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Summary 
 

Asthma is a chronic disease of the lower respiratory tract and affects patients all over the world. 

The symptoms are varying from increased wheezing, or coughing up to breathlessness and is 

usually associated with airway hyperresponsiveness and airway inflammation. Approximately 

300 million people worldwide are suffering from asthma. A lot of fundamental research was 

performed during the last years in order to develop alternatives to the currently available standard 

therapie that is mainly focused on symptom control of asthma. For instance patients with severe 

allergic asthma can now be treated with an IgE antibody (omalizumab). In most cases new and 

experimental agents were tested in animal models in regard to efficacy and toxicity. However, 

many animal models poorly reflect the human conditions and numerous promising therapeutics 

failed to reach an effect in humans. Therefore, it is pivotal to generate new and enhanced animal 

models for the purpose of new drug development. 

In the present work a model for allergic asthma in an immune deficient mouse strain was 

validated and characterized. Thereby NOD-scid IL2Rγnull mice were engrafted with human 

leucocytes from patients affected by allergic asthma, or healthy donors. The NOD-scid IL2Rγnull 

mice are incapable of T-, B-, and NK-cell production due to a mutation of the IL-2 receptor. To 

induce the asthmatic response ovalbumin (OVA), or house dust mite extract (HDM) were 

introduced intranasally. Thereby a small droplet of allergen was placed on the nose and 

consequently inhaled by anaesthetised mice.  

Mice treated with HDM showed an increased influx of macrophages into the lung, an elevated 

clinical score that measured asthma related symptoms as well as general behaviour of the mice 

and elevated numbers of Th17 cells in the lung. OVA challenged mice revealed similar clinical 

and histological symptoms, but clearly differed in the composition of the immune cell subtypes, 

indicating a different immune response compared to HDM. Moreover, immune cells from 

allergic asthmatic patients showed an organ-specific homing to lung tissue of mice, which was 

not observed with cells from healthy donors. Furthermore, this asthma model was dominated by 

macrophages and dendritic cells. Finally, in our mouse model the allergic response was 

suppressed with prednisolone, while the experimental IL-4 and IL-13 receptor antagonist 

pitrakinra showed no beneficial effects. 

In summary we suggest the NOD-scid IL2Rγnull mouse asthma model as highly suitable for 

preclinical testing of newly developed anti-asthma drugs.  
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Zusammenfassung 
 

Asthma ist eine chronische Erkrankung der unteren Atemwege und betrifft Patienten auf der 

ganzen Welt. Die Symptome reichen von vermehrtem Giemen und Husten bis hin zur Atemnot 

und ist in der Regel mit einer Entzündung, sowie einer Überempfindlichkeit der Atemwege 

assoziiert. Weltweit leiden etwa 300 Millionen Menschen an Asthma. In den letzten Jahren wurde 

viel Grundlagenforschung betrieben, um Alternativen zur derzeitigen Standardtherapie, die sich 

hauptsächlich auf die Kontrolle der Symptome konzentriert, zu entwickeln. Beispielsweise ist es 

nun möglich Patienten mit schweren allergischem Asthma mit einem IgE Antikörper 

(omalizumab) zu behandeln. Meistens werden dabei neue experimentelle Wirkstoffe zuerst im 

Tiermodell auf Effektivität und Toxizität getestet. Viele Tiermodelle spiegeln jedoch die 

humanen Bedingungen nur unzureichend wieder, weshalb im Tiermodell vielversprechende 

Medikamente keine Wirkung im Menschen zeigen. Eine Verbesserung der Tiermodelle ist daher 

unerlässlich für die Generierung neuer Wirkstoffe. 

Im Rahmen dieser Doktorarbeit wurde ein allergisches Asthmamodells in einem 

immuninkompetenten Mäusestamm hinsichtlich der Immunreaktionen untersucht. Dabei wurden 

NOD-scid IL2Rγnull Mäuse mit humanen Leukozyten von allergischen asthmatischen, oder 

gesunden Spendern rekonstituiert. NOD-scid IL2Rγnull Mäuse können aufgrund einer Mutation 

des IL-2 Rezeptors weder T- und B-Zellen noch NK Zellen ausbilden. Ein asthmatischer Schub 

wurde mittels intranasaler Injektion von Ovalbumin (OVA) bzw. Hausstaubmilbenallergen 

(HDM) ausgelöst. Dafür wurde solvatisiertes Allergen tröpfchenweise auf die Nase aufgetragen 

und von den anästhesierten Mäusen inhaliert.  

Mäuse, die mit HDM behandelt wurden, zeigten einen erhöhten Einstrom von Makrophagen in 

die Lunge, einen erhöhten klinischen Score, welcher neben Asthma spezifischen Symptomen 

auch das auch das allgemeine Verhalten der Mäuse misst, sowie eine vermehrte Anzahl von 

Th17- Zellen in der Lunge. OVA-behandelte Mäuse zeigten ähnliche klinische und histologische 

Befunde, unterschieden sich allerdings deutlich in der Zusammensetzung der Immunzell-

Subtypen. Dies lässt auf einen unterschiedlichen Wirkmechanismus von HDM und OVA 

schließen. Zusätzlich zeigten Immunzellen von allergischen Asthmatikern eine Organspezifität, 

die bei gesunden Spendern nicht zu beobachten war. Des Weiteren war dieses Asthmamodel 

dominiert von Makrophagen und Dendritischen Zellen. Zuletzt wurde in unserem Tiermodell die 
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allergische Reaktion durch Prednisolon erfolgreich unterdrückt. Im Gegensatz dazu zeigte der 

experimentelle IL-4 und IL-13 Rezeptorantagonist Pitrakinra keine Wirkung.  

Zusammenfassend konnten wir zeigen, dass das NOD-scid IL2Rγnull Mausmodell sich für die 

präklinische Testung neuer Medikamente gegen Asthma eignet. 
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Abbreviations 
 

AD  Atopic Dermatitis 

AHR  Airway Hyperresponsiveness 

APC   Antigen Presenting Cell 

APC  Allophycocyanin (only in Cytometry) 

BCR  B Cell Receptor 

CCR3  C Chemokine Receptor 

CD  Cluster of Differentiation 

CD62L L-Selektin 

CRTH2 Chemoattractant Receptor-Homologous 

DAMP  Damage-Associated Molecular Pattern 

DC  Dendritic Cell  

ECP  Eosinophil Cationic Protein 

FACS  Fluorescence-Activated Cell Sorting 

FCS  Fetal Calf Serum 

FELASA Federation of Laboratory Animal Science Association 

FITC  Fluorescein Isothiocyanate 

FOXP3 Forkhead-Box-Protein3 

GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor 

HBSS  Hanks Buffered Salt Solution 

HLA-DR Human Leucocyte Antigen D Related (Klasse II-Molekül) 

IFN-γ  Interferon-γ 

IL  Interleukin 

LPS  Lipopolysaccharide 

MHC  Major Histocompatibility Complex 

NK  Natural Killer 

NOD-scid Non Obese Diabetic - Severe Combined Immunodeficiency 

PAMP  Pathogen-Associated Molecular Pattern 
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PAR  Proteinase-Activated Receptor 

PBMC  Peripheral Blood Mononuclear Cell 

PBS  Phosphate Buffered Saline 

PCR  Polymerase Chain Reaction 

PE  Phycoerythrin  

PerCP-Cy Peridine-Chlorophyll-Protein complex Cyanine dye  

PGD2  Prostaglandin D2 

PHA  Phytohämagglutinin 

PRR  Pattern Recognition Receptor 

ROR   Retinoic Acid Receptor-Related Orphan Receptor 

SD  Standard Deviation 

TCR  T Cell Receptor 

TGF-β  Transforming Growth Factor-β 

Th  T Helper 

TLR  Toll-Like Receptor 

TNF-α  Tumor Necrosis Factor-α 

TSLP  Thymic Stromal Lymphopoietin 

TSLPR Thymic Stromal Lymphopoietin Receptor 

UC  Ulcerative Colitis 

VCAM-1 Vascular Cell Adhesion Molecule-1 
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1. Introduction 

1.1. Immune system: 
The immune system protects our body from dangerous insults like infections with bacteria, 

viruses and parasites as well as from tumours. It consists of two major branches: the innate and 

the adaptive immune system. While the innate immune response is the first, quick response to 

evolutionary conserved pathogenic structures (PAMPs), mediated by granulocytes and 

monocytes/macrophages, mast cells as well as complement molecules, the adaptive immunity is a 

highly specific immune reaction, mediated by T- and B cells as well as antibodies and able to 

differentially respond to various pathogens with different types of T lymphocytes and various 

antibody isotypes with different effector functions. 

1.2. Innate immunity: 
Epithelial cells form the first line of defence in our bodies. They are connected via tight junctions 

and can usually not be penetrated by pathogens [82]. In lung tissue the epithelial cells are 

interspersed by mucus producing goblet cells [82,84]. Numerous environmental factors, especially 

proteases like Derp 1 can disrupt the tight junctions and damage the epithelial layer [110- 113]. As a 

first reaction of the innate immune system, the damaged epithelial cells release danger signals 

like thymic stromal lymphopoietin (TSLP), IL-25, or IL-33, which leads to a dilation of the blood 

vessels and the subsequent recruitment of granulocytes, mast cells and macrophages [82]. 

Additionally IL-33 levels are associated with the severity of asthma and treatment with anti IL-33 

showed beneficial effects in rhinovirus induced forms of asthma [106 108]. 

1.2.1. Granulocytes 

Granulocytes can be divided into neutrophils, the largest population and necessary for the fight 

against bacteria via phagocytosis and NETosis, and eosinophils and basophils, which are mainly 

important for parasite clearance. Neutrophils are the first cells entering damaged or infected 

tissue, while eosinophils and basophils play major roles in allergic responses. It is also the 

eosinophils that play an important role in the pathomechanism of asthma (see also chapter 1.4). 
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1.2.2. Eosinophils 

Eosinophil precursors differentiate from CD34+ pluripotent stem cells by GM-CSF and G-CSF in 

the bone marrow [1,2,3]. They are mainly activated by IL-5 [1-4], which, among others, also plays an 

essential role in the survival and migration of eosinophils. Once in the tissue, eosinophils are 

active for 18 hours up to 2 weeks [1-7]. They have numerous effector functions, varying from 

defence against bacteria, viruses, fungi and parasites to immune regulation [1,8,9]. One important 

factor secreted by eosinophils is the eosinophil cationic protein (ECP). ECP is antibacterial, toxic 

to helminths, can promote the proliferation of T and B cells and cause mast cell degranulation 
[1,8,9]. Moreover, eosinophils can release IL-4, IL-5 and IL-13, which are necessary for a T helper 

(Th)2 associated immune response, inflammatory and Th1 associated cytokines as interferon γ 

(IFN-γ), together with tumour necrosis factor α (TNFα). Additionally they can distribute 

transforming growth factor β (TGFβ), which also has airway remodelling capacity [1,3,10,11]. 

Eosinophils express multiple receptors, like pattern recognition receptors (PRR), Toll like 

receptors (TLR) or proteinase-activated receptors (PAR) on their cell surface [1,3]. These receptors 

typical for cells of the innate immune system are essential for pathogen recognition. Additionally, 

they express the IgE receptor FcεRI and CC chemokine receptor 3 (CCR3), which are - to some 

extent - eosinophil-specific [1,3]. Interestingly, eosinophils can process and present antigen to T 

cells, which emphasizes their importance in linking innate and adaptive immunity [1,3]. 

Eosinophils play a key role in asthma because of their numerous effector roles and their 

remodelling capacity on bronchial tissue cells [1,10].  
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1.2.3. Mast cells 

In addition to granulocytes, mast cells are among the first reacting cells after encounter of 

pathogens. Mast cell invasion into the lung is highly dependent on vascular cell adhesion 

molecule (VCAM)-1 expression on the endothelium [12]. Mast cells express TLRs and a highly 

specific IgE receptor (FcεRI). TLRs are activated by pathogen-associated molecular patterns 

(PAMPs) mainly introduced by viruses and bacteria. Upon activation mast cells release the 

contents of their inflammatory granula. These granula contain cysteinyl leucotrienes and 

proteases, the latter damage the invaded pathogen. A mix of cytokines and chemokines, also 

released by the granula, attracts macrophages and lymphocytes. One example of such a 

chemokine is Prostaglandin D2 (PGD2), which binds to the chemoattractant receptor-homologous 

molecule (CRTH2 or CD294) mainly expressed on Th2 cells [13]. Like eosinophils mast cells play 

a pivotal role in allergic asthma [107|.  

1.2.4. Antigen Presenting Cells (APC) 

T cells only recognize antigen presented as peptides on MHC molecules on the cell surface. 

CD8+ cytotoxic T cells see antigen peptides of pathogens presented on MHC class I molecules, 

while CD4+ T helper cells need their antigen peptides presented on MHC class II molecules. 

While all nucleated cells express MHC class I molecules, MHC class II molecules are normally 

only expressed by "professional" antigen-presenting cells (APC), which are dendritic cells, 

monocytes/macrophages and neutrophils but also by B cells and activated human and rat T cells 
[104]. Under inflammatory condition, many tissue cells can aberrantly express MHC class II 

molecules and thus perpetuate auto reactive T cell responses. B and T cells can only present 

antigen to activated T cells, while presentation of antigen by professional APC is mandatory for 

the primary activation of naive T cells.  

Decoyed by chemokines and cytokines, phagocytes support the clearance of bacteria. Circulating 

monocytes, the precursors of macrophages, as well as pre classical DC (cDC) and plasmacytoid 

DC (pDC) enter the target tissue and harvest antigen [105] Then they migrate via the lymphatic 

vessels to the next draining lymph node to present the antigen on their major histocompatibility 

complex (MHC) class II molecules on the cell surface and thus function as antigen-presenting 

cells for T lymphocytes. Moreover, they can collect antibodies with bound antigen via their Fc 

receptors and present those native molecules to B cells.  
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It is still difficult to clearly differentiate monocytes/macrophages and DC [14], since they are 

sharing surface markers. One important surface marker of both is CD86 (also known as B7.2), 

which is an activation marker, highly expressed after inflammatory stimuli and serves as "second 

signal" for the activation of T cells  [15,16].  

One way to activate macrophages is by binding TSLP, which is among others secreted by 

epithelial cells, via the TSLP-receptor (TSLPR) [86]. Another way how macrophages can be 

activated and which needs CD1a, were discovered more recently. Most bacterial membranes are 

coated with lipopolysaccharide (LPS), which are structural peptides and belong to the PAMPs. 

LPS can bind to CD1a on macrophages and consequently leads to their activation [17,18]. Worth 

mentioning is the recent finding that CD1a-bearing macrophages are significantly more frequent 

in patients suffering from ulcerative colitis (UC) than in healthy humans, suggesting a key role in 

allergic diseases [19].   

Some surface markers are tissue-specifically (and species-specifically) expressed by DC. The 

classical DCs are sub grouped into cDC1 and cDC2, and both are found in the lung, together with 

monocyte-derived (moDC) and plasmacytoid DC. Lung cDC1 and 2 express CCR7 and are 

migratory, while for moDC and pDC it is not clear whether they can migrate. All subgroups 

express different markers, and they also differ between mice and man [105]. 

After activation macrophages undergo a maturation processes with up- or downregulation of 

various surface markers. For example CD64, a marker for inflammatory macrophages, is highly 

upregulated in inflamed tissue [20], also E-Cadherin, a single span transmembrane glycoprotein, 

and main component of the intercellular tight junctions, is upregulated upon activation [21]. E-

Cadherin also serves as the only ligand of CD103 and marks an inflammatory subset of DC 

which is characterized by an increased expression of TLR and CD40, an increased production of 

IL-6, TNF-α, IL-23 and consequently the induction of an enhanced Th17 response [21].   
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1.3. Adaptive Immunity: 

1.3.1. B cells 

Apart from DC, B cells are also able to present antigen to T cells. In addition, B cells can 

exchange the constant region of their antibody heavy chain genes (class switch) and thus generate 

a new isotype of their antibodies. This allows the production of antibodies with the same antigen-

specificity but different effector functions, e.g. fixation of complement, placental passage (IgGs), 

transport through mucosal epithelia (IgAs) or mediation of mast cell degranulation (IgE). This is 

dependent on certain cytokines and mediated by T cells [79]. In lymphoid organs like lymph nodes 

or spleen activation of B cells takes place in the B cell zone, where naïve B cells are organised in 

B cell follicles [79]. In addition to B cells, these follicles consist of DC, macrophages and antigens, 

which are bound and presented by FDC (follicular dendritic cells), or soluble in lymph [79,80,81]. 

When B cell receptors (BCR) are cross-linked by antigen it is taken up by receptor-mediated 

endocytosis, processed and finally presented on the MHC-class II molecules on the surface of the 

B cell [79]. Additionally CXCR5 is down regulated, which induces an emigration from the B cell 

zone, and simultaneously CCR7 is up regulated, leading to a migration towards the T cell zone 

inside the lymph node [73-75,79]. T cells recognizing their antigen presented by the B cells can 

induce their differentiation and clonal expansion. Depending on the cytokines, which are secreted 

by the Th cells, B cells can develop into memory or plasma cells [72]. Plasma cells are the main 

producers of antibodies and can be divided, according to their heavy chain, into immunoglobulin 

(Ig) M, IgD, IgG (4 subclasses: IgG1, 2, 3 and 4), IgE and IgA [73,76,78]. Interestingly, IgE-

antibodies can bind to the Fcε receptors (FcεR) without prior binding to an antigen, therefore 

mast cells are always "decorated" with IgE antibodies and just need allergen contact for 

crosslinking the Fcε receptors and subsequent induction of degranulation. This is the main 

pathomechanism of the type 1 hypersensitivity reaction [78]. IgE is also associated with allergic 

asthma [77].   
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1.3.2. T-cells  

The second major subgroup of lymphocytes are T cells. T cells also derive from multipotent 

hematopoietic precursor cells in the bone marrow. But in contrast to B cells, these precursor cells 

migrate via the blood stream into the thymus, where they start to mature and undergo positive and 

negative selection for proper binding to self-MHC molecules and recognition of auto antigens. In 

the thymus T cells also decide for the expression of CD4 or CD8 molecules on their surface, 

which determines the major effector function of T cells.  

