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A Necessary and Sufficient Minimality
Condition for Uncertain Systems
Carolyn L. Beck,Associate Member, IEEEand John Doyle,Member, IEEE

Abstract—A necessary and sufficient condition is given for
the exact reduction of systems modeled by linear fractional
transformations (LFT’s) on structured operator sets. This con-
dition is based on the existence of a rank-deficient solution
to either of a pair of linear matrix inequalities which gen-
eralize Lyapunov equations; the notion of Gramians is thus
also generalized to uncertain systems, as well as Kalman-like
decomposition structures. A related minimality condition, the
converse of the reducibility condition, may then be inferred
from these results and the equivalence class of all minimal
LFT realizations defined. These results comprise the first stage
of a complete generalization of realization theory concepts to
uncertain systems. Subsequent results, such as the definition of
and rank tests on structured controllability and observability
matrices are also given. The minimality results described herein
are applicable to multidimensional system realizations as well
as to uncertain systems; connections to formal powers series
representations also exist.

Index Terms—Minimality, model reduction, uncertain systems.

I. INTRODUCTION

A STANDARD framework for studyinguncertain systems
uses structured perturbations on a nominal model, with

linear fractional transformations (LFT’s) as the basic realiza-
tion tool. This framework was introduced explicitly almost 20
years ago [1]–[3], although it was implicit in much earlier work
in control theory. A comprehensive theory of system analysis
and synthesis has been developed in this framework, involving
a great variety of assumptions on the uncertainty (see, for
example, [4]–[11] and the references therein). Recently, a
state-space theory has begun to emerge for uncertain systems
represented by LFT’s on structured uncertainty operators,
which we will refer to as uncertain LFT systems. This allows
for the finite dimensionality of the realizations to be exploited,
and analysis tests and design constructs can be developed in
terms of finite-dimensional constant matrices, usually in terms
of linear matrix inequalities (LMI’s). For example, stability
and gain may be characterized in terms of generalized
Lyapunov inequalities [12], balanced model reduction methods
with guaranteed error bounds may be stated [13], [14], and
an output feedback stabilization method using a separation
argument may be given [15].
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In this paper, the notion of reducibility and the converse
notion of minimality for uncertain LFT systems are discussed
in detail. Exact reducibility of uncertain systems realizations
is shown to be equivalent to the existence of a rank-deficient
solution to either of a pair of LMI’s. This LMI condition
directly extends the model reduction results given in [14] to
the case of model reduction with no error, but substantially
new and different proof techniques are needed. The earlier
work used well-known LMI machinery for LFT’s [7] which
do not extend to the exact case. Perhaps more importantly,
the results in this paper also directly relate to more pure
realization theory concepts for uncertain systems, such as the
development of controllability and observability matrices, the
decomposition of the system variable space into reachable and
unobservable subspaces, and to the construction of Kalman-
like decomposition structures, as well as to formal power series
results of the 1970’s. Structured controllability and observ-
ability matrices for uncertain systems are defined herein, and
the connections between rank deficiencies of these matrices
and the reducibility results are discussed. The construction of
Kalman-like decomposition structures for uncertain systems
are also reviewed in this setting, leading to a complete gener-
alization of minimality for uncertain systems via an algebraic
approach. Preliminary presentations of the minimality results
presented in this paper were first given in [16] and [17]. The
controllability and observability structures were first defined
in [13] and presented in [18] in conjunction with a discussion
of related reachable and unobservable system subspaces. Pre-
liminary computational findings for algorithms based on these
reducibility results may be found in [19] and [20].

This paper is organized as follows: we first introduce our
notation and give a brief review of the general LFT framework
in Section II. In Section III, introductory realization theory
for uncertain systems is discussed, including equivalence of
realizations, stability and Lyapunov equations, and Gramians.
The main result of this paper is the necessary and sufficient
reducibility condition given in Section IV; a minimality result
is also stated, which defines as an equivalence class all
minimal LFT realizations. Related Kalman-like decomposition
structures are presented in Section V, along with a discussion
on structured controllability and observability matrices. Con-
clusions are given in Section VI and include a brief discussion
of related state-space results for uncertain systems.

