
  

  

 

Imaging Markers of  

Cerebral Small Vessel Disease 

 

Ebru Baykara 

 

 

 

 

 

 

 

Dissertation 

der Graduate School of Systemic Neurosciences 

der Ludwig-Maximilians-Universität München 

 

Munich, April 2018 

 



 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

First Reviewer:  PD Dr. med. Marco Düring 

Second Reviewer:  Prof. Dr. Stefan Glasauer 

 

Date of Submission:   20.04.2018 

Date of Defense:  06.08.2018 

 



Table of Contents  

SUMMARY ..................................................................................................................... iv 

1. INTRODUCTION .........................................................................................................1 

1.1. Pathogenesis of cerebral small vessel disease ........................................................3 

1.1.1 Types of cerebral small vessel disease ......................................................................3 

1.2. Clinical characteristics of cerebral small vessel disease.........................................7 

1.2.1. Cognitive impairments related to cerebral small vessel disease ..............................7 

1.2.2. Other impairments related to cerebral small vessel disease ....................................8 

1.3. Prevention and Treatment .......................................................................................8 

1.3.1. Prevention ................................................................................................................8 

1.3.2. Treatment .................................................................................................................9 

1.4. Magnetic resonance imaging of cerebral small vessel disease ...............................9 

1.4.1. Ischaemic manifestations of the disease ................................................................10 

1.4.2. Hemorrhagic manifestations of the disease ...........................................................12 

1.4.3. Brain Atrophy ........................................................................................................14 

1.4.4. Microstructural damage as assessed by diffusion tensor imaging .........................15 

1.5. Aims of the thesis .................................................................................................16 

1.5.1. A novel imaging marker for small vessel disease based on skeletonization of white 

matter tracts and diffusion histograms (Project 1) ...........................................................16 

1.5.2. Cortical superficial siderosis in different types of cerebral small vessel disease 

(Study 2) ..........................................................................................................................17 

1.6. References.............................................................................................................19 

2. PUBLISHED STUDIES ..............................................................................................30 

2.1. Study1: A Novel Imaging Marker for Small Vessel Disease Based on 

Skeletonization of White Matter Tracts and Diffusion Histograms ............................31 

2.1.1. Abstract ..................................................................................................................32 

2.1.2. Introduction............................................................................................................33 

2.1.3. Subjects and methods ............................................................................................34 

2.1.4. Results ...................................................................................................................44 

2.1.5. Discussion ..............................................................................................................48 

2.1.6. References..............................................................................................................53 

2.1.7. Supplementary Materials .......................................................................................59 



2.2. Study2: Cortical superficial siderosis in different types of cerebral small vessel 

disease ..........................................................................................................................61 

2.2.1. Abstract ..................................................................................................................62 

2.2.2. Introduction............................................................................................................63 

2.2.3. Methods .................................................................................................................63 

2.2.4. Results ...................................................................................................................64 

2.2.5. Discussion ..............................................................................................................64 

2.2.6. Conclusion .............................................................................................................66 

2.2.7. References..............................................................................................................69 

2.2.8. Supplementary materials .......................................................................................71 

2.2.9. Supplementary references ......................................................................................73 

2.2.10. Supplementary tables ...........................................................................................75 

2.2.11. Supplementary figures .........................................................................................76 

3. GENERAL DISCUSSION ..........................................................................................77 

3.1. Imaging markers of cerebral small vessel disease ................................................78 

3.1.1. Diffusion histograms as surrogate markers in cerebral small vessel disease ........78 

3.1.2. Cortical superficial siderosis in cerebral small vessel disease...............................80 

3.2. Conclusions ..........................................................................................................81 

3.3. Future steps ...........................................................................................................82 

3.4. References.............................................................................................................83 

Appendix..........................................................................................................................85 



  iv 

 

SUMMARY 

Vascular cognitive impairment (VCI) is the second most common cause of cognitive 

impairment in the elderly population and it very often co-occurs with impairment resulting 

from other neurodegenerative pathologies. Cognitive impairment due to vascular pathology is 

potentially treatable; i.e. the progression could be slowed or even stopped by managing the 

underlying vascular disease. However, there is no specific treatment available for VCI up to 

date. One of the main reasons for this is an insufficient understanding of the disease 

pathophysiology. 

Cerebral small vessel disease is the primary pathology leading to VCI and therefore its 

study provides the chance to elucidate the mechanisms leading from vascular pathology to 

cognitive impairment.  Understanding the underlying disease mechanisms is crucial for 

diagnosis, prevention and managing the disease. For this purpose, markers play an important 

role, as they indicate which disease processes are at play within the brain.  

This PhD-work aimed at finding optimal imaging markers for diagnosing cerebral 

small vessel diseases and estimating the vascular disease burden in the brain. Advances in 

brain imaging tools, in particular diffusion tensor imaging (DTI), have enabled the 

exploration of microstructural changes in the human brain, which precede the occurrence of 

lesions that are visible on conventional MRI. The first project focused on developing and 

establishing a DTI-based imaging marker for small vessel disease that is quantitative, 

reliable, and fully automated. This marker (peak width of skeletonized mean diffusivity, 

PSMD) was then systematically investigated - along with conventional imaging markers - in 

patients with hereditary and sporadic SVD, memory clinic patients as well as in patients with 

Alzheimer pathology. The results showed that PSMD outperformed the conventional markers 

in explaining the cognitive impairment scores. Furthermore, in longitudinal analysis, PSMD 

was more sensitive to disease related changes than any other imaging markers, which 

resulted in low sample size estimations for a hypothetical clinical trial. Additionally. PSMD 

showed very high interscanner reproducibility suggesting that it might be especially useful in 

multicenter studies. Interestingly, increases in PSMD were mostly linked to vascular but not 

to neurodegenerative disease. Therefore, PSMD could be a valuable tool to disentangle 

effects caused by these different pathologies, a common challenge in understanding cognitive 
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impairment. This suggests that the newly established marker PSMD could be easily applied 

to large samples and may be of great utility for both research studies and clinical use.  

The second project focused on the evaluation of cortical superficial siderosis (cSS) as a 

potential new marker for cerebral small vessel diseases. cSS emerged recently as a marker for 

cerebral amyloid angiopathy (CAA). However, the presence of cSS is associated with many 

other signs of cSVD, such as cerebral microbleeds (CMB) and white matter hyperintensities 

(WMH), and therefore its specificity for CAA was questionable. The results of the second 

project revealed that the distribution patterns and frequency of CMB and WMH overlap 

between different subtypes of cSVD. This clearly demonstrated that these imaging features 

have limited discriminative value. More importantly, the presence of cSS was found to be 

strongly indicative of CAA.  

To summarize, the key findings reported in this PhD-work have important 

implications for diagnosing patients with cerebral small vessel disease, disentangling 

underlying pathologies, as well as for managing and treating the disease.  The newly 

established imaging marker PSMD can be utilized to select the target population for clinical 

studies and may function as a surrogate marker for treatment effects. PSMD can be further 

used to identify patients who have a low disease burden as targets for prevention and early 

treatment. 
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Vascular cognitive impairment (VCI), or cognitive decline due to vascular pathology, is the 

second most common cause of dementia after Alzheimer's disease and it is a major health 

concern for the aging populations. In most of the VCI cases, small vessel disease is the 

underlying cerebral pathology (Pantoni, 2010). Cerebral small vessel disease (cSVD) is an 

umbrella term used for the various disease subtypes where the small vessels in the brain are 

affected. The term embraces the whole spectrum of related clinical and imaging 

abnormalities (Pantoni, 2010). The disease itself can be undetected for many years, and so 

far, there is no available treatment specific for cSVD. There are currently several studies 

investigating the effects of lifestyle changes and manipulation of vascular risk factors on 

cSVD; however, the results remain inconclusive (the largest treatment study up to date: the 

Secondary Prevention of Small Subcortical Strokes (SPS3) study, Benavente et al., 2011; for 

reviews see Bath & Wardlaw, 2015; Dichgans & Zietemann, 2012).This is in part due to 

inadequate understanding of the disease pathophysiology. It is therefore of great importance 

to understand the disease mechanisms to facilitate early diagnosis, optimisation of prevention 

strategies and provide management of the disease. Furthermore, the pathology of cSVD very 

often co-occurs with Alzheimer's disease (AD), and both diseases share common risk factors. 

It is difficult to differentiate the contribution of vascular pathology from Alzheimer 

pathology; however, for managing and treating cSVD this differentiation is crucial (Wardlaw 

et al., 2013b).  

The purpose of the studies presented in this thesis was to identify optimal imaging 

markers for reliable diagnosis of cerebral small vessel disease as well as for the estimation of 

the vascular burden in the brains of affected patients. The first project also aimed at 

establishing an imaging marker that would separate the contribution of vascular pathology 

from AD pathology.  

In the following chapters, there will be an overview of the two main types of cerebral 

small vessel disease (cSVD), the associated clinical characteristics and their underlying 

pathologies. Furthermore, the existing imaging markers utilised in the field of cSVD will be 

introduced and discussed regarding their strengths and weaknesses, in order to justify the 

need for a new imaging marker and lay the groundwork for the research questions in the 

present thesis.  
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1.1. Pathogenesis of cerebral small vessel disease  

It is very important to know the underlying disease physiology to have a clear understanding 

of the disease, the main risk factors, and possible treatment strategies. The pathophysiology 

of cSVD involves thickening and stiffness of and damage to the vessel walls, luminal 

narrowing, hypoperfusion, disturbed vasoreactivity and autoregulation, which can all result in 

the occlusion, leakage or rupture of small vessels in the brain (Wardlaw, Smith, & Dichgans, 

2013a). Chronic hypoperfusion and ischaemia consequent to the aforementioned pathologies 

are thought to lead to diffuse alterations in the white matter. Alternatively, they can lead to 

lacunar infarcts in the case of complete occlusion of the lumen resulting in focal acute and 

severe ischaemia (Pantoni, 2002). Furthermore, vessel leakage or rupture resulting from 

vessel wall damage, microaneurysms, or amyloid deposition can result in micro- or 

macrohemorrhages (Pantoni, 2010). Brain atrophy is also one of the signs of cSVD and it can 

also occur as a remote consequence of vascular pathology (Duering et al., 2012; Jouvent et 

al., 2007). A widely accepted model of the pathogenesis of cSVD is presented in Figure 1; 

however, it is important to consider that this model is now challenged by recent studies. One 

study investigated the spatial relationships between lacunes and white matter hyperintensities 

and showed that lacunes appear in the proximity of existing white matter hyperintensities, 

thus suggesting that their mechanisms are intimately linked (Duering et al., 2013a). 

 

1.1.1 Types of cerebral small vessel disease 

The most frequently seen types of cSVD are (1) arteriolosclerosis (age- and vascular risk 

factor-related small vessel diseases) and (2) cerebral amyloid angiopathy (Pantoni, 2010), 

and these subtypes are the focus of this thesis in investigating new imaging markers. 

1.1.1.1. Arteriolosclerosis 

The most common type of cSVD is arteriolosclerosis, which is related to ageing and vascular 

risk factors, in particular diabetes and hypertension. The pathological findings related to 

arteriolosclerosis are degeneration of smooth muscle cells in the tunica media and deposition 

of fibrohyaline substance that results in a loss of elasticity of the vessels, thickening of the 

vessel walls and also potentially in narrowing of the lumen (Pantoni, 2010). 

CADASIL 

Hereditary forms of arteriolosclerosis are also increasingly recognised. Cerebral Autosomal 
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Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is 

the most common hereditary cause of stroke and cognitive decline, and has thus gained great 

interest as the model disease to study the more common sporadic form of cSVD (Chabriat, 

Joutel, Dichgans, Tournier-Lasserve, & Bousser, 2009). CADASIL shares the clinical and 

neuroimaging features of sporadic cSVD, with an earlier onset and a more severe prognosis 

(Chabriat et al., 2009; Charlton, Morris, Nitkunan, & Markus, 2006). 

CADASIL is an autosomal dominant disease caused by mutations in NOTCH3, which 

encodes for a transmembrane receptor protein (Joutel et al., 1996) .  NOTCH3 is 

predominantly expressed in vascular smooth muscle cells and it has a critical role for the 

structural and functional integrity of small vessels (Joutel et al., 1996, 2000) . The 

arteriopathy related to CADASIL is characterised mainly by the thickening of the arterial 

walls, the deposition of a non-amyloid granular osmiophilic material in the arterial walls, and 

prominent degeneration of vascular smooth-muscle cells (Chabriat et al., 2009) . CADASIL 

causes stroke and dementia, and leads to a particular pattern of diffuse white matter 

hyperintensities on brain imaging, typically also in the anterior part of the temporal lobes 

(O’Sullivan et al., 2001) .  CADASIL can be diagnosed either by skin biopsy or by molecular 

genetic testing (Joutel et al., 1996; Peters et al., 2005) . For the present thesis, we used 

CADASIL as a model disease to study arteriolosclerosis, as it represents a pure form of the 

disease without other age-related diseases as concomitant pathologies. 

1.1.1.2. Cerebral amyloid angiopathy (CAA) 

Cerebral amyloid angiopathy (CAA) is a common age-related small vessel disease and a 

major risk factor for intracerebral haemorrhage (ICH) and cognitive impairment 

(Viswanathan & Greenberg, 2011).  

Additionally, CAA very often coexists with Alzheimer’s disease (Kalaria & Ballard, 1999). 

