THE FIXED-POINT PARTITION LATTICES

Phil Hanlon

Let σ be a permutation of the set $\{1,2, \cdots, n\}$ and let $\Pi(N)$ denote the lattice of partitions of $\{1,2, \cdots, n\}$. There is an obvious induced action of σ on $\Pi(N)$; let $\Pi(N)_{\sigma}=L$ denote the lattice of partitions fixed by σ.

The structure of L is analyzed with particular attention paid to \mathscr{R}, the meet sublattice of L consisting of 1 together with all elements of L which are meets of coatoms of L. It is shown that \mathscr{M} is supersolvable, and that there exists a pregeometry on the set of atoms of \mathscr{M} whose lattice of fiats G is a meet sublatice of \mathscr{M}. It is shown that G is supersolvable and results of Stanley are used to show that the Birkhoff polynomials $B(\lambda)$ and $B_{G}(\lambda)$ are

$$
B_{G}(\lambda)=(\lambda-1)(\lambda-j) \cdots(\lambda-(m-1) j)
$$

and

$$
B(\lambda)=(\lambda-1)^{r-1} B_{G}(\lambda) .
$$

Here m is the number of cycles of σ, j is square-free part of the greatest common divisor of the lengths of σ and r is the number of prime divisors of j. \mathscr{I} coincides with G exactly when j is prime.

1. Preliminaries. Let (P, \leqq) be a finite partially ordered set. An automorphism σ of (P, \leqq) is a permutation of P satisfying $x \leqq y$ iff $x \sigma \leqq y \sigma$ for all $x, y \in P$. The group of all automorphisms of P is denoted $\Gamma(P)$. For $\sigma \in \Gamma(P)$, let $P_{\sigma}=\{x \in P: x \sigma=x\}$. The set P_{σ} together with the ordering inherited from P is called the fixed point partial ordering of σ. If P is lattice then P_{σ} is a sublattice of P. To see this, let $x, y \in P_{\sigma}$. Then $(x \vee y) \sigma \geqq x \sigma=x$ and $(x \vee y) \sigma \geqq y \sigma=y$, so $(x \vee y) \sigma \geqq x \vee y$. If $(x \vee y) \sigma>x \vee y$, then $(x \vee y)<(x \vee y) \sigma<$ $(x \vee y) \sigma^{2}<\cdots$ forms an infinite ascending chain in P which is impossible since P is finite. So $(x \vee y) \sigma=x \vee y$ hence the set P_{σ} is closed under joins in P. Similarly P_{c} is closed under meets.

A partition ρ of a finite set $\Omega=\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ is a collection $\rho=B_{1} / B_{2} / \cdots / B_{k}$ of disjoint, nonempty subsets of Ω whose union is all of Ω. The set of all partitions of Ω is denoted $\Pi(\Omega)$; if $\Omega=$ $\{1,2, \cdots, n\}$ this is written $\Pi(N) . \quad \Pi(\Omega)$ ordered by refinement is a lattice.

Let S_{n} denote the symmetric group on the numbers $\{1,2, \cdots, n\}$. Define an action of S_{n} on $\Pi(N)$ as follows; for $\sigma \in S_{n}$ and $B_{1} / \cdots / B_{k} \in$ $\Pi(N)$

$$
\left(B_{1} / \cdots / B_{k}\right) \sigma=B_{1} \sigma / B_{2} \sigma / \cdots / B_{k} \sigma
$$

where $B_{i} \sigma=\left\{b \sigma: b \in B_{i}\right\}$. It is easily checked that this permutation representation is faithful and that each $\sigma \in S_{n}$ acts as an automorphism of $\Pi(N)$.

Recall that a lattice L is upper semimodular provided that all pairs of elements $x, y \in L$ satisfy the condition (*):
(*) If x and y both cover $x \wedge y$ then $x \vee y$ covers both x and y.

A lattice G is geometric if it is upper semimodular and if each element of G is a join of atoms. Its easy to check that every finite partition lattice is geometric.

Let L be a finite lattice and Δ a maximal chain in L from 0 to 1. If, for every chain K of L the sublattice of L generated by K and Δ is distributive, then we call Δ an M-chain of L and we call (L, Δ) a supersolvable lattice (SS-lattice).

Let L be a finite lattice with rank function r and let $m=r(1)$. The Birkhoff polynomial of L, denoted $B_{L}(\lambda)$ is defined by

$$
B_{L}(\lambda)=\sum_{x \in L} \mu(0, x) \lambda^{m-r(x)} .
$$

Here μ is the usual Möbius function of L.
It is assumed in $\S \S 3$ and 5 that the reader is familiar with the structure theory for supersolvable lattices given by Stanley and particularly with his elegant results concerning Birkhoff polynomials of supersolvable geometric lattices (see Stanley [4]). For more about lattice theory see Dilworth and Crawley, [2].

If K is a lattice and S a subset of K we say S is a meet-sublattice of K if S together with the inherited ordering is a lattice in which the meet agrees with the meet in K.
2. The structure of $(\Pi(N))_{\sigma^{*}}$ Throughout this section we assume that n is a fixed positive integer and that σ is a permutation of $\{1,2, \cdots, n\}$. We write

$$
\sigma=\left(c_{1,1}, \cdots, c_{1, l_{1}}\right) \cdots\left(c_{m, 1}, \cdots, c_{m, l_{m}}\right)
$$

according to its disjoint cycle decomposition as a permutation of $\{1,2, \cdots, n\}$. We refer to ($c_{i, 1}, \cdots, c_{i, l_{i}}$) as the i th cycle of σ and denote it by C_{i}. Note that l_{i} is the length of C_{i} and so $l_{1}+\cdots+$ $l_{m}=n$.

Let L denote the fixed point partition lattice $(\Pi(N))_{\sigma}$. Observe that if $\beta=B_{1} / \cdots / B_{k} \in L$ then $B_{1} / \cdots / B_{k}=B_{1} \sigma / \cdots / B_{k} \sigma$ and so σ permutes the blocks of β. We let $Z(\sigma ; \beta)$ denote the cycle indicator of this induced action of σ on the set of blocks of β. The following observation is presented without proof.

Lemma 1. Suppose $\beta=B_{1} / \cdots / B_{k} \in L$ and $m_{s, u} \in B_{i_{0}}$. Then there exists an integer d which divides l_{s} and there exist distinct blocks $B_{i_{0}}, B_{i_{1}}, \cdots, B_{i_{d-1}}$ such that the elements of the cycle C_{s} are evenly divided amongst the d blocks $B_{i_{0}}, \cdots, B_{i_{d-1}}$ according to the rule

$$
m_{s, t} \in B_{i_{r}} \quad \text { iff } \quad u-t \equiv r \quad \bmod \left(l_{s} / d\right)
$$

Figure 1
In a similar way, β induces a partition of the set of cycles $\left\{C_{1}, \cdots, C_{m}\right\}$ which is defined in terms of the equivalence relation \sim by $C_{i} \sim C_{j}$ iff there exists $c \in C_{i}, d \in C_{j}$ and a block of β containing both c and d. This relation is transitive since each cycle is divided amongst a cyclically permuted set of blocks. We denote the resulting partition of $\left\{C_{1}, \cdots, C_{m}\right\}$ by $\rho(\sigma ; \beta)$.

Example 1. Let $n=4$ and $\sigma=(1,2)(3,4)$. The partition $\beta=$ $1 / 2 / 34$ is in L; the cycle indicator $Z(\sigma ; \beta)=x_{1} x_{2}$ and the partition $\rho(\sigma ; \beta)$ puts each cycle in a block by itself.

If instead we let $\beta=13 / 24$ we have $Z(\sigma ; \beta)=x_{2}$ whereas the partition $\rho(\sigma ; \beta)$ has just one block containing the two cycles. The lattice L appears in the figure below.

Figure 2

Note that L is not Jordan; in general the fixed point lattices $(\Pi(N))_{o}$ are not themselves highly structured. However the meet sublattice \mathscr{M} of L consisting of 1 together with all meets of coatoms in L is highly structured, in the above case isomorphic to the lattice of partitions of a 3 element set. We begin by investigating the coatoms of L.

Lemma 2. There are two kinds of coatoms γ in L :
(a) γ has 2 blocks, $\gamma=B_{1} / B_{2}$. Each block is setwise invariant under σ hence each block is a union of cycles. $Z(\sigma, \gamma)=x_{1}^{2}$ and $\rho(\sigma, \gamma)$ is a coatom in the lattice of partitions of $\left\{C_{1}, \cdots, C_{m}\right\}$.
(b) γ has p blocks, $\gamma=B_{1} / \cdots / B_{p}$, where p is a prime. The blocks B_{p} are cyclically permuted by σ and every cycle C_{i} is divided evenly amongst the blocks B_{1}, \cdots, B_{p}. The integer p divides $\operatorname{gcd}\left(l_{1}, \cdots, l_{m}\right), Z(\sigma, \gamma)=x_{p}$ and $\rho(\sigma, \gamma)$ is the 1 in the lattice of partitions of $\left\{C_{1}, \cdots, C_{m}\right\}$.

