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1. Introduction

One of the most remarkable exact results in quantum field theory is the equivalence of the

quantum sine-Gordon model and the massive Thirring model [1, 2]. The “duality” between

these two theories has a very transparent physical meaning. Quantum sine-Gordon theory

contains topological solitons (kinks). It turns out that a certain operator which has non-

zero matrix elements between the vacuum and the one-kink sector is a fermion and satisfies

the equations of motion of the massive Thirring model [2]. Thus the duality arises from

“rewriting” the sine-Gordon model in terms of kink variables.

In the last two decades a large number of dualities have been proposed for quantum

field theories in higher dimensions. The first successful proposal of this sort is the S-

duality of N = 4 d = 4 super-Yang-Mills theory [3, 4, 5]. It is believed that many of these

conjectural dualities have the same origin as the sine-Gordon/Thirring duality, i.e. they

arise from “rewriting” a theory in terms of new fields which create topological solitons.

But so far nobody managed to prove a non-trivial higher-dimensional duality along the

lines of [2]. The main reason for this is that the conjectured dualities in higher dimensions
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typically involve non-abelian gauge theories and are vastly more complicated than the sine-

Gordon/Thirring duality. Usually, it is not even clear which solitons are “responsible” for

the duality.

In this paper we report a progress in proving a non-perturbative duality in three di-

mensions. This duality, known as 3d mirror symmetry, has been proposed by K. Intriligator

and N. Seiberg [6], and later studied by a number of authors [7]–[21]. Mirror symmetry in

three dimensions has a number of special features that make it more amenable to study

than other higher-dimensional dualities. First of all, mirror symmetry makes sense for

abelian gauge theories, for which the complications due to the presence of unphysical de-

grees of freedom are not so severe. Second, it is known how to construct a mirror theory (in

fact, many mirror theories [16]) for any abelian gauge theory [10, 16]. The mirror is always

an abelian gauge theory, but usually with a different gauge group. Third, all mirror pairs

can be derived from a certain “basic” mirror pair by formal manipulations [16]. This basic

example identifies the infrared limit of Nf = 1 N = 4 d = 3 SQED with a free theory of a

twisted hypermultiplet. To prove this basic example of mirror symmetry, one only needs

to construct a twisted hypermultiplet field out of the fields of N = 4 SQED and show that

it is free. Fourth, it is known what the relevant topological soliton is in this case: it is none

other than the Abrikosov-Nielsen-Olesen vortex [12].

In our previous paper [22], we showed how to define vortex-creating (or monopole)

operators in the infrared limit of 3d abelian gauge theories. The main tools used were

radial quantization and large-Nf expansion. The only example considered in [22] was

ordinary (non-supersymmetric) QED. In this theory monopole operators have irrational

dimensions at large Nf and do not satisfy any nice equation of motion. In this paper we

study monopole operators in N = 2 and N = 4 SQEDs. More precisely, we construct

monopole operators in 3d SCFTs which are the infrared limit of N = 2 and N = 4 SQEDs.

We focus on operators which live in short multiplets of the superconformal algebra. The

dimensions of primaries of such multiplets saturate a BPS-like bound, so we will sometimes

refer to operators in short multiplets as BPS operators.

Mirror symmetry makes predictions about the spectrum and other properties of BPS

operators, including those with non-zero vortex charge. In [12] some of these predictions

have been verified on the Coulomb branch of N = 2 SQED, where the infrared theory is

free. Our computations are performed at the origin of the moduli space, where the infrared

theory is an interacting SCFT. Thus the agreement between our results and the predictions

of mirror symmetry is a new check of this duality. In addition, we have been able to verify

certain interesting relations in the chiral ring which follow from mirror symmetry. In the

approach of [12], the origin of these relations was obscure.

In many cases one can go further and argue that certain results derived at large Nf

remain valid even for Nf of order one. For example, our monopole operators have “anoma-

lous” transformation laws under global symmetries, whose form is fixed by quasi-topological

considerations (the Atiyah-Patodi-Singer index theorem). This implies that the global

charges of monopole operators do not receive corrections at any order in 1/Nf expansion.

Furthermore, since our monopole operators belong to short representations of the super-

conformal algebra, their scaling dimensions are determined by their transformation law
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under R-symmetry. In the case of N = 4 SQED, where it is easy to identify the relevant R-

symmetry, this allows us to determine the exact scaling dimensions of monopole operators

for all Nf . Our main assumption is that the 1/Nf expansion has a large enough domain

of convergence.

If we consider the special case of N = 4 SQED with Nf = 1, then the above argu-

ments tell us that a certain monopole operator is a (twisted) hypermultiplet whose lowest

component is a scalar of dimension 1/2. In a unitary theory, this is only possible if the hy-

permultiplet is free. Thus we are able to show that for Nf = 1 certain monopole operators

satisfy free equations of motion. This is essentially the statement of mirror symmetry in

this particular case.

The paper is organized as follows. In section 2 we study monopole operators in the

infrared limit of N = 2 d = 3 SQED at large Nf and compare with the predictions of mirror

symmetry. In section 3 we do the same for N = 4 d = 3 SQED. In section 4 we show that

certain large-Nf results are exact, and argue that this implies the “basic” example of N = 4

mirror symmetry. In section 5 we discuss our results and list open problems.

2. Monopole operators in N = 2 d = 3 SQED

2.1 Review of N = 2 SQED and N = 2 mirror symmetry

N = 2 d = 3 SQED can be obtained by the dimensional reduction of N = 1 d = 4 SQED.

The supersymmetry algebra contains a complex spinor supercharge Qα and its complex-

conjugate Q̄α. The field content is the following: a vector multiplet with gauge group

U(1), Nf chiral multiplets of charge 1 and Nf chiral multiplets of charge −1. We will use

N = 2 superspace to describe these fields. General superfields are functions of x ∈ R
2,1,

a complex spinor θα, and its complex-conjugate θ̄α. The vector multiplet is described by

a real superfield V (x, θ, θ̄) satisfying V † = V . The corresponding field-strength multiplet

is Σ = εαβDαD̄βV. The lowest component of Σ is a real scalar χ, while its top component

is the gauge field-strength Fµν . The vector multiplet also contains a complex spinor λα

(photino). A chiral multiplet is described by a superfield Q(x, θ, θ̄) satisfying the chirality

constraint:

D̄αQ = 0 .

It contains a complex scalar A, a complex spinor ψα, and a complex auxiliary field F . We

will denote the superfields describing charge 1 matter multiplets by Qj, j = 1, . . . , Nf ,

and the superfields describing charge −1 matter multiplets by Q̃j , j = 1, . . . , Nf . Then the

action takes the form

SN=2 =

∫

d3x d4θ







1

e2
Σ†Σ+

Nf
∑

j=1

(

Q†je
2VQj + Q̃†je

−2V Q̃j

)







.