II. PRELIMINARIES

The notation we use is as follows: denotes the space of
sequences which are square summable, and represents
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Fig. 1. LFT/uncertain system.

the space of all linear operators on. We represent the group
of matrices in the real and complex fields by and

. The shift operator on is denoted by , and the
identity matrix is denoted by. The maximum singular value
of is denoted by ; denotes the complex
conjugate transpose. The dimensions of a matrixare denoted

. For notational convenience, dimensions will not be
given unless pertinent to the discussion.

We consider uncertain dynamic systems evolving in discrete
time, with uncertainty described by structured linear time-
varying (LTV) operators on ; this last assumption is not
strictly necessary and it can be equivalently assumed that the
uncertainty consists simply of noncommuting indeterminants.

A. LFT’s

The main focus of robust control has been to evaluate
the effects of uncertainty—for example noise, disturbances,
parameter variations, nondominant nonlinearities, and unmod-
eled dynamics—when analyzing and designing controllers for
dominantly linear systems. Over the past decade, the LFT par-
adigm has been widely used as a mathematical representation
for uncertainty in system models. This paradigm is represented
pictorially in Fig. 1 and described below.

In much of the robust control literature, represents the
nominal system model consisting of a linear time-invariant
transfer function for the plant plus system weighting functions
on the inputs and outputs, andrepresents the uncertainty. In
the LFT models we consider, the shift operatorcorrespond-
ing to the system transform variable is also included in;
that is, the transfer functions for the plant and weightings are
explicitly written as LFT’s on the shift operator. Thus without
loss in generality, we may assume is a constant matrix,
and represents the system uncertainty and shift operators.
In particular, we refer to as the system realization matrix,
which we partition as

and we assume lies in some prescribed set.
Because each perturbation source is likely to enter the real

system at a different location, the resulting structure for
is block diagonal (see [4] and [5] for further details and
examples). The uncertainty set is thus defined by

(1)

We refer to the as repeated scalar blocks and to theas
full blocks. The results discussed in this paper are necessary

and sufficient for uncertainty modeled by LTV operators on
and are sufficient when an additional structure such as

real parametric variance or time-invariance is imposed, for
example, if represents multiple transform variables in a
multidimensional system. For analysis purposes we will often
consider which lie in a norm-bounded subset of, that is

(2)

where denotes the induced norm. We will denote
these uncertain system models by the pair, .

The input/output (I/O) mapping from to is given by
the LFT

where

(3)

whenever the inverse is well-defined. We assume throughout
the sequel that and , although this assumption
is not required for the results in this paper. For notational
convenience, dimensions will not be given in the sequel unless
required for clarity.

B. Repeated Scalar Uncertainty Structures

In this paper, we focus on repeated scalar uncertainty sets,
that is

...
(4)

where one of the represents . Although many of the results
we present are valid for the uncertainty structure given in (1),
with both repeated scalar and full uncertainty blocks, for the
reducibility results described herein the repeated scalar case is
the more technically interesting case, as well as notationally
the cleaner case.

As we often consider inputs and outputs as signals in, we
may consider the to be arbitrary time-varying operators on

. Alternatively, we may assume the represent real-valued
parametric uncertainty, component tolerances for example, or
we may assume the are used to represent a multidimensional
system. Generally speaking, the more structure that is imposed
on the set , the more difficult computation for analysis
and design becomes. If the only structure we assume for the
uncertainty is spatial, then the LFT of a matrix on
reduces to a representation of rational functions in multiple
noncommuting indeterminates. Such an LFT system may then
be viewed as a particular realization of a formal power series
[13], [16], [21].

For most of the results discussed in this paper we assume
the are noncommuting variables, be they either completely
abstract indeterminants in a power series or arbitrary time-
varying operators on . The results we obtain are then
applicable to all of the aforementioned cases, to the more ab-
stract settings as well as to systems with parametric uncertainty
or multidimensional systems; in the latter cases this may lead
to conservative conditions.
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III. I NTRODUCTORY REALIZATION

THEORY FOR UNCERTAIN SYSTEMS

Analogous to the standard state-space framework, given an
LFT realization , one way to obtain an equivalent re-
alization is by applying astructuredsimilarity transformation.
Furthermore, the existence ofstructuredpositive definite solu-
tions to system LMI’s, in particular to Lyapunov inequalities,
is equivalent to -stability of the system. These Lyapunov in-
equality solutions also lead to a notion ofstructuredGramians
for uncertain systems, which in conjunction with the similar-
ity transformations lead to a notion of balanced realizations
for uncertain systems. We describe these constructs and the
significance of the structure required in this section; for full
details see [13] and [14].