Maturated and naive T cells migrate to the peripheral lymph nodes where they can be activated 

by antigen-presenting APCs. One important surface molecule for lymph node homing is L-

Selectin (CD62L) on naive T cells. CD62L is important for the first contact of T cells with the 

endothelial cells of peripheral lymph nodes and is therefore highly expressed on the surface of 

naive T cells [22]. In the lymph nodes APCs, especially DCs, present their antigen on MHC 

molecules to the T cell receptors (TCR). In a next step CD80 and CD86, which are expressed on 

DC, bind to CD28 on naive T cells. This "second signal" induces the production of IL-2 and the 

upregulation of CD25, the α chain of the IL-2 receptor, in T cells [23]. Additionally, more 

costimulatory molecules like CD134 (OX40) or CD40L are expressed on the surface, and the 

activated T cell starts to proliferate. Last but not least, in order to differentiate properly into the 

respective T helper (Th) subset, T cells must be stimulated by certain cytokines. Depending on 

the cytokine cocktail, CD4+ T cells can differentiate into one of the major Th subpopulations 

Th1, Th2, Th17 or regulatory T cells (Treg).  

Th1  

Th1 cells are necessary for the defence against viruses and intracellular bacteria. They release 

cytokines like IL-2, IFN-γ, TNFα and granulocyte macrophage colony stimulating factor (GM-

CSF) [97].  

Th17  

Th17-cells are needed for the protection against extracellular pathogens, like fungi, or bacteria. 

They produce primarily IL-17, IL-21, IL-22, IL-26 and TNFα [24] and are regulated by the 

transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and RORα [24-26]. 

Studies suggests that targeting RORγt might be a promising approach for the treatment of asthma 
[109], but to date there are controversial data concerning the role of Th17 cells in asthma, with 

evidence for their worsening [24,27-29] and protective impact [24,30-32]. 
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Th2  

Th2-cells are the prime producers of IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13. IL-4 is important for 

allergic sensitization, activation B cells and promoting the switch to IgE and IgA and suppressing 

Th1 responses, while IL-13 plays a role in tissue remodelling and airway hyperresponsiveness 

(AHR) [24,33]. As mentioned above IL-5 is the major regulator of eosinophils [1-4,24,34]. In addition 

to IL-4, also IL-25, IL-33 and TSLP, which is released in consequence of epithelial damage, are 

necessary for the stimulation of Th2 cells [24]. Just as IgE, Th2 cells play a key role in type 1 

hypersensitivity reactions and asthma. 

Treg  

Treg cells are necessary for counterbalancing the inflammatory response of Th cells. They 

suppress the cytokine production of inflammatory T cells and DCs especially by secreting anti- 

inflammatory cytokines like IL-10 or TGF-β and consequently ameliorate asthmatic responses 
[24,35-39]. Tregs are characterized by the expression of intracellular forkhead-box-protein (Foxp3), 

which is an essential transcription factor and necessary for cytokine and surface marker 

expression [23]. Beside Foxp3, expression of CD127, which is also known as the α chain of the IL-

7 receptor, and CD25, the α chain of the IL-2 receptor, are also characteristic surface markers for 

Tregs [23]. Because of their protective role the amplification of the Treg response is currently a 

novel strategy for asthma therapy [24,40,41]. 

However, the maturation into the different T cell subsets is dependent on the micro milieu, and 

the fate of a certain T-cell is not definitely committed, which can consequently led to re-

differentiation based on the exposed cytokines [24,42,43]. This enables the high plasticity of T-cells 

in order to quickly induce or downregulate a specific immune response.  
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1.4. Pathomechanism of asthma: 
In 2014 approximately 334 million people worldwide suffered from the physical, psychological 

and social restriction of asthma [45]. Asthma is characterized by airway hyperresponsiveness 

(AHR), production of allergen-specific IgE and mast cell infiltration in the lung [46,47, 115]. In the 

USA, the estimated costs of asthma, composed of medical cost and loss of productivity, were $18 

billion per year [45]. Albeit the immunological mechanisms causing the asthmatic symptoms, like 

wheezing, coughing, chest tightness or breathlessness [44,45,67, 115] are well described [45,48], no cure 

is available until now. 

Asthma is caused by an allergic airway inflammation, in which lymphocytes, Th2-cytokines, DCs 

and granulocytes are the main effector cells [45,48]. Thereby the allergic inflammation can be 

divided in an early and a late phase reaction. In severe cases even a chronic reaction is possible 
[48]. As in other “classical” Th2 mediated diseases like ulcerative colitis (intestinal wall) or atopic 

dermatitis (epidermis), asthma can be triggered by damaged lung epithelial cells [82]. The damage 

of lung epithelial cells can be elicited by oxidative stress, air pollutants like tobacco smoke or 

pathogens [45,48,67]. As mentioned in the chapter “innate immunity” the consequence is the release 

of damage associated molecule patterns (DAMPs) including TSLP [82]. Especially proteases like 

Der p1, p3 and p9, the allergens from house dust mites (HDM) cause the increased release of 

TSLP by activating the protease activated receptor (PAR)-2 [67,82,83|. TSLP binds preferentially to 

monocytes and DC, which finally promote the asthma-triggering Th2 response [82,84,85]. On the 

other hand, airway DCs are capable of taking up the antigen (for example ovalbumin (OVA)) 

directly from the airway lumen and migrate to the draining lymph node, in order to present the 

antigen to the lymphocytes [67,87-89]. Furthermore, IgE, which is bound to Fcε receptors on the 

membrane of mast cells, can also bind the allergen [48], which leads to a crosslinking of the Fcε 

receptors followed by the activation of mast cells. Activated mast cells release preformed 

mediators like histamine, proteoglycans, neutral proteases and TNF-alpha [48,90,91]. These 

mediators give rise to the early phase reaction, which is characterized by bronchoconstriction, 

vasodilatation, increased mucus production and increased vascular permeability [34,48,90]. In 

addition, these mediators can also stimulate sensory nerves of the nose or skin, ultimately leading 

to sneezing, coughing or itching [48,92-95].  

IL-4 and IL-13 secreted by mast cells, not only drive the early phase reaction, but also the 

recruitment of lymphocytes into lung tissue. This directed migration of T cells is supported by the 

DCs, which, on the one hand had migrated to the lymph node to present their antigen to T-cells, 
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but on the other hand express various co-stimulatory molecules like CD80, CD86, CD40, or 

OX40 and thereby regulating the immune response of T cells, B cells, mast cells, basophils and 

eosinophils.  

Finally, the late phase response, which normally starts 2-6 hours and peaks at 6-9 hours after 

allergen contact, is triggered by the recruitment of circulating immune cells [48]. T helper cells, 

which release Th2-associated cytokines, induce an increased mucus production by the goblet 

cells [82,83]. Additionally, they induce the secretion of basic protein from eosinophils, which can 

cause further epithelial damage, and activate mast cells via IL-9 [96]. Last but not least, secretion 

of IL-4 and IL-13 by Th2 cells triggers IgE production by plasma cells [45]. In severe cases or in 

chronic stages IL-13 release by Th2 cells together with histamine, TNFα and IL-13 from mast 

cells, causes goblet cell metaplasia [82,83].  

Because of their numerous effector functions T-cells are a promising target for future therapeutic 

treatments [40, 70]. The standard therapies of asthma up to date are beta 2 agonists, which relax the 

bronchi and are often used in combination with immunosuppressive glucocorticoids [41,49,50]. The 

use of inhaled glucocorticoids is currently the most effective asthma treatment [50]. 
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1.5. Animal model 
As already mentioned, it is not yet possible to cure asthmatic patients. Because of the complexity 

of the disease, simple cell cultures are insufficient to test the potential of new therapeutics. In 

order to investigate the (toxic) effects of new drugs, asthma models are needed that mirror the 

conditions and immunologic mechanisms of the human disease. Due to their high similarity to the 

human disease, chimeric animal models engrafted with human lymphocytes have gained more 

popularity during the last years. A recently described immunodeficient mouse strain exhibited a 

high engraftment level without the development of a graft versus host disease.  

The non-obese diabetic - severe combined immune deficient, IL2 Receptor γ null (NOD-scid 

IL2Rγnull) mice, which lack the IL-2R common γ chain and therefore cannot generate any B-, T- 

and natural killer (NK) cells have become a standard model in stem cell research [51]. In order to 

generate the X-linked IL2Rγnull mutation NOD-scid females were crossed with B6.129S4-

IL2RγtmWjl/J males. After that the (NOD X B6)F1+scid IL2Rγ- chainnull hemizygous descendants 

were backcrossed with NOD-scid females. The offspring were backcrossed two times and the 

heterozygote IL2Rγnull female were identified via Polymerase chain reaction (PCR). After that the 

IL2Rγnull allele were backcrossed with the NOD-scid background for eight further generations and 

finally the NOD.Cg-Prkdcscid Il2RγTm1Wjl/Sz females were crossed with NOD-scid IL2Rγnull 

males. The NOD-scid IL2Rγnull positive descendants were identified via quantitative PCR and 

double checked via flow cytometry (for more detailed information see also reference 51, 58, 59).  

The major advantages of NOD-scid IL2Rγnull (abbreviated NSG) mice when compared to NOD-

scid or comparable mice strains are the higher lifespans of beyond 16 months, the highest 

engraftment levels of human lymphocytes and the high resistance to thymic lymphomas [51]. In 

addition to stem cell research, NSG mice have already been successfully used in Th2 associated 

disease models like ulcerative colitis [52-55]. Even first investigations of an asthmatic model were 

performed in this mouse strain by Martin and colleagues [121]. Therefore we used the NOD-scid 

IL2Rγnull mouse strain for engraftment with human peripheral blood mononuclear cells (hPBMCs) 

from asthma patients in order to generate an allergic asthma mouse model.  
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1.6. Aim of this thesis 
 
Animal models, which use reconstituted NSG mice, are already successfully being used for 

investigations in different Th2 associated diseases. However a detailed and extensive 

investigation regarding a NSG asthma model was never performed. The development of new and 

efficient asthmatic therapeutics is a huge challenge for modern medicine and pharmacy. 

Therefore it is necessary to get new insights in the immunological processes during an asthma 

attack and to establish a powerful asthma model to test new targets and consequently new drugs. 

With this thesis we wanted to investigate the complex interplay between the various immune 

cells in order to get a better understanding of the on-going inflammation during an asthmatic 

exacerbation. Furthermore the translatability of the NSG asthma model to the human conditions 

was tested by using different donors with distinct immunologic status. Thus the influence of the 

donor background, which was asthmatic, or non-asthmatic (healthy) on the immunological 

responses of reconstituted NSG mice was investigated. Human leucocytes were isolated from 

spleen and lung tissue and examined in respect of activation or inhibition. Additionally the 

impact of human leucocytes on histological-, and clinical score in the NSG asthma model was 

analysed.   

Furthermore the differences between ovalbumin, a protein which was formerly used as a classical 

allergen and house dust mite extract, which is one major asthmatic episode inducing allergen, 

regarding their immunological effects were examined.  

Moreover pitrakinra, an IL-4 and IL-13 receptor antagonist was tested in respect of efficacy, 

safety and immunological role and compared to prednisolone, a glucocorticoid and the gold 

standard in asthma therapy.  

Taking together following hypothesis were investigated:  
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Hypothesis 1: In vitro cell culture assays expose cells to artificial conditions and insufficiently 

reproduce donor specific immune profiles that are relevant in vivo. 

Examination: PBMCs from asthmatic and healthy donors were cultivated and incubated with 

HDM, OVA and PHA. Differences in activation or inhibition of T-cells, B-cells and 

macrophages were investigated in respect of donor background and incubated antigen.  

 

Hypothesis 2: HDM and OVA induce different immunological responses in NSG mice. 

Examination: Leucocytes were isolated from mouse lung and spleen and stained for different 

immune cell populations. Maturation state of T-cells, B-cells, monocytes, macrophages and 

eosinophils was assessed by FACS. The results obtained were correlated for the exposure to 

HDM or OVA antigen. Additionally, the correlation between histological- and clinical scored 

with the different antigens was examined. 

 

Hypothesis 3: The immunological status of the donor can be modelled in NSG mice and is 

essential for the immune responses.  

Examination: PBMCs from asthmatic and healthy donors were transferred into NSG mice. The 

phenotype of the asthmatic response was assessed under the different antigens HDM and OVA. 

Asthmatic donors exhibited an allergic response against HDM and mice engrafted with asthmatic 

donor revealed an increased reaction after HDM challenge when compared to OVA. 

Furthermore, the correlations between histological- and clinical score and the immunological 

background were examined. Additionally, the maturation and the localisation of T-cells, B-cells, 

monocytes, macrophages and eosinophils were analysed with regard to the donor background of 

NSG mice.  

 

Hypothesis 4: Preventive treatment with prednisolone and pitrakinra mitigate asthma symptoms 

after HDM-challenge 

Examination: NSG mice were challenged with HDM and treated with prednisolone or pitrakinra 

or NaCl solution as a control. The histological and clinical scores as well as the inhibition of 

inflammatory T- and B-cells and macrophages were analysed in order to examine the preventive 

effect of prednisolone and pitrakinra.  



	 23	

2. Materials and Methods 

2.1. Human PBMC Isolation 
For the reconstitution of the NSG mice blood samples were collected from asthmatic and non-

asthmatic (healthy) donors. All donors gave informed written consent and the study was 

approved by the Institutional Review Board (IRB) of the Medical Faculty at the University of 

Munich (2015-22). 

Asthmatic donors were recruited via facebook and had to fulfill the following criteria: 

positive asthma diagnosis by a clinician, positive skin prick test against HDM by a clinician, no 

medical treatment during the last 3 month, no allergic response against OVA (eggs), no further 

diseases like dermatitis and ulcerative colitis. 

All asthmatic donors had a controlled form of asthma and a severity level of intermittent or light 

persistent. As a control sample leucocytes were also collected from healthy donors with a 

negative medical history for asthma and no clinical symptoms of allergies or asthma. These 

donors were named “Non-Asthma”. 

Additionally for a detailed characterization all asthmatic donors with allergic response to house 

dust mite (HDM) had to complete a questionnaire (see also supplement).  

After finishing the questionnaire, 80 ml blood was drawn from the arm vein of patients suffering 

from asthma and healthy volunteers. In order to avoid any contamination, or infections, all 

solutions and working steps were performed under sterile conditions. Approximately 80 ml of 

blood in trisodium citrate solution (S-Monovette, Sarstedt, Nürnberg, Germany), which were 

used as an anti coagulant, were diluted with 2 parts Hank’s balanced salt solution (HBSS, Sigma 

Aldrich, Deisenhofen, Germany) a buffer, which enables working at stable pH and ideal salt 

conditions. A maximum of 30 ml of the suspension was loaded onto Leukosep tubes (Greiner Bio 

One, Frickenhausen, Germany). The Leukosep tubes were filled with leucocyte separation 

medium (LSM, Carl Roth, Karlsruhe, Germany) and were necessary to segregate the leucocytes 

apart from the remaining blood components like erythrocytes. Leucocytes were isolated by 

centrifugation at 400 g for 30 min and no acceleration. The peripheral blood mononuclear cells 

(PBMC) containing interphase was collected, diluted with phosphate buffered saline (PBS, Carl 

Roth, Karlsruhe, Germany), which is a buffer similar to HBSS but more tolerated from NSG 

mice, to a final volume of 40 ml and centrifuged with 1400 g for 5 minutes. The cell number was 
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determined after resuspension in PBS at a concentration of 40 x 106 cells/ ml using a Neubauer 

Zählkammer (Carl Roth, Karlsruhe, Germany).  

Six to twelve week old NOD IL-2Rγnull mice were intravenously (tail vein) engrafted with 100 µl 

(4 x 106  cells) cell suspension. 

The number of the experiments and the quantity of used animals can be seen in tab 1 

 

Tab 1: Experimental summary. Numbers of experiment with different donor backgrounds. The 
quantity of animals in the different experimental groups are depicted in regard to the donor 
background of the NSG-mice. Abbreviations: OVA = Ovalbumin; HDM = House dust mite 

Donor Control OVA HDM Pitrakinra Prednisolone 

Asthmatic Donor 1 4 4    

Asthmatic Donor 1 4  6   

Asthmatic Donor 1   5   

Asthmatic Donor 1 4  4 4 4 

Asthmatic Donor 2 4 4 4   

Asthmatic Donor 3 4 4 4   

Asthmatic Donor 4 4  4 4 4 

Healthy Donor 1 6 5    

Healthy Donor 2 4 5 5   

Healthy Donor 3 4 4 4   
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2.2. Study protocol  
Animal studies were approved by the animal welfare committee of the government of Upper 

Bavaria, Germany (55.2-1-54-2532-68-2014) and performed in compliance with German Animal 

Welfare Laws. 

NOD.cg-PrkdcSCID Il2rgtm1Wjl/Szj mice (abbreviated as NOD IL-2Rγnull or NSG) were obtained 

from Charles River Laboratories (Sulzfeld, Germany) and kept under specific pathogen free 

conditions in individually ventilated cages with unlimited access to water and food. The facility is 

under surveillance of the Federation of Laboratory Animal Science Association (FELASA) 

guidelines.  

