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The majorization relation has been shown to be useful in classifying which transformations of jointly held
quantum states are possible using local operations and classical communication. In some cases, a direct
transformation between two states is not possible, but it becomes possible in the presence of another state
~known as acatalyst!; this situation is described mathematically by thetrumping relation, an extension of
majorization. The structure of the trumping relation is not nearly as well understood as that of majorization. We
give an introduction to this subject and derive some results. Most notably, we show that the dimension of the
required catalyst is, in general, unbounded; there is no integerk such that it suffices to consider catalysts of
dimensionk or less in determining which states can be catalyzed into a given state. We also show that almost
all bipartite entangled states are potentially useful as catalysts.
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I. INTRODUCTION

The study of quantum entanglement has received con
erable attention in recent years, with numerous remarka
applications including quantum cryptography@1,2#, quantum
teleportation@3#, and superdense coding@4#. Entanglement
seems to be the essential element of such applications, a
a result it has come to be viewed as a fundamental reso
that allows one to perform certain information-process
tasks. As with any physical resource, one wishes to mea
how much entanglement is present in a given system, an
determine under what conditions it is possible to convert
form of entanglement to another. The problem of how
quantify and classify entanglement is one of the basic qu
tions in the rapidly growing science of quantum informati
theory @5,6#.

A significant advance in understanding entanglement
made by Nielsen, who showed@7# that the structure of the
bipartite entangled states is related to the linear-algeb
theory ofmajorization@8,9#. We give an introduction to this
subject here. Suppose thatx5(x1 ,...,xd) and y
5(y1 ,...,yd) ared-dimensional probability vectors; in othe
words, their components are non-negative and sum to u
We let x↓ denote thed-dimensional vector obtained by a
ranging the components ofx in nonincreasing order:x↓

5(x1
↓ ,...,xd

↓), wherex1
↓>x2

↓>¯>xd
↓ . Then we say thatx is

majorizedby y, written xay, if the following relations hold:

(
i 51

l

xi
↓<(

i 51

l

yi
↓ ~1< l ,d!.

~In fact, the theory of majorization is not limited to prob
ability vectors. The majorization relation can be defined
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above for any real vectorsx and y, if we include the addi-
tional restriction that( i 51

d xi5( i 51
d yi , which is automati-

cally satisfied for probability vectors. For our applications
the study of entanglement, however,x andy will always be
probability vectors, and we will make this assumptio
throughout.!

Intuitively, if x and y are probability vectors such thatx
ay, thenx describes an unambiguously more random dis
bution than doesy. For example, inR2, we have that
(0.5,0.5)a(0.8,0.2). In fact,~0.5, 0.5! is majorized by every
vector inR2 whose components sum to unity.

The majorization relation defines a partial order
d-dimensional real vectors, wherexay and yax, if and
only if x↓5y↓. To see that majorization is not a comple
relation, consider for instancex5(0.5,0.25,0.25) andy
5(0.4,0.4,0.2); thenxa” y andya” x.

We are now ready to state Nielsen’s theorem@7#.
Theorem 1.Suppose Alice and Bob are in joint possessi

of a bipartite entangled quantum stateuc& which they wish to
transform into another bipartite entangled stateuf& using
only local operations and classical communication~LOCC!.
Let uc&5( i 51

d Aa i u i A&u i B& be a Schmidt decomposition o
uc&, and letuf&5( i 51

d Ab i u i A8 &u i B8 & be a Schmidt decomposi
tion of uf&. Then uc& can be converted touf& by LOCC, if
and only if the vectora5(a1 ,...,ad) is majorized by
b5(b1 ,...,bd).

Nielsen’s theorem defines a partial order on the entang
bipartite pure states. If stateuc& hasx as its vector of Schmidt
coefficients, anduf& has y as its vector of Schmidt coeffi
cients, then we can transformuc& to uf& using LOCC, if and
only if xay. Because our ability to transform one state
another depends only on their Schmidt coefficients, and
on the bases, we shall abuse nomenclature and refer to
vector of Schmidt coefficients as a ‘‘state.’’

