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5 INFRARED SPECTROSCOPY OF DIVACANCY-ASSOCIATED...

appearance of the divacancy defect. The absence
of the 3.9-u band which was observed previously
on the same sample and dose condition®# and iden-
tified as associated with the +1 charge state of
divacancy defect, is also not understood. However,
from the fact that the Fermi-level position of our
neutron-irradiated Si samples is in the vicinity of
the middle of the energy gap and the observation

of the 1.8-, 3.3-, 3.45-, and 3. 61-u bands in all
types of Si we conclude that the charge states of
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divacancy defects responsible for the observation
of these bands are not unique, but rather are
mostly in the neutral charge state.
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The role of short-range order in producing a pseudogap in the density of states p(E) of an
elemental amorphous material is investigated. An approximate expression for p(E) which
emphasizes short-range order and neglects all long-range order is derived from multiple-
scattering theory. This expression is used to study the influence of short-range order con-
sisting of two atoms, a single bond, and eight atoms in the staggered and eclipsed bonding con-
figurations on p(E). The results of numerical calculation for amorphous sp-bonded C, amor-
phous Si, and amorphous Ge are reported. These results suggest that the pseudogap in p(E)

may be attributed to the short-range order.

I. INTRODUCTION

Recent widespread interest in amorphous Si and

Ge has led to extensive experimental investigations
of the properties of these materials.! One of the
interesting results of these experimental investi-
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gations is a clear indication that the electronic
density of states participating in optical absorp-
tion?® and photoemission*® possesses a well-de-
fined pseudogap, a range of energy where the den-
sity of states is quite small if not zero. This pseu-
dogap is found to be similar to the band gap in the
crystalline material in that it has approximately
the same magnitude and separates the occupied
from the unoccupied electronic states which con-
tribute substantially to the optical absorption and
photoemission.

An adequate theory of the density of states for
an amorphous material has not been developed yet.®
The lack of long-range order in these materials®"=*
precludes the direct application of the standard
band-theory results which require translational in-
variance. However, the similarity of the short-
range order in the amorphous material®»"® to that
found in the perfect crystal suggests that one might
use this similarity as a basis for some qualitative
arguments concerning the density of states. In
particular, one would expect that the structure in
the electronic spectrum of the crystalline material
which is determined to a large degree by the short-
range order would be common to both the amorphous
and crystalline material. The similarity of the
pseudogap in the amorphous material to the band
gap in the crystalline material suggests that the
gap is one of these features. Ziman!® and Flet-
cher!!~!3 have carried this argument further by
suggesting that the division of the electronic states
for the crystalline material into bending and anti-
bonding states is also applicable to the electronic
states in the amorphous material. The pseudogap
would then be a consequence of a gap in energy be-
tween the bonding and antibonding states as is found
for the crystalline material. While this point of
view is an extremely attractive one, the formalism
developed by Fletcher'!~'3 to support this idea
quantitatively is subject to a number of uncertain-
ties. 1*

Herman and Van Dyke!® and Brust!® have calcu-
lated the electronic spectrum of amorphous Ge by
starting with a standard band-structure calculation
as an initial approximation. While these calcula-
tions may produce a density of states for the
amorphous material which has a pseudogap, the
initial approximation of assuming long- and short-
range order makes it difficult to pinpoint the role
of short-range order alone.

Recently, Weaire!” has explored a simplified
tight-binding model for the electronic spectrum of
an amorphous material. He has been successful
in showing that for an ideal random network the
density of states does possess a gap. However,
the rather gross simplifications involved in his
model which make it possible for him to obtain
rigorous results cast some legitimate doubt upon
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the validity of these results for real amorphous Si
and Ge.

In this paper we present the results of a study of
the role of short-range order in producing a pseudo-
gap without any assumption about the presence of
long-range order!®!® An approximate expression
for the density of states is derived from multiple-
scattering theory. This expression is used to inves-
tigate the density of states for three group-IV ele-
ments, C, Si, and Ge, with short-range order known
to exist in amorphous Si and Ge.!»™® The results of
this study suggest that for these materials the pseu-
dogap is a result of the short-range order.