A. Equivalent Realizations

For repeated scalar uncertainty structures, we define equiv-
alence as follows.

Definition 1: Two realizations

...

and

...

are equivalent if for all ,
.

Note that is constructed using the same uncertainty
variables as is , but with possibly different dimensions.

Similarity transformations are defined for LFT realizations
as in the standard case and provide one method for easily
obtaining an alternative but equivalent realization. However,
in general, for a transformed realization of an uncertain system
to be equivalent to the original realization, the transformation
must commute with the uncertainty structure.

Definition 2: Let . The commu-
tative matrix setfor a given uncertainty set is denoted by

and defined by

for all

When is defined as in (1), the set has the block
diagonal structure

where each and

We refer to a nonsingular element in the set as an
allowable transformation. Given an LFT realization
and any nonsingular , it is straightforward to show using
(3) that an equivalent LFT system is defined by the realization

matrices , , . Note that permutations of
both the uncertainty variables and the realization matrices are
also allowed, as neither the resulting I/O mapping nor the norm
bound of the uncertainty is affected.

A truncation of the realization matrices may also produce
an equivalent realization, in which case the original realization

is said to bereducible. Reducibility is discussed in
this paper in terms of the existence of rank deficient matrix
solutions to a pair of Lyapunov inequalities. As with standard
state-space realizations, it is generally assumed that the LFT
realizations arestablewhen evaluating the system Lyapunov
inequalities for the existence of solutions.

B. Lyapunov Inequalities and Stability

Consider the system in Fig. 1 with and defined as in
(1). We say such a system is stable when the map
is well defined for every ; precisely speaking, this is
a robust -stability condition which we will henceforth refer
to simply as stability.

Definition 3: Let be a constant matrix and
. The system defined by the pair is stable

if is invertible in for each .
If the only assumption placed on the uncertainty setis the

spatial structure, that is, consists of full block and repeated
scalar block structured linear operators on, then a necessary
and sufficient LMI stability condition has been found which is
stated below in Theorem 4. Details can be found in [22]. This
condition extends the sufficient scaled small gain condition for
robust stability and results on the necessity of constant scalings
for LTV uncertainty obtained independently by Megretski [11],
[23] and by Shamma [8] for full block diagonal uncertainty
structures. Note that one of the may represent the shift
operator .

Theorem 4 [22]: Given an uncertainty set, , and
a constant matrix

is invertible in for all

if and only if there exists a matrix , such that

(5)

Since this stability condition is defined in terms of and
, we will sometimes say the matrix is stable with respect

to the structure, meaning that the map is well
defined for all .

The LMI condition in (5) directly extends the Lyapunov
inequality test for stability of a standard state-space system.
Using the LMI condition of (5), we can readily show the
following (see also [15, Th. 3.8]), which is used in the proof
of the reducibility condition in Section IV.

Lemma 5: Given a constant matrix with an associated
uncertainty structure , where

and

then there exists a matrix , satisfying
, if and only if there exist matrices , ,
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and , satisfying

and

Proof: See the Appendix.
Remark 6: For systems that are modeled using real or

complex-valued uncertainty, as well as multidimensional sys-
tems, the stability condition given in Theorem 4 is sufficient,
but not necessary. For these systems, structured singular
value conditions lead to both necessary and sufficient stability
criteria [10]. Results in [24] and [25] have shown that the
computational problems associated with the structured singular
value in these cases is NP-hard. The condition stated in
Theorem 4 is computable via convex optimization techniques.

C. Structured Gramians

An obviously equivalent stability condition to the LMI
condition in (5) is the existence of a matrix ,

satisfying . By scaling and by
constant gains, we immediately obtain the following corollary
to Theorem 4, generalizing the notion of Lyapunov equations
for standard system realizations.

Corollary 7: If is stable, then there exist
and , both in , which satisfy theLyapunov inequalities

and (6)

We refer to any matrices and in that
satisfy (6) asstructured Gramians. Structured Gramians may
be computed using convex programming methods specifically
developed for solving LMI’s (see, for example, [26] and [27]).
Unlike true Gramians, structured Gramians are not unique as
they are not solutions to the system Lyapunovequations.

