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A Necessary and Sufficient Minimality
Condition for Uncertain Systems

Carolyn L. Beck,Associate Member, IEEEGNd John DoyleMember, IEEE

Abstract—A necessary and sufficient condition is given for  In this paper, the notion of reducibility and the converse
the exact reduction of systems modeled by linear fractional notion of minimality for uncertain LFT systems are discussed
transformations (LFT's) on structured operator sets. This con- j, qetail. Exact reducibility of uncertain systems realizations

dition is based on the existence of a rank-deficient solution . . . -
to either of a pair of linear matrix inequaliies which gen- 1S shown to be equivalent to the existence of a rank-deficient

eralize Lyapunov equations; the notion of Gramians is thus Solution to either of a pair of LMI's. This LMI condition
also generalized to uncertain systems, as well as Kalman-like directly extends the model reduction results given in [14] to

decomposition structures. A related minimality condition, the the case of model reduction with no error, but substantially
converse of the reducibility condition, may then be inferred new and different proof techniques are needed. The earlier

from these results and the equivalence class of all minimal . , .
LFT realizations defined. These results comprise the first stage work used well-known LMI machinery for LFT's [7] which

of a complete generalization of realization theory concepts to do not extend to the exact case. Perhaps more importantly,
uncertain systems. Subsequent results, such as the definition ofthe results in this paper also directly relate to more pure
and rank tests on structured controllability and observability  realization theory concepts for uncertain systems, such as the
matrices are also given. The minimality results described herein 4ey/e10pment of controllability and observability matrices, the
are applicable to multidimensional system realizations as well d iti fth t iabl int habl d
as to uncertain systems; connections to formal powers series ecomposition of the system variable space in O_ reachable an
representations also exist. unobservable subspaces, and to the construction of Kalman-
like decomposition structures, as well as to formal power series
results of the 1970’s. Structured controllability and observ-
ability matrices for uncertain systems are defined herein, and
|. INTRODUCTION the connections between rank deficiencies of these matrices

STANDARD framework for studyingincertain systems and the r'educibility rE'Sl'J|'tS are discussed. The con.struction of

uses structured perturbations on a nominal model, wiffiman-like decomposition structures for uncertain systems
linear fractional transformations (LFT's) as the basic realiz&'€ /S0 reviewed in this setting, leading to a complete gener-
tion tool. This framework was introduced explicitly almost 2@ization of minimality for uncertain systems via an algebraic
years ago [1]-[3], although it was implicit in much earlier worl@pproach. _Prelllmmary presentations of t_he minimality results
in control theory. A comprehensive theory of system analydféesented in this paper were first given in [16] and [17]. The
and synthesis has been developed in this framework, involvifgntrollability and observability structures were first defined
a great variety of assumptions on the uncertainty (see, 18[13] and presented in [18] in conjunction with a discussion
example, [4]-[11] and the references therein). Recently,‘?&r_elated reachaple anc_i upobservable system subspaces. Pre-
state-space theory has begun to emerge for uncertain systdfigary computational findings for algorithms based on these
represented by LFT's on structured uncertainty operatof€ducibility results may be found in [19] and [20].
which we will refer to as uncertain LFT systems. This allows NS paper is organized as follows: we first introduce our
for the finite dimensionality of the realizations to be exploited!otation and give a brief review of the general LFT framework

and analysis tests and design constructs can be developelftir€ction Il. In Section Il introductory realization theory
terms of finite-dimensional constant matrices, usually in terrf@” Uncertain systems is discussed, including equivalence of

of linear matrix inequalities (LMI's). For example, Stab”ityrealizations, stability and Lyapunov equations, and Gramians.

and I, gain may be characterized in terms of generalized'® Main result of this paper is the necessary and sufficient
Lyapunov inequalities [12], balanced model reduction methofRducibility condition given in Section IV; a minimality result
with guaranteed error bounds may be stated [13], [14], afd also stated, which defines as an equivalence class all

an output feedback stabilization method using a separati@iilimal LFT realizations. Related Kalman-like decomposition
argument may be given [15]. structures are presented in Section V, along with a discussion

on structured controllability and observability matrices. Con-
clusions are given in Section VI and include a brief discussion
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and sufficient for uncertainty modeled by LTV operators on
A I, and are sufficient when an additional structure such as
T 2 real parametric variance or time-invariance is imposed, for
example, if A represents multiple transform variables in a
Y M u multidimensional system. For analysis purposes we will often
T T considerA which lie in a norm-bounded subset &, that is
Fig. 1. LFT/uncertain system. Ba={A€A: [|Allp—, < 1} (2)
where|| - ||;,—i, denotes the induced norm. We will denote
these uncertain system models by the ga\r, A7).

the space of all linear operators n We represent the group ) ' .
of matrices in the real and complex fields B**™ and The input/output (1/0) mapping fromx to v is given by
Cc* ™ The shift operator orl, is denoted by, and the the LFT
identity matrix is denoted by. The maximum singular value y = (Ax M)u, AeA
of A € C™*™ is denoted byz(A); A* denotes the complex
conjugate transpose. The dimensions of a mairace denoted
dim(A). For notational convenience, dimensions will not be AxM := D+CA(I — AA)™'B (3)
given unless pertinent to the discussion. . : '
We consider uncertain dynamic systems evolving in discre @enever the mverac,e IS weII—dn?fmed. we assume throughout
time, with uncertainty described by structured linear timé- e sequel Fhay €l; andu € I3 N although this assumpn.on
varying (LTV) operators onl; this last assumption is not IS not r_equwed_ for the resglts n th|s_ paper. For notational
strictly necessary and it can be equivalently assumed that figlvenience, dimensions will not be given in the sequel unless

uncertainty consists simply of noncommuting indeterminant[s‘:f’qu'r(ad for clarity.

