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Introduction 

One-Dimensional Bubbly 
Cavitating Flows Through a 
Converging-Diverging Nozzle 
A nonbarotropic continuum bubbly mixture model is used to study the one-dimen- 
sional cavitatingjow through a converging-diverging nozzle. The nonlinear dynamics 
of the cavitation bubbles are modeled by the Rayleigh-Plesset equation. Analytical 
results show that the bubble/bubble interaction through the hydrodynamics of the 
surrounding liquid has important effects on this conjined JEow jield. One clear interac- 
tion effect is the Bernoulli effect caused by the growing and collapsing bubbles in 
the nozzle. It is found that the characteristics of the flow change dramatically even 
when the upstream void fraction is very small. Two different flow regimes are found 
from the steady state solutions and are termed: quasi-steady md g~ms~-~s~ecady The 
former is characterized by large spatial fluctuations downstream of the throat which 
are induced by the pulsations ofthe cavitation bubbles. The quasi-unsteady solutions 
correspond to flashing flow. Bifurcation occurs as the flow transitions from one 
regime to the other. An analytical expression for the critical bubble size at the 
bifurcation is obtained. Physical reasons for this quasi-static instability are also 
discussed. 

One-dimensional bubbly liquid flows in ducts and nozzles 
represent one of the simplest confined gas-liquid flows. This is 
an important problem by itself in many engineering applica- 
tions, but has not, previously, been studied in the context of 
cavitation bubble/bubble interactions. The nozzle flow is also 
a useful model of any cavitating flow in which a low pressure 
region causes the flow to accelerate, for example, the cavitating 
flow on the suction surface of a hydrofoil. Therefore, study of 
the one-dimensional accelerating flow with bubble cavitation 
effects may have value in building up fully nonlinear solutions 
for practical three-dimensional flows. 

In some bubbly flows it is possible to establish a barotropic 
relation, p = f (p), which assumes that the fluid pressure is the 
function of fluid density only. This implies that all effects 
caused by bubble content are disregarded except for the com- 
vressibil& and that the bubblv m&<ure can be regarded effec- 
tively as -a single-phase con&msible h i d .  ~a&grcn et al. 
( 1949) first addressed the barotropic nozzle flow of a two-phase 
mixture. A summary of this subject can be found, for example, 
in Brennen (1995). In many practical flows, however, the baro- 
tropic criterion is not met. In the present context, the hydrody- 
namic effects of the flow acceleration cause the bubbles to 
cavitate and then the flow deceleration makes them collapse. 
Under these circumstances, the fluid is not barotropic and, as 
we shall see, the growth and collapse of cavitating bubbles can 
dramatically change or destabilize the flow. 

The flow model used here is a nonlinear continuum bubbly 
mixture model coupled with the Rayleigh-Plesset equation for 
the bubble dynamics. This model was first proposed by van 
Wijngaarden (1968, 1972) and has been used for studying 
steady and transient shock wave propagation in bubbly liquids 
without the acceleration of the mean flow (see, for example, 
Noordzij and van Wijngaarden, 1974; Karneda and Matsumoto, 
1995). Ishii et al. (1993) proposed a bubbly flow model and 
used it to study steady flows through a converging-diverging 
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nozzle. However, by assuming that the gas pressure inside the 
bubbles is equal to the ambient fluid pressure, they neglected 
the bubble radial dynamics (as represented by the Rayleigh- 
P1esset equation) which are dominant mechanisms in a cavitat- 
ing flow. Morioka and Matsui (1980) and Morioka and Toma 
(1984) investigated the acoustic dispersion relation for a flow- 
ing bubbly liquid using van Wijngaarden's model and Toma and 
Morioka ( 1986) examined characteristics of different acoustic 
modes in flowing bubbly liquid using the same model. Toma 
et al. (1988) conducted experiments with bubbly liquid flows 
in a converging-diverging nozzle and recorded the temporal 
fluctuation characteristics of this kind of flow. However, fully 
nonlinear solutions of the accelerating bubbly flows with bubble 
cavitation effects have not, previously, been obtained. The pur- 
pose of the present work is to examine what effects bubble 
dynamics can have on the flow structure. 

