
Mechanisms of fluorescence blinking in semiconductor nanocrystal
quantum dots

Jau Tang and R. A. Marcusa�

Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125

�Received 8 April 2005; accepted 12 June 2005; published online 8 August 2005�

The light-induced spectral diffusion and fluorescence intermittency �blinking� of semiconductor
nanocrystal quantum dots are investigated theoretically using a diffusion-controlled
electron-transfer �DCET� model, where a light-induced one-dimensional diffusion process in energy
space is considered. Unlike the conventional electron-transfer reactions with simple exponential
kinetics, the model naturally leads to a power-law statistics for the intermittency. We formulate a
possible explanation for the spectral broadening and its proportionality to the light energy density,
the −3/2 power law for the blinking statistics of the fluorescence intermittency, the breakdown of
the power-law behavior with a bending tail for the “light” periods, a lack of bending tail for the
“dark” periods �but would eventually appear at later times�, and the dependence of the bending tail
on light intensity and temperature. This DCET model predicts a critical time tc �a function of the
electronic coupling strength and other quantities�, such that for times shorter than tc the exponent for
the power law is −1/2 instead of −3/2. Quantitative analyses are made of the experimental data on
spectral diffusion and on the asymmetric blinking statistics for the “on” and “off” events. Causes for
deviation of the exponent from the ideal value of −3/2 are also discussed. Several fundamental
properties are determined from the present experimental data, the diffusion correlation time, the
Stokes shift, and a combination of other molecular-based quantities. Specific experiments are
suggested to test the model further, extract other molecular properties, and elucidate more details of
the light-induced charge-transfer dynamics in quantum dots. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1993567�

I. INTRODUCTION

The developments in low-dimensional materials have led
to the study of quasi-zero-dimensional systems, known as
quantum dots �QDs� or nanocrystals. Nanofabrication tech-
niques have opened a new realm of scientific research. The
QDs have unusual optical and electrical properties such as
narrower transition linewidth, larger oscillator strength, and
tunable band gap covering the visible range. QDs are cur-
rently explored extensively in biological tagging
applications.1 It has also been suggested that QDs may have
the potentiality of providing technological applications such
as new types of laser, electro-optic modulation devices, high-
density memory devices, and logic gates, among others.2

Although the size of quantum dots can be controlled in a
reliable way using colloidal nanocrystal preparation meth-
ods, and the impact of quantum size effects on optical and
electronic properties is understood to some extent, the influ-
ence of less controllable surface defects on these properties
remains much unknown. For example, the blinking
phenomenon3–9 �luminescence intermittency� of QDs and its
unusual power-law distribution in the histogram of the on-off
emission events are still not clearly understood. Intermit-
tency is a phenomenon of a QD showing alternating periods
of a bright state �light-induced fluorescence� and a dark state
�no emission even under continuous light illumination�.

Kuno et al.8 have provided an excellent review of the
emission intermittency and examined existing models. They
also offered a new charge-tunneling model to treat the phe-
nomenon. Because these models are phenomenological, the
physical origin of those hidden variables remains unclear. It
is not clearly understood how for such a small QD particle
the distribution of the tunneling distance �a hidden variable�
can cover five orders of dynamic range in order to account
for eight decades5 of probability densities in experimental
data.

A possible connection of the power-law statistics to the
first passage theory in real space or in configuration �energy�
space was discussed by Empedocles and Bawendi10 and Jung
et al.11 In the first passage theory,12,13 one considers one-
dimensional �1D� free-space diffusion with an absorbing end
point. If the absorption rate at the boundary point is much
greater than the in-chain hopping rate, the rate of overall
population change follows t−3/2 power law.12,13 The experi-
mental value for the exponent varies among different re-
search groups, some are close to −1.5,4,5,7,14 and yet some are
slightly higher.6,8,9,15,16 A tabulation of the data on the inverse
power is given later in Table V.

There are several central questions about QD blinking
that one would like to explain on a fundamental basis: �1�
Why is the exponent for the power law so close to −1.5
instead of −1, −2, −3, or some other value? �2� Why is the
power law universal for different QD size, light intensities,
and temperatures for the “off” events? �3� Why do the “on”-a�Electronic mail: ram@caltech.edu
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time events follow the same power law as the off events? �4�
Why does the power law exist and why does it cover such a
large dynamic range �eight decades� of probability density?
�5� What mechanism causes only the on event power-law
distribution to break down at higher light excitation intensi-
ties, longer times, and higher temperatures,4 and what math-
ematical expression best describes the bending tail? �6� What
role does spectral diffusion play in QD blinking?

Strong evidence for the correlation between the blinking
events with spectral diffusion has been obtained in several
studies.17–19 The spectral diffusion data and the blinking phe-
nomenon of QDs are analyzed in the present theory using a
simple light-driven one-dimensional diffusion model in en-
ergy space on parabolic potentials associated with a hole or
electron transfer inside shallow traps. The model proposed
here provides some molecular answers to the above ques-
tions and also permits certain molecular-based properties or
combinations of them to be extracted from the data, and
suggests further experiments.

In the conventional electron-transfer reactions solvent
relaxation is frequently very fast and the electron-transfer
reaction is then usually characterized by a single exponential
decay.20 However, because of very slow energy fluctuations,
as clearly evident from the spectral diffusion measurements,
the conventional description of an exponential decay is no
longer valid.

This model is based on the reaction-diffusion �the “sto-
chastic Liouville”� equation for a one-dimensional diffusion
process in energy space. A reaction-diffusion approach has
been used in the studies21–25 of dynamic solvent effects in
electron-transfer reactions, and in the present work, slow
“structural diffusion” of the QD plays a major role. The fluc-
tuating Stark effect due to charges near or in the QD has
been proposed as contributing to the spectral diffusion and
intermittency.17 The DCET model leads to a −1.5 power-law
decay for both on- and off-time statistics. It also leads to the
observed breakdown of the power law with a bending tail for
the on-time events,4 and eventually for the off-time events as
well at much longer time. Anomalous diffusion could cause
the exponent to deviate from the ideal −1.5 value and will be
discussed in Appendix C.

