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Abstract  

Background 

Runx proteins are developmentally important metazoan transcription factors that form a 

heterodimeric complex with the non-homologous protein Core Binding Factor β (CBFβ).  CBFβ 

allosterically enhances Runx DNA binding but does not bind DNA itself.  We report the initial 

characterization of SpCBFβ, the heterodimeric partner of SpRunt-1 from the sea urchin 

Stronylocentrotus purpuratus.   

Results 

SpCBFβ is remarkably similar to its mammalian homologues, and like them it enhances the DNA 

binding of the Runt domain.  SpCBFβ is entirely of zygotic provenance and its expression is similar 

that of SpRunt-1, accumulating globally at late blastula stage then later localizing to endoderm and 

oral ectoderm.  Unlike SpRunt-1, however, SpCBFβ is enriched in the endodermal mid- and hindgut 

of the pluteus larva, and is not highly expressed in the foregut and ciliated band.  We showed 

previously that morpholino antisense-mediated knockdown of SpRunt-1 leads to differentiation 

defects, as well as to extensive post-blastula stage apoptosis caused by under-expression of the Runx 

target gene SpPKC1.  In contrast, we show here that knockdown of SpCBFβ does not negatively 

impact cell survival or SpPKC1 expression, although it does lead to differentiation defects similar to 

those associated with SpRunt-1 deficiency.  Moreover, SpRunt-1 containing a single amino acid 

substitution that abolishes its ability to interact with SpCBFβ retains the ability to rescue cell 

survival in SpRunt-1 morphant embryos.  Chromatin immunoprecipitation shows that while the 

CyIIIa promoter engages both proteins, the SpPKC1 promoter only engages SpRunt-1. 
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Conclusion 

SpCBFβ is a facultative Runx partner that appears to be required specifically for cell differentiation. 

Background  

Runx proteins are transcription factors that function critically in gene regulatory networks that 

control cell proliferation and differentiation during animal development [1].  The Runx family is 

defined by a highly conserved 128 amino acid sequence known as the Runt domain, which binds 

specifically to the DNA sequence TG
T
/CGGT [2, 3].  The sea urchin Runx transcription factor 

SpRunt-1 was discovered biochemically as a protein that binds this sequence in the cis-regulatory 

domain of the aboral ectoderm differentiation gene CyIIIa, an interaction that contributes to 

transcriptional activation of CyIIIa [4, 5].  SpRunt-1 transcripts are globally expressed in the early 

embryo, and then become localized predominantly to regions of continued growth and cell 

proliferation within larval oral ectoderm and endomesoderm [6].  Morpholino antisense-mediated 

knockdown of SpRunt-1 has shown that it is required throughout the embryo for cell differentiation 

[7] and survival [8].  The latter function is mediated by a positively-acting interaction between 

SpRunt-1 and its target gene SpPKC1, which encodes a conventional protein kinase C [8]. 

 

Runx proteins heterodimerize with another protein commonly referred to as core binding factor beta 

(CBFβ), a non-DNA binding protein that allosterically enhances the DNA binding of the Runt 

domain [9].  Mammalian CBFβ also increases the half-life of Runx1 by protecting it from ubiquitin-

mediated proteolysis [10].  Since Runx1 contributes to cell cycle control and its protein levels are 

cell cycle regulated [11], this suggests that CBFβ may be a regulatory subunit that modulates Runx 

activity during the developmental transition from proliferation to terminal differentiation.   
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Knockout of CBFb in mouse leads to embryonic lethality caused by a failure of hematopoiesis [12, 

13], a phenotype very similar to that caused by knockout of Runx1. As with RUNX1, chromosomal 

translocations involving CBFb are commonly associated with human leukemia [9].  Like Runx2, 

CBFb has also been shown to be important for osteogenesis, although its loss-of-function phenotype 

is not identical to that caused by Runx2 knockout since some osteoblast differentiation does occur 