Basic Equations 
Referring to Fig. 1, consider a one-dimensional converging- 

diverging nozzle with length L and cross-sectional area A ( x )  . 
The flow direction is in positive x direction and the inlet of the 
nozzle is located at x = 0. The variables in all the figures and 
equations are non-dimensionalized using the upstream condi- 
tions (denoted by subscript s )  and the liquid density, pz.  All 
quantities with superscript * represent dimensional values. For 
example, rl = rl* R? is the non-dimensional bubble population 
per unit liquid volume, where R? is upstream bubble radius. 

The continuity and momentum equations of the bubbly flow 
(references d'Agostino and Brennen, 1983, 1989; Wang, 1996) 
have the forms 

where a(x ,  t ) ,  the bubble void fraction, is related to the bubble 
radius, R ( x ,  t ) ,  by a ( x ,  t )  = 4 / 3 q R 3 ( x ,  t ) l [ l  + 4/3rVR3(x, 
t ) ] ,  U(X, t )  is the fluid velocity, Cp(x, t )  = (p*(x, t )  - 
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p f ) l l / 2 p t u , Y z  is the fluid pressure coefficient, p*(x,  t )  is the 
fluid pressure, p f  is the upstream fluid pressure, and u: is the 
upstream fluid velocity. The liquid has been assumed to be 
incompressible and the relative motion between the phases has 
been ignored. Friction between the fluid and the duct wall is also 
neglected. It is assumed that the upstream bubble population per 
unit volume of liquid is piecewise uniform and that there is no 
coalescence or break-up of bubbles in the flow. Since relative 
motion and the mass of liquid vaporized or condensed are ne- 
glected, it follows that q remains both constant and piecewise 
uniform in the flow. The nondirnensional fluid density has been 
approximated by p = ( 1  - a )  in ( 1 )  and ( 2 )  since the liquid 
density is very much larger than the vapor density. The interac- 
tions of the bubbles with the flow are modeled by the Rayleigh- 
Plesset equation (Knapp et al., 1970; Plesset and Prosperetti, 
1977) which connects the local fluid pressure coefficient, Cp,  
to the bubble radius, R: 

where DIDt = 3/81 + udldx is the Lagrangian derivative, u 

= ( p :  - p : ) / l  1 2 ~ ;  u f 2  is the cavitation number and p; is 
the partial pressure of vapor inside the bubble. The partial pres- 
sure of noncondensable gas (it is assumed the mass of gas 
inside each bubble is constant) does not appear explicitly in 
( 3 )  because the upstream equilibrium condition has been em- 
ployed to eliminate this quantity. It has also been assumed that 
the noncondensable gas inside the bubbles behaves polytropi- 
cally with an index k. If k = 1 ,  a constant bubble temperature 
is implied and k = y, the ratio of specific heats of the gas, 
would model adiabatic behavior. We define a Reynolds number, 
Re = p?uf R , Y I ~ , *  where & is the effective viscosity of liquid 
which incorporates the various bubble damping mechanisms, 
namely acoustic, thermal, and viscous damping, described by 
Chapman and Plesset ( 197 1 ) . We also define a Weber number, 
We = ~ , * U ~ ~ R ~ I S *  where S* is the surface tension of the 
liquid. 

Equations (I), ( 2 ) ,  and (3) represent a simple model of 
one-dimensional flowing bubbly fluid with nonlinear bubble 
dynamics. Previous investigations have examined the dispersion 
and stability properties of this model in the linear regimes (see, 

for example, Biesheuvel and van Wijngaarden, 1984; Morioka 
and Matsui, 1980; Morioka and Toma, 1984; Toma Mori- 
oka, 1986; Toma et al., 1988). These results helped to identify 
the propagation modes and the dispersion characteristics of the 
acoustic waves in a flowing bubbly liquid. However, if the flow 
is accelerating, simple linearization of the equations of motion 
is impossible since the mean flow quantities are changing rap- 
idly with both space and time. Analyses of the dynamics of this 
model then become significantly more complicated and new 
phenomena may be manifest due to the coupling of Row acceler- 
ation and bubble dynamics. 

