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Generalized Sampling Theorems
in Multiresolution Subspaces

Igor Djokovic, Member, IEEE, and P. P. Vaidyanathan,Fellow, IEEE

Abstract—It is well known that under very mild conditions on
the scaling function, multiresolution subspaces are reproducing
kernel Hilbert spaces (RKHS’s). This allows for the development
of a sampling theory. In this paper, we extend the existing
sampling theory for wavelet subspaces in several directions.
We consider periodically nonuniform sampling, sampling of a
function and its derivatives, oversampling, multiband sampling,
and reconstruction from local averages. All these problems are
treated in a unified way using the perfect reconstruction (PR)
filter bank theory. We give conditions for stable reconstructions
in each of these cases. Sampling theorems developed in the
past do not allow the scaling function and the synthesizing
function to be both compactly supported, except in trivial cases.
This restriction no longer applies for the generalizations we
study here, due to the existence of FIR PR banks. In fact,
with nonuniform sampling, oversampling, and reconstruction
from local averages, we can guarantee compactly supported
synthesizing functions. Moreover, local averaging schemes have
additional nice properties (robustness to the input noise and
compression capabilities). We also show that some of the proposed
methods can be used for efficient computation of inner products
in multiresolution analysis. After this, we extend the sampling
theory to random processes. We require autocorrelation functions
to belong to some subspace related to wavelet subspaces. It turns
out that we cannot recover random processes themselves (unless
they are bandlimited) but only their power spectral density
functions. We consider both uniform and nonuniform sampling.

I. INTRODUCTION

EVER SINCE Mallat and Meyer [1], [2] came up with
the concept of multiresolution analysis (MRA), it has

been an interesting field for extension of results obtained
in other frameworks. One example is the sampling theory.
Originally, the theory was developed for uniform sampling
of bandlimited signals [3]. A couple of decades later, the
research was concentrated on nonuniform sampling [4]. In
the second half of this century, those ideas were extended to
random processes [5]. All these results hold true for the class
of bandlimited signals. What are other classes of signals from
which we can develop similar theory? A more general setting
is the class of reproducing kernel Hilbert spaces (RKHS’s)
[6] (see Appendix A). It turns out that the wavelet subspaces
(MRA subspaces) are RKHS’s (under very mild restrictions
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on the scaling function) [7]. The MRA system is specified by
the system of increasing closed subspaces

with

and (1.1)

where and are the set of integer and real numbers,
respectively, and is the trivial space, i.e., the space with
only the zero element. Furthermore, it is required that there
exists a function (scaling function) such that

is a Riesz basis [8] for The
complement subspace of in is , i.e.,

stands for a direct sum). For further requirements
and a more detailed discussion of MRA, see [9].

In sampling theory, there are two problems with which
one has to deal. The first one is that ofuniqueness. Namely,
given a sequence of sampling instants , can we have

for some , where
is the underlying RKHS)? If this cannot happen, we say that

is a sequence of uniqueness for The other problem is
that of finding astableinversion scheme. This brings to mind
the following: Given some sequence of uniqueness , we
need to know if it is possible to find synthesizing functions

such that these two things are true: First

(1.2)

and, second, if is close to , then so is
to in norms of the correspond-

ing spaces. It is possible that no stable reconstruction exists,
even though the uniqueness part is satisfied (see [10]).

As we already mentioned, Walter showed in [7] that are
RKHS’s under very mild conditions on the decay and regular-
ity of He further showed that a stable reconstruction from
samples at is possible and constructs the synthesizing
functions ’s. Janssen [11] extended Walter’s result to the
case of uniform noninteger sampling. Neither of these schemes
allows for both and synthesizing functions ’s to
be compactly supported,1 unless is of a restricted form
(characteristic function of [0,1] or its convolution with itself,
for example).

1In the future, whenever we talk about compactly supported synthesizing
functions, we assume that�(t) is compactly supported as well. Cases when
Sn(t)’s are compactly supported at the expense of not having compactly
supported�(t) are not considered.
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A. Aims of the Paper

In this paper, we extend Walter’s work in several directions.
We extend it to the following:

1) periodically nonuniform sampling;
2) reconstruction from local averages;
3) oversampling;
4) reconstruction from undersampled functions and their

derivatives;
5) multiband or multiscale sampling;
6) uniform and nonuniform sampling of WSS random

processes.

One of the motivations for these new schemes is the desire to
achieve compactly supported synthesizing functions. Periodi-
cally nonuniform sampling can guarantee compactly supported

’s under some restrictions, as we explain in Section
II-C. In order to overcome those restrictions of periodically
nonuniform sampling, we introduce local averaging. This
scheme can guarantee compact supports for ’s under
milder constraints. Local averaging offers some additional
advantages. It has good noise sensitivity properties and some
compression capabilities, as we show in Section II-D. At
the expense of a slightly higher sampling rate, oversampling
can always guarantee compactly supported ’s. This is
shown in Section III-A. There are situations where besides

, its derivative is available as well. In these cases, we can
reconstruct from samples of and , at half the
usual rate. In Section III-B, we show how this can be done.
If it is known that belongs to some subspace of ,
this additional information can be used to sample at a
lower rate (sampling of bandpass signals, for example). This
problem is treated in Section III-C. An application of some of
the above-mentioned methods to efficient computation of inner
products in MRA subspaces is explained in Section III-D (see
also the next subsection). Finally, in Section III-E, we analyze
what happens if we make errors in sampling times, namely, if
instead of sampling at , we sample at We will show
that this error can be bounded in terms of

All the above problems are embedded in the framework
of multirate filter banks. We give sufficient conditions for
the existence of stable reconstruction schemes and explicitly
derive expressions for the synthesizing functions. The theory
of FIR filter banks is used to obtain compactly supported
synthesizing functions.