The pathological hallmark of the disease is the accumulation of amyloid beta protein in the 

walls of arteries and arterioles found in leptomeningeal and cortical areas. This leads to 

vessel fragility, rupture and bleeding (Vinters, 1983). Alternatively, amyloid beta deposits can 

alter the stiffness of vessel wall, which leads to decreased cerebrovascular reactivity and 

results in hypoperfusion. Although most of the research is focused on the more frequent and 

recurrent haemorrhagic manifestations of the disease, ischemic changes are also observed in 

CAA patients and are clinically relevant (Reijmer, van Veluw, & Greenberg, 2016). 
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Figure 1. Pathogenesis of cerebral small vessel disease (adapted from Pantoni, 2010) 
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Table 1. Classic and modified Boston criteria for CAA (Linn et al., 2010) 

 Classic Boston Criteria Modified Boston Criteria 

Definite CAA Full postmortem examination 

demonstrating: 

No modification compared to the 

classic Boston criteria 

  Lobar, cortical or corticosubcortical 

hemorrhage 

 

  Severe CAA with vasculopathy  

  Absence of other diagnostic lesions  

Probable CAA with 

supporting pathology 

Clinical data and pathologic tissue 

(evacuated hematoma or cortical 

biopsy) demonstrating: 

No modification compared to the 

classic Boston criteria 

 • Lobar, cortical, or corticosubcortical 

hemorrhage 

 

 • Some degree of CAA in specimen  

 • Absence of other diagnostic lesion  

Probable CAA Clinical data and MRI or CT 

demonstrating: 

Clinical data and MRI or CT 

demonstrating: 

 • Multiple hemorrhages restricted to 

lobar, cortical, or corticosubcortical 

regions (cerebellar hemorrhage 

allowed) 

• Multiple hemorrhages restricted to 

lobar, cortical, or corticosubcortical 

regions (cerebellar hemorrhage 

allowed) or 

  • Single lobar, cortical, or 

corticosubcortical hemorrhage and 

focal
a
 or disseminated

b
 superficial 

siderosis 

 • Age ≥ 55 y • Age ≥ 55 y 

 • Absence of other cause of hemorrhage • Absence of other cause of hemorrhage 

or superficial siderosis 

Possible CAA Clinical data and MRI or CT 

demonstrating: 

Clinical data and MRI or CT 

demonstrating: 

 • Single lobar, cortical, or 

corticosubcortical hemorrhage 

• Single lobar, cortical, or 

corticosubcortical hemorrhage 

  • Focal
a
 or disseminated

b
 superficial 

siderosis 

 • Age ≥ 55 y • Age ≥ 55 y 

 • Absence of other cause of hemorrhage • Absence of other cause of hemorrhage 

or superficial siderosis 

CAA = cerebral amyloid angiopathy; CT = computed tomography; MRI = magnetic resonance 

imaging. 
a
Siderosis restricted to 3 or fewer sulci;.

b
Siderosis affecting at least 4 sulci 
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For the definite diagnosis of CAA, the vascular amyloid must to be detected by 

histopathology, i.e. either in biopsy or autopsy. However, Boston criteria were postulated 

(Knudsen, Rosand, Karluk, & Greenberg, 2001) and later modified (Linn et al., 2010), 

enabling the clinical diagnosis during life with high specificity (see Table 1). The modified 

criteria include cortical superficial siderosis (cSS), which results from hemosiderin 

deposition in the subpial layers of the brain and which is a focus of this thesis as an emerging 

imaging marker for CAA. 

Hereditary forms of CAA are extremely rare in the general population, and they are 

more severe and earlier in onset. Hereditary CAA generally cause cognitive impairment but 

are not necessarily presented with lobar ICH (Biffi & Greenberg, 2011).  Example images of 

the lesions can be found in Figure 2. 

 

1.2. Clinical characteristics of cerebral small vessel disease 

1.2.1. Cognitive impairments related to cerebral small vessel disease 

Cognitive impairment due to cSVD has a relatively homogenous profile and is progressive in 

nature. Additionally, the neuroimaging correlates of cSVD are widely investigated, and 

therefore cognitive impairment resulting from cSVD can be studied in vivo and can be a 

target for clinical and therapeutic trials (Pantoni, 2010). 

Cognitive profile of patients with cSVD involves prominent impairments in processing 

speed and executive functions, with a relative sparing of memory functions (Charlton et al., 

2006; Dichgans, 2009; O’Brien et al., 2003). However, since cSVD and AD can often 

overlap in the elderly population, a clinical differentiation of cSVD or AD from mixed 

disease based on neuropsychological assessment alone is challenging and misleading 

(Gorelick et al., 2011). Patients with the hereditary disease CADASIL share a comparable 

cognitive profile with patients with sporadic cSVD, and they display cognitive deficits at an 

early age when AD comorbidity is highly unlikely (Charlton et al., 2006). Therefore, 

CADASIL is a useful disease model for investigating cognitive impairment due to pure 

cSVD.   

MRI and autopsy studies have shown that the total lesion burden and lesion location 

influence the clinical expression of cSVD, particularly the cognitive profile of the patients 

(Gold, 2009). The lesion volumes explain only a moderate amount of the variation in the 
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cognitive scores, and studies demonstrated that lesions on strategic white matter pathways 

(Duering et al., 2011, 2014) (anterior thalamic radiation and forceps minor), and more 

generally on frontal-subcortical neuronal circuits (Duering et al., 2013b) play a crucial role 

on the development of cSVD related cognitive deficits. 

 

1.2.2. Other impairments related to cerebral small vessel disease 

Other than cognitive impairments, cSVD patients experience gait, mood, behavioural and 

urinary disturbances (Pantoni, 2010). Like the cognitive decline, these disturbances are 

progressive and patients can lose their autonomy completely in the advanced stages of the 

disease. They can be depressed, apathetic, unable to walk and have urinary incontinence 

(Pantoni, 2010).  More detailed explanation of the non-cognitive impairments related to 

cSVD are beyond the scope of this thesis, however, it is important to acknowledge the 

importance of these impairments in the spectrum of the disease and their effects on the daily 

lives of the patients. 

 

1.3. Prevention and Treatment 

1.3.1. Prevention 

The characteristic cSVD lesions are associated with stroke, mortality and functional 

impairment (cognitive, motor, mood, behavioural) and they are very often correlated with 

vascular risk factors (Pantoni, 2010). Hence, it is plausible that some of the effects of the 

disease are preventable and patients with VCI are an important target population for 

prevention. Preventive strategies include lifestyle changes (physical exercise, healthy diet, 

smoking cessation) and controlling vascular risk factors (hypertension, hypercholesterolemia 

and diabetes) (Dichgans & Leys, 2017). A longitudinal study with CADASIL patients 

showed that active smoking increases the risk of stroke and dementia significantly (Chabriat 

et al., 2016), a relation already reported previously for sporadic cSVD (Bezerra et al., 2012) 

and in the general population (Gons et al., 2011). Typically for people with high risk for VCI, 

it is recommended to quit smoking, to get treated especially for hypertension but also for 

hypercholesterolemia and diabetes, to control alcohol intake and weight, and also to do 

physical exercise (Gorelick et al., 2011). Preventing vascular disease with multi-domain 

interventions is so far the most promising strategy to prevent VCI and dementia, although the 
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evidence for the effectiveness is inconclusive (Dichgans & Zietemann, 2012). Recent studies 

with risk populations reported that multidomain intervention had positive effects 

(maintenance or even improvement) on cognitive functioning (FINGER study, Ngandu et al., 

2015), whereas it did not result in diminishing progression of cerebrovascular lesions, 

particularly white matter hyperintensities (van Dalen et al., 2017). 

 

1.3.2. Treatment 

Currently, there are no specific treatments available for cSVD and related cognitive 

impairment, and there are only a few validated options.  The management strategy for 

patients with cSVD consists generally of treating comorbidities, psychological and 

behavioral symptoms, and providing information to patients and their caregivers (Dichgans 

& Leys, 2017). The best studied symptomatic treatments for VCI are cholinesterase inhibitors 

and the NMDA receptor antagonist memantine, both established drugs used for Alzheimer’s 

disease (O’Brien & Thomas, 2015). The rationale for using cholinesterase inhibitors in VCI 

was based on evidence for a cholinergic deficit found in the disease (Mesulam, Siddique, & 

Cohen, 2003). Pharmacological therapies targeting VCI have displayed consistent but modest 

benefits of donepezil (Black et al., 2003; Dichgans et al., 2008; Wilkinson et al., 2003), 

galantamine (Auchus et al., 2007) and memantine (Orgogozo, Rigaud, Stöffler, Möbius, & 

Forette, 2002) on cognition. However, the reported effects of these drugs on global 

functioning and daily living have been less consistent. Therefore, considering the small 

beneficial effect of these drugs on VCI symptoms and their possible side effects, regulatory 

bodies do not recommend cholinesterase inhibitors and memantine for patients with VCI or 

vascular dementia (VaD) (NICE, 2007; O’Brien & Thomas, 2015). 

 

1.4. Magnetic resonance imaging of cerebral small vessel disease 

The small vessels affected in the disease cannot be visualized in vivo with brain imaging in 

the living brain, therefore parenchymal abnormalities associated with cSVD and detected on 

magnetic resonance imaging (MRI) are used as markers of the presence, severity and 

progression of the disease (Pantoni, 2010). In this section, the existing imaging markers will 

be introduced. Although all these markers offer important information about the disease and 

its underlying pathophysiology, there is a pressing need for a new imaging marker that can 
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overcome the weaknesses of these markers, which are described in the following section. 

 

1.4.1. Ischaemic manifestations of the disease 

1.4.1.1. White matter hyperintensities of presumed vascular origin 

White matter hyperintensities (WMH) can be detected as increased signal on T2- weighted 

and fluid attenuated inversion recovery (FLAIR) MR images and often as decreased signal on 

T1-weighted images (Wardlaw et al., 2013b). Studies have revealed that WMH are associated 

with physical (de Laat et al., 2011; Sachdev, 2005) and cognitive impairments (Prins & 

Scheltens, 2015), and also with the risk of stroke and dementia (Debette & Markus, 2010). 

There are heterogeneous pathophysiological changes associated with WMH. 

Pathological findings related to WMH are tissue rarefaction of myelin sheaths, loss of axons 

and alternatively, changes in the cerebrospinal fluid (CSF) circulation or disturbances of the 

blood-brain barrier (Pantoni & Garcia, 1997).  Despite the heterogeneity in the pathogenesis 

of white matter lesions, most studies relate these lesions to ischaemic brain damage resulting 

from cSVD and cerebrovascular risk factors such as arterial hypertension and diabetes 

mellitus (Debette & Markus, 2010). 

The severity of WMH can be assessed by visual rating scales (e.g. Fazekas scale, 

Fazekas, Chawluk, Alavi, Hurtig, & Zimmerman, 1987, or Wahlund scale, Wahlund et al., 

2001) taking into account the location and extent of the lesions. However, quantitative WMH 

assessment (WMH volumetry) is more reproducible and sensitive for lesion progression than 

the visual scales (Gouw et al., 2008). Nevertheless, visual ratings and also volumetric 

assessments of WMH are only moderately associated with the clinical status, particularly 

cognitive impairment (de Groot et al., 2000; Duering et al., 2011).  

A very likely explanation for the weak association with clinical symptoms is that the 

tissue damage with varying degrees can appear as WMH in the MR imaging (Fazekas et al., 

1993). Therefore, these lesions should be carefully interpreted. It is also repeatedly shown 

that tissue, which appears normal in MRI, is not necessarily healthy but could already have 

undergone pathological changes. Thus, WMH detected on structural MRI is not a true 

reflection of tissue damage in the brain, and the true white matter pathology is likely to be 

more extensive (de Groot et al., 2013). That is also one reason why there is a need for more 

optimal disease markers. Furthermore, the semi-automated methods of WMH quantification 
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require manual editing that is highly subjective and time consuming, and thus preclude the 

usage of WMH as a marker for large-scale studies.  

1.4.1.2. Lacunes of presumed vascular origin 

Lacunes of presumed vascular origin are round, subcortical, fluid-filled (similar intensity 

signal as CSF) cavities, between 3 to 15 mm in diameter. Lacunes result mostly from 

symptomatic or silent small subcortical infarcts, and to a lesser degree from small deep 

hemorrhages (Wardlaw et al., 2013b). Studies showed that lacunes are associated with 

increased risk of stroke and dementia (Vermeer, Longstreth, & Koudstaal, 2007). 

Semi-automated quantitative measures for lacune detection are available; however, 

manual corrections are needed. Perivascular spaces (also known as Virchow–Robin spaces) 

may appear very similar to lacunes on MR imaging, and differentiation of these two lesion 

types can be very difficult even for experts (Wardlaw et al., 2013b). Greatly enlarged 

perivascular spaces (EPVS) can be even larger than 2cm and are mostly located below the 

putamen (Wardlaw et al., 2013b). It has also been shown that EPVS are another MRI marker 

of cSVD and therefore are likely to co-occur with lacunes and other markers of the disease 

(Doubal, MacLullich, Ferguson, Dennis, & Wardlaw, 2010). 

Typical measurements of interest for lacunes are the number, size and location of the 

lesions. Since the spread of MR imaging, the prevalence of lacunes in the general population 

has been found to be higher than initially thought. A majority of these small brain infarcts 

remain asymptomatic since they are not located on strategic brain regions (Duering et al., 

2013b). Although these lesions lack overt symptoms, they are still associated with subtle 

deficits and with an increased risk of subsequent stroke, cognitive impairment and dementia 

(Vermeer et al., 2007). 

Although the number and size of lacunes may be a marker for disease severity, their 

detection is time-consuming and the number of detected lacunes depends on the rater, as it is 

difficult to differentiate them from EPVS. Therefore, lacunes are not well suited as disease 

markers. 
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1.4.2. Hemorrhagic manifestations of the disease 

1.4.2.1. Microlesions 

Cerebral Microbleeds 

The radiologically defined cerebral microbleeds (CMBs) are small signal voids (black or 

hypointense lesions) as seen on MRI sequences sensitive to susceptibility effects (T2* or 

susceptibility weighted MR images).  As suggested by histopathology studies, the CMBs 

correlate with blood-breakdown products, which result likely from blood leakage into the 

brain parenchyma from damaged or fragile small vessels of the brain (Shoamanesh, Kwok, & 

Benavente, 2011). 

Although CMBs were believed to be asymptomatic by themselves, extensive research 

has shown that they are correlated with other manifestations of cSVD and are associated with 

cognitive impairment (Poels et al., 2012). The presence of CMBs correlates with cSVD, 

dementia and normal ageing; and is far more common in the community-dwelling elderly 

than initially thought. CMBs have emerged as potential imaging markers of bleeding-prone 

small vessels in the brain. In the cSVD populations, the prevalence of CMBs are clinically 

relevant since they are related to the severity of the disease; and an increased risk of future 

ischaemic stroke and intracerebral hemorrhage (Greenberg, Eng, Ning, Smith, & Rosand, 

2004; Thijs et al., 2010). Because arteriolosclerosis and CAA have differential topographic 

preference, CMBs associated with these different subtypes of cSVD are expected to follow 

the same topographic distribution: strictly lobar (cortical-subcortical regions of brain lobes 

and cerebellum) in CAA; strictly deep (deep white matter, basal ganglia, thalamus, 

brainstem, cerebellum) in arteriolosclerosis (Martinez-Ramirez et al., 2015). However, there 

is not enough evidence to attribute a high diagnostic value to the spatial pattern of CMB. 

