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Abstract
Optical coherence tomography is a non-invasive imaging technique based on
the use of light sources exhibiting a low degree of coherence. Low-coherence
interferometric microscopes have been successful in producing internal images
of thin pieces of biological tissue; typically samples of the order of 1 mm in
depth have been imaged, with a resolution of the order of 10 µm in some
portions of the sample. In this paper we deal with the imaging problem of
determining the internal structure of a multi-layered sample from backscattered
laser light and low-coherence interferometry. In detail, we formulate and
solve an inverse problem which, using the interference fringes that result as
the back scattering of low-coherence light is made to interfere with a reference
beam, produces maps detailing the values of the refractive index within the
imaged sample. Unlike previous approaches to the OCT imaging problem, the
method we introduce does not require processing at data collection time, and
it produces quantitatively accurate values of the refractive indexes within the
sample from back-scattering interference fringes only.

1. Introduction

The problem of imaging material bodies by means of waves and rays has had a tremendous
impact on a wide variety of fields; here we are concerned with a relatively new imaging
technique, optical coherence tomography (OCT) [1], which has thus far been used for imaging
in biological and medical applications. This technique, which is based in interferometry, takes
advantage of the low-coherence properties of diode-laser light sources to image selectively (and
sequentially) prescribed points within a volumetric sample. Low-coherence interferometric
microscopes [2, 3] have been successful in producing internal images of thin pieces of
biological tissue; typically samples of the order of 1 mm in depth have been imaged, with a
resolution of the order of 10 µm in some portions of the sample. Such images have typically
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been produced through direct renderings of raw data: the intensities of certain interference
fringes as functions of the position of the light focus within the sample; quite generally, limited
post-processing of these data has been used.

In this paper we formulate and solve, in a mathematically rigorous manner, an inverse
problem based on Maxwell’s equations which, using OCT data (i.e., interference fringes that
result as the back-scattering of low-coherence light is made to interfere with a reference beam),
produces maps detailing the values of the refractive index within the imaged sample. As we
will show, the coherence properties of light, which certainly play a central role in previous
OCT imaging strategies (such as those proposed in [14, 15]), can also be exploited to solve
efficiently the fringes-to-indexes inverse problem under consideration. In particular we show
that, using wide light-frequency bands, a certain OCT inverse problem we introduce allows
for accurate rendering of refractive index distributions for layered structures. Once obtained,
such a map of the refractive index variations may be useful in a variety of ways [2]; in
particular, a straightforward display of this map yields an image of the internal structure of
the sample. The advantages of an approach based on the Maxwell equations are manifold.
Notably, such full-wave treatments allow for the consideration of various loss mechanisms
such as scattering and absorption, and thus result in images that remain faithful throughout
the body of the sample. Our present discussion, which accounts fully for the statistical nature
of the coherence phenomenon, is restricted to one-dimensional parallel-layer samples; the
methods and results of this paper have been announced in [4].

OCT devices have been used previously for evaluation of refractive index maps in layered
samples containing a small number of layers [2, 5–7]. (Of course, OCT depiction of samples
containing large numbers of pixels have been produced before, but those only show, for a given
pixel, the interference brightness level and not the value of the refractive index corresponding
to that pixel.) Previous OCT approaches for evaluation of refractive indexes, which are based
on approximate geometrical considerations and basic laws of geometrical optics, sequentially
yield the thickness and refractive index of each layer within a layered structure from two
measured quantities. In [5, 6], for example, the measured information used for thickness/index
evaluation is the sample displacement required to obtain a maximum reflected intensity and
the mirror displacement giving a maximum for the interference fringe intensities. Clearly,
such methods are rather slow, since, for determination of the refractive index value giving
rise to a given peak, they need an accurate determination and processing of such maxima at
measurement time; accordingly, only structures consisting of the order ≈10 layers or less have
heretofore been dealt with by means of such methods. The technique introduced in this paper
accounts rigorously for all physical effects and, in particular, it does not rely on approximations
such as those mentioned above. More importantly, the present solver produces solutions for
inverse problems from back-scattering interference fringes only and, unlike those of [5–7] it
does not require processing at data collection time. Thus, the algorithm described in this text
can produce solutions for inverse problems including thousands of layers, and it results in
quantitatively accurate renderings of the refractive index maps within the sample.

The importance of parallel-layer geometries is manifold: not only do they arise in a
range of important engineering applications [5] (e.g., for quality control of films of various
materials), but they also provide useful testbeds for techniques which, like those presented
here, should extend to more general configurations. We note that, when layers are not planar
our techniques do not apply directly, however—since, as it impinges on a curved interface, light
is backscattered in a wide range of directions, which depend on the unknown geometry. We
expect that appropriate representations of surface layers and new approaches to collection of
scattered light will enable a generalization of the present techniques for evaluation of interface
normals, and thus for volumetric imaging of fully two- and three-dimensional bodies.
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Figure 1. Optical coherence microscope.

The remainder of this paper is organized as follows. In section 2 we focus on the OCT
model and present our strategy for solution of the associated direct problem. We show that,
for a multi-layer structure, a rigorous geometrical optics method which takes advantage of
the coherence properties of OCT light sources can be used to produce a fast direct-problem
solver—as required by our inverse-problem algorithm. In section 3 we then introduce our
inverse solver and in section 4, finally, present a variety of numerical results.

2. Mathematical formulation

In this section we present the governing principles of the OCT technique (for a typical OCT
device [3, 16], see figure 1), we describe our inverse problem, and formulate the fast algorithm
we use for the solution of the associated direct problem.

2.1. Layered media

In this paper we assume that the polarization of the incident beam is transverse electric (TE),
that is, that the electric field is orthogonal to the plane (x, z), in which variations of the complex
refractive index n(z) + iκ(z) occur. The wave equation describing the propagation of linearly
polarized TE light in our dielectric medium is given by[

∂2

∂z2
+

∂2

∂x2
+ k2

0(n(z) + iκ(z))2

]
u(x, z) = 0. (1)

Here k0 = 2π/λ = ω/c is the wavenumber, λ and c denote the wavelength and speed of light
in vacuum, respectively, n(z) + iκ(z) = √

µε(z) is the refractive index of the medium—with
µ the magnetic permeability (a constant throughout space for the non-magnetic samples under
consideration) and ε = ε(z) the dielectric constant of the medium varying in the z direction—
and where u(x, z) = Ey(x, z) is the y-component of the electric field [17]. Throughout this
paper we assume the coefficients ε(z) and n(z) + iκ(z) are locally constant, and, thus, they
define a layered structure consisting of a finite set of parallel planar layers. Equation (1) is to
be understood in the weak sense, so that continuity of u and du

dz
across discontinuity surfaces

is always assumed.
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Figure 2. Scattering by a slab.

