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Abstract. It is well known that the nonlinear PDE describing the dynamics of a hydrodynam-
ically unstable planar flame front admits exact pole solutions as equilibrium states. Such a solution
corresponds to a steadily propagating cusp-like structure commonly observed in experiments. In
this work we investigate the linear stability of these equilibrium states—the steady coalescent pole
solutions. In previous similar studies, either a truncated linear system was numerically solved for
the eigenvalues or the initial value problem for the linearized PDE was numerically integrated in
order to examine the evolution of initially small disturbances in time. In contrast, our results are
based on the exact analytical expressions for the eigenvalues and corresponding eigenfunctions. In
this paper we derive the expressions for the eigenvalues and eigenfunctions. Their properties and the
implication on the stability of pole solutions is discussed in a paper which will appear later.
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1. Introduction. In the context of a weak thermal expansion approximation,
Sivashinsky [1] derived a single PDE that describes the nonlinear evolution of a pla-
nar flame front subjected to the Darrieus–Landau instability [2, 3]. When periodic
boundary conditions are assumed, the problem can be expressed in terms of a single
parameter γ which is proportional to the size of the domain of integration L and in-
versely proportional to the gas thermal expansion. A trivial solution of this equation,
corresponding to a planar flame front, is known to be unstable for γ > γ1 = 2. Numer-
ical integration of the nonlinear PDE confirms this prediction. For γ < γ1, regardless
of the initial conditions, the solution after a sufficiently long time always converges to
the trivial solution. For γ > γ1, however, the initial perturbations intensify and the
solution rapidly diverges away from the flat front.

The evolution of the flame front beyond the stability threshold has been exam-
ined by various authors, see, for example, [4, 5, 6, 7, 8, 9]. In a typical numerical
experiment, one first observes the development of several wrinkles along the flame
front which eventually coalesce into one large peak as time progresses. After suffi-
ciently long time, the cusp-like structure appears to propagate at a constant speed
without change in shape. The structure of the solution is retained as γ increases,
except that now more wrinkles are formed initially and the depth of the peak that
eventually forms, intensifies, and approaches a real cusp as γ → ∞. Some numer-
ical experiments [5, 9], however, suggest that for sufficiently large values of γ the
equation displays a qualitatively different behavior: new cusp-like structures appear
repetitively on the flame front and the speed of propagation increases indefinitely. It
has been tempting to associate this peculiar behavior with the development of sec-

∗Received by the editors October 29, 1998; accepted for publication March 23, 1999; published
electronically February 2, 2000. This research was partially supported by the National Science
Foundation under grants DMS9703716 and CTS9521022.

http://www.siam.org/journals/siap/60-2/34643.html
†Department of Engineering Sciences and Applied Mathematics, McCormick School of Engineer-

ing and Applied Science, Northwestern University, Evanston, IL 60208-3125 (matalon@nwu.edu).
‡Current address: Applied Mathematics 217-50, Caltech, Pasadena, CA 91125.

679



680 DIMITRI VAYNBLAT AND MOSHE MATALON

ondary structures which have been observed experimentally on the propagating fronts
of sufficiently large flames [10, 11].

Whether the unsteady behavior uncovered numerically for large values of γ is
indeed inherent to the (one-dimensional) nonlinear PDE or is a mere product of com-
putational noise is a question that has been debated in the literature. What has
prompted this discussion is the fact that the nonlinear PDE admits exact equilib-
rium solutions obtained by a pole decomposition technique and called coalescent pole
solutions. Large peak solutions emerging when the nonlinear PDE is numerically
integrated over a long time appear to belong to the family of these solutions. The
nonsteady behavior of the solution of the PDE, presumably observed for large val-
ues of γ, does not seem to agree with the expectation from the pole-decomposition
theory which does not distinguish between small and large values of γ. Joulin and co-
workers [6, 12] argue that the PDE is therefore not capable of describing the repetitive
generation of new “cusps” when γ is large. The appearance of new “cusps” in the
computations [5, 9] results from the limitations of the numerics. To describe mathe-
matically the experimental observation, specific to large flames [10, 11], new models
need to be derived. Sivashinsky and co-workers [7, 8], on the other hand, argue that
the inconsistencies with the pole-decomposition theory lie in the stability of the exact
pole solutions. The nonsteady behavior may be associated with the fact that these
equilibrium solutions are unstable when γ is sufficiently large. By numerically solving
the initial value problem that results from linearizing the PDE about a pole solution
they concluded that, for large values of γ, pole solutions are unstable. The linear
stability of pole solutions was also addressed in [13, 14] using a different approach.
The eigenvalue problem for the perturbed system was formulated and the eigenvalues
of the corresponding truncated matrix were determined numerically. In contrast to
the results of [7, 8] it was concluded that, for any value of γ, there exists a stable pole
solution. Their conclusion thus supports Joulin’s view on this matter.

In this study we also address the linear stability of pole solutions. However, in
contrast to the previous studies, we construct exact analytical expressions for the
eigenvalues and eigenfunctions. Based on these expressions we make definite state-
ments about the stability question which resolve unequivocally the controversies dis-
cussed above. We show that for any value of γ there exists a stable pole solution.
Therefore, the conclusions of [13, 14] and correspondingly the arguments presented
in [6, 12] agree with our results. (The nature of the spectrum deduced numerically
in [13, 14], however, is not accurate). The conclusions drawn in [7, 8], on the other
hand, do not agree with our exact results. We believe that the erroneous conclusions
reported in [7, 8], namely, that the equilibrium pole solutions become unstable when
γ is sufficiently large, result from the relatively low number of modes included in their
numerical calculations for the relatively large values of γ considered.

The work is the first of two papers. In this paper we introduce the nonlinear
evolution equation, review some of the relevant material about pole solutions, and
derive the analytic expressions for the eigenvalues and the eigenfunctions. In a paper
that will appear later [15], which we refer to as Part II, we present the properties of
the eigenvalues and the eigenfunctions and discuss the implications on the stability
of pole solutions and on the nonlinear PDE describing the evolution of flame front
perturbations on a nominally planar front. Our conclusions, summarized above, are
discussed in more detail in [15].

This paper is organized as follows. In section 2, we introduce the nonlinear
evolution equation and comment on some of its general properties. In section 3, we
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review pole solutions; a detailed consideration is given to the family of the coalescent
steady states. In section 4, we derive analytic expressions for the eigenvalues and
the eigenfunctions. In section 5, we summarize the results and present an outline of
Part II.

2. The evolution equation. In the one-dimensional case and in a dimensionless
form, the nonlinear PDE that describes the dynamics of a planar flame front subject
to Darrieus–Landau instability [1] can be written as

ϕt =
1

2
I{ϕ;x}+ αϕxx +

1

2
ϕ2
x .(2.1)

Here ϕ(x, t) is the flame front displacement, x is the spatial coordinate, t is the
time, and α is a parameter that depends on the gas thermal expansion. Distance
and time are made dimensionless using lD and lD/SL as units, respectively; lD is
the diffusion length and SL is the laminar flame speed. The operator I{ · ;x} is
a linear singular nonlocal operator defined such that I{ϕ;x} = −H{ϕx;x}, where
H{ · ;x} is the Hilbert transform. Equation (2.1) is to be integrated over the interval
−L ≤ x ≤ L, and periodic boundary conditions are assumed. It should be pointed
out that the evolution equation could be written in slightly different forms [1, 8, 14]
that are easily obtained by rescaling (2.1).