As in the standard case, balanced realizations may also
be constructed for uncertain systems by finding an allowable
transformation that simultaneously diagonalizes the struc-
tured Gramians and ; for details see [14] and references
therein.

Note that the LMI’s in (5) and (6) are not affected by
permutations of the realization matrices, , and and the
uncertainty structure . The following lemma is easily shown
using such permutations.

Lemma 8: Suppose

is stable with respect to the uncertainty structure

Then

is stable with respect to the structure

where dim and dim .
Similarly, we can show that

is stable with respect to the uncertainty structure

where and .

IV. A N ECESSARY ANDSUFFICIENT REDUCIBILITY CONDITION

For standard one–dimensional (1-D) systems there is a well-
defined notion of minimality, or equivalently controllability
and observability. In order to develop similar definitions
for system models which incorporate uncertainty descriptions
into the realizations, we first prove the following sufficient
condition for exact reducibility, stated in Theorem 9. This
condition provides the first step in the development of re-
alization theory results for uncertain systems and is valid
for representing transform variables, norm-bounded real
or complex perturbations, or time-varying operators on,
thus, this result is applicable to both multidimensional and
uncertain system realizations. It should be noted that although
the reducibility results presented in this section look similar
in statement to the model reduction results of [14], a totally
different approach is required to prove the exact reducibility
case; a limit-based argument applied to the results of [14], or
[7] for that matter, will not lead to a proper solution for the
Lyapunov inequalities under consideration.

Throughout this section we denote thefull and reduced
system realizations by

and

with corresponding repeated scalar uncertainty structures

(7)

and

(8)

where the notation is used to emphasize that
represents a reduced or lower dimension copy ofand is not
an independent uncertainty structure. The difference between
the full and reduced realizations, , is
realized by
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and

The full and reduced realizations are equivalent if and only if
for all .

Note that as a result of the dependence betweenand ,
the commutative matrix set for includes matrices with the
following block structure:

where , ,
, and for all .

Theorem 9—Sufficiency:Given the stable system repre-
sentation , there exists a reduced representation,

, such that for all , if
there exists singular or , both in , satisfying:

1) ;
2) .

Furthermore, is equal to the number
of zero-valued eigenvalues of the product .

Proof: Suppose there exists satisfying 1). (The
proof for satisfying 2) is essentially the same, and
therefore is not presented.)

Without loss of generality, we can assume , that
is, that : . The proof
extends immediately to , either directly or by recursive
application.

Suppose with and , where
has the same dimensions as , . (If ,

the proof is the essentially the same, but notationally more
cumbersome.) Furthermore, we can transformto
with . We thus can assume has this structure.

Partition the system matrices accordingly with respect to
the structure of , that is

and

where , , and are dimensioned compatibly with
; , , and are dimensioned compatibly with ;

and , , and are dimensioned compatibly with the
zero submatrix of . Partition similarly so that

, where , and
is the dimension of .

By assumption, . In particular

thus , , and , since both and
. Denote

and .
Let

and

Construct the difference realization
, and use the similarity transformation

so that the transformed difference system realization is

and

In order to show , we
must first show both and are stable.

By assumption

is stable with respect to the uncertainty set, thus there exists

(9)

By extracting the upper left submatrix of (9) we see that
, where . Therefore,

is stable with respect to the uncertainty set.
Similarly, we can show that is stable with respect to

the uncertainty structure by considering the lower right
submatrix of the matrix inequality , where a
solution

exists, also by stability of .
Since both and are stable, is stable with respect

to the uncertainty set by Lemma 5. A straightforward
calculation then shows for all .
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The final statement of the theorem on the dimensions of
the reduction can be seen directly from the constructions used
to obtain . In the case where both and are
singular, this is more easily seen by considering the allow-
able similarity transformation that results from simultaneously
diagonalizing and .