In the single-layer case (see figure 2) with refractive index n(z) = n1 and thickness
d1, the solution of equation (1) in region 1 under an incident wave in the direction
(α, β), uinc = E0 ei(kxx+kzz) = E0 eik0(αx+βz) is given by

u(x, z) = uinc(x, z) + uscatt(x, z),

where the reflected wave uscatt(x, z) (that is, the wave scattered by the sample in the backward
direction) is given by [18]

uscatt(x, z) = E0 ei(kxx−kzz)

[
r +

r ′t t ′ eiδ1

1 − r ′2 eiδ1

]
. (2)

In equation (2) and in figure 2 the parameters r, t, r ′ and t ′ denote Fresnel coefficients: in the
notation of equations (6) and (7) below these are given by r = r0,1, t = t0,1, r

′ = r1,2 = −r0,1

and t ′ = t1,0, with n0 = 1, κ0 = 0, and n1 + iκ1 equal to the refractive index of the layer.
Further, calling θ trans the complex transmission angle given by the complex form of Snell’s
law, sin(θ inc)/ sin(θ trans) = n1 + iκ1, the parameter δ1 is given by

δ1 = 2n1d1 cos(θ trans)k0. (3)

If κ1 = 0 then δ1 is real, and it equals the optical path-length difference between adjacent
rays—see, e.g., the rays (1) and (2) in figure 2.

It is important for us to note that the scattered wave uscatt(x, z) may be viewed as the sum
of contributions from an infinite number of reflections given by

E1r = E0r ei(kxx−kzz),

E2r = E0tr
′t ′ eiδ1 ei(kxx−kzz),

E3r = E0tr
′3t ′ ei2δ1 ei(kxx−kzz),

...

ENr = E0tr
′(2N−3)t ′ ei(N−1)δ1 ei(kxx−kzz).

For a multi-layer film, in turn, multiple reflections occurring at the various interfaces within
the sample will contribute to the overall backscattering from the sample. As we will see, only a
small number of such interface reflections contribute to the brightness of any one interference
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fringe; for reference, however, we note that the overall field backscattered from the sample,
containing contributions from all interface multiple-reflections, is given by

uscatt(x, z) = E0̃r0,1 ei(kxx−kzz), (4)

where, calling θ trans
q the qth transmission angle and δq = 2nqdq cos

(
θ trans
q

)
k0, the generalized

reflection coefficients r̃q,q+1 at the interface between region q and region q + 1 are given by
the recurrence relation

r̃q,q+1 = rq,q+1 + r̃q+1,q+2 eiδq+1

1 + rq,q+1̃rq+1,q+2 eiδq+1
. (5)

Here rq,q+1 are the regular Fresnel reflection coefficient

rq,q+1 = (nq + iκq) − (nq+1 + iκq+1)

nq + iκq + nq+1 + iκq+1
. (6)

For future reference we quote here the Fresnel transmission coefficients as well:

tq,q+1 = 2(nq + iκq)

nq + iκq + nq+1 + iκq+1
, (7)

see e.g. [17].
In most OCT devices, the incident beams are focused by a lens at a point within the

sample, in a setup that gives rise to low numerical apertures. For simplicity and clarity in the
exposition, in the remainder of this paper we consider incident fields with normal incidence,
that is, incident fields of the form

uinc(x, z, ω) = eik0z = ei w
c
z; (8)

it should be clear that an analogous treatment can be given for the case of general incidence.
Such general cases have indeed been implemented as part of our direct and inverse-problem
solvers; see [19].

2.2. Coherence

The OCT technique under consideration is based on use of a Michelson interferometer together
with a low-coherence light source, as shown in figure 1. As the sample to be imaged is placed
in one arm of the interferometer, the light reflected from the reference mirror and the light
backscattered from the sample are combined at the detector; the intensity of the interference
fringes that result as the position of the sample is varied is the data from which an image of
the interior of the sample is to be obtained.

The total optical intensity received by the detector per unit area is given by [20]

Idet = 〈|uref(T ) + uscatt(T )|2〉T
= 〈|uref(T )|2〉T + 〈|uscatt(T )|2〉T + 2 Re

〈 (
uref(T )

)∗
uscatt(T )

〉
T
, (9)

where ∗ denotes complex conjugate, uref(T ) and uscatt(T ) represent the fields back-scattered
from the reference arm and the sample arm respectively, and where the symbol 〈· · ·〉T denotes
time averages

〈G〉T = lim
T →∞

1

T

∫ T/2

−T/2
G(s) ds.

Since the random processes associated with the emission of light are stationary and ergodic
[22, 20], all the time averages we will encounter can be equated to ensemble averages,

〈G(t)〉T = 〈G(ω)〉�.
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Here 〈G(ω)〉� denotes ensemble averages over the space � of realizations: denoting by M its
probability measure we have

〈G(ω)〉� =
∫

�

G(ω)M(d�).

In view of ergodicity, in what follows we identify time averages and ensemble averages, and
denote either of them by means of the symbol 〈· · ·〉.

From equation (9) and since the reference intensity stays constant and the sample
intensities vary slowly as the sample is moved, the interference fringes that appear in the
light-intensity patterns can only result from the term

� = 〈(uref(T ))∗uscatt(T )〉. (10)

Clearly, � can be obtained by subtracting from Idet the sum

〈|uref(T )|2〉 + 〈|uscatt(T )|2〉. (11)

Each one of the intensities in equation (11) can be measured by closing one arm in
the Michelson interferometer; e.g, the intensities 〈|uscatt(T )|2〉 can be obtained by taking
measurements with the reference arm closed.

We now seek to express � in terms of the statistical properties of the light source. To do
this we denote by usrc(x, z, T ) and A(x, z, ω) the field emitted by the source and its Fourier
transform with respect to T, respectively:

usrc(x, z, T ) = 1√
2π

∫ ∞

−∞
A(x, z, ω) e−iωT dω,

A(x, z, ω) = 1√
2π

∫ ∞

−∞
usrc(x, z, T ) eiωT dT ;

(12)

clearly, for the normal-incidence incident fields we consider (see section 2.1), we have

A(x, z, ω) = Ã(ω) ei w
c
z, for some function Ã(ω).

The source beam travels through the source arm of the interferometer and, after passing
through the splitter, gives rise to incident fields

uinc
r (z, T ) = 1

2
√

2π

∫ ∞

−∞
Ã(ω)ũr

inc(z, ω) e−iωT dω (13)

and

uinc
s (z, T ) = 1

2
√

2π

∫ ∞

−∞
Ã(ω)ũs

inc(z, ω) e−iωt dω (14)

on the reference (i.e. mirror) and sample arms, respectively, where ũr
inc(z, ω) and ũs

inc(z, ω)

denote plane waves

ũinc
r (z, ω) = ũinc

s (z, ω) = ei ω
c
(z+D). (15)

Note that distances along the mirror and sample arms are both denoted by the same symbol z.
Further, note the factors of 1

2 in these integrals, which account for our assumed half-and-half
split caused by the beam splitter.