[14, 15].  Drosophila has two CBFβ genes, brother and big brother, the products of which 

contribute redundantly to the functionality of the Runx proteins Runt and Lozenge [9].  These 

studies all indicate that CBFβ is important for Runx function; however, to date, no studies have 

definitively addressed the question of whether the Runx-CBFβ interaction is constitutive (obligate or 

context-independent) or facultative (regulatory or context dependent).  The latter possibility is 

suggested by the facts that (a) the interaction is inhibited by sequences within mammalian Runx2 

[16] and the C-terminal domains of some Runx1 isoforms [17], and (b) Runx proteins can bind 

DNA as a monomer, albeit less effectively than as a heterodimer [18].  Mouse CBFβ, which is 

ubiquitously expressed, has been shown to interact specifically with another protein termed Crl-1, 

which is expressed in subsets of neuronal cells [19].  Finally, avian CBFb displays a complex 

pattern of expression in early development that is not identical to the pattern of Runx1 expression, 

with some regions of the embryo expressing only one or the other gene [20].  Taken together, these 

observations invite speculation that Runx proteins might interact with only a subset of target genes 

(or with some target genes only part of the time) as a heterodimer with CBFβ, and that the choice 

between these alternative states may in part be determined by the specific Runx isoform as well as 

protein-protein interactions specified by the context of each particular tissue, cell type, and cis-

regulatory system. 
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Here we describe the cloning and initial characterization of SpCBFβ, the heterodimeric Runx 

partner from the sea urchin Strongylocentrotus purpuratus.  We show that SpCBFβ is expressed in a 

pattern that is similar but not identical to that of SpRunt-1.  Moreover, while SpCBFβ participates in 

the Runx-dependent activation of several genes including CyIIIa, it is not required for or involved in 

Runx-dependent activation of SpPKC1, which we showed previously to be critical for cell survival 

in the embryo [8].  Therefore, heterodimerization of SpRunt-1 with SpCBFβ occurs facultatively in 

the sea urchin, and is a context-dependent aspect of Runx-mediated transcriptional control.  

Results and Discussion 

SpCBFββββ expression during embryogenesis 

Sequences encoding the sea urchin homologue of CBFβ were amplified from S. purpuratus blastula 

stage cDNA by polymerase chain reaction (PCR) using degenerate primers corresponding to highly 

conserved regions of the protein.  The resulting amplicon was cloned and sequenced, and the 

sequence was used to obtain the full-length SpCBFβ mRNA by 5’ and 3’ RACE.  The SpCBFβ 

mRNA encodes a protein with a predicted molecular weight of ~21 kDa.  As shown in Fig. 1A, the 

deduced amino acid sequence of SpCBFβ is highly similar to that of its homologues from other 

phyla, and as would be expected, is more similar to the vertebrate representatives than to those from 

the non-deuterostome invertebrates.   SpCBFbeta gene sequences were located in the S. purpuratus 

genome database [21], and the exon-intron structure of the gene was deduced from alignment with 

the cDNA.  SpCBFbeta appears to be the only homologue in the S. purpuratus genome, and contains 

four introns, the positions of which are conserved in vertebrates (Fig. 1A).  In contrast, the 

Drosophila genes bro and bgb have no introns, while the C. elegans homologue is missing introns 1 
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and 4 (with its second intron displaced upstream in the coding sequence with respect to intron 3 of 

the deuterostome homologues; Fig. 1A). 

 

Electrophoretic mobility shift analysis (EMSA) was used to test whether SpCBFβ enhances the 

DNA binding activity of SpRunt-1.  Recombinant SpRunt-1 protein was reacted with a fluorescently 

labeled oligonucleotide probe containing the SpRunt-1 binding site from CyIIIa [5], either with or 

without pre-incubation with recombinant SpCBFβ.  DNA binding of full-length SpRunt-1, or a 

fragment containing only the Runt domain thereof, is substantially enhanced in the presence of 

SpCBFβ, which forms a complex with the SpRunt-1 protein (as indicated by a “supershift”; Fig. 1B, 

lanes 2 and 4), whereas SpCBFβ alone does not bind DNA (Fig. 1B, lane 5).  It is likely that native 