Proof. Clearly each of the 2 sorts of partitions above is fixed by σ and each is a coatom in L.

Let γ be a coatom of L where $\gamma=B_{1} / \cdots / B_{k}(k \geqq 2)$. Suppose the blocks of γ can be split into two disjoint σ-invariant sets

$$
\begin{aligned}
S & =\left\{B_{i_{1}}, \cdots, B_{i_{u}}\right\} \\
T & =\left\{B_{j_{1}}, \cdots, B_{j_{v}}\right\} .
\end{aligned}
$$

Consider the partition $\gamma^{\prime}=\left(\bigcup_{B_{i} \in S} B_{i}\right) /\left(\bigcup_{B_{j} \in T} B_{j}\right)$. Clearly $\gamma^{\prime} \in L$ and $\gamma \leqq \gamma^{\prime}<1$. As γ is a coatom of $L, \gamma^{\prime}=\gamma$ and so $u=v=1$. Thus γ is of type (a).

Otherwise, σ acts transitively on the set of blocks $\left\{B_{1}, \cdots, B_{k}\right\}$. Assume the B_{i} 's are numbered so that $B_{i} \sigma=B_{i+1}$ for $i<k$ and $B_{k} \sigma=B_{1}$. Suppose k factors as $k=r s$ where $r>1$ and $s \geqq 1$. Consider the partition

$$
\gamma^{\prime}=\left(\bigcup_{i=0}^{s-1} B_{1+r i}\right) /\left(\bigcup_{i=0}^{s-1} B_{2+r i}\right) / \cdots /\left(\bigcup_{i=0}^{s-1} B_{r+r i}\right)
$$

Clearly $\gamma^{\prime} \in L$ and $\gamma \leqq \gamma^{\prime}<1$, so $\gamma=\gamma^{\prime}$. Thus $s=1$ and γ is of type (b).

There are $2^{m-1}-1$ coatoms of the kind outlined in (a); these will be called coatoms of type a. For each prime p dividing $\operatorname{gcd}\left(l_{1}, \cdots, l_{m}\right)$ there are p^{m-1} coatoms of the kind outlined in (b); these will be called coatoms of type b.

Note that the coatoms of type a generate a sublattice of \mathscr{M} isomorphic to the lattice of partitions of $\left\{C_{1}, \cdots, C_{m}\right\}$. In the case
that $\operatorname{gcd}\left(l_{1}, \cdots, l_{m}\right)=1$ there are no coatoms in L of type b and so this sublattice is all of \mathscr{M}.

A partition β in L with $Z(\sigma, \beta)=x_{j}^{i}$ will be called periodic with period j. The preceding lemma states that every coatom of L is periodic with period 1 or with prime period. The next lemma will imply that every partition in \mathscr{M} is periodic.

Lemma 3. Let $\beta_{1}, \beta_{2} \in L$ and suppose β_{1} is periodic with period j_{1} and β_{2} is periodic with period j_{2}. Then $\beta_{1} \wedge \beta_{2}$ is periodic with period $j=\operatorname{lcm}\left(j_{1}, j_{2}\right)$.

Proof. Choose a block B of $\beta_{1} \wedge \beta_{2}$ and let $c_{s, n} \in B$. Applying Lemma 1 and the fact that β_{1} has period j_{1} we see that $c_{s, t}$ is in the same block of β_{1} as $c_{s, u}$ iff $t \equiv u \bmod \left(l_{s} / j_{1}\right)$. Similarly, $c_{s, t}$ is the same block of β_{2} as $c_{s, u}$ iff $t \equiv u \bmod \left(l_{s} / j_{2}\right)$. Hence $c_{s, t}$ is in the same block of $\beta_{1} \wedge \beta_{2}$ iff $t \equiv u \bmod \left(l_{s} / j_{1}\right)$ and $t \equiv u \bmod \left(l_{s} / j_{2}\right)$ iff $t \equiv u$ $\bmod \left(l_{s} / j\right)$ where $j=\operatorname{lcm}\left(j_{1}, j_{2}\right)$. Applying Lemma 1 again we have that the block B falls in a j-cycle under the action of σ. As B was chosen arbitrarily we see that every block of β falls in a j-cycle under the action of σ and so $Z(\sigma, \beta)=x_{j}^{i}$.

Write $\operatorname{gcd}\left(l_{1}, \cdots, l_{m}\right)=p_{1}^{q_{1}} \cdots p_{r}^{a_{r}}$ and let $j=p_{1} \cdots p_{r}$. Lemma 3 tells us that every partition in \mathscr{M} has period i where i / j. Let $\hat{\sigma}$ be the permutation of $\{1,2, \cdots, m j\}$ which consists of m cycles of length j,

$$
\hat{\sigma}=(1,2, \cdots, j)(j+1, \cdots, 2 j) \cdots((m-1) j+1, \cdots, m j)
$$

Let \hat{L} be the fixed point partition lattice of $\hat{\sigma}$ and let $\hat{\mathscr{M}}$ be the meet sublattice of \hat{L} consisting of 1 together with all meets of coatoms of \hat{L}. Let L and \mathscr{M} be as above.

Lemma 4. The lattices \mathscr{M} and $\hat{\mathscr{K}}$ are isomorphic.
Proof. This follows from the classification of coatoms given in Lemma 2. Returning to σ note that $c_{1,1}, c_{1, j+1}, c_{1,2 j+1}, \cdots$ are in the same block of every coatom in L, and hence they are in the same block of every partition in \mathscr{M}. The same is true of $c_{i, k}, c_{i, k+j}, c_{i, k+2 j}, \cdots$ as i ranges from 1 to m and k ranges from 1 to j. So there is a natural 1-1 correspondence φ between the coatoms of $\hat{\mathscr{M}}$ and the coatoms of \mathscr{M} given as follows; let γ be a coatom of $\hat{\mathscr{M}}$ and let $c_{i, k}, c_{r, s} \in\{1,2, \cdots, n\}$. Write $k=j k^{\prime}+u$ and $s=j s^{\prime}+v$ where $1 \leqq$ $u \leqq j$ and $1 \leqq v \leqq j$. Then $c_{i, k}$ and $c_{r, s}$ are in the same block of $\varphi(\gamma)$ iff $(i-1) j+u$ and $(r-1) j+v$ are in the same block of γ.

This is easily seen to be a $1-1$ onto mapping between coatoms which extends to a lattice isomorphism between $\hat{\mathscr{I}}$ and \mathscr{M}.

In the next section we will study the structure of the lattice \mathscr{I} and in $\S 4 \mathrm{its}$ associated geometry. By Lemma 4 we may reduce to the case of σ having m cycles of length j, where j is a product of distinct primes.
5. The supersolvability of \mathscr{M}. In this section we study the structure of \mathscr{I}. Without loss of generality, we assume that $n=m j$ where j is the product of r distinct primes $j=p_{1} \cdots p_{r}$. We assume that σ is the permutation

$$
\sigma=(1,2, \cdots, j)(j+1, \cdots, 2 j) \cdots((m-1) j+1, \cdots, m j)
$$

and as before we call $((i-1) j+1, \cdots, i j)$ the i th cycle of σ and denote it C_{i}. Since σ is fixed we abbreviate $Z(\sigma ; \beta)$ and $\rho(\sigma ; \beta)$ by $Z(\beta)$ and $\rho(\beta)$. Let $L=(\Pi(N))_{\sigma}$ be the fixed point partial ordering of σ and let \mathscr{M} be the meet sublattice of L consisting of 1 together with all meets of coatoms.

Let h be the partition in L which puts each cycle in a block by itself:

$$
h=\{1,2, \cdots, j\} /\{j+1, \cdots, 2 j\} / \cdots /\{(m-1) j+1, \cdots, m j\}
$$

Note that h is the meet of all type a coatoms in L and so $h \in \mathscr{M}$. We call h the hinge of $\mathscr{l l}$.

LEMMA 5. In $\mathscr{1}$ we have

$$
\begin{aligned}
& {[h, 1] \cong \Pi(M)} \\
& {[0, h] \cong D_{j} \cong B_{r}}
\end{aligned}
$$

where D_{j} denotes the lattice of divisors of j and B_{r} denotes the lattice of subsets of $\{1,2, \cdots, r\}$.

Proof. First consider the interval [h, 1]. In $\Pi(N)$, this interval is isomorphic to $\Pi(\{1,2, \cdots, m\})$ and every element of this interval is a meet of coatoms in the interval. Also each partition above h is fixed by σ and so $[h, 1] \subseteq L$. It follows that $[h, 1] \subseteq \mathscr{M}$ which proves the first assertion.