The reference and sample backscattered fields received by the detector are thus given by

uref(T ) = 1

4
√

2π

∫ ∞

−∞
Ã(ω)ũref(ω) e−iωT dω, (16)

and

uscatt(T ) = 1

4
√

2π

∫ ∞

−∞
Ã(ω)ũscatt(ω) e−iωT dω, (17)
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where ũref(ω) = e−i ω
c

2(D+η) and ũscatt(ω) are the values at the detector of the field backscattered
by the mirror and the sample, respectively. Note the additional factors of 1

2 in these formulae
which account, once again, for the splitting of beams by the splitter.

Substituting equations (16) and (17) into (10) we obtain

� = 1

32π

∫ ∞

−∞

∫ ∞

−∞
〈Ã∗(ω)Ã(ω′)〉(ũref(ω))∗ũscatt(ω′) eiωT e−iω′T dω dω′.

But we have

〈Ã∗(ω)Ã(ω′)〉 =
∫

�

Ã∗(ω)Ã(ω′)M(d�)

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
〈u∗(T )u(T ′)〉 eiωT e−iω′T ′

dT dT ′

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
�(T − T ′) eiωT e−iω′T ′

dT dT ′

= 1

2π

∫ ∞

−∞
�(τ) eiωτ dτ

∫ ∞

−∞
ei(ω−ω′)T dT

= S(ω)δ(ω − ω′), (18)

where τ = T − T ′ and �(τ) = 〈u∗(T − τ), u(T )〉 is the self-coherence function, and where
its Fourier transform S(ω) is the power spectral density of the optical field, respectively. It
follows that � can be expressed in terms of the power spectral density S(ω)

� = 1

16
√

2π

∫ ∞

−∞
S(ω)(ũref(ω))∗ũscatt(ω) dω, (19)

which gives us the required expression for � in terms of the statistical properties of the light
source and the refractive properties of the sample under pure plane waves of form (15).

As is commonly done, in our work we will assume a Gaussian power spectral density of
the form

S(ω) = 4
√

log(2)π

�ω
e−(2

√
log(2) ω−ω

�ω
)2
,

whose complex degree of coherence is given by

γ (τ) = e
−( �ωτ

4
√

log(2)
)2

e−iωτ . (20)

Here, calling λ and �λ the centre wavelength and the full-width at half-maximum (FWHM)
respectively, w̄ = 2πc/λ is the central angular frequency and �ω = 2πc�λ/λ2 is the width
of the spectrum line between the half-power points [20]. Following [21], the coherence length
of the source is given by

lc = 2πc

�ω
= λ2

�λ
. (21)

2.3. Data collection and the OCT inverse problem

For definiteness, and in general accordance with methods reported in the recent literature, we
assume OCT data are collected as follows. At first the sample and mirror are placed in such a
way that the sample’s leftmost boundary lies at the point ξ = ξ0 and the mirror is at a distance
ζ = ξ0, see figure 3. Next, the sequence of intensity-fringe values � that occur as the sample is
relocated at the sequence of positions ξ = ξ0 − jε is obtained—where ε is a step-size (which,
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Figure 3. Scanning process starts with ξ = ξ0. Throughout the scan ζ is fixed at the value ζ = ξ0.
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Figure 4. Left: refractive index distribution for a 5-layer structure. Right: data obtained as a result
of the collection procedure detailed in section 2.3 (simulated).

as discussed below, should be chosen appropriately), and where j ranges from 1 to a number
Nmeas of measurements. The right portions of figures 4 and 5, for example, show the total
fringe intensity |�| (as functions of ξ ) arising from this procedure for the layered structures
depicted on the left-hand sides of those figures. (In these and all the subsequent numerical
simulations in this paper we have added to the exact computed correlation � random noise of
the order of 10−4 relative to the intensity signal of the first reflection—which is itself of the
order of 10−1—so that the added noise, equal to 10−5 times a random number between −1 and
1, is of the order 10−5. This noise level is much larger than the various noise bars reported in
the literature [15, 23–26].) The marked spikes in the right graph in figure 4 correspond to light
scattered by the interfaces: from left to right the spikes correspond to the interfaces between
air and the first layer, between the first two layers in the sample, and so on, and the last spike
corresponds to reflection between the last interface and air.

In figures 6 and 7 we show blow-ups of the two first spikes in figure 4 right, respectively;
we see that these spikes have a definite structure. Our methods utilize coarse samples of
those spike structures (e.g., the black circles in figure 7 right) to determine the refractive index
distributions within the sample. It may be surprising at first that such coarse sampling of these
spikes suffice to obtain width and refractive index values within the sample. However, this is
not unreasonable: although the peak is indeed under-sampled (i.e., an accurate rendering of
the peak cannot be produced on the basis of such sampling alone), the least-squares problem
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Figure 5. Left: refractive-index distribution for a 5-layer structure—with higher refractive-
index contrast than that of figure 4. Right: data obtained as a result of the procedure detailed in
section 2.3 (simulated). Note the appearance of spikes that do not correspond to interfaces between
layers.
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Figure 6. Left: coarsely sampled first spike in figure 4. Right: finely sampled first spike, with
black circles showing the coarse samples displayed on the left.

discussed in section 3 for determination of width and refractive index, which results from
such measurements, is actually over-determined, since it seeks to produce only two values,
the current width and refractive index, from a relatively large number of measurements, e.g.,
as many as sampling points in figures 6 and 7.

(As mentioned above, it is important to select of the parameter ε appropriately. The
value ε = λ, for example, would lead to highly aliased measurements such as those shown in
‘o-plus’ circles in figure 7. Clearly, the o-plus data-points contain information of poor quality,
since they lie close to the noise floor and are thus significantly polluted by it. Solving the
inverse problem with such polluted data is difficult, and may even lead to incorrect solutions.
We have found that values of ε close to but slightly different from the laser centre wavelength
lead to good fringe sampling and are therefore adequate.)

Our OCT inverse solver sequentially determines interference spikes which are most
relevant to the solution of the inverse problem, and uses the information contained in them to
determine refractive index values and layer widths, as explained in what follows. Throughout
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Figure 7. Left: coarsely sampled second spike in figure 4. Right: finely sampled second spike,
with black circles showing the coarse samples displayed on the left, and with ‘o-plus’ circles
showing coarse ‘aliased’ samples providing data of very small absolute value—which is prone to
be degraded by noise.

this paper we assume all layers widths are large compared to the coherence length of the
source.

