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Anyons from nonsolvable finite groups are sufficient for universal quantum computation

Carlos Mochofi
Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125
(Received 1 October 2002; published 28 February 2003

We present a constructive proof that anyonic magnetic charges with fluxes in a nonsolvable finite group can
perform universal quantum computations. The gates are built out of the elementary operations of braiding,
fusion, and vacuum pair creation, supplemented by a reservoir of ancillas of known flux. Procedures for
building the ancilla reservoir and for correcting leakage are also described. Finally, a universal qudit gate set,
which is ideally suited for anyons, is presented. The gate set consists of classical computation supplemented by
measurements of thé operator.
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I. INTRODUCTION which is why we impose the requirement of two spatial di-
mensions. While this two-dimensional model of the world
The discovery of the potential speedups offered by quanseems somehow unphysical, there exist condensed-matter
tum computers launched an effort to find physical systemsystems with quasiparticles that behave like anyons.
out of which these computers could be built. Researchers The original proposal for an anyon based quantum com-
soon found that these systems are in short supply, as it uter was made by KitaeM,2]. The first concrete descrip-
extremely difficult to isolate a quantum system from the endion was done by Ogburn and Preskill in Ref8,4] for
vironment, while maintaining enough control to perform op-anyons in the group\s, the even permutations of five ele-
erations on the encoded data. The advent of quantum errdfents. In our paper, we will generalize the work of Ogburn
correction and fault-tolerant processing has drastically inand Preskill to any nonsolvable finite group, which includes
creased the tolerable error rates; nonetheless, physical sy8s as the smallest case.
tems with low enough error rates are still hard to come by.  The paper is organized as follows: We begin by introduc-
One way to protect a Hilbert space from the environmening some notation and reviewing the properties of the anyon
is to encode the quantum data in nonlocal observables. Thegeodel that will be used throughout this paper. Section IlI
observables, which are constructed from topological invaripresents the universal gate set that will be employed to prove
ants, cannot be measured or changed by any local operat@iyons can perform quantum computations. Sections IV-VI
Therefore, because the environment generally acts locallgontain the main part of the paper, and discuss a concrete
the physics of the system provides a form of fault tolerance@nyonic implementation of all the necessary gates. For peda-
In particular, consider the spectrum of electrically andgogical reasons, we first cover the easier subcase of simple
magnetically charged particles that are obtained by breakingerfect groups in Sec. 1V, and then discuss the required gen-
a gauge group to a finite subgroup. The finite group gaugéralizations for any nonsolvable group in Sec. VI. In Section
theory is a particularly good system for quantum computingV, We discuss how to make these computations fault tolerant
because it involves no gauge fields, and hence no long-rand®y performing leakage correction. Finally, we discuss the
interactions except for those obtained by braiding. Furtherconclusions and unsolved questions. There are also two Ap-
more, the Hamiltonian of the system respects the unbrokependixes which include the mathematical proofs, and a tech-
symmetry; therefore, Schur’s lemma forbids the types ofique for creating anyon ancillas.
coupling to uncharged objects that can produce decoherence.
Of course, the data could still decay by the exchange of a
charged particle between two anyons, but this is a quantum
tunneling event which is exponentially suppressed by the In this section, we will review some of the braiding and
distance between the particles. fusion properties of our anyons. Our review will be rather
When the gauge theory is restricted to two spatial dimenabridged, but more details can be found in the excellent re-
sions, the particles acquire topological long-range interacview of discrete gauge theorig¢s] (and the original work
tions, which can be be used to perform computations. Thég]). The paper by Ogburn and Preski#l,4] also contains a
interactions occur when the particles are exchanged agood review with emphasis on the applications to quantum
braided, and depend only on the topological class of the patbomputing.
involved. Because of these interactions, the charged particles This section also establishes our notation for qudits, and
have quantum statistics that are more exotic than the stameviews the phase estimation circuit, a highly useful trick
dard fermions and bosons, and are known as anyons. Thhaat will be used often.
nonstandard statistics, though, only arise when clockwise ro-
tations can be distinguished from counterclockwise rotations,

Il. REVIEW

A. Magnetic charges

The main players throughout this paper will be the mag-
*Electronic address: carlosm@theory.caltech.edu netic charges, also known as fluxes. For a field theory with
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FIG. 1. Exchanging two anyons. /\\
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an unbroken finite groufs, there is one magnetic charge for - T _.' T _‘_ T " _____
each elemenge G. Quantum mechanically, we can have \\/
superpositions of these states, giving a one-particle Hilbert
space spanned Hg) V ge G (though strictly speaking, su- /\\ g1
perpositions of charges in different conjugacy classes are | b _‘g__ _ _‘_h:l_ _ '_hg _h_ B
meaningless, as will be explained in the following section

Specifying the exchange properties of the charges in- \\_/
volves making a choice of gauge. The easiest choice, which
will be used in this paper, is to keep all anyons ordered on a -1 hgh—1 hg1p~1
horizontal line. The exchange of particles, which can be —‘—h— @ —‘— sl '— 7t
clockwise or counterclockwise, is only allowed between ad- \_/

jacent pairs. In either case, the particle that passes below

remains unchanged, while the particle that passes above gets

conjugated. When the exchange is in the counterclockwise FIG. 2. Conjugating a pair of anyons.

direction, the upper anyon gets conjugated by the flux of the

lower one, whereas in the clockwise direction it gets conju- The net result of the pictured operation is

gated by the inverse of the lower flux. This is depicted in Fig.

1. Ihelh™Helg)elgH—lhyelh Helhgh™)
One way to visualize these exchanges is to associate with 11

each anyon a ray that is vertical in the plane, starting at the ®lhg™*h™), )

particle and proceeding upwards. Anyons are allowed tQupich is a conjugation of the second pair byConjugation

move freely through the plane, but every time an anyon,, p-1 ¢ouid be achieved by using counterclockwise ex-
crosses the ray of another particle, it gets conjugated by th&nanges in the picture.

flux of the owner of the rayor by the inverse flux if crossing For notational convenience, in this paper, we will gener-

from left to righf. Note that when a particle passes a groupyiy only mention the flux of the left element of a pair. The
of anyons, it gets conjugated by the total flux of the anyonsgove fransformation will be written as

which is given as the product from left to right of the indi-

vidual fluxes. |h>®|g>—>|h>®|hgh‘1>, (3
Clearly, moving single anyons around can produce

strange correlations throughout the system. However, moJeaving the compensating fluxes implicit. While we will ex-

ing a pair of anyons with a total flux that is trivial will not clusively deal in this paper with flux pairs with trivial flux,

change the state of the system if the pair always passes bwe will only explicitly refer to the second anyon when nec-

low. This is why we will always be dealing with states of the essary to describe the operations.

form

B. Electric charges and vacuum pairs

E aglg)® lg~h), (1) We now wish to focus on the operations of creating pairs
g from the vacuum and fusing pairs back into the vacuum.
However, we must first briefly discuss the complete spectrum
which correspond to a pair of anyons with trivial total flux. of particles, and that involves electric charges.
When dealing only with pairs of trivial total flux, we can  An electric charge is a particle with no flux that trans-
swap any two pairs, or bring any two pairs together withoutforms as some nontrivial irreducible representation of the
affecting the state of the rest of the system. groupG. A useful analogy is to think of the representation of
We do want to allow controlled interaction between pairs,G as the total spin of the particle. The internal state of the
though, and this is accomplished by a pass-through opergatrticle is then equivalent to the direction in which the spin
tion. The idea is to have one pair circle one anyon from thds pointing.
other pair. This will conjugate the fluxes of the pair that The electric charge states can be labelefRa¥), where
circles, but leave the other pair invariant. This operation isRis a representation @ andV is a vector that transforms in
depicted using elementary exchanges in Fig. 2. the representatioR. The electric charges do not interact with
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each other, but when one of them circles a magneticdlux have vacuum quantum numbers, and will fuse back into the

its state changes as vacuum. In this case, no particle will be left behind and their
total mass will be transformed into some other medium, such
[R,V)—|R,Ur(9)V), (4)  as radiation. If¥) is the combined state of the two anyons,

and the first anyon is in the conjugacy claSs then the

whereURg(g) is the matrix corresponding tg in the repre-  ,ropapility that the two will fuse into the vacuum is given by
sentationR. This is known as the Aharonov-Bohm effect. the standard rules of quantum mechanics:

