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Generalized Sampling Theorems
In Multiresolution Subspaces

Igor Djokovic, Member, IEEE and P. P. Vaidyanathaiellow, IEEE

Abstract—it is well known that under very mild conditions on  on the scaling function) [7]. The MRA system is specified by

the scaling function, multiresolution subspaces are reproducing the system of increasing closed subspaced’_, C V_; C
kernel Hilbert spaces (RKHS’s). This allows for the development VoCViC Ve C LQ(R) with

of a sampling theory. In this paper, we extend the existing

sampling theory for wavelet subspaces in several directions. -

We consider periodically nonuniform sampling, sampling of a U Vi = L%(R) and ﬂ Vin = {0} (1.2)
function and its derivatives, oversampling, multiband sampling, mez mez

and reconstruction from local averages. All these problems are

?rleatebd "I‘( i] unified way usingdthe pefrfeCt rte)lconstruction (PR) where Z and R are the set of integer and real numbers,
ilter bank theory. We give conditions for stable reconstructions . . . . .

in each of these cases. Sampling theorems developed in thereSpeCtlvely’ and0} is the trivial Spac?’,"e" th? space with
past do not allow the scaling function and the synthesizing only the zero element. Furthermore, it is required that there
function to be both compactly supported, except in trivial cases. exists a functiong(¢) € V, (scaling function) such that
This restriction no longer applies for the generalizations we {Qk/2¢(2kt —n)ln € Z} is a Riesz basis [8] fol¥}. The
study here, due to the existence of FIR PR banks. In fact, complement subspace d&f; in Vji; is Wy, i.e., Vig1 =

with nonuniform sampling, oversampling, and reconstruction : : . .
from local averages, we can guarantee compactly supported Vi+W;, (4 stands for a direct sum). For further requirements

synthesizing functions. Moreover, local averaging schemes have@nd a more detailed discussion of MRA, see [9]. . .
additional nice properties (robustness to the input noise and In sampling theory, there are two problems with which
compression capabilities). We also show that some of the proposedone has to deal. The first one is thatwfiguenessNamely,

methods can be used for efficient computation of inner products gjven a sequence of sampling instar{ts,}, can we have
in multiresolution analysis. After this, we extend the sampling o '
theory to random processes. We require autocorrelation functions _{f(t")} = {g(t.)} for somef(z) # g(t), wheref, g € H (M

to belong to some subspace related to wavelet subspaces. It turndS the underlying RKHS)? If this cannot happen, we say that
out that we cannot recover random processes themselves (unless{t, } iS @ sequence of uniqueness f@r The other problem is
they are bandlimited) but only their power spectral density that of finding astableinversion scheme. This brings to mind
functions. We consider both uniform and nonuniform sampling.  the following: Given some sequence of uniquengss, we

need to know if it is possible to find synthesizing functions

I. INTRODUCTION Sn(t) € H such that these two things are true: First
VER SINCE Mallat and Meyer [1], [2] came up with oo
the concept of multiresolution analysis (MRA), it has ft) = Z Ft)Sn(t) V() eH (1.2)

been an interesting field for extension of results obtained
in other frameworks. One example is the sampling theory.
Originally, the theory was developed for uniform samplingnd, second, if{f(¢,)} is close to{g(¢t,)}, then so is

of bandlimited signals [3]. A couple of decades later, thE, f(t.)Sn(¢)to X, ¢(¢,)S.(t) in norms of the correspond-
research was concentrated on nonuniform sampling [4]. iimy spaces. It is possible that no stable reconstruction exists,
the second half of this century, those ideas were extendedet@n though the uniqueness part is satisfied (see [10]).
random processes [5]. All these results hold true for the classAs we already mentioned, Walter showed in [7] thgt are

of bandlimited signals. What are other classes of signals frdRKHS’s under very mild conditions on the decay and regular-
which we can develop similar theory? A more general settirity of ¢(¢). He further showed that a stable reconstruction from
is the class of reproducing kernel Hilbert spaces (RKHS’samples at,, = n is possible and constructs the synthesizing
[6] (see Appendix A). It turns out that the wavelet subspacésnctionss,,(¢)’s. Janssen [11] extended Walter's result to the
(MRA subspaces) are RKHS’s (under very mild restrictionsase of uniform noninteger sampling. Neither of these schemes
ows for both¢(t) and synthesizing functions,(t)'s to
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A. Aims of the Paper the relationship in a general case, see [12]). Now, we can
gharacterize a random process in terms of its autocorrelation
function. For example, a random process is bandlimited if
. . — its autocorrelation function is bandlimited. In this paper,
1) periodically nonuniform sampling; : ]
. . we consider WSS random processes whose autocorrelation

2) reconstruction from local averages; A
3) oversampling: functions belong to some space related to wavelet subspaces.

ping; The problem of reconstruction has two meanings now. First,

4) reconstruction from undersampled functions and their .
derivatives: we can talk about the reconstruction of a random process

5) multiband or multiscale sampling; itself, i.e., existence of functions,(¢) such thatf(¢) =

6) uniform and nonuniform sampling of WSS randomE" F(tn)Sn(t) in the MS sense, ie.

processes.

One of the motivations for these new schemes is the desire to  lim E[|f(t) = Sp__n f(ta)Sn ()] = 0.

achieve compactly supported synthesizing functions. Periodi-

cally nonuniform sampling can guarantee compactly supported ) o )

S,(t)s under some restrictions, as we explain in Sectio-Ehe other interpretation is a reconstruction of th_e PSD func-
II-C."In order to overcome those restrictions of periodicall§fon Sfs(w). We show that a random process itself cannot
nonuniform sampling, we introduce local averaging. Thid€ rec.onstructed. if the synthe3|z_|ng functions are assumed
scheme can guarantee compact supportsSigft)'s under to be mt_eger shl_fts_ of one function, unless, of course, the
milder constraints. Local averaging offers some additionB[0C€SS is bandlimited. However, the PSD function can be
advantages. It has good noise sensitivity properties and sofggonstructed, and we will show how. This is done for uniform
compression capabilities, as we show in Section II-D. A2mpling in Section IV-A. Nonuniform sampling of WSS
the expense of a slightly higher sampling rate, oversampliﬁ@ndor_“ processes is considered in Section IV-B. Deterministic
can always guarantee compactly supporfedt)’s. This is n_onunn‘orm sgmplmg of a WSS random process d_oes not
shown in Section IlI-A. There are situations where besid@ve @ WSS discrete parameter random process. We introduce
f(t), its derivative is available as well. In these cases, we cE¥domness into the sampling times (jitter) to take care of this
reconstructf(¢) from samples off(¢) and f'(¢), at half the Problem.

usual rate. In Section 1lI-B, we show how this can be done.

If it is known that f(#) belongs to some subspace Bf., B The New Results in the Perspective of Earlier Work

this additional information can be used to samplg) at a A Limol . f the MRA . .
lower rate (sampling of bandpass signals, for example). Thi? n a_ctua Implementation of the requires comput_atlon
the inner products,, = co, = (f(t), ¢(t — n)), which is

problem is treated in Section IlI-C. An application of some of ionall her involved g q hod
the above-mentioned methods to efficient computation of inn%?mpqtatlona y rather involved. '\f)a at E{ODOSG a rT_e'[ 0
products in MRA subspaces is explained in Section 11I-D (s at gives an gpproxmatlon @b, by highly oversamp Ing

(t). Daubechies suggested another method (another inter-

also the next subsection). Finally, in Section IlI-E, we analy ; f Walter's th h v b
what happens if we make errors in sampling times, namely,ﬁfetat'on of Walter's theorem) that computgs;, exactly but

instead of sampling aftt,, }, we sample af¢’, }. We will show involves convolutions with IIR filters. Shensa [13] proposed a
that this error can be bonur%ded in termsﬁof:nsﬁp It —t" | compromise between the above two methods. It has moderate
nEZ |Yn™ inl:

All the above problems are embedded in the framewoﬁg’mrle;('tz ang nonzero_errodr. hods invol i ¢
of multirate filter banks We give sufficient conditions for of the above-mentioned methods involve sampling o

the existence of stable reconstruction schemes and explicﬁ|9t;‘als in Vo. Smcel our worl; 'r? abour sarglpl_mgdm '\SARA
derive expressions for the synthesizing functions. The the ! sgellﬁes, vr:/e app:)?/ somfe of the resu ts o ’ta|r|1eS|n ) ections
of FIR filter banks is used to obtain compactly supportetji an tqt € problem o compu_tat|on ab,’S. In ect|c.>n'
synthesizing functions. [11-D, we give a qualitative comparison of the new and existing