For the second assertion, recall that each partition in \mathscr{M} is periodic with period d dividing j. For $d \mid j$, there is a unique partition $\tau(d)$ below h of period d consisting of $d m$ blocks. This partition is arrived at by dividing each cycle C_{i} of σ into d blocks according to:

$$
\begin{aligned}
& (i-1) j+s \text { and }(i-1) j+t \text { are in the same block } \\
& \text { iff } s \equiv t \bmod d
\end{aligned}
$$

If $d=p_{i_{1}} p_{i_{2}} \cdots p_{i_{u}}$ then $\tau(d)$ can be realized as a meet of coatoms in L by taking the meet of all coatoms of type a and one coatom of period $p_{i_{l}}$ for $1 \leqq l \leqq u$. It follows that $[0, h] \cong D_{j}$.

Recall that in a lattice K, a complement of an element k is an element k^{\prime} with $k \vee k^{\prime}=1$ and $k \wedge k^{\prime}=0$.

Lemma 6. In the lattice \mathscr{A}, h has j^{m-1} complements, and each complement c has the following properties:
(a) $\rho(c)=1$
(b) $Z(c)=x_{j}^{m}$
(c) $[c, 1] \cong D_{j}$
(d) $[0, c] \cong \Pi(\{1,2, \cdots, m\})$.

Proof. Let F be the set of functions mapping $\{1,2, \cdots, m-1\}$ into the set $\{1,2, \cdots, j\}$, and let $f \in F$. Define a partition $c(f)$ of the set $\{1,2, \cdots, m j\}$ as follows:
(1) The element $(m-1) j+1$ (i.e., the first element in C_{m}) will be in a block with exactly one element from every other cycle, these $m-1$ elements being $(s-1) j+f(s) s=1,2, \cdots, m-1$.
(2) Rotate this block cyclically under the action of σ; the element $(m-1) j+i 1 \leqq i \leqq j$ will be in a block with exactly one element from every other cycle, these $m-1$ elements being $(s-1) j+(i+f(s))$ where $1 \leqq s \leqq m-1$ and where $f(s)+i$ is taken $\bmod j$.
It is clear that $c(f)$ uniquely determines f and so there are j^{m-1} such partitions $c(f)$. Note that each has $\rho(c(f))=1$ and $Z(c(f))=x_{j}^{m}$.

Consider the join $h \vee c(f)$ in $\Pi(N)$. In h, every pair of elements in a common cycle are in the same block. In $c(f)$, every two cycles have elements in the same block. So $h \vee c(f)=1$.

Next consider the meet $h \wedge c(f)$ in $\Pi(N)$. In $c(f)$, no two elements in the same cycle are in the same block whereas in h, no two elements in distinct cycles are in the same block. It follows that $h \wedge c(f)=0$.

So $c(f)$ is a complement to h in $\Pi(N)$ hence $c(f)$ will be a complement to h in L. Hence $c(f)$ will be a complement to h in \mathscr{M} provided $c(f)$ is in \mathscr{M}. We examine the coatoms in L which sit above $c(f)$; clearly all are of type b . Let p be a prime dividing j. Recall that if γ is a type b coatom of period p then the element ($m-1$) $j+1$ is in a block with exactly (j / p) elements from each block C_{i}, and specifying any of these elements in C_{i} specifies them
all. It follows that there is a unique coatom of period p above $c(f)$ for each prime p dividing j. The meet of these r coatoms has period j (by Lemma 3) and has the property that ($m-1$) $j+1$ is in a block with at least one other element from each cycle. Clearly this meet is $c(f)$, and so $c(f) \in \mathscr{M}$. Let the r coatoms above $c(f)$ be labelled $\gamma_{i}, \cdots, \gamma_{r}$ so that γ_{i} is the coatom of period p_{i}. Define a mapping $\varphi: B_{r} \rightarrow[c(f), 1]$ by $\varphi(\dot{\phi})=1, \varphi(S)=\bigwedge_{i \in S} \gamma_{i}$ for $S \neq \varnothing$ (here $[c(f), 1]$ denotes the interval in $\mathscr{M})$. Obviously $\varphi(S) \leqq \varphi(T)$ iff $T \cong S$, and it is easy to check that φ is onto. φ is one-to-one by Lemma 3 and the fact that the p_{i} 's are distinct primes. It follows that $[c(f), 1] \cong B_{r} \cong D_{j}$. It is equally simple to show that $[0, c(f)] \cong$ $\Pi(\{1,2, \cdots, m\})$. To obtain the isomorphism ψ, recall that $[h, 1] \cong$ $\Pi(\{1,2, \cdots, m\})$. Define $\psi:[h, 1] \rightarrow[0, c(f)]$ by $\psi(x)=c(f) \wedge x$. We've thus shown that $c(f)$ is a complement of h in M having the required properties for each $f \in F$.

It remains to show that every complement of h in \mathscr{M} is of the form $c(f)$ for $f \in F$. Let c be any complement of h in \mathscr{A}. As $h \wedge c=0$, no two elements in a common cycle are in the same block of c. As $h \vee c=1$, every cycle must have an element in a block of c with some element of C_{m}. By the invariance of c under σ, we may assume that the block of c containing $(m-1) j+1$ contains exactly one element from every other cycle. It is now clear how to define $f \in F$ with $c(f)=c$.

Example 2. Let $m=3$ and $j=2$. So our permutation $\sigma=$ $(1,2)(3,4)(5,6)$. The lattice \mathscr{M} appears below; note that \mathscr{M} is geo-

Figure 3
metric. We will see later that \mathscr{M} is geometric iff j is a prime. Here the hinge h is the partition $12 / 34 / 56$. The coatoms of type a are the three to the left, those of type b are the four to the right. j^{m-1} is four; the four complements of h are the four coatoms of type b.

In this section we prove that \mathscr{M} is supersolvable. This will require careful analysis of certain elements of \mathscr{A}. Recall that if $x \in \mathscr{M}$ then x is periodic of some period d which divides j. We let $\Pi(x)$ denote this number d. In the following sequence of lemmas, we explore the functions Π and ρ and show that a certain miximal chain from 0 to 1 in \mathscr{M} consists of modular elements.

For $x, y \in \mathscr{M}$ we let $x \vee y$ denote the join of x and y in \mathscr{M} and we let $x \mathrm{~V}_{L} y$ denote the join of x and y in L. As \mathscr{L} is a meet sublattice of L we have $x \bigvee_{L} y \leqq x \vee y$; in general equality does not hold. For example, let $j=2$ and $m=3$ so $\sigma=(1,2)(3,4)(5,6)$. Let $x=13 / 24 / 5 / 6$ and let $y=14 / 23 / 5 / 6$. Then $x \mathrm{~V}_{L} y=1234 / 5 / 6$ but $x \vee y$ must have period 1 since both C_{1} and C_{2} are in the same block of $x \bigvee_{L} y$. Hence $x \vee y=1234 / 56$ (see Figure 3).

The function ρ, introduced in $\S 2$, is defined for all $x \in L$. It is easy to check that ρ respects the join in L, that is $\rho(x) \vee \rho(y)=$ $\rho\left(x \mathrm{~V}_{L} y\right)$. In fact ρ also respects the join in \mathscr{M}.

Lemma 7. Let $x, y \in \mathscr{M}$. Then $\rho(x \vee y)=\rho(x) \vee \rho(y)$.
Proof. Note that if $\omega, z \in \mathscr{M}$ and $\omega \leqq z$ then $\rho(\omega) \leqq \rho(z)$. So $\rho(x) \vee \rho(y)=\rho\left(x \vee_{L} y\right) \leqq \rho(x \vee y)$.

Let z be the unique partition in \mathscr{M} with $\rho(z)=\rho(x) \vee \rho(y)$ and $\Pi(z)=1$. Then $z \geqq x$ and $z \geqq y$ so $x \vee y \leqq z$. Hence $\rho(x \vee y) \leqq$ $\rho(z)=\rho(x) \vee \rho(y)$.

It should be pointed out that the analogous statement for meets is false; i.e., in general we do not have $\rho(x \wedge y)=\rho(x) \wedge \rho(y)$. As a counter example let $j=2$ and $m=2$ so $\sigma=(1,2)(3,4)$. Let $x=$ $13 / 24$ and let $y=14 / 23$. Then $x \wedge y=1 / 2 / 3 / 4$ so $\rho(x \wedge y)=1 / 2$. But $\rho(x)=\rho(y)=12$ so $\rho(x \wedge y)=1 / 2 \neq 12=\rho(x) \wedge \rho(y)$. However one case where equality holds will be of particular interest to us.

Lemma 7. Let $x \in \mathscr{M}$ and suppose $\Pi(x)=1$. For any $y \in \mathscr{M}$, $\rho(x \wedge y)=\rho(x) \wedge \rho(y)$.

Proof. As $\Pi(x)=1$, each cycle C_{i} is contained in a block of x. Let C_{p} and C_{q} be cycles with p and q in the same block of $\rho(x) \wedge \rho(y)$. Then p and q lie in the same block of $\rho(y)$ so there exist $u \in C_{p}$ and $v \in C_{q}$ such that u and v lie in the same block of y. Also p and q lie in the same block of $\rho(x)$ so some block of x contains both cycles
C_{p} and C_{q}. Hence a and v lie in the same block of $x \wedge y$ so p and q lie in the same block of $\rho(x \wedge y)$. This shows that $\rho(x) \wedge \rho(y) \leqq$ $\rho(x \wedge y)$; the reverse inequality is easy to show.

