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Transitions from partial to complete generalized synchronizations
in bidirectionally coupled chaotic oscillators
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Generalized synchronization in an array ofmutually (bidirectionally)coupled nonidentical chaotic oscilla-
tors is studied. Coupled Lorenz oscillators and coupled Lorenz-Rossler oscillators are adopted as our working
models. With increasing the coupling strengths, the system experiences a cascade of transitions from the partial
to the global generalized synchronizations, i.e., different oscillators are gradually entrained through a clustering
process. This scenario of transitions reveals an intrinsic self-organized order in groups of interacting units,
which generalizes the idea of generalized synchronizations in drive-response systems.
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Recently synchronization behaviors in coupled or driv
chaotic elements have been extensively exploited both th
retically and experimentally in the context of many spec
problems such as laser dynamics@1#, electronic circuits@2#,
chemical and biological systems@3#, and secure communica
tions @4#, due to its theoretical importance and applicati
perspectives. The entrainment of coupled or driven lim
cycles~periodic oscillators! has long been a widely studie
topic, while the synchronization of chaotic oscillators was
open area due to the presence of the intrinsic nonlinea
@5#. People had thought synchronization of coupled cha
oscillators cannot be attained because chaotic systems
hibit the exponential instability of nearby orbits~the so-
called butterfly effect!. However, this has been changed sin
it was shown by Pecora and Carroll and others@6# that two
interacting identical chaotic oscillators can achieve synch
nization@the complete or identical synchronization~CS!# i.e.,
they evolve on the synchronized manifold,X1(t)5X2(t)
5X(t), even though they individually possess the expon
tial instability of neighboring orbits. Due to the complicate
feature of chaotic motion, there should be different levels
synchronized order. This study arouse extensive interes
synchronized entrainment of chaotic oscillators, and differ
degrees of synchronizations were found. CS appears
when interacting systems are identical. For two different c
otic oscillators it was found in 1995 for the drive-respon
systems that although CS can never be attained, the so-c
generalized synchronization~GS! could be achieved, i.e., a
emergence of some functional relation between the state
response and drive, i.e.,X2(t)5G@X1(t)#, can be observed
@7#. In 1996 Rosenblum and co-workers observed the
trainment of phases for two coupled chaotic oscillators w
small parameter mismatches, if an appropriate phase var
can be defined. This locking of phases admits the chaoti
and uncorrelation of oscillation amplitudes for the two ch
otic oscillators. They call this locking behavior the pha
synchronization~PS! @8#. The emergence of PS indicates
order in some degrees of freedom in coupled oscillator s
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tems. Later on, the lag synchronization~LS! was found@9#
for stronger coupling strengths, i.e., the two states are id
tified by a temporal shift,X2(t)5X1(t1t). A weaker form
of synchronization, i.e., the so-called measure synchron
tion was also proposed for Hamiltonian systems@10#. These
explorations reveal rich levels of intrinsic orders in comp
cated nonlinear dynamics, which is absent in coupled li
cycles. Relation among these different levels of synchron
tion is subtle and received much attention recently.

For a group of interacting chaotic units most of the abo
mentioned forms of synchronizations exhibit some casca
from disorder to partial and global order when varying t
coupling. For example, for coupled identical chaotic oscil
tors it was found that there is a cascade from partial synch
nization to a CS with increasing the coupling strength@11#.
The CS state may also lose its stability through a Hopf
furcation to a traveling-wave state@12,13#. For PS, it has
been well exhibited, by using both coupled limit cycle
@14,15# and coupled chaotic oscillators@16,17#, that a cas-
cade of transitions from the partial PS to a global PS ta
place when one increases the coupling strength, and t
transitions are accompanied by a number of topolog
changes in the phase space~i.e., the negativeness of one ze
Lyapunov exponent at the threshold of PS, indicating
decrease of the topological dimension of the phase spac
1!. LS is also expected to have a similar cascade for coup
chaotic oscillators@9#. Therefore, it may be a scenario that a
internal cascade can be found for different kinds of synch
nizations. An exception that still remains open is the gen
alized synchronization. Up to now, studies on the GS
rather limited. All the previous studies of GS have been c
centrated on the drive-response system, which calls for
stability of the functional manifoldX2(t)5G@X1(t)#. To our
knowledge, no studies on the GS for bidirectionally coup
oscillator systems have been found to date. Formutually (bi-
directionally) coupled chaotic systems, no good way h
been proposed in analyzing how the units achieve GS.
cause oscillators are coupled to each other, it is importan
study how these oscillators are self-organized and foll
each other. Therefore, a number of questions can be
posed, for example: How can one say the units achieve G
Is the GS for the two coupling directions achieved at t
©2002 The American Physical Society11-1
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same coupling parameter or at different couplings? How
one determine the functional relationship between two c
otic units? and so on. In this paper we shall try to deal w
the first two issues, which should be fundamental and trea
as a first step to explore the GS behavior of the system w
mutually interacting units.

