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Anyons from nonsolvable finite groups are sufficient for universal quantum computation
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We present a constructive proof that anyonic magnetic charges with fluxes in a nonsolvable finite group can
perform universal quantum computations. The gates are built out of the elementary operations of braiding,
fusion, and vacuum pair creation, supplemented by a reservoir of ancillas of known flux. Procedures for
building the ancilla reservoir and for correcting leakage are also described. Finally, a universal qudit gate set,
which is ideally suited for anyons, is presented. The gate set consists of classical computation supplemented by
measurements of theX operator.
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I. INTRODUCTION

The discovery of the potential speedups offered by qu
tum computers launched an effort to find physical syste
out of which these computers could be built. Research
soon found that these systems are in short supply, as
extremely difficult to isolate a quantum system from the e
vironment, while maintaining enough control to perform o
erations on the encoded data. The advent of quantum e
correction and fault-tolerant processing has drastically
creased the tolerable error rates; nonetheless, physical
tems with low enough error rates are still hard to come b

One way to protect a Hilbert space from the environm
is to encode the quantum data in nonlocal observables. T
observables, which are constructed from topological inv
ants, cannot be measured or changed by any local oper
Therefore, because the environment generally acts loc
the physics of the system provides a form of fault toleran

In particular, consider the spectrum of electrically a
magnetically charged particles that are obtained by brea
a gauge group to a finite subgroup. The finite group ga
theory is a particularly good system for quantum comput
because it involves no gauge fields, and hence no long-ra
interactions except for those obtained by braiding. Furth
more, the Hamiltonian of the system respects the unbro
symmetry; therefore, Schur’s lemma forbids the types
coupling to uncharged objects that can produce decohere
Of course, the data could still decay by the exchange o
charged particle between two anyons, but this is a quan
tunneling event which is exponentially suppressed by
distance between the particles.

When the gauge theory is restricted to two spatial dim
sions, the particles acquire topological long-range inter
tions, which can be be used to perform computations.
interactions occur when the particles are exchanged
braided, and depend only on the topological class of the p
involved. Because of these interactions, the charged part
have quantum statistics that are more exotic than the s
dard fermions and bosons, and are known as anyons.
nonstandard statistics, though, only arise when clockwise
tations can be distinguished from counterclockwise rotatio
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which is why we impose the requirement of two spatial
mensions. While this two-dimensional model of the wor
seems somehow unphysical, there exist condensed-m
systems with quasiparticles that behave like anyons.

The original proposal for an anyon based quantum co
puter was made by Kitaev@1,2#. The first concrete descrip
tion was done by Ogburn and Preskill in Refs.@3,4# for
anyons in the groupA5, the even permutations of five ele
ments. In our paper, we will generalize the work of Ogbu
and Preskill to any nonsolvable finite group, which includ
A5 as the smallest case.

The paper is organized as follows: We begin by introdu
ing some notation and reviewing the properties of the an
model that will be used throughout this paper. Section
presents the universal gate set that will be employed to pr
anyons can perform quantum computations. Sections IV–
contain the main part of the paper, and discuss a conc
anyonic implementation of all the necessary gates. For pe
gogical reasons, we first cover the easier subcase of sim
perfect groups in Sec. IV, and then discuss the required g
eralizations for any nonsolvable group in Sec. VI. In Sect
V, we discuss how to make these computations fault toler
by performing leakage correction. Finally, we discuss
conclusions and unsolved questions. There are also two
pendixes which include the mathematical proofs, and a te
nique for creating anyon ancillas.

II. REVIEW

In this section, we will review some of the braiding an
fusion properties of our anyons. Our review will be rath
abridged, but more details can be found in the excellent
view of discrete gauge theories@5# ~and the original work
@6#!. The paper by Ogburn and Preskill@3,4# also contains a
good review with emphasis on the applications to quant
computing.

This section also establishes our notation for qudits, a
reviews the phase estimation circuit, a highly useful tri
that will be used often.

A. Magnetic charges

The main players throughout this paper will be the ma
netic charges, also known as fluxes. For a field theory w
©2003 The American Physical Society15-1

https://core.ac.uk/display/216107289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


r
e
e

-
a

in
hic
n
b
d
lo
g
is

th
ju
ig

w
th
t

o
t

u
ns
i-

c
o
t

b
e

x.
n
u

rs
er
th
a
i

x-

er-
e

-
,
c-

irs
m.
um

s-
the
of
the
in

th
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an unbroken finite groupG, there is one magnetic charge fo
each elementgPG. Quantum mechanically, we can hav
superpositions of these states, giving a one-particle Hilb
space spanned byug& ; gPG ~though strictly speaking, su
perpositions of charges in different conjugacy classes
meaningless, as will be explained in the following section!.

Specifying the exchange properties of the charges
volves making a choice of gauge. The easiest choice, w
will be used in this paper, is to keep all anyons ordered o
horizontal line. The exchange of particles, which can
clockwise or counterclockwise, is only allowed between a
jacent pairs. In either case, the particle that passes be
remains unchanged, while the particle that passes above
conjugated. When the exchange is in the counterclockw
direction, the upper anyon gets conjugated by the flux of
lower one, whereas in the clockwise direction it gets con
gated by the inverse of the lower flux. This is depicted in F
1.

One way to visualize these exchanges is to associate
each anyon a ray that is vertical in the plane, starting at
particle and proceeding upwards. Anyons are allowed
move freely through the plane, but every time an any
crosses the ray of another particle, it gets conjugated by
flux of the owner of the ray~or by the inverse flux if crossing
from left to right!. Note that when a particle passes a gro
of anyons, it gets conjugated by the total flux of the anyo
which is given as the product from left to right of the ind
vidual fluxes.

Clearly, moving single anyons around can produ
strange correlations throughout the system. However, m
ing a pair of anyons with a total flux that is trivial will no
change the state of the system if the pair always passes
low. This is why we will always be dealing with states of th
form

(
g

agug& ^ ug21&, ~1!

which correspond to a pair of anyons with trivial total flu
When dealing only with pairs of trivial total flux, we ca
swap any two pairs, or bring any two pairs together witho
affecting the state of the rest of the system.

We do want to allow controlled interaction between pai
though, and this is accomplished by a pass-through op
tion. The idea is to have one pair circle one anyon from
other pair. This will conjugate the fluxes of the pair th
circles, but leave the other pair invariant. This operation
depicted using elementary exchanges in Fig. 2.

FIG. 1. Exchanging two anyons.
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The net result of the pictured operation is

uh& ^ uh21& ^ ug& ^ ug21&→uh& ^ uh21& ^ uhgh21&

^ uhg21h21&, ~2!

which is a conjugation of the second pair byh. Conjugation
by h21 could be achieved by using counterclockwise e
changes in the picture.

For notational convenience, in this paper, we will gen
ally only mention the flux of the left element of a pair. Th
above transformation will be written as

uh& ^ ug&→uh& ^ uhgh21&, ~3!

leaving the compensating fluxes implicit. While we will ex
clusively deal in this paper with flux pairs with trivial flux
we will only explicitly refer to the second anyon when ne
essary to describe the operations.

B. Electric charges and vacuum pairs

We now wish to focus on the operations of creating pa
from the vacuum and fusing pairs back into the vacuu
However, we must first briefly discuss the complete spectr
of particles, and that involves electric charges.

An electric charge is a particle with no flux that tran
forms as some nontrivial irreducible representation of
groupG. A useful analogy is to think of the representation
G as the total spin of the particle. The internal state of
particle is then equivalent to the direction in which the sp
is pointing.

The electric charge states can be labeled asuR,V&, where
R is a representation ofG andV is a vector that transforms in
the representationR. The electric charges do not interact wi

FIG. 2. Conjugating a pair of anyons.
5-2
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ANYONS FROM NONSOLVABLE FINITE GROUPS ARE . . . PHYSICAL REVIEW A 67, 022315 ~2003!
each other, but when one of them circles a magnetic flug,
its state changes as

uR,V&→uR,UR~g!V&, ~4!

whereUR(g) is the matrix corresponding tog in the repre-
sentationR. This is known as the Aharonov-Bohm effect.

While we can transform the state of an electric cha
within the subspace of a representation, there are no op
tions ~other than fusion, which destroys the particle! that can
change the representation of a particle. Furthermore,
phase between states of different representations cann
measured. We can therefore effectively describe the ele
charges as having decohered into the different represe
tions. In particle physics, we would say that the differe
representations correspond to different superselection
tors.

The same thing happens to the magnetic charges. Di
ent conjugacy classes live in different superselection sec
so we can imagine that there is an automatic decohere
into different conjugacy classes. Superpositions of fluxes
different conjugacy classes are therefore meaningless.

The spectrum also contains particles with both elec
and magnetic charge, which are called dyons. The only s
cial feature is that the electric charge is a representation
of the subgroup ofG that commutes with the flux. The afore
mentioned magnetic charges are just dyons with a trivial r
resentation. The dyons also have superselection sectors
correspond to different conjugacy classes and represe
tions.