We next consider the function Π. Again we will be interested in how it behaves with respect to the join operation in \mathscr{A}.

Lemma 9. Let $x, y \in \mathscr{M}$.
(A) If $x \leqq y$ then $\Pi(y) \mid \Pi(x)$.
(B) $\Pi(x \vee y)$ divides $\operatorname{gcd}(\Pi(x), \Pi(y))$.
(C) If $\Pi(x \vee y)=\operatorname{gcd}(\Pi(x), \Pi(y))$ then $x \vee y=x \vee_{L} y$.

Proof. Note that $\Pi(x)=d$ iff the elements of each cycle C_{i} are evenly divided amongst d blocks according to the rule that u and v are in the same block iff $u \equiv v(\bmod d)$, for $u, v \in C_{i}$. From this observation (A) follows immediately, and (B) follows easily from (A).

For (c) suppose first that $u, v \in C_{i}$ and $u \equiv v(\bmod \operatorname{gcd}(d, e))$: say $u=v+k \operatorname{gcd}(d, e)$. Write $k \operatorname{gcd}(d, e)=\alpha d+\beta e$ for $\alpha, \beta \in \boldsymbol{Z}$ and let ω be the unique element of C_{i} satisfying $u+\alpha d \equiv \omega(\bmod j)$. Then u and ω are equivalent $\bmod d$ hence are in the same block of x. Also

$$
\omega+\beta e=(u+\alpha d)+\beta e=u+k \operatorname{gcd}(d, e)=v
$$

so w and v are equivalent $\bmod e$ hence are in the same block of y. Thus u and v are in the same block of $x \mathrm{~V}_{L} y$, which shows that if $u \equiv v(\bmod \operatorname{gcd}(\Pi(x), \Pi(y)))$ and $u, v \in C_{i}$ then u and v are in the same block of $x \mathrm{~V}_{L} y$.

Suppose u and w are in the same block of $x \vee y$ with $u \in C_{p}$ and $w \in C_{q}$. Since

$$
\rho(x \vee y)=\rho(x) \vee \rho(y) \quad \text { and } \quad \rho(x) \vee \rho(y)=\rho\left(x \bigvee_{L} y\right)
$$

there exists a sequence $u=u_{0}, u_{1}, \cdots, u_{n}$ such that u_{i}, u_{i+1} are in the same block of either x or y and such that $u_{n} \in C_{q}$. It follows that u and u_{n} are in the same block of $x \bigvee_{L} y$ hence of $x \vee y$ so w and u_{n} are in the same cycle and in the same block of $x \vee y$. So $u_{n}-w \equiv 0$ $(\bmod \Pi(x \vee y))$. Since $\Pi(x \vee y)=\Pi\left(x \vee_{L} y\right)$ we see that $u_{n} \equiv w$ $\left(\bmod \Pi\left(x \bigvee_{L} y\right)\right.$. By the above observation, u_{n} and w (hence u and $w)$ are in the same block of $x \bigvee_{L} y$ so $x \vee y \leqq x \vee_{L} y$ and equality must hold.

Note that the sufficient condition for the equality of $x \vee y$ and $x \mathrm{~V}_{L} y$ given in (C) is not a necessary condition. For a counterexample let $j=2$ and $m=4$ so $\sigma=(1,2)(3,4)(5,6)(7,8)$. Let $x=$ $14 / 23 / 58 / 67$ and let $y=13 / 24 / 57 / 68$. Then

$$
x \vee y=x \bigvee_{L} y=1234 / 5678 \quad \text { so } \quad \Pi(x \vee y)=1
$$

But $\Pi(x)=\Pi(y)=2$ so $2=\operatorname{gcd}(\Pi(x), \Pi(y))$.
We can now construct the bottom half of our maximal chain of modular elements. Suppose $\rho(x)=0$ and $\Pi(x)=d$. Then each block of x contains j / d elements; the blocks partition each cycle C_{i} into d parts. The unique element x of \mathscr{M} satisfying these conditions is denoted $\tau(d)$. Note that $\tau(j)=0$ and $\tau(1)=h$.

Lemma 10. Let d / j and let $y, z \in \mathscr{M}$.
(A) If $z \leqq y$ then $z \vee(\tau(d) \wedge y)=(z \vee \tau(d)) \wedge y$.
(B) If $z \leqq \tau(d)$ then $z \vee(\tau(d) \wedge y)=(z \vee y) \wedge \tau(d)$.

Proof. We first prove (A). Note that for any $x \in \mathscr{M}, \tau(d) \wedge x=$ $\tau(e)$ where $e=l c m(d, \Pi(x))$ and $\tau(d) \vee x$ is the unique element of \mathscr{M} above x which has period gcd $(d, \Pi(x))$ and cycle partition $\rho(x)$. From this it follows that $z \vee(\tau(d) \wedge y)$ is the unique element of \mathscr{M} above z which satisfies

$$
\begin{aligned}
& \rho(z \vee(\tau(d) \wedge y))=\rho(z) \\
& \Pi(z \vee(\tau(d) \wedge y))=\operatorname{gcd} \Pi(z), l c m(d, \Pi(y))
\end{aligned}
$$

By a similar argument one shows that $(z \vee \tau(d)) \wedge y$ is the unique element of \mathscr{M} above z which satisfies

$$
\begin{aligned}
& \rho((z \vee \tau(d)) \wedge y)=\rho(z) \\
& \Pi((z \vee \tau(d)) \wedge y)=\operatorname{lcm}(\Pi(y), \operatorname{gcd}(\Pi(z), d))
\end{aligned}
$$

Here one needs to use the fact that $z \leqq y$.
As $z \leqq y$ we have $\Pi(y) \mid \Pi(z)$. Also, the lattice of divisors of j is modular which together with $\Pi(y) \mid \Pi(z)$ gives

$$
\operatorname{lcm}(\Pi(y), \operatorname{gcd}(\Pi(z), d))=\operatorname{gcd}(\Pi(z), \operatorname{lcm}(d, \Pi(y)))
$$

The proof of (B) is somewhat easier. Assume $z=\Pi(e)$ where $d \mid e$. Then

$$
\begin{aligned}
z \vee(\tau(d) \wedge y) & =\tau(e) \vee(\tau(d) \wedge y) \\
& =\tau(\operatorname{lcm}(e, \operatorname{gcd}(d, \Pi(y)))) . \\
(z \vee y) \wedge \tau(d) & =(\tau(e) \vee y) \wedge \tau(d) \\
& =\tau(\operatorname{gcd}(d, \operatorname{lcm}(e, \Pi(y)))) .
\end{aligned}
$$

As before, the condition $d \mid e$ together with the modularity of the lattice of divisors of j proves the desired equality.

Recall that j was assumed to be the product of r distinct primes $j=p_{1} p_{2} \cdots p_{r}$. For $i=1,2, \cdots, r$ let $t_{i}=\tau\left(p_{1} p_{2} \cdots p_{i}\right)$, and let $t_{0}=0$. Then $0=t_{0}<t_{1}<\cdots<t_{r}=h$ is a maximal chain from 0 to h consisting of modular elements of \mathscr{M} (by Lemma 10).

For $i=1,2, \cdots, m$ let s_{i} denote the element of \mathscr{M} which has
the following $i+1$ blocks; block 1 contains only cycle C_{1}, block 2 contains only cycle C_{2}, \cdots, block i contains only cycle C_{i} and block $i+1$ contains the remaining cycles C_{i+1}, \cdots, C_{m}. Let $s_{0}=1$ so

$$
h=s_{m-1}<s_{m-2}<\cdots<s_{0}=1
$$

is a maximal chain from h to 1 . Note that $\Pi\left(s_{i}\right)=1$ and $\rho\left(s_{i}\right)=$ $\{1\} /\{2\} / \cdots /\{i\} /\{i+1, i+2, \cdots, m\}$. We will use the fact that $\rho\left(s_{i}\right)$ is a modular element of $\Pi(M)$.

Lemma 11. Let $y, z \in \mathscr{M}$. For $i=0,1, \cdots, m-1$ we have the following:
(A) If $z \leqq y$ then $z \vee\left(s_{i} \wedge y\right)=\left(z \wedge s_{i}\right) \wedge y$.
(B) If $z \leqq s_{i}$ then $z \vee\left(s_{i} \wedge y\right)=(z \vee y) \wedge s_{i}$.