In traditional studies on the generalized synchronizat
of drive-response systems, a simple way called auxiliary s
tem approach has been proposed and widely used@18#. Con-
sider the following drive-response system:

Ẋ15F1~P1 ,X1!,

Ẋ25F2~P2 ,X2!1«~X12X2!, ~1!

where X1,2(t) represent the dynamical flows in the pha
space,F1,2 nonlinear function vectors withP1,2 the parameter
sets for systems 1~drive! and 2 ~response! ~usually differ-
ent!. « is the strength of the drive. Due to the nonlineari
the flow of individual oscillators in phase space is usua
chaotic. Usually 1 and 2 possess different chaotic flows.
us consider an auxiliary system 28 that is identical to the
response system 2~in the sense that they have the sam
equations of motions and parameters!, as shown in Fig. 1~a!.
The equation of motion of the auxiliary system has the sa
form as that of 2

Ẋ285F2~P2 ,X28!1«~X12X28!. ~2!

When 2 and 28 are driven by the same signal coming from
the vector fieldsX2(t) and X28(t) in the phase spaces of
and 28 are identical and they can evolve on identical attr
tors. If initial conditions of both 2 and 28 lie in the same
basin of attraction, then at a certain drive strength, traject
ries of both 2 and 28 will coincide after some transients, i.e
uX28(t)2X2(t)u→0 ast→`. In this case the GS between th
response system 2 and the drive system 1 builds. On
other hand, a sufficient and necessary condition for GS~or
CS! is the negativeness of the maximum condition
Lyapunov exponent~MCLE!. The conditional Lyapunov ex
ponent spectrum$lT

1>lT
2>•••% can be numerically com

puted along the GS~or CS! manifold. For weak couplings
the maximum exponentlT

1.0, implying the GS~or CS!
manifold is unstable and GS~or CS! between the drive and
response is not built. As one increases«, lT

1 becomes nega
tive at certain critical strength, then the evolution of the
sponse element follows the manifold of the drive, i.

FIG. 1. ~a! The auxiliary-element approach to detecting the g
eralized synchronization in the drive-response systems;~b! A
schemetic approach of the auxiliary method to studying the ge
alized synchronization in two mutually coupled chaotic oscillato
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X1(t)5X2(t) for CS cases andX2(t)5G@X1(t)# for GS
cases. Intermittent deviations from the synchronized ma
fold can be observed near the synchronization threshold
to the chaotic nature of the attractor.

Now let us consider the mutually coupled case. ForN
chaotic oscillators with nearest-neighbor couplings, one m
write down the following equations of motion:

Ẋ i5Fi~Pi ,X i !1«D~X i 112X i !2«D~X i2X i 21!, ~3!

whereD denotes the coupling matrix, and« is the coupling
strength. First we consider the simplest caseN52, where the
equations of motion are

Ẋ1,25F1,2~P1,2,X1,2!1«D~X2,12X1,2!. ~4!

Now we propose the approach in studying the GS beha
between 1 and 2. In fact, the auxiliary-element criterion
studying GS in drive-response cases is still available. Du
the bidirectional interaction, one should introduce two aux
iary systems 18 and 28, which, respectively, are identical to
and 2, i.e., let 1 drive 28 and 2 drive 18, as shown in Fig.
1~b!. The equations of motion of 18 and 28 have the same
form as 1 and 2, respectively,

Ẋ1,28 5F1,2~P1,2,X1,28 !1«D~X2,12X1,28 !. ~5!