where

A LET's B. Repeated Scalar Uncertainty Structures

The main focus of robust control has been to evalu tﬁln _thls paper, we focus on repeated scalar uncertainty sets,
. . . at is

the effects of uncertainty—for example noise, disturbances, 51

parameter variations, nondominant nonlinearities, and unmod- L 5.1

eled dynamics—when analyzing and designing controllers for A — 20, (4)

dominantly linear systems. Over the past decade, the LFT par- .

adigm has been widely used as a mathematical representation bpln,

for uncertainty in system models. This paradigm is represen

pictorially in Fig. 1 and described below. R?/ﬂere one of the; representsa.. Although many of the results

I h of th bust trol literaturd ts th we present are valid for the uncertainty structure given in (1),
N much of the robust control Titeraturéy represents e 4y, 1qth repeated scalar and full uncertainty blocks, for the

nominal syst_em model consisting of a Imegr t'_me"nvar_'a%ducibility results described herein the repeated scalar case is
transfer function for the plant plus system weighting functlor} e more technically interesting case, as well as notationally
on the inputs and outputs, ardrepresents the uncertainty. Inthe cleaner case '

the LFT models we consider, the shift operakocorrespond- As we often consider inputs and outputs as signals,inve

ing to the system transform variable is also includedAin may consider theé; to be arbitrary time-varying operators on

Dl o e, it 1 W0 nge IS Aemtivey we my assume W represent rel-valued
plicitly P ) barametric uncertainty, component tolerances for example, or

loss in generality, we may assunid is a constant matrix, we may assume th# are used to represent a multidimensional

and A .represents the system uncertainty anq Sh.'ﬂ Opera}togstem_ Generally speaking, the more structure that is imposed
In particular, we refer tal/ as the system realization matrix, o e setA, the more difficult computation for analysis

which we partition as and design becomes. If the only structure we assume for the
M= [A B} uncertainty is spatial, then the LFT of a matri¥ on A
| D reduces to a representation of rational functions in multiple
L . noncommuting indeterminates. Such an LFT system may then
and we assume lies in some prescrlpeq set. be viewed as a particular realization of a formal power series
Because each perturbation source is likely to enter the r?fé]’ [16], [21].

§ystem at a different location, the resulting structur(_e for For most of the results discussed in this paper we assume

IS bloclk dlagr?nal (see .[4] and. [531 for fl;.rther details anijhe 6; are noncommuting variables, be they either completely

examples). The uncertainty sét is thus defined by abstract indeterminants in a power series or arbitrary time-

A ={diag[611n,, ++*, Splny s Amyy ooy A, vary?ng operators on,. The regults we obtain are then

8; € L(s), A, € LOTY. (1) apphcable_ to all of the aforemenuone_d cases, to _the more _ab—

! ’ stract settings as well as to systems with parametric uncertainty

We refer to the; I,,, as repeated scalar blocks and to theas or multidimensional systems; in the latter cases this may lead
full blocks. The results discussed in this paper are necesstaryconservative conditions.
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[ll. I NTRODUCTORY REALIZATION matrices{T AT, TB, CT~1D}. Note that permutations of
THEORY FOR UNCERTAIN SYSTEMS both the uncertainty variables and the realization matrices are

Analogous to the standard state-space framework, given3° allowed, as neither the resulting I/O mapping nor the norm

LFT realization(A, M), one way to obtain an equivalent re-Pound of the uncertainty is affected.

alization is by applying &tructuredsimilarity transformation.
Furthermore, the existence stiructuredpositive definite solu-

A truncation of the realization matrices may also produce
an equivalent realization, in which case the original realization
tions to system LMU's, in particular to Lyapunov inequalities{&, /) is said to bereducible Reducibility is discussed in

is equivalent td.-stability of the system. These Lyapunov intNiS Paper in terms of the existence of rank deficient matrix
equality solutions also lead to a notionsifucturedGramians Solutions to a pair of Lyapunov inequalities. As with standard

for uncertain systems, which in conjunction with the similarState-space realizations, it is generally assumed that the LFT
ity transformations lead to a notion of balanced realizatiofi§2/izations arestablewhen evaluating the system Lyapunov

for uncertain systems. We describe these constructs and fiflualities for the existence of solutions.
significance of the structure required in this section; for full

details see [13] and [14]. B. Lyapunov Inequalities and Stability
Consider the system in Fig. 1 with and M defined as in
A. Equivalent Realizations (1). We say such a system is stable when the ifiap- M)
For repeated scalar uncertainty structures, we define equf/Well defined for everyd € B.; precisely speaking, this is
alence as follows. a robustl,-stability condition which we will henceforth refer
Definition 1: Two realizations to simply as stability.
Definition 3: Let M = [4¢] be a constant matrix and
b11n, A C L(ly). The system defined by the p&iA, M) is stable
Ay = 2 6 € L) if (I — AA) is invertible in£(l,) for eachA € Bax.
Spln If the only assumption placed on the uncertaintyAds the
A B ! spatial structure, that i\ consists of full block and repeated
My = {Cl Dl} scalar block structured linear operatorsignthen a necessary
and sufficient LMI stability condition has been found which is
and S5 T stated below in Theorem 4. Details can be found in [22]. This
L condition extends the sufficient scaled small gain condition for
Az = D0 € L(12) robust stability and results on the necessity of constant scalings
o1y, for LTV uncertainty obtained independently by Megretski [11],
As Bs [23] and by Shamma [8] for full block diagonal uncertainty
M, = [02 D} structures. Note that one of the may represent the shift
operator .
are equivalentif Ay x My = Ap « M, for all & € L(I2),  Theorem 4 [22]: Given an uncertainty set\ C £(i,), and
t=1-,p a constant matrixA
Note that A, is constructed using the same uncertainty
variables as ig\;, but with possibly different dimensions. (I — AA) is invertible inL(ly), forall A € Ba

