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Numerical study of Hele-Shaw flow with suction
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We investigate numerically the effects of surface tension on the evolution of an initially circular
blob of viscous fluid in a Hele-Shaw cell. The blob is surrounded by less viscous fluid and is drawn
into an eccentric point sink. In the absence of surface tension, these flows are known to form cusp
singularities in finite time. Our study focuses on identifying how these cusped flows are regularized
by the presence of small surface tension, and what the limiting form of the regularization is as
surface tension tends to zero. The two-phase Hele-Shaw flow, known as the Muskat problem, is
considered. We find that, for nonzero surface tension, the motion continues beyond the
zero-surface-tension cusp time, and generically breaks down only when the interface touches the
sink. When the viscosity of the surrounding fluid is small or negligible, the interface develops a
finger that bulges and later evolves into a wedge as it approaches the sink. A neck is formed at the
top of the finger. Our computations reveal an asymptotic shape of the wedge in the limit as surface
tension tends to zero. Moreover, we find evidence that, for a fixed time past the zero-surface-tension
cusp time, the vanishing surface tension solution is singular at the finger neck. The
zero-surface-tension cusp splits into two corner singularities in the limiting solution. Larger
viscosity in the exterior fluid prevents the formation of the neck and leads to the development of
thinner fingers. It is observed that the asymptotic wedge angle of the fingers decreases as the
viscosity ratio is reduced, apparently towards the zero afglep of the zero-viscosity-ratio
solution. © 1999 American Institute of Physids$$1070-663(99)03909-4

I. INTRODUCTION circle by Constantin and PughTian® shows that singularity
. . . S formation is inevitable if the center of the viscous blob is not
A Hele-Shaw cell is a device for investigating the two- . . Lo
at the sink. However, the type of singularity is still unknown.

dimensional flow of viscous fluids in a narrow gap betwee . . . .
two parallel plates. Through the similarity in their governingnTi:i Sc’)"rnggj/lecl)rtlr%rccr)nuelzir?se caused by the interface reaching the

equations, Hele-Shaw flows are linked to saturated flows i It I he K led £ th f
porous media. One of the main sources of interest in thig _* 'S natural to use the knowledge of the zero-surface-
type of flows is the oil industry. In particular, Hele-Shaw tens!on solutions to sFudy the asymptotic effects of surfage
flows with suction are relevant to the process of oil recovery €NSION as a perturbation parameter. However, a perturbation
In these flows, a blob of viscous fluid, surrounded by invis_analyss is dlffICU|F due to theill posednesg of the underlying
cid or less viscous fluid, is drawn radially into a point sink. Z&r0-surface-tension problérhand to the singular nature of

. . 2
The more viscous fluid can be associated with oil, surth® perturbation. Instead, Howisoetal® propose an

rounded by watefinviscid fluid), that is recovered through a @Symptotic model in which small surface tension would
well (sink). cause the interface in the neighborhood of the cusp to propa-

Laboratory experimentsshow that Hele-Shaw flows 9ate rapidly as a narrow jet, analogou_s to a thin cra_ck. How-
with suction can develop long “fingers” of the less viscous €Ver, this so-called “crack” model relies on the notion of a
fluid that encroach upon the more viscous fluid. These finSelf-similar steady-state solution whose existence is un-
gers reach the sink before all the more viscous fluid is suckenown. Thus, the effects of very small surface tension past
out. In the oil analogy, this fingering process could reducehe cusp time remain unclear.
the amount of recoverable oil. From physical grounds, it is  Here, we investigate numerically how surface tension
believed that surface tension plays a crucial role in the detegularizes the cusped flows and what the limiting form of
velopment and width selection of the fingers. In the absencthis regularization is as surface tension tends to zero. We
of surface tension, fingering is not observed. Instead, soluconsider the two-phase Hele-Shaw flow, known as the
tions of the Hele-Shaw equations, for the suction flow withMuskat problent,and study also the effects that the viscosity
inviscid surrounding fluid, are known to form finite-time sin- of the surrounding fluid has on the Hele-Shaw sink flow. We
gularities before the fluid interface reaches the sink. Thesemploy a highly accurate and efficient boundary integral
singularities are generally in the form &fpower cusp$:® method developed by Hoet al° This method allows us to

From the analytical point of view, very little is known follow accurately the interface motion after the zero-surface-
about the Hele-Shaw solutions in the presence of surfactension cusp timé., for very small values of surface tension
tension. There is a local existence result by Duchon anénd several viscosity ratios. With high resolution, our com-
Robert? and a global in time result for initial data close to a putations proceed up to very close to the moment when the
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interface touches the sink and the solution breaks down itime past. but not greater than the asymptotic time at which
the classical sense. the interface reaches the sink. The continuation solution se-
Kelly and Hinch* study numerically the effects of sur- lected by the limit apparently splits the zero-surface-tension
face tension on the Hele-Shaw flow with suction when thecusp into two corner singularities at the finger neck.
surrounding fluid is inviscid. Their computations show that  Even in the absence of surface tension, very little is
surface tension indeed regularizes the cusped flow and thatkmown about the corresponding Muskat problem, i.e., when
smooth narrow finger develops past. However, as we the viscosity of the surrounding fluid is taken into consider-
show here, Kelly and Hinch computations lack the high ac-ation. We find here that the viscosity of the exterior fluid
curacy necessary to capture the interface behavior for suffalone does not prevent the formation of cusps. It only delays
ciently small surface tension. In addition, for a given surfacethem. In the absence of surface tension, we observe generic
tension, high resolution is needed to compute the fast inters-power cusps just as in the case of inviscid exterior fluid.
face motion as the finger gets very close to the sink. In factHowever, as the viscosity ratio is decreased, we find that the
recent computations by Nie and Ti#&mprovide strong evi- zero-surface-tension cusps develop closer to the sink. In the
dence that the flow develops a curvature singulaiitythe  presence of surface tension, the interface behavior for small
form of a corner when the interface reaches the sink. How- viscosity ratios differs significantly from that corresponding
ever, Nie and Tian do not address the limiting behavior ofthe case of inviscid exterior fluid. We observe that large
the interface as surface tension tends to zero. viscosity in the exterior fluid prevents the formation of the
Numerical computations of unstable Hele-Shaw flowsneck and leads to the development of thinner fingers. The
are known to be difficult due to the ill posedness of thefingers also tend to an asymptotic shape in the limit as sur-
zero-surface-tension probleth* For sufficiently small sur-  face tension tends to zero. Moreover, the asymptotic angle at
face tension, even perturbations at the round-off error levethe finger tip decreases as the viscosity ratio is reduced, ap-
can lead to a rapid growth of the solution high-frequencyparently towards the zero angleusp of the zero-viscosity-
components>8In addition, surface tension introduces high- ratio solution.
order derivative terms that couple with the interface dynam-  The organization of the rest of the paper is as follows. In
ics in a nonlinear and nonlocal manner. These terms lead t8ec. I, we present the equations of motion for the Hele-
a severe time-step stability constraint or stiffness for explicitShaw interface in a boundary integral formulation appropri-
time-integration schemes. In their method, Huwl P effec-  ate for the numerical method we use. In Sec. llI, we describe
tively identify and separate the terms causing the stiffness ithe numerical method along with the main ideas that make it
a form that makes implicit discretizations easy to implementefficient. The numerical results are presented in Sec. IV.
Here, we apply this method to a spectrally accurate discretiThese results are divided in two main parts: the case when
zation in space combined with a fourth-order in timethe surrounding fluid is inviscid and the effect of the
implicit/explicit multi-step scheme. surrounding-fluid viscosity. An analysis of the numerical er-
Our computations focus on the evolution of an initially rors is included in this section. Section IV also contains re-
circular blob of viscous fluid surrounded by less viscoussults showing that the qualitative features of the flow are
fluid. The blob is drawn into a point sink located inside it but insensitive to the initial position of the blob center with re-
not at its initial center. We find that, for nonzero surfacespect to the sink. Further discussion of the numerical results
tension, the flow continues beyond the zero-surface-tensioand conclusions are presented in Sec. V.
cusp time, and breaks down only when the interface touches
the sink. When the viscosity of the surrounding fluid is small
or negligible, the interface develops a finger that later!l- THE GOVERNING EQUATIONS