Despite extensive research on the association between CMB and SVD, there are some 

major drawbacks of using CMB as disease marker: (1) the number of detected CMBs depend 

strongly on the MRI parameters like spatial resolution and magnetic field strength 

(Nandigam et al., 2009). (2) The prevalence of CMBs is underestimated by routine clinical 

MRI and false positives are not uncommon (Haller et al., 2016). (3) There is currently no 

method available for automatic detection of CMBs (Wardlaw et al., 2013b). Additionally, 

there are several mimics of CMBs such as calcification, iron deposits, and vessels on cross-

section that can be mistaken for CMBs by inexperienced raters and may cause 
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misjudgements. In contrast, CMBs can be easily differentiated from small spontaneous 

intracerebral hemorrhage (ICH) because ICHs are larger and visible on T1-, T2-weighted and 

FLAIR sequences (Wardlaw et al., 2013b). 

1.4.2.2. Macrolesions 

Intracerebral Hemorrhage (ICH) 

Intracerebral hemorrhage (ICH) can be a manifestation of cSVD and the recommended term 

to use is spontaneous ICH presumably due to SVD (Wardlaw et al., 2013b). ICHs account for 

approximately 12% of all strokes and have a very high rate of mortality (Qureshi et al., 

2001). Studies have shown that patients with hypertensive SVD and CAA constitute a 

significant proportion of cases with spontaneous ICH (Yates et al., 2014). It is important to 

know the underlying type of vascular disease, and as with the CMBs the distinction is usually 

made between lobar and non-lobar hemorrhages, the former being associated with CAA and 

the latter with arteriolosclerosis (Wardlaw et al., 2013b). 

Cortical Superficial Siderosis (cSS) 

The term cortical superficial siderosis refers to neuroimaging signs of blood in the superficial 

cortex under the pia mater (Kumar, 2007). It can be seen on T2* or susceptibility weighted 

imaging (MRI sequences sensitive to susceptibility effects) as hypointense lines following 

the contour of the cortical surface. Revised research criteria for CAA include cSS as an 

additional haemorrhagic manifestation of cerebral amyloid angiopathy (Linn et al., 2010). In 

ratings, the location of the siderosis and the number of sulci involved (focal vs. disseminated) 

should be described, since it is relevant for the clinical correlates of siderosis (Linn et al., 

2010). 

The prevalence of cSS is very low in the general population (Vernooij et al., 2009); it 

gets higher among people with cognitive impairments (Wollenweber et al., 2014) and even 

higher among patients with previous ICH (Charidimou et al., 2013). The highest prevalence 

rates of cSS are reported among patients with CAA: with up to 60% of cases with definite, 

i.e. histopathologically proven, CAA (Linn et al., 2010).In addition to the clear link between 

cSS and CAA, cSS is also associated with the risk of ICH (Linn et al., 2013). What remains 

unknown is whether cSS is also present in other types of cSVD, e.g. arteriolosclerosis 

(Project 2). 
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1.4.3. Brain Atrophy 

Brain atrophy can be global or local, and the underlying pathological mechanisms, as well as 

the underlying diseases, are heterogeneous (Wardlaw et al., 2013b). It can be best evaluated 

on T1-weighted structural MR images and it usually consists of shrinkage of brain 

parenchyma, cortical thinning and increase in CSF volume (in ventricles or external to the 

brain parenchyma). 

Brain atrophy is a part of normal aging; however, this process can be modulated or 

accelerated by different diseases, such as neurodegenerative (e.g. Alzheimer’s disease: 

Frisoni, Fox, Jack, Scheltens, & Thompson, 2010), demyelinating (e.g. multiple sclerosis: 

Benedict & Zivadinov, 2011) or cerebrovascular diseases (Schmidt et al., 2005).  Many 

imaging studies demonstrated that there is an association between brain atrophy and cSVD, 

both in hereditary (Peters et al., 2006) and sporadic (Nitkunan, Lanfranconi, Charlton, 

Barrick, & Markus, 2011) forms of the disease. Brain atrophy has been also shown to 

correlate with cognitive impairment; a finding, which suggests that brain atrophy could be a 

potential surrogate disease marker (Nitkunan, Barrick, Charlton, Clark, & Markus, 2008; 

Viswanathan et al., 2010). In the context of cerebrovascular disease and cognitive 

impairment, the processes leading to atrophy are likely remote consequences of vascular 

lesions. A very plausible mechanism is secondary cortical neurodegeneration as a direct result 

of subcortical ischemic lesions, and evidence for this theory arose from studies revealing 

cortical thinning in the connected regions to an incident lacune or subcortical infarct 

(Duering et al., 2012), in addition to degeneration of connecting white matter tracts (Duering 

et al., 2015). Thus, it seems possible that brain atrophy has some mediating effect on the 

relation between cSVD and cognitive decline (Duering et al., 2012).   

Although brain atrophy reflects a clinically important aspect of cSVD, it is known that 

volume loss is a non-specific result of neuronal damage, and atrophy patterns can highly 

overlap between diseases. Therefore, brain atrophy (or whole brain volume in cross-sectional 

studies) is not a specific marker for cSVD and may not be utile in evaluating vascular disease 

burden. 
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Figure 2. MRI manifestations associated with cerebral small vessel disease 

Shows examples of MRI changes related to cerebral small vessel disease. Red arrows point at the 

lesions. CMB=cerebral microbleeds; CSS=cortical superficial siderosis; ICH=intracerebral 

hemorrhage; WMH=white matter hyperintensities. 

 

 

1.4.4. Microstructural damage as assessed by diffusion tensor imaging 

Diffusion tensor imaging (DTI) measures the diffusion of water in the brain, and is therefore 

a non-invasive method to measure microstructural tissue integrity (Nucifora, Verma, Lee, & 

Melhem, 2007). Diffusion is normally restricted by tissue boundaries (cell membranes or 

intracellular particles), and increase in diffusivity (mean diffusivity) together with a decrease 

in the directionality of diffusion (fractional anisotropy) are thought to indicate the degree of 

damage to white matter tracts (M O’Sullivan et al., 2004).   

Studies on cSVD reported diffusion changes even in the white matter appearing normal 

on conventional MRI, which suggest that DTI is more sensitive towards SVD-related brain 

tissue damage than conventional techniques (de Groot et al., 2013). There is ample evidence 

to support the idea that newer, quantitative methods like DTI offer more information about 

the disease burden in the brain than traditional MRI sequences. In both sporadic and 

hereditary cSVD patients, DTI measures have been shown to correlate with cognitive deficits 

(Nitkunan et al., 2008; van Norden, de Laat, et al., 2012) as well as with disease progression 

(Holtmannspotter et al., 2005; Molko et al., 2002). 

Overall, diffusion MRI provides quantitative indication of microstructural damage 

related to cSVD and is a promising method to assess disease burden, monitor disease 

progression, as well as to act as a surrogate marker to evaluate the effect of treatments in 

clinical trials (Project 1). 
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1.5. Aims of the thesis 

There is a substantial vascular contribution to cognitive impairment and dementia, and small 

vessel disease is the most common underlying pathology. Currently, no standard disease 

modifying therapies are available for age- and hypertension-related cSVD (arteriolosclerosis) 

or CAA. As it is not possible to image in vivo small vessels in the brain, imaging markers are 

the standard for diagnosing and monitoring cSVD and assessing treatment effects. The aim of 

this Ph.D. work was to establish and evaluate imaging disease markers for reliable disease 

diagnosis, and for quantifying cSVD burden in the brain. 

 

1.5.1. A novel imaging marker for small vessel disease based on skeletonization of white 

matter tracts and diffusion histograms (Project 1) 

Although cSVD causes a high proportion of neurological and cognitive deficits among the 

elderly population, an understanding of disease pathogenesis and management of the disease 

have been suboptimal. The main reason is the lack of a reliable, quantitative disease marker, 

which is able to reflect the true disease burden in the brain. This further leads to the lack of 

sufficient large clinical trials for evaluating prevention and treatment strategies for the 

disease. 

Using neuroimaging as surrogate disease marker is of great interest since the rate of 

cognitive decline is very slow (large samples and long follow-up periods are needed) and 

neuropsychological tests lose their value when repeated due to learning effects (Patel & 

Markus, 2011). Importantly, it has been shown that change is detectable in imaging 

parameters but not in cognitive scores over a short follow-up period (3 years) (Benjamin et 

al., 2016). Furthermore, a preclinical phase marked with changes of the brain precedes the 

clinical symptoms and the diagnosis of cognitive impairment and dementia. These preclinical 

brain abnormalities are usually observable on brain imaging. The problems with existing 

imaging markers are that (1) they almost always require manual editing and are therefore 

time-consuming and are subjective; (2) the presence of lesions in the diseased brains are 

potential obstacles for the algorithms used to calculate imaging markers reliably; and (3) 

associations with clinical symptoms, such as cognitive deficits, are typically only weak to 

moderate (Duering et al., 2011; Nitkunan et al., 2008). More advanced methods such as DTI 

can detect changes in microstructural levels, which are not yet visible on conventional MRI. 
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Furthermore, researchers have already shown superiority towards DTI when compared to 

conventional imaging markers in assessing disease burden in cSVD (van Norden, et al., 

2012). However, DTI measures cannot readily be applied to large studies, since they require 

high amounts of post-processing. Particularly, removal of cerebrospinal fluid (CSF) from 

DTI data is crucial, since contamination by CSF can alter the results and be highly 

misleading. 

The aim of this study was to establish a robust and fully-automated imaging marker for 

cSVD based on DTI, which can be easily implemented in studies with a large number of 

subjects. Our ultimate goal was to establish a disease marker that can detect the cSVD burden 

reliably and is highly sensitive to disease related clinical changes. We are hoping the ease of 

applying this marker will facilitate its application in large clinical trials for assessment of 

treatment effects. 

 

1.5.2. Cortical superficial siderosis in different types of cerebral small vessel disease 

(Study 2) 

Recently, cSS emerged as a new imaging marker for CAA. cSS is often associated with 

intracerebral hemorrhages, transient focal neurological episodes, cognitive deficits and 

dementia (Lummel et al., 2015), and therefore clinically very relevant.  Other causes of cSS 

are known, such as vasculitis, reversible cerebral vasoconstriction syndrome or traumatic 

subarachnoid hemorrhage, however it is most commonly found in patients with CAA (Linn et 

al., 2010; Lummel et al., 2015). The presence of cSS is also associated with other typical 

cSVD imaging signs, particularly cerebral microbleeds and white matter hyperintensities. 

This raises questions about the specificity of cSS as a marker of CAA, and it remains 

unknown whether cSS is also present in other types of cSVD. Therefore, we analyzed the 

prevalence of cSS in patients with CADASIL, a model for severe non-amyloidogenic cSVD, 

and in subjects with age-related cSVD. 

Furthermore, cSS is not the only manifestation of CAA; in addition, vascular risk factor 

related cSVD and CAA share many imaging disease markers. The imaging manifestations of 

CAA are intracerebral hemorrhages (Smith & Eichler, 2006), and microbleeds (Vernooij et 

al., 2008) as well as white matter hyperintensities (Gurol et al., 2013) and  microinfarcts 

(Kimberly et al., 2009). For diagnostic purposes, it is important to distinguish between the 
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underlying pathologies leading to the aforementioned imaging signs of cSVD. For this 

purpose, we also compared the distribution of WMHs and CMBs between patients with 

CADASIL, age-related cSVD and probable CAA with cSS. 
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2.1.1. Abstract 

Objective: To establish a fully-automated, robust imaging marker for cerebral small vessel 

disease (SVD) and related cognitive impairment, that is easy to implement, reflects disease 

burden, and is strongly associated with processing speed, the predominantly affected 

cognitive domain in SVD.  

Methods: We developed a novel MRI marker based on diffusion tensor imaging, 

skeletonization of white matter tracts, and histogram analysis. The marker (peak width of 

skeletonized mean diffusivity, PSMD) was assessed along with conventional SVD imaging 

markers. We first evaluated associations with processing speed in patients with genetically 

defined SVD (n=113). Next, we validated our findings in independent samples of inherited 

SVD (n=57), sporadic SVD (n=444), and in memory clinic patients with SVD (n=105). The 

new marker was further applied to healthy controls (n=241) and to patients with Alzheimer’s 

disease (n=153). We further conducted a longitudinal analysis and inter-scanner 

reproducibility study. 

Results: PSMD was associated with processing speed in all study samples with SVD (p-

values between 2.8 x 10
-3 

and 1.8 x 10
-10

). PSMD explained most of the variance in 

processing speed (R
2
 ranging from 8.8% to 46%) and consistently outperformed conventional 

imaging markers (white matter hyperintensity volume, lacune volume, and brain volume) in 

multiple regression analyses. Increases in PSMD were linked to vascular but not to 

neurodegenerative disease. In longitudinal analysis, PSMD captured SVD progression better 

than other imaging markers. 

Interpretation: PSMD is a new, fully automated, and robust imaging marker for SVD. 

PSMD can easily be applied to large samples and may be of great utility for both research 

studies and clinical use. 
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2.1.2. Introduction 

Cerebral small vessel disease (SVD) represents a major cause of vascular cognitive 

impairment (VCI) and dementia, either by its own or in combination with neurodegenerative 

pathology (Pantoni, 2010). Progress in understanding and managing SVD has been relatively 

slow. This in part relates to the lack of a good disease marker that is quantitative, robust, 

reflects disease burden, and can easily be applied to a large number of subjects. 

Previous studies have suggested a wide range of mostly MRI-based markers for SVD 

and VCI. The most commonly used markers are white matter hyperintensity (WMH) and 

lacune volumes (Wardlaw, Smith, Biessels, et al., 2013). Yet, both markers have clear 

limitations. First, lesion quantification is labor-intensive and subject to bias because of errors 

in lesion classification and the requirement for manual corrections (Wardlaw, Valdés 

Hernández, & Muñoz-Maniega, 2015). Second, associations with clinical symptoms, such as 

cognitive deficits are typically weak (Nitkunan et al., 2008; Patel & Markus, 2011). Stronger 

associations have been reported for brain volume (Duering et al., 2011; Nitkunan et al., 2008; 

Viswanathan et al., 2010). However, alterations in brain volume are relatively unspecific and 

generally considered a marker for neurodegenerative pathology (Frisoni et al., 2010). Also, 

automated volumetric analysis of diseased brains is methodologically challenging because of 

altered tissue contrast (De Guio et al., 2014; O’Sullivan et al., 2008). Hence, there is great 

demand for better markers of SVD burden (Charidimou & Werring, 2012; Smith, Schneider, 

Wardlaw, & Greenberg, 2012; Wardlaw, Smith, Biessels, et al., 2013). 