Determination of the refractive index of the first layer. We begin by noting that, provided
the thickness of the first layer is sufficiently large compared with the coherence length of the
source, as we have assumed, the first group of data measurements (the left spike in figure 4
right) is only determined by the refractive index of the first layer. Indeed, the second and
subsequent interfaces do not contribute significantly to the first fringe pattern, since the rays
reflected by them travel a much longer optical path than the rays reflected by the mirror. More
precisely, in view of the exponential decay of the coherence function γ , up to exponentially
small errors the reflection from the second and subsequent interfaces do not contribute to the
first spike; in view of our standing assumption that the layer widths are much larger than
the coherence length, such exponentially small contributions are neglected. The problem of
evaluation of the refractive index of the first layer thus reduces to one that may be treated by
the least-squares method described in section 3.

Determination of widths of the first layer and the refractive index of the second layer. Once
the refractive index of the first layer has been obtained, the algorithm proceeds to determine
its thickness together with the refractive index of the second layer. To do this the algorithm
utilizes the second spike (depicted in figure 7 left) which arises, mainly, as a result of reflections
from the second interface. The spikes themselves are characterized as groups of values of
|�| above a certain threshold �thresh; in most of our examples we have used threshold value
�thresh equal to the noise floor, see section 2.3. Again, in view of the exponential decay of
the coherence function γ , up to exponentially small errors the reflection from the third and
subsequent interfaces do not contribute to the second spike. At this stage we use a least-square
method together with the minimization algorithm detailed in section 3 below to produce the
desired refractive index n2 and thickness d1.

Determination of widths of the qth layer and the refractive index of the (q + 1)th layer. A
similar procedure is utilized to determine the thicknesses and refractive indexes of subsequent
layers from corresponding spikes. As discussed in what follows, not all spikes are associated
with actual interfaces: those that are will be referred to as primary spikes. To introduce this
concept, we first give a precise definition of the notion of spike.
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(i) A spike is a group of consecutive values of |�| above the threshold �thresh (consecutive
perhaps with the exceptions described in points (ii) and (iii) below). A group of large
values of |�| arising from an interface may occasionally enclose a value of less than
�thresh, which would unduly split the spike into two. To avoid this we require that:

(ii) For two set of values to be considered part of different spikes, they must be separated by
a certain minimum number nmin

low of consecutive low measurement values between them.
In all our examples we have chosen nmin

low = 6. (Here we see an example of the way in
which the coherence length determines the resolution of the method: the separation by
a number nmin

low of measurements between two measurement peaks can only exist if the
coherence length is smaller than half the width of the layer.) If two sequences of values
of � above �thresh are separated by a number less than or equal to nmin

low of values below
�thresh, the two groups are considered to be part of the same spike.

(iii) Similarly, a spike must contain a certain minimum number nmin
high of consecutive high

values of �; in all of our examples we have chosen nmin
high = 4. If a sequence of high values

contains fewer than nmin
high points then it is not considered to be a spike.

(iv) Primary spikes. A spike, as defined by points (i)–(iii) above may result solely from
combinations of multiple reflections from various interfaces and thus, it may not identify
any one interface; see figure 5. To ensure a spike we use identifies a true interface we
must evaluate the contribution �prev to the correlation � for the current position of the
sample which arise from reflections from all previous interfaces. If the mean-square norm
of the difference between �prev and the measured � for values of ξ associated with a
given spike is less than the �thresh then the spike under consideration does not identify a
new interface, and it is thus considered to be a secondary spike; otherwise, the spike does
identify a new interface and it is called a primary spike.

Our algorithm determines sequentially widths and refractive indexes as follows: assuming
the first (q −1) widths and the first q refractive indexes have been obtained, the algorithm first
identifies the (q + 1)th primary spike—by carrying the procedures implicit in our definition
of that concept—and then, using that primary spike together with the minimization procedure
described in section 3, it produces dq and nq+1. Inductively, the algorithm produces primary
spikes and corresponding pairs of refractive indexes and widths until all available spikes are
used, and the desired refractive index map of the sample is obtained.

2.4. Fast evaluation of the function �

As mentioned above, our numerical method uses measured values of � to determine the
distributions of refractive index within the sample, and, to do this, it requires an effective
method for evaluation of � for a prescribed refractive index distribution. It is easy to see,
however, that the numerical evaluation of � through direct integration of expression (19) for
each mirror and sample position would lead to inordinately long computing times. Fortunately,
the low-coherence property of the light allows us to obtain � in an extremely simple and fast
manner, as explained in what follows.

To motivate the introduction of our fast evaluation algorithm, we begin by considering a
configuration for which the sample consists of a single homogeneous slab under the normally
incident wave (8); the implications of this analysis on the multi-layer case are described later in
this section. Under the present single-layer, normal-incidence assumptions, it follows that the
backscattering received from the sample at the detector for a fixed mirror position ζ depends
only on frequency and the position ξ of the sample:

ũscatt(ξ, ω) = ũscatt(ξ, ω) = 1

4
eik(D+η+2ξ)+π i

[
r +

r ′t t ′ eiδ1

1 − r ′2 eiδ1

]
,
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where η is defined in figure 1, and r = r0,1, t = t0,1, r
′ = r1,2 = −r0,1, t

′ = t1,0, and δ1 are
the Fresnel coefficients defined in section 2.1. For the reflection from the mirror, on the other
hand, we have

ũref(ω) = ũref(ω) = 1
4 eik(D+η+2ζ )+2π i = 1

4 eik(D+η+2ζ ), (22)

where D, ζ and ξ are defined in figure 1. The 2π i constant in the first exponent of
equation (22) accounts for two phase jumps of π i, which arise as the beam is reflected
by the splitter mirror and the reference mirror, respectively. The factor 1

4 , in turn, is due to the
fact that light passes twice through the splitter.

Denoting

τ = 2(ζ − ξ)/c, (23)

function (19) for the present single-layer configuration is given by

�(ξ) = − 1

16
√

2π

∫ ∞

−∞
S(ω)

[
r +

r ′t t ′ eiδ1

1 − r ′2 eiδ1

]
e−iωτ dω,

or, in view of equation (3)

�(ξ) = − 1

16
√

2π

∫ ∞

−∞
S(ω)

[
r +

r ′t t ′ eiωT
delay

1

1 − r ′2 eiωT
delay

1

]
e−iωτ dω, (24)

where T
delay

1 = δ1/ω = 2n1d1/c; more generally we define

T delay
q = 2nqdq/c. (25)

Note that, under our standing assumption that ζ is constant, the correlation � is a function
of ξ only: � = �(ξ); see equation (19). Clearly, the integrand in equation (24) is highly
oscillatory, and, as it happens, direct evaluation of that integral via resolution of that oscillatory
behaviour requires prohibitively long computing times.

To simplify the evaluation of the integral in equation (24) we use a series expansion of
the bracketed term in the integrand and obtain

�(ξ) = − 1

16
√

2π

[
r

∫ ∞

−∞
S(ω) e−iωτ dω + (r ′t t ′)

∫ ∞

−∞
S(ω) eiωT

delay
1 e−iωτ dω

]
− 1

16
√

2π
(r ′3t t ′)

∫ ∞

−∞
S(ω) ei2ωT

delay
1 e−iωτ dω + · · ·

− 1

16
√

2π
(r ′(2N−3)t t ′)

∫ ∞

−∞
S(ω) ei(N−1)ωT

delay
1 e−iωτ dω + · · · .