II. THE PHOTOINDUCED DIFFUSION-CONTROLLED
ELECTRON-TRANSFER „DCET… MODEL

A. Modeling spectral diffusion in QDs

To examine the spectral diffusion observed in the fluo-
rescence of QDs, we consider a 1D diffusion on a parabolic
free-energy potential representing the excited state �L*� of the
QD and a second parabola representing the ground state of
the QD, �G�. QDs are known to have a very narrow fluores-
cence spectrum, but a broad absorption spectrum. As illus-
trated in Fig. 1�a�, this fact indicates that a photoinduced
electron-hole pair relaxes rapidly to a band-edge state �L*�
via radiationless processes prior to emission. In Fig. 1�b�
parabolic potentials with q as the reaction coordinate are
assumed, where q0 is the horizontal displacement between
the free-energy parabolic potential well for �L*�, UL�q�
=�q2 /2, and that for �G�, UG�q�=��q+q0�2 /2−Eg, where Eg

is the free-energy gap between the minima of these two po-
tential wells. This coordinate q has been used in the past for
radiative processes and for discussion of the Franck-Condon
principle.26

The differential equation for classical diffusion on a har-
monic potential is well known27 and can be applied here. The
rate equations for the probability f�q , t� of finding a QD at q
in state �L*� is given by

�

�t
f�q,t� = D1� �2

�q2 f�q,t� +
1

k�1
2

�

�q
� f�q,t�

�

�q
U1�q��� ,

�1a�

where D1 is the diffusion constant related to �1, the diffusion
correlation time constant by �1=�1

2 /D1, and

��1
2 = ���/2�coth���/2kBT� 	 kBT , �1b�

where kBT is the classical limit25 and � is the structural
vibration frequency of the QD. According to Empedocles
and Bawendi,10 the diffusion is light induced and depends on
the light intensity and the excess photon energy. Such diffu-
sion on the potential surfaces for �L*� results in spectral dif-
fusion of the observed spectrum. There are higher electronic
states, but there is relaxation to �L*�, the excess energy being
released to the lattice also assists diffusion.10

For an initial population at any given point q of the
reaction coordinate, the probability density G�q ,q� ; t� of
finding this QD that was initially at q to be at another point
q� at time t is given by27

G�q,q�;t� =
1


2��1
2�1 − exp�− 2t/�1��

�exp�−
�q − q�exp�− t/�1��2

2�1
2�1 − exp�− 2t/�1��� . �2�

One can now determine the time evolution of the spec-
tral linewidth for the radiative transition from �L*� to �G�. By
the Franck-Condon principle, the spectral emission energy is

FIG. 1. �a� Schematic diagram for the ground state �G� and the excited light
state �L*�. The radiationless decay from the higher excited electronic states
to �L*� is much faster than fluorescence decay ��F� from �L*� to �G�, and W
is the photoexcitation rate. �b� Diffusion on potential of �L*� and with q as
reaction coordinate. �c� Depiction of an event of intermittency and spectral
diffusion as random walk in N-dimensional space projected onto the hyper-
planes of q and Q coordinates, where Q is the reaction coordinate describing
electron transfer between the light and dark states.
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UL�q�−UG�q�, i.e., Eg−�q0
2 /2+�qq0. The change in coordi-

nate q describes a spectral diffusion in the fluorescence of
�L*�.

From the time evolution of f�q , t� and Eq. �2�, the second
moment of the emission spectrum is

	2�t� = 
��U�q� − 
�U�q���2�

= �
−





dq��qq0�2G�q,q;t�

= 2���1
2�1 − exp�− t/�1�� , �3�

where �U�q�=UL�q�−UG�q�, �=�q0
2 /2 is the “excitation re-

organization energy,” 2� is the Stokes shift, and ��1
2 is

given by Eq. �1b�.

B. Modeling intermittency in QDs

Unlike the static origin assumed in a distributed rate
model, the power-law decay in a QD is assumed here to have
a dynamic origin resulting in energy fluctuations and diffu-
sion. In the present study, nonadiabatic electron-transfer
theory with diffusion-controlled reactions is explored. In this
case, diffusive processes occur along free-energy potentials
with a sink at the energy level crossing Q=Qc for the elec-
tron transfer between the light and the dark states. The elec-
trostatic properties of the dark QDs have been studied by
Krauss and Brus28 and Cherniavskaya et al.29

To treat intermittency phenomenon,2–8 a four-level
model is proposed and the reaction-diffusion equation is
solved. The model consists of two neutral states and two
charge-separated states. �D� describes a charge-separated
state with a charge in the core and a countercharge assumed
to be trapped in surface states30,31 just below the edge of the
quasiconduction band or just above the edge of the quasiva-
lence band. �D*� represents the excited charge-separated state
of �D� with an additional exciton. Figure 2�a� schematically
represents a total energy for each state, where the transition
between �L*� and �G� is the bottleneck process responsible
for intermittency. The spectral diffusion for the emission
from �L*� to �G� was described in Sec. II A. On a quartz
substrate used in most experiments, photoemission from �D*�
and �D� is quenched by an Auger process, so the charge-
separated QDs appear dark and only the neutral QDs emit
photons.2–8 Photoemission from �D*� to �D� for QDs was
observed on a rough gold surface by Shimizu et al.7 and this
fact indicates that the surface-enhanced radiative rate has be-
come comparable with the rate of the Auger nonradiative
process previously responsible for the QD being dark. The
binary jump between two emission tracks of a QD on a
rough gold surface7 indicates forward and backward transi-
tions between �L*� and �D�, and the emission tracks represent
the vertical energy difference between �L*� and �G� on one
hand, and �D*� and �D� on the other.

A reaction coordinate Q is defined for electron transfer
as the vertical difference between free-energy parabolas of
the neutral light state �L*�, and the low-lying charge-
separated �dark� state �D� resulting from an electron transfer

is introduced. This Q has been used earlier by Marcus32 and
Warshel33 as a reaction coordinate for electron-transfer reac-
tions.

As illustrated in Fig. 1�c�, at a birth of the on state a QD
jumps from the off state at the energy level crossing at Q
=Qc. This one-dimensional coordinate Q describes an en-
semble of points in a hyperplane in N-dimensional space.32

For each event of a light or dark period, Q starts and ends at
Qc, the crossing point of the parabolas for �L*� and �D�. The
coordinates q and Q are discussed further in Appendix B.

To calculate the blinking statistics for, say, the on events,
one needs to evaluate the lifetime of the distribution for a
QD that stays in a light state. The initial condition for motion
in the light or dark state is a delta-function population at the
crossing. As illustrated in Fig. 2�b�, the potentials are defined
as U1�Q�=�E�Q+Q1�2 /2 and U2�Q�=�G0+�EQ2 /2, where
�=�EQ1

2 /2 is the well-known reorganization energy for elec-
tron transfer and �G0 is the free-energy gap for electron
transfer between �D� and �L*�. The energy-level crossing �the

FIG. 2. �a� Schematic diagram for the DCET model. The transition between
�L*� and �D� represents the bottleneck charge separation and recombination
processes. Decay from �D*� to �D� is caused by radiationless Auger pro-
cesses ��A� on ordinary substrates, but can become radiative on gold surface.
�b� Diffusion on the parabolic potential surfaces for �L*� and �D� across a
sink at the energy-level crossing governs the intermittency phenomenon.
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sink� occurs at Qc= ��G0−�� /
2�E�. The q and Q are dif-
ferent projections from an N-dimensional surface onto only a
single coordinate, each of which describes an
�N−1�-dimensional ensemble. The force constant �E in elec-
tron transfer is expected to be different from the � involved
in spectral diffusion, since the two coordinates represent a
differently weighted linear combination of N−1 individual
oscillators.