evolves into a Wedge as it approaches the_sink. As in the Typically in a Hele-Shaw cell, two viscous fluids are
cases reported by Nie and Tiahour computations strongly confined between two closely spaced parallel plates. Here,

suggest the}t t:e I;elel—(S:aw sglut(;ons,l for this type of georr]‘r\he consider the case of a blob of viscous fluid being sucked
gtry,fgﬁnerlcg y rr(]aa hOW.” 3; eve Op'r?g ahcorl_wekr att eoy an interior sink. The blob is surrounded by a less viscous
tip of the wedge when the interiace reaches the sink. fluid which fills the rest of the Hele-Shaw cell. For simplic-
As surface tension is decreased, our numerical result we assume that the fluids are immiscible and incom-
show severaI. new |_nterest|ng phenomena. An asymp,tOt'Bressible with constant but differing viscosities. We use the
shape of the fingers is observed at the late stage of the 'nt_eé'ubscripts 1 and 2 to refer to the fluids in the interior and

face motion ano_i a wedge angle at the tip of the finger iS,yierior of the blob. The velocity field; of each fluid is
selected in the limit as surface tension tends to zero. More-,

o : iven by Darcy’s law,
over, for sufficiently small values of surface tension a weII-g y y

defined neck develops at the top of the finger rigarThe . b? . 21
developing finger bulges but, being drawn strongly by the U= 12u, Pj (2.3)

sink, quickly evolves into the wedge. The bulging of the whereb is the cell gapy is the viscosity, and; is the

finger contradicts the “crack” model of Howiscet al. It is ressureM = b2/12.. is the fluid mobility. The incompress-
conceivable that the neck and the bulging of the finger ar:%l. dition i "IL.I hatV - u.— 0 dy.h f h b

due to the influence of the zero-surface-tension singularit ! ||ty'con ftion Implies t. av-u; = ,an ¢ ere o.ret € pres-
In fact, our computations suggest that the vanishing surfacg ¢ " each fluid satisfies Laplace’s equation:

tension solution is singular at the finger neck, for any fixed VZpJ-:O. (2.2
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In other words, the interior and exterior fluids are potential. Ap b2 .

Consequently, the flow can be obtained from the dynamics 7= ~Sa—=U-S— Saﬁv(pl_pZ)'s- (2.9
of the free interfacéblob boundary between the two fluids.

Denote the fluid interface b. The interface motion is sub- Using the dynamic boundary conditid2.4) and the com-

ject to the following conditions, plex conjugate velocity, we obtain the following equation for
u-A]|r=0, 2.3
[u- Al 3 y=2A, Re{z,W}+ Sk, . (2.10
[pllr=7«, (2.4

Here, A,=(u1— p2)/(1+ ) is the viscosity Atwood ra-
where[ -] denotes the jump across the interface taken as thto andS=(b?/12u) 7 is a scaled surface tension parameter.
difference of the interior minus the exterior quantity. Hére, We nondimensionalize the equations of motion by taking the
is the exterior unit normal t&, 7 is the surface tension, and initial blob radius to be 1 and by settir@= — 1. Taking into
k is the interface mean curvature. The kinematic boundar@ccount that there is freedom in selecting the tangential ve-
condition (2.3) states that the normal component of the ve-locity at the interface, the evolutions equations can be writ-
locity field is continuous across the interface. This impliesten as
that particles on the interface remain there. The relation 1 1 2n y(a' 1)
(2.4), known as the Laplace-—Young boundary condition, 7Z(a,t)=——-—+-—P f :
gives an account of how the presence of surface tension Z(at)  2mi
modifies the pressure across the interface. Z(a,t)

We assume that there is a point sink at the origin, inside Xda' +A(a,t)m, (2.11
the fluid blob. For large distances away from the sink, the T

Jo z(a,t)—z(a',1)

velocity field tends to the simple radial flow: z,(a,t)  z,(a,t)
y(a,t)=2A,Re — +2 " py,
X Z(a,t) 2i
u(x —=, as |X|—o. 2.5
( )_’Q|X|2 | |_’ (2.9 o y(a' 1)
. . . . f ———————da’ | +Sk,, (2.12
Here, Q is the suction rate which is assumed constant and 0o Z(a,t)—z(a’,t)

negative.

