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A simple approach to phase-space representation of quantum state vectors using the
displacement-operator formalism is presented. Although the resulting expressions
for the fundamental operators~position and momentum! are equivalent to those
obtained by other methods, this approach provides both alternative mathematical
foundation as well as physical interpretation of phase-space representation of quan-
tum state vectors. ©1999 American Institute of Physics.
@S0022-2488~99!01605-9#

I. INTRODUCTION

Over the past few years there has been a renewed interest in phase-space descrip
quantum systems. In a recent paper by Ban1 a novel approach to phase-space representatio
quantum state vectors is obtained within the relative-state formulation, and in this Comme
make a few remarks on the physical contents of this construction. Also, we relate it to an
approach to phase-space representation of quantum state vectors, the so-called displa
operator approach.

The idea of phase-space representation of quantum state vectors, i.e., representati
quantum state as a probability amplitude depending ontwo real variables related to the positio
and momentum coordinates goes back to the works of Fock2 and Bargmann.3 In their formulation,
a quantum state is represented as a complex function depending onone complexcoordinate whose
real and imaginary part is proportional to the position and momentum coordinate, respec
This is a result of regarding the bosonic creation and annihilation operators as the funda
operators.

The relative-state formulation, on the other hand, treats the position and momentum op
themselves as the fundamental operators and is therefore more closely related to the w
Torres-Vega and Frederick4 and Harriman.5 Both of these works rely to a certain extent on Dirac
representation theory of quantum mechanics,6 either as a Hilbert-space-vector approach postu
ing the existence of a complete set of states depending on two real parameters that can be
a basis in phase space or a linear transformation onto phase space from position or mom
space.

In fact, the relative-state representation of Ban1 becomes, under certain conditions, equivale
to those of Torres-Vega and Frederick4 and Harriman.5 The relative-state formulation may there
fore serve as a mathematical and physical foundation for the representations presented b
authors since it is derived from first principles without assumptions or transformations from
representations.

However, the relative-state formulation is not the only way to construct a phase-space
sentation of quantum state vectors from first principles that becomes equivalent to those of T
Vega and Frederick4 and Harriman.5 Below, we present an alternative construction, using
displacement operators, and discuss the mathematical and physical differences betwe
method the relative-state approach.

a!Electronic mail: klaus@cco.caltech.edu
25310022-2488/99/40(5)/2531/5/$15.00 © 1999 American Institute of Physics
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The displacement-operator approach is essentially equivalent to the coherent-state for
as put forward by, for instance, Klauder and Skagerstam7 and studied in some detail by the prese
author.8 Hence, the presentation given here is extracted from these earlier works and put in
relevant for the present discussion. For a thorough review and analysis of the use of displa
operators, the reader is referred to Refs. 7 and 8 and the references therein.

II. RELATIVE-STATE FORMULATION

The relative-state formulation is presented in great detail by Ban1 and here we only include a
few results relevant for the further discussion. The key of this approach is to enlarge the H
spaceH of a quantum system by introducing an auxiliary~reference! quantum system and trea
quantum state vectors in the extended Hilbert spaceH̃5H^Hr , whereHr is the Hilbert space of
the reference system. A state vector in the extended Hilbert spaceH̃ then becomesuC&&[uc&
^ uf& r whereuf& r is the reference state.

A set of state vectors$uv(r ,k;s)&&ur ,kPR% may be introduced1 that becomes a complet
orthonormal system inH̃. These state vectors, which can be written on the following form:

uv~r ,k;s!&&[
1

A2p
e2 i ~11s!kr/2E

2`

`

dx eikxux& ^ ux2r & r ~1!

~as in Ref. 1, we set\51 throughout this Comment! are simultaneous eigenstates of the opera
x̂2 x̂r , and p̂1 p̂r ,

~ x̂2 x̂r !uv~r ,k;s!&&5r uv~r ,k;s!&&, ~2!

~ p̂1 p̂r !uv~r ,k;s!&&5kuv~r ,k;s!&&. ~3!

