19,-0.49%, allowing us to report only
one probability of each equivalent pair Pun, Prm.

GUTSCHICK, McKOY, AND DIESTLER

In the first section of this paper, we define the co-
ordinates for the one-dimensional or collinear atom-
diatom and diatom—-diatom collisions with vibrational
excitation. We then specify numerical values of pa-
rameters used to define the three models of the Hy-H,
collision. Two of these models are atom~diatom type,
one of which takes the potential for the diatom vibra-
tion as the harmonic potential, the other as the Morse
potential. The third model is the diatom-diatom type,
with each diatom being a harmonic vibrator. Masses
of the atoms and diatoms are chosen such that all
three models are appropriate for the Hy-H, collision—
this requires the atom mass to equal the total mass of
the diatom. Finally, a Lennard-Jones interaction po-
tential is assumed to operate between the nearest atoms
in the collision partners. This is a more realistic choice
than the more common one of an exponential potential,
at least at low collision energies. In Sec. II we present
the numerical results for the transition probabilities.
We contrast the physical behavior of the models for
qualitative insight into the effects of vibrational an-
harmonicity and internal structure in the collision part-
ners, and comment briefly on related semiclassical and
classical calculations. Finally, we conclude that the
simpler exponential interaction potential is preferable
to the Lennard-Jones potential because it reproduces
transition probabilities for the latter very accurately
while requiring far less computing time,

L. NATURE OF THE THREE
MODEL CALCULATIONS

A. The Atom-Diatom Collision in One Dimension

The original coordinates for this system are simply
the positions a1, s, 3 of the three masses m, ma, m;,
with m,—m, comprising the bound or diatomic system.
The operator for the Hamiltonian minus the energy
eigenvalue is

2my 0x2  2mP Oxs®  2mg Oxst
+ V12, (xz— x1) -+ V[I (xa— xz) —E. (9)

The interaction potential V;'(x3;—x3) has been ne-
glected. We show in the Appendix that several con-
secutive transformations of coordinates can be per-
formed which (1) put the system into the form of an
“atom” colliding with another, oscillating atom bound
to an equilibrium position—a two-body problem; see
Fig. 1—and (2) reduce all coordinates, masses, and
potential parameters to a smaller number of dimension-
less quantities. The operator H—E in new units and
coordinates is

H—E=—1/2u(3%/0*) —%(3%/3y*)
+Ve(y)+Vi(s—y)—E,

where the energy E is exclusive of center-of-mass mo-

(10)
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tion and is measured in units of fiw, twice the ground-
state vibrational energy of the oscillator m;—m,. The
set of parameters for the collision reduces to E, 4, and
the parameters of the two potentials.

Next we make the channel expansion, Eq. (2). The
function ¢,(y) representing bound states of the oscilla-
tor are solutions of the eigenvalue equation

[—3(8%/3y") +Via(y) —eldpn(y) =0.  (11)

Again, the energies e, are measured in units of twice
the ground-state oscillator energy, so that for the
ground state, ¢ =4%. Two models for the oscillator have
been used in our calculations: (1) the harmonic oscil-
lator, for which

V() =3,
e@=n—3%  n=123 -,

éa () =[27"Y(n—1)!T2H, 1(y) exp(—3%/2),

where H, is the Hermite polynomial, and (2) the Morse
oscillator, for which

Vie(y) = Do(e v —e ),
er=[202D0)12/81(n~1) ~ 38 (n— )",
dn(y) =N, exp(—de ) (2dePv) b—2nt1)i2

(12)

X Ly 72w (2de ), (13)
with
d=(2D.)'*/8,
k=2d,
N.=normalization constant, (13)

and where L,,"(x) is a generalized Laguerre poly-
nomial. The quantity D, is the depth of the potential
well, and 8 is an anharmonicity parameter. The Morse
oscillator has a finite number of bound states, up to
#max= k. The CC equations for both models have the

(a) QOordinates in the original space
' h

1
M4 mo m3

Ll

1
|
|
| A | X3
IR
X o
t 3
| |
total center
o | Loy Of Mass Hip H2,3
-2 center
of mass v ;
— X )
'

® In the space of the
equivalent two-particle problem

F1G. 1. The original (a) and transformed (b) coordinates for the
atom-diatom collision in one dimension.
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form

(@ dab?) fo () =20 3 V() (),

m=1

(14)

with
ka?=2u(E—¢a),
Vam(x) = {¢a(¥) \ Vi(x—y) ‘ én())

= /_ N dypn(9) V(=3 ¢n (),

Mot = NUmMber of states retained in the channel

expansion. (14"

Our choice of the interaction potential Vi(x—y) is
the Lennard-Jones potential with its singularity at
x—y=0 replaced by a finite step.