Let the interfacel’ be represented, at any instantby
X(a,t),y(a,t)), where « in [0,27r] defines a counter-
clockwise parametrization df. Both x andy are periodic
functions ofa. The interface governing equations can be pu
in a convenient form by introducing the complex position
variable z(«a,t) =x(a,t) +iy(«a,t) and the complex conju-
gate velocityW(a,t)=u(a,t) —iv(a,t). This interface ve-
locity can be represented by a boundary integral plus the sink A spectrally accurate spatial discretization of E@s11)
contribution as followgfor a derivation, see, e.g., Ref.J17 and(2.12) can be achieved easily by computing the space

0 1 o W' t) derivatives with the pseudo-spectral approximation, i.e., us-
+——_p f — "~ _da’, (26 ing the fast Fourier transforni=FT). The principal value
Z(a,t) 27 o Z(at)—z(a' 1) integral can also be computed with spectral accuracy by em-
ploying the alternate-point trapezoidal rdfe:

where the bar denotes the complex conjugate. Hfe,t)

is arbitrary and only determines the parametrizativpame

of the interface but does not affect its dynamics. For ex-
ample, the frequently used Lagrangian frame is obtained by
Yaking A= y/(2|z,]).

lll. THE NUMERICAL METHOD

W=

where the P.V. denotes the principal value integgais the
(unnormalized vortex sheet strength which measures the 2r y(a') N~1 v
P.V. f ‘

tangential velocity jump across the interface by da'~ 2h, (3.1

0o Z(aj)—z(a') =0 z—g
y=sq[ullr§ 2.7 . . .
where N is the number of computational particles on the
wheres,= \/x2a+y2a, the subscriptr denotes differentiation  jnterfaceh=2m/N, anda;=ih fori=0,...N—1. The quan-
with respect to that variable, aréds the unit tangential vec-  tities with subscripts are the corresponding discrete approxi-
tor onI'. W(a,t) gives, in complex form, the average veloc- mations. However, surface tension introduces a tex) (
ity (u,v)=3(u;+u,) on the interface and satisfies the with high-order derivatives that couple into the interface dy-
boundary condition(2.5), provided y has zero mean. To npamics in a nonlinear and nonlocal manner. This leads to a
close the system, an equation fpican be derived by using high-order stability constraingstiffness for explicit time-

Eq. (2.1). We have that integration methods and makes implicit methods difficult to
12 12 implement. Hotet al1° have designed an efficient method to
(Vp,—Vp,) 8= #Uz_ %Ul S remove the high-order stability constraint. This is the method

we use here. The method is based on a reformulation of the

12 equations of motion in terms of variables more naturally re-
=- F(AMLH'F(Ul_UZ))'AS, (2.8)  lated to the curvature and on the identification of the small-
scale terms that contribute to the stiffness. The natural vari-
whereA =y — uy, w=3(m1+ u,). Thus, ables are the tangent angle to the interféicand the arc-
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length metrics,=|z,|. In these two variables, the curvature 1 /25 o L4 1
has the simple forme=6,/s, and the evolution equations ;¢ 50" 40"+ 30" - 0"+ 0"

; 12 3 4
are given by
S(2m\* . n n-1
Sat=To— 0,U, (3.2 = 5| rz) HLO" Jaaa+ 4P 6P
1 +4pP"2—pn-3, (3.10
0t=S—(Ua+T0a), (3.3

HerelL is updated first using a fourth-order explicit Adams—

whereT and U are the tangential and normal velocity, re- gashforth multi-step scheme to obtdifi** before comput-
spectively. The stiffness is hidden at the small spatial scaleﬁlg "1 via FFT.

of U, in the #-equation. The leading order behaviorldfat

—eHt Note that, at each time step,has to be obtained from
small scales is given B9

(2.12 to compute the velocities. It has been shéWhat the

1 Fredholm integral equation foy has a globally convergent

U(a,t)~=—H[y](a,t), (3.4  Neumann series. We solve for by fixed point iteration,
2s, accelerated by constructing a fourth-order extrapolated initial

guess from previous time steps. It typically takes a few itera-

tions to obtain a convergent solution fewhen the interface

the Fourier transform a#{[f]=—isign ()f. The notation s reatively smooth. The overall method is fourth order in
f~g means that the difference betwetandg is smoother  time and spectrally accurate in space.

thanf andg. Moreover,y is dominated by the surface ten-
sion term at small scales, that is,

where is the Hilbert transform which is diagonalizable by

b,
a,t)~Sk,=|— 3.
Hat) (Sa o (39 IV. NUMERICAL RESULTS
Therefore, We consider an initially circular blob of viscous fluid
s surrounded by less viscous fluid. The center of the initial
2 blob is at (0;-0.1) and the sink is placed at the origin. Our
Ulat) 2s, H(6alSa)al(@,t). 3.6 numerical results focus on the regularizing effect of surface

tension, past th&=0 singularity time, and on the limiting
This dominant term at small scales simplifies if the arc-pehavior of the interface as surface tension tends to zero. The
length metrics,, is constant in space. This can be achievedresults are divided in two main parts. First, we present the
by exploiting the freedom in selecting the tangential velocity.case where the viscosity of the surrounding fluid is negli-

By letting gible, which corresponds to A= 1. In the second part, we
) investigate the additional effect that nonzero viscosity in the
T(a,t)=f00a'Uda'_% Waa/Uda’, (3.7) s<uirounding fluid has on the interface dynamics, i.e, A
0 0 .

All the computations presented here are performed in
S, is maintained constant and equal to its mean at all timesg4-bit arithmetic (standard double precisipn Krasny
i.e.,s,=L(t)/2m, whereL(t) is the total length of the curve filtering?* is used to prevent the spurious growth of the high-
at timet. The equations of motion can now be written as  frequency components of the round-off error. This nonlinear
. numerical filter is implemented by setting to zero all the
L=— J 6,,Uda’, (3.9 Fourier modes of the solution whose magnitudes are below a
certain level. In our computations we set this filter level to be
10"12 The numbem of uniformly spaced points along the
interface is chosen so that all the Fourier modes of the tan-
gent angled(«a,t) are well resolved. Initially, we us&\
=2048 for most of the computations. The time stepis
whereP represents lower-order terms at small spatial scalesselected so that decreasing it further would not produce any
L can be updated by an explicit method as 838) is free of  appreciable difference within plotting resolution in the cur-
stiffness. To remove the high-order stiffness it is sufficient tovature of the interface. We doubl as soon as the magni-
discretize implicitly the leading order term in E€.9 and tude of the highest frequency mode éffx,t) is greater than
treat the lower order tern® explicitly. This gives a linear the filter level. Very small values aft are required to com-
time-step stability constraint, i.eAt<Ch, whereAt is the  pute accurately the interface motion as it approaches the
time-step size. Moreover, because of its constant coefficientsjnk. At the latest stage of the motion, the number of grid
the implicit term can be easily inverted by using FFT. Here,points typically increases thl=8192 orN=16384 andAt
we use the following fourth-order explicit/implicit method =2x10"7. A detailed resolution study is presented later in
studied by Ascheet al;*° this section.