It is worth mentioning that the operator I{ · ;x} can also be defined in terms of
the spatial Fourier transform. Let

ϕ(x, t) =

∞∑
k=−∞

ϕ̂k(t) eik̃x;(2.2)

then I : ϕ̂k(t) 7→ |k̃| ϕ̂k(t) , where k̃ = πk/L is the spatial wave number, with k an
integer. Then in physical space the operator I{ · ;x} can be written as

I{ϕ;x} =
1

L

∞∑
k=1

k̃

∫ L

−L
cos[k̃(x− η)]ϕ(η, t)dη .(2.3)

Throughout this paper we will be using the convention that an accent “tilde” repre-
sents a multiplication by π/L.

Although the problem contains two parameters, α and L, it can be reduced to a
single parameter problem [16, 14, 7] by rescaling the variables as x̃ = πx/L, t̃ = πt/L,
and ϕ̃(x̃, t̃) = πϕ(x, t)/L. Such a transformation leads to rescaling the length 2L of
the domain so that it always takes the fixed value 2π. The scaled equation is now

ϕ̃t̃ =
1

2
I{ϕ̃; x̃}+ α̃ϕ̃x̃x̃ +

1

2
ϕ̃2
x̃(2.4)

which is to be integrated over the interval −π ≤ x̃ ≤ π, with α̃ = πα/L the only
parameter. We also introduce γ = 1/α̃ which turns out to be the more suitable
parameter to use when expressing the results. Both α̃ and γ, however, will be used
interchangeably in the following. We note that changes in L, the parameter used
in [7, 13, 14, 8], are proportional to changes in γ and inversely proportional to changes
in α̃.

As pointed out in [16], (2.4) has a scaling invariance: If ϕ̃1(x̃, t̃) is a solution
of (2.4) on the interval 0 ≤ x̃ ≤ 2π for α̃1, then, given a positive integer n, ϕ̃n(x̃, t̃) =
1
n ϕ̃1(nx̃, nt̃) is a solution on the same interval for α̃n = 1

n α̃1.
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In the discussion below, we found it more convenient to use the slope of the flame
front rather than the displacement. The change of variables u(x, t) = ϕx(x, t) in (2.1)
leads to the following PDE:

ut =
1

2
I{u;x}+ αuxx +

(
1

2
u2

)
x

(2.5)

In Fourier space, (2.5) takes the form

(ûk)t =
1

2

∣∣∣k̃∣∣∣ ûk − αk̃2ûk +
̂[(

1

2
u2

)
x

]
k

, k = −∞, . . . ,−1, 1, . . . ,∞,(2.6)

where ûk(t) = ik̃ϕ̂k(t) and ϕ̂k(t) is defined in (2.2).

3. Pole solutions. Thual, Frisch, and Hénon [17] recognized that (2.5) corre-
sponds to a more general class of equations, arising in plasma physics [18], for which
an infinite number of exact solutions exists. An N -pole solution of (2.5) is of the form

u(x, t) = αr̃
N∑
n=1

[
cot

(
r̃x− zn(t)

2

)
+ cot

(
r̃x− z∗n(t)

2

)]
,(3.1)

where N , an integer, is the number of poles zn(t) in the complex plane; r̃ = πr/L,
with r an integer, is the wavenumber; and the asterisk denotes the complex conjugate.
Writing

zn(t) ≡ xn(t) + iyn(t) , n = 1, . . . , N,(3.2)

the solution can also be written as

u(x, t) = 2αr̃
N∑
n=1

sin(r̃x− xn(t))

cosh(yn(t))− cos(r̃x− xn(t))
.(3.3)

In terms of the flame displacement, the solution takes form

ϕ(x, t) = ϕ0(t) + 2α
N∑
n=1

{
ln

[
sin

(
r̃x− zn(t)

2

)]
+ ln

[
sin

(
r̃x− z∗n(t)

2

)]}

= ϕ0(t) + 2α
N∑
n=1

ln
1

2

[
cosh(yn(t))− cos(r̃x− xn(t))

]
,(3.4)

where ϕ0(t) is a linear function of time such that

ϕ̇0 = Nαr̃(1− 2Nαr̃) ,(3.5)

with the dot denoting differentiation with respect to time. Note that for u(x, t) and
ϕ(x, t) to be real-valued functions, the N poles should appear in pairs of complex
conjugates.

A pole in the complex plane corresponds, in the physical plane, to a “cusp”
rounded at its tip (to which we shall refer loosely as a cusp). Hence, the solution (3.4)
is a superposition of a finite number of cusps. The real part of a pole, xn(t), which is
always in the interval [−π,+π], corresponds to the location of the cusp along the flame
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front; the imaginary part of the pole, yn(t), determines the depth of the cusp. As
yn(t) decreases, the cusp becomes deeper and its depth tends to infinity as yn(t)→ 0;
in the limit one obtains a real cusp. On the other hand, the depth tends to zero
as yn(t) → ∞. Finally, note that the solutions for different values of r are simply
the images of the solution for r = 1 under the scaling transformation mentioned in
section 2 (see also (3.5), and (3.6) below).

Substituting (3.3) in the PDE (2.5) results in a system of ODEs that govern the
dynamics of the poles in the complex plane. One finds

żn
r̃

= −αr̃
2N∑
l=1
l 6=n

cot

(
zn − zl

2

)
− i1

2
sgn[=(zn)], n = 1, . . . , 2N,(3.6)

where = denotes the imaginary part, and the signum function is defined, as usual, by
sgn(x) = |x| /x for x 6= 0, and sgn(0) = 0. Expressing these equations in terms of their
real and imaginary parts (because the poles appear in pairs of complex conjugates, it
is sufficient to write the equation for only positive yn) results in

ẋn
r̃

= −αr̃
N∑
l=1
l 6=n

sin (xn − xl)
(

[cosh(yn − yl)− cos(xn − xl)]−1

+ [cosh(yn + yl)− cos(xn − xl)]−1

)
, n = 1, . . . , N,(3.7)

ẏn
r̃

= αr̃
N∑
l=1
l 6=n

(
sinh (yn − yl)

cosh(yn − yl)− cos(xn − xl) +
sinh (yn + yl)

cosh(yn + yl)− cos(xn − xl)

)

+ αr̃ coth(yn)− 1

2
, n = 1, . . . , N .(3.8)

Throughout this paper, we found it convenient to use the Fourier transform of
the pole solution (3.3). The correspondence is obtained by using

u(x, t) =

∞∑
m=−∞
m6=0

ûm(t) eim̃x,(3.9)

where

ûm(t) =

−2iα̃r sgn(k)
N∑
n=1

e−ikxn(t)−|k|yn(t) if m = kr,

0 otherwise.

(3.10)

It should be noticed that all solutions of the PDE (2.1) correspond to flame
fronts propagating, on the whole, upwards; i.e., in the direction of ϕ > 0. This is
easily seen by taking the spatial average of the equation over a period of 2L. Defining

〈ψ〉 = 1
2L

∫ L
−L ψ(x)dx , one finds that

〈ϕ〉t =
1

2
〈(ϕx)

2〉(3.11)
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is always positive. For the pole solution (3.4) this implies that

〈ϕ〉t = ϕ̇0 + 2α
N∑
n=1

ẏn(t) ≥ 0 .(3.12)

If we now consider a steady pole solution (for which all the poles are time indepen-
dent), it immediately follows from (3.12) that the constant ϕ̇0 is positive. Therefore,
(3.5) implies that, for a given αr̃, the number of poles is bounded, N ≤ Nmax. The
upper bound is given by

Nmax = Int

[
1

2αr̃

]
,(3.13)

where Int(x) denotes the greatest integer less than or equal to the real number x.