Vi(x—y) =4ello/ (x—y) ]*=[o/(x=y) F}, a—y2b
=V1(b), x—y<b,
(15)

although another choice, the exponential potential,

Vi(e—y)=Cexp[—a(z—y) | (16)

was used to check our method by duplicating some
calculations of Secrest and Johnson.?

As a shorthand notation for the two models let us
use HOL]J for the harmonic oscillator hit by an atom
interacting with it by a Lennard-Jones potential, and
MOL]J for the Morse oscillator and the same Lennard-
Jones interaction (and HOEXP for the harmonic oscil-
lator and the exponential potential). In all of these
calculations, the parameters u, €, ¢ (and also D, 8 for
the MOL] case) were chosen to represent the collision
of two hydrogen molecules, one of which has its vibra-
tional degree of freedom frozen out. The dimensionless
values of the parameters are then

p=0.5,
e=5.707X 1073,
a=46.71,
D.=8.3255,
B8=0.24886, (17)

as converted from dimensioned quantities quoted in
Bhatia® and Herzberg® and Herzfeld and Litovitz.%
A slight adjustment of 8 from a calculated value of
0.24840 was made to obtain the proper value of ¢=0.5
for the ground vibrational level. The values of D, and
8 allow 16 bound levels for the Morse oscillator.

B. The Diatom-Diatom Collision in One Dimension
The original coordinates for this system are the posi-
tions x; (i=1, 2, 3, 4) of the four masses m;, with

my—me and mz—my forming the two bound diatomic
systems. Assuming the dominant nonbound interaction
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TaBLE I. Selection of channels to include in diatom-diatom
problem. Maximum excitation of each diatom is to second vi-
brational level ;=22

Method (1)—form all possible product
states (1, #p) with 7y, s independently
ranging from 1 to 4

Method (2)—add
the restriction

mt+n<4
Channel Channel Channel
no.b (1, 72) no. (1, 19) no.b (m, 12)
1 1,1 9 3,1 1 1,1
2 1,2 10 3,2 2 1,2
3 1,3 11 3,3 3 2,1
4 1,4 12 3,4 4 1,3
5 2,1 13 4,1 5 2,2
6 2,2 14 4,2 6 3,1
7 2,3 15 4,3 7 1,4
8 2,4 16 4,4 8 2,3
9 3,2
10 4.1

# Values of #; to 4 should be included on the basis of atom—diatom model
results.
b In each selection scheme the open channels are in bold face.

V1 to be between particles 2 and 3, one has
4
H—E= 3 — (#*/2m;) (8*/0x?) + V1o (41— )
i=1

+ Ve (45— %) + Vi (we—5) —E.  (18)

In the Appendix we show that successive coordinate
transformations, analogous to those used to reduce the
atom-diatom problem, put the system into the form
of a diatom oscillator hitting a bound oscillating
“atom.” The system parameters are also made di-
mensionless. The operator H—E in the transformed
coordinates is

H—E=—(1/24) (8*/00%) —5(6°/dy*) —3(9%/9yy")
FVe()+Valy)+Vila—p—y) —E (19)

for a system of two identical diatoms; the general form
is given in the Appendix. Again, £ is the energy,
exclusive of center-of-mass motion, in units of twice
the ground vibrational energy of either oscillator. The
set of parameters remains E, p, and the parameters of
the potentials, as in Sec. I.A. The diatom—diatom colli-
sion can be made physically equivalent to the atom-
diatom collision, so that comparisons of analogous tran-
sition probabilities will illustrate the effect of an internal
degree of freedom in the incident “particle.” In addi-
tion, “resonant” energy transfer involving interchange
of vibrational quanta between the diatoms with no
conversion of translational energy exists for the diatom—
diatom case.
The channel expansion of Eq. (2) taxes the form

lp(x’ Y, y2) = an(x)¢nl<y1)¢n2(y2)y (20)

GUTSCHICK, McKOY, AND DIESTLER

where the ¢, ¢n2 are solutions of eigenvalue equations
of the form (10). In our calculations, both diatom
oscillators are modeled as harmonic oscillators and the
interaction potential is the Lennard-Jones potential;
this model is denoted by the shorthand HOHOL]J. Sys-
tem parameters exclusive of the energy E are

u=0.5,
e=35.707X 1073,

o=46.71. (21)

Test calculations on a model with the exponential
potential successfully duplicated the results of Riley.!
The CC equations have the general form

(0% 022 +-ka?) fu(®) =20 3 Vam(®)fm(x), (22)

where
kn®= 20 (E— em1—€ns),
Voam ()
= (bur(31) Sn2(32) | Vi(@—y1—32 | dma (y1) ba () ).