Steady-State Solutions 
Only steady flows are considered in the present work. It is 

assumed that ( 1 ) ,  (2), and ( 3 )  have steady-state solutions 
for a constant mass flow rate with upstream conditions de- 
noted by pB, u g ,  and p: - p,*( l  - a,) = p ,* l ( l  + 
4/3m7* RT3) where a, is the upstream void fraction. After 
dropping all the partial time derivative terms, the governing 
equations become a system of ordinary differential equations 
with one independent variable, x: 

( 1  - a)uA = ( 1  - a,) = constant (4) 

The initial or upstream conditions are given by: 

R(x = 0) = 1, u(x = 0 )  = 1, Cp(x = 0 )  = 0 (7) 

We choose to examine a simple nozzle, A ( x ) ,  such that 

Nomenclature 

A = dimensionless cross-sectional R$ = upstream bubble radius x* = Eulerian coordinate 
area of nozzle, A */A,* Re = Reynolds number, p: uIRFlp3 a = void fraction of the bubbly fluid 

A * = cross-sectional area of nozzle S* = surface tension of the liquid ab = upstream void fraction at which 

A f  = Upstream cross-sectiond area of We = Weber number, p2  u p Z ~ : / ~ *  
flashing occurs 

nozzle a, = upstream void fraction 
= ~ o l f l o ~ i c  for the gas q = dimensionless bubble population 

Cp = fluid pressure coeffici~nt, the bubbles 
(P*  - p T ) / 1 / 2 p ~ u ~  I p * = fluid pressure per unit liquid volume, v*R: 

CP, = critical pressure coefficient at p g  = upstream pressure 
r]* = bubble population per unit liquid 

which flashing occurs volume 

CPMIN = minimum pressure coefficient at P$ = pressure y = ratio of specific heats of the gas 

throat for pure liquid nozzle flow = dimensionless time, t*u?/R,Y inside the bubbles 
L = dimensionless length of the noz- t* = time /-13 = effective dynamic viscosity of the 

zle, L*/RT u = dimensionless fluid velocity, liquid 
L* = length of the nozzle u*lu: p = dimensionless fluid density 

R = dimensionless bubble radius, u * = fluid velocity p f = density of the liquid 
R*IRF U P  = upstream fluid velocity p,* = upstream fluid density 

R, = dimensionless critical bubble ra- = dimensionless Eulerian coordi- = cavitation number, ( p f  - p=) l  
dius at which flashing occurs 

nate, x *IRB 1/2p:u72 
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/- Cross-Sectional Area, A(x) 

Flow O  0  0  0 o y O  

o 0  0 ( 
0 0  o O  0  0 - 

Bubble Radius, R(xJ) -I 
Fig. 1 Notation for bubbly liquid flow in a converging-diverging nozzle 

This profile will produce a simple sinusoidal pressure distri- 
bution in the case of incompressible flow with the minimum 
pressure coefficient, CPMIN, located at the nozzle throat, x = 
Ll2. The value of -CpMIN relative to the cavitation number, a, 
represents the intensity of tension in the flow. If -CPMIN is 
greater than the cavitation number, a, the minimum fluid pres- 
sure experienced by the individual bubbles will be lower than 
vapor pressure and the bubbles will cavitate. 

