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Introduction to the Special Issue on Codes on Graphs
and Iterative Algorithms

I N the 50 years since Shannon determined the capacity of
ergodic channels, the construction of capacity-approaching

coding schemes has been the supreme goal of coding research.
Finally today, we know of practical codes and decoding algo-
rithms that can closely approach the channel capacity of some
classical memoryless channels. It is a remarkable fact moti-
vating this special issue that all known practical, capacity-ap-
proaching coding schemes are now understood to be codes de-
fined on graphs, together with the associated iterative decoding
algorithms.

Considering the intensity of the efforts to achieve Shannon’s
limit in the past few decades, it is ironic that the main ideas per-
taining to codes on graphs and to sum-product decoding were,
in essence, invented 40 years ago by Gallager but were subse-
quently neglected by the coding community. It is some conso-
lation to recognize that Gallager’s codes were ahead of their
time—given the limited processing capabilities of the time, Gal-
lager’s codes were simply considered impractical.

Even so, a small number of researchers continued to study
codes on graphs. Zyablov and Pinsker (1975) and Margulis
(1982) studied Gallager’s low-density parity-check codes. In
1981, Tanner wrote a landmark paper that formally introduced
the graphical model notation for describing codes, proved the
optimality of the sum-product algorithm in cycle-free graphs,
and founded the topic of algebraic methods for constructing
graphs suitable for sum-product decoding.

Recent excitement about codes on graphs and sum-product
decoding was ignited in the mid-1990s by the excellent perfor-
mance exhibited by the turbo codes of Berrou and Glavieux,
MacKay and Neal’s near-capacity results on Gallager codes,
and the linear-complexity expander graph codes of Sipser and
Spielman. At the same time, other researchers recognized a
unifying theme in the iterative decoding algorithms and in the
mid-1990s papers showing the connections between iterative
decoding of codes on graphs and algorithms in the artificial
intelligence and systems theory communities were published
by Wiberg, Loeliger, and Koetter (1995), Frey and Kschischang
(1996), McEliece (1997), McEliece, MacKay, and Cheng
(1998), Kschischang and Frey (1998), and Aji and McEliece
(1998).

By now there exists a number of classes of codes on graphs
that can approach the Shannon limit quite closely with moderate
complexity, or extremely closely with high but not infeasible
complexity. Indeed, ideas presented in this special issue have
allowed us to approach the Shannon limit to within hundredths
of a decibel.
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All of these codes consist of multiple, easily decodable, rel-
atively simple component codes connected by a large pseudo-
random permutation, usually represented by a bipartite graph.
The permutation allows the construction of long codes, but does
not of itself require any decoding computations. The decoding
consists only of multiple iterative decodings of the simple com-
ponent codes.

Although some of the questions that arise in the context of
codes on graphs are answered in this special issue, many remain
open. Most results to date have been experimental—will useful
supporting theory emerge? Work in the 1990s focused on simple
channels—can this field be extended successfully to include
more complicated, realistic channel models? Most analyses so
far assumed the code graphs to be effectively cycle-free—can
we analyze the more practical case of graphs with cycles? Real-
izations of codes in the existing literature century focused on
random graphs—can we use algebra to construct graphs that
have useful properties and at the same time are suitable for it-
erative decoding? Experiments in the 1990s came from digital
simulations—are there more effective implementations of iter-
ative decoding?

Two main problems motivate all papers in this special issue:
the representation of systems on graphs and the sum-product
algorithm as a means of approximate inference. Some contri-
butions focus on codes and applications of coding theory while
others take a more fundamental approach and consider general
iterative, graph-based algorithms. Most assume the graph is ef-
fectively cycle-free, but some begin to offer theoretical insight
into graphs with cycles.