Proof. We first prove (A); assume $z \leqq y$.

$$
\begin{array}{rlrl}
\rho\left(z \vee\left(s_{i} \wedge y\right)\right) & =\rho(z) \vee \rho\left(s_{i} \wedge y\right) & & \text { by Lemma } 7 \\
& =\rho(z) \vee\left(\rho\left(s_{i}\right) \wedge \rho(y)\right) & \text { by Lemma } 8 \\
& =\left(\rho(z) \vee \rho\left(s_{i}\right)\right) \wedge \rho(y) & &
\end{array}
$$

the last equality holding since $\rho\left(s_{i}\right)$ is a modular element of $\Pi(M)$. Using Lemma 7 again we have

$$
\rho\left(z \vee\left(s_{i} \wedge y\right)\right)=\rho\left(z \vee s_{i}\right) \wedge \rho(y)=\rho\left(\left(z \vee s_{i}\right) \wedge y\right)
$$

The last equality follows from Lemma 8 upon observing that $z \vee s_{i} \geqq s_{i}$ so $\Pi\left(z \vee s_{i}\right) \mid \Pi\left(s_{i}\right)=1$.

Also $\Pi\left(s_{i}\right)=\Pi\left(s_{i} \vee z\right)=1$ so $\Pi\left(\left(s_{i} \vee z\right) \wedge y\right)=\Pi(y)$ and $\Pi\left(s_{i} \wedge y\right)=$ $\Pi(y)$. The latter equality implies that $\Pi\left(z \vee\left(s_{i} \wedge y\right)\right) \mid \Pi(y)$. But $y \geqq z$ and $y \geqq s_{i} \wedge y$ so $y \geqq z \vee\left(s_{i} \wedge y\right)$ hence $\Pi(y) \mid \Pi\left(z \vee\left(s_{i} \wedge y\right)\right)$. Thus

$$
\Pi\left(z \vee\left(s_{i} \wedge y\right)\right)=\operatorname{gcd}\left(\Pi(z), \Pi\left(s_{i} \wedge y\right)\right)
$$

and so $z \vee\left(s_{i} \wedge y\right)=z \mathrm{~V}_{L}\left(s_{i} \wedge y\right)$ by Lemma $9(\mathrm{C})$. We now show that $z \vee\left(s_{i} \wedge y\right) \leqq\left(s_{i} \vee z\right) \wedge y$ which will imply equality since we know

$$
\rho\left(z \vee\left(s_{i} \wedge y\right)\right)=\rho\left(\left(s_{i} \vee z\right) \wedge y\right)
$$

and

$$
\Pi\left(z \vee\left(s_{i} \wedge y\right)\right)=\Pi\left(\left(s_{i} \vee z\right) \wedge y\right)
$$

Suppose u and v are in the same block of $z \vee\left(s_{i} \wedge y\right)$. Since $z \vee\left(s_{i} \wedge y\right)=z \bigvee_{L}\left(s_{i} \wedge y\right)$ there exists a sequence $u=u_{0}, u_{1}, \cdots, u_{n}=v$ such that u_{l}, u_{l+1} are in the same block of either z or $\left(s_{i} \wedge y\right)$. Since $z \leqq y$ we see that u_{l}, u_{l+1} are in the same block of y so u and v are in the same block of y. Also u_{l}, u_{l+1} are in the same block of either z or s_{i} so u and v are in the same block of $z \bigvee_{L} s_{i}$ hence of
$z \vee s_{i}$. Thus u and v are in the same block of $\left(z \vee s_{i}\right) \wedge y$ so $(z \vee y) \leqq$ $\left(s_{i} \vee z\right) \wedge y$. This completes the proof of (A).

The proof of (B) is the same with a minor exception. As in (A) we show that

$$
\rho\left(z \vee\left(s_{i} \wedge y\right)\right)=\rho\left((z \vee y) \wedge s_{i}\right)
$$

and

$$
\Pi\left(z \vee\left(s_{i} \wedge y\right)\right)=\Pi(y \vee z)=\Pi\left((z \vee y) \wedge s_{i}\right)
$$

Let $d=\Pi(z \vee y)$, and suppose that u and v are in the same block of $z \vee\left(s_{i} \wedge y\right)$. Then there exists a sequence $u=u_{0}, u_{1}, \cdots, u_{n}$ such that
(1) u_{l}, u_{l+1} are in the same block of either z or $\left(s_{i} \wedge y\right)$
(2) $u_{n} \equiv v(\bmod d)$.

Note that u_{l}, u_{l+1} are in the same block of $(z \vee y) \wedge s_{i}$ and $\Pi\left((z \vee y) \wedge s_{i}\right)=d$ so u and v are in the same block of $(z \vee y) \wedge s_{i}$. This completes the proof of (B).

Lemma 11 tells us that each s_{i} is a modular element of \mathscr{M}. Combining Lemma 10, Lemma 11 and Proposition 2.1 from Stanley [4, pg. 203] gives the following theorem.

Theorem 1. \mathscr{M} is a supersolvable lattice with M-chain

$$
0=t_{0}<t_{1}<\cdots<t_{r}=h=s_{m-1}<s_{m-2}<\cdots<s_{0}=1
$$

At this point a rough sketch of \mathscr{M} is helpful.
4. The geometric properties of \mathscr{A}. Figure 4 suggests that \mathscr{M} might be geometric; in fact \mathscr{M} is geometric iff j is prime. However \mathscr{I} does give rise to a pregeometry (in the language of Crapo and Rota [1]) which we will show in this section. To do so

Figure 4
we need notation for certain elements of \mathscr{I}. Some of this notation has already been established; for completeness it is listed below again.
(1) For $d \mid j, \tau(d)$ denotes the unique element of , /l with $\rho(\tau(d))=0$ and $\Pi(\tau(d))=d . \quad \tau(d)$ sits in the interval $[0, h]$.
(2) For a partition $\beta \in \Pi(\mathscr{L}), \sigma(\beta)$ denotes the unique element of $\mathscr{l l}$ with $\rho(\sigma(\beta))=\beta$ and $\Pi(\sigma(\beta))=1 . \quad \sigma(\beta)$ sits in the interval [$h, 1]$.
(3) Let F be the set of functions mapping $\{1,2, \cdots, m-1\}$ into the set $\{1,2, \cdots, j\}$. For $f \in F, c(f)$ denotes the complement of h given by f as in the proof of Lemma 6. Note: for notational convenience in what follows we will extend f to a function from $\{1,2, \cdots, m\}$ into $\{1,2, \cdots, j\}$ by defining $f(m)=1$.
(4) Let p and q be integers between 1 and m with $p<q$ and let r be an integer between 0 and $j-1$. Then $\alpha(p, q, r)$ denotes the following partition in \mathscr{M} which has exactly j blocks of size 2 and all other blocks of size 1. Each block of size 2 consists of one element from C_{p} and one from C_{q} according to $u \in C_{p}$ and $v \in C_{q}$ are in the same block iff $u \equiv v-r(\bmod j)$.

Example 3. Let $j=m=3$ so $\sigma=(1,2,3)(4,5,6)(7,8,9)$. Let $p=1, q=3$ and $r=2$. Then

$$
\alpha(1,3,2)=19 / 27 / 38 / 4 / 5 / 6
$$

It is worth noting that $\Pi(\alpha(p, q, r))=j$ and that $\rho(\alpha(p, q, r))$ is the atom in $\Pi(\mathscr{M})$ having the block $\{p, q\}$ of size 2 and all other blocks of size 1 .

Lemma 12. $\mathscr{C l}$ has exactly $r+j\binom{m}{2}$ atoms. Of these, r atoms lie in the interval $[0, h]$; these are of the form $\tau(j / p)$ for p a prime dividing j. (These r atoms will be called type a atoms.) The remaining $j\binom{m}{2}$ atoms lie outside the interval $[0, h]$. These are of the form $\alpha(p, q, r)$ and will be called type b atoms.

Proof. Let x be an atom. It is clear that $\rho(x)$ is either 0 or an atom in $\Pi(\mathscr{L})$ and that $\Pi(x)$ is either j or (j / p) for p a prime dividing j. We consider the four possibilities.

If $\rho(x)=0$ and $\Pi(x)=j$ then $x=0$ which is impossible. If $\rho(x)=0$ and $\Pi(x)$ is j / p then $x=\tau(j / p)$. If $\rho(x)$ is an atom and $\Pi(x)$ is j / p then we have $0<\tau(j / p)<x$ which is impossible.

Lastly suppose $\Pi(x)=j$ and $\rho(x)$ is the atom in $\Pi(\mathscr{I C})$ which has exactly one block of size 2 containing p and q with $p<q$. Consider $(p-1) j+1 \in C_{p}$. It is in a block of size 2 with a unique
element of C_{q}, say $(q-1) j+(r+1)$ for $0 \leqq r \leqq j-1$. It is now clear that $x=\alpha(p, q, r)$.

For the remainder of this paper, A denotes the set of type a atoms and B denotes the set of type b atoms. Let $\beta \in \Pi(M)$ and let $f \in F$. Then $B(\beta)$ denotes the set of type b atoms x satisfying $x \leqq \sigma(\beta)$ and $B(f)$ denotes the set of type b atoms satisfying $x \leqq c(f)$. $B(\beta ; f)$ denotes the intersection of $B(\beta)$ and $B(f)$. Note that $\alpha(p, q, r)$ is in $B(\beta)$ iff p and q are in the same block of β and $\alpha(p, q, r)$ is in $B(f)$ iff $r \equiv f(q)-f(p)(\bmod j)$.