While we can transform the state of an electric charge
within the subspace of a representation, there are no opera- Pvacuum:|<VadC)|‘I’>|2- (6)
tions (other than fusion, which destroys the partjdieat can
change the representation of a particle. Furthermore, the After fusing two particles of different pairs, the fused par-
phase between states of different representations cannot biele may carry some flux. However, since the total flux of
measured. We can therefore effectively describe the electrithe original four particles was trivial, the total flux of all the
charges as having decohered into the different representeemaining particlesincluding the product of the fusigmwill
tions. In particle physics, we would say that the differentbe trivial as well. Therefore, it is possible to safely move the
representations correspond to different superselection segroup of particles away from the bulk of the computation

tors. without disturbing our quantum state.
The same thing happens to the magnetic charges. Differ-
ent conjugacy classes live in different superselection sectors, C. Qudits

so we can imagine that there is an automatic decoherence

into different conjugacy classes. Superpositions of fluxes in . X . : .
different conjugacy classes are therefore meaningless. putations with qudits rather than the usual qubits. We define

The spectrum also contains particles with both electric®Y c_<|)|mputat|onﬁ;j)§15|s_as thehstalne}sfor 0$clj<d, where
and magnetic charge, which are called dyons. The only sp _e(\;wf_ asgumeft” Is prime. The unitary andX gates can
cial feature is that the electric charge is a representation onl§€ G€lIN€a as follows

Throughout this paper it will be useful to perform com-

of the subgroup o6 that commutes with the flux. The afore- Z|iy=wlli) 7
mentioned magnetic charges are just dyons with a trivial rep- ’

resentation. The dyons also have superselection sectors that X[iy=|i+1) @)
correspond to different conjugacy classes and representa- '

tions. wherew is a fixed nontrivialdth root of unity, and sums are

The purpose of discussing the full spectrum, and the idegnderstood to be moduld. The operators satisfy the com-
of superselection sectors, is to find out what kind of states westation relation

get when we create a pair of particles from the vacuum. The
first thing to note is that each of the particles will instantly IX=XZw. (9)
decohere into a specific conjugacy class and representation.
Furthermore, because a pair created from the vacuum musis usual, the eigenstates @f correspond to the computa-
have trivial total charge and flux, the conjugacy classes mustonal basis. We can also introduce the eigenstates of
be inverses, and the representations must be conjugate rep-
resentations. I R

Consider the case that the pair decoheres into plain mag- )= 7 Zo o j), (10
netic charges, with the first one contained in the conjugacy =
classC. Because the combined state St'l! has vacuum quangi-h have the following transformations under the action of
tum numbers, the state must transform trivially when anotheg)ur unitary gates:
flux is dragged around it. That is, it must be invariant under '

conjugation. There is only one such state: Z|T>= |f?1), (11)
1 ~ i
vaqC))=— ®|g™h. (5) X[1)=w'[T). (12)
vad(C)) mgclw g7

. D. Phase measurement
The vacuum states for the other superselection sectors are

also unique and have similar expressions. When a pair of A very useful trick, used many times throughout this pa-
anyons is created from the vacuum, it will start off in one ofper, is Kitaev’'s phase estimation technigug. In fact, we
these states. will only employ a special case of the technique which we
Another useful operation is to fuse two anyons togetherdescribe below.
Note that we are not talking about two anyon pairs, but Assume that we are working in a system with qudits, and
rather two anyons, sometimes from the same pair, and somi have an operatdy with eigenvalues that armth roots of
times from different pairs. The operation of fusion will turn unity. We shall prove that being able to apply a controlled
the two particles into one, which must carry the total flux andgate, and measure in thébasis, is equivalent to being able
charge of the two. It is also possible that the two anyons willto measure the operattt.
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Consider applying the circuit below to an eigenstalte) question: Given classical computatiére., Toffoli gate and

of U with eigenvaluew': measurements o), what gates are needed to complete the
universal set?
|;> |z’f—\|-/j) We now turn our attention to the proof of universality for

the gate set presented above. We note that Gottesman has
already proven in Ref[9] that for d prime, applying and

|@,) U-1 |¥,) me_zasuring products af’s and X’s, plus a Toffoli gate, is_
universal for quantum computation. All we need to do in
order to prove universality, is to show that we can apply and
where the controlled) ~* gate can be applied as-1 con-  measure operators of the forfZP using the above gates.
trolled U gates. The circuit works as described because the Measurements oK followed by measurements & can
controlled U™ gate leaves the bottom state invariant, b“tproduce|i> ancillas for anyi. Similarly, we can obtairfi)

applies az™! to the upper state. On a general sti®  ancillas from measurements Bffollowed by measurements
=3¢;|¥;) expanded in terms of eigenvectorsfthe cir- 4t A controlled sum gate can be made out of a Toffoli gate

cuit produces the transformation by fixing an input to 41) ancilla. Because a controlled sum
gate is really a controlleX gate, fixing the other input td)
0)y®|p)— > cjf)o|w)). (13)  produces thexX gate. On the other hand, a controlled sum
J gate from a state to ﬁ) ancilla, produces & gate on the

. . State
Clearly, a subsequent measurement of the first qudit irKthe

basis is equivalent to a nondestructive measurement of the ~
original state in theJ basis. We will use this technique in the |’>
following section to measure the operatdz®.

i)

In a later section, we will employ the equivalent circuit - -
) X 1)
|0> |z> The general case of applying®Z® can be done by a
series ofX and Z gates. All that remains is to construct a
|Z) x-1 |;> method for measuring operators of the foX#iz®. First, we
note that
run in both the forward and backward directions, to change
between thefi) states and the readily availabj®) state (X3Zb)d— (yabdd-1)/2gadzbd_ 1, dodd (15
which can be naturally produced from, and fused into the —13b  d=2.
vacuum.
lll. A UNIVERSAL GATE SET FOR ANYONS A. d odd case

The casad=2 is rather complicated and will be handled

by choosing a proper gate set. For this paper, we will em loseparately. The general casedd (remember we required
y gaproperg ' paper, b rime) is easy because the eigenvaluesx8z® are thedth

a generalization of the gate set used by Ogburn and PreSkroots of unity just like those oK andZ. As discussed in the

[3.4]. The gate set, which involves measurements as well eview of phase estimation, being able to apply a controlled
unitary gates, can be applied to qudits whens prime, P ' 9 pply

a b . . . .
which is the only case considered in this paper. X Z. gate, combined W.'th measurements in T?‘.ebas's
The universal gate set {4) Measure nondestructivel, (which includes preparation of eigenstatesis sufficient to

. a b .
(2) Measure nondestructively, and(3) Apply Toffoli opera- measure in th&"Z® basis.

e b
tors (to any set of three quditswhere the qudit Toffoli op- ThAtII_that remag? |sbto Cb‘inst”“‘:t t?etﬁontrille@‘Z gate.
erator is defined as at is, we need to be able to apply the gate

A lot of the work in proving universality can be simplified

Iny@ |y — [Ny (X2Z°)"| ) = [n) @ XA"ZPNwaPMN =102 )

T|I,m,n)=|l,m,Im+n). (14 (16)

and all computations are done modulo

Though tangential to the main purpose of this paper, theomposed of a phasf,m)— @P"™30MM=12n m) fol-
above gate set is another answer to the question posed lowed by controlled sums. The controlled sum gate is just a
Ref. [8]. That is, given a Toffoli gate, what extra gates areToffoli gate with an input fixed to one. As for the phase,
required to complete a universal set? Of course, the answérecause we have a Toffoli gate, we have universal classical
provided by the above gate set involves measurements in aomputation. We can thus comput@m+abn(n—1)/2 in
integral way, and is therefore different from the one proposedn ancilla, apply & gate to this ancilla, and then erase the
in Ref.[8]. However, the above gate set also addresses theomputation.
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B. d=2 case |0) ancilla. Therefore, we have shown that we can produce

Thed=2 case is somewnhat trickier because our gate set {§1€ initial eigenstate o X, and we have completed the proof
invariant under complex conjugation, and thus there is ndhat the gate set presented at the beginning of this section is
way of distinguishing the two eigenstates DK=iY. We  universal for quantum computation.
will solve this problem by creating an ancilla that is an
eigenstate ofZX, defining it to be thet+i eigenstate, and

then using it to measure and build more eigenstates. IV. UNIVERSAL COMPUTATION FOR SIMPLE PERFECT
Assume, we were given a state GROUPS
1 In this section, we will prove that a set of anyons based on
| W)= 7(|O)+ w|1)), (17)  certain groups can perform universal quantum computations.
2 Instead of dealing first with the general case of nonsolvable

wherew?=—1. Clearly, the state is equal to one of the two groups, we will deal with the smaller set of groups that are
ZX eigenstates;+ )= (|0) +i|1))/\2. both S|mpl_e and perfect.

Using a controlledX gate, which is built by the method We rem_lnd the reader that nonsolvable groups are_those
described in thed odd case, we can produce copies of thethat contain a perfect subgroup; and a perfect group is any
state|W). The idea, similar to the one used for phase estinontrivial group, whose commutator subgroup equals the full
mation, is to apply the controlledX gate from a stat&)) to group:[G,G]=G. The property of simplicity means that the

group has exactly two subgroups that are invariant under
the commutator subgroup is invariant under conjugation, it
should be clear that any simple non-Abelian group is perfect.
_ 1 However, we shall refer to these groups as simple and perfect
0)®|¥)——=(|0)+w|1))®|¥)=|¥)®|¥). (18)  toremind the reader that we are dealing with a subcase of the
V2 general nonsolvable case.