Diffusion tensor imaging (DTI) is a sensitive technique that allows quantifying 

microstructural tissue alterations (Nucifora et al., 2007), which can be invisible on 

conventional MRI. The typical pattern of diffusion change in SVD is a reduction in 

directionality, as captured by fractional anisotropy (FA), and a prominent increase in the 

magnitude of diffusion, as captured by mean diffusivity (MD). Previous studies suggested 

that these DTI metrics are superior to conventional imaging markers in assessing disease 

burden in SVD (Nitkunan et al., 2008; Tuladhar et al., 2015; van Norden, de Laat, et al., 

2012). However, there are obstacles to the wider application of DTI measures, in particular, 

the need for extensive data post-processing such as the removal of prominent cerebrospinal 

fluid (CSF) signal from MD images. 
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The aim of this study was to develop a new imaging marker for disease burden in SVD 

that can be used in clinical routine and readily applied to large samples. We requested that 

this marker should reflect the underlying disease (SVD) and correlate with clinical deficits 

typically seen in these patients. We further reasoned that the marker should be robust, fully 

automated, and easy to implement. To this end, we combined two processing techniques for 

DTI data: skeletonization and histogram analysis. Skeletonization focuses the analysis of MD 

on the main fiber tracts, thereby largely eliminating CSF contamination. Whole-brain 

histogram analysis is particularly appropriate when dealing with diffuse diseases and when 

quantifying total disease burden (Tofts, Davies, & Dehmeshki, 2003). 

We first established our new imaging marker, peak width of skeletonized mean 

diffusivity (PSMD), in patients with CADASIL (Cerebral Autosomal-Dominant Arteriopathy 

with Subcortical Infarcts and Leukoencephalopathy), a genetically defined form of severe 

SVD. We analyzed the relationship of this marker with processing speed since speed has 

emerged as the most prominently affected cognitive domain in SVD. Next, we validated our 

results in an independent sample of CADASIL patients. We then evaluated two samples 

comprising patients with sporadic SVD. In each sample, we compared PSMD with 

conventional SVD markers. We also applied the novel marker to healthy controls and patients 

with Alzheimer’s disease (AD) pathology (Fig 1). Finally, we addressed the utility of the new 

marker in multicenter trials through sample size estimations and assessment of inter-scanner 

reproducibility. 

 

2.1.3. Subjects and methods  

Subjects, MRI acquisition, and neuropsychological testing  

All studies used in this analysis were approved by the ethics committees of the respective 

institutions. Written informed consent was obtained from all subjects. Characteristics of the 

study samples are provided in Tables 1 and 2. 
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Figure 1. Study design. The new imaging marker peak width of skeletonized MD (PSMD) was first 

established in a large CADASIL dataset with MR imaging at 1.5T. Independent validation was 

performed in a new CADASIL sample scanned at 3T. In a third step the marker was applied to 

samples with sporadic small vessel disease (RUN DMC and Utrecht). Lastly, the marker was 

evaluated in healthy subjects (HC) as well as samples with predominant Alzheimer pathology (MCI 

and AD dementia, ADD). Numbers indicate subjects with usable DTI data in the samples. 

 

CADASIL exploratory sample  

The novel DTI-based marker was developed in an exploratory sample of 117 patients with 

CADASIL from a previous, prospective study (Duering, et al., 2013). The diagnosis was 

confirmed either by genetic testing or skin biopsy. Four patients were excluded due to 

insufficient quality of the DTI images. For the regression analysis on processing speed 

additional nine subjects were excluded because of missing neuropsychological data. 

Therefore, the final sample for regression analyses consisted of 104 patients. 

MRI scans were performed on a 1.5T GE Healthcare Signa scanner (Solingen, 

Germany). Acquisition parameters are presented in Supplementary Table e-1.  

Neuropsychological testing was performed on the previous or the same day as the MRI 

examination. Trail Making Test (TMT) matrix A and B were used to create a compound 

processing speed score. Raw test scores were transformed into age- and education-corrected 

z-scores based on values from healthy subjects (Tombaugh, 2004). 

Longitudinal data (follow-up at 18 months) were available for 58 patients.  
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CADASIL validation sample (VASCAMY study) 

A total of 57 patients with CADASIL from the ongoing, prospective VASCAMY (Vascular 

and amyloid predictors of neurodegeneration and cognitive decline in non-demented 

subjects) study were included in the validation sample. Again, the diagnosis was confirmed 

either by genetic testing or skin biopsy. From the same study we also included 69 non-

CADASIL subjects: 21 diagnosed with (mostly amnestic) mild cognitive impairment and 48 

healthy controls.  

MRI scans were performed on a 3T Siemens Magnetom Verio scanner (Erlangen, 

Germany). For inter-scanner reproducibility analysis, 7 CADASIL patients from the 

VASCAMY study were scanned back-to-back on both the 3T scanner and a 1.5T Siemens 

Magnetom Aera scanner. Acquisition parameters are presented in Table e-1.  

Neuropsychological testing was performed on the previous or the same day as the MRI 

examination. Similar to the exploratory sample, age- and education-corrected TMT A and B 

z-scores were used to create a compound processing speed score. 

Sporadic small vessel disease sample (RUN DMC study) 

444 subjects from the RUN DMC (Radboud University Nijmegen Diffusion tensor and 

Magnetic resonance imaging Cohort) study (Norden et al., 2011) were included. The 

processing speed scores could not be calculated for five subjects because of missing 

neuropsychological data. Furthermore, 3 outliers were excluded from the regression analyses 

(see section Statistical analysis) and the final sample for regression analysis consisted of 436 

subjects.  

MRI scans were performed on a 1.5T Siemens Magnetom Sonata scanner. Acquisition 

parameters are presented in Table e-1.  

Neuropsychological testing was performed within 3 weeks before the scanning. The 1-

letter subtask of the Paper-Pencil Memory Scanning Task and the Letter-Digit Substitution 

Task were used to create a compound processing speed score. Raw test scores were 

transformed into age- and education-corrected z-scores based on values from healthy subjects 

(van der Elst et al., 2006; 2007). 
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Memory clinic patients with small vessel disease (Utrecht) 

133 subjects from the Memory Clinic cohort of the Utrecht Vascular Cognitive Impairment 

Study Group were included. Recruitment and data collection was done according to the 

multicenter Dutch Parelsnoer Institute Neurodegenerative diseases protocol (Aalten et al., 

2014). 23 subjects had to be excluded due to motion slice artifacts in the DTI data. 5 subjects 

had missing structural MRI data (T1, FLAIR or both) and were therefore not included in 

further analyses. Of the remaining 105 patients, 10 presented with subjective cognitive 

complaints, 43 with mild cognitive impairment (according to the Peterson criteria; Petersen, 

2004) and 52 with dementia. In order to focus on patients with SVD within the memory 

clinic sample, we performed a pre-specified subgroup analysis: Subgroups were pre-defined 

according to the WMH load by splitting at the median normalized WMH volume. Subgroups 

consisted of 52 subjects with low WMH load and 53 with high WMH load. Three subjects 

from the low WMH and 6 subjects from the high WMH group had to be excluded from 

regression analyses because of missing cognitive data.  

MRI scans were performed on a Philips Intera 3T scanner (Best, The Netherlands). 

Acquisition parameters are presented in Table e-1.  

Neuropsychological testing was performed on the same day as the MRI examination. 

Similar to the CADASIL samples, age- and education-corrected TMT A and B z-scores were 

used to create a compound processing speed score (mean of both Z-scores). 

Alzheimer’s Disease Neuroimaging Initiative Study (ADNI) 

The Alzheimer’s Disease Neuroimaging Initiative was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD (for up-to-date 

information, see www.adni-info.org). 185 subjects from the ADNI database 

(http://adni.loni.usc.edu/) (from 17 centers with the same DTI protocol, ADNIGO and 

ADNI2 phases) were included in the current study. 19 subjects were excluded due to either 

missing diagnosis, missing MRI data or motion artifacts in the DTI data. The final sample 

consisted of 166 subjects, of whom 61 were healthy controls, 68 amnestic mild cognitive 

impairment (MCI) subjects and 37 AD dementia patients (diagnosis according to the 

NINCDS-ADRDA criteria for probable AD as outlined in the ADNI protocol).  

MRI scans were performed on 3T GE Healthcare scanners (Signa HDxt and Discovery 

MR750). Acquisition parameters are presented in Table e-1.  
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Austrian Stroke Prevention Family Study (ASPFS) 

135 community-dwelling, healthy subjects with DTI data were included from the Austrian 

Stroke Prevention Family Study (ASPFS – Department of Neurology, Medical University 

Graz) (Ghadery et al., 2015). Three subjects were excluded due to insufficient data quality of 

the DTI images. The final sample consisted of 132 subjects.  

MRI scans were performed on a 3T Siemens Magnetom Tim Trio scanner. Acquisition 

parameters are presented in Table e-1.  

 

MRI processing 

Diffusion tensor imaging 

After a quick (maximum = 15 seconds) visual inspection to exclude the presence of major 

artifacts, diffusion-weighted images were corrected for eddy current induced distortions and 

subject motion with the eddy_correct tool of the Functional Magnetic Resonance Imaging of 

the Brain (FMRIB) software library (FSL; v5.0) (Smith et al., 2004).
 
In RUN DMC, diffusion 

data were pre-processed using the in-house-developed iteratively reweighted-least-squares 

algorithm ‘PATCH’ (Zwiers, 2010).
 
After brain tissue extraction using BET (FSL), diffusion 

tensors and scalar diffusion parameters (i.e. FA and MD) were calculated using DTIFIT 

(FSL). 

Peak width of skeletonized mean diffusivity (PSMD)  

Fully automated calculation of the new marker comprised 2 steps: Skeletonization of DTI 

data and histogram analysis (Fig 2). All study samples were processed through the same 

pipeline. First, DTI data were skeletonized using the Tract-Based Spatial Statistics procedure 

(TBSS) (Smith, Jenkinson, & Johansen-Berg, 2006),
 
part of FSL. For this purpose, all 

subjects' FA data were aligned into a common space using the nonlinear registration tool 

FNIRT and the standard space FMRIB 1mm FA template. Each subject’s FA data was then 

projected onto the skeleton, which was derived from the standard space template thresholded 

at an FA value of 0.2. Finally, MD images were projected onto the skeleton, using the FA-

derived projection parameters. The final MD skeletons were further masked with the 

template skeleton thresholded at an FA value of 0.3 in order to avoid contamination of the 

skeleton through CSF partial volume effects. For the same reason, regions of the skeleton 
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directly adjacent to the ventricles, such as the fornix, were removed from further analysis by 

a custom-made mask. The same template skeleton and mask were used for each study 

sample. 

The new marker, “peak width of skeletonized MD” (PSMD) was calculated as the 

difference between the 95th and 5th percentiles of the voxel-based MD values within the 

skeleton (see Fig 2). We compared PSMD to established MD parameters (mean, median, 

peak height, full width at half maximum) in the exploratory CADASIL sample: PSMD 

showed the strongest association with processing speed scores and was therefore used for all 

subsequent analyses in all study samples.  

A shell script for the calculation of PSMD is available at http://www.psmd-

marker.com/. The total calculation for one subject (from DTI raw data) takes approximately 

12 minutes on a standard desktop computer. All processing steps (including pre-processing) 

are included in the shell script. No human intervention (e.g. visual inspection or manual 

edits) is needed during or after the processing pipeline.  

For comparison, we also calculated whole brain MD peak height, an established 

histogram measure for non-skeletonized data. First, CSF was removed by a conventional 

method (i.e. intensity thresholding with a value of 0.0025). Next, the peak height of the 

histogram was estimated using the density function in R (v3.1.2, R Core Team, 2014) and 

normalized by the total number of voxels in the histogram. 

Normalized brain volume 

In each sample, brain parenchymal fraction (BPF; i.e. normalized brain volume) was 

calculated by dividing the whole brain volume by intracranial cavity volume.  

For the CADASIL exploratory sample and the RUN DMC study the brain volume 

calculation procedure has already been described (Duering et al., 2011; Tuladhar et al., 2015).
 

Due to uncorrectable failure in either brain or intracranial segmentation we could not 

calculate BPF for 2 CADASIL subjects. 

In the VASCAMY study, native space T1 and T2 images were segmented into tissue 

probability maps using the Statistical Parametric Mapping (SPM) toolbox (v12; Wellcome 

Department of Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm). For 

whole brain volume, T1 segmented grey matter and white matter tissue maps; for the 
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intracranial volume, T2 segmented grey matter, white matter, and CSF) were combined, 

thresholded at 20 % and binarized. Manual editing was performed when necessary.  

 

 

 

Figure 2. Procedure for marker calculation: Skeletonization and histogram analysis.  