3.1. Coalescent pole solution. A particular set of pole solutions of (2.5) cor-
responds to the poles being aligned parallel to the imaginary axis. Thual, Frisch,
and Hénon [17] noticed that there exists a natural tendency for the poles to align
themselves in this way. Their argument is based on an observation of (3.7)–(3.8). In
the horizontal direction the poles attract each other since the sign of ẋn is always
determined by that of sin(xn − xl). In the vertical direction, in addition to being
drifted toward the real axis, the poles repel each other at short range and attract
each other at long range. Thus the poles eventually align themselves vertically and
coalesce into a single line. Following [7], we shall refer to this solution as a coalescent
solution.

For a coalescent solution, ẋn = 0, n = 1, . . . , N . The set of ODEs (3.7) is
always satisfied, while the set of ODEs (3.8) becomes

ẏn
r̃

= αr̃Fn(y1, . . . , yN ), n = 1, . . . , N,(3.14)

where

Fn(y1, . . . , yN ) =

N∑
l=1
l 6=n

[
coth

(
yn − yl

2

)
+ coth

(
yn + yl

2

)]
+ coth(yn)− 1

2αr̃
.

(3.15)

Without loss of generality we assume that the yn’s have been ordered such that
0 < y1 < · · · < yN . We note that this order does not change during the evolution
since the repulsion between two poles becomes infinite when they approach each other.
For the same reason, we always have strict inequalities in this ordering.

In physical and Fourier spaces, the coalescent pole solution is of the form (from
(3.3), (3.4), and (3.10))

u(x, t) = 2αr̃

N∑
n=1

sin(r̃x− xc)
cosh(yn(t))− cos(r̃x− xc) ,(3.16)

ϕ(x, t) = ϕ0(t) + 2α
N∑
n=1

ln
1

2

[
cosh(yn(t))− cos(r̃x− xc)

]
,(3.17)
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and

ûm(t) =

−2iα̃r sgn(k)e−ikxc
N∑
n=1

e−|k|yn(t) if m = kr,

0 otherwise,

(3.18)

where xc is the real (common) part of the coalescent poles. For future reference, we
also introduce the shifted sine transform of the slope of the flame front

u(x, t) =

∞∑
m=1

ûsin
m (t) sin

[
m
(
x̃− xc

r

)]
,(3.19)

where

ûsin
m (t) =

4α̃r
N∑
n=1

e−kyn(t) if m = kr,

0 otherwise.

(3.20)

The Fourier transform of the slope, ûm, can be easily expressed in terms of the shifted
sine transform, namely,

ûm(t) = −i sgn(m)
1

2
e−ikxc ûsin

|m|(t) .(3.21)

3.2. Steady coalescent pole solution. A coalescent solution for which all the
poles are time independent is referred to as a coalescent steady state [7]. A coalescent
steady state is a solution of N simultaneous nonlinear equations (see (3.14)):

Fn(y1, . . . , yN ) = 0, n = 1, . . . , N .(3.22)

The last equation of (3.22), corresponding to n = N (see also (3.15)), together with
the fact that coth(x) > 1 for x > 0, yields the inequality

α̃ <
1

2r(2N − 1)
or γ > 2r(2N − 1) .(3.23)

This implies that, for a given αr̃, there exist coalescent steady states only if the
number of poles satisfies the inequality N ≤ N0, with N0 given by

N0 =


Int

[
1

4αr̃
+

1

2

]
if

1

4αr̃
+

1

2
is not an integer,

Int

[
1

4αr̃
− 1

2

]
otherwise.

(3.24)

Thual, Frisch, and Hénon [17] proved that the following two properties hold for
N ≤ N0: (i) there exists one and only one coalescent steady state, and (ii) any solution
of (3.14) tends towards that steady state as t → ∞. This means that coalescent
steady states are stable solutions of the system (3.14), i.e., when only coalescent
solutions are considered. Whether these states are also stable solutions of the full
set of ODEs (3.6) and, what is more important, stable solutions of the PDE (2.1),
remains to be determined. This question, which is the main objective of this work,
will be discussed in the following section.
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2 6 10 14 18
γ

0

1

2

3

4
y n

1−pole solution
2−pole solution
3−pole solution
4−pole solution

Fig. 3.1. The dependence of the imaginary parts of poles, yn, on γ for N-pole coalescent steady
states, N = 1, . . . , 4. The points where the new poles are born are marked with dots.

The solutions of (3.22) have simple analytical forms for N = 1, 2. For N = 1,

y1 = tanh−1(2αr̃) .(3.25)

For N = 2,

y1,2 = tanh−1(6αr̃)∓ 1

2
cosh−1

(
1

1− (6αr̃)2

)
.(3.26)

For N > 2, (3.22) must be solved numerically. This has been carried out using a
Newton–Raphson method [19]. The position yn of each pole is adjusted to a new
value

ynewn = yoldn + δyn, n = 1, . . . , N,(3.27)
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with the correction vector δyn obtained by solving the matrix equation

N∑
j=1

∂Fi
∂yj

δyj = −Fi, i = 1, . . . , N,(3.28)

where the entries of the Jacobian matrix are given by

∂Fi
∂yj

=
1

2

[(
sinh

[
yi − yj

2

])−2

−
(

sinh

[
yi + yj

2

])−2
]
, j 6= i,

∂Fi
∂yi

= −1

2

N∑
j=1
j 6=i

[(
sinh

[
yi − yj

2

])−2

+

(
sinh

[
yi + yj

2

])−2
]
−
(

sinh [yi]

)−2

.

(3.29)

We adopt yn = 2αr̃n as an initial guess (as suggested in [17]) and stop the iteration
process when either the sum of the magnitudes of the functions Fn is less than some
tolerance (typically 10−12) or the sum of the absolute values of the corrections δyn is
less than some tolerance (typically 10−12). This method was found to always converge
to the equilibrium.

The results are shown in Figure 3.1, where the imaginary parts of the poles of
the coalescent steady states are plotted as functions of the parameter γ introduced
in section 2. Without loss of generality, here and in the rest of this section, only the
case r = 1 is presented. The case when r is any other positive integer is very similar.
For a coalescent pole solution, a pole can be uniquely identified by its imaginary part.
We shall therefore use the notation ykn for both the nth pole of the k-pole coalescent
steady state and the imaginary part of this pole. We observe that

(i) The family of coalescent steady states consists of an infinitely countable
number of solutions. We shall label each solution by the number of poles it possesses,
namely, uN , N = 0, 1, . . . ,∞. We point out that the formulas (3.16)–(3.21) hold for
coalescent steady states as well, except that now there shall be no t dependence, with
the only exception of ϕ0 in (3.17), and that the subscript N shall be added to the
symbols u and ϕ.