Besides being supersymmetric, this action has a global SU(Nf )×SU(Nf )×U(1)B×U(1)N
symmetry. The action of SU(Nf )× SU(Nf ) is obvious (it is a remnant of the chiral flavor

symmetry of N = 1 d = 4 SQED). Under U(1)B the fields Qj and Q̃j have charges 1,
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while V transforms trivially. Finally, there is an R-symmetry U(1)N under which the fields

transform as follows:

Qj(x, θ, θ̄) 7→ Qj

(

x, eiαθ, e−iαθ̄
)

,

Q̃j(x, θ, θ̄) 7→ Q̃j

(

x, eiαθ, e−iαθ̄
)

,

V (x, θ, θ̄) 7→ V
(

x, eiαθ, e−iαθ̄
)

.

There is one other conserved current:

Jµ =
1

4π
εµνρFνρ .

Its conservation equivalent to the Bianchi identity. We will call the corresponding charge

the vortex charge, and the corresponding symmetry U(1)J symmetry. All the fundamental

fields have zero vortex charge; our task in this paper will be to construct operators with

non-zero vortex charge and compute their quantum numbers. Operators with non-zero

vortex charge will be called monopole operators.

One can add an N = 2 Chern-Simons term to the action of N = 2 SQED. However,

the theory is consistent without it, and in this paper we will limit ourselves to the case of

vanishing Chern-Simons coupling.

N = 2 d = 3 SQED is super-renormalizable and becomes free in the ultraviolet limit.

In the infrared it flows to an interacting superconformal field theory (SCFT). Note that the

action needs no counter-terms, if one uses a regularization preserving all the symmetries.

Thus the infrared limit is equivalent to the limit e→∞.

In general, the infrared CFT is strongly coupled and quite hard to study. A simplifica-

tion arises in the large Nf limit, where the infrared theory becomes approximately gaussian.

The reason for this is the same as in the non-supersymmetric case [22]. At leading order

in the large Nf expansion, the matter fields retain their UV dimensions. The dimension of

the gauge field strength multiplet Σ is 1 to all orders in 1/Nf expansion. This can be traced

to the fact that the dual of the gauge field strength is an identically conserved current,

as well as a primary field in the infrared SCFT.1 A well-known theorem states that in a

unitary CFT in d dimensions a conserved primary current has dimension d− 1. Since the

gauge field strength occurs as the top component of Σ, and θ, θ̄ have dimension −1/2, this
implies that the photino has infrared dimension 3/2, while the lowest component χ has

dimension 1.

The IR dimensions of Q and Q̃ can be computed order by order in 1/Nf expansion,

but the exact answer for all Nf is unknown. The only other thing we know about these

dimensions is that they are equal to the R-charges of Q and Q̃. This is a consequence

of the fact that Q and Q̃ live in short representation of the superconformal algebra, and

therefore their scaling dimensions are constrained by unitarity.2 However, the R-current

1In the UV the dual of the field strength is not a primary, but a descendant of a scalar known as the

dual photon.
2Strictly speaking, it is the dimension of gauge-invariant chiral primaries like QQ̃ that is constrained by

unitarity to be equal to the R-charge. However, since Q and Q̃ are chiral superfields, the dimension and

R-charge of QQ̃ is twice the dimension and R-charge of Q and Q̃, and the claimed result follows.
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in question is not necessarily the one discussed above. Rather, it is some unknown linear

combination of the U(1)N and U(1)B currents. We will call it the “infrared” R-current, to

avoid confusion with U(1)N current defined above. In the large Nf limit it is easy to see

that the infrared R-charge is

RIR = N +B

(

1

2
+O

(

1

Nf

))

,

where N and B are the charges corresponding to U(1)N and U(1)B . For Nf of order 1

we do not know the coefficient in front of B, and so cannot easily determine the infrared

dimensions of Q and Q̃.

For Nf = 1 mirror symmetry comes to our rescue. The statement of 3d mirror symme-

try in this case is that the IR limit of N = 2 SQED is the same as the IR limit of another

N = 2 gauge theory. This other gauge theory has gauge group U(1)Nf /U(1)diag, and 3Nf

chiral matter multiplets qj, q̃j , Sj, j = 1, . . . , Nf . The action of the mirror theory has the

form

Sdual =

∫

d3x d4θ

Nf
∑

j=1

{

1

e2
Σ†jΣj +

1

e2
S†jSj + q†je

2Vj−2Vj−1qj + q̃†je
−2Vj+2Vj−1 q̃j

}

+

+





∫

d3x d2θ

Nf
∑

j=1

qj q̃jSj + h.c.



 ,

where the gauge multiplets satisfy the constraints

V0 = VNf
,

Nf
∑

j=1

Vj = 0 . (2.1)

Note that the chiral fields Sj are neutral with respect to the gauge group and couple to

the rest of the theory only through a superpotential.

The mirror theory also flows to a strongly coupled SCFT in the infrared limit e→∞,

and in general the mirror description does not help to compute the IR scaling dimensions

in the original theory. However, the case Nf = 1 is very special: the mirror gauge group be-

comes trivial, and the mirror theory reduces to the Wess-Zumino model in three dimensions

with the action

SWZ =

∫

d3x d4θ
(

q†q + q̃†q̃ + S†S
)

+

(
∫

d3x d2θ qq̃S + h.c.

)

.

This theory has “accidental” S3 symmetry permuting q, q̃, and S, which allows one to

determine their infrared R-charges. Indeed, since in the infrared limit the superpotential

term must have R-charge 2, the R-charges of q, q̃ and S must be 2/3. The mirror map

identifies S with the operator QQ̃ in the original theory [12]. Thus we infer that for Nf = 1

Q and Q̃ have infrared R-charge 1/3. Comparing with large-Nf results, we see that the

infrared R-charge has a non-trivial dependence on Nf .

Let us describe in more detail the matching of global symmetries between the original

and mirror theories following [12]. The symmetry U(1)B of the original theory is mapped

to the symmetry under which all Sj have charge 2, while qj and q̃j have charges −1. The
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symmetry U(1)J is mapped to the U(1) symmetry under which all qj have charge 1/Nf ,

all q̃j have charge −1/Nf , while Sj are uncharged. The R-symmetry U(1)N maps to an

R-symmetry under which all qj and q̃j have charge 1 and Sj are uncharged. The mapping

of non-abelian symmetries is not well understood. It is only known that that the currents

corresponding to the Cartan subalgebra of the diagonal SU(Nf ) are mapped to the Nf − 1

U(1)J currents of the mirror theory.