Notice that copying works independent of wheth#) is the The set of simple perfect groups, which includes the
+i or —i eigenstate oZX. Naturally, by subsequently ap- groupsA, for n>4, is powerful for computing because in

plying a Z, we can also produce the orthogonal stals ~ SOme sense we can get from one nontrivial element to any
=(|0)— w|1>)/ﬁ_ other using operations that fix the identity. The general case

With our ancilla, we can also measure in this basis. This i€f nonsolvable groups will be deferred to Sec. VI, where we
done by applying a controlledX gate to the ancilla from the Will show that a simple perfect group can be extracted from

to the first state:

state we want to measure: a nonsolvable group.
[W)e|¥)—[Te|v), (19 . |
A. Requirements for the physical system
|®)o|¥)—[0)| V), (20 Here, we list the operations, ancillas, and measurements
o _ that we assume are available on any realistic anyonic system,
and then measuring in th¢ basis. and which we will use to build our quantum gate set:

As long as we are consistent in always using the same (1) We can braid or exchange any two particles.
ancilla| W), we will have broken the conjugation symmetry,  (2) We can fuse a pair of anyons and detect whether there
and found a way to label, create, and measure eigenstates igfa particle left behind or whether they had vacuum quantum
ZX. Of course, we should keep many copies of the ancillanumbers.
which can be prepared from the original state. The operations (3) We can produce a pair of anyons in a state that is
above also allow us to error correct our set of ancillas bychosen at random from the two particle subspace that has
copying each, comparing the copies, and using majority votvacuum quantum numbers.
ing to discard the damaged ancillas. Thus, even if there are (4) We have ancilla pairs of the forfig)®|g~1) for any
some errors in preparation, or some of the ancillas decaye G, where the individual anyons have trivial electric
over time, computation will still be feasible. charge.

All that remains to be explained is how to create the first We remind the reader again that even though all our
copy of |¥). Because a state with a density-matrix propor-anyons are used in pairs of trivial total flux, we will gener-

tional to the identity can be written as ally only mention one of the anyons of the pair. These con-
) . ) ventions also apply to ancillas, which means that we will
p=z1=z|+{(+vl+ z|=v{—vl, (21)  refer to the|g)®|g ™) state as an ancilla of flug.

While the first three requirements are natural operations
it is equivalent to having prepared an eigenstat&¥=iY  for a laboratory system, it is not clear where the ancillas
chosen at random. The staie=1/2 can be produced by dis- would come from. Depending on the physical realization
carding one qubit of a bell state, and a bell state can benere may be many ways of obtaining the ancilla reservoir.
produced with a controlled sum gate fromi& ancillato a We discuss one such scheme in Appendix A.
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B. Computational basis (though this may not be the case when we are trying to
correct leakage Finally, we can include in the product the
inverse of the flux of a qubit, as discussed in Sec. Il A.

In conclusion, givem qubits with fluxesg, throughg,,,

Let G be a simple and perfect finite group. laandb be
two noncommuting elements db. Let d be the smallest
integer such tha®ba%=b. We can assume thditis prime,

otherwise we could replaceby a®® wherep is some prime ~ @nd a functionf(gy, ... ,g,-1) of the firstn—1 qubits, we
that dividesd. can conjugate the last qubit liy

It turns out that every simple non-Abelian group has even .
order. This was first conjectured by Burnsidkd] in 1911, lgn)—=1f(91, - Gn-1)Gnf(91, - - Gn-1) ), (29

and proven by Feit and Thompsfil] in 1963 (in fact, the _ _ _ _
complete classification of simple finite groups was com-Provided that the functiof can be written in product form.
pleted in the early 1980's, see for instance R&®]). Using ~ BY product form, we mean thdtis a product of the inputs
Sylow’s theorems, the fact that every simple group has evefdi}, their inverseqg; '}, and fixed elements a8, each of
order means that they all include a nontrivial elem@stich ~ Which may appear more than once, or not at all. For ex-
thata?=1. Therefore, we could always work with a basis ofample, ~a valid function would be f(g;,9,)
qubits. However, we will present the general qudit case bothk= agzbgilcgl’ld with a,b,c,de G. Furthermore, this
for its elegance, and because in some instances a basis todnsformation does not change the flux of the finst1
qudits is more convenient. qubits, though it may entangle them with the last qubit.

We will work with a basis of qudits of trivial net flux

|n)=|a“ba*”>®|a“b*1a*“> (22) D. Toffoli Gate

To build the Toffoli gate we must be able to conjugate the
for O0=n<d, where we have explicitly described both third qubit by the functiorf(g,,g,), which depends on the

anyons of the pair. fluxes of the first two qubits as
It should be clear that we can initialize the computer by o -
filling up the computational space with) ancillas. We turn f(a'ba',aba))=a", (26)

now to the task of constructing the gates presented in Sec.
[l and is arbitrary for values af; andg, that are not in the
computational basis. If the third qubit is in the statéba ¥,

C. Conjugation by a function conjugation byf produces the transformation

We begin by describing the technique of conjugation by a |akba—k>_>|aij +kp gl _k> 27)
function, which is especially powerful for simple perfect '

?rg)nusgglrrg;tisoenc. Il A, we showed that we could perform theWhiCh is the desired Toffoli gate.

Given the discussion in the preceding section, we are left
|hy®|g)—|h)e|hgh 1), (23)  with the task of expressing the functidrin product form.
However, it turns out that for simple and perfect groups ev-
where we conjugate the second anyon by the flux of the firsgry function has such an expression.
while the first anyon remains invariant. We can also conju- Theorem:If G is a simple and perfect finite group, then

gate an anyon by a produlath,---h, any functionf(g;, ...,9,):G"—G can be expressed as a
product of the inputgg;}, their inverses{g; '}, and fixed
g)—[hihy--hyghy = --hy “hy 7), elements ofG, any of which may appear multiple times in
|g)—[hihyhghy *--h; thy ) 24 el G f which Itip!

the product.
where the{h;} are fluxes of other anyons which remain un-  Not only does the above theorem prove that Toffoli gates
changed throughout this process. The procedure is done kyte possible for any simple and perfect group, but it directly
first conjugating byh,,, then byh,_,, and proceeding left- proves that any classical function can be computed.
ward until we finally conjugate by,. The proof of the theorem, which is mostly constructive, is
The above procedure is not terribly useful if all the} somewhat long and will be deferred to Appendix B. How-
are fluxes of fixed ancillas, because we could have equiveaever, to make this seem plausible to the casual reader, we
lently conjugated by a single ancilla of flix=hih,---h,. would like to illustrate the basic steps needed to build a
However, some of the fluxes in the product could correspondoffoli gate for qubits.
to anyons that represent qubits of unknown state. In this case The main idea behind the construction is that the function
we can think of the above operation as conjugation by & is basically a logicalaND of the inputs. A commutator
function of the fluxes of certain qubits. makes a good logicadND because it equals the identity if
Let's consider what kind of functions can be applied ineither of its inputs are the identity. Furthermore, the commu-
this way. Clearly we are speaking about functions that can b&ator function can be expanded as a product of its inputs.
written as products of elements & The elements can in- Therefore, we would like the first input to take values 1cor
clude known constants if we use our ancillas to conjugateand the second input to take values 1dpwith the require-
We can also include the flux of a qubit, which will be of the ment thatd not commute witkt, so that we can put them into
form a'ba™' if the qubit is in the computational basis a commutator.
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Let g; denote the flux of the first qubit, arg} the flux of ~ where both happen to be the same function by coincidence.
the second qubit. Each takes valuge {b,aba !}. Define  Putting all the steps together, we have a function
the new variablesg/=gjb"*e{1c}, where c=[a,b]
—aba b1 Itis sufficient to show that we can express the f(91:92) ={(521)[91(435),(521)g,(435)(125](125)}