The ordering of states in the expansion (20) becomes
significant when we truncate the expansion. Two ways
to order or include channels suggest themselves: (1)
retain a certain number of states for each oscillator,
yielding the correspondence between # and (i, n2)
given in the left-hand columns of Table I, or (2) retain
product states (1, #2) up to a certain energy level
en1t e, yielding the correspondence of # and (n1, #2)
given in the right-hand columns of Table I. The second
approach places all open channels together at the begin-
ning of the numbering scheme, and makes for a smaller
set of coupled equations for similar accuracy; that is,
the states (u1, n2) where both #1 and #2 are high
virtual states will be relatively unimportant. The sec-
ond approach will be used in our HOHOLJ calculations.

Note the occurrence of equivalent channels (n1, #2)«
(n2, nl1). These channels are physically distinct; a
transition from one to the other involves no conversion
of translational into vibrational energy—it is a resonant
energy transfer.

o8l « HyH, HOLS 4
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F16. 2. Energy dependence of the transition probabilities! P (1)
from the ground state in the atom—diatom problem, HOL]J model.
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Tasie II. Calculated transition probabilities for HOLJ model. Numbers in parentheses are negative powers of 10 multiplying result.®

Eb
Prun 1.55 1.65 1.85 2.05 2.25
1-1 0.9999 0.9992 0.9946 0.9835 0.964
12 0.121(3)  0.792(3)  0.538(2)  0.165(1)  0.357(1)
22 0.9999 0.9992 0.9946 0.9835 0.964

E
Pom 2.45 2.55 2.65 2.85 3.05 3.45
1—1 0.936 0.918 0.898 0.852 0.799 0.674
1—2 0.638(1)  0.815(1)  0.101 0.147 0.199 0.314
13 0.506(5)  0.411(4)  0.406(3)  0.170(2)  0.109(1)
22 0.936 0.918 0.897 0.843 0.771 0.580
23 0.235(3)  0.152(2)  0.100(1)  0.296(1)  0.105
33 0.99976  0.9984 0.990 0.969 0.884
E

Pum 3.80 4.20 4.80 5.20 5.80 6.20
11 0.555 0.420 0.245 0.157 0.687(1)  0.351(1)
12 0.412 0.498 0.543 0.510 0.394 0.296
1-3 0.323(1)  0.799(1)  0.201 0.300 0.427 0.470
1—4 0.421(4)  0.855(3)  0.106(1)  0.322(1)  0.105 0.183
15 0.107(4)  0.264(3)  0.422(2)  0.149(1)
1—6 0.350(5)  0.100(3)
252 0.384 0.179 0.104(1)  0.222(1)  0.175 0.299
253 0.202 0.313 0.383 0.328 0.148 0.416(1)
24 0.640(3)  0.870(2)  0.631(1)  0.136 0.258 0.297
255 0.123(3)  0.228(2)  0.241(1)  0.644(1)
2-6 0.341(4)  0.773(3)
3-3 0.755 0.536 0.177 0.313(1)  0.387(1)  0.134
34 0.982(2)  0.698(1)  0.238 0.326 0.297 0.180
35 0.108(2)  0.137(1)  0.878(1)  0.170
3-6 0.233(3)  0.401(2)
44 0.989 0.921 0.676 0.421 0.805(1)  0.364(2)
45 0.124(1)  0.834(1)  0.256 0.317
46 0.156(2)  0.186(1)
55 0.986 0.900 0.612 0.338
56 0.146(1)  0.945(1)
66 0.9835 0.882

2 Calculated values of Ppy and Py were always well within 1%, of each
other, To avoid redundancy, only the former are given.

