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The majorization relation has been shown to be useful in classifying which transformations of jointly held
guantum states are possible using local operations and classical communication. In some cases, a direct
transformation between two states is not possible, but it becomes possible in the presence of another state
(known as acatalys}; this situation is described mathematically by tinemping relation, an extension of
majorization. The structure of the trumping relation is not nearly as well understood as that of majorization. We
give an introduction to this subject and derive some results. Most notably, we show that the dimension of the
required catalyst is, in general, unbounded; there is no integerch that it suffices to consider catalysts of
dimensionk or less in determining which states can be catalyzed into a given state. We also show that almost
all bipartite entangled states are potentially useful as catalysts.
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[. INTRODUCTION above for any real vectors anddy, if we include the addi-
tional restriction thats®_ x;=3¢_,y;, which is automati-
The study of quantum entanglement has received considsally satisfied for probability vectors. For our applications to
erable attention in recent years, with numerous remarkablthe study of entanglement, howevgrandy will always be
applications including quantum cryptograpty?2], quantum  probability vectors, and we will make this assumption
teleportation[3], and superdense codirig]. Entanglement throughout.
seems to be the essential element of such applications, and as!ntuitively, if x andy are probability vectors such that
a result it has come to be viewed as a fundamental resourceY. thenx describes an unambiguously more random distri-
that allows one to perform certain information-processingPution than doesy. For example, inR®, we have that
tasks. As with any physical resource, one wishes to measuf@-2:0-5)< (20-810-2)- In fact(0.5, 0.3 is majorized by every
how much entanglement is present in a given system, and t§Ctor iNR” whose components sum to unity.
determine under what conditions it is possible to convert one, |N€ Mmajorization relation defines a partial order on
form of entanglement to another. The problem of how tod-dlm.ensllonell real vectors, whete<y andy<x, if and
qguantify and classify entanglement is one of the basic quesqnly."c x:=y". To see t_hat majorization is not a complete
tions in the rapidly growing science of quantum information r_elatlon, conS|.der for instanca=(0.5,0.25,0.25) andy
theory[5,6]. =(0.4,0.4,0.2); thex«y andy<«x.

A significant advance in understanding entanglement was We are now ready to state Nielsen's theorgfh
gnitics 9 9 Theorem 1Suppose Alice and Bob are in joint possession
made by Nielsen, who showdd] that the structure of the

o _ . of a bipartite entangled quantum st&t¢ which they wish to
bipartite entangled states is related to the linear-algebraig,nsform into another bipartite entangled st using

thec_)ry ofmajorization[8,9]. We give an introduction to this only local operations and classical communicaib®CC).
subject here. Suppose thak=(xy,...Xq) and y et |y)=39  ajin)|ig) be a Schmidt decomposition of
=(Y1,....yq) ared-dimensional probability vectors; in other ), and let|)==%, VB;]iL)|is) be a Schmidt decomposi-

words, their components are non-negative and sum to unityy, of |$). Then|i) can be converted tap) by LOCC, if
We letx! denote thed-dimensional vector obtained by ar- gnq only if the vectora=(ay,...,ag) is majorized’by

ranging the components of in nonincreasing orderx! B=(B1,....Bq).
=(x{,...xy), wherex{=x5=---=x}. Then we say thatis Nielsen’s theorem defines a partial order on the entangled
majorizedby y, written x<y, if the following relations hold:  bipartite pure states. If stafg) hasx as its vector of Schmidt
coefficients, and¢) hasy as its vector of Schmidt coeffi-
| cients, then we can transforfp) to |¢) using LOCC, if and
2 x}sZ yil (1=l<d). only if x<y. Because our ability to transform one state to
=1 =1 another depends only on their Schmidt coefficients, and not
on the bases, we shall abuse nomenclature and refer to any
(In fact, the theory of majorization is not limited to prob- vector of Schmidt coefficients as a “state.”
ability vectors. The majorization relation can be defined as The above characterization of when one entangled state
can be transformed to another is particularly helpful because
the structure of the majorization relation is relatively well
*Electronic address: daftuar@its.caltech.edu understood. For example, the following results are well
Electronic address: klimesh@shannon.jpl.nasa.gov known [8].
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Theorem 2.Let x,yeRY. Then (a) The following are dition for determining whethex<+y [or alternately, to de-

equivalent: termine the elements of the skty) for any giveny]. Char-
(i) x<y. acterizing the trumping relation in this way would help us to
(ii) Eszlxi:Eid: i and for all 1e{2,..d}, Eid:|Xil better understand the structure (_)f the l_)ipartite entangled
=5d vl states. However, such a characterization is not yet known.
1= [