In Section IV, Walter’s idea is extended to random pro-
cesses. Things are little different now. First, we have to specify
a class of random processes for which we want to develop the
theory. So far, mainly wide sense stationary (WSS) random
processes were considered [5]. The autocorrelation function
of a random process is defined as

(1.3)

where * denotes complex conjugation and statistical
expectation. When does not depend on, we call
it a WSS random process. We assume that is the
inverse Fourier transform of the power spectral density (PSD)
function In Section IV, we will use assumptions that
will ensure that the Fourier transform of exists (for

the relationship in a general case, see [12]). Now, we can
characterize a random process in terms of its autocorrelation
function. For example, a random process is bandlimited if
its autocorrelation function is bandlimited. In this paper,
we consider WSS random processes whose autocorrelation
functions belong to some space related to wavelet subspaces.
The problem of reconstruction has two meanings now. First,
we can talk about the reconstruction of a random process
itself, i.e., existence of functions such that

in the MS sense, i.e.

The other interpretation is a reconstruction of the PSD func-
tion We show that a random process itself cannot
be reconstructed if the synthesizing functions are assumed
to be integer shifts of one function, unless, of course, the
process is bandlimited. However, the PSD function can be
reconstructed, and we will show how. This is done for uniform
sampling in Section IV-A. Nonuniform sampling of WSS
random processes is considered in Section IV-B. Deterministic
nonuniform sampling of a WSS random process does not
give a WSS discrete parameter random process. We introduce
randomness into the sampling times (jitter) to take care of this
problem.

B. The New Results in the Perspective of Earlier Work

An actual implementation of the MRA requires computation
of the inner products , which is
computationally rather involved. Mallat proposed a method
that gives an approximation of by highly oversampling

Daubechies suggested another method (another inter-
pretation of Walter’s theorem) that computes exactly but
involves convolutions with IIR filters. Shensa [13] proposed a
compromise between the above two methods. It has moderate
complexity and nonzero error.

All of the above-mentioned methods involve sampling of
signals in Since our work is about sampling in MRA
subspaces, we apply some of the results obtained in Sections
II and III to the problem of computation of ’s. In Section
III-D, we give a qualitative comparison of the new and existing
methods in terms of complexity, sampling rate, and approxi-
mation error. While all our methods have zero error and pretty
low complexities and sampling rates, periodically nonuniform
sampling scheme achieveszeroerror at theminimal rate with
FIR filters (lowest computational complexity).

C. Notations and Conventions

1) In all the integrals, the integration is over ,
unless explicitly indicated.

2) When is a periodic function of with period
(and if the same is true for the mean of), we

say that is a cyclo widesense stationary random
process (CWSS) [14]. Then, one usually defines the
autocorrelation function of this (CWSS)process as the
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time average of and denotes it by , i.e.

(1.4)

3) The Fourier transform operation and its inverse are
denoted by and , respectively.

4) A set of functions in a Hilbert space is a Riesz
basis for if is complete in and if there exist
constants and such that

for any (see [8] for further properties).
5) For the reader’s convenience, some frequently used

definitions and theorems from mathematical analysis are
reviewed in Appendix A.

II. DISCRETEREPRESENTATIONS OFDETERMINISTIC SIGNALS

In this section, we consider different discrete representations
of functions in MRA subspaces We work in only since
all the relevant properties are independent of the scale (see [7]).
Other and subspaces will be considered in the case of
multiband sampling (see the next section). Let us first state our
basic assumptions and make some preliminary derivations.

A. Assumptions and Preliminary Derivations

We assume that forms a Riesz basis for
In order to show that is a RKHS, Walter assumes

that is continuous and that it decays faster than for
large , i.e., there exists such that
for some (see [7]). Janssen derives his result under
weaker assumptions, namely, that is bounded and that

(2.1)

converges uniformly on [0,1]. Note that this assures us that
and for all In

addition, the Fourier transform of is well defined and
is a continuous function (see [15]).

Since is a Riesz basis for , then for any
, there exists a unique sequence such that

(2.2)

If the sampling times are , then

(2.3)

Let

(2.4)

be the -Fourier transform of .2 Note that
is a bounded input bounded output (BIBO) stable filter because

2In our notation,F(!) is the Fourier transform of a functionf(t) in L1(R)
or L2(R), whereasF (ej!) is the Fourier transform of a sequenceffng from
l1 or l2:.

of (2.1). In the rest of the paper, we will frequently use the
following lemma.

Lemma 2.1:The samples can be written as follows:

(2.5)

Proof: If we substitute

in (2.3), we have

(2.6)

The order of integration and summation can be interchanged
because

(remember that and
.3.

Let us say a few words about the type of convergence in
(2.2). Riesz basis property guarantees-convergence of the
sum in (2.2) so that is determined only almost everywhere
(a.e.). Even though sampling of functions defined only a.e. is
meaningless, it is a well-defined operation in our case because
the sum in (2.2) converges uniformly on To see this, use
(2.1) and (2.2) to get

(2.7)

where the second inequality is obtained using the definition
of a Riesz basis. This relationship transforms-convergence
into uniform convergence. Therefore, sampling of , as
given by (2.3), is well defined. In the rest of the paper, we
will consider the pointwise convergence of (2.2) and no longer
worry about this. Our main concern will be to get sequences

from in a stable way. The next subsection is a
review of Walter’s and Janssen’s work.

B. Review of Uniform Sampling in Wavelet Subspaces

We will use an abstract setting for the sampling theory.
It offers us a unified approach to all the problems in this
and the following section. Therefore, let us first explain this
approach. The idea of sampling in wavelet subspaces is to find
an invertible map between and in (2.3). More
generally, we want to find invertible maps between and
some other discrete representations of functions inLet us
define this map.

