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Linear Tailored Gain Broad Area Semiconductor
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Abstract—Tailored gain semiconductor lasers capable of high-power
operation with single-lobed, nearly diffraction limited beamwidths only
a few degrees wide have been demonstrated in proton implanted
chirped arrays and ‘*halftone’® broad area lasers. We analyze lasers
with a linear gain gradient, and obtain analytic approximations for
their unsaturated optical eigenmodes. Unlike a uniform array, the fun-
damental mode of a linear tailored gain laser is the lasing mode at
threshold. Mode discrimination may be controlled by varying the spa-
tial gain gradient. All modes of asymmetric tailored gain waveguides
have single-lobed far-field patterns offset from 0°. Finally, we utilize
tailored gain broad area lasers to make a measurement of the anti-
guiding parameter, and find b = 2.5 + 0.5, in agreement with pre-
vious results.

I. INTRODUCTION

ANY applications of semiconductor lasers require

high optical power outputs. Although this may be
achieved in a broad area laser, the beam patterns of con-
ventional devices with uniform spatial gain profiles are
very wide, highly irregular, and unstable, and are thus
unsuitable for the majority of applications which require
a clean, single-lobed optical beam. The undesirable far-
field patterns result from the lasing of uncontrolled fila-
ments and higher order lateral modes. Filamentation re-
sults from a nonlinear interaction between the optical field
and the carrier distribution [1], while the lateral mode
problem results from the lasing of higher order modes
which have multilobed far-field patterns. The conven-
tional solution to both these problems is to limit the width
of the laser stripe to about 10 ym. Unfortunately, this then
limits the maximum power output and minimum beam-
width of the device. .

One promising method of obtaining high-power opera-
tion and narrow beamwidths is to fabricate a phase-locked
laser array by placing many lasers in close proximity. Al-
though the array structure solves the filamentation prob-
lem by confining the filaments to individual laser chan-
nels, the lateral mode problem remains. The well-known
undesirable twin-lobed far-field pattern of a uniformly
spaced array of identical lasers [2]-[4] comes about be-
cause the lossy interchannel regions in the uniform array
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cause the highest order supermode to have the highest
modal gain, and this mode has a twin-lobed far-field pat-
tern [5], [6]. In principle, one method of achieving fun-
damental mode operation in an array would be to vary
(e.g., chirp) the widths of the array elements so that the
fundamental mode is localized in a different spatial region
than the higher order modes [7]. If the gain profile across
the array is tailored to match the intensity distribution of
the fundamental supermode, the result should then be an
array with a single-lobed far-field pattern.

Unfortunately, fundamental physical and technological
limitations make the fabrication of a real index-guided
chirped array difficult [8], and there is as of yet no easy
way to simultaneously control both the real index and gain
distribution within a semiconductor laser. However, by
taking advantage of the fact that in a gain-guided laser
the spatial gain profile determines both the optical field
distributions as well the modal gains, we demonstrated a
tailored gain chirped array of semiconductor lasers in
which gain tailoring was achieved by chirping the widths
of the proton implanted laser elements [9]. Subsequently,
we showed that the desired single-lobed far-field patterns
could best be obtained from devices in which the inter-
channel gain has been made so strong that the distinction
between an array and a broad area laser has become
blurred [10].

The importance of a high interchannel gain in a tailored
gain array has also recently been confirmed by the work
of Welch and Scifres et al. [11], [12]. These workers also
use proton implanted chirped arrays to provide gain tai-
loring, but rather than use a shallow proton implantation
to achieve the necessary high interchannel gain, they uti-
lize an offset stripe structure which effectively creates gain
in the interchannel region. They have shown that single-
lobed far-field patterns are best achieved when the length
of the center section of the array equals the length of the
two offset end sections. This implies that there is effec-
tively no distinction between the channel and interchannel
regions, because the total integrated gain along the length
of the laser is (approximately) the same for any longitu-
dinal cross section. Thus, the offset stripe ‘‘array’” also
resembles a tailored gain broad area laser more than it
does an array of individual lasers.

II. TaiLorReD GAIN BROAD AREA LASERS

It is possible that some residual effect due to the array
structure was responsible for the single-lobed far-field
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Fig. 1. Experimental (a) near-field and (b) far-field patterns for a halftone
laser 100 um wide. Note the nearly linear spatial gain profile as evi-
denced by the spontancous emission pattern at 0.7/,

patterns. To demonstrate that the array structure in a tai-
lored gain laser is superfluous, we therefore conceived and
demonstrated an entirely different method of achieving
gain tailoring, the ‘‘halftone’’ process, by varying the
fractional coverage of injecting metal to the p~ GaAs con-
tact relative to Schottky blocking metal to the pGaAlAs
contact over the surface of a broad area laser [13]. The
enhanced current spreading provided by the thick upper
cladding layer smears out the effects of the discrete dots
and makes for a smooth, nonuniform spatial gain distri-
bution within the active layer. This process may be used
to create nearly arbitrary rwo dimensional spatial gain dis-
tributions within a broad area laser, thus offering a new
degree of freedom in the design of semiconductor lasers.
In particular, if the gain dependence on injected carrier
density is known, the dot size variation can be chosen to
create an approximately linear spatial gain profile. Pre-
viously, we were able to obtain a single-lobed diffraction
limited beam from a tailored gain broad area laser 40 pm
wide [13]. The far-field patterns of this device did not
remain single-lobed at high power; in this work, we report
high-power (200 mW) nearly diffraction limited single-
lobed operation of a similar device.