18 and 28 possess the same parameters as 1 and 2, but ev
from different initial conditions. Thus the vector field
X1,2(t) andX1,28 (t) in the phase spaces of 1~or 2! and 18~or
28) are identical and they can evolve on identical attracto
With increasing the coupling strength, One may expect t
both 18-1 and 28-2 coincide after the initial transients. Wil
these two pairs become synchronized at the same minim
coupling strength? Or they achieve synchronization at diff
ent coupling thresholds? In other words, will 1~or 2! be
tamed by 2~or 1! for a smaller coupling or 1 and 2 are tame
by each other at the same coupling threshold? To answer
question, let us adopt thex-coupled Lorenz oscillators as a
example~the coupling is only on the equation of motion o
the x component!, where the coupling matrixD1151 and
Di j 50 for iÞ1 and j Þ1. The equation of motion for a
single Lorenz oscillator is written as

ẋ 5s~y2x!,

ẏ5rx2y2xz,

ż52bz1xy. ~6!

Heres510, b58/3, andr is different for different oscilla-
tors. For the caseN52, we user 1,2540,35, respectively. To
measure the degree of synchronization, we introduce the
stantaneous distance between thei th oscillator and its auxil-
iary partner as

Di~ t !5iX i~ t !2X i8~ t !i

5A~xi82xi !
21~yi82yi !

21~zi82zi !
2. ~7!

-

r-
.
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TRANSITIONS FROM PARTIAL TO COMPLETE . . . PHYSICAL REVIEW E 65 056211
In Fig. 2, the evolution of the differencesD1(t) and D2(t)
for two coupled Lorenz oscillators are given at different co
pling strengths. In Figs. 2~a! and 2~b!, for «57.0, it can be
found that the differences oscillate irregularly around a n
zero value. This strong fluctuation indicates 1 and 2 are
correlated; With increasing the coupling, one may find
stronger correlation. For example in Figs. 2~c! and 2~d!, at
«510, one of the differences,D2(t), goes to zero, while
D1(t) is still in a strongly fluctuating manner. This indicate
that under the drive of 1, 28 synchronizes to 2 in the long
time limit. This behavior is much similar to that occurs f
the drive-response system, when the GS takes place. W
in another coupling direction, 18 does not follow 1. There-
fore for the mutually coupled case, GS is reached first in
of the coupling directions, i.e., 2 is first ‘‘slaved’’ by 1~the
element 1, as the master, tames the element 2!. We call this a
partial GS. This result is very interesting because for mu
ally coupled nonidentical chaotic oscillators, the two co
pling directions are not equivalent, that is, synchronizatio
in the two directions cannot occur at the same minim
threshold. There are always a master oscillator and a s
oscillator. When one further increases the coupling stren
as shown in Figs 2~e! and 2~f! for «513.5, one fairly expects
that bothD1(t) andD2(t) go to zero in the long run. In this
case, not only can 1 tame 2, but also 2 tames 1. They o
nize themselves to follow each other and enter a global g
eralized synchronization state.

In fact, the above GS behavior can be well understood
observing the maximum Lyapunov exponentlmax for a
single Lorenz oscillator againstr, as shown in Fig. 3. Be-
causer relates to the Reynolds number in studies of turb
lence,lmax monotonically increases with increasingr ~ex-
cept periodic windows!. Therefore one haslmax(r535)
,lmax(r540). The above studies of GS indicate thata less
chaotic system can be easier to be entrained. For systems
with a larger maximum Lyapunov exponent, higher stoch
ticity prevents it from being first tamed. Therefore we fin
that the oscillator withr 535 is first synchronized, then th
one with r 540.

FIG. 2. The evolutions of the difference functionDi(t) for dif-
ferent coupling strengths forN52 Lorenz oscillators, where«
57.0 in ~a! and~b!, «510 in ~c! and~d!, and«513.5 in~e! and~f!.
Partial generalized synchronization can be observed in~d!, and the
global generalized synchronization is achieved in~e! and ~f!.
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To better demonstrate this route from partial GS to
global GS forN52 and meanwhile determine the threshol
for GS, we plot the average differences

Di5 lim
T→`

1

TE0

T

Di~ t !dt. ~8!