2.2 Monopole operators in N = 2 SQED at large Nf

Our strategy for studying monopole operators will be the same as in [22]. In any 3d confor-

mal field theory, there is a one-to-one map between local operators on R
3 and normalizable

states of the same theory on S
2×R. Therefore we will look for states with non-zero vortex

charge on S
2 × R. In other words, we will be studying N = 2 SQED on S

2 × R in the

presence of a magnetic flux on S
2. Since our goal is to check the predictions of mirror

symmetry, we will require that the states be annihilated by half of the supercharges; then

the corresponding local operators will live in short representations of the superconformal

algebra. The low-energy limit of N = 2 SQED is an interacting SCFT, so in order to make

computations possible, we will take Nf to be very large. This has the effect of making the

CFT weakly coupled. In particular, in the large Nf limit the fluctuations of the gauge field

and its superpartners are suppressed, and one can treat them as a classical background.

In other words, at leading order in 1/Nf we end up with free chiral superfields coupled to

an appropriate background vector superfield. We will discuss how one can go beyond the

large-Nf approximation in section 4.

The states on S
2×R of interest to us are in some sense BPS-saturated, since they are

annihilated by half of the supercharges. But in contrast to the situation in flat space, here

the supercharges do not commute with the hamiltonian H which generates translations on

R. Indeed, since the hamiltonian on S
2 × R is the same as the dilatation generator on R

3,

and supercharges have dimension 1/2, it follows that the supercharges obey

[Qα,H] = −1

2
Qα , [Q̄α,H] = −1

2
Q̄α .

Note also that in the radial quantization approach Qα and Q̄α are no longer hermitean

conjugate of each other. Rather, their hermitean conjugates are superconformal boosts Sα

and S̄α, which have dimension −1/2.
For the same reasons as in [22], in the large Nf limit the energy E of the states with

non-zero vortex charge is of order Nf . By unitarity, for scalar states E is bounded from

below by the R-charge RIR. Furthermore, we will see below that in the limit Nf → ∞
RIR is also of order Nf , while the combination E − RIR stays finite for all the states we

encounter. A similar limit in d = 4 SCFTs recently gained some prominence in connection

with AdS/CFT correspondence [23]. But unlike [23], we take the number of flavors, rather

than the number of colors, to infinity.

First let us determine which classical background on S
2 × R we need to consider. As

in [22], we have a gauge field on S
2 × R with a magnetic flux n. Assuming rotational

invariance of the large-Nf saddle point, this implies that we have a constant magnetic field
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on S
2. The only other bosonic field in the N = 2 vector multiplet is the real scalar χ. It

is determined by the condition of the vanishing of the photino variation under half of the

SUSY transformations. This will ensure that the monopole operator we are constructing

is a chiral primary.

It is convenient to work out the photino variations on R
3, and then make a conformal

transformation to S
2×R. Photino variations in euclidean N = 2 SQED on R

3 have the form

δλ = i

(

−σi∂iχ−
1

2
εijkσkFij +D

)

ξ ,

δλ̄ = i

(

−σi∂iχ+
1

2
εijkσkFij −D

)

ξ̄ ,

where ξ and ξ̄ are complex spinors which parametrize SUSY variations. (In euclidean

signature, they are not related by complex conjugation.) Since we are setting the back-

ground values of the matter fields to zero, the D-term can be dropped. Half-BPS states

are annihilated by ξ̄αQ̄α for any ξ̄ and therefore must satisfy

F = − ∗ dχ .

Hence the scalar background on R
3 is

χ =
n

2r
,

where n is the vortex charge (the magnetic charge of the Dirac monopole on R
3). Un-

surprisingly, supersymmetry requires the bosonic field configuration to be an abelian BPS

monopole. Recalling that χ has dimension 1 in the infrared, we infer that on S
2 the scalar

background is simply a constant:

χ =
n

2
.

Similarly, an anti-BPS state is annihilated by ξαQα for any ξ, and therefore the scalar field

on S
2 is

χ = −n
2
.

Having fixed the classical background, we proceed to compute the spectrum of matter

field fluctuations. The details of the computation are explained in the appendix. The

results are as follows. The energy spectrum of charged scalars is the same for Aj and Ãj ,

does not depend on whether one is dealing with a BPS or an anti-BPS configuration, and

is given by

E = ±Ep = ±
( |n| − 1

2
+ p

)

, p = 1, 2, . . .

The degeneracy of the pth eigenvalue is 2|Ep|, and the corresponding eigenfunctions trans-

form as an irreducible representation of the rotation group SU(2)rot. The spectrum is

symmetric with respect to E → −E.
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The energy spectrum of charged spinors is the same for ψj and ψ̃j and is given by

E = E+
p =

|n|
2

+ p, p = 1, 2, . . . ,

E = E−p = −|n|
2
− p, p = 1, 2, . . . ,

E = E0 = ∓|n|
2
.

Here the upper (lower) sign refers to the BPS (anti-BPS) configuration. The eigenspace

with eigenvalue E has degeneracy 2|E| and furnishes an irreducible representation of

SU(2)rot.

Comparing the fermion spectrum with the results of [22], we see that the inclusion of

the scalar χ causes dramatic changes in the spectrum of fermions. First, unlike in [22],

there are no zero modes. Second, the spectrum is not symmetric with respect to E → −E.

The absence of zero modes, either in the scalar or in the spinor sector, means that

for a fixed magnetic flux the state of lowest energy is unique. We will call it the vacuum

state. By construction, it is an (anti-) BPS state, and we would like to determine its

quantum numbers. It is clear that the vacuum state is rotationally invariant, so its spin

is zero. It is also a flavor singlet. The other quantum numbers of interest are the energy

(which is the same as the conformal dimension of the corresponding local operator [22])

and the U(1)B and U(1)N charges. Vacuum energy and charge are plagued by normal-

ordering ambiguities, as usual, but as in [22] we can deal with them by requiring the state

corresponding to the unit operator (i.e. the vacuum with zero magnetic flux) to have zero

energy and charges.

The asymmetry of the fermionic energy spectrum leads to a subtlety in the computa-

tion. Suppose we use point-splitting regularization to define vacuum energy and charges.

Then one gets different results after renormalization depending on the ordering of operators

ψ and ψ̄. For example, consider two definitions of the U(1)N charge

N(τ) = lim
β→0+

[∫

S2

−ψ̄
(

τ +
β

2

)

στψ

(

τ − β

2

)

− ¯̃
ψ

(

τ +
β

2

)

στ ψ̃

(

τ − β

2

)

− C(β)

]

,

N ′(τ) = lim
β→0+

[
∫

S2

ψ

(

τ +
β

2

)

στ ψ̄(τ −
β

2
) + ψ̃

(

τ +
β

2

)

στ
¯̃ψ

(

τ − β

2

)

− C ′(β)
]

,

where τ is the time coordinate on S
2 × R, and C(β) and C ′(β) are c-numbers defined

as the U(1)N charge of the vacuum with n = 0 regularized by means of appropriate

point-splitting. One can easily see that these two definitions are equivalent only if the

fermion spectrum is symmetric with respect to zero; otherwise they differ by a c-number

which depends on n. This ambiguity can be removed by requiring that the regularization

procedure preserve charge-conjugation symmetry. This mandates using expressions sym-

metrized with respect to ψ and ψ̄ (and ψ̃ and
¯̃
ψ). Thus we will define the U(1)N charge

as the average of N(τ) and N ′(τ). The same applies to the U(1)B charge and the energy

operator.
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As an illustration, let us compute the U(1)N charge of the vacuum for arbitrary n.