Fig. 1 shows the pulsed, low duty cycle near-field and
far-field patterns for a linear asymmetric halftone laser
100 pm wide. Fig. 1(b) shows that such lasers are capable
of nearly diffraction limited high-power ( ~ 200 mW into
2.5°) single-lobed operation. The improved high-power
performance may be understood as a consequence of the
effect of gain saturation, which tends to equalize the spa-
tial gain profile across the laser. The beneficial effects of
gain tailoring are then lost more rapidly in a device with
a small gain gradient (previous work) when compared with
a device with a steeper gain gradient (present work).

The threshold currents /,;, and external differential quan-
tum efficiencies 7., of tailored gain lasers depend upon
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Fig. 2. Light-current curves for tailored gain broad area lasers. (a) Wave-
guide model for various truncated waveguides. The shaded areas repre-
sent regions of the waveguide which are pumped below transparency,
and therefore waste carriers. (b) Experimental light-current curves
showing variation of two mirror differential quantum efficiency 7 as a
function of device width.

the extent to which the waveguide is truncated at the low
gain region because light is only emitted over those por-
tions of the laser which are pumped to transparency ( =0
ecm™'). Thus, carriers injected into the net lossy regions
of the laser [indicated by the shaded regions of Fig. 2(a)]
will increase /,;, and decrease 7., but will not increase the
optical output. Fig. 2(b) plots the excess current above
threshold I — I, versus the optical power emitted per facet
for pulsed, low duty cycle operation of lasers with un-
coated mirrors and for various device widths £. The total
(two mirror) differential quantum efficiency 7., is also in-
dicated. As expected. n,,, rises as the width of the laser
decreases. However, decreasing the width of the laser
makes it more susceptible to the adverse effects of gain
saturation, leading to some power being radiated into a
small sidelobe at —©.

In this work, we restrict our attention primarily to the
analytic study of the (unsaturated) optical eigenmodes of
a linear asymmetric tailored gain waveguide. We will
show that the highly nonuniform gain profile in halftone
tailored gain broad area lasers plays an important role in
the suppression of the lateral mode control problem in
these devices. For example, we show that the higher or-
der lateral modes of these lasers have far-field patterns
which are all single-lobed and only slightly displaced from
the fundamental. Thus, even under multilateral mode op-
eration, the far-field pattern remains single-lobed, albeit
with a slightly larger beamwidth.

In addition, the beam emission angle at threshold is
sensitive to the exact value of the anti-guiding parameter
[14], and we are therefore able to make use of asymmetric
halftone tailored gain broad area lasers with varying spa-
tial gain gradients to make a measurement of this impor-
tant parameter.
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ITI. ANALYSIS OF THE LINEAR TAILORED GAIN
WAVEGUIDE
The optical field E(r, 1) inside the waveguide satisfies
Maxwell’s wave equation
n’(r) 0°E
3

VZE'_ s ——5 =0
c” t

(1)

where ¢ is the speed of light in vacuum, and n(r) is the
index of refraction in the medium, which is, in general, a
complex number:

n(r) = a(r) + in(r)
= n(r) — il'(r)/2k. (2)

and i = v/—1. (Throughout this work, the real part of a
complex quantity g will be denoted by eithergorRe {g};
the imaginary part will be denoted by either gorIm {q}).
Hence, 7ni(r) denotes the ordinary (real) index of refrac-
tion, and I'(r) = —2kn(r) is the spatially dependent
power gain experienced by an optical wave propagating
through the point r.

In a semiconductor laser, E(r, ¢) is a complicated su-
perposition of many transverse, lateral, and longitudinal
modes oscillating at many different frequencies. We sim-
plify the problem by considering only one oscillation fre-
quency (thus eliminating the longitudinal modes), and
make the usual effective index approximation (thereby
eliminating the transverse modes). Furthermore, we con-
sider only TE waves traveling in the +z direction. As a
result, we write the electric field of a lateral mode as

E(r, 1) = RE(x)e" ™% 8 = kg (3)

where E(x) is now a scalar electric field, ky = 27 /g is
the free-space propagation constant, = cky is the radian
frequency of the wave, and 7 is the effective index of the
mode. The propagation constant 3 in the z direction is

then given by 8 = koy. The power modal gain, defined

as y = —2kg = —28, gives the rate at which the inten-
sity of a lateral mode grows with z. In a laser, the lateral
mode with the highest modal gain will be the lasing mode
at threshold.
Substituting (3) into (1) yields the scalar Helmholtz
equation:
2

j?E + kﬁ(nz(x) — 9)E = 0. (4)

In the linear asymmetric waveguide, n(x) is given by
R, —o0 < x <07

ng — okgx 07 = x < f”

(5)

n(x) =
M, (" =x< o

where n, is the (constant) complex index of refraction ex-
ternal to the guide, ng and ¢ are also complex constants,
and { is the width of the guide. For convenience, we split
n, and ng into their real and imaginary parts:
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Fig. 3. (a) Mode diagram for an asymmetric linear tailored gain wave-
guide showing location of cigenmodes in the complex 4 plane. (b) En-
largement of boxed region in part (b) showing modes on the ( +), (0),
and { — ) branches.

n, =, — i,/ 2k,

ng = g — il'y/2k. (6)

The inset of Fig. 3(a) shows the waveguide which we will
use for illustrative purposes throughout this work. It is
120 um wide with a gain gradient of 1 cm™'/um.