The purpose of discussing the full spectrum, and the i
of superselection sectors, is to find out what kind of states
get when we create a pair of particles from the vacuum. T
first thing to note is that each of the particles will instan
decohere into a specific conjugacy class and representa
Furthermore, because a pair created from the vacuum m
have trivial total charge and flux, the conjugacy classes m
be inverses, and the representations must be conjugate
resentations.

Consider the case that the pair decoheres into plain m
netic charges, with the first one contained in the conjug
classC. Because the combined state still has vacuum qu
tum numbers, the state must transform trivially when anot
flux is dragged around it. That is, it must be invariant und
conjugation. There is only one such state:

uvac~C!&5
1

AuCu
(
gPC

ug& ^ ug21&. ~5!

The vacuum states for the other superselection sectors
also unique and have similar expressions. When a pai
anyons is created from the vacuum, it will start off in one
these states.

Another useful operation is to fuse two anyons togeth
Note that we are not talking about two anyon pairs, b
rather two anyons, sometimes from the same pair, and so
times from different pairs. The operation of fusion will tur
the two particles into one, which must carry the total flux a
charge of the two. It is also possible that the two anyons w
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have vacuum quantum numbers, and will fuse back into
vacuum. In this case, no particle will be left behind and th
total mass will be transformed into some other medium, s
as radiation. IfuC& is the combined state of the two anyon
and the first anyon is in the conjugacy classC, then the
probability that the two will fuse into the vacuum is given b
the standard rules of quantum mechanics:

Pvacuum5u^vac~C!uC&u2. ~6!

After fusing two particles of different pairs, the fused pa
ticle may carry some flux. However, since the total flux
the original four particles was trivial, the total flux of all th
remaining particles~including the product of the fusion! will
be trivial as well. Therefore, it is possible to safely move t
group of particles away from the bulk of the computati
without disturbing our quantum state.

C. Qudits

Throughout this paper it will be useful to perform com
putations with qudits rather than the usual qubits. We de
our computational basis as the statesu i & for 0< i ,d, where
we will assume thatd is prime. The unitaryZ andX gates can
be defined as follows

Zu i &5v i u i &, ~7!

Xu i &5u i 11&, ~8!

wherev is a fixed nontrivialdth root of unity, and sums are
understood to be modulod. The operators satisfy the com
mutation relation

ZX5XZv. ~9!

As usual, the eigenstates ofZ correspond to the computa
tional basis. We can also introduce the eigenstates ofX:

u ĩ &5
1

Ad
(
j 50

d21

v2 i j u j &, ~10!

which have the following transformations under the action
our unitary gates:

Zu ĩ &5u i 21̃&, ~11!

Xu ĩ &5v i u ĩ &. ~12!

D. Phase measurement

A very useful trick, used many times throughout this p
per, is Kitaev’s phase estimation technique@7#. In fact, we
will only employ a special case of the technique which w
describe below.

Assume that we are working in a system with qudits, a
we have an operatorU with eigenvalues that aredth roots of
unity. We shall prove that being able to apply a controlledU
gate, and measure in theX basis, is equivalent to being abl
to measure the operatorU.
5-3
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Consider applying the circuit below to an eigenstateuC j&
of U with eigenvaluev j :

where the controlledU21 gate can be applied asd21 con-
trolled U gates. The circuit works as described because
controlled U21 gate leaves the bottom state invariant, b
applies aZ2 j to the upper state. On a general stateuf&
5( j cj uC j& expanded in terms of eigenvectors ofU, the cir-
cuit produces the transformation

u0̃& ^ uf&→(
j

cj u j̃ & ^ uC j&. ~13!

Clearly, a subsequent measurement of the first qudit in thX
basis is equivalent to a nondestructive measurement of
original state in theU basis. We will use this technique in th
following section to measure the operatorsXaZb.

In a later section, we will employ the equivalent circui

run in both the forward and backward directions, to chan
between theu ĩ & states and the readily availableu0̃& state
which can be naturally produced from, and fused into
vacuum.

III. A UNIVERSAL GATE SET FOR ANYONS

A lot of the work in proving universality can be simplifie
by choosing a proper gate set. For this paper, we will emp
a generalization of the gate set used by Ogburn and Pre
@3,4#. The gate set, which involves measurements as we
unitary gates, can be applied to qudits whend is prime,
which is the only case considered in this paper.

The universal gate set is~1! Measure nondestructivelyZ,
~2! Measure nondestructivelyX, and~3! Apply Toffoli opera-
tors ~to any set of three qudits!, where the qudit Toffoli op-
erator is defined as

Tu l ,m,n&5u l ,m,lm1n&. ~14!

and all computations are done modulod.
Though tangential to the main purpose of this paper,

above gate set is another answer to the question pose
Ref. @8#. That is, given a Toffoli gate, what extra gates a
required to complete a universal set? Of course, the ans
provided by the above gate set involves measurements i
integral way, and is therefore different from the one propo
in Ref. @8#. However, the above gate set also addresses
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question: Given classical computation~i.e., Toffoli gate and
measurements ofZ), what gates are needed to complete t
universal set?

We now turn our attention to the proof of universality fo
the gate set presented above. We note that Gottesman
already proven in Ref.@9# that for d prime, applying and
measuring products ofZ’s and X’s, plus a Toffoli gate, is
universal for quantum computation. All we need to do
order to prove universality, is to show that we can apply a
measure operators of the formXaZb using the above gates.

Measurements ofX followed by measurements ofZ can
produceu i & ancillas for anyi. Similarly, we can obtainu ĩ &
ancillas from measurements ofZ followed by measurement
of X. A controlled sum gate can be made out of a Toffoli ga
by fixing an input to au1& ancilla. Because a controlled sum
gate is really a controlledX gate, fixing the other input tou1&
produces theX gate. On the other hand, a controlled su
gate from a state to au1̃& ancilla, produces aZ gate on the
state

The general case of applyingXaZb can be done by a
series ofX and Z gates. All that remains is to construct
method for measuring operators of the formXaZb. First, we
note that

~XaZb!d5vabd(d21)/2XadZbd5H 1, d odd

21ab, d52.
~15!

A. d odd case

The cased52 is rather complicated and will be handle
separately. The general cased odd ~remember we requiredd
prime! is easy because the eigenvalues ofXaZb are thedth
roots of unity just like those ofX andZ. As discussed in the
review of phase estimation, being able to apply a control
XaZb gate, combined with measurements in theX basis
~which includes preparation ofX eigenstates! is sufficient to
measure in theXaZb basis.

All that remains is to construct the controlledXaZb gate.
That is, we need to be able to apply the gate

un& ^ uc&→un& ^ ~XaZb!nuc&5un& ^ XanZbnvabn(n21)/2uc&,
~16!

composed of a phaseun,m&→vbnm1abn(n21)/2un,m& fol-
lowed by controlled sums. The controlled sum gate is jus
Toffoli gate with an input fixed to one. As for the phas
because we have a Toffoli gate, we have universal class
computation. We can thus computebnm1abn(n21)/2 in
an ancilla, apply aZ gate to this ancilla, and then erase t
computation.
5-4
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B. dÄ2 case

Thed52 case is somewhat trickier because our gate s
invariant under complex conjugation, and thus there is
way of distinguishing the two eigenstates ofZX5 iY. We
will solve this problem by creating an ancilla that is a
eigenstate ofZX, defining it to be the1 i eigenstate, and
then using it to measure and build more eigenstates.

Assume, we were given a state

uC&5
1

A2
~ u0&1vu1&), ~17!

wherev2521. Clearly, the state is equal to one of the tw
ZX eigenstates:u6Y&5(u0&6 i u1&)/A2.

Using a controlledZX gate, which is built by the method
described in thed odd case, we can produce copies of t
stateuC&. The idea, similar to the one used for phase e
mation, is to apply the controlledZX gate from a stateu0̃& to
a the stateuC&. The target state is an eigenvector ofZX with
eigenvaluev, and therefore the relative phase is copied o
to the first state:

u0̃& ^ uC&→
1

A2
~ u0&1vu1&) ^ uC&5uC& ^ uC&. ~18!

Notice that copying works independent of whetheruC& is the
1 i or 2 i eigenstate ofZX. Naturally, by subsequently ap
plying a Z, we can also produce the orthogonal stateuF&
5(u0&2vu1&)/A2.

With our ancilla, we can also measure in this basis. Thi
done by applying a controlledZX gate to the ancilla from the
state we want to measure:

uC& ^ uC&→u1̃& ^ uC&, ~19!

uF& ^ uC&→u0̃& ^ uC&, ~20!

and then measuring in theX basis.
As long as we are consistent in always using the sa

ancilla uC&, we will have broken the conjugation symmetr
and found a way to label, create, and measure eigenstat
ZX. Of course, we should keep many copies of the anc
which can be prepared from the original state. The operat
above also allow us to error correct our set of ancillas
copying each, comparing the copies, and using majority v
ing to discard the damaged ancillas. Thus, even if there
some errors in preparation, or some of the ancillas de
over time, computation will still be feasible.