On day 3 and day 16 mice were presensitized by intraperitoneal application of 200 µl of 10 µg 

ovalbumin (OVA, Sigma, Deisenhofen, Germany), or 200 µl of 10 µg house dust mite (HDM, 

Dr. Weyers, Aachen, Germany) dissolved in a PBS/Alu Gel S (Serva Electrophoresis GmbH, 

Heidelberg) emulsion (1:4). Thereby Alu Gel S worked as an adjuvant and boosted the 

immunologic reaction. For triggering the asthmatic response mice were challenged on day 24 and 

at 2 consecutive days with intranasal injection of 50 µg OVA (respectively HDM) dissolved in 

PBS only under general anaesthesia using 4% isofluran via a 100 µl Pipette (Carl Roth, 

Karlsruhe, Germany) with an 100 µl tip (Starlab, Hamburg, Germany). For injection the tip and 

consequently the small allergen extract was placed under the nostrils and inhaled by the mice 

themselves and thereby reaching the lower respiratory tract.  Mice were sacrificed at day 30 by 

anaesthesia with 2 mg Ketamin (Pfizer, Berlin, Germany) and 0.4 mg Xylazin (Bayer, 

Leverkusen, Germany). 
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For therapeutic tests prednisolone [60 µg in PBS (Prednisolut®, Mibe, Brehna, Germany) and 

pitrakinra (10 µg (sponsored by Prof. Dr. Thomas Müller, university Würzburg, Germany) in 

0.5% Methylcellulose, 0.05% TWEEN 80 (Carl Roth, Karlsruhe, Germany) in PBS), a new 

therapeutic IL-4/IL-13 receptor antagonist, were used, while sterile NaCl (0.9 %, Braun, 

Melsungen, Germany) served as control. All treatments were applied intraperitoneally and 

applied on day 23 – 30 (Fig1).  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig.1: Schematic scheme of the study protocol. NSG mice were reconstituted with 4x106 
leucocytes isolated from human donors. On day 3 and 16 mice were sensitized with 10 µg 
OVA, or HDM dissolved in  PBS/ Alu Gel S. On day 24, 25, 25 mice were challenged with 
50 µg allergen. Medical treatment was performed daily starting on day 23 (red arrow). 
Abbreviation: hPBMC = human peripheral blood mononuclear cells; i.v. = intravenous; i.p. = 
intraperitoneal; i.n. = intranasal 

Day 0 Day 30 

hPBMC isolation 

Reconstitution (i.v.) Sensitivation (i.p.) 

Day 3 
10 µg in 

 Alu Gel Serva 

Challenge (i.n.)  

Day 24, 25, 26  
50 µg in PBS 

Day 23, 24, 25, 26, 27, 28, 29 
medical treatment (i.p.) 

End Sensitivation (i.p.) 

Day 16 
10 µg in 

 Alu Gel Serva 



	 27	

2.3. Clinical activity score of asthma in mice  
Daily assessment of asthma-severity was performed according to the following scoring system.  
Tab. 2. Detailed clinical activity score  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Monitoring   Score Termination 
criteria 

Process of body weight 

(1 to 4 points) 

no weight loss or increasing weight 0  

weight loss 0-5 %   1  

weight loss 5-10 %  2  

weight loss 10-15 %  3  

weight loss 15-20 % 4  

weight loss ≥ 20 %  x 

 General Condition     
Behaviour  

(1 to 3 Points) 

lively/normal 0  

calm 1  

apathy or isolation 3 x 

ruffled fur oder abnormal posture or 

missing body care (max. 1 additional 

point) 

1  

Posture    
1-4 Points normal 0  

intermediately hunched posture 1  

permanently hunched posture 4 x 

Respiration    
1-6 Points no change 0  

accelerated breathing 1  

frequently sneezing 2  

crackling breathing sounds 2  

frequent thoracic respiration 4  

dyspnea 6 x 

Valuations, provisions    
No burden  0  

Minor burden, Score=3, careful  
monitoring 1 x daily. 

 3  

Moderate burden, Score =5, lasting 
longer than 72 h is seen as high 
burden 

 5  

High burden, Score = 7, animal will 
be euthanized 

 7 x 
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2.4. Bronchoalveolar lavage (BAL) 
In order to isolate cells from the respiratory tract a bronchoalveolar lavage was performed. The 

trachea of euthanized mice was opened and a 1mm cat catheter (Henry Schein, Hamburg, 

Deutschland) was installed. Cells were extracted by flushing the alveoli 5 times with 0.5 ml PBS 

and used for flow cytometry analysis.    

 

2.5. Isolation of human leucocytes from organic tissue 
For isolation of human leucocytes from murine spleen and lungs, organs were minced and cells 

filtrated through a 70 µm cell strainer followed by centrifugation at 1400 g for 5 minutes and 

resuspended in FACS buffer. For FACS buffer PBS with 1 % FCS (Thermo Fisher Scientific, 

Waltham, MA, USA) were used and intensified the Antibody binding. Additionally cells were 

filtrated one more time using a 35 µm cell strainer for further purification before labelling for 

flow cytometry analysis. The antibody staining was conducted as suggested by the manufacturers 

(Biolegend). In order to avoid capping, or internalisation of the antibody all working steps were 

performed on ice. Approximately one million leucocytes were dissolved 200 µl FACS-buffer and 

stained with 1 µl antibody. Afterwards cells were incubated for 30 min at 4° C in the dark to 

guarantee a proper antibody binding to the surface. Subsequently cells were washed one time by 

adding 300 µl FACS-buffer and centrifuged at 1400 g for 5 minutes. Immune cells which were 

stained with biotin ligated antibodies were resuspended in 200 µl FACS-buffer, stained with 0,5 

µl secondary antibody (streptavidin) and incubated for 30 min at 4° C in the dark again. All 

colours and surface markers including the secondary antibody are shown in tab 3. Leucocytes 

were washed one more time by adding 300 µl FACS-buffer and centrifuged at 1400 g for 5 

minutes The leucocyte pellet was resuspended with 300 µl FAC-buffer and ready for flow 

cytometric analysis.  
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2.6. Flow cytometry analysis 
Labelling of human leucocytes was performed with the monoclonal antibodies (anti-human) 

listed in table 3. Unspecific antibody binding was controlled by isotype controls (data not 

shown). 

All antibodies were purchased from Biolegend (San Diego, USA) and used according to 

manufacturer’s instructions. Samples were measured using a BD FACS Canto II™ and analysed 

with FlowJo 10.1-Software (FlowJo LLC, Oregon, USA). 
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Tab. 3 List of antibodies to surface markers [117, 118] 

 
Surface marker 
(anti human) 

Fluorochrome Clone Expression on Function 

CD19 Peridine-chlorophyll-
protein complex cyanine 
dye (PerCP-CyTM 5.5) 

HIB19 
B-cells  

B-cell coreceptor 

CD38 Phycoerythrin (PE) HB-7 T-, B-cells NAD-
glycohydrolase 

CD4 Allophycocyanin 
(APC)- Cy7 

OKT4 T-cell, Monocytes, 
Macrophages 

MHC-II Coreceptor 

CD62L FITC DREG-56 T-,B-,NK-cells, 
monocytes, 

Leucocyteadhesion, 
Binding of CD34 

CD8 PerCP-CyTM 5.5 HIT8a T-cell MHC-I Coreceptor 
CD294 
(CRTH2)X 

APC BM16 T-cells, Eosinophils, 
Basophil 

Chemotaxis and 
prevention of 
apoptosis in TH2 
cells 

CD134 PE ACT35 Activated T-cells Co-stimulator, 
adhesion- molecule 

CD14 APC-Cy7 HCD14 Myelomonocytic 
cells 

LPS-receptor 

CCR2 PE-Cy7 K036C2 Monocytes, 
Macrophages, DC, T-
Cells 

Adhesion and 
chemotaxis 

CD80/86 PerCP-CyTM 5.5 IT2.2 Monocytes, B-cells, 
DC 

Ligand for CD28 
and CTLA 

TSLPRX APC 1B4 DC, activated 
monocytes 

Binding of TSLP in 
order to stimulate 
cell proliferation 

CD1a (biotin) 
linked with 
secondary Ab 
streptavidin  

FITC HI149  Cortical thymocytes, 
dendritic cells, 
smooth muscle cells 

Similar to MHC-I 

CD64 PerCP-CyTM 5.5 10.1 Monocytes, 
Macrophages 

FcγRI receptor, 
IgG binding, 
phagocytosis  

CD163 FITC GHI/61 Monocytes, 
Macrophages 

unknown 

CD16 PE 3G8 Neutrophils, NK-
cells, macrophages 

FcγRIII; Necessary 
for phagocytosis 
and Ab- dependent 
cytotoxicity 

CD11b APC-Cy7 M1/70 Myeloid cells, NK 
cells 

Binding of CD54, 
complementfactors 
and 
matrixmolecules 

CD11c PE-Cy7 3.9 Myeloid cells Binding of 
fibrinogen 

CD45RO PE UCHL1 T- and B-cells, Isoform of CD45 
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Macrophages, 
Monocytes 

CCR7 X APC G043H7 T-,B-, NK-cells, DC Binding of CCL19 
and CCL21 

CD45RA PE-Cy7 HI100 T- and B-cells, 
Monocytes 

Isoform of CD45 

CXCR3 FITC G025H7 Maligned B-cells Chemotaxis 
CCR4 X PE L291H4 T-,B-,NK-cells, 

Basophils, 
Monocytes, 

Binding of CCL17 
and CCL22  

CCR6 X PE-Cy7 G034E3 T-, B-cells Binding of CCL19 
and CCL21 

CCR10 X APC 6588-5 T-memory cells Binding of CCL27 
and CCL28, T-cell 
homing 

FcεRIα  X FITC CRA-1 Eosinophils, Mast 
cells, Basophils, DC, 
Monocytes 

IgE-receptor 

CCR3 X PE 5E8 Eosinophils, Mast 
cells, Basophils 

Binding of eotaxin 

CD117 PE-Cy7 104D2 Hämatopoeitic 
precursor cells 

Stem cell factor 
receptor 

HLADRX APC L243 T-, B-cells, APC Peptide 
presentation to 
CD4+ T-cells 

CD123 ((biotin) 
linked with 
secondary Ab 
streptavidin  

APC-Cy7 6H6 Bone marrow stem 
cells, Monocytes, 
Granulocytes 

IL-3 receptor α 
chain 
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2.7. Histological analysis 
Lungs were fixed in 4% formaldehyde (Carl Roth, Karlsruhe, Germany) for 24 hours and then 

transferred to 70% ethanol (Carl Roth, Karlsruhe, Germany), followed by paraffin embedding 

using an embedding machine (Leica, Wetzlar, Germany). The program is listed in tab. 4 
Tab. 4 Protocol for paraffin embedding 

Solution Time 

70% Ethanol 1 x 2h 

1 x 2h 

1x 1h 

96% Ethanol 2 x 1,5 h 

100 % Ethanol 3 x 1,5 h 

1x 30min 

Xylene 1 x 1,5 h 

1 x 1h 

Paraffin 2 x 3h 

 

Samples were cut into 6 µm sections utilizing a sliding microtom (Leica, Wetzlar, Germany) and 

stained with haematoxylin (Carl Roth, Karlsruhe, Germany) and eosin (Carl Roth, Karlsruhe, 

Germany) (H&E staining) using the following protocol:  
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Tab. 5 Protocol for haematoxilin and eosin staining  

 
 

• Eosin – Solution:  2g Eosin dissolved in 200 ml 96% Ethanol  

Process: 
estimated 

Time (min) 

 

Deparaffination and Rehydration  

• 2 x10' Xylene 

• 2 x 5' Abs. Ethanol 

• 2 x 5'96% Ethanol 

• 2 x 5' 70% Ethanol 

• 1 x 5' distilled water  

Progressive staining 

• shortly rinse in tap water 

• hematoxilin: Tissue  4’   (= alkaline nuclear staining) 

• Shortly submerge in tap water, discard 

• incubate for at least 10’ under running tap water  

Regressive staining 

• Shortly rinse in distilled water 

• Eosin:   Tissue  4’ 

Dehydrierung 

• 80% Ethanol  rinse very shortly 

• 96% Ethanol rinse very shortly 

• 100% Ethanol rinse shortly 

• Xylene 2 x 5’ 

 

 

20’ 

10’ 

10’ 

10’ 

5’ 

 

 

4’ 

 

10 

 

 

4 

 

 

 

 

 

 

H&E sections were mounted with malinol ( Carl Roth, Karlsruhe, Germany) and cover slides (24 

x 60 mm, Carl Roth, Karlsruhe, Germany). One slide per mouse containing 3 lung sections were 

scored using following scoring system: 

cellular infiltration: none (0 point), mild (1 - 2 layers of leucocytes surrounding blood vessels, 

alveoli, or bronchioles, 1 point), moderate (2 - 5 layers of leucocytes surrounding blood vessels, 

alveoli, or bronchioles, 2 points), severe (> 5 layers of leucocytes surrounding blood vessels, 

alveoli, or bronchioles, 3 points).  Scoring was performed independently 2 times from an expert 

in animal pathology in a blinded manner.  
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2.8. cDNA synthesis  
Additionally, different cytokines were analysed via quantitative real-time PCR. Therefore RNA 

was isolated from lung tissue and converted to cDNA. In a first step, approximately 1 cm3 lung 

tissue (approximately 400 mg) was extracted from each mouse and incubated for 24 hours in 

RNA-later (Thermo Fisher Scientific, Waltham, MA, USA). Lung tissues were disrupted and 

homogenized with the TissueLyser LT (Qiagen, Hilden, Germany) followed by total RNA 

extraction according to the manufacturer’s instruction using RNeasy Plus Universal Mini Kit 

(Qiagen, Hilden, Germany) and Chloroform (Sigma-Aldrich, St. Louis, MO, USA). Since gDNA 

Eliminator Solution is included in the kit no treatment with DNase was conducted. 

For the cDNA synthesis approximately 5 µg of total RNA was used. Reverse transcription was 

performed in a Mastercycler gradient (Eppendorf, Hamburg, Germany) using QuantiNova 

Reverse Transcription Kit (Qiagen, Hilden, Germany). According to manufacturer's (Thermo 

Fisher Scientific, Waltham, MA, USA) guidelines all specimens were diluted with RNase free 

water (Qiagen, Hilden, Germany) in order to generate a cDNA concentration between 10 pg and 

100 ng.  

Reverse Transcription was conducted by using the following program: 

 

Tab. 6 Setup for cDNA synthesis 

 

 
 
 
 

 

 

Step Time Temperature 

gDNA elimination reaction 2min 45° C 

 Pause cycler 25° C 

RT-transcription   

Annealing step 3 min 25° C 

Reverse-transcription step 10 min 45° C 

Inactivation of reaction 5 min 85° C 



	 35	

The cDNA purity was verified with a Nanodrop 2000 spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA, USA). Thereby 1 µl of cDNA sample were exposed to ultraviolet light 

at a wavelength of 260 and 280 nm and the absorbance of the sample was detected. Using the 

ratio of the absorbance at 260 and 280 nm the purity of cDNA can be calculated. Pure DNA has a 

260/280 nm ratio of approximately 1.8.  

 

2.9. Quantitative real-time PCR  
In a next step different cytokine concentrations were determined via quantitative real-time PCR. 

Following the guidelines from TaqMan Fast Advanced Master Mix protocol (Thermo Fisher 

Scientific, Waltham, MA, USA) quantitative real-time polymerase chain reaction (PCR) was 

performed using the Applied Biosystems StepOnePlus real-time PCR system (Thermo Fisher 

Scientific, Waltham, MA, USA) with following adjustments: 

 
Tab. 7. Setup for quantitative real time PCR 

 

 

 

 

 

 

 

 

 

 

Thermal Cycling Profile 

 Incubation Polymerase 

activation 

PCR (40 cycles) 

Parameter Hold Hold Denature Anneal/extend 

Temp. [°C] 50 95 95 60 

Time [min:sec] 2:00 0:20 0.01 0.20 
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Single Tube TaqMan Gene Expression Assays (Thermo Fisher Scientific, Waltham, MA, USA) 

contained following primer: 

Tab. 8 List of used Primers (including species specificity) 

Gene Species Expression Assay 

GAPDH mouse Mm99999915_g1 

GUSB mouse Mm00446953_m1 

CCL17/TARC mouse Mm01244826_g1 

TSLP mouse Mm01157588_m1 

IL-4 human HS00174122_m1 

IFNγ human Hs00989291_m1 

HGF human Hs04329698_m1 

TGFβ mouse Mm 01178820_m1 

 

Analysis was performed using StepOnePlus™ Software v2.3 

 

2.10. In vitro assay of human leucocytes  
Isolated leucocytes from asthmatic and healthy donors were also used for in vitro assays and 

cultured for 2 days (37°C, 5 % CO2) in 24 well plates using a concentration of 1 x 106 cells/well. 

Leucocytes were resuspended in RPMI (Thermo Fisher Scientific, Waltham, MA, USA), 10 % 

fetal calf serum (FCS) (Thermo Fisher Scientific, Waltham, MA, USA) and 1% 

Penicillin/Streptomycin (Sigma, Deisenhofen, Germany) at a total volume of 1.5 ml per well. For 

activation either 10 µg/ml phytohaemagglutinin (PHA) (Sigma, Deisenhofen, Germany), HDM or 

OVA was added.  