The gradient of the complex index of refraction within
the guide 0 = x = {is given by ok;. ¢ is a dimensionless
quantity which plays a key role in determining the prop-
erties of the waveguide, and is defined by

—s(b+i) (sb>0) (7)

where b is the antiguiding factor which relates the depres-
sion in the real part of the index of refraction due to the
presence of gain through the free-carrier and band-edge
effects. b has been assigned values in the literature [14]
between 2 and 6; as described below, we experimentally
measure b = 2.5 £+ 0.5. The real constant s is related to
the guide parameters by

l

g =

(8)
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It should be noted that in this model there will always
be a step discontinuity in the index of refraction n(x) at
the left edge of the guide (x = (), while there will be a
corresponding step discontinuity at the right edge of the
guide (x = f)only if 'y = I', (i.e., n, # ny = ny — okyf).
The effect of the discontinuity in n(x) at the right edge
of the guide depends upon the magnitude of the discon-
tinuity, and also upon both the particular eigenmode as
well as the width { of the guide. Of course, in an actual
device there can be no real discontinunity in the spatial
gain profile, but since we will show below that it is only
the value of the spatial gain gradient which is important,
to first order at least, the discrepancy between the model
waveguide and an actual device may be neglected for the
high gain lasing modes.

After substituting (5) into (4) and dropping the term
second order in x, the Helmholtz equation inside the guide
becomes

d’ 202 2
%_Z'E + ko((n(} - n ] - ZnokUGX)E = 0 (9)
which has the solution
E(x) = a Ai(z) + b Bi(z), (10)

where a and b are complex constants, Ai(z) and Bi(z)
are the Airy functions, and

Z=p + wx

kj s
p="3(n" — nj)
[43)

@ = kg(Znoc)l’q. (11)

The equation for the argument to the Airy functions, z =
p + wx, describes a straight line £ in the complex z-plane
with one endpoint at z = p and the other endpoint at z =
p + wl. The length of this line is | wf|, while the angle ¢
the line makes with the real axis is given by ¢ = 2w =
tan”' Im {w} /Re {w}. For the case of pure index guid-
ing, y is zero, and £ lies on the real axis. In the case of
pure gain guiding (b = 0), as considered in Fig. 3, o is
a pure imaginary number:

o= —is

(12)
where s is related to the guide parameters by (8). Then
we can write w as

w = k(](zn[)s)];}(_i)ifs‘ (13)

Each branch of the cube root gives rise to a physically
meaningful mode, leading to three distinct families of
modes, which will be referred to as the (+), (0), and
( —) branches. Since 1, << Ay, the angle  is determined
almost entirely by the cube root of ( —i) which takes the
values ¢ /%, ¢7°7/% and ™"/, | then takes on the val-
ues ¥ 30°, and +90°. The inclusion of index anti-guiding
(b # 0) effects a rotation of £ in'the complex plane; this
will be discussed below.

The quantity w/ determines the length and orientation
of the line £ in the complex plane. To determine its origin
at p the eigenvalue 75 is required. The normalized eigen-

(pure gain guiding, s real)

modes will then be completely specified when the ratio of
the coefficients a /b in (10) is known. This ratio is deter-
mined by requiring E and dE /dx to be continuous at the
edges of the guide and bounded at infinity. If we require
the field to decay exponentially as x = —oo and match
the boundary conditions at the left edge of the guide, we
derive the following expression for the ratio a /b inside
the guide:

_ Yo Bi(p) — Bi'(p)
Voc Ai(p) — Ai'(p)

(14)

a
b x=0

where the prime (') denotes a derivative with respect to
the argument, and
k?
0
pe = —3 (0" — n7). (15)
w
Similar consideration at the right-hand side of the guide
leads to

a| _ p.Bi(p + o) + Bi'(p + wt) (16)
ble—s Vo. Ai(p + wf) + Ai'(p + wf)’

Inside the guide, the ratios (a/b)|,-y and (a/b)|,—;
both describe the same linear combination of Ai(z) and
Bi(z). Setting them equal yields the eigenvalue equation
for n:

Vo, Bi(p) — Bi'(p)
Vo Ai(p) — A (p)
Vo, Bi(p + wf) + Bi'(p + wf)
- Vo, Ai(p + wlf) + A" (p + wl) -

This equation may also be obtained by the more common
method of solving a 4 X 4 determinant; the present
method has the advantage that it explicitly yields the im-
portant ratio a /b.

Equation (17) is solved numerically for the eigenvalues
1,, where p is the mode index. The mode structure in the
complex effective index plane for our model waveguide
is illustrated in Fig. 3(a). An enlargement of the boxed
region of Fig. 3(a) is shown in Fig. 3(b). Three distinct
families of modes exist in a pattern resembling a sideways
“Y*": the high modal gain (+) and the low modal gain
( —) branches with relatively large 3, and the middle (0)
branch on which all the modes have nearly the same modal
gain and relatively small 7. Unlike the case of a uniform
gain guide of the same width in which the mode discrim-
inations are less than 1 cm™!, the mode discrimination
between the fundamental and higher order modes in an
asymmetric tailored gain waveguide can be much better,
typically 10 cm™'. Since the lateral modes on the ( +)
branch will be the first to lase, these are then the most
important ones to characterize. To accomplish this, we
examine the Airy functions of complex argument.