3This argument for the interchangeability of integrals and/or sums will be
often used without explicitly stating it.
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Fig. 1. Interpretation of the uniform sampling result in terms of digital
filtering and inverse filtering.

Definition 2.1: By , we denote an operator frominto
It maps sequence to , where is some discrete
representation of

When we talk about sampling theorems, we have
, whereas in Section II-D, will be a sequence of

local averages. Because of the Fourier transform isomorphism
between and , we can think of as a map of

into itself. In this basis, is just a multiplica-
tion operator (from (2.5), action of is multiplication by

) in the case of uniform sampling). The following
theorem is borrowed from [11] just for the completeness of
the presentation (the proof can be found in [11]).

Theorem 2.1 (Janssen):Let for some
Operator maps into for any

Furthermore, is bounded if for
all

This theorem can be visualized as in Fig. 1. Therefore, we
see that this sampling theorem has a rather simple engineering
interpretation in terms of digital filters.4

Remarks:

1) There are some interesting connections to regularity
theory. Notice that the condition from the above the-
orem, in terms of [11], is that the Zak transform of

a.e. This condition is the same as
Rioul’s condition [17] for the optimality of his regularity
estimates. Therefore, if there is a such that

, then Rioul’s regularity estimates are
optimal, and can be reconstructed from

2) The synthesizing functions have been derived in
[7] and [11]. They have the following shift property

(2.8)

where

and

3) When turns out to be a rational filter, it is
obvious that if , then is stable
(possibly noncausal).

4) Evidently, we cannot make both and
trigonometric polynomials unless

Therefore, if is compactly
supported, i.e., if is a trigonometric polynomial,

cannot have compact support. This restriction will
be lifted in the schemes we propose.

4In this paper,z is just a formal argument, and it stands fore
j!

: �(z)
should not be interpreted asZ transform in the conventional sense [16]. Most
of our signals are assumed to be inl2 so that their Fourier transform exists
in l

2 sense only.

C. Periodically Nonuniform Sampling

Now, we consider the case of periodically nonuniform
sampling. For this, let us choose for

, and set From the abstract
point of view that we developed in the previous subsection,

can be viewed as the analysis filter bank of an-channel
maximally decimated filter bank (see [18]). To see this, notice
that using Lemma 2.1 is

(2.9)

where for In
terms of multirate filter banks, is the th subband
signal in Fig. 2.

There is no fundamental difference between this scheme
and that of Janssen. Fig. 1 is a trivial one-channel filter bank.
The aim here is the same. We want to get back from

in a stable way (notice that since
for the sequence as well).
In Fig. 1, we inverted a single filter Here, we have to
find a stable synthesis filter bank (which is the inverse of the
analysis filter bank)5. For this, we will use standard techniques
from the multirate filter bank theory. Let

and

be the polyphase decompositions of analysis and synthesis
filters (for more discussion on polyphase decompositions, see
[18]). Then, we define the polyphase matrices as

and Therefore, when this filter
bank has perfect reconstruction (PR) property, the operator
and its inverse can be represented by and ,
respectively (see Fig. 3). Now that we have this filter bank
interpretation of , we can return to the problem of uniqueness
and stability.

Lemma 2.2: In the case of periodically nonuniform sam-
pling, the sequence of sampling points is a sequence
of uniqueness if the matrix , as defined above, is
nonsingular a.e.

Proof: Let

and

be blocked versions of and Then, using Noble
identities (see [18]), the system from Fig. 2 can be transformed
into that in Fig. 3.

Notice that and that
where , and

5Stable in our context does not necessarily mean BIBO stable. We want a
bounded transformation ofl2 into l

2
: However, it turns out that if the synthesis

filter bank is BIBO stable, i.e., if the filter coefficients are inl1, then it also
represents a bounded transformation froml2 into l

2; see Appendix A.
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Fig. 2. Filter-bank interpretation of periodically nonuniform sampling.

Fig. 3. Polyphase representation.

and are elements of
Again, using Parseval’s equality, we have

(2.10)

Suppose (a positive semidefinite matrix) is
nonsingular a.e.. Then, can be zero if and only if

a.e., which implies that is a zero
sequence itself.

The question of stable reconstruction can be answered using
Wiener’s theorem (see Appendix A and [19]). What we want
is BIBO stability of

Lemma 2.3: A stable recovery from periodically nonuni-
form samples of any is possible if there exist
BIBO stable synthesizing filters This will be the case
if and only if for all

Proof: Since entries of are Fourier transforms of
sequences, so is the determinant (operation

of convolution is closed in , as explained in Appendix
A). Now, by Wiener’s theorem, the convolutional inverse of

is in if and only if Then, the
entries of are Fourier transforms of sequences.
This means that is a multi-input multioutput (MIMO),
BIBO stable system, and therefore, can be recovered
from in a stable way.

Remark: The existence of FIR PR filter banks allows for
the possibility of having both and ’s compactly
supported, unlike the schemes in [7] and [11]. In particular,
if for
then the polyphase matrix will be just a constant matrix. In
this case, the inverse filter bank is guaranteed to be FIR. This
constraint on the number of channels will not be necessary in
the schemes we propose next.

D. Expressions for Synthesis Functions

Let us now construct synthesis functions and show that they
have some shift property as well. are
the synthesis filters in our PR filter bank (see Fig. 2). The PR
property implies that (see [18])

(2.11)

Then, the reconstructed function is

(2.12)

If we define , then

(2.13)

Therefore, all the synthesizing functions are obtained as shifts
of the basic functions The above lemmas are sum-
marized in the following theorem.

Theorem 2.2:Let and be analysis filters and
their polyphase matrix as shown in Figs. 2 and 3. A stable
reconstruction of from the samples exists if
the determinant for all
Furthermore, all synthesizing functions are shifts offixed
functions, as given by (2.13).