However, when we investigate the properties of the relevant quantum system, we only n
description of this system in the Hilbert spaceH. Thus, the extended Hilbert space is reduc
again by fixing the state vector of the reference system. For any fixed state vectoruf& r of the
reference system, the set$uv(r ,k;s)&ur ,kPR%, where

uv~r ,k;s!&[ r^fuv~r ,k;s!&&5
1

A2p
e2 i ~11s!kr/2E

2`

`

dx eikxf* ~x2r !ux&, ~4!

becomes an overcomplete system in the Hilbert spaceH.1 Therefore, the relevant quantum syste
can be represented by anL2(2) normalized wave functioncv(r ,k;s)[^v(r ,k;s)uc& depending
of the two real parametersk andr. In this representation, the fundamental operatorsx̂ and p̂ take
the form

^v~r ,k;s!ux̂uc&5F1

2
~11s!r 1 i

]

]kGcv~r ,k;s!, ~5!

^v~r ,k;s!u p̂uc&5F1

2
~12s!k2 i

]

]r Gcv~r ,k;s!. ~6!

Apart from some notational differences these are essentially the expressions given by Torre
and Frederick4 and Harriman5 in their representations. Thus, the construction by Ban1 may serve
as a mathematical foundation for the work of Torres-Vega and Frederick4 and Harriman.5 Fur-
thermore, the relative-state formulation provides a physical interpretation of the wave fun
cv(r ,k;s) and the parametersk andr as phase-space coordinates. In light of Eqs.~2! and~3!, the
function ucv(r ,k;s)u2 represents the probability distributions of the eigenvalues of the oper
x̂2 x̂r and p̂1 p̂r in the extended Hilbert spaceH̃.
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



n

the
ence
the
ference

senta-
a and

math-
n fact,
ons.
states,
ely,

e

ion
a-

require
ga and
ch an
on, a
f.

rs.
on and

2533J. Math. Phys., Vol. 40, No. 5, May 1999 Klaus B. Mo” ller

Downloaded 1
Alternatively, one may utilizeucv(r ,k;s)u2 as a combined probability distribution directly i
the r ,k-parametrized space as follows:

r̄[E
2`

`

drE
2`

`

dk rucv~r ,k;s!u25xc2xf , ~7!

k̄[E
2`

`

drE
2`

`

dk kucv~r ,k;s!u25pc1pf . ~8!

Here,xc5^cux̂uc& and so on. Thus,r andk may be interpreted as phase-space coordinates in
sense that the average value ofr equals the relative position between the relevant and the refer
system, and the average value ofk equals the sum of the momenta of the relevant and
reference system. Hence, the physical interpretation of the wave function depends on the re
state, although the operator expressions, Eqs.~5! and~6!, do not, and from this point of view the
most satisfactory representation is obtained using a reference state with^fux̂uf&50 and
^fu p̂uf&50. In general, also the physical interpretation of higher momenta ofr andk depend on
the reference system.1

III. DISPLACEMENT-OPERATOR APPROACH

Here we present an alternative derivation from first principles of the phase-space repre
tion of quantum state vectors that also becomes equivalent to the ones of Torres-Veg
Frederick4 and Harriman5 and therefore to the result of Ban,1 as well. However, the derivation
presented here differs from the one obtained in the relative-state formulation in both the
ematical foundation and in the physical interpretation of the phase-space wave functions. I
it resembles closely Dirac’s construction of the usual position and momentum representati6

Two things are important for the definitions of these representations. First, the basis
denoted byur &x and uk&p , are eigenstates of the position and momentum operator, respectiv

x̂ur &x5r ur &x and p̂uk&p5kuk&p . ~9!

Second, the position~momentum! eigenstate with eigenvaluer (k) can be generated from th
eigenstate with eigenvaluer 50 (k50) by a displacement operator,

ur &x5D̂x~r !u0&x and uk&p5D̂p~k!u0&p , ~10!

where the displacement operators are given asD̂x(r )5exp(2irp̂) and D̂p(k)5exp(ikx̂).6 The
wave function in position~momentum! space is then obtained by projection onto a posit
~momentum! eigenstate,c(r )[^r uc& (c(k)[^kuc&). This implies that the displacement oper
tors when acting on a state displace the expectation value of the position or momentum byr and
k, respectively.

An identical approach to a phase-space representation of quantum state vectors would
the existence of an Hermitian operator representing a point in phase space. Torres-Ve
Frederick4 claim that such an operator exist but without proof and, in fact, the existence of su
operator would violate the Heisenberg uncertainty relation. In the relative-state formulati
close resemblance is obtained for the basis statesuv(r ,k;s)&& in the extended Hilbert space; c
Eqs.~2! and ~3!.

Nevertheless, anr ,k-parametrized basiscan be constructed utilizing displacement operato
In general, a displacement operator that displaces the expectation values of the positi
momentum for any state byr andk simultaneously, can be defined as7,8

D̂s~r ,k!5exp@ i ~kx̂2r p̂2skr/2!#, ~11!
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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where s is real number determining the phase such thatD̂1(r ,k)5D̂q(r )D̂p(k), D̂21(r ,k)
5D̂p(k)D̂q(r ), andD̂0(r ,k) is a symmetric combination. Anr ,k-parametrized state vector ma
then be defined asuV(r ,k;s)&[(2p)21/2D̂s(r ,k)ux&, whereux& is an arbitrary normalized state
and the set$uV(r ,k;s)&ur ,kPR% becomes an overcomplete set of normalized vectors.7 The set
$uV(r ,k;s)&ur ,kPR% can therefore be used as a basis and the relevant quantum system
sented by theL2(2) normalized wave functioncV(r ,k;s)[^V(r ,k;s)uc&, depending on the two
real parametersk and r. These basis vectors obviously satisfy the displacement relation

uV~r ,k;s!&5D̂s~r ,k!uV~0,0;s!&. ~12!

Using that

i
]

]k
D̂~r ,k;s!5F1

2
~11s!r 2 x̂GD̂~r ,k;s!, ~13!

i
]

]r
D̂~r ,k;s!52F1

2
~12s!k2 p̂GD̂~r ,k;s!, ~14!

it is seen that in this representation, the fundamental operatorsx̂ and p̂ take the same form as in
the relative-state formulation, given by Eqs.~5! and ~6!.

Therefore, the displacement-operator approach provides an alternative derivation from
principles to the results obtained within the relative-state formalism. Here, the state of the re
system is projected onto an auxiliary~reference! state ux&, displaced byr and k, whereas the
auxiliary stateuf& in the relative-state formulation is utilized to project the orthonormal basi
the extended Hilbert space onto a reduced Hilbert space. Thus, the auxiliary states play d
physical roles, as can also be seen from the relations

r̄[E
2`

`

drE
2`

`

dk rucV~r ,k;s!u25xc2xx , ~15!

k̄[E
2`

`

drE
2`

`

dk kucV~r ,k;s!u25pc2px . ~16!

Hence,r andk may here be interpreted as phase space coordinates, in the sense that the
values obtained usingucV(r ,k;s)u2 as a combined probability distribution equal the relative p
sition and momentum, respectively, between the relevant and the auxiliary system. Hen
displacement-operator approach provides a more symmetrical interpretation of
r ,k-parametrized representation of the quantum state vector.

Since

D̂s~r ,k!ux&5e2 i ~11s!kr/2E
2`

`

dx eikxx~x2r !ux&, ~17!

we see that the displacement-operator approach and the phase-space representation
within the relative-state formulation become formally identical ifx(x)5f* (x); cf. Eq.~4!, which
implies thatpf52px , as expected@compare Eqs.~8! and ~16!#.

In conclusion, we have shown that the two different mathematical approaches to a p
space representation of quantum state vectors lead to identical expressions for the funda
operators. However, usage of the well-known technique of displacement operators is in
closer to the construction of the usual position and momentum representations and, also,
vides a more transparent physical interpretation of the auxiliary state as a ‘‘probe’’ state in
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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space.8 With this interpretation, phase-space representation of quantum state vectors bec
powerful tool and has been applied recently in the study of quantum dynamics directly in
space9 or as a route to semiclassical approximations.10
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