II. RESULTS OF MODEL CALCULATIONS

Tables IT-IV present our calculated transition prob-
abilities for the HOLJ, MOL]J, and HOHOL]J models.
The total error in these results is in the range of 1% or
less. The behavior of selected probabilities P, as func-
tions of energy is illustrated in Figs. 2-6. The clearest

b Energy units are fiw, twice the ground-state vibrational energy of the
diatom.

feature for both atom—~diatom models HOLJ and MOL],
which cover significant energy ranges, is the oscillation
of the Pn.. For instance, the elastic transition prob-
ability Py in the HOLJ model decreases steadily until
it reaches a deep minimum near £=4.9; then, despite
the opening of an additional inelastic channel at E=4.5,
Py begins to rise rapidly. This is “caused” by the
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1o '\"L\,f. L L B A TasLE III. Calculated transition probabilities for MOLJ model.s
08~ ) -

« 08j~ \'\ . Eb

ar o HZ~H2 HOLS

507 2+2 b

2 ol \ | Prsn 1.55 1.90 2.30 2.75

e S .

=T > e N ! 151 0.99983  0.9958  0.980 0.939

Qo o E - 152 0.165(3)  0.417(2)  0.198(1)  0.604(1)

gt / >< 77’ ] 13 0.129(3)

"o ya /° 2 rae 'xé’—::zo; 2-2  0.99983  0.9958 0.980 0.931

1 . o |
ZO ./‘T'/.:. -/'l/l L n>|<:/ll/c J.: ! 3 0819(2)
15 25 35 45 55 65 3-3 0.9917
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F1c. 3. Energy dependence of the transition probabilities E
P(2—n) from the first excited state in the atom-diatom problem,

HOLJ model. Paw 3.0 4.15 4.45 4.85
downward turns in probabilities Py and Py, We see a 1-1 0.854 0.724 0.662 0.582
similar behavior in transitions from initial states 1 and 1-2 0.142 0.255 0.302 0.354

3, Pin and Pi,. Comparing transitions according to 13 0.314(2)  0.204(1)  0.345(1)  0.602(1)
their initial state, we note that the coupled oscillations =4 0.159(5) ~ 0.306(3)  0.977(3)  0.320(2)
in probabilities set in at a lower value of initial kinetic i:g 0.138(6)  0.317(5) 8?3:2;;
energy E—e,, the higher the initial state #. ’

This oscillatory behavior has been found in similar 272 0.780 0.508 0.391 0.249
atom-diatom model systems by previous workers. 23 0.779(1) 0.229 0.287 0.347
Shuler and Zwanzig” found sharp-peaked oscillations for 24 0.868(4)  0.809(2)  0.198(1)  0.475(1)

iC awanzig’ ] P-peakec osciiatio 255 0.623(5)  0.111(3)  0.104(2)
all transitions in their exact but specialized quantum- 26 0.764(6)
mechanical treatment of the h.armonic diatom and the 33 0,015 0. 643 0.493 0.296
hard-sphere interaction potential, 34 0.412(2) 0.108 0.182 0.281
Vi(x—y)=0, x—y>0. 355 0.182(3)  0.230(2)  0.145(1)
3-6 0.180(4)
®  ®=y=0. @) 4y o o8 0.756 0.531
The exact result of Secrest and Johnson® for several 4-5 0.598(2)  0.407(1)  0.137
HOEXP models show maxima in inelastic probabilities. 46 0.371(3)
The exact semiclassical results of Rapp and Sharp?® for 55 0.9938 0.957 0.838
a HOEXP-like model show regular oscillations. The 5—6 0.919(2)
oscillations in our results and the results quoted above 66 0.9904

are real, although there have been many approximate
calculations in which the use of low-order perturbation
theory or the artificial exclusion of most of the channels
in expansion (2) has led to a spurious effect.

A major part of the analysis of our results is the

a Calculated values of Py, and P, were always well within 19, of
each other. To avoid redundancy, only the former are given.
b Energy units are Aw, twice the ground-state vibrational energy of

the diatom.
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Fie. 5. Energy dependence of the transition probabilities
P(2—n) from the first excited state in the atom-diatom problem,
MOL]J model.

FiG. 4. Energy dependence of the transition probabilities
P(3—n) from the second excited state in the atom—diatom prob-
lem, HOLJ model.
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Tasre IV. Calculated transition probabilities for HOHOL]J model.»