SpRunt-1 forms a heterodimeric complex with SpCBFβ in the embryo, and consistent with this, 

affinity purified SpRunt-1 protein from blastula stage nuclear extracts was initially identified as a 

heterodimer containing a 21 kDa subunit [4].  To confirm this, an antibody generated against 

recombinant SpCBFβ was used to probe an immunoblot of whole nuclear extract, nuclear extract 

immunodepleted with an anti-SpRunt-1 antibody, and the resulting immunoprecipitate.  A 21 kDa 

SpCBFβ-immunoreactive band present in blastula stage nuclear extract (Fig. 1C, lane 1) is 

specifically immunodepleted from the extract by the SpRunt-1 antibody (Fig. 1C, lane 2), and pulled 

down in the SpRunt-1 immuoprecipitate (Fig. 1C, lane 3), whereas the band is not similarly 

precipitated by non-specific IgG (Fig. 1C, lanes 4 and 5).   These data suggest that SpCBFβ exists in 

a complex with SpRunt-1 in vivo.  

 

RNA blot analysis shows that SpCBFβ is represented by a single species of transcript that is 

virtually absent in the egg and early embryo, and which accumulates dramatically during blastula 
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and gastrula stages (Fig. 2A).  The temporal expression of SpCBFβ was further examined by 

quantitative reverse transcription-coupled PCR (qRT-PCR).  SpCBFβ transcripts are present at low 

levels during cleavage, accumulate approximately 25-fold between 9 and 40 hours post-fertilization 

(hpf), and thereafter decline in abundance (Fig. 2B).  This pattern parallels that of SpRunt-1 [5], 

although possibly with a slight temporal lag.  Immunoblot analysis (Fig. 2C) reveals that there is no 

maternal SpCBFβ protein, and that zygotic accumulation of SpCBFβ protein is similar to that of its 

mRNA, although unlike the mRNA the protein levels do not increase significantly between 24 and 

40 h, suggesting that there may be translational or post-translational regulation during this interval.   

 

Quantitative RT-PCR was also used to measure the abundance of SpCBFβ transcripts.  Toward this 

end a standard curve was constructed from in vitro synthesized SpCBFβ mRNA (see Methods).  We 

used the same method to measure the abundance of SpRunt-1 transcripts, which were previously 

measured by an RNAase protection method [5].  The measurements of SpRunt-1 were in agreement 

with our previous measurements, indicating 7,000-8,000 transcripts per blastula or gastrula stage 

embryo.  In the mid-gastrula stage embryo, when SpCBFβ is maximally expressed, it is present at 

slightly higher levels than is SpRunt-1, determined by qRT-PCR to be 12,000 transcripts per 

embryo.  Thereafter, SpCBFβ transcripts decline in abundance to levels approximating those of 

SpRunt-1. 

 

The spatial pattern of SpCBFβ expression was examined by whole mount in situ hybridization 

(WMISH) (Fig. 3).  As with its temporal expression, SpCBFβ is expressed initially in a spatial 

pattern that is similar to that of SpRunt-1: at mesenchyme blastula stage, transcripts are globally 

distributed (not shown), and by late gastrula stage, they start to become enriched in the oral 
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ectoderm and endomesderm (Fig. 3A-G; arrows in 3E, F).   In the 2-day old gastrula endoderm 

expression is highest in a ring of cells just inside the blastopore (Fig. 3A-C; arrows in 3A).  

Expression is also enhanced in the oral ectoderm (Fig. 3D-F) and on the oral side of the hindgut 

region (Fig. 3G, arrow).  In the mature (4-day) pluteus, SpCBFβ transcripts are expressed most 

prominently in the differentiating midgut and hindgut of the endoderm (Fig. 3H-J; arrows in 3H), 

whereas in the ciliated band, expression is confined to the tips of the anal arm buds (Fig. 3K, 

arrows).  This is somewhat different from the larval expression pattern of SpRunt-1, which is also 

expressed in the endoderm but most prominently in the larval foregut region, as well as throughout 

the ciliated band [6]. 