It follows that,

�(ξ) = −
√

2π

16

[
rγ (τ ) + (r ′t t ′)γ

(
τ − T

delay
1

)] −
√

2π

16
(r ′3t t ′)γ

(
τ − 2T

delay
1

)
+ · · ·

−
√

2π

16
(r ′(2N−3)t t ′)γ

(
τ − (N − 1)T

delay
1

)
+ · · · , (26)

where γ (τ) is the complex degree of coherence of the source

γ (x) = 1

2π

∫ ∞

−∞
S(ω) e−iωx dω.

Series (26) converges extremely fast. To appreciate the physical significance of this expression,
let us denote by j0 the value of j for which τ − jT

delay
1 is closest to zero, and let us note that

the j th term in the series accounts for contributions produced by light backscattered after j
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Table 1. The functions �(ξ), calculated by direct evaluation of integral (24), and �trunc(ξ),
calculated from a truncated version of equation (26), with truncations as defined in the text. Here
n1 = 1.4 and n2 = 1.6; τ = 2(ζ − ξ)/c.

ξ �(ξ) �trunc(ξ), (C = −1/16
√

2π)

ξ = ζ 0.052 2212 Cr0,1γ (τ) = 0.052 2214

ξ = ζ − d
opt
1 0.020 3082 Cr1,2t0,1t1,0γ

(
τ − d

opt
1

/
c
) = 0.020 3083

ξ = ζ − (
d

opt
1 + d

opt
2

) −0.069 9794 Cr2,3t0,1t1,0t1,2t2,1γ
(
τ − 2

(
d

opt
1 + d

opt
2

)/
c
) = −0.069 9856

bounces within the layer. The factor γ
(
τ − jT

delay
1

)
, which takes smaller and smaller values

as j departs farther and farther away from j0, accounts for the reduced contributions to the
function � that occur as a result of the loss of coherence associated with departures of j from
j0. Analogous (albeit more complex) ray expansions can be obtained for any given number
of layers and for arbitrary incidences.

To visualize the importance of these rapidly convergent ray expansions in our context we
first analyse the convergence of series (26) for a few significant examples. In our first example
the sample is a structure consisting of two layers of width d1 = d2 = 10 µm containing
materials of refractive indexes n1 = 1.4 and n2 = 1.6, respectively. We denote by d

opt
1 = n1d1

and d
opt
2 = n2d2 their respective optical path lengths. In what follows the symbol �trunc(ξ)

denotes various approximations of the function �(ξ); the reflected waves to be included in
�trunc which will vary through this discussion, should be clear from the context.

Table 1 contains values of the function � and various truncations �trunc. To define the
relevant contributions to each one of these truncations we note that, for the present two-layer
structure we have

ũscatt(ω) = − 1
4 r̃0,1 eik(D+η+2ξ),

ũref(ω) = 1
4 eik(D+η+2ζ ),

where r̃0,1 is given by equation (5), so that, in this case, equation (19) becomes

�(ξ) = − 1

16
√

2π

∫ ∞

−∞
S(ω)r̃0,1 e−iωτ dω, (27)

with τ(ξ) given by equation (23). This function may be viewed as a sum of contributions
resulting from reflections of rays on the various interfaces, which are given, in turn, by the
coefficients rq,q+1 and tq,q+1 defined in equations (6) and (7).

In rows 2, 3 and 4 of table 1, the truncated function �trunc includes contributions as
follows. Row 2: the ray reflected into the detector directly from the first interface (with a
contribution of −1/16

√
2πr0,1γ (0)), see figure 8, top left. Row 3: the portion of the ray

reflected at the second interface which is transmitted back into the detector through the first
interface (with a contribution of −1/16

√
2πr1,2t0,1t1,0γ

(
τ − d

opt
1

/
c
)
), see figure 8, top right

and; row 4: the portion of the ray reflected at the third interface which then impinges on
the detector after having been transmitted by both the second and first interfaces (with a
contribution of −1/16

√
2πr2,3t0,1t1,0t1,2t2,1γ

(
τ − 2

(
d

opt
1 + d

opt
2

)/
c
)
), see figure 8, bottom left.

The agreement between the exact (as calculated by direct evaluation of integral (24)) and
approximate expressions for � is excellent and, clearly, the approximate expression is much
easier to evaluate: in every case we just need one term of the series to obtain the value of
integral (27) with an absolute error of the order of 10−5. In the last row we find the lowest
accuracy; this approximation can be improved by adding the contribution of an additional
reflection—so as to account for a multiple reflection within the first layer, see figure 8, bottom
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Figure 8. Schematic display of multiple-scattered rays considered in table 1. Left top: first row
in table 1. Right top: second row in table 1. Left bottom: third row in table 1. Right bottom: the

correction term of equation (28),
√

2π
16 (r0,1r

2
1,2t0,1t1,0γ (τ − 4d

opt
1 /ω)).

right. The resulting improved approximation is

�trunc = −
√

2π

16

(
r2,3t0,1t1,0t1,2t2,1γ

(
τ − 2

(
d

opt
1 + d

opt
2

)/
c
))

+

√
2π

16

(
r0,1r

2
1,2t0,1t1,0γ

(
τ − 4d

opt
1

/
ω

)) = −0.069 9794. (28)

For a multi-layer structure the contribution of multi-reflections becomes more and more
important as the number of layers increases. In what follows we show that a ray expansion is
still possible even for samples containing a large number of layers.

To do this we decompose the backscattering from the sample as a sum of rays, each one of
which results from finitely many interface reflections, and consider associated approximations
to the correlation �. The simplest such approximation is �1(ξ), which we define as the
contribution to the total correlation �(ξ) that results as, amongst the rays that give rise to
coherent interference (i.e., those for which γ is not small), all rays that undergo more than one
interface reflection are neglected. To obtain �1(ξ) we proceed as follows: given the position
ξ of the sample we compute τ = 2(ζ − ξ)/c and determine the value of j such that the optical
path between the 0th interface and the j th interface is as close as possible to ζ − ξ ; in other
words

j minimizes

∣∣∣∣∣∣τ −
j−1∑
q=1

T delay
q

∣∣∣∣∣∣ amongst all j with 1 � j � N layers, (29)

where T
delay
q is given by equation (25). Then, �1(ξ) is given by

�1(ξ) = −
√

2π

8
Re

(
r̄j−1,j γ

(
τ −

j−1∑
s=1

T delay
s

))
, (30)
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Figure 9. Left: refractive index distribution along a multi-layer structure of thickness 1 mm.
Right: display of the corresponding function |�(ξ)|, as defined in equation (19), evaluated at
2200 sample positions ξ .

where r̄ is given by

r̄j−1,j = rj−1,j

j−1∏
q=1

tq−1,q tq,q−1. (31)

This expression for �1(ξ) thus depends on one reflection coefficient, rj−1,j , and two
transmission coefficients for each one of first j − 1 interfaces; it is easy to check that, as
claimed, �1(ξ) is the approximation to the total correlation �(ξ) that results by neglecting
multiple reflected rays.