Results and Discussion 
A fourth-order Runge-Kutta scheme was used to integrate 

Eqs. (5)  and ( 6 ) .  The following flow conditions were chosen 
to illustrate the computational results. A bubbly fluid, composed 
of air bubbles (k  = 1.4) of upstream radiui R$ = 100 pm in 
water at 20°C ( p Z  = 1000 kg/m3, p: = 0.001 Ns/m2, S* = 

0.073 Nlm) flows with u? = 10 mls through a nozzle with 
profile given by Eq. (8);  the nondimensional length of the 
nozzle is L = 500. The minimum pressure coefficient, CpMIN, 
for the pure liquid flow is chosen as - 1. The upstream cavitation 
number, o, is set at 0.8, smaller than -CpMIN SO that cavitation 
will occur. The Reynolds number, Re, based on the upstream 
fluid velocity, the upstream bubble radius, the liquid density, 
and the effective liquid viscosity is taken as 33. An effective 
liquid viscosity, pz = 0.03 Ns/m2, is used in place of actual 
liquid viscosity to incorporate the various bubble damping 
mechanisms (Chapman and Plesset, 1971). Five different up- 

.. 
Normalized Position 

2 1 in the Flow, d(0.5L) I- 

Fig. 2 The nondimensional fluid velocity distribution as a function d the 
normalized position in the flow for five different upstream void fractions. 
Labels of a. = a; and a, = a; correspond to as just below and above 
the critical value a, 3.045 x The dimensionless length of the 
nozzle, L ,  is 500 with the throat located at 0.5L. Other parameters are 
a = 0.8, CP~," = -1.0, Re = 33, and We = 137. 

- 1 . 6 L '  ' ' ' ' I  ' ' ' " I  
0 1 2 3 4 5 6  

CI at  Normalized Position 
f in the Flow, x/(0.5L) 

Fig. 3 The fluid pressure coefficient corresponding to Fig. 2 

stream void fractions, a,, of the order of 1W6 are used in the 
computation and the results are shown in Figs. 2 to 5. 

Figure 2 illustrates the fluid velocity. The case of a, = 0 
corresponds to the incompressible pure liquid flow. It is notable 
that even for an upstream void fraction as small as 2.5 X 
the characteristics of the flow are radically changed from the 
case without bubbles. Radial pulsation of bubbles results in 
the downstream fluctuations of the flow. The amplitude of the 
velocity fluctuation downstream of the nozzle is about ten per- 
cent of that of the incompressible flow in this case. As a, 
increases further, the amplitude as well as the wavelength of 
the fluctuations increase. However, the velocity does eventually 
return to the upstream value due to the bubble damping. In 
other words, the flow is still "quasi-statically stable." However, 
as a, increases to a critical value, ab (about 3.045 X lo-" 
in the present calculation), a bifurcation occurs. The velocity 
increases dramatically and the flow becomes "quasi-statically 
unstable." The physical picture of this instability is quite sim- 
ple: Growth of the cavitation bubbles increases the fluid velocity 
according to the mass conservation of the flow. The increase 
of the velocity then causes the fluid pressure to decrease due 
to the Bernoulli effect. The decrease of the pressure is fed back 

0 1  2 3 4 5 6 
I 

Normalized Position 
in the Flow, x/(0.5L) 

Fig. 4 The void fraction distribution corresponding to Fig. 2 
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24nqR3, 
cpc = - (3 + 4Tq)2 (1 - 5)  (10) 

Since R, S 1, all the higher order terms (1 lR3,k in (9) and 
1IR: in (10)) can be neglected. After combining these two 
equations, one can write 

0 
R2 - 

2 
Rc - = 0 (11) 

2ab(1 - a,) ab(l - a,) We 

in which 4/3nq = aJ(1 - a,) has been used. The third term 
in ( 11 ) can be neglected because, in addition to R, * 1, practical 
values for 2lWe are about an order of magnitude less than the 
values of u /2  in the second term. Thus, finally we have: 

(T 

Rc = [ 2ab(l - ab) 1"' - [-I"' (12) 
2ab 

0 1 2 3 4 5 6 
CI 

?! 1 Normalized Position If R > R,, the flow becomes quasi-statically unstable and 

f in the Flow, x/(0.5L) flashes. In the cases presented here ( 0 1 2 a ~ ) " ~  = 51. With 
known R,, the expressions for the critical pressure coefficient 

Fig. 5 The nondimensional bubble radius distribution corresponding to Can be obtained from (10): 
Fig. 2. R-P solution represents the solution from the Rayleigh-Plesset 
equation. cP,= 2ab(1 - a b )  - u -0 (13) 

Concluding Remarks 
to the Rayleigh-Plesset dynamics and results in more bubble 
growth. 