The above definition yields the following regularized U(1)N charge:

Nreg(β) = Nf

∑

E

2|E| sign(E) e−β|E| . (2.2)

Here the summation extends over the fermion energy spectrum, and we took into account

that ψ and ψ̃ have the same spectrum and U(1)N charge and contribute equally to Nreg(β).

The regularized charge of the unit operator is identically zero, since the spectrum is sym-

metric for n = 0. For non-zero vortex charge the spectrum is symmetric except for a single

eigenvalue E0. Thus the renormalized charge is equal to

Nvac = ± lim
β→0+

Nf |n| = ±Nf |n| ,

where the upper (lower) sign refers to the BPS (anti-BPS) state. Since the spectrum of

scalars is symmetric, only spinors will contribute to the U(1)B charge of the vacuum, and

an identical argument gives

Bvac = ∓Nf |n| .

A similar, but slightly longer, computation gives the vacuum energy:

E =
|n|Nf

2
.

This is the same as the scaling dimension of the corresponding monopole operator.

Recall that at large Nf the R-charge which is the superpartner of the hamiltonian is

given by

RIR = N +
1

2
B .

It is easy to see from the above results that E = ±RIR for our “vacuum” states. This is

a satisfying result, since in a unitary 3d CFT the scaling dimension of any (anti-) chiral

primary must be equal to (minus) its R-charge.

As expected, the energy and the R-charge of the vacuum are of order Nf . Other states

can be obtained by acting on the vacuum with a finite number of creation operators for

the charged fields. If the number of creation operators is kept fixed in the limit of large

Nf , then both E and RIR tend to infinity, with E − RIR kept finite. Thus the limit we

are considering is qualitatively similar to the PP-wave limit of N = 4 d = 4 SYM theory

considered in [23]. But since we are taking the number of flavors, rather than the number

of colors, to infinity, the physics is rather different. For example, in [23] the combination

R2/Nc is kept fixed and can be an arbitrary positive real number (it is the effective string

coupling in the dual string theory). The analogous quantity in our case is 2RIR/Nf = |n|,
the vortex charge, which is quantized.

One issue which we have not mentioned yet is gauge-invariance. In order for the oper-

ator to be gauge-invariant, the corresponding state must satisfy the Gauss law constraint.

In the limit e → ∞ this is equivalent to requiring that the state be annihilated by the

electric charge density operator [22]. For the vacuum state, this is automatic. For excited

states, the Gauss law constraint is a non-trivial requirement.
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We have identified above a scalar state on S
2 × R which is a chiral primary. What

about its superpartners? The key point is to realize that the classical field configuration we

are considering breaks some of the symmetries of the CFT. In such a situation, one must

enlarge the Hilbert space by extra variables (“zero modes”) which correspond to the broken

generators. In other words, the semi-classical Hilbert space is obtained by tensoring the

“naive” Hilbert space by the space of functions on the coset G/H, where G is the symmetry

group of the theory, and H is the invariance subgroup of the classical configuration. This

observation plays an important role in the quantization of solitons. For example, if we are

dealing with a soliton in a Poincaré-invariant theory which breaks translational symmetry

to nothing, but preserves rotational symmetry, the zero mode Hilbert space is

ISO(d− 1, 1)/SO(d− 1, 1) = R
d−1,1 .

Poincare group acts on the space of functions on R
d−1,1 in the usual manner. Furthermore,

if a soliton breaks some of supersymmetries, there will be fermionic zero modes, and the

bosonic coset must be replaced by an appropriate supercoset.

In our case, the symmetry of theory is described by the N = 2 d = 3 super-Poincare

group.3 For the BPS state, the invariance subgroup is generated by rotations and the

complex supercharge Q̄α. Thus the zero mode Hilbert space will consist of functions on

the supercoset
{

Mij,Pi,Qα, Q̄α

}

{

Mij, Q̄α

} ,

where Mij and Pi are the rotation and translation generators on R
3, respectively, and

{A,B, . . .} denotes the super-group with Lie super-algebra spanned by A,B, . . . . Func-

tions on this supercoset are nothing but N = 2 d = 3 chiral superfields [24]. Thus the

usual rules of semi-classical quantization lead to the conclusion that the BPS monopole

operator is described by a chiral superfield. Similarly, an anti-BPS monopole operator will

be described by an anti-chiral superfield. In particular, N = 2 auxiliary fields are automat-

ically incorporated. (Note that at large Nf our monopole operators are not expected to

satisfy any closed equation of motion. On the other hand, auxiliary fields can be eliminated

only on-shell. This suggests that any description of monopole operators without auxiliary

fields would be rather cumbersome.)

2.3 A comparison with the predictions of N = 2 mirror symmetry

As explained above, under mirror symmetry the vortex charge is mapped to 1/Nf times

the charge which “counts” the number of q’s minus the number of q̃’s. Thus the obvious

gauge-invariant chiral primaries with vortex charge ±1 are

V+ = q1q2 · · · qNf
, V− = q̃1q̃2 · · · q̃Nf

.

3We may forget about U(1)N , U(1)B, and the flavor symmetry, since they are left unbroken by our

field configuration. Furthermore, although conformal and superconformal boosts do not preserve our field

configuration, they can be ignored, since these symmetry generators cannot be exponentiated to well-defined

symmetry transformations on R
3.
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Using the matching of global symmetries explained above, we see that both V+ and V−
are singlets under SU(Nf )× SU(Nf ) flavor symmetry, have U(1)B charge −Nf and U(1)N
charge Nf . Comparing this with the previous subsection, we see that V+ has the same

quantum numbers as the BPS state with n = 1 that we have found, while V †− has the same

quantum numbers as the anti-BPS state with n = 1. This agreement provides a non-trivial

check of N = 2 mirror symmetry.

Our computation of the charges was performed in the large-Nf limit, but mirror sym-

metry predicts that the result remains true for Nf of order 1. Can we understand this

apparent lack of 1/Nf corrections to U(1)N and U(1)B charges? The answer is yes: U(1)N
and U(1)B charges are not corrected at any order in 1/Nf expansion because they can be

determined by quasi-topological considerations (L2 index theorem on S
2×R). This will be

discussed in more detail in section 4.