II. DERIVATION OF EXPRESSION FOR DENSITY OF
STATES

The approximate expression for the density of
states used in this paper is obtained from the multi-
ple-scattering formalism.?°-# This formalism in
its simplest form deals with the properties of a
system consisting of a number of scattering cen-
ters. The potential at each center is assumed to
be spherically symmetric and these potentials are
assumed to be nonoverlapping, the muffin-tin po-
tential approximation. For a perfect crystal this
formalism reduces to the standard Korringa-Kohn-
Rostoker (KKR) method of calculating band struc-
tures.2324

With these assumptions about the scatters, an
exact expression for the integrated density of states
N(E) may be derived by the following simple argu-
ment. Consider a single spherically symmetric
scatter in a volume Q. For simplicity we will as-
sume that the potential has finite range and that
this range is less than the radius of . In this
case, the integrated density of states N(E) (the
number of states per volume with energy less than
E) is given by the expression?®2¢

B2 5 a1
N(E)= 37 +?§ le( I+ )51(E),

(2.1)
where §,(E) is the phase shift for the Ith partial
wave due to the spherically symmetric scattering
potential.?” This expression is valid only for posi-
tive energies measured such that the potential is
zero beyond the range of the scattering potential,
the muffin-tin zero. The first term in Eq. (2.1)
is the integrated free-particle density of states and
the second term is the correction to N(E) due to the
scattering center and is commonly referred to as
the Friedel sum. Equation (2.1) may be written

in a more general form by noting that the phase
shift is related to the scattering matrix®’ S(E) by
the expression

S”:(E)=5”:e“%l(E) H (22)

thus,



K3,

E3/2

N(E):—s?— + —ﬂ%z— Im{Tr[In(S(E))]}. 2.3

The expression may be written in terms of the re-
action matrix?” K by simple application of the def-
inition of K in terms of S:

S(E)=[1+iK(E) |[1 -iK(E) ] . (2. 4)

SHORT-RANGE ORDER AND PSEUDOGAPS. ..

1519

3/2
N(E)= %1-— —ﬂ%lm{Tr[ln(l—iK(E))]}. (2.5)
Equation (2. 5) is valid for nonspherically symmetric
scatters as well as spherically symmetric ones.?®
Calculation of the second term requires the reaction
matrix for the object doing the scattering.

If the object doing the scattering consists of a

number of scattering centers each spherically sym-

metric and located at position X;, then Eq. (2.5)

That is, may be written as®
J
EY? - -

NE)= S - —= In{Tr(In6 2,8, + Gy, & - Xkt (ED 1}, (2.6)

where
- Slp+lg-l v+ (pl/2 =1
Gy (R)==ix EL347”2 CL a1, 1y (E R)YLs(R)’ R#0 (2.7)
1% L , R=0
1=2
—

and |T;~T,|>|F,-%%| foralli,j,k withj#k.

Cryzye,=J Y27, @)Y () d . (2.8)
ki(E) [ =tand¥(E)] is the reaction matrix for the po-
tential at site j. This expression was originally de-
rived by Lloyd? and may be derived by the procedure
outlined in Appendix B. Equation (2. 6) may be re-
arranged so that instead of the reaction matrix for

a single site the reaction matrix for a group of sites
appears in Eq. (2.6). This is accomplished by in-
troducing the concept of clusters.

The division of a disordered structure into clusters
of sites proceeds according to the following pro-
cedure: We divide the material into groups of sites,
and label the location of site i in group j by X{. In
addition, we select a center for each group of sites
and call it F, (for the jth group). The decomposi-
tion of the disordered structure into groups of sites

is a valid decomposition into clusters if
|X{-F,|<|%X%-F;| foralli,j,k I withk#j,

(2. 92)

|

E3/2

(2. 9p)
Criteria (2. 9) require that if we draw a sphere
about the center of each cluster with radius equal
to the maximum distance from the center of a
cluster to one of the scattering sites contained in
the cluster, then this sphere must not contain the
center of any other cluster or a scattering site be-
longing to any other cluster. For a valid decom-
position of the scattering sites into clusters, Eq.
(2. 6) may be written as (see Appendix B)

EY2 2
N(E)= 5= - —= Im{Tr{In(6 ;, 5,

+ DGy (Fi-F) Kp g (Fy, ED Y,
L3
(2.10)

where KLaLz(f,, E) is the reaction matrix for the
cluster of scattering sites (see Appendix A).