(ii) The coalescent steady state, uN , exists on the semi-infinite interval γN <
γ <∞. Here γN = 2(2N − 1) for N > 0 and γ0 = 0. Thus, the one-pole solution u1

exists for γ > 2; the two-pole solution u2 exists for γ > 6; the three-pole solution u3

exists for γ > 10; etc.
In physical space, the zero-pole coalescent steady state is the flat front. An N -pole

coalescent steady state with N > 0 is a front of a cusp-like shape that propagates with
a constant speed. The depth of the “cusp” increases with increasing γ. A measure of
the depth of the “cusp” of ϕN , or its amplitude, may be given by

∆ϕN (γ) ≡ maxϕN (γ)−minϕN (γ) = 4α

N∑
n=1

ln
(

coth
yn
2

)
,(3.30)

where use has been made of (3.17) to obtain the equality on the right-hand side. The
dependence of ∆ϕN on γ is shown in Figure 3.2. We note that at γ = γN (N > 0) the
curve corresponding to the N -pole solution branches out from the curve corresponding
to the (N − 1)-pole solution. We thus have a cascade of infinitely many bifurcating
solutions. The main goal of this work is to identify the stable and unstable branches
of this bifurcation diagram.
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2 6 10 14 18
γ

0.0

0.5

1.0

1.5

∆ϕ

1−pole solution
2−pole solution
3−pole solution
4−pole solution

Fig. 3.2. The amplitudes, ∆ϕ, of the N-pole coalescent steady states, with N = 0, . . . , 4 as
functions of γ. The bifurcation points are marked with dots. The zero-pole solution coincides with
the horizontal axis.

4. Eigenvalues and eigenfunctions. To examine the linear stability of coa-
lescent steady states, the N -pole solution uN (x), or ϕN (x, t), is perturbed, by writing

u(x, t) = uN (x) + v(x, t), or ϕ(x, t) = ϕN (x, t) + ψ(x, t) ,(4.1)

with ‖v‖ � ‖uN‖, ‖ψ‖ � ‖ϕN‖. Here ‖ · ‖ denotes some appropriately chosen norm.
Clearly, v = ψx.

4.1. Linearized equations. Substituting u(x, t), or ϕ(x, t), from (4.1) into
(2.5), or (2.1), and then linearizing the result about the steady state uN (x) or ϕN (x, t),
yields

vt =
1

2
I{v;x}+ αvxx + (uNv)x ,(4.2)

or

ψt =
1

2
I{ψ;x}+ αψxx + (ϕN )xψx .(4.3)

In this section, we deal only with the slope variable, v; the results for the displacement
variable, ψ, will be written in subsection 4.3 below. In Fourier space, with

v(x, t) =
∞∑

k=−∞
k 6=0

v̂k(t) eik̃x ,(4.4)

(4.2) takes the form

(v̂k)t =
1

2

∣∣∣k̃∣∣∣ v̂k − αk̃2v̂k + ̂[
(uNv)x

]
k
, k = −∞, . . . ,−1, 1, . . . ,∞.(4.5)

Substituting (3.9), (4.4), and (3.21) into (4.5) yields an infinite system of equations

(V̂k)t =
1

2
k̃

∞∑
m=−∞,
m6=0

BkmV̂m , k = −∞, . . . ,−1, 1, . . . ,∞,(4.6)
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where

V̂k = eikxc v̂k , k = −∞, . . . ,−1, 1, . . . ,∞(4.7)

can be thought of as the Fourier transform of v(x̃ + xc/r) and Bkm is an infinite
matrix with entries given by

Bkm = sgn(k −m) ûsin
N,|k−m| , k 6= m,(4.8)

Bkk = sgn(k)− 2αk̃.(4.9)

We point out that since all the entries of the matrix Bkm are real, it suffices to consider
only real solutions {V̂k}.

The linear system (4.6) can be decomposed into two infinite systems of linear
equations. To show this, we introduce two sets of new variables: the symmetric
variables

V̌ sk = V̂k − V̂−k , k = 1, . . . ,∞ ,(4.10)

and the antisymmetric variables

V̌ ak = V̂k + V̂−k , k = 1, . . . ,∞ .(4.11)

(The label symmetric/antisymmetric will become clear later, in subsection 4.3.) The
original variables can be uniquely expressed through V̌ sk and V̌ ak :

V̂k =


1
2

(
V̌ ak + V̌ sk

)
, k = 1, . . . ,∞ ,

1
2

(
V̌ a−k − V̌ s−k

)
, k = −1, . . . ,−∞ .

(4.12)

We subtract the (−k)th equation of the linear system (4.6) from the kth equation,
insert (4.12) into the resulting expression, and obtain, after some manipulations, a
system for symmetric variables V̌ sk only:

(V̌ sk )t =
1

2
k̃
∞∑
m=1

SkmV̌
s
m , k = 1, . . . ,∞ .(4.13)

Here Skm is the infinite matrix with entries given by

Skm = sgn(k −m) ûsin
N,|k−m| − ûsin

N,k+m , k 6= m,(4.14)

Skk = 1− 2αk̃ − ûsin
N,2k .(4.15)

Similarly, we add the kth and the (−k)th equations of the linear system (4.6), sub-
stitute (4.12) into the resulting expression, and obtain, after some manipulations, a
system for antisymmetric variables V̌ ak only:

(V̌ ak )t =
1

2
k̃
∞∑
m=1

AkmV̌
a
m , k = 1, . . . ,∞ .(4.16)

Here Akm is the infinite matrix with entries given by

Akm = sgn(k −m) ûsin
N,|k−m| + ûsin

N,k+m , k 6= m,(4.17)

Akk = 1− 2αk̃ + ûsin
N,2k .(4.18)

We shall refer to the linear system (4.13) as the symmetric system and to the linear
system (4.16) as the antisymmetric system.
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4.2. The eigenvalue problem. Our objective is to find the eigenvalues and
eigenfunctions of the linear system (4.6). We therefore seek solutions of (4.6) in the

form ∼ eλ̃t. In order to avoid additional notations, we shall denote the eigenfunctions

with the same notation as the solution itself. Namely, v̂k(t) = eλ̃tv̂k. Since, in
the remainder of the paper, we will be interested only in the eigenfunctions, this
convention will cause no confusion.

It is easy to see that if λ̃ is an eigenvalue of the full system (4.6) with the corre-
sponding eigenfunction {V̂k}, then

(i) λ̃ is an eigenvalue of the symmetric system (4.13) with the eigenfunction
{V̌ sk } defined by (4.10), provided V̂k 6= V̂−k for some positive integral k, and

(ii) λ̃ is an eigenvalue of the antisymmetric system (4.16) with the eigenfunction
{V̌ ak } defined by (4.11), provided V̂k 6= −V̂−k for some positive integral k.

Conversely,

(i) if λ̃ is an eigenvalue of the symmetric system (4.13) with the eigenfunction
{V̌ sk }, then λ̃ is also an eigenvalue of the full system (4.6) with the eigenfunction

V̂k =


1
2 V̌

s
k , k = 1, . . . ,∞ ,

−1
2 V̌

s
−k , k = −1, . . . ,−∞ ;

(4.19)

(ii) if λ̃ is an eigenvalue of the antisymmetric system (4.16) with the eigenfunc-
tion {V̌ ak }, then λ̃ is also an eigenvalue of the full system (4.6) with the eigenfunction

V̂k =


1
2 V̌

a
k , k = 1, . . . ,∞ ,

1
2 V̌

a
−k , k = −1, . . . ,−∞ .

(4.20)

It therefore suffices to solve the eigenvalue problems for the symmetric (4.13) and the
antisymmetric (4.16) systems. The two systems can be expressed in a unified form:

2λ V̌k = k

[
(1− 2α̃k)V̌k +

k−1∑
m=1

ûsin
N,k−mV̌m −

∞∑
m=k+1

ûsin
N,m−kV̌m ±

∞∑
m=1

ûsin
N,m+kV̌m

]
;

(4.21)

where, here and hereafter, the upper/lower sign corresponds to the antisymmet-
ric/symmetric system, respectively. It is convenient for the discussion below to use
λ = λ̃L/π, consistent with our notation convention, noting that λ̃ is the eigenvalue of
the linear system.