(A) Illustration of the automated skeletonization procedure. Individual FA images are normalized to 

standard space and projected onto the skeleton template. Next, the transformation and skeleton 

projection parameters are applied to the MD images. (B) Examples of MD maps from two CADASIL 

subjects (upper and lower panel) projected onto the standard skeleton. (C) Histogram analysis of the 

same MD data as in B. PSMD is calculated as the difference between the 95th and 5th percentiles. 
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Table 1. Characteristics of study samples with predominant vascular disease 

 

CADASIL 

exploratory, 

n=113 

CADASIL 

validation 

(VASCAMY), 

n=57 

Sporadic SVD 

(RUN DMC), 

n=444 

Memory clinic 

patients with SVD 

(Utrecht), 

n=105 

Demographic characteristics     

Age, yr, mean (SD) 

[min, max] 

49.1 (9.5) 

[22.9, 72.8] 

53.4 (10.7) 

[29.0, 72.0] 

65.3 (8.9) 

[49.6, 85.5] 

74.9 (8.3)  

[50.0, 92.0] 

Education, yr, mean (SD) 

[min, max] 

10.5 (2.2) 

[9, 16] 

14 (2.7) 

[10, 20] 

11 (3.6)  

[4, 19] 

12.2 (2.7) 

[4, 17] 

Female, No.  {%} 61 {54.0} 19 {33.3} 201 {45.3} 51 {48.6} 

Vascular risk factors, No.  {%} 

Current smoker 28 {24.8} 11 {19.3} 69 {15.5} 10 {9.5} 

Past smoker 39 {34.5} 24 {42.1} 239 {53.8} 57 {54.3} 

Hypertension 26 {23.0} 13 {22.8} 320 {72.1} 97 {92.4} 

Hypercholesterolemia 36 {31.9} 24 {42.1} 194 {43.7} 64 {61.0} 

Diabetes 0 {0.0} 0 {0.0} 61 {13.7} 29 {27.6} 

Cognitive scores     

TMT-A,
a
 median (IQR) 

[min, max] 

-0.85 (2.64) 

[-22.22, 1.39] 

-0.50 (1.61) 

[-13.24, 1.34] 
- 

-1.29 (3.03) 

[-13.05, 1.02] 

TMT-B,
a
 median (IQR)  

[min, max] 

-2.14 (4.60) 

[-16.38, 1.67] 

-0.48 (3.05) 

[-11.59, 1.72] 
- 

-1.73 (3.05) 

[-22.11, 1.51] 

1-letter P&P MST,
a
 median 

(IQR) 

[min, max] 

- - 
-2.91 (2.71) 

[-17.97, 1.45] 
- 

LDST,
a
 median (IQR) 

[min, max] 
- - 

-0.38 (2.15) 

[-3.74, 4.47] 
- 

Speed score,
a
 median (IQR) 

[min, max] 

-1.56 (2.80)  

[-17.44, 1.24] 

-0.56 (2.33) 

[-12.42, 1.16] 

-1.67 (2.17) 

[-10.20, 2.96] 

-1.73 (2.60) 

[-11.52, 1.13] 

MMSE, median (IQR)  

[min, max] 

29 (3) 

[15, 30] 

30 (1) 

[22, 30] 

29 (2) 

[22, 30] 

26 (4) 

[20, 30] 

Imaging characteristics     

PSMD, 10
-4 

mm
2
/s, median 

(IQR)  

[min, max] 

5.43 (2.92) 

[2.82, 10.87] 

5.47 (2.69) 

[2.63, 9.47] 

3.28 (0.87) 

[2.30, 7.95] 

4.24 (1.05) 

[2.82, 8.72] 

Normalized WMHV, %, 

median (IQR) [min, max] 

9.81 (8.80) 

[0.06, 30.99] 

7.38 (7.53) 

[0.09, 22.84] 

0.59 (1.23) 

[0.05, 14.03] 

1.12 (2.58)  

[0, 7.70] 

Normalized LV, %, median 

(IQR) 

[min, max] 

0.0093 (0.0315) 

[0, 0.2118] 

0.0240 (0.0639) 

 [0, 0.2477] 

0 (0) 

[0, 0.1027] 

0 (0) 

[0, 0.0577] 

BPF, median (IQR) 

[min, max] 

0.836 (0.068)  

[0.655, 0.935] 

0.784 (0.069) 

[0.699, 0.872] 

0.654 (0.077) 

[0.499, 0.809] 

0.621 (0.055) 

[0.528, 0.759] 

a
age & education adjusted z-scores. BPF=brain parenchymal fraction; IQR=interquartile range; LDST=letter 

digit substitution test; LV=lacune volume; MMSE=mini mental state examination; P&P MST=paper pencil 

memory scanning test; PSMD=peak width of skeletonized mean diffusivity; SD=standard deviation; TMT=trail 

making test; WMHV=white matter hyperintensity volume. 
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Table 2. Characteristics of healthy controls and patients with AD pathology  

ADD=Alzheimer’s disease dementia; ASPFS=Austrian Stroke Prevention Family Study (comprising healthy 

elderly from the population); HC=healthy control; IQR=interquartile range; MCI=mild cognitive impairment; 

MMSE=mini mental state examination; PSMD=peak width of skeletonized mean diffusivity; SD=standard 

deviation. 

 

 

In the Utrecht study, native space T1 images and T2 images were segmented into tissue 

probability maps using SPM. For whole brain volume, T1 segmented grey matter and white 

matter tissue maps were combined, thresholded at 30 %, and binarized. Intracranial volume 

was calculated using the BET (brain extraction) tool (FSL) on T2 images and the resulting 

masks were manually edited if necessary. 

Subcortical lesion volumes 

We used the STRIVE (Wardlaw et al., 2013b) criteria to define and identify white matter 

hyperintensities (WMH) and lacunes of presumed vascular origin. Detection and 

segmentation procedures have already been described for the CADASIL exploratory sample, 

the RUN DMC study, and the ADNI study (Decarli, Maillard, & Fletcher, 2013; Duering et 

al., 2011; Tuladhar et al., 2015).
 
Normalized WMH and lacune volumes for each sample were 

calculated by dividing through brain volume. For WMH volume in the CADASIL validation 

(VASCAMY study) and Utrecht samples, bias-corrected 3-dimensional (3D) FLAIR images 

 

HC 

(VASCAMY), 

n=48 

MCI 

(VASCAMY), 

n=21 

HC 

(ADNI), 

n=61 

MCI 

(ADNI), 

n=68 

ADD 

(ADNI), 

n=37 

Population 

(ASPFS), 

n=132 

Demographic characteristics 

Age, yr, mean 

(SD) 

[min, max]  

71.5 (6.3) 

[60, 84] 

76.5 (4.4) 

[70, 87] 

72.9 (5.7) 

[60.4, 87] 

74.7 (8.1) 

[48.7, 88.6] 

74 (8.2) 

[55.9,90.2] 

66.9 (11.4) 

[40, 85] 

Education, yr, 

mean (SD) 

[min, max] 

14 (3.1) 

[8, 20] 

14 (3.7) 

[7, 20] 

16.5 (2.8) 

[12, 20] 

15.9 (2.7) 

[11, 20] 

15 (2.8) 

[11, 20] 

11.4 (2.8) 

[9, 18] 

Female, No. {%} 30 {62.5} 11 {52.4} 37 {60.7} 24 {35.3} 12 {32.4} 81 {61.4} 

Global cognitive score 

MMSE, median 

(IQR) 

[min, max] 

30 (1) 

[27, 30] 

27 (3) 

[22, 30] 

29 (2) 

[24, 30] 

27 (3) 

[23, 30] 

23 (3) 

[15, 27] 

28 (1) 

[23, 30] 

Imaging characteristics 

PSMD, 10
-4

mm
2
/s, 

median (IQR) 

[min, max] 

3.05 (0.47) 

[2.58, 4.96] 

3.33 (0.62) 

[2.72, 5.37] 

3.02 (0.72) 

[2.23,6.85] 

3.20 (0.88) 

[2.35, 5.03] 

3.47 (0.96) 

[2.59, 5.03] 

3.05 (0.72) 

[2.16, 6.76] 
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were first segmented into 3 tissue probability maps using FAST tool from FSL. Next, WMHs 

were separated from CSF, which is located in the same tissue probability map, by histogram 

segmentation based on the Otsu method (Otsu, 1979). The WMH segmentations were then 

manually edited and cleaned from misclassified artifacts using a custom 3D editing tool.  

To determine the lacune volume in the CADASIL validation and Utrecht samples, we 

used a seed-growing algorithm, implemented via an in-house software tool. After manually 

placing a seed voxel into a lacune on the 3D T1 image by an experienced rater, the tool tests 

all neighboring voxels for inclusion and repeats testing until no new voxels can be added. 

The inclusion criterion was the absolute intensity of the tested voxel and its intensity 

difference to the seed voxel. All cavities smaller than 3mm were ignored to exclude 

perivascular spaces.  

Cerebral microbleeds 

Using the STRIVE (Wardlaw et al., 2013) criteria, cerebral microbleeds were identified and 

counted on T2*-weighted gradient echo images by trained raters. 

Statistical analysis 

All statistical analyses were performed in R (v3.1.2; R Core Team, 2014).
 
The association 

between MRI parameters (PSMD, normalized WMH volume, normalized lacune volume, 

BPF, and microbleed count), age, sex, and the processing speed scores was evaluated by 

linear regression. The distributions of speed scores were tested for normality in each sample 

with the Shapiro-Wilk test and scores were log transformed in case of non-normal 

distribution. In order to ensure that the regression results were not driven by outliers, they 

were identified with the Bonferroni outlier test (car R package, v2.0-25; Fox & Weisberg, 

2011)
 
and excluded from regression analyses (only 3 subjects from the RUN DMC sample).  

To identify the imaging marker with the highest relative importance, we included all 

markers into multiple linear regression models and applied a model decomposition method 

described by Lindeman, Merenda, and Gold (1980), as implemented in the relaimpo R 

package (v2.2-2; Grömping, 2006).
 
Additionally, we used stepwise backward regression with 

MRI parameters, age, and sex to identify independent associations with processing speed. 

The Akaike Information Criterion (AIC) was used to select the model with the best fit 

(minimized AIC value). All R
2
 values reported are adjusted R

2
 values. For group comparisons 
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of PSMD across different clinical samples (within studies) we used the Wilcoxon rank sum 

test. To correct for multiple comparisons, Bonferroni-corrected p-values are reported for 

group comparisons. The sample size estimates were calculated on the longitudinal change of 

variables using the G*Power tool (Faul, Erdfelder, Lang, & Buchner, 2007) (difference 

between two independent means, two-tailed, type I error rate 0.05, power 0.80). We used the 

raw change between baseline and follow-up data and hypothetical treatment effects of 10%, 

20%, and 30%. Inter-scanner reproducibility was assessed by the intraclass correlation 

coefficient (ICC) as implemented in R. 

 

2.1.4. Results 

Demographic, clinical, and MRI characteristics of the study samples with SVD are presented 

in Table 1. Details on study samples with healthy controls and subjects with AD diagnosis 

are presented in Table 2. 

Exploratory analysis in CADASIL patients 

Linear regression (Supplementary Table e-2) revealed PSMD to have the strongest 

association with processing speed scores (Fig 3A, upper panel). Speed scores were further 

significantly associated with all other imaging markers and age (Table e-2). For comparison, 

we added an established DTI histogram marker (whole brain MD peak height), which 

explained less variance than PSMD (Table e-2). 

Analysis of the relative importance of the regressors showed that PSMD contributed 

most to the multiple regression model (Fig 3A, lower panel). To determine the best model, 

we further conducted a backward stepwise regression. PSMD and the normalized volumes of 

both WMH and lacunes were retained in the final model (Table e-2).  

Validation in independent samples  

In the independent CADASIL validation sample, linear regression (Table e-2) revealed a 

strong association between PSMD and speed scores (Fig 3B, upper panel). Speed scores were 

further significantly associated with microbleed count, normalized lacune volume, and age 

(Table e-2). Importantly, PSMD contributed most to the regression model (Fig 3B, lower 

panel). For further exploration, we again conducted backward stepwise regression: PSMD 

and normalized lacune volume were retained in the final model (Table e-2). 
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To validate our findings in the more common, sporadic form of SVD, we next analyzed 

data from the RUN DMC study. Linear regression (Table e-2) showed a significant 

association between PSMD and speed scores (Fig 3C, upper panel). Speed scores were also 

significantly associated with all other imaging markers, age and sex (Table e-2). Again, 

PSMD contributed most to the multiple regression model (Fig 3C, lower panel). Further 

exploratory backward stepwise regression resulted in a final model that included only PSMD 

(Table e-2). 

We next extended our findings to sporadic SVD in a memory clinic setting (Utrecht 

study). None of the linear regression analyses with the MRI markers (PSMD, normalized 

WMH volume, lacune volume, BPF, and microbleed count) showed a significant association 

with the speed scores (not shown) within the entire memory clinic sample. In subjects with 

prominent vascular disease as determined by a WMH load above the median value (high 

WMH subgroup, n=53), we found a significant association (Table e-2) between PSMD and 

speed scores (Fig 3D, upper panel). Speed scores were also significantly associated with age 

(Table e-2). Focusing on the low WMH load group (n=52), the only imaging variable that 

was significantly associated with speed scores was BPF (p=0.023, R
2
=0.09). Importantly, 

PSMD contributed most to the multiple regression model (Fig 3D, lower panel). Further 

exploratory backward stepwise regression resulted in a final model that included PSMD and 

age (Table e-2). 
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Figure 3. Association between imaging markers and processing speed performance in SVD.  

Upper panels: Simple linear regression between PSMD and processing speed scores in the 

exploratory CADASIL sample (A), the CADASIL validation sample (B), the sporadic SVD sample 

(RUN DMC) (C) and the memory clinic patients with SVD (Utrecht) (D). Dashed lines indicate 95% 

confidence intervals for the regression. Lower panels depict the contribution of each regressor 

(PSMD, normalized WMH volume, lacune volume, BPF, and microbleed count) to the multiple 

regression models as estimated by the Lindeman-Merenda-Gold method. Note that in all cases PSMD 

contributes most to the models. Lines represent 95% confidence intervals after bootstrapping. 

BPF=brain parenchymal fraction, nLV=normalized lacune volume, nWMHV=normalized white 

matter hyperintensity volume. 

 

Comparison with healthy controls and subjects with Alzheimer pathology 

Figure 4 demonstrates that patient samples with high SVD burden (CADASIL, RUN DMC, 

Utrecht) had higher PSMD compared with healthy controls and AD patients (MCI and AD 

dementia). Moreover, PSMD increased with higher WMH load. Focusing on the ADNI 

sample, there was no difference between healthy controls (PSMD median = 3.020 x 10
-4

 

mm
2
/s) and MCI patients with low WMH load (median = 2.935 x 10

-4
 mm

2
/s, W = 903, p = 

1) or AD dementia patients with low WMH load (median = 3.415 x 10
-4

 mm
2
/s, W = 477, p = 

1). Also, healthy controls had comparable PSMD across studies: VASCAMY (median = 

3.045 x 10
-4

 mm
2
/s), ADNI (median = 3.020 x 10

-4
 mm

2
/s), population sample (ASPFS, 

median = 3.045 x 10
-4

 mm
2
/s).  
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Figure 4. PSMD in subjects with SVD, healthy controls, and subjects with Alzheimer’s disease. 

PSMD is presented across samples: CADASIL, sporadic SVD (RUN DMC, Utrecht), MCI 

(VASCAMY and ADNI), and AD dementia (ADNI). RUN DMC, Utrecht, and ADNI samples were 

split into subgroups based on the volume of white matter hyperintensities (according to median split 

or quartiles, Q=quartile). Group comparisons were calculated between subgroups within studies: *p < 

0.05, **p < 0.01, ***p < 0.001 (Wilcoxon rank sum tests after Bonferroni correction). 

ADD=Alzheimer’s disease dementia, HC=healthy controls, MCI=mild cognitive impairment, 

SVD=small vessel disease. Samples selected on the basis of SVD pathology are indicated in blue. 

Samples selected on the basis of AD-typical cognitive deficits are indicated in grey. 

 

 

There was no significant association between PSMD and processing speed in any of the 

non-SVD samples (p-values ranging between 0.24 and 0.79). 

