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Transitions from partial to complete generalized synchronizations
in bidirectionally coupled chaotic oscillators

Zhigang Zhend;?" Xingang Wang} and Michael C. Crods
1Department of Physics, Beijing Normal University, Beijing 100875, China
2Department of Physics, California Institute of Technology, Pasadena, California 91125
(Received 10 December 2001; revised manuscript received 29 January 2002; published 8 May 2002

Generalized synchronization in an arraymfitually (bidirectionally)coupled nonidentical chaotic oscilla-
tors is studied. Coupled Lorenz oscillators and coupled Lorenz-Rossler oscillators are adopted as our working
models. With increasing the coupling strengths, the system experiences a cascade of transitions from the partial
to the global generalized synchronizations, i.e., different oscillators are gradually entrained through a clustering
process. This scenario of transitions reveals an intrinsic self-organized order in groups of interacting units,
which generalizes the idea of generalized synchronizations in drive-response systems.
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Recently synchronization behaviors in coupled or driventems. Later on, the lag synchronizatidrS) was found[9]
chaotic elements have been extensively exploited both theder stronger coupling strengths, i.e., the two states are iden-
retically and experimentally in the context of many specifictified by a temporal shiftX,(t) =X,(t+ 7). A weaker form
problems such as laser dynam[dg, electronic circuitg2], of synchronization, i.e., the so-called measure synchroniza-
chemical and biological systerfi3], and secure communica- tion was also proposed for Hamiltonian systeb8]. These
tions [4], due to its theoretical importance and appncationexplorations reveal rich levels of intrinsic orders in compli-
perspectives. The entrainment of coupled or driven limitc@t€d nonlinear dynamics, which is absent in coupled limit
cycles (periodic oscillators has long been a widely studied qyclgs. Relation among these different I_evels of synchroniza-
topic, while the synchronization of chaotic oscillators was anflon IS subtle and received much attention recently.
open area due to the presence of the intrinsic nonlinearity FOf @group of interacting chaotic units most of the above-
[5]. People had thought synchronization of coupled chaoti{”ent'o.ned forms of s_ynchronlzatlons exhibit some c_ascades
oscillators cannot be attained because chaotic systems exom _dlsorder to partial and global _order_ when varying _the
coupling. For example, for coupled identical chaotic oscilla-

hibit the exponential instability of nearby orbi{she so- ; found that there i de f ial h
called butterfly effegt However, this has been changed sincet(?rS 't was found that there IS a cascade from partial synchro-
' nization to a CS with increasing the coupling strength.

it was shown by Pecora and Carroll and oth@bthat tWo e g state may also lose its stability through a Hopf bi-
interacting identical chaotic oscillators can achieve synchrog cation to a traveling-wave stafd2,13. For PS, it has
nization[the complete or identical synchronizati®@S)]i.e.,  peen well exhibited, by using both coupled limit cycles
they evolve on the synchronized manifold,(t)=Xx(t)  [14,15 and coupled chaotic oscillatofd6,17, that a cas-
=X(t), even though they individually possess the exponencade of transitions from the partial PS to a global PS take
tial instability of neighboring orbits. Due to the complicated place when one increases the coupling strength, and these
feature of chaotic motion, there should be different levels ofransitions are accompanied by a number of topological
synchronized order. This study arouse extensive interest ishanges in the phase spdte., the negativeness of one zero
synchronized entrainment of chaotic oscillators, and differentyapunov exponent at the threshold of PS, indicating the
degrees of synchronizations were found. CS appears onlyecrease of the topological dimension of the phase space by
when interacting systems are identical. For two different chad). LS is also expected to have a similar cascade for coupled
otic oscillators it was found in 1995 for the drive-responsechaotic oscillator§9]. Therefore, it may be a scenario that an
systems that although CS can never be attained, the so-call@sternal cascade can be found for different kinds of synchro-
generalized synchronizatiq®S) could be achieved, i.e., an nizations. An exception that still remains open is the gener-
emergence of some functional relation between the states alized synchronization. Up to now, studies on the GS are
response and drive, i.€X,(t)=G[Xy(t)], can be observed rather limited. All the previous studies of GS have been con-
[7]. In 1996 Rosenblum and co-workers observed the eneentrated on the drive-response system, which calls for the
trainment of phases for two coupled chaotic oscillators withstability of the functional manifolK,(t) = G[ X,(t)]. To our
small parameter mismatches, if an appropriate phase variabk®howledge, no studies on the GS for bidirectionally coupled
can be defined. This locking of phases admits the chaoticitpscillator systems have been found to date.fatually (bi-
and uncorrelation of oscillation amplitudes for the two cha-directionally) coupled chaotic systems, no good way has
otic oscillators. They call this locking behavior the phasebeen proposed in analyzing how the units achieve GS. Be-
synchronizationP9 [8]. The emergence of PS indicates an cause oscillators are coupled to each other, it is important to
order in some degrees of freedom in coupled oscillator sysstudy how these oscillators are self-organized and follow
each other. Therefore, a number of questions can be pro-
posed, for example: How can one say the units achieve GS?
*Email address: zgzheng@bnu.edu.cn Is the GS for the two coupling directions achieved at the
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1 2 1 2 X1(t)=X,(t) for CS cases anX,(t)=G[X,(t)] for GS
¢——O ——Q cases. Intermittent deviations from the synchronized mani-
N / Y\ fold can be observed near the synchronization threshold due
N\ O" > o to the chaotic nature of the attractor.
02 1 Now let us consider the mutually coupled case. Ror
(a) (b) chaotic oscillators with nearest-neighbor couplings, one may