It is well known that along the negative real axis, Ai(x)
resembles a damped sinusoidal function with a gradually
decreasing period, while along the positive real axis Ai(x)

0. (17)



LINDSEY er al.: TAILORED GAIN BROAD AREA SL's

H.Ai(zlll

— iy
L L DL I L L L e L )

779

[Bitz )

<o -8 -6 -4 -2 (0 2 4 6 8 10

—Re{z}—-
)
e

. %
RN
oI i —
1 // ——
K ,_ :
-lg -8 -6 -4 -2 0 2 4 g a ¢

——Re{z}—-—-

(d)

Fig. 4. Level lines for the magnitude of (a) Ai(z) and (b) Bi(z); the ar-
rows show the direction of increasing magnitude. Lines of constant phase
for (¢) Ai(z) and (d) Bi(z); the arrows show the direction of increasing
phase. The contours in (a) and (b) differ by a factor of ten and by = /4

in (¢) and (d).

decays exponentially without oscillations or zeros. Simi-
larly, along the negative real axis, Bi(x) resembles a
damped cosinusoidal function with a gradually decreasing
period, while along the positive real axis Bi(x) grows ex-
ponentially without oscillations or zeros. However as gain
is introduced into the waveguide, the mode paths deviate
from the real axis and the eigenmodes of this complex
waveguide are determined by the analytic continuations
of Ai(x) and Bi(x) into the complex plane. For conve-
nience, the magnitude and phase of both Airy functions
are illustrated over the complex plane in Fig. 4. The ar-
rows indicate directions of increasing magnitude and
phase.

In order to proceed with the theoretical analysis, it is
necessary to determine which one of the terms a Ai(x) or
b Bi(z) provides the dominant contribution to £ in (10).
Towards that end, we examine the paths £(+), £(0)
and £( —) of the argument z = p + wx. For example,
the paths £ ( + ) are shown superimposed on Ai(z) in Fig.
5(a). The endpoint at z = p lies near a zero of Ai(z) and
the other is in the sector | 2z| < 7 /3 where Ai(z) is
exponentially small. Thus the profile of Ai(z) along this

path is consistent with a well-confined mode. From Fig.
4 we note that in the sector | £z| < 7 /3, Bi(z) is ex-
ponentially large, so that its magnitude at z = p + wfis
much larger than it is at z = p. Its profile is not consistent
with a well-confined mode and therefore we expect the
ratio a /b to be large for modes on the ( + ) branch. This
ratio is plotted in Fig. 6 for a guide with a gain gradient
of 1 em™' /pm and varying widths {. The ratio a /b ap-
proaches values as high as 10'°, confirming that the con-
tribution of Ai(z) to E completely dominates that of Bi(z)
for the first few modes of guides wider than about 50 pm.
As the guide width { is increased, the endpoint z = p +
wf penetrates deeper into the Stokes region | 2z| < n/3
and the increasing ratio a /b reflects the growing dissim-
ilarity between Ai(z) and Bi(z). Only when the endpoint
z = p + wl lies near the Stokes line at 2z = x /3 does
Bi(z) make a significant contribution to the eigenmode.
Thus the solution E\"’(x) of the Helmholtz equation (4)
can be expressed in terms of Ai(z) alone in guides for
which | w| € is suitably large.

The near-field profiles along lines £ ( + ) are shown in
Fig. 7(a). These are virtually identical to those obtained
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. for guides with a gain gradient 1 cm™'/ pm and different widths £. To an
excellent degree of approximation, low order modes on the ( + ) branch
are determined almost entirely by the behavior of Ai(z).

by a completely numerical study of the problem [8]. Note
that these modes are concentrated near the high-gain end
of the waveguide (x = 0). The » = 1 mode has the largest
spatial overlap with the lateral gain profile and thus has
the highest modal gain at threshold. As is evident from
Fig. 3(b) it also has the highest effective index of any
mode on the ( + ) branch, and will henceforth be referred
to as the ‘‘fundamental’’ mode of the waveguide.
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Fig. 7. (a) Intensity near-field patterns and (b) far-field patterns for the
modes of Fig. 3.

Similar arguments can be applied to both the (0) and
( — ) branches. The paths £ ( —) with v = +30° are also
illustrated in Fig. 5(a), and are similar to £( +) in that
the Ai(z) function is best suited to describe the mode.
Since here the zero of the Airy function occurs at z = p
+ wf, the near-fields are concentrated in the lossy regions
of the waveguide, as illustrated in Fig. 7(a).

The path of the argument of the Airy functions for the
(0) branch is plotted in Fig. 5(b) with ¢ = +90°. Unlike
the previous two cases, here Bi(z) provides the best de-
scription of a confined mode. Due to the symmetry of
Bi(z) about the positive real axis the near-field patterns
of these modes are approximately centered within the
waveguide. These modes therefore have a modal gain be-
tween modes on the ( +) branch and modes on the ( —)
branch. They correspond to the (0) branch of Fig. 3, and
are also plotted in Fig. 7. We remark that this description
of modes on the (0) branch holds for the wide waveguides
considered here, but becomes considerably more compli-
cated for waveguides in which |wf| — 0.

IV. EIGENVALUES OF THE LINEAR TAILORED GAIN
WAVEGUIDE

Once it has been determined that the contribution of
Ai(z) dominates that due to Bi(z) on the principal ( +)
branch, it becomes possible to derive very simple analyt-
ical expressions for the mode effective indexes and modal
gains by recalling that £ ( +) starts near a zero of Ai(x)
and ends in the sector of exponential decay. At the left
edge of the guide £E(0) = a Ai(p), where p is given by
(11). Setting p equal to one of the (real) zeros —r, of the
Airy function gives

Ko 2 5

=P T S (Tl'y - nﬂ) (18)

w

and approximating (nf — ng) by 2ny(n, —
expression for the »™ cigenvalue 7,:

ng) yields an

2
1w
—— =7,

4 = n 3
g 0 2ng kg

(19)
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The »™ zero of Ai(z) is approximately [15]