S{2w\3
atZE(T) H[ 0] puet P, (3.9
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FIG. 1. Evolution and collapse of the interface for the initially circular blob X

centered at (0;0.1) being sucked by a point sink at the orig8=0 and

A,=1. The curves, from the outer perimeter inwards, correspond to thé!G. 2. Evolution of the initially circular fluid blob fo§=0.01 and 4,

timest=0, 0.1, 0.2, 0.24, 0.28, and 0.2842. The cusp is formed approxi-= 1. The curves, from the outer perimeter inwards, correspond to the times

mately att=0.2842. The computation was performed ushig 2048 and ~ t=0, 0.080, 0.160, 0.240, 0.284, 0.290, 0.296, 0.300, and 0.301 419. The

At=1x10"% in the Lagrangian frame. distance of the tip of the finger to the sink, for the last computed interface
(t=0.301419), is 5.984810 2 and the tip curvature is-180.37.N
=8192 andAt=2x%x 10" for the last stage of the motion.

A. Development of the interface for A, =1

We decrease now surface tension to the vaBied
X 10 4. A time sequence of the interface evolution for this

In the absence of surface tension, an initially circularsmall surface tension is presented in Fig. 3. The interface
blob whose center is not at the sink develogs@ower cusp ~ passes smoothly the zero-surface-tension cusptimg&oon
singularity in finite time. Figure 1 shows the evolution andafter t,, we observe the appearance of an almost straight
collapse of the fluid interface fok,=1 andS=0. The cusp
occurs at approximately.=0.2842 and is located a0,
0.2305 for this particular case where the blob is initially
centered at (6;0.1). To resolve well the interface up to
times very close to the formation of the cusp, we take advan-
tage of the particle clustering characteristic of the Lagrangian
frame. That is, for this special cas&=0), we discretize
directly Egs.(2.11) and(2.12 with A=v/(2|z,|) using the

pseudo-spectral approximation for the derivatives and the °

alternate-point trapezoidal ru(8.1) for the singular integral.

An explicit fourth-order Adams-Bashforth scheme is used to v

integrate in time.

2. The regularizing effect of surface tension -05p ]
The presence of surface tension regularizes the cuspec : '

flow in a very special way. Figure 2 shows the fluid interface

at different times forS=0.01. A smooth finger with a

rounded tip develops past the zero-surface-tension break-
down timet.=0.2842. As the interface gets closer to the ; )
sink, the finger evolves rapidly into a wedge. We stop the ~  -06  -04  -02 0 02 04 06
computation when the distance of the finger tip to the sink is
5.9848< 107 3. We useN=8192 andAt=2x10"" for the FIG. 3. Evolution of the initially circular fluid blob foS=4x10"* and
last stage of the computation. The formation of the Wedge a8,.=1. The interface is. plotted_ at times aroune-0.2842 and well past |t
the interface approaches the sink is consistent with the I,elirom the the outer perimeter inwards, the curves correspond to thettimes
. . =0.280, 0.284, 0.288, 0.290, 0.292, 0.293, and 0.288216 384 andAt

sults reported by Nie and Tiahfor the two values of surface 25107 for the last stage of the motion. At0.2932, the distance of the

tension they computed. wedge tip to the sink is 8810 and the tip curvature is-1945.26.

1. Zero-surface-tension cusp formation
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(a)

55t 05 T
18 t=0.2920 .
t=0.2930 —
0
Y
150 b -05¢
1 4
-038 -OTG —Oi4 —sz ll) 012 0I.4 0‘,6 0.8
[:3
FIG. 4. Behavior of the tangent angi «,t) around the finger tip4=0)
as the interface is about to collapse, f+4x 10 4 and A,=1. The tan-
gent angle, plotted against the parametrization variablet the timest -1 _015 _0f4 02 0 0.2 0.4 0.6
=0.2920, 0.2930, and 0.2932, appears to develop a discontinNity. X
=16 384 andAt=2x10"".
(0)
04 T T :

finger that begins to bulge but is quickly drawn into the sink
forming a wedge. Note that the top of this finger is narrower
than the one corresponding to the larger surface tenSion
=0.01 (Fig. 2. A look at the tangent anglé(«,t) around
the finger tip forS=4x104, shown in Fig. 4, strongly
suggests the formation of a corner when the interface touche
the sink. The tangent anglkeappears to develop a disconti- Y 02f
nuity at the finger tip ¢=0), precisely when the Hele-Shaw
solution breaks down. The computations of Nie and Ffan,
for another type of initial data, also suggest this breakdown
scenario. The formation of the wedge and the tip corner seen L
to be generic for this type of flow.

Smaller values of surface tension reveal new features in
the interface evolution. Figure 5 shows the interface shape
for S=5x10"°. The finger clearly bulges and develops a
well-defined neck before it becomes a wedge. It is interesting
to note that this neck appears at a height close to that of the
zero-surface-tension cusp. It is conceivable that the formagic. 5. Evolution of the initially circular fluid blob past,, for S=5
tion of the neck and the bulging of the finger are due to thex10™® and A,=1. (@) The interface plotted at=0.2880, 0.2900, and
influence of the zero-surface-tension singularity. In fact, ag;géglb(g)ggo Cg’;gagp :r:dtgezig”lt?siai% ggge;ni tth‘ZLichi?ﬁﬁ%
look at the (_:urv_ature shown at Fig(a for the time t last stége of thé motion’. At=0.29181, the distance of the wedge tip to the
=0.2860, which is very close th=0.2842, shows already sink is 2.92<10°2 and the tip curvature is-1371.11.
the appearance of two symmetric spikes corresponding to the
location of the neck. The behavior of the interface curvature
at subsequent times is shown in Figéc)éand &d). Note in 3. The interface limiting behavior as S —0
particular that the curvature grows almost ten times in mag- We investigate now the interface limiting behavior be-
nitude fromt=0.2916[Fig. 6(c)] to t=0.2918[Fig. &d)].  fore and past.. We present numerical evidence to show that
The sharp and large spike at=0 is an indication of the an asymptotic corner angle is selected in the limit as surface
corner singularity forming as the tip of the wedge touchegension tends to zero when the finger tip is about to reach the
the sink. We useN=16384 andAt=2x10"’ to resolve sink. The computations presented here also suggest that the