3. Monopole operators in N = 4 d = 3 SQED

3.1 Review of N = 4 SQED and N = 4 mirror symmetry

N = 4 d = 3 SQED is the dimensional reduction of N = 2 d = 4 SQED. The supersym-

metry algebra includes two complex spinor supercharges Qi
α, i = 1, 2 and their complex

conjugates. In Minkowski signature, the spinor representation is real, so we may also say

that we have four real spinor supercharges. If we regard N = 4 SQED as an N = 2 d = 3

gauge theory, then it contains, besides the fields of N = 2 SQED, a chiral superfield Φ.

This superfield is neutral and together with the N = 2 vector multiplet V forms an N = 4

vector multiplet. The chiral superfields Qj and Q̃†j combine into an N = 4 hypermultiplet.

The action of N = 4 SQED is the sum of the action of N = 2 SQED, the usual kinetic

term for Φ, and a superpotential term

∫

d3x d2θ

Nf
∑

j=1

QjΦQ̃j + h.c.

The flavor symmetry of this theory is SU(Nf ). In addition, there is an important R-

symmetry SU(2)R × SU(2)N . In the N = 2 superfield formalism used above, only its

maximal torus U(1)2 is manifest. The lowest components of Q and Q̃† are singlets under

SU(2)N and transform as a doublet under SU(2)R. The complex scalar Φ in the chiral

multiplet and the real scalar χ in the N = 2 vector multiplet transform as a triplet of

SU(2)N and are singlets of SU(2)R. The transformation properties of other fields can be

inferred from these using the fact that the four real spinor supercharges of N = 4 SQED

transform in the (2, 2) representation of SU(2)R × SU(2)N .

Although there is a complete symmetry between SU(2)R and SU(2)N at the level of

superalgebra, the transformation properties of fields do not respect this symmetry. There-

fore one can define twisted vector multiplets and twisted hypermultiplets for which the

roles of SU(2)N and SU(2)R are reversed. N = 4 SQED contains only “ordinary” vector

and hypermultiplets, while its mirror (see below) contains only twisted multiplets. There
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are interesting N = 4 theories in 3d which include both kinds of multiplets [28, 16], but in

this paper we will only consider the traditional ones, which can be obtained by dimensional

reduction from N = 2 d = 4 theories.

In order to make contact with our discussion of N = 2 SQED, we will denote the global

U(1) symmetry under which Q and Q̃ have charge 1 and Φ has charge −2 by U(1)B , and

we will denote an R-symmetry under which Q and Q̃ are neutral and Φ has charge 2 by

U(1)N . It is easy to see that U(1)N is a maximal torus of SU(2)N , while the generator of

U(1)B is a linear combination of the generators of SU(2)N and SU(2)R. The generator of

the maximal torus of SU(2)R can be taken as

R = N +B .

N = 4 SQED is free in the UV and flows to an interacting SCFT in the IR. The in-

frared dimensions of fields in short multiplets of the superconformal algebra are determined

by their spin and transformation properties under SU(2)R×SU(2)N . This is easily seen in

the harmonic superspace formalism, where the compatibility of constraints on the super-

fields leads to relations between the dimension and the R-spins [24]. For gauge-invariant

operators, one can alternatively use arguments based on unitarity (see e.g. [29]).

Perhaps the easiest way to work out the relation between the IR dimension and

SU(2)R × SU(2)N quantum numbers is to regard N = 4 SQED as a special kind of N = 2

theory. That is, it is an N = 2 gauge theory which has, besides a manifest complex

supercharge, a non-manifest one. It is easy to see that the combination N + 1
2B is the

generator of the U(1) subgroup of SU(2)N × SU(2)R with respect to which the manifest

supercharge has charge 1, while the non-manifest supercharge has charge 0. In the IR limit,

the corresponding current is in the same multiplet as the stress-energy tensor (because all

SU(2)R × SU(2)N currents are), and therefore the dimension of chiral primary states must

be equal to their charges with respect to N + 1
2B. (Note that in the case of N = 2 SQED

this was true only in the large-Nf limit.) In particular, the IR dimensions of Qj and Q̃j

are 1/2, and the IR dimension of Φ and χ is 1.

According to [6], the mirror theory for N = 4 SQED is a (twisted) N = 4 d = 3 gauge

theory with gauge group U(1)Nf /U(1)diag and Nf (twisted) hypermultiplets (qj , q̃j). The

matter multiplets transform under the gauge group as follows:

qj → qje
i(αj−αj−1) , q̃j → q̃je

−i(αj−αj−1) , j = 1, . . . , Nf ,

where we set α0 = αNf
. The action of the mirror theory is

Sdual =

∫

d3x d4θ

Nf
∑

j=1

{

1

e2
Σ†jΣj +

1

e2
S†jSj + q†je

2Vj−2Vj−1qj + q̃†je
−2Vj+2Vj−1 q̃j

}

+

+





∫

d3x d2θ

Nf
∑

j=1

qj q̃j(Sj − Sj−1) + h.c.



 ,
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Here N = 2 vector multiplets Vj satisfy the constraints eq. (2.1), N = 2 chiral multiplets

Sj satisfy similar constraints

S0 = SNf
,

Nf
∑

j=1

Sj = 0 ,

and each pair (Vj , Sj) forms a (twisted) N = 4 vector multiplet.

The matching of global symmetries goes as follows. The R-symmetries are trivially

identified. The vortex current of N = 4 SQED is mapped to 1/Nf times the Noether

current corresponding to the following global U(1) symmetry:

qj → eiαqj , q̃j → e−iαq̃j , j = 1, . . . , Nf .

The currents corresponding to the maximal torus of SU(Nf ) flavor symmetry of N = 4

SQED are mapped to the vortex currents

2π Jj = ∗Fj , j = 1, . . . , Nf ,

Nf
∑

j=1

Jj = 0 ,

where Fj is the field-strength of the jth gauge field. The mapping of the rest of SU(Nf )

currents is not well understood.

3.2 Monopole operators in N = 4 SQED at large Nf

To begin with, we can regard N = 4 SQED as a rather special N = 2 gauge theory, and

look for BPS and anti-BPS monopole operators in this theory. This amounts to focusing

on a particular N = 2 subalgebra of the N = 4 superalgebra. Different choices of an N = 2

subalgebra are all related by an SU(2)N transformation, so we do not loose anything by

doing this.

From this point of view, our problem is almost exactly the same as in the case of

N = 2 SQED. The only difference between the two is the presence of the chiral superfield

Φ. But in the large Nf limit it becomes non-dynamical, and the N = 2 BPS condition

requires the background value of Φ to be zero. This implies that the radial quantization of

the matter fields Qj, Q̃j proceeds in exactly the same way as in the N = 2 case and yields

the same answer for the spectrum and properties of BPS and anti-BPS states. Namely, for

any vortex charge n we have a single BPS and a single anti-BPS states, with charges

N = ±|n|Nf , B = ∓|n|Nf ,

and energy E = |n|Nf/2.