 

Table 3. Sample size estimation for a hypothetical clinical trial of 1.5 years duration 

 
Treatment effect size 

 
30% 20% 10% 

PSMD 96 216 859 

Whole brain MD peak height 183 410 1636 

Normalized WMH volume 258 580 2315 

BPF 4511 10149 40592 

Speed score 5387 12119 48471 

Normalized Lacune volume 11354 25545 102176 

BPF=brain parenchymal fraction; MD=mean diffusivity; PSMD=peak width of skeletonized mean 

diffusivity; WMHV=white matter hyperintensity. 
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2.1.5. Discussion 

Our study establishes a novel imaging marker for SVD. This marker combines DTI, 

skeletonization of white matter tracts, and the analysis of MD histograms. Calculation of this 

marker is fully automated, fast, and robust, thus fulfilling the requirements for routine use 

and the application to large samples. PSMD explained a substantial proportion of variance in 

processing speed, the predominantly affected cognitive domain in SVD, and consistently 

outperformed other imaging makers for SVD. We could validate our findings in independent 

samples of SVD. We further found this marker to be linked to small vessel pathology but not 

to neurodegenerative pathology. Finally, PSMD showed the smallest sample size estimate in 

the longitudinal analysis and the highest inter-scanner reproducibility. We thus consider 

PSMD to be of great value for research studies and potentially also for use in clinical routine 

and trials. 

A major finding of our study is the strong association between PSMD and deficits in 

processing speed across all study samples including patients with genetically defined SVD, 

patients with sporadic SVD, and memory clinic patients with high WMH burden. The 

association was strongest for patients with inherited SVD, who on average were the most 

severely affected group as judged by the normalized volume of WMH, the normalized 

volume of lacunes, and PSMD. While the association was weaker for patients with sporadic 

SVD, PSMD consistently showed the strongest contribution to processing speed impairment 

when compared with other imaging markers. Importantly, as judged by stepwise regression 

analyses, PSMD was the only imaging marker showing an independent association with 

processing speed in every SVD sample. 

Methodological challenges in quantifying disease burden have been a major roadblock 

to research on SVD and related cognitive impairment. The superior performance of PSMD 

over conventional MRI markers results from the combination of DTI, skeletonization of 

white matter tracts, and histogram analysis. DTI is a quantitative method that is particularly 

well suited to characterize microstructural integrity. In contrast, lesion volumes (WMH or 

lacunes) rely on binary segmentations of non-quantitative images. Hence, lesion volumes 

disregard gradual differences in tissue damage found in SVD (Maillard et al., 2011).
 
In 

addition, DTI measures are more sensitive in capturing SVD-related changes as evidenced by 

altered DTI measures in white matter appearing normal on conventional imaging (De Groot 
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et al., 2013; van Norden et al., 2012a).
 
Previous studies found DTI parameters to correlate 

with cognitive performance both cross-sectionally (Lawrence et al., 2013; Tuladhar et al., 

2015; van Norden et al., 2012a)
 
and over time (Jokinen et al., 2013; Nitkunan et al., 2008), 

and in most studies DTI measures were found to correlate with cognitive scores independent 

of conventional SVD markers. However, one study found DTI to add little on top of brain 

and lesion volumes (van Norden et al., 2012b).
 
Histogram analysis is a simple, sensitive, and 

robust way to quantify diffuse pathological changes as it captures the distribution of 

diffusivity values across the whole brain (Tofts et al., 2003).
 
Studies already showed that 

histogram measures (such as peak height) can capture disease burden in SVD and correlate 

with cognition both cross-sectionally (Lawrence et al., 2013)
 
and in longitudinal studies 

(Holtmannspotter et al., 2005; Molko et al., 2002). However, an unresolved issue was the 

prominent contamination of whole brain MD data through CSF. Skeletonization overcomes 

this problem by focusing on the main fiber tracts (Metzler-Baddeley, O’Sullivan, Bells, 

Pasternak, & Jones, 2012).
 
Nonetheless, residual CSF contamination can be found in certain 

parts of the skeleton, such as the fornix (Berlot, Metzler-Baddeley, Jones, & O’Sullivan, 

2014). We therefore applied a custom mask to remove these areas from the skeleton. This 

procedure efficiently eliminates the CSF peak in the histogram as a prerequisite to calculating 

the peak width. As a result, PSMD outperforms traditional MD histogram measures (such as 

whole brain MD peak height) in terms of the association with processing speed, sample size 

estimates, and inter-scanner reproducibility. 

We found samples with the same diagnosis but recruited through different studies to 

have remarkably similar PSMDs. This specifically applies to healthy controls from 

VASCAMY and ADNI, and to population-based elderly subjects from the ASPFS (see Fig 

4). The stability of this marker across studies might again relate to the quantitative nature of 

DTI. Furthermore, it has already been suggested that DTI parameters in general (Grech-

Sollars et al., 2015) and MD histogram metrics in particular (Cercignani, Bammer, Sormani, 

Fazekas, & Filippi, 2003) are largely reproducible across different scanners and sequences. 

While we cannot fully exclude an influence of scanner type, field strength, and different 

software versions on MD values (Gunda et al., 2014), our inter-scanner reproducibility study 

using two scanners with different field strengths showed the best reproducibility for PSMD. 

It is plausible that PSMD is less prone to inter-scanner and inter-study differences than other 
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DTI (histogram) parameters, since peak width does not depend on absolute MD values but 

rather on the distribution pattern of the histogram. 

The comparison with healthy controls and patients with AD pathology (ADNI sample) 

suggests a strong link between our new marker and SVD. PSMD values in MCI patients with 

a low WMH load and in demented subjects with a low WMH load were not significantly 

different from healthy controls. However, subgroups with high WMH load showed increases 

in PSMD. This suggests that also in AD patients, PSMD mostly captures the SVD-related 

alterations and not primary neurodegenerative pathology. Given the frequent co-occurrence 

of AD and SVD in the elderly, tools that allow disentangling the vascular contribution to 

disease burden are of great interest (Prins & Scheltens, 2015). Our results suggest that PSMD 

may serve that purpose. 

An important application of PSMD might be the use as a marker for treatment response 

in clinical trials. The longitudinal analysis with sample size estimations supports this view, as 

PSMD had the smallest sample size estimate among all variables. Although the longitudinal 

analysis was limited to CADASIL subjects, comparing our results with a recent study in 

sporadic SVD patients suggests good generalizability (Benjamin et al., 2016). In line with 

our analysis, the previous study demonstrated that WMH volume and whole brain MD peak 

height were able to reduce the required sample size in clinical trials. Our results extend these 

findings by demonstrating that PSMD can reduce the sample size even further. Moreover, the 

excellent inter-scanner reproducibility suggests that PSMD might be particularly suited for 

multicenter trials. 

A major strength of this study is the validation approach involving multiple large 

samples. These samples were recruited through different settings and covered a broad 

spectrum of SVD severity. Each study had a prospective design with standardized MRI and 

comprehensive clinical examination. Also, major conventional MRI markers were obtained 

for all samples with SVD. This enabled us to determine the relative importance of our new 

marker in four independent studies. Another strength is the focus on a robust and easy-to-

implement marker, which should greatly facilitate the implementation in future studies. The 

processing pipeline is provided online at www.psmd-marker.com. Given the simple 

processing steps involved, it is possible to perform the calculation on scanner software 

directly after image reconstruction within minutes and without any manual intervention. 
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Our study also has limitations. The use of data from different studies resulted in some 

differences in scanner field strength, DTI b-values (ranging from 900 to 1200 s/mm
2
), and 

neuropsychological tests utilized to assess processing speed. In addition, there were slight 

differences in the protocols used for calculating conventional imaging markers and for pre-

processing of DTI data. These differences limit comparisons between samples. However, 

they can also be regarded as a strength. In fact, our findings illustrate the robustness of 

PSMD under different settings. RUN DMC patients were on average relatively young and 

mildly affected, which might limit the generalizability of our findings towards older cohorts 

at later stages of the disease. However, patients with later disease stages were included in the 

memory clinic sample. A potential limitation for the future application of PSMD is that the 

co-occurrence of large, non-SVD lesions (e.g. territorial infarcts or tumors) might impede the 

automatic calculation of PSMD, as they would have to be manually excluded from the 

analysis. However, such pathologies are rare in SVD patients and accordingly, they were 

absent in all our samples. Another limitation is the mainly cross-sectional design. To 

strengthen our results, we chose advanced statistical methods, such as model decomposition, 

and included multiple validation samples. Nevertheless, the sensitivity of PSMD in capturing 

disease progression can only be determined by longitudinal studies. More detailed follow-up 

studies are needed to determine the value of PSMD as a prognostic marker and to further 

explore its use as a surrogate marker in clinical trials.  

In conclusion, this study presents a novel imaging marker, which we consider to be a 

major step forward in SVD research. We expect the marker to be of great utility for research 

studies and potentially also for clinical use. 
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2.1.7. Supplementary Materials 

Table e-1. MRI acquisition parameters  

Sequence 

CADASIL 

Explorator

y 

CADASIL 

Validation  

CADASI

L 

Rescan 

1.5T 

RUN 

DMC 
Utrecht ADNI ASPS 

T1  TR [ms] 22 2500 - 2250 7.9 400 - 

 TE [ms] 6 4.37 - 3.68 4.5 Min full - 

 
Slice 

[mm] 
1.2 1 - 1 1 1.2 - 

 
In-plane 

[mm] 
0.90x0.90 1x1 - 1x1 1x1 1.02x1.02 - 

T2 TR [ms] 3300 6500 - 800 3198 - - 

 TE [ms] 95 117 - 26 140 - - 

 
Slice 

[mm] 
5 3.3 - 6 3 - - 

 
In-plane 

[mm] 
0.94x0.94 1x1 - 1.3x1.0 0.96x0.96 - - 

FLAIR TR [ms] 8402 5000 - 9000 11000 11000 - 

 TE [ms] 151 395 - 84 125 147 - 

 TI [ms] 2002 1800 - 2200 2800 2250 - 

 
Slice 

[mm] 
5 1 - 5 3 5 - 

 
In-plane 

[mm] 
0.94x0.94 1x1 - 1x1.2 0.96x0.96 0.86x0.86 - 

T2* TR [ms] 1040 742 - 800 1653 - - 

 TE [ms] 22 19.9 - 26 20 - - 

 
Slice 

[mm] 
5 5 - 6 3 - - 

 
In-plane 

[mm] 
0.94x0.94 1x1 - 1.3x1.0 0.96x0.96 - - 

DTI TR [ms] 8300 12700 10700 10100 6638 13000 6700 

 TE [ms] 96 81 105 93 73 68 95 

 
Slice 

[mm] 
5 2 2 2.5 2.5 2.7 2.5 

 
In-plane 

[mm] 
0.94x0.94 2x2 2x2 2.5x2.5 1.72x1.72 1.37x1.37 1.95x1.95  

 
b-value 

[s/mm
2
] 

1000 1000 1000 900 1200 1000 1000 

 Directions 41 30 30 30 45 41 4 x 12 

DTI=diffusion tensor imaging; FLAIR=fluid attenuation inversion recovery; TE=echo time; TI=inversion time; 

TR=repetition time. 
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Table e-2. Linear regression models with processing speed score as dependent variable  

 B SE Beta p-value adj. R
2
 

CADASIL exploratory sample (n=104): Simple linear regression 

  PSMD -2633.432 279.684 -0.682 1.6 x 10
-15

 0.460 

  Whole brain MD peak height 1915.902 227.733 0.640 2.6 x 10
-13

 0.404 

  BPF 6.784 1.261 0.474 4.9 x 10
-7

 0.217 

  Normalized lacune volume -770.396 172.786 -0.411 2.2 x 10
-5

 0.160 

  Age -0.031 0.007 -0.392 3.9 x 10
-5

 0.145 

  Microbleed count -0.046 0.011 -0.384 7.3 x 10
-5

 0.139 

  Normalized WMH volume -4.044 1.066 -0.356 2.6 x 10
-4

 0.118 

  Sex 0.082 0.150 0.054 0.586 -0.007 

CADASIL exploratory sample: Stepwise model (p=2.2 x 10
-16

, R
2
=0.539) 

  PSMD -3415.951 402.965 -0.886 2.8 x 10
-13

 - 

  Normalized WMH volume 4.256 1.167 0.375 4.3 x 10
-4

 - 

  Normalized lacune volume -367.875 140.077 -0.196 0.010 - 

CADASIL validation sample (VASCAMY) (n=57): Simple linear regression 

  PSMD -2356.661 422.689 -0.601 7.7 x 10
-7

 0.350 

  Microbleed count -0.019 0.005 -0.451 4.4 x 10
-4

 0.189 

  Normalized lacune volume -448.614 170.501 -0.334 0.011 0.096 

  Age -0.017 0.009 -0.262 0.049 0.052 

  BPF 3.260 2.005 0.214 0.110 0.029 

  Normalized WMH volume -2.490 1.560 -0.211 0.116 0.027 

  Sex -0.021 0.198 -0.014 0.916 -0.018 

CADASIL validation sample: Stepwise model (p=1.9 x 10
-6

, R
2
=0.363) 

  PSMD -2157.414 439.283 -0.550 8.7 x 10
-6

 - 

  Normalized lacune volume -222.581 150.284 -0.165 0.144 - 

Sporadic SVD (RUN DMC) (n=436): Simple linear regression 

  PSMD -6428.421 983.184 -0.299 1.8 x 10
-10

 0.088 

  Normalized WMH volume -22.266 4.881 -0.214 6.6 x 10
-6

 0.044 

  Normalized lacune volume -2408.848 583.571 -0.194 4.4 x 10
-5

 0.036 

  BPF 5.932 1.481 0.189 7.3 x 10
-5

 0.033 

  Microbleed count -0.093 0.029 -0.153 0.001 0.021 

  Age -0.028 0.009 -0.153 0.001 0.021 

  Sex 0.354 0.155 0.109 0.023 0.010 

Sporadic SVD (RUN DMC): Stepwise model (p=1.8 x 10
-10

, R
2
=0.088) 

  PSMD -6428.421 983.184 -0.299 1.8 x 10
-10

 - 

Memory clinic SVD (high WMH) (Utrecht) (n=47): Simple linear regression 

  PSMD -2893.085 915.687 -0.426 0.003 0.163 

  Age 0.033 0.011 0.413 0.004 0.152 

  Normalized WMH volume -7.838 3.987 -0.281 0.056 0.059 

  Sex -0.181 0.152 -0.175 0.240 0.009 

  Microbleed count 0.035 0.033 0.157 0.293 0.003 

  BPF -0.869 2.646 -0.049 0.744 -0.020 

  Normalized lacune volume -135.702 549.274 -0.037 0.806 -0.021 

Memory clinic SVD (high WMH) (Utrecht): Stepwise model (p=2.9 x 10
-4

, R
2
=0.278) 