2/3
-r,=[3(r - Dx]"". (20)
After using the definition of w in (11) for the case of pure
gain guiding (¢ = —is), taking the principal branch of «,
and equating the real and imaginary parts we obtain an
expression forn = % + in on the ( +) branch:

=(+) o 3

Ny = Ng — EEV
_ V3
=+ e (21)
2
where
1/3
¢, = Ll v (22)
2'10

In the complex 7 plane, therefore, the mode structure is
particularly simple: all the modes of the principal branch
lie on a straight line emanating from the point (7, i)
and making an angle tan™' ( — V3) = —60° with the real
axis. The modes are spaced along this line according to
the zeros of the Airy function, with the higher order
modes being more closely spaced together.
Since the modal gain y.*’ is related to 7, through (2),

TE}+} = FO - kﬂ-\/gfv

9 173
kY

I

T, — V3k

23
o BRI

and 0 < r; < r, -+ +, we see that the fundamental mode
has the highest modal gain and hence will be the lasing
mode at threshold. At threshold, the modal gain v{*’ of
the fundamental mode must equal the mirror losses —T,
(scattering losses are probably insignificant in such a wide
gain-guided laser). Equation (23) may be inverted to give
the required peak gain I'y at threshold in terms of ', and
the gain gradient s.

The mode discrimination between any two modes is
given by

Ayt = gl = ) :
_ 2 ‘ 13 8, = |r,— .| (24)
= 'V'3k0 P 61,
Zﬂol )

where 6, is the spacing between the zeros of Ai(x). The
mode discrimination scales sublinearly with the gain gra-
dient, and is greatest between the fundamental » = 1 and
the next higher-order » = 2 mode. Our numerical analysis
[8] indicates that (24) is accurate to within a few percent
for the waveguide of Fig. 3(a).

In an entirely analogous manner, formulas for the prop-
agation constants of modes on the ( —) branch may be
determined by setting p + wf equal to a zero of the Airy
function. The effect of the additional term wf and the ( —)
root of w leads to slightly different expressions for the
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eigenvalues 7.~ and modal gain Y
L _ 1
’?E ) = ny — E €,
=(-) _ = V3
UM = Ry — _2_ €y
, 173
. . 5°
v =T+ \/gkg —1 . (25)
2?10

The approximations for the eigenvalues on the ( — ) branch
lie on a straight line emanating from the point (7, 7).
The angle that this line makes with the real axis is +60°,
so that it makes an angle of 120° with the corresponding
( +) line. In this case the » = 1 mode on the ( —) branch
has the lowest modal gain of all the modes. We remark
that (25) is not as accurate as (23) for truncated wave-
guides in which n; # ny — okyf due to the perturbation
introduced by the discontinuous truncated region at the
lossy edge of the guide. As a result of their relatively low
modal gain, modes on the ( — ) branch are unlikely to lase,
however, and so the error is unimportant from a practical
point of view,

Finally, modes on the (0) branch have nearly constant
modal gains, and are composed almost entirely of Bi(z).
It is not possible to obtain simple closed form analytic
expressions for the eigenvalues for these modes. Once
again, however, since they have low modal gains com-
pared to those on the (4 ) branch, the formulas are not
required. '

V. NEAR-FIELD AND FArR-FIELD PATTERNS

The near-field patterns of the lowest order egigenmodes
of our model waveguide were illustrated in Fig. 7. Con-
sidering first the ( +) branch, we recall that £ starts from
a zero of Ai(z) and terminates in the sector of exponential
decay | « |z < w /3. Since the zeros of Ai(z) occur only
along the negative real axis, the modes of an asymmetric
linear tailored gain waveguide all have single-lobed near-
field patterns.

Prior to deriving analytic approximations for the near-
fields, we determine the position within the guide, x,, of
peak intensity of the »™ mode. Referring to Fig. 8, we see
that along the path £, | Ai(z)| reaches its maximum when
£ is tangent to the level lines of Ai(z). These level lines
are perpendicular to the lines of constant phase of Ai(z).
The anti-Stokes line associated with the principal branch
is asymptotic to [see Fig. 4(c)] the line of constant phase
which makes an angle of —60° with the negative real axis.
The corresponding tangent line is at an angle of —30°,
which is precisely the angle y that £ makes with the neg-
ative real axis for the special case of no index antiguiding.
Setting p, = —r,, a simple geometric construction yields
the following expression for x,:

G,
X 2| I

(26)

E
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Fig. 8. Calculation of the near-field pattern showing geometric construc-
tion for determining x,.

It should be noted that, for a wide guide, the position of
the mode within the guide x, depends only on the gain
gradient, and is independent of both the peak gain I'y and
the width { of the guide. The mode maxima are separated
within the guide by [using (11)]

V3

-1/3
2 | 27051

Ax, = 6, (27)

where s is given by (8) and &, by (24).

Equation (27) leads to a particularly simple expression
for the modal gains on the principal branch. Since I' (x)
is the lateral gain profile and taking g = (T'y — I';) /l as
the spatial gain gradient, the expressions for the modal
gain and the mode discrimination become

v =T(x,)

Ayl = gAy, (28)

That is, the modal gain is given simply by the value of
the spatial gain at the point where the electric field has its
peak value. This suggests that, to first order, the mode
intensity profile is symmetric about its peak position, and
that its width is much less than the width of the wave-
guide.