 

2.11. IgE and IgG analysis 
Blood was drawn from anaesthetized mice via the retro-bulbar-plexus. Approximately 1 ml 

whole blood was incubated for blood clotting for 1 hour at room temperature. The blood was 

centrifuged with 1400 g for 5 minutes and 100 µl supernatant (serum) were sent to the clinical 

routine laboratory (Hospital of the LMU) for IgE and IgG determination.  
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2.12. Statistical analysis 
Statistical analysis was performed with R a language and environment for statistical computing 

and graphics [119]. The software was developed by the Foundation for Statistical Computing, 

Vienna, Austria and can be downloaded at https://www.R-project.org/ for free. Variables were 

normally distributed and represented with mean, standard deviation, median, and IQR values. A 

two-sided t-test and a confidence level of 0.95 was used to compare binary groups. For more than 

two groups ANOVA followed by Tukey HSD was conducted.  
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3. Results:  

3.1. Hypothesis 1: Effect of OVA and HDM on PBMC in vitro 
In order to compare the effects of OVA and HDM, 1 x 106 lymphocytes were incubated in the 

presence or absence of 15 µg of HDM or OVA for 48 hours as described in material and 

methods. PHA served as a positive control. The experiments were performed with 8 different 

donors (asthma n= 3, non-asthma n=5). 

OVA, HDM and PHA evoked different and specific responses (figure 2). Surprisingly no 

difference was observed between PBMC from asthmatic and from non-asthmatic donors. Since 

PHA is known for the unspecific activation of T-cells [56] the increased frequencies of activated 

CD4 T cells as shown by increased numbers of CD4+ CD69+ (control versus PHA) and CD4+ 

CD134+ T-cells (control versus PHA) were expected, but failed to reach significance. In contrast, 

frequencies of these cell populations decreased significantly in the presence of OVA and HDM 

(CD4+ CD69+: PHA versus OVA: Non-Asthma p < 0.001, Asthma p < 0.01; PHA versus HDM: 

Non-Asthma p < 0.001, Asthma p < 0.01; CD4+ CD134+: PHA versus OVA: Non-Asthma p < 

0.01, Asthma p < 0.05; PHA versus HDM: Non-Asthma p < 0.001, Asthma p <0.01). In addition, 

PHA induced an increase in Th1 and Th2 cells (Th1: not significant, Th2: control versus PHA: 

Non-asthma p < 0.05) in contrast to HDM, which increased the frequencies of Th17 cells (control 

versus HDM; Non-Asthma p < 0.05, Asthma p < 0.05). These opposing responses were also 

reflected by the changes of frequencies of regulatory T cells (Treg, CD4+ CD25+ CD127-). The 

frequencies of this population were reduced after stimulation with HDM and OVA (Non Asthma: 

control versus OVA p < 0.01, control versus HDM p = 0.01; Asthma not significant), but 

unaffected in the PHA-treated group. Additionally, incubation with PHA caused a decrease in 

TSLPR expressing CD14+ cells (control versus PHA: Asthma p < 0.05), In contrast to OVA, 

both HDM and PHA elicited an increase of frequencies of CD1a expressing CD14+ monocytes 

(Non-Asthma: Control versus HDM p < 0.05). 
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Fig. 2: In vitro stimulation of PBMC from human asthmatic and non-asthmatic donors with 
OVA, HDM and PHA. Culture medium only was used as a control. Immunofluorescence 
staining and gating for CD4+ cells (mainly T helper, upper panel and lower left panel) or 
CD14+ cells (monocytes) shows the differences of T cell and macrophage subpopulations 
after stimulation with different antigens.  
Frequencies of leucocytes incubated with antigens or PHA depicted as conditional Tukey´s 
boxplots. PBMC were incubated for 48 h in RPMI in the presence or absence (control: culture 
medium only) of 10 µg antigen / ml (OVA, HDM or PHA) and stained for CD4, CD69, CD134, 
CD25, CD127; CCR4, CXCR3, CCR10, CCR6; CD14, CD1a, TSLPR, and finally subjected to 
flow cytometric analysis. Sample sizes: asthma n = 3, non-asthma n = 5. For comparison of 
groups, ANOVA followed by Tukey’s HSD was conducted. Labels given on x-axes on the 
bottom row apply to all charts (for more detailed data set see Table S1, 2). 
p < 0.05 *; p < 0.01 **, p < 0.001 *** 
Th1: CD4+, CCR4-, CXCR3+, CCR10-, CCR6- 
Th2: CD4+, CCR4+, CXCR3-, CCR10-, CCR6- 
Th17: CD4+, CCR4+, CXCR3-, CCR10-, CCR6+ 
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3.2. Hypothesis 2 and 3: Effects of allergen and donor background in vivo  
Previous studies have shown that NSG mice reconstituted with PBMC derived from affected 

individuals and challenged with the respective agent developed symptoms of ulcerative colitis 

(UC) or atopic dermatitis (AD), respectively [53,55]. Hence, we wanted to examine whether this 

model could be also translated to allergic asthma. NSG mice were reconstituted with 4 x 106 

PBMC derived from allergic asthmatic donors (n = 4), or non-asthmatic donors (n = 3). 

Engraftment levels were determined by analysing hCD45 expressing cells isolated from spleen. 

The reconstitution level was 21.8 ± 15.75 hCD45+ cells [% leucocytes] (mean ± SD). To support 

the assumption that hPBMC are driving the inflammatory responses in this model an additional 

control was added, using non-reconstituted mice challenged with HDM or OVA. Post 

reconstitution, mice were divided into three groups: unchallenged control, HDM- and OVA-

challenged group. Mice were sensitized by intraperitoneal injection of 10 µg OVA or HDM 

dissolved in Alu-Gel-Serva as adjuvant on days 3 and 16, followed by a daily challenge with 

nasal application of 50 µg of allergen on days 24 – 26. Mice were monitored during the 

experiment on a daily basis and the clinical score including symptoms like wheezing, or coughing 

was determined. Immediately upon intranasal challenge with OVA or HDM mice developed 

asthma-related symptoms like accelerated breathing or cracking breathing sounds, independent 

from the donor background. As shown in figure 4 the clinical score was significantly increased in 

the OVA and HDM challenged groups as compared to the unchallenged control group. No 

significant difference between the two allergens was observed and between mice reconstituted 

with PMBC from healthy or diseased donors. Approximately 2 hours post challenge, asthmatic 

symptoms ceased and mice exhibited no disease symptoms until the next challenge. Mice were 

sacrificed on day 30, serum was collected for determination of total hIgG and total hIgE levels 

(figure 3) and lung tissue was collected for histological analysis. Mice reconstituted with PBMC 

from healthy donors exhibited higher levels of IgG (n=30 mice, 11.22 ± 11.67 [IU/ml] mean ± 

SD) as compared to IgG levels of mice reconstituted with PBMC from asthmatic donors (n = 24 

mice, 1.86 ± 4.2, p = 0.02 [IU/ml]). This difference was independent of the antigen challenge 

(data not shown). In contrast, the total IgE levels in mice reconstituted with PBMC from 

asthmatic donors (n=27, 60.43 ± 136.20 [IU/ml]) were significantly higher than those of mice 

reconstituted with PBMC from healthy donors (n=12, 0.53 ±1.14 [IU/ml], p=0.03), irrespective 

of the antigen used for challenge (data not shown).  
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However, as shown in fig. 3, mice challenged with HDM and engrafted with PBMCs from 

asthmatic donors had significant enhanced levels of human IgE when compared to HDM 

challenged NSG mice transferred with healthy donor lymphocytes.  

 

 
Fig. 3: Total levels of human IgG and IgE in the serum of mice engrafted with human PBL  
Immune globulin levels in the serum of engrafted mice were measured 4 days after the last 
HDM-challenge. n = Number of analysed mice. Barplots represent mean values with standard 
deviation (sd). 
For comparison of control versus challenged, ANOVA followed by Tukey’s honest significant 
difference (HSD) test was performed.  
p < 0.05 *; p < 0.01 **, p < 0.001 *** 
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Challenge with allergens resulted in increased influx of leucocytes accumulating around alveoli, 

bronchioles and blood vessels (fig. 4). In severe cases the challenge resulted in the damage of the 

epithelial layer, and according to the morphology of the in fluxing cells, macrophages presented 

as the dominant population (fig. 4). Lungs from mice reconstituted with PBMC from healthy or 

asthmatic donors and challenged with antigens showed a similar picture. However, a difference 

became obvious when the non-challenged groups were compared. Leucocytes from asthmatic 

donors seemed to migrate spontaneously to the lung whereas lungs from mice reconstituted with 

leucocytes from non-asthmatic donors appeared unaffected in the absence of challenge (fig. 6). 

This observation was corroborated by the histological score, which was mainly based on the 

number of leucocyte-layers as described in the methods part. The group of mice reconstituted 

with PBMC from non-asthmatic donors responded to the intranasal challenge and formed multi 

layers around the bronchioles and blood vessels. Mice engrafted with PBMCs from asthmatic 

donors revealed a similar pattern. However the response to challenge in this group seemed to be 

more pronounced and when compared to the control group of mice engrafted with non-asthmatic 

PBMCs yet started from a higher level (not significant). In the non-reconstituted group no influx 

of leucocytes or epithelial cell damage was observed (fig. 4) indicating a human origin of the 

infiltrating cells.  
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II) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Challenge with OVA or HDM induces clinical- and histological pathologies in NSG 
mice reconstituted with human PBMC. 
Mice were reconstituted with 4 x 106 PBMC on day 1 followed by sensitization of 10 µg OVA or 
HDM dissolved in Alu-Gel-Serva as adjuvant on day 3 and 16 and challenge with nasal 
application of 50 µg of allergen on days 24-26.  
I) A - I: H&E staining of paraffin sections from lateral parts of the right lung from sacrificed 
animals. Long arrow indicates infiltration of inflammatory cells, and damaged epithelial layer; 
bold arrow indicate morphological typical macrophages.  
II) Clinical- and histological scores depicted in conditional Tukey´s boxplots (for more detailed 
data set see Table S4). For comparison of all groups ANOVA followed by TukeyHSD was 
conducted.  
p < 0.05 *; p < 0.01 **, p < 0.001 *** 
a) blood vessel, b) bronchial tube, c) alveoli 
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In contrast to previous studies, where development of phenotype and disease symptoms was 

highly dependent on the immunological background of the donor, so far, the response to allergens 

was similar in mice reconstituted with PBMC from diseased or non-diseased donors.  

To further examine the impact of challenge and disease background human leucocytes isolated 

from spleen and lung were subjected to flow cytometric analysis as described in material and 

methods. (For complete set of data see Table S2-11). Regardless of the donor, HDM driven 

inflammation seemed characterized by CD11b+ macrophages (HDM versus control p < 0.05, 

HDM versus OVA p < 0.05), CCR2- (HDM versus control p < 0.05) and CD1a-expressing 

monocytes (HDM versus OVA p < 0.05). The difference was significant either to the 

unstimulated control group or the OVA-challenged group. In contrast to results obtained in the in 

vitro experiment, HDM evoked a strong activation of CD4+ T cells (CD4+ CD134+), however, 

only in the group that had been reconstituted with PBMC from a healthy donor, which however 

showed no symptoms of sickness, or allergy. In contrast to our expectations frequencies of 

CD14+ TSLPR+ cells declined in the group of mice reconstituted with PBMC from non-

asthmatic donors, and remained unaffected in the other group.  
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Fig. 5: Frequencies of human leucocytes isolated from spleens of reconstituted mice 
challenged with OVA or HDM. NSG mice were challenged as described in figure 4. 
Frequencies of leucocyte subpopulations are depicted as conditional Tukey´s boxplots (for 
complete data set see supplement table S3-5). For comparison of all groups ANOVA followed by 
TukeyHSD was performed. 
p < 0.05 *; p < 0.01 **, p < 0.001 *** 
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When leucocyte populations isolated from lung were analysed (figure 6) the difference between 

mice reconstituted with PBMC from asthmatic and non-asthmatic donors became more obvious 

and corroborated the results obtained from histological analysis. Even without challenge (control) 

the frequencies of almost all cell types in lungs of mice reconstituted with PBMC from an 

asthmatic donor were higher than after reconstitution with cells from a non-asthmatic individual, 

corroborating the results obtained by histological analysis. This effect was most pronounced for 

CD4+ and CD8+ T-cells, CD11b+ macrophages, CD14+ monocytes, eosinophils 

(FceRαI+/CCR3+), mast cells (FceRαI+/CD117+) and basophils (HLA-DR+/CD123+), 

indicating that the immune cells of the asthmatic donors are predominantly homing to the lung 

(figure 6). In contrast to the cells from a non-asthmatic donor, the cells from an asthmatic donor 

isolated from challenged mice could not be stimulated with OVA or HDM, potentially indicating 

an already highly activated status or a stage of exhaustion.  

This applies especially to mast cells and eosinophils. The difference in frequencies of M2 

monocytes (CD14+/CD163+) and plasma cells (CD19+/CD38+) was significant when the OVA 

or HDM challenged group were compared to the control group. Plasma cells (CD19+/CD38+) 

increased in both groups after stimulation with OVA, but the difference to the non-challenged 

control group was only significant with cells from the non-asthmatic donor.  
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Fig. 6 Frequencies of human leucocytes in the lungs of mice challenged with OVA or HDM. 
NSG mice were challenged as described in figure 2. Frequencies of leucocytes isolated from lung 
and analysed by flow cytometry are depicted as conditional Tukey´s boxplots (for complete data 
set see supplement table S6, 7).  
p < 0.05 *; p < 0.01 **, p < 0.001 *** 
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In order to examine the difference in cytokine responses to OVA and HDM challenge, RNA was 

isolated from lung tissue and analysed by RT-PCR. TGF-β1, TSLP, IL-4, IFN-γ and the 

chemokine TARC were selected as crucial cytokines in inflammation, and HGF as marker for 

epithelial healing. HGF, TARC, TGF-β1 and IFN-γ had been identified as hallmarks of 

inflammation in the NSG-UC mouse model. For analysis we selected a cohort of mice 

reconstituted with PBMC from an asthmatic donor. As shown in figure 7 the challenge with OVA 

(n=4) or HDM (n=12) resulted in different responses in comparison to the control group (n=11) 

and thus corroborated the analysis of cellular populations from the lung. In both groups 

challenging resulted in an increased, strong expression of IFN-γ. Levels of IFN-γ mRNA 

exceeded those of IL-4 in all groups by a factor of approximately 10.000, indicating that IFN-γ is 

the main driving cytokine in this model. However challenge with OVA resulted in significantly 

increased expression of TARC - the chemokine attracting Th2 cells, Tregs, and monocytes - and 

IL-4 - the cytokine associated with a Th2 response. Levels of TSLP mRNA were also increased 

in the OVA challenged group further corroborating the Th2 response. HGF mRNA expression 

declined in response to challenge with OVA or HDM, suggesting a severe change in the lung 

architecture. The most pronounced difference in the HDM challenged group was the observed 

decline in TGF-β1 mRNA expression, suggesting an impaired immune regulation finally 

favouring a Th1 response.  
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Fig. 7 mRNA expression levels of leucocytes from asthmatic donors after challenge with 
OVA or HDM. NSG mice were challenged as described in figure 2. Multiple Tukey´s boxplot 
analysis shows mTSLP, mTGF-β1, mTARC, hHGF, hIFN-γ and hIL-4 expression in the lung of 
NSG mice. RNA was isolated from parts of the lung and subjected to RT PCR analysis. Log - 
delta CT, logarithmic delta cycle threshold. For comparison of all groups ANOVA followed by 
TukeyHSD was performed (for detailed data set see supplement table S8). 
p < 0.05 *; p < 0.01 **, p < 0.001 *** 
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3.3. Hypothesis 4: Effect of pitrakinra or prednisolone on symptoms and phenotype. 
In order to validate this model and to test whether and to what extent it represents the human 

disease mice reconstituted with PBMC from an asthmatic donor were challenged with HDM and 

treated with prednisolone or pitrakinra. Pitrakinra is an IL-4 antagonist, which inhibits the 

activation of IL-4 type I and II receptor complexes and was therefore a promising new 

therapeutic for Th2 associated diseases like asthma [52]. Pitrakinra has been tested in a Phase IIa 

clinical study in asthma patients and has shown limited efficacy [70]. In contrast glucocorticoids 

like prednisolone are well known for their immunosuppressive function and the gold standard in 

asthma treatment. In this study prednisolone served as positive control.  

For this experiment we selected asthmatic patients as donors (n=2) and mice were challenged 

with HDM. Reconstitution and challenge was performed according to the protocol described in 

the previous experiment. Following reconstitution mice were separated in four different groups: 

unchallenged control (control), challenged control (HDM), study group 1 (HDM + pitrakinra) 

and study group 2 (HDM + prednisolone) were treated on days 23-30 by intraperitoneal injection 

of 60 µg prednisolone or 10 µg pitrakinra as described in material and methods. Mice in the 

HDM group were treated with the carrier NaCl.  

As shown in figure 8 challenge with HDM led to an increase of the clinical score, and treatment 

with both therapeutic did not ameliorate the immediate response. In contrast to treatment with 

prednisolone, which resulted in reduced influx of inflammatory cells, pitrakinra had no effect on 

the invasion of inflammatory cells into the lungs (figure 8). 
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Fig. 8: Challenge with allergen results in asthma typical symptoms in NOG mice 
engrafted with hPBMC from asthmatic and non asthmatic Donors.  
Lung tissues were fixed in Formalin 4 days after the last challenge, sectioned, and stained 
with haematoxylin and eosin (H&E) for histological analysis. Pictures display a representative 
H&E section from mice reconstituted with allergic donors and challenged with HDM.  
Mice were challenged with 50 µg allergen for 3 consecutive days. Additionally mice 
remained untreated (control) challenged with HDM (HDM) treated with pitrakinra 
(HDM+pitrakinra), or prednisolone (HDM+prednisolone). Drugs were intraperitoneally 
administered on day 22 until the end of the experiments. Conditional Tukey´s boxplot 
analysis shows the histological and clinical score. For comparison of control versus 
challenged, an ANOVA followed by Tukey’s honest significant difference (HSD) test was 
performed (for detailed data set see supplement table S9). Lines represent values without 
variability.  
p < 0.05 *; p < 0.01 **, p < 0.001 *** 

** 
p=0.053 

Control HDM+NaCl HDM+Pitrakinra HDM+Prednisolon 
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Flow cytometric analysis of human leucocytes isolated from spleen further delineated the effects 

of both therapeutic (see fig 9). In this analysis the panel was expanded and included Th1, Th2 and 

Th17 cells. In contrast to our expectations challenge with HDM resulted in an increase of 

frequencies of Th cells, which express both Th1 and Th17 associated markers.  

