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Complete phase diagram for coherent vortex formation
in a two-dimensional inviscid fluid in an annulus

Peilong Chen and M. C. Cross
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(Received 19 July 1996

By calculating the two-dimensional solutions and the second-order bifurcation analysis of the mean field
equations of a two-dimensional ideal fluid, we are able to complete the phase diagram of coherent vortex
formation in an annulus, which we have partially calculated in a previous g&bsrs. Rev. E50, 2022
(1994]. The complete phase diagram demonstrates the advantage of the statistical mechanics approach to

determine the final equilibrium directly from the initial conditidis1063-651X97)00408-X]
PACS numbdis): 47.20—k, 05.20.Gg, 52.25.Kn, 92.90x

Recently statistical equilibrium of a single coherent vor-
tex in a two-dimensional2D) incompressible ideal fluid has M ZJ r2wodr.
been studied in a disk, using the point vortex mddgland
the continuous vorticity mean field theofg]. Properties of

the vortex depending on the system parameters are calCyy an annulus in which we solve these equations, the other

lated and an interesting bifurcation from a symmetric vorteXmportant initial quantity is the conserved circulatih at
at the disk center to an off-center vortex was also found. In gne inner boundary,

previous papef3] we have solved the mean field equations

in an annulus which has an important additional parameter,

namely, the constant inner circulation, providing a back- 1 (ay
ground shear in the system. Calculation in an annulus is also C= 57| ar
closer to the application of the theory to the coherent struc-

tures on planetary atmospheres. By calculating the symmet-

ric solutions, the bifurcation point to single-vortex states, and .

the approximate single-vortex maximum energy, we estihich provides a background shear on the i@k

mated the parameter$otal vorticity, energy, angular mo- _ _Eguation(l) is solved by an iterative scheme: a guessed
mentum, and inner circulatiorof initial conditions leading  initial _\/ortlglty distribution w,(r) is used to solve the Poisson
to the formation of single coherent vortices. In this brief €quationV=y;=—w;. Next the, just calculated is substi-
report, we explicitly solve for the 2D single-vortex solutions tuted into the right hand side of E€l) and a neww, can be
and also perform a second-order bifurcation analysis on thealculated with each set ofu(3,(2). A root-seeking algo-
symmetric solutions. With these calculations we completdithm is then used here to find the set gf,(8,(2) giving an
the phase diagram, especially determining the parametér: With requiredQ, M, andE. Now the iteration is repeated
range with first-order transitions, which was inaccessible tdntil a convergedwy(r) is reached. We can also chooge
the previous methods, and demonstrate the potential of thigitially and find (u,Q) for a prescribed Q,M). On the
statistical mechanics approach in predicting the final equilibother hand, we can numerically integrate . to find the

de,

inner boundary

rium directly from the initial condition. axisymmetric solutions, and a second-order bifurcation
The two-level mean field equations which we solve areanalysis can be performed, which is described in details in
[4] Ref.[2]. From the bifurcation analysis, we can quickly find

the bifurcation pointfrom the first-order calculatioras well
q as the bifurcation behavidfrom the second-order results
5 , (D For Q=2, M=4, andC=1 in an annulus with inner
1+exd (ao+Qro—u)] radius one and outer radius two, solutions at four different
energies are shown in Fig. 1. In this case, there is a bifurca-
with #o(r) the equilibrium stream function andy(r) the  tion from the symmetric to single-vortex stagee Fig. 1 in
vorticity field. g is the vorticity level of the initial uniform [3]). The first graph, Fig. (B, has an energy smaller than the
distribution and chosen to be oneu,(3,()) are parameters bifurcation energy and shows a symmetric vortex ring. As
to be determined by the total vortici@, (kinetic) energyE,  the energy is increased through the bifurcation energy in the
and angular momenturil other three graphs, the vortex ring gradually breaks up and
finally reaches a single-vortex state at high energy. When
these asymmetric solutions are plotted in an entropy-energy
Q=J wodr, plot (Fig. 1 in [3]), they show a higher entropy than the
symmetric states at the same energy, indicating thermody-
1 1 namically more probable states.
_ - - ) The maximum energy stateorresponding t@— —«) is
. Zf Yowodr + 2 %boundarieg/O(VX Voz)-dl, a uniform vorticity patch with its shape strongly depending

= V24o(r) = wo(r) =
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FIG. 2. s dependence ok. X indicates the bifurcation energy
annulus with inner radius one and outer radius W_Symmetric and + the asymmetric solution. Note that the Symmetric solutions
solution atE=1.5598.(b) Asymmetric solution aE=1.5622.(c) always haves equal to zero. The lines are the prediction from the
E=1.5773.(d) E=1.5939. The bifurcation energy is 1.5619. Con- second-order bifurcation analysis.

tour levels are equally spaced.