Equation (2. 10) can be further simplified by re-
arranging the last term, giving

2 5 -
ME)= 57— = 2q 2, im{Tr (o, 5 —iKy (5, E)) ]}

Q

where T, Lz(Ff , E) is the transition matrix for
cluster j. The last two terms in this expression
correspond to that portion of N(E) (see Appendix A)
due to scattering from each cluster independently

2 - - e -
-5 nn{Tr[1n(6,.,5Lle+ (1- 6,,)77LL GzlLs(r,. -T)1 LaLz(r,,E)) 1},
3

2. 11)

r

and that portion of N(E) due to scattering between
clusters, respectively. Equation (2. 11) is a useful
expression for studying N(E) for a disordered ma-
terial, since it is possible to incorporate what is



1520 T. C. McGILL AND J. KLIMA 3

known about the short-range order at least in part
in the definition of the clusters.

For the disordered material, we do not have all
the information to characterize the clusters pre-
cisely. Thus, a cluster could be one of a number

of different types labeled by a;, with various ori-
entations with respect to a fixed coordinate system
B;, and with various positions 7;. The average of
Eq. (2.11) over an ensemble of various disordered
solids consisting of N clusters is given by

Pay, Ty, B+ ay, Ty, By)dTdBy ** dTydBy

E3/2 2 -
N(E)—?W‘Z‘ = 7o Za)palm{Tr[ln(éLlLa—zKLle(E))]}
2
"
T agreray

xIm{Tr[ln(a,.,aLle+(1 L %}GEILS(?‘ —f,)TZ;L4 B;, T;, E) ]}, (2.12)
3

where p, is the fraction of the clusters in the en-
semble of type a, P is the probability distribution
characterizing the ensemble, and w.(=§/N) is the
average volume per cluster.

The third term in Eq. (2.12) is hard to evaluate
because it requires that we prescribe P for a dis-
ordered system in a realistic way and that we eval-
uate the determinant of an infinite matrix. Dia-
grammatic techniques and approximations to P%
could in principle be used to evaluate Eq. (2.12).
However, in practice these techniques are hard
to apply successfully even when simplifiying ap-
proximations are made.3® Other approximations
‘might include the assumption that the ensemble
over which we average for the amorphous material
consists of a number of crystalline solids each
made up of a single type of cluster located on a
periodic lattice. The calculation of N(E) for each
member of the ensemble could be carried out by
standard band-structure techniques and the average
computed by averaging over the results for N(E)
for the various members of the ensemble.®* While
these approximations would make it possible to
treat the third term in Eq. (2.12), none of them
correctly treats the type of correlation between
clusters that one expects to find in the amorphous
materials. Thus, we have chosen to neglect this
term entirely in exploring the role of short-range
order in producing a pseudogap and take
E¥? 2

= -

(N(E))= 3z 2P Im{Tr[ln(6L1L2

TW,

- iKglLa(E)) ]} .

This approximation is equivalent to calculating
the integrated density of states for each different
type of single cluster in a volume w,, and then as-
suming that the entire solid is made up of these
independent clusters in a fraction given by p,. In
calculating the integrated density of states for a
single cluster, the cluster is assumed to be em-
bedded in a uniform potential whose value is given

(2.13)

I
by the muffin-tin zero for the perfect solid.

The approximation leading to Eq. (2.12) is a
rather drastic one. Intuitively, we expect that as
the volume of the clusters and the number of scat-
tering centers in the cluster increase, the value of
(N(E)) given by Eq. (2.12) will approach the value
for the infinite solid. At worst this convergence
should go as the surface-to-volume ratio of the
cluster. However, in this paper the clusters used
consist of at most eight atoms, and in a sense all
of the atoms are near the surface. Furthermore,
this approximation not only neglects all long-range
order (which gives the relative position and rela-
tive orientation of clusters separated by a large
distance), but also neglects certain correlations in
the location and orientation of nearby clusters
which are part of the short-range order. On the
other hand, some of the short-range order poten-
tially lost by this approximation is retained by
taking into account the effect of nearby clusters
upon the single-site potentials (see Sec. III). In
the disordered solid the phase of the scattered wave
from the various portions of the solid is randomized
by the disorder, leading to a partial cancellation
of the contribution due to multiple scattering be-
tween clusters.

For our purposes in this paper, this approxima-
tion is convenient since it makes possible a study
of short-range order in producing a pseudogap
without attempting to make some uncontrolled esti-
mate of the last term. It also seems unlikely that
this approximation will invalidate the results shown
here. An evaluation of the neglected term should
enhance the pseudogap behavior of the density of
states shown by the approximate calculations.