From now on we assume r = 1; we shall comment on r > 1 in Part II [15]. In
examining (4.21) we found that there are two types of eigenvalues/eigenfunctions that
we discuss in turn.

4.2.1. Type I. We seek eigenfunctions of the form

V̌k = k
N∑
n=1

Ane
−kyn , k = 1, . . . ,∞,(4.22)
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with coefficients An that remain to be determined. Substituting (3.20) and (4.22)
into (4.21) one finds, after some lengthy algebra outlined in Appendix A, the system

N∑
n=1

e−kyn
{
λAn − α̃

[
N∑
l=1
l 6=n

(Al−An)
1

2 sinh2
(
yl−yn

2

)
±

N∑
l=1

(Al ∓An)
1

2 sinh2
(
yl+yn

2

)]} = 0 .

(4.23)

Equation (4.23) must hold for all k = 1, . . . ,∞. Since the expression in the curly
brackets does not depend on k, we conclude that the infinite linear system (4.23) is
satisfied if and only if this expression vanishes. The infinite dimensional linear system
(4.23) has thus been reduced to the N-dimensional linear system

λAn = α̃

 N∑
l=1
l 6=n

(Al −An)
1

2 sinh2
(
yl−yn

2

) ± N∑
l=1

(Al ∓An)
1

2 sinh2
(
yl+yn

2

)
 ,

n = 1, . . . , N.

(4.24)

For the antisymmetric system it simplifies to

λAn = α̃
N∑
l=1
l 6=n

1

2

[
1

sinh2
(
yl−yn

2

) +
1

sinh2
(
yl+yn

2

)] (Al −An) , n = 1, . . . , N,(4.25)

and for the symmetric system it simplifies to

λAn = α̃
N∑
l=1

∂Fn
∂yl

Al, n = 1, . . . , N,(4.26)

with ∂Fn
∂yl

, the Jacobian matrix, presented in (3.29).

Next we show that the following properties hold for the eigenvalues of (4.25) and
(4.26) for all values of α̃ < α̃N :

(i) There are N eigenvalues of the symmetric system and N eigenvalues of the
antisymmetric system.

(ii) All eigenvalues of either system are real.
(iii) All eigenvalues of the antisymmetric system are nonpositive and all eigenval-

ues of the symmetric system are negative. The antisymmetric system always possesses
a zero eigenvalue associated with a trivial translational mode.

The first property is obvious. The second property immediately follows from the
fact that the matrices of both systems, (4.25) and (4.26), are symmetric matrices.

To prove the third property we use Geršgorin’s theorem (cf. [20, Theorem 6.1.1])
which states that every eigenvalue of an n-by-n matrix {aij} lies in at least one of the
n discs with centers at aii and radii

Ri =
n∑
j=1
j 6=i

|aij | , i = 1, . . . , n,(4.27)



692 DIMITRI VAYNBLAT AND MOSHE MATALON

in the complex plane. Then all the eigenvalues of {aij} are located in the union of n
discs,

⋃n
i=1{z : |z − aii| ≤ Ri}.

For the antisymmetric system (4.25), we have

aii = −α̃
N∑
j=1
j 6=i

1

2

[
1

sinh2
(yj−yi

2

) +
1

sinh2
(yj+yi

2

)] < 0,(4.28)

Ri = α̃

N∑
j=1
j 6=i

1

2

[
1

sinh2
(yj−yi

2

) +
1

sinh2
(yj+yi

2

)] = −aii(4.29)

for i = 1, . . . , N . Thus, every one of the n discs lies in the left half-plane and touches
the imaginary axis only at one point. We conclude that all the eigenvalues of the
antisymmetric system are necessarily nonnegative. It is obvious, however, that the
system (4.25) always (for all N) possesses a zero eigenvalue, λN,a1 = 0, with the

corresponding eigenfunction V̌ N,a1,k = kA
∑N
n=1 e

−kyn (where A is a constant). This
eigenfunction is a translational mode which can be expressed in terms of the N -pole
solution itself, namely, vN,a1 (x) = const d

dxuN (x). This eigenmode stems from the
Galilean invariance of the evolution equation.

For the symmetric system (4.26), we have

aii = α̃
∂Fi
∂yi

(4.30)

= −α̃


1

2

N∑
j=1
j 6=i

[(
sinh

[
yi − yj

2

])−2

+

(
sinh

[
yi + yj

2

])−2
]

+

(
sinh [yi]

)−2

 < 0,

Ri = α̃
N∑
j=1
j 6=i

∂Fi
∂yj

(4.31)

= α̃

N∑
j=1
j 6=i

1

2

[(
sinh

[
yi − yj

2

])−2

−
(

sinh

[
yi + yj

2

])−2
]
< −aii

for i = 1, . . . , N . Thus every one of the n discs lies completely in the open left half-
plane never touching the imaginary axis. We conclude that all the eigenvalues of the
symmetric system (4.26) are negative.

By constructing the eigenvalues of the N -dimensional linear systems (4.25) and
(4.26), we found that two more properties hold for both systems for all values of
α̃ < α̃N :

(iv) All N eigenvalues are mutually distinct.

(v) All eigenvalues of either system, with the exception of λN,a1 , are monotoni-
cally increasing functions of α̃.
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The properties (i)–(iv) lead to the conclusion that the spectrum of the antisym-
metric system (4.25) is

0 = λN,a1 > λN,a2 > · · · > λN,aN(4.32)

and the spectrum of the symmetric system (4.26) is

0 > λN,s1 > λN,s2 > · · · > λN,sN .(4.33)

We note that the order, as well as the strict inequalities, in (4.32) and (4.33) is always
retained.

4.2.2. Type II. We seek eigenfunctions of the form

V̌k = V̌ NN+S,k =


k

N∑
n=1

Ane
−kyn if k > S,

k

N∑
n=1

Ane
−kyn + wk if k ≤ S,

(4.34)

where S = 1, . . . ,∞, with coefficients An (n = 1, . . . , N) and wk (k = 1, . . . , S) that
remain to be determined (wS 6= 0). Substituting (3.20) and (4.34) into (4.21) one
finds, after some lengthy algebra outlined in Appendix B, the two systems{

1

2
k
[
1− (k + 2N) 2α̃

]− λ}wk = 4α̃k
S∑

m=k+1

(
N∑
n=1

cosh [(m− k) yn]

)
wm ,

k = 1, . . . , S,

(4.35)

N∑
n=1

e−kyn
{
λAn − α̃

[
N∑
l=1
l 6=n

(Al −An)
1

2 sinh2
(
yl−yn

2

) ± N∑
l=1

(Al ∓An)
1

2 sinh2
(
yl+yn

2

)
+ 2

S∑
m=1

(
emyn ± e−myn)wm]} = 0, k = S + 1, . . . ,∞.