The above characterization of when one entangled s
can be transformed to another is particularly helpful beca
the structure of the majorization relation is relatively we
understood. For example, the following results are w
known @8#.
©2001 The American Physical Society14-1
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Theorem 2.Let x,yPRd. Then ~a! The following are
equivalent:

~i! xay.
~ii ! ( i 51

d xi5( i 51
d yi and for all l P$2,...,d%, ( i 5 l

d xi
↓

>( i 5 l
d yi

↓ .
~iii ! x5Dy for some doubly stochasticd3d matrix D.
~iv! For every real numbert, ( i 51

d uxi2tu<( i 51
d uyi2tu.

~b! Let S(y)5$xPRduxay%. Then S(y) is a convex set
whose extreme points are the elements of the set$PyuP is a
d3d permutation matrix%.

Jonathan and Plenio have extended Nielsen’s resul
describing a phenomenon known as entanglement cata
@10#. Suppose that x5(0.4,0.4,0.1,0.1) and y
5(0.5,0.25,0.25,0). Thenxa” y. Now let z5(0.6,0.4). Then
we havex^ zay^ z. In other words, if Alice and Bob star
only with statex ~by which we mean a jointly entangle
quantum state whose Schmidt coefficients are the com
nents ofx!, they cannot transform it into statey using LOCC.
But if they also have statez available, then they can turnx
^ z into y^ z. So they can ‘‘borrow’’z, use it to help turnx
into y, and ‘‘return’’ it after performing the transformation
We say thatz is a catalystfor the transformation.

The phenomenon of catalysis illustrates that entanglem
itself can be used as a resource to help perform transfor
tions of entangled states. One naturally wishes to know w
this is possible: givenx andy, can we determine whetherx
can be transformed toy using LOCC in the presence of
catalyst? This is equivalent to asking whether there is a p
ability vectorz such thatx^ zay^ z.

We will adopt the terminology and notation introduced
Nielsen@9# and say thatx is trumpedby y, written xaT y, if
there exists a catalystz ~of any dimension! such thatx^ z
ay^ z. For any giveny, let T(y) denote the set of allx such
thatx is trumped byy; and for anyy andz, let T(y,z) be the
set of allx such thatx^ zay^ z. In addition, we introduce
the following notation: for anyd-dimensional probability
vector y and any positive integerk, let Tk(y)5$xu' a
k-dimensional probability vectorz such thatx^ zay^ z%.

Our results will rely heavily on the fact that the trumpin
relation involves vectors with all non-negative componen
Note that this is quite different from the situation with m
jorization, in which most results extend easily to vectors c
taining negative components.

The following facts are known about the trumping re
tion. The first three are straightforward from the definition
the others have been proven elsewhere@10,9#.

Theorem 3.Let x andy bed-dimensional probability vec-
tors, letz be a probability vector~of any dimension!, and let
S(y), T(y), andTk(y) be defined as above. Then

~a! xay⇒x^ zay^ z.
~b! S(y)#T(y).
~c! T(y)5øk51

` Tk(y).
~d! T(y) is a convex set.
~e! If xaT y andyaT x, thenx↓5y↓.
~f! If xaT y, thenx1

↓<y1
↓ andxd

↓>yd
↓ .

In contrast to the situation with the majorization relatio
the mathematical structure of the trumping relation is
well understood. One desires a necessary and sufficient
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dition for determining whetherxaT y @or alternately, to de-
termine the elements of the setT(y) for any giveny#. Char-
acterizing the trumping relation in this way would help us
better understand the structure of the bipartite entang
states. However, such a characterization is not yet know

In examining the trumping relation, many questions na
rally arise. For instance, ify5(1/d,...,1/d), the trumping
condition is ~trivially ! the same as the majorization cond
tion: xay, if and only if xaT y. One wishes to know for
which y this is the case. One also desires to know whet
catalysts of arbitrarily high dimension need be considered
the following sense: giveny, is it possible to findk such that
Tk(y)5T(y)? These questions are among those answere
this paper.