The corresponding variations in the fluid pressure coefficient 
are shown in figure 3. In addition to the two different flow 
regimes, another important feature in the quasi-statically stable 
flow is the typical frequency associated with the downstream 
periodicity. This "ringing" will result in acoustic radiation at 
frequencies corresponding to this wavelength. How this ring 
frequency relates to the upstream flow conditions remains to be 
studied. Furthermore, it should be noticed that there is a pressure 
loss downstream; the fluid pressure does not return to the up- 
stream value except in the case of the pure liquid flow. The 
only damping mechanism in the present model is due to the 
bubble damping. Since the viscosity of wall and slip motion 
between bubbles and liquid are all neglected, the pressure loss 
is caused by the radial motion of bubbles and represents the 
"cavitation loss. " 

Figure 4 illustrates the void fraction distribution in the flow. 
When the flow becomes quasi-statically unstable, the bubble 
void fraction, a(x), quickly approaches unity. This means that 
the flow is flashing to vapor. Moreover we should emphasize 
that when a becomes large, our model equations, which are 
limited to flows with small void fraction (for the limitation of 
void fraction in the present model, see d7Agostino and Brennen, 
1989), lose their validity. 

Figure 5 indicates the non-dimensional bubble radius distri- 
bution in the flow. Due to time lag during the bubble growth 
phase, bubbles reach the maximum size after passing the nozzle 
throat. With increase in the upstream void fraction, the maxi- 
mum size of the bubbles increases and is shifted further down- 
stream. The bubbles grow without bound after reaching the 
critical radius, R,, at which flashing begins. Note that R, is 
dependent on the cavitation number and the upstream void frac- 
tion. An analytical expression for R, can be found as follows. 
From figure 5 we note that dRldx and d2Rldx2 both vanish at 
R = R,. Substitution of these conditions into (6) gives 

Steady cavitating bubbly flows through a converging-diverg- 
ing nozzle have been examined in the present paper. It was 
found that the nonlinear bubble dynamics coupled with the 
equations of motion of the bubbly fluid strongly affect the struc- 
ture of the flow even for very small bubble populations. Two 
different flow regimes, distinguished by the parameter R, = ( a 1  
2ab)113, (where a is the cavitation number of the flow and a, 
is the upstream void fraction at which the bifurcation occurs) 
are revealed in the steady state solutions. The flow becomes 
quasi-statically unstable and flashes to vapor if the radius of the 
cavitating bubbles is greater than R,. In this circumstance, the 
growth of bubbles increases the fluid velocity due to mass con- 
servation of the flow. The velocity increase then causes the fluid 
pressure to decrease according to the momentum equation. The 
decrease of the pressure is fed back to the Rayleigh-Plesset 
equation and results in further bubble growth. In this case the 
velocity and void fraction of the fluid increase and the pressure 
coefficient of the flow decreases significantly below the up- 
stream values and the flow flashes to vapor. On the other hand, 
if the bubbles do not grow beyond R,, the flow is quasi-statically 
stable and is characterized by large amplitude spatial fluctua- 
tions downstream of the throat. 

Finally, we should note that the present work analyzes a 
simplified internal bubbly flow model with bubble cavitation 
effects only. Other possible nonequilibrium factors in a real 
flow, such as thermal nonequilibrium between the phases and 
nuclei number density distribution in the flow, are excluded. 
Direct comparison between the present work and previous ex- 
perimental data are therefore limited. However, the present re- 
sults show that bubble cavitation may contribute to the void 
development and downstream oscillation of a bubbly flow in a 
drastic way. 
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