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Complete phase diagram for coherent vortex formation
in a two-dimensional inviscid fluid in an annulus

Peilong Chen and M. C. Cross
Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125

~Received 19 July 1996!

By calculating the two-dimensional solutions and the second-order bifurcation analysis of the mean field
equations of a two-dimensional ideal fluid, we are able to complete the phase diagram of coherent vortex
formation in an annulus, which we have partially calculated in a previous paper@Phys. Rev. E50, 2022
~1994!#. The complete phase diagram demonstrates the advantage of the statistical mechanics approach to
determine the final equilibrium directly from the initial condition.@S1063-651X~97!00408-X#
PACS number~s!: 47.20.2k, 05.20.Gg, 52.25.Kn, 92.90.1x
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Recently statistical equilibrium of a single coherent vo
tex in a two-dimensional~2D! incompressible ideal fluid ha
been studied in a disk, using the point vortex model@1# and
the continuous vorticity mean field theory@2#. Properties of
the vortex depending on the system parameters are ca
lated and an interesting bifurcation from a symmetric vor
at the disk center to an off-center vortex was also found. I
previous paper@3# we have solved the mean field equatio
in an annulus which has an important additional parame
namely, the constant inner circulation, providing a ba
ground shear in the system. Calculation in an annulus is
closer to the application of the theory to the coherent str
tures on planetary atmospheres. By calculating the symm
ric solutions, the bifurcation point to single-vortex states, a
the approximate single-vortex maximum energy, we e
mated the parameters~total vorticity, energy, angular mo
mentum, and inner circulation! of initial conditions leading
to the formation of single coherent vortices. In this br
report, we explicitly solve for the 2D single-vortex solution
and also perform a second-order bifurcation analysis on
symmetric solutions. With these calculations we compl
the phase diagram, especially determining the param
range with first-order transitions, which was inaccessible
the previous methods, and demonstrate the potential of
statistical mechanics approach in predicting the final equi
rium directly from the initial condition.

The two-level mean field equations which we solve a
@4#

2¹2c0~r !5v0~r !5
q

11exp@b~qc01Vr 22m!#
, ~1!

with c0(r ) the equilibrium stream function andv0(r ) the
vorticity field. q is the vorticity level of the initial uniform
distribution and chosen to be one. (m,b,V) are parameters
to be determined by the total vorticityQ, ~kinetic! energyE,
and angular momentumM

Q5E v0dr ,
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In an annulus in which we solve these equations, the o
important initial quantity is the conserved circulationC at
the inner boundary,

C5
1

2pE ]c

]r U
inner boundary

du,

which provides a background shear on the flow@3#.
Equation~1! is solved by an iterative scheme: a guess

initial vorticity distributionv t(r ) is used to solve the Poisso
equation¹2c t52v t . Next thec t just calculated is substi
tuted into the right hand side of Eq.~1! and a newv t can be
calculated with each set of (m,b,V). A root-seeking algo-
rithm is then used here to find the set of (m,b,V) giving an
v t with requiredQ, M , andE. Now the iteration is repeated
until a convergedv t(r ) is reached. We can also chooseb
initially and find (m,V) for a prescribed (Q,M ). On the
other hand, we can numerically integrate Eq.~1! to find the
axisymmetric solutions, and a second-order bifurcat
analysis can be performed, which is described in details
Ref. @2#. From the bifurcation analysis, we can quickly fin
the bifurcation point~from the first-order calculation! as well
as the bifurcation behavior~from the second-order results!.

For Q52, M54, and C51 in an annulus with inner
radius one and outer radius two, solutions at four differ
energies are shown in Fig. 1. In this case, there is a bifu
tion from the symmetric to single-vortex state~see Fig. 1 in
@3#!. The first graph, Fig. 1~a!, has an energy smaller than th
bifurcation energy and shows a symmetric vortex ring.
the energy is increased through the bifurcation energy in
other three graphs, the vortex ring gradually breaks up
finally reaches a single-vortex state at high energy. Wh
these asymmetric solutions are plotted in an entropy-ene
plot ~Fig. 1 in @3#!, they show a higher entropy than th
symmetric states at the same energy, indicating thermo
namically more probable states.

The maximum energy state~corresponding tob→2`) is
a uniform vorticity patch with its shape strongly dependi
2284 © 1997 The American Physical Society
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on the inner circulationC: as the circulation, and hence th
positive background shear@3#, increases, the shape becom
more elongated in the azimuthal direction and thinner in
radial direction. This is similar to the increase of the asp
ratio of an elliptical vortex with increasing shear flow foun
in analytic solutions@5#.