II. A KEY LEMMA

The following lemma and its corollary will be useful to u
in proving additional results, and are also interesting in th
own right:

Lemma 4. Let x5(x1 ,...,xd) and y5(y1 ,...,yd) be
d-dimensional probability vectors, whose components we
sume to be arranged in nonincreasing order:x1>x2>¯

>xd , and similarly fory. Suppose thatxay, y1.x1 , and
yd,xd . Thenx is in the interior ofT(y).

Note that when we sayx is in the interior ofT(y) we
mean the interior relative to the space ofd-dimensional prob-
ability vectors; that is, for anyx there must exist ane such
that if x8 is a probability vector for whichix82xi,e ~in the
Euclidean norm, for instance!, thenx8PT(y).

We remark that the conclusion is obvious ifx is in the
interior of S(y); the important fact is that the result hold
whenx is on the boundary ofS(y).

Proof. Note that xd.0. Pick an a satisfying a,1, a
.x1 /y1 , and a.yd /xd . Let k be an integer for which
x1ak21,xd . Now let z be thek-dimensional vector

z5~1,a,...,ak21!.

~Of coursez is not a probability vector, but it can easily b
normalized. For convenience in the proof, we neglect
normalization.!

We will show thatx is in the interior ofT(y,z). Since
T(y,z),T(y), this will establish the result.

Let (y^ z) i
↓ denote thei th component ofy^ z when its

components are arranged in nonincreasing order. We
show that for 1< l<dk21,

(
i 51

l

~x^ z! i
↓,(

i 51

l

~y^ z! i
↓ . ~1!

Note that sincex^ z must be majorized byy^ z, we already
know that Eq.~1! must hold for 0< l<dk if ‘‘ ,’’ is replaced
by ‘‘ <’’ ~and this fact is used later in the proof!. Showing
that Eq.~1! holds for 1< l<dk21 will complete the proof
since it is then clear that any sufficiently small perturbatio
to x ~within the probability space! will not cause Eq.~1! to be
violated for any 1< l<dk21.
4-2
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MATHEMATICAL STRUCTURE OF ENTANGLEMENT CATALYSIS PHYSICAL REVIEW A64 042314
For the remainder of the proof we fixl as an arbitrary
integer satisfying 1< l<dk21. Consider the terms that th
left-hand sum of Eq.~1! will contain. For 1< i<d, let r i
denote the number of these terms that are of the formxia

j ,
with 0< j ,k. ~In case of repeated values of components
x^ z, we regard terms with smalleri to be included in the
sum first.! Note that these r i terms must be
xi ,xia,...,xia

r i21, since these are the largest of this for
The sum~which we denote bysx! can thus be written

sx5(
i 51

d

(
j 50

r i21

xia
j . ~2!

Note that 0<r i<k and in additionr 1.0 andr d,k.
Consider the sum

sy5(
i 51

d

(
j 50

r i21

yia
j . ~3!

The terms of this sum may or may not be thel largest com-
ponents ofy^ z, but if sx,sy then we are done becausesy is
less than or equal to the right-hand sum in Eq.~1!. The fact
that xay implies thatsx<sy ; this follows from comparing
the terms in the sums with a fixedj. Thus we need only
consider the casesx5sy .

Let my be the minimum of the terms included in the su
in Eq. ~3! and letM y be the maximum of those componen
of y^ z that arenot included in this sum. Definemx andMx
analogously. IfM y.my , we are done, since the largest ter
not in the sum in Eq.~3! can be swapped with the smalle
one in the sum, implying Eq.~1!. We assume thatM y<my
and show that a contradiction will follow.