The expression for the density of states p(E) is
obtained simply by differentiating Eq. (2. 12) with
respect to energy:

E1/2 2 _ d (5
PE)= Gz = —o= L bagy In{Tr(n (o,

~iK3 . (EN]}. (2.19)
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While the equations derived are strictly valid for
energies above the muffin-tin zero, the energies
of interest for this paper, the equations for p(E)
and N(E) can be modified for use for energies be-
low the muffin-tin zero by dropping the free-parti-
cle contribution which is zero and letting E/2
=i(1E|)"%, However, in this case the p(E) would
consist of a series of 6 functions corresponding to
the bound states of the cluster.

III. SHORT-RANGE ORDER AND SINGLE-SITE
SCATTERING PROPERTIES

To study the density of states for an amorphous
material by evaluating Eq. (2.14), we must specify
the spatial configuration of atoms in the clusters
and the scattering properties of each atom in the
cluster.

The spatial configuration of atoms in clusters is
determined by the short-range order found in the
amorphous material. While detailed information
about the exact structure of amorphous Si and Ge
is not available, the radial distribution functions
obtained by x-ray and electron-diffraction techni-
niques®'"~® indicate the existence of short-range or-
der extending to the second nearest neighbor. On
the average, each atom is surrounded by four nearest
neighbors with an average nearest-neighbor dis-
tance which deviates by only a few percent of the
value for the perfect crystal. A peak is found in
the radial distribution function at second-nearest-
neighbor distance for the perfect crystal. Using
this information, Grigorovici and Manaila® and
Polk® have constructed random network models for
amorphous Si and Ge. The model constructed by
Grigorovici and Manaila divides quite naturally into
eight-atom clusters in the staggered bonding con-
figuration which is found in the diamond lattice and
in the eclipsed bonding configuration which along
with the staggered configuration is found in the
wurzite lattice® (see Fig. 1). The model constructed
by Polk contains not only the two bonding configura-
tions but also all intermediate rotations of the three
atoms at the top with respect to the three atoms at
the bottom. However, the difference between the
staggered and eclipsed bonding configurations still
gives the largest variation of bonding configurations
found in the amorphous material. Hence, we have
selected these clusters with an interatomic spacing
given by that found in the perfect crystal as the
basis for our calculation. This choice allows us to
adequately describe the type of short-range order
found in the amorphous material as well as its devi-
ation from the perfect crystal. For comparison,
we have also made calculations for clusters con-
sisting of one atom and two atoms with the crystal-
line interatomic spacing.

The single-site scattering properties of the atoms
in the amorphous material should be obtained by

SHORT-RANGE ORDER AND PSEUDOGAPS. ..
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STAGGERED ECUIPSED

FIG. 1. Clusters of eight atoms in the staggered and

eclipsed configurations,

making a muffin-tin approximation to the potential
about each scattering center and then solving the
scattering problem for this potential. The fluctua-
tions in the spatial arrangement of the near neigh-
bors of a site lead to variation in the potential about
the various sites. Hence, we would expect that a
slightly different muffin-tin potential and scattering
properties would be required for each site. How-
ever, the existence of well-defined spatial arrange-
ments of nearest neighbors in the amorphous ma-
terial which are like the spatial arrangements
found in the perfect crystal suggests that we ap-
proximate all of the single-site scattering prop-
erties of atoms in the amorphous material by the
scattering properties for atoms in the perfect
crystal.

The muffin-tin potential used in computing these
scattering properties was constructed according to
the procedure given by Mertens.*® The potential
at each site was taken to be the Hartree-Fock-
Slater potential for the ground state of the atoms
given by Herman and Skillman.3* Modifications of
the atomic potential due to the nearest-neighbor
atoms in the perfect crystal were computed accord-
ing to the expression

Veryatal (n)= Vatomlc('r) + Vatomic(a -7), 3.1)

where g is the interatomic spacing. The radius of
the muffin tin was taken to be one-half the inter-
atomic spacing. The value of the muffin-tin zero
calculated by averaging the potential in the crystal
external to the muffin tins was taken from Ref. 33.
Single-site phase shifts for this potential were ob-
tained by numerical integration of the radial Schré-
dinger equation. In the case of Si and Ge, the s-
phase shifts were scaled by a factor of 1. 054 and
1. 07, respectively. This scaling brings the cal-
culated band structure into semiquantitative agree-