'I_'offoli fur)ction as a product ofj;, g5, their inverses and ={(521)g4(435)(521)g,(435)(125)
fixed ancillas.
Choose an element that does not commute with and X (345)g; 1(521)(3459, 1(125(125}
definee=[c,d]. Imagine we could find two functions of one 1 1
element, that can be expressed in product form, such that =1(521)91(143529,(124)9, (153429, *(521)},
hiy(c)=d, hy(1)=1, (28)  Wwhich can be applied with nine elementary conjugations.
hy(e)=a, hy(l)=1. (29 E. Measuring Z
Using these functions, the Toffoli function can be written  1he basic idea behind measuring in the computational ba-
as sis is that if we fuse a flux with another flux of the inverse
group element, there is a finite chance that they will have
f(91,92) =h,(g7,h1(g5)]), (300  vacuum quantum numbers and disappear. On the other hand,

if the product of the two fluxes is not unity then there must

which when expanded out is a product of the correct form. be a particle left behind to carry the remaining flive., the
The existence of the functiortg, which is discussed in total flux is always conserved

more detail in the full proof of the theorem, is a consequence At this point it might be useful to remind the reader why
of G being simple. For any elementk G, the group gener- a fusion ofg with g~ will not always turn into the vacuum.
ated by its conjugacy clag3(c) is a normal subgroup. Be- The short story is that the combined state is not invariant
causeG is simple, this subgroup must equal the full group.when another flux encircles them, implying that they have an
Therefore, every elemerde G has an expression of the electric charge component. The state that has vacuum quan-
form d=x,¢x; 'x,Cx; 1+ -xpCx;, * for somen and some ele- tum numbers is invariant under the effect of all fluxes, and
ments{x;} € G. We can use the expression to constiugt hence is the sum of all the states in the conjugacy clags of

with the same phase. We can figure out the probability of

hl(g)=xlgx1‘1ngx2‘1---xngxrjl, (3D fusion into the vacuum by calculating the overlap of the
o ) ) vacuum state with the state of two anyons to be fused. The
and a similar construction builds,. result is

For a concrete example, we can work widh= A2\5. We
begin by choosing an elemeatwhich must satisfa“=1, if _ 1
we wish to work with qubits §=2). Because of the sym- P=|(vaaC)|(lg)®|g 1>)|2:m* (39
metries of the group, all choices are equivalent ao
=(12)(34). The next step would involve choosing an ele-whereC(g) is the conjugacy class @f and the vacuum state
mentb that does not commute witly and an elemerd that  was defined in Sec. Il B.
does not commute witb=[a,b]. While any choice can pro- Because one fusion will only probabilistically tell us the
duce a Toffoli gate, the requirdd, function will be simpli-  desired result, we should repeat the measurement many times
fied if we can make andd fall in the same conjugacy class. to obtain a sufficient degree of accuracy. Besides, if we are
The same can be said fbr, if e=[c,d] anda are in the working with qudits withd>2 we need to test fusion with at

same conjugacy class. least two different fluxes. We therefore need to have many
At this point, a little trial and error yieldb=(345) and copies of the state to be measured.
d=(234). The computational basis is now defined as Because of the no-cloning theorem, copying can not be
done exactly, but the transformation
0)=1b)=[(345),
|1>:|aba l>:|(435)>, (32) EI: C|||>—>2I C|||>®||>®||>® ®||> (36)

and the remaining group elements are fixed as means that we can measure each of the separate copies in the

_ “1\p—1_ _ Z basis and expect to get the same answer. The above trans-
c=(aba b (439(435=(349), formation can be done with a controlled sum géfeffoli
e=(cdc Y)d~1=(245)(324)=(25)(34). (33) gate with one input fixed to1)) from the original state to a
|0) ancilla. Repeating this controlled sum gate with many
The h; functions, which are the only nonconstructive part oftarget ancillas will produce the above entangled state.
the proof, can be built as simple conjugations because of the To summarize, the procedure for measuring inZteasis

choices we made earlier: is first to create an entangled state using a controlled sum
gate. Then try to fuse each of the qudits with one of the
h.(g)=h,(g)=(521)g(125), (34)  inverses of the fluxes that areeigenstates. Eventually, one
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will disappear into the vacuum, and the inverse of the flux of f(anything elsg=1, (39
that ancilla is the result. Even in the presence of errors, this

measurement will have a good fidelity because the probabilyhich is essentially a controlled sum gate that has been prop-
ity of failure is exponentially small in the number of fusions. erly defined outside the computational basis.

A final note is that, because we are always dealing with  The state of the combined system after conjugation will
pairs of fluxes, what fusion really means is that we fuse thgye
first element of our qubit with the first element of the ancilla.
d-1 d-1
_ _ C — — —
F. Constructing the zero eigenvector oiX — > |aba Y®|aba )+ >, D;|¥;, )®lalbah,
i=0 1=0

For the next gates, we are going to need a supply of states (40)
that are eigenvectors of with zero eigenvalue:

d—1 where{D;} are some constants, afdV;, )} are states per-

|5>: i D li). (37) pendicular to the computational basis. Note that the states
d i=o |W;, ) fori#0 are the ones that have flaba™' but have
nontrivial charge. The staté¥,, ) includes all the other

We will produce them out of pairs of anyons with vacuumfluxes and charges. Depending on the superselection sector

quantum numbers. As usual we will just discuss one membeh which the vacuum state was created, many of the con-

of the pair, and assume that the equivalent operations agantsC and{D;} will be zero.

being performed on the other anyon. Now we conjugate by ~* from the ancilla to the vacuum

One of the possible states tfathen paireghave vacuum  state yielding
guantum numbers is the sum of fluxes in the conjugacy class
of b. This is approximately what we want. Sadly, in general, d-1
a state created from the vacuum will be a mix of this desired Clbye[0)+ >, D;|¥! Yo|aba™'), (41)
state plus other states, including states that involve dyonic =0
particles(particles with both electric and magnetic charge
We will have to filter through all this noise to get ot  Where{|¥g )}={|¥q, )} and the state§| ¥/ ),i>0} have
eigenstate. flux b but nontrivial charge.

The procedure that we will describe below is effectively Now we try to fuse the first qubit with an ancilla of flux
an incomplete swap, that has been extended to the full Hilb~* and trivial charge. The only state that can fuse into the
bert space in a logical way. In the computation basis, theeacuum with the ancilla i$b), and this will happen with
operations act as finite probability. Note that the ancilla can never vanish into
the vacuum with a state with charge because there is no way
of extending the basis to be invariant under the stabilizer
| @) Xt |0} group of the flux.

In the end, if the particles disappear into the vacuum, the
ancilla is left in the desireX eigenstate. Otherwise, we re-
|0) X |T) peat the procedure from the beginning until eventually the
state appears.

which performs a swap provided that the second qubit started
in the |0) state. Outside of the computational basis, though,
the operations are chosen so that we can detect whether we Before we continue building our gate set, we have to ad-

G. Choosing adth root of unity

obtained the desireﬁ)) state or not. dress a problem that appears @or 2, similar to the problem
We start with two qubit states, one created from thethat occurred ford=2 when proving that the gate set is
vacuum and one which is |@) ancilla: universal.
So far, we have defined everything in termse«gfa non-
|Vac>®|O>:(C|6>+D|\PL>)®|O>, (38) trivial dth root of unity. But there arel—1 of these, and

there is a symmetry which interchanges them. We will have
where| V| ) is a state orthogonal to the computational sub-to break this symmetry by using an ancilla.
space. If the vacuum pair decohered into a superselection In particular, we need an ancilla that is an eigenstat& of
sector other than the one that contains the computationalith eigenvalue not equal to 1. We will then define this state
basis, the consta@ will be zero. This will not be a problem g pe the/1) state in theX basis, i.e.,
as we will be able to detect this case, and then start again
from this step. I
Using the theorem from Sec. IV D, we can conjugate the Ty=— 2> o'li), (42
|0) ancilla by a function of the flux of the vacuum pair that Jd =

has the following form:
which has eigenvalue, thus, fixing our root of unity. We

f(a'ba ')=a, then define the otheX eigenstates by
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d,

[y

~ 1 . ~ ~ ~ ~ ~
Ry=— o "), (43) 2 Ci||>—>2 Ciliheli)eli)®...®]i), (46)
\/a = i i
and the operatoZ by |ﬁ>_>|ﬁ?i>‘ which is done using a controlled™* gate with a0) ancilla

= . as control and the state to be copied as target.
How do we produce the fir$t) in terms of which every- To perform the measurement nondestructively, we can

thing is defined? We start with [@) (which is always well  fyse all but one of the copies of the state. Alternatively, using
defined and which we know how to construct from the pre-,

; . . hez nd0) ancillas, we can alw r he rest of
ceding sectioy) and we apply a controlled ~* gate(which the ?gate a d0>ha ¢ an ECT ? .ays. p.loduceEt[ eresto
is a classical function, and thus computable from the Toffolit"® i) states. The rest of the logic is similar to tAemea-

operatoy from this ancilla to g0) ancilla, which produces surement procedure. . .
the output Having completed the construction of the universal gates,

we have proven that universal quantum computation can be
1 performed with anyons from simple and perfect finite
|6>®|o>_>_ E |T>® |T>_ (44) groups. We now turn to the question of whether these opera-
Vd 5 tions can be performed in a fault-tolerant fashion.