(4.36)

We start by examining the system of equations (4.35). The right-hand side of the
last equation, which corresponds to k = S, is zero. This implies that the expression
inside the curly brackets on the left-hand side vanishes (because wS 6= 0). We have
thus obtained an expression for the (N + S)th eigenvalue, namely,

λNN+S =
1

2
S
[
1− (S + 2N) 2α̃

]
, S = 1, . . . ,∞ .(4.37)

It should be pointed out that we start numbering the eigenvalues of type II with
N + 1; the first N eigenvalues are the eigenvalues of type I (found in the preceding
subsection). The remaining S − 1 equations become

1

2

[
k − S][1− (k + S + 2N) 2α̃

]
wk = 4α̃k

S∑
m=k+1

(
N∑
n=1

cosh [(m− k) yn]

)
wm ,

k = 1, . . . , S − 1

(4.38)
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or, equivalently,[
k − S
k + S

]
λNN+S+kwk = 4α̃k

S∑
m=k+1

(
N∑
n=1

cosh [(m− k) yn]

)
wm ,

k = 1, . . . , S − 1 .

(4.39)

These S−1 equations determine the S−1 unknowns, w1, . . . , wS−1; wS is an arbitrary
constant. Because the coefficients on the left-hand side never vanish, except for the
values of α̃, where λNN+S+k = 0, the S − 1 equations (4.39) can be solved recursively
starting from the last (k = S − 1) equation and going down to the first (k = 1)
equation. We thus obtain expressions for wk as linear combinations of the remaining
wm:

wm = CWm(α̃, N, S), m = 1, . . . , S − 1(4.40)

for some function Wm that depends on α̃, N , and S, where C = wS . Finally, we
point out that λNN+S is an eigenvalue for both the symmetric and the antisymmetric
systems, and that wm, m = 1, . . . , S−1 given by (4.40) are the same for both systems.

We note that for N = 0 there is no equation (4.36). In this case the right-
hand side of (4.35) vanishes, again giving (4.37) for the eigenvalues with wm = 0 for
m = 1, ..., S − 1, while wS remains an arbitrary constant.

We now consider the system of (4.36) (relevant for N ≥ 1), which must hold for all
k = S+1, . . . ,∞. Since the expression in the curly brackets does not depend on k, we
conclude that the infinite linear system (4.36) is satisfied if and only if this expression
vanishes. The infinite dimensional linear system (4.36) has thus been reduced to the
N-dimensional linear system

λAn = α̃

[
N∑
l=1
l 6=n

(Al −An)
1

2 sinh2
(
yl−yn

2

) ± N∑
l=1

(Al ∓An)
1

2 sinh2
(
yl+yn

2

)
+2

S∑
m=1

(
emyn ± e−myn)wm], n = 1, . . . , N.

(4.41)

Substituting (4.37) for λ and (4.40) for wm (m = 1, . . . , S − 1) we obtain a system of
N nonhomogeneous linear equations

λNN+SAn − α̃

 N∑
l=1
l 6=n

(Al −An)
1

2 sinh2
(
yl−yn

2

) ± N∑
l=1

(Al ∓An)
1

2 sinh2
(
yl+yn

2

)


= 2α̃C

S∑
m=1

(
emyn ± e−myn)Wm(α̃, N, S) , n = 1, . . . , N

(4.42)

for the N unknowns An, where WS(α̃, N, S) ≡ 1. The matrix of this linear system
coincides with the matrix of the homogeneous linear system (4.24) discussed earlier,
both being functions of λ. Because all the eigenvalues of type I are monotonically
increasing functions of α̃, whereas the eigenvalues of type II are monotonically de-
creasing functions of α̃ (see (4.37)), the determinant of the system vanishes at most
at N values of α̃, namely, where the eigenvalues of type I intersect the eigenvalues of
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type II. At all other values of α̃ the system (4.42) has a unique solution: for a given
eigenvalue λNN+S , given by (4.37), there is one and only one eigenfunction for the
symmetric system and one and only one eigenfunction for the antisymmetric system.

For completeness, we note that the system (4.42) simplifies as follows: for the
antisymmetric system it takes the form

λNN+SAn − α̃
N∑
l=1
l 6=n

1

2

[
1

sinh2
(
yl−yn

2

) +
1

sinh2
(
yl+yn

2

)](Al −An)

= 4α̃C
S∑

m=1

cosh (myn)Wm(α̃, N, S) , n = 1, . . . , N,

(4.43)

and for the symmetric system,

λNN+SAn − α̃
N∑
l=1

∂Fn
∂yl

Al = 4α̃C
S∑

m=1

sinh (myn)Wm(α̃, N, S) ,

n = 1, . . . , N,

(4.44)

with ∂Fn
∂yl

, the Jacobian matrix, presented in (3.29).
We end this subsection with a list of properties of the eigenvalues of type II

which follow immediately from (4.37) and hold for all values of α̃ < α̃N . They are
counterparts of the properties of eigenvalues of type I listed in the previous subsection.

(i) There is an infinitely countable number of the eigenvalues.
(ii) All eigenvalues are real.
(iii) All eigenvalues are negative for large values of α̃ and positive for small values

of α̃. A typical eigenvalue, λNN+S, changes its sign at α̃ = 1
2(S+2N) .

(iv) Any two eigenvalues, λNN+S and λNN+M , assume the same value at one and

only one point, α̃ = 1
2(M+S+2N) . They are mutually distinct for all other values of α̃.

(v) All eigenvalues are linearly decreasing functions of α̃.

4.3. Eigenfunctions in physical space. We summarize the results concerning
eigenfunctions by providing their expressions in physical space. We start by noting
that the decomposition (4.12) implies that the solution v(x, t) can be expressed as
v(x, t) = va(x, t) + ivs(x, t) with

vs(x, t) =
∞∑
k=1

V̌ sk (t) sin
[
k
(
x̃− xc

r

)]
,(4.45)

va(x, t) =
∞∑
k=1

V̌ ak (t) cos
[
k
(
x̃− xc

r

)]
.(4.46)

This is obtained by simply inserting (4.12) and (4.7) into (4.4). The flame front
perturbation can also be expressed in the form ψ(x, t) = ψa(x, t) + iψs(x, t) with

ψs(x, t) = Ψ̌s
0(t) +

∞∑
k=1

Ψ̌s
k(t) cos

[
k
(
x̃− xc

r

)]
, Ψ̌s

k = − V̌
s
k

k̃
,(4.47)

ψa(x, t) =
∞∑
k=1

Ψ̌a
k(t) sin

[
k
(
x̃− xc

r

)]
, Ψ̌a

k =
V̌ ak
k̃

.(4.48)
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The notation here reflects the fact that the superscripts s and a represent the symmet-
ric and antisymmetric, with respect to x̃ = xc/r, contributions to the perturbation of
the flame front.

This decomposition leads to the following expressions for the eigenfunctions in
physical space. For the eigenfunctions of type I, we insert (4.22) into (4.45) and
(4.46) to obtain the symmetric and antisymmetric perturbations to the slope of the
flame front,

vN,s(x) =
1

2

N∑
n=1

An
sinh yn sin(x̃− xc)

(cosh yn − cos(x̃− xc))2 ,(4.49)

vN,a(x) =
1

2

N∑
n=1

An
cosh yn cos(x̃− xc)− 1

(cosh yn − cos(x̃− xc))2 ,(4.50)

and into (4.47) and (4.48) to obtain the symmetric and antisymmetric perturbations
to the displacement of the flame front,

ψ̃N,s(x) = −1

2

N∑
n=1

An
cos(x̃− xc)− e−yn

cosh yn − cos(x̃− xc) ,(4.51)

ψ̃N,a(x) =
1

2

N∑
n=1

An
sin(x̃− xc)

cosh yn − cos(x̃− xc) .(4.52)

For the eigenfunctions of type II, we insert (4.34) into (4.45) and (4.46) to obtain the
symmetric and antisymmetric perturbations to the slope of the flame front,

vN,sN+S(x) =
1

2

N∑
n=1

An
sinh yn sin(x̃− xc)