1522

PHASE SHIFTS FOR CARBON

3.0 —=5-PHASE SHIFT
---=p-PHASE SHIFT
20 T T T T e e
-
— //
g 1.0 ///
~ 7/
£ ool , . , .
s 05 10 5 2.0
§ 1ok Energy (Ry)
£
a
_20 [
_30 -
FIG. 2. Phase shifts for C as a function of energy.

ment with the accepted band structures.®'3 This
solved some of the difficulties associated with the
application of the KKR method of calculating band
structure for these materials.3®

The phase shifts obtained by this procedure are
shown in Figs. 2—-4. These figures indicate the
rather strong similarity of s- and p-phase shifts
for all of these materials. In particular, the weak
resonance in the p-phase shift is an important fea-
ture. The s- and p-phase shift alone were suffi-
cient to give an adequate band structure for dia-
mond, but for Si and Ge it was necessary to include
the d-phase shift.

The band structures obtained from these phase
shifts are shown in Figs. 5-7.3 While all of these
band structures suffer from the inexactness inherent
in the application of the muffin-tin approximation
to the potential in a diamond lattice, these results
indicate that the electronic spectra are adequately
described for the points to be made in this paper.

IV. NUMERICAL RESULTS FOR DENSITY OF STATES

Using the parameters and structures detailed in
Sec. III, Eq. (2.14) has been evaluated numerically
to give the density of states. Since the region of
the pseudogap occurs at energies greater than the
muffin-tin zero, only energies greater than the

PHASE SHIFTS FOR SILICON
—=5- PHASE SHIFT

3.0F ---=p-PHASE SHIFT
~—=d-PHASE SHIFT
201 D
s T T T T e ——
I/
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Phase Shift (rad)

FIG. 3.

Phase shifts for Si as a function of energy.
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FIG. 4. Phase shifts for Ge as a function of energy.

muffin-tin zero were explored. To make clear the
role of various types of clusters in a density of
states, we first evaluate Eq. (2. 14) for clusters
of one type. That is, we take p,=1, where a is
the type of cluster under consideration, and p,.=0
for a’# a.

The results of these calculations for C are shown
in Figs. 8 and 9. Figure 8 shows the variation in
p(E) for clusters with differing numbers of atoms.
For one site, the principal structure in p(E) con-
sists of a single peak at approximately 0. 3 Ry,
which is due to the weak resonance in the p-phase
shift. p(E) for clusters of two atoms has two
principal features: two peaks in the range 0-0. 5
Ry which are the result of splitting the single peak
in p(E) for one site, and a rather small peak at
higher energies at about 1. 3 Ry. For eight-site
clusters, p(E) has structure similar to that found

BAND STRUCTURE
FOR
DIAMOND
!

Energy (Ry)

FIG. 5. Band structure for diamond.
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FIG., 6. Band structure for Si.

in the two-site cluster; however, the valley sepa-
rating peaks between 0-0.5 Ry and the peak at 1. 3
Ry is better defined, owing to an increase in the
magnitude of the peak at approximately 1. 35 Ry,

a decrease in p(E) in the range 0.5-1.0 Ry, and
an increase in the sharpness of the edges of the
peaks bordering the valley.

Figure 9 shows the results for the eight-center
clusters with the staggered or eclipsed configura-
tions as well as the free-particle density of states
[the first term in Eq. (2.14)]. Several points
should be noted from these results. First, p(E)
for the staggered and eclipsed structures are qual-
itatively similar. Second, p(E) in the valley region
is below that due to the free-particle term only,
indicating a partial cancellation of the free-particle
density of states in that range of energies. Final-
ly, comparison of the location of the valley in p(E)
with the location of the band gap in the perfect
crystal (between I'y5. and A shown on the abscissa
of Fig. 9) shows that they occur in approximately
the same energy range.

I
BAND STRUCTURE
L FOR -
GERMANIUM

Energy (Ry)

FIG. 7. Band structure for Ge.
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FIG. 8. Density of states for clusters of one, two, and
eight C sites as a function of energy.