If we discard the second state, we will have a mixed state
that is a combination of the differet eigenstates. This is
equivalent to being handed an arbitrarily chosereigen- In this section, we will discuss both the motivation and
state, which we will calri). the techniques needed to implement error correction and

We can obtain copies of this state by applying a controlledfault tolerance in the software of an anyonic computer. The

X~ gate from aJT)) ancilla to this state, which applies the main result will be the construction of a leakage correction
transformation ’ circuit for anyons, which enables the use of the standard

techniques for handling errors.

V. LEAKAGE CORRECTION

|0)®|i)—|iY®|i). (45 o
A. Motivation
We can thus build arbitrarily many COBieS of the state. We Any quantum system that uses nonlocality to protect its
still have to worry that this might be tH@) state. However, data will be susceptible to errors if a large number of its local
below in the section for measuring we will give a proce- components are damaged simultaneously. The probability for
dure to detect th¢5> which does not rely on havin{ﬁ) failure is generally exponentially small in the size of the
ancillas. If we determine that=0, we throw away all the system, and is zero in the theoretical limit of an infinite sys-
copies and start ovéthis will only happen with probability tem. However, all physical systems are finite. Furthermore,

1/d). Otherwise, we relabel our state |§$ fixing a value p_ractical considerations may forc_e_ a _given setup to have_ a
for . size such that the error of probability is small but nonnegli-

~ : ible.
Because we can copy the) state, and below we will also 9

show how to measure it, we can build a reservoir of ancilla§ In the case of anyons, errors can occur due to guantum
in this state, which will be used for all future computations. unneling, which is an effect of the high-energy degrees of

We can even use conving. comparing. and maiority votin tc1)‘reedom that were frozen out to obtain a two-dimensional
pyIng, paring, jorty 9 Yiscrete gauge theory. The probability of this type of error

rror corr r reservoir, th llowing for com ion 2 . : .
error correct our reservoir, thus allowing for computatio goes ase” ML, wherem is the mass of the lightest particle

even in the presence of noise. that can mediate a charge interaction &nid the separation
_ between anyons.
H. Measuring X Finite temperature effects are another source of error.
The last gate needed for universality is the measuremerthese effects involve the creation of charge pairs from the
of X. The basic idea is to fuse the pair of anyons that formvacuum. Because these pairs have trivial total charge, even if
the state to be measured. T]ﬁl‘:) eigenstate will have some they br'a|d with a cor_nputatlo_na] anyon, the net charges of the
overlap with the vacuum, and will vanish with probability collective three particle excitation will still be correct. How-
p=d/|C(b)|, whereC(b) i,s the conjugacy class df ever, if one of these particles separates from the group, or

The otherX eigenstates have zero probability of vanishingS’eparate'y braids Wit.h another anyon, then errors will be in-
~ i iy troduced. The density of the thermal excitations goes as
because [i)=1/\/d2;» '|a’ba™) is orthogonal to the

> _ e AT whereA is the mass gap arilis the temperature.
vacuum fori >0. To detect the statg), we first apply aZ' A good anyonic quantum computer should therefore have
and then use the above fusion procedure. Ztgate can be | >m andT<A. In some implementations, however, it may
applied as a controlled sum gate with|B) target as dis- be more practical to accept a small error rate from the hard-
cussed in Sec. lll. ware, and then correct it using standard quantum error cor-

Of course, the above will require us to have many copiesection techniques. For such cases, we present below the nec-
on which to measure, which means we need to perform thessary steps needed to implement software based error
transformation correction for anyons.
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While any of the error correcting codes can be used, mogjubits, so as not to damage other states. That is, when mov-
techniques require embedding a code space inside a Hilbertg past other anyons, we always do so in the direction in
space on which we can do universal quantum computatiorwhich the damaged pair gets conjugated and the good qubits
However, in the case at hand, our computational states a@e unaffected.
embedded in a Hilbert spadéhe states with arbitrary flux In the case when the qubit passes the above test, then we
and chargein which we cannot perform universal quantum have projected into the zero net flux subspace, but otherwise
computation. Therefore, before starting the recovery protoleft the state uncha_mged. The_ngxt step is to deal with electric
col, we must first deal with states that have leaked out of th&harge. Because it is very difficult to measure the electric

computational subspadhe subspace in which we can per- charge of a single anyon, we will start with a fresh ancilla
form universal computatiohs |0), made from two anyons neither of which have electric

charge, and copy the state over. Once again we will be using

. the incomplete swap circuit,
B. Implementation

To deal with leakage errors we can construct a version of
the swap-if-leaked gate described by Kengpel. [13]. The |¥) X1 |0)
idea behind the gate is to implement a projective measure-
ment that can distinguish the computational subspace from
its complement. If a state if found to be in the computational |0} X [@)
subspace, it is left alone. Otherwise, it is replaced with an

arbi.trary .ancillla that is in the computatioqal subspace. Th%vhen acting on the computational basis. Of course, the heart
ancilla will still be an error, but one that is correctable by OLa leakage detection algorithm is how to extend t'he opera-

standard quantum error correcting codes. In fact, the genergh s outside of the computational subspace. The procedure

methods of quantum error correction and fault-tolerant COMzannot be described simply by a circuit, and therefore we

putation can be applied to anyons as long as we can reliablyy, present a way of completing the controlled sum gate so

gggggt leaked qubits into a state in the computational SUb'Ehat the above operation will always yield a state that is in

Wi i f th £ simpl d perfect the computational subspace.
€ again 1ocus on the case of Simple and pertect groups, -, o following procedure is almost identical to the one

and defer the general case to the following section. In the q ducdd This is b o
current formalism, the computational basis is the set of state$€d 0 pro uce0) states. This is becaugé) states are

of a pair of anyons with zero total magnetic charge, wheré?Ptaineéd by taking a vacuum state and projecting to the com-

each anyon has zero electric charge and a magnetic flux &ut_atior_\al basis,_which is primari_ly leakage detectiqn. The
the formaba—! or its inverse main difference is that when doing leakage detection, we

The first type of error that we will deal with, is when the oInIy_ get r(])ne chagce .]?fhusing th? qtﬂge(fayse of thebr|10—
total magnetic flux of the pair is nontrivial. This is a particu- cloning t eoren l_" : .t e state lea ed, It Is ac_cepta et
larly grievous error because, if we drag around a pair with a{eplace it by anything in the computailonal basis. The latter
nontrivial net flux, we could be introducing errors into all the is clearly not acceptable when creatiiy ancillas.
other qubits. Furthermore, our assumption that we can per- We will use the incomplete swap procedure for the second
form the operatiorh,g—h,hgh™? relied on the fact that the round of leakage detection. Recall that by this point we have
second pair had zero net magnetic flux, so it is important tharojected the qubit into the zero net flux subspace. Take the
we detect and fix this error first. qubit and a/0) ancilla, and conjugate the ancilla by a func-

To detect a net flux, we take an ancillg)®|g~*) and tion of the qubit's flux:
encircle it by the qudit we are performing the leakage cor-

iha=i)— A
rection on. The ancilla will get conjugated by the net flux of f(aba™)=a,
the qudit, and the qudit will get conjugated by the net flux of . B
the ancilla which should be zero. We then fuse the ancilla f(anything elsg=1. (47)

with a pa_i_r with opposite ﬂL.JX' If the net flux of the qudit s in This is the same extension of a controlled sum that was used
the stabilizer ofg, the fusion will have vacuum quantum ~ .
to produce|0) ancillas.

numbers with a finite probability, whereas if the conjugation ; - . 1
changed the flux of the ancilla, there will always be a particle Afterward, we conjugate the original qubit Byg) -,

left behind. If we repeat this many times with many dif'ferentWher_eg IS the flux of th_e _anC|IIa. Note that because we know
ancillas|g)®|g 1), with good statistical confidence we will at this point that the original qubit has net flux zero, the state
be able to tell if the net flux of the qudit is in the stabilizer of ©f the ancilla will not exit the computational basis during this

g. BecauseS has no center, the intersection of all stabilizers@Peration(though it might change within the computational

is the identity, and hence repeating the above with Sufﬁ_basis if the original state had nonzero electric chargee

ciently many different elementg, we can detect a nonzero "€Sult of the past two controlled sums gate is
net magnetic charge. d—1

If we detected a net flux, we replace the state with an :

L ' ®|0)+ ®|0)—|0)® + Deli),
ancilla in the state0). Of course, we must be very careful [nyel0)Fly)el0)—~[0)elw) igo el
when moving the damaged ancilla pair out of the region of (48)

022315-10



ANYONS FROM NONSOLVABLE FINITE GROUPS AE . .. PHYSICAL REVIEW A 67, 022315 (2003

where parallel and perpendicular refer to inside and outside 1 L
. . — ’ ! —

the computational basis, and none of thetates are normal- Px=TNT 2 E XY@ [x" ™)
. . .. . . . . | | Ce((G) X’E[Cﬂfﬁl(x)]
ized. Finally, we replace the original pair with the ancilla pair
and discard the original pair. )

Clearly, the new state will be in the computational basis. ® 2—1 (X'|®(x"~ |” (50
Furthermore, if the original state was in the computational xte[Cnf ()]

basis, then the_ new state will be equal to the old state, an\gvhere again is an element oP/N andC(G) is the set of
unentangled with the old anyons.