Eb
Puum 2.05 2.15 2.35 2.55 2.75 2.95
11-11e 0.99990 . 0.99934  0.9956 0.987 0.972 0.951
1112 0.508(4)  0.329(3)  0.219(2)  0.656(2)  0.140(1)  0.245(1)
12512 0.9929 0.980 0.950 0.914 0.872 0.825
125521 0.707(2)  0.194(1)  0.474(1)  0.789(1)  0.114 0.150
E
Pron 3.08 3.15 3.35 3.55
1111 0.934 0.923 0.890 0.853
1112 0.328(1)  0.382(1)  0.547(1)  0.731(1)
1113 0.183(5)  0.680(5)  0.648(4)  0.261(3)
1122 0.366(5)  0.136(4)  0.130(3)  0.523(3)
1212 0.792 0.773 0.714 0.650
12-21 0.175 0.188 0.224 0.258
1213 0.192(3)  0.603(3)  0.381(2)  0.108(1)
12522 0.104(3)  0.329(3)  0.214(2)  0.627(2)
1231 0.143(4)  0.548(4)  0.524(3)  0.204(2)
1313 0.980 0.963 0.909 0.846
13522 0.200(1)  0.360(1)  0.848(1)  0.136
1331 0.110(3)  0.352(3)  0.203(2)  0.556(2)
2222 0.960 0.927 0.826 0.715

# Calculated values of P (n1, n2) —(n1’, n2’) that should be equal among
themselves by time-reversal invariance or symmetry were negligibly dif-
ferent. Only one member is given to avoid redundancy.

comparison and contrast of the three models for the
Hy-H, collision. Suitable quantities for comparison in-
clude analogous transition probabilities (as 1—2 HOL]J,
1—2 MOL]J, 11—12®11—21 HOHOL]J), net energy
transfer from analogous initial states, and relative
strengths of multiquantum jumps. Contrasts of HOL]J
and MOL]J models will tell us something about the
effects of anharmonicity, and contrasts of HOLJ and
HOHOL] will help reveal the effect of internal struc-
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F16. 6. Energy dependence of the transition probabilities
P(12—mn) in the diatom-diatom problem, HOHOLJ model.
The initial state 1-2 has one of the diatoms in its ground state,
the other in its first excited state.

b Energy units are fwis =Mws =fiw, twice the ground-state vibrational
energy of either diatom.
¢ The transition (nl1, #2)—(n1’, #2’) is abbreviated to n1n2 —ul/n2’.

ture in the incident particle. At the same time, exam-
inations of models individually show the basic energy
behavior of the probabilities and other properties that
are as instructive as the obvious contrasts between
models. Specific items we can study, both within and
between models, include comparisons of (1) all transi-

LOG,, PROBABILITY

1 1 L
00 0.5 10 1.5

ENERGY ABOVE THRESHOLD

Fr6. 7. Demonstration of very similar energy dependence for
one-quantum jumps in all three models of the Hz~H, collision,
HOLJ, MOL], HOHOL]. The curves of logio(probability) have
been biased by —0.75 in the MOLJ cases for clarity.
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T16. 8. Comparison of all transition probabilities P (2—#) from
the first excited state. The two atom—diatom models HOL]J and
MOL]J are both represented.

tions of a given type, such as one-quantum jumps
P, ny1, for various initial states #, (2) all transitions
P, from a given initial state #, (3) net energy trans-
fer (translational to vibrational) from each state =,
defined for the atom—diatom models as

<AEn>= Z/ an(EM"en), (24)
where the ¢; are the energy eigenvalues for the diatom
vibration. The diatom-diatom model has several types
of energy transfer that will be defined later.

Figure 7 presents a logarithmic plot of several one-
quantum jump probabilities for each of the three
models. The abscissa in each case is energy above
threshold E. = E—¢,y, rather than initial kinetic en-
ergy. The striking fact brought out by the logarithmic
plot is that all the P, .41 for a given model behave
much like

Ppap1(E) =Consty f(Eex), (25)

with f(x) the same for all n. Further, f(E) is very
similar for the HOLJ] and HOHOLJ models, while
logf(E) for MOLJ has a smaller slope at the lowest
energies. Pursuing this point of similarity, we turn to
the actual magnitudes of probabilities at low energy. For
the analogous transitions 11—12@11—21 HOHOL]J
and 1—2 HOL]J, we find