The reaction rate is written in terms of a nonadiabatic
electron-transfer rate expression represented by a delta-
function term in Eq. �4a� and �4b� below. The distribution of
lifetimes of a QD to stay continuously in the neutral state is
calculated from the solution of this equation. According to
Eq. �A2� in Appendix A, the time evolution of population
distribution 
11�Q , t� on potential U1�Q� and a sink at Qc

satisfies

�

�t

11�Q,t� =

1

�1
��1

2 �2

�Q2 + �1 + �Q + Q1�
�

�Q
��
11�Q,t�

−
2��V12�2

�
��U1�Q� − U2�Q��
11�Q,t� , �4a�

where �1
2 /�1�D1, V12 is the electronic coupling between

states �L*� and �D�, and the initial condition 
11�Q ,0�=��Q
−Qc�.

Similarly, for a single dark QD on U2�Q�, the population
distribution 
22�Q , t� satisfies

�

�t

22�Q,t� =

1

�2
��2

2 �2

�Q2 + �1 + Q
�

�Q
��
22�Q,t�

−
2��V21�2

�
��U1�Q� − U2�Q��
22�Q,t� , �4b�

with the initial condition 
22�Q ,0�=��Q−Qc�. Equations
�4a� and �4b� describe a 1D reaction-diffusion on parabolic
free-energy potentials with a reaction sink at their intersec-
tion.

The blinking statistics Pon�t� for the on events of the
neutral QDs �or Poff�t� for the off events of the dark QDs� are
defined as the waiting-time distribution function for a QD
that is initially in the neutral “light” states �G� and �L*� �or
charge-separated “dark” states �D*� and �D�� and is turned
into a dark state �or light state� between t and t+dt per unit
dt.

The Green function method34 can be used to solve for
P�t� from Eq. �4a� or �4b�. Its explicit approximate form is
given by Eq. �A11�. To obtain Eqs. �5a�–�5c�, �6a�, and �6b�
below we introduce the approximation �Appendix A� that t
��k. If t is much smaller than the critical time constant tc,k,
Eq. �A11� can be approximated by

Pk�t� 	
1


�tc,k

t−1/2 if t � tc,k, �5a�

and if, instead, t is much longer,

Pk�t� 	

tc,k

2
�
t−3/2 if t � tc,k, �5b�

where

tc,k � 2�E�� ��k

�Vk�2�
�k
�2

. �5c�

For time t comparable to the saturation time I /�k, but
shorter than the effective diffusion time constant �k, Pk�t� for
the blinking statistics is obtained in Eq. �A11�,

Pk�t� 	

tc,k

2
�
t−3/2 exp�− �kt�, k = 1�on� or 2�off� ,

�6a�

where

�on =
�� + �G0�2

8�1�E��1
2 , �off =

�� − �G0�2

8�2�E��2
2 . �6b�

Equations �5a�–�5c�, �6a�, and �6b� are key results for the
intermittency in the present work, and Eq. �3� is the key
equation for spectral diffusion.

III. DISCUSSION OF EQUATIONS

In the present model the role of the light absorption in
spectral diffusion is to catalyze the rate of attainment of a
thermal equilibrium distribution of q �i.e., change �k rather
than create an athermal distribution�. An experiment which
can distinguish the two effects is described later. Since �E�1

2

is given by Eq. �1b�, the 	2�t=
� in Eq. �3� is independent of
the light intensity. That is, ultimately, the light absorption
leads to the attainment of a thermal equilibrium, whose po-
sition is independent of light intensity. Since diffusion is
light driven and 1/�1 is proportional to the light intensity or
W, Eq. �3� implies that the second moment has a universal
proportionality to the combined variable Wt, or, equivalently,
to the light energy density.

The critical time tc,k appearing in Eqs. �5a�–�5c� and di-
viding the two power-law regimes has an interesting physical
interpretation: Equation �6a� can be rewritten as

2�

�
�Vk�2tc,k = 
4Dktc,k � 
2�E� , �7a�

with Dk=�k
2 /�k and 
2�E� is related to the slope of the

potential at the crossing. The right-hand side of Eq. �7a� is
approximately the energy spread in q space at time tc,k due to
diffusion. The left-hand side, when multiplied by a density of
states, is the population depletion by the sink in time tc,k. The
reciprocal of the right side serves as that state’s density, and
so this equation means that tc,k is the time in which the popu-
lation has largely been depleted due to disappearance into the
sink. What is observed in the intermittency studies, since t
� tc,k, is only a very small residual survival of a light �or for
k=2, dark� QD state.

The power law of t−1/2 for t� tc,k can be understood in
physical terms by noting that the probability decay rate,
�P�t� /�t, equals the product of 2��Vk�2 /�, the density of
states, and 
kk. The density of states near Qc at time t is
approximately 
2�E� /
4Dkt, and so this probability decay
rate varies as t−1/2. For times longer than tc,k, the population
diffusion gradient has been set up at the sink at Qc, and a
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population varies as t−1/2, and so the rate of change of this
population �P /�t in this now diffusion-controlled regime is
proportional to t−3/2.

The physical significance of �k in Eq. �7b� can also be
seen by using the equivalent for �k given by Eq. �A9a� and
�A9b�, �k= �Qc−x0,k�2 /4�k�k

2, and Eq. �A8� for the Green
function. The mean-square displacement from the crossing
point at equilibrium �t=
�, 
�Q�
�−Qc�2�, is related to �k�k

by

�k�k =

�Q�
� − Qc�2�

4�k
2 −

1

4
=

Ea,k

2kBT
, �7b�

where EA,k defined in Eq. �A9b� is the energy difference
between the crossing point and the bottom of the potential
well Uk�Q�. Accordingly, the damping factor �k reflects the
additional loss rate in surviving probability, where the poten-
tial crossing does not occur at the bottom of the potential
well.

If the potential Uk�Q� were flat, the right-hand side of
Eq. �7b� would vanish, and with it the exponential decay
term would vanish since exp�−�kt�=1 at �k=0. Thus, the
exponential decay is associated with the effect of the poten-
tial Uk causing the residual population to move away from
Qc more rapidly than it otherwise would, so causing the rate
of population decay to drop more precipitously.