In Section IV, Walter's idea is extended to random prd:nethOdS in terms of complexity, sampling rate, and approxi-
gﬁtion error. While all our methods have zero error and pretty

cesses. Things are little different now. First, we have to spec " . T ;
a class of random processes for which we want to develop & complexities and sampling rates, periodically nonuniform

theory. So far, mainly wide sense stationary (WSS) rando?ﬁ‘m‘f)_llmg scheme ach|evee_r0er10r at t?emmlmal rate with
processes were considered [5]. The autocorrelation functi'tgHQ ilters (owest computational complexjty
of a random proces§f(t), —oo <t < oo} is defined as

In this paper, we extend Walter’s work in several direction
We extend it to the following:

C. Notations and Conventions

Ryp(t,m) = E[f(t+ 7)1 ()] (1.3) , . .
1) In all the integrals, the integration is ovéroo, ),
where * denotes complex conjugation arf|:] statistical unless explicitly indicated.
expectation. WherR; (¢, 7) does not depend ofi we call 2) WhenR;,(t,7) is a periodic function ot with period
it a WSS random process. We assume tRat(7) is the T (and if the same is true for the mean ¢j, we
inverse Fourier transform of the power spectral density (PSD) say that f is a cyclo widesense stationary random
function Sy s(w). In Section 1V, we will use assumptions that process (CWS$) [14]. Then, one usually defines the

will ensure that the Fourier transform di;;(r) exists (for autocorrelation function of this (CWSg)process as the
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time average oR;,(¢t,7) and denotes it by, ;(7), i.e. of (2.1). In the rest of the paper, we will frequently use the

e following lemma.
Rpy(r) = T/ Ryp(t,7) dt. (1.4) Lemma 2.1: The samples(¢,,) can be written as follows:
—T/2
1 7 . o
3) The Fourier transform operation and its inverse are f(tn) = 2—/ C(e7“) P, (7)™ dw. (2.5)
denoted byF7 and F7 %, respectively. TS
4) A set of functiond f,,(¢)} in a Hilbert spacé is a Riesz Proof: If we substitute
basis forH if {f,.(¢)} is complete ir{ and if there exist
1 7 o
constantsd and B,0< A < B < oo such that o= = C(5)eh du
27
2 2
Allenllz < < Bllenll2 in (2.3), we have
for any {c,} € I? (see [8] for further properties). tn) Z C N B(un + 1 — k) dw
5) For the reader's convenience, some frequently used
definitions and theorems from mathematical analysis are 1 /7 o .
reviewed in Appendix A. =5 C(e’) Py, (7)™ dw. (2.6)

II. DISCRETE REPRESENTATIONS OFDETERMINISTIC SIGNALS ~ The order of integration and summation can be interchanged

In this section, we consider different discrete representatiof§cause
of functions in MRA subspacéds,,. We work in; only since
all the relevant properties are independent of the scale (see [7]). Z /
OtherV}, and W}, subspaces will be considered in the case of

multiband sampling (see the next section). Let us first state (ﬂ"émember thatc(ejw) € L[, C L7 and
basic assumptions and make some preliminary derivations{d)( YR eR)3 ’ ’ o

C(@) Pty + 1 — k)| dw < 00

Let us say a few words about the type of convergence in
(2.2). Riesz basis property guarantdesconvergence of the
We assume thaf¢(t — n)} forms a Riesz basis foVy C  sum in (2.2) so thaf(¢) is determined only almost everywhere
L?(R). In order to show that}; is a RKHS, Walter assumes(a.e.). Even though sampling of functions defined only a.e. is
that ¢(¢) is continuous and that it decays faster thglt| for meaningless, it is a well-defined operation in our case because
larget, i.e., there exist€’ > 0 such thaie(t)| < C/(1+[¢[)!T¢  the sum in (2.2) converges uniformly dR. To see this, use
for somee>0 (see [7]). Janssen derives his result und¢g.1) and (2.2) to get
weaker assumptions, namely, tht) is bounded and that

1/2
ZI¢<t—n>l<0¢ (2.1) |f<t>|s<2|¢(t—k>|2> el <Clifll (27)

converges uniformly on [0,1]. Note that this assures us tha}]
#(t) € LY(R) and {¢p(t —n)} € ! C 2 for all . In
addition, the Fourier transform af(¢) is well defined and
is a continuous function (see [15]).

Since {¢(¢ — n)} is a Riesz basis fol;, then for any
f(t) € Vo, there exists a unique sequens,} € I? such that

A. Assumptions and Preliminary Derivations

ere the second inequality is obtained using the definition
of a Riesz basis. This relationship transforfitsconvergence
into uniform convergence. Therefore, sampling £f), as
given by (2.3), is well defined. In the rest of the paper, we
will consider the pointwise convergence of (2.2) and no longer
worry about this. Our main concern will be to get sequences
= Z end(t —n). (2.2) e} from {f(t.)} in a stable way. The next subsection is a
review of Walter's and Janssen’s work.

If the sampling times aré,, = n + w,, then

[(ta) =D adltn —k) =D adlun+n—k). (23)
k k

B. Review of Uniform Sampling in Wavelet Subspaces

We will use an abstract setting for the sampling theory.
It offers us a unified approach to all the problems in this
Let and the following section. Therefore, let us first explain this

®, ( ef“ Z P(un, + ke —jkw (2.4) app_roach_. The idea of sampling in wavelet s_ubspaces is to find
an invertible map betweefic,} and {f(¢,)} in (2.3). More
L ) ) o generally, we want to find invertible maps betwelen } and
be thel”-Fourier transform of ¢(uy +k)}.“ Note that®(c™)  5ome other discrete representations of functiongginLet us
is a bounded input bounded output (BIBO) stable filter becauggsine this map.

2In our notation,F(w) is the Fourier transform of a functiof(t) in L' (R)
or L2(R), whereas (¢/*) is the Fourier transform of a sequencg, } from 3This argument for the interchangeability of integrals and/or sums will be
orl?.. often used without explicitly stating it.
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f(t,) c. C. Periodically Nonuniform Sampling
/o u(2) Now, we consider the case of periodically nonuniform

Fig. 1. Interpretatlon of the uniform sampling result in terms of dlglﬁ?amplmg For this, let us choose,, < [ ) for m =
filtering and inverse filtering. 0,1,---,L—1, and setyr+, = kL + u,. From the abstract

point of view that we developed in the previous subsection,
7 can be viewed as the analysis filter bank of laichannel
maximally decimated filter bank (see [18]). To see this, notice
that f(¢xr+m) USINg Lemma 2.1 is

Definition 2.1: By 7, we denote an operator frofhinto /2.
It maps sequencée, } to {d,,}, where{d,,} is some discrete
representation of = %, c,¢(t — n).

When we talk about sampling theorems, we hddg} = 1 L i o
{f(t,)}, whereas in Section II-D{d,, } will be a sequence of J(trrsm) = g/ HEO() O (e7) dw - (2.9)
local averages. Because of the Fourier transform isomorphism -
between/? and L?[—m, n], we can think of7 as a map of where @,, (ed9) = @, (e7) for m = 0.1,---,L — 1. In
L*[—7,7] into itself. In this basis7 is just a multiplica- terms of multirate filter banke,f (fxz...m)} |sthemth subband
tion operator (from (2.5), action of is multiplication by signal in Fig. 2.
®,(e?*) in the case of uniform sampling). The following There is no fundamental difference between this scheme
theorem is borrowed from [11] just for the completeness @fnd that of Janssen. Fig. 1 is a trivial one-channel filter bank.
the presentation (the proof can be found in [11]). The aim here is the same. We want to get bdek} from

Theorem 2.1 (Janssen)-ett, = n+uforsomeu € [0,1).  {f£(+,)} in a stable way (notice that sindef (trr4m)} € 12
Operator 7: {c,} — {f(t,)} maps/?® into [* for any form =0.1,---,L — 1, the sequencéf(t,)} € [ as well).

f € Vo. Furthermore,7—* is bounded if®,(¢/) # 0 for |n Fig. 1, we inverted a single filteb,, (u). Here, we have to
all w € [—m,]. find a stable synthesis filter bank (which is the inverse of the

This theorem can be visualized as in Fig. 1. Therefore, valysis filter bank) For this, we will use standard techniques
see that this sampling theorem has a rather simple engineefiggn the multirate filter bank theory. Let

interpretation in terms of digital filters.
Remarks: L1

™

1) There are some interesting connections to regularity C(2) = 2 Epr(z") and
theory. Notice that the condition from the above the- zig
orem, in terms of [11], is that the Zak transform of Gon(z) = KR (7L)
d(t), (27 ¢)(u,w) # 0 a.e. This condition is the same as s = © THhms