Similarity transformations are defined for LFT realizations
as in the standard case and provide one method for eadfilignd only if there exists a matrix” > 0, ¥ € 7 such that
obtaining an alternative but equivalent realization. However, .
in general, for a transformed realization of an uncertain system AY A" —Y <0. ()
to be equivalent to the original realization, the transformation

must pqr_nmute with the ur;certamty sftructure. A, we will sometimes say the matriA is stable with respect
Definition 2: Let n = 3_;_, n; + 3 _j_; m;. The COMMU- oo A strycture, meaning that the mdp + M) is well
tative matrix seffor a given uncertainty seA is denoted by defined for allA € B,
. A-
7 and defined by The LMI condition in (5) directly extends the Lyapunov
T = {TeC™™. TA=AT, foralAeA. inequality test for stability of a standard state-space system.
Using the LMI condition of (5), we can readily show the
When A is defined as in (1), the sef has the block following (see also [15, Th. 3.8]), which is used in the proof
diagonal structure of the reducibility condition in Section IV.
Lemma 5: Given a constant matrixd with an associated
uncertainty structure\, where

Since this stability condition is defined in terms afand

T :diag[Tlv Tty TP7 tlImlv Tty thm_f]v
where eacll; € C™"'*™ andt; € C.

Wi . . A= All Al? and A = A1 0

e refer to a nonsingular elemefit in the set7 as an 0 Ay 0 A,
allowable transformationGiven an LFT realizatiof A, M)

and any nonsinguldr € 7, it is straightforward to show using then there exists a matriX > 0, Y € 7 satisfying AY A* —
(3) that an equivalent LFT system is defined by the realizatidn < 0, if and only if there exist matrice¥; > 0, Y1 € 71,
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andY, > 0, Y, € 7, satisfying is stable with respect to the structure
Allyvlfql -Y1 <0 and AQQYVQASQ —-Y; <. A — 61]7‘1 0
_ ' 0 81,
Proof. See the Appendix. [ |

Remark 6: For systems that are modeled using real ovherer; = dim(Az) andry = dim(Ayy).
complex-valued uncertainty, as well as multidimensional sys-Similarly, we can show that
tems, the stability condition given in Theorem 4 is sufficient, A A
but not necessary. For these systems, structured singular 1 13
value conditions lead to both necessary and sufficient stability Az Ass
criteria [10]. Results in [24] and [25] have shown that the . .
computational problems associated with the structured singu'Fars table with respect to the uncertainty structure
value in these cases is NP-hard. The condition stated in [51](11 0 ]

Theorem 4 is computable via convex optimization techniques. 0 N
24qo

C. Structured Gramians wherer; + g1 = n1 andrz + gz = na.

An obviously equivalent stability condition to the LMI
condition in (5) is the existence of a matriX > 0, X ¢
7T satisfying A* XA — X < 0. By scalingY and X by ) ] )
constant gains, we immediately obtain the following corollary FOr standard one—dimensional (1-D) systems there is a well-

to Theorem 4, generalizing the notion of Lyapunov equatioﬁ’@ﬁ”ed notion of minimality, or equivalently controllability
for standard system realizations. and observability. In order to develop similar definitions

Corollary 7: If (A, M) is stable, then there exidf > 0 for system models which incorporate uncertainty descriptions

andX > 0, both in7", which satisfy theLyapunov inequalities into the realizations, we first prove the following sufficient
- condition for exact reducibility, stated in Theorem 9. This

AYA*—Y +BB* <0 and A*XA-X+C*C <0. (6) condition provides the first step in the development of re-
alization theory results for uncertain systems and is valid

We refer to any matrice” > 0 and X > 0 in 7 that for §; representing transform variables, norm-bounded real

satisfy (6) asstructured GramiansStructured Gramians mayOr complex perturbations, or time-varying operators lgn

be computed using convex programming methods specificallys, this result is applicable to both multidimensional and

developed for solving LMI's (see, for example, [26] and [27])uncertain system realizations. It should be noted that although

Unlike true Gramians, structured Gramians are not unique the reducibility results presented in this section look similar

they are not solutions to the system Lyapuremuations in statement to the model reduction results of [14], a totally
As in the standard case, balanced realizations may af§fferent approach is required to prove the exact reducibility

be constructed for uncertain systems by finding an allowalstgse; a limit-based argument applied to the results of [14], or

transformation?” that simultaneously diagonalizes the strud”] for that matter, will not lead to a proper solution for the

tured Gramiang” and X ; for details see [14] and referenced-yapunov inequalities under consideration.