The quantity �1 is usually a poor approximation to �. To improve this approximation
we define

�2(ξ) = �1(ξ) + �c(ξ), (32)

where �c is a correction term including a finite number of multiple reflections needed to
reduce the truncation error to a prescribed level which, typically we take to equal the noise
floor. In our numerical examples, for instance, we assume a noise floor of the order of
10−4 relative to the intensity signal of the first reflection—which is itself proportional to
r0,1—and consider refractive index values for which the quantities rj−1,j are of the order of
10−1 for 1 � j � N layers. In those cases we have r5

j−1,j ≈ O(noise floor) and thus, to
compute �c to within an error of the order of the prescribed noise floor we need only take
into account the reflections involving, at most, three reflections coefficients—thus neglecting
multiple-scattered rays containing five or more reflections. (Clearly the number of reflections
is necessarily odd.) Of course, the number of reflections needed to achieve a desired error
depends on the specific values of the parameters under consideration, and those given above
are meant as an illustration only.

To compute �c under the conditions described in the previous paragraph, we need to add
contributions from all the rays which are reflected at boundaries prior to the j th boundary, see
equation (29), and whose total optical path is sufficiently close to the primary single reflection
path. Under the assumption discussed above, that a maximum of three reflections is allowable,
we need to include all the rays giving rise to coherent interference that reach their maximum
depth inside the sample at the ith boundary, for each with i < j (the i = j contribution is
already accounted for in �1) and which undergo no more than three interface reflections.

To illustrate numerically the character of equation (32) we consider the multi-layer
structure depicted in figure 9 left, which contains N layers = 19 layers of thicknesses that
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Figure 10. Left: function |�1(ξ)| (equation (30)), evaluated at 2200 sample positions ξ for the
refractive index distribution of figure 9. Right: absolute value of the difference between � and its
approximation �1. Note that the error in the approximation rises above the noise floor.
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Figure 11. Left: function |�2(ξ)| (equation (32), with �c chosen to account for up to three
reflections), evaluated at 2200 sample positions ξ for the refractive index distribution of figure 9.
Right: absolute value of the difference between � and its improved approximation �2. Note that,
unlike the error in the approximation �1, shown in figure 10, here the error is of the order of the
noise floor for all sample positions.

range between d1 = 30 µm and d16 = 84 µm; figure 9 right displays the corresponding values
of |�| as a function of ξ . Figures 10 and 11, in turn, display |�1| and |�2| as functions of ξ

(equations (30) and (32)), and the corresponding errors in these approximations to |�|. From
figure 10 we see that inclusion of a single reflection does not suffice to obtain agreement of
� and |�2| up to the noise floor. Figure 11, on the other hand, shows that by adding the
correction term �c including up to three reflections, an error below the noise floor results.
Thus �c is an important contribution to obtain a successful model of the interference fringes.

The benefits of this approach for fast evaluation of the correlation are significant: the
evaluation of � by direct evaluation of integrals (19) at 2200 values of ξ for the samples
considered above (N layers = 19) required a computing time of 7 min on a 2.4 GHz PC; the
accurate approximation |�2| at the same set of 2200 points, on the other hand, was obtained
in a mere 0.14 s.
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2.5. Absorption averaging

At this stage it is important to discuss the role of absorption—the imaginary part of the refractive
index—in our problem. The absorption κ has a measurable effect in the backscattered field,
and, as we will show, its consideration is necessary if accurate renderings are to be obtained
through the solution of OCT inverse problems. In what follows we show, however, that a
precise determination of the variations of κ within the sample is not necessary in many cases
of practical interest—such as, for example, when the variations in absorption within the sample
to be imaged are not too large. It is easy to see that, in such cases, only the average value of
the absorption coefficient κ plays a significant role in the backscattered returns, and thus in
the determination of the real part of the refractive index throughout the sample.

To study this problem let us take a layered structure containing a number Q layers
of thicknesses dq and complex refractive indexes Nq = nq + iκq (q = 1, . . . ,Q), and let us
consider a ray which travels a given physical distance d̂ within the sample before backscattering
away from it. For any such ray we have d̂ = ∑Q

q=1 fqdq where fq denotes the number of
times the ray travelled through the qth layer; the corresponding scattered field, in turn, is given
by

Eback = RE0 e−kz

∑Q
q=1 κqfqdq eikzz eikz

∑Q
q=1 nqfqdq , (33)

where the quantity R involves products of the coefficients tq,q+1, rq,q+1 of equations (6)
and (7).

Equation (33) can be re-expressed as follows:

Eback = RE0 e−kzd̂(
∑Q

q=1 κqfqdq )/d̂ eikzz eikz

∑Q
q=1 nqfqdq

= RE0 e−kzκ̄d̂ eikzz eikz

∑Q
q=1 nqfqdq ,

where κ̄ = (∑Q
q=1 κqfqdq

)/
d̂ is the absorption average along the path visited by the ray.

From (6) and (7), and since the absorptions κ1 . . . κQ are much smaller than the corresponding
refractive index values n1 . . . nQ, we have

tq,q+1 ≈ t̃q,q+1 = 2nq

nq + nq+1
,

rq,q+1 ≈ r̃q,q+1 = nq − nq+1

nq + nq+1
,

so that R ≈ r̃ where r̃ is a coefficient involving products of t̃q,q+1, r̃q,q+1 and we therefore
obtain our approximate expression for the reflected field

Er ≈ r̃E0 e−kzκ̄d̂ eikzz eikz

∑Q
q=1 nqfqdq ,

which depends on the absorption in terms of the average absorption only.

3. Nonlinear solver

3.1. Nonlinear equations

As mentioned above, the coherence properties of light, which certainly play a central role in
previous OCT imaging strategies (such as those proposed in [14, 15]), can also be exploited
to solve efficiently the fringes-to-indexes inverse problem under consideration. We have
formulated the OCT inverse problem as follows: assuming

� = 1√
2π

∫ ∞

−∞
S(ω)ũref∗(ω)ũinc(ω) dω, (34)
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(see (10)) is known for various sample positions ξ—as described in detail in section 2.3—
determine the refractive index n(z) within the sample.