In examining the trumping relation, many questions natu-
rally arise. For instance, if=(1/d,...,1d), the trumping

- d . condition is (trivially) the same as the majorization condi-
(b) Let S(y)={xeRx<y}. ThenS(y) is a convex set . x<y, if and only if x<ty. One wishes to know for

whose extreme points are the elements of the{BgP isa \ich y this is the case. One also desires to know whether
dxd permutation matrik . , catalysts of arbitrarily high dimension need be considered, in
Jonathan and Plenio have extended Nielsen's result bye following sense: givew, is it possible to finc such that

describing a phenomenon known as entanglement catalysis (y)=T(y)? These questions are among those answered in
[10].  Suppose that x=(0.4,0.4,0.1,0.1) and y  this paper.

=(0.5,0.25,0.25,0). Thex«y. Now letz=(0.6,0.4). Then
we havex®z<y®z. In other words, if Alice and Bob start
only with statex (by which we mean a jointly entangled
quantum state whose Schmidt coefficients are the compo- The following lemma and its corollary will be useful to us
nents ofx), they cannot transform it into stayeusing LOCC.  in proving additional results, and are also interesting in their
But if they also have state available, then they can tum  own right:

(iii) x=Dy for some doubly stochastitx d matrix D.
(iv) For every real number, =, |x,—t|<=%,|y;—t].

IIl. AKEY LEMMA

®z into y®z. So they can “borrow”z, use it to help turrx Lemma 4.Let x=(X1,....Xq) and y=(yi,....yq) be
into y, and “return” it after performing the transformation. d-dimensional probability vectors, whose components we as-
We say that is a catalystfor the transformation. sume to be arranged in nonincreasing order=x,=:--

The phenomenon of catalysis illustrates that entanglementx,, and similarly fory. Suppose thax<y, y;>x;, and
itself can be used as a resource to help perform transformgr,<x,. Thenx is in the interior ofT(y).
tions of entangled states. One naturally wishes to know when Note that when we say is in the interior of T(y) we
this is possible: giverx andy, can we determine wheth&r  mean the interior relative to the spacedeflimensional prob-
can be transformed tg using LOCC in the presence of a apility vectors; that is, for any there must exist a@ such
catalyst? This is equivalent to asking whether there is a probthat if x is a probability vector for whiclix’ —x||< e (in the
ability vectorz such thak®@ z<y®z. Euclidean norm, for instangethenx’ e T(y).

We will adopt the terminology and notation introduced by  Wwe remark that the conclusion is obviousxifis in the
Nielsen[9] and say thak is trumpedby y, writtenx<ry, if interior of S(y); the important fact is that the result holds
there exists a catalyst (of any dimensiopsuch thatx®z  \whenx is on the boundary o$(y).
<y®z. For any givery, let T(y) denote the set of a}l such Proof. Note thatxy>0. Pick ana satisfying a<1, «
thatx is trumped byy; and for anyy andz letT(y,z) bethe  >x,/y,, and a>y4/x4. Let k be an integer for which
set of allx such thax®z<y®z. In addition, we introduce x, o*~1<x,. Now letz be thek-dimensional vector
the following notation: for anyd-dimensional probability
vector y and any positive integek, let T (y)={x|3 a z=(la,...,a% 1.
k-dimensional probability vectar such thatx® z<y®z}.

Our results will rely heavily on the fact that the trumping (Of coursez is not a probability vector, but it can easily be

relation involves vectors with all non-negative components,grmalized. For convenience in the proof, we neglect the
Note that this is quite different from the situation with ma- normalization)

jorization, in which most results extend easily to vectors con- \we will show thatx is in the interior of T(y,2). Since

taining negative components. , T(y,2)CT(y), this will establish the result.

