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ABSTRACT

A non-barotropic continuum bubbly mixture model is used
to study the one-dimensional cavitating ow through a
converging-diverging nozzle. The nonlinear dynamics of
the cavitation bubbles are modeled by the Rayleigh-Plesset
equation. Analytical results show that the bubble/bubble
interaction through the hydrodynamics of the surrounding
liquid has important e�ects on this con�ned ow �eld. One
clear interaction e�ect is the Bernoulli e�ect caused by the
growing and collapsing bubbles in the nozzle. It is found
that the characteristics of the ow change dramatically even
when the upstream void fraction is very small. Two di�erent
ow regimes are found from the steady state solutions and
are termed: quasi-steady and quasi-unsteady. The former
is characterized by large spatial uctuations downstream of
the throat which are induced by the pulsations of the cavi-
tation bubbles. The quasi-unsteady solutions correspond to
ashing ow. Bifurcation occurs as the ow transitions from
one regime to the other. An analytical expression for the
critical bubble size at the bifurcation is obtained. Physical
reasons for this quasi-static instability are also discussed.

NOMENCLATURE

A Dimensionless cross-sectional area of nozzle, A�=A�s
A� Cross-sectional area of nozzle
A�s Upstream cross-sectional area of nozzle
1

CP Pressure coe�cient, (p� � p�s)=
1

2
��Lu

�
2

s

CPc Critical pressure coe�cient at which ashing
occurs

CPMIN Minimum pressure coe�cient at throat for pure
liquid nozzle ow

L Dimensionless length of the nozzle
L� Length of the nozzle
R Dimensionless bubble radius, R�=R�

s

Rc Dimensionless critical bubble radius at which
ashing occurs

R�

s Upstream bubble radius
Re Reynolds number, ��Lu

�

sR
�

s=�
�

L

S� Surface tension of the liquid

We Weber number, ��Lu
�
2

s R
�

s=S
�

k Polytropic index for the gas inside the bubbles
p� Fluid pressure
p�s Upstream pressure
p�V Vapor pressure
t Dimensionless time, t�u�s=R

�

s

t� Time
u Dimensionless uid velocity, u�=u�s
u� Fluid velocity
u�s Upstream velocity
x Dimensionless Eulerian coordinate, x�=R�

s

x� Eulerian Coordinate
� Void fraction of the bubbly mixture
�b Upstream void fraction at which ashing occurs
�s Upstream void fraction
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� Dimensionless bubble population per unit

liquid volume, ��R�
3

s

�� Bubble population per unit liquid volume
 Ratio of speci�c heats of the gas inside the

bubbles
��L E�ective dynamic viscosity of the liquid
� Dimensionless uid density
��L Density of the liquid
��s Upstream mixture density

� Cavitation number, (p�s � p�V )=
1

2
��Lu

�
2

s

INTRODUCTION

One-dimensional bubbly liquid ows in ducts and nozzles
represent one of the simplest con�ned gas-liquid ows. This
is an important problem by itself in many engineering appli-
cations, but has not, previously, been studied in the context
of cavitation bubble/bubble interactions. The nozzle ow
is also a useful model of any cavitating ow in which a low
pressure region causes the ow to accelerate, for example,
the cavitating ow on the suction surface of a hydrofoil.
Therefore, study of the one-dimensional accelerating ow
with bubble cavitation e�ects may have value in building
up fully nonlinear solutions for practical three-dimensional
ows.

In some ows it is possible to establish a barotropic
relation, p = f(�), which assumes that the mixture pressure
is the function of mixture density only. This implies that all
e�ects caused by bubble content are disregarded except for
the compressibility and that the mixture can be regarded
e�ectively as a single-phase compressible uid. Tangren et.

al. (1949) �rst addressed the barotropic nozzle ow of a two-
phase mixture. A summary of this subject can be found,
for example, in Brennen (1995). In many practical ows,
however, the barotropic criterion is not met. In the present
context, the dynamic e�ects of the ow acceleration cause
the bubbles to cavitate and then the ow deceleration makes
them collapse. Under these circumstances, the mixture is
not barotropic and, as we shall see, the growth and collapse
of cavitating bubbles can dramatically change or destabilize
the ow.