therein. Throughout this section we denote tfigll and reduced
Note that the LMI's in (5) and (6) are not affected bysystem realizations by

permutations of the realization matricds B, andC and the

IV. A NECESSARY ANDSUFFICIENT REDUCIBILITY CONDITION

uncertainty structuré\. The following lemma is easily shown M= [é g} and M, = [g’ %’}
using such permutations. T
Lemma 8: Suppose with corresponding repeated scalar uncertainty structures
Ann Ap Az A A ={diag[611n,, 621n,, -+, 610, ] 8 € L(B)} (7)
A= 0 AQQ 0 A24 and
Azr Az ‘ Azz Ay A, =T7.(A)
0 Agp 0 Ay = {diag[6: 1, 8o, -+, 8,11 & € L)} (8)
is stable with respect to the uncertainty structure where the notationZ,(A) is used to emphasize thak,
51 0 represents a reduced or lower dimension copyAand is not
B el an independent uncertainty structure. The difference between
0 621, the full and reduced realization§A » M) — (A, x M,.), is
Then realized by
A 0 B
Az | An E=|0 A, B,
A42 A44 C —OT 0
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and tpus Az =0, Az = 0, and B; = 0, since bothY; > 0 and
A:{[A 0};A6A,A,,6A,,}. Y2 > 0. Denote
0 A,
o _ _ _ An _ |:A1 A12:| A12 _ |:A13:|
The full and reduced realizations are equivalent if and only if Aoy A |’ Ao
AxE =0foral A € A. 5 N By
Note that as a result of the dependence betwaeandA.,., Agy = Ass, B, = {32} C1=[C1 Cq]

the commutative matrix set faA includes matrices with the ,
following block structure: and Cy = Cs.

Let

diag(T) diag(Tr") [An Bl:|
- ldiag(T7™)  diag(17) "la D
and

wheredim(T7*) = n; X ng, dim(T*") = n; X 74, dim(T[") = A, ={diag[é1Ly,, 621,]: 6; € L(I2)}.

r; X ng, anddim(Z7) = xr; foral i =1, .-+, p.
Theorem 9—SufficiencyGiven the stable system repre-
sentation (A, M), there exists a reduced representatloﬁ

Construct the difference realizatidm\ x £) = (A « M) —
, and use the similarity transformation

(A,, M,), such that(A x E) = 0 for all A € Bj, if Inyr, 0 —I, 4,
there exists singulak > 0 or Y > 0, both in7, satisfying: Ty = 0 0 y
1) AYA* —Y + BB* < 0; 0 I, 0

2) A*XA— X +C*C < 0.

) ] ) so that the transformed difference system realization is
Furthermoremax(dim(A)—dim(A,.)) is equal to the number

of zero-valued eigenvalues of the prodick. An ~0 A 9

Proof. Suppose there exist8 > 0 satisfying 1). (The P 0 Ay 0 B
proof for X > 0 satisfying 2) is essentially the same, and “lo 0 Ay 0
therefore is not presented.) C, 0 Cy, 0

Without loss of generality, we can assumpe= 2, that
is, that A = {diag[6,1,.,, 621,,,]: § € L(I»)}. The proof and
exte_nds_lmmedlately tp > 2, either directly or by recursive A— [diag[A,, Ay, 821,], A € A, 65 € L(In)).
application.

SupposeY” = [} /] with Y1 > 0 andY; > 0, where In order to show(A x £) = (Ax M) — (A, x M,) = 0, we
Y; has the same dimensions &s, ¢ = 1,2. (If Y1 > 0, must first show bothd;; and A, are stable.
the proof is the essentially the same, but notationally moreBy assumption
cumbersome.) Furthermore, we can transfdrgnto [Y02 o] A A A
with Y5 > 0. We thus can assunig has this structure. A= Al A12 A13

Partition the system matrices accordingly with respect to 021 022 A23

. 33
the structure ofY’, that is
is stable with respect to the uncertainty fetthus there exists

A A Ags By Q1 0 0
A=Ay Az Az |, B = |Bs Q=10 Qn Q| >0 A"QA-0Q<0. (9)
Az Azr Asz Bs 0 Q5 Qs3

and
By extracting the upper left submatrix of (9) we see that

AMQAH —Q < 0, whereQ = diag[Q;, Qa]. Therefore,
Ay, is stable with respect to the uncertainty gef.

where A;, B;, and C; are dimensioned compatibly with Similarly, we can show thatl,, is stable with respect to
Y1; Ass, B, and C, are dimensioned compatibly with,; the uncertainty structur&,» by considering the lower right
and Ass, Bs, and Cs are dimensioned compatibly with thesubmatrix of the matrix inequalitd PA* — P < 0, where a
zero submatrix ofY;. Partiton A € A similarly so that solution

cC=[Cy Cy C5]

A = diag[é11,,, 621,,, 621,,], wherers + g = no, andro P 0 0
is the dimension ofY5. P={0 Py Py|>0
By assumptionAY A* — Y + BB* < 0. In particular 0 P& Pu

exists, also by stability ofd.
i 0 0|43 Since bothA4;; and A, are stablef is stable with respect
[As1 Az2 As3] |0 Y3 0 [A5 | + B3B3 <0 to the uncertainty setA by Lemma 5. A straightforward
0 0 0] [Az calculation then showa « E = 0 for all A € Bj.
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The final statement of the theorem on the dimensions where
the reduction can be seen directly from the constructions used ) ) ) )
to obtain (A,, M,). In the case where botX andY are dim(X) = dim(Y) > dim(X>) = dim(Y>).
smgulgr,_ th!s is more ea§|ly seen by conS|der!ng the aIIO\ﬁ- XV = 0, then eitherX or Y is singular.
able similarity transformation that results from simultaneously i .
Proof: See the Appendix. ]

diagonalizingX andY. . .
. . - - : We now state and prove the necessity condition.
Remark 10: If we consider reducibility of realizations with o .
Theorem 13—NecessitySuppose the stable system realiza-

uncertainty structures containing full blocks, that &, as . s . o
defined in (1), then the submatrics and X, of Y and X tion (A, M) is given. If there exists a reduced realization
' J " (A, M,) such thattA « E) = 0, for all A € By, then there

resp_ectwely, corresponding to the full blocks,, are dlagon_al exists singulatk > 0 or ¥ > 0, both in7, satisfying:

scaling blocks, for exampl&; = y;1,,,, y; € R. Clearly, if . N _

Y, is singular,y; = 0. In this case, in order for the Lyapunov 1) AYA" =Y + BB" < 0;

inequalities to hold, entire subblocks of the realization matrices 2) AXA-X+0C"C <0, ~ ~