Using the terminology introduced in points (i)–(iv) of section 2.3, let us denote by
�q the number of values of � above the threshold value �thresh contained in the primary
spike associated with the qth interface—recall that the set of interfaces is in one-to-one
correspondence with the set of primary spikes, while the total number of spikes may be larger
than the number of interfaces; see section 2.3. Further, we denote by ξ

q

i (1 � i � �q) the
sample positions associated with such relevant measurements for the qth spike, so that �

(
ξ

q

i

)
is the ith measurement associated with the qth interface, 1 � i � �q .

The first spike, detailed in figure 6 left, can be used to determine the refractive index of the
first layer, since the coherent backscattering from the subsequent interfaces is exponentially
small. That is to say, this index of refraction can be obtained as the solution of a certain
nonlinear vector equation, F 1(X1) = 0 ∈ R

�1 where the vector function F 1 has components
F 1

i (X1) = �meas
(
ξ 1
i

)−�2
(
ξ 1
i , X1

)
, where X1 denotes the refractive index n1 to be calculated.

More generally, once the first q − 1 refractive indexes and the first q − 2 widths have been
found, the qth spike can be used to determine the refractive index of the qth layer and the
thickness of the (q − 1)th layer.

In each case, we must determine the values of a refractive index and a thickness as the
solution to a certain nonlinear equation Fq(Xq) = 0 ∈ R

�q where Xq is the two-dimensional
vector

Xq = (nq, dq−1).

Here as above

F
q

i (Xq) = �meas
(
ξ

q

i

) − �
(
ξ

q

i , Xq
)
.

While in principle it would suffice to use two equations to determine nq and dq−1, we have
found that, as is common in the solution of inverse problems, use of an overdetermined system
of �q equations and two unknowns is highly advantageous in our problem as well. Denoting by
X

q

0 the least-squares solution of the overdetermined system of nonlinear equations F(Xq) = 0
or, equivalently, the minimizer of the functional φq(Xq) = 1

2Fq(Xq)T F q(Xq), we obtain X
q

0
by means of the Gauss–Newton method: defining by Y

q
n is the solution of the linear system

Aq
nY

q
n = −∇φq

(
Xq

n

)
,

(where ∇φq
(
X

q
n

) = J T
Fq

(
X

q
n

)
Fq

(
X

q
n

)
, A

q
n = J T

Fq

(
X

q
n

)
JFq

(
X

q
n

)
, J the Jacobian of Fq), we

produce the (n + 1)th Gauss–Newton iterate by means of the expression

X
q

n+1 = Xq
n + Y q

n .

As it happens, the derivatives necessary to evaluate the gradient and the Jacobian of the function
φq corresponding to the qth interface can be computed analytically from expression (32) for the
multiple-scattering approximations �2 of the correlation �. Indeed, note that, when working
on the qth interface, the only term in equation (32) that depends on the differentiation variables
nq and dq−1 is �1, as given in equation (30). The term �c only involves reflections arising
from the previous interfaces and therefore it does not depend on either nq or dq−1.

A difficulty arises in our minimization problem since the Gauss–Newton method generally
converges to a local minimum only, and local minima are ubiquitous in our problem. An
important task is, then, to find appropriate starting points which guarantee that a Newton-
based method yields the global minimum. Our construction of an appropriate class of starting
points, which is presented in the following section, is indeed what renders our approach
feasible.
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d
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φ

Figure 12. Mean-square function φq = φq(n, d).

Figure 13. Mean-square function φq = φq(n, d): dark and light areas indicate small and large
function values, respectively.

3.2. Structure of the minimization problem and selection of initial guesses

Our algorithm for determination of global minima is based on some important general
properties of the functions φq(Xq) which are illustrated in figures 12 through 15:

(i) The function φq(X) has several local minima within the minimization domain, see
figure 12 and the top-view figure 13, in which darker shades identify smaller values
of the function φ.

(ii) For fixed values of d the function φq exhibits a parabolic behaviour with respect to
refractive index variations (see figure 14) and, for fixed values of n, it exhibits oscillatory
behaviour with respect to variations of the thickness parameter d, (see figure 15).

(iii) The local minima (resp local maxima) of φq as a function of d for fixed n > nq−1

are located at positions that vary only slightly with n, and the distance between two
consecutive local minima (resp local maxima) is ≈ λ̃/2, where λ̃ = λ/nq−1 is the centre
wavelength in the (q − 1)th layer (ω̄ = 2πc/λ is the centre frequency of the laser).
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Figure 14. Mean-square function φq for several values of the refractive index n.
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Figure 15. Mean-square function φq(n, d) as a function of d for several values of n.

Analogously, for all fixed n < nq−1 the distance between two consecutive local minima
or maxima is, again, ≈λ̃/2. The fact that the distance between local maxima/minima
is approximately half a wavelength can be understood easily by considering that, as the
position of the interface under consideration is perturbed by an amount ±e, the phase
of the returning reflection beam undergoes a perturbation of ±2e, i.e, a ray travelling
through the sample and returning from the interface needs to travel an additional ±2e to
arrive at the detector.

(iv) The symmetries observed in figure 13 can be understood by considering a two-layer
problem, with refractive indexes n1 and n2 on the left and right of the interface,
respectively, and illuminated by a normally incident ray, as depicted in figure 16. The field
reflected at the interface between the two layers is determined by the reflection coefficient
r = (n1 − n2)/(n1 + n2), and thus, for a fixed value of n1 and setting n2 = n1 + e, to first
order in e the field reflected by the interface is an odd function of e,

−e

2n1 − e
= −e

2n1
(1 + e/2n1 + · · ·) ≈ −e

2n1
.
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n1

d

n2

Figure 16. Two-layer structure with refractive indexes n1 and n2 and thickness d.

On the other hand, an increase of d in the amount �d = λ
4n1

leads to an increase in the
phase of the corresponding portion of field backscattered from the sample by π—that is,
it leads to a change in sign in the field itself. It follows that, to first order in e, the quantity
φq = φq(n, d) as a function of d will be invariant under the substitutions

e = n − n1, n1 + e → n, d +
λ

4n1
→ d,

which explains the symmetries in figure 13 around the line n = n1.
(v) In view of points (ii) to (iv) above we see that the line n = nq−1 separates two sequences

of local minima, and these two sequences contain all the local minima relevant to the
determination of the thickness dq−1 and the refractive index nq associated with the
interference spike under consideration.

In light of these properties we design our minimization algorithm as follows: to determine
the thickness and refractive index associated with a given intensity spike, we begin our
optimization by setting the thickness parameter ξ to equal the thickness associated with the
largest measured value of the correlation � in that spike. Next, we perform a minimization
along the refractive index direction, thus obtaining a first high-quality initial guess p0 for
the minimization problem. Then, using the initial guess p0 we proceed with Gauss–Newton
iterations to convergence, to obtain a first local minimum, which we denote by p1. Once
p1 is obtained, we can produce very good new initial guesses in each one of the basins of
attraction, see figures 12, 13 and 15, in view of properties (iv) and (v) above, by simply
using the symmetry with respect to n = n1 and the fact that the n-axis distances between
minima are known with relatively small uncertainties. The Newton iterations starting from
each one of these initial guesses converge rapidly to local minima p1, p2, . . . , pm. The global
minimization problem is then solved by selecting the pi with a minimum φ value.