Both therapeutics diminished frequencies of subtypes of CD4+ cells associated with a Th2 

response (CD294+ and CCR4+) activation (CD134+) and inflammation (Th1 /Th17: CD4+, 

CCR4-, CXCR3+, CCR10-, CCR6+), however prednisolone seemed more effective with the 

exception of CD4+ CCR4+ cells.   
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Fig. 9 . Treatment of an asthmatic NOG mouse model with prednisolone or pitrakinra: 
analysis of leucocyte populations in the spleen 
Immunofluorescence staining for markers of T cells, DCs, macrophages and eosinophils of 
human leucocytes isolated from lungs of mice. Numbers on the y-axes indicate, unless specified 
otherwise, percentage of CD4+ cells. Mice were challenged with 50 µg allergen at day 23 for 3 
consecutive days. Control mice were untreated. One day before challenge daily treatment with 
prednisolone or pitrakinra was initiated and continued until the end of the experiment. Boxes 
represent upper and lower quartiles, whiskers represent variability and outliers are plotted as 
individual points. For comparison of all groups ANOVA followed by TukeyHSD was performed 
(for detailed data set see supplement table S9). 
p < 0.05 *; p < 0.01 **, p < 0.001 *** 
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Analysis of lung tissue confirmed these observations (fig. 10). Challenge with HDM resulted in 

increased frequencies of naive, Th17, Th1 / Th17 cells and a decline of activated CD4+ effector 

T cells. Of note, the increased frequency of Th17 cells has also been observed in the in vitro 

experiment. In most cases prednisolone and pitrakinra restored the cellular level to control 

standard, the only cellular population pitrakinra did not affect was Th17. Treatment with 

pitrakinra and prednisolone resulted in increased frequencies of TSLPR-expressing CD14+ 

monocytes, indicating a shift towards remodeling processes [82].  
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Fig. 10 . Treatment of an asthmatic NOG mouse model with prednisolone or pitrakinra: 
analysis of leucocyte populations in the lung 
Immunofluorecence staining for markers of T cells, DCs, macrophages and eosinophils of human 
leucocytes isolated from lungs of mice. Numbers on the y-axes indicate, unless specified 
otherwise, percentage of CD4+ cells. Mice were challenged with 50 µg allergen at day 23 for 3 
consecutive days. Control mice were untreated. One day before challenge daily treatment with 
prednisolone or pitrakinra was initiated and continued until the end of the experiment. Boxes 
represent upper and lower quartiles, whiskers represent variability and outliers are plotted as 
individual points. For comparison of all groups ANOVA followed by TukeyHSD was performed 
(for detailed data set see supplement table S10) 
p < 0.05 *; p < 0.01 **, p < 0.001 *** 
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A similar effect can also be seen in cell populations isolated via bronchoalveolar lavage (fig. 11). 

In contrast to pitrakinra, prednisolone induced an anti inflammatory CD14low  and CD64low 

population. Simultaneously inflammatory CD14hi CD64+ double positive cells are decreasing 

after treatment with prednisolone. Additionally CD19+ B cells and activated (CD86+) monocytes 

populations are shrinking after prednisolone but not after pitrakinra treatment.  

 

 
 

Fig. 11. FACS analysis of cells from bronchoalveolar lavage of NSG mice reconstituted with 
cells from an asthmatic donor, challenged with allergen and treated as indicated.  
Representive fluorescence activated cell analysis (FACscan) plots of leucocytes subgroups 
isolated via bronchoalveolar lavage and pooled group wise (n=4). From left to right: no allergen 
(control), house dust mite extract (HDM), HDM + prednisolone, HDM+ pitrakinra. The axes 
displaying the different surface markers.  
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The limited efficacy of pitrakinra was also shown by the increase of TARC and TSLP expression 

in the murine lung tissue and the increase of IFNγ and IL-4 mRNA in the human leucocytes in 

the lung, indicating an ongoing inflammatory response (fig. 12).  
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Fig. 12	 . Treatment with Prednisolon or Pitrakinra has protective effects on different 
subgroups of human T-cells, B-cells, monocytes and macrophages in an asthmatic NOG 
mice model.  
Conditional Tukey´s boxplot analysis of mouse (m)TARC,  human (h) IL-4, human (h)IFNγ and 
mouse (m)TSLP mRNA expression in the lung of NSG mice. RNA was isolated from lung tissue 
and subjected to RT-PCR analysis. Experiments were performed with PBMCs from two allergic 
donors.  
Comparison of control versus challenged, an ANOVA followed by Tukey’s honest significant 
difference (HSD) test was performed. Lines represent values without variability. For more 
detailed date set see supplement figure S11. 
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4. Discussion. 
By now NSG mice reconstituted with PBMC from diseased donors have been characterized as 

robust models, which reflect the human disease [19, 53]. This mouse model has the unique 

advantage to allow for the testing of therapeutics directed against human target molecules, which 

require high ligand, receptor, sequence, or structure homology. In our mouse model we used 

ovalbumin (OVA), or house dust mite (HDM) extract as allergens. OVA has often been used as 

model antigen. Hence, we wanted to examine whether this approach would be translatable to the 

disease of asthma in NSG mice reconstituted with PBMCs from asthmatic or healthy donors. 

However, one major disadvantage of OVA is that mice or humans would not initiate an allergic 

response against OVA. Quite the opposite, in most cases people would develop a natural oral 

tolerance against OVA as the major constituent of chicken eggs. Consequently, most mice model 

protocols need high doses of allergen in combination with high amounts of adjuvants, in order to 

provoke an allergic response. This is clearly in contrast to normal allergic reactions, which can be 

triggered by even the smallest doses of allergen. Because of this, recent allergic mouse models 

use natural occurring allergens like HDM. [47]. 

	
4.1 Hypothesis 1: Effect of OVA and HDM on PBMC in vitro 
 
In a first attempt, we tested OVA and HDM in vitro and used phytohemagglutinin (PHA) as a 

positive control. As reported by Zaunders, PHA induced the expected activation of T-cells [56] 

and an increase in Th2 associated and CD4+ CD134+ double positive cells were detected. As 

anticipated, PHA had no effect on monocytes and/or macrophages. The lack of Th17 cells after 

PHA stimulation could be explained by the interaction with Th1 and Th2 cells. Increased 

expression of Th1 cells often results in suppression of Th17 cells and vice versa [118]. OVA 

induced no reaction in T-cells, monocytes or macrophages supporting the hypothesis that OVA is 

well tolerated and does not provoke an allergic response. Surprisingly, HDM also failed to 

activate T-cells, monocytes and macrophages. One explanation could be that in vivo, HDM 

predominantly acts via its protease activity and consequently damages epithelial cells. Due to the 

lack of this activity in HDM extracts HDM might have lost its full allergenic potential. 

Alternatively, HDM acts like other autoantigens some of which are known for their 

immunmodulating capacity [114]. This effect was also seen by Jodeleit et al., who tested the effect 

of the autoantigen CD99 in an NSG ulcerative colitis model. Like HDM, CD99 did not activate T 
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cells in vitro [120]. In contrast to results in conventional models, in which HDM induced asthma is 

associated with a Th2 response [46], HDM induced the frequency of Th17 cells and led to a 

decline of Th2 cells in vitro. This observation, however, would emphasize the role of Th17 cells 

in asthma [24,27-29]. It is noteworthy that no difference between healthy and asthmatic donors was 

detected	indicating that control mechanisms are intact in this artificial in vitro situation.  

 

Hypothesis 1: In vitro cell cultures assays expose cells to artificial conditions and insufficiently 

reproduce donor specific immune profiles that are relevant in vivo 

Conclusion: These in vitro data suggest that cell culture assays are inappropriate to get specific 

and extensive insights into asthmatic disease.  
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4.2 Hypothesis 2 and 3: Effects of allergen and donor background in vivo 
 
Next, we examined the response in vivo. This approach has been extensively tested using SCID 

mice showing that exposure to HDM induced symptoms and phenotype of asthma [46]. The 

further developed NSG mice, however, have the huge advantage that reconstitution is reliable due 

to the absence of NK cells and that leakiness is not observed [98,99]. 

Already in 2012 Martin and her colleagues successfully demonstrated that NOD-scid IL2Rγnull 

(NSG) mice are suitable for an allergic asthmatic mouse model [121]. A similar approach was 

performed by Sonar et al in 2010 [57]. However, they were basically interested in the therapeutic 

potential of T-cells. A detailed characterization of symptoms and phenotype in NOD-scid 

IL2Rγnull mice was never performed. Furthermore, a comparison of OVA and HDM was never 

conducted in this mouse strain. As observed by others, asthmatic symptoms and phenotype could 

be induced [52,57,59,61,121].  

4.2.1.	Clinical	and	histological	score	
	
Intranasally challenged NSG mice exhibited a significantly elevated clinical score in contrast to 

untreated control mice. As observed in conventional mouse models, challenge resulted in influx 

of leucocytes to form thick layers around alveoli, bronchioles and blood vessels. Infiltrating 

macrophages were the dominating population. Macrophages were characterized by a prominent 

nucleolus surrounded by a voluminous cytoplasm. This observation was unexpected as classical 

asthma is thought to be a Th2 mediated disease, however, recent studies revealed that 

macrophages and/or DC are sufficient to induce asthma [45] explaining the predominance of 

macrophages in this model.  

Surprisingly, the histological score was not significantly different to the control group. One 

explanation for this result might be that the influx of cells was not evenly distributed in all parts 

of the lung and therefore the sections were not representative of the ongoing inflammation in the 

lung. Furthermore, we tried to use as little allergen as possible to reflect the human conditions, 

thereby accepting a lesser inflammatory response. Applying higher allergen doses might have 

intensified the leucocyte infiltration. Finally, the observed moderate influx of inflammatory cells 

could be due to the fact that lung histology was conducted four days after the last challenge. By 

that time inflammation might have already declined. Analysis of lung histology 24 hours post 

challenge at peak of the asthmatic response [45], might have resulted in a more pronounced 

histological score. The observation that we could not detect increased mucus production indicates 
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that this model lacks airway remodelling and thus reflects the early responses to allergen 

exposure. This observation is in accordance with previous studies, which described first airway 

remodelling processes 4 weeks upon persistent allergen contact and only by chronic and not brief 

allergen challenge [65]. 

Nevertheless, there was a clear tendency towards an increased infiltration of leucocytes into the 

lung. The infiltrating macrophages must have been of human origin as no infiltration was 

observed in unreconstituted mice.  

4.2.2.	Analysis	of	human	leucocytes	isolated	from	spleen.	
	
Due to the complex interplay between innate and adaptive immunity in asthmatic disease [45,48,67] 

we thought that it was not sufficient to analyse one specific immune cell subtype. Therefore, we 

employed a more holistic approach and characterized a broad spectrum of immune cells isolated 

from spleen of mice. Levels of isolated leucocytes were similar to the levels described in the 

literature [66].  

As shown by histological analyses of the lung, flow cytometry (FACS) analysis of leucocytes 

isolated from spleen tissue also indicated an increased infiltration or proliferation of 

macrophages, emphasizing their role in asthma. It is noteworthy that in contrast to the NSG-UC 

or NSG-AD models the disease background of the donor was not required for the development of 

the phenotype in response to challenge with the exception of activated CD4+ cells. 

As indicated by the histology analysis, HDM challenge had the greatest effect on macrophages. 

Similar to recent results in a related colitis mouse model [19,53] numbers of monocytes and 

macrophages expressing CD1a were specifically elevated in HDM challenged mice, suggesting 

an important role, not only in colitis but also in general allergic diseases. CD1a was originally 

found on Langerhans cells in the skin, which have been shown to present lipids and self-lipids to 

T-cells [17,18]. However, whether lipid presentation contributes to an asthmatic immune response 

should be further investigated. No difference between challenged and unchallenged mice could 

be detected with regard to CD11b+ CD86+ double positive cells. One explanation could be that 

CD86 has a more important role in initiating T-cell responses [15,16] and could be already down 

regulated at that phase of inflammation. Further experiments to investigate the maturation of 

macrophages at different stages of the episode could clarify if and how long APCs are activated. 

This also applies to TSLPR expressing macrophages. TSLP is known to be secreted by epithelial 

cells in response to allergen and to induce proliferation of TSLPR expressing macrophages [100]. 
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In contrast to our expectations, frequencies of this subtype declined in response to allergen. This 

result could be explained by the fact murine TSLP does not bind to the human TSLPR receptor 

and thus fails to promote proliferation of human TSLPR expressing macrophages [100]. 

 

 4.2.3.	Analysis	of	human	leucocytes	and	cytokines	in	the	lung	
 

Difference between asthmatic and non asthmatic donors: 

The analysis of human leucocytes isolated from lung revealed a difference between mice in 

respect of the donor background. Generally, the frequency of T-cells, eosinophils, basophils, 

mastcells and macrophages were increased in mice reconstituted with PBMCs from asthmatic 

donors. One explanation could be that, PBMCs from asthmatic donors seemed to be more 

responsive to signals directing them spontaneously to the lung. This signal applied to most of the 

cells analyzed. 

Secondly, an activation of plasma cells, macrophages and to some extent eosinophils, in response 

to challenge was only observed in mice reconstituted with PBMCs from non asthmatic donors 

indicating that these cells were already activated to their limits in mice engrafted with PBMCs 

from asthmatic donors. 

In contrast to levels of eosinophils, which were significantly elevated in mice reconstituted with 

asthmatic donors, levels of TGFβ1, one key player for airway remodelling [10], were reduced. As 

eosinophils are thought be be a major source of TGFβ1 in asthma it has to be further investigated 

why increased levels of eosinophils did not result in elevated levels of TGFβ1. Maybe, in the 

acute inflammatory response charactrized by IFNγ secreting macrophages and DC, epithelial to 

mesenchymal transition (EMT) is still inhibited, [10]. 
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Difference between OVA and HDM: 

Challenge with OVA or HDM resulted in different responses as indicated by frequencies of M2 

monocytes, memory B-cells, TSLP mRNA and TARC mRNA expression levels in the 

compartment of the lung.  

These parameters were increased in the OVA challenged group suggesting that this model is 

reflective of the conventional OVA mouse model characterized by a Th2 response. The fact that a 

response to OVA could only be observed in mice reconstituted with PBMC from non-asthmatic 

donors raises concerns, how reflective this model is of relapses observed in human asthma.  

This concern is further supported by the notion that asthmatic relapses have not been described in 

humans in response to OVA. Normally, humans would develop tolerance against OVA, which 

was not seen in NSG mice. One explanation could be that host and tissue specific signals are 

essential in order to establish tolerance. This missing communication between murine tissue and 

human immune cells could be the reason for the asthmatic response against OVA. The observed 

allergic response of NSG mice engrafted with non-asthmatic donors after OVA challenge was 

rather unexpected. Maybe the immunization with adjuvant was effectively priming the immune 

system and essential for the immune response against OVA. Further experiments where engrafted 

NSG mice would be challenged without immunization with adjuvant might prove this hypothesis.  

Rather unexpectedly, challenge with HDM evoked a Th17 /Th1 driven inflammation in vitro and 

in vivo. This inflammation was independent from IgE levels in vivo. It is noteworthy, that no 

correlation between IgE serum titres and different allergen challenge in comparison with the 

control group could be detected (data not shown), emphasizing the poor applicability of IgE as 

biomarker [45,69]. The fact that in this experiment a house dust mite extract was used might explain 

this result. It might be that HDM evokes a dual response in humans depending on the activities of 

HDM as an antigen and a protease. In the HDM extract the protease activity might have been 

obstructed and therefore the Th2 response may be missing. This hypothesis is supported by 

previous results describing the higher capacity of the active Der p1 protease in evoking asthma 

symptoms [83].  

In order to develop a highly efficient asthma therapy a detailed screening of PBMCs from 

asthmatic patients and consequently an individual characterization of different homing receptor 

and activation markers will become more important.  
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Hypothesis 2: HDM and OVA induce different immunological responses in NSG mice. 

Hypothesis 3: The immunological status of the donor can be modelled in NSG mice and is 

essential for the immune responses.  

Conclusion: Challenge with HDM initiated a Th1 /Th17 associated immune response, while 

OVA led to an increase in Th2 associated immune cells. PBMC from asthmatic donors seemed 

responsive to signals directing them spontaneously to the lung. Furthermore leucocytes from 

asthmatic donors seemed inert to further challenges. 

The disease background of the donor was not required for the development of symptoms and 

phenotype in response to challenge. 
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4.3 Hypothesis 4: Effect of pitrakinra or prednisolone on symptoms and phenotype. 
 
As these results suggested mice, reconstituted with PBMC from asthmatic donors and challenged 

with HDM, were more reflective of the human disease. One big advantage of this chimeric mouse 

model is the possibility to test new therapeutics, which address human specific targets. Therefore, 

we tested pitrakinra a human IL-4 and IL-13 receptor antagonist, which should inhibit Th2 

associated immune responses. In addition, we tested prednisolone, an anti-inflammatory 

glucocorticoid, which is often used in allergic asthma therapy [49,50]. Treatment with prednisolone 

had a preventive effect in HDM challenged mice and restored homeostasis. Levels of the 

histological score, frequencies CRTH2+ CD4+, Th1 / Th17 cells isolated from spleen or naïve 

CD4+ cells, effector CD4+ cells, Th17 or Th1 / Th17 cells and TARC, TSLP, IFNγ expression 

returned to normal levels. On the cellular level, pitrakinra seemed to act similarly with one 

important difference: treatment with pitrakinra had no impact on frequencies of Th17 cells and 

this might be the reason for the ongoing inflammation as indicated by elevated TARC, TSLP, 

IFNγ and IL-4 expression and it might also be the reason for the observed limited efficacy in 

human trials [70]. In this study pitrakinra had no effect on the early phase response and showed no 

improvement concerning the airway hyperresponsiveness. Since the biological half-life of 

pitrakinra was tested in a different animal strain, we cannot exclude an insufficient plasma 

concentration. More tests with different working concentrations will be needed to find the ideal 

study protocol. Moreover small modifications of pitrakinra like additional glycosylation could 

increase the biological half-life of and thus improve the activity. New experiments with different 

variants of pitrakinra would clarify this aspect. However, pitrakinra might be efficacious in late 

responses responsible for alterations of the lung architecture by fibrosis.  