Rioul’s condition [17] for the optimality of his regularity
estimates. Therefore, if there iswac [0,1) such that be the polyphase decompositions of analysis and synthesis
(27 ¢)(u,w) # 0, then Rioul’s regularity estimates arefilters (for more discussion on polyphase decompositions, see
optimal, andf(t) can be reconstructed froff(n+u)}. [18]). Then, we define the polyphase matrices B2)]x; =
2) The synthesizing functionS,, () have been derived in E;;(z) and [R(2)]x; = Rui(z). Therefore, when this filter
[7] and [11]. They have the following shift property  bank has perfect reconstruction (PR) property, the opet&tor
and its inverseZ —! can be represented W¥(z) and R(z),

Sp(t) = S(t—n) (2.8) respectively (see Fig. 3). Now that we have this filter bank
interpretation of/, we can return to the problem of uniqueness
where and stability.
Lemma 2.2:In the case of periodically nonuniform sam-
Z¢k ¢(t—k) and pling, the sequence of sampling poings,} is a sequence
of uniqueness if the matrix(c/*), as defined above, is
{on"} = 7:7 H1/@u (). nonsingular a.e.
, Proof: Let
3) When &,(e’“) turns out to be a rational filter, it is
obvious that if®,(¢’*) # 0, then1/®,,(¢/) is stable ep =loxn crp-1 -+ crn-r41]’ and
(possibly noncausal). ’ fe=1fter)  F(trrsr) o fltrpyera)]”

4) Evidently, we cannot make both®,(e’*) and
1/®,(¢/*)  trigonometric  polynomials  unlessbe blocked versions ofc;} and {f(#)}. Then, using Noble
D, (c/) = e/, Therefore, if ¢(t) is compactly identities (see [18]), the system from Fig. 2 can be transformed
supported, i.e., i, (¢’*) is a trigonometric polynomial, into that in Fig. 3.
5(t) cannot have compact support. This restriction will Notice that ||cx||3 = [lgll} = S« cle, and that
be lifted in the schemes we propose. F(&7®) = E(e')e(e??), where¢(e’*) = ¥y exe™*, and

“4In this paper,z is just a formal argument, and it stands foit~. ®(z) 5Stable in our context does not necessarily mean BIBO stable. We want a
should not be interpreted & transform in the conventional sense [16]. Mostbounded transformation &t into /2. However, it turns out that if the synthesis
of our signals are assumed to belfnso that their Fourier transform exists filter bank is BIBO stable, i.e., if the filter coefficients arelin then it also
in 12 sense only. represents a bounded transformation frigminto I2; see Appendix A.
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D. Expressions for Synthesis Functions

Let us now construct synthesis functions and show that they
have some shift property as welk; (¢’*) = %, gke=/"~ are
the synthesis filters in our PR filter bank (see Fig. 2). The PR
property implies that (see [18])

L—1
Cm = Z Z f(tnL-I—k)gsl_nL- (211)
k=0 n
Fig. 2. Filter-bank interpretation of periodically nonuniform sampling. Then, the reconstructed function is
L-1
c f, c FO =D ftartr) Y Ghmprd(t —m)
SR G, G SR =
S Z = kZ_o Z F(tnak) Sin (t).- (2.12)
*_L E@| |R(@ fL If we define Si(t) = X, gk, ¢(t —m), then
S : : , Sin(t) = Y gh_nr¢(t —m+nL —nL) = Sp(t — nL),
(L - (1] 0<k<L-1. (2.13)
Fig. 3. Polyphase representation. Therefore, all the synthesizing functions are obtained as shifts

of the L basic functionsS,(¢). The above lemmas are sum-
f(e7*) = %) fre™% [f(ei*) and ¢(e?*) are elements of marized in the following theorem.

(L*[~7,n])*]. Again, using Parseval's equality, we have Theorem 2.2:Let ¢,,(z) and E(z) be analysis filters and
| g their polyphase matrix as shown in Figs. 2 and 3. A stable
BE=1FE =S flf, = — FHed) f(e7) dw reconstruction of{c,} from the samples{f(t.)} exists if
7l = 17z z,; S () the determinant[det E(e¢’~)] # 0 for all w € [-m,7].
1 (7 Furthermore, all synthesizing functions are shiftsiofixed

' (/)E (/) E(™)e(c’) dw. (2.10) functions, as given by (2.13).
Next, we are going to illustrate the above theory with

SupposeE' (¢/“)E(¢/“) (a positive semidefinite matrix) is some practical examples, Before this, let us first give a short
nonsingular a.e.. Then)|fx|]|2 can be zero if and only if summary of the algorithm.
c'(/)e(e’*) = 0 a.e., which implies thafc} is a zero
sequence itself. E. Summary of the Algorithm for Recovery

The question of stable reconstruction can be answered usitd(c,,} from {f(¢,)}
Wiener's theorem (see Appendix A and [19]). What we want 1) Chooseu,, € [0,L — 1) form = 0,1,+--,L — 1.

; ili =1/ jwy _ jw . .
's BIBO stability of B~ (c?) = R(c™). _ 2) Obtain filters®,, () = %, ¢(n + um)e9", and
Lemma 2.3: A stable recovery from periodically nonuni- form E(z)

form samples{ f(¢,)} of any f € Vj is possible if there exist 3) Find E-1(2) ( . : e
4 o z) (provided Theorem 2.2 is satisfied), and
BIBO stable synthesizing filter&;,(z). This will be the case calculate synthesis filterg,, (¢/*)'s.

if and only if [det E(e’“)] # 0 for all w € [—m, 7]. : - : -

Proof: Since entries of(c’*) are Fourier transforms of 4 (C;o;;)truct synthesis functionSy,(t)'s as given by
I' sequences, so is the determindét E(c’“)] (operation T
of convolution is closed inl*, as explained in Appendix -
A). Now, by Wiener’s theorem, the convolutional inverse O§p||nes (see [19]

:% .

Example 2.1:Consider the MRA generated by linear
). The scaling function is

[det E(c?*)] is in It if and only if [det E(e/“)] # 0. Then, the t, foro <t<1,
entries of E~*(¢/*) are Fourier transforms dft sequences. (t) = {2 —t, forl<t<2,
This means thaRk(z) is a multi-input multioutput (MIMO), 0, otherwise.

BIBO stable system, and therefora{,ej“) can be recovered . ) .
from f(¢/*) in a stable way. We are interested in the case where there exist compactly

Remark: The existence of FIR PR filter banks allows foSUPPOrted synthesizing functions. For this, let us chabse
the possibility of having bothp(t) and S,(t)'s compactly 2:%0 = 0 @ndu; = 0.5. Fig. 4 shows¢(t) and samples
supported, unlike the schemes in [7] and [11]. In particula‘lb(” + u,,) that determine filter coefficients. Namely, from
if ©,,(2) = SEZL $(um + )z form = 0,1,--+,L—1, (
then the polyphase matrix will be just a constant matrix. In _ —n m_—n
this case, the inverse filter bank is guaranteed to be FIR. This Pn(z) = Z )27 = Z o'z
constraint on the number of channels will not be necessary in " "
the schemes we propose next. so that®o(z) = 271, and @1 (z) = $(1+=271).
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0 (l)(z)

0 05 1 15 2 ¢

Fig. 4. Linear spline and its samples ratt- ., .

The polyphase matrix is

Ez) = <1(/)2 1/12.)

The inverse ofE(z) is

_ 1 2
R =5 = (7 7).
Then, the synthesis filters a&(z) =

So(t) = ¢(t+ 1) — ¢(t), and Sy(t) = 2¢(t).

z—1,andG;(z) =2
The synthesis functions af®(t — 2n) and.S; (¢t — 2n), where
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1A gy tga+A te-A e GAA LA Gy LA

Fig. 5. Local averaging scheme.

F. Reconstruction from Local Averages

In this subsection, we consider another discrete representa-
tion of functions in1y. The motivation for this subsection
comes from [20], where it was shown that a bandlimited
function can be recovered from its local averages. We extend
this representation to wavelet subspaces. This scheme offers
three advantages over the previous ones.

1) Compactly supported synthesizing functiotis¢(¢) is
compactly supported, then we can guarantee existence
of compactly supported synthesizing functiofis(¢)’s
Unlike in the case of nonuniform sampling, we can

Example 2.2:Let us now consider the case of quadratic guarantee this even when we have only two channels,

splines [15]. The scaling function is

t2/2, for 0 <t<1,
B(t) = —(t—=3/2)2+3/4, for1<t<2,

$(t=3)2, for 2 < <3,

0, otherwise.

regardless of the length of the supportdgif).

2) Shaping of the frequency responsé@/e are able to
shape frequency responses of analysis/synthesis filters.
Namely, we can force filter®,,(z) to be anything we
want (provided a length constraint is satisfied).