Remark 10: If we consider reducibility of realizations with
uncertainty structures containing full blocks, that is, as
defined in (1), then the submatrices and of and ,
respectively, corresponding to the full blocks,, are diagonal
scaling blocks, for example, , . Clearly, if

is singular, . In this case, in order for the Lyapunov
inequalities to hold, entire subblocks of the realization matrices

, , and must be zero and the result is obvious.
Proving that the existence of a singular structured Gramian

is also necessary for a lower dimension realization to exist
gives us a complete notion of reducibility for uncertain systems
which is similar to that for 1-D stable systems. The proof
for the necessity condition is based on the following two
lemmas; note that the assumption that the setconsists of
noncommutative elements,, is used. Thus this condition is
not necessary for multidimensional systems, or systems with
real or complex-valued time-invariant perturbations.

In the proof of Lemma 11, given in the Appendix,
it is implicitly assumed that the uncertainty structure is

. The result can immedi-
ately be extended to uncertainty structures such as

by permuting
to

and also permuting , , and accordingly.
Lemma 11: Suppose the stable system realization

is given, where is an arbitrary linear operator. If
, for all , then there exist and

, both in , satisfying

1) ;
2) ;
3) .

Proof: See the Appendix.
This proof relies on expanding the LFT defined by

as a formal power series; further discussion of formal power
series representations and connections to LFT realizations may
be found in [13] and [16]. An alternate proof has been given
for Lemma 11 using induced 2-norms of rather than
a series expansion, and is given in [13] and [17]. The alternate
proof is much longer than that presented here but leads more
directly to a Kalman-like decomposition structure and to more
exact statements on the dimensions of the reduced realizations.

Lemma 12: Suppose

and

where

If , then either or is singular.
Proof: See the Appendix.

We now state and prove the necessity condition.
Theorem 13—Necessity:Suppose the stable system realiza-

tion is given. If there exists a reduced realization
such that , for all , then there

exists singular or , both in , satisfying:

1) ;
2) .

Proof: Recall that the difference system
is given by

By Lemma 11, if then there exist and
, both in satisfying the Lyapunov inequalities for

the uncertain system , and . Since and
commute with , they have the structure

and

where and commute with . Then and
satisfy the Lyapunov inequalities for the uncertain

system , and by Lemma 12 either or is singular.

The results of Theorems 9 and 13 imply that, given an
uncertain or multidimensional system representation, if struc-
tured singular solutions to either of a pair of LMI’s can be
found, then an equivalent lower dimension realization exists.
Furthermore, if the uncertainty can be properly described
by time-varying, or noncommuting, operators on, then
the existence of lower dimension realizationsrequires such
singular LMI solutions. The development of computational
methods for solving these types of LMI problems has received
extensive attention in the control community (see for example
[26]–[28] and the references therein). The fact that we would
like to find rank-deficient solutions to these LMI’s compli-
cates the computational requirements and the complete set of
constraints results in an optimization problem which is not
convex. However, a heuristic computational solution has been
developed. A brief summary of preliminary test results for this
algorithm is presented in the Appendix; for further details see
[19] and [20].

A. Minimality

One notable result which follows immediately from the
proof for Theorem 13 is that all minimal realizations for an un-
certain system may be obtained by allowable transformations
and truncations, where we define minimal as follows.

Definition 14: A realization is minimal if
is lowest among all equivalent realizations.

The minimality result is stated in the following corollary.
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Corollary 15: Given a stable system realization ,
all minimal realizations are found by similarity transformations

and truncations.
If we consider the simplest case for these LFT represen-

tations of uncertain systems, that is, there is no uncertainty
and , we obtain the standard results, excepting the
inequalities in the Lyapunov equations. At the other extreme,
if we assume the are simply noncommuting indeterminates
as in the case of formal power series, we do not even have
the operator structure for . In this setting, stability and
norms have no meaning and indeed are somewhat artificial
in the context of pure realization theory. The preceding LMI
reducibility results may be simply extended to this case by
scaling the matrix, that is, there will always be some value

sufficiently small such that there exists a matrix ,
satisfying

(10)

The I/O map is then well defined on for every

and solutions and , both in , can be found
satisfying the Lyapunov inequalities formed with the scaled
matrices. If singular and can be found, the realization is
reducible as in Theorem 9, with respect to the uncertainty set