The amorphous material will contain both the
staggered and eclipsed configurations of eight-atom
clusters as well as fluctuations about these con-
figurations. Thus, p(E) for the disordered ma-
terial would be obtained by substituting suitable
values of p, in Eq. (2.14). For example, the re-
sults for p(E) for half staggered and half eclipsed
are shown in Fig. 10. This p(E) possesses fea-
tures which are consistent with the density of states

DENSITY OF STATES
FOR CLUSTERS OF EIGHT CARBON CENTERS
—— Staggered Configuration
-~-- Eclipsed Configuration
—-— Free Particle Density of
States

o
o
1

n
(o]
T
>

S
T

Density of States (107 bohr > Ry™")

FIG. 9. Density of states for clusters of eight C sites
in staggered and eclipsed configurations and the free-
particle density of states as a function of energy. The
locations of the relevant energy levels in the band struc-
ture are shown along the energy axis.
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FIG. 10. Hypothetical density of states for “amorphous

diamond” obtained by averaging with equal weight the re-
sults for the staggered and eclipsed configurations.

suggested by optical®® and photoemission*® experi-
ments. The range of energies at low energy giving
a high density of states is identified with the “va-
lence band, ” and the range of energies at high en-
ergy giving a high density of states is identified
with the “conduction band.” These two bands are
separated by a region of low density of states, the

T I I I T T
- DENSITY OF STATES .
FOR SILICON
—— ONE CENTER

o
o)
I

———TWO CENTERS

—-—EIGHT CENTERS (Staggered
Configuration)

20—

Density of States (1072 bohr 3 Ry™")

I | —
0 ol 0.2 03 04 05 06
Energy (Ry)

FIG. 11. Density of states for clusters of one, two,
and eight Si sites as a function of energy.
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FIG. 12. Density of states for clusters of eight Si

sites in the staggered and eclipsed configurations and the
free-particle density of states as a function of energy.
The locations of the relevant energy levels in the band
structure are shown along the energy axis.

pseudogap. This pseudogap has a width which is
similar to the band gap found in the perfect crystal.
The process of averaging tends to smooth out
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FIG. 13. Hypothetical density of states for “amorphous
Si” obtained by averaging with equal weight the results
for the staggered and eclipsed configurations.
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FIG. 14. Density of states for clusters of one, two,
and eight Ge sites as a function of energy.

the structure in the curves of Fig. 9 in the “va-
lence band” and “conduction band.” Inclusion of
other clusters whose spatial configuration is inter-
mediate to the staggered and eclipsed configurations
plus fluctuations about these configurations will
smooth out more of the structure in the valence

I I I I I I
15[DENSITY OF STATES FOR CLUSTERS]
OF EIGHT GERMANIUM CENTERS

Staggered Configuration

———Eclipsed Configuration

—-—Free Particle Density of
States

|
|
|
|
|
|
|
|
|
|
|
|
\

Density of States (1072 bohr™3 Ry™")

s LIy
Energy (Ry)

FIG. 15. Density of states for clusters of eight Ge
sites in the staggered and eclipsed configurations and
the free-particle density of states as a function of energy.
The location of the relevant energy levels in the band
structure is shown along the energy axis.
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band and conduction band. However, the similarity
of p(E) for the various clusters in the region about
the pseudogap strongly suggests that the feature
would not be lost by any averaging over clusters
similar to those used for the calculations shown

in Fig. 9.

Similar results were obtained for Si and Ge as
shown in Figs. 11-16. In these cases the varia-
tion of p(E), in going from one- to two- to eight-
site clusters, is similar to that found for C, and
again the difference between the staggered and
eclipsed configurations is small in the pseudogap
region. However, the results for Si and Ge do
differ in one way from those for C, that is, in the
location of the valley in p(E) with respect to the
band gap in the perfect solid. The band gap in the
perfect solid occurs at lower energy in both of
these materials than that found for the valley in the
density of states for the clusters. This difference
in location can be traced to the addition of the d-
phase shift in the single-site scattering properties,
which not only adjusts the band structure slightly
but also moves the gap to lower energies. The ad-
dition of the d-phase shift does not noticeably shift
the structure in p(E). In fact, an s-p calculation
for Si and Ge does give a band gap which occurs
at energies more closely associated with the valley
in p(E); however, the band structure obtained in
this calculation is not in as good a qualitative
agreement with the accepted band structure as the
s-p-d band structure.
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FIG. 16. Hypothetical density of states for amorphous

Ge obtained by averaging with equal weight the results for
the staggered and eclipsed configurations.
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V. DISCUSSION OF RESULTS AND CONCLUSION

