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1 Introduction 

1.1 Motion detectors 

Miniaturized motion detecting systems are all around us: Whether they are sitting 

quietly on our wrist while we are jogging, embedded in our smartphone when wiping on 

the screen or mounted behind the windshield of self-driving cars. A large range of 

sensors are nowadays able to precisely detect basic motion metrics, such as step counts 

or the position and trajectories of pedestrians on the sidewalk. These new technologies 

drastically change how we monitor our environments and control our own lives: 

Commonly used in security systems (e.g. remote alarms), they are also applied for a 

variety of clinical applications (e.g. rehabilitation and monitoring of neurological 

patients, (Appelboom et al., 2014)) or for road safety (e.g. autonomous cars, (Bayat et 

al., 2017)). However, it is often neglected that many of the mechanisms underlying 

modern motion sensor technologies can also be found in highly sophisticated biological 

systems, that evolved and developed millions of years ago (Kaas, 1989). 

1.1.1 Modalities of motion detection 

Sensory systems enable animals to gather information about the physical world they live 

in (Keeley, 2002). Motion detectors, in particular, are tasked with detecting motion, i.e. 

changes in position, be it their own motion through space or the motion of other objects. 

Therefore, it is important to emphasize the physical modalities by which sensory 

systems, in particular motion detecting systems, can be stimulated. 

When moving through a liquid or gaseous environment, the movement of an object 

must be accompanied by a relative motion of the surrounding medium in the opposite 

direction, thus, the first method to detect motion is to estimate the velocity of bulk flow 

fluctuations (see Fig. 1, upper row). This mass rate measurement is applicable in 

different media, such as water or oil but poses greater challenges at low speeds in media 

with lower densities, such as air.  

A second way to detect motion is to sense acceleration, which is the net result of inertial 

forces acting on an object (see Fig. 1, middle row). Thus, any acceleration is accompanied 
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by inertial forces, which mathematically relate to the strength of the acceleration. 

However, this method only applies for accelerated movements. Movements at a 

constant velocity, however, cannot be distinguished from standstill, since the 

acceleration in both cases is zero. 

A third way to detect motion is by comparing visual images taken at slightly different 

timepoints. If an object has changed position in two successive images, this means it 

must have been moving relative to the sensor. Functionally, this requires the sensor to 

detect the shift of an edge in a visual scene, relying on brightness changes of light and 

consequently calculate the velocity of the motion by determining the magnitude of the 

shift and the time it took for it (see Fig. 1, lower row).  

The first two methods, that rely on mechanical forces (bulk flow and inertial force), are 

particularly suitable for the detection of dynamical motion changes, due to the 

immediacy of their signal transduction and their temporal dynamics. On the other hand, 

the third method (vision-based) is less direct, as this process needs to encode the shift 

between two consecutive events, and therefore perform complex computations to 

extract a motion signal. This illustrates the reason why at least two motion detecting 

sensors need to be involved for the intricate process of faithful motion detection in 

animals. 

1.1.2 Motion-detecting sensory systems 

During the course of evolution, sensory systems evolved to respond to the demands of 

animals in their specific environments. In particular, motion detecting sensors 

developed to provide living organisms with relevant information about motion changes 

in their surrounding and of their own (Butler & Hodos, 2005). Interestingly, the 

development of these sensory systems reflects the major steps in the evolutionary 

history of life. 

The lateral line system 

Animals evolved in the ocean (Erwin et al., 2011). Thereby it is not surprising that one of 

the phylogenetically most ancient motion detecting system evolved under water and is 

specifically suited to aquatic environments: Flow sensors of the lateral line system 
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detect weak water motion and enable navigation using hydrodynamic cues. Sensors of 

the lateral line system are still present in most anamniotes and are involved in 

orientation and navigation (Goulet et al., 2008). The smallest sensory unit of the lateral 

line system, the neuromast, is a structure lying in or just beneath the skin. The biological 

motion sensors of the neuromasts are hair cells with mechanically sensitive organelles, 

called stereocilia. The latter protrude into a gelatinous substance called cupula, that is 

exposed to the surrounding water. When water current displaces the cupula and 

concurrently the stereocilia, the mechanical energy is transduced into an electrical 

energy, that is signaled by afferent nerves towards the central nervous system of the 

animals (see Fig. 1, upper row). 