. These manipulations are interesting mainly because the
use of this scaling illuminates the fact that the reducibility
result may be viewed as a topological result, that is, that

is the zero operator for all operators
in a neighborhood of zero if and only if there exist singular

structured solutions to the Lyapunov inequalities.
Alternatively, a subspace, or geometric approach, which

does not require stability of the uncertain system realizations
may be pursued. This approach is discussed in relation to the
results presented herein in [18], where a unified treatment of
both the algebraic and geometric perspectives of minimality
and decomposition structures for uncertain systems is dis-
cussed. Comparisons and connections are outlined showing
that the resulting decomposition structures for a given LFT
realization are the same, thus showing that standard state-
space realization theory may be wholly generalized to LFT
realizations for uncertain systems. Additional technical details
on the construction of reachable and unobservable subspaces
may be found in [29].

V. CONTROLLABILITY , OBSERVABILITY, AND

DECOMPOSITIONSTRUCTURES FORUNCERTAIN SYSTEMS

Up to this point, we have presented reducibility condi-
tions for a given realization, , in terms of structured
Gramians, without any discussion of controllability and ob-
servability or a direct test for minimality. Naturally, we would
like to develop generalizations of the standard controllability
and observability matrices and determine the relation these
matrices have not only to the structured Gramians, but also
to a direct notion of minimality. In this section, we discuss
the construction of controllability and observability matrices

for uncertain systems modeled by LFT realizations and show
that rank conditions on these matrices relate to reducibility
of the system realizations and provide for a direct test of
minimality. We begin with a discussion of the Kalman-like
decomposition structure that results from the proof of Theorem
9 and Lemma 11.

A. Decomposition Structures

In the proof for Theorem 9, it is made clear that the
existence of a singular structured Gramian implies that an
equivalent realization can be found which has a Kalman-like
decomposition structure. For example, consider the realization

and suppose structured Gramians and

are found where , , , and
are all singular. Then, using an allowable, simultaneously
diagonalizing transformation for and , we can find an
equivalent realization that has the decomposition structure
where

(11)

for each .
Similarly, from Theorem 13, we know if is re-

ducible, there exist singular structured Gramians for the full
realization; these Gramians can be used as above to find a
decomposition structure for .

B. Controllability and Observability Matrices

If we naively define the controllability and observability
matrices, and , as for standard (1-D) state-space real-
izations, then we cannot directly generalize the relationships
between the ranks of and to reducibility via singular
structured Gramians. For example, suppose we take

, where . If there exists
a singular structured Gramian , then it is easy to see
that by considering the decomposition structure
in the proof of Theorem 9. However, the converse is generally
not true. Consider the following example:

and
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Then, has rank 1, but there is no singular
satisfying .

As a more reasonable generalization of realization theory
results associated with controllability and observability matri-
ces for standard state-space models, we propose the following
constructions for uncertain systems models, which take into
account the inherent structure of the system realization.

Definition 16: Given an uncertain system realization
, where is structured as in (7), then thecon-

trollability matrix is defined as shown in the equation at the
bottom of the page. Furthermore, we denote the block rows
by .

The partitioning of this controllability matrix into block
rows is similar to the partitioning proposed for a two-
dimensional (2-D) system controllability matrices when
a relationship to minimality is desired (see [30] and the
references therein). However, the block elements of the above
controllability matrix are noticeably different than in the
2-D case (or multidimensional case), as the system variables
represented by the in the LFT realizations we consider are
assumed to be noncommuting.

The following relation can be shown to hold between
singular structured Gramians and rank conditions on; a
sketch of the proof follows.

Lemma 17: Let be a stable uncertain system re-
alization, where is defined as in (1), and supposeis the
associated structured controllability matrix. Then rank

for some , if and only if there exists a singular
, satisfying .

Proof—Sketch:Sufficiency is quite straightforward: if
there exists a singular structured controllability Gramian,
then using allowable transformations (as in the proof of
Theorem 9), we can find a decomposition structure from which
it is easy to see that the block rows of the controllability matrix
will have reduced rank.

Necessity can be shown using an approach similar to that
taken for the proof of Lemma 11. For each ,
denote , where we assume for at least
one . Then there exist nonsingular matrices
such that

where has rows

This implies that , and that has the form
, for all . Thus, there exists a

such that

and

where the zero block of has dimensions .
Note that if , then

A similar analysis is applied to the terms, result-
ing in an allowable transformation ,
which decomposes the given realization matrix into an
equivalent realization with an uncontrollable-like decompo-
sition structure. We can then construct a singular structured
controllability Gramian, , in the same manner as outlined in
the proof of Lemma 11.