A, B, andC must be zero and the result is obvious. Proof: Recall that the difference systefs x £) =
Proving that the existence of a singular structured Grami&é * M) — (A, = M,.) is given by

is also necessary for a lower dimension realization to exist

gives us a complete notion of reducibility for uncertain systems B 61 ;1) _5 Ao A0
which is similar to that for 1-D stable systems. The proof o c CT O” ’ 0 AT

for the necessity condition is based on the following two
lemmas; note that the assumption that the Aetonsists of By Lemma 11, if(A*E) — 0 then there exist{ > 0 and

noncommutative elements;, is used. Thus this condition ISy > 0, both in T satisfying the Lyapunov inequalities for

not necessary for multidimensional systems, or systems W{H’b Uncertain systerhA E) and XY = 0. Since X and¥
real or complex-valued time-invariant perturbations. commute withA € A t’hey,have the structure
In the proof of Lemma 11, given in the Appendix, '

it is implicitly assumed that the uncertainty structure is fa {X X1
A = {diag[61l,,, - -, 6,1,,]}. The result can immedi- XY X
ately be extended to uncertainty structures suchlas=

{diag[o11n,, -+, Opln,, 611, -+, 6,1 ]} by permuting
A to

e[t

YooY

where X and Y commute withA € A. ThenX > 0 and
Y > 0 satisfy the Lyapunov inequalities for the uncertain
system(A, M), and by Lemma 12 eitheX orY is singular.
|
The results of Theorems 9 and 13 imply that, given an
- uncertain or multidimensional system representation, if struc-
and also permuting?, Y, and X accordingly. tured singular solutions to either of a pair of LMI's can be
~ Lemma 11: Suppose the stable system realizatidn, M) found, then an equivalent lower dimension realization exists.
is given, whereA C L(l2) is an arbitrary linear operator. If pyrthermore, if the uncertainty can be properly described
(Ax M) =0, for all A € Ba, then there existX' > 0 and py time-varying, or noncommuting, operators @ then

A = {dla‘g[él‘[nl +ris 7T 61”“["114"”11]}

Y >0, both in7, satisfying the existence of lower dimension realizatioresjuires such
1) AYA* - Y + BB* < (; singular LMI solutions. The development of computational
2) A XA-X+C*C <0 methods for solving these types of LMI problems has received
3) XY = 0. extensive attention in the control community (see for example
Proof: See the Appendix. m [26]-[28] and the references therein). The fact that we would

This proof relies on expanding the LFT defined @y~ /) like to find rank-deficient solutions to these LMI's compli-
as a formal power series; further discussion of formal poweates the computational requirements and the complete set of
series representations and connections to LFT realizations negpstraints results in an optimization problem which is not
be found in [13] and [16]. An alternate proof has been givetpnvex. However, a heuristic computational solution has been
for Lemma 11 using induced 2-norms @k « M) rather than developed. A brief summary of preliminary test results for this
a series expansion, and is given in [13] and [17]. The alternatgorithm is presented in the Appendix; for further details see
proof is much longer than that presented here but leads mgt€] and [20].
directly to a Kalman-like decomposition structure and to more
exact statements on the dimensions of the reduced realizationsMinimality

Lemma 12: Suppose One notable result which follows immediately from the

proof for Theorem 13 is that all minimal realizations for an un-

X = [‘X* ‘Xl} >0 certain system may be obtained by allowable transformations
X Xo and truncations, where we define minimal as follows.
and Definition 14: A realization(A, M) is minimalif dim(A)
vV = [Y Yl} >0 is lowest among all equivalent realizations.
I Y|~ The minimality result is stated in the following corollary.
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Corollary 15: Given a stable system realizatige\, A ), for uncertain systems modeled by LFT realizations and show
all minimal realizations are found by similarity transformationthat rank conditions on these matrices relate to reducibility
. TAT-! TB of the system realizations and provide for a direct test of

M= |:CT—1 D } reT minimality. We begin with a discussion of the Kalman-like
decomposition structure that results from the proof of Theorem

and truncations. 9 and Lemma 11
If we consider the simplest case for these LFT represen- '

tations of uncertain systems, that is, there is no uncertainty .
and A = AI, we obtain the standard results, excepting tHe: DeCOmposition Structures

inequalities in the Lyapunov equations. At the other extreme,In the proof for Theorem 9, it is made clear that the

if we assume thé; are simply noncommuting indeterminateexistence of a singular structured Gramian implies that an
as in the case of formal power series, we do not even hagguivalent realization can be found which has a Kalman-like
the operator structure foh. In this setting, stability and decomposition structure. For example, consider the realization
norms have no meaning and indeed are somewhat artificial .

in the context of pure realization theory. The preceding LMI A = {diagdiln,, 2ln,J: & € L{I2)}

reducibility results may be simply extended to this case by A A By
scaling theA matrix, that is, there will always be some value M= |42 A B,
~ > 0 sufficiently small such that there exists a mafrix> 0, o, O ‘ 0
Y € 7 satisfying
VAV AT —Y <0. (10) and suppose structured Gramians = [*1+,] 2 0 and