The following facts are known about the trumping rela- | ot (y®2)! denote theth component ofy®z when its
tion. The first three are straightforward from the deﬁnitions:componentsIare arranged in nonincreasing order. We will
the others have been proven elsewHdi@9|. show that for =l<dk— 1

Theorem 3Let x andy be d-dimensional probability vec- '
tors, letz be a probability vectofof any dimensiojy and let | |
S(y), T(y), andT,(y) be defined as above. Then ! !

(@) X<y=x®z<y®2Z. ;1 (x®2) <i21 (yoz)i. @)

(b) S(Y)CT(y).

(© T(Y)=Ui=1Tw(y)- Note that sincex® z must be majorized by®z, we already
(d) T(y) is a convex set. know that Eq(1) must hold for GsI<dk if “ <”is replaced
(e) If x<7y andy<rx, thenx'=y!. by “<” (and this fact is used later in the prooShowing
(f) If x<7y, thenxi<y} andx=vy}. that Eq.(1) holds for 1<I<dk—1 will complete the proof

In contrast to the situation with the majorization relation, since it is then clear that any sufficiently small perturbations
the mathematical structure of the trumping relation is noto x (within the probability spagewill not cause Eq(1) to be
well understood. One desires a necessary and sufficient comiolated for any k=I<dk—1.
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For the remainder of the proof we fixas an arbitrary by reasoning similar to that yielding E¢4). Again our as-
integer satisfying &l<dk—1. Consider the terms that the sumption thatM,<m, is contradicted. Thus the proof is
left-hand sum of Eq(1) will contain. For Il<i=<d, let r; complete. |
denote the number of these terms that are of the fouah, Corollary 5. Supposex andy ared-dimensional probabil-
with 0=<j<k. (In case of repeated values of components ofity vectors, with components arranged in nonincreasing or-
Xx®z, we regard terms with smallérto be included in the der, such that<;y andy,;>x; andyy<X4. Thenxis in the
sum first) Note that these r; terms must be interior of T(y).

X, Xia,...xja"""1, since these are the largest of this form. Proof. By definition there exists & such thatx®@z<y
The sum(which we denote by,) can thus be written ®z. Sincey;>x; and yy<xyq we must have >(®z)£<(y

d rio1 ®2) and k®2) 45> (y®2)4, Wherek is the dimension of

i z
= o

Sx 2‘1 12‘0 Xia. @ We can thus apply Lemma 4 and conclude thatz is in
the interior of T(y®z). Sincex—x®z is a continuous func-

Note that G=r;<k and in additionr ;>0 andr4<Kk. tion, it follows that x is in the interior of {x|x®ze T(y

Consider the sum ®2z)}. But{x|x®zeT(y®2z)}=T(y), so we are done. W

d ri—l
sy:igl ,Zo yiadl. 3 IIl. WHEN IS CATALYSIS USEFUL?

If T(y)=95(y), then catalysis is of no help in producing
The terms of this sum may or may not be thargest com-  the statey. This is obviously the case when=(1,0,...,0), for
ponents ofy® z, but if s,<s, then we are done becausgis  then all vectors irR? are in bothS(y) and T(y). Jonathan
less than or equal to the right-hand sum in EQ. The fact  and Plenio have showfil0] that if d<3 then x<iy=Xx
thatx<y implies thats,<s, ; this follows from comparing <vy: in other wordsS(y)=T(y) if y is at most three dimen-
the terms in the sums with a fixgd Thus we need only sjonal. The following theorem shows that for almost all vec-
consider the casg,=s, . torsy of four or more dimensionsS(y) # T(y).

Let my be the minimum of the terms included in the sum  Theorem 6Let y=(y,,...,y4) be ad-dimensional prob-
in Eq. (3) and letM,, be the maximum of those components ability vector whose components are in nonincreasing order.
of y®z that arenotincluded in this sum. Define, andM,  ThenT(y)# S(y) if and only if y, #y, andy,,# Y4 for some
analogously. IM,>m,, we are done, since the largest term |, m with 1<l<m<d.
not in the sum in Eq(3) can be swapped with the smallest  This theorem says th&(y) # T(y), if and only ify has at
one in the sum, implying Eq.1). We assume thavl,<m, |east two components that are distinct from both its smallest
and show that a contradiction will follow. and largest components.