It can be clearly found from Fig. 4~a! that there are two
thresholds. At the first threshold«c

1'8.4 one findsD250,
indicating the occurrence of the first GS, where 2 is slav
by 1. Because in the other direction one still has a nonz
average difference, one only has a partial GS. The sec
threshold is«c

2'13.4, whileD1 becomes zero. This is th
threshold for a global GS. In Fig. 4~b!, one computes the
transversal~conditional! Lyapunov exponentslT along the
GS manifold. One only needs the maximum exponentslT

1

andlT
2 to test the GS in two coupling directions. An exce

lent agreement with Fig. 4~a! can be found, where at each G
threshold one of the MCLEs becomes negative.

A critical issue is about the robustness of the partial
and global GS, as well as the basin of attractions of the
state. As required by the stability of GS, initial states for
partner should lie in the same basin of attraction as the
cillator. For the Lorenz attractor with two foliages, GS c

FIG. 3. The maximum Lyapunov exponent of the Lorenz osc
lator againstr.

FIG. 4. ~a! The averaged distancesDi against the coupling
strength. They approach zero at different threshold couplings, i
cating the achievement of generalized synchronizations.~b! The
maximum conditional Lyapunov exponents for the two auxilia
units. Generalized synchronizations are achieved when they
the zero line.
1-3
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still be attained even if the oscillator and its partner evo
from completely different foliages due to the ergodicity
the attractor. In Fig. 5~a! and 5~b!, we give the evolution of
D1,2(t) with the same parameters as in Fig. 2 for«59.0 and
15.0, where the auxiliary oscillator evolves from an init
condition X i

8(0)52X i(0)1d i with d i being small random
numbers. It can be clearly found that for«59.0, D1→0, i.e.,
a partial GS can still be achieved. For«515, bothD1 and
D2 approach 0, indicating a global GS. Here we did n
exclude the possibility of a failure of GS for other coupl
systems or other forms of coupling. One can find examp
that GS is not satisfied@19,20#. But for the present system w
did not find this violation. The scenario of transitions fro
partial GS to global GS proposed in this paper istypical ~not
universal!, which can be observed in many systems. To f
ther illuminate it, we may test a typical case of coupl
Lorenz-Rossler systems, where the Lorenz and Rossler
sess rather different types of chaotic motions. For
x-coupled case one has

ẋ15s~y12x1!1«~x22x1!,

ẏ15rx12y12x1z1 ,

ż152bz11x1y1 ,

ẋ252vx22z21«~x12x2!,

ẏ25vx21ay2 ,

ż25 f 1z2~x22c!, ~9!

where for Lorenzs510, b58/3, r 535, and for Rosslera
50.165, v55.5, f 50.2, c510. We test the GS dynamic
by using the same way as above. In Fig. 6~a!, we computed
the average differencesD1,2 against the coupling. At a very
weak coupling«c

1'1.2, D2→0, indicating that the Rossle
oscillator is easier to be entrained. Due to the stronger
chasticity of the Lorenz oscillator, it is more difficult to ge

FIG. 5. The evolution ofD1,2(t) with the same parameters as
Fig. 2 for «59.0 and 15.0, where the auxiliary oscillator evolv
from a $2X i(0)1d i% with d i being small random numbers.
05621
e

t

s

-

s-
e

o-

synchronized. We find the threshold is at«c
2'12.3. We also

give the relation betweenx2 andx1 for different couplings.
In Fig. 5~b!, for «50.5 ~unsynchronized state!, it is shown
that x2 andx1 are almost uncorrelated. For«55.0 ~partially
synchronized state!, x2 andx1 has certain degree of correla
tions, as shown in Fig. 6~c!. In the global GS regime, e.g., a
«513.0,x2 andx1 fall onto a simpler manifold, as shown i
Fig. 6~d! for darker regions. Deviations from the global G
manifold can also be observed due to the typical interm
tency near the synchronization threshold.