All that remains to be explained is how to create the fi
copy of uC&. Because a state with a density-matrix prop
tional to the identity can be written as

r5 1
2 I 5 1

2 u1Y&^1Yu1 1
2 u2Y&^2Yu, ~21!

it is equivalent to having prepared an eigenstate ofZX5 iY
chosen at random. The stater5I /2 can be produced by dis
carding one qubit of a bell state, and a bell state can
produced with a controlled sum gate from au0̃& ancilla to a
02231
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u0& ancilla. Therefore, we have shown that we can prod
the initial eigenstate ofZX, and we have completed the proo
that the gate set presented at the beginning of this sectio
universal for quantum computation.

IV. UNIVERSAL COMPUTATION FOR SIMPLE PERFECT
GROUPS

In this section, we will prove that a set of anyons based
certain groups can perform universal quantum computatio
Instead of dealing first with the general case of nonsolva
groups, we will deal with the smaller set of groups that a
both simple and perfect.

We remind the reader that nonsolvable groups are th
that contain a perfect subgroup; and a perfect group is
nontrivial group, whose commutator subgroup equals the
group:@G,G#5G. The property of simplicity means that th
group has exactly two subgroups that are invariant un
conjugation: the trivial group and the whole group. Becau
the commutator subgroup is invariant under conjugation
should be clear that any simple non-Abelian group is perfe
However, we shall refer to these groups as simple and per
to remind the reader that we are dealing with a subcase o
general nonsolvable case.

The set of simple perfect groups, which includes t
groupsAn for n.4, is powerful for computing because i
some sense we can get from one nontrivial element to
other using operations that fix the identity. The general c
of nonsolvable groups will be deferred to Sec. VI, where
will show that a simple perfect group can be extracted fr
a nonsolvable group.

A. Requirements for the physical system

Here, we list the operations, ancillas, and measurem
that we assume are available on any realistic anyonic sys
and which we will use to build our quantum gate set:

~1! We can braid or exchange any two particles.
~2! We can fuse a pair of anyons and detect whether th

is a particle left behind or whether they had vacuum quant
numbers.

~3! We can produce a pair of anyons in a state tha
chosen at random from the two particle subspace that
vacuum quantum numbers.

~4! We have ancilla pairs of the formug& ^ ug21& for any
gPG, where the individual anyons have trivial electr
charge.

We remind the reader again that even though all
anyons are used in pairs of trivial total flux, we will gene
ally only mention one of the anyons of the pair. These co
ventions also apply to ancillas, which means that we w
refer to theug& ^ ug21& state as an ancilla of fluxg.

While the first three requirements are natural operati
for a laboratory system, it is not clear where the ancil
would come from. Depending on the physical realizati
there may be many ways of obtaining the ancilla reserv
We discuss one such scheme in Appendix A.
5-5
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B. Computational basis

Let G be a simple and perfect finite group. Leta andb be
two noncommuting elements ofG. Let d be the smallest
integer such thatadba2d5b. We can assume thatd is prime,
otherwise we could replacea by ad/p wherep is some prime
that dividesd.

It turns out that every simple non-Abelian group has ev
order. This was first conjectured by Burnside@10# in 1911,
and proven by Feit and Thompson@11# in 1963 ~in fact, the
complete classification of simple finite groups was co
pleted in the early 1980’s, see for instance Ref.@12#!. Using
Sylow’s theorems, the fact that every simple group has e
order means that they all include a nontrivial elementa such
thata251. Therefore, we could always work with a basis
qubits. However, we will present the general qudit case b
for its elegance, and because in some instances a bas
qudits is more convenient.

We will work with a basis of qudits of trivial net flux

un&5uanba2n& ^ uanb21a2n& ~22!

for 0<n,d, where we have explicitly described bo
anyons of the pair.

It should be clear that we can initialize the computer
filling up the computational space withu0& ancillas. We turn
now to the task of constructing the gates presented in S
III.

C. Conjugation by a function

We begin by describing the technique of conjugation b
function, which is especially powerful for simple perfe
groups. In Sec. II A, we showed that we could perform t
transformation

uh& ^ ug&→uh& ^ uhgh21&, ~23!

where we conjugate the second anyon by the flux of the fi
while the first anyon remains invariant. We can also con
gate an anyon by a producth1h2¯hn

ug&→uh1h2¯hnghn
21

¯h2
21h1

21&, ~24!

where the$hi% are fluxes of other anyons which remain u
changed throughout this process. The procedure is don
first conjugating byhn , then byhn21, and proceeding left-
ward until we finally conjugate byh1.

The above procedure is not terribly useful if all the$hi%
are fluxes of fixed ancillas, because we could have equ
lently conjugated by a single ancilla of fluxh5h1h2¯hn .
However, some of the fluxes in the product could corresp
to anyons that represent qubits of unknown state. In this c
we can think of the above operation as conjugation b
function of the fluxes of certain qubits.

Let’s consider what kind of functions can be applied
this way. Clearly we are speaking about functions that can
written as products of elements ofG. The elements can in
clude known constants if we use our ancillas to conjuga
We can also include the flux of a qubit, which will be of th
form aiba2 i if the qubit is in the computational bas
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~though this may not be the case when we are trying
correct leakage!. Finally, we can include in the product th
inverse of the flux of a qubit, as discussed in Sec. II A.

In conclusion, givenn qubits with fluxesg1 throughgn ,
and a functionf (g1 , . . . ,gn21) of the firstn21 qubits, we
can conjugate the last qubit byf

ugn&→u f ~g1 , . . . ,gn21!gnf ~g1 , . . . ,gn21!21&, ~25!

provided that the functionf can be written in product form
By product form, we mean thatf is a product of the inputs
$gi%, their inverses$gi

21%, and fixed elements ofG, each of
which may appear more than once, or not at all. For
ample, a valid function would be f (g1 ,g2)
5ag2bg1

21cg1
21d with a,b,c,dPG. Furthermore, this

transformation does not change the flux of the firstn21
qubits, though it may entangle them with the last qubit.

D. Toffoli Gate

To build the Toffoli gate we must be able to conjugate t
third qubit by the functionf (g1 ,g2), which depends on the
fluxes of the first two qubits as

f ~aiba2 i ,ajba2 j !5ai j , ~26!

and is arbitrary for values ofg1 and g2 that are not in the
computational basis. If the third qubit is in the stateakba2k,
conjugation byf produces the transformation

uakba2k&→uai j 1kba2 i j 2k&, ~27!

which is the desired Toffoli gate.
Given the discussion in the preceding section, we are

with the task of expressing the functionf in product form.
However, it turns out that for simple and perfect groups e
ery function has such an expression.

Theorem:If G is a simple and perfect finite group, the
any function f (g1 , . . . ,gn):Gn→G can be expressed as
product of the inputs$gi%, their inverses$gi

21%, and fixed
elements ofG, any of which may appear multiple times i
the product.

Not only does the above theorem prove that Toffoli ga
are possible for any simple and perfect group, but it direc
proves that any classical function can be computed.

The proof of the theorem, which is mostly constructive,
somewhat long and will be deferred to Appendix B. How
ever, to make this seem plausible to the casual reader
would like to illustrate the basic steps needed to build
Toffoli gate for qubits.

The main idea behind the construction is that the funct
f is basically a logicalAND of the inputs. A commutator
makes a good logicalAND because it equals the identity
either of its inputs are the identity. Furthermore, the comm
tator function can be expanded as a product of its inp
Therefore, we would like the first input to take values 1 oc
and the second input to take values 1 ord, with the require-
ment thatd not commute withc, so that we can put them into
a commutator.
5-6
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Let g1 denote the flux of the first qubit, andg2 the flux of
the second qubit. Each takes valuesgiP$b,aba21%. Define
the new variablesgi85gib

21P$1,c%, where c[@a,b#
[aba21b21. It is sufficient to show that we can express t
Toffoli function as a product ofg18 , g28 , their inverses and
fixed ancillas.

Choose an elementd that does not commute withc and
definee[@c,d#. Imagine we could find two functions of on
element, that can be expressed in product form, such th

h1~c!5d, h1~1!51, ~28!

h2~e!5a, h2~1!51. ~29!