Next, we are going to illustrate the above theory with
some practical examples, Before this, let us first give a short
summary of the algorithm.

E. Summary of the Algorithm for Recovery
of from

1) Choose for
2) Obtain filters , and

form
3) Find (provided Theorem 2.2 is satisfied), and

calculate synthesis filters ’s.
4) Construct synthesis functions ’s as given by

(2.13).

Example 2.1: Consider the MRA generated by linear
splines (see [15]). The scaling function is

for
for
otherwise.

We are interested in the case where there exist compactly
supported synthesizing functions. For this, let us choose

and Fig. 4 shows and samples
that determine filter coefficients. Namely, from

(2.4)

so that , and
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Fig. 4. Linear spline and its samples atn + um:

The polyphase matrix is

The inverse of is

Then, the synthesis filters are , and
The synthesis functions are and , where

, and
Example 2.2:Let us now consider the case of quadratic

splines [15]. The scaling function is

for
for
for
otherwise.

As usual, we want to have compactly supported synthesizing
functions. Since is supported on [0,3], we choose
and , and Then

and

The polyphase matrix and its inverse are

and

From , we get ’s and synthesizing functions
and , where

and

Therefore, we see that the actual implementation of the
algorithm can be simple. The above examples show how we
can achieve compactly supported synthesizing functions, but
the problem is that if the support of contains interval

, where are integers, then we need
channels. In other words, the number of channels

necessary for to be a constant matrix grows linearly
with the length of the support of

Fig. 5. Local averaging scheme.

F. Reconstruction from Local Averages

In this subsection, we consider another discrete representa-
tion of functions in The motivation for this subsection
comes from [20], where it was shown that a bandlimited
function can be recovered from its local averages. We extend
this representation to wavelet subspaces. This scheme offers
three advantages over the previous ones.

1) Compactly supported synthesizing functions: If is
compactly supported, then we can guarantee existence
of compactly supported synthesizing functions ’s.
Unlike in the case of nonuniform sampling, we can
guarantee this even when we have only two channels,
regardless of the length of the support of

2) Shaping of the frequency response: We are able to
shape frequency responses of analysis/synthesis filters.
Namely, we can force filters to be anything we
want (provided a length constraint is satisfied).

3) Robustness: This scheme has reduced sensitivity toward
the input noise, compared with pure sampling.

In the first part of the subsection, we make introductory
derivations that are similar to those in the case of uniform and
periodically nonuniform sampling. Then, at the expense of a
small increase in complexity, we modify the scheme in order
to gain control over the filter coefficients of ’s. This
discrete representation has the same average rate of sampling
as in previous sections.

The main idea is to find ways of reconstructing
not from samples but from local averages

around (as shown in Fig. 5). In the uniform
case, we can choose and Then,6

(2.14)

If then (2.1) implies that
The signal can be viewed as a convolution of
and so that Therefore, its Fourier transform

is well defined. Then, just as in the case
of uniform sampling (Section II-B), we have the following
relation:

where, now, is the Fourier transform
of The only difference from the case of uniform
sampling is that the operator now maps the sequence
into the sequence of local averages So this system is

6This integral exists becausef(t) 2 L2([u; u+ 1]) � L1([u;u+ 1]) for
all u 2 R:
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the same as that in Fig. 1, except for the definition of
and the meaning of its output Therefore, we have the
following theorem.

Theorem 2.3:If as defined above is nonzero on
, then the representation of a function by its

local averages is unique. Moreover, there exists a stable
reconstruction algorithm.

Remark: This scheme has the same problems as that of
uniform sampling. Namely, ’s and cannot be simul-
taneously compactly supported.

Let us now consider periodically nonuniform averaging.
The idea is to partition the interval into subintervals

The sequence of local averages is
defined as

(2.15)

Let

and

Using this notation, we have

(2.16)

This equation can be viewed as a convolution of with
followed by -fold decimation. Accordingly, in the fre-

quency domain, this means ,
where is the polyphase decomposi-
tion of , and denotes -fold decimation. The situation
is completely identical to that in the case of periodically
nonuniform sampling (which is shown in Fig. 2), and Theorem
2.2 holds true for this case (except that the filters ’s
are obtained in a different way). Again, if ’s are FIR
and such that the synthesis filter bank is FIR as well, the
synthesizing functions will be compactly supported.

However, if everything is the same as in the case of
nonuniform sampling, what is the point of doing all this? The
answer is given in the rest of the subsection:At the expense
of a little more complexity, we will be able to force the filters

to be anything we want.
Nonuniform sampling gave us very little control over the fil-

ters Consequently, it is unlikely that filters ,
in that scheme, will have an FIR inverse filter bank (unless
we choose big enough to make a constant matrix). In
order to make this happen for any , we have to work
a little harder. For this, notice that what we have done so
far, in this section, is equivalent to finding inner products of

and windows , where is the
characteristic function of the interval If we use some other
window, can we use this freedom to make sure that the filter
bank has an FIR inverse? We will show that the answer is in
the affirmative.

Let be compactly supported on an interval We
divide [0, 1] into subintervals Let
the windows be piecewise constant functions

(2.17)

Fig. 6. Areas under�(t) over intervalsIl are the entries of��� :

We are going to show how the coefficients can be used
to gain more control over the filters ’s.

Let and be the analysis and syn-
thesis filters of an FIR PR, -channel filter bank. We assume
that filters have lengths Note that except for the
length constraint, is an arbitrary FIR
PR filter bank.

The idea is to choose ’s so that
Let us see how to achieve this. The filter coefficients of

are

Using (2.17), this can be written as

(2.18)

where

Now, there are systems of linear equations (for
, each in unknowns

All these systems have the same system matrix
If is nonsingular, there is a unique solution for the ’s.
If turns out to be singular (which is very unlikely), we can
change subintervals and get a nonsingular (almost surely).
This way, we can shape the filters into anything we
want. The synthesizing functions can be obtained from
as in the previous subsection (see (2.11)–(2.13)). Even though
the equations look messy, the application of the algorithm is
pretty straightforward. Let us summarize the steps.