We consider next the differences in �k for k=1 and 2. In
Eq. �6b� �k is proportional to 1/�k. As compared to the fluo-
rescence decay time ��10 ns�35 of the light state, Auger re-
laxation ��30 ps� in the dark state is fast,36 and �2 could be
substantially longer. A smaller �2 could be attributed to a
larger �2 than �1, according to Chung and Bawendi37 for their
observation of a very slow backward reaction. The other con-
trolling factor for �k, namely, ��±�G0�2, is the size of �G0.
A positive value for �G0 could also lead to a smaller
bending.

The observable number of decades for the t−3/2 power
law is limited both above and below; in the present model
the upper time limit is dictated by the factor 1 /�k, which is
10–100 s for the light state, depending on light intensity,
temperature, etc. The lower limit is dictated by the critical
time tc,k in Eq. �6a�. This transition of the power law in Fig.
3�a� has not been observed in 0.1 ms, which is currently the
shortest time used for the power-law data from Kuno et al.8

and Shimizu et al.5 Accordingly, this critical time must be
shorter than 0.1 ms. The regimes of −1/2 and −3/2 are il-
lustrated in the numerical calculations given in Fig. 3�a�. A
power law different from −1/2 and −3/2 can arise if anoma-
lous diffusion is present due to a distribution of the diffusion
correlation times and will be discussed in Appendix C.

IV. ANALYSIS OF THE EXPERIMENTAL DATA

A. Analysis of the spectral diffusion data

The experimental observations by Empedocles and
Bawendi10 showed the intimate correlation between the spec-
tral diffusion and the intermittency, where a QD changes in
time between the charge-separated dark state and the neutral
light state. The spectral peak of photoluminescence in QDs

changes stochastically and the linewidth becomes broadened
in 10–100 s and increases with light intensity.10

According to the estimate of Osborne et al.38 the absorp-
tion cross section for a typical QD is of the order of
10−15 cm2 eV. With an excitation intensity of 400 W/cm2,
the time interval between absorption of photons is 1 /W
�1 �s, whereas the fluorescent lifetime for an electron-hole
pair in a QD is of the order of 10 ns.34 Accordingly, W
��F for most experiments with an intensity below
2 kW/cm2.

The linewidth data of Empedocles and Bawendi10 are
plotted in Figs. 4�a� and 4�b�. They show the dependence of
the second moment on time and excitation energy. A factor
of �1/8�ln 2 was used in relating the second moment to the
square of the linewidth. The dependence of the second mo-
ment on energy density �the product of time and excitation
intensity� is illustrated in Fig. 5�a�. This universal depen-
dence on energy density was experimentally observed and
pointed out by Empedocles and Bawendi.10 The fitted curves
are shown as dotted lines in Figs. 4�a�, 4�b�, and 5�a�. The
parameters in Table I are obtained by fitting Figs. 4�a� and

FIG. 3. �a� P�t� of Eq. �A11� for various values of the critical time tc for the
ordinary diffusion with 	2�t�� t. The change of the power-law behavior
with a different exponent occurs at t= tc, and the transition point is indicated
by the vertical dot line for each case. �b� The blinking statistics P�t� for two
cases with the second moment of spectral broadening 	2�t�� t vs 	2�t�
� t1/2. In the first normal diffusion case, P�t�� t−1/2 at shorter time and
P�t�� t−3/2 at longer time. In the second anomalous diffusion case, at shorter
time P�t�� t−1/4, but changes into t−7/4 later.
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4�b� with 	2�t�=2���1
2�1−exp�−2t /�1�� for an excitation

intensity I of 85 W/cm2. Here the light-driven diffusion
model is assumed with 1/�1�W /�F�1,0. In the dark, there is
an intrinsic, but small diffusion component that is neglected
in this work. Because the curve at 40 K approaches satura-
tion faster, the fitting of ���1

2 is more reliable. Accuracy can
be improved if more data near saturation were available. For
curve fitting at three lower temperatures, the constraint of
��1

2= ��� /2�coth��� /2kBT� was imposed. The parameters
���1

2 and I0 for Fig. 4�b� are given with standard deviations
in parentheses, using 	2�t�=2���1

2�1−exp�−I / I0�� for tobs

=30 s, where I0=�F�1,0 /2tobs	abs, with 	abs as the cross sec-
tion for photon absorption38 and W= I	abs. In fitting Fig.
4�b�, the asymptotic value of 2���1

2 at a given temperature
was obtained earlier from Fig. 4�a�. The parameters in Table
II are obtained by fitting the data in Fig. 5�a� using this
formula for 	2, with I / I0 replaced by J /J0, where J repre-
sents the energy density �I� t� and J0=�F�1.0 /2	abs.

From Fig. 4�a� and Table I for excitation intensity at
85 W/cm2, the time constant �1 and 2���1

2 for the spectral
diffusion have been determined, with ��1

2 being given by Eq.

�1b�. From the analysis of Figs. 4�b� and 5�a�, it can be seen
that the second moment increases with light intensity and
energy density. In the high-temperature limit, one expects �1

2

to increase linearly with temperature. Based on Tables I and
II, as temperature increases 2���1

2 increases and �1 is ex-
pected to decrease. Thereby, the diffusion constant D1 �i.e.,
�1

2 /�1� will also increase. The temperature dependence of
2���1

2 is illustrated in Fig. 5�b�. In the fitting of Figs. 4�a�
and 4�b� to the quantum form of Eq. �1b�, �� is estimated to
be about 2 meV. At 40 K, 2���1

2=8.5 meV2. From these
results one can use ��1

2	kBT at 40 K or use Eq. �1b� and the
� estimated from the fit in Fig. 2 to estimate the Stokes shift
2� to be about 2.4 meV. This value is in good agreement
with the result using zero-phonon line measurements39 and
theoretical estimate.40

Empedocles and Bawendi10 observed that the reduction
of the photon energy by 250 meV reduced the spectral dif-
fusion by 25%.10 Further experimental study can determine
whether this increase occurs in the transient part of 	2�t� or
in the saturated part 	2�
�, or both. If it is observed only in

FIG. 4. �a� The time dependence of the spectral second moment at various
temperatures with excitation intensity at 85 W/cm2. �b� The dependence of
the spectral second moment �at tobs=30 s� on excitation intensity I. The dot
curves represent the fitted data with the fitted parameters and equations
listed in Table I.

FIG. 5. �a� The dependence of the second moment on energy density J�I
� t� showing the energy density as a universal variable. The dot curves
represent the fitted data using 2���1

2�1−exp�−J /J0��, where 2���1
2 and J0

are listed in Table II. �b� The temperature dependence of 2���1
2 in Table II.