(cosh yn − cos(x̃− xc))2 +

S∑
k=1

wk sin [k(x̃− xc)] ,(4.53)

vN,aN+S(x) =
1

2

N∑
n=1

An
cosh yn cos(x̃− xc)− 1

(cosh yn − cos(x̃− xc))2 +
S∑
k=1

wk cos [k(x̃− xc)] ,(4.54)

and into (4.47) and (4.48) to obtain the symmetric and antisymmetric perturbations
to the displacement of the flame front,

ψ̃N,sN+S(x) = −1

2

N∑
n=1

An
cos(x̃− xc)− e−yn

cosh yn − cos(x̃− xc) −
S∑
k=1

wk
k

cos [k(x̃− xc)] ,(4.55)

ψ̃N,aN+S(x) =
1

2

N∑
n=1

An
sin(x̃− xc)

cosh yn − cos(x̃− xc) +
S∑
k=1

wk
k

sin [k(x̃− xc)] .(4.56)
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5. Conclusions. The spectrum of the full linear system (4.6), associated with
an N -pole coalescent steady state uN (x), consists of two sets of eigenvalues of type I,
the symmetric set and the antisymmetric set, and one set of eigenvalues of type II.

Either set of eigenvalues of type I consists of N mutually distinct eigenvalues,
ordered as in (4.32) or (4.33). All eigenvalues of the symmetric set are distinct from
the eigenvalues of the antisymmetric set, for all γ > γN . Each eigenvalue of type I
is a simple eigenvalue; there is only one eigenfunction associated with it. The eigen-
function associated with an eigenvalue of the symmetric set is symmetric. It is of the
form (4.22) in Fourier space (or (4.49) for the slope and (4.51) for the displacement in
physical space) with An being solutions of the linear system (4.26). The eigenfunction
associated with an eigenvalue of the antisymmetric set is antisymmetric. It is of the
form (4.22) in Fourier space (or (4.50) for the slope and (4.52) for the displacement
in physical space) with An solutions of the linear system (4.25).

There are infinitely many eigenvalues of type II, given by (4.37). Each eigenvalue
of type II has multiplicity two; there are two different eigenfunctions associated with
it—one symmetric and one antisymmetric. The symmetric eigenfunction is of the
form (4.34) in Fourier space (or (4.53) for the slope and (4.55) for the displacement in
physical space) with An solutions of the linear system (4.44) and wk given by (4.40).
The antisymmetric eigenfunction is of the form (4.34) in Fourier space (or (4.54) for
the slope and (4.56) for the displacement in physical space) with An solutions of
the linear system (4.43) and wk given by (4.40). To substantiate this, we solved the
eigenvalue problem for the linear system (4.6) numerically for various values of N and
α̃. The matrix was first truncated at some cutoff k = kc. The resulting (kc × kc)-
dimensional matrix was then solved for the eigenvalues using standard computational
linear algebra techniques (cf. [21]). By increasing kc we ensured the convergence of
the low-order eigenvalues. For all values of N and α̃ that we tested, we found exact
(within numerical error) agreement between the numerical and our analytical results.

In Part II [15] we examine the properties of the eigenvalues and eigenfunctions
as they relate to the stability of an N -pole coalescent steady state. Being based
on analytical expressions, our results resolve unequivocally the earlier controversies
reported in the literature and discussed in section 1. We also examine the dependence
of the eigenvalues and eigenfunctions on the parameter γ, which provides insight on the
behavior of the nonlinear evolution equation (2.1) and, consequently, on the dynamics
of a hydrodynamically unstable planar flame.

Appendix A. In this appendix we show the main steps in the derivation of
(4.23). Substituting (3.20) and (4.22) into (4.21) we obtain

2λ k

N∑
n=1

Ane
−kyn = k

{
(1− 2αk)k

N∑
n=1

Ane
−kyn

+4α

[
k−1∑
m=1

N∑
l=1

e−kylemylm
N∑
n=1

Ane
−myn

−
∞∑

m=k+1

N∑
l=1

ekyle−mylm
N∑
n=1

Ane
−myn ±

∞∑
m=1

N∑
l=1

e−kyle−mylm
N∑
n=1

Ane
−myn

]}
.

(A.1)

We denote the three terms in the square brackets by S1, S2, and S3, respectively.
Interchanging the order of summation in S1 and then splitting the inner sum, one
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obtains

S1 =
N∑
l=1

e−kyl
N∑
n=1

An

k−1∑
m=1

me−m(yn−yl)

=
N∑
l=1

e−kyl


N∑
n=1
n6=l

An

k−1∑
m=1

me−m(yn−yl) +Al

k−1∑
m=1

m

 .

(A.2)

Next, we sum up with respect to m using the following two relations:

k−1∑
m=1

m =
k(k − 1)

2
,(A.3)

k−1∑
m=1

me−m(yn−yl) =
1

4 sinh2
(
yn−yl

2

)
− e−(yn−yl)k

{
k

1

2

[
coth

(
yn − yl

2

)
+ 1

]
+

1

4 sinh2
(
yn−yl

2

)},

(A.4)

where the latter is obtained by differentiating the geometric progression formula

k−1∑
m=1

me−my = − d

dy

k−1∑
m=1

e−my = − d

dy

[
e−y − e−yk

1− e−y
]

=
e−y

(1− e−y)2
− e−yk

{
k

1

(1− e−y)
+

e−y

(1− e−y)2

}

=
1

4 sinh2
(
y
2

) − e−yk{k 1

2

[
coth

(y
2

)
+ 1
]

+
1

4 sinh2
(
y
2

)} .

(A.5)

After rearranging terms one obtains

S1 =
N∑
l=1

e−kyl


N∑
n=1
n6=l

An
1

4 sinh2
(
yn−yl

2

) +Al
k(k − 1)

2


−

N∑
n=1

Ane
−kyn

N∑
l=1
l 6=n

{
k

1

2

[
coth

(
yn − yl

2

)
+ 1

]
+

1

4 sinh2
(
yn−yl

2

)} .

(A.6)

Finally, renaming the indices l as n and n as l in the first term of (A.6) leads to the
expression

S1 =

N∑
n=1

e−kyn

An k(k − 1)

2
−Ank

N∑
l=1
l 6=n

1

2

[
coth

(
yn − yl

2

)
+ 1

]

+
N∑
l=1
l 6=n

(Al −An)
1

4 sinh2
(
yl−yn

2

)
 .

(A.7)
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In S2 we change the order of summation and then sum up with respect to m to
obtain

S2 =
N∑
n=1

An

N∑
l=1

ekyl
∞∑

m=k+1

me−m(yn+yl)

=
N∑
n=1

An

N∑
l=1

ekyle−(yn+yl)k

{
1

4 sinh2
(
yn+yl

2

) + k
1

2

[
coth

(
yn + yl

2

)
− 1

]}

=
N∑
n=1

e−kynAn
N∑
l=1

{
1

4 sinh2
(
yl+yn

2

) + k
1

2

[
coth

(
yn + yl

2

)
− 1

]}
,

(A.8)

where a sequence of steps analogous to those used in obtaining (A.5) has been per-
formed; in particular we used the relation

∞∑
m=k+1

me−my = − d

dy

∞∑
m=k+1

e−my = − d

dy

[
e−y(k+1)

1− e−y
]

= e−yk
{

e−y

(1− e−y)
2 + k

e−y

1− e−y
}

= e−yk
{

1

4 sinh2
(
y
2

) + k
1

2

[
coth

(y
2

)
− 1
]}

.