There are two cases to consider. We first consider the case Proof. Suppose that there exist sucindm. Letd; be the
wherer; <k (that is,r; #k). Note that our current assump- number of components of equal toy,, and letd, be the
tions (including My<m,) imply my<m,, since otherwise number of components of equal toy,. Thend;+d,+2
we would have =<d. Let x be thed-dimensional vector whose first; +1

-1 -1 components are each equal to the average of thedfjrstl
! 1 components ofy, whose lastd,+1 components are each
21 (x®2); >§1 (y®2); equal to the average of the ladt+1 components ofy
whose remaining components are equal to the corresponding
It follows that components of. Then it is easily checked thaky. In fact,
xis on the boundary o(y) since=*7x,=3"""y, . How-
ever, by Corollary 5x is in the interior of T(y); thus S(y)

where we have used one of our requirementar@s well as #T(y).

-1
m $mXSX1ar1 <y1arl$My, (4)

y

the facts that; "1~ ! is in the sum in Eq(2) andy,a't is Conversely, assume that there arelmosuch that <m,
not in the sum in Eq(3). But Eq.(4) contradicts our assump- Y1#Yi, andym#yq. Again letd; be the number of compo-
tion thatM,<m,, so the first case is complete. nents ofy equal toy;, andd, the number of components

In the other case,;=k, so m,<x;a* 1. But x;ak"1  equal toyy. LetxeT(y) and assume the componentsxof

<Xq by our choice ofk, so we must have,>0. Our as- ~aré arranged in decreasing order. Tharsy,, Sodzgzlxi
sumptions imply thatM,=>M,, since otherwise we would <Z2{_yy; for je{l..di}. Also X4=yq, SO =i, X
have indzjﬂyi, and therefore>!_,x;<X=!_;y;, for je{d
—d,,...,d—1}. But our assumptions imply that; +d,+1

o - =d, so in fact2!l_,x;<=!_,y; for all je{1,..d—1}, and
igl (X®Z)il>i21 (y®z)ii. sox<Yy. Thus in this cas&(y)=T(y). |
In applying this theorem, it should be noted that the di-
Therefore, mension ofy is somewhat arbitrary, as one can append ze-
roes to the vectoy and thereby increase its dimension with-
MyBM><>Xdar“'>)/dard_12 my out changing the underlying quantum state. If the nonzero
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components of take on exactly two distinct values, and at io

least two components are equal to the smaller of these val- >E I(X=0)®Z] 7)) = (X®Z) i)}
ues, then appending zeroes will result in a vegtosuch that =1

S(y')#T(y"), althoughS(y)=T(y). The reason for this

phenomenon is that we only consider vectovgith the same B §

dimension as that of; by increasing the dimension gf we ] (V®2Z) 7

increase the allowed choices folas well. Thus, the dimen-

sion of the initial stateg under consideration may determine

dk
whetherS(y) =T(y). > —21 (V®Z) iy

IV. CATALYSTS OF ARBITRARILY HIGH DIMENSION
MUST BE CONSIDERED =—¢€.

We will now show that for mosy, there is nck such that  Thereforeh(x’,z)>0 for all z sof(x’)>0. We thus see that
T(y)=T(y). In other words, there is no limit to the dimen- x’ ¢ T,(y) for x’ in a neighborhood o%. ThereforeT(y) is
sion of the catalysts that must be considered, in trying tpen, soT(y) is closed. [
determine vv_hich vectors are trumpe_d by a g_iven vegtor Theorem 8Let y=(y;,....yq) be ad-dimensional prob-
Our proof will proceed as follows: First we will show that apility vector, with components in nonincreasing order, such
Ti(y) is a closed set for anig and ally, and then we will that T(y) # S(y). Then for allk, T,(y) # T(y).
show thatT(y) is in general not closed. It follows that  pyoof By Theorem 6, the hypothesis is equivalent to the
Te(Y) # T(y). existence of, msuch that X1<m<d, y;>V;, Yin>Yq. FOr