0.16F

0 0.05 0.1 0.15

X

-0.05

0 L L
-0.2 -0.15 =0.1 0.2

accurately this large curvature motion. &t 0.2918, the dis-
tance of the wedge tip to the sinkiis=2.92x10 % and the
tip curvature isk=—1371.11. The sink pressurelogr
dominates the surface tension pressbke
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To obtain information on the behavior of the wedge
angle in the limit as surface tension tends to zero, we com-
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TABLE Il. The angle of the wedgégin radiant$ for a decreasing set of

0 “@ surface tensions. The variatidhird column is the difference between
2 20 consecutive angles, corresponding to surface tensSoasd 2S.
< 0 x 0 S Wedge angle Variation
20 20 8x10°*4 0.674 59 S
4x10°4 0.657 19 0.0174
-0 ~0 2x1074 0.643 99 0.0132
-5 0 05 05 0 05 1x107* 0.636 60 0.0074
5x107° 0.633 59 0.0030
© @
50 0
0
-500 . .
‘50 < pare the interfaces for a set of decreasing values of surface
1000 tension. Since the velocity of the interface depends on sur-
-100 face tension, we compare the interfaces when their finger tips
s 1500 reach the same level above the sink rather than at a fixed
-0.5 4] 05 05 0 05

FIG. 6. Interface curvature(a,t) versusa around the finger tip¢=0) at
different times past, for S=5x10"° and A,=1. (a) t=0.2860. (b) t
=0.2880. (c) t=0.2916. (d) t=0.29181. N=16 384 andAt=2x10""
were used to resolve the largest curvat(de

03

0.25

time. As surface tension is reduced, the finger tip reaches the
given level faster. Figure 7 provides some indication of the
asymptotic trend of the fingers as surface tension is succes-
sively halved fromS=8x10"* to S=5x10 °. The fixed
level isy=0.01 so that the finger tips are very close to the
sink. As surface tension is decreased, the fingers develop a
neck at abouty=0.27. However, away from the neck, the
finger width changes very little. More precisely, as surface
tension is reduced, the change in the finger width decreases.
Table | gives the differenca (S,S/2) between the width of

the finger corresponding to a surface tensiand that cor-
responding td&/2 at three different levels. It is observed that
A(S,S/2) decreases as surface tension is reduced. The fin-
gers are converging to an asymptotic shape. Table Il sug-

02 gests that an asymptotic angle is selected for the wedge as it
y touches the sink. The difference between consecutive angles
0.15
038 |
0.1 -0
03% Y =00'-} -
1 =0.00001 — ]
0.05 S=%.00088081 -
034 b .

~0.15 =041

-0.05 0
X

0.05

0.1

0.15

0.32 p=

FIG. 7. Comparison of the interface finger for a sequence of surface ten-
sions with A,=1. From the outer curve inwards, the fingers correspond to ¥
the surface tension valu&=8x10"%, 4x 104, 2x10°%4, 1x10 4, and

5% 107°. Each interface is plotted when the tip of the finger reaches the
fixed levely=0.01 atx=0. N=16384 andAt=2x10"".

TABLE I. Change in the finger widths as surface tension is decreased for
A,=1. The first column shows the height level at which the fingers are

03+

0.28

0.26

024 + -

"
compared. Columns 2-5 give the different€S, S/2) between the width of
the finger corresponding to a surface tensi®and that corresponding to
32 0'22 1 H 1

.1 -0.05 0.05 0.1
A(0.0008, A(0.0004, A(0.0002, A(0.0001, X
y 0.0009 0.0002 0.0002 0.00005 Lo . .
FIG. 8. Limiting behavior of the interface befotg=0.2842 for A,=1.

0.1 1.63x10°3 1.17x10°3 8.96x10°* 6.62<10°* This figure shows a close-up picture of the interface aroun@ for a set of

0.06 1.24¢10°8 9.14x 1074 6.98< 103 5.39x 104 surface tension values, decreasing from top to bottom, and plotted at time

0.02 5.9% 10 * 457104 3.45x10°* 2.47<10°4 t=0.2840. The zero-surface-tension solution is also shdwn4096 and

At=5x10"5.
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FIG. 10. The tangent angl¥( «,t) versusa around the finger tip¢=0) at
01 1 t=0.2857 for A,=1. The plots correspond t¢a) S= 1075 and (b) 5
X 1075 N=8192 andAt=5x10"°.
0.05 : .
(a)
0 o L L . . L > 100 T T T T T T T
-02 -015 0.1  -0.05 0 0.05 0.1 0.15 0.2

X

FIG. 9. Close-up of the interface arourer 0 att=0.2857(just past) for o

A,=1. The interfaces correspond ta) S=10"° and (b) S=5x107°%. N x

=8192 andAt=5x10"¢, ok

~50
-0.8

(corresponding to surface tensioBsand 2S) decreases as

0.6

surface tension is reduced. Note also that there is anie

asymptotic time at which the limiting wedge reaches the

sink. sof
While the asymptotic trend of the wedge angle is clear, «

the limiting behavior of the interface in the vicinity of the 0
neck is not obvious. More precisely, we would like to find
the form of the continuation solution selected in the limit as

L i

surface tension tends to zero for any fixed time padiut )
before the time at which the limiting wedge reaches the sink

-0.2 [ 0.2
[+

04

08

08

FIG. 11. The curvaturec(e«,t) versusa around the finger tip4=0) for

As expected, beford., the interface converges to the A,=1andS=5x10"%, at(a) t=0.2850 andb) t=0.2855.N=8192 and
smooth zero-surface-tension solution&s 0. This is illus-  At=5x1075.
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FIG. 12. Collapse of the interface in the absence of surface ten@&@pn. N\ 7
A,=0.8. The cusp is formed approximately tat=0.3070. (b) A,=0.2. atef "\ /
The cusp is formed approximately gt=0.3809. The computations were N\ y-00081.2% o i
performed usindN=2048 andAt=1x10"% in the Lagrangian frame. 820 A0, -

trated in Fig. 8 which shows a close-up picture of the inter-
face for a set of decreasing surface tensions at a time (
=0.2840) slightly before¢.. The zero-surface-tension solu-
tion is also shown in Fig. 8.