The principal result of these calculations is to
show that the short-range order in amorphous Si
and Ge is capable of giving a pseudogap in the den-
sity of states. This pseudogap may be viewed as
the result of the scattering properties of the clus-
ter. For energies in the valence and conduction
bands, the cluster scatters in a resonant fashion,
leading to a high density of states in much the same
way the d resonance leads to a large density of
states in the transition metals. On the other hand,
in the pseudogap, the clusters scatter in an anti-
resonance fashion, leading to a low density of
states. When these clusters are placed in the sol-
id, the valence and conduction bands result from
the resonantlike “states” for the cluster. The
pseudogap is a direct consequence of the cluster
tending to “repel” electrons in this energy range.
The filling of space with the clusters effectively
gives the electron little place to go. Consequently,
we obtain a pseudogap.

These scattering properties of the cluster are
the results of both the single-site scattering prop-
erties and the spatial location of the atoms in the
cluster. Since the p-phase shift is the only phase
shift with a resonance behavior, and since the p reso-
nance plays an important role in determining the
location of the I'ps and T'y5°" % states which are
at the top of the valence band and near the bottom
of the conduction band in the perfect crystal, one
might suspect that it is responsible for the struc-
ture found in the density of states. However, cal-
culations of the density of states for clusters of
more than one site with either the s- or the p-phase
shift set equal to zero produced results which are
qualitatively different from those reported here.
This result indicates that both the s- and p-phase
shifts play a role in producing the scattering prop-
erties necessary to produce a pseudogap.

The minimum value of the density of states in
the pseudogap region obtained from these calcula-
tions cannot be taken as a reliable estimate of the
depth of the pseudogap in the amorphous material.
The minimum obtained here is four orders of mag-
nitude higher than the upper bound that Donovan,
Spicer, and Bennett? have assigned on the basis of
the optical absorption in amorphous Ge. This dis-
crepancy is not unexpected when one realizes that
a precise zero for the density of states would re-
quire an exact cancellation of the free-particle
part by the terms that we have approximated.
Thus, the value of the minimum of the density of
states is particularly sensitive to an approxima-
tion such as the one that has been made here. De-
termination of the value of the density of states in
the pseudogap and of the sharpness of the edges
near the pseudogap requires a better treatment of

T. C. McGILL AND J.
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the scattering between clusters.

The correlations of the pseudogap found in these
calculations with the magnitude and location of the
band gap in the perfect crystal suggest that one
might attribute the gap in the perfect solid in part
to the short-range order and the scattering prop-
erties of the clusters of atoms in the staggered
configuration. The role of the translational in-
variance in producing details of the density of
states could in part be assessed by comparing the
density of states from an approximate calculation
of this nature with the density of states for a full
band -structure calculation on the same material.
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APPENDIX A: DERIVATION OF EXPRESSIONS FOR
REACTION AND TRANSITION MATRICES FOR A NUMBER
OF SCATTERERS

In this appendix we derive an expression for the
reaction matrix in the angular momentum repre-
sentation of a group of scattering centers satisfying
the standard muffin-tin approximation. These re-
sults have been derived in an essentially equivalent
way by Lloyd28 and are reported here merely for
completeness.

For definiteness, we introduce a coordinate
system and label the location of the jth scattering
center by )'Ej. The potential at each scattering cen-
ter will be assumed to be nonzero only over a
sphere of radius a. The standard muffin-tin ap-
proximation is made for the potentials.

To obtain an expression for the reaction matrix,
we need the solution to the Schriodinger equation at
energy E=k? which behaves as?’

ZP(’V) =jzl(K7’) YLI('V) _ZLKLZLI nLa(KV)YLz(’V)

(A1)
for »> | §j | +a for all j. Once the solution given
by Eq. (Al) is obtained, it is easy to identify the
reaction matrix. Equation (Al) can be obtained
by application of Green’s theorem :

¢(f)=fsd§' [pE@) V' G*(F, T') - G*F, T') V' p(F")] ,
(A2)

where
cosk | T =711

GP(?;_{J):‘ ar| T -7 =

Z/K].z(K/V< )
L



|en

xnykry )Y L(F)Y, (F)

and 7 is the smaller of |T| and |7'|, and % is the
larger of |T| and |T'}. The surface S isalarge sphere
at <, and the surfaces of spheres surrounding each
one of the scattering centers with radius slightly
larger than the range of the potential ¢. Using

Eq. (Al) to compute the integral over the sphere

at infinity, we have

Y(F) =5,(k7)Y L (F) + [dB- [0 )V G*(F, T
—G’(f,?)V’w(F’)],

where S, denotes the surfaces of the spheres sur-
rounding the scattering sites. Since the solution
of the Schrddinger equation on a sphere about scat-
tering center { with radius greater than a can be
taken to be of the form?’