- ) write down the following equations of motion:
FIG. 1. (a) The auxiliary-element approach to detecting the gen-

eralized synchronization in the drive-response systefbs; A X =F.(P. X)+&D(X: . 1—X.)—eD(X:— X 3
schemetic approach of the auxiliary method to studying the gener- 1 =Fi(P,X) +2D(Xi41 = X) =eD(Xi = Xi-0), - (3

alized synchronization in two mutually coupled chaotic oscﬂlators.whereD denotes the coupling matrix, ardis the coupling

. . . strength. First we consider the simplest chise2, where the
same coupling parameter or at different couplings? How Callquations of motion are

one determine the functional relationship between two cha-
otic units? and so on. In this paper we shall try to deal with X o= Fr oA Pr o X )+ eD(Xo — X 4
the first two issues, which should be fundamental and treated 12=F1dP12 X1 +8D(Xo 1~ Xy ). @

as a first step to _explor_e the GS behavior of the system witlygw we propose the approach in studying the GS behavior
mutually interacting units. _ .. between 1 and 2. In fact, the auxiliary-element criterion in
In traditional studies on the generalized synchronizatiorsydying GS in drive-response cases is still available. Due to
of drive-response systems, a simple way called auxiliary systhe pidirectional interaction, one should introduce two auxil-
tem approach has been proposed and widely [B&dCon- a1y systems 1and 2, which, respectively, are identical to 1

sider the following drive-response system: and 2, i.e,, let 1 drive 2and 2 drive 1, as shown in Fig.
. 1(b). The equations of motion of'land 2 have the same
X1=F1(P1,X1), form as 1 and 2, respectively,
XZZFZ(P21X2)+8(X1_X2)1 (1) X£,2: Fl,Z(Pl,Z!Xi,Z)+8D(X2,1_X5_,2)' (5)

where X3 (t) represent the dynamical flows in the phase1’ and 2 possess the same parameters as 1 and 2, but evolve
spacef , nonlinear function vectors witR, , the parameter from different initial conditions. Thus the vector fields
sets for systems 1drive) and 2 (responsg (usually differ-  x, (t) andX} (t) in the phase spaces of(ar 2) and 1 (or

end. & is the strength of the drive. Due to the nonlinearity, ') are identical and they can evolve on identical attractors.
the flow of individual oscillators in phase space is usuallywith increasing the coupling strength, One may expect that
chaotic. Usually 1 and 2 possess different chaotic flows. Lepoth 1'-1 and 2-2 coincide after the initial transients. Will

us consider an auxiliary systent 2hat is identical to the these two pairs become synchronized at the same minimum
response system @dn the sense that they have the samecqypling strength? Or they achieve synchronization at differ-
equations of motions and paramejees shown in Fig. ®).  ent coupling thresholds? In other words, will (@r 2) be

The equation of motion of the auxiliary system has the sam@amed by 2or 1) for a smaller coupling or 1 and 2 are tamed

form as that of 2 by each other at the same coupling threshold? To answer this
-, ) ) question, let us adopt thecoupled Lorenz oscillators as an
Xo=Fa(P2,X5) +&e(X1=X3). (20 example(the coupling is only on the equation of motion of