3) RobustnessThis scheme has reduced sensitivity toward

As usual, we want to have compactly supported synthesizing * o input noise, compared with pure sampling.

functions. Sinces(t) is supported on [0,3], we choode= 3

andug = 0,u; = 1/3, anduy = 2/3. Then

Do(2) = ( e,
®y(2) = 18 + 137_1 + 32_2, and
Po(z) =2 4 L8714 L2
The polyphase matrix and its inverse are
0 12 1/2
E(z)=[1/18 13/18 2/9 and
2/9 13/18 1/18
13/4 -9 27/4
E'(2)=R(z)=|-5/4 3 -3/4
13/4 -3 3/4

FromR(z), we getG(z)’s and synthesizing functionS,(t —

3n), S1(t — 3n) and Sa(t — 3n), where
So(t) =) — 3t + 1) + Pl +2),

S1(t) ==9¢(t) + 3p(t+ 1) — 34(t+2), and

Sx(t) = T o(t) — $4(t +1) + Fo(t +2).

Therefore, we see that the actual implementation of the

In the first part of the subsection, we make introductory
derivations that are similar to those in the case of uniform and
periodically nonuniform sampling. Then, at the expense of a
small increase in complexity, we modify the scheme in order
to gain control over the filter coefficients @,,(z)’s. This
discrete representation has the same average rate of sampling
as in previous sections.

The main idea is to find ways of reconstructing¢)
not from samplesf(¢;) but from local averages: =
JEES f(t) dt aroundt, (as shown in Fig. 5). In the uniform
case, we can choos® = 1/2 and#;, = k + 1/2 + u. Then®

k14w k4-14u
ax :/k f(®) dt:/k > end(t—n) dt. (2.14)

c+u c+u

If g = [F 1T ¢(t) dt, then (2.1) implies thaf¢y} € I*.
The signal{a;} can be viewed as a convolution 6f;} € [
and {¢}} so that{a;} € I%. Therefore, its Fourier transform
A(e?*) = X, ane?™ is well defined. Then, just as in the case
of uniform sampling (Section II-B), we have the following
relation:

A(e!) = C(*) Dy (™)

algorithm can be simple. The above examples show how we ' o _
can achieve compactly supported synthesizing functions, ugere, now, (¢’) = ¥, ¢re™/" is the Fourier transform
the problem is that if the support a@f(t) contains interval of {¢;:}. The only difference from the case of uniform

[N1, N3], where Ny, N, are integers, then we need >

sampling is that the operat@ now maps the sequende;, }

N, — N, channels. In other words, the number of channelgto the sequence of local averaggs.}. So this system is
L necessary fo(z) to be a constant matrix grows linearly syyjs integral exists becaust) € L2([u, u + 1]) € L ([u, u + 1) for

with the length of the support ap(¢).

all w € R.
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the same as that in Fig. 1, except for the definitionbgf =)

and the meaning of its outpdl; }. Therefore, we have the : x

following theorem. 3
Theorem 2.3:If ®,(¢’*) as defined above is nonzero on 3/8| [~ 378

[—7, @], then the representation of a functighe V; by its % 1/8 |T —{ :

local averages: is unique. Moreover, there exists a stable
reconstruction algorithm. Fig. 6. Areas unden(t) over intervalsl; are the entries of .
Remark: This scheme has the same problems as that of
uniform sampling. Namely$,,(¢t)'s and¢(¢) cannot be simul-
taneously compactly supported.
Let us now consider periodically nonuniform averagin
The idea is to partition the intervgd, L] into L subintervals

We are going to show how the coefficients,; can be used
to gain more control over the filte,,, (¢’“)’s.

9 et {H(e?*)} and {G,,,(¢’*)} be the analysis and syn-
.thesis filters of an FIR PRI.-channel filter bank. We assume

érgfigled:aos’ L=+, L — 1. The sequence of local averages iy, filters H,,(¢’*) have lengthsV. Note that except for the

length constraint{H,,(z)}, {Gn.(c¢’*)} is an arbitrary FIR
Ak Ltm :/ f() dt. (2.15) PR filtgr bank. ’ ’
KLA+T,, The idea is to choose,,,;'s so that®,,(e’*) = H,,,(e?*).
Let Let us see how to achieve this. The filter coefficients of
, . ®,, (/¥ are
o = / ¢(t) dt and D,(e) =" greI, (&)
n+1,,

n

Using this notation, we have b = /wm(t)¢(t+”) dt.

ApLpm = /nL—l—I zk:CM/)(t— k) dt = z};ck wi—k (2.16)  Using (2.17), this can be written as

This equation can be viewed as a convolution{ef} with Nl Nl

{¢7} followed by L-fold decimation. Accordingly, in the fre- $n = cm [ Pn+t)dt= iy  (2.18)

quency domain, this means,,(¢’*) = (C(’) ¢ (e’*)) |1, 1=0 K =0

whereA(z) = %17} 27% A, (27) is the polyphase decomposi-

tion of A(z), and |, denotesL-fold decimation. The situation

is completely identical to that in the case of periodically

nonuniform sampling (which is shown in Fig. 2), and Theorem Tl = ; ¢(n +1) dt.

2.2 holds true for this case (except that the filtérs(c’~)'s ‘

are obtained in a different way). Again, 4f,,(c’*)’'s are FIR  Now, there areL systems of linear equations (fon, =

and such that the synthesis filter bank is FIR as well, tf@17...7L_1), each inV unknownsc,,,;, 1 = 0,1, -+, N—1.

synthesizing functions will be compactly supported. All these systems have the same system mafit]x; = v,
However, if everything is the same as in the case @f I is nonsingular, there is a unique solution for thg;'s.

nonuniform sampling, what is the point of doing all this? The T turns out to be singular (which is very unlikely), we can

answer is given in the rest of the subsectiéwiithe expense change subintervalg and get a nonsinguldt (almost surely).

of a Iittle more complexity, we will be able to force the filterghis way, we can shape the filteds,, (¢“) into anything we

®,,(¢’*) to be anything we want want. The synthesizing functions can be obtained ffa#z)}
Nonuniform sampling gave us very little control over the filgs in the previous subsection (see (2.11)—(2.13)). Even though

ters®,,,(¢/*). Consequently, itis unlikely that filtess,,,(¢’“),  the equations look messy, the application of the algorithm is

in that scheme, will have an FIR inverse filter bank (unlegsretty straightforward. Let us summarize the steps.
we choosel, big enough to makds(z) a constant matrix). In

order to make this happen for ady > 2, we have to work .

a little harder. For this, notice that what we have done s% Summary of the Algorithm
far, in this section, is equivalent to finding inner products of 1) Partition the interval [0, 1] intaV arbitrary subintervals
f(t) and windowswy,(t — nL), wherewy(t) = xz,(t) is the 1.

characteristic function of the intervéj. If we use some other 2) Form the matriX with entries[['],, ; = [, ¢(n+t) dt. If
window, can we use this freedom to make sure that the filter L' is singular, return to step 1; otherwise, determings
bank has an FIR inverse? We will show that the answer is in  from the filter coefficients of desired filtefsg7 () }.

the affirmative. 3) Determine synthesizing functionsSy,(¢)'s from

Let ¢(t) be compactly supported on an interja) N|. We {Gr(2)} as given by (2.13).
divide [0, 1] into N subintervalsl, k= 0,1,.--,N — 1. Let We demonstrate the algorithm on simple examples of spline-
the windows be piecewise constant functions generated MRA’s.

N_1 Example 2.3:Let the scaling function be the linear spline,
wpm(t) = Z mixr, (1) (2.17) asin Example 2.1, and Idt = 2 (two channels)/o = [0,0.5],
=0 andI; = [0.5,1]. The entries of” are easy to calculate. They
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are the areas shown in Fig. 6. More precisely

0.5
Yoo =711 = P(t) dt = 1/8,
.1
Yol =10 I/ =3/8.
0.5

Then

(1 3
=i )

is nonsingular, and its inverse is

1 (-1 3
r _<3 _4)
Suppose we wish to choose windowsg(¢) such that

Dq(2) (14271 and

(1)1(2)

:Ho(z) =

r—\%‘r—\
[\]

—Hi(z) = =1~ =)

V2

(®o(2) and ®1(z) are analysis filters of the simplest two-

channel paraunitary filter bank.) Then, the coefficients are
obtained as

() ()~ ()
<gi)> _r- < 1/v/2 2\/§>'

)= (s
Therefore, the windows are

(t)—\/_X[01() and
wi(t) =2V2(=x0,1/2(t) + X[1/2,1))-

Since {®, (=)} form a paraunitary filter bank, the synthesis

filters are time-reversed versions ®f(z)’s, i.e.

i(—z +1).