The vestibular system 

After the Cambrian explosion, changes in atmospheric oxygen levels as well as the 

development of complex body structures, enabled life to venture on land. This event put 

a strong selective pressure on the lateral line organ, which became obsolete in 

terrestrial/aerial habitats. Now, animals had to support their body weight against the 

pull of gravity to stay upright, and therefore relied even more heavily on specific 

graviceptive sensors, i.e. sensors that respond to gravitational acceleration. These 

sensory structures were suited to detect not only gravity, but also inertial forces caused 

by accelerated motion of the animal through space (see Fig. 1, middle row). The 

vestibular system, embedded in the inner ear, detects angular and linear acceleration 

by means of ciliated mechanosensitive hair cells (Hudspeth, 2005). These structures, like 

in the lateral line system, respond to physical displacements of the stereocilia and 

convert the mechanical stimulus into a neuronal signal, which is then processed by the 

central nervous system. Because acceleration is zero during periods of constant motion, 

this sensor is unable to detect motion at constant velocities. This drawback is however 

compensated by a third kind of motion detecting system that is particularly suited for 

detecting constant motion and will be the main focus of this thesis: the visual system. 

The visual system 

Parallel to the vestibular system, the evolution of image-forming eyes during the 

Cambrian Period suddenly enabled organisms to perceive their environments in a 
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completely new way (Parker, 2003). The development of vision triggered an explosion 

of life diversity, with an enormous variety of new body forms, life styles and colors. 

Whichever animals possessed eyes could detect motion in the surrounding area and had 

huge advantages, such as seeing into the distance, thereby ensuring greater success at 

finding food or avoiding predators. In particular, if an animal is able to estimate the 

speed and direction of a prey’s trajectory, this greatly increases the repertoire of 

strategies it can employ while hunting. These capabilities came along with the evolution 

of the ocular motor system, which allowed motion tracking and maintaining a stable eye 

position in space during locomotion. 

Unlike the lateral line or vestibular system, motion sensors in the visual system are not 

purely mechanically driven, but rely on substantial computations based on the activity 

patterns of photoreceptor cells in the retina of the eye, to be able to infer the velocity 

of structures in any moving image (see Fig. 1, lower row). 

1.2 Motion detection during locomotion 

1.2.1 Object motion and self-motion 

Especially when actively locomoting through the world, animals strongly rely on their 

motion detecting sensory systems to estimate the motion of objects in the world (e.g. 

other animals, predators or prey) as well as their own motion relative to their 

environments (DeAngelis & Angelaki, 2012). Although the detection of object motion is 

particularly important for the avoidance of obstacles and the interaction with other 

animals, an accurate estimation of the own movement in space is crucial for self- or body 

motion perception and permits effective navigation in space as well as the control of 

posture and gaze (Campos & Bülthoff, 2012). 

While the modus operandi of the vestibular sense restricts it to detecting only self-

motion uninfluenced by the motion of outside objects, the sense of vision can detect 

both the motion of small objects, as well as provide information about self-motion in 

space. This is a challenge for the central nervous system, as it must distinguish between 

these different sources of visual motion and keep two major components apart: Small-

field visual motion can typically be attributed to the movement of individual objects. 
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Large-field visual motion on the other hand is evoked when the entire visual world 

changes place with respect to the animal and typically means that the animal itself is in 

motion. Thus, large-field visual motion signals are cues for self- or body motion. 

Typically, self-motion perception is experienced when an animal locomotes, i.e. actively 

moves within and throughout the environment, but can also be perceived when being 

passively moved (Campos & Bülthoff, 2012). This is why a large-field movement of a 

visual scene induces a sense of self-motion even when actually it is the environment that 

is moving relative to the organism. Most humans have experienced this illusionary 

phenomenon, while sitting in a stationary train: When a neighboring train begins to 

move, vision alone can sometimes create a compelling illusion of self-motion (Campos 

& Bülthoff, 2012).  

1.2.2 Visuo-vestibular interaction 

When actively moving through space during daily behaviors, a percept of self-motion is 

obtained by the interplay of different sensory systems and their respective motion-

detecting sensors. The interaction of these sensory systems provides animals with a 

reliable estimate about the extent, speed and direction of egocentric movements to 

correctly navigate and control posture in space (Campos & Bülthoff, 2012). 