SpCBFββββ is dispensable for the pro-survival function of SpRunt-1 

A morpholino antisense oligonucleotide (MASO) was designed to target the translational start site in 

the SpCBFβ mRNA.  Introduction of this MASO into embryos produces a distinctive phenotype that 

is milder than that obtained with SpRunt-1 MASOs (Fig. 4).  While SpCBFβ morphants display 

morphological defects, most notably a failure of skeletogenesis and a poorly differentiated ectoderm 

(Fig. 4F and see gene expression analysis below), unlike SpRunt-1 morphants, they gastrulate (Fig. 

4F, arrow).  The SpCBFβ morphants also have a secondary axis and appear to form bilateral clusters 

of skeletogenic mesenchyme cells (Fig. 4F, arrowhead), which normally occurs in response to 

signals from the oral ectoderm [22], suggesting that the ectodermal and skeletogenic differentiation 

defects are not caused by a failure of regional specification, but rather of subsequent cell 

differentiation.  That the SpCBFβ MASO effectively depletes embryos of SpCBFβ is shown by 

immunoblot analysis of endogenous protein (Fig. 4G).   

 



9 

The gastrulation defective phenotype associated with SpRunt-1 deficiency is largely a secondary 

effect of extensive apoptosis that occurs throughout the post-blastula stage embryo [8].  Since 

SpCBFβ morphants gastrulate, we hypothesized that they do not undergo the extensive apoptosis 

characteristic of SpRunt-1 morphants.  This is indeed the case: unlike embryos injected with the 

SpRunt-1 MASO (Fig. 5A), those injected with the SpCBFβ MASO display negligible TUNEL 

signal (Fig. 5B).  This suggests that SpCBFβ is dispensable for SpRunt-1 function in promoting cell 

survival.   

 

SpRunt-1 derived from exogenous mRNA rescues cell survival in SpRunt-1 morphants [8].  If 

SpCBFβ is dispensable for the survival function of SpRunt-1, then a SpRunt-1 protein that has been 

mutated so that it cannot interact with SpCBFβ should retain the ability to rescue cell survival in 

SpRunt-1 morphants.  To test this, we constructed a SpRunt-1 mutant protein wherein an arginine is 

substituted for a glycine residue that is essential for the interaction between the Runt domain and 

CBFβ (SpRunt-1-G115R).   Electrophoretic mobility shift analysis verifies that the Runt domain 

from SpRunt-1-G115R retains the ability to bind DNA as a monomer, but does not heterodimerize 

with SpCBFβ (Fig. 5C).  Importantly, SpRunt-1-G115R rescues cell survival in SpRunt-1 

morphants (Fig. 5D), indicating that heterodimerization with SpCBFβ is not required for the anti-

apoptotic function of SpRunt-1. 

SpPKC1 is a SpCBFββββ-independent Runx target 

The apoptotic phenotype in SpRunt-1 deficient embryos is specifically caused by a deficit in the 

expression of SpPKC1, a direct regulatory target of SpRunt-1 that encodes a conventional protein 

kinase C [8].  The fact that SpCBFβ-deficient embryos do not display an apoptotic phenotype 
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suggests that loss of SpCBFβ function does not adversely affect the expression of SpPKC1.  To test 

this we used reverse transcription-coupled PCR to measure the relative levels of SpPKC1 transcripts 

in either SpRunt-1 morphants or SpCBFβ morphants with respect to controls.  Whereas SpPKC1 is 

~7-fold under-expressed in SpRunt-1-deficient gastrula stage embryos, its expression at that stage is 

not significantly affected by knockdown of SpCBFβ (Fig. 6A).  In contrast, expression of the aboral 

ectoderm differentiation marker CyIIIa is diminished to an equivalent extent by knockdown of either 

SpRunt-1 or SpCBFβ, as are expression of two other putative SpRunt-1 targets [7], SpCyclinD and 

SpDri (the latter encodes a transcription factor required both for oral ectoderm differentiation and 

skeletogenesis [23]) (Fig. 6A).  These results indicate that at gastrula stage, SpRunt-1-mediated 

activation of CyIIIa, SpCyclinD and SpDri requires heterodimerization with SpCBFβ, whereas 

SpRunt-1-mediated activation of SpPKC1 does not.  Interestingly, CyIIIa expression is not as 

strongly affected by SpRunt-1 depletion as is SpPKC1 expression; this could relate to the fact that 

the splice-blocking MASO does not completely deplete SpRunt-1 protein [7], some of which is 

provided maternally [24].  These data suggest that SpPKC1 activity is particularly sensitive to 

SpRunt-1 protein levels, which might occur if the architectural context of the SpPKC1 cis-regulatory 

system confers selectivity for zygotically-expressed SpRunt-1 and/or SpRunt-1 isoforms that cannot 

heterodimerize with SpCBFβ.  