Having complemented our gate set with a leakage Correcc_:onjugacy classes d.

. ving P urg Wi 9 _ These states have the nice property that when conjugated
tion scheme, we have proven nc_)t only that we can do ur"by any elemenh’ e P (or equivalently, when a fluk’ e P is
versal quantum computation with anyons, but that theseyaqqeqd around themthe effect only depends on the coset
computations can be made fault tolerant. f(h') of h', and generates the transformation

Pg— Pf(h')gf(h’)~1- (51)
VI. UNIVERSAL COMPUTATION FOR NONSOLVABLE
GROUPS Because of this, if we use the usual scheme of passing one
_ ) ) pair of anyons in between another, and they are both pre-
We will now generalize the results of the preceding secpared in states of the above form, the net effect is that the

tion to any nonsolvable gI’OUp. Unfortunatelly, in our proofsinner pair will get Conjugated by the outer pair as
for the simple perfect case, we made extensive use of the fact

thqt we can compute any classicgl _function simply by mult_i— Ph® Pg— Ph® Phgh-1, (52)
plying the inputs with ancillas. This is no longer true, even if
we restrict ourselves just to perfect groups that are nokeeping the pair unentangled.
simple. The quickest example B5X Ag which is perfect,
but has two normal subgroups given by each of Aefac-
tors. Thus, if our two inputs areXd1 andgXx 1, there is no ) i » . )
expression made out of products in which the results differ in  While the operations of braiding, fusion, and vacuum pair
the second factor. creation described in Sec. IV A all seem like reasonable re-
The above example can easily be fixed by working withinduirements to demand from the physical system, the require-
one A5 Subgroup_ In generaL though, even this is not posment of ﬂ.UX ancillas is somewhat harder to JUStlfy. o
sible, as not all perfect groups have a perfect and simple N particular, take the case of a group that has a nontrivial

cue. two fluxesg andcg that differ by multiplication of an ele-

Theorem:If G is a nonsolvable finite group, then there Mentc in the center. These two fluxes cannot be distin-
exists a normal subgroupof G and a subgroupl, normal in ~ guished by conjugation, sinaegx(cg) *=gxg *. Thus, it
P, such thatP/N is perfect and simple. may be a difficult problem to distill these flux eigenstates
Once again we defer the proof to the Appendix. from the vacuum. o _ .

What the theorem tells us is that we want to work with A more reasonable assumption is to require the existence
cosets ofN in P. That is, we would like to replace our old Of ancillas only for the fluxes in the perfect subgroup. An-
flux eigenstates with states that are labeled by elements fther improvement might be to assume that we only have

P/N and invariant undeN. A good guess would be ancillas in the mixed statep, defined above, where
e P/N. These states might be easier to produce because they

are obtained from the vacuum by first throwing away the
anyons with flux not irP or with nontrivial charge, and then

A. New requirements for the physical system

Ix)= o > x'ny, (49  projecting to a definite coset & in P. Therefore, we will
VIN] nen replace our old requirement for the existence of flux ancillas
by
(4") We have ancillas in the stajg, for any xe P/N.
wherex is an element oP/N, andx’ is an element in the It would be highly desirable to be able to prove that re-

coset thak represents. More specifically,ifP— P/N is the  quirementg1)—(4) are sufficient to create the states in 4
canonical epimorphism that maps elements to cosets, thddnfortunately, it appears that requiremefits-(3) combined
we require thaf (x’) =x. The particular choice of’ has no  with (4’) may neither be a subset nor a superset of require-
effect on the above definition. ments(1)—(4). Thus, in a sense, we are imposing a different
The above is a good guess but not quite right. A givenset of requirements for this section. One ameliorating fact is
coset may intersect many different conjugacy classe8,of that in the case wheR is simple, the stateg, are just flux
each of which lies in a different superselection sector. Thusgigenstates. We therefore could have used requireméit (4
we are effectively working with mixed states. for all sections of this paper. We will not attempt to describe
Remembering that we really want to keep our anyons inn the Appendix a protocol by which these generalized ancil-
pairs of zero net flux, the right choice for the new states is las can be created, however.
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B. Universal computation

As in Sec. IV B, we choose two elemergish € P/N such
thata’ba 9=b for some primed, anda'ba '#b for 0<i
<d. We then define our computational basis states as

Pi= Paiba~is (53

which we define as eigenstates of th@perator. TheX op-

PHYSICAL REVIEW A67, 022315 (2003

to break the symmetry and obtairdth root of unity. That is,
we use a controlleXX ! gate from thepg with a p, target to
create the state

®

d—1d-1
Sy Pnpopzn)

n=0 m=0

d-1d-1
> 2 XippxIT
<6 <0

d,

ok

P6®P0:(

1
erator is defined by the actioX(p;)=Xp;X'=p;.; and its —3
eigenstates can be obtained using the projection operators
Pi=3{"00 'X'/d by

1d-1d-1d-1
> > 2 XpoXT®o "IMPpoP]
i=0 j=0 n=0 m=0

1d-1
(56)
m

d_
d2, > (PapoPm)@(PopoPr)

1 d-1 d-1
pi=dX PiPOPiT:a( > wiXi)ﬁo( 20 wixif)-

: =

and then discardtrace ouf the first state to get the stage
(54) =2,PwooPn=Z,p5/d, which gives us an unknown eigen-
At this point proving that universal quantum computation St&t€ 0fX as before. We then discard and repeat if we ob-
can be achieved is fairly straightforward, and is almost iden{@ined thepg state, and otherwise we relabel the statgs
tical to the discussion in Sec. IV. The major differences occur ONCe thepi state is available, we can use a controlled
when we have to deal with states outside of the computaSUm gate to produce tregate, which will allow us to pro-
tional basis, that is, when creatipg states and when dealing duce anyX ancilla including morep; states.
with leakage correction. Both of these issues will be dealt Finally, measuring< works by fusing the pair of anyons,
with in the following section. As for the rest of the opera- P€cause theq are orthogonal to the vacuum for-0. The
tions, we will only give a very brief discussion. full measurement proceeds as befqre by copying, permuting
Because the, states have the same braiding properties aStates using th& gate, and then fusing.
those of the fluxes of a group/N (and, in particular twa&
eigenstates remain unentangled after braidirtge same

method for producing a Toffoli gate applies to them. One final issue remains: How do we measure whether a
MeasuringZ is easy because the states have support in state is in the computational subspace? Projecting onto the
orthogonal subspaces. The cofuging the Toffoli gateand  computational subspace is useful becausegds just the
fuse with ancillas procedure will work just as well as before. hrgjection of a vacuum state to the computational basis. Fur-
For the interested reader, we will carry out below some ofhermore, this projection will allow us to perform leakage
the calculations needed to deal wiheigenstates and prove cqrection.
universality. Most of the results seem almost miraculous Qne of the new issues that arises for general nonsolvable
when expressed in the language of density operators. HOWyyoups is that if we have a state in the computational basis,
ever, the reader should bear in mind that we are only usingng we braid it with an electric charge carrying a nontrivial
density operators to account for the different superselectiopbpresemation of the subgrotyy then the state will move
sectors. If we just fixed a superselection sector for each pagytside the computational basis. The other issue is that the
ticle, we would be dealin_g with pure states, and all of theconjugacy class of an element@might be larger than the
proofs from the past section would carry through. conjugacy class of the element i though given thaP is
We begin by studying the action of the controllXd™  normal, the first set will be entirely contained fn
gate onX eigenstates: Let us begin by examining how the leakage correction
1 algorithm must be changed. The first step is to detect
o —im+imyi  yeit o o~ whether the net flux or charge of the pair of anyons we are
Pm®Pn d izzo ,Zo @ X poX®ph working on has a nontrivial effect on the stateg. The
d—1 d—1 procedure is to braid the pair around the ancilla pair and then
Cimtimai v Sioul fuse the ancilla with another ancilla in the state 1. If the
iEO Zo @ "X poXTe X ppX T anyon pair has an effect on the ancilla stgigs then the
fusion statistics will be altered, and this will be detectable
after many repetitions. If our state is found defective we
discard it as usual, and replace it by a state in the computa-
tional basis. Otherwise, we move on to the next step. Note