 

Hypothesis 4: Preventive treatment with prednisolone and pitrakinra mitigate asthma symptoms 

after HDM-challenge 

Conclusion: Treatment with prednisolone had a preventive effect in HDM challenged mice and 

restored homeostasis. Treatment with pitrakinra showed limited efficacy. 
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Taken together, one important observation in this study was the induction of a Th17 response in 

vitro and in vivo by HDM, corroborating previous results that suggested a Th17 response to 

initiate inflammation [102]. To date, it is disputed whether Th17 cells are beneficial or add to the 

pathologies in asthma [68]. The second important observation was the spontaneous influx of 

leucocytes from asthmatic donors to the lung and their inertness to further challenge. Thus, 

leucocytes from asthmatic patients seemed to have an inherent capacity to induce inflammation, 

suggesting that one focus of therapeutic intervention might shift from inhibiting challenge to 

preventing migration. In conclusion, this study has shown that the model is useful to study 

mechanism underlying inflammatory processes in asthma and that it can be used to test 

therapeutics directed against human target molecules.  
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4.4 Limitations of the NSG asthma model 
 
Comparable to many animal models, this animal model does not fully reflect the human disease 

as for example the IgE induced response does not seem to be mounted. In addition, one has to 

keep in mind that	the described NSG model is a chimeric model and that some of the chemokines 

are essential for the recruitment of the immune cells to the lung. Cytokines are essential for the 

type and magnitude of the immune response so that as long as the molecular patterns used in an 

immune response are not cross-reactive between species it is very difficult to remake or remodel 

the human immunity in mouse. This is one of the biggest challenge - but there is nothing one can 

change. It would be good to use human IL4 or human TSLP-transgenic mouse as an example but 

plenty of chemokines and cytokines do not show cross-reactivity between human and mouse 

species and they do not activate receptors of the other species as it has been shown for IL-4 and 

TSLP [100,101]. 

Furthermore, the challenge with antigens could be improved by using active proteases.  

Another point is the enhancement of the clinical manifestation of asthma symptoms. Using a 

higher allergen concentration and more intranasal injections could address this point. Increased 

histological and clinical scores as well as elaborated influx of leucocytes into the lung could 

reveal significant correlations between different immune cells, donor backgrounds and the 

severity of asthma.  

In Addition, in order to extend the observation some of the experiments could be ended 24 hours 

after the last challenge. This could increase the asthmatic response and consequently the influx of 

immune cells. Finally a more severe manifestation of asthma symptoms could also reveal a 

higher potential of experimental therapeutics. 

Another limitation of the NSG asthma model is given by the number of mice per group, due to 

the fact that only a limited amount of leucocytes can be isolated from the donor. One solution 

could be to pool different blood samples, or expand donor cells in vitro and then transfer into the 

mouse in order to increase the group size, but in that case donor specific reactions cannot be 

analysed.  

Beside of the limitations of the animal model, the characterization of the donors were also limited 

due to logistic and financial reasons. A lung function test of healthy and asthmatic donors and the 

translation into the animal model could bring new insights in the pathology of asthma. By using a 

skin prick test for healthy donors, hidden allergies could be detected, which could improve the 

donor selection.   
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5. Outlook 
 

Asthma is a complex and variable disease affecting millions of people. Developing new and more 

efficient therapies will be one of the major challenges in asthma research.  

 

The NOD-scid IL2Rγnull asthmatic mouse model is a novel, powerful tool to investigate 

immunologic processes and eminent for drug testing. However, further experiments should be 

conducted in order to answer open questions.  

Future tests will show, if pitrakinra can improve the clinical outcome in a Th2 driven asthmatic 

response. Additionally, further tests could reveal new therapeutic targets, like possible asthmatic 

specific migration and/or homing factors.  

 

A lot more research is needed to fully understand asthma, but the NOD-scid IL2Rγnull asthmatic 

mouse model can help to receive extensive insights in the immunological aspects of asthma with 

high reliability to the human disease.  
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8. Supplement 

 

Supplement Table 1: in vitro analysis of leucocytes extracted from healthy (non asthma) donors and cultivated with different allergens 
and subjected to flow cytometric analysis. Statistical analysis was conducted by ANOVA followed by TukeyHSD test. Abbrevations: FoP 
= Frequent of Parent, the percentage of events (cells) in this gate out of the parent gate (one level up); SD = Standard Deviation; IQR = 
Interquartile Range; n = Number of used Animals; OVA = Ovalbumin; HDM =House Dust Mite; PHA = phytohemagglutinin.  

 

 
 
 
 
 
 
 

  Mean SD IQR n   

Leukocyt
e[% FoP] 

Con-
trol  OVA HDM PHA Con-

trol  OVA HDM PHA Con-
trol  OVA HDM PHA Con-

trol  OVA HDM PHA 
HDM/
con-
trol 

p-
value lower upper 

OVA/
con-
trol 

p-
value lower upper OVA/

HDM 
p-

value lower upper 
PHA/
Con-
trol 

p-
value lower upper PHA/

OVA 
p-

value lower upper PHA/
HDM 

p-
value lower upper 

CD4+ 21.36 16.73 19.88 12.81 9.40 8.60 12.06 7.24 8.1 3.6 2.4 4 5 5 5 5                                                 
CD69+ 
[%CD4] 35.74 20.4 19.57 49.16 9.87 5.85 8.05 10.19 12.8 7.8 11.5 7 5 5 5 5                                   0.0001 12.34 45.18   0.0001 13.17 46.02 
CD134+ 
[%CD4] 34.0 21.38 16.56 42.92  8.54 4.05 4.01  9.83 13.3 4.3 3.8 13.4 5 5 5 5   0.0120 -32.10 -2.78                           0.0013 6.88 36.20   0.0001 11.70 41.02 
CD103+ 
[%CD4] 2.14 1.92 1.70 2.09 0.98  0.57 0.99 0.84 0.84 1.02 1.53 0.44 5 5 5 5                                                 
CD4+ 
CD25+ 

CD127lo 18.16 6.01 6.67 16.18 5.29 0.82 1.25 5.55 3.6 1.23 1.01 3.2 5 5 5 5   0.0040 -20.13 -2.84   0.0022 -20.79 -3.51                   0.0134 1.53 18.81   0.0240 0.86 18.15 
CCR4+ 
[%CD4] 14.2 12.34 13.74 6.60 3.59 3.02 2.52  1.85 5.9 4.7 3 2.77 5 5 5 5                                                 
CD11b+ 5.44 5.17 5.69 4.96 2.26 3.72 2.95 3.00 1.5 1.52 1.46 3.63 5 5 5 5                                                 
CD86+ 

[%CD14] 64.62 32.78 24.9 37.84 14.49 3.82  5.48 14.61 21.6 2.6 6.4 17.6 5 5 5 5                                                 
CCR2+ 

[%CD14] 17.95 5.29 0.43 0.67 11.55 5.79 0.35 0.25 12.65 9.22 0.52 0.26 5 5 5 5                                                 
CD1a+ 

[%CD14] 6.57 8.11  29.28 21.04 4.26 2.09 14.94 18.09 2.86 0.5 9.3 29.24 5 5 5 5   0.0469  0.20 45.23                                         
TSLPR+ 
[%CD14] 13.42 19.94 14.07 1.87 10.02 11.89 3.84 1.24 17.81 22.58 1.2 2.21 5 5 5 5                                                 

TH1 70.54  73.52 70.72 81.5 8.42 8.22 9.39 6.20 6.3 1.9 6.7 5.6 5 5 5 5                                                 
TH2 65.04 63.06 51.8 77.88 7.56 5.54 4.94 5.04 3.5 4.9 5.7 7.2 5 5 5 5   0.0204 -25.05 -1.43                   0.0263 1.033 24.65   0.0072 3.01 26.62   0.0000 14.27 37.89 
TH17 27.46 30.06 40.56 18.22 7.67  5.46 5.14 3.29 4.5 6.5 5.7 5 5 5 5 5   0.0167 1.68 24.52                           0.0383 -23.26 -0.42   0.0000 -33.76 10.92 
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Supplement Table 2: in vitro analysis of leucocytes extracted from asthmatic donors and cultivated with different allergens and subjected 
to flow cytometric analysis. Statistical analysis was conducted by ANOVA followed by TukeyHSD test. Abbrevations: FoP = Frequent of 
Parent, the percentage of events (cells) in this gate out of the parent gate (one level up); SD = Standard Deviation; IQR = Interquartile 
Range; n = Number of used Animals; OVA = Ovalbumin; HDM =House Dust Mite; PHA = phytohemagglutinin.  

 
 
 
 
 
 
 
 
 
 
 
 
 

  Mean SD IQR n   

Leukocyte
[% FoP] 

Con-
trol  OVA HDM PHA Con-

trol  OVA HDM PHA Con-
trol  OVA HDM PHA Cont-

rol  OVA HDM PHA 
HDM/
con-
trol 

p-
value lower upper 

OVA/
con-
trol 

p-
value lower upper OVA/

HDM 
p-

value lower upper 
PHA/
con-
trol 

p-
value lower upper PHA/

OVA 
p-

value lower upper PHA/
HDM 

p-
value lower upper 

CD4+ 20.90 17.77 19.00  15.27 2.17 2.44 3.80 2.70 1.9 2.4 3.8 2.7 3 3 3 3                                                 
CD69+ 
[%CD4] 24.37 13.30 11.87 41.43 6.62 4.12 1.48 8.62 5.85 4.11 1.45 8.6 3 3 3 3                                   0.0041 6.93 49.34   0.0024 8.36 50.77 
CD134+ 
[%CD4] 24.57 13.57 10.77 34.73 8.95 4.71 3.71 8.22 8.85 4.2 3.35 7.95 3 3 3 3                                   0.0209 2.24 40.1   0.0066 5.04 42.90 
CD103+ 
[%CD4] 1.03 1.14 1.02 0.95 0.37 0.36 0.06 0.46 0.37 0.34 0.06 0.46 3 3 3 3                                                 
CD25+ 

CD127lo 
[CD4%] 10.56 4.33 3.87 8.84 6.50 2.16 2.22 5.51 6.46 1.99 1.96 5.19 3 3 3 3                                                 
CCR4+ 
[%CD4] 10.56 11.36    11.63 9.38 1.21 3.37 3.11 0.07 1.05 3.37 3.11 0.01 3 3 3 3                                                 
CD11b+ 4.86 3.92 2.61 2.51 2.31 1.32 1.42 0.60 2.18 1.205 1.31 0.60 3 3 3 3                                                 
CD86+ 

[%CD14] 62.67 45.57 33.73  55.40 34.41 5.52 5.07 14.38 32.85 4.85 4.75 12.45 3 3 3 3                                                 
CCR2+ 

[%CD14] 19.53  1.51 0.62 1.93 23.10 1.08 0.16 0.92 21.71 1.01 0.15 0.85 3 3 3 3                                                 
CD1a+ 

[%CD14] 2.40 8.20 27.03 18.50 1.16 2.52 13.48 7.13 1.01 2.3 13.45 6.45 3 3 3 3                                                 
TSLPR+ 
[%CD14] 34.86 22.33  27.03 2.59 28.80 11.42 8.06 1.34 28.52 11.3 8 1.19 3 3 3 3                           0.0341 -62.92 -1.61                 

TH1 74.97 76.8 74.07 83.73 7.62 7.54  11.85 3.41 7.45 7.3 10.5 3.4 3 3 3 3                                                 
TH2 73.10 66.5 56.67 82.97 6.26 3.70 6.37 3.53 6.25 3.7 6.35 3.15 3 3 3 3   0.0283 -31.68 -1.19                           0.0278 1.22 31.71   0.0002 11.06 41.54 
TH17 20.17 26.77 35.3 12.63 6.53 3.35 6.54 2.83 6.5 3.35 6.2 2.45 3 3 3 3   0.0413 0.39 29.87                                   0.0007 -37.41 -7.93 
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Supplement Table 3: Leucocytes isolated from spleen out of NSG- mice engrafted with PBMC from Asthma and Non Asthma patients 
and challenged with OVA, or HDM, were subjected to flow cytometric analysis. Statistical analysis was conducted by ANOVA followed 
by TukeyHSD test. Abbrevations: FoP = Frequent of Parent, the percentage of events (cells) in this gate out of the parent gate (one level 
up); SD = Standard Deviation; IQR = Interquartile Range; n = Number of used Animals; OVA = Ovalbumin; HDM =House Dust Mite.   

 
 
 
 
 
 
 
 
 
 

  Mean SD IQR n   

Leukocytes [% 
FoP] Control  OVA HDM Control  OVA HDM Control  OVA HDM Control  OVA HDM HDM/

control p-value lower upper OVA/
control p-value lower upper OVA/

HDM p-value lower upper 

CD4+ 25.09 13.70 23.69 14.79 11.96 14.62 19.75 20.11 22.58 38 26 38           0.0055 2.87 19.90   0.0172 -18.51 -1.47 
CD134+ 
[%CD4] 81.39 78.07 87.64 13.44 13.81 7.18 14.35 23.4 11.05 19 12 20                   0.0679 -19.71 0.57 
CD62L+ 
[%CD4] 41.74 44.96 53.75 21.05 24.17 20.63 35.05 24.4 36.4 36 25 34   0.0598 -24.40 0.39                 
CD294+ 
[%CD4] 11.31 10.33 13.51 11.56 7.88 13.40 10.27 14.26 13.34 35 20 29                         
CD11b+ 9.78 9.99 14.37 5.21 5.78 9.49 4.34 5.03 10.76 38 26 38   0.0182 -8.54 -0.65           0.0491 -8.77 -0.01 
CD86+ 

[%CD11b] 37.61 35.33 37.04 22.02 24.33 21.25 39.63 37.9 35.73 36 24 34                         
E-Cadherin+ 
[%CD11b] 33.27 35.98 38.02 27.49 22.22 23.76 55.22 42.13 43.45 36 24 34                         

CD1a+
[%CD11b] 48.85 44.86 51.52 27.00 26.97 28.59 45.68 48.5 49.93 36 25 34                         
TSLPR+ 

[%CD11b] 11.42 11.91 10.74 13.35 15.46 11.95 5.71 7.58 7.07 36 25 34                         
CD86+ 

[%CD14] 39.66 36.27 39.37 24.47 23.72 21.31 49.15 42.1 36.58 36 25 34                         
CCR2+ 

[%CD14] 10.76 16.97 19.10 7.66 11.52 14.89 8.65 10.22 19.17 36 25 34   0.0101 -15.00 -1.69                 
CD1a+ 

[%CD14+] 49.66 47.44 61.28 21.85 20.67 21.55 40.7 28.8 28.95 36 25 34   0.0656 -23.84 0.59           0.0422 -27.30 -0.39 
TSLPR+ 
[%CD14] 13.69 11.9 11.97 13.35 15.46 11.95 5.71 7.58 7.07 36 25 34                         
CD206+ 
[%CD14] 15.24 11.16 54.91 15.52 11.63 18.32 12.62 8.35 15.81 31 19 29                         
CD163+ 
[%CD14] 42.82 46.41 19.29 23.04 20.88 20.52 40.25 32.95 25.6 31 19 29                         

CD45 15.53 15.96 19.32 14.07	 13.65 12.2 8.51 9.61 14.00 19 12 20                         
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Supplement Table 4: Leucocytes isolated from spleen out of NSG- mice engrafted with PBMC from Non Asthma patients and challenged 
with OVA, or HDM, were subjected to flow cytometric analysis. Statistical analysis was conducted by ANOVA followed by TukeyHSD 
test. Abbrevations: FoP = Frequent of Parent, the percentage of events (cells) in this gate out of the parent gate (one level up); SD = 
Standard Deviation; IQR = Interquartile Range; n = Number of used Animals; OVA = Ovalbumin; HDM =House Dust Mite.   