 

While these results indicate that SpCBFβ is not required for the transcriptional activation of 

SpPKC1, they do not rule out the possibility that SpCBFβ nonetheless heterodimerizes with SpRunt-

1 on its target sequences in the SpPKC1 promoter.  To address this issue, we performed chromatin 

immunoprecipitation (ChIP) of chromatin prepared from late gastrula stage embryos using 

antibodies to either SpRunt-1 or SpCBFβ.  Consistent with the expression data indicating that CyIIIa 
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activation requires the heterodimer, sequences from the CyIIIa promoter are recovered by ChIP 

using both antibodies, as are sequences from SpCyclinD (Fig. 6B).  In contrast, whereas sequences 

from the SpPKC1 promoter are recovered by ChIP using the SpRunt-1 antibody, they are not 

recovered by the SpCBFβ antibody (Fig. 6B).  We conclude that in the gastrula stage embryo, 

SpCBFβ does not exist in a heterodimeric complex with SpRunt-1 within the context of the SpPKC1 

promoter.   

… 

Conclusion  

Our data are consistent with the proposition that CBFβ is a facultative Runx partner that participates 

in the regulation of a subset of Runx target genes.  It will be important to analyze the SpPKC1 cis-

regulatory system to learn the contextual rules that facilitate CBFβ-independent Runx function, and 

to determine the biological rationale for Runx-mediated transcriptional regulation that does not 

involve CBFβ.  One intriguing possibility is that genes that need to be rapidly responsive to 

physiological signals require Runx-DNA binding complexes that are less stable and/or have shorter 

half lives.  Addressing this issue will require identification and comparison of the cis-regulatory 

systems from additional CFBβ-dependent and -independent Runx target genes. 
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Methods 

Animals 

Adult Strongylocentrotus purpuratus were obtained from Charles Hollahan (Santa Barbara Marine 

Biologicals, Santa Barbara, CA) or Pat Leahy (Coronal del Mar, CA).  Gamete collection and 

embryo culture were carried out as described previously [8]. 

Microinjection and imaging of embryos 

Embryo microinjections and imaging were carried out as previously described [8]. 

Cloning of SpCBFββββ 

An alignment of all the known CBFβ protein sequences was used to design a degenerate PCR 

primer set.  The following oligonucleotide primers were chosen to target conserved regions of the 

sequence alignment having amino acids with low codon degeneracy: N-terminal region 

MPRVVPDQ giving forward primer  ATG CCI MGI GTI GTI CCI GAY CA, and central region 

NGVCV(LIR)W(RK)GW giving reverse primer CCA GGI ICK CCA IMD IAC RCA IAC ICC 

RTT (where M=A+C /  Y=C+T  / K=T+G  / D=A+T+G  / R=A+G).   The SpCBFβ message was 

amplified from total RNA isolated from a 12 hour S. purpuratus embryo culture using 2-step PCR.  

Random primer was used in the cDNA synthesis step followed by the use of degenerate primers to 

direct PCR amplification of SpCBFβ from the random primed template.  The single 350 bp PCR 

product, which was the size expected for a conserved sequence relative to the consensus, was 

desalted and cloned into plasmid vector pGEM T easy® (Promega) by TA cloning.  A set of 6 

separate clones were fully sequenced and theoretical translation showed clear homology to 

consensus CBFβ.  The nucleotide sequence of the partial SpCBFβ clone obtained by PCR with 
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degenerate primers was in turn used to design specific primers for RACE.  5’ RACE was performed 

starting with total RNA isolated from a 24 hour S. purpuratus embryo culture.  Using GeneRacer™ 

(Invitrogen) following the manufacturer’s protocol with the random primer option, 5’ RACE cDNA 

was synthesized and used as a template for PCR with the included 5’ RACE primer as a forward 

primer and a SpCBFβ-specific reverse primer.  For 3’ RACE, the phosphatase and ligation steps 

described in the GeneRacer™ protocol, designed to enrich for the 5’ end, were eliminated.  3’ 

RACE cDNA was synthesized with the oligo dT primer option and used as a template for PCR with 

an SpCBFβ specific forward primer, the included 3’ RACE primer serving as the reverse primer.  