Let \mathscr{B} denonte the lattice of subsets of $A \cup B$.
Definition 2. Define closure operator ${ }^{-}$on \mathscr{B} as follows; let $S \in \mathscr{B}$ and write $S=S_{A} \cup S_{B}$ with $S_{A} \subseteq A$ and $S_{B} \cong B$. Let $\beta=$ $\mathrm{V}_{x \in S_{B}} \rho(x) \in \Pi(M)$. Then

Case 1. $\bar{\phi}=\varnothing$
Case 2. If $S_{A}=\varnothing \neq S_{B}$ and if there exists $f \in F$ such that $x \leqq c(f)$ for all $x \in S_{B}$ let $\bar{S}=B(\beta ; f)$.

Case 3. Let $\bar{S}=A \cup B(\beta)$ otherwise.
We need to show that - is well-defined in Case 2. Suppose $S_{A}=\varnothing \neq S_{B}$ and let $f, g \in F$ satisfy $x \leqq c(f)$ and $x \leqq c(g)$ for all $x \in S_{B}$. We need to show that $B(\beta ; f)=B(\beta ; g)$. By the symmetry of f and g it suffices to prove that $B(\beta ; f) \subseteq B(\beta ; g)$.

Assume that $\alpha(p, q, r) \in B(\beta, f)$ so $r \equiv f(q)-f(p) \bmod j$. Choose a sequence $\alpha\left(p_{0}, p_{1}, r_{1}\right), \alpha\left(p_{1}, p_{2}, r_{2}\right), \cdots, \alpha\left(p_{n-1}, p_{n}, r_{n}\right) \in S_{B}$ such that $p=p_{0}$ and $q=p_{n}$. This can be done by definition of β. As $x \leqq c(f)$ for all $x \in S_{B}$ we know

$$
f\left(p_{l}\right)-f\left(p_{l-1}\right) \equiv r_{l} \quad(\bmod j)
$$

In particular

$$
r \equiv f(q)-f(p) \equiv f\left(p_{n}\right)-f\left(p_{0}\right) \equiv \sum_{l=1}^{n}\left(f\left(p_{l}\right)-f\left(p_{l-1}\right)\right) \quad(\bmod j)
$$

Hence $r \equiv \sum_{l=1}^{n} r_{l}(\bmod j)$. Since $x \leqq c(g)$ for all $x \in S_{B}$ we also have $r_{l} \equiv g\left(p_{l}\right)-g\left(p_{l-1}\right)(\bmod j)$. The same telescoping sum shows that

$$
r \equiv g\left(p_{n}\right)-g\left(p_{0}\right) \equiv g(q)-g(p) \quad(\bmod j)
$$

and so $\alpha(p, q, r) \in B(\beta ; g)$ as desired.
It is easy to show that ${ }^{-}$is a closure operator-the verification is left to the reader. The next lemma shows that ${ }^{-}$also satisfies the exchange condition thus making ($\beta,^{-}$) into a pregeometry. We
first need the following technical lemma.
Lemma 13. Let $S_{B} \subseteq B$ and let $y \in B$. Let $\beta=\mathrm{V}_{z \in S_{B}} \rho(z)$ and suppose that \bar{S}_{B} is of the form $B(\beta ; f)$ whereas $\overline{S_{B} \cup\{y\}}$ is of the form $A \cup B(\gamma)$ for some $\gamma \geqq \beta$. Then $\rho(y) \leqq \beta$ and so $\gamma=\beta$.

Proof. Suppose $\rho(y) \nsubseteq \beta$. We will construct a function $g \in F$ with $y \leqq c(g)$ and $z \leqq c(g)$ for all $z \in S_{B}$. Let $y=\alpha(p, q, r)$. As $\rho(y) \not \equiv \beta$ we know that p and q lie in distinct blocks of β. Write

$$
\beta=B_{1} / B_{2} / \cdots / B_{k} \quad \text { with } \quad p \in B_{1} \quad \text { and } \quad q \in B_{2} .
$$

Case 1. $\quad m \notin B_{1}$. Define $g(l)=f(l)$ for $l \notin B_{1}$.
For $l \in B_{1}$ define

$$
g(l) \equiv(f(q)-f(p))-r+f(l) \quad(\bmod j)
$$

Note that $g(p) \equiv f(q)-r=g(q)-r(\bmod j)$. Thus $g(q)-g(p) \equiv r$ $(\bmod j)$ and so $y \leqq c(g)$. Suppose $z \in S_{B}, z=\alpha\left(p_{1}, q_{1}, r_{1}\right)$. If $p_{1}, q_{1} \in B_{i}$ for $i \neq 1$ then $g\left(q_{1}\right)-g\left(p_{1}\right) \equiv f\left(q_{1}\right)-f\left(p_{1}\right) \equiv r_{1}(\bmod j)$ and so $z<c(g)$. If $p_{1}, q_{1} \in B_{1}$ then

$$
\begin{aligned}
g\left(q_{1}\right)-g\left(p_{1}\right) & \equiv\left(f(q)-f(p)-r+f\left(q_{1}\right)\right)-\left(f(q)-f(p)-r+f\left(p_{1}\right)\right) \\
& \equiv f\left(q_{1}\right)-f\left(p_{1}\right) \equiv r_{1} \quad(\bmod j)
\end{aligned}
$$

So $z \leqq c(g)$ as was to be shown.
Case 2. $m \in B_{1}$. Define $g(l)=f(l)$ for $l \notin B_{2}$. For $l \in B_{2}$ define

$$
g(l) \equiv f(l)+(f(p)-f(q))+r \quad(\bmod j) .
$$

As before, $g(q) \equiv f(p)+r=g(p)+r(\bmod j)$ so $y \leqq c(g)$. For $z \in S_{B}$, $z \leqq c(g)$ as in Case 1.

Theorem 2. ($\mathscr{B},{ }^{-}$) is a pregeometry.
Proof. We need to show that - satisfies the following exchange property (*):

Let $x, y \in A \cup B$ and let $S \subseteq A \cup B$. If $x \notin \bar{S}$ and $x \in \overline{S \cup\{y\}}$ then $y \in \overline{S \cup\{x\}}$.

The verification of $\left({ }^{*}\right)$ proceeds in several cases. Let $\beta=\mathbf{V}_{z \in s_{B}} \rho(z)$.
Case 1. $x \in A$.
Since $x \notin \bar{S}$ we know $S=S_{B} \subseteq B$. If $y \in A$ then obviously $y \in$ $\overline{S \cup\{x\}}=A \cup B(\beta)$, so assume that $y \in B$.

Since $x \notin \bar{S}_{B}$, we have $\bar{S}_{B}=B(\beta ; f)$ for some $f \in F$. As $x \in \overline{S_{B} \cup\{y\}}$ we know $\overline{S_{B} \cup\{y\}}=B(\gamma) \cup A$ for some $\gamma \geqq \beta$. Applying Lemma 13 we have $\rho(y)<\beta$ so $y \in B(\beta)$. So $y \in \overline{S_{B} \cup\{x\}}=B(\beta) \cup A$.

Case 2. $x \in B, y \in A$.
If $y \in \bar{S}$ then

$$
\bar{S} \subseteq \overline{S \cup\{y\}} \subseteq \overline{\bar{S} \cup\{y\}}=\overline{\bar{S}}=\bar{S}
$$

which is impossible since $x \in \overline{S \cup\{y\}}-\bar{S}$.
So $y \notin \bar{S}$; i.e., $\bar{S}=B(\beta ; f)$ for some $f \in F$. Thus $S \cup\{y\}=A \cup B(\beta)$ and so $\rho(x) \leqq \beta$.

Since $x \notin \bar{S}$ there is no function $f \in F$ with $x \leqq c(f)$ and with $z \leqq c(f)$ for all $z \in S$. So $\overline{S \cup\{x\}}=B(\beta) \cup A$ which gives $y \in \overline{S \cup\{x\}}$.

Case 3. $\quad x, y \in B$ and $\rho(y) \leqq \beta$.
Since \bar{S} is properly contained in $\overline{S \cup\{y\}}$ we see that \bar{S} has the form $B(\beta ; f)$ for some $f \in F$ and that $\overline{S \cup\{y\}}=B(\beta) \cup A$. As $x \in$ $\overline{S \cup\{y\}}, \rho(x) \leqq \beta$.

Since $x \notin \bar{S}$ there is no function $f \in F$ with $x \leqq c(f)$ and $z \leqq c(f)$ for all $z \in S$. Thus $S \cup\{x\}=B(\beta) \cup A$ and so $y \in\{x\}$.

Case 4. $x, y \in B, \rho(y) \not \equiv \beta$ and $\bar{S}=A \cup B(\beta)$.
Here we have $\overline{S \cup\{y\}}=A \cup B(\gamma)$ for $\gamma=\beta \vee \rho(y)>\beta$. Since $x \notin \bar{S}$ we know $\rho(x) \nsubseteq \beta$ but $\rho(x) \leqq \beta \vee \rho(y)$. Hence we know $\rho(y) \leqq$ $\beta \vee \rho(x)$ because $\Pi(M)$ is a geometric lattice.