 
 
 
 
 
 
 
 

  Mean SD IQR n   

Leukocyte
[% FoP] Control  OVA HDM Control  OVA HDM Control  OVA HDM Control  OVA HDM HDM/

control p-value lower upper OVA/
control p-value lower upper OVA/

HDM p-value lower upper 

CD4+ 22.13 9.59 21.47 15.21 10.61 18.37 24.97 18 27.45 11 14 9           0.0956 -1.79 26.87         
CD134+ 
[%CD4] 58.65 61.62 79.67 5.45 5.85 8.33 6.05 7.18 9.53 4 4 4   0.0040 -34.18 -7.87           0.0101 -31.21 -4.89 
CD62L+ 
[%CD4] 26.26 37.45 47.56 10.85 21.02 19.39 11.38 16.4 9.7 12 13 9   0.0263 -40.40 -2.19                 
CD294+ 
[%CD4] 17.23 13.54 30.64 14.98 7.99 23.83 4.70 11.69 18.06 11 8 4                         
CD11b+ 11.94 12.03 16.59 6.86 6.61 9.38 7.04 6.35 15.82 11 14 9                         
CD86+ 

[%CD11b] 29.12 26.84 28.07 19.94 18.40 17.31 38.55 26.5 30.2 12 12 9                         
E-Cadherin

+ 
[%CD11b] 27.51 33.14 42.3 30.13 21.46 20.68 59.32 33.7 35.5 12 12 9                         

CD1a+
[%CD11b] 42.84 35.49 41.29 21.78 23.47 28.92 36.4 41.3 50.4 12 13 9                         
TSLPR+ 

[%CD11b] 13.86 9.85 6.597 7.06 9.83 1.42 9.54 6.04 2.16 12 13 9   0.0858 -0.84 15.35                 
CD86+ 

[%CD14] 46.93 34.72 37.54 25.12 26.48 31.29 44.9 45.1 60.24 12 13 9                         
CCR2+ 

[%CD14] 13.32 20.48 21.48 8.31 13.99 15.59 8.65 9.1 17.14 12 13 9                         
CD1a+ 

[%CD14+] 46.08 39.27 46.33 25.55 22.75 27.62 47.05 43.6 52.4 12 13 9                         
TSLPR+ 

[%CD14+] 21.08 11.83 4.15 20.08 20.92 3.48 19.01 7.71 6.97 12 13 9   0.0941 -2.35 36.22                 
CD64+ 

[%CD14+] 23.23 12.43 4.39 23.23 17.58 1.39 25.36 4.59 0.84 11 7 4                         
CD163+ 

[%CD14+] 67.75 50.26 59.42 24.89 23.54 8.47 40.1 28.5 14.28 11 7 4                         
CD206+ 

[%CD14+] 23.26 13.49 5.84 22.70 17.75 2.56 35.54 8.68 1.62 11 7 4                         
clinical 
Score 0 1 1.33 0 0.68 1 0 0 1 10 14 9   0.0002 -2.17 -0.50   0.0028 -1.75 -0.25         

histological 
Score 0.19 1.06 0.94 0.44 0.99 1.02 0.06 1.75 1.75 8 9 9                         
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Supplement Table 5: Leucocytes isolated from spleen out of NSG- mice engrafted with PBMC from Asthma patients and challenged with 
OVA, or HDM, were subjected to flow cytometric analysis. Statistical analysis was conducted by ANOVA followed by TukeyHSD test. 
Abbrevations: FoP = Frequent of Parent, the percentage of events (cells) in this gate out of the parent gate (one level up); SD = Standard 
Deviation; IQR = Interquartile Range; n = Number of used Animals; OVA = Ovalbumin; HDM =House Dust Mite.   

 
 
 
 
 
 
 

  Mean SD IQR n   

Leukocyte
s [% FoP] Control  OVA HDM Control  OVA HDM Control  OVA HDM Control  OVA HDM HDM/

control p-value lower upper OVA/
control p-value lower upper OVA/

HDM p-value lower upper 

CD4+ 26.29 18.50 24.38 14.74 12.06 13.56 19.05 18.13 22.8 27 12 29                         
CD134+ 
[%CD4] 87.46 86.29 89.63 6.22 7.30 5.50 8.7 9.33 9.7 14 8 16                         
CD62L+ 
[%CD4] 49.48 53.11 55.98 20.74 25.56 20.98 34.55 40.35 40.9 24 12 25                         
CD294+ 
[%CD4] 8.59 8.18 10.77 8.69 7.36 9.04 10.46 9.64 11.83 24 12 25                         
CD11b+ 8.90 7.60 13.69 4.22 3.56 9.58 3.56 4.93 10.53 27 12 29   0.0335 -9.27 -0.31           0.0357 -11.83 -0.33 
CD86+ 

[%CD11b] 41.86 43.81 40.28 22.16 27.25 21.91 39.08 48.75 42.5 24 12 25                         
E-Cadherin

+ 
[%CD11b] 36.15 38.82 36.47 26.27 23.54 24.98 52.19 44.5 50.16 24 12 25                         

CD1a+
[%CD11b] 51.85 55.02 55.2 29.22 27.75 28.14 52.43 47.8 47.7 24 12 25                         
TSLPR+ 

[%CD11b] 10.20 14.14 12.23 7.67 7.35 7.30 6.77 11.16 4.79 24 12 25                         
CD86+ 

[%CD14] 36.03 37.95 40.03 23.83 21.37 17.21 48.88 33.95 22.2 24 12 25                         
CCR2+ 

[%CD14] 9.48 13.16 18.24 7.15 6.73 14.88 9.96 9.17 19.86 24 12 25   0.0190 -16.31 -1.22                 
CD1a+ 

[%CD14+] 51.45 56.28 66.66 20.11 14.25 16.44 34.25 17.08 27 24 12 25   0.0103 -27.33 -3.10                 
TSLPR+ 

[%CD14+] 10.00 11.98 14.78 5.94 6.61 12.69 7.26 7.96 10.36 24 12 25                         
CD64+ 

[%CD14+] 7.64 16.57 17.74 7.35 23.59 20.28 7.09 34.82 34.14 19 12 21                         
CD163+ 

[%CD14+] 38.98 44.17 54.05 21.64 19.90 22.13 37.1 26.75 32.7 19 12 21   0.0732 -31.28 1.13                 
CD206+ 

[%CD14+] 10.83 9.8 21.85 7.18 6.63 18.94 11.16 7.74 26.67 19 12 21   0.0263 -20.93 -1.09           0.0379 -23.53 -0.56 
clinical 
Score 0 1.83 1.09 0 0.94 0.67 0 1.25 0.5 24 12 23   0.0000 -1.62 -0.56   0.0000 -2.48 -1.19   0.0144 0.10 1.39 

histological 
Score 0.89 1.81 1.31 1.02 1.19 0.97 1.56 1.94 1 21 8 21                         
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Supplement Table 6: Leucocytes isolated from lung out of NSG- mice engrafted with PBMC from Non Asthma patients and challenged 
with OVA, or HDM, were subjected to flow cytometric analysis. Statistical analysis was conducted by ANOVA followed by TukeyHSD 
test. Abbrevations: FoP = Frequent of Parent, the percentage of events (cells) in this gate out of the parent gate (one level up); SD = 
Standard Deviation; IQR = Interquartile Range; n = Number of used Animals; OVA = Ovalbumin; HDM =House Dust Mite.   

 
 
 
 
 

  Mean SD IQR n   

Leukocytes [% 
FoP] Control  OVA HDM Control  OVA HDM Control  OVA HDM Control  OVA HDM HDM/

control p-value lower upper OVA/
control p-value lower upper OVA/

HDM p-value lower upper 

CD4+ 30.8 40.79 45.6 6.68 14.83 17.78 3.1 11.9 15.23 5 9 8                         
CD134+ 
[%CD4] 94.5 90.08 92.22 1.68 5.54 2.16 1.6 3.38 2.58 3 4 4                         
CD62L+ 
[%CD4] 85.2 69.78 71.83 4.26 3.98 11.79 4.25 3.53 9.13 3 4 4           0.0784 -1.85 32.70         
CD294+ 
[%CD4] 47.3 24.12 25.43 12.27 4.69 11.82 12.05 5.28 8.58 3 4 4   0.0478 0.23 43.52   0.0372 1.53 44.82         
CD8+ 1.85 4.80 0.97 1.78 6.66 1.29 2.48 10.05 1.33 5 9 8                         

CD11b+ 25.96 33.32 30.63 14.03 9.42 11.87 9.4 13.5 10.9 5 9 8                         
CD86+ 

[%CD11b] 11.48 10.27 8.91 6.82 5.27 2.11 6.79 6.66 2.68 5 9 8                         
E-Cadherin+ 
[%CD11b] 57.94 66.31 64.61 16.71 13.50 9.49 11.6 20.4 15.4 5 9 8                         

CD1a+
[%CD11b] 82.42 72.06 73.47 12.66 18.14 17.27 11.6 31.3 27.93 5 9 8                         
TSLPR+ 

[%CD11b] 6.48 7.11 4.26 1.53 2.87 1.32 2.44 1.77 1.81 4 4 4                         
CD86+ 

[%CD14] 8.03 5.52 7.39 7.65 3.43 3.16 13.02 4.59 4.75 4 9 8                         
CCR2+ 

[%CD14] 2.90 6.49 9.58 1.48 3.54 7.01 1.72 4.39 7.48 4 9 8                         
CD1a+ 

[%CD14+] 75.9 78.98 79.15 7.33 16.59 15.65 5.85 29.5 27.4 4 9 8                         
TSLPR+ 
[%CD14] 8.7 2.29 3.55 13.88 1.62 3.08 10.42 2.68 1.99 4 9 8                         
CD163+ 
[%CD14] 68.27 80.1 80.38 4.72 2.36 2.84 4.45 2.55 3.43 3 4 4   0.0032 -19.24 -4.97   0.0037 -18.97 -4.70         
CD206+ 
[%CD14] 16.6 24.8 17.62 5.06 4.38 5.18 4.65 2.95 4.73 3 4 4                         
FceRIa+ 
CCR3+ 6.04 12.81 15.02 3.26 6.73 8.31 3.33 8.86 15.14 4 9 8                         
FceRIa+ 
CD117+ 0.21 3.75 3.27 0.14 2.15 2.86 0.17 1.55 3.20 4 9 8           0.0472 -7.05 -0.04         

HLADR+ 
CD123+ 3.73 3.46 4.83 2.90 1.95 4.76 4.59 1.86 4.44 4 9 8                         

IgD+ [%CD27] 20.33 56.98 65.88 18.01 26.64 32.28 26.48 34.53 25.43 4 4 4   0.0852 -97.48 6.38                 
CD27+ 

[%CD19] 1.57 30.58 13.62 1.27 17.13 11.02 1 23.98 11.32 4 4 4                   0.0172 -52.27 -5.75 
CD19+ CD38+ 1.49 3.83 3.99 0.48 0.72 1.83 0.48 0.93 1.92 4 4 4   0.0350 -4.80 -0.19           0.0467 -4.65 -0.04 
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Supplement Table 7: Leucocytes isolated from lung out of NSG- mice engrafted with PBMC from Asthma patients and challenged with 
OVA, or HDM were subjected to flow cytometric analysis. Statistical analysis was conducted by ANOVA followed by TukeyHSD test. 
Abbrevations: FoP = Frequent of Parent, the percentage of events (cells) in this gate out of the parent gate (one level up); SD = Standard 
Deviation; IQR = Interquartile Range; n = Number of used Animals; OVA = Ovalbumin; HDM =House Dust Mite.  

 
 
 
 
 
 
 
 

  Mean SD IQR n   

Leukocytes     
[% FoP] Control  OVA HDM Control  OVA HDM Control  OVA HDM Control  OVA HDM HDM/

control p-value lower upper OVA/
control p-value lower upper OVA/

HDM p-value lower upper 

CD4+ 49.24 55.67 45.21 22.38 17.32 23.24 37.43 23.08 33.45 16 8 16                         
CD134+ [%CD4] 90.28 91.71 80.58 4.30 3.83 24.13 4.78 2.25 6.83 16 8 16                         
CD62L+ [%CD4] 59.3 50.17 57.02 15.71 17.21 25.49 26.78 27.95 29.88 12 8 12                         
CD294+ [%CD4] 10.55 8.70 8.32 4.05 4.54 7.07 5.63 5.94 10.68 16 8 16                         

CD8+ 7.79 12.79 10.36 6.25 9.99 8.57 8.48 9.74 14.54 16 8 16                         
CD11b+ 39.14 47.54 35.67 20.45 22.26 23.87 35.9 35.95 27.9 16 8 16                         
CD86+ 

[%CD11b] 25.04 11.26 23.62 27.12 5.58 27.04 31.17 9.32 28.70 16 8 16                         
E-Cadherin+ 
[%CD11b] 77.97 83.88 78.11 9.73 7.81 10.46 12.53 5.93 15.5 16 8 16                         

CD1a+[%CD11b] 83.12 84.75 81.99 9.48 7.72 16.05 14.55 11.98 6.85 16 8 16                         
TSLPR+ 

[%CD11b] 8.14 9.74 9.44 4.16 4.23 10.06 6.04 8.43 6.95 16 8 16                         
CD86+ [%CD14] 7.27 9.77 5.60 4.89 5.96 4.13 7.99 4.60 6.11 16 8 16                         
CCR2+ [%CD14] 6.79 7.27 6.71 6.37 7.11 5.35 5.69 4.98 5.61 16 8 16                         

CD1a+ 
[%CD14+] 77.74 78.69 67.02 11.37 13.35 26.34 17.98 14.55 20.25 16 8 16                         
TSLPR+ 
[%CD14] 3.92 6.46 10.35 3.48 3.98 19.78 4.53 5.79 5.16 16 8 16                         
CD206+ 
[%CD14] 15.24 19.72 19.63 10.24 14.07 14.18 16.61 20.40 22.51 11 8 12                         
CD163+ 
[%CD14] 64.29 56.04 53.08 16.07 11.35 19.21 25.2 15.93 33.9 11 8 12 		 		 		 		 		 		 		 		 		 		 		 		

FceRIa+ CCR3+ 51.44 45.54 47.93 23.02 22.69 24.89 42.2 29.18 46.78 16 8 16 		 		 		 		 		 		 		 		 		 		 		 		
FceRIa+ CD117+ 15.04 12.44 15.51 12.77 8.55 13.47 18.71 8.77 12.82 16 8 16 		 		 		 		 		 		 		 		 		 		 		 		

HLADR+ 
CD123+ 6.02 9.72 8.34 5.86 6.55 6.87 5.76 11.34 9.12 16 8 16 		 		 		 		 		 		 		 		 		 		 		 		

IgD+ [%CD27] 42.00 63.54 35.40 28.15 24.68 30.31 34.95 37.38 43.1 16 8 16 		 		 		 		 		 		 		 		 		 		 		 		
CD27+ [%CD19] 20.78 35.78 25.78 21.68 22.12 25.95 31.52 23.75 35.79 16 8 16 		 		 		 		 		 		 		 		 		 		 		 		
CD19+ CD38+ 4.11 13.16 3.41 4.49 24.04 4.48 1.37 8.21 2.40 16 8 16 		 		 		 		 		 		 		 		 		 		 		 		



	 90	

 
Supplement Table 8: mRNA cytokine levels isolated from lung out of NSG- mice engrafted with PBMC from Asthma patients and 
challenged with OVA, or HDM, were subjected to real-time polymerase chain reaction (RT-PCR) analysis. Statistical analysis was 
conducted by ANOVA followed by TukeyHSD test. Cytokine concentrations are given in logarithmic delta cycle threshold; 
Abbreviations: SD = Standard Deviation; IQR = Interquartile Range; n = Number of used Animals; OVA = Ovalbumin; HDM =House 
Dust Mite. TGF = Transforming Growth Factor β; HGF = Hepatocyte Growth Factor; TARC = Thymus and Activation Regulated 
Chemokine; IFNγ = Interferonγ; IL-4 = Interleukin 4; TSLP = Thymic Stromal Lymphopoietin. 

 

 

 

 

 

 

 

 

 

  Mean SD IQR n   

Cytokines Control  OVA HDM Control  OVA HDM Control  OVA HDM Control  OVA HDM HDM/
control p-value lower upper OVA/

control p-value lower upper OVA/
HDM p-value lower upper 

TGF 0.3768 0.3325 0.1798 0.2226 0.1483 0.0838 0.3295 0.0867 0.1334 4 4 4                         

HGF 1.0210 0.1943 0.1407 1.0900 0.0789 0.0550 1.6230 0.0554 0.0536 4 4 4                         

TARC 0.1849 2.6328 0.1812 0.2186 3.4727 0.1708 0.0744 3.2409 0.2793 9 4 12           0.0026 -4.20 -0.69   0.0016 0.76 4.14 

IFNy 3.2677 10.3283 7.5715 6.6459 10.8287 12.3432 0.0249 11.6667 13.8906 9 4 12                         

IL-4 0.0003 0.0025 0.0010 0.0009 0.0030 0.0015 0 0.0045 0.0015 9 4 12                         

TSLP 0.0199 0.0238 0.0079 0.0444 0.0110 0.0177 0.0098 0.0074 0.0051 9 4 12                         
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Supplement Table 9: Leucocytes isolated from spleen out of NSG- mice engrafted with PBMC from Asthma patients and challenged with 
different HDM, were subjected to flow cytometric analysis. Additionally one group were treated with prednisolon or pitrakinra. Statistical 
analysis was conducted by ANOVA followed by TukeyHSD test. Abbrevations: FoP = Frequent of Parent, the percentage of events 
(cells) in this gate out of the parent gate (one level up); SD = Standard Deviation; IQR = Interquartile Range; n = Number of used 
Animals; OVA = Ovalbumin; HDM =House Dust Mite.  