Using these functions, the Toffoli function can be writte
as

f ~g1 ,g2!5h2„@g18 ,h1~g28!#…, ~30!

which when expanded out is a product of the correct for
The existence of the functionshi , which is discussed in

more detail in the full proof of the theorem, is a conseque
of G being simple. For any elementcPG, the group gener-
ated by its conjugacy classC(c) is a normal subgroup. Be
causeG is simple, this subgroup must equal the full grou
Therefore, every elementdPG has an expression of th
form d5x1cx1

21x2cx2
21

¯xncxn
21 for somen and some ele-

ments$xi%PG. We can use the expression to constructh1,

h1~g!5x1gx1
21x2gx2

21
¯xngxn

21 , ~31!

and a similar construction buildsh2.
For a concrete example, we can work withG5A5. We

begin by choosing an elementa, which must satisfya25I , if
we wish to work with qubits (d52). Because of the sym
metries of the group, all choices are equivalent toa
5(12)(34). The next step would involve choosing an e
mentb that does not commute witha, and an elementd that
does not commute withc[@a,b#. While any choice can pro
duce a Toffoli gate, the requiredh1 function will be simpli-
fied if we can makec andd fall in the same conjugacy class
The same can be said forh2 if e[@c,d# and a are in the
same conjugacy class.

At this point, a little trial and error yieldb5(345) and
d5(234). The computational basis is now defined as

u0&5ub&5u~345!&,

u1&5uaba21&5u~435!&, ~32!

and the remaining group elements are fixed as

c5~aba21!b215~435!~435!5~345!,

e5~cdc21!d215~245!~324!5~25!~34!. ~33!

The hi functions, which are the only nonconstructive part
the proof, can be built as simple conjugations because of
choices we made earlier:

h1~g!5h2~g!5~521!g~125!, ~34!
02231
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where both happen to be the same function by coinciden
Putting all the steps together, we have a function

f ~g1 ,g2!5$~521!@g1~435!,~521!g2~435!~125!#~125!%

5$~521!g1~435!~521!g2~435!~125!

3~345!g1
21~521!~345!g2

21~125!~125!%

5$~521!g1~14352!g2~124!g1
21~15342!g2

21~521!%,

which can be applied with nine elementary conjugations.

E. Measuring Z

The basic idea behind measuring in the computational
sis is that if we fuse a flux with another flux of the inver
group element, there is a finite chance that they will ha
vacuum quantum numbers and disappear. On the other h
if the product of the two fluxes is not unity then there mu
be a particle left behind to carry the remaining flux~i.e., the
total flux is always conserved!.

At this point it might be useful to remind the reader wh
a fusion ofg with g21 will not always turn into the vacuum
The short story is that the combined state is not invari
when another flux encircles them, implying that they have
electric charge component. The state that has vacuum q
tum numbers is invariant under the effect of all fluxes, a
hence is the sum of all the states in the conjugacy class og,
with the same phase. We can figure out the probability
fusion into the vacuum by calculating the overlap of t
vacuum state with the state of two anyons to be fused.
result is

P5u^vac~C!u~ ug& ^ ug21&)u25
1

uC~g!u
, ~35!

whereC(g) is the conjugacy class ofg, and the vacuum state
was defined in Sec. II B.

Because one fusion will only probabilistically tell us th
desired result, we should repeat the measurement many t
to obtain a sufficient degree of accuracy. Besides, if we
working with qudits withd.2 we need to test fusion with a
least two different fluxes. We therefore need to have ma
copies of the state to be measured.

Because of the no-cloning theorem, copying can not
done exactly, but the transformation

(
i

Ci u i &→(
i

Ci u i & ^ u i & ^ u i & ^ •••^ u i & ~36!

means that we can measure each of the separate copies
Z basis and expect to get the same answer. The above t
formation can be done with a controlled sum gate~Toffoli
gate with one input fixed tou1&) from the original state to a
u0& ancilla. Repeating this controlled sum gate with ma
target ancillas will produce the above entangled state.

To summarize, the procedure for measuring in theZ basis
is first to create an entangled state using a controlled s
gate. Then try to fuse each of the qudits with one of t
inverses of the fluxes that areZ eigenstates. Eventually, on
5-7
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will disappear into the vacuum, and the inverse of the flux
that ancilla is the result. Even in the presence of errors,
measurement will have a good fidelity because the proba
ity of failure is exponentially small in the number of fusion

A final note is that, because we are always dealing w
pairs of fluxes, what fusion really means is that we fuse
first element of our qubit with the first element of the ancil

F. Constructing the zero eigenvector ofX

For the next gates, we are going to need a supply of st
that are eigenvectors ofX with zero eigenvalue:

u0̃&5
1

Ad
(
i 50

d21

u i &. ~37!

We will produce them out of pairs of anyons with vacuu
quantum numbers. As usual we will just discuss one mem
of the pair, and assume that the equivalent operations
being performed on the other anyon.

One of the possible states that~when paired! have vacuum
quantum numbers is the sum of fluxes in the conjugacy c
of b. This is approximately what we want. Sadly, in gener
a state created from the vacuum will be a mix of this desi
state plus other states, including states that involve dyo
particles~particles with both electric and magnetic charg!.
We will have to filter through all this noise to get ourX
eigenstate.

The procedure that we will describe below is effective
an incomplete swap, that has been extended to the full
bert space in a logical way. In the computation basis,
operations act as

which performs a swap provided that the second qubit sta
in the u0& state. Outside of the computational basis, thou
the operations are chosen so that we can detect whethe
obtained the desiredu0̃& state or not.

We start with two qubit states, one created from t
vacuum and one which is au0& ancilla:

uvac& ^ u0&5~Cu0̃&1DuC'&) ^ u0&, ~38!

where uC'& is a state orthogonal to the computational su
space. If the vacuum pair decohered into a superselec
sector other than the one that contains the computati
basis, the constantC will be zero. This will not be a problem
as we will be able to detect this case, and then start a
from this step.

Using the theorem from Sec. IV D, we can conjugate
u0& ancilla by a function of the flux of the vacuum pair th
has the following form:

f ~aiba2 i !5ai ,
02231
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f ~anything else!5I , ~39!

which is essentially a controlled sum gate that has been p
erly defined outside the computational basis.

The state of the combined system after conjugation w
be

C

Ad
(
i 50

d21

uaiba2 i& ^ uaiba2 i&1 (
i 50

d21

Di uC i'& ^ uaiba2 i&,

~40!

where$Di% are some constants, and$uC i'&% are states per-
pendicular to the computational basis. Note that the sta
uC i'& for iÞ0 are the ones that have fluxaiba2 i but have
nontrivial charge. The stateuC0'& includes all the other
fluxes and charges. Depending on the superselection se
in which the vacuum state was created, many of the c
stantsC and$Di% will be zero.

Now we conjugate byf 21 from the ancilla to the vacuum
state yielding

Cub& ^ u0̃&1 (
i 50

d21

Di uC i'8 & ^ uaiba2 i&, ~41!

where$uC0'8 &%5$uC0'&% and the states$uC i'8 &,i .0% have
flux b but nontrivial charge.

Now we try to fuse the first qubit with an ancilla of flu
b21 and trivial charge. The only state that can fuse into
vacuum with the ancilla isub&, and this will happen with
finite probability. Note that the ancilla can never vanish in
the vacuum with a state with charge because there is no
of extending the basis to be invariant under the stabili
group of the flux.

In the end, if the particles disappear into the vacuum,
ancilla is left in the desiredX eigenstate. Otherwise, we re
peat the procedure from the beginning until eventually
state appears.

G. Choosing adth root of unity

Before we continue building our gate set, we have to
dress a problem that appears ford.2, similar to the problem
that occurred ford52 when proving that the gate set
universal.

So far, we have defined everything in terms ofv, a non-
trivial dth root of unity. But there ared21 of these, and
there is a symmetry which interchanges them. We will ha
to break this symmetry by using an ancilla.

In particular, we need an ancilla that is an eigenstate oX
with eigenvalue not equal to 1. We will then define this sta
to be theu1̃& state in theX basis, i.e.,

u1̃&5
1

Ad
(
i 50

d21

v2 i u i &, ~42!

which has eigenvaluev, thus, fixing our root of unity. We
then define the otherX eigenstates by
5-8
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uñ&5
1

Ad
(
i 50

d21

v2niu i &, ~43!

and the operatorZ by uñ&→un21̃&.
How do we produce the firstu1̃& in terms of which every-

thing is defined? We start with au0̃& ~which is always well
defined and which we know how to construct from the p
ceding section!, and we apply a controlledX21 gate~which
is a classical function, and thus computable from the Tof
operator! from this ancilla to au0& ancilla, which produces
the output

u0̃& ^ u0&→
1

Ad
(

i
u ĩ & ^ u ĩ &. ~44!

If we discard the second state, we will have a mixed st
that is a combination of the differentX eigenstates. This is
equivalent to being handed an arbitrarily chosenX eigen-
state, which we will callu ĩ &.

We can obtain copies of this state by applying a control
X21 gate from au0̃& ancilla to this state, which applies th
transformation

u0̃& ^ u ĩ &→u ĩ & ^ u ĩ &. ~45!

We can thus build arbitrarily many copies of the state.
still have to worry that this might be theu0̃& state. However,
below in the section for measuringX, we will give a proce-
dure to detect theu0̃& which does not rely on havingu1̃&
ancillas. If we determine thati 50, we throw away all the
copies and start over~this will only happen with probability
1/d). Otherwise, we relabel our state asu1̃&, fixing a value
for v.