An interesting new element in the N = 4 case is the way short multiplets of N = 2

superconformal symmetry fit into a short multiplet of N = 4 superconformal symmetry.

Recall that we have made a certain choice of N = 2 subalgebra of the N = 4 superalgebra.

This choice is preserved by the U(1)N symmetry, but not by the SU(2)N symmetry. Thus

we have an SU(2)/U(1) ' CP
1 worth of BPS conditions. Applying an SU(2)N rotation to
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the BPS state found above, we obtain a half-BPS state for every point on CP
1. These half-

BPS states fit into a line bundle L over CP
1. Similarly, applying SU(2)N transformations

to the anti-BPS state, we obtain another line bundle on CP
1 which is obviously the complex

conjugate of L.
The CP

1 which parametrizes different choices of the N = 2 subalgebra has a very

clear meaning in the large Nf limit. Namely, we chose the scalar background on S
2 × R

to be Φ = 0, χ = n/2, but obviously any SU(2)N transform of this is also a half-BPS

configuration. The manifold of possible scalar backgrounds is a 2-sphere given by

|Φ|2 + χ2 =
(n

2

)2
.

The BPS state we are interested in is the Fock vacuum of charged matter fields on S
2 ×R

in a fixed background. As we vary the background values of Φ and χ, we obtain a bundle of

Fock vacua on S
2 ∼ CP

1. This bundle can be non-trivial because of Berry’s phase [30, 31].

Now we can easily see how N = 4 superconformal symmetry is realized in our formal-

ism. As argued above, we need to enlarge our Hilbert space by the Hilbert space of zero

modes, which arise because the classical background breaks some of the symmetries of the

theory. Compared to the N = 2 case, we have additional bosonic zero modes coming from

the breaking of R-symmetry from SU(2)N down to U(1)N . Thus our fields will depend on

coordinates on R
3×CP

1. As for fermionic zero modes, in the BPS case they are generated

by a complex spinor supercharge which depends on the coordinates on CP
1 as follows:

Qα =
∑

i=1,2

uiQ
i
α .

Here u1, u2 ∈ C are homogeneous coordinates on CP
1, and Qi

α, i = 1, 2 are a pair of complex

spinor supercharges which transform as a doublet of SU(2)N . Therefore monopole operators

will be described by “functions” on the supermanifold

S(R3)£O(1) ,

where S(R3) is the trivial spinor bundle on R
3 (with fiber coordinates regarded as Grass-

mann-odd), while O(1) is the tautological line bundle on CP
1. We put the word “functions”

in quotes, because, as explained above, we may need to consider sections of non-trivial line

bundles on CP
1 instead of functions.

This supermanifold is known as the analytic superspace [25, 26, 24] (see also [27, section

3]). It is a chiral version of the so-called harmonic superspace. It is well known that

“functions” on the analytic superspace (analytic superfields) furnish short representations

of the superconformal algebra with eight supercharges [24]. We conclude that in the large-

Nf limit BPS monopole operators are described by N = 4 d = 3 analytic superfields.

Needless to say, anti-BPS monopole operators are described by anti-analytic superfields

which are complex-conjugates of the analytic ones.

It remains to pin down the topology of the bundle L over CP
1. Since this is a line

bundle, its topology is completely characterized by the first Chern class. A “cheap” way to

find the Chern class is to note that the scaling dimension of an analytic superfield (more
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precisely, of its scalar component) is equal to half the Chern number of the corresponding

line bundle. (The Chern number is the value of the first Chern class on the fundamental

homology class of CP
1.) This follows from the way superconformal algebra is represented on

analytic superfields [24]. We already know the dimension of our BPS state, and therefore

infer that the Chern number of L is equal to Nf |n|.
We can also determine the Chern number directly, by computing the curvature of the

Berry connection for the bundle of Fock vacua. In the present case, the computation is

almost trivial, since the hamiltonians at different points of CP
1 are related by an SU(2)N

transformation. In particular, it is sufficient to compute the curvature at any point on

CP
1. For example, we can identify CP

1 with a unit sphere in R
3 with coordinates (x, y, z)

and compute the curvature at the “North Pole,” which has euclidean coordinates (0, 0, 1).

(The abstract coordinates (x, y, z) can be identified with (ReΦ, ImΦ, χ).) Using SU(2)N
invariance, we easily see that the Fock vacuum at the point (x, y, z) with z ' 1, x, y ¿ 1

is given by

|x, y, z〉 = exp
(

i
(x

z
Nx −

y

z
Ny

)

+O(x2 + y2)
)

|0, 0, 1〉 .

Here Nx and Ny are the generators of SU(2)N rotations about x and y axes. Therefore the

curvature of the Berry connection at the point (0, 0, 1) is

F = i (d|x, y, z〉,∧d|x, y, z〉) = idx ∧ dy〈0, 0, 1|[Ny , Nx]|0, 0, 1〉
= dx ∧ dy〈0, 0, 1|Nz |0, 0, 1〉 .

Now we recall that the vacuum at (0, 0, 1) is an eigenstate of Nz with eigenvalue ±Nf |n|/2
(one needs to remember that N = 2Nz). Taking into account that F is an SU(2)N -invariant

2-form on CP
1, we conclude that it is given by

F = ±1

2
Nf |n|Ω ,

where Ω is the volume form on the unit 2-sphere. It follows that the Chern number of the

Fock vacuum bundle is

c1 =
1

2π

∫

S2

F = ±Nf |n| ,

where the upper (lower) sign refers to L (resp. L∗). The result agrees with the indirect

argument given above.

3.3 A comparison with the predictions of N = 4 mirror symmetry

Chiral primaries in the mirror theory with vortex number ±1 are exactly the same as in

the N = 2 case, i.e.

V+ = q1q2 · · · qNf
, V− = q̃1q̃2 · · · q̃Nf

.

Their U(1)N and U(1)B quantum numbers match those computed in the original theory

using radial quantization and large-Nf expansion. This provides a check of N = 4 mirror

symmetry at the origin of the moduli space. We can also translate this into the language of

analytic superfields. Then a hypermultiplet (qj , q̃
†
j) is described by an analytic superfield
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qj whose Chern number is 1 (in the notation of [24], it would be written as q+
j , where a

single + superscript refers to the unit Chern number). The analytic superfield which is

gauge-invariant and carries vortex charge 1 is given by

q1q2 . . . qNf
.

It has Chern number Nf , and in the notation of [24] it would have Nf superscripts. This

field corresponds to the BPS multiplet constructed in the previous section, while its complex

conjugate corresponds to the anti-BPS multiplet.