With quantum correction for 2���1
2=��� coth��� /2kBT�, one finds

���=2.4 meV2 and ��=2 meV. Because �� is small, classical descrip-
tion is valid above 40 K.
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the transient and not in the saturated value, then the role of
the photon absorption is “catalytic,” namely, to change the �1

and not the ��1
2 present in the expression for 	2�
�. Further

experiment can resolve this point, and so clarify the role of
the excess photon energy on spectral diffusion. Equations
�1b� and �3� imply that in the present model the excess en-
ergy acts by affecting �k and not the other terms. If, instead,
it has an effect on 	2�
�=2���1

2, the model would need to
be modified to include an additional contribution to 2��1

2.
The parameters listed in Tables I and II were determined

from the spectral diffusion data of Empedocles and
Bawendi10 for CdSe nanoparticles with an average diameter
of 57 Å. In the studies of the blinking statistics, excitation
intensities up to several kW/cm2 were often used, and so �1

in the latter case could be much shorter than the values in
Table I. Empedocles and Bawendi10 also observed that line-
width broadening varies among different QDs. Such hetero-
geneity may be due to a distribution of Q0 among QDs or to
other factors.

B. Analysis of the blinking statistics data

The experimental data of blinking statistics can be ana-
lyzed and fitted using Eq. �6a� and �6b� for P�t�. Shimizu

et al.5 observed a bending tail for Pon�t� at higher tempera-
tures or excitation intensities, but not for Poff�t�. This behav-
ior agrees with the theoretical expressions for �on and �off,
and is, in the present model, principally due to the difference
in �1 and �2. The data for Pon�t� for CdSe QDs by Shimizu
et al.5 are replotted in Fig. 6 and fitted using Pon�t�
�ctm exp
�−�ont�, where c is an unimportant scaling constant, depend-
ing on how data were normalized. The fitted parameters are
shown in Table III. The exponent m of the power law is
about −1.53�±0.02�, using the data at 10 K and 175 W/cm2

that show a simple straight line dependence in the log-log
plot. The same exponent with m�−1.53 �0.02� was then
kept fixed for two other curves to determine �on from the
bending tail. The value of the exponent m is very close to the
ideal −3/2 of the present model with P�t�� t−1.5 exp�−�ont�.
In the fitting of the bending tail for two other curves in Fig.
6, instead of letting m and � float, m was kept fixed at the
same value as the first curve for better comparison among
different �on’s �see Table III and footnote and the effect of
fitting m at −1.5�.

In the present model, when the light intensity is in-
creased four times from 175 to 700 W/cm2, 1 /�1 also in-
creases four times, and so from the direct relationship be-
tween �on in Eq. �6a� and �6b�, �on is expected also to
increase by the same factor. Shimizu et al.5 observed a larger

TABLE I. The fitted parameters 2���1
2, �1, and I0 �I0=�F�1,0 /2tobs	abs�

with enclosed standard deviations for Fig. 4�a� using 	2=2���1
2�1

−exp�−2t /�1�� and Fig. 4�b� using 	2=2���1
2�1−exp�−I / I0��. The values

of 2���1
2 for Figs. 4�b� and 5�a� were obtained from the fitting of Fig. 4�a�

and only I0’s were fitted. Because saturation of the second moment has not
been reached at 120 s for data below 40 K, in the fitting a constraint of
��1

2= ��� /2�coth��� /2kBT� was imposed. The actual errors in values of �1

below 40 K are large and can be reduced if longer-time data become avail-
able.

�K�
Fig. 4�a�

�W=85 W/cm2�
Fig. 4�b�

�tobs=30 s�

40 2���1
2=8.5�±0.5� meV2 2���1

2=8.5�±0.5� meV2

�1=93�±5� s I0=154�±16� W/cm2

30 2���1
2=6.5 meV2 2���1

2=6.5 meV2

�1=254�±14� s I0=240�±24� W/cm2

20 2���1
2=4.6 meV2 2���1

2=4.6 meV2

�1=274�±19� s I0=326�±19� W/cm2

10 2���1
2=2.9 meV2 2���1

2=2.9 meV2

�1=278�±9� s I0=305�±11� W/cm2

TABLE II. The fitted parameters 2���1
2 and J0 �J0=�F�1,0 /2	abs� for Fig.

5�a� using 	2=2���1
2�1−exp�−J /J0��. The values of 2���1

2 were obtained
from Table I.

40 K 2���1
2=8.5 meV2

J0=4.3�±0.2��104 J /cm2

30 K 2���1
2=6.5 meV2

J0=8.9�±0.3��104 J /cm2

20 K 2���1
2=4.6 meV2

J0=11.0�±0.1��103 J /cm2

10 K 2���1
2=2.9 meV2

J0=9.4�±0.1��103 J /cm2

FIG. 6. The log-log plot of the time dependence of Pon�t� for the “on”
events from the experimental data of CdSe QDs by Shimizu et al. �Ref. 5� at
three settings. Here log�Pon�t�� vs log�t� is used. The data were fitted to a
power law with an exponential tail, i.e., Pon�t�� tm exp�−�t� and the fitted
parameters were shown in Table III.

TABLE III. The fitted parameters m, �on, and c for Pon�t� of CdSe QDs in
Fig. 6 at various experimental settings using Pon�t�=ctm exp�−�ont�. c in
Tables III and IV are related to data normalization and can be different for
each set of data. If m was fixed at −1.5, 1 /�on=121�±16�, 29�±2�, and
7.0�±0.4�, respectively.

�K� �W/cm2� m
1/�on

�s� c

10 175 −1.53�±0.02� 164�±46� −1.90�±0.01�
10 700 −1.53 31�±2� −1.96�±0.03�
300 175 −1.53 7.2�±0.4� −1.97�±0.04�
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bending with increased light intensity, a result which agrees
with the fitted values of 1 /�on in Table III at the two inten-
sity settings. In addition, the bending also increased with the
size of the QDs, which is consistent with the present model
since W increases with increasing surface area.

From the trend of the spectral diffusion data10 from 10 to
40 K in Table I, �1 is expected to be much smaller at 300 K
than at 10 K. Since �on depends inversely on �1 in Eq. �6a�
and �6b�, the bending in the intermittency data should in-
crease when temperature is increased, in agreement with the
data.

In Eq. �6a� and �6b� with P�t�� t−1.5exp�−�kt�, �k is pro-
portional to the light intensity, and one can use energy den-
sity �I� t� as a universal variable to describe the bending. As

noted earlier, this variable was used by Empedocles and
Bawendi10 for spectral diffusion, and is suggested by Eq.
�6a� and �6b� for the bending, �, also. The two experimental
data sets of Pon�t� at 10 K with light intensities of 175 and
700 W/cm2 are plotted in Fig. 7 using energy density as a
universal variable, and support the prediction.