There are two cases to consider. We first consider the
wherer 1,k ~that is, r 1Þk!. Note that our current assump
tions ~including M y<my! imply my<mx , since otherwise
we would have

(
i 51

l 21

~x^ z! i
↓.(

i 51

l 21

~y^ z! i
↓ .

It follows that

my<mx<x1a r 121,y1a r 1<M y , ~4!

where we have used one of our requirements ona as well as
the facts thatx1a r 121 is in the sum in Eq.~2! andy1a r 1 is
not in the sum in Eq.~3!. But Eq.~4! contradicts our assump
tion thatM y<my , so the first case is complete.

In the other caser 15k, so mx<x1ak21. But x1ak21

,xd by our choice ofk, so we must haver d.0. Our as-
sumptions imply thatM y>Mx , since otherwise we would
have

(
i 51

l 11

~x^ z! i
↓.(

i 51

l 11

~y^ z! i
↓ .

Therefore,

M y>Mx>xda r d.yda r d21>my
04231
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by reasoning similar to that yielding Eq.~4!. Again our as-
sumption thatM y<my is contradicted. Thus the proof i
complete. j

Corollary 5. Supposex andy ared-dimensional probabil-
ity vectors, with components arranged in nonincreasing
der, such thatxaT y andy1.x1 andyd,xd . Thenx is in the
interior of T(y).

Proof. By definition there exists az such thatx^ zay
^ z. Since y1.x1 and yd,xd we must have (x^ z)1

↓,(y
^ z)1

↓ and (x^ z)dk
↓ .(y^ z)dk

↓ , wherek is the dimension of
z.

We can thus apply Lemma 4 and conclude thatx^ z is in
the interior ofT(y^ z). Sincex°x^ z is a continuous func-
tion, it follows that x is in the interior of $xux^ zPT(y
^ z)%. But $xux^ zPT(y^ z)%5T(y), so we are done. j

III. WHEN IS CATALYSIS USEFUL?

If T(y)5S(y), then catalysis is of no help in producin
the statey. This is obviously the case wheny5(1,0,...,0), for
then all vectors inRd are in bothS(y) and T(y). Jonathan
and Plenio have shown@10# that if d<3 then xaTy⇒x
ay; in other words,S(y)5T(y) if y is at most three dimen
sional. The following theorem shows that for almost all ve
tors y of four or more dimensions,S(y)ÞT(y).

Theorem 6.Let y5(y1 ,...,yd) be ad-dimensional prob-
ability vector whose components are in nonincreasing or
ThenT(y)ÞS(y) if and only if y1Þyl andymÞyd for some
l,m with 1, l ,m,d.

This theorem says thatS(y)ÞT(y), if and only if y has at
least two components that are distinct from both its smal
and largest components.

Proof. Suppose that there exist suchl andm. Let d1 be the
number of components ofy equal toy1 , and letd2 be the
number of components ofy equal toyd . Then d11d212
<d. Let x be thed-dimensional vector whose firstd111
components are each equal to the average of the firstd111
components ofy, whose lastd211 components are eac
equal to the average of the lastd211 components ofy
whose remaining components are equal to the correspon
components ofy. Then it is easily checked thatxay. In fact,
x is on the boundary ofS(y) since( i 51

d111xi5( i 51
d111yi . How-

ever, by Corollary 5,x is in the interior ofT(y); thusS(y)
ÞT(y).