. ] . the x component where the coupling matrib,;,=1 and
When 2 and 2 are driven by the same signal coming from 1, D;=0 for i#1 andj#1. The equation of motion for a
the vector fieldsX,(t) and X5(t) in the phase spaces of 2 single Lorenz oscillator is written as

and 2 are identical and they can evolve on identical attrac-

tors. If initial conditions of both 2 and 2lie in the same X =o(y—Xx),
basin of attractionthen at a certain drive strength, trajecto-

ries of both 2 and 2will coincide after some transients, i.e., y=rX—y—Xxz,
|X5(t) —X5(t)|—0 ast—oe. In this case the GS between the

response system 2 and the drive system 1 builds. On the
other hand, a sufficient and necessary condition for(@S
CS is the negativeness of the maximum conditionalyere =10, b=8/3, andr is different for different oscilla-
Lyapunov exponenﬁlj\/ICIEE). The conditional Lyapunov ex- o5 For the cashl=2, we user; ,= 40,35, respectively. To
ponent spectrun{Ay=A7=---} can be numerically com- measure the degree of synchronization, we introduce the in-
puted along the G%or C§ manifold. For weak couplings,  stantaneous distance between ittheoscillator and its auxil-
the maximum exponenk>0, implying the GS(or C9 iary partner as

manifold is unstable and G®&r CS between the drive and

z=—bz+xy. (6)

response is not built. As one increases\1 becomes nega- D;(t)=|X;(t) = X{ (V)]
tive at certain critical strength, then the evolution of the re- : 5 . 5 : 5
sponse element follows the manifold of the drive, i.e., =X = %) 2+ (y{ —y1)2+ (2] — 7). (7)
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FIG. 3. The maximum Lyapunov exponent of the Lorenz oscil-
lator against.

To better demonstrate this route from partial GS to the

global GS forN=2 and meanwhile determine the thresholds

FIG. 2. The evolutions of the difference functi@n(t) for dif- for GS, we plot the average differences

ferent coupling strengths foN=2 Lorenz oscillators, where

=7.0in(a) and(b), e=10in(c) and(d), ande = 13.5 in(e) and(f).

Partial generalized synchronization can be observed)irand the
global generalized synchronization is achievedgnand (f).

®

Di: lim

T—oo

1(T
T f . D;(t)dt.
In Fig. 2, the evolution of the differencd3,(t) and D,(t)
for two coupled Lorenz oscillators are given at different cou-

ling strengths. In Figs.(2) and 2b), for e=7.0, it can be .~~~ ° . .
?our?d that %he differegce(s)oscilljte)irregularly around a nonindicating the occurrence of Fhe f_|rst GS, W_here 2 Is slaved
zero value. This strong fluctuation indicates 1 and 2 are les®y 1. Because in the other direction one still has a nonzero
correlated; With increasing the coupling, one may find a2Verage d_|ffe2rence, one only has a partial GS. The second
stronger correlation. For example in FiggcRand 2d), at  threshold isec~13.4, whileD; becomes zero. This is the
=10, one of the differenced),(t), goes to zero, while threshold for a global GS. In Fig.(d), one computes the
D,(t) is still in a strongly fluctuating manner. This indicates transversalconditiona) Lyapunov exponenta along the
that under the drive of 1, '2synchronizes to 2 in the long GS manifold. One only needs the maximum exponedzts
time limit. This behavior is much similar to that occurs for gnd )@ to test the GS in two coupling directions. An excel-
the drive-response system, when the GS takes place. Whilent agreement with Fig.(4) can be found, where at each GS
in another coupling direction, "1does not follow 1. There- threshold one of the MCLEs becomes negative.
fore for the mutually coupled case, GS is reached firstin one A critical issue is about the robustness of the partial GS
of the coupling directions, i.e., 2 is first “slaved” by (the  and global GS, as well as the basin of attractions of the GS
element 1, as the master, tames the elemerw@ call thisa  state. As required by the stability of GS, initial states for a
partial GS This result is very interesting because for mutu-partner should lie in the same basin of attraction as the os-
ally coupled nonidentical chaotic oscillators, the two cou-cillator. For the Lorenz attractor with two foliages, GS can
pling directions are not equivalent, that is, synchronizations
in the two directions cannot occur at the same minimum
threshold. There are always a master oscillator and a slaw
oscillator. When one further increases the coupling strength
as shown in Figs @) and Zf) for e =13.5, one fairly expects
that bothD(t) andD,(t) go to zero in the long run. In this
case, not only can 1 tame 2, but also 2 tames 1. They orgap
nize themselves to follow each other and enter a global gen "
eralized synchronization state.