_ The results of the previous section, and of this sectiongonyenience, we redefirieto be the index of the first com-
give a precise characterization of wh&(y)=T(y), and  ponent ofy that is not equal ty,;, andm to be the index of

when there exists & such thatT,(y)=T(y). While it is  the Jast component of that is not equal to/y; clearly we
clear that the former situation implies the latter, it turns outstj|| havel<m. Let A =minfy;—Y;.ym—Yd and letx be the

that the converse is true as well. d-dimensional vector given by, =y, +A, x,=y,—A, and
Theorem 7. ',[(y) is c!osed._ N x;=y; for i¢{l,m}. It is easily checked thay<x but x
Proof. For a givend-dimensional probability vectoy, let £y, thereforex£y. Letw=(1/d,...,14) and note thaw
j e S(y). _ _ _ ot
h(x,z)= ®2)—(yo2)H, Supposer(y) is closed. Slncé'(y) is convex, the seft
(x.2) 12?‘2;@:21 [(x®2)i~(y®2)] e[0,1]tx+(1—-t)we T(y)} is a closed interval not con-

taining 1, say{0,tg]. SoT(y) containstyx+(1—ty)w as a
wherex andz are probability vectors ofl andk dimensions, boundary point. Butox+ (1—tg)w satisfies the hypotheses
respectively. Observe thatis a composition of continuous of Corollary 5 and is thus an interior point ®{y). This is a
functions(including the maximum of a finite set of expres- contradiction, sdr(y) cannot be closed. As Theorem 7 says
sions, and the functior—x') and so is continuous ikand  that eachT,(y) is closed, we must havg(y) # T(y).

Z So whenever catalysis is useful in producigg[i.e.,
Let S(y) # T(y)], catalysts of arbitrarily high dimension must be
_ considered. In other words, wh&(y) # T(y), then for anyk
f(x)=minh(x,2), there is ak’ >k such thafT,(y) is a strict subset of ./ (y).
o ) ) ) . However, we do not know whether increasing the catalyst
where the minimum is over alk-dimensional probability gimension by one will necessarily given an improvement.

vectorsz, this minimum exists sinc(x,2) is continuous in  That js, it is unknown whether there is any vecjoand k
z and the minimization is over a compact set. Observe thal 1 gych thatS(y) # T(y) but Te(y) = Tes1(Y).

xe T(y), if and only if f(x)=<O.

Suppose now thax¢ Ty (y). Thenf(x)>e for somee
>0. Letx’ be given with|x—x'||<e/d. Letzbe an arbitrary
k-dimensional probability vector, lef, be a maximizing Another interesting question is that of which states are
value ofj in h(x,z), and 7 be a permutation for whichx(  potentially useful as catalysts. If a vectois uniform mean-
®z)il=(x®z)7,(i) for eachi. Letv be thed-dimensional vec- ing that its nonzero components are all identical, then it is
tor (e/d,...,e/d) and note thax{ >x;—v; for eachi. We then  easily seen that is not capable of acting as a catalystxif
have ®z<y®z, thenx<y sozserved no use as a catalyst. In Ref.

[9] Nielsen conjectured that all nonuniform vectors are po-
o tentially useful as catalysts. In this section, we show that this
h(x’,z)—h(x,z)?Zl (X' ®2){ - (x®2){] conjecture is true.
"~ Before we proceed, let us consider the implications of this
o conjecture. We know already that a unifomaannot act as a
22 [(X' ©2) i)~ (X®2) )] catalyst. A unn‘ormz with k nonzero components corre-
i=1 sponds to a maximally entangled quantum state of Schmidt

V. WHICH STATES CAN BE CATALYSTS?
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numberk; if k=1 then the state is unentangled. So we have

the following situation: ifz is a maximally entangled state,

then z cannot be used as a catalyst, but for any other en-

tangled statez, the conjecture says thatcan serve as a

catalyst. In using entanglement as a resource, it is possible

have too much as well as too little.

Theorem 9Let z=(z,,...,z;) be a nonuniform probabil-
ity vector. Then there exist probability vectorsy e R* such
thatx® z<y®z, butxLy.

Proof. We may assume without loss of generality that

=z,=---=7>0. Definea and B by the relations
Z, «
Zy B B
and
a+p=1.

By nonuniformity ofz, a> g.