We observe a very different behavior pagt Figure 9
presents close-up pictures of the interface finger developing
just pastt,. The mterfaces correspond to the surface tension
valuesS=1x10"° andS=5x10"° plotted att=0.2857. FIG. 13. Zero-surface-tension cusps apnower fitting curves for different

. . . . values of the viscosity Atwood ratio, shown at the approximate breakdown
Note that the width of the small finger is approximately thetlmet (8 A,=1.0 att,=0.2842. (b) A,=0.4 att,=0.3745.(c) A,
same for both surface tensions. But a more pronounced necko 2 att.=0. 3807.(d) A,=0.08 att,=0. 401 35. The computations were
with two corners can be observed f8=5x10 ° in Fig. performed usind\ =2048 "andAt=1x 105 in the Lagrangian frame.

-0.08 008 004 002 L) 002 0.04 0.0 0.08
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035} . 0.35¢
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0 . . . ! . ) .
~0.2 -0.15 -04 -0.05 0 0.05 0.1 0.15 0.2 -0.2 ~0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
X X

- 0

FIG. 14. Evolution of the initially circular fluid blob pagdt, for S=5 FIG. 15. Evolution of the initially circular fluid blob pagt, for S=1
x107° and A,=0.8. (@ The interface plotted at=0.3106, 0.3126, and x107° and A,=0.8. (@ The interface plotted at=0.31222. (b) A
0.3136.(b) A close-up of the interface finger at the times0.304, 0.3076,  close-up of the interface finger at the tintes0.3080, 0.3111, and 0.312 22.
0.3106, 0.3126, and 0.3138.=16384 andAt=2x10"" for the last stage = N=327 68 andAt=1x10"" for the last stage of the motion.

of the motion.

9(b). Unfortunately, well-resolved computations for surfacetion in 6 at the finger neck. We usd=8192 andAt=5
tensions smaller that this value are extremely difficult duex 10~ ° to resolve accurately bothand the curvature for this
interface singular behavior and to growth of the round-offcase. Figure 11 shows the curvature near the finger tip at two
error noise. Nevertheless, the nonsmooth transition observaary close times fo6=5x 10 8. There is a rapid growth of
for the previous values of surface tension hints a possibl¢he curvature at the neck. A comparison with the curvature
singularity formation in the limit. Indeed, a look at the tan- corresponding t®&=5x 10 ° [Fig. 6a)] shows the singular
gent angled(«,t) in Fig. 10 provides further indication of a trend of the interface limiting behavior. Although the nu-
singularity scenario in the limit a&8—0. The two spikes it merical evidence is somewhat limited and further study is
correspond to the finger neck. While the tangent angleequired for smaller values of surface tension, we conjecture
changes smoothly around the finger tip, two small kinks obthat the neck will asymptote to corners in the limit 8s
served forS=5x 10 % mark an almost discontinuous transi- —0.
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FIG. 16. Tangent angled(a,t) versus a around the finger tip at
=0.31222 forS=1x10"% and A,=0.8. N=327 68 andAt=10"".

B. A ,<1: The effect of the surrounding-fluid viscosity

1. Zero-surface-tension cusp formation

Very little is known for the Hele-Shaw flow with suction
when A, <1, i.e., for the two-phaséMuska) problem, even
if surface tension is neglected. We first present a series of
computations for several Atwood ratios in the absence of
surface tension. These computations$s+0 are performed
in the Lagrangian frame as explained in Sec. IVA 1. Figure
12 shows the breakdown of the Hele-Shaw solution fgr A
=0.8 and A,=0.2. The viscosity of the exterior fluid alone
does not prevent the formation of cusps in the interface. Note
that the breakdown times occur later than that for the A
=1 flow. As a result, more interior fluid gets sucked as A
decreases. Figure 13 presents close-up plots of the zero-
surface-tension cusps for A1, 0.4, 0.2, and 0.08. As the
fitting curves demonstrate, thepower cusp singularity ap-
pears to be very generic. In all these cases the cusps are
formed before the interface reaches the sink. However, as A
is reduced, the cusps develop closer and closer to the sink. It
may be thought that for sufficiently small Athe cusp sin-
gularity will be formed only when the interface touches the
sink. Nevertheless, at least for,Aas small as 0.01, we find
no evidence of this. The cusp still forms before the interface
reaches the sink. Apparently, only for, A O the cusp occurs
right at the sink.

2. Surface tension and large viscosity ratio

We consider now the flow for A=0.8 with surface ten-
sionS=5x10"°. Figure 14 shows the interface at different
times as it evolves. Just as in thg, Al case, a finger de-
velops past. and evolves into a wedge as it is drawn into
the sink. This particular value of surface tension was also
considered for A=1 (see Fig. % A comparison of these
two cases, A=1 and A,=0.8, shows a smoothing effect of
the exterior-fluid viscosity on the interface. Fo,A0.8, the

Numerical study of Hele-Shaw flow with suction
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finger has a less pronounced neck. The behavior resemblesix10 4, and(d) S=1x10 5. N=8192 andAt=5x10"5.
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FIG. 19. Limiting behavior of the interface befortg=0.3809 for A,

=0.2. This figure shows a close-up picture of the interface aroun@ for

a set of surface tension values, decreasing from top to bottom, and plotted at
time t=0.3810. The zero-surface-tension solution is also shdwn4096
andAt=1x10"°%.

3. Surface tension and small viscosity ratio

The Hele-Shaw flow for small Atwood ratios differs sig-
nificantly from the A,=1 flow. Figure 17 shows the evolu-
tion of the interface for A=0.2 as it approaches the sink for
several values of surface tension. The interface develops a
very thin finger whose width decreases with surface tension.