(A3)

2, AiaLl[jlz(K |T-%;])
La

— ki, (B)

anl(K | F—ii [ )]YLI(F_ii) ’ (A4)
where Al ; are constants which are to be deter-
mined, the second term in Eq. (A3) can be evalu-
ated directly, yielding on comparison with Eq.

(A1)

=5 =\ pi i
Kpi1,= ﬁ/a Ap &) L (B)AL 1, » (A5)
where
Az, ®)= %;4111’3”1 2, (Kx)Ybs(x)ChLaLa ,
(A8)
where Cy, 1,1, is defined in Eq. (2.8). Thus, the

evaluation of the K matrix reduces to obtaining the
set of constants A},, . To do this we again apply
Green’s theorem in the region of one of the scatter-
ing spheres and require that the solution in that
region be of the form given in Eq. (A4). This
yields a set of equations for the A},,,

Alpr,=8pz, &) - jZL/ Glhora(X; =X )kL(E)AL 1,
3

(A7)
where
Lz(ﬁ) ;Ll 4giftizt Cryrargtiy(KR) {j; (R),R#0
S 0, R=0.
(A8)

Solving these equations and substituting the solution

into Eq. (A5), we obtain
Kpyz,= 1L$L4AL o (X e (EYM™ )La"L41 EFACENE
(A9)
where M is a matrix with elements
My 5= 045000, + G 1 (R — X))k} (E) . (A10)
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The transition matrix 7 is obtained from the def-
inition of the 7 matrix in terms of the K matrix®’

T=-71K(1-iK)! (A11)

APPENDIX B: DERIVATION OF EXPRESSION FOR
INTEGRATED DENSITY OF STATES

The derivation of the expression for the inte-
grated density of states (2. 10) follows very simply
once it is noted that all the operations in Appendix
A used to derive the reaction matrix are still valid
if the group of single-site scattering centers is
replaced by a group of valid clusters as defined in
Sec. II. In this case the reaction matrix K for the
group of clusters is given in terms of the reactions.
matrices for the clusters K(7; E) by the expression

K, ;.= 2, O, (T)K,, (T,,E)
LyLy Ly Egls L\t i/t rar Ao
ML“.sz Lst("Fi> ’ (Bl)
where M is now the matrix with elements
My i51,5=04;0L L4+ZJGLL (F; - KLL (F;,E)

and T, refers to the center of the cluster as dis-
cussed in Sec. II

To facilitate the algebraic manipulations to fol-
low, it is convenient to write Eq. (B1) in an ab-

breviated algebraic form,
K=0KM™ta,. (B2)

Substitution of Eq. (B2) into Eq. (2.5) yields

EB/Z

N(E)= 32 —2— Im{Tr[In(1 - ia, KM 4,)]} .

Using the identity
Tr[ln(1 - {AB)]= Tr[In(1 -iBA) |,

we have that

E3/ 2 2 . "
N(E)= 37 " o Im{Tr[In(l - ia,0, KM )1}
(B3)
But one can show from the definition of Eq. (A6)
that A satisfies the identity?®
(B4)

ALILZ(RI"'R.Z): ?; ALlLa( ﬁl) ALaLz(ﬁz) .

Thus, the product of AyA; in Eq. (B3) may be re-
placed by a single A, A;, whose argument is the
difference between the location of two clusters.
Further, one can remove the matrix inverse M
from Eq. (B3) to obtain

E3/2

N(E)= 37" 7?2—Im {Tr[In(M - ia;K)]}

+ %Im{Tr[ln(M)]} . (B5)
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However, M is in general a real matrix. Thus, the
last term in Eq. (B5) is zero. Restoring the in-
dices to the matrices, we have that

E3/2 2
N(E)= = T Im{Tr[l“(‘SHGHLz

T. C. MCGILL AND J. KLIMA k]

+£ Cryn(Fi=T)) Ky 4, (7, E)) 1}, (B6)

where G21L2 is defined by Eq. (2.7). This is the
desired result.
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