  PSMD -2553.067 858.943 -0.376 0.005 - 

  Age 0.029 0.010 0.361 0.007 - 

B=Unstandardized coefficient; Beta=Standardized coefficient; BPF=brain parenchymal fraction; MD=mean 

diffusivity; PSMD=peak width of skeletonized mean diffusivity; SE=standard error of the coefficient; 

WMH=white matter hyperintensity. 
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small vessel disease 

 

Ebru Baykara, MSc
1*

, Frank Arne Wollenweber, MD
1*

, Marialuisa Zedde, MD
2
, 

Benno Gesierich, PhD
1
,Melanie Achmüller

1
, Eric Jouvent, MD, PhD

3
, 

Anand Viswanathan, MD, PhD
4
, Stefan Ropele, PhD

5
, Hugues Chabriat, MD, PhD

3
, 

Reinhold Schmidt, MD
5
, Christian Opherk, MD

6
, Martin Dichgans, MD

1
,  

Jennifer Linn, MD
7
, Marco Duering, MD

1 

 

1 
Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-

Maximilians-Universität LMU, Munich, Germany 
2
 Neurology Unit, Stroke Unit, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy 

3
 University Paris Diderot, Sorbonne Paris Cité, UMRS 1161 INSERM, Paris, France 

4
 Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General 

Hospital Stroke Research Center, Harvard Medical School, Boston, USA 
5
 Department of Neurology, Medical University of Graz, Graz, Austria 

6 
Klinik für Neurologie, SLK-Kliniken Heilbronn GmbH, Heilbronn, Germany 

7
 Institut und Poliklinik für Neuroradiologie, Universitätsklinikum Carl Gustav Carus, 

Dresden, Germany 

 

*contributed equally 

 

 

Keywords: Cerebral small vessel disease, Cerebral amyloid angiopathy, CADASIL, magnetic 

resonance imaging, intracranial hemorrhage 

 

 

 

 

 

 

Wollenweber, F. A.*,  Baykara, E.*, Zedde, M., Gesierich, B., Achmüller, M., Jouvent, E., 

Viswanathan, A., Ropele, S., Chabriat, H., Schmidt, R., Opherk, C., Dichgans, M., Linn, J. & 

Duering, M. (2017). Cortical superficial siderosis in different types of cerebral small vessel 

disease. Stroke, 48(5), 1404-1407. 

  



Published Studies  62 

 

2.2.1. Abstract 

Background and Purpose: Cortical superficial siderosis (cSS) has emerged as a clinically 

relevant imaging feature of cerebral amyloid angiopathy (CAA). However, it remains 

unknown if cSS is also present in non-amyloid associated small vessel disease (SVD), and if 

patients with cSS differ in terms of other SVD imaging features. 

Methods: 364 CADASIL patients, 372 population-based controls (PC) and 100 CAA 

patients with cSS (fulfilling the modified Boston criteria for possible/probable CAA) were 

included. cSS and cerebral microbleeds (CMB) were visually rated on T2*-weighted MRI. 

White matter hyperintensities (WMH) were segmented on FLAIR images and their spatial 

distribution was compared between groups using colocalization analysis. CMB location was 

determined in an observer-independent way using an atlas in standard space. 

Results: cSS was absent in CADASIL and present in only 2 (0.5%) PC. CMB were present 

in 64% of CAA patients with cSS, 34% of CADASIL patients and 12% of PC. Among 

patients with CMB, lobar location was found in 95% of CAA patients with cSS, 48% of 

CADASIL patients and 69% of PC. The spatial distribution of WMH was comparable 

between CAA with cSS and CADASIL as indicated by high colocalization coefficients. 

Conclusions: cSS was absent in CADASIL while other SVD imaging features were similar 

to CAA patients with cSS. Our findings suggest that cSS in combination with other SVD 

imaging markers is highly indicative of CAA.  
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2.2.2. Introduction 

Cortical superficial siderosis (cSS) has recently been recognized as an imaging marker with 

high prognostic relevance in patients with cerebral amyloid angiopathy (CAA)  (Charidimou 

et al., 2015). The presence of cSS is associated with intracranial hemorrhage (Linn et al., 

2013; Roongpiboonsopit et al., 2016), transient focal neurological episodes and cognitive 

decline (Wollenweber et al., 2014). However, little is known about the specificity of this 

marker. In particular, it remains unknown if non-amyloid associated small vessel disease 

(SVD) may also present with cSS. 

Patients with CADASIL (cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leukoencephalopathy) develop SVD at young age. Hence, this hereditary disease 

serves as a model for pure and severe non-amyloid associated SVD. 

The objectives of the current study are i) to determine whether cSS is also present in 

SVD types other than CAA, and ii) to compare the patterns of SVD tissue lesions in CAA 

with cSS to those observed in other types of SVD. Therefore, we first determine the 

prevalence of cSS in CADASIL patients and a population-based sample. Second, we 

systematically compare SVD imaging features, i.e. cerebral microbleeds (CMB) and white 

matter hyperintensities (WMH) between CAA with cSS, CADASIL and population-based 

controls (PC). 

 

2.2.3. Methods  

Detailed methods are provided in the online-only data supplement. 

Subjects 

Subjects were drawn from 3 prospective studies: 364 CADASIL patients from the Paris-

Munich study (Duering et al., 2013), 372 population-based, healthy subjects from the 

Austrian Stroke Prevention Family Study (ASPFS) (Ghadery et al., 2015) and 100 subjects 

with cSS and possible/probable CAA from the SuSPect-CAA study (NCT01856699). 

MRI  

CMB (Wardlaw et al., 2013) and cSS were identified on T2*-weighted gradient echo images 

by two trained raters (FAW and EB). WMH of presumed vascular origin (Wardlaw et al., 

2013) were segmented on FLAIR images. Segmented lesion masks were registered to a 

common standard space. 
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Statistical analysis 

Analyses were performed in R (v3.2.2). Differences in characteristics and SVD lesion load 

between samples were analyzed using the Kruskal-Wallis test with Dunn post-hoc tests (for 

continuous variables, R package ‘PMCMR’) or chi-square tests with post-hoc tests (for 

categorical variables, R package ‘fifer’). To account for multiple comparisons, all p-values 

were Bonferroni-corrected. The similarity of the WMH distribution between samples was 

evaluated by a colocalization analysis using linear correlation on voxel-wise lesion 

frequencies. 

 

 2.2.4. Results 

Demographic, clinical and MRI characteristics of the study samples and the results of group 

comparisons are presented in Table 1. 

While CADASIL patients showed severe SVD imaging features (Table 1, Figure 1A), 

cSS was absent in the entire sample. Only 2 subjects from the population-based sample had 

cSS. One of them also had a high number of lobar CMB (n=28), suggesting the presence of 

CAA. 

We next compared the spatial distribution of CMB and WMH between samples (Figure 

1B, Figure 2). CMB in CADASIL were predominantly deep and infratentorial. However, 

among CADASIL patients with CMB, lobar areas were affected in nearly every second 

patient and even strictly lobar involvement occurred in one out of ten (Table 1). For WMH, 

the colocalization analysis showed that lesion distribution was most similar between CAA 

with cSS and CADASIL (R
2
=0.68, P<10

-15
), while colocalization was less strong between 

CAA with cSS and PC (R
2
=0.52, P<10

-15
) as well as CADASIL and PC (R

2
=0.31, P<10

-15
). 

 

2.2.5. Discussion 

Cortical superficial siderosis is a frequent finding in patients with histologically proven CAA 

(Linn et al., 2010). The current study demonstrates that cSS is absent in a large cohort of 

patients with a severe non-amyloid associated SVD due to CADASIL and exceedingly rare in 

a population-based sample. Hence, our results indicate that cSS is not a general marker for 

SVD, but strongly indicative of the presence of CAA. This is in line with a recent study, 

which found positive amyloid PET in 12 cSS cases (Na et al., 2015).   
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Table 1: Characteristics of the study samples 

 

CADASIL  

(Paris-Munich) 

n=364 

PC 

(ASPFS) 

n=372 

CAA + cSS 

(SuSPect-CAA)  

n=100 

p-value
*
 

Demographic characteristics     

Age, mean (SD) 

(min, max) [years] 

51.0 (11.4) 

(22.9, 79.4) 

65.0 (10.7) 

(38.0, 86.0) 

73.8 (6.9) 

(57.0, 89.0) 
<0.001/a,b,c 

Female, n (%) 202 (55.5) 161 (43.3) 38 (38.0) 0.006/a,c 

Vascular risk factors     

Current smoker, n (%) 77 (21.2) 51 (13.7) n/a n/a 

Past smoker, n (%) 116 (31.9) 113 (30.4) n/a n/a 

Hypertension, n (%) 78 (21.4) 235 (63.2) 68 (68.0) <0.001/a,c 

Hypercholesterolemia, n (%) 145 (39.8) 279 (75.0) 50 (50.0) <0.001/b,c  

Diabetes, n (%) 10 (2.7) 40 (10.8) 10 (10.0) <0.001/c 

Imaging characteristics     

WMH volume, median (IQR)  

(min, max) [normalized %] 

5.95 (6.17) 

(0, 27.52) 

0.28 (0.40) 

(0.004, 6.06) 

1.57 (2.68) 

(0.007, 12.60) 
<0.001/a,b,c 

CMB number, median (IQR) (min, 

max)  

0 (1) 

(0, 88) 

0 (0) 

(0, 40) 

2 (6) 

(0, 92) 
<0.001/a,b,c 

Presence of CMB, n (%) 124 (34.1) 16 (4.3) 64 (64.0) <0.001/a,b,c 

   Lobar CMB, n (%)† 59 (47.6) 11 (68.8) 61 (95.3) <0.001/a 

   Deep CMB, n (%)† 97 (78.2) 6 (37.5) 19 (29.7) <0.001/a,c  

   Infratentorial CMB, n (%)† 63 (50.8) 4 (25.0) 2 (18.8) <0.001/a 

   Strictly lobar CMB, n (%)† 13 (10.5) 8 (50.0) 44 (68.8) <0.001/a,c  

ASPFS: Austrian Stroke Prevention Family Study; CAA: cerebral amyloid angiopathy; CADASIL: 

cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CMB: 

cerebral microbleeds; cSS: cortical superficial siderosis; IQR: interquartile range; NA: not available; 

PC: population-based controls; WMH: white matter hyperintensities. 

* Bonferroni corrected; post-hoc group comparisons p < 0.01, a: CADASIL vs. cSS, b: cSS vs. PC, 

   c: CADASIL vs. PC. 

† Percentage out of patients with CMB.  
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Figure 1. Frequency of CMB and WMH. A. Boxplots for CMB counts and normalized WMH 

volumes in each sample. B. Regional CMB counts (lobar, deep, infratentorial) for patients with at 

least one CMB. Note the log scale for global and regional CMB count. 

 

Our findings on the frequency and distribution of both CMB and WMH show a 

substantial overlap between samples and therefore suggest a limited value of these imaging 

markers in discriminating different forms of SVD. Of note, this also applies to lobar CMB, 

which are considered typical for CAA. 

It is commonly hypothesized that cSS reflects the result of recurrent focal convexity 

hemorrhages triggered by vascular amyloid (Charidimou et al., 2015). Recent data from 

Abeta antibody trials in Alzheimer´s disease support this hypothesis: Treatment groups 

developed cSS in a time, dose and APOE dependent manner (DiFrancesco, Longoni, & 

Piazza, 2015; Sevigny et al., 2016). Our results suggest that these convexity hemorrhages are 

typically absent in non-amyloid associated SVD. 

Strengths of this study include the prospectively collected data and the large sample 

sizes in all groups. A potential limitation is the use of different MR field strengths (1.5T and 

3T), which might have led to an underestimation of CMB on 1.5T scans. Furthermore, study 

patients were mostly in early and middle disease stages, precluding definite conclusions for 

late stages. Still, the samples were well representative for an outpatient clinic setting, in 

which cSS can be of high utility. 

 

2.2.6. Conclusion 

These findings provide further evidence that cSS is an imaging marker for CAA. 

Longitudinal data are needed to investigate the value of cSS in therapeutic decision-making. 
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Figure 2. Spatial Distribution of CMB (A) and WMH (B). A. Each sphere represents one CMB in 

the sample. Maps are superimposed onto the T1 standard space template. B. Aside from frequent 

WMH in the temporal pole in CADASIL patients, the overall pattern was comparable between the 

three samples. 
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2.2.8. Supplementary materials 

Subjects 

CADASIL patients were recruited at two centers (Munich and Paris). The diagnosis was 

confirmed by molecular genetic testing or ultrastructural analysis of a skin biopsy. 

The population-based control sample (Austrian Stroke Prevention Family Study, 

ASPFS) was recruited at a single center (Graz). 

Subjects with cortical superficial siderosis (cSS, for examples see Supplemental 

Figure I) were recruited at two centers (Munich and Reggio Emilia) within the SuSPect-CAA 

study (NCT01856699). They fulfilled the modified Boston criteria (Linn et al., 2010) for 

probable (n=79) or possible (n=21) cerebral amyloid angiopathy (CAA). The category 

‘probable CAA’ requires at least one lobar cerebral microbleed (CMB) or hemorrhage in 

addition to cSS. The category ‘possible CAA’ requires the presence of cSS in the absence of 

any other cause than CAA (such as trauma or aneurysm).  

All studies were approved by the ethics committees of the respective institutions. 

Written informed consent was obtained from all subjects. 

MRI rating and processing 

MRI acquisition parameters are presented in the Supplemental Table I.  

Lesions were rated (cSS, CMB) or segmented (white matter hyperintensities, WMH) 

according to the STRIVE criteria (Wardlaw, Smith, Biessels, et al., 2013). In ambiguous 

cases regarding cSS, a consensus was reached between the two expert raters (FAW and EB). 

WMH segmentation on FLAIR images was performed as previously published for the 

CADASIL and ASPFS datasets (Duering et al., 2013; Ghadery et al., 2015). For the SuSPect-

CAA dataset we used a semi-automated method based on tissue segmentation and clustering-

based image thresholding using Otsu’s method as previously described (Baykara et al., 2016). 

Normalized WMH volumes for each sample were calculated by dividing through the volume 

of the intracranial cavity estimated from T2 (CADASIL, ASPFS) or T2* (SuSPect-CAA) 

images. 