In fact, the above GS behavior can be well understood by

observing the maximum Lyapunov exponexf,,, for a
single Lorenz oscillator against as shown in Fig. 3. Be-
causer relates to the Reynolds number in studies of turbu-
lence, A ,ax monotonically increases with increasimg(ex-
cept periodic windows Therefore one has\ ,{r=35)
<Ama{r=40). The above studies of GS indicate thaless FIG. 4. (8) The averaged distances; against the coupling
chaotic system can be easier to be entrainBdr systems  strength. They approach zero at different threshold couplings, indi-
with a larger maximum Lyapunov exponent, higher stochascating the achievement of generalized synchronizati¢bs The
ticity prevents it from being first tamed. Therefore we find maximum conditional Lyapunov exponents for the two auxiliary
that the oscillator withr =35 is first synchronized, then the units. Generalized synchronizations are achieved when they pass
one withr =40. the zero line.

It can be clearly found from Fig.(4) that there are two
thresholds. At the first thresholel~8.4 one findsD,=0,
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FIG. 5. The evolution oD, (t) with the same parameters as in
Fig. 2 fore=9.0 and 15.0, where the auxiliary oscillator evolves
from a{—X;(0)+ &;} with §; being small random numbers.

FIG. 6. (a): The average differencd3; , against the coupling.
The Rossler oscillator is easier to be entrainbd-(d): The relation
betweenx, andx; for £=0.5 (unsynchronized statee =5.0 (par-

still be attained even if the oscillator and its partner evolvelially synchronized stajeande =13.0(global GS state

from completely different foliages due to the ergodicity of . , 2

the attractor. In Fig. @) and 5b), we give the evolution of synchronlzed_. We find the threshold |s§:%t~ 12.3. We.also
D, At) with the same parameters as in Fig. 2 é6¢9.0 and glve_the relation betweer, and x; fc_)r d|fferen? c_oupllngs.
15.0, where the auxiliary oscillator evolves from an initial IN Fig- S(b), for =0.5 (unsynchronized staleit is shown

oo (01 X010 i . ey sl o (20 S0 st ol e S0 parly
numbers. It can be clearly found that fe=9.0,D,—0, i.e., 2 1 9

; ) . tions, as shown in Fig.(6). In the global GS regime, e.g., at

gpartlal GShcgn .St('jl.l b(ta_ achlevlecki). 'IZ‘@GPSB"_' bothD, Z.r:jd &= 13.0,x, andx, fall onto a simpler manifold, as shown in

2 approach U, Indicaling a gioba - nere we did no Fig. 6(d) for darker regions. Deviations from the global GS
exclude the possibility of a failure of GS for other coupled manifold can also be observed due to the typical intermit-
systems or other forms of coupling. One can find example§ency near the synchronization threshold
that GS IS not .Sa“sf'eﬂg'zq- But for th? present sy;tem we Now it is important to extend the present idea to groups of
did not find this violation. The scenario of transitions from N>2 coupled oscillators in order to verify the validity of the
pa_rtlal GSto global GS proposed n this papetyjsical (not above scenario. Taking thd=3 case as an example. Be-
unlve.rsa),.wmch can be observed in many Systems. To fur_cause the three oscillators are coupled together, then for each
ther illuminate it, we may test a typical case of coupled

Lorenz-Rossler svstems. where the Lorenz and Rossler 0o_scillator, e.g., oscillator 1, one cannot introduce auxiliary
sess rather diffeyrent t, es of chaotic motions. For tﬁlegystems 2 and 3 that are independent. In this case, one
yp ' Should introduce three auxiliaries, as shown in Fign).7
x-coupled case one has O . ; : :
Each auxiliary oscillator is driven by the other two oscilla-
tors(e.g., 1 is driven by 2 and B The equations of motion
for the three auxiliary systems have the same form as their