Yy = [ v,] = 0 are found whereX;, X,, Y, and Y5

are all singular. Then, using an allowable, simultaneously
AeB,A={AeBa: [[Alp-, <7} diagonalizing transformation foX and Y, we can find an

and solutionsY’” > 0 and X > 0, both in 7, can be found equivalent realizatior/ that has the decomposition structure

satisfying the Lyapunov inequalities formed with the scaled where

The 1/0 map(A « M) is then well defined o, for every

matrices. If singulatX andY can be found, the realization is rAe 0 AR 0
reducible as in Th_eorer_n 9, with_ respec_t to thg uncertainty set ) 21?]1 Ae. A?J?” 24
B, A. These manipulations are interesting mainly because the A= | " RN &
. . . . . e ZJ o
use of thisy scaling illuminates the fact that the reducibility 0 0 A5 0
result may be viewed as a topological result, that is, that L 0 0 Agg Agjfk
(Ax M — A, x M,) is the zero operator for all operators r oo
A in a neighborhood of zero if and only if there exist singular BZ{: R R
structured solutions to the Lyapunov inequalities. Bi= "0 G= (€52 0 C7 0] (11)

Alternatively, a subspace, or geometric approach, which
does not require stability of the uncertain system realizations -
may be pursued. This approach is discussed in relation to fbe eachi, ;7 = 1, 2.
results presented herein in [18], where a unified treatment ofSimilarly, from Theorem 13, we know ifA, M) is re-
both the algebraic and geometric perspectives of minimalidgcible, there exist singular structured Gramians for the full
and decomposition structures for uncertain systems is diealization; these Gramians can be used as above to find a
cussed. Comparisons and connections are outlined showilggomposition structure fotA, ).
that the resulting decomposition structures for a given LFT
realization are the same, thus showing that standard stage-Controllability and Observability Matrices
space realization theory may be wholly generalized to LFT
realizations for uncertain systems. Additional technical deta
on the construction of reachable and unobservable subsp
may be found in [29].

.._If we naively define the controllability and observability
pﬁatrices,c and O, as for standard (1-D) state-space real-
4C5tions, then we cannot directly generalize the relationships
between the ranks of and @ to reducibility via singular
structured Gramians. For example, suppose we take=
V. CONTROLLABILITY, OBSERVABILITY, AND [B AB .- AN-1DB], where N = S0 n,. If there exists
DECOMPOSITION STRUCTURES FORUNCERTAIN SYSTEMS 5 ginqular structured Gramiai > 0, then it is easy to see
Up to this point, we have presented reducibility condihatrank(C) < N by considering the decomposition structure
tions for a given realization,A, M), in terms of structured in the proof of Theorem 9. However, the converse is generally
Gramians, without any discussion of controllability and obaot true. Consider the following example:
servability or a direct test for minimality. Naturally, we would
like to develop generalizations of the standard controllability A= [_0'110 0'040} B= {0'100}
and observability matrices and determine the relation these —0.480 0.170 0.300
matrices have not only to the structured Gramians, but aldpd
to a direct notion of minimality. In this section, we discuss A = { [61 }; 5 € 5(12)}_
the construction of controllability and observability matrices b2
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Then,C = [J1%0 00911 has rank 1, but there is no singulawhere the zero block ofl;; has dimensiongn; — ;) x ;.

Y =[" ]2>0satisfyingAY A* —Y + BB* < 0. Note that if r; = n;, then
As a more reasonable generalization of realization theory At iz
results associated with controllability and observability matri- TiAijTj_l = [ 0 0 }

ces for standard state-space models, we propose the following
constructions for uncertain systems models, which take intoA similar analysis is applied to the;; A; By terms, result-
account the inherent structure of the system realization. ing in an allowable transformatidfi = diag[11, 15, - - -, T,
Definition 16: Given an uncertain system realizatiorwhich decomposes the given realization matfik into an
(A, M), where A is structured as in (7), then theon- equivalent realization with an uncontrollable-like decompo-
trollability matrix is defined as shown in the equation at theition structure. We can then construct a singular structured
bottom of the page. Furthermore, we denote the block rowsentrollability GramianY’, in the same manner as outlined in
by C; = [B; AiuB1 -] the proof of Lemma 11. [ |
The partitioning of this controllability matrix into block The obvious dual definition for the observability matrix can
rows is similar to the partitioning proposed for a twobe given, along with the corresponding rank condition which
dimensional (2-D) system controllability matrices whewan be proven using a duality argument.
a relationship to minimality is desired (see [30] and the Definition 18: Given an uncertain system realization
references therein). However, the block elements of the abdwd, M), whereA is structured as in (1), then tisdservability
controllability matrix are noticeably different than in thematrix is defined by

2-D case (or multidimensional case), as the system variables e C, c,
represented by th& in the LFT realizations we consider are O, Ay Oy Ay o CAy,
assumed to be noncommuting.