To find an expression for the near-field pattern, we ap-
proximate the Airy function Ai(z) along the lines £( +).
To wit, the leading asymptotic behavior of Ai(z) as |z|
— oo is [15]

Ai(z) ~

. {.1. o 1/2g ;‘46-2,-’3;3.’1
2
The first expression includes the zeros on the negative real
axis, and is the one we use. In constructing Fig. 4, we
have found this result to be accurate to within 10 to 15
percent even for |z| as small as 2 or 3, and its simple
analytical form further motivates its exploitation here.
We write z in terms of the rectangular coordinates z =
u’ + iv' and rotate the coordinate system to new variables
u and v so that u lies along the anti-Stokes line « z =
e~>"/3 and v lies perpendicular to it (i.e., along £).
Along the line £, u is constant and v is linearly related

| -1 : RS Y. Sy i S Y w Sw
fzw 1,2[_2) |;4(€+1(2}3( )32 —xjay + e i(2/3(=1)3 r,4]) 5 < |Az| < ?

to the lateral position x within the guide:

il
2

=

(30)

Below the negative real axis, the + exponential provides
the dominant contribution to Ai(z). The radicals may be
simplified by making a binomial expansion about v = 0
with v << w:

32 [ 3v 3 /v\
(u + iv) =u3/2L1+i————(—)}

lwl (x - Xr

2u 8 \u
i v E—ll/E .
(u + iv) ~y ' [1 + (4—) e WA (3])
iy |

After substituting (31) and (30) into (29) and dropping an
unimportant constant, the expression for the electric field
reduces to

E(x) = o~ X2 bl —x) (32)
That is, the near-field pattern is approximately a Gaussian
with half width w,, centered at x, and multiplied by a
linear phase variation ¢,, where x, is given by (26), and
w, and ¢, are given by

(33)
The normalized near-field intensity 7, (x) is therefore

1
WWE

I(x) = e~ G XP/mL (34)

The intensity near-field patterns may be found for the
(—) branch in a similar manner. The exact (numerical)
near-field intensities and phases for representative modes
on each of the three branches is plotted in Fig. 9(a). All
of the modes are approximately Gaussian in shape with
essentially linear phase variations over the region of ap-

(29)

preciable light intensity. Higher order terms in the expan-
sion of (31) lead to slightly asymmetric near-field pattems
with some curvature in the phase fronts.

Once E,(x) has been found to have such a simple form,
it is a simple matter to find its far-field pattern. In the
Fraunhofer approximation, the far-field pattern F,(8) is
given by the square of the Fourier transform of E,(x)
times an obliquity factor. The wide asymmetric tailored
gain broad area lasers of interest here have very narrow
far-field patterns near the axis, and thus the obliquity fac-
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Fig. 9. (a) The waveguide of Fig. 3(a). (b) The near-field patterns of se-
lected modes on each of the three branches. (¢) The corresponding phases.
Note that all the near-field patterns are approximately Gaussian in shape,
and that the phase fronts are nearly linear.

tor may be ignored. Making use of the shift and convo-
lution Fourier transform theorems, the intensity far-field
pattern may be written as

F,(0) = lg{e*(x—)(w}zflwi} * g{e@y(x—x,)}
= e/ % 5(6 — ©,)[

- e—(e—e»)i,fzzi

‘ 2

(35)

where & { } denotes a ( —i) Fourier Transform, % de-
notes the convolution operation, and the emission angle
0, and beamwidth X, after refraction at the resonator
facet are given by

0.%) = (10) & (180) 1y [(5)" - L]

180\ 1 1 _ /180\ ||
Ev(°)=<__)_—=<—> 1/4°
) kow, \ 7/ kf2r,)

Far-field patterns for the ( —) branch may be calculated
similarly, and are, in fact, identical (except for an unim-
portant global phase factor) to those on the ( + ) branch.

The far-field patterns corresponding to all near-field
modes of Fig. 7(a) are plotted in Fig. 7(b). We see that
the far-field patterns for all modes are emitted slightly off-
axis, are single-lobed and approximately Gaussian in
shape, in agreement with (35). This stands in marked con-
trast to the far-field patterns of all real index-guided and
symmetric gain-guided lasers in which only the funda-
mental mode has a single-lobed far-field pattern. Physi-
cally, we understand this as follows: all of the low-order
eigenmodes are well confined within the guide. Hence
each experiences a nearly linear gain gradient across its
width. The self-consistent solution inside the laser reso-
nator thus requires a net power flow from the side of high
gain to the side of low gain. As a consequence the phase
front of the guided wave is tilted with respect to the op-
tical axis, and power is emitted in the far-field at an angle
O, off-axis towards the low gain side of the laser.

(36)

783

In real index-guided and symmetric gain-guided lasers,
power flow directed off-axis at an angle ©, must be bal-
anced by an equal component at —6,. The asymmetric
tailored gain waveguide disrupts this symmetry by rein-
forcing one component at the expense of the other. This
may be seen analytically by examining (29). The + and
— exponentials describe power propagation at opposite
angles to the optical axis. Choosing the gain slope s > 0
forces the lines £ ( +) below the negative real axis, and
the + exponential is dominant ( power flow reinforced at
©,). On the other hand, choosing s < 0 would cause the
— exponential to dominate. On the negative real axis
(Stokes line}, neither term is dominant. This switching of
dominance is exactly the Stokes phenomenon. Thus, a
small amount of power which travels in the opposite lat-
eral direction is described by the subdominant term of
(29), which we neglected, and contributes to far-field
emission at an angle —O,.