The ow model used here is a nonlinear continuum bub-
bly mixture model coupled with the Rayleigh-Plesset equa-
tion for the bubble dynamics. This model was �rst pro-
posed by van Wijngaarden (1968, 1972) and has been used
for studying steady and transient shock wave propagation
in bubbly liquids without the acceleration of the mean ow
(see, for example, Noordzij and Wijngaarden 1974; Kameda
and Matsumoto 1995). Only a few papers have addressed
problems with owing bubbly liquids. Ishii et. al. (1993)
proposed a bubbly ow model and used it to study steady
2
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flow

x
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Figure 1: Notation for bubbly liquid ow in a converging-
diverging nozzle.

ows through a converging-diverging nozzle. However, by
assuming that the gas pressure inside the bubbles is equal
to the ambient uid pressure, they neglected the bubble ra-
dial dynamics (as represented by the Rayleigh-Plesset equa-
tion) which are dominant mechanisms in a cavitating ow.
Morioka and Matsui (1980) and Morioka and Toma (1984)
investigated the acoustic dispersion relation for a owing
bubbly liquid using vanWijngaarden's model and Toma and
Morioka (1986) examined characteristics of di�erent acous-
tic modes in owing bubbly liquid using the same model.
Toma et. al. (1988) conducted experiments with bubbly
liquid ows in a converging-diverging nozzle and recorded
the temporal uctuation characteristics of this kind of ow.
However, fully nonlinear solutions of the accelerating bub-
bly ows with bubble cavitation e�ects have not, previously,
been obtained. The purpose of the present work is to ex-
amine what e�ects bubble dynamics can have on the ow
structure.

BASIC EQUATIONS

Referring to �gure 1, consider a one-dimensional
converging-diverging nozzle with length L and cross-
sectional area A(x). The ow direction is in positive x

direction and the inlet of the nozzle is located at x = 0.
The variables in all the �gures and equations are non-

dimensionalized using the upstream conditions (denoted by
subscript s) and the liquid density. All quantities with
superscript � represent dimensional values. For example,
� = ��R�

3

s is the non-dimensional bubble population per
unit liquid volume, where R�

s is upstream bubble radius.
The continuity and momentum equations of the bubbly

ow (references d'Agostino and Brennen 1983, 1989; Wang
1996) have the forms

@

@t
[(1� �)A] +

@

@x
[(1� �)uA] = 0 (1)
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@u

@t
+ u

@u

@x
= �

1

2(1� �)

@CP

@x
(2)

where �(x; t), the bubble void fraction, is related to the
bubble radius, R(x; t), by �(x; t) = 4

3
��R3(x; t)=[1 +

4

3
��R3(x; t)]. The liquid has been assumed to be incom-

pressible and the relative motion between the phases has
been ignored. Friction between the uid and the duct wall
is also neglected. It is assumed that the upstream bubble
population per unit volume of liquid is piecewise uniform
and that there is no coalescence or break-up of bubbles
in the ow. Since relative motion and the mass of liquid
vaporized or condensed are neglected, it follows that � re-
mains both constant and piecewise uniform in the ow. The
non-dimensional mixture density has been approximated by
� � (1 � �) in (1) and (2) since the liquid density is very
much larger than the vapor density. The interactions of the
bubbles with the ow are modeled by the Rayleigh-Plesset
equation (Knapp et. al. 1970; Plesset and Prosperetti 1977)
which connects the local mixture pressure coe�cient, CP ,
to the bubble radius, R:

R
D2R

Dt2
+
3

2

�
DR

Dt

�2

+
�

2

�
1�R�3k

�
+

4

Re

1

R

DR

Dt

+
2

We

�
R
�1
�R

�3k
�
+

1

2
CP = 0 (3)

where D=Dt = @=@t+ u@=@x is the Lagrangian derivative,
� is the cavitation number, We is the Weber number, and
Re is the Reynolds number. The partial pressure of non-
condensable gas (it is assumed the mass of gas inside each
bubble is constant) does not appear explicitly in (3) because
the upstream equilibrium condition has been employed to
eliminate this quantity. It has also been assumed that the
non-condensable gas inside the bubbles behaves polytropi-
cally with an index k. If k = 1, a constant bubble temper-
ature is implied and k = , the ratio of speci�c heats of the
gas, would model adiabatic behavior.

Equations (1), (2) and (3) represent a simple model
of one-dimensional owing bubbly mixture with nonlinear
bubble dynamics. Previous investigations have examined
the dispersion and stability properties of this model in the
linear regimes (see, for example, Biesheuvel and Wijngaar-
den 1984; Morioka and Matsui 1980; Morioka and Toma
1984; Toma and Morioka 1986; Toma et. al. 1988). These
results helped to identify the propagation modes and the
dispersion characteristics of the acoustic waves in a owing
bubbly liquid. However, if the ow is accelerating, simple
linearization of the equations of motion is impossible since
the mean ow quantities are changing rapidly with both
space and time. Analyses of the dynamics of this model
then become signi�cantly more complicated and new phe-
nomena may be manifest due to the coupling of ow accel-
eration and bubble dynamics.
3

STEADY STATE SOLUTIONS

Only steady ows are considered in the present work. It is
assumed that (1), (2) and (3) have steady state solutions for
a constant mass ow rate with upstream conditions denoted
by p�s , u