Conversely, assume that there are nol,m such thatl ,m,
y1Þyl , andymÞyd . Again letd1 be the number of compo
nents ofy equal toy1 , and d2 the number of component
equal toyd . Let xPT(y) and assume the components ofx
are arranged in decreasing order. Thenx1<y1 , so ( i 51

j xi

<( i 51
j yi for j P$1,...,d1%. Also xd>yd , so ( i 5 j 11

d xi

>( i 5 j 11
d yi , and therefore ( i 51

j xi<( i 51
j yi , for j P$d

2d2 ,...,d21%. But our assumptions imply thatd11d211
>d, so in fact( i 51

j xi<( i 51
j yi for all j P$1,...,d21%, and

so xay. Thus in this caseS(y)5T(y). j
In applying this theorem, it should be noted that the

mension ofy is somewhat arbitrary, as one can append
roes to the vectory and thereby increase its dimension wit
out changing the underlying quantum state. If the nonz
4-3
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SUMIT DAFTUAR AND MATTHEW KLIMESH PHYSICAL REVIEW A 64 042314
components ofy take on exactly two distinct values, and
least two components are equal to the smaller of these
ues, then appending zeroes will result in a vectory8 such that
S(y8)ÞT(y8), although S(y)5T(y). The reason for this
phenomenon is that we only consider vectorsx with the same
dimension as that ofy; by increasing the dimension ofy, we
increase the allowed choices forx as well. Thus, the dimen
sion of the initial statesx under consideration may determin
whetherS(y)5T(y).

IV. CATALYSTS OF ARBITRARILY HIGH DIMENSION
MUST BE CONSIDERED

We will now show that for mosty, there is nok such that
Tk(y)5T(y). In other words, there is no limit to the dimen
sion of the catalysts that must be considered, in trying
determine which vectors are trumped by a given vectoy.
Our proof will proceed as follows: First we will show tha
Tk(y) is a closed set for anyk and all y, and then we will
show that T(y) is in general not closed. It follows tha
Tk(y)ÞT(y).

The results of the previous section, and of this secti
give a precise characterization of whenS(y)5T(y), and
when there exists ak such thatTk(y)5T(y). While it is
clear that the former situation implies the latter, it turns o
that the converse is true as well.

Theorem 7. Tk(y) is closed.
Proof. For a givend-dimensional probability vectory, let

h~x,z!5 max
1< j ,dk

(
i 51

j

@~x^ z! i
↓2~y^ z! i

↓#,

wherex andz are probability vectors ofd andk dimensions,
respectively. Observe thath is a composition of continuou
functions~including the maximum of a finite set of expre
sions, and the functionx°x↓! and so is continuous inx and
z.

Let

f ~x!5min
z

h~x,z!,

where the minimum is over allk-dimensional probability
vectorsz; this minimum exists sinceh(x,z) is continuous in
z and the minimization is over a compact set. Observe
xPTk(y), if and only if f (x)<0.

Suppose now thatx¹Tk(y). Then f (x).e for somee
.0. Letx8 be given withix2x8i,e/d. Let z be an arbitrary
k-dimensional probability vector, letj 0 be a maximizing
value of j in h(x,z), andp be a permutation for which (x
^ z) i

↓5(x^ z)p( i ) for eachi. Let v be thed-dimensional vec-
tor (e/d,...,e/d) and note thatxi8.xi2v i for eachi. We then
have

h~x8,z!2h~x,z!>(
i 51

j 0

@~x8^ z! i
↓2~x^ z! i

↓#

>(
i 51

j 0

@~x8^ z!p~ i !2~x^ z!p~ i !#
04231
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j 0

$@~x2v ! ^ z#p~ i !2~x^ z!p~ i !%

52(
i 51

j 0

~v ^ z!p~ i !

>2(
i 51

dk

~v ^ z!p~ i !

52e.

Thereforeh(x8,z).0 for all z, so f (x8).0. We thus see tha
x8¹Tk(y) for x8 in a neighborhood ofx. ThereforeTk

c(y) is
open, soTk(y) is closed. j

Theorem 8.Let y5(y1 ,...,yd) be ad-dimensional prob-
ability vector, with components in nonincreasing order, su
that T(y)ÞS(y). Then for allk, Tk(y)ÞT(y).