G. Summary of the Algorithm

1) Partition the interval [0, 1] into arbitrary subintervals

2) Form the matrix with entries If
is singular, return to step 1; otherwise, determine’s

from the filter coefficients of desired filters
3) Determine synthesizing functions ’s from

as given by (2.13).

We demonstrate the algorithm on simple examples of spline-
generated MRA’s.

Example 2.3: Let the scaling function be the linear spline,
as in Example 2.1, and let (two channels), ,
and The entries of are easy to calculate. They



590 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1997

are the areas shown in Fig. 6. More precisely

Then

is nonsingular, and its inverse is

Suppose we wish to choose windows such that

and

( and are analysis filters of the simplest two-
channel paraunitary filter bank.) Then, the coefficientsare
obtained as

and

Therefore, the windows are

and

Since form a paraunitary filter bank, the synthesis
filters are time-reversed versions of ’s, i.e.

and

Therefore, the compactly supported synthesizing functions are
and , where

and

This example shows how easy it is to shape filters ’s.
In a similar way, if we consider some scaling function with a
bigger support, we can have longer filters with better frequency
responses.

Example 2.4: In this example, we want to show that the
number of channels may be smaller than the length of filters

’s. For demonstration, we choose quadratic splines as
given in Example 2.2. Choose , and

and ; it is straightforward to check that

is nonsingular. Therefore, we can force filters to be any
desired filters of length 3. Notice that there are no assump-
tions about the number of channels. In particular, compactly
supported synthesizing functions can be guaranteed with a
two channel filter bank (unlike in the case of periodically
nonuniform sampling). All this generalizes for ’s with
bigger supports.

Remarks:

1) Complexity: Notice that the windows are step
functions. It is therefore not necessary to perform true
inner products. A simple “integrate and dump” circuit
with weighted output will do.

2) An additional advantage: We wanted complete control
over the filters in order to be able to guarantee
compact supports for the synthesizing functions ’s.
However, this freedom can be used to achieve even
more. Namely, we can design ’s with good fre-
quency characteristics and then use standard subband
coding techniques for signal compression.

3) Limitations: This extended local averaging technique
works for compactly supported scaling functions only.
As the length of the support of increases, we have
to subdivide the interval [0,1] into increasingly more
subintervals. This makes the scheme increasingly more
sensitive to errors in limits of integration.

At the beginning of the subsection, we announced three main
advantages of local averages over the previous schemes. So
far, we justified the first two. Intuitively, it is clear that if
the input signal is contaminated with a zero mean noise

, local integration will tend to eliminate the effect of the
noise. This can be more rigorously justified, and the details
are provided in Appendix B.

III. FURTHER EXTENSIONS OF

SAMPLING IN WAVELET SUBSPACES

In this section, ideas of sampling in wavelet subspaces are
extended to three more cases. Namely, we consider oversam-
pling, derivative sampling, and multiband sampling. As in
Section II, we mainly work in , except for the multiband
case. All the assumptions from Section II-A are kept, and
whenever we make some additional assumption, it will be
explicitly stated.

A. Oversampling

We already saw two schemes in which both and
’s can be compactly supported. Here, we introduce

another such scheme: oversampling. So far, we considered
-channel maximally decimated filter banks only (Fig. 1 is a
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Fig. 7. Filter-bank interpretation of oversampling.

special case with ). Let us see what happens in the
case of nonmaximally decimated filter banks. Instead of doing
derivations for the most general case, we will demonstrate the
idea on the example of a two-channel nondecimated filter bank.
For this, we choose and If we sample
the signal at the two sets of points and

, we obtain the two sequences
and We know from Section II-B
that can be recovered from either of these two sequences
(provided conditions of Theorem 2.1 are satisfied). The idea is
to use the redundancy to achieve reconstruction of with
compactly supported functions. Let

for

Using our abstract approach, this situation can be represented
as in Fig. 7.

In Fig. 7, if are polynomials, Euclid’s algorithm
guarantees existence of polynomial ’s if and only if

and are coprime. In the general case, when
’s are not necessarily FIR, the following theorem gives

us solution to the reconstruction problem.
Theorem 3.1:For the system in Fig. 7, operator maps

into If
for all has a bounded inverse.

Furthermore, if is compactly supported, therealways
exists an FIR inverse so that ’s can be compactly
supported.

Proof: In this case, operator maps into
What we need is a bounded inverse

operator If we can guarantee that there always exists a
matrix ( in our notation in Fig. 7), whose

entries are Fourier transforms of sequences in, then we are
done (see Appendix A).

For the case of polynomial ’s, Euclid’s algorithm
guarantees existence of polynomials and such
that , provided and

are coprime. The same is true for rational ’s.
In the general case, an extension of the Wiener’s theorem

(the basic Wiener theorem is stated in Appendix A) is as
follows. If for all and

have absolutely summable Fourier series,
then there exist functions with abso-
lutely summable Fourier series such that

(see [21] for the proof).
Remarks:

1) Local averages: It is clear that we can conceive the idea
of oversampled local averages. Namely, let us divide
the interval [0,1) by some and consider the

following sequences:

Then, we can have a similar structure as in Fig. 7, and
a theorem analogous to Theorem 3.1. holds.