Because we can copy theu1̃& state, and below we will also
show how to measure it, we can build a reservoir of anci
in this state, which will be used for all future computation
We can even use copying, comparing, and majority voting
error correct our reservoir, thus allowing for computati
even in the presence of noise.

H. Measuring X

The last gate needed for universality is the measurem
of X. The basic idea is to fuse the pair of anyons that fo
the state to be measured. Theu0̃& eigenstate will have som
overlap with the vacuum, and will vanish with probabili
p5d/uC(b)u, whereC(b) is the conjugacy class ofb.

The otherX eigenstates have zero probability of vanishi
because u ĩ &51/Ad( iv

2 i uaiba2 i& is orthogonal to the
vacuum fori .0. To detect the stateu ĩ &, we first apply aZi

and then use the above fusion procedure. TheZ gate can be
applied as a controlled sum gate with au1̃& target as dis-
cussed in Sec. III.

Of course, the above will require us to have many cop
on which to measure, which means we need to perform
transformation
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Ci u ĩ &→(
i

Ci u ĩ & ^ u ĩ & ^ u ĩ & ^ . . . ^ u ĩ &, ~46!

which is done using a controlledX21 gate with au0̃& ancilla
as control and the state to be copied as target.

To perform the measurement nondestructively, we c
fuse all but one of the copies of the state. Alternatively, us
theZ gate andu0̃& ancillas, we can always produce the rest
the u ĩ & states. The rest of the logic is similar to theZ mea-
surement procedure.

Having completed the construction of the universal gat
we have proven that universal quantum computation can
performed with anyons from simple and perfect fin
groups. We now turn to the question of whether these op
tions can be performed in a fault-tolerant fashion.

V. LEAKAGE CORRECTION

In this section, we will discuss both the motivation an
the techniques needed to implement error correction
fault tolerance in the software of an anyonic computer. T
main result will be the construction of a leakage correct
circuit for anyons, which enables the use of the stand
techniques for handling errors.

A. Motivation

Any quantum system that uses nonlocality to protect
data will be susceptible to errors if a large number of its lo
components are damaged simultaneously. The probability
failure is generally exponentially small in the size of th
system, and is zero in the theoretical limit of an infinite sy
tem. However, all physical systems are finite. Furthermo
practical considerations may force a given setup to hav
size such that the error of probability is small but nonneg
gible.

In the case of anyons, errors can occur due to quan
tunneling, which is an effect of the high-energy degrees
freedom that were frozen out to obtain a two-dimensio
discrete gauge theory. The probability of this type of er
goes ase2mL, wherem is the mass of the lightest particl
that can mediate a charge interaction andL is the separation
between anyons.

Finite temperature effects are another source of er
These effects involve the creation of charge pairs from
vacuum. Because these pairs have trivial total charge, ev
they braid with a computational anyon, the net charges of
collective three particle excitation will still be correct. How
ever, if one of these particles separates from the group
separately braids with another anyon, then errors will be
troduced. The density of the thermal excitations goes
e2D/T, whereD is the mass gap andT is the temperature.

A good anyonic quantum computer should therefore h
L@m andT!D. In some implementations, however, it ma
be more practical to accept a small error rate from the ha
ware, and then correct it using standard quantum error
rection techniques. For such cases, we present below the
essary steps needed to implement software based
correction for anyons.
5-9



o
lb
io
a

m
to
th
r-

o

ur
ro
na
a
h

by
e
m

ab
ub

p
th
at
er
x

e
u-
h
e

pe

th

or
o
o
ill
n

on
cl
n
ll
of
rs
ffi
o

a
ul

o

ov-
in
bits

n we
ise
tric

tric
lla
ric
sing

eart
ra-
ure

we
so
in

ne

om-
he
we
-
to
tter

nd
ve
the

c-

sed

w
ate
is
al

CARLOS MOCHON PHYSICAL REVIEW A67, 022315 ~2003!
While any of the error correcting codes can be used, m
techniques require embedding a code space inside a Hi
space on which we can do universal quantum computat
However, in the case at hand, our computational states
embedded in a Hilbert space~the states with arbitrary flux
and charge! in which we cannot perform universal quantu
computation. Therefore, before starting the recovery pro
col, we must first deal with states that have leaked out of
computational subspace~the subspace in which we can pe
form universal computations!.

B. Implementation

To deal with leakage errors we can construct a version
the swap-if-leaked gate described by Kempeet al. @13#. The
idea behind the gate is to implement a projective meas
ment that can distinguish the computational subspace f
its complement. If a state if found to be in the computatio
subspace, it is left alone. Otherwise, it is replaced with
arbitrary ancilla that is in the computational subspace. T
ancilla will still be an error, but one that is correctable
standard quantum error correcting codes. In fact, the gen
methods of quantum error correction and fault-tolerant co
putation can be applied to anyons as long as we can reli
project leaked qubits into a state in the computational s
space.

We again focus on the case of simple and perfect grou
and defer the general case to the following section. In
current formalism, the computational basis is the set of st
of a pair of anyons with zero total magnetic charge, wh
each anyon has zero electric charge and a magnetic flu
the formaiba2 i or its inverse.

The first type of error that we will deal with, is when th
total magnetic flux of the pair is nontrivial. This is a partic
larly grievous error because, if we drag around a pair wit
nontrivial net flux, we could be introducing errors into all th
other qubits. Furthermore, our assumption that we can
form the operationh,g→h,hgh21 relied on the fact that the
second pair had zero net magnetic flux, so it is important
we detect and fix this error first.

To detect a net flux, we take an ancillaug& ^ ug21& and
encircle it by the qudit we are performing the leakage c
rection on. The ancilla will get conjugated by the net flux
the qudit, and the qudit will get conjugated by the net flux
the ancilla which should be zero. We then fuse the anc
with a pair with opposite flux. If the net flux of the qudit is i
the stabilizer ofg, the fusion will have vacuum quantum
numbers with a finite probability, whereas if the conjugati
changed the flux of the ancilla, there will always be a parti
left behind. If we repeat this many times with many differe
ancillasug& ^ ug21&, with good statistical confidence we wi
be able to tell if the net flux of the qudit is in the stabilizer
g. BecauseG has no center, the intersection of all stabilize
is the identity, and hence repeating the above with su
ciently many different elementsg, we can detect a nonzer
net magnetic charge.

If we detected a net flux, we replace the state with
ancilla in the stateu0&. Of course, we must be very caref
when moving the damaged ancilla pair out of the region
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qubits, so as not to damage other states. That is, when m
ing past other anyons, we always do so in the direction
which the damaged pair gets conjugated and the good qu
are unaffected.

In the case when the qubit passes the above test, the
have projected into the zero net flux subspace, but otherw
left the state unchanged. The next step is to deal with elec
charge. Because it is very difficult to measure the elec
charge of a single anyon, we will start with a fresh anci
u0&, made from two anyons neither of which have elect
charge, and copy the state over. Once again we will be u
the incomplete swap circuit,

when acting on the computational basis. Of course, the h
of a leakage detection algorithm is how to extend the ope
tions outside of the computational subspace. The proced
cannot be described simply by a circuit, and therefore
will present a way of completing the controlled sum gate
that the above operation will always yield a state that is
the computational subspace.

The following procedure is almost identical to the o
used to produceu0̃& states. This is becauseu0̃& states are
obtained by taking a vacuum state and projecting to the c
putational basis, which is primarily leakage detection. T
main difference is that when doing leakage detection,
only get one chance of using the qubit~because of the no
cloning theorem!, but if the state leaked, it is acceptable
replace it by anything in the computational basis. The la
is clearly not acceptable when creatingu0̃& ancillas.

We will use the incomplete swap procedure for the seco
round of leakage detection. Recall that by this point we ha
projected the qubit into the zero net flux subspace. Take
qubit and au0& ancilla, and conjugate the ancilla by a fun
tion of the qubit’s flux:

f ~aiba2 i !5ai ,

f ~anything else!5I . ~47!

This is the same extension of a controlled sum that was u
to produceu0̃& ancillas.

Afterward, we conjugate the original qubit byf (g)21,
whereg is the flux of the ancilla. Note that because we kno
at this point that the original qubit has net flux zero, the st
of the ancilla will not exit the computational basis during th
operation~though it might change within the computation
basis if the original state had nonzero electric charge!. The
result of the past two controlled sums gate is

uc i& ^ u0&1uc'& ^ u0&→u0& ^ uc i&1 (
i 50

d21

uc' i& ^ u i &,

~48!
5-10
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where parallel and perpendicular refer to inside and outs
the computational basis, and none of thec states are normal
ized. Finally, we replace the original pair with the ancilla p
and discard the original pair.

Clearly, the new state will be in the computational bas
Furthermore, if the original state was in the computatio
basis, then the new state will be equal to the old state,
unentangled with the old anyons.

Having complemented our gate set with a leakage cor
tion scheme, we have proven not only that we can do u
versal quantum computation with anyons, but that th
computations can be made fault tolerant.