C. Leakage detection andpg generation

d-1d-1

1
d

1d—l d-1
:_2 E w—im+jmxi XjT® —in_~ in
d & < Po W ppw

i=0 j=0

1 o _ _ that if the anyon pair had a net flux in the subgrdWpor in
=g 2 o M, XiT® pr some element outside & that commutes wittP, then the
1=01=0 state will still advance to the next round of error correction.
=P @ P, (55 ~ However, this anomalous flux or charge will not affect the

usual braiding properties.
which is equivalent to its action on pure states. Therefore, The second round of error correction is a swap with an
once we havey states, we can use the same trick as beforancilla in thep, state. Note that using our universal classical
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computation inP we can guarantee that if the original state  Furthermore, there are anyons that are not based on the
was in P, the ancilla ends up in the computational basis.electric and magnetic charge modguantum double of a
However, if the original anyons are outsideRfwe will get  group presented here. Some of the more exotic anyons are
a state that is withi® (becauseP is norma) but not neces- likely to be good quantum computers, but in general, their
sarily in the computational subspace. The final step is t¢Omputational power remains unknown.

perform a swap with a second ancilla in thg state, where We have also neglected to present, in this paper, an ac-
now we know that the first ancilla had to be composed ofcount of the resources used to perform computations. While
anyons with no charge, and fluxes onlyRnThis guarantees it should be clegr that computations can be d_one with at
that the final state of the second ancilla is in the computa/Orst & polynomial overhead in the size of the input, some
tional basis, and equals the original state if it did not |eak’gates_(|n particular those that require calculations of arbitrary
completing the leakage correction procedure. functions over the groypmay require resources that are ex-

To createpy we also use a swap, this time between a pairponential in the size of the group. A. lot .of the wasted re-
created from the vacuum angpbg ancilla. We then try to fuse SOurces may come fm”.‘ the description in terms of general
the leftover vacuum state with @,-1. If they fuse into the groups, though. For a fixed group, the resources can prob-
vacuum, then the ancilla is in p, state. The logic is as ably be significantly reduced.

follows: if the vacuum pair had electric charge when created, Finally, there remains the question of physical systems

then the swap will not change the charge, and hence it cannV\fhiCh contain anyons. Because of the requirement of two
P 9 g¢, .dimensions, we must look for quasiparticles in some two

disappear into the.vacuum. I the vacuum pair has no elecmaimensional medium. There are some indications that non-
charge but is outside @, then the ancilla is still guaranteed Abelian anyons may arise in the fractional quantum Hall

I/f/)ebv?/illlnbpé Egrr]t.ﬁegggrebWgsrél(;?gjeunﬁh“r_llghghsa\gcuunﬂrgt;ttzteeﬁect (see Refs[3,4] and references therginHowever, at

. . jugating by an S the moment, there are no physical systems out of which the
will end in a flux state outside d?, which is orthogonal to - . . L

-1. Finally, if the vacuum pair is a pair of fluxes B then anyonic computer may be built. Even 'T no pr_]ysma! imple-
Pp=t. ' mentations are ever found, though, this subject will hope-

gt;\{g;beogfsfgg tfhoerrgopma;,)uFt)gt?glnba:)I/bzusliasergﬁifﬁegge?:;ii re (E)ully still be interesting because of its beautiful mix of com-
X ) > tati icle physi th 3
swap can guarantee that a staté’ioutside of the computa- utation, particle physics and group theory.

tional basis, will remain outside of the computational basis
(just like in the simple perfect cageOnly when the ancilla is ACKNOWLEDGMENTS
in the statepg can the fusion into the vacuum occur.

The above procedure for producipg ancillas completes The idea for universal classical computation with simple

the gate set for nonsolvable groups, and proves the maiﬁnd perfect groups was initially suggested by Alexei Kitaev,

; . ; ; hom | am highly grateful. The author would also like to
result of this paper: that anyons with fluxes in a nonsolvabld® W . ; . .
group can perform universal quantum computation. SZ?ESJSEQKE;:E’SK'”’ Jim Harrington, Meg Wessling, and

This work was supported in part by the National Science
Foundation under Grant No. EIA-0086038 and by the De-
While we have shown that universal quantum computapartment of Energy under Grant No. DE-FG03-92-ER40701.
tion is theoretically feasible for any nonsolvable group, it is
still not yet clear whether we will ever be able to build an
anyon based computer. First of all there is the fact the small-
est nonsolvable group &5 which has 60 elements. Obtain-  As discussed in the main text, the requirement of a supply
ing such a group from symmetry breaking seems problemef calibrated flux ancillas needs further justification. In this
atic. section, we will show that for a perfect and simple group, the
One may wonder whether we can do computation withrequirements of braiding, fusion, and vacuum pair creation
solvable groups. For Abelian groups, each superselectiocan be supplemented by one extra measurement to allow the
sector consists of just one state, so it is not possible to erdistillation of flux ancillas. We will not cover the general
code quantum data in a topologically invariant fashion. At-nonsolvable case, though.
tempts such agl4] encode the quantum data in a superpo- The new measurement involves determining whether a
sition of position eigenstates, but this has no more robustnesingle anyon has trivial flux or not. Indeed, this measurement
than using superpositions of positions of any other neutramay even be done destructively. The plausibility of this mea-
particle of the same mass. surement relies on the fact that nonzero flux charges are to-
Hope still remains for solvable non-Abelian groups. pologically nontrivial configurations that often have much
While producing Toffoli gates using conjugation as in this higher masses than their electric charge counterparts. Natu-
paper will most likely no longer be feasible, Toffoli gates rally, dyons also have large masses and will be detected as
might still be performed by employing magic states. In fact,having nontrivial flux.
Kitaev has such a procedure for the grdsyp[15]. The full Step 1. Creating electric ancilla pair§:he procedure for
set of groups which can perform universal quantum compuereating flux ancillas begins by creating single anyons with
tation remains unknown, but we believe it does not includezero flux. These are obtained by creating a vacuum pair,
every non-Abelian group. measuring the flux of the first particle of the pair, and dis-

VII. CONCLUSIONS AND OUTLOOK

APPENDIX A: CREATING THE ANCILLAS
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carding the second one if the first one had nontrivial flux.

The next step is to create pairs of anyons, where each e €
anyon has zero flux and unknown charge, but the pair has O 0O
vacuum quantum numbers. Of course, if we could nonde-
structively distinguish trivial from nontrivial flux, we could
skip this step, as the vacuum pairs always have vacuum FIG. 3. Using electric charges to checkgi{=g».
guantum numbers.

Take two of the single electric charges we have produced?air combined with the second anyon of the second pair. If
We are going to try to project this state onto the desired statée combined flux is trivial, the first anyon of each pair has
with vacuum quantum numbers. Consider the process of créhe same flux; otherwise the flux is different. The procedure
ating a pair of anyons from the vacuum, braiding one ofis depicted in Fig. 3.
them around the pair of charges, and then fusing the vacuum The above procedure allows us to sort the flux pairs into
pair. If the pair of charges had vacuum quantum numbers.bins” that depend on the total flux of the first anyon of the
then the vacuum pair will remain in the vacuum statePair. We will get as many bins as elements@feach con-
throughout this process, and fuse into the vacuum at the eri@ining an unlimited supply of vacuum pairs which carry the
with unit probability. On the other hand, if the pair of Ssame flux in the first anyon of the pair. At this point, if the
charges does not have vacuum quantum numbers, then thdléxes have not decohered in the flux basis, then we must
will be a finite probability that the pair created from the have an entangled state involving all anyons in a given bin.
vacuum will leave a particle behind after fusi¢since the ~ Throwing away a single flux from each bin will produce the
vacuum is the only state that is left invariant by the action ofdesired decoherence, just as it did when breaking the various
every flux. symmetries in the main part of this paper.