4. Numerical results

In this section we demonstrate the performance of our algorithms through a variety of numerical
examples. In all cases an error was added to synthetic ‘experimental data’ so as to simulate
the experimental noise floor; the added noise floor was taken to be random and to the order of
10−5, relative to a unit incident field (10−4 relative to the largest interference intensity), see
section 2.3. This noise level is much larger than the various noise bars reported in the literature
[15, 23–26]. In our numerical examples we use the reasonable but otherwise arbitrary values
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Figure 17. Effect of absorption averaging. Upper left: prescribed refractive index map. Upper
right, lower left and lower right: reconstructions using values κ = 0.6 × 10−4, κ = 0 and
κ = 1.2 × 10−4 for the average absorption parameter, respectively.

λ = 850 nm, �λ = 70 nm [22], together with the corresponding values of w̄ and �ω. The
parameter ε in the scanning process was taken to equal ε = 800 nm: close to but different
from the 850 nm centre wavelength of the source; see section 2.3 for a discussion on useful
choices of the parameter ε. Throughout this section, unless otherwise specified, all lengths
(e.g. the d axes) are measured in metres (m).

4.1. Absorption effects

To appreciate the effect of the approximations introduced in section 2.5, we present solutions
of an inverse problem containing a wide range of absorption variations, with an average
absorption value equal to 0.6 × 10−4. We generally may not assume this average value is
known, and thus reconstructions should proceed through appropriate tuning of this parameter,
see figure 17.

This figure presents a prescribed refractive index map (50×50 square pixels) together with
an image reconstructed under various assumptions for the average absorption parameter. Each
one of the reconstructed figures resulted from solution of 50 columnar inverse problems, each
one of which requires determination of 50 refractive index values. We see that, as anticipated,
values of the absorption parameter close to the actual average absorption value result in
excellent reconstructions, and that even reconstructions based on values of this parameter
far from the actual average absorption value produce informative images, albeit somewhat
distorted.

In our second set of numerical examples we present inversion results corresponding to
the 19-layer structure shown in figure 18 top left, under the assumption of three different
(random) arrays of absorption coefficients, shown in figure 18 top right, bottom left and
bottom right. In all three cases the absorption coefficients κ range between 10−5 and 10−4.
The three corresponding reconstructions, obtained under assumption of a constant absorption
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Figure 18. 19-layer structure. Upper left: refractive index distribution. Top right, bottom left and
bottom right: three different (random) absorption distributions.

equal to the average absorption in the true samples (which equals 0.6 × 10−4) are shown in
figure 19. Each one of these curves was obtained in a run of approximately 0.4 s on a 2.4 GHz
Pentium IV processor.

4.2. Large absorption/noise values

Next we present examples that demonstrate the behaviour of our solver in the presence of
large values of absorption and noise. In the first pair of examples we assume samples whose
refractive indexes are given by the top left portions of figure 18, and whose absorptions are ten
times those depicted in figure 18 top right. Figure 20 left, displays the corresponding values
of the correlation |�|. We see that a significant loss of information occurs, as the increased
absorption gives rise to measured values of the correlation which fall below the noise level.
Figure 20 left displays the corresponding solution produced by our solver in this case. Clearly,
only portions of the sample for which the measurements are not polluted by noise can be
reconstructed with any accuracy.

In the second pair of examples relating to absorption we reduce the absorption level back
to the values of figure 18, and study the effect of an increased noise floor by assuming the
random noise is of the order of 10−4—a factor of 10 higher than all other values assumed
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Figure 19. 19-layer structure. Refractive index distribution (solid) and the corresponding
reconstruction for three different absorption values distributions.
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Figure 20. Layered medium with absorption values κ ranging between 10−4 and 10−3. Left: |�|.
Right-continuous: actual refractive index n. Right-dashed: reconstruction of n.

in this text, and usually found in practice. Figure 21 left shows the corresponding measured
values of |�| for the 19-layer structure. We note that the noise floor in these cases equals the
threshold value �thresh = 10−4 used for the detection of interfaces. Still, reasonable solutions
are obtained—at least for the more highly illuminated portions of the sample.

4.3. Volumetric imaging

As mentioned in section 1, the inverse solver developed in this work does not apply directly
to the problem of imaging of volumetric samples containing non-planar interfaces. To gain an
insight on the type of performance that might be expected when extending these methods to
such three-dimensional configurations, in this section we present the results of applications of
our algorithm to an imaging problem involving a true cell geometry, in which the volumetric
geometry has been replaced by a ‘chessboard approximation’, that is, an array of square pixels
which are then treated, as in section 4.1, as sequences of columnar one-dimensional inverse
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Figure 21. Reconstruction of a 19-layer structure under a noise level of the order of 10−3 relative
to the maximum interference fringe intensity (which is itself of the order of 10−1). Left: |�|.
Right: corresponding solution for this noise level.

Figure 22. Left: chessboard rendering of an original cell figure. Centre: refractive index
assignment. Right: reconstruction.

(This figure is in colour only in the electronic version)

problems. In detail, in figure 22 the x-axis is horizontal and the z-axis is vertical, and each
one of the 50 vertical columns (each one of which, in turn, contains 50 pixels), is considered
as defining a single OCT inverse problem for a layered structure containing 50 layers (51
interfaces). Each one of the pixels is square in shape, and the overall structure is assumed to
measure 10−3m ×10−3 m in size.

This geometry was obtained from http://dept.kent.edu/projects/cell/images.html; the
needed ‘chessboard’ approximations of this geometry are displayed in the left portion of
figure 22. The 50 × 50 chessboard structures shown here reflect the level of detail that can
be produced under the value of the coherence length assumed in this work, lc = 10.3 µm
(see equation (21)). Finer resolutions can certainly be obtained, provided light sources with
correspondingly reduced coherence lengths are used.

The colour code in the left portion of figure 22 matches that of the figure in the website
mentioned above. The centre portion of this figure, in turn, displays our own colour code,
which represents a value of the refractive index between n = 1.3 and n = 1.8 and absorptions
of the order of 10−5 < κ < 10−4—all fairly common values for biological applications. (The
refractive index value at a given pixel in the centre figure was chosen as a linearly scaled
version of the red component in the RGB true-colour image map for the corresponding left
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figures.) The right figure displays the results of our reconstruction. Note again that the right-
hand figure resulted from solution of 50 inverse problems, one for each of the 50 columns
making up our sample; this procedure produced the 2500 refractive index values depicted in
the right portion of figure 22. The reconstruction is nearly perfect.
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