VI. UNIVERSAL COMPUTATION FOR NONSOLVABLE
GROUPS

We will now generalize the results of the preceding s
tion to any nonsolvable group. Unfortunately, in our proo
for the simple perfect case, we made extensive use of the
that we can compute any classical function simply by mu
plying the inputs with ancillas. This is no longer true, even
we restrict ourselves just to perfect groups that are
simple. The quickest example isA53A5 which is perfect,
but has two normal subgroups given by each of theA5 fac-
tors. Thus, if our two inputs are 131 andg31, there is no
expression made out of products in which the results diffe
the second factor.

The above example can easily be fixed by working with
one A5 subgroup. In general, though, even this is not p
sible, as not all perfect groups have a perfect and sim
subgroup. However, the following theorem comes to the r
cue.

Theorem:If G is a nonsolvable finite group, then the
exists a normal subgroupP of G and a subgroupN, normal in
P, such thatP/N is perfect and simple.
Once again we defer the proof to the Appendix.

What the theorem tells us is that we want to work w
cosets ofN in P. That is, we would like to replace our ol
flux eigenstates with states that are labeled by element
P/N and invariant underN. A good guess would be

ux&5
1

AuNu
(
nPN

ux8n&, ~49!

wherex is an element ofP/N, andx8 is an element in the
coset thatx represents. More specifically, iff :P→P/N is the
canonical epimorphism that maps elements to cosets,
we require thatf (x8)5x. The particular choice ofx8 has no
effect on the above definition.

The above is a good guess but not quite right. A giv
coset may intersect many different conjugacy classes oG,
each of which lies in a different superselection sector. Th
we are effectively working with mixed states.

Remembering that we really want to keep our anyons
pairs of zero net flux, the right choice for the new states
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1

uNu (
CPC(G) F S (

x8P[Cù f 21(x)]

ux8& ^ ux821& D
^ S (

x8P[Cù f 21(x)]
^x8u ^ ^x821u D G , ~50!

where againx is an element ofP/N andC(G) is the set of
conjugacy classes ofG.

These states have the nice property that when conjug
by any elementh8PP ~or equivalently, when a fluxh8PP is
dragged around them!, the effect only depends on the cos
f (h8) of h8, and generates the transformation

rg→r f (h8)g f(h8)21. ~51!

Because of this, if we use the usual scheme of passing
pair of anyons in between another, and they are both p
pared in states of the above form, the net effect is that
inner pair will get conjugated by the outer pair as

rh^ rg→rh^ rhgh21, ~52!

keeping the pair unentangled.

A. New requirements for the physical system

While the operations of braiding, fusion, and vacuum p
creation described in Sec. IV A all seem like reasonable
quirements to demand from the physical system, the requ
ment of flux ancillas is somewhat harder to justify.

In particular, take the case of a group that has a nontri
center, which can occur even if the group is perfect. Cons
two fluxesg and cg that differ by multiplication of an ele-
ment c in the center. These two fluxes cannot be dist
guished by conjugation, sincecgx(cg)215gxg21. Thus, it
may be a difficult problem to distill these flux eigenstat
from the vacuum.

A more reasonable assumption is to require the existe
of ancillas only for the fluxes in the perfect subgroup. A
other improvement might be to assume that we only h
ancillas in the mixed statesrx defined above, wherex
PP/N. These states might be easier to produce because
are obtained from the vacuum by first throwing away t
anyons with flux not inP or with nontrivial charge, and then
projecting to a definite coset ofN in P. Therefore, we will
replace our old requirement for the existence of flux ancil
by

(48) We have ancillas in the staterx for any xPP/N.
It would be highly desirable to be able to prove that r

quirements~1!–~4! are sufficient to create the states in (48).
Unfortunately, it appears that requirements~1!–~3! combined
with (48) may neither be a subset nor a superset of requ
ments~1!–~4!. Thus, in a sense, we are imposing a differe
set of requirements for this section. One ameliorating fac
that in the case whenP is simple, the statesrx are just flux
eigenstates. We therefore could have used requirement8)
for all sections of this paper. We will not attempt to descri
in the Appendix a protocol by which these generalized an
las can be created, however.
5-11
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B. Universal computation

As in Sec. IV B, we choose two elementsa,bPP/N such
that adba2d5b for some primed, andaiba2 iÞb for 0, i
,d. We then define our computational basis states as

r i5raiba2 i, ~53!

which we define as eigenstates of theZ operator. TheX op-
erator is defined by the actionX(r i)[Xr iX

†5r i 11 and its
eigenstates can be obtained using the projection opera
Pi5( j 50

d21v2 iXi /d by

r ĩ 5d3Pir0Pi
†5

1

d S (
j 50

d21

v2 iXi D r0S (
j 50

d21

v iXi†D .

~54!

At this point proving that universal quantum computati
can be achieved is fairly straightforward, and is almost id
tical to the discussion in Sec. IV. The major differences oc
when we have to deal with states outside of the comp
tional basis, that is, when creatingr 0̃ states and when dealin
with leakage correction. Both of these issues will be de
with in the following section. As for the rest of the oper
tions, we will only give a very brief discussion.

Because therx states have the same braiding properties
those of the fluxes of a groupP/N ~and, in particular twoZ
eigenstates remain unentangled after braiding!, the same
method for producing a Toffoli gate applies to them.

MeasuringZ is easy because ther i states have support i
orthogonal subspaces. The copy~using the Toffoli gate! and
fuse with ancillas procedure will work just as well as befo

For the interested reader, we will carry out below some
the calculations needed to deal withX eigenstates and prov
universality. Most of the results seem almost miraculo
when expressed in the language of density operators. H
ever, the reader should bear in mind that we are only us
density operators to account for the different superselec
sectors. If we just fixed a superselection sector for each
ticle, we would be dealing with pure states, and all of t
proofs from the past section would carry through.

We begin by studying the action of the controlledX21

gate onX eigenstates:

rm̃^ r ñ5
1

d (
i 50

d21

(
j 50

d21

v2 im1 jmXir0Xj †
^ r ñ

→ 1

d (
i 50

d21

(
j 50

d21

v2 im1 jmXir0Xj †
^ X2 ir ñX2 j †

5
1

d (
i 50

d21

(
j 50

d21

v2 im1 jmXir0Xj †
^ v2 inr ñv jn

5
1

d (
i 50

d21

(
j 50

d21

v2 i 1 j (m1n)Xir0Xj †
^ r ñ

5rm1ñ^ r ñ , ~55!

which is equivalent to its action on pure states. Therefo
once we haver 0̃ states, we can use the same trick as bef
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to break the symmetry and obtain adth root of unity. That is,
we use a controlledX21 gate from ther 0̃ with a r0 target to
create the state

r 0̃^ r05S 1

d (
i 50

d21

(
j 50

d21

Xir0Xj †D ^ S (
n50

d21

(
m50

d21

Pnr0Pm
† D

→ 1

d (
i 50

d21

(
j 50

d21

(
n50

d21

(
m50

d21

Xir0Xj †
^ v2 in1 jmPnr0Pm

†

5d(
n50

d21

(
m50

d21

~Pnr0Pm
† ! ^ ~Pnr0Pm

† ! ~56!

and then discard~trace out! the first state to get the stater
5(nPnr0Pn5(nr ñ /d, which gives us an unknown eigen
state ofX as before. We then discard and repeat if we o
tained ther 0̃ state, and otherwise we relabel the state asr 1̃ .

Once ther 1̃ state is available, we can use a controll
sum gate to produce theZ gate, which will allow us to pro-
duce anyX ancilla including morer 1̃ states.

Finally, measuringX works by fusing the pair of anyons
because ther ĩ are orthogonal to the vacuum fori .0. The
full measurement proceeds as before by copying, permu
states using theZ gate, and then fusing.

C. Leakage detection andr 0̃ generation

One final issue remains: How do we measure whethe
state is in the computational subspace? Projecting onto
computational subspace is useful because ar 0̃ is just the
projection of a vacuum state to the computational basis. F
thermore, this projection will allow us to perform leakag
correction.

One of the new issues that arises for general nonsolv
groups is that if we have a state in the computational ba
and we braid it with an electric charge carrying a nontriv
representation of the subgroupN, then the state will move
outside the computational basis. The other issue is that
conjugacy class of an element inG might be larger than the
conjugacy class of the element inP, though given thatP is
normal, the first set will be entirely contained inP.

Let us begin by examining how the leakage correct
algorithm must be changed. The first step is to det
whether the net flux or charge of the pair of anyons we
working on has a nontrivial effect on the statesrx . The
procedure is to braid the pair around the ancilla pair and t
fuse the ancilla with another ancilla in the staterx21. If the
anyon pair has an effect on the ancilla statesrx , then the
fusion statistics will be altered, and this will be detectab
after many repetitions. If our state is found defective w
discard it as usual, and replace it by a state in the comp
tional basis. Otherwise, we move on to the next step. N
that if the anyon pair had a net flux in the subgroupN, or in
some element outside ofP that commutes withP, then the
state will still advance to the next round of error correctio
However, this anomalous flux or charge will not affect t
usual braiding properties.