1
—=(z+1) 7

Go(z):\/§ and Gi(z) =
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Example 2.4:In this example, we want to show that the
number of channels may be smaller than the length of filters
®,,,(2)’s. For demonstration, we choose quadratic splines as
given in Example 2.2. Choosk = 3, andl, = [0,1/3],11 =
[1/3,2/3], andl; = [2/3,1]; itis straightforward to check that

1 1 7 19
I'= 162 34 40 34
19 7 1

is nonsingular. Therefore, we can force filtérs, () to be any
desired filters of length 3. Notice that there are no assump-
tions about the number of channels. In particular, compactly
supported synthesizing functions can be guaranteed with a
two channel filter bank (unlike in the case of periodically
nonuniform sampling). All this generalizes f@#(¢)'s with
bigger supports.

Remarks:

1) Complexity Notice that the windowsw(t) are step
functions. It is therefore not necessary to perform true
inner products. A simple “integrate and dump” circuit
with weighted output will do.

2) An additional advantageWe wanted complete control
over the filters®,(z) in order to be able to guarantee
compact supports for the synthesizing functidh$z)'s
However, this freedom can be used to achieve even
more. Namely, we can desigh,,(z)’s with good fre-
guency characteristics and then use standard subband
coding techniques for signal compression.

3) Limitations This extended local averaging technique
works for compactly supported scaling functions only.
As the length of the support @f(¢) increases, we have
to subdivide the interval [0,1] into increasingly more
subintervals. This makes the scheme increasingly more
sensitive to errors in limits of integration.

At the beginning of the subsection, we announced three main

advantages of local averages over the previous schemes. So

far, we justified the first two. Intuitively, it is clear that if

the input signalf(¢) is contaminated with a zero mean noise
n(t), local integration will tend to eliminate the effect of the

noise. This can be more rigorously justified, and the details

are provided in Appendix B.

Ill. FURTHER EXTENSIONS OF
SAMPLING IN WAVELET SUBSPACES

In this section, ideas of sampling in wavelet subspaces are

Therefore, the compactly supported synthesizing functions &ended to three more cases. Namely, we consider oversam-

So(t — 2n) and Sy (¢t — 2n), where
(p(t) + ¢(t+1)) and
(¢(t) — p(t +1)).

This example shows how easy it is to shape filté(g)'s

pling, derivative sampling, and multiband sampling. As in
Section 1l, we mainly work inVj, except for the multiband
case. All the assumptions from Section II-A are kept, and
whenever we make some additional assumption, it will be
explicitly stated.

A. Oversampling
We already saw two schemes in which bafigt) and

In a similar way, if we consider some scaling function with &, (¢)’s can be compactly supported. Here, we introduce
bigger support, we can have longer filters with better frequenapother such scheme: oversampling. So far, we considered

responses.

L-channel maximally decimated filter banks only (Fig. 1 is a



DJOKOVIC AND VAIDYANATHAN: GENERALIZED SAMPLING THEOREMS IN MULTIRESOLUTION SUBSPACES 591

following sequences:

n—+u n+1
a? :/ f(t)dt and a} :/ f(t) de.

+u

Then, we can have a similar structure as in Fig. 7, and
a theorem analogous to Theorem 3.1. holds.
2) Oversampling at a lower rateCompact supports af(t)
special case withl, = 1). Let us see what happens in the and S, (t)’'s can be guaranteed even if we oversample
case of nonmaximally decimated filter banks. Instead of doing  at a lower rate. In the discussions above, we considered
derivations for the most general case, we will demonstrate the a nondecimated two-channel filter bank. However, both
idea on the example of a two-channel nondecimated filter bank. Euclid’s and Wiener’s theorem can be generalized for

Fig. 7. Filter-bank interpretation of oversampling.

For this, we chooseg, u; € [0,1) andug # u;. If we sample the matrix case. For example, if we chookepoints
the signalf(¢) € Vo at the two sets of point$n + uo} and g, U1, -, ur—1 € [0,M] and sample atyp;i.m, for
{n+u1}, we obtain the two sequencé$,(n)} = {f(n+uo)} m =0,1,---,L — 1, the scheme can be viewed as an
and {fi(n)} = {f(n + u1)}. We know from Section II-B L-channel filter bank, with decimation ratid < L. The

that f(¢) can be recovered from either of these two sequences operator7 is anL x M matrix E(e/*) whose entries
(provided conditions of Theorem 2.1 are satisfied). The ideais are Fourier transforms of; sequences. In the case

to use the redundancy to achieve reconstructiorf(@§ with of polynomial matrices, an extended Euclid’s theorem
compactly supported functions. Let guarantees existence of a polynomial invefdex L
matrix if rank [E(e’*)] = M for all w € [-m,7]. More

(I)i(ejw) :Z¢(k+ui)e—jkw fori =0,1. generally, an extended version of Wiener's theorem

guarantees the existence of a bounded inverse operator
71 if rank [E(¢’*)] = M for all w € [-7,x]. The
sampling rate in this case /M > 1. Therefore, we

see that compact supports fgft) and S, (t)'s can be
guaranteed if we sample at a rdte- ¢ for any e > 0.

k

Using our abstract approach, this situation can be represented
as in Fig. 7.

In Fig. 7, if ®;(z) are polynomials, Euclid’s algorithm
guarantees existence of polynomi&l(z)'s if and only if g Reconstruction from Samples of Functions
do(z) and ¢1(z) are coprime. In the general case, wheQnq Their Derivatives

®,(z)’'s are not necessarily FIR, the following theorem gives o )
us solution to the reconstruction problem. It is well known that a bandlimited functiorf(¢) can be

Theorem 3.1:For the system in Fig. 7, operatdf maps recovered_ from samples of(¢) and its derivative athalf _
L—m, 7] into L%[—mn] x L2[~m 7] If |®o(c)| + the Nyquist rate (see [10] for furth_er_references). In this
|®1(c’)| # 0 for all w € [-,7],7 has a bounded inverse subsection, we want to show how th|.s idea can be extended
Furthermore, if¢(¢) is compactly supported, theralways for the case of wavelet subspaces. This problem can be treated

exists an FIR inverse so thaf,(t)'s can be compactly th'e same way as that of periodically npnuniform sampling. We
supported. will derive expressions for the analysis bank filters since that

Proof: In this case, operatof” maps L*[—, 7] into is the only difference from Section 1I-C. Let us demonstrate
L[~ 7] x L2[—m,7]. What we need is a bouncied inversdhe idea on the example of reconstructionfgt) € V; from

operator7 —L. If we can guarantee that there always exists 3¢ Samples of () and its derivative at rate 1/2.
1 x 2 matrix (Go(z) G1(z)) in our notation in Fig. 7), whose We assume that the scaling functiaf{t) is compactly

entries are Fourier transforms of sequence& jrthen we are supportec_] and tha_‘t i_t has a derivati(){/ét)_. _It is also as;umed_
done (see Appendix A) that ¢/ (¢) itself satisfies Janssen’s conditions stated in Section

For the case of polynomiat;(z)'s, Euclid’s algorithm l-A. Con_sider uniform samp_ling, i.e_tn =n+u. The above
guarantees existence of polynomial(z) and G (z) such assumptions enable us to differentiate (2.2) term by term and
that o(2)Go(z) + ®1(2)G1(z) = 1, provided &o(z) and 9€t
®,(z) are coprime. The same is true for ratiodsl z)'s. y _ p

In the general case, an extension of the Wiener's theorem F(ta) = zk:c’“d) (tn = k). (3.1)

(the basic Wiener theorem is stated in Appendix A) is as
follows. If [®o(e/| + ®1(e/*)] # 0 for all w € [-x,7] and Using Lemma 2.1, we have
Do (e?v), 1(e?*) have absolutely summable Fourier series, ) 1 /7T
th) = —
27

«Q

then there exist function&;(¢’*) (¢ = 0,1) with abso- " O(e’)Po(e’) dw and

lutely summable Fourier series such thag(c’*)Go(c?) +

-7

@, ()G (e’*) = 1 (see [21] for the proof). & f(tn) = 1 / I C(9) 1 () dw (3.2)
Remarks: 21 J—r
1) Local averageslt is clear that we can conceive the ided'Nere

of oversampled local averages. Namely, let us divide Bo(e?*) = Zd)(qun)e_j"‘“‘ and
the interval [0,1) by some(0 <« < 1) and consider the n
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o’(t)
Flw) Flo-oy
o(t)
TaTe ®
0 '1 2 B 3 t‘ Fig. 9. Ideal bandpass signal and its aliasing copies.
Finally, the synthesis functions afg(t—2n) andS1 (¢ —2n),
where
So(t) = (f)(t + 1) + (/)(t + 2) and
. Si(t) =io(t+1) — So(t +2).
Fig. 8. Functionsp(t), ¢'(¢) and their samples at integer points. Remark: If one uses longer fiItersE‘l(z) may turn out
to be IIR. Then, the synthesis functions are not compactly
®, (7)) = Zd)'(u—i—n)e_j"“’. (3.3) supported. In that case, one can use techniques of nonuni-
- form sampling or reconstruction from local averages together

From [11], we know thatf(¢) can be reconstructed fromWith sampling of derivatives to ensure compactly supported

{f(t.)}. This means that the sequence of derivatifggt, )} Synthesizing functions.

is redundant. The idea is to use this redundancy to reconstruct _ )

£(t) from subsampled sequence(ts,,)} and{f'(t2n)}. No- C. Multiband or Multiscale Sampling

tice that this scheme corresponds to a two-channel maximallyConsider a signalF(w) as in Fig. 9. If F(w) is regarded
decimated filter bank withb(c’“) and ®;(¢’*) as analysis as a lowpass signal, the minimum necessary sampling rate is
filters. Therefore, everything is the same as in Fig. 2, ard,,. If it is regarded as a bandpass signal, it can be verified
Theorem 2.2 provides us with conditions for the existence gfat aliasing copies*(w + kw,) caused by sampling at the

a stable reconstruction scheme. Namely, stable reconstructigfew, do not overlap. Therefore, the minimum sampling rate
is possible if the polyphase matrix @(c’“) and®, (/) is in this case isw,. The aim of this subsection is to find the
nonsinglar for allw € [—7,n]. equivalent of this situation in wavelet subspaces.