Unlike the larger A flows, for A,=0.2 the zero-surface-
tension cusp occurs already very close to the sink so that
small surface tension acts very briefly past In the short
time interval fromt, to the time where the interface touches
the sink, the sink flow is dominant and the interface profile is
similar to that with zero surface tension. The effect of small
surface tension is to round slightly the tip of the thin finger.
This is illustrated clearly in Fig. 18 where a close-up pic-
that of A,=1 with much larger surface tension, except thatture of the finger, for A=0.2 andS=1X 10 %, is shown as
the finger is thinner for A=0.8. However, the side inden- the interface is about to collapse tat 0.381 24. We usél
tations of the finger neck do develop for smaller surface ten=232 768 andAt=1x10 ' to resolve the interface motion
sion as Fig. 15 demonstrates. The interface motion shown iop to this time. The zero surface tensiop-A0.2 cusp is also
this figure corresponds t8=1x10"°. We useN=32768 shown. Figure 1®) is a plot of the tangent anglé(«,t)
andAt=1x10"" to resolve the last stage of the flow. Note around the finger tip. This plot suggests once more the for-
that the wedge angle is smaller than that corresponding tmation of a corner singularity at the finger tip as it touches
A,=1. The formation of a corner at the finger tip can bethe sink. Note also that there are no signs of neck formation
clearly appreciated in Fig. 16 which is a plot @around the for this case, as reflected

finger att=0.312 22. At this time, the distance of the finger Finally, we study the asymptotic behavior of the thin
tip to the sink is % 10~ 3. In addition to the discontinuity at fingers for A,=0.2 in the limit as surface tension tends to
a=0, we observe two abrupt changesémorresponding to zero. Figure 19 provides a close-up of the fingerst at
the finger neck. This is analogous to the almost discontinu=0.3800, just beforé.. As expected, the fingers converge
ous transition ind observed for A=1 andS=5X 10 ®in  to the zero-surface-tension solution. To study the interface
Fig. 10b) and which we believe will lead to the formation of asymptotic behavior past we compare the fingers, for a
pair of curvature singularities at the neck in the limit@s decreasing set of surface tension values, when they reach a
—0. given fixed level close to the sink. This comparison is given

FIG. 18. Collapse of the interface for A 0.2 and S=1x10"5. (3
Close-up of the finger tip at=0.381 24. The distance of the tip to the sink
is 0.009 51. The dotted line curve corresponds to the zero-surface tensi
cusp att,=0.3809. (b) Tangent angled(a,t) near the interface tip «
=0) att=0.38124. This computation ended witt=32 768 andAt=1
X107
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FIG. 21. The digits of accuracy il versus time forS=5X10"> and A,
. =1 as reflected by the maximum difference between two computations with

—%.1 -0.08 -0.06 -0.04 -0.02 0 002 004 006 008 0.1 different resolutions. One computation starts wkh=1024 andAt=1
X X 10™* and ends wittN= 16 384 andA\t=2x10"". The other computation

FIG. 20. Comparison of the interface finger for a sequence of surface ten=>cS twice the number of points and half the time step, ¢, it startsiWwith

= - 5 i f —
sions with A,=0.2. From the outer curve inwards, the fingers correspond to; igﬁ? and At=5x10"", and ends with 32768 points andt=1
the surface tension valu&=1x10"2, 1x10° 3, 1x10 4 and 1x 10 5. :
Each interface is plotted when the tip of the finger reaches the fixed level
y=0.01 atx=0. N=8192 andAt=1x10® for S=1x10 2 and S=1
%1073 N=16 384 andAt=2x10 7 for S=1x10 % andS=1x10"°.
We now present a resolution study for the long-time

computation that is most difficult to resolve. This is the case
in Fig. 20 for surface tension ranging froB=1x10 2 to  Ccorresponding to A=1 andS=5><10*5.’ for the 10% offset
S=1x10"5. The interfaces correspond to different times Nitial data. In lack of an exact solution, we compare two
pastt.. An asymptotic shape of the fingers is apparem_dlfferent_resolut|0ns computed as foliows. One computanon
Table Il shows the converging trend of the finger widths asStarts with N=1024 and_%t= 1x10°" and ends withN
surface tension is decreased. Note that the asymptotic wedgel6 384 andAt=2x10"". The other computation uses
angle for A,=0.2 is smaller than the angles observed for'W!c€ the number of points and halfsthe time step, 1.e., it
A,=0.8 and A,=1. The asymptotic angle decreases withSta"s with N=2048 and At=5X10"", and ends with

. _ 77 . - -
A, apparently towards the zero angle of the=20 cusp. 32768 points and\t=10"". The number of digits in the
maximum difference between these two resolutionséds

presented in Fig. 21. Up to the end, the computations agree
C. An analysis of numerical errors within at least 3 digits of accuracy f@ A similar resolution
study for A,=0.2 andS=1X 10" ° gives a maximum differ-
gnee of 2.&10 * att=0.38124.
By monitoring closely the spectrum of the solution at all

As described in the beginning of this section, our com-
putations are performed so that all the Fourier modes of th

tangent anglef(«,t) are well resolved at all times. To . i th lution in Fouri d check f
achieve this we successively double the number of points ,Q_mes, we verlfy € resoiution in Fourier space and check for
gns of numerical instability and noise. The spectrum of the

as soon as the magnitude of the highest frequency mode of

0(«a,t) is greater than the filter level. The time-step sive vortex sheet strengtly at various times for 4=1 andS

_ 75 . . .
is selected so that decreasing it further would not produce_5>< 10" flow is shown in Fig. 22. The spectra appear free

any appreciable difference within plotting resolution in the.Of any sign of numerical instability and noise pollution is

; inappreciable.
curvature of the interface. L.
Another useful check for the numerics is the conserva-

tion of the first moment foAM= 1:

TABLE lll. Change in the finger widths as surface tension is decreased for d

A,=0.2. The first column s_hows thg height level at which the finggrs are | — J J z dx dy: 0, (4_1)
compared. Columns 2—-4 give the different€S,S/10) between the width dt Q)

of the finger corresponding to a surface tenssoand that corresponding to
§10. where() is the domain of the viscous fluid azddenotes the

y A(10°2,10°9) A(10°3,10°%) A(107410°9) complex position of the fluid particles. This identity can be

easily shown by noting that

0.04 0.011 48 0.004 45 0.001 74

0.03 0.009 14 0.003 77 0.001 48 .