The second round of error correction is a swap with
ancilla in ther0 state. Note that using our universal classic
5-12
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computation inP we can guarantee that if the original sta
was in P, the ancilla ends up in the computational bas
However, if the original anyons are outside ofP, we will get
a state that is withinP ~becauseP is normal! but not neces-
sarily in the computational subspace. The final step is
perform a swap with a second ancilla in ther0 state, where
now we know that the first ancilla had to be composed
anyons with no charge, and fluxes only inP. This guarantees
that the final state of the second ancilla is in the compu
tional basis, and equals the original state if it did not le
completing the leakage correction procedure.

To creater 0̃ we also use a swap, this time between a p
created from the vacuum and ar0 ancilla. We then try to fuse
the leftover vacuum state with arb21. If they fuse into the
vacuum, then the ancilla is in ar0 state. The logic is as
follows: if the vacuum pair had electric charge when creat
then the swap will not change the charge, and hence it ca
disappear into the vacuum. If the vacuum pair has no elec
charge but is outside ofP, then the ancilla is still guarantee
to be inP. Furthermore, when conjugating the vacuum sta
we will be conjugating by an element inP. The vacuum state
will end in a flux state outside ofP, which is orthogonal to
rb21. Finally, if the vacuum pair is a pair of fluxes inP, then
it will be of the form r 0̃ , possibly superposed with othe
statesrx outside the computational basis. But the generali
swap can guarantee that a state inP outside of the computa
tional basis, will remain outside of the computational ba
~just like in the simple perfect case!. Only when the ancilla is
in the stater 0̃ can the fusion into the vacuum occur.

The above procedure for producingr 0̃ ancillas completes
the gate set for nonsolvable groups, and proves the m
result of this paper: that anyons with fluxes in a nonsolva
group can perform universal quantum computation.

VII. CONCLUSIONS AND OUTLOOK

While we have shown that universal quantum compu
tion is theoretically feasible for any nonsolvable group, it
still not yet clear whether we will ever be able to build a
anyon based computer. First of all there is the fact the sm
est nonsolvable group isA5 which has 60 elements. Obtain
ing such a group from symmetry breaking seems proble
atic.

One may wonder whether we can do computation w
solvable groups. For Abelian groups, each superselec
sector consists of just one state, so it is not possible to
code quantum data in a topologically invariant fashion. A
tempts such as@14# encode the quantum data in a superp
sition of position eigenstates, but this has no more robustn
than using superpositions of positions of any other neu
particle of the same mass.

Hope still remains for solvable non-Abelian group
While producing Toffoli gates using conjugation as in th
paper will most likely no longer be feasible, Toffoli gate
might still be performed by employing magic states. In fa
Kitaev has such a procedure for the groupS3 @15#. The full
set of groups which can perform universal quantum com
tation remains unknown, but we believe it does not inclu
every non-Abelian group.
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Furthermore, there are anyons that are not based on
electric and magnetic charge model~quantum double of a
group! presented here. Some of the more exotic anyons
likely to be good quantum computers, but in general, th
computational power remains unknown.

We have also neglected to present, in this paper, an
count of the resources used to perform computations. W
it should be clear that computations can be done with
worst a polynomial overhead in the size of the input, so
gates~in particular those that require calculations of arbitra
functions over the group! may require resources that are e
ponential in the size of the group. A lot of the wasted r
sources may come from the description in terms of gen
groups, though. For a fixed group, the resources can p
ably be significantly reduced.

Finally, there remains the question of physical syste
which contain anyons. Because of the requirement of t
dimensions, we must look for quasiparticles in some t
dimensional medium. There are some indications that n
Abelian anyons may arise in the fractional quantum H
effect ~see Refs.@3,4# and references therein!. However, at
the moment, there are no physical systems out of which
anyonic computer may be built. Even if no physical impl
mentations are ever found, though, this subject will ho
fully still be interesting because of its beautiful mix of com
putation, particle physics and group theory.

ACKNOWLEDGMENTS

The idea for universal classical computation with simp
and perfect groups was initially suggested by Alexei Kita
to whom I am highly grateful. The author would also like
thank John Preskill, Jim Harrington, Meg Wessling, a
James Chakan.

This work was supported in part by the National Scien
Foundation under Grant No. EIA-0086038 and by the D
partment of Energy under Grant No. DE-FG03-92-ER407

APPENDIX A: CREATING THE ANCILLAS

As discussed in the main text, the requirement of a sup
of calibrated flux ancillas needs further justification. In th
section, we will show that for a perfect and simple group,
requirements of braiding, fusion, and vacuum pair creat
can be supplemented by one extra measurement to allow
distillation of flux ancillas. We will not cover the genera
nonsolvable case, though.

The new measurement involves determining whethe
single anyon has trivial flux or not. Indeed, this measurem
may even be done destructively. The plausibility of this me
surement relies on the fact that nonzero flux charges are
pologically nontrivial configurations that often have mu
higher masses than their electric charge counterparts. N
rally, dyons also have large masses and will be detecte
having nontrivial flux.

Step 1. Creating electric ancilla pairs.The procedure for
creating flux ancillas begins by creating single anyons w
zero flux. These are obtained by creating a vacuum p
measuring the flux of the first particle of the pair, and d
5-13
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CARLOS MOCHON PHYSICAL REVIEW A67, 022315 ~2003!
carding the second one if the first one had nontrivial flux
The next step is to create pairs of anyons, where e

anyon has zero flux and unknown charge, but the pair
vacuum quantum numbers. Of course, if we could non
structively distinguish trivial from nontrivial flux, we could
skip this step, as the vacuum pairs always have vacu
quantum numbers.

Take two of the single electric charges we have produc
We are going to try to project this state onto the desired s
with vacuum quantum numbers. Consider the process of
ating a pair of anyons from the vacuum, braiding one
them around the pair of charges, and then fusing the vac
pair. If the pair of charges had vacuum quantum numb
then the vacuum pair will remain in the vacuum sta
throughout this process, and fuse into the vacuum at the
with unit probability. On the other hand, if the pair o
charges does not have vacuum quantum numbers, then
will be a finite probability that the pair created from th
vacuum will leave a particle behind after fusion~since the
vacuum is the only state that is left invariant by the action
every flux!.

Repeated application of this process will be a project
measurement which determines whether the pair of cha
has vacuum quantum numbers. If we project onto a vacu
pair, then we have found a good charge ancilla pair. If
pair does not project onto the vacuum state~because the two
anyons do not transform in conjugate representations, or
cause we projected to a state orthogonal to the vacuum!, then
we pair them up with other charges and repeat the proc
While slow, this process will eventually yield as many ele
tric charge pairs with vacuum quantum numbers as need

Step 2: Identifying the magnetic charges.The electric an-
cilla pairs are useful because they can perform a nondes
tive measurement of magnetic flux. The procedure is to t
a member of the electric charge pair, drag it around
anyons or group of anyons whose total flux we want to m
sure, and then fuse it with its pair.

To describe the effect of the fluxes, letR(g) be the rep-
resentation of the first electric charge of the pair. Letun& be
an orthonormal basis for the space on whichR acts, and let
un* & be the dual basis for the conjugate representationR*
under which the second charge transforms. The effect
flux g is then

(
n

un& ^ un* &→(
n

@R~g!un&] ^ un* &. ~A1!

Just as before, if the total flux is nontrivial, there will be
good chance that the fusion of the electric charges will le
a particle behind. On the other hand, if the total flux is trivi
even if the total charge is not, the pair of electric charges w
always fuse into the vacuum.

Repeated application of this procedure will determ
whether the total flux is trivial or not. Furthermore, this pr
cedure will at worst introduce decoherence in the flux ba
but will leave all flux eigenstates unchanged.

We can use this procedure to compare the fluxes of
anyons. In particular, consider two pairs created from
vacuum. Measure the total flux of the first anyon of the fi
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pair combined with the second anyon of the second pai
the combined flux is trivial, the first anyon of each pair h
the same flux; otherwise the flux is different. The proced
is depicted in Fig. 3.

The above procedure allows us to sort the flux pairs i
‘‘bins’’ that depend on the total flux of the first anyon of th
pair. We will get as many bins as elements ofG, each con-
taining an unlimited supply of vacuum pairs which carry t
same flux in the first anyon of the pair. At this point, if th
fluxes have not decohered in the flux basis, then we m
have an entangled state involving all anyons in a given b
Throwing away a single flux from each bin will produce th
desired decoherence, just as it did when breaking the var
symmetries in the main part of this paper.