Proof. By Theorem 6, the hypothesis is equivalent to t
existence ofl,m such that 1, l ,m,d, y1.yl , ym.yd . For
convenience, we redefinel to be the index of the first com
ponent ofy that is not equal toy1 , andm to be the index of
the last component ofy that is not equal toyd ; clearly we
still have l ,m. Let D5min$y12yl ,ym2yd% and letx be the
d-dimensional vector given byxl5yl1D, xm5ym2D, and
xi5yi for i ¹$ l ,m%. It is easily checked thatyax but x
a” y, thereforexa” Ty. Let w5(1/d,...,1/d) and note thatw
PS(y).

SupposeT(y) is closed. SinceT(y) is convex, the set$t
P@0,1#utx1(12t)wPT(y)% is a closed interval not con
taining 1, say@0,t0#. So T(y) containst0x1(12t0)w as a
boundary point. Butt0x1(12t0)w satisfies the hypothese
of Corollary 5 and is thus an interior point ofT(y). This is a
contradiction, soT(y) cannot be closed. As Theorem 7 sa
that eachTk(y) is closed, we must haveTk(y)ÞT(y).

So whenever catalysis is useful in producingy @i.e.,
S(y)ÞT(y)#, catalysts of arbitrarily high dimension must b
considered. In other words, whenS(y)ÞT(y), then for anyk
there is ak8.k such thatTk(y) is a strict subset ofTk8(y).
However, we do not know whether increasing the catal
dimension by one will necessarily given an improveme
That is, it is unknown whether there is any vectory and k
>1 such thatS(y)ÞT(y) but Tk(y)5Tk11(y).

V. WHICH STATES CAN BE CATALYSTS?

Another interesting question is that of which states
potentially useful as catalysts. If a vectorz is uniform, mean-
ing that its nonzero components are all identical, then i
easily seen thatz is not capable of acting as a catalyst; ifx
^ zay^ z, thenxay soz served no use as a catalyst. In Re
@9# Nielsen conjectured that all nonuniform vectors are p
tentially useful as catalysts. In this section, we show that
conjecture is true.

Before we proceed, let us consider the implications of t
conjecture. We know already that a uniformz cannot act as a
catalyst. A uniformz with k nonzero components corre
sponds to a maximally entangled quantum state of Schm
4-4
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numberk; if k51 then the state is unentangled. So we ha
the following situation: ifz is a maximally entangled state
then z cannot be used as a catalyst, but for any other
tangled statez, the conjecture says thatz can serve as a
catalyst. In using entanglement as a resource, it is possib
have too much as well as too little.

Theorem 9.Let z5(z1 ,...,zk) be a nonuniform probabil-
ity vector. Then there exist probability vectorsx,yPR4 such
that x^ zay^ z, but xa” y.

Proof. We may assume without loss of generality thatz1
>z2>¯>zk.0. Definea andb by the relations

z1

zk
5

a

b

and

a1b51.

By nonuniformity ofz, a.b.
Let x15x25 1

2 a1 1
4 b, and x35x45 1

4 b. Let y15a, let
y25y35 1

2 b, and let y450. Let x5(x1 ,x2 ,x3 ,x4) and y
5(y1 ,y2 ,y3 ,y4). Note that xay, so obviously x^ zay
^ z. Our goal is to show that all the majorization inequaliti
betweenx^ z and y^ z are strict; in other words, for alll
P$1,2,...,4k21%,

(
i 51

l

~x^ z! i
↓,(

i 51

l

~y^ z! i
↓ . ~5!

We will show first that the inequalities are strict whenl is
even; so for now, assume thatl is even. There are five case
to consider.

Case 1: 1< l<k. We have

(
i 51

l

~x^ z! i
↓5S a1

1

2
b D(

i 51

l /2

zi ,

while

(
i 51

l

~y^ z! i
↓5a(

i 51

l

zi ,

Thus

(
i 51

l

~y^ z! i
↓2(

i 51

l

~x^ z! i
↓5a (

i 5 l /211

l

zi2
1

2
b(

i 51

l /2

zi

5(
i 51

l /2 S azl/21 i2
1

2
bzi D .