Repeated application of this process will be a projective All that remains is to identify each bin with an element of
measurement which determines whether the pair of chargds. Assume that we were given an assignment of an element
has vacuum quantum numbers. If we project onto a vacuurff G to each bin. The assignment could be checked by using
pair, then we have found a good charge ancilla pair. If thehe following procedure. First, we note that any finite group
pair does not project onto the vacuum stdtecause the two G may be described by a set of elemefs} and a set of
anyons do not transform in conjugate representations, or bégelations of the forng; ---g; =1 which they obey. To check
cause we projected to a state orthogonal to the vagutiven  that the assignment is correct, we just need to check all the
we pair them up with other charges and repeat the proceseelations(supplemented by the trivial one element relations
While slow, this process will eventually yield as many elec-g'g"=g"™). These can be checked again with the electric
tric charge pairs with vacuum quantum numbers as neededharge ancillas, using a loop that circles each of the fluxes in

Step 2: Identifying the magnetic charg@he electric an-  the relation in the correct sequence.
cilla pairs are useful because they can perform a nondestruc- To generate guesses, we could just randomly assign to
tive measurement of magnetic flux. The procedure is to takeach bin an element aj, which gives us a probability of
a member of the electric charge pair, drag it around th&uccess of at least 1(|)!. Of course, we can be a lot
anyons or group of anyons whose total flux we want to measmarter, as the above procedure can help us figure out the
sure, and then fuse it with its pair. powers of a given elemeriincluding its inversg and even

To describe the effect of the fluxes, IB{g) be the rep- the elements in its conjugacy class. Thus, the need for guess-
resentation of the first electric charge of the pair. [étbe  work is minimal, and some of the choices correspond to
an orthonormal basis for the space on whiRlacts, and let different valid assignmentgi.e., automorphisms of the
[n*) be the dual basis for the conjugate representadn group.
under which the second charge transforms. The effect of a Analysis of the produced ancillagt this point we have
flux g is then almost produced the desired ancillas, with one caveat: the

individual anyons do not have trivial chargee., they may

be dyong. However, all we have done to the pairs, after
; |n>®|n*>—>§n: [R(g)[m]®[n*). (A1) creating them from the vacuum, is to measure the flux of one

of the anyons. That means that the electric charge portion of

Just as before, if the total flux is nontrivial, there will be a the state is still in the vacuum state. More technically, if the
good chance that the fusion of the electric charges will leav@ncilla pair circles a flux that commutes with the flux of one
a particle behind. On the other hand, if the total flux is trivial, anyon of the ancilla, then the state remains unaltered. This is
even if the total charge is not, the pair of electric charges wilthe same behavior that the pure magnetic charges would
always fuse into the vacuum. have.

Repeated application of this procedure will determine Some careful thought at this point shows that these states
whether the total flux is trivial or not. Furthermore, this pro- are good enough for the quantum computation procedure
cedure will at worst introduce decoherence in the flux basisPresented in the bulk of the paper. Indeed, going back and
but will leave all flux eigenstates unchanged. repeating all the steps with these generalized ancillas would

We can use this procedure to compare the fluxes of twéequire very few modifications. The fusion to measure in the
anyons. In particular, consider two pairs created from theZ basis would now have a lower success probability, which is
vacuum. Measure the total flux of the first anyon of the firstcompensated by a higher rate of producing acceptihle
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states, but otherwise most gates remain unaltered. We have Theorem.If G is a nonsolvable finite group, then there
therefore succeeded in constructing an ancilla reservoigxists a normal subgroupof G and a subgroupl, normal in
which, while slightly different then the one initially desired, P, such thatP/N is perfect and simple.

is useful for universal quantum computation. Proof. Shown by the above text.
We now turn our attention to using our groups to compute
APPENDIX B: MATHEMATICAL THEOREMS classical functions. We shall prove that the set of functions

that can be written in product form is complete, in the sense
This appendix proves the major mathematical theoremshat it includes every function frors"— G, if G is simple
needed in the bulk of the paper. We begin by stating theand perfect(or equivalently simple and non-AbeliariThis
definitions of some of the mathematical terms used. was first proven in the mathematical literature by Maurer in
Perfect group.A nontrivial group G such thafG,G] 1965[16]. In the computer science literature, a related result
=G. Note tha G,G] is not the set of elements of the form was proven by BarringtofiL7]. In this paper, we will provide
[91.9,1=010-9; *g, * but rather the group generated by our own constructive proof for the following theorem.
these elements. Even & is perfect, there may not be a  Theorem.f G is a simple and perfect finite group, then
commutator expression for every element. any functionf(g;, ...,9,):G"—G can be expressed as a
Nonsolvable groupA group that has a perfect subgroup. product of the inputgg;}, their inverses{gi_l} and fixed
Normal subgroupA subgroupH of a groupG such that  elements ofG, any of which may appear multiple times in

ghg 'eH for everyheH andgeG. the product.
Simple groupA group with no normal subgroups other  Proof. Throughout this proof, we will refer to the set of
than the whole group and the trivial group. functions that can be expressed in the above form as “com-

Before we get to our main theorem, we will prove a theo-putable.” Proving the above statement is equivalent to show-
rem that will allow us to deal with general nonsolvable ing that all functions are computable. The proof consists of
groups. We intend to show that we can extract from nonsolvbuilding a series of computablé functions that map most
able groups a simple and perfect group. The simple perfealements to the identity, and then expressing arbitrary func-
groups (which can also be described as the simple nontions as a product of thes®functions.

Abelian groupg are the ones on which we can perform uni-  Step 1.Given a group elemera not equal to the identity,
versal classical computation and are therefore important folet C(a) denote its conjugacy class. Then the subgroup gen-
this paper. erated by the elements 6fa) is equal toG. This is because

We begin by defining theth derived subgroups by the the subgroup is a nontrivial, normal subgroup®&andG is
relationsGW=[G"" Y ,G("" D] andGM=[G,G]. Asolv-  simple.
able group is one for whics")={1} for somei. A nonsolv- Step 2.Fix two disjoint subset#\ and B of G. Define a
able group must have ansuch that for evenj>i, G"  family of functions{s>8(g):AUB—G} with elements la-
=Gl andG(" is nontrivial. The grougs(" is perfect, thus  peled byc e G:
the definition for solvable groups is consistent with the defi-
nition for nonsolvable groups given above. 1 VgeA

Furthermore, all the groupd™ are normal subgroups of 5pP(g)= ¢ VgeB (BY)

G. This can be proven by recalling the property '

9[91_,92]9_12[99(111?._1,9929_'1]- The re(si)t follows by in- it the function 528 is computable for some# 1, then every

_d“C“.Qq becaus&™ is normal inG, andG™ is normal inG  fynction in the family is computable. To prove this choose

if G011 is. We have therefore shown that every nonsolvableynyd e G. By step 1 there is an expression tbas a product

groupG has a perfect normal subgroép of elements in the conjugacy class of(for instance,d
Sadly, this subgroup is not necessarily simple. However':glcgl‘lgzcgz‘lc). Then 8" is obtained by substituting

we can prove that every perfect groBphas a normal sub- 5B for ¢ in the expression

groupN such thalP/N is perfect and simple. We chookdlo : Step 3.Fix a setA, an elehenb not in A, and an element

be a normal proper subgroup Bfsuch that no other normal . B
proper subgroup o has more elements, which is well de- x+#D. If a function 52-® is computable for somB such that

fined becaus® is finite. Letf be the canonical epimorphism be B, then there exists a computable functiéh® with

P— P/N which maps elements into cosets. Becaluisesur- ~ two new sets such th&u{x} CA" andb e B'. The function

jective we have [P/N,P/N]=[f(P),f(P)]=f([P,P])  can be obtained from

=f(P)=P/N, which, combined with the fact tha®/N is o

nontrivial, shows thaP/N is perfect. 86 % (9)=[55%(9).9x 1] (B2)
Finally, assume thaP/N has a normal, nontrivial proper

subgroup A. Then B=f %(A) is a normal subgroup Using Step 2. The above equation assumes that we have ex-

of P, because for any elementsb,,b,eB tended the domain 085° to G, which can be done in a
and peP, we have f(b;b,)=f(b;)f(b,)eA and natural way once we have fixed a product representation for
f(pbyp Y =f(p)f(b,)f(p) LeA. Furthermore,B is a &4°. The elemend was chosen not to commute withx 2.
proper subgroup oP, and N=f %(1) is smaller thanB Such an element must exist becawéds simple and non-
=f"1(A), leading to a contradiction. Therefor®/N is  Abelian, and hence has no center. The elengei#t just e
simple, and we have finished proving the following theorem.=[d,bx1].
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Step 4.The functions defined by2(g)=6~B, with A Step 6:Fix i e Z" and element®,, ... b;,,G. If the

=G—{b} andB={b}, are computable. To prove this start function 521 """ bi(gl, ...,0i) is computable, then so is the
. . By ’

with A;={1} andB,={b}. The functions,*"** is comgut- function 822" *1(gy, ... gi,i+1). By Step 5 it is suffi-
able because it is in the same family g)=g= 521‘ L cient to be able to compute
Then proceed by induction, using Step 3, on the elements in by, ... b1
G—{b} that are not included i\, . O (91, -+ Giv1)

Step 5.For a fixed set of ordered elemertts, ... by by, ... ; i+

P - B =[0Gy, - 0,80 MG+ 1], (B4)

define a family of functions labeled ky

where the functiorﬁzi”(giﬂ) is computable by Step 4, and
dis chosen so that=[c,d]#1.

by, .. b c for g;=by, ..., andg;=b;, Step 7.Using induction on the number of inputs of the

S (91 9)=1 1 Stherwise. function, and starting from the base cagé(g,), it is clear

(B3) that all the functions defined in Step 5 are computable.
Step 8.Every function is computable because
The same proof in Step 2 shows that if any function of the (91, ....8i)= I ... 11 5?(15','fft?i,b_)(91, i)
. . . L . . b,eG b;e G 1 !

family with c#1 is computable, then the entire family is ! :

computable. Q.E.D.
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