0.02 0.006 138 0.002 874 0.001 218 | = f zUds=—M f zVp-Ads, (4.2
I I
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FIG. 22. The spectrum of at various times foS=5x10"° and A=1
0.35F :

where agair'(t) is the free boundary) is the normal ve-
locity, and we have used=—-MVp-f. Sincep and both
the real and imaginary part af are harmonic functions, a

Green’s identity implies that 025
f sz-ﬁds:f pVz-ids. (4.3 02
r(t) r(t)
Moreover,p|= 7« for A,=1. Thus, 015
i=—MJ zVp-fds 01
r'(t)
. 005 10% Offset
__MJF(t)pVZ.ndS 20% Oftset
-%.2 -0.‘15 —0f1 -0.65 (‘) 0.;)5 0?1 0.‘15 0.2

FIG. 23. Comparison of finger widths for 10% and 20% offset sinks, with

=—M 'rf «Vz-fids
INQ
© S$=0.01 and A =1.0. The interface for the 10% offset initial data is plotted

) 27 att=0.301 418 and that for the 20% offset case is plottetd=d1.208 04.(a)
=iM TJ 0.€' ds=iM TJ e’de=0, (4.4 The two interfaces an¢h) a close-up of the fingersd=8192 andAt=1
I'(t) 0 X 1078 for the last stage of the motion.

where we have used= 6. Throughout all the computations

for A,=1,|I| remains of order 10' or smaller. the finger tips match very well and, thus, the corresponding

solutions break down with the same corner angle. The over-
D. Effect of offset shift all development of the two fingers is qualitatively the same.
In particular, similar side indentations at the neck are formed

We consider now the effect of a shift in the position of gng the fingers slightly bulge before becoming a wedge.
the center of the initially circular blob. In Fig. 23, we com-

pare a 20% offset sinkhe blob center is (6;0.2) initially]
with a 10% offset sinlthe blob center is (6; 0.2) initially],
with surface tensio®s=0.01 and A =1.0. Although the vis- Surface tension regularizes the cusped Hele-Shaw flows
cous finger forms much earlier for the 20% offset case, thavith suction. In the presence of small surface tension, and
width and shape of the finger are unaffected by the offsetvhen the viscosity of the surrounding fluid is neglected, a
shift. We now consider a similar comparison f&=5 long finger develops after the zero-surface-tension singular-
%10 % and A,=1.0. This is shown in Fig. 24. We find that ity time. This finger evolves rapidly into a wedge as it ap-

V. FURTHER DISCUSSION AND CONCLUSIONS
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(@ the zero-surface-tension singularity for very small values of
05 ' — ' T ' surface tension.

It could also be argued that this somewhat singular be-
havior is caused by the impact of a curvature-induced com-
plex singularity. This so-called daughter singularity, whose
concept was introduced by Tanvééis generated by a zero
in the derivative of the conformal map that describes the
10% Offset at T = 0.291806 Hele-Shaw flow. The daughter singularity is spawn by the
20% Offset at T = 0.19945 zero through the surface tension term, in the complex plane
outside the physical domain. The zero and the daughter sin-
gularity travel with different speeds towards the physical do-
main. Depending on the initial data, the daughter singularity
may or may not impact the physical domain before the zero
does. For the particular initial data that we use here, the
daughter singularity would hit the physical domain well after
the zero, i.e., much later thap. The daughter singularity
impact time can be estimated by solving an ordinary differ-

S T s T o o ential equatiorf>?*Since the neck formation and the bulging
X of the finger are observed aroutd we rule out the effects
® of the daughter singularity for the particular flow we con-
04 . . . . . . r sider here.

The numerical evidence presented here also suggests
that the limiting solution ass—0 is singular at the finger
neck, for any fixed time padt, but before the asymptotic
time at which the wedge tip touches the sink. Unfortunately,
well-resolved computations are difficult to achieve due to the
rapid growth of the round-off level noise for very small sur-
face tension and to the singular interface behavior. Although
further numerical study is required to compute effectively
the limit, we believe that corners will develop at the finger
neck in the limit asS—0. The vanishing surface tension
solution selects a continuation solution pgsin which the
zero-surface-tension cusp is split into a pair of corner singu-

03

0.25

02r

01+

larities.
10% Oftset . . . .
The viscosity of the exterior fluid alone does not prevent
0.05 1 .
20% Offset the formation of cusps. It only delays them. In the absence of
surface tension, we observe genekipower cusps just as in
92 o5 o1 008 0 005 01 015 02 the case of A=1. However, as the viscosity ratio Ais

FIG. 24. Comparison of finger widths for 10% and 20% offset sinks with decreased, we observe that the zgro-surfac_e-tensmn cusps de-
S=5x10"5 The interface for the 10% offset initial data is at V€lop closer and closer to the sink. We find that even for
=0.291 806 and that for the 20% offset case is plotteti=a0.199 45.N values of A, as small as 0.01, the cusp singularity develops

— — —7 i . .

=16 384 andAt=2X10"" for the last stage of the motion. before the interface reaches the sink. In the presence of sur-
face tension and for large viscosity ratios, the interface evo-
lution is very similar to that of A= 1 but with larger surface
roaches the sink. The Hele-Shaw solutions for=AL ap- . . . . . .

P 9 P tension. The viscosity of the exterior fluid has a smoothing

\?vi?jrggoti%evcigzatlgekji;?:rl;aizvzgu%ef:r:&ngi:kcomer at theeffect on the flow and a thinner finger develops. The inter-

As surface tension is decreased systematically, new fea{ace behayior Is significantly different for §mal| viscosity ra-
tures of the Hele-Shaw flow are discovered. The angle at thi0S- In this case, the zero-surface-tension cusp occurs al-
tip of the wedge converges to a selected asymptotic value ifFady Very close to the sink. Small surface tension only
the limit asS—0. Moreover, for sufficiently small values of rounds slightly the tip of the cusp before this part of the
surface tension, side indentations forming a neck develop dbterface rapidly accelerates to the sink. As a result, thin
the top of the finger. As opposed to the predicted behavior ofusp-like fingers develop for small viscosity ratios. These
the crack model of Howisoat al.? the developing finger for ~fingers appear to converge also to an asymptotic shape as
A,=1 bulges after the zero-surface-tension cusp time surface tension is reduced. It is noted that the angle of the
The formation of the neck and the bulging of the finger areasymptotic wedges decreases with .ANe believe that this
intriguing phenomena that could be linked to the influence ofangle will collapse to zerga cusp in the limit as A,—0.
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