The final SpCBFβ sequence (Genbank accession number DQ205186) could not be extended further 

by RACE or database searches and is considered to be full-length. 

Recombinant protein production and electrophoretic mobility shift analysis (EMSA) 

Full length SpRunt-1 and the Runt domain thereof were each subcloned from the original pSPORT1 

plasmid into the bacterial expression vector pRSET A (Invitrogen).  For subcloning, PCR  primers 

were designed to insert the full length or partial coding sequence in frame relative to the his-tag 

encoded in the vector sequence.  Likewise, the full coding region of SpCBFβ was subcloned into 

pRSET A downstream of the his-tag.  For the SpRunt-1-G115R, base substitutions were made in the 

SpRunt-1 Runt domain/pRSET clone by the QuickChange® II Site-Directed Mutagenesis method 

(Stratagene), using the following primers:  Forward   T ACG ATG GTG ACG ATC GCA GCA 

GGG AAC GAT GAA AAC T  and Reverse  T ACG ATG GTG ACG ATC GCA GCG CGC AAC 

GAT GAA AAC T.  The based substitutions introduced a unique BssHll site for diagnostic 

purposes. 
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Each of the expression constructs was induced in a BL21-pLysS culture, and protein was isolated 

from the IPTG-induced culture using a Ni-NTA Spin Kit (Qiagen).  EMSA was performed with 

fluorescently labeled oligonucleotides as previously described [8], using either the CyIIIa Runx site 

described previously [5] or the following Runx-site oligonucleotides as probe (from the SpCyclinD 

promoter region): 5' - /5Cy5/ATT ATT CTC TGA CCA CAA TTT TTG TTA GA - 3' and 5' - TCT 

AAC AAA AAT TGT GGT CAG AGA ATA AT - 3'. 

RNA blot analysis 

RNA blot analysis was carried out on total RNA from staged embryos as described previously [6]. 

Quantitative reverse transcription-coupled PCR (qRT-PCR) 

For quantitation of relative transcript levels in control versus knockdown embryos, RT-PCR was 

performed as described previously [7], using RNA prepared from either 48 h (for SpPKC1, CyIIIa, 

and SpDri) or 36 h (for SpCyclinD) embryos.   For quantitation of absolute transcript numbers, a 

SpCBFβ standard was prepared using the T7 mMessage Machine (Ambion) with the linearized 

clone as an in-vitro transcription template.  After quantitation the SpCBFβ transcript was diluted in a 

10 fold series ranging from 2.5 x 10
3
 to 2.5 x 10

8
 transcript copies and each dilution was adjusted to 

a final 5 µg amount by the addition of total RNA extracted from eggs (there is no endogenous 

SpCBFβ transcript detectable in eggs).  Each of the diluted standards as well as 5 µg 24 and 40 hour 

total RNA samples were amplified by PCR using a 2-step procedure.  First strand synthesis was 

performed using Superscript™ lll (Invitrogen) with the random primer option.  PCR was then 

performed in a SmartCycler II (Cepheid) with SpCBFβ-specific primers and SYBR green detection.  

The final standard curve was used along with known values for total RNA yield per embryo and 
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known number of embryos used for the sample RNA extraction to determine the transcript copy 

number per embryo. 

Antibody production and immunoblot analysis  

The SpRunt-1 polyclonal antibody was described previously [5].  The SpCBFβ polyclonal antibody 

was similarly produced in rabbits by Cocalico Biologicals (Reamstown, PA), using purified 

recombinant SpCBFβ as antigen.  The SLBP antibody was a gift of Dr. William Marzluff 

(University of North Carolina).  Immunoblots were performed as described previously [7]. 