The data for Poff�t� and Pon�t� for CdTe QDs by Shimizu
et al.5 at 10 and 300 K are plotted in Fig. 8 using the fitted
parameters shown in Table IV. The exponent is also found to
be close to the value of −3/2 for CdSe. At 10 K, the values
of �on for CdTe �35 s� and CdSe �7 s� were obtained at
different light intensities �125 vs 175 W/cm2�. Even with the
scaling factor adjusted for difference due to light intensity, a
difference still exists, perhaps because of different composi-
tions and sizes.

A bending tail of different form could also occur if the
population sink occurs at the very bottom of the potential
well, i.e., even with �on=0. At a sufficiently longer time than
the diffusion correlation time, the Green function approaches
a constant, representing a system reaching equilibrium, and
the power law also breaks down, even with �on=0. A nu-
merical evaluation of P�t� with a population sink at the bot-
tom of the well is illustrated in Fig. 9 and compared there
with the experimental data of Shimizu et al.5 The calculated
curves were obtained by numerical inversion of the Laplace
transform in Eq. �A9a� and �A9b�. As shown in the illustra-
tion, this kind of bending for activationless crossing follows
the form of exp�−�t�. This form does not fit well the experi-
mental data that are best described by t−1.5 exp�−�t� of Eq.
�6a� and �6b�. Accordingly, the observed bending tail from
the experiments that follow t−1.5 exp�−�t� supports the sce-

TABLE IV. The fitted parameters m, �, and c for Poff�t� and Pon�t� in Fig. 8
of CdTe QDs at 300 K and 125 W/cm2 using Pon�t�=ctm exp�−�t�. In fitting
Pon�t� the exponent m from Poff�t� was used.

m 1/� c

Poff�t� −1.6�±0.1� ¯ −2.32�±0.03�
Pon�t� −1.6 35�±2� s −2.05�±0.02�

FIG. 7. The log-log plot of the energy density �I� t� dependence of Pon�t�
for the “on” events from the experimental data of CdSe QDs at 10 K and
light intensity at both 175 and 700 W/cm2. The data were best fitted to a
power law with an exponential tail, i.e., Pon�t�=at−1.5 exp�−It /b� with a
=1.58�±0.01� and b=2.04�±0.09��103, where a is a scaling constant de-
pendent on how the data of P�t� were normalized, and 1/b= ��
+�G0�2	ab /4�F�1�1

2. As also illustrated in Fig. 3�a�, both spectral diffusion
and intermittency data can be described by energy density as a universal
variable.

FIG. 8. The log-log plot of the time dependence of P�t� for both “off” and
“on” events from the experimental data of CdTe QDs at 300 K and
125 W/cm2 by Shimizu et al. �Ref. 5�. The data were fitted to Pon�t�
� tm exp�−�t� and the fitted parameters were shown in Table IV.

FIG. 9. Experimental P�t� of Shimizu et al. �Ref. 5� for CdSe QDs, as
compared with the calculated results for the special case of activationless
crossing ��+�G0=0�, which are best described by exp�−t /�1� at t compa-
rable to �1, and is different from the ideal form of t−3/2 exp�−�t�.
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nario of energy-level crossing at a point other than the lowest
point of the potential-energy well. When the crossing point
occurs at the bottom of the potential-energy well, diffusion to
the sink is not needed in the center for the wave packet to
reach the crossing point, and a largely exponential decay
ensues.

In some other reports6,8,9 on blinking statistics, a slightly
steeper slope for the ln�Pon� vs t was noted for the exponent
of the power law. Fitting a straight line to a slightly bending
curve could lead to a steeper slope, especially at higher light
intensity. In principle, a larger exponent could occur by an
anomalous diffusion process in the presence of a distribution
of diffusion correlation times, as illustrated by Fig. 3�b� and
discussed in Appendix C. Supplementing the previous inter-
mittency study by Wang and Wolynes41 and a Lévy walk
study of Barkai et al.,42 more details and an extension of this
DCET model to anomalous diffusion to accommodate the
anomalies in the exponent will be published elsewhere.

V. EXTRACTION OF MOLECULAR-BASED
QUANTITIES AND FURTHER EXPERIMENTS

A number of molecular-based quantities occur in the
present analysis of spectral diffusion and intermittency in
QDs. In the order of their appearance in various formulas,
there are in Eqs. �1a�, �1b�, and �3� the diffusion coefficient
D1 for �L*�, the diffusion correlation time �1 for �L*�, the
Stokes shift 2� between �L*� and �G�, the structural fre-
quency �, the diffusion coefficient D2 in the dark state �D�,
the diffusion correlation time �2, the reorganization energy
for the charge transfer �, the free-energy difference �G0 be-
tween �L*� and �D�, and the electronic coupling V12.

Certain molecular-based parameters or combinations of
them can be deduced from existing data. For example, in
Table I �1 and 2���1

2 have been determined. From Eq. �3�
and the vibration frequency ��, � can be calculated from
these data. Values are given in Tables III and IV for �on, a
compound quantity, ��+�G0�2 /8�1���1

2. At 10 K and
700 W/cm2, with an estimate of �1�35 s, one has ��
+�G0�2 /���1

2�0.26.
Further information could be obtained from the determi-

nation of tc if intermittency experiments at sufficiently short
times become practical, and from an experiment to determine
�off, which may require temperatures and intensities which
are perhaps too high to be realistic. Experiments to clarify
the catalytic versus the saturation role of the excess photon
energy were noted in Sec. IV. The recent experiment of
Chung and Bawendi37 reports dark recombination reaction
that occurs at a much longer time scale �several hours�. At
times much longer than the diffusion correlation time �k, this
model predicts that the system reaches equilibrium as the
Green function approaches a constant, and deviation from
power law is expected even for �=0. A full treatment of this
DCET model at time beyond 100 s and slow charge recom-
bination in the dark will be published elsewhere.