The obvious dual definition for the observability matrix can
be given, along with the corresponding rank condition which
can be proven using a duality argument.

Definition 18: Given an uncertain system realization
, where is structured as in (1), then theobservability

matrix is defined by

...
...

...
...

...
...

...
...

Furthermore, we denote the block columns by

...

Lemma 19: Let be a stable uncertain system real-
ization, where is defined as in (1), and suppose is the
associated structured observability matrix. Then

for some , if and only if there exists a singular
, satisfying .

From Lemmas 17 and 19, we can directly state the follow-
ing result connecting minimality to rank deficiencies of the
controllability and observability matrices.

Theorem 20:Let be a stable uncertain system
realization, where is defined as in (1), and supposeand
are the associated structured controllability and observability
matrices. Then is a minimal realization if and only if

and for every .
These rank tests can be completed on finite dimension

controllability and observability matrices, where the maximum
dimensions are determined by the number of copies of each
in the structure . Moreover, the degree of singularity of the
structured Gramians can be directly related to the difference
between the dimension and the rank ofand of .

...
...

...
...

...
...

...
...

...
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C. Example

We consider a simple illustrative example withstructure
. The realization matrices that comprise are

and

A simple check of the reducibility of this system can be
made by evaluating and , where for example

and

...
...

suffice. In this case, straightforward rank calculations show
that and ; and

. Thus this system is reducible by dimension 1
in both the first and second uncertainty variables; that is, it can
be shown to be unreachable in thespace and unobservable
in the space.

We should also be able to find singular structured Gramians,
and , that solve the Lyapunov inequalities. Using the LMI

toolbox we obtainblock-structuredsolutions with eigenvalues

and

Thus we can find an allowable transformation

where transforms the first block of , the structured
observability Gramian, and transforms the second block
of , the structured controllability Gramian, such that

and

Applying this transformation to , , , i.e., computing
, , , and truncating the subsystems asso-

ciated with the zero parts of and gives an equivalent

lower order realization

and

Details regarding practical Matlab-based reduction routines
may be found in [20].

VI. SUMMARY AND RELATED RESULTS

In this paper, we have presented a thorough treatment of
reducibility of uncertain system realizations based on the
existence of structured singular Gramians; related realization
theory topics including the definition of and rank tests for
structured controllability and observability matrices have also
been given. Additional realization theory for uncertain systems
has been completed; most closely related is a geometric, or
subspace, view of minimality for such systems.

The geometric approach involves decomposing the internal
variable space into reachable and unobservable subspaces; this
also leads to a Kalman-like decomposition structure for LFT
realizations and hence a minimality result. Straightforward
generalizations of these reachable and unobservable subspaces
for uncertain system realizations are discussed in [18] and [29],
where the LFT’s are now restricted to be causal operators.
An alternate method for constructing a minimal realization
and a Kalman-like decomposition structure is given, where
the resulting decomposition structure is the same as that in
(11). It can be shown that the existence of rank-deficient
structured controllability Gramians is directly related to the
existence of a nontrivial unreachable subspace in the system
state and uncertainty variables; similarly, the existence of rank-
deficient structured observability Gramians relates directly to
an unobservable subspace [18].

The geometric methods may be applied to realizations
that are not stable; however, the procedure relies on finding
reduced rank matrices, as does the approach described herein
using controllability and observability matrices, which may
be numerically ill-conditioned. Note that the LMI-based re-
ducibility results of Section IV may be related to reduction
with guaranteed error bounds of uncertain system realizations
in the situation where nosingular structured Gramians are
found, that is, when the reduction is not exact [13], [14].
Although the structured Gramians used in the LMI-based
model reduction methods of [14] may be suboptimal, the
associated computational problems are easily solved. Model
reduction methods for unstable uncertain systems have also
recently been developed [31].

State-space synthesis results have also been generalized to
uncertain systems: output feedback stabilization for uncertain
systems can be reduced via a separation argument to full
information and full control problems, which can be solved
using LMI’s [15]; optimal control can be generalized to
this setting, again with a separation structure and two LMI’s
with a convex coupling condition [6], [7], [32]. Related notions
of stabilizability and detectability for uncertain systems via
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static-state feedback and static output-injection matrices may
also be stated [15] and PBH type tests defined [22].