2) Oversampling at a lower rate: Compact supports of
and ’s can be guaranteed even if we oversample
at a lower rate. In the discussions above, we considered
a nondecimated two-channel filter bank. However, both
Euclid’s and Wiener’s theorem can be generalized for
the matrix case. For example, if we choosepoints

and sample at for
, the scheme can be viewed as an

-channel filter bank, with decimation ratio The
operator is an matrix whose entries
are Fourier transforms of sequences. In the case
of polynomial matrices, an extended Euclid’s theorem
guarantees existence of a polynomial inverse
matrix if rank for all More
generally, an extended version of Wiener’s theorem
guarantees the existence of a bounded inverse operator

if rank for all The
sampling rate in this case is Therefore, we
see that compact supports for and ’s can be
guaranteed if we sample at a rate for any

B. Reconstruction from Samples of Functions
and Their Derivatives

It is well known that a bandlimited function can be
recovered from samples of and its derivative athalf
the Nyquist rate (see [10] for further references). In this
subsection, we want to show how this idea can be extended
for the case of wavelet subspaces. This problem can be treated
the same way as that of periodically nonuniform sampling. We
will derive expressions for the analysis bank filters since that
is the only difference from Section II-C. Let us demonstrate
the idea on the example of reconstruction of from
the samples of and its derivative at rate 1/2.

We assume that the scaling function is compactly
supported and that it has a derivative It is also assumed
that itself satisfies Janssen’s conditions stated in Section
II-A. Consider uniform sampling, i.e., The above
assumptions enable us to differentiate (2.2) term by term and
get

(3.1)

Using Lemma 2.1, we have

and

(3.2)

where

and
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Fig. 8. Functions�(t); �0(t) and their samples at integer points.

(3.3)

From [11], we know that can be reconstructed from
This means that the sequence of derivatives

is redundant. The idea is to use this redundancy to reconstruct
from subsampled sequences and No-

tice that this scheme corresponds to a two-channel maximally
decimated filter bank with and as analysis
filters. Therefore, everything is the same as in Fig. 2, and
Theorem 2.2 provides us with conditions for the existence of
a stable reconstruction scheme. Namely, stable reconstruction
is possible if the polyphase matrix of and is
nonsinglar for all

This can be easily generalized to the case of higher deriva-
tives. Assume that the scaling function and its
derivatives satisfy Janssen’s conditions from Section II-A.
Then, can be reconstructed from the samples of
and its derivatives at th Nyquist rate, provided
conditions of Theorem 2.2 are satisfied. Synthesizing functions
can be constructed as in Section II-C. Let us illustrate the
above derivations for the case of quadratic splines.

Example 3.1:Consider the MRA generated by the
quadratic spline as in Example 2.2. Then, , its derivative,
and integer samples are shown in Fig. 8. From the figure,
it is easy to see that

and

The polyphase matrix is

Its inverse is

so that the FIR synthesis filters are

Fig. 9. Ideal bandpass signal and its aliasing copies.

Finally, the synthesis functions are and ,
where

Remark: If one uses longer filters, may turn out
to be IIR. Then, the synthesis functions are not compactly
supported. In that case, one can use techniques of nonuni-
form sampling or reconstruction from local averages together
with sampling of derivatives to ensure compactly supported
synthesizing functions.

C. Multiband or Multiscale Sampling

Consider a signal as in Fig. 9. If is regarded
as a lowpass signal, the minimum necessary sampling rate is

If it is regarded as a bandpass signal, it can be verified
that aliasing copies caused by sampling at the
rate do not overlap. Therefore, the minimum sampling rate
in this case is The aim of this subsection is to find the
equivalent of this situation in wavelet subspaces.

Spaces roughly speaking, contain lowpass signals,
whereas the spaces contain bandpass signals. So far,
we have examined lowpass signals only (ones that belong
to ). The necessary sampling rate for exact reconstruction
was unity. We will show that if a signal does not occupy the
whole frequency range that covers, it can be sampled
at a lower rate. For example, if , we can
sample it at the rate 1/2. More generally, assume that

This means that
there are sequences such
that

(3.4)

From Walter’s work, we know that since , it can
be recovered from its integer samples. Here, the aim is to
exploit the fact that belongs to a subspace of and
sample it at a lower rate. As in previous subsections, the
idea is to find an invertible map from the sequences
to a sequence of samples of For this, let us sample

at , where
Intuitively, this rate should be enough since

we can project onto each of ’s and then sample those
projections at rates As in the previous sections, we would
like to find a nice interpretation of the operator in terms
of digital filter banks. The samples are spaced apart
by , and this spacing depends on The same is true for
the sequence In order to simplify the analysis that
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Fig. 10. Polyphase representation of a MIMO nonuniform filter bank.

follows, let us find some equivalent system where all the
inputs/outputs operate at the same rate. For this, let

and

(3.5)

be the Fourier transforms of and In order to
bring all these signals to the same rate, we expand ’s
and ’s into their -fold polyphase components

and

(3.6)

Now that all the inputs and outputs are brought to the same
rate, our system can be represented as that in Fig. 10.

Let us find the entries of Using (3.4), the th element
of is

(3.7)

Substituting in the above expression and using

we get

(3.8)

Finally, after expanding ’s into their -fold

polyphase components, we get

(3.9)

where

Therefore, the output polyphase components are

(3.10)

Hence, the entries of the matrix in Fig. 10 are

where

and

As before, the MIMO version of the Wiener’s theorem [21]
gives us sufficient conditions for the existence of a stable
inversion scheme.

Theorem 3.2:If a function

is sampled at the rate , then there
exists a stable reconstruction scheme if , as defined
above, is nonsingular for all

Remark: Notice that if the projection of onto some of
’s is zero, we can drop the corresponding term

and sample at an even lower rate.
Synthesizing functions can be determined from as

follows. Let

and

where

and

Then

(3.11)
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Fig. 11. W
�1 [W�2 � V0 in the frequency domain.

where

In addition

(3.12)

Substituting (3.11) into the last equation, we get

(3.13)

where

(3.14)

These synthesizing functions have a shift property as well.
Notice that , i.e., all the functions
are obtained as shifts (for ) of basic functions

for and
Using , the synthesis algorithm (3.14) can be written as

(3.15)

This provides the formula for in terms of the samples

Example 3.2:Let and in Theorem 3.2. Then,
our function is The situation is
schematically sketched in Fig. 11. In this case, matrix
is of the form

The entries are functions of the chosen and
, i.e., the underlying MRA. If turns out to be

nonzero for all , then is stable, and we
can obtain synthesizing functions as given by (3.11)–(3.15).