(Pi1ago+ Puyom) monors/ (Pr2) rors=20.8 (26)

at low energy. Not only do these transitions have simi-
lar f(E) or “slopes,” but their magnitudes are close,
being reduced for the HOHOLJ case by the extra
adiabaticity or softness introduced into the collision
process by the extra internal degree of freedom. That
the change from HOLJ to HOHOL] is principally the
addition of a very modest amount of adiabaticity is
supported by comparing the 11—12 and 21—22
HOHOL] probabilities. The two values are extremely
close at low energies, indicating again that the initial
state of our extra internal degree of freedom has little

GUTSCHICK, McKOY, AND DIESTLER

effect of itself on transition probabilities—which would
not be true if the extra degree of freedom coupled
strongly to translation. However, it does couple strongly
to the vibration of the other diatom, giving rise to
highly favored resonant energy transfers of the type
12—21. The latter transitions may be of independent
interest, but they do not drain much probability from
other transitions at modest energies.

Proceeding to the HOLJ-MOL]J comparison, we find
the ratio (Ps)mors/(Pi2)uory is quite small—around
0.3-0.4. This is readily explained by the lower coupling
between adjacent states of the anharmonic oscillator
(compared to that for a harmonic oscillator) induced
by a potential that is essentially linear in the oscil-
lator coordinate. This near linearity in the coordi-
nate y holds near the classical turning point x,, where
Vi(x— {y)) = E—e,, for our Lennard-Jones potential—
and it is the region of x, that is most important. The
problem of why MOL]J one-quantum jumps have a
different “slope” at low energies than HOLJ jumps
cannot be commented on with our calculations limited
to so few energies.

Figure 8 presents a comparison of the second type,
among all transitions from initial state 2 (P, Pas, Pas,
Py) for both atom—diatom models. It is also a log-
arithmic plot, and the abcissa is appropriately the
total energy E. A clear feature is that the horizontal
or energy gaps between adjacent curves 2—n, 2—n--1
are widening as # increases. That is, in either of the
two models, the higher the quantum jump, the more
slowly the probability grows. The explanation is again
in the essential linearity of the interaction potential
at the classical turning point; the first-order coupling
of a final state to the initial state is a very strongly
decreasing function of the number of quantum jumps
in the transition. This argument does not hold as well
for the anharmonic MOLJ model, and so the energy
intervals between the various curves do not widen as
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F16. 9. Atom-diatom collision: net transfer of energy from
translation to diatom vibration, as a function of the initial state
(#) and of the kinetic energy in the initial state. Both HOL]J
and MOL]J models are represented.
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rapidly here, even after we discount the decreasing
intervals between thresholds.

We have no HOHOL]J results for transitions higher
than two-quantum jumps, and these only from the
ground state. Yet the HOHOL]J model has a greater
variety of transition types or processes than the atom-—
diatom models. Finding the relative magnitudes of the
different processes is a worthwhile task, The processes
we distinguish, and examples of each, are:

E—Elastic: 11—11, 12—12
R—Resonant: no net quantum jump in the pair of
diatoms, i.e., opposite jumps in each diatom: 1221,
2213
SR—Semiresonant: opposite jumps of different order
in each diatom: 12—31
NR—Nonresonant:
(a) One-quantum jump: 11—12, 22—12
(b) Two-quantum jump: 11—13
(¢) Double one-quantum jump: 11—22

The HOHOLTJ results at the modest energy £E=3.55
show that the strengths of processes generally follow
the order

E>R>NR(a)>SR>---, (27
reflecting the weakness of translational-vibrational cou-
pling compared to vibrational-vibrational (V-V} cou-
pling. There are V-V processes that are weak, as the
13531 transition involving concerted two-quantum
jumps that are approximately forbidden in first order.

Our final study is of energy transfer. Figure 9 plots
(AE,) for both atom—diatom models from initial states
1, 2, and 3 as functions of initial kinetic energy. MOL]J
has about 409, the energy transfer efficiency of HOL]J,
from the initial states 1 or 2. The energy transfer in
state 2 reaches a node at lower energy for MOL] than
HOL]J, reflecting the earlier opening up of new channels
for MOL]. The disparity in form for HOLJ and MOL]
energy transfer appears to be very pronounced for high
initial states.