This can be easily generalized to the case of higher derivaSpacesV,, roughly speaking, contain lowpass signals,
tives. Assume that the scaling functigift) and itsA/ — 1 whereas theW;, spaces contain bandpass signals. So far,
derivatives satisfy Janssen’s conditions from Section IlI-Ave have examined lowpass signals only (ones that belong
Then, f(t) can be reconstructed from the samples féf) to ;). The necessary sampling rate for exact reconstruction
and its M — 1 derivatives atl/Mth Nyquist rate, provided was unity. We will show that if a signal does not occupy the
conditions of Theorem 2.2 are satisfied. Synthesizing functiowiole frequency range that, covers, it can be sampled
can be constructed as in Section II-C. Let us illustrate thg a lower rate. For example, if(t) € W_;, we can

above derivations for the case of quadratic splines. sample it at the rate 1/2. More generally, assume that
Example 3.1:Consider the MRA generated by thef(t) € W_; + W_y +---+ W_; C Vo. This means that
quadratic spline as in Example 2.2. Theift), its derivative, there are sequence®_; .}, {c—2n}, -, {csn} € I? such
and integer samples are shown in Fig. 8. From the figur@at
it is easy to see that -1
_ k/2, 0k _
Bo(z) = 3 ¢(n)z " = 1/2(1 +27?) and /) k;J;c’“’"2 Wt =n). (34)
. , -1 _o From Walter's work, we know that sincé(¢) € V,, it can
1(2) = Z¢ (n)e™" =270 =27 be recovered from its integer samples. (H)ere, the aim is to
" exploit the fact thatf(¢) belongs to a subspace & and
The polyphase matrix is sample it at a lower rate. As in previous subsections, the
212 172 idea is to find an invertible map from the sequenéeg,,}
E(z) = <_ 1o ) to a sequence of samples ¢f¢). For this, let us sample
% ft) atty, =n27% v,k = -J,—J +1,---,—1, where
Its inverse is ug, € [0,27%). Intuitively, this rate should be enough since
we can projectf(¢) onto each ofi#;’s and then sample those
R(z) = <Z _Z/2> projections at rateg*. As in the previous sections, we would
1172 like to find a nice interpretation of the operat®r in terms

of digital filter banks. The samplef; ..} are spaced apart
by 2%, and this spacing depends &n The same is true for
Go(z) =2+ 2> and Gi(z) ==z/2=2%/2. the sequencé f(tx ) }. In order to simplify the analysis that

so that the FIR synthesis filters are
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C. oz F.0(2)
C-1,1(Z F-1,1 (Z)
C—1,2“-1 (2) Fi2t1 (2)
C 242z) F (2) F20(2)
Cni(2) — Fp1.(2)
C.(2) F. ()
Fig. 10. Polyphase representation of a MIMO nonuniform filter bank.

follows, let us find some equivalent system where all the

inputs/outputs operate at the same rate. For this, let
C’k(ef“') = Z ckme—jwn and
n

Fo(e) =Y f(tmmn)e " (3.5)

be the Fourier transforms @ty . } and{f(¢,,»)}. In order to
bring all these signals to the same rate, we expap@’«)’s
and F,(¢/*)’s into their 2/+*-fold polyphase components

27tk _1
Cu(e) = 3 G (¢*T)  and
=0
2Jtk_1
Fr(e) = Z fjwle,l(ijQHk), —J<k< -1,
1=0
(3.6)

Now that all the inputs and outputs are brought to the Sa'BR/es us sufficient conditions for the existence of a stable

rate, our system can be represented as that in Fig. 10.
Let us find the entries aF'(z). Using (3.4), the;th element
of I(z) is

f27M g+ um)

-1
= > a2 — 27+ un). (3.7)

k=—J 1
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polyphase components, we get

f(2‘]n +27p+ )

—1 27tk
=2 > o
k=— =0

Cra(? Y HY P (57 )2 dw (3.9)

-7

where

o o—k 1. ook _aoo—k
Hgll,p(eju,Q ) -9 k/26 jw2™ E e jw2™%n
n

(2R (27 + 270 4 uy)).
Therefore, the output polyphase components are

—1 27tk

Fm,p(ejw): Z Z Ck,l(eijJ)HZ,lip(ejw?_k)

k=—J

LJ
-1 27tk_1

o Jw m,ps _jw
= Z Z CkJ(GJ )(Hk,l (CJ ))l2J+k.
k=—J =0
(3.10)
Hence, the entries of the matri&(z) in Fig. 10 are
[F(D)ir i = (Hy7"(2)) L2res
where
ip =27 =2/t 4y and
i —9J _oJ+k+l 4.
As before, the MIMO version of the Wiener’s theorem [21]

inversion scheme.
Theorem 3.2:If a function

f®eWw_,, +W_;,,+
"'+W_Z‘J CV()(]. <<t < -n- <iJ)
is sampled at the ratg—#t 4-27% +...4-27% < 1, then there

exists a stable reconstruction schemelife’~), as defined
above, is nonsingular for alb € [—7,7].

Substitutingg = 27+™n +p in the above expression and using Remark: Notice that if the projection of (¢) onto some of

o=k 7 ko
Cp,l = ? » Ck(eju.e k)eju.IQ k dw
we get
f(2Jn + 2_mp + U/rn)
—1 .
2—k/2 g R
=3 5 [ aw
2 J_,
k=—J
i <Z ejw(Q—kl—QJn)z/}(2k(2Jn +27mp — 9—k] + um)>
i

eI gy, (3.8)

Finally, after expandingCy(c*2™*)'s into their 27+*-fold

Wy’s is zero, we can drop the corresponding tefip(c’®)
and sample at an even lower rate.

Synthesizing functions can be determined frétn'(z) as
follows. Let

G(z)=F'(z) and G (2) =[Gz

where

ip =27 =2/t 4 and iy, =27 — 27t 4y,
Then

Ck,27+k pt1

-1 27771
_ k,l J —m
- Z Z Zgnl,n(p_ )f(2 (.I+2 n+u’"l)
m=—J n=0 q

(3.11)
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D. Efficient Computation of Inner Products in MRA

As one of the inventors of MRA, Mallat was the first
to face the problem of computing inner produetg, =
(f(£), brn(t)), whereey, ,,(t) = 2%/2¢(2kt — n). There exists
a computationally very efficient method for getting,, from
con for any k<0: the so-called “fast wavelet transform”
(FWT) (tree structured filter banks in other words). Therefore,
the problem is to compute, ,. Mallat showed that under
mild conditions on regularity off(t), the samplesf(n/2”)

Fig. 11. W_, UW_s C Vp in the frequency domain. approachc;,, whenJ — co. However, obtaining coefficients
co, Was an intermediate step in reconstructifi¢f) from
its samples (or local averages) in the methods we developed

where earlier. This means that the schemes we proposed can be used
anln ng n for computation of inner producty'(¢), ¢(t—n)). In the rest of
the subsection, we will compare our methods with the existing
In addition ones.
1 9THE_y 1) Existing Schemestnstead of computing inner products,

_ Z Z ch 2J+Kp+l2k/2w(2kt_2J+1(p_l)_ Mallat samplesf(t) at the rate2”’ (noti_ce that this rate is
’ usually much higher than necessary fift) € Vo) and then
(3.12) uses FWT to gety ,, and other lower resolution coefficients.
Therefore, in this case, we have very high sampling rate,

k=—J =0 §2

Substituting (3.11) into the last equation, we get moderate complexity, and relatively good approximation of
1 odtm_y true inner products. Daubechies ([9, p. 166]) outlined a method

Z Z Zf (27q+2""n + ) SE,  (B) of getting co,, from the integer sampleg(n). Walter [7]
me——J n=0 provided a detailed derivation for this method in the context

(3.13) of sampling in wavelet subspaces. In terms of Section II-A,
Theorem 2.1 says that the coefficients, can be exactly

where determined from samples ¢gf(n) (unit rate) by filtering them
-1 27tk with 1/®(e’*) (provided ®(e¢’“) has no zeros on the unit
S, n( Z Z ng (p— q)2M % circle). However, the problem is thay®(c) is an IIR filter,
k=—J I1=0 p and one has to make a truncation error. Shensa [13] proposed a
. (gk — 2ty 0. (3.14) method that is somewhere in between the above two. His idea

is to approximate the input(t) by f(t t) =X, f(n)x(t—n). It
el easy to see that the inner produgft), ¢(t—n)) are filtered
m,n o o integer sampleg(n). The main problem with this method is
are obtained as shifts (fd:j) of 27 basic functionss,, n(t) = infinding a good approximatiofi(#) of f(¢), which is the only
Smn(t)forn =0,1,--,27*™ andm = —J,—=J+1,---, =1 g5 rce of errors. Let us now see how our methods perform in
Using S, (%), the syntheS|s algorithm (3.14) can be written d&rms of complexity, sampling rate, and approximation error.