D. Efficient Computation of Inner Products in MRA

As one of the inventors of MRA, Mallat was the first
to face the problem of computing inner products

, where There exists
a computationally very efficient method for getting from

for any : the so-called “fast wavelet transform”
(FWT) (tree structured filter banks in other words). Therefore,
the problem is to compute Mallat showed that under
mild conditions on regularity of , the samples
approach when However, obtaining coefficients

was an intermediate step in reconstructing from
its samples (or local averages) in the methods we developed
earlier. This means that the schemes we proposed can be used
for computation of inner products In the rest of
the subsection, we will compare our methods with the existing
ones.

1) Existing Schemes:Instead of computing inner products,
Mallat samples at the rate (notice that this rate is
usually much higher than necessary, if and then
uses FWT to get and other lower resolution coefficients.
Therefore, in this case, we have very high sampling rate,
moderate complexity, and relatively good approximation of
true inner products. Daubechies ([9, p. 166]) outlined a method
of getting from the integer samples Walter [7]
provided a detailed derivation for this method in the context
of sampling in wavelet subspaces. In terms of Section II-A,
Theorem 2.1 says that the coefficients can be exactly
determined from samples of (unit rate) by filtering them
with (provided has no zeros on the unit
circle). However, the problem is that is an IIR filter,
and one has to make a truncation error. Shensa [13] proposed a
method that is somewhere in between the above two. His idea
is to approximate the input by It
is easy to see that the inner products are filtered
integer samples The main problem with this method is
in finding a good approximation of , which is the only
source of errors. Let us now see how our methods perform in
terms of complexity, sampling rate, and approximation error.

2) New Schemes:Mallat’s algorithm has a rather low com-
plexity. Therefore, from the point of view of complexity, direct
computation of inner products and Mallat’s algorithm are two
extreme cases. The gap between those two extremes is bridged
by our local averaging scheme. It has higher complexity than
Mallat’s algorithm, but it gives zero error and minimal possible
rate, and it has some other nice features, as explained in
Section II-D. Mallat’s and the Daubechies/Walter algorithm
are the two extreme cases in terms of the sampling rate. While
the Daubechies/Walter algorithm has a higher complexity, it
has minimum possible rate and very small error. The gap
between those two methods in terms of the sampling rate is
bridged by our oversampling scheme. In its simplest form (for
sampling rate 2), it is just Euclid’s algorithm, as was described
in detail in Section III-A. It achieves zero error with negligible
complexity (FIR filtering)7 at the expense of a slightly higher
sampling rate (which is still small when compared with
Mallat’s Finally, nonuniform sampling, when

7When we say FIR filtering, it is assumed that�(t) is compactly supported.
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Fig. 12. Qualitative comparison of different methods for computingc0;n’s.

is forced to be a constant matrix, achieves minimal sampling
rate, small complexity (FIR filtering), and zero error.

Depending on the application, one or another scheme that
we propose gives results better than any of the previous
schemes. In particular, all our schemes achieve zero error
and use FIR filters. The above discussion is summarized in
Fig. 12. It shows relative merits of the schemes in terms of
computational complexity, sampling rate, and approximation
error.

It should be mentioned that all the above discussion holds
true only for the case when we know that ; otherwise,
we make an “aliasing” error [7].

E. Errors in Sampling Times

Here, we want to see what happens if we reconstruct
thinking that the sampling times are but, in actuality, are

It will be shown that the error is bounded and tends
to zero when In this subsection, we assume that
is compactly supported on an interval of lengthand that it
satisfies for every and some
(i.e., is Lipschitz continuous). Let the actual sampling
times be

(3.16)

where Then, we have

(3.17)

From the last equation and the Cauchy–Schwarz inequality,
we get

(3.18)

where is some constant. Because of the stability of the
reconstruction algorithm, we also have

(3.19)

where The last inequality means that
the norm of the error can be controlled by As for
the supremum norm of the error, we use (2.7). Then, it is
immediate that

(3.20)

We see that both and supremum norms of the error can
be controlled by

IV. SAMPLING OF WSS RANDOM PROCESSES

The problem of sampling of random processes was thor-
oughly investigated by the end of 1960’s. Uniform and nonuni-
form sampling of WSS and nonstationary bandlimited random
processes was considered (for an overview, see [10]). In this
section, we want to look at the problem of uniform and
nonuniform sampling of WSS random processes related to
wavelet subspaces.

Let us first specify more precisely the class of random
processes to which the derivations will apply. Let be
the deterministic autocorrelation function of , i.e.

Since , then
as well. In addition, the Cauchy–Schwarz inequality

implies for all We keep
assumptions from Section II, namely, that is a
Riesz bases for span and that satisfies
Janssen’s conditions from Section II-A. We will consider
random processes whose autocorrelation functions have the
following form:

(4.1)

where The above series converges absolutely and
uniformly on so that samples of are well defined.
Notice, in particular, that implies that

and Therefore, the Fourier transform of
exists and is equal to (we also assume that
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is the inverse Fourier transform of ). The PSD
function has the following form:

(4.2)

where and
In the first part, we are going to consider uniform sampling

of random processes from the specified class. We show that
the PSD function can be recovered but not the random process
itself, unless it is bandlimited. In the second part, we consider
nonuniform sampling. We have to introduce randomness into
the sampling times in order to preserve wide sense stationarity
of the sampled random process. As in the case of uniform
sampling, we show how to reconstruct the PSD function.