FIG. 1. Vorticity contours forC=1, Q=2, andM=4 in an

dotted lines trace from the bifurcation poifthe X) to the
on the inner circulatiorC: as the circulation, and hence the |eft and give unstable solutions close to the bifurcation point.
positive background shefB], increases, the shape becomesHigher order terms in the expansion would bend the curve
more elongated in the azimuthal direction and thinner in thesround to the right, presumably to merge with the stable
radial direction. This is similar to the increase of the aspecko|utions found numericallythe +'s). (Note that the fixed-
ratio of an elliptical vortex with increasing shear flow found energy numerical scheme does not find the unstable solutions

in analytic solutiong5]. _ _ as the iteration procedure always favors the stable solution at
To quantify the asymmetric states we define the average

azimuthal angle spanned by a statgeas
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for a distribution centered a=0, with a andb the inner i l' \\\ 1
and outer radii. The difference between Zr ands can then R !/ Sso d
be treated as the order parameter of the transition and it is p/ S, d
zero for a symmetric state. If the bifurcation is a forward ,F 0.00 -7'(
pitchfork bifurcation, s will scale as the square root of w L .
AE=E—-E ., with E . the bifurcation energy. Fo€C=1, s
plotted as a function of energy in Fig. (Zhe +'s) clearly i )
shows this scaling behavior. X Bifurcation energy i
This scaling becomes apparent in the second-order bifur- . , .
. . — . | Discontinuous transition energy |
cation analysi$2] becauses is then proportional to the per-
turbation andAE to the square of the perturbation. The re- -0.05

sults calculated from the analysis are shown as the solid lines
in Fig. 2. ForC=1 the solid line agrees perfectly with the

single-vortex stateghe +'s) at small's and the agreement

0
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c

1

Inner Circulation
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C
c

remains quite good even whgapproacheST. The positive
value of AE found in the analysis fo€=1 again confirms a
forward pitchfork bifurcation.

FIG. 3. Complete phase diagram f@q=2 and M=4. E .
represents the maximum energy of the symmetric solution. The
solid line is the bifurcation line. The dotted and dashed lines are the

However, a< is lowered AE from the bifurcation analy-  maximum energy for the symmetric and asymmetric solutions, re-
sis becomes negative at a particulgrsignifying a backward  spectively. The dotted-dashed line is the first-order transition when
pitchfork bifurcation. Particular examples are shown in Fig.a bifurcation is not present, i.e., where the entropies of the two
2 for C equal to—0.249 and—0.27. In these situations the solutions cross.
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that energy. Thus a continuous transition from a symmetric yields a higher entropy at that particul&, and pointP
state to a single coherent vortex exists €@rlarger than a marks the crossing of the two maximum energy lines. With
particular value, which is about 0.2 forQ=2 andM=4. this phase diagram, we can quickly predict the final equilib-
Below this value the transition will be discontinuous. rium for any initial flow. For inner circulatiorC larger than
For C lower thanC °"®' there is no linear instability of the  the small negative value &, we can have the formation of
symmetric state up to its maximum energy. Even without aa stable coherent vortex. Using the relation betw€eand
bifurcation point, however, the single-vortex states still existthe background shear [3],
as shown in Fig. 2 fo€=—0.3. Nevertheless, & is fur-
ther decreased, eventually a point is reached where the en- O'Eri< ﬁ) _ §
tropy of the asymmetric state becomes smaller than that of ar\r re’
the symmetric state at the same energy. Hence the coherent _ » ,
single vortex is no longer a thermodynamically more prob-"e fmd that th_e critical ratio bet_ween theT shear_strength and
able state than the symmetric solution. One way to quicklyorticity level is about—0.5. This result is consistent with
determine the point is to compare the maximum energy othe numerical simulations], where it |s_shown dynam|cally
these two states. F@=2 andM =4 this happens at about that a shear Iarger than a small negative varmaaging from
C=-052. —0.1to—0.2) is needed to support a stable coherent vortex.
The complete phase diagram =2 andM =4 is plot- As notgd in th_e previous papgs], if Fhe condmons_closer to
ted in Fig. 3. The dashed and dotted lines represent the maxihose in the S|muliat|ons are used in-our qalculatlons, smaller
mum energy for single vortex and symmetric solutions, re_vaglues of the ratio close to the simulation values are ob-
spectively. BetweerC PP’ and C/***' there is bifurcation t@ined.
indicated by the solid line. Below °**', the dashed-dotted ~ The authors acknowledge the support of the National Sci-
line shows the energy above which the single-vortex statence Foundation under Grant No. DMR 9311444,
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