The following relation can be shown to hold between o= : : : :
singular structured Gramians and rank conditions dgna T GAn G - Gy,
sketch of the proof follows. C1A7, CiA11A - CiAnAy,

Lemma 17:Let (A, M) be a stable uncertain system re- : : : :

alization, whereA is defined as in (1), and suppo&es the L : : : -
associated structured controllability matrix. Then r@hk < Furthermore, we denote the block columns by

n; forsome: =1, -, p, if and only if there exists a singular o,
Y €7,Y > 0 satisfyingAYA* - Y + BB* < 0. Ch A
Proof—Sketch:Sufficiency is quite straightforward: if I

there exists a singular structured controllability Gramian 02%21‘

then using allowable transformations (as in the proof of
T e o e Lemma 15Let (&, ) b a stable uncertansystemre
iti Y W lity 'f%atmn whereA is defined as in (1), and suppoékis the

W'Ill\l have Irteduc:db ranr:( Wi using an roach similar t th associated structured observability matrix. Thank(©;) <
ecessity can be Shown using an approach similar to for somei = 1, ---, p, if and only if there exists a singular

taken for the proof of Lemma 11. For ea¢h= 1, ---, p, X ceT X >0 sat|sfyingA*XA—X+O*C <0

T e e e Sheme 419" S1S55 " o Lemmas 17 and 10, e candrecty Sise the ol
such.that ing result'(.:onnectlng mmmghty to rank deficiencies of the
controllability and observability matrices.
. Theorem 20:Let (A, M) be a stable uncertain system
T.C; = [Cv} whereC; hasr; rows realization, whereA is defined as in (1), and suppaseandO

- ’ ’ ’ are the associated structured controllability and observability
matrices. Thed A, M) is a minimal realization if and only if
rank(C;) = n; andrank(O;) = n, for everyi =1, ---, p.

These rank tests can be completed on finite dimension
controllability and observability matrices, where the maximum
dimensions are determined by the number of copies of éach
. in the structureA. Moreover, the degree of singularity of the
All A12 B . X i
T;AT = [ ~22} and T;B; = [ } structured Gra_mlans' can be directly related to the difference

0 4 0 between the dimension and the rankdpfand of O;.

This implies thatl}; B; = [%’], and thatl; A;; B; has the form
[5] forall j =1, .-, p. Thus, there exists &; € C"/ <™
such that

By AnuB:, --- AyB, A%131 o A, B, ApAn By

c— By AoyBy -+ AgB, AaAnB1 -+ AxnA,B, AxAnbB

Bp AplBl APPBP AP1A11B1 AplAlpo APQAngl
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C. Example lower order realization
We consider a simple illustrative example withstructure 0.4 0.15 1 0
diag[61 12 8215]. The realization matrices that compridé are A, = , B, =|—
0.1 0.4 1 1
S 0.5 —0.4 ‘ 0.25 0.2 and
11 12 0.05 0.2 0.15 0.05
A= ‘ — C.=1[1]2]
_A21 ’ Asa 0.1 -0.2 —0.3 0.35
02 —-04| —-1.0 09 Details regarding practical Matlab-based reduction routines
1 4 may be found in [20].
(B, 0 2
B = — = ——
Bs 1 1 VI. SUMMARY AND RELATED RESULTS
2 2 In this paper, we have presented a thorough treatment of
and reducibility of uncertain system realizations based on the
c=[C; C]=[1 -2 ] 0 1] existence of structured singular Gramians; related realization

theory topics including the definition of and rank tests for
A simple check of the reducibility of this system can betructured controllability and observability matrices have also

made by evaluating and ©, where for example been given. Additional realization theory for uncertain systems
_ has been completed; most closely related is a geometric, or
C = Bi AuBi - ApApB, subspace, view of minimality for such systems.
By AnB; - ALB The geometric approach involves decomposing the internal
and ) variable space into reachable and unobservable subspaces; this
Oy Co also leads to a Kalman-like decomposition structure for LFT
CL AL, Ci AL realizations and hence a minimality result. Straightforward
0= : : generalizations of these reachable and unobservable subspaces
| Oy Ay Ay o2, for uncertain system realizations are discussed in [18] and [29],

where the LFT’s are now restricted to be causal operators.

suffice. In this case, straightforward rank calculations shof\? alternate method for constructing a minimal realization
that rank[C;] = 2 and rank[C,] = 1; rank[0;] = 1 and and a Kalman-like decomposition structure is given, where
rank[O,] = 2. Thus this system is reducible by dimension ihe resulting decomposition structure is the same as that in
in both the first and second uncertainty variables; that is, it c&hl). It can be shown that the existence of rank-deficient
be shown to be unreachable in thespace and unobservablestructured controllability Gramians is directly related to the
in the &, space. existence of a nontrivial unreachable subspace in the system
We should also be able to find singular structured Gramiarg§ate and uncertainty variables; similarly, the existence of rank-
X andY’, that solve the Lyapunov inequalities. Using the LMpeficient structured observability Gramians relates directly to

toolbox we obtairblock-structuredsolutions with eigenvalues @n unobservable subspace [18]. _ o
The geometric methods may be applied to realizations

AY)={48.14, 0.29 | 27.71, 0} that are not stable; however, the procedure relies on finding
and reduced rank matrices, as does the approach described herein
using controllability and observability matrices, which may
A(X)={14.67, 0 | 0.82, 873} . . o
(X)=A ’ | ’ } be numerically ill-conditioned. Note that the LMI-based re-

Thus we can find an allowable transformation ducibility results of Section IV may be related to reduction
with guaranteed error bounds of uncertain system realizations

T — {Tl } in the situation where naingular structured Gramians are

1y found, that is, when the reduction is not exact [13], [14].