Now it is important to extend the present idea to groups
N.2 coupled oscillators in order to verify the validity of th
above scenario. Taking theN53 case as an example. Be
cause the three oscillators are coupled together, then for
oscillator, e.g., oscillator 1, one cannot introduce auxilia
systems 28 and 38 that are independent. In this case, o
should introduce three auxiliaries, as shown in Fig. 7~a!.
Each auxiliary oscillator is driven by the other two oscill
tors ~e.g., 18 is driven by 2 and 3!. The equations of motion
for the three auxiliary systems have the same form as t
masters in the original system. Therefore, one may
which oscillator is the first that can be tamed by others, th
the second, and so on. In Fig. 7~b!, we give the average
differencesDi vs the coupling strength«. Here r 1550,
r 2555, andr 3560. It shows a scenario similar to the case
N52. At «c

156.4, D150, and the oscillator 1 is first syn
chronized. While in this regime one hasD2Þ0 andD3Þ0,
thus the oscillators 2 and 3 cannot be tamed by other os
lators in the group. With increasing the coupling, at«c

2

58.2, the oscillator 2 is also slaved; Finally at«c
3510.6 all

average differences become zero, indicating that all osc
tors are synchronized. The MCLEs plotted in Fig. 7~c! give a
clear picture for the above cascade. Therefore for theN53
case, one also observes a route from partial GS to global

One expects this route is a generic scenario for GS
many coupled chaotic oscillators. For theN53 case, oscil-
lators are coupled with the nearest-neighbor~NN! manner. It
is necessary to test the above scenario for a non-NN c

FIG. 6. ~a!: The average differencesD1,2 against the coupling.
The Rossler oscillator is easier to be entrained.~b!–~d!: The relation
betweenx2 andx1 for «50.5 ~unsynchronized state!, «55.0 ~par-
tially synchronized state!, and«513.0 ~global GS state!.
1-4
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TRANSITIONS FROM PARTIAL TO COMPLETE . . . PHYSICAL REVIEW E 65 056211
Thus we further investigate the caseN54, which is a mini-
mal number for non-NN cases. The sketch for the test of
is shown in Fig. 8~a!. The auxiliary elements have the sam
form of equations of motion:Ẋ i85Fi(Pi ,X i8)1«D(X i 11

2X i8)2«D(X i82X i 21). In Fig. 8~b!, the differences be-
tween the oscillators and their auxiliary partners are co
puted against the coupling strength for four Lorenz osci
tors with r 1,2,3,4560,61,62, and 63, respectively. One finds
good series forDi becoming zero at different threshold co
plings. The MCLEs plotting in Fig. 8~c! also present a clea
picture for the cascade of transitions from a partial GS t
global GS. Based on the above studies, one can expe
route from partial GS to global GS for a generalN coupled
nonidentical oscillators. The present study reveals an int
sic order embedded in complicated dynamics.

To conclude, in this paper we present the approach to
in mutually coupled nonidentical chaotic oscillators and
generic route from partial GS to the global GS is propos
The approach presented in this paper should be also valid
general systems with local or nonlocal, unidirectional or
directional couplings, and the scenario from the partial GS
the global GS also should be a generic feature. As we kn
the scenario of transitions from a partial order the glo

FIG. 7. ~a! A schematic plot of the auxiliary approach forN
53 mutually coupled oscillators.~b! The average distances var
with the coupling strength.~c! The maximum conditional Lyapunov
exponents for the three partners vary against the coupling stren
.
,
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order has been proposed in other forms of synchronizatio
e.g., complete synchronization, phase synchronization,
lag synchronization. We have also found the similar casc
for measuring synchronization for coupled symplectic ma
@21#. Therefore we have different kinds of synchronizatio
for coupled chaotic oscillators, and for each kind of synch
nization there exists a cascade of transitions from a lo
clustering to a global clustering. All these synchronizatio
reveal different degrees of internal self-organized orders.
the other hand, studies of the boundaries among these d
ent synchronizations and their relations is a subject t
needs a long-term exploration@22#. Furthermore, the roles
played by synchronizations in spatiotemporal pattern dyna
ics are also open problems.
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FIG. 8. ~a! The auxiliary approach toN54 mutually coupled
chaotic oscillators.~b! The same as Fig. 4~b! with N54. ~c! The
same as Fig. 4~c! with N54.
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