The issue begins with a tutorial paper by Kschischang, Frey,
and Loeliger, who compare and contrast a variety of graph-
ical representations and algorithms. The authors observe that
all these graphical representations express the factorization of
some global function into a product of local functions, and that
the associated iterative algorithms are efficient methods of com-
puting a marginal of the global function by iterative computa-
tion of local functions. They show that a large variety of known
algorithms, including generalizations of the Kalman filter on
Gaussian graphs, can be derived as special cases of this gen-
eral framework.

Geman and Kochanek build on the graphical model frame-
work, and define code structure using Chomsky context-free
grammars and production systems. They also show how
“coarse-to-fine” dynamic programming and “thinning” can be
used to reduce the complexity of exact decoding.

The first paper by Luby, Mitzenmacher, Shokrollahi, and
Spielman treats the application of graph-based codes to the
erasure channel. The authors show that it is possible to closely
approach the capacity of an erasure channel with a simple
iterative procedure. One of the key results of this paper is that
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this is possible with a time complexity that is linear in the block
length of the code.

Two central questions for the performance of iterative algo-
rithms are the existence of fixed points and the conditions under
which the algorithms will converge to them. For sum-product
decoding on memoryless channels, much progress has been
made recently using an approach calleddensity evolution,
which interestingly also goes back to Gallager. Some of the key
papers on this topic appear in this special issue (Luby, Mitzen-
macher, Shokrollahi, and Spielman; Richardson and Urbanke;
Richardson, Urbanke, and Shokrollahi). These authors prove
concentration theorems which show that in the limit large
random graphs can be assumed to be effectively cycle-free.
This allows the calculation of precise convergence thresholds.
Code parameters can then be carefully chosen to optimize these
thresholds. This approach has been used to find low-density
parity-check codes with performance extremely close to the
Shannon limit on typical memoryless channels.

In another contribution, Richardson and Urbanke show how
irregular low-density parity-check codes can be constructed so
that encoding takes linear time.

The density evolution algorithm can be sped up by approx-
imating the densities of messages by the normal distribution
(Chung, Urbanke, and Richardson; El Gamal and Hammons).
The iterations of the decoding algorithm can then be modeled as
a simple one-parameter dynamical system. Quite accurate and
fast performance predictions can be made with this technique.

Davey and MacKay apply powerful low-density parity-check
codes to construct schemes for communicating over channels
with synchronization errors. Their schemes are capable of cor-
recting hundreds of insertions and deletions per block with rea-
sonably high efficiency, well beyond any such scheme proposed
previously.

The theoretical analysis of iterative algorithms in graphs
with cycles is pursued in a number of contributions (Agrawal
and Vardy; Freeman and Weiss; Frey, Koetter, and Vardy;
Rusmevichientong and Van Roy; Sella and Be’ery).

Agrawal and Vardy analyze the dynamics of iterative de-
coding as a high-dimensional nonlinear system. Despite the
enormous dimensionality, it is possible to make some qualita-
tive statements, as well as to outline general analysis methods
taken from the theory of nonlinear dynamical systems.

Sella and Be’ery examine the dynamics near the fixed points
of iteratively decoding of product codes. Using a geometric
framework developed by Richardson, they linearize the turbo
decoding dynamics near a fixed point to study issues of con-
vergence and stability. The authors prove that for any
(information bits) product code, there is a unique and stable
fixed point, and give sufficient conditions for stability in the
general case.

Freeman and Weiss show that the fixed points of the max-
product variant of the sum-product algorithm (which reduces to
the Viterbi algorithm in a trellis) are local maxima according to
a particular neighborhood function. Rusmevichientong and Van
Roy show that when the sum-product algorithm is applied in a
graph describing the product of two Gaussian kernels, the fixed
points give the correct means. These are two of the few general

results currently known for the sum-product algorithm in graphs
with cycles.

Frey, Koetter, and Vardy study the behavior of iterative de-
coding algorithms as geometric algorithms in signal space. They
show how the signal space can be populated with points that cor-
respond to different decoding decisions and they give formulas
for computing these points, whose number grows doubly-expo-
nentially with the number of decoding iterations. They provide
visualizations of low-dimensional codes to illustrate the geom-
etry of iterative decoding in signal space.