Although the structured Gramians used in the LMiI-based
model reduction methods of [14] may be suboptimal, the
associated computational problems are easily solved. Model
reduction methods for unstable uncertain systems have also
CNF o 1 2.94 recently been developed [31].
(Tl ) X1y = { 0} State-space synthesis results have also been generalized to
and uncertain systems: output feedback stabilization for uncertain
4 systems can be reduced via a separation argument to full
0} information and full control problems, which can be solved
using LMI's [15]; H., optimal control can be generalized to
Applying this transformation td A, B, C}, i.e., computing this setting, again with a separation structure and two LMI’s
{TAT~', TB, CT~'}, and truncating the subsystems assavith a convex coupling condition [6], [7], [32]. Related notions
ciated with the zero parts ok; andY; gives an equivalent of stabilizability and detectability for uncertain systems via

where 77 transforms the first block ofX, the structured
observability Gramian, and> transforms the second block
of Y, the structured controllability Gramian, such that

5.9

Bnﬁ:[
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static-state feedback and static output-injection matrices mayNext consider the”; 4;; A;; B; terms

also be stated [15] and PBH type tests defined [22]. B
it

APPENDIX

A. Proof of Lemma 11

Consider the formal power serigs = (Ax M) = D +
> w0 CA(AA)* B. We first partition the matriced, B, and
C accordingly with theA structure, that is

if and only if A7 A

2
3

0

F=o.

(12)

As with the C;B; terms, we can transforryzlf’j2 to[00 Af’f
and A3} to

An Ay AJQ}
A= : 0
_Apl APP 0
?1 whereA?? has full column rankA2} has full row rank, and the
b= submatrices ofA?? and A3} are equivalently partitioned. We
LBy now have the following decomposition structure for eagh:
and
C=[C, Cpl. All Al2 AL3
Then, expanding the serie$ gives 1;121 """
P o p 0 A% A (13)
v — = e e :
L0 0 0 A% A3 |

. Cik Aikik71 e Ailio BiO 6ik e 610

where, by assumption§ = 0. Note that across each block row, indexed by for exampiee

Since thes; are noncommutings is identically zero if and A°' blocks in the set of submatricgsl;; }”_; are equivalently
only if each coefficient in the series is zero, that is partitioned; similarly, down each block column indexed jy
the 432 blocks in the set of submatrices4;;}?_, are also
equivalently partitioned.

o ) Evaluating the next few sets of series -coefficients,
for everyi, j, k = 1, ---, p. We consider each set of terms i Aqij A AL, By, etc., we obtain the same decomposition
separately and show that the given realization may be tral$q cture for each of theﬁl?j? blocks as that in (13). This

f‘?”T}ed to ﬁneKhi':\vmg da partlculgr decomposm;)n itgcw?rocess is repeated for a finite humber of series coefficients,
similar to the Kalman decomposition structure for 1-D sy 2ading to a decomposition structure for each, A;;, B;

terlr:1_s. ider the.B B — 0 if and onlv if subsystem; this finite number is determined by the number of
Irst, consider the;5; terms: C;5; = 0 1f and only | variables,p, and the dimensions of the realization matrices.

D=0, C;B; =0, C;A;B; =0, CiAjAjBi =0, -

there existsI; nonsingular, such that

As an example, fop = 2, the resulting decomposition can

B be generally written as follows:
CiTi_l = [0 0 0]7 and T.B;, =10 i _
0], Al AR Ay A | B
where C; has full column rank,B; has full row rank, and 0 AR 0 A7 0
the submatrices of’; and B; are equivalently partitioned, A A A A ; (14)
for eachi, 7 = 1,---, p. We will henceforth absorb all Ay AR ALy A By
such transformations and assume the realization matrices are 0 A2 0 A2 0
already structured into zero and nonzero block submatrices. 21 22
We then partition eachl;; accordingly with the partitions of Lo & 0o & 0 |
C; and Bj.
Consider theC;A,;B; terms Note that the matrix partitions in (14) (denoted bg) do not
I Lo 13 . necessarily correspond to the previous partitions (denoted by
_ |4 A A b ”’s). Note also that the above partitions are constructed such
Cidi;B;=[0 0 C; | A2 A2 A% 0 that the A} and A?? submatrices are square, and the lower
A31 A32 A33 0

ij J

=C; A} B; =0.

SinceC; and B; are both full rank, this implies that?} = 0.

left submatrix of eachflii, which is identically zero, has the
largest dimensions possible.

Applying Lemma 8 and carrying out the matrix multiplica-
tions, it is straightforward to see there exist structured singular
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TABLE | and tested. These realizations have been constructed to be
PRELIMINARY TRACE ALGORITHM RESULTS exactly reducible,that is, for each realization there exist
7 Upper Bound | % Models Reducible singular structured matrices andY” satisfying the associated
5x 107 100% Lyapunov inequalities. Evaluation of the Trace algorithm on
1x107° 86% the test realizations is based on the eigenvalues of the resulting
1x 10710 7% LMI solutions X andY . Specifically, we consider the ratio,

denoted byn, of the largest “zero value” eigenvalue to

the smallest nonzero valued eigenvalue. So, for example, if

eig(X) = {1.000, 0.724, 0.711, 0.531, 1.000 x 10~°}, then

X =diag [0, X2 0, X2, ..., 0, XIQ)Q} >0 n = 5.31 x 10~°. Note that the same solutiod§ andY may
always be used to determine guaranteed error bounds on the

reduction, as described in [14].

As we knowa priori the dimensions that may be reduced
with no error for each test case, we are then able to determine
. . . . the success or failure of this algorithm. The results based on
AYA"-Y <0 and A" XA-X<O0. three different criteria for; are given in Table I.

matrices

and
v :diag[Yil, 0, V3L, 0, -, V1, 0} >0

both in 7, satisfying

Furthermore, scaling7 and X by constants, as necessary,
gives X > 0 andY > 0 both in7, such that conditions

1) and 2) are satisfied, and cleatl§y” = 0. m [1] J. C. Doyle, “Analysis of feedback systems with structured uncertain-
ties,” Proc. Inst. Elec. Eng.pt. D, pp. 242-250, 1982.
[2] M. Safonov, “Stability margins of diagonally perturbed multivariable
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