These synthesizing functions have a shift property as w
Notice thatSgi(t) = Sg, .(t —27), i.e,, all the functions

-1 27t 2) New SchemesMallat’s algorithm has a rather low com-
Z Z Z F27 g2 n+um)Sm (=27 ). plexity. Therefore, from the point of view of complexity, direct
m=—J n=0 computation of inner products and Mallat's algorithm are two

(3.15) extreme cases. The gap between those two extremes is bridged
by our local averaging scheme. It has higher complexity than
Mallat’s algorithm, but it gives zero error and minimal possible
rate, and it has some other nice features, as explained in
' Section 1I-D. Mallat’'s and the Daubechies/Walter algorithm
are the two extreme cases in terms of the sampling rate. While
the Daubechies/Walter algorithm has a higher complexity, it
has minimum possible rate and very small error. The gap

This provides the formula fof(¢) in terms of the samples

Example 3.2:Let¢; = 1 andi, = 2 in Theorem 3.2. Then
our function is f(¢) € W_; U W_y C V,.The situation is
schematically sketched in Fig. 11. In this case, makfix’*)
is of the form

F(*) between those two methods in terms of the sampling rate is

(HZ{o(e7) L2 (HZ{7 (7)) |2 HZ3p(ei®) bridged by our oversampling scheme. In its simplest form (for

=|(H- 1:1( I 1o (H:lljll(ej“)) | H- 1:1(@“) . sampling rate 2), it is just Euclid’s algorithm, as was described
(H‘Q O Lo (HZ2(e%)) |, HTZ O(eJ“) in detail in Section IlI-A. It achieves zero error with negligible

2

—— _ complexity (FIR filteringy at the expense of a slightly higher
The entriesH;;”(¢/*) are functions of the chosep(t) and sampling rate (which is still small when compared with

¥(t), i.e., the underlying MRA. |[det F(¢/)] turns out to be Mallat's 27 > 2). Finally, nonuniform sampling, whef(z)
nonzero for alkw € [—=, 7], thenF~!(¢?*) is stable, and we

can obtain synthesizing functions as given by (3.11)—(3.15). “When we say FIR filtering, it is assumed thigt) is compactly supported.
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From the last equation and the Cauchy—Schwarz inequality,

ALGOFITHM | SMALL LARGE we get
DIRECT Fiigsee i L oi.l
COMPUTATION OF 1 (tn) = F(E)l2
=Y 1) = FEI
MALLAT S - " 2
e
" i =D 1D cldltn — k) = $(t, — k)
EEER noE
ALBORITM < D? sup |p(tn) | Z lex?
< KP||enll3 supltn — 7% < Kllcal26%  (3.18)
n
DALBECHESANALTER BTN ) .
ALGORITHM where K is some constant. Because of the stability of the
reconstruction algorithm, we also have
HYSATEY :
LOCAL AVERAGES 17 @) = f@O)|l2 < K16¢ (3.19)
where f(t) = X, f(t,)S,(t). The last inequality means that
o - | the L? norm of the error can be controlled by As for
LA the supremum norm of the error, we use (2.7). Then, it is
| immediate that
. | .
HONUMIFORW sup /(1) = F(8) < Kab" (3.20)
B coveLENITY RATE ERAGHA We see that bottl.? and supremum norms of the error can
be controlled bysé.

Fig. 12. Qualitative comparison of different methods for computing ’s.
IV. SAMPLING OF WSS RANDOM PROCESSES

is forced to be a constant matrix, achieves minimal samplin The _proble_m of sampling of randoTn Processes was thqr-
rate, small complexity (FIR filtering), and zero error. oughly investigated by the end of 1960’s. Uniform and nonuni-

Depending on the application, one or another scheme tﬁ%?n sampling of WSS and nonstationary bandlimited random

we propose gives results better than any of the previoBEOC_esseS was considered (for an overview, see [10]). In this
sgetion, we want to look at the problem of uniform and

schemes. In particular, all our schemes achieve zero er i i £ WSS q lated t
and use FIR filters. The above discussion is summarized]gnun!orm sampling o random processes related 1o
velet subspaces.

Fig. 12. It shows relative merits of the schemes in terms . p : iselv the ol ¢ d

computational complexity, sampling rate, and approximation et us first spemfy more precise y.t € class of random

error. processes to which the derivations will apply. L&i(t) be
It should be mentioned that all the above discussion hoIHlse deterministic autocorrelation function fz), i.e.

true only for the case when we know thét) € V; otherwise, : .
we make an “aliasing” error [7]. ¢a(7) = / Pt +7)p*(t) di.

Since ¢(t) € LYR) N L*R), then ¢,(r) € LYR) N

L?(R) as well. In addition, the Cauchy—Schwarz inequality
Here, we want to see what happens if we reconstfiger Implies [¢a(7)] < [[¢(t)|3 <oco for all 7 € R. We keep

thinking that the sampling times arg but, in actuality, are assumptions from Section II, namely, thed(t — n)} is a

# #t,. It will be shown that the error is bounded and tendRiesz bases foV, = spaf¢(t —n)} and that¢(t) satisfies

to zero whert/, — t,,. In this subsection, we assume tlggt) Janssen’s conditions from Section 1I-A. We will consider

is compactly supported on an interval of lengthand that it random processes whose autocorrelation functions have the

satisfieg¢(t;, ) — ()| < C|h|* for everyt and somé) < o<1 following form:

(i.e., ¢(¢) is LipschitZ ) continuous). Let the actual sampling
times (bze e Rpp(t) =) cadalt —n) (4.1)

t =t,+ 6, (3.16) )
where{c,} € I*. The above series converges absolutely and
where |é,,[ <é. Then, we have uniformly on R so that samples aR;(7) are well defined.
Notice, in particular, that{c,} € I* implies thatR;s(r) €
[f(tn) = F(ED = D er(d(tn — k) — ¢(t,, — k))|. (317) L'(R) and R;(n) € I*. Therefore, the Fourier transform of
k Rj;;(7) exists and is equal t&;;(w) (we also assume that

E. Errors in Sampling Times
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Rj;(7) is the inverse Fourier transform 6% ;(w)). The PSD It is easy to check thaR..(¢ + 1,7) = R..(¢,7); threrfore,
function has the following form: the error is a cyclo-WSS random process with period=
Spp(w) = C(7*)o(w) (4.2) 1. We can _averagel?ee(t,f) with respect tot to get the

autocorrelation functior®.. (). Its variance is the value of

where C(e/) > 0 and @q(w) = [&(w)[*. R..(r) atT =0, i.e.,, 0% = R..(0). Now, using the relation
g

In the first part, we are going to consider uniform samplin 1
of random processes from the specified class. We show that Ryp(r) = 2_/Gj‘rwsff(w) dow
the PSD function can be recovered but not the random process i ) o
itself, unless it is bandlimited. In the second part, we consid®® have (the order of integration and summation in the last
nonuniform sampling. We have to introduce randomness in/™ can be switched becaub&;(n)} € I')
the sampling times in order to preserve wide sense stationarit 2 %
of the szmgled random proce?ss. As in the case of uniformy o° =Ry (0) - /Rff(t—”)g (t—mn)dt
sampling, we show how to reconstruct the PSD function.