Case 5. $\quad x, y \in B, \rho(y) \not \equiv \beta$ and $S=B(\beta ; f)$ for $f \in F$.
In this case we have $\overline{S \cup\{y\}}=B(\gamma ; g)$ for $\gamma=\beta \vee \rho(y)$ and for some $g \in F$ (see the proof of Lemma 13). Suppose $\rho(x) \leqq \beta$. Since $x \in \overline{S \cup\{y\}}$, we know $x \leqq c(g)$ and so

$$
x \in B(\beta ; g)=B(\beta ; f)=\bar{S} \quad \rightarrow \leftarrow
$$

Thus $\rho(x) \nsubseteq \beta$ and $\rho(x) \leqq \beta \vee \rho(y)$ so $\rho(y) \leqq \beta \vee \rho(x)$ again because $\Pi(\mathscr{M})$ is geometric. Hence $y \in B(\gamma ; g)=\overline{S \cup\{x\}}$ and this finishes the proof of Theorem 2.

Let G be the subset of \mathscr{M} consisting of all elements of period 1 together with all elements of period j. It is clear that if $x, y \in G$ then $x \wedge y \in G$ so G is closed under meets.

Given any element x of \mathscr{A}, there is a unique smallest element of period 1 which is greater than or equal to x, this being $\sigma(\rho(x))$. In particular this is true of $x=y \vee z$ for $y, z \in G$. Thus G has a join operation V_{G} defined as follows; for $y, z \in G$

$$
y \bigvee_{G} z=\left\{\begin{array}{lll}
y \vee z & \text { if } \quad \Pi(y \vee z)=j \\
\sigma(\rho(y \vee z)) & \text { if } \quad \Pi(y \vee z)<j
\end{array}\right.
$$

G is a meet sublattice of \mathscr{M} hence of L and so of $\Pi(\{1,2, \cdots, m j\})$. For the remainder of the paper we continue to let \vee, \wedge denote the join and meet of \mathscr{M} and \bigvee_{G}, Λ_{G} denote the join and meet of G.

Figure 5
Let \breve{G} denote the lattice of flats of the pregeometry $\left(\mathscr{B},{ }^{-}\right)$. We know that \breve{G} is a geometric lattice. Define $\varphi: \widetilde{G} \rightarrow G$ as follow;
(1) $\varphi(\phi)=0$
(2) $\varphi(B(\beta ; f))=V_{G} B(\beta ; f)$
(3) $\varphi(A \cup B(\beta))=h \bigvee_{G}\left(V_{G} B(\beta)\right)=\sigma(\beta)$.

Theorem 3. φ is a lattice isomorphism and so G is a geometric lattice. Some elemetary properties of the matroid given by G are listed below:
A. Bases: If I is a basis containing h then $I-\{h\} \leqq B(f)$ for a unique function f. The set of $\rho(x)$ for $x \in I-\{h\}$ constitute a basis for $\Pi(M)$.

If I is a basis not containing h then I contains an element y (not necessary unique) such that the set of $\rho(x)$ for $x \in I-\{y\}$ constitute a basis for $\Pi(M)$ and such that $V_{G}(I-\{y\})=c(f)$ for some function f.
B. Circuits: If C is a circuit containing h then the set of $\rho(x)$ such that $x \in C-\{h\}$ constitute a circuit in $\Pi(M)$. There is no function f such that $x \leqq c(f)$ for all $x \in C-\{h\}$.

If C is a circuit not containing h then the set of $\rho(x)$ such that $x \in C$ constitute a circuit in $\Pi(M)$. There is a function f such that $x \leqq c(f)$ for all $x \in C$.
C. Rank function: Let λ_{G} denote the rank function of G and let λ denote the rank function of $\Pi(M)$. Let S be a subset of $B \cup\{h\}$; write $S=S_{A} \cup S_{B}$ where $S_{B} \subseteq B$ and $S_{A}=\varnothing$ or $\{h\}$. Let

$$
\beta=\bigvee_{x \in S_{B}} \rho(x)
$$

Then

$$
\lambda_{G}(S)= \begin{cases}0 & \text { if } S=\varnothing \\ \lambda(\beta) & \text { if } S_{A}=\varnothing \text { and } \\ \quad S_{B} \subseteq B(f) \text { for some } f \in F\left(S_{B} \neq \varnothing\right) \\ 1+\lambda(\beta) & \text { otherwise } .\end{cases}
$$

Proof. It is easy to verify that φ is one-to-one, and onto. φ is obviously order-preserving hence φ is a lattice isomorphism. The matroid properties given in A, B and C are clear; proofs are left to the reader.

Corollary 1. \mathscr{M} is geometric iff j is prime, or $m=1$.
Proof. If j is prime then $\mathscr{M}=G$ and so the result follows from the last theorem. If $m=1$ then \mathscr{M} is isomorphic to the Boolean algebra B_{r} (i.e., lattice of divisors of j), and so \mathscr{M} is geometric.

Conversely, suppose j is not prime and $m>1$. We show that \mathscr{M} is not geometric.

Consider the join of the two atoms $\alpha(1,2,1)$ and $\alpha(1,2,2)$. It is clear that these two do not both sit below $c(f)$ for some f hence

$$
\alpha(1,2,1) V_{\mathscr{M}} \alpha(1,2,2)=\sigma(\beta)>h
$$

where $\beta=\{1,2\} /\{3\} / \cdots /\{m\}$. But since j is not prime and $[0, h] \cong B_{r}$ we see that the rank of h is at least 2 so the rank of $\sigma(\beta)$ is at least 3. So \mathscr{M} is not geometric.

Return to Figure 3, where $j=2$ and $m=3$. Corollary 1 tells us that \mathscr{M} is geometric in this case. In fact, its easy to check that this particular \mathscr{A} is the projective plane of order 2.
5. The Birkhoff polynomial of \mathscr{M}. The purpose of this section is to determine the Birkhoff polynomial of \mathscr{M}. Some results in this section will be proved in a more general framework and then specialized to \mathscr{M}. We begin with some well-known facts about closure operators on lattices.

Let K be a finite lattice with join and meet operations V_{K} and Λ_{K}. Let $x \rightarrow \bar{x}$ be a closure operator and let \bar{K} denote the set of closed elements of K. Then \bar{K} is a lattice with join $\mathrm{V}_{\bar{K}}$ and meet $\Lambda_{\bar{K}}$ given by

$$
\begin{aligned}
& x \bigvee_{K} y=\overline{x \bigvee_{K} y} \\
& x \bigwedge_{K}^{K} y=x \bigwedge_{K}^{\Lambda} y .
\end{aligned}
$$

Let $h \in K$. Define $G(h)$ to be the set of elements of K whose meet with h is either 0 or h. Define a map $x \rightarrow \bar{x}$ from K to K by

$$
\bar{x}=\left\{\begin{array}{lll}
x & \text { if } & x \in G(h) \\
x \vee h & \text { if } & x \notin G(h) .
\end{array}\right.
$$

It is clear that $\bar{x} \geqq x$. Also ${ }^{-}$maps K onto $G(h)$ so $\overline{\bar{x}}=\bar{x}$, and it is easy to check that if $x \geqq y$ then $\bar{x} \geqq \bar{y}$. Thus ${ }^{-}$is a closure on K and the lattice of closed elements is $G(h)$. We sometimes write $G(h)=G_{0} \cup G_{h}$ where

$$
\begin{aligned}
& G_{0}=\{x \in K: x \wedge h=0\} \\
& G_{h}=\{x \in K: x \wedge h=h\} .
\end{aligned}
$$

Lemma 14. Suppose that K is supersolvable with M-chain C, suppose $h \in C$ and let $C^{\prime}=C \cap G(h)$. Then $G(h)$ is supersolvable with M-chain C^{\prime}.

Proof. Let \mathscr{D} be a chain in $G(h)$, and let T be the sublattice of $G(h)$ generated by \mathscr{D} and C. Note that T is contained in the sublattice of K generated by C and \mathscr{D} since $h \in C$. Also observe that T is closed under joins in K, if $x, y \in T$ with $x \wedge h=y \wedge h=0$ then

$$
\left(x \bigvee_{K} y\right) \wedge h=(x \wedge h) \bigvee_{K}(y \wedge h)=0 \vee 0=0
$$

The first equality follows by the fact that C is an M-chain for K.
Let a, b and $c \in T$. Then

$$
\begin{aligned}
\left(a \bigvee_{G} b\right) \wedge c & =\left(a \bigvee_{K} b\right) \wedge c=(a \wedge c) \bigvee_{K}(b \wedge c) \\
& =(a \wedge c) \bigvee_{G}(b \wedge c)
\end{aligned}
$$

and

$$
\begin{aligned}
\left((a \wedge b) \bigvee_{G} c\right) & =(a \wedge b) \bigvee_{K} c=(a \underset{K}{ } c) \wedge\left(b \bigvee_{K} c\right) \\
& =\left(a \bigvee_{G} c\right) \wedge\left(b \bigvee_{G} c\right) .
\end{aligned}
$$

This proves the lemma.
Apply the last result to \mathscr{M} with h as in $\S \S 3$ and 4. Note that $G=G(h)$ and so we see that G is a supersolvable geometric lattice with M-chain

$$
0<h=s_{m-1}<s_{m-2}<\cdots<s_{1}<s_{0}=1
$$

We now use methods of Stanley to evaluate the Birkhoff polynomial of \mathscr{M}.