To quantify the asymmetric states we define the aver
azimuthal angle spanned by a state,s, as

s[4E
0

pE
a

b

uv~r !r dr duE
0

pE
a

b

v~r !r dr du

for a distribution centered atu50, with a and b the inner
and outer radii. The differences̄ between 2p ands can then
be treated as the order parameter of the transition and
zero for a symmetric state. If the bifurcation is a forwa
pitchfork bifurcation, s̄ will scale as the square root o
DE[E2E c , with E c the bifurcation energy. ForC51, s̄
plotted as a function of energy in Fig. 2~the 1 ’s! clearly
shows this scaling behavior.

This scaling becomes apparent in the second-order b
cation analysis@2# becauses̄ is then proportional to the per
turbation andDE to the square of the perturbation. The r
sults calculated from the analysis are shown as the solid l
in Fig. 2. ForC51 the solid line agrees perfectly with th
single-vortex states~the 1 ’s! at small s̄ and the agreemen
remains quite good even whens̄ approachesp. The positive
value ofDE found in the analysis forC51 again confirms a
forward pitchfork bifurcation.

However, asC is lowered,DE from the bifurcation analy-
sis becomes negative at a particularC, signifying a backward
pitchfork bifurcation. Particular examples are shown in F
2 for C equal to20.249 and20.27. In these situations th

FIG. 1. Vorticity contours forC51, Q52, and M54 in an
annulus with inner radius one and outer radius two.~a! Symmetric
solution atE51.5598.~b! Asymmetric solution atE51.5622.~c!
E51.5773.~d! E51.5939. The bifurcation energy is 1.5619. Co
tour levels are equally spaced.
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dotted lines trace from the bifurcation point~the 3) to the
left and give unstable solutions close to the bifurcation po
Higher order terms in the expansion would bend the cu
around to the right, presumably to merge with the sta
solutions found numerically~the 1 ’s!. ~Note that the fixed-
energy numerical scheme does not find the unstable solut
as the iteration procedure always favors the stable solutio

FIG. 2. s̄ dependence onE. 3 indicates the bifurcation energ
and1 the asymmetric solution. Note that the symmetric solutio

always haves̄ equal to zero. The lines are the prediction from t
second-order bifurcation analysis.

FIG. 3. Complete phase diagram forQ52 and M54. E max

represents the maximum energy of the symmetric solution.
solid line is the bifurcation line. The dotted and dashed lines are
maximum energy for the symmetric and asymmetric solutions,
spectively. The dotted-dashed line is the first-order transition w
a bifurcation is not present, i.e., where the entropies of the
solutions cross.
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that energy.! Thus a continuous transition from a symmet
state to a single coherent vortex exists forC larger than a
particular value, which is about20.2 for Q52 andM54.
Below this value the transition will be discontinuous.

For C lower thanCc
lower there is no linear instability of the

symmetric state up to its maximum energy. Even withou
bifurcation point, however, the single-vortex states still ex
as shown in Fig. 2 forC520.3. Nevertheless, asC is fur-
ther decreased, eventually a point is reached where the
tropy of the asymmetric state becomes smaller than tha
the symmetric state at the same energy. Hence the coh
single vortex is no longer a thermodynamically more pro
able state than the symmetric solution. One way to quic
determine the point is to compare the maximum energy
these two states. ForQ52 andM54 this happens at abou
C520.52.

The complete phase diagram forQ52 andM54 is plot-
ted in Fig. 3. The dashed and dotted lines represent the m
mum energy for single vortex and symmetric solutions,
spectively. BetweenCc

upper and Cc
lower there is bifurcation

indicated by the solid line. BelowCc
lower, the dashed-dotted

line shows the energy above which the single-vortex s
a
t,
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yields a higher entropy at that particularC, and point P
marks the crossing of the two maximum energy lines. W
this phase diagram, we can quickly predict the final equil
rium for any initial flow. For inner circulationC larger than
the small negative value atP, we can have the formation o
a stable coherent vortex. Using the relation betweenC and
the background shears @3#,

s[r
]

]r S uu

r D5
2C

r 2 ,

we find that the critical ratio between the shear strength
vorticity level is about20.5. This result is consistent with
the numerical simulations@6#, where it is shown dynamically
that a shear larger than a small negative value~ranging from
20.1 to20.2) is needed to support a stable coherent vor
As noted in the previous paper@3#, if the conditions closer to
those in the simulations are used in our calculations, sma
values of the ratio close to the simulation values are
tained.
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