—/Rff(n—t)g(t—n) dt

+ Y Ryl / t—1Dg*(¢) dt. 4.6
Consider a random processgf¢), —oo <t < oo} with au- zl: s f ol =D () (4.6)
tocorrelation functiond?s(7) of the form (4.1). The discrete Using Parseval’s identity, the above expressions can be sim-

A. Uniform Sampling

parameter autocorrelation function is plified to
rrp(m,n) = E[f(n+m)f*(m)] = Rpr(n). (4.3) 52 :i S 4(w)
Sincerys(m,n) is not a function ofm, {f(n)} is a discrete 2m 1
parameter WSS random process. )
Let | 1=G"(w) = G(w) + Y [G(w +2rk)|* | dw.
k

spp(e9) =Y Spp(w+2mn). 4.7)

' This cannot be zeroed for any choice @fw) unless(t) is
Then, the Fourier coefficients ef;;(¢’“) are integer samples pandlimited.

of the autocorrelation functio®;(7), i.e., Even though we cannot recover the random process in the
1 /7 R MS sense, we can still recover the PSD funcii®ny (w). We
. — _ = Jwy jnw
ris(n) = Ryp(n) = o /_7T spe(e’)el™ dw. know thatr;¢(n) = Rss(n) and that

Sincerss(n) € I*, we also have
spp(e) =Y rpp(n)em.
n

We will use this relationship later on. Substituting the special form &; ;(w) into the last formula,
First, we show that the random proce§(t)} cannot be we get

reconstructed from the sampldg(n)} if the synthesizing

functions are restricted to be _shlfts of. one function (unless, of Sff(ejw) _ Z C(ejw)|(1)(w + 27rk)|2
course, the random process is bandlimited). In order to show
this, assume the contrary. Let there be a funciign € L?(R)

sff(ej‘“') = ZSff(w + 27(/{})
k

k

_ jw 2
such that{ f(¢)} is equal to¥X,, f(n)g(t—n) in the MS sense. =0(e )Z |P(w + 2mk)[". (4.8)
The error random process k
e(t)y = f(t) - Zf(n)g(t —-n) (4.4) Since
has autocorrelation function spp(e*) = erf(n)e_j"“
Ree(t,7)=E <f(t +7) =Y f()glt+7 - n))
n we can recoveC(c/*) as follows:
O *(n)g*(t — .
<f (0 =2 1 (g n>>] Sy mpeine
= - — gt (¢ — Cle?*) = 2 . (4.9)
Bystr) = 3 Ryslt 47 =g’ (¢ =) ) S e 2
k
=Y Ryp(n—t)g(t+7—n)
n Notice that the division is legal because of the following:
+ ZRff(TL —m)g(t+ 7 —n)g*(t —m). {¢(t — n)} is assumed to form a Riesz basis for its span.

n,m Therefore, there are constanisc A < B < oo such that
(4.5) A< Y|®(w+27k)]? < B a.e., and the result of the division
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is in L2[—, n]. Finally, the reconstructed spectrum is Since r;r(m,n) is independent ofm, {f(t»)} is a WSS
inw random process, and we will just leave out index in
Z”f ne™ (4.13). Our PSD function has a special forfys(w) =
Sprlw) = = |®(w)|?. (4.10) C(e’*)|@(w)|?, and putting this in (4.13), we get
Z|<I>(w + 27k)|? .
k ) =57 [ O WPOE) @) do
The above derivation can be summarized in the following 1 g
theorem. — @J'WC(@W)
Theorem 4.1:Let autocorrelation functior; () of ran- 21 J
dom procesif(t)} be of the form (4.1). The PSD function Z Iv(w + 27k))? | ®(w 4 27k)|? dw  (4.14)
Syp(w) = C(e?*)®(w) can be recovered from integer samples %

{rss(n)} of Rss(r), as given by (4.10). for n # 0. It is clear now how to recover the PSD function.
Remark: If {¢(t —n)} forms an orthonormal basis, then »
First, we recoverC(c/*)

Yi|®(w + 27k)|? = 1 a.e., and the above equation simplifies
0)+ erf(n)e_j"‘“'

to
C(ei*) = n#0 (4.15)
Zh(w + 27k)|?| P (w + 27k)|?
k

Sff | Z7ff _jnw. (4.11)

B. Nonuniform Sampling

It can be easily seen that a deterministic nonuniform samvhere r(0) is given at the bottom of the page. Then, the
pling of a random process produces a nonstationary discretéginal PSD function is
parameter random process. In order to preserve stationarity,
we introduce randomness (i.e., jitter) into the sampling times. r(0) + erf(n)e—j"“
These so-called stationary point random processes were invessé- () = 720
tigated in [22]. One special case is when the sampling time&ff\*/ =
a?etn =n [—i— u]n Wher:un are independent random F\)/c'zlr?i\bles Zh(w +2mk) 2| 2w + 2mk)]?
with some distribution functiom(u). Let y(w) = E,[e™7%~]
be its characteristic function. The autocorrelation sequence\W¢ summarize these derivations in the following theorem.

|B(w)|?. (4.16)

k

the discrete parameter random procéﬁ&fn)} is Theorem 4.2:In addition to aSSUmptlonS of Theorem 3. 1
e assume that there is a random jitter and that its statistics
Trr(m,n) = E JE[f(tntm) [ ()] are known. Then, the PSD function can be recovered from
_E [Bsi(tmn —tm)] nonuniform sampleg f(¢,)} of random procesq f(¢)}, as
iven by (4.16), where = Ff(tmanf tn)].
- L [ Sy g, VN DY (4100 WISy (0) = Elf )

(4.12) APPENDIX A

. , . DEFINITIONS AND THEOREMS FROMMATHEMATICAL ANALYSIS
Sinceu,,’s are mutually independent, we have

This appendix contains some definitions and theorems from

E, et tm@ e iume] = { (W)l ifn#0 mathematical analysis that we use in the paper. It is intended
L ifn=0 to provide readers with a quick reference. For a more detailed
so that we finally get discussion, see the corresponding references.

1 o . . .

%/efn“lfy(w)IQSff(w) dw, if n#0; 1) Reproducting Kernel Hilbert Spaces

rys(mn) = Sfp(w) dw if 0 =0 Some Hilbert spaces have an additional structure built in.
S o Functional Hilbert spaces are one such example. Here is the

(4.13) definition from [8].

27r

Z|<I> w + 27k)|?
- o
-5 [ e
N o —x Y _|v(w + 27k) B (w + 27k) IQT;) o
r(0) = .
Z|<I> w + 27k)|?

dw

/—77 Zh w+ 27k)P(w + 27k)|?
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n(t) n() The setup is shown in Fig. 13. For a fair comparison, we scale
e “3/ aver ) ft) + it the output of the integrator bly/T. We assume that noisgt)

is a zero mean, WSS random process with finite variance and
autocorrelation functior,,,, (7).

Fig. 13. Block diagrams of local averaging and sampling schemes. In the case of sampling, the output is nﬁttk) as we
expect butf(¢;) +n(tx). Therefore, the error term is simply a
sample of the noisa(tk). The variance of this error is? =

Definition A.1: Let H be a Hilbert space of functions onE[|n(tx)|?] = R..(0). In the case of local averaging, the noise

X. H is called afunctional Hilbertspace if “point-evaluation” passes through the integrator. The output/i& f’”rT(f(t)Jr
functionals®,.(f) = f(z) are bounded o, Vx € X. n(t)) dt. Then, the error termey, = 1/7 [t n(t) dt has

It can be shown that in this case there exists a functimariance

K(x,y) on X x X called the reproducting kernel such that
flz) = (f(y), K(x,y)) for all f € H. Here,(-,-) denotes the

f(t)

tk

2 1 4 1 r n*
inner product inH. In this case/H is called a reproducing 0u=F T/ n(t+k) dtT/O (s+5) ds]
kernel Hilbert space (RKHS).
For a more detailed discussion of the role of the RKHS in / / Ron(t —s) dt ds
the sampling theory, see [10] and references therein.

TQ/_( — |T])Rn(7) dr. (B.1)

2) Facts From the Analysis

1) Fourier transform The Fourier transform, as usually'WVe also know thafR,.,(7)| < R.n(0) for all 7 € R.
defined, exists for functions i@ (R) only. However, Therefore, it follows that
it can also be defined oh?(R), and in this case, it is
an isometrical isomorphism from?(R) onto itself. In e — _/ < |T|> (T)d <1 (B.2)
this case, any equality is understood in thé sense. R (0)

Many equalities in this paper are in té sense, and it .
is usually clear from the context. The same is true fd e., the error due to noise in the “local averages” scheme has

the Fourier transform of sequencesiinas well [15]. variance smaller or equal to that in the case of sampling. It is
2) Convolutions As we mentioned in Section Il, stability equal if and only ifR,.,,(7) = Ry (0) for all 7 € [-T7T7].

in this paper does not mean BIBO stability. All we really

need is for7 —! to be a bounded linear transformation

from {2 into itself. However, ifFF(z) is a representation

of 71 and if F'(z) is BIBO stable, it implies thaf =  [1] S. Mallat, “Multiresolution approximations and wavelet orthonormal
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