Whole mount in situ hybridization (WMISH) 

 WMISH was performed by the methodology of Ransick and Davidson [25], as described in detail in 

[26]. 

Morpholino antisense oligonucleotides 

Morpholino antisense oligonucleotides (MASOs) were designed by and purchased from GeneTools, 

LLC (Corvallis, OR).  The sequence of the SpCBFβ MASO is: 

CTACTCTGGGCATAGTTGACATCGG.  The SpRunt-1 MASO m5 was described previously [7].  

The standard non-specific control MASO from GeneTools was used as a negative control. 

Terminal transferase-mediated dUTP nick end labeling (TUNEL) assay 

TUNEL assays on fixed embryos to image apoptosis were performed as previously described [8]. 

mRNA synthesis 

For rescue experiments, a mutation that changed Gly 115 to Arg was made in the SpRunt-1 full 

length rescue clone [7] by the QuickChange® II Site-Directed Mutagenesis method (Stratagene), 



16 

using the primers described above for the SpRunt-1 expression plasmid.  The T7 mMessage 

Machine (Ambion) was used to synthesize full-length capped mRNA for microinjection. 

Chromatin immunoprecipitation (ChIP) 

ChIP was carried out as previously described [8], using chromatin prepared from 48 h embryos and 

polyclonal IgG specific for SpRunt-1 and SpCBFβ.  Non-immune or pre-immune IgG was used as a 

specificity control for anti-SpRunt-1 and anti-SpCBFβ antibodies, respectively.  The following 

primers were used for PCR amplification ChIP samples:  SpPKC1: 

GACCCCTGGCTTAATATGTTGATGTGTT (forward) and 

CCTTCATCTCAAACGAAGAATCCGACAT (reverse); CyIIIa: 

GTAGCACACGGAGAGATTGTGGGACAT (forward) and 

GGATCGGGGTTAGAGTTACATTTGGCTT (reverse); SpCyclinD: 

AGAAACGAATGTATCCGTGTGTTGTGAA (forward) and 

GCGAGACATAACTTCCTTGATCGTGCTA (reverse); and SpCdk4: 

CAGGAGCGTAGTCAATCCGCATCAA (forward) and 

CAGCCTGCAACTTCTGAGATGCTTTGT (reverse). 

… 
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Figures 

Figure 1 - SpCBFββββ structure and heterodimerization with SpRunt-1 

(A) Alignment of CBFβ sequences from S. purpuratus (Sp) zebrafish (Dr), Homo sapiens (Hs, 

variant 2 of the two mammalian splice variants), mouse (Mm, variant 1 of the two mammalian splice 

variants), Drosophila (two genes, DmBro and DmBgb), and C. elegans.  Amino acid residues that 

are identical between SpCBFβ and at least one other homologue are highlighted in black, and 

conserved substitutions are highlighted in grey.  Amino acid pairs of which the respective codons 

are separated by introns in each gene are shown underlined and in boldface; the four introns 

conserved between urchin and vertebrates are indicated by arrowheads.  (B) EMSA analysis using 

recombinant Runt domain (RD) or full-length SpRunt-1 (FL) either alone or in the presence of 

recombinant SpCBFβ.  Note that the full-length SpRunt-1 does not bind DNA very effectively by 

itself, suggesting the presence of domains that inhibit DNA binding within the full length protein.  

SpCBFβ complexes with both the Runt domain and full-length SpRunt-1, as indicated by a 

“supershift”, but does not bind DNA by itself.  (C) Immunoblot of SpCBFβ from nuclear extract 

(NE), and nuclear extract immundepleted (ID) and immunoprecipitated (IP) with anti-SpRunt-1 or 

nonspecific IgG.  Molecular weight markers (in kilodaltons) are shown on the right. 