In most vertebrates, the two main systems that provide the most sensitive information 

for judging self- or body motion are the vestibular and the visual systems: While the 

vestibular system provides powerful clues about head (body) position in space, the 

visual system reports the relative motion between an observer and a visual scene. One 

main aim of the visuo-vestibular interaction is to maintain a high level of visual acuity 

during locomotion, when there is movement in either the outside world or of the 

observer (Barnes, 1983). To understand the interaction between these sensory systems, 

it is vital to know how their anatomical structure and functional connectivity to the 

central nervous system enables them to detect motion in three-dimensional space. 
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1.2.3 The physiology of the vestibular system 

The vestibular system is one of the most predominant but often underestimated motion 

detecting systems in most animal species. This system is highly conserved among 

vertebrates (Straka & Dieringer, 2004) and contributes to a large range of functions, 

ranging from reflexes to navigation and motor coordination (Angelaki & Cullen, 2008). 

The vestibular apparatus lies within the inner ear of vertebrates, a highly complex 

anatomical structure in the evolution of vertebrates and a fabulous example of the 

“engineering” capabilities of nature (Graf, 2007). In mammals, one part of the inner ear, 

the cochlea, is able to detect minimal fluctuations in air pressure, a mechanism that 

enables them to hear. Although hearing is often considered the primary function of the 

inner ear, it also provides important signals about self- or body motion using two 

sophisticated receptive structures, the semicircular canals and the otolith organs, that 

evolved to measure angular and linear acceleration components of head movements, 

respectively. 

The semicircular canals 

Angular acceleration components of head movements are detected in all vertebrates by 

sense organs in the inner ear, called semicircular canals (Fritzsch & Straka, 2014). The 

three perpendicularly oriented semicircular canals are the anterior vertical, the 

posterior vertical and the horizontal canal. They cover all planes in the three-

dimensional world and thereby maximize the ability to detect three directions of angular 

rotations of the head. Each canal is filled with an inert fluid, called endolymph, that 

moves relative to the canal at each acceleration of the head. Due to the inertia of the 

fluid, a force is applied to a structure called cupula, that in turn bends the 

mechanosensing hair cell bundles, composed of several stereocilia and one tall 

kinocilium. Hair cells are extremely sensitive to deflections: Bending the stereocilia 

towards the kinocilium causes the opening of mechanically gated transduction channels 

and depolarizes the cell. The depolarization causes the release of neurotransmitters 

onto the vestibular nerve afferents and an increase in nerve activity, that is conveyed to 

the central nervous system (Wersäll, 1956). Conversely, bending the stereocilia away 
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from the kinocilium causes a reduction of the vestibular nerve activity, and thereby 

enables the vestibular organs to continuously encode rotational acceleration signals. 

The otolith organs 

Linear acceleration components of head movements are detected by two main otolith 

organs, named utricle and saccule, that are common to most mammals. In frogs and 

nonmammalians, a third otolith organ, the lagena, is present and sensitive to both 

vestibular and auditory stimulation (de Burlet, 1929). Like the semicircular canals, the 

otolith organs are arranged in a way that enables them to respond maximally to head 

position changes: While the utricle, oriented within the horizontal plane, is sensitive to 

lateral acceleration as well as anterior-posterior motion, the saccule, vertically arranged, 

can sense acceleration along the occipitocaudal axis as well as linear motion along the 

anterior-posterior axis (Hain et al., 2007). The lagena possesses a dual function and 

supplements the function of the saccule, by identifying gravitation forces as well as 

substrate vibrations. Each otolith organ contains a sensory epithelium, called macula, 

on which many mechanosensitive hair cells lie. The stereocilia of the hair cells project 

into a gelatinous cap, the otoconia, which is itself weighted by crystals of calcium 

carbonate. In contrast to the semicircular canals, where the inertia of the endolymph is 

important for the detection of acceleration, the mass of the otoconia is the key to the 

sensitivity of the maculae: When the position of the head changes, the inertia of the 

heavy mass produces a force that bends the stereocilia of the hair cells and thus leads 

to a change of nerve activity. While hair cells in the semicircular canals all have the same 

directional sensitivity, otolith hair cells cover an orientation range of 360° (Wersäll, 

1956). 