APPENDIX

A. Proof of Lemma 11

Consider the formal power series
. We first partition the matrices , , and

accordingly with the structure, that is

...
...

...

...

and

Then, expanding the series gives

where, by assumption, .
Since the are noncommuting, is identically zero if and

only if each coefficient in the series is zero, that is

for every . We consider each set of terms
separately and show that the given realization may be trans-
formed to one having a particular decomposition structure,
similar to the Kalman decomposition structure for 1-D sys-
tems.

First, consider the terms: if and only if
there exists nonsingular, such that

and

where has full column rank, has full row rank, and
the submatrices of and are equivalently partitioned,
for each . We will henceforth absorb all
such transformations and assume the realization matrices are
already structured into zero and nonzero block submatrices.
We then partition each accordingly with the partitions of

and .
Consider the terms

Since and are both full rank, this implies that .

Next consider the terms

if and only if (12)

As with the terms, we can transform to
and to

where has full column rank, has full row rank, and the
submatrices of and are equivalently partitioned. We
now have the following decomposition structure for each:

...
...

...
...

...
...

(13)

Note that across each block row, indexed by for example, the
blocks in the set of submatrices are equivalently

partitioned; similarly, down each block column indexed by,
the blocks in the set of submatrices are also
equivalently partitioned.

Evaluating the next few sets of series coefficients,
etc., we obtain the same decomposition

structure for each of the blocks as that in (13). This
process is repeated for a finite number of series coefficients,
leading to a decomposition structure for each, ,
subsystem; this finite number is determined by the number of
variables, , and the dimensions of the realization matrices.
As an example, for , the resulting decomposition can
be generally written as follows:

...

...

...

...

...

(14)

Note that the matrix partitions in (14) (denoted by’s) do not
necessarily correspond to the previous partitions (denoted by
’s). Note also that the above partitions are constructed such

that the and submatrices are square, and the lower
left submatrix of each , which is identically zero, has the
largest dimensions possible.

Applying Lemma 8 and carrying out the matrix multiplica-
tions, it is straightforward to see there exist structured singular
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TABLE I
PRELIMINARY TRACE ALGORITHM RESULTS

matrices

and

both in , satisfying

and

Furthermore, scaling and by constants, as necessary,
gives and both in , such that conditions
1) and 2) are satisfied, and clearly .

B. Proof of Lemma 12

Let and
, where . By contradiction, suppose

both and are nonsingular. Then is nonsingular and
.

Note that implies that , thus
, where and

. However,

Thus or is singular and

C. Overview of Computational Results

Although feasible solutions to the Lyapunov inequalities
may easily be computed using convex programming methods,
the reducibility problem considered in this paper is areduced
rank LMI problem. Unfortunately, reduced rank LMI problems
result in neither convex nor quasiconvex optimization prob-
lems, thus we cannot directly apply existing LMI techniques
to obtain optimal solutions. However, LMI methods have been
used in heuristic algorithms to obtain suboptimal solutions to
reduced rank LMI problems. The following simple algorithm
has been used to compute near-singular solutions to the system
Lyapunov inequalities.

Given an uncertain system realization find

and

and

and

Preliminary tests of this algorithm have been completed
using the LMI Toolbox [26]: 20 multidimensional system real-
izations, each with two to five transform/uncertainty variables
and dimensions ranging from 5 to 15 have been constructed

and tested. These realizations have been constructed to be
exactly reducible,that is, for each realization there exist
singular structured matrices and satisfying the associated
Lyapunov inequalities. Evaluation of the Trace algorithm on
the test realizations is based on the eigenvalues of the resulting
LMI solutions and . Specifically, we consider the ratio,
denoted by , of the largest “zero value” eigenvalue to
the smallest nonzero valued eigenvalue. So, for example, if

, then
. Note that the same solutions and may

always be used to determine guaranteed error bounds on the
reduction, as described in [14].

As we knowa priori the dimensions that may be reduced
with no error for each test case, we are then able to determine
the success or failure of this algorithm. The results based on
three different criteria for are given in Table I.
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