We stress that our analysis is predicated on achieving
distinct ( + ) and ( — ) branches in the mode structure. A
suitable degree of asymmetry is required to accomplish
this. Since the near-field patterns of the low-order eigen-
modes on the ( +) [( —)] branch are strongly localized in
the high gain (low gain) half of the guide, a number »
modes appears on each if the guide width (£) and gain
gradient (through w) satisfy

l“"f W, 1/4
2

—‘—ZX,,+2|N|“—"““‘—J‘,,+2(2?',) . {3?)

2

Of some practical importance is the fact that the far-
field patterns of the higher order modes on the ( + ) branch
are only slightly displaced from the fundamental. From
(20) and (36) we see that the angles of emission of higher
order modes scale approximately as »'/°. Thus, under
high-power operation when multilateral mode operation
is likely, the beamwidth will degrade gradually, becom-
ing slightly broader and shifting very slightly in angle.
This analytical result is borne out by the experimental data
of Fig. 1(b).

VI. MEASUREMENT OF THE ANTIGUIDING PARAMETER

In the interest of simplicity, the preceding analysis con-
sidered only the case of a pure gain waveguide with no
index variation. The effect of the antiguiding parameter b
on the eigenmodes may be determined by recalling the
definition of o in (7), viz. 0 = —s(b + i). Rewriting ¢

as
o(b) = o(0)(1 — ib) (38)
then
w(b) = w(0)(1 — ib)'"*
|w(B)] = Jw(0)] (1 + 8"
cw(b) = 2w(0) — Ltan"'b. (39)

Aside from a slight increase in its length, the principal
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Fig. 10. (a) Effect of the anti-guiding parameter b on the path of the ar-
gument to the Airy function throughout the complex plane. (b) Effect of
the anti-guiding factor on the near-field patterns.

effect on £ is a clockwise rotation about —r, of 1/3
tan”'b rad. The expression for the eigenvalues on the ( +)
branch becomes slightly more complicated:

.. 1/3

(+} — - e_mti} ’, (40}

() F 2!19

where ®*) = 2 /3 tan™'b + 7 /3. The mode discrimi-
nation for the ( + ) branch becomes

AyEN(B) = (1 + 1)

. {oos 2¢ + \% sin ZqQ} AvE(0)  (41)

where ¢ = 1/3 tan"'b. When compared with the special
case of no index anti-guiding, for » = 3, the mode dis-
criminations on the ( + ) branch are increased by about a
factor of two. The cluster of modes centered about the
middle of the guide (i.e., the (0) branch) is relatively
insensitive to the effect of the anti-guiding parameter. As
a result the number of modes on the ( +) branch actually
decreases with increasing b, consistent with the notion that
index anti-guiding should shift the high-gain modes to-
wards the lower-gain regions of the waveguide.
Qualitatively, the effect of anti-guiding on the near-field
patterns may be determined with the aid of Fig. 10(a) and
a simple geometrical argument. As b increases from 0,
the angle ¥ that £ makes with the real axis increases. As
a result, £ becomes tangent to the level lines of Ai(z) at
a point further removed from x = 0, implying that the
position x, of the maximum intensity of E has shifted to-
wards the low gain side of the waveguide. Furthermore,
as these latter level lines are less strongly curved than
those near the origin, the width of the mode increases as
well. Near-field profiles along the two lines of £ (6 = 0)
and £ (b = 3) in Fig. 10(a) are compared in Fig. 10(b).
A quantitative generalization of the technique used ear-
lier to determine the near-field and far-field patterns is in-

cluded as an Appendix. At this point we simply quote the
relations for position of the near-field peak x,(b)

2 1 sin (6 + w/3)
¥ b == / Xy 0 (42)
O = BT T s v o) 0
half-width of the near-field distribution w, (b)
2sin (w/6 + ¢)
cos (6 + @)
wi(b) = N Vi w2(0) (43)
(1 4+ b)) cos (20 + 0/2)
and far-field emission angle ©,(b)
r—__ﬁ__
12 [2sin (w/6 +

all expressed in terms of their values in the no anti-guiding
case. The angles ¢ and 4 are functions of » defined as

¢ =1tan b

tan § = 3 tan @. (45)
For example, when b = 3, w, increases by a factor of 2,
x, by a factor of 3, and 6, by a factor of 4.

When the anti-guiding factor is included, the far-field
beamwidth remains approximately constant because the
increase in the width of the near-field is offset by an in-
crease in the phase curvature. The major effect of anti-
guiding on the far-field patterns is to shift ©, to larger
angles. ©, is a sensitive function of b, and therefore
knowledge of the guide parameters (made possible via the
halftone process described earlier) allows estimation of
the anti-guiding factor.

To make an experimental determination of the anti-guid-
ing factor it is necessary to estimate the gain gradient s
defined in (8). The constant I'y is fixed by the rcqu1rement
that at threshold the modal gain of the lasing mode 7] -
must precisely equal the sum of losses, which are prin-
cipally due to the mirrors, and are typically about 40 cm™!
for a device 250 pm long. In an asymmetric tailored gain
halftone laser in which the fraction of injecting contact
varies between 100 percent at the left edge of the laser
and 0 percent at the right edge, light will be emitted only
where the gain is greater than zero. We can estimate the
position of transparency by examining the spontaneous
emission profile just below threshold. Together with Iy,
this determines the gain gradient. For example, we esti-
mate the gain gradient in the device of Fig. I to be 1
cm™'/ pm.

Equation (44) may then be used to calculate the position
of the off-axis far-field beam position ©}" as a function
of the antiguiding factor b. Fig. 11 plots the theoretically
expected emission angles for several values of the anti-
guiding factor along with experimental data from halftone
asymmetric tailored gain lasers with differing gain gra-
dients. We find a value b = 2.5 + 0.5, which is in agree-
ment with earlier published results [14].
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Fig. 11. Plot of the beam emission angle # as a function of the anti-guiding
parameter b and spatial gain gradient. The experimental data points fit b
= 2.5, in agreement with previously published results.