(A.9)

In S3 we change the order of summation and then sum up with respect to m to
obtain

S3 =
N∑
l=1

e−kyl
N∑
n=1

An

∞∑
m=1

me−m(yn+yl) =
N∑
l=1

e−kyl
N∑
n=1

An
1

4 sinh2
(
yl+yn

2

) ,(A.10)

where (A.9) with k = 0 has been used to sum up with respect to m.
Now, we combine the expressions (A.7) and (A.8) and regroup the terms to obtain

S1 − S2 =
N∑
n=1

e−kyn

An{k2

2
− k

2

[
N∑
l=1
l 6=n

(
coth

(
yn − yl

2

)
+ coth

(
yn + yl

2

))

+ coth (yn)

]}
+

N∑
l=1
l 6=n

(Al −An)
1

4 sinh2
(
yl−yn

2

) −An N∑
l=1

1

4 sinh2
(
yl+yn

2

)


(A.11)

which can be further simplified, using (3.22) and (3.15), to

S1 − S2 =
N∑
n=1

e−kyn
(
−An k

4α
(1− 2αk)

+
N∑
l=1
l 6=n

(Al −An)
1

4 sinh2
(
yl−yn

2

) −An N∑
l=1

1

4 sinh2
(
yl+yn

2

)) .

(A.12)
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Finally, inserting (A.10) and (A.12) into (A.1) we arrive at (4.23).

Appendix B. In this appendix we show the main steps in the derivation of (4.35)
and (4.36). Substituting (3.20) and (4.34) into (4.21) we obtain

2λ k
N∑
n=1

Ane
−kyn + 2λwk = k

{
(1− 2αk)k

N∑
n=1

Ane
−kyn

+ 4α

[
k−1∑
m=1

N∑
l=1

e−kylemylm
N∑
n=1

Ane
−myn −

∞∑
m=k+1

N∑
l=1

ekyle−mylm
N∑
n=1

Ane
−myn

±
∞∑
m=1

N∑
l=1

e−kyle−mylm
N∑
n=1

Ane
−myn

]
+ (1− 2αk)wk

+ 4α

[
k−1∑
m=1

N∑
n=1

e−kynemynwm −
S∑

m=k+1

N∑
n=1

ekyne−mynwm

±
S∑

m=1

N∑
n=1

e−kyne−mynwm

]}
, k = 1, . . . , S,

(B.1)

2λ k

N∑
n=1

Ane
−kyn = k

{
(1− 2αk)k

N∑
n=1

Ane
−kyn

+ 4α

[
k−1∑
m=1

N∑
l=1

e−kylemylm
N∑
n=1

Ane
−myn −

∞∑
m=k+1

N∑
l=1

ekyle−mylm
N∑
n=1

Ane
−myn

±
∞∑
m=1

N∑
l=1

e−kyle−mylm
N∑
n=1

Ane
−myn

]

+ 4α
N∑
n=1

e−kyn
[

S∑
m=1

(
emyn ± e−myn)wm]}, k = S + 1, . . . ,∞ .

(B.2)

Equation (B.2) can be easily transformed to expression (4.36) following the steps
outlined in Appendix A because, with the exception of one extra term, (B.2) is ex-
actly (A.1).

The first two terms inside the curly brackets of (B.1) coincide with the expression
inside the curly brackets in (A.1). We therefore simplify the former by following the
steps of Appendix A. Next we change the order of summation in each of the three
terms inside the second brackets of (B.1) and rewrite the first term inside the second
brackets as follows:

N∑
n=1

e−kyn
k−1∑
m=1

emynwm =
N∑
n=1

e−kyn
(

S∑
m=1

emynwm −
S∑

m=k+1

emynwm

)
−Nwk .

(B.3)
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After some regrouping, (B.1) becomes

2λwk + 2k
N∑
n=1

e−kyn
{
λAn − α

[
N∑
l=1
l 6=n

(Al −An)
1

2 sinh2
(
yl−yn

2

)
±

N∑
l=1

(Al ∓An)
1

2 sinh2
(
yl+yn

2

) + 2

S∑
m=1

(
emyn ± e−myn)wm]}

= k

{
(1− 2αk − 4αN)wk

− 4α
N∑
n=1

[
e−kyn

S∑
m=k+1

emynwm + ekyn
S∑

m=k+1

e−mynwm

]}
.

(B.4)

Due to (4.36) only the first term survives in the left-hand side of (B.4). Finally,
changing the order of summation in the second term inside the curly brackets on the
right-hand side of (B.4) we arrive at the expression (4.35).

REFERENCES

[1] G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames—I.
Derivation of basic equations, Acta Astronautica, 4 (1977), pp. 1177–1206.

[2] G. Darrieus, Propagation d’un front de flamme, Unpublished work presented at “Le Congres
de Mecanique Appliquee,” 1938.

[3] L. D. Landau, On the theory of slow combustion, Acta Physicochimica, USSR, 19 (1944), pp.
77–85.

[4] D. M. Michelson and G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in
laminar flames—II. Numerical experiments, Acta Astronautica, 4 (1977), pp. 1207–1221.

[5] D. M. Michelson and G. I. Sivashinsky, Thermal-expansion induced cellular flames, Com-
bust. Flame, 48 (1982), pp. 211–217.

[6] G. Joulin and P. Combray, On a tentative, approximate evolution equation for markedly
wrinkled premixed flames, Combust. Sci. and Tech., 81 (1992), pp. 243–256.

[7] O. Rahibe, N. Aubry, and G. I. Sivashinsky, Stability of pole solutions for planar propagating
flames, Phys. Rev. E, 54 (1996), pp. 4958–4972.

[8] O. Rahibe, N. Aubry, and G. I. Sivashinsky, Intability of pole solutions for planar prop-
agating flames in sufficiently large domains, Combust. Theory Modelling, 2 (1998), pp.
19–41.

[9] S. Gutman and G. I. Sivashinsky, The cellular nature of hydrodynamic flame instability,
Phys. D, 43 (1990), pp. 129–139.

[10] A. G. Istratov and V. B. Librovich, On the stability of gasdynamic discontinuities associated
with chemical reactions; the case of a spherical flame, Astronautica Acta, 14 (1969), pp.
453–467.

[11] E. Groff, The cellular nature of confined spherical propane–air flames, Combust. Flame, 48
(1982), pp. 51–62.

[12] P. Cambray, K. Joulin, and G. Joulin, Coalescence problems in the theory of expanding
wrinkled premixed flames, Combust. Sci. Tech., 112 (1996), pp. 271–299.

[13] O. Kupervasser, Z. Olami, and I. Procaccia, Geometry of developing flame fronts: Analysis
with pole decomposition, Phys. Rev. Lett., 76 (1996), pp. 146–149.

[14] Z. Olami, B. Galanti, O. Kupervasser, and I. Procaccia, Random noise and pole dynamics
in unstable front propagation, Phys. Rev. E, 55 (1997), pp. 2649–2663.

[15] D. Vaynblat and M. Matalon, Stability of pole solutions for planar propagating flames:
II. Properties of eigenvalues/eigenfunctions and implications to stability, SIAM J. Appl.
Math., 60 (2000), pp. 703–728.

[16] M. Renardy, A model equation in combustion theory exhibiting an infinite number of sec-
ondary bifurcations, Phys. D, 28 (1987), pp. 155–167.
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