Mirror symmetry also predicts a certain interesting relation in the chiral ring of the

IR limit of N = 4 SQED. Consider the product of V+ and V−:

V+V− = (q1q̃1)(q2q̃2) . . . (qNf
q̃Nf

) .

Using the equation of motion for Sj, it is easy to see that the operators (qj q̃j) for different j

are equal modulo descendants. Furthermore, mirror symmetry maps any of these operators

to Φ modulo descendants [12]. Thus we infer that modulo descendants we have a relation

in the chiral ring:

V+V− ∼ ΦNf . (3.1)

Can we understand this relation in terms of N = 4 SQED? Indeed we can!

To begin with, it is easy to see that the operator ΦNf is the only chiral operator whose

quantum numbers match those of V+V− and which could appear in the OPE of V+ and

V−. Thus it is sufficient to demonstrate that it appears with a non-zero coefficient. To

this end, we need to compute the 3-point function of V+, V−, and
(

Φ†
)Nf . In the radial

quantization approach, we need to show that the matrix element

〈V †−|
(

Φ†
)Nf |V+〉

is non-zero.

Now we recall that the state corresponding to V+ has magnetic flux +1 and scalar

VEV χ = 1/2, while the state corresponding to V− has magnetic flux −1 and χ = −1/2.
hermitean conjugation reverses the sign of the magnetic flux and leaves the VEV of χ

unchanged. It follows that the path integral which computes the matrix element of any

operator between 〈V †−| and |V+〉 must be performed over field configurations such that the

magnetic flux is equal to 1, while the scalar χ asymptotes to 1/2 at τ = −∞ and −1/2 at

τ = +∞. Thus we are dealing with a kink on S
2 × R.

Next, we note that the Dirac operator on S
2 × R coupled to such a background may

very well have normalizable zero modes. If this is the case, then in order to get a non-zero

matrix element one needs to insert an operator which has the right quantum numbers to

absorb the zero modes. For example, one can insert a product of all fermionic fields which

possess a zero mode. Another possibility, which is more relevant for us, is to insert some

bosonic fields which interact with fermions and can absorb the zero modes. In our case,

the action contains a complex scalar Φ which has Yukawa interactions of the form

∫

d3xΦ

Nf
∑

j=1

ψjψ̃j .
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Thus if each ψ and each ψ̃ has a single normalizable zero mode, then we can get a non-zero

result for the matrix element if we insert precisely Nf powers of Φ†.

To complete the argument it remains to show that the Dirac operator for both ψ and ψ̃

has a single zero mode. The Atiyah-Patodi-Singer theorem says in this case that the L2

index of the Dirac operator is

ind(D) =
1

2
(η(H−)− η(H+)) ,

where η(H±) denotes the η-invariant of the asymptotic Dirac hamiltonian at τ → ±∞. We

also made use of the fact that neither H+ nor H− have zero modes (see section 2). Now

we recall that we have computed the η-invariants already: according to eq. (2.2), η(H−)

and η(H+) coincide with the U(1)N charges of the BPS and anti-BPS vacua, respectively,

divided by Nf . This implies that the index of the Dirac operator is equal to 1, for both ψ

and ψ̃, and therefore both ψ and ψ̃ have a single zero mode.

4. Beyond the large-Nf limit

4.1 Non-renormalization theorems for the anomalous charges

We have seen that mirror symmetry makes certain predictions about the quantum numbers

of BPS monopole operators, and that our large-Nf computations confirm these predictions.

But mirror symmetry also suggests that large-Nf results for U(1)B and U(1)N charges

remain valid for all Nf , all the way down to Nf = 1. In this subsection we provide an

explanation for this without appealing to mirror symmetry. We show that the values of

U(1)N and U(1)B charges for monopole operators are fixed by the L2 index theorem for

the Dirac operator on S
2 ×R and therefore cannot receive 1/Nf corrections.

The argument is very simple. For concreteness, consider the monopole operators V±
which have vortex charge n = ±1. These operators are related by charge conjugation and

thus have the same U(1)N charge, which we denote NV . To determine NV , we need to

consider the transition amplitude on S
2×R from the state corresponding to V+ to the state

corresponding to V †−: if it violates the U(1)N charge by m, then NV = −m/2. Since ψ and

ψ̃ have N = −1, the charge is violated by −2Nf times the index of the Dirac operator on

S
2×R. The index of the Dirac operator in the present case has only boundary contributions

(η-invariants), which depend on the asymptotics of the gauge field and the scalar χ. When

these asymptotics are given by the large-Nf saddle points, the index was evaluated in

section 3 with the result ind(D) = 1. Furthermore, in the large-Nf expansion fluctuations

about the saddle point are treated using perturbation theory. Hence to all orders in 1/Nf

expansion the transition amplitude from V+ to V †− will violate U(1)N charge by −2Nf .

This implies that the U(1)N charge of V± is equal to Nf to all orders in 1/Nf expansion.

An identical argument can be made for U(1)B .

One may ask if it is possible to dispense with the crutch of 1/Nf expansion altogether.

Naively, there is no problem: we consider the path integral for N = 4 or N = 2 SQED with

e =∞ and use the APS index theorem to infer the charges of V±. However, this argument

is only formal, because we do not know how to make sense of this path integral without
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using 1/Nf expansion. In particular, this leads to difficulties with the evaluation of the

index: we cannot compute the η-invariants without knowing the precise asymptotic form of

the background, but the asymptotic conditions put constraints only on the total magnetic

flux through S
2 and the average value of χ at τ = ±∞. (We remind that the L2-index of a

Dirac operator on a non-compact manifold is only a quasi-topological quantity, which can

change if the asymptotic behavior of the fields is changed.) The index has a definite value

only if we choose some particular asymptotics for the gauge field and χ.

4.2 A derivation of the basic N = 4 mirror symmetry

It is plausible that the point Nf = 1 is within the radius of convergence of 1/Nf expansion.

Singularities in an expansion parameter usually signal some sort of phase transition, and

in the case of N = 4 SQED we do not expect any drastic change of behavior as one

decreases Nf .

With this assumption, we can prove the basic example of N = 4 mirror symmetry,

namely, that the IR limit of N = 4 SQED with Nf = 1 is dual to the theory of a free

twisted hypermultiplet. The proof is quite straightforward. As explained above, the U(1)N
charge of the chiral field V± is equal to Nf to all orders in 1/Nf expansion, while its U(1)B
charge is equal to −Nf . This implies that the IR dimension of V+ is equal to Nf/2 to

all orders in 1/Nf expansion (see section 3). Assuming that 1/Nf expansion converges at

Nf = 1, this implies that for Nf = 1 the IR dimension of V± is 1/2. In a unitary 3d CFT,

a scalar of dimension 1/2 must be free [29]. Then, by virtue of supersymmetry, the N = 2

superfields V± are free chiral superfields with N = 1 and B = −1, or, equivalently, the pair
(V+, V

†
−) is a free twisted hypermultiplet.