Vestibular processing 

The biological motion sensors of the vestibular system, the hair cells, are involved in 

different processing pathways, that control the positions of head, body and eyes. Hair 

cells synapse onto vestibular afferent nerve fibers of the eight cranial nerve (Goldberg, 

2000), that transmit the incoming acceleration information to central vestibular neurons 

in the hindbrain. The vestibular nucleus is the primary processor of vestibular inputs: 

Afferent information is encoded in separate groups of vestibular neurons. The sensory 
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structure, which a vestibular neuron originates from, determines its response 

characteristics (Straka et al., 2002). The different areas of the vestibular nucleus are 

relay stations for compensatory reflexes, that generate neck, body and eye movements 

in response to head motion, thereby providing stability of the head, postural control and 

clear vision, respectively. The vestibular nucleus also processes information from other 

parts of the brain, such as the cerebellum, the somatic as well as the visual sensory 

systems and therefore is an important multi-sensory nucleus. Moreover, it also projects 

to the brainstem and the spinal cord. This extensive connectivity is required to establish 

appropriate efferent signals and generate an adequate output to control the motor 

effector organs, the extraocular and skeletal muscles. The vestibular system connects to 

the thalamus and higher cortical areas if present: At this level, complex information 

integration about movements of the body, the eyes and the visual scene is performed, 

providing a continuous internal representation of body position and orientation in space 

(Angelaki & Cullen, 2008; Pfeiffer et al., 2014). 

1.2.4 The physiology of the visual system 

While we are often unaware of our vestibular system, that gives us an “invisible” 

sensation about our own motion in space, vision, however, provides us with a window 

to the outside world: The visual system allows us to detect relative movements of 

objects’ and our own position in the environment. 

Vision is a primary sensory modality of many vertebrates and invertebrates (Gibson, 

1979) and is involved in a large range of behavioral tasks. The constraints imposed by 

the physics of light and specific ecological environments influenced the evolution and 

led to an overwhelming variation of image-forming eyes in different taxa: While some 

animals adapted to night vision by increasing the pupil size, others evolved binocular 

vision to gain depth perception and chase prey more effectively. Nevertheless, the visual 

circuits and pathways are remarkably similar between species, which enables 

researchers to elucidate general strategies of this system using a variety of model 

organisms (Borst et al., 2015; Lamb et al., 2007). 
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General anatomy 

The visual system uses light that impinges on the earth to form images and provide us 

with the sense of sight. From a physical point of view, light is an electromagnetic wave 

which is absorbed by specialized cells of the visual system, the photoreceptors. These 

specialized sense cells are found in the retina at the back of the eye. Each photoreceptor 

possesses a specialized outer segment, named cilium, that contains the 

phototransduction machinery (Sung et al., 1994). The outer segment houses light-

sensitive photopigments, the opsins, proteins that are able to change their 

conformation from a resting state to a signaling state upon light absorption (Shichida & 

Matsuyama, 2009). 

To cope with the massive dynamic range of light intensities in bright day versus 

moonlight, that extends over nine orders of magnitude, the visual system possesses two 

types of photoreceptors, rods and cones, that work in tandem to adjust vision at varying 

light levels. While the rods are highly sensitive to small light changes, respond to single 

photons and provide the basis for scotopic (night) vision, the cones, which are less 

sensitive to light, mediate vision above a certain luminance level (0.03 cd/m2, (Kihara et 

al., 2006)) and are specialized to photopic (daylight) vision. 

Cones mediate color vision, by responding to different wavelengths of light, a capability 

that depends on the conformation change of their visual pigment opsin. Each different 

pigment is thereby especially sensitive and responds to a certain wavelength of light. 

Most vertebrates, including humans, possess three types of cones: S-cones respond to 

short-wavelengths, M-cones to medium-wavelengths and L-cones to long-wavelengths, 

with their peak wavelengths around 420-440 nm (blue), 534-545 nm (green) and 564-

580 nm (red), respectively. In humans, the visible light therefore ranges from 

approximately 400 nm (violet) to 700 nm (red). Other animals possess different number 

and types of cones and are thereby able to detect other wavelengths, such as ultraviolet 

(down to 300 nm) or infrared (up to 800 nm) light. Seeing ultraviolet light can for 

instance help pollinating insects, such as bumblebees, to detect nectar on flowering 

plants (Macior, 1971). Animals, such as salmons, have evolved the ability to detect 
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infrared light, enabling them to better navigate in murky water during migration (Enright 

et al., 2015). 