Lesion masks for CMB and WMH were normalized to 1 mm Montreal Neurological 

Institute (MNI) 152 standard space via 3DT1 images and the registration tools ‘FLIRT’ and 

‘FNIRT’ from the Functional Magnetic Resonance Imaging of the Brain Software Library 

(FSL, Smith et al., 2004) (CADASIL and ASPFS). Because 3DT1 images were not available 
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in the SuSPect-CAA study, we used FLAIR images, a custom-made FLAIR standard space 

template, and a two-step normalization procedure incorporating the Statistical Parametric 

Mapping (SPM) ‘old normalize’ tool (Friston et al., 1995) followed by an additional FNIRT 

step. All normalization steps were checked visually.  

Assessment of the spatial distribution of CMB and WMH 

CMB location (lobar, deep, infratentorial) was rated automatically in standard space using a 

modified version of the MNI structural atlas (Supplemental Figure II) provided within FSL 

(Mazziotta et al., 2001). This atlas contained lobar region of interests (ROI) as well as the 

cerebellum. As modification, a brainstem mask was drawn manually and merged with the 

cerebellar region to create the infratentorial ROI. The deep ROI was defined as brain areas 

not included in either the lobar or infratentorial ROI. 

To compare the distribution of WMH between samples, we performed a 

colocalization analysis in MNI 152 standard space. For each voxel in standard space, the 

lesion frequency was entered in a spatial correlation analysis. When correlating the voxel-

wise lesion frequencies of two samples, a correlation coefficient of 1 indicates an identical 

lesion distribution. 

Statistical software packages 

Analyses were performed in R (v3.2.2; R Core Team, 2014) including the following 

packages: ‘PMCMR’ (v4.1; Pohlert, 2014), ‘fifer’ (v1.0; Fife, 2014), ‘ROCR’ (v1.0-7; Sing, 

Sander, Beerenwinkel, & Lengauer, 2005). 
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2.2.10. Supplementary tables 

Supplementary Table I: MRI parameters 

Sequence  CADASIL (Paris-Munich) ASPFS SuSPect-CAA 

 Scanner* 
Munich 

Vision  

Munich 

Signa 
Paris  Munich 

Reggio 

Emilia  

 Patients [n] 49 71 244 372 36 64 

T1  TR [ms] 11.4  22  8.6 1900 - - 

 TE [ms] 4.4  6 1.9 2.19 - - 

 Slice [mm] 1.2  1 0.8 1 - - 

 In-plane [mm] 0.90  0.90 1.02 1 - - 

FLAIR TR [ms] 4284  8402 8402 10000 8500 11000  

 TE [ms] 110 151  161 69 121 140  

 TI [ms] 1428  2002 2002 2500 2250 2800   

 Slice [mm] 5  5 5.5 3 5.5 5 

 In-plane [mm] 0.98  0.94 0.47 0.94 0.43 0.83  

T2* TR [ms] 1056  1040 500 35 600 833  

 TE [ms] 22  22 15 19.60 9 23  

 Slice [mm] 5 5 5.5 4 5.5 5  

 In-plane [mm] 0.94 0.94 0.94 0.90 0.43 0.90  

FLAIR: Fluid-attenuated inversion recovery; TE: echo time; TI: inversion time;  

TR: repetition time. 

 

*Scanner: 

  CADASIL (Paris-Munich): 

Munich Vision: Siemens Magnetom Vision, 1.5 Tesla 

Munich Signa: General Electric Signa HD, 1.5 Tesla 

Paris: General Electric Signa HD, 1.5 Tesla  

  SuSPEct-CAA: 

 Munich: General Electric Signa HDxt, 3.0 Tesla 

Reggio Emilia: Philips Achieva, 1.5 Tesla 

  ASPFS: 

Siemens Magnetom Trio, 3.0 Tesla  
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2.2.11. Supplementary figures 

 

 

Supplementary Figure I: Cortical superficial siderosis 

Two examples for cortical superficial siderosis (cSS, white arrow heads). A case with focal cSS is 

presented on the left, a case with disseminated cSS (≥ 3 sulci) on the right. 

 

 

 

 

 

 

 

Supplementary Figure II: Atlas for the determination of microbleed location 

ROIs are superimposed on the MNI T1 standard space template.
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The work described in this thesis focused on the imaging markers of cerebral small vessel 

disease. The first project was designed to establish a fully-automated marker of cSVD related 

microstructural damage, which is strongly associated with the typical cognitive impairment 

and that could be applied readily to a large number of patients. The second project aimed at 

investigating and validating the value of cortical superficial siderosis (cSS) as a disease 

marker for cerebral amyloid angiopathy (CAA), a particular type of cSVD. In this section, 

the main findings and their implications are discussed, together with suggestions for future 

directions. 

  

3.1. Imaging markers of cerebral small vessel disease  

The small vessels of the brain, which are at the center of the disease, cannot be visualized in 

vivo. Consequently, both subtypes of the disease, arteriolosclerosis and cerebral amyloid 

angiopathy, rely on brain tissue imaging methods for diagnosis and assessment of disease 

burden. The first and most important step is diagnosing the patients correctly. This has 

implication for the information provided to the patients and their caregivers, and the 

management and treatment of the disease. Furthermore, correct diagnosis is important to 

understand the underlying pathophysiology. For instance, proper phenotyping by diagnosis is 

crucial in genetic studies identifying risk genes for a certain disease. 

The second step is to have an imaging method/marker, which can quantify the level of 

tissue damage in the brain reliably. This step is important for evaluating the disease severity, 

progression and effects of therapeutic interventions. It further helps to expand the knowledge 

base about the disease, its pathophysiology and the consequences of disease related brain 

damage.  

3.1.1. Diffusion histograms as surrogate markers in cerebral small vessel disease 

The project focused on a new surrogate DTI marker for cSVD research, and resulted in the 

marker PSMD (peak width of skeletonized mean diffusivity), which is now a fully 

automated, robust and has a high association with the main cognitive deficit of cSVD 

patients, namely processing speed. The power and utility of PSMD as a marker was 

independently validated in patients with hereditary and sporadic cSVD as well as in memory 

clinic patients with a high burden of vascular damage. Furthermore, the study showed that 

PSMD was primarily linked to vascular pathology, but not to neurodegenerative pathology. 
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Our results suggest that PSMD is a marker sensitive to cerebrovascular pathology, and can be 

utilized to assess the cSVD burden in patients.  

The main motivation of the project was to avoid the problems associated with 

conventional disease markers. Conventional markers visible on MRI, such as white matter 

hyperintensities and lacunes, are manifestations of advanced disease stages (De Groot et al., 

2013). At this stage, the brain has already undergone significant changes that enabled these 

lesions to become visible on standard MRI sequences (T1 and T2 weighted). Furthermore, 

volumetric measures of these conventional disease markers have only a moderate association 

with disease related cognitive impairment (Duering et al., 2011; Patel & Markus, 2011). This 

is likely due to the fact that visible lesions do not always reflect the true burden of the brain 

damage. Quantitative methods such as DTI have been shown to correlate better with brain 

damage as well as cognitive deficits (executive function and processing speed) 

(Holtmannspotter et al., 2005; Nitkunan, Barrick, Charlton, Clark, & Markus, 2008). 

Importantly, the quantification of the conventional disease markers (lesion volume, or 

number) relies on manual or semi-automated methods, and almost always requires visual 

checking and manual editing (Wardlaw et al., 2013). This makes the process highly time-

consuming and prone to rater bias and variability. The labour-intensive nature of this process 

makes the conventional cSVD markers unattractive for large clinical trials. It is plausible that 

the methodological challenges accompanying the efforts to quantify the disease burden 

slowed down advances in cSVD research.  

Change was introduced with the widespread use of more advanced methods like DTI in 

the clinical studies. Multiple studies have shown that DTI can measure microstructural 

damage in the brain more accurately than any of the conventional MRI methods. DTI is 

sensitive towards detection of brain damage before it becomes visible on conventional MRI 

(De Groot et al., 2013; Jokinen et al., 2013). Because of this advantage over conventional 

imaging methods, in the recent years DTI has emerged as the method of choice for 

investigating cSVD related brain damage. 

For cSVD lesions on conventional MRI, multiple studies have shown that the effects of 

the lesions depend, at least in part, on their location (Duering et al., 2011, 2014). That is why 

some lesions have more detrimental effects on the clinical outcome than others do.  Although 

there are certain advantages of ROI based approaches in cSVD research, it is fruitful to 
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analyse the whole brain. First, although the lesion location is an important factor for the 

effects of lesion burden, cSVD is a diffuse disease, which affects the whole brain. Therefore, 

researchers could potentially miss important information, if they focus on only certain 

predefined regions of the brain. Second, it is known that visible lesions are only the tip of the 

iceberg, and there is hidden damage in so-called “normal appearing” brain tissue as a result 

of cSVD. Given these points, whole brain approaches are more informative about the overall 

severity of the disease. Nevertheless, to understand the disease and its specific effects and for 

particular research questions, it is advisable to follow the global whole brain approach 

together with an ROI- or voxel-based analysis.  

The marker PSMD is a fully automated marker, which demonstrated a stronger 

association with SVD-related processing speed deficits as compared with all other 

conventional MRI markers. PSMD also reduced the sample sizes needed in clinical trials 

markedly. Furthermore, as determined in an inter-scanner reproducibility study, the PSMD 

marker is stable across different scanners, field strengths and imaging sequences - a 

characteristic that is desirable for multi-center studies. Therefore, PSMD is particularly suited 

for clinical routine and for large clinical trials.  

 

3.1.2. Cortical superficial siderosis in cerebral small vessel disease  

CSS is a marker, which is often seen in patients with CAA (Linn et al., 2010). The prevalence 

of cSS is associated with the presence of other imaging markers of cSVD, such as WMH and 

CMB. It has been shown that CAA and arteriolosclerosis have different preferential 

distribution of these imaging markers: CMB in CAA are mostly cortical (lobar), but 

subcortical (deep) in arteriolosclerosis. However, although the presence of lobar microbleeds 

is included in diagnostic criteria for CAA (Boston criteria and modified Boston criteria), the 

usefulness of these distribution patterns for differential diagnosis and the specificity of cSS as 

a marker for CAA were still unknown. Our results demonstrated that the frequency and 

distribution of WMH and CMB overlap between CAA and arteriolosclerosis, which suggests 

that these markers have only limited value for discriminating different types of cSVD. More 

importantly, our findings revealed that cSS was absent in a cohort of severe non-

amyloidogenic cSVD patients (CADASIL) and very rare in a population-based sample 
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comprising patients with sporadic cSVD. Therefore, it can be concluded that the presence of 

cSS (together with the presence of other SVD markers) is strongly indicative of CAA.  

Since CAA can only be diagnosed as definitive after a histological investigation of 

affected brain tissue, obtained at autopsy or through brain biopsy, the imaging disease 

manifestations are used as non-invasive diagnosis criteria in vivo. The correct diagnosis is 

crucial, as it may have important implications for decision making regarding disease 

management, such as using or avoiding certain drugs, in particular anticoagulation.  

To date, there are no treatment or preventive strategies available for CAA. The focus is 

usually on prevention of haemorrhagic events and dementia. CAA patients have an increased 

risk of intracranial haemorrhage (intracerebral and subarachnoidal), and this risk is further 

increased for those patients who use antithrombotic drugs (Rosand, Hylek, O’Donnell, & 

Greenberg, 2000). Elderly patients are usually at risk for both, ischaemic and haemorrhagic 

cerebrovascular events and it is therefore important to identify CAA patients who have a 

greatly increased bleeding risk. The vascular changes resulting from CAA pathology together 

with the use of anticoagulation drugs may lead to the enlargement of small haemorrhages, 

which would otherwise remain asymptomatic and harmless. In patients with probable CAA, 

administration of antithrombotic drugs should be avoided as much as possible (Biffi et al., 

2010; Charidimou et al., 2017) . Studies also revealed that patients treated with 

antihypertensive drugs have a reduced risk of CAA-related ICHs (Arima et al., 2010). 

 

3.2. Conclusions 

In clinical and in research settings, the first important step when encountering a cSVD patient 

is to diagnose the patient correctly and differentiate the underlying aetiologies. The main 

types of cSVD, arteriolosclerosis and cerebral amyloid angiopathy, have different 

pathogenesis although they share many of the disease manifestations. Differential diagnosis 

is especially important in decision-making for management and treatment strategies. CAA 

bears a high risk for spontaneous and anti-coagulative treatment related haemorrhage, and 

therefore correct diagnosis is the crucial first step for reducing the bleeding risk. We showed 

that cSS is an important imaging marker for the differential diagnosis of CAA. 

In patients with arteriolosclerosis, we proposed a fully-automated method for 

estimating disease severity. The DTI-based marker ‘PSMD’ is a major step forward in 
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accurately determining disease burden in patients’ brains and might enable crucial advances 

in clinical decision-making. We expect that PSMD will play a role in future clinical trials, 

either for patient selection or as a surrogate marker for treatment effects. The high sensitivity, 

robustness and accuracy of PSMD might enable identification and study of patients in early 

disease stages, where preventive strategies could be most effective. As a fully-automated 

tool, PSMD can be readily implemented in clinical routine and large trials. 

 

3.3. Future steps  

Although we included a longitudinal analysis in patients with a genetically-defined cSVD 

CADASIL, the performance of the marker PSMD is yet to be shown in longitudinal studies 

of sporadic cSVD patients. Our results of the preliminary longitudinal analyses revealed that 

PSMD values change over time significantly. PSMD also enables, as a surrogate marker, the 

smallest sample sizes to be used in comparison to conventional markers - or to clinical scales 

- in order to reliably detect a treatment effect. Nevertheless, PSMD should be tested in larger 

longitudinal studies to evaluate its value as a surrogate marker and as a predictor of change 

over time.  

Another future step is to apply PSMD as an imaging marker in CAA patients. Studies 

have already shown that CAA patients have diffusion changes within their brains (Reijmer et 

al., 2015; Viswanathan et al., 2008). Since arteriolosclerosis and CAA share many of the 

disease manifestations, it is plausible that PSMD will be a good marker of disease burden in 

CAA patients. Considering the preferential distribution of CAA lesions in the lobar brain 

regions, the calculation of PSMD may be modified.  

A DTI sequence should be included in the clinical routine for SVD patients, which 

could be used to calculate PSMD right after scanning once the fully automated analysis 

pipeline is implemented in the scanning console. The calculation of PSMD as a reflection of 

disease burden while also taking into account differential disease markers (e.g. cSS) should 

give a comprehensive picture about disease aetiology, disease severity and also provide an 

estimation about the bleeding risk. 

While the detection of cSS is currently achieved by visual rating, machine learning 

algorithms specialized in image analysis (such as convolutional neuronal networks) may 

provide a way for automated rating in the future. 
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