This last quantity is a sum of positive terms~by the defi-
nition of a andb!, so the inequality~5! is strict.

Case 2: k11< l ,2k. We have

(
i 51

l

~x^ z! i
↓5S a1

1

2
b D(

i 51

l /2

zi

and
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e

n-

to

(
i 51

l

~y^ z! i
↓>a1

1

2
b(

i 51

l 2k

zi .

The difference thus satisfies

(
i 51

l

~y^ z! i
↓2(

i 51

l

~x^ z! i
↓>a (

i 5 l /211

k

zi2
1

2
b (

i 5 l 2k11

l /2

zi .

Note that the sums on the right-hand side each contaik
2 l /2 terms. Sinceazi.

1
2 bzj for any i,j , the difference is

positive, and again Eq.~5! holds.
Case 3: l 52k. In this case

(
i 51

l

~x^ z! i
↓5a1 1

2 b

and

(
i 51

l

~y^ z! i
↓>a1

1

2
b(

i 51

k21

zi1
1

2
bz1

5a1
1

2
b1

1

2
b~z12zk!.a1

1

2
b,

so the inequality~5! is strict.
Case 4: 2k11< l<3k. We have

(
i 51

l

~x^ z! i
↓5a1

1

2
b1

1

2
b (

i 51

l /22k

zi

while

(
i 51

l

~y^ z! i
↓>a1

1

2
b1

1

2
b (

i 51

l 22k

zi .

The second quantity is clearly larger, so the inequality~5! is
strict.

Case 5: 3k11< l ,4k. This case is trivial because th
sum fory^ z is 1 ~because there are no more nonzero ter
to be added! and the sum forx^ z is less than 1.

We have shown that Eq.~5! holds whenl is even~and in
the proper range!. Now supposel is odd. From the even
cases, it is easily verified that

(
i 51

l 21

~x^ z! i
↓1(

i 51

l 11

~x^ z! i
↓,(

i 51

l 21

~y^ z! i
↓1(

i 51

l 11

~y^ z! i
↓

~6!

when l P$1,3,...,4k21%. Based on the fact that the compo
nents of (y^ z)↓ are nonincreasing,( i 51

l (y^ z) i
↓ is greater

than or equal to the average of the two sums on the rig
hand side of Eq.~6!. However,( i 51

l (x^ z) i
↓ is equal to the

average of the sums on the left-hand side of Eq.~6!, since the
components of (x^ z)↓ appear in pairs. We therefore see th
Eq. ~5! holds whenl is odd.
4-5
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Thus, the majorization inequalities are strict for alll be-
tween 1 and 4k21 inclusive, so for sufficiently smalle,
(x11e,x21e,x32e,x42e) ^ zay^ z. However, (x11e,x2
1e,x32e,x42e)a” y, so our theorem is proved. j

VI. CONCLUSION

While the majorization relation is a fairly well-studie
subject, tensor-product induced majorization~i.e., the trump-
ing relation! is an extension of this relation about whic
comparatively little is known. Trumping is a relatively ne
notion that allows us to categorize which transformations
entangled states are possible using only local operations
classical communication. Unfortunately, givenx and y, it is
not easy to determine whetherx is trumped byy. And given
y, there is no known geometric or function-theoretic cate
rization of T(y), the set of vectors trumped byy; this is in
contrast to the case with the majorization relation, wh
such characterizations do exist. In this paper we have der
rn
e

, a

-

ill

04231
f
nd

-

e
ed

a number of results about the trumping relation, in an eff
to improve our understanding of this relation.

Recent work has demonstrated additional applications
majorization in quantum information theory@11–13#. For in-
stance, a majorization condition has been shown neces
for a state to be separable@11#, and it has also been show
that various majorization conditions must be satisfied
quantum systems undergoing mixing and measurement
cesses@12#. As discoveries relating majorization to quantu
information science are made, new applications for
trumping relation may arise.
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