Figure 2 - Temporal expression of SpCBFββββ 

(A) Northern blot of total RNA from egg, morula, blastula, and gastrula stage embryos probed with 

SpCBFβ.  The ethidium bromide stained rRNA bands from the same gel are shown as a loading 

control.  (B) Temporal expression of SpCBFβ and SpRunt-1 as measured by RT-PCR. (C) 

Immunoblot of equivalent amounts of total protein from egg (E), morula (M), early blastula (EB), 
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mesenchyme blastula (MB), early gastrula (EG), late gastrula (LG) and pluteus stage (P), probed 

with antibodies to either SpCBFβ or SLBP (a positive control for the presence of intact protein in 

the egg and early embryo extracts).   

Figure 3 - Spatial expression of SpCBFββββ 

Whole mount in situ hybridization of (A-G) Two day old gastrula stage embryos showing global 

expression, with enrichment in endoderm (e) and parts of the oral ectoderm (oe), and (H-K) four day 

old pluteus showing expression localized to midgut (m) and hindgut (h) endoderm, and some 

expression in the ciliated band of the anal arm buds (K, arrows).  

Figure 4 - Comparison of SpCBFββββ and SpRunt-1 morphant phenotypes 

DIC images of (A) 24 h and (B) 72 h control MASO injected embryos; arrow in (B) points to 

skeletal rod (spicule); (C) 24 h and (D) 72 h SpRunt-1 MASO injected embryos; and (E) 24 h and 

(F) 72 h SpCBFβ MASO injected embryos; black arrow in (F) points to tripartite gut, and white 

arrowhead points to a “ventrolateral” cluster of skeletogenic mesenchyme cells.  Scale bars = 20 

µm; embryos in (A), (C), (D) and (E) are to the same scale.  (G) Immunoblot of total blastula-stage 

embryo extract showing that the SpCBFβ MASO is effective in depleting endogenous SpCBFβ 

(arrow).  

Figure 5 - SpCBFββββ does not contribute to the anti-apoptotic function of SpRunt-1  

(A) Gastrula stage SpRunt-1 morphant fluorescently imaged with TUNEL (green, indicating 

apoptosis) and DAPI (blue, indicating DNA). (B) Gastrula stage SpCBFβ morphant fluorescently 

imaged with TUNEL and DAPI as in (A).  (C) EMSA of recombinant wild-type and mutant 

(G115R) Runt domain (α) from SpRunt-1, in the presence or absence of recombinant SpCBFβ.  

Note that while the G115R mutant Runt domain binds DNA, it does not heterodimerize with 
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SpCBFβ.  (D) Gastrula stage SpRunt-1 morphant that has been co-injected with full-length mRNA 

encoding SpRunt-1-G115R, fluorescently imaged with TUNEL and DAPI as in (A).  Note that 

while cell survival is rescued, as indicated by a lack of TUNEL signal, other aspects of development 

such as skeletogenesis are not. 

Figure 6 - SpCBFββββ is not involved in Runx-mediated regulation of SpPKC1 

(A) Relative expression levels of SpPKC1, CyIIIa, SpCyclinD and SpDri as determined by RT-PCR 

analysis of RNA isolated from gastrula stage SpRunt-1-knockdown and SpCBFβ-knockdown 

embryos.  Each bar represents the average +/- standard deviation in the level of expression with 

respect to controls from two or more microinjection experiments.  The dashed line indicates a 3-fold 

reduction of expression, which is taken here to be the minimum level of reduction considered to be 

significant.  Note that whereas the expression of CyIIIa, SpCyclinD and SpDri are similarly affected 

by depletion of either SpRunt-1 or SpCBFβ, expression of SpPKC1 is much more strongly affected 

by SpRunt-1 depletion than by SpCBFβ depletion (asterisk). (B) ChIP of CyIIIa, SpPKC1, 

SpCyclinD and SpCdk4 using anti-SpRunt-1 and anti-SpCBFβ antibodies and chromatin prepared 

from late gastrula stage (48 h) embryos.  A product of the expected size was obtained from the input 

DNA with each primer set, confirming the efficacy of the primers and PCR conditions (not shown).  

SpCdk4, which was not recovered by ChIP with either antibody, was chosen as a specificity control 

because its expression levels are not affected by knockdown of either SpRunt-1 or SpCBFβ. 
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