A. Uniform Sampling

Consider a random processes with au-
tocorrelation functions of the form (4.1). The discrete
parameter autocorrelation function is

(4.3)

Since is not a function of is a discrete
parameter WSS random process.

Let

Then, the Fourier coefficients of are integer samples
of the autocorrelation function , i.e.,

Since , we also have

We will use this relationship later on.
First, we show that the random process cannot be

reconstructed from the samples if the synthesizing
functions are restricted to be shifts of one function (unless, of
course, the random process is bandlimited). In order to show
this, assume the contrary. Let there be a function
such that is equal to in the MS sense.
The error random process

(4.4)

has autocorrelation function

(4.5)

It is easy to check that ; threrfore,
the error is a cyclo-WSS random process with period

We can average with respect to to get the
autocorrelation function Its variance is the value of

at , i.e., Now, using the relation

we have (the order of integration and summation in the last
term can be switched because

(4.6)

Using Parseval’s identity, the above expressions can be sim-
plified to

(4.7)

This cannot be zeroed for any choice of unless is
bandlimited.

Even though we cannot recover the random process in the
MS sense, we can still recover the PSD function We
know that and that

Substituting the special form of into the last formula,
we get

(4.8)

Since

we can recover as follows:

(4.9)

Notice that the division is legal because of the following:
is assumed to form a Riesz basis for its span.

Therefore, there are constants such that
a.e., and the result of the division
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is in Finally, the reconstructed spectrum is

(4.10)

The above derivation can be summarized in the following
theorem.

Theorem 4.1:Let autocorrelation function of ran-
dom process be of the form (4.1). The PSD function

can be recovered from integer samples
of , as given by (4.10).

Remark: If forms an orthonormal basis, then
a.e., and the above equation simplifies

to

(4.11)

B. Nonuniform Sampling

It can be easily seen that a deterministic nonuniform sam-
pling of a random process produces a nonstationary discrete
parameter random process. In order to preserve stationarity,
we introduce randomness (i.e., jitter) into the sampling times.
These so-called stationary point random processes were inves-
tigated in [22]. One special case is when the sampling times
are , where are independent random variables
with some distribution function Let
be its characteristic function. The autocorrelation sequence of
the discrete parameter random process is

(4.12)

Since ’s are mutually independent, we have

if
if

so that we finally get

if ;

if .

(4.13)

Since is independent of is a WSS
random process, and we will just leave out index in
(4.13). Our PSD function has a special form

, and putting this in (4.13), we get

(4.14)

for It is clear now how to recover the PSD function.
First, we recover

(4.15)

where is given at the bottom of the page. Then, the
original PSD function is

(4.16)

We summarize these derivations in the following theorem.
Theorem 4.2:In addition to assumptions of Theorem 3.1,

assume that there is a random jitter and that its statistics
are known. Then, the PSD function can be recovered from
nonuniform samples of random process , as
given by (4.16), where

APPENDIX A
DEFINITIONS AND THEOREMS FROMMATHEMATICAL ANALYSIS

This appendix contains some definitions and theorems from
mathematical analysis that we use in the paper. It is intended
to provide readers with a quick reference. For a more detailed
discussion, see the corresponding references.

1) Reproducting Kernel Hilbert Spaces

Some Hilbert spaces have an additional structure built in.
Functional Hilbert spaces are one such example. Here is the
definition from [8].
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Fig. 13. Block diagrams of local averaging and sampling schemes.

Definition A.1: Let be a Hilbert space of functions on
is called afunctional Hilbertspace if “point-evaluation”

functionals are bounded on
It can be shown that in this case there exists a function

on called the reproducting kernel such that
for all Here, denotes the

inner product in In this case, is called a reproducing
kernel Hilbert space (RKHS).

For a more detailed discussion of the role of the RKHS in
the sampling theory, see [10] and references therein.

2) Facts From the Analysis

1) Fourier transform: The Fourier transform, as usually
defined, exists for functions in only. However,
it can also be defined on , and in this case, it is
an isometrical isomorphism from onto itself. In
this case, any equality is understood in the sense.
Many equalities in this paper are in the sense, and it
is usually clear from the context. The same is true for
the Fourier transform of sequences inas well [15].

2) Convolutions: As we mentioned in Section II, stability
in this paper does not mean BIBO stability. All we really
need is for to be a bounded linear transformation
from into itself. However, if is a representation
of and if is BIBO stable, it implies that
is a bounded transformation of into itself. This follows
from the following theorem.

Theorem A.1 [19]:Let and
Then, the convolution As a

special case, the convolution of a sequence fromand a
sequence from is a sequence in for all

3) Wiener’s Theorem [19]:From the previous theorem, it
is clear that the operation of convolution is closed in

Wiener’s theorem gives us a necessary and sufficient
condition for the existence of a convolutional inverse of
some

Thorem A.2:A sequence has a convolu-
tional inverse and only if
for all In this case

APPENDIX B
SENSITIVITY TO THE INPUT NOISE

In this Appendix, we show that the “local averages” scheme
is indeed less sensitive to the input noise than plain sampling.
In the analysis that follows, we use the additive noise model.

The setup is shown in Fig. 13. For a fair comparison, we scale
the output of the integrator by We assume that noise
is a zero mean, WSS random process with finite variance and
autocorrelation function

In the case of sampling, the output is not as we
expect but Therefore, the error term is simply a
sample of the noise The variance of this error is

In the case of local averaging, the noise
passes through the integrator. The output is

Then, the error term has
variance

(B.1)

We also know that for all
Therefore, it follows that

(B.2)

i.e., the error due to noise in the “local averages” scheme has
variance smaller or equal to that in the case of sampling. It is
equal if and only if for all
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