To define the measure of energy transfer for diatom-
diatom collisions, we must denote the subsystems or
degrees of freedom between which the transfer occurs.
These subsystems are translation or “tr,” diatom 1-2
or “d” (playing the same role as the diatom in atom-
diatom collisions), and diatom 3—4 or “a” (playing the
same role as the atom). The energy transfers most
directly comparable to the atom—diatom results are
tr—a-+d=tr—all, tr—d (not equal in general to tr—a;
“d’’ and “a” may be initially in different states, making
for distinguishability in this otherwise symmetric sys-
tem), and tr4-a—d=all—d. Figure 10 presents these
three (AE) functions for HOHOL] in initial states 11,
12, and 13, plotted as functions of initial kinetic energy.
AE(tr—d) is very nearly identical for states 11 and 12
for comparable distances above their respective thresh-
olds, corresponding to our finding that the state of a
does not much affect the coupling of d to tr. There is
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F1c. 10. Diatom~diatom collision, HOHOL]J model: net trans-
fer of energy between the various degrees of freedom (e.g., TR =
translation; see text for symbol meaning), as a function of initial
state (mn2) and of the kinetic energy in the initial state.

also the expected trend, that AE(all—>d) increases
strongly as the state of “a’ is raised. As there is noth-
ing surprising within Fig. 10, we proceed to compare
HOHOLJ with HOLJ via their ratio AE(tr—all)/AE
for analogous initial states. For HOHOL]J state 11 and
HOL]J state 1, the ratio is around 0.8, reflecting the
extra adiabaticity of the diatom-diatom case. For
HOHOL]J state 21 and HOLJ state 2, the ratio is
about 0.4, probably due to the drain of the resonant
process 12—21. The same ratio occurs in the compari-
son HOHOL]J 31<HOLJ 3 and in the weaker com-
parison HOHOL] 22<-HOL]J 3.

We may draw a number of conclusions from our
results, particularly regarding the value of similar model
calculations on intermolecular energy transfer. Despite
the limitations of our models—one-dimensionality, a
restricted and modeled interaction potential, and the
simplicity of the models of the diatoms—we have ex-
tracted a number of physical insights into the collision
of two fairly stiff diatoms, if not into the actual Ho-H,
collision. The effects of anharmonicity and of internal
degrees of freedom, and the relative magnitudes of
different processes are among the insights. Certainly,
calculations on a wider sampling of collision partners
within the same general modeling scheme can be recom-
mended as a practical and valuable project; the com-
puting times are moderate. We are also able to suggest
some precautions and some simplifications in modeling
a collision system. First, the introduction of all the
internal degrees of freedom of the collision partners is
not as necessary for reasonably accurate calculations
as a fair degree of anharmonicity in the vibrations.
Neither complication can really be ignored and semi-
empirical corrections based on careful studies of addi-
tional systems are probably desirable. Secondly, the
choice of analytic form for the interaction potential is
not nearly as important as the careful estimation of the
parameters for the chosen form. To support this claim
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we turn to some results of A. Wagner of this laboratory.
In entirely similar calculations he employed HOEXP
and HOHOEXP models for the Hy-H, system with
the EXP (exponential) potential parameter a care-
fully fitted by various least-squares techniques to the
Lennard-Jones parameters ¢, e. His calculations dupli-
cated ours within several percent for all but the highest
quantum jumps at the highest energies, where one
probability might be off as much as a factor of 2. Let
us consider that neither L] nor EXP potentials are
terribly realistic, and that the change in probabilities
in switching from one to the other is less than the
change produced by a very minor shift in the param-
eters of either one. We see no reason to retain the LJ
potential with its attendant great increase in complexity
and computing time,? at least in treating systems such
as ours where the energy quanta exchanged in colli-
sion are considerably larger than the small attractive
well in the LJ potential. If one must use a potential
that has an appreciable attractive portion, as a chem-
ical “well,” or if one must do accurate calculations, his
best choice of potential is one tabulated numerically.
If one is satisfied with as simple a potential as the
exponential, he should choose his parameters very care-
fully. A much-needed study is the development of
simple but more adequate model intermolecular poten-
tials, particularly for three-dimensional systems.
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APPENDIX

Transformation to Dimensionless Coordinates for the
Atom-Diatom Problem

Figure 1(a) shows the original coordinate system.
The first step is to separate the center of mass motion
in Eq. (9), by defining new coordinates

X = (mx1+maxet+msxs) /M, M =m+myt-m;

=coordinate of center of mass of entire system,

J

%' = x3— (myxr+moxa) /m, m=m+my

= distance between particle 3 and center of mass of
system 1-2,

Y =x—, (A1)