Another possible method to determine the electronic
coupling is by electron paramagnetic resonance �EPR� tech-
niques. The paramagnetic properties of the dark state can be
elucidated from EPR experiments.43 Whether a QD is posi-

tively or negatively charged, it depends on the physical prop-
erties of the surface state and traps. �D� represents the
charge-separated dark state with a charge in a QD and a
countercharge possibly trapped on the surface. In principle, a
radical pair can exist in QDs, such as in the photoinduced
radical pair44 found in photosynthetic systems. To avoid
complications caused by quadrupolar interactions on EPR
spin-echo modulations, QDs with nuclear spin greater than
1/2 need to be avoided. The most abundant isotopes of Cd,
Se, and Te have nuclear spins of 1 /2 or 0 and are good
candidates. The hyperfine interactions from adjacent nuclear
spins could cause the initial photoinduced singlet to evolve
into a mixture of triplet and singlet, and the dipolar interac-
tion of the electron-hole pair can manifest itself in the spin-
echo modulation. Further EPR experiments are needed to
determine whether or not the triplet-singlet mixture is
formed. The dipolar coupling and exchanger interaction be-
tween the radical pair can be measured by pulsed EPR
techniques.45,46 These couplings can be used to determine the
distance between the electron-hole pair and to estimate the
electronic coupling element based on such a distance.
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APPENDIX A: STOCHASTIC LIOUVILLE EQUATION
FOR THE PHOTOINDUCED DIFFUSION-
CONTROLLED ELECTRON-TRANSFER „PIDCET…
MODEL

The stochastic Liouville equation21–25 for diffusion-
controlled electron-transfer reactions can be derived from the
spin-boson model.23,25 In the master equation, the reaction
coordinate in the electron-transfer processes in a polar envi-
ronment is related to the change of electric displacement and
the fluctuating dielectric polarization of the environment, or
equivalent to the energy difference of the two electron-
transfer states. With �L*� denoted by 1 and �D� by 2, one can
apply such a stochastic Liouville formalism to these two
states that are responsible for intermittency, and one has

�

�t

11�Q,t� = L11
11�Q,t� −

2��V12�2

�
��U1�Q� − U2�Q��

��
11�Q,t� − 
22�Q,t�� ,

�A1�
�

�t

22�Q,t� = L22
22�Q,t� −

2��V21�2

�
��U1�Q� − U2�Q��

��
22�Q,t� − 
11�Q,t�� .

The reaction coordinate Q is assigned to describe the reac-
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tion between the photoexcited states �L*� and �D�. This
coupled rate equation is needed if one wants to calculate the
unconditional probability for an ensemble of QDs at time t
without a priori knowledge about whether a specific QD in
that ensemble remains in light or dark, or whether it has gone
through many blinking cycles during the whole time t. How-
ever, to calculate the blinking statistics for an “on” event of a
single QD, one needs to determine the probability density
P�t� for a QD that stays continuously in �L*� for a whole
period of t that exceeds the experimental bin time window of
0.1 ms. The relevant rate equation to calculate such a condi-
tional probability is the decoupled equation. This is equiva-
lent to setting the population in the dark state to zero during
the whole on period t. The relevant decoupled rate equation
for P�t� of a single neutral QD continuously staying in state
�L*� is the transition from �L*� to �D� given by

�

�t

11�Q,t� = L11
11�Q,t� −

2��V12�2

�
2�E�
��Q − Qc�
11�Q,t� ,

�A2�

where

L11 = D1� �2

�Q2 +
1

�1
2�1 + �Q + Q1�

�

�Q
��, D1 =

�1
2

�1
.

In Laplace transform notation we have

s
̄11�Q,s� − ��Q − Qc� = L11
̄11�Q,s� −
2��V12�2

�
2�E�
��Q

− Qc�
̄11�Q,s� . �A3�

This equation describes diffusion on a parabola with a sink at
the energy-level crossing, with the escape rate proportional
to �V12�2 from the Golden rule. As noted in the text, the
starting time for an on event begins by the hop from the dark
state at the energy-level crossing at Q=Qc and starts its
random-walk journey on the parabolic potential U1�Q� of the
light state �L*�. The end time is when the population hops
back to �D� at the sink at Q=Qc. The initial population dis-
tribution is a delta-function distribution at the energy-level
crossing point Qc and is normalized to unity.

For the “off” events, the relevant decoupled rate equa-
tion for P�t� of the dark QD state continuously staying in
state �D� is the transition from �D� to �L*� given by

�

�t

22�Q,t� = L22
22�Q,t� −

2��V21�2

�
2�E�
��Q − Qc�
22�Q,t� ,

�A4�

where

L22 = D2� �2

�Q2 +
1

�1
2�1 + Q

�

�Q
��, D2 =

�2
2

�2
.

Because an electronically excited QD is either in �L*� or
�D� at any given time, to calculate the distribution of the
duration period of a QD staying in a particular state �L*� or
�D� one only needs to use Eq. �A3� and �A4�.

The distribution of the blinking statistics P�t� for on
events or off events is the rate of the loss for the total popu-

lation in either the neutral or the charge-separated state. Us-
ing the Green function method,34 one can solve Eq. �A3� or
�A4� with the Green function for the operators L11 and L22.
From Eq. �A3� for the “light” state �L*� one obtains


̄11�Q,s� = Ḡ1�Q,Qc;s� −
2��V12�2

�
2�E�
Ḡ1�Q,Qc;s�
̄11�Qc,s� .

�A5�

If we define p̄1�Q ,s� as the Laplace transform of the popu-
lation in both �L*� and �G� for the neutral �light� states, we
have

p̄1�Q,s� =
Ḡ1�Qc,Qc;s�

1 + �2��V12�2/�
2�E��Ḡ1�Qc,Qc;s�
. �A6�

A similar expression can be derived for p̄2�Q ,s� from Eq.
�A4� for the dark states �D� and �D*�. One can show that the
Laplace transform of Pk�t�, the distribution for the duration
time t, is given by

P̄k�s� = − �
0




dt e−st d

dt��−





dQ pk�Q,t��
= 1 − s�

−





dQ p̄k�Q,s�

=
�2��Vk�2/�
2�E��Ḡk�Qc,Qc;s�

1 + �2��Vk�2/�
2�E��Ḡk�Qc,Qc;s�
. �A7�

The analytical formula for the Green function in the time
domain is well known and is given by27

G�Q,Q�;t� =
1


2��k
2�1 − exp�− 2t/�k��

�exp�−
��Q − x0,k� − �Q� − x0,k�exp�− t/�k��2

2�k
2�1 − exp�− 2t/�k��

� ,

�A8�

where x0,k denotes the lowest point at the bottom of the kth
potential, i.e., x0,1=−Q1 and x0,2=0. To calculate the blinking
statistics given by Eq. �A7� one needs to evaluate the
Laplace transform of Gk�Qc ,Qc ; t�, which is given by

Ḡ�Q,Q�,s� = �
0




dt
1


2��k
2�1 − exp�− 2t/�k��

�exp�− st −
�Qc − x0,k�2

2�k
2 tanh�t/2�k��

	 �
0




dt
exp�− �s + �k�t�

4��k

2�t/�k�
=

1


4�k
2/�k

1

s + �k

,

�A9a�

where
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�k �
�Qc − x0,k�2

4�k�k
2 �

Ea,k

2�k�E�k
2 , Ea,k �

�� ± �G0�2

4�
.