 

 

  Mean SD IQR n   

Leukocyte
[% FoP] 

Con-
trol  HDM 

HDM
+Pitra
kinra 
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nisolo

n 

Con-
trol  HDM 

HDM
+Pitra
kinra 
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n 

Con-
trol  HDM 

HDM
+Pitra
kinra 

HDM
+Pred
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n 
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trol  HDM 
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+Pitra
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HDM
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n 
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con-
trol 

p-
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HDM
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kinra/
con-
trol 

p-
value lower upper 

HDM
+ 

pitrak
inra/
HDM 

p-
value lower upper 

HDM
+ 
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solon/
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trol 

p-
value lower upper 

HDM
+pred
nisolo

n/
HDM
+pitra
kinra 

p-
value lower upper 

HDM
+pred
nisolo

n/
HDM 

p-
value lower upper 

CD4+ 10.45 13.48 14.5 16.11 8.23 7.99 8.77 10.90 12.43 5.82 9.69 11.15 8 11 11 8                                                 
CD69+ 
[%CD4] 42.42 49.75 52.25 38.04 22.29 11.65 23.76 28.66 29.18 6.7 24.75 38.41 4 4 4 4                                               
CD134+ 
[%CD4] 88.97 92.4 86.21 82.21 4.75 4.71 10.27 8.06 6.23 5.2 9.95 7.73 8 8 8 8                                           0.0450 -20.20 -0.17 
CCR4+ 
[%CD4] 1.34 1.64 0.82 1.11 0.52 0.45 0.10 0.58 0.67 0.6 0.1 0.76 4 4 4 4                                           0.0990 -1.77 0.13 
CD294+ 
[%CD4] 9.87 11.16 7.68 4.22 5.79 7.09 4.66 3.66 7.76 11.76 7.90 6.38 8 11 11 8                                           0.0515 -13.90 0.03 
CD11b+ 7.60 13.47 11.91 9.55 3.04 11.74 9.83 3.58 2.54 4.65 3.55 4.88 8 11 11 8                                                 
CD1a+ 

[%CD11b] 70.97 53.57 49.29 57.9 12.26 30.01 34.92 24.85 11.5 46.75 67.55 41.18 8 11 11 8                                                 
TSLPR+ 

[%CD11b] 8.56 11.26 12.33 8.65 3.01 7.6 5.71 2.10 3.44 3.18 5.05 2.11 8 11 11 8                                                 
CD86+ 

[%CD11b] 61.67 46.49 45.24 50.51 8.90 20.37 24.34 19.47 12.25 25.45 40.5 32.28 8 11 11 8                                                 
CD1a+ 

[%CD14] 62.62 68.81 62.07 61.89 11.84 19.47 17.26 15.36 17.55 21.65 19.85 22.1 8 11 11 8                                                 
TSLPR+ 
[%CD14] 9.12 8.95 9.49 8.40 3.12 3.70 4.22 4.49 3.1 3.39 6.09 6.75 8 11 11 8                                                 
CD86+ 

[%CD14] 64.41 55.05 55.74 59.14 5.40 8.82 12.81 12.86 3.73 12.3 14.15 14.48 8 11 11 8                                                 
CD163+ 
[%CD14] 63.02 52.19 55.87 53.5 5.77 11.49 11.40 18.38 3.98 12.25 15.8 13.35 4 7 7 4                                                 
CD206+ 
[%CD14] 8.04 20.53 20.23 8.01 0.70 15.77 8.55 2.07 1.10 8 14.05 2.36 4 7 7 4                                                 
effector 
memory 42.64 41.27 66.88 61.15 26.58 24.93 17.47 12.77 16.01 18.09 14.48 18.3 4 4 4 4                                                 
effector 

cells 55.28 40.48 38.38 41.1 29.99 11.76 10.81 6.57 19.48 14.68 12.63 5.2 4 4 4 4                                                 
naiv 6.96 15.73 12.11 12.18 5.54 8.06 3.06 5.29 7.31 7.83 1.94 8.66 4 4 4 4                                                 
TH1 95.45 91.03 94.55 95.45 1.98 4.57 3.97 3.41 2.25 4.78 3.4 5.1 4 4 4 4                                                 

TH1/TH17 3.26 5.40 3.74 2.46 1.42 2.34 2.67 1.78 1.48 2.98 1.81 2.69 4 4 4 4                                                 
TH2 79.38 82.05 90.8 88 18.44 6.27 4.82 5.11 13.28 6 4.6 7.3 4 4 4 4                                                 
TH17 8.14 9.91 8.58 7.05 2.76 4.02 1.78 4.90 1.83 3.76 1.04 7.18 4 4 4 4                                                 
clincal 
Score 0 0.92 1.23 1.08 0 0.76 1.09 0.64 0 1 2 0 13 13 13 13           0.0536 -2.01 0.01           0.0047 -2.39 -0.36                 

histologica
l Score 0.40 0.96 1.02 0.52 0.67 0.93 0.91 0.88 0.63 1.5 1.75 0.56 13 13 13 12                                                 
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Supplement Table 10: Leucocytes isolated from lung out of NSG- mice engrafted with PBMC from Asthma patients and challenged with 
different HDM while one group were treated with prednisolon or pitrakinra respectively, were subjected to flow cytometric analysis. 
Statistical analysis was conducted by ANOVA followed by TukeyHSD test. Abbrevations: FoP = Frequent of Parent, the percentage of 
events (cells) in this gate out of the parent gate (one level up); SD = Standard Deviation; IQR = Interquartile Range; n = Number of used 
Animals; OVA = Ovalbumin; HDM =House Dust Mite.  
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CD4+ 46.04 35.75 41.27 45.23 16.11 13.80 10.89 16.21 21.7 13.4 8.98 23.8 8 8 8 8                                                 
CD69+ 
[%CD4] 15.73 18.41 15.1 10.51 2.83 8.21 4.39 2.73 4.53 9.55 3.75 3.09 4 4 4 4                                                 
CD134+ 
[%CD4] 44.48 29.28 25.93 31.33 18.43 13.50 6.96 8.79 16.53 18.23 6.1 12.23 4 4 3 4                                                 
CD294+ 
[%CD4] 6.39 6.65 7.22 5.37 2.04 4.45 6.57 2.64 3.04 7.29 3.69 1.97 8 8 7 8                                                 
CCR4+ 
[%CD4] 8.66 2.52 1.45 2.0 10.86 1.76 1.20 1.08 6.18 1.68 1.85 1.25 4 4 4 4                                                 
effector 
memory 37.89 33.1 54.73 37.96 24.76 17.80 15.50 20.50 23.72 23.65 21.53 18.34 4 4 4 4                                                 
effector 

cells 38.48 16.29 53.63 47.25 34.94 26.62 15.16 25.24 22 27.13 23.29 28.68 4 4 4 4                   0.0262 4.15 70.52                   0.0704 -2.23 64.14 
naiv 30.03 67.3 24.15 22.55 18.62 32.10 9.09 11.46 16.28 21.3 11.8 8.36 4 4 4 4   0.0871 -79.14 4.59           0.0427 -85.02 -1.28                   0.0350 -86.62 -2.89 

CD86+ 
[%CD11b] 38.44 41.19 42.92 41.46 33.18 28.97 34.03 28.52 59.38 49.18 61.8 50.85 8 8 8 8                                                 

CD1a+
[%CD11b] 83.24 78.81 83.46 74 11.20 22.53 9.45 12.24 17.43 7.7 9.6 8.58 8 8 8 8                                                 
TSLPR+ 

[%CD11b] 6.35 8.69 78.67 8.55 3.79 3.43 3.51 2.79 5.38 2.63 3.75 3.42 8 8 8 8                                                 
CD86+ 

[%CD14] 6.49 6.61 6.35 6.78 4.79 4.92 1.99 3.07 6.85 7.24 1.67 4.73 8 8 8 8                                                 
CCR2+ 

[%CD14] 6.62 9.84 19 12.26 4.66 5.96 18.43 14.70 4.43 6.91 13.01 12.58 8 8 8 8                                                 
CD1a+ 

[%CD14] 3.46 56.63 81.36 73.19 13.74 33.62 14.33 12.87 16.1 45.38 23.38 8.58 8 8 8 8                                                 
TSLPR+ 
[%CD14] 3.49 5.61 15.95 9.00 2.06 4.06 11.46 5.03 2.63 4.68 14.74 3.42 8 8 8 8           0.0040 -21.74 -3.23   0.0226 1.08 19.59                         
CD206 

[%CD14] 8.45 8.07 9.54 11.94 1.22 2.95 2.86 5.70 1.06 2.05 2.19 8.56 4 4 4 4                                                 
CD163+ 
[%CD14] 82.72 78 79.28 80.5 4.62 4.93 1.23 7.50 4.98 5.85 0.83 11.55 4 4 4 4                                                 
FceRIa+ 
CCR3+ 58.14 50.73 50.47 47.4 23.25 28.23 32.07 29.30 35.4 47.83 60.1 55 8 8 7 8                                                 
FceRIa+ 
CD117+ 18.17 23.30 22.33 22.43 13.79 15.31 14.09 18.58 24.87 16.55 22.7 33.89 8 8 7 8                                                 

HLADR+ 
CD123+ 3.48 3.67 4.78 5.38 3.81 2.94 2.58 3.57 3.76 3.82 2.91 5.82 8 8 7 8                                                 
CD19+ 
CD38+ 1.94 1.47 2.17 1.55 0.58 0.86 1.50 1.12 1.02 0.78 2.39 1.49 8 8 7 8                                                 

TH1 96.63 89.73 96.9 96.3 0.99 9.43 0.65 3.66 0.88 6.23 0.6 2.6 4 4 4 4                                                 
TH2 88.98 85.45 93.7 96.03 14.15 5.55 5.44 2.15 8.08 8.4 3.4 1.78 4 4 4 4                                                 

TH1/TH17 1.85 4.61 1.44 0.77 1.25 2.32 0.53 0.17 1.49 2.10 0.68 0.26 4 4 4 4   0.0571 -5.59 0.07           0.0269 -6.01 -0.34                   0.0079 -6.68 -1.01 
TH17 0.89 10.43 8.51 2.2 0.38 10.85 6.52 1.50 0.42 10.49 7.57 1.26 4 4 4 4                                                 
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Supplement Table 11: mRNA cytokine levels isolated from lung out of NSG- mice engrafted with PBMC from Asthma patients and 
challenged with HDM while one group were treated with prednisolon or pitrakinra respectively, were subjected to real-time polymerase 
chain reaction (RT-PCR) analysis. Statistical analysis was conducted by ANOVA followed by TukeyHSD test. Cytokine concentrations 
are given in, logarithmic delta cycle threshold; Abbreviations: SD = Standard Deviation; IQR = Interquartile Range; n = Number of used 
Animals; OVA = Ovalbumin; HDM =House Dust Mite; TARC = Thymus and Activation Regulated Chemokine; IFNγ = Interferonγ; IL-
4 = Interleukin 4; TSLP = Thymic Stromal Lymphopoietin. 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
Mean SD IQR n 

  

Cyto-
kines Control  HDM 

HDM
+Pitra-
kinra 

HDM
+Predni

solon 
Control  HDM 

HDM
+Pitra-
kinra 

HDM
+Predni

solon 
Control  HDM 

HDM
+Pitra-
kinra 

HDM
+Predni

solon 
Control  HDM 

HDM
+Pitra-
kinra 

HDM
+Predni

solon 

HDM/
control p-value lower upper 

HDM
+pitra-
kinra/
control 

p-value lower upper 

HDM+ 
pitra-
kinra/
HDM 

p-value lower upper 

HDM+ 
predni 
solon/

Control 

p-value lower upper 

HDM
+predni
solon/
HDM

+pitra-
kinra 

p-value lower upper 

HDM
+predni
solon/
HDM 

p-value lower upper 

TARC 0.1849 0.1812 0.2470 0.06311 0.2186 0.1708 0.2486 0.0408 0.0744 0.2793 0.3118 0.0559 9 12 8 8                                                 

IFNy 3.2677 7.5715 0.4610 0.0419 6.6459 12.3432 0.7794 0.0813 0.0249 13.8906 0.2423 0.0342 9 12 8 8                                                 

IL-4 0.0003 0.0010 0.0013 0.0002 0.0009 0.0015 0.0029 0.0005 0 0.0015 0.0007 0.0001 9 12 8 8                                                 

TSLP 0.0199 0.0079 0.0075 0.0041 0.0444 0.0177 0.0125 0.0049 0.0098 0.0051 0.0060 0.0048 9 12 8 8                                                 
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Supplement Table 12: Leucocytes isolated from lung out of NSG- mice engrafted with PBMC from Asthma and Non Asthma patients and 
challenged with OVA, or HDM, were subjected to flow cytometric analysis. Statistical analysis was conducted by ANOVA followed by 
TukeyHSD test. Abbrevations: FoP = Frequent of Parent, the percentage of events (cells) in this gate out of the parent gate (one level 
up);; SD = Standard Deviation; IQR = Interquartile Range; n = Number of used Animals; OVA = Ovalbumin; HDM =House Dust Mite.   

  Mean SD IQR n   

Leukocytes  
[% FoP] Control  OVA HDM Control  OVA HDM Control  OVA HDM Control  OVA HDM HDM/

control p-value lower upper OVA/
control p-value lower upper OVA/

HDM p-value lower upper 

hCD45+ 20.35 16.91 20.68 17.62 11.29 13.34 25.87 16.45 13.88 16 8 16                         
CD134+ 
[%CD4] 90.94 91.17 82.91 4.27 4.28 21.98 4.05 2.15 7.8 19 12 20                         
CD294+ 
[%CD4] 16.35 13.84 11.74 14.83 8.77 10.52 8.07 11.37 14.20 19 12 20                         
CD11b+ 36 40.01 33.99 19.65 17.74 20.51 25.9 16.6 23.83 21 17 24                         
CD86+ 

[%CD11b] 21.81 10.74 18.72 24.41 5.27 22.98 13.68 6.32 9.79 21 17 24                         
E-Cadherin+ 
[%CD11b] 73.2 74.58 73.61 14.26 14.12 11.87 21.8 26.5 16.13 21 17 24                         

CD1a+
[%CD11b] 82.96 78.03 79.15 9.97 15.27 16.60 13.9 27.3 10.95 21 17 24                         
TSLPR+ 

[%CD11b] 7.81 8.87 8.40 3.81 3.91 9.20 5.07 6.52 6.37 20 12 20                         
CD86+ 

[%CD14] 7.43 7.52 6.19 5.31 5.12 3.86 10.85 5.08 5.83 20 17 24                         
CCR2+ 

[%CD14] 6.01 6.86 7.67 5.91 5.34 5.96 4.84 4.78 6.88 20 17 24                         
CD1a+ 

[%CD14] 77.38 78.84 71.06 10.54 14.68 23.69 15.45 23.8 24.3 20 17 24                         
TSLPR+ 
[%CD14] 4.88 4.25 8.08 6.62 3.58 16.39 4.80 5.9 3.03 20 17 24                         

CD206+ [CD14] 15.53 21.45 19.13 9.21 11.73 12.39 12.72 16.73 16.07 14 12 16                         
CD163+ [CD14] 65.14 64.06 59.91 14.32 14.96 20.52 21.85 28.08 39.23 14 12 16                         
FceRIa+ CCR3+ 42.36 28.21 36.96 27.70 23.06 26.00 47.53 44.37 44.03 20 17 24                         

FceRIa+ 
CD117+ 12.07 7.84 11.43 12.88 7.36 12.47 16.84 8.31 12.23 20 17 24                         

HLADR+ 
CD123+ 5.56 6.40 7.17 5.41 5.57 6.37 4.56 7.41 8.93 20 17 24                         

IgD+ [%CD27] 37.66 61.35 41.50 27.50 24.32 32.35 39.05 34.98 58.68 20 12 20           0.0730 -49.14 1.77         
CD27+ 

[%CD19] 16.94 34.05 23.35 20.82 19.95 24.00 25.22 23.38 31.70 20 12 20           0.0927 -36.46 2.24         
CD19+ CD38+ 3.59 10.05 3.52 4.14 19.72 4.05 1.37 3.68 2.84 20 12 20                         
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Gating Strategy [116] 
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Questionnaire 

Alter? 

 

Geschlecht? 

 

Bestehen Allergien? 

� Pollen (Gräser, Getreide, Bäume) 

� Tiere (welche)                                                                                                         j                         

� Insektengift (Bienen, Wespen) 

� Hausstaubmilben 

� Nahrungsmittel (Gewürze, welche)                                                                                                

a 

� Medikamente (welche)                                                                                                                        

a 

� Andere (Metalle, Kosmetika, Chemikalien)                                                                                 a 

� Nein 

 
Welche Beschwerden/Symptome liegen/ lagen vor  

� Heuschnupfen/Fließschnupfen  

� Augenjucken/Bindehautentzündung 

� Hautreaktionen (Ausschlag, Juckreiz, Nesselsucht, Ekzem) 

� Irritationen im Rachenraum 

� Atembeschwerden 

� Asthma bronchiale 

� chronische Bronchitis 

� andere                                                                                                    a 

 
 
Bei welchen Gelegenheiten treten/traten die Beschwerden auf  

� während der Berufsausübung 

� bei körperlicher Anstrengung 

� nur saisonal bei Pollenflug 
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� bei (Haut-)Kontakt mit gewissen Stoffen 

� andere                                                                                                       a 

 
Wie oft haben Sie Atembeschwerden bzw. Asthmaanfälle? 

�weniger als 2 x wöchentlich 

�mehr als 2 x wöchentlich 

�nur saisonal 

 

Haben Sie auch nachts Atembeschwerden? 

� ja, mehr als 2 x wöchentlich 

� ja, weniger als 2 x wöchentlich 

� Nein 
 
War in den letzten 2 Jahren eine Therapie erforderlich? 

� ja zuletzt;                                                                               a  

� Nein 

Wenn ja hilft diese Behandlung normalerweise bei Ihnen und wie schnell?  
 Ja  �/ Nein �  

Nach _____ Minuten  

Nach _____ Stunden  

Nach _____ Tagen 

 
Bestehen andere chronische Lungenerkrankungen? (z.B. chronische Bronchitis, 
Lungenemphysem) 
� ja;                                                                            a 

� Nein 

 
Wann sind die Beschwerden erstmals aufgetreten? 

                                                                                                                 a 
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Können Sie die einzelnen allergie-/asthmafreie Phasen verlängern und was machen Sie 
dafür? 

Ja  �/ Nein �  

                                                                                                                                                                  

a 

 

Was sind die ersten Symptome mit denen sich ein Schub bei Ihnen ankündigt? 

                                                                                                                                                                     
a 

Kommen folgende Erkrankungen in ihrer Familie vor? 

Allergien  Ja � / Nein � 

Asthma Ja � / Nein � 

Darmerkrankungen Ja � / Nein � 

Hauterkrankungen Ja � / Nein � 

 
 
Vielen Dank für Ihre Teilnahme 
 
 