The above argument shows that the IR limit of N = 4 SQED contains a free sector

generated by the action of free fields V± on the vacuum. But this sector also contains all

the states generated by Φ and its superpartners. Indeed, the product of V+ and V− is a

chiral field which has zero vortex charge and N = 2, B = −2. It is easy to see that the only

such field is Φ. In addition, since V+ and V− are independent free fields, their product is

non-zero. Thus we must have V+V− ∼ Φ (we have seen above how a more general relation

eq. (3.1) can be demonstrated in the large-Nf limit). We conclude that the sector of the

IR limit of N = 4 SQED generated by Φ and its superpartners is contained in the charge-0

sector of the theory of a free twisted hypermultiplet. This is precisely the statement of

mirror symmetry in this particular case.

5. Discussion of results and open problems

In this paper we showed that many predictions of three-dimensional mirror symmetry can

be verified directly at the origin of the moduli space, where the IR theory is an interacting

SCFT. The main idea was that the e → ∞ limit of 3d gauge theories can be defined

in the continuum using large-Nf expansion, and then vortex-creating operators can be

rigorously defined as well. Focusing on vortex-creating operators in short representations

of the superconformal algebra, we showed that their transformation laws under various

symmetries are determined by index theorems on S
2 × R and therefore are not corrected
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at any order in 1/Nf . In the N = 4 case, this allowed us to determine the exact scaling

dimensions of vortex-creating operators to all orders in 1/Nf expansion. If we assume that

Nf = 1 is within the convergence radius of this expansion, we can prove the basic N = 4

mirror symmetry, which says that a certain large sector of the IR limit of N = 4 Nf = 1

SQED can be described in terms of a free twisted hypermultiplet.

We feel that these results go some way towards making the 3d mirror symmetry conjec-

ture into a theorem (on the physical level of rigor). On the other hand, much yet remains

to be done before one can claim that one understands 3d mirror symmetry. First, it would

be desirable to construct monopole operators directly, using hamiltonian formalism on R
3,

rather than by identifying the corresponding states on S
2 ×R. Mandelstam’s construction

of soliton-creating operators in the sine-Gordon theory [2] serves as a model in this respect.

Second, it would be interesting to find the mirror of more complicated observables in N = 4

SQED. Third, mirror symmetry predicts that many 3d gauge theories have “accidental”

symmetries in the infrared limit [6, 14]. It appears possible to understand the origin of

these symmetries using the methods of this paper. Fourth, for Nf > 1 the mirror theory

of N = 4 SQED is a gauge theory, and one would like to have a conceptual understanding

of the origin of the dual gauge group. Although all abelian mirror pairs can be derived

for the “basic” one, the derivation is rather formal and does not shed much light on this

question.

More ambitiously, we would like to extend the approach of this paper to non-abelian

gauge theories and non-abelian 3d mirror symmetry. It seems that a pre-requisite for this

is the ability to construct operators which are not invariant with respect to the dual gauge

group out of the original variables (i.e. construct operators representing “dual electrons”

or “dual quarks.”) This problem is also the major stumbling block for our understanding

of 4d dualities, and we hope that studying 3d mirror symmetry will eventually lead to a

progress in proving 4d dualities.

A. Radial quantization of N = 2 SQED

We start with the lagrangian of N = 1 d = 4 SQED in the conventions of Wess and

Bagger [32] and perform a Wick rotation to euclidean signature:

LR4 = −LR1,3 |x0=−it , V0|R1,3 = iχ|R4 ,

where V0 is the time-like coordinate of the U(1) connection. Then we require that all fields

be independent of the euclidean time t. This procedure gives the action density for N = 2

d = 3 SQED on euclidean R
3:

L = iψ̄~σ(~∇+ i~V )ψ + iχψ̄ψ + i ¯̃ψ~σ(~∇− i~V )ψ̃ − iχ ¯̃ψψ̃ + χ2
(

AA∗ + ÃÃ∗
)

+

+ ([~∇+ i~V ]A)([~∇ − i~V ]A∗) + ([~∇− i~V ]Ã)([~∇+ i~V ]Ã∗)−

−D(AA∗ − ÃÃ∗) + i
√
2(Aψ̄λ̄−A∗ψλ− Ã ¯̃ψλ̄+ Ã∗ψ̃λ) +O

(

1

e2

)

.
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In the infrared limit e → ∞ the kinetic terms for the vector multiplet can be ignored.

Note also that in the e →∞ limit the equation of motion for D enforces the vanishing of

D-terms.

To go from R
3 to S

2 × R, we perform a Weyl rescaling of the euclidean metric ds2 =

dr2 + r2dΩ2 by a factor 1/r2. If we set r = eτ , then τ is an affine parameter on R. The

component fields of Q must be rescaled as follows:

ψ → e−τψ , ψ̄ → e−τ ψ̄ , A→ e−
τ
2A , A∗ → e−

τ
2A∗ .

The component fields of Q̃ transform in a similar way. The bosonic fields in the vector

multiplet transform as follows:

χ→ e−τχ , ~V → ~V .

To find the one-particle energy spectrum for charged fields, we use the procedure

and notations of [22]. The lagrangian for ψ and ψ̄ in the background of the (anti-) BPS

monopole on R
3 has the following form

L[ψ, ψ̄]S2×R = iψ̄σr

[

∂

∂τ
−
(

~J2 − ~L2 +
1

4

)

− qσr ∓ qσr
]

ψ ,

where q = −eg = −n/2, and the upper (lower) sign corresponds to a BPS (anti-BPS)

monopole. A solution with energy E has the form ψ ∼ e−Eτ , ψ̄ ∼ eEτ . The above

lagrangian is the same as in [22], except for the last term in brackets. We will not repeat

the diagonalization procedure and simply quote the resulting energy spectrum for ψ and ψ̃:

−|n|
2
− p , ∓|n|

2
,

|n|
2

+ p ,

where p = 1, 2, . . . Each energy-level has spin j = |E| − 1/2 and degeneracy 2j +1 = 2|E|.
The lagrangian for A, A∗ is

L[A,A∗]S2×R = [(~∇a + i~Va)A][(~∇b − i~Vb)A∗]gab +
1

4
AA∗ + χ2AA∗ .

The equation of motion for A has the from

d2

dτ2
A =

(

~L2 +
1

4

)

A ,

where ~L is the generalized angular momentum defined in [33]. Using the known spectrum

of ~L2, we easily find the one-particle energy spectrum for A and Ã:

−|n| − 1

2
− p , |n| − 1

2
+ p , p = 1, 2, . . .

The degeneracy of each eigenvalue is again 2|E|, and each eigenspace is an irreducible

representation of the rotation group.
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