Another major thrust of this special issue is to describe and
characterize the properties of codes on graphs. It is by now
well understood that the expansion property is of central im-
portance for iterative decoding. Burshtein and Miller consider
the behavior of message passing algorithms once they have cor-
rected most errors. They show that if the graph of the low-den-
sity parity-check code is a sufficiently good expander, then these
algorithms will definitely converge once they have corrected a
sufficiently large number of errors.

Zémor simplifies and improves the hard-decision decoding
algorithm used in the expander graph codes of Sipser and
Spielman. The decoding algorithm generalizes the natural
iterative hard-decision decoding algorithm for product codes.

Random graphs are known to be good expander graphs with
high probability, which partly explains the success of random
graphs in the construction of iteratively decodable codes. How-
ever, there is high practical interest in code constructions that
optimize the tradeoff of performance versus complexity. Some
papers in this special issue present new classes of codes with
good performance–complexity tradeoffs. Ping and Wu develop
a new class of low-complexity codes on graphs with perfor-
mance comparable to turbo codes, but with significantly less
decoding complexity. Ping, Huang, and Phamdo present analyt-
ical and simulation results on a class of codes based on so-called
“zigzag” graphs. This class is both simple and powerful and is
similar in spirit to the recent work of Divsalar, Jin, and McEliece
on “Repeat–Accumulate” codes.

Pseudorandom constructions of codes on graphs work well,
particularly for long block lengths, but more structured alge-
braic constructions are desirable both in order to describe codes
compactly and to control their distance and graph-theoretic pa-
rameters more precisely.

Tanner shows how to derive minimum-distance bounds for
codes on graphs. His approach is quite general, and is computa-
tionally feasible for structured graphs that are not too large.

The paper by Banihashemi and Kschischang extends the fun-
damental algebraic theory of Tanner graph representations to
Abelian group codes and lattices, just as the theory of trellises
for linear codes was earlier extended to group codes and lattices.

Forney introduces “normal realizations” for systems, which
can be derived from a graph of Wiberg type by requiring that
all variables have degree at most two. Any state realization of
a code can be put into normal form without essential change in
the corresponding graph or in its decoding complexity. Forney
shows that the sum-product algorithm can be applied to normal
realizations, and gives a proof of the Cut-Set Bound, which
shows that graphs with cycles may represent a given system with
much smaller local complexity than a cycle-free representation.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001 495

Forney also develops striking duality results for normal group
realizations, proving that a local dualization procedure applied
to a normal realization yields a normal realization for the dual.

The distributed graphical structure of the sum-product al-
gorithm maps naturally to parallel very large scale integration
(VLSI) implementations. Loeliger, Lustenberger, Helfenstein,
and Tarköy show that the local computations performed in the
sum-product algorithm map naturally to analog transistor cir-
cuits. The potential speed–power improvements of the resulting
analog VLSI implementations are enormous.

The sum-product algorithm is a general inference algorithm
and it is potentially very useful for inference in joint estimation
and detection models. Worthen and Stark review how graphical
models can be used in the design of iterative receivers, and in-
troduce some common principles for combining functions. The
editors believe that such a joint approach to various subtasks in
a complex system will be important for the development of so-
phisticated future communications systems.

As Guest Editors for this special issue, we wish to thank all
those who submitted manuscripts to the special issue. We also
thank our many thoughtful, diligent, and timely referees. We re-
ceived more good papers than could be accommodated in this
special issue, and have given preference to those that focus on
fundamental theoretical problems or promising new directions.
We begin the 21st century with this special issue on codes on
graphs and iterative algorithms, which we hope will lay sig-
nificant stepping stones toward answering some major existing
questions and opening up new directions of research.
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