GUTSCHICK, McKOY, AND DIESTLER

and corresponding masses
M—X,

Mi2,3= mma/ M—x'

paz= tamy/m—y'. (A2)
The new form of the operator H—E is
R o2 0 noe?
T 2MOX® Zups0x?  2undy”
+Vu(y)+Vils'— (m/m)y’]—E. (A3)
Now remove the center-of-mass motion; write
E=E.+Ew
= Ey™+ E™! 4 Evin, (A4)
and remove the operator
— (72/2m) (82/3X?) — E,,=0 (for eigenstates).
(AS)

Next, place %’ and ¥’ on an equal footing by defining
a' = (m/m) (&+ '),
y, = g+ Y OI)

or %= (m/m)x —y/,
or g=y—m, (A6)

where 9 is the equilibrium value of 9. The correspond-
ing masses are

i= (me/m?) iz 3= mi*my/ mM—2%,
mr—y, (A7)

and the operator H— E becomes

2EOR 2 OF

where -
Via(9) = Vi (g+90),
Vi(@E—9) = Vil (m/m) (5—7)],
E= E— E"em_ (A9)

Lastly, divide the whole of Eq. (A8) by fiw=twice the
ground-state vibrational energy of the 1-2 system, and
absorb the factors #2/2u; into the derivative terms.
Define

x= (uaoeo/F) V24,

y= (paw/R) "y,
p= i/ ma=myma/ Mma,
E,=E/fiw
to obtain Eq. (10)
— (1/2p) (8%/32%) —$(8%/3y") + Vi (9)+ V' (65— y)— En,

(A10)
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where

Vil (/o) Y2y
fuw

= Vl2[ (ﬁ/ﬂlzw) 1/2y+y0/]
Fuo ’

Vz’(x—y) - VI[(ﬁ/lﬂ?:il/z(x—y):l

_ Vil (m/my) (Bi/mao) 2 (2—y) ]
o - .
The transformations in (A11) will change all pa-
rameters of the original potentials into dimensionless
quantities, and in some cases reduce the number of
parameters in ¥y, by one.

Vi!(y) =

(A11)

Transformation to Dimensionless Coordinates for the
Diatom~Diatom Problem

We separate the center-of-mass motion from Eq.
(18) by defining the coordinates and corresponding
masses

4
X= Z m;x.-/M,

o= myma/ My

M = my+myt+ms+my,
Y1z = 2%g— 211, (mij=mi+m;),
Yo' = 24— 2w, po=mygms/my,
! = (mgxs—Hmaxs) [mas— (maxst-maxa) /mss,
P2, 3= Magmas/ M
=distance between the centers of mass of systems

1-2 and 3-4. (A12)

The operator H— E, dropping the operator (AS), is

iz A2 A iz 9
T T T R T T ain + V(')
2p12 Oy1s 2pt54 O34 219,34 0%

+Valya)+ V1 (x’— et ' — o y34') —E. (A13)
Mg M3

Next put &’ and ¥’ on the same footing, by defining

new coordinates and masses,
E= (mg/m) &' — 3 —7ysd,  Fzp= (M me®) iz,
7= tagma/ mamas,

Je=yn'—ys"  p,

Ju=yu' =¥y Mo (A14)

The potential terms in H— E become

Vo (§12) + Vae(§ae) + V1 (E—Fa—v7s) = Vis (Grat-91°)

+ Vas(Garty50) + Vil (m1/ms) (—G—7ifss) . (A15)
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The operator is finally made dimensionless by divid-
ing by #iw;z and absorbing dimensional factors into the
second differential operators. Define

x= (pigwore/ ) 2%,
Vo= (paswro/ ) V2irs,
yae= (Haswss/R) s,
B= ppsd/ mia=mamigs/ Mms,

v= (ma/ms) (pssors/ prawss) uz (A16)

to obtain the generalization of Eq. (19),
H—E=—(1/2u)(8*/0x*) —3(38*/0yy’)
- (w34/ wi2) (8%/ 3}’342) + V' (yn) + Vs (y34)

+Vi (a—ye—vya). (ALT)

The potentials are related to their original forms by
Vie' (312) = Vol (B/ prane) Y2y1+ 9120 ]/ Fuwne,

Vad' (y30) = Vaul (B/ paswse) 2334+ ys ]/ Ficons,

Vi (x—y2—rys)

= Vil (my/mz) (B/ pasons) V2 (£ — y12—¥¥aa) 1/ Ficopa.
(A18)
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