masters in the original system. Therefore, one may test

)-(1:(7(Y1_X1)+8(X2_X1)7

Yi=X1=Yy1= Xz, which oscillator is the first that can be tamed by others, then
) the second, and so on. In Fig(bJ, we give the average
z;=—bz;+X1ys, differencesD; vs the coupling strengtlz. Here r;=50,
_ r,=>55, andr;=60. It shows a scenario similar to the case of
Xo= — Xy~ Zy+&(Xy—X2), N=2. At £1=6.4, D,=0, and the oscillator 1 is first syn-
_ chronized. While in this regime one h&s+0 andD;+0,
Vo= wXy+ays, thus the oscillators 2 and 3 cannot be tamed by other oscil-
lators in the group. With increasing the coupling, aﬁ
Z,=f+2,(X,—¢), (99  =8.2, the oscillator 2 is also slaved; Finally gt=10.6 all

average differences become zero, indicating that all oscilla-
where for Lorenzo=10, b=8/3,r=35, and for Rosslea tors are synchronized. The MCLEs plotted in Fi(c)®jive a
=0.165, »=5.5, f=0.2, c=10. We test the GS dynamics clear picture for the above cascade. Therefore forNke3
by using the same way as above. In Figa)6we computed case, one also observes a route from partial GS to global GS.
the average differencds; , against the coupling. At a very One expects this route is a generic scenario for GS in
weak couplingsl~1.2, D,—0, indicating that the Rossler many coupled chaotic oscillators. For the=3 case, oscil-
oscillator is easier to be entrained. Due to the stronger stdators are coupled with the nearest-neighf) manner. It
chasticity of the Lorenz oscillator, it is more difficult to get is necessary to test the above scenario for a non-NN case.
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FIG. 7. (a) A schematic plot of the auxiliary approach fof

=.3 mutually f:oupled oscillatorgb) The average distances vary FIG. 8. () The auxiliary approach t&i=4 mutually coupled
with the coupling strengti(c) The maximum conditional Lyapunov  :naotic oscillators(b) The same as Fig.(8) with N=4. (c) The
exponents for the three partners vary against the coupling strengtigme as Fig. @) with N=4.

Thus we further investigate the calSe=4, which is @ mini- 5 qer has been proposed in other forms of synchronizations,
mal number for non-NN cases. The sketch for the test of GQ g~ complete synchronization, phase synchronization, and
is shown in Fig. &). The auxiliary elements have the same |3 synchronization. We have also found the similar cascade
form of equations of motion:X{=F;(P;,X{)+eD(Xj+1  for measuring synchronization for coupled symplectic maps
—X{)—eD(X{=X;_1). In Fig. 8b), the differences be- [21]. Therefore we have different kinds of synchronizations
tween the oscillators and their auxiliary partners are comfor coupled chaotic oscillators, and for each kind of synchro-
puted against the coupling strength for four Lorenz oscilla-nization there exists a cascade of transitions from a local
tors withr, , 3/~60,61,62, and 63, respectively. One finds aclustering to a global clustering. All these synchronizations
good series foD; becoming zero at different threshold cou- reveal different degrees of internal self-organized orders. On
plings. The MCLEs plotting in Fig. @) also present a clear the other hand, studies of the boundaries among these differ-
picture for the cascade of transitions from a partial GS to @&nt synchronizations and their relations is a subject that
global GS. Based on the above studies, one can expectreeds a long-term exploratid22]. Furthermore, the roles
route from partial GS to global GS for a genehMakcoupled  played by synchronizations in spatiotemporal pattern dynam-
nonidentical oscillators. The present study reveals an intrinics are also open problems.
sic order embedded in complicated dynamics. Stimulating discussions with Prof. Gang Hu, Dr. Daihai
To conclude, in this paper we present the approach to G8le, and Dr. Meng Zhan are gratefully acknowledged. This
in mutually coupled nonidentical chaotic oscillators and awork is supported by the National Natural Science Founda-
generic route from partial GS to the global GS is proposedtion of China, the Special Funds for Major State Basic Re-
The approach presented in this paper should be also valid f@earch Projects, the Foundation for University key teacher by
general systems with local or nonlocal, unidirectional or bi-the Ministry of Education, Special Funds for Excellent Doc-
directional couplings, and the scenario from the partial GS tdoral Dissertations, the TRAPOYT in Higher Education In-
the global GS also should be a generic feature. As we knowgtitutions of MOE, and the Huo-Ying-Dong Educational
the scenario of transitions from a partial order the globalFunds for Excellent Young Teachers.
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