�

s, and ��s � ��L(1 � �s) = ��L=(1 +
4

3
��R�

3

s ) where
R�

s and �s are the upstream nuclei size and void fraction,
respectively. After dropping all the partial time derivative
terms, the governing equations become a system of ordinary
di�erential equations with one independent variable, x:

(1� �)uA = (1� �s) = constant (4)

u
du

dx
= �

1

2(1� �)

dCP

dx
(5)

R

�
u
2
d2R

dx2
+ u

du

dx

dR

dx

�
+
3u2

2

�
dR

dx

�2

+
4

Re

u

R

dR

dx

+
2

We

�
1

R
�

1

R3k

�
+
�

2

�
1�

1

R3k

�
+
1

2
CP = 0 (6)

The initial or upstream conditions are given by:

R(x = 0) = 1; u(x = 0) = 1; CP (x = 0) = 0 (7)

We choose to examine a simple nozzle, A(x), such that

A(x)=

8>>><
>>>:

q
1+ 1

2
CPMIN

�
1�cos

�
2�x
L

��
; 0 � x � L

1 ; x < 0 and
x > L

(8)

This pro�le will produce a simple sinusoidal pressure distri-
bution in the case of incompressible ow with the minimum
pressure coe�cient, CPMIN , located at the nozzle throat.
The value of �CPMIN relative to the cavitation number, �,
represents the intensity of tension in the ow. If �CPMIN

is greater than the cavitation number, �, the minimum mix-
ture pressure experienced by the individual bubbles will be
lower than vapor pressure and the bubbles will cavitate.

RESULTS AND DISCUSSION

A fourth order Runge-Kutta scheme was used to integrate
equations (5) and (6). The following ow conditions were
chosen to illustrate the computational results. A bubbly
liquid, composed of air bubbles (k = 1:4) in water at
20�C (��L = 1000 kg=m3, S� = 0:073 N=m), is owing
through a nozzle with pro�le given by equation (8); the
non-dimensional length of the nozzle is L = 500. The min-
imum pressure coe�cient, CPMIN , for the pure liquid ow
is chosen as -1. The upstream cavitation number, �, is set
at 0.8, smaller than �CPMIN so that cavitation will occur.
Copyright c1997 by ASME
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Figure 2: The non-dimensional mixture velocity distribu-
tion as a function of the non-dimensional position in the
ow for �ve di�erent upstream void fractions. Labels of
�s = �

�

b and �s = �
+

b correspond to �s just below and
above the critical value �b � 2:862� 10�6. The dimension-
less length of the nozzle, L, is 500 with the throat located
at 250. Other parameters are � = 0:8, CPMIN = �1:0,
Re = 1000, and We = 137.

The Reynolds number, Re, is taken as 1000; this essentially
determines the damping of the bubble oscillations. In the
present example only the contribution of liquid viscosity
to the damping is considered. Other damping mechanisms
could be included by using an \e�ective viscosity" as de-
scribed by Chapman and Plesset (1971). Five di�erent up-
stream void fractions, �s, of the order of 10

�6 are used in
the computation and the results are shown in �gures 2 to
5.

Figure 2 illustrates the mixture velocity. The case of
�s = 0 corresponds to the incompressible pure liquid ow.
It is notable that even for an upstream void fraction as
small as 2�10�6, the characteristics of the ow are radically
changed from the case without bubbles. Radial pulsation of
bubbles results in the downstream uctuations of the ow.
The amplitude of the velocity uctuation is 10% of that of
the incompressible ow in this case. As �s increases further,
the amplitude as well as the wavelength of the uctuations
increase. However, the velocity does eventually return to
the upstream value. In other words, the ow is still \quasi-
statically stable." However, as �s increases to a critical
value, �b (about 2:862� 10�6 in the present calculation), a
bifurcation occurs. The velocity increases dramatically and
the ow becomes \quasi-statically unstable." The physical
4
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Figure 3: The mixture pressure coe�cient corresponding to
�gure 2.

picture of this instability is quite simple: Growth of the
cavitation bubbles increases the mixture velocity according
to the mass conservation of the ow. The increase of the
velocity then causes the mixture pressure to decrease due
to the Bernoulli e�ect. The decrease of the pressure is fed
back to the Rayleigh-Plesset dynamics and results in more
bubble growth.

The corresponding variations in the mixture pressure
coe�cient are shown in �gure 3. In addition to the two dif-
ferent ow regimes, another important feature in the quasi-
statically stable ow is the typical frequency associated with
the downstream periodicity. This \ringing" will result in
acoustic radiation at frequencies corresponding to this wave-
length. How this ring frequency relates to the upstream ow
condition remains to be studied. Furthermore, it should be
noticed that there is a pressure loss downstream; the mix-
ture pressure does not return to the upstream value except
in the case of the pure liquid ow. The only damping mech-
anism in the present model is due to the liquid viscosity at
the interface of the phases. Since the viscosity of wall and
slip motion between bubbles and liquid are all neglected,
the pressure loss is caused by the radial motion of bubbles
and represents the \cavitation loss."