VII. CoNCLUSION

In conclusion, we have demonstrated a linear tailored
gain broad area laser capable of emitting a few hundred
milliwatts of optical power into a single, nearly diffrac-
tion limited beam only a few degrees wide. We analyzed
the lateral optical eigenmodes of such lasers in terms of
the Airy function of complex argument, and showed that,
unlike uniform phased arrays of semiconductor lasers, the
fundamental mode in a tailored gain laser is the lasing
mode at threshold, thus making possible the narrow, sin-
gle-lobed far-field patterns. The mode discrimination be-
tween the fundamental and higher order modes may be
controlled by variation of the spatial gain gradient, and
varies sublinearly with it. We also showed that, unlike all
real index-guided lasers or symmetric gain-guided lasers,
the higher-order modes of asymmetric tailored gain lasers
do not have nulls in their near-field patterns, and that the
corresponding far-field patterns are all asymmetric, sin-
gle-lobed, and only slightly displaced from the funda-
mental. Finally, we made use of halftone asymmetric tai-
lored gain lasers to estimate the anti-guiding factor.

APPENDIX

To calculate the near-field and far-field patterns when
real index anti-guiding is included, we once again first
calculate x,, the position of the peak electric field inten-
sity within the guide. We determine the point at which £
becomes tangent to the level lines of Ai(z), and rotate the
coordinate system so that a Taylor expansion may be used
to evaluate the field distribution. When anti-guiding is
present (b # 0), x, no longer lies on the anti-Stokes line.
The exact evaluation of the level lines of Ai(z) yield
complicated expressions, so we approximate them in the
rotated u — v coordinate system by a family of hyperbo-
las:

2
v
PR A

3 (A.1)
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Fig. 12. (a) Hyperbolic approximation to level lines of Ai(z) in the ro-

tated coordinate system. (b) Geometric construction for approximation
to near-field patterns.

where ¢’ is a positive real constant. This family is cen-
tered at the origin, and is asymptotic to («/v) = + V3.
Fig. 12(a) plots the level lines of Ai(z) (solid curves)
superimposed upon this family of hyperbolas (dashed
curve) which shows that, although the approximation is a
good one, it may be slightly improved by a small empir-
ical adjustment to the factor 3 in (A.1).

Along with this family of hyperbolas, Fig. 12(a) plots
&£’, the path of the argument of the Airy function in the
rotated coordinate system. Fig. 12(b) shows the geomet-
rical relationships among the various quantities more
clearly. The equations for the lines £/ are

u=u + mr (_A.Z)

where u, is a constant depending on the mode index »
through the root —r, of the Airy function. The slope of
this line m is given by

m = tan ¢ = tan (itan”' b). (A.3)
This line £; is tangent to a level line of the rotated Ai(z)

when the two slopes in the (u, ') plane are equal. From
(A.1), we have

duml

v

— ==, 4
dv 3u (A4)
Setting this equal to m in (A.3), we obtain an equation for
the locus of points at which the lines £ are tangent to the
level lines of the rotated Ai(z):

v = —3tan (tan”! b)u. (A.5)
Note that angle 6 in the figure is given by 6 = tan~' [3
tan (1/3 tan"' b)], and that when b = 0, = 0: in other
words, £,.(b = 0) corresponds to the positive real axis

(rotated anti-Stokes line) as expected. Furthermore, as b
— o, § = 7 /3 and £ becomes asymptotic to the rotated
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Stokes line of Ai(z). For a typical value of b = 2.5, 8 =
51.5°,

Once the tangency point has been located, the geomet-
rical construction shown in Fig. 12(b) may be used to de-
termine x,. | w|x,(b) is determined by the Sine Law:

ro _ lolx,(b)
sine ' (A-6)

.-

The two angles w /3 + 8and @ = 7 /2 — (6 + ¢), are

known, and so is the side of length r,, so that

sin (8 + «v/3) r,
cos (0 + ¢)

Xy(b) = (A7)

||’
Note that when » = O we have § = ¢ = O and | w|x,(0)
= (@/2) r, as in (26). Using this latter equation, we
can therefore rewrite

2 1 sin (6 + 7/3)
(b)) = —&= 7 L0). (A8
With b = 3, x, increases by a factor of three.

We next determine the near-field pattern E,(x) by an
expansion about the field maximum x,. We recall that the
path £, is defined by z = p + wx with 0 = x < {in the
unrotated coordinate system. In the coordinate system
which has been rotated by = /3, this becomes

(A.9)

By adding and subtracting the term ie ™ | @ | x, we rewrite
(A.9) as

z=re ™ +ie®|wlx

z=[re™? +ie7%|wlx,]

+ie ™ w|(x = x,) (A.10)
which is of the form
z =179+ iAz (A.11)
where
sin +7w/6)
- cog(p(t? + :pj)) ¢’
Az = e ¥|w|(x — x,). (A.12)

Observe that for b = 0 we have z = u + iv as in (30).

The electric field is given near the anti-Stokes line of
Ai(z) by (30) with u + iv replaced by z, + iAz. Making
the appropriate substitutions and simplifications, it be-
comes

(Az — Zizu)z}

) P ¥ .
EH(Z) - 5 e ””66' (1131432 B!(Z(]) exp [_ 425/2

(A.13)

and since z; is independent of x all the lateral-field 