�A9b�

The potential-energy-surface crossing occurs at Qc= ��
−�G0� /
2��, the bottom of the potential well of U1�Q� and
U2�Q� are x0,1=Q1, x0,2=0, respectively, and the electron-
transfer reorganization energy is �=�Q1

2 /2.
Equations �A7�, �A9a�, and �A9b� yield

P̄k�s� =
1

1 + 
�s + �k�tc,k

, �A10�

and its inverse Laplace transform is

Pk�t� =
exp�− �kt�


�tc,kt
�1 −
�t

tc,k
exp� t

tc,k
�erfc�
 t

tc,k
�� ,

�A11�

where tc,k equals 2�E����k /�Vk
2
�k�2 as in Eq. �5c�, and

where erfc�x� is the complementary error function. Equation
�A11� can be reduced to a simpler expression in two regimes
as in Eq. �5a�–�5c� in the text.

In this work, the power law arises in the time regime
shorter or comparable to the diffusion correlation time con-
stant �1. In another regime with fast diffusion �very short �1�
as occurs in most conventional electron transfer processes,
the rate process becomes simple exponential where a differ-
ent asymptote for the Green function needs to be used.23

To calculate the time dependence P�t� of the blinking
statistics from Eq. �A9a� and �A9b�, the Laplace transform of
the Green function in Eq. �A10� is evaluated numerically.
The inverse Laplace transform algorithm was taken from
IMSL. This numerical approach is limited by the accuracy in
evaluating the Green function of Eq. �A9a� and �A9b� at
small s �long time�. To calculate P�t� for a wider range of
time, one can directly solve Eq. �4a� or �4b� with the finite-
element method by replacing the differential equation by a
difference equation in discrete lattice points. It is sufficient to
use 5000 lattice points to represent the reaction coordinate Q
with an energy spacing about a thousandth of �, and a time
step of a hundredth of the inverse of 2��Vk�2�
2�E�. Both
approaches are equivalent and give similar results.

APPENDIX B: FURTHER REMARKS ON Q AND Q

Earlier in treating spectral diffusion, it was pointed out
that the reaction coordinate q for spectral diffusion �associ-
ated with fluctuations of the energy difference between �L*�
and �G�� and the reaction coordinate Q for electron transfer
�associated with the energy difference between �L*� and �D��
are not the same. Considering time fluctuations in the energy
difference between the electron states �L*� and �G� that are
linearly coupled to N-dimensional harmonic oscillators of the
heat bath, the reaction coordinate q represents the interaction
energy as q�t�=�k=0

N ck�t�qk�t�, where qk is the displacement
for the kth oscillator. On the other hand, for electron transfer
between �L*� and �D�, the time fluctuation in their energy
difference is represented by another reaction coordinate Q
with Q�t�=�k=0

N bk�t�qk�t�. These two coordinates, as illus-

trated in Fig. 1�c�, are not correlated because the interactions
involve different pair of states and represent different projec-
tions from N-dimensional space. The observation of spectral
diffusion corresponds to the projection onto q space of the
fluctuation in N-dimensional space. The intermittency of the
fluorescence corresponds, instead, to a projection onto Q
space.

During the sampling period of 0.1 s, the instrument in-
tegration time �bin time�, immediately after the birth of the
light state, a QD could have undergone many cycles between
dark and light states, i.e., there are numerous returns to the
Q=0 hyperplane. Each return is related to a change in the
value of q, as discussed in the text.

APPENDIX C: THE EXPONENT OF THE POWER LAW
IN BLINKING STATISTICS

In the ordinary diffusion discussed in Sec. II A, the dif-
fusion constant D is time-independent and the second mo-
ment grows in time if t is much shorter than �L, as shown in
Eqs. �5a�, �5b�, �6a�, and �6b� at very short times P�t�
� t−1/2, at intermediate times P�t�� t−3/2 and at later times
P�t�� t−3/2 exp�−�t�. The data for most experiments, illus-
trated in Figs. 5–8, follow a power law �with/without an
exponential tail� with an exponent close to −1.5. The expo-
nent measured from various research groups is listed in Table
V. A different exponent can arise in the continuous-time
random-walk �CTRW� model of Montroll and Weiss.47 Such
a model allows a distribution of the diffusion correlation
time �1, often used in studies of diffusion in solid with ran-
dom trap distributions, invoke site-dependent hopping rate
and time-dependent diffusion constant with non-Markovian
process. By modifying the ordinary 1D diffusion with the
CTRW model, or an anomalous diffusion with a time-
dependent diffusion constant, the power law for intermit-
tency would not necessarily follow Eqs. �5a�–�5c�, �6a�, and
�6b�, and the spectral broadening in time could also differ
from Eq. �3�. An example is illustrated in Fig. 3�b�, consid-
ering both the ordinary diffusion and anomalous diffusion. If
the diffusion constant D is time-dependent in anomalous dif-

TABLE V. The exponent m of the power law reported by various groups.

m Samples References

moff=−1.5 �10 ms/bin� CdSe 4
moff=−1.6 �0.1 ms/bin�

mon, moff=−1.5 CdSe 5
mon, moff=−1.6 CdTe

mon, moff=−1.4 CdSe on gold substrate 7

mon=−1.6, moff=−1.7 CdSe 8

mon=−1.58, moff=−1.48 CdSe 14

m=−1.65 �autocorrelation method� CdSe 9

m=−1.7 �autocorrelation method� CdSe 15

mon=−2.0, moff=−1.5 InP 6

mon=−2.2, moff=−1.7 Si 16
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fusion, Eq. �A7� still applies except that the short-time be-
havior of the Green function can be different from the t−1/2

dependence, depending on the distribution of the diffusion
correlation time.48 If the second moment of the displacement
grows as t� at short time in anomalous diffusion with ��1,
the Green function has an asymptote at very small t as
�t−�/2. According to Eq. �A9a� and �A9b�, the blinking sta-
tistics P�t� can have a different exponent for the power law.
As illustrated in Fig. 3�b� for �=1 and 1/2, at very short
times P�t�� t−�/2 but becomes t−2+�/2 at longer times. The
transition between these two regimes with a different expo-
nent for the power law occurs at the critical time tc as illus-
trated in Fig. 3�b�. The ideas of anomalous diffusion could be
incorporated into the four-state model of the present work, if
needed. Based on reasonably good fitting to various experi-
mental data in Figs. 4–8, the present DCET model appears to
be sufficient at this time. By extending this work to non-
Markovian diffusion25 with a distribution of the diffusion
correlation time in the CTRW model,47,48 one could also ac-
commodate the power law of a different exponent other than
the ideal value of −3/2.
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