All that remains is to identify each bin with an element
G. Assume that we were given an assignment of an elem
of G to each bin. The assignment could be checked by us
the following procedure. First, we note that any finite gro
G may be described by a set of elements$gi% and a set of
relations of the formgi 1

¯gi n
51 which they obey. To check

that the assignment is correct, we just need to check all
relations~supplemented by the trivial one element relatio
gi

ngi
m5gi

nm). These can be checked again with the elec
charge ancillas, using a loop that circles each of the fluxe
the relation in the correct sequence.

To generate guesses, we could just randomly assig
each bin an element ofg, which gives us a probability of
success of at least 1/(uGu)!. Of course, we can be a lo
smarter, as the above procedure can help us figure ou
powers of a given element~including its inverse! and even
the elements in its conjugacy class. Thus, the need for gu
work is minimal, and some of the choices correspond
different valid assignments~i.e., automorphisms! of the
group.

Analysis of the produced ancillas.At this point we have
almost produced the desired ancillas, with one caveat:
individual anyons do not have trivial charge~i.e., they may
be dyons!. However, all we have done to the pairs, aft
creating them from the vacuum, is to measure the flux of o
of the anyons. That means that the electric charge portio
the state is still in the vacuum state. More technically, if t
ancilla pair circles a flux that commutes with the flux of o
anyon of the ancilla, then the state remains unaltered. Th
the same behavior that the pure magnetic charges w
have.

Some careful thought at this point shows that these st
are good enough for the quantum computation proced
presented in the bulk of the paper. Indeed, going back
repeating all the steps with these generalized ancillas wo
require very few modifications. The fusion to measure in
Z basis would now have a lower success probability, which
compensated by a higher rate of producing acceptableu0̃&

FIG. 3. Using electric charges to check ifg15g2.
5-14
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states, but otherwise most gates remain unaltered. We
therefore succeeded in constructing an ancilla reserv
which, while slightly different then the one initially desire
is useful for universal quantum computation.

APPENDIX B: MATHEMATICAL THEOREMS

This appendix proves the major mathematical theore
needed in the bulk of the paper. We begin by stating
definitions of some of the mathematical terms used.

Perfect group.A nontrivial group G such that@G,G#
5G. Note that@G,G# is not the set of elements of the form
@g1 ,g2#[g1g2g1

21g2
21 but rather the group generated b

these elements. Even ifG is perfect, there may not be
commutator expression for every element.

Nonsolvable group.A group that has a perfect subgroup
Normal subgroup.A subgroupH of a groupG such that

ghg21PH for everyhPH andgPG.
Simple group.A group with no normal subgroups othe

than the whole group and the trivial group.
Before we get to our main theorem, we will prove a the

rem that will allow us to deal with general nonsolvab
groups. We intend to show that we can extract from nonso
able groups a simple and perfect group. The simple per
groups ~which can also be described as the simple n
Abelian groups! are the ones on which we can perform un
versal classical computation and are therefore important
this paper.

We begin by defining thenth derived subgroups by th
relationsG(n)5@G(n21),G(n21)# andG(1)5@G,G#. A solv-
able group is one for whichG( i )5$1% for somei. A nonsolv-
able group must have ani such that for everyj . i , G( i )

5G( j ) andG( i ) is nontrivial. The groupG( i ) is perfect, thus
the definition for solvable groups is consistent with the de
nition for nonsolvable groups given above.

Furthermore, all the groupsG(n) are normal subgroups o
G. This can be proven by recalling the proper
g@g1 ,g2#g215@gg1g21,gg2g21#. The rest follows by in-
duction becauseG(1) is normal inG, andG( i ) is normal inG
if G( i 21) is. We have therefore shown that every nonsolva
groupG has a perfect normal subgroupP.

Sadly, this subgroup is not necessarily simple. Howev
we can prove that every perfect groupP has a normal sub
groupN such thatP/N is perfect and simple. We chooseN to
be a normal proper subgroup ofP such that no other norma
proper subgroup ofP has more elements, which is well de
fined becauseP is finite. Let f be the canonical epimorphism
P→P/N which maps elements into cosets. Becausef is sur-
jective we have @P/N,P/N#5@ f (P), f (P)#5 f (@P,P#)
5 f (P)5P/N, which, combined with the fact thatP/N is
nontrivial, shows thatP/N is perfect.

Finally, assume thatP/N has a normal, nontrivial prope
subgroup A. Then B5 f 21(A) is a normal subgroup
of P, because for any elements b1 ,b2PB
and pPP, we have f (b1b2)5 f (b1) f (b2)PA and
f (pb1p21)5 f (p) f (b1) f (p)21PA. Furthermore, B is a
proper subgroup ofP, and N5 f 21(1) is smaller thanB
5 f 21(A), leading to a contradiction. Therefore,P/N is
simple, and we have finished proving the following theore
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Theorem.If G is a nonsolvable finite group, then the
exists a normal subgroupP of G and a subgroupN, normal in
P, such thatP/N is perfect and simple.

Proof. Shown by the above text.
We now turn our attention to using our groups to comp

classical functions. We shall prove that the set of functio
that can be written in product form is complete, in the sen
that it includes every function fromGn→G, if G is simple
and perfect~or equivalently simple and non-Abelian!. This
was first proven in the mathematical literature by Maurer
1965@16#. In the computer science literature, a related res
was proven by Barrington@17#. In this paper, we will provide
our own constructive proof for the following theorem.

Theorem.If G is a simple and perfect finite group, the
any function f (g1 , . . . ,gn):Gn→G can be expressed as
product of the inputs$gi%, their inverses$gi

21% and fixed
elements ofG, any of which may appear multiple times i
the product.

Proof. Throughout this proof, we will refer to the set o
functions that can be expressed in the above form as ‘‘co
putable.’’ Proving the above statement is equivalent to sho
ing that all functions are computable. The proof consists
building a series of computabled functions that map mos
elements to the identity, and then expressing arbitrary fu
tions as a product of thesed functions.

Step 1.Given a group elementa not equal to the identity,
let C(a) denote its conjugacy class. Then the subgroup g
erated by the elements ofC(a) is equal toG. This is because
the subgroup is a nontrivial, normal subgroup ofG andG is
simple.

Step 2.Fix two disjoint subsetsA and B of G. Define a
family of functions $dc

A,B(g):AøB→G% with elements la-
beled bycPG:

dc
A,B~g!5H 1 ; gPA

c ; gPB.
~B1!

If the functiondc
A,B is computable for somecÞ1, then every

function in the family is computable. To prove this choo
anydPG. By step 1 there is an expression ford as a product
of elements in the conjugacy class ofc ~for instance,d
5g1cg1

21g2cg2
21c). Then dd

A,B is obtained by substituting
dc

A,B for c in the expression.
Step 3.Fix a setA, an elementb not in A, and an element

xÞb. If a functiondc
A,B is computable for someB such that

bPB, then there exists a computable functiondc
A8,B8 with

two new sets such thatAø$x%,A8 andbPB8. The function
can be obtained from

de
A8,B8~g!5@dd

A,B~g!,gx21# ~B2!

using Step 2. The above equation assumes that we have
tended the domain ofdd

A,B to G, which can be done in a
natural way once we have fixed a product representation
dd

A,B . The elementd was chosen not to commute withbx21.
Such an element must exist becauseG is simple and non-
Abelian, and hence has no center. The elemente is just e
5@d,bx21#.
5-15
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Step 4.The functions defined bydc
b(g)[dc

A,B , with A
5G2$b% and B5$b%, are computable. To prove this sta
with A15$1% andB15$b%. The functiondc

A1 ,B1 is comput-

able because it is in the same family asf (g)5g5dg
A1 ,B1 .

Then proceed by induction, using Step 3, on the element
G2$b% that are not included inAi .

Step 5.For a fixed set of ordered elementsb1 , . . . ,bi
define a family of functions labeled byc:

dc
b1, . . . ,bi~g1 , . . . ,gi !5H c for g15b1, . . . , and gi5bi ,

1 otherwise.
~B3!

The same proof in Step 2 shows that if any function of
family with cÞ1 is computable, then the entire family
computable.
int

-

.
B

02231
in

e

Step 6:Fix i PZ1 and elementsb1 , . . . ,bi 11PG. If the
function dc

b1 , . . . ,bi(g1 , . . . ,gi) is computable, then so is th

function dc
b1 , . . . ,bi 11(g1 , . . . ,gi ,gi 11). By Step 5 it is suffi-

cient to be able to compute

de
b1 , . . . ,bi 11~g1 , . . . ,gi 11!

5@dc
b1 , . . . ,bi~g1 , . . . ,gi !,dd

bi 11~gi 11!#, ~B4!

where the functiondd
bi 11(gi 11) is computable by Step 4, an

d is chosen so thate5@c,d#Þ1.
Step 7.Using induction on the number of inputs of th

function, and starting from the base casedc
b1(g1), it is clear

that all the functions defined in Step 5 are computable.
Step 8.Every function is computable because

f ~g1 , . . . ,gi !5 )
b1PG

. . . )
biPG

d f (b1 , . . . ,bi )
b1, . . . ,bi ~g1 , . . . ,gi !.

Q.E.D.
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