Theorem 4. Let $B_{\mathbb{N}}(\lambda)$ denote the Birkhoff polynomial of \mathscr{M}. Then

$$
B_{\mu}(\lambda)=(\lambda-1)^{r}(\lambda-j)(\lambda-2 j) \cdots(\lambda-(m-1) j) .
$$

In particular $\mu_{m}(0,1)=\mu(j)\left((-1)^{m-1}(m-1)!\right) j^{m-1}$ where $\mu(j)$ denotes the number theoretic Möbius function.

Proof. Let $B_{h}(\lambda)$ denote the Birkhoff polynomial of the interval $[0, h]$. We first observe that

$$
B_{\mathscr{M}}(\lambda)=B_{h}(\lambda)\left(\sum_{b \in G_{0}} \mu(0, b) \lambda^{m-r(b)}\right)
$$

where $r(b)$ denotes the rank of b. The proof is exactly the same as the proof of Theorem 2 given in Stanley [3]. In this proof Stanley assumes that the lattice L under consideration is geometric whereas $\mathscr{L l}$ is not in general geometric. However he only uses that L is geometic to prove his Lemmas 1 and 2. Lemma 1 still holds since we've shown h is modular in \mathscr{M} (see Lemma 10). We now prove his Lemma 2; i.e., we show that for any $y \in \mathscr{M}, h \wedge y$ is a modular element of $[0, y]$.

Suppose $a \in[0, y]$ and $b \leqq a$. Then

$$
\begin{aligned}
(b \vee(y \wedge h)) \wedge a & =((b \vee h) \wedge y) \wedge a \quad \text { by modularity of } h \\
& =((b \vee h) \wedge a)=b \vee(h \wedge a) \\
& =b \vee(h \wedge(y \wedge a))=b \vee((h \wedge y) \wedge a)
\end{aligned}
$$

This part of the proof comes directly from Stanley [3, pg. 216]. Next suppose $b \leqq h \wedge y$ and $a \in[0, y]$. Then

$$
\begin{aligned}
b \vee((h \wedge y) \wedge a) & =b \vee(h \wedge a) \\
& =h \wedge(b \vee a) \\
& =h \wedge(y \wedge(b \vee a)) \quad \text { since } \quad b \vee a \leqq y \\
& =(h \wedge y) \wedge(b \vee a) .
\end{aligned}
$$

My thanks to Prof. R. P. Dilworth for suggesting this half of the proof.

This shows that

$$
B_{\mathscr{N}}(\lambda)=B_{h}(\lambda)\left(\sum_{b \in G_{0}} \mu(0, b) \lambda^{m-r(b)}\right) .
$$

Next consider the supersolvable geometric lattice G. As h is a modular element of G we can apply the same result again to G. This time the interval $[0, h]$ is isomorphic to a chain of length 1 so we have

$$
B_{G}(\lambda)=(\lambda-1)\left(\sum_{b \in G_{0}} \mu(0, b) \lambda^{m-r(b)}\right) .
$$

Combining this with the previous equation yields

$$
B_{M}(\lambda)=(\lambda-1)^{-1} B_{h}(\lambda) B_{G}(\lambda) .
$$

Also the interval [$0, h$] in M is isomorphic to the Boolean algebra B_{r} so $B_{h}(\lambda)=(\lambda-1)^{r}$. Thus we have

$$
\begin{equation*}
B_{m}(\lambda)=(\lambda-1)^{r-1} B_{G}(\lambda) . \tag{5.1}
\end{equation*}
$$

Recall that an M-chain for G is $0<s_{m}<s_{m-1}<\cdots<s_{0}=1$. For $i=0$ to $m-1$, let a_{i} denote the number of atoms of G which are less than or equal to s_{i} but not less than or equal to s_{i+1}. By Theorem 4.1 of Stanley [4, pg. 209] we know

$$
\begin{aligned}
B_{G}(\lambda) & =\left(\lambda-a_{m-1}\right)\left(\lambda-a_{m-2}\right) \cdots\left(\lambda-a_{0}\right) \\
& =(\lambda-1)\left(\lambda-a_{m-2}\right) \cdots\left(\lambda-a_{0}\right) .
\end{aligned}
$$

We next show that $a_{m-i}=(i-1) j$ for $i=2, \cdots, m$. The atoms of G are h together with all type b atoms \mathscr{M}. A type b atom a is less than or equal to s_{m-i} iff $\rho(\alpha)<\rho\left(s_{m-i}\right)$. Now $\rho\left(s_{m-i}\right)$ has one block of size i together with $m-i$ blocks of size 1 ; the block of size i consists of $\{m, m-1, \cdots, m-i+1\}$.

Let $\alpha(p, q, r)$ be a type b atom with $\alpha(p, q, r) \leqq s_{m-i}$ and $\alpha(p, q, r) \nsubseteq s_{m-i-1}$. Since $\alpha(p, q, r) \leqq s_{m-i}$ we know $p, q \in\{m, m-1, \cdots$, $m-i+1\}$. Since $\alpha(p, q, r) \nsubseteq s_{m-i-1}$ we know that p and q are not both members of $\{m, m-1, \cdots, m-i+2\}$. As $p<q$ we see

$$
\begin{aligned}
& p=m-i+1 \\
& q \in\{m, m-1, \cdots, m-i+2\}
\end{aligned}
$$

Furthermore any choice of $q \in\{m, m-1, \cdots, m-i+2\}$ and $r \in$ $\{1,2, \cdots, j\}$ give a type b atom $\alpha(m-i+1, q, r)=a$ with $a \leqq s_{m-i}$ and $a \not \equiv s_{m-i-1}$. So $a_{m-i}=j(i-1)$. Thus

$$
B_{G}(\lambda)=(\lambda-1)(\lambda-j)(\lambda-2 j) \cdots(\lambda-(m-1) j)
$$

which together with equation (5.1) completes the proof of Theorem 4.
Return now to Figure 3. Here $j=2$ and $m=3$ so we have

$$
B_{M}(\lambda)=(\lambda-1)(\lambda-2)(\lambda-4)=\lambda^{3}-7 \lambda^{2}+15 \lambda-8
$$

The interested reader can verify from Figure 3 that this is the correct Birkhoff polynomial for \mathscr{M}.

In Theorem 4 we obtained, for a nongeometric supersolvable lattice, factorization results similar to those which Stanley obtained for supersolvable geometric lattices. We can restate Theorem 4 in the following more general form.

Theorem 4A. Let (K, C) be a supersolvale lattice and let h be an element of C. Suppose that $G(h)$ is a geometric lattice and that for each $y \in G_{0}$ the map from $[0, h]$ to $[y, y \vee h]$ given by $z \rightarrow z \vee y$ is one-to-one. Let $C^{\prime}=C \cap G(h)$ be

$$
0<h=s_{0}<s_{1}<\cdots<s_{n}=1
$$

Then

$$
B_{n}(\lambda)=B_{n}(\lambda)\left(\lambda-a_{1}\right)\left(\lambda-a_{2}\right) \cdots\left(\lambda-a_{n}\right)
$$

where a_{i} is the number of atoms a of \mathscr{M} which satisfy $a \leqq s_{i}, a \not \equiv s_{i-1}$.
The assumption that the $\operatorname{map} z \rightarrow z \vee y$ is one-to-one is necessary. Consider for example

It is easy to check that $0<a<h<1$ is an M-chain for this lattice; note that the map from [$0, h$] to [$y, y \vee h$] given by $z \rightarrow z \vee h$ is not one-to-one (h and b have the same image).

so $G(h)$ is geometric. It is easy to check that $a_{1}=1$ and $B_{h}(\lambda)=$ $(\lambda-1)^{2}$ so

$$
B_{h}(\lambda)\left(\lambda-a_{1}\right)=(\lambda-1)^{3} .
$$

However one can check that $B_{M}(\lambda)=\lambda(\lambda-1)(\lambda-2)$ and so Theorem 4A does not hold.

References

1. H. H. Crapo and G. C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, M.I.T. Press, 1970.
2. P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, 1973.
3. R.P. Stanley, Modular elements of geometric lattices, Algebra Universalis, VI (1971), 214-217.
4. - Supersolvable lattices, Algebra Universalis, II (1972), 197-217.

Received July 16, 1980.
California Institute of Technology
Pasadena, CA 91125