Visual processing 

The process of biological vision begins within the eye, more precisely in the 

photoreceptors of the retina. In the dark, photoreceptors are in a depolarized state and, 

in contrast to other sensory receptor cells, the shining of light on these cells leads to a 

membrane hyperpolarization (Oakley, 1977). In the first step of visual transduction, the 

opsins of the photoreceptors absorb photons and tune the molecule’s absorption of 

light to a specific region in the spectrum. Light-activation induces a change in the 

configuration of opsins and triggers a series of alterations, such as the regulation of the 

nucleotide cyclic guanosine monophosphate (cGMP) level as well as the activation of 

voltage-sensitive Ca2+ channels. In light, cGMP levels drop and Ca2+ channels close, 

leading to a hyperpolarization of the membrane and a reduction of transmitter release. 

In the downstream network, a parallel, retinotopic arrangement connects the 

photoreceptors with bipolar cells and the bipolar cells with ganglion cells. Moreover, 

inhibitory horizontal and amacrine cells shape the responses of photoreceptor and 

bipolar cells as well as bipolar and ganglion cells, respectively (Gollisch & Meister, 2010). 

Together, all axons of ganglion cells form the optic nerve, that carries the final retinal 

signal from the eye to the brain. The signal of ganglion cells is conveyed to higher brain 

structures, such as the pretectum, the lateral geniculate nucleus (LGN) and subsequently 

to area V1 or area V5/MT of the visual cortex, depending on species. The different 

pathways serve several different purposes, such as reflexively controlling compensatory, 

low-latency eye movements, extracting complex pattern information (e.g. inferring 

surface properties such as smoothness from an object’s color and texture) or 

extrapolating trajectories of moving objects into the future to perform goal-directed 

actions (Basili et al., 2009; Seymour et al., 2009). 

Motion vision 

Visual motion processing, the extraction of real-world speed and direction information 

from a moving retinal image, is performed at an early stage of visual processing. At the 
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retinal level, bipolar and ganglion cells already detect temporal brightness increments 

and decrements of light, i.e. changes of brightness in certain parts of the retinal image. 

The response patterns are processed in two parallel processing streams, known as the 

ON (light increment) and the OFF (light decrement) pathways (Schiller et al., 1986). 

During motion, the brightness pattern of a visual scene changes in space. Therefore, 

motion can be computed by detecting the temporal brightness fluctuations of a 

coherently moving stimulus pattern, e.g. by comparing the brightness increment at a 

particular location and at a given time with the brightness increment at a neighboring 

location measured some time later. A motion estimate can thereby be calculated by 

relating the spatial change of brightness to the temporal change at a given location of 

the image (Borst & Egelhaaf, 1993), and the speed can be computed as the ratio of 

displacement over time.  

This thesis aims at investigating whether a retinal signal provides an accurate speed 

estimate of a moving image to animals under different visual conditions and how this 

estimate is transduced into behaviorally relevant tasks. 

 

 

Figure 1: Modalities of motion detection 

Sensory systems are stimulated by different physical modalities, that enable them to detect 

different sorts of motion. 
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1.3 Gaze stabilization 

When interacting with their environment, animals combine and integrate the 

information of different sensory modalities to generate appropriate behaviors. In 

particular, motion cues provided by the different sensory systems are crucial inputs, that 

enable animals to form an estimate of their own movements within the world and the 

motion of objects around them. 

The correct estimation of motion is a demanding task for the central nervous system, as 

different information, such as vestibular, visual, proprioceptive or somatosensory cues 

must be encoded, combined and interpreted correctly (DeAngelis & Angelaki, 2012; 

Dichgans & Brandt, 1978). A key challenge for the visual system is therefore to 

distinguish between small-field motion components caused by moving objects and 

large-field visual motion due to self- or world-motion respectively, and simultaneously 

preserve gaze stability and visual acuity. 

