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Comment on phase-space representation of quantum
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A simple approach to phase-space representation of quantum state vectors using the
displacement-operator formalism is presented. Although the resulting expressions
for the fundamental operatofposition and momentumare equivalent to those
obtained by other methods, this approach provides both alternative mathematical
foundation as well as physical interpretation of phase-space representation of quan-
tum state vectors. €1999 American Institute of Physics.
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I. INTRODUCTION

Over the past few years there has been a renewed interest in phase-space descriptions of
quantum systems. In a recent paper by Bamovel approach to phase-space representation of
guantum state vectors is obtained within the relative-state formulation, and in this Comment we
make a few remarks on the physical contents of this construction. Also, we relate it to another
approach to phase-space representation of quantum state vectors, the so-called displacement-
operator approach.

The idea of phase-space representation of quantum state vectors, i.e., representation of a
guantum state as a probability amplitude dependingwanreal variables related to the position
and momentum coordinates goes back to the works of Fantt Bargmann.In their formulation,

a quantum state is represented as a complex function dependomgeaomplexoordinate whose

real and imaginary part is proportional to the position and momentum coordinate, respectively.
This is a result of regarding the bosonic creation and annihilation operators as the fundamental
operators.

The relative-state formulation, on the other hand, treats the position and momentum operators
themselves as the fundamental operators and is therefore more closely related to the works of
Torres-Vega and Frederitknd Harrimarr. Both of these works rely to a certain extent on Dirac’s
representation theory of quantum mechafieither as a Hilbert-space-vector approach postulat-
ing the existence of a complete set of states depending on two real parameters that can be used as
a basis in phase space or a linear transformation onto phase space from position or momentum
space.

In fact, the relative-state representation of Baacomes, under certain conditions, equivalent
to those of Torres-Vega and Fredefiglnd Harrimarr. The relative-state formulation may there-
fore serve as a mathematical and physical foundation for the representations presented by these
authors since it is derived from first principles without assumptions or transformations from other
representations.

However, the relative-state formulation is not the only way to construct a phase-space repre-
sentation of quantum state vectors from first principles that becomes equivalent to those of Torres-
Vega and Frederiékand Harrimarr. Below, we present an alternative construction, using the
displacement operators, and discuss the mathematical and physical differences between this
method the relative-state approach.
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The displacement-operator approach is essentially equivalent to the coherent-state formalism
as put forward by, for instance, Klauder and Skagerstamd studied in some detail by the present
author® Hence, the presentation given here is extracted from these earlier works and put in a form
relevant for the present discussion. For a thorough review and analysis of the use of displacement
operators, the reader is referred to Refs. 7 and 8 and the references therein.

Il. RELATIVE-STATE FORMULATION

The relative-state formulation is presented in great detail by' Bad here we only include a
few results relevant for the further discussion. The key of this approach is to enlarge the Hilbert
spaceH of a quantum system by introducing an auxilidrgferencg quantum system and treat
quantum state vectors in the extended Hilbert spdeeH® H, , where™, is the Hilbert space of
the reference system. A state vector in the extended Hilbert shatteen becomes$W))=| )
®|¢), where|¢), is the reference state.

A set of state vector|w(r,k;s)))|r,ke R} may be introducedthat becomes a complete
orthonormal system ifi{. These state vectors, which can be written on the following form:

o0

e—i(l+s)kr/2f dxeikx|x)®|x—r), (1)

1
|w(r,k;S)>>E\/T—W

(as in Ref. 1, we sei=1 throughout this Commenare simultaneous eigenstates of the operators
X—X%,, andp+p,,

(X=X)|w(r,k;s)))=r|w(r,k;s))), 2

(p+po)o(r.k;s)))=klo(r k;s))). 3)

However, when we investigate the properties of the relevant quantum system, we only need a
description of this system in the Hilbert spaké Thus, the extended Hilbert space is reduced
again by fixing the state vector of the reference system. For any fixed state {@égtoof the
reference system, the sgt(r,k;s))|r,ke R}, where

lo(r,k;8)=(dla(r k;s)))= %e‘<l+s)kf’2fwwdx &¥p* (x—1)|x), 4

becomes an overcomplete system in the Hilbert spatdherefore, the relevant quantum system
can be represented by af(2) normalized wave functiogy,,(r,k;s)={w(r,k;s)|) depending
of the two real parameteksandr. In this representation, the fundamental operatoasidp take

the form
. Yy 1 H (9 .
(o(r,k;s)[X| )= §(1+s)r+|£ W, (1,K;s), (5)
. A — 1 H {9 .
(o(r,k;s)|p|¢)= 5(1—s)k—|ﬁ U, (r.k;s). (6)

Apart from some notational differences these are essentially the expressions given by Torres-Vega
and Frederickand Harriman in their representations. Thus, the construction by'Baay serve

as a mathematical foundation for the work of Torres-Vega and Fredeaiuk Harrimar?. Fur-
thermore, the relative-state formulation provides a physical interpretation of the wave function
¥,(r,k;s) and the parameteisandr as phase-space coordinates. In light of E8sand(3), the
function |, (r k;s)|? represents the probability distributions of the eigenvalues of the operators
X—X, andp+p, in the extended Hilbert spade.
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Alternatively, one may utilizéy,(r,k;s)|? as a combined probability distribution directly in
ther,k-parametrized space as follows:

k= [ ar [ akKun ks P=p, o, ®

Here,x¢=<¢/f|§<| ) and so on. Thus, andk may be interpreted as phase-space coordinates in the
sense that the average value @quals the relative position between the relevant and the reference
system, and the average value lofequals the sum of the momenta of the relevant and the
reference system. Hence, the physical interpretation of the wave function depends on the reference
state, although the operator expressions, Egjsand(6), do not, and from this point of view the

most satisfactory representation is obtained using a reference state(#lith¢)=0 and
(¢|p|#)=0. In general, also the physical interpretation of higher momentaaoidk depend on

the reference system.

lll. DISPLACEMENT-OPERATOR APPROACH

Here we present an alternative derivation from first principles of the phase-space representa-
tion of quantum state vectors that also becomes equivalent to the ones of Torres-Vega and
Frederick and Harrimah and therefore to the result of Bargs well. However, the derivation
presented here differs from the one obtained in the relative-state formulation in both the math-
ematical foundation and in the physical interpretation of the phase-space wave functions. In fact,
it resembles closely Dirac’s construction of the usual position and momentum represefitations.

Two things are important for the definitions of these representations. First, the basis states,
denoted byr), and|k),, are eigenstates of the position and momentum operator, respectively,

X[r)=r|r)x and ﬁ|k>p:k|k>p- €)

Second, the positiodimomentum eigenstate with eigenvalugk) can be generated from the
eigenstate with eigenvalue=0 (k=0) by a displacement operator,

IN)=Dy(r)[0), and |k),=D,(k)|0)p, (10

where the displacement operators are giverDa§)=exp(—irp) and Dp(k)=exp6k§<).6 The
wave function in positionlmomentum space is then obtained by projection onto a position
(momentum eigenstateys(r)=(r|¢) (#(k)=(k|¥)). This implies that the displacement opera-
tors when acting on a state displace the expectation value of the position or momentusndy
k, respectively.

An identical approach to a phase-space representation of quantum state vectors would require
the existence of an Hermitian operator representing a point in phase space. Torres-Vega and
FredericK claim that such an operator exist but without proof and, in fact, the existence of such an
operator would violate the Heisenberg uncertainty relation. In the relative-state formulation, a
close resemblance is obtained for the basis staiés k;s))) in the extended Hilbert space; cf.
Egs.(2) and(3).

Nevertheless, an,k-parametrized basisan be constructed utilizing displacement operators.

In general, a displacement operator that displaces the expectation values of the position and
momentum for any state hyandk simultaneously, can be defined"ds

Dy(r,k)=exdi(kx—rp—skri2)], (11
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where s is real number determining the phase such tf)q(r k)—f)q(r)f)p(k) D_ 1(r,k)

= Dp(k)Dq(r) and Do(r k) is a symmetric combination. An,k-parametrized state vector may
then be defined al)(r,k;s))=(2m)" l’ZDS(r K)|x), wherel|y) is an arbitrary normalized state,
and the se{|Q(r,k;s))|r,ke R} becomes an overcomplete set of normalized vectdise set

sented by the?(2) normalized wave functiogi(r,k;s)=(Q(r,k;s)|¢), depending on the two
real parameterk andr. These basis vectors obviously satisfy the displacement relation

|Q(r k;s))=D4(r,K)[€2(0,0;9)). (12)
Using that
1 -~
D(r k;s)= (1+s)r— D(r,k;s), (13
.0 = |1 oA .
|ED(r,k,s)—— E(l—s)k—p D(r,k;s), (14

it is seen that in this representation, the fundamental operatarsl p take the same form as in
the relative-state formulation, given by EdS) and (6).

Therefore, the displacement-operator approach provides an alternative derivation from first
principles to the results obtained within the relative-state formalism. Here, the state of the relevant
system is projected onto an auxiliatyeference state|y), displaced byr and k, whereas the
auxiliary state|¢) in the relative-state formulation is utilized to project the orthonormal basis in
the extended Hilbert space onto a reduced Hilbert space. Thus, the auxiliary states play different
physical roles, as can also be seen from the relations

r—Ef drf dk r| o (r,k;s)|[*=x,— X, , @9

k=" ar [ akkuntrkisP=p,p,. 1o

Hence,r andk may here be interpreted as phase space coordinates, in the sense that the average
values obtained usinglq(r,k;s)|? as a combined probability distribution equal the relative po-
sition and momentum, respectively, between the relevant and the auxiliary system. Hence, the
displacement-operator approach provides a more symmetrical interpretation of the
r,k-parametrized representation of the quantum state vector.

Since

D(r k)| x)=e 1(1+okri2 J dx €%x(x=1)[x), 17)

we see that the displacement-operator approach and the phase-space representation obtained
within the relative-state formulation become formally identica} (k) = ¢* (x); cf. Eq.(4), which
implies thatp,=—p, , as expecteficompare Eqs(8) and(16)].

In conclusion, we have shown that the two different mathematical approaches to a phase-
space representation of quantum state vectors lead to identical expressions for the fundamental
operators. However, usage of the well-known technique of displacement operators is in spirit
closer to the construction of the usual position and momentum representations and, also, it pro-
vides a more transparent physical interpretation of the auxiliary state as a “probe” state in phase
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spacé® With this interpretation, phase-space representation of quantum state vectors becomes a
powerful tool and has been applied recently in the study of quantum dynamics directly in phase
space or as a route to semiclassical approximatiths.
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