Figure 4 illustrates the void fraction distribution in the
ow. When the ow becomes quasi-statically unstable, the
bubble void fraction, �(x), quickly approaches unity. This
means that the ow is ashing to vapor. Moreover we
should emphasize that when � becomes large, our model
equations, which are limited to ows with small void frac-
tion (for the limitation of void fraction in the present model,
Copyright c1997 by ASME
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see d'Agostino and Brennen 1989), lose their validity.
Figure 5 indicates the non-dimensional bubble radius

distribution in the ow. Due to time lag during the bub-
ble growth phase, bubbles reach the maximum size after
passing the nozzle throat. With increase in the upstream
void fraction, the maximum size of the bubbles increases
and is shifted further downstream. The bubbles grow with-
out bound after reaching the critical radius, Rc, at which
ashing begins. Note that Rc is dependent on the cavita-
tion number and the upstream void fraction. An analytical
expression for Rc can be found as follows. From �gure 5
we note that dR=dx and d2R=dx2 both vanish at R = Rc.
Substitution of these conditions into (6) gives

2

We

�
R
�1

c �R
�3k
c

�
+
�

2

�
1�R

�3k
c

�
+

1

2
CPc = 0 (9)

Here CPc can be found by integrating (4) and (5) by putting
A = 1 (assuming that the ow exits the nozzle into a length
of constant area duct downstream of the nozzle):

CPc = �
24��R3

c

(3 + 4��)2

�
1�

1

R3
c

�
(10)

Since Rc � 1, all the higher order terms (1=R3k
c in (9) and

1=R3
c in (10)) can be neglected. After combining these two

equations, one can write

R
4

c �
�

2�b(1� �b)
Rc �

2

�b(1� �b)We
= 0 (11)

in which 4

3
�� = �b=(1��b) has been used. The third term

in (11) can be neglected because, in addition to Rc � 1,
0
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Figure 5: The non-dimensional bubble radius distribution
corresponding to �gure 2. R-P solution represents the solu-
tion from the Rayleigh-Plesset equation.

practical values for 2=We are about an order of magnitude
less than the values of �=2 in the second term. Thus, �nally
we have:

Rc =

�
�

2�b(1� �b)

�1=3
�

�
�

2�b

�1=3
(12)

If R > Rc, the ow becomes quasi-statically unstable and
ashes. In the cases presented here (�=2�b)

1=3 � 51. Exam-
ination of �gure 5 shows that this value is accurate. With
known Rc, the expressions for the critical pressure coe�-
cient can be obtained from (10):

CPc = 2�b(1� �b)� � � �� (13)

CONCLUDING REMARKS

Steady cavitating bubbly ows through a converging-
diverging nozzle have been examined in the present paper.
It was found that the nonlinear bubble dynamics coupled
with the equations of motion of the mixture strongly af-
fect the structure of the ow even for very small bubble
populations. Two di�erent ow regimes, distinguished by
the parameter Rc = (�=2�b)

1=3, (where � is the cavitation
number of the ow and �b is the upstream void fraction
at which the bifurcation occurs) are revealed in the steady
state solutions. The ow becomes quasi-statically unstable
and ashes to vapor if the radius of the cavitating bubbles
5 Copyright c1997 by ASME



is greater than Rc. In this circumstance, the growth of bub-
bles increases the mixture velocity due to mass conservation
of the ow. The velocity increase then causes the mixture
pressure to decrease according to the momentum equation.
The decrease of the pressure is fed back to the Rayleigh-
Plesset equation and results in further bubble growth. In
this case the velocity and void fraction of the mixture in-
crease and the pressure coe�cient of the ow decreases sig-
ni�cantly below the upstream values and the ow ashes
to vapor. On the other hand, if the bubbles do not grow
beyond Rc, the ow is quasi-statically stable and is charac-
terized by large amplitude spatial uctuations downstream
of the throat.

Finally we should note that some unsteady e�ects may
have important consequences on the ow instability, for ex-
ample, the ratio of the duration of the tension applied to
the ow (L�=u�s) to the natural period of bubble oscilla-
tion (

p
��LR

�

s=3kp
�

s). In Wang (1996), it was shown that
the nonlinear bubble dynamics cause substantial computa-
tional di�culties in solving the unsteady equations (1), (2)
and (3). This generic problem must be solved before the
unsteady characteristics can be explored.
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