Let Xx;=X,=3a+ 38, andxz=x,=38. Lety;=a, let
yo=Y3=38, and lety,=0. Let x=(X;,Xp,X3,Xs) andy
=(Y1,Y2,Y3,Ys). Note thatx<y, so obviouslyx®z<y

®z. Our goal is to show that all the majorization inequalities

betweenx®z andy®z are strict; in other words, for all
e{l1,2,..,&k—1},

| |
_Zl <X®z>%<_21 (yo2z)!. (5)

We will show first that the inequalities are strict whieis
even; so for now, assume thais even. There are five cases
to consider.

Case 1 1<I<k. We have

112

2, 7,

E (X®Z)l—(a+ 1ﬁ

while
| |
Zl (y®z)il:a21 z;,
Thus
| | | 1/12
> (ye)l-2 (x®2)l=a > z- ﬁE 2
i=1 =1 i=1/2+1

112

1
:E (012|/2+i_ Eﬂzi>-
=

This last quantity is a sum of positive terrtisy the defi-
nition of & and B), so the inequality5) is strict.
Case 2k+1=<I<2k. We have

112

2)@@@*— Ela

a—i—B

and

PHYSICAL REVIEW A64 042314

1=k

|

1
2 (yo)=at 582 7.
i=1 i=1

{Bhe difference thus satisfies

1 112

l [
E(WMH—EZX®aia 2 25

z.
“ 2'8i=|—k+1 '

Note that the sums on the right-hand side each corkain
—1/2 terms. Sinceazi>%,82j for anyi,j, the difference is
positive, and again Ed5) holds.

Case 31=2k. In this case

|
2,1 (x®2)l=a+1pB

and

k—1

1 1
(yo2)i=a+sBY z+ 5Bz
27 2

1 1 1
—ats o B(zmz)>at 5B,

so the inequality5) is strict.
Case 4 2k+ 1=<I=<3k. We have

12—k

2 (x®2)l=a+ = ,3+1,82 z

while

=2k

|
ig y®z),/a+ B+1182 Z;.

The second quantity is clearly larger, so the inequdbbyis
strict.

Case 5 3k+1=<I<4k. This case is trivial because the
sum fory®z is 1 (because there are no more nonzero terms
to be addegand the sum fox®z is less than 1.

We have shown that E¢5) holds whenl is even(and in
the proper range Now supposd is odd. From the even
cases, it is easily verified that

-1 1+1 -1 I+1
2, (x®2){+ 2, (x02){<2, (ye2){+ 2 (yer);
()

whenl e{1,3,....4—1}. Based on the fact that the compo-
nents of y®z)! are nonincreasingE}:l(y@)z)il is greater
than or equal to the average of the two sums on the right-
hand side of Eq(6). However,=!_,(x®z)! is equalto the
average of the sums on the left-hand side of ®y.since the
components ofX®z)! appear in pairs. We therefore see that
Eq. (5) holds whenl is odd.
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Thus, the majorization inequalities are strict for labe-  a number of results about the trumping relation, in an effort
tween 1 and k—1 inclusive, so for sufficiently smalk, to improve our understanding of this relation.

(X171 €,X1 €,X3— €,X4— €) ®z<y®2z. However, §;+ €,X, Recent work has demonstrated additional applications for
+€,X3— €,X4— €)XY, SO our theorem is proved. [ | majorization in quantum information theof$1-13. For in-
stance, a majorization condition has been shown necessary
VI. CONCLUSION for a state to be separabl&l], and it has also been shown

that various majorization conditions must be satisfied by

While the majorization relation is a falrly well-studied quantum Systems undergoing mixing and measurement pro-
subject, tensor-product induced majorizatioe., the trump-  cesse§12]. As discoveries relating majorization to quantum
ing relation is an extension of this relation about which jnformation science are made, new applications for the
comparatively little is known. Trumping is a relatively new trymping relation may arise.
notion that allows us to categorize which transformations of
entangled states are possible using only local operations and
classical communigation. Unfo_rtunately, giverandy, _it is ACKNOWLEDGMENTS
not easy to determine whetheiis trumped byy. And given
y, there is no known geometric or function-theoretic catego- The authors thank Michael Nielsen for introducing us to
rization of T(y), the set of vectors trumped hy this is in  this subject, providing encouragement and feedback on our
contrast to the case with the majorization relation, whergesults, and generously commenting on the manuscript. We
such characterizations do exist. In this paper we have derivealso thank David Beckman for helpful discussions.
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