Indeed, when interacting within the environment, self-generated body displacements 

always provoke disturbances and image displacements of the visual world on the retina, 

impairing drastically visual acuity. Animals therefore need an internal representation of 

their movements in space, to perform adequate compensatory eye movements and 

thereby ensure a stable visual image on the retina while locomoting. To achieve this task 

during active and passive self-motion, the oculomotor system draws upon both visual 

and vestibular (self)-motion information, both of which drive associated eye movement 

reflexes: The vestibulo-ocular reflex (VOR), driven by motion sensors of the semicircular 

canals and otolith organs, operates at high frequencies and effectively detect head 

movements with high accelerations. On the contrary, the optokinetic reflex (OKR) relies 

on motion sensitive retinal ganglion cells, that are optimally sensitive at lower 

movement frequencies and can detect constant velocity motion. The VOR and OKR are 

therefore ideal complements to ensure image stabilization over a large dynamic working 

range during self- or world motion, respectively. 



Introduction 

13 
 

1.3.1 The vestibulo-ocular reflex 

The vestibular sensory periphery provides the central nervous system with a powerful 

source of information about head motion in space (DeAngelis & Angelaki, 2012). To 

ensure gaze stability, the vestibulo-ocular reflex generates rapid, compensatory eye 

movements in the opposite direction of head movements. The functional organization 

of the VOR network has been highly conserved during evolution from early vertebrates 

to mammals (Straka & Baker, 2013) and the relative simplicity of its pathway makes it 

an excellent model system to bridge the gap between the function of neuronal circuits 

and the resulting behavior (Cullen, 2012). The VOR is one of the fastest reflexes observed 

in vertebrates, generating compensatory eye movements with a response latency of 

only 7 ms (Huterer & Cullen, 2002). This property is due to a three-neuron pathway, 

which ensures minimal axonal and synaptic delays: Vestibular afferent nerve fibers carry 

motion signals of head turns from the mechanosensitive hair cells to second-order 

vestibular neurons, which in turn project to extraocular motoneurons, that drive 

oculomotor neurons to produce compensatory eye movements. The three semicircular 

canals, which sense angular accelerations of the head drive the angular VOR, whereas 

the otolith organs, which sense linear acceleration drive the translational VOR (Cullen, 

2012). 

During natural behavior, such as walking or running, the VOR needs to detect very high 

frequencies up to 20 Hz (Hirasaki et al., 1999). Due to the mechanical sensitivity of the 

motion sensors and the low-latency neuronal network, the VOR evolved to perfectly 

respond to a large range of physiologically relevant dynamics of head movements 

(Sadeghi et al., 2007). Thus, while higher frequencies are more appropriately 

compensated by this reflex, the VOR cooperates with another reflex, the optokinetic 

reflex, that stabilizes gaze at lower frequencies. 

1.3.2 The optokinetic reflex 

The optokinetic reflex, which assists the VOR at lower frequencies, plays a crucial role in 

stabilizing visual images on the retina. This brainstem-mediated reflex generates 

characteristic compensatory eye movements, induced by large-field optic flow: Slow 
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following eye movements in the direction of the current optic flow field motion, and 

fast, resetting eye movements that maintain the eye within its working range. 

The sensory basis of the OKR are motion- and direction-sensitive retinal ganglion cells 

that provide information about how fast a visual image moves across the retina. This 

velocity signal of the large-field moving visual scene directly determines the 

performance of the OKR (Cohen et al., 1981). 

In most vertebrates, information from the ganglion cells projects via the optic nerve to 

the accessory optic system (AOS), a nuclear complex in the pretectum of the midbrain. 

Two main nuclei of the AOS, the nucleus of the optic tract (NOT) and the dorsal terminal 

nucleus (DTN) provide the neuronal basis for eye movement control during the OKR in 

the horizontal plane (Masseck & Hoffmann, 2009). Neurons in the medial terminal 

nucleus and lateral terminal nucleus are involved in vertical optokinetic responses. This 

relatively short circuitry could explain why a certain degree of image processing is 

already happening within the retina. Main efferent projections from the NOT-DTN 

complex reach preoculomotor and precerebellar structures, such as the nucleus 

prepositus hypoglossi, the vestibular nuclei, the inferior olive and the pontine nuclei 

(Masseck & Hoffmann, 2009). 

1.4 Visual motion detection is context-dependent 

Comparable to the fitness tracker and the autonomous cars mentioned initially, the 

vestibular and visual systems rely on different physical modalities to detect motion. The 

vestibular system, like a fitness tracker, detects motion by detecting inertial forces 

caused by any acceleration. Although the vestibular system must deal with a large range 

of head dynamics, the transduction process of this mechanosensitive motion sensors is 

relatively easy to follow and computationally simple. In contrast, the visual system, 

whose motion sensor is a spatially distributed array of light-sensitive photoreceptors, 

deals with the steady variation and complexity of visual sceneries, a complication that is 

also encountered by autonomous cars. 

However, as many animals mainly rely on vision to interact with their environment 

(Gibson, 1979), the importance of an accurate visual motion detection to elicit adequate 
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behavioral response places high demands on the robustness of this process to changing 

visual scenes: Whether an animal needs to detect a prey in clear water or in a murky 

pond, or a pedestrian needs to avoid a car on a sunny or foggy day, their motion 

computation needs to be robust under different visual conditions. In particular, when 

animals actively locomote through space, the perception of their own motion should be 

precise, regardless of the steady variation of features in the environment. 

But how are characteristics of a visual scene detected and interpreted in different 

environments to control behavior? How do biological visual motion sensors extract 

features of visual images to form a robust internal representation of the moving world 

and perform behavioral tasks accordingly? 

1.4.1 Characteristics of a visual scene 

Different environments possess vastly different visual scene characteristics. Generally, 

luminance (or color) contrast are essential components to make sense of a natural visual 

scene, as without contrast the visual image would be a homogeneous surface devoid of 

any structure (see Fig. 2). Contrast can be defined as the difference in light intensity (or 

chromatic composition) between two different places in a visual image. Visual contrasts 

between objects in the environment not only shape the perception to make sense of a 

visual scene but are also required for motion perception and can influence how the 

motion of objects in the world or the world moving around onself is perceived. 

Some of the features of a visual scene were already shown to individually influence how 

motion is detected (Stone et al., 1990; Vaziri-Pashkam & Cavanagh, 2008). Early studies 

(Hawken et al., 1994; Stone et al., 1990) found for example that differences in contrast 

intensities influence how humans perceive the speed of a moving image: The 

“Thompson effect” stipulates that a reduction in contrast leads to a reduction in the 

perceived speed. A similar effect, based on contrast intensity, was observed for visual 

motion reflexes in insects (Dvorak et al., 1980; Nityananda et al., 2015; Straw et al., 

2008) and vertebrates (Donaghy, 1980; Lisberger & Westbrook, 1985). Contrast polarity 

was also shown to influence motion detection processes: An asymmetry with respect to 

the perception of bright and dark objects was observed in human temporal delay 

thresholds (Komban et al., 2014). The role of color contrast in motion perception has 
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however been a matter of debate for over 20 years (Gegenfurtner & Hawken, 1996) and 

it is still unclear whether and how color information contribute to luminance cues in the 

process of motion perception. 

Taken together, a variety of features of a visual scene can influence the detection and 

perception of motion. However, it still remains unclear how these different image 

features are interpreted by the visual system to form a coherent representation of the 

motion of a full-field visual scene and how this speed estimate is used to control 

behavioral tasks. This accurate motion estimate of a full-field visual scene is particularly 

important when animals need to stabilize their gaze in space to ensure visual acuity 

during locomotion. 

 

 

Figure 2: Color and luminance contrast 

The original image (left panel, adapted from US Department of Agriculture, public domain) 

includes both color- and luminance contrasts: The apples can be easily distinguished. The black-

and-white conversion of the original image (middle panel, only luminance contrast) and the 

equiluminant image (right panel, only color contrast), highlight different features of the original 

image. 
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1.4.2 Image stabilization during self-motion 

Two gaze stabilizing reflexes make an important contribution to image stabilization 

during self-motion: While the VOR is elicited by head movements during active and 

passive motion of animals within their environment, the OKR is driven by large-field 

motion of the visual scene. As gaze-stabilizing reflexes rely on an internal estimate of 

how an animal is moving within its environment, both reflexes can give insights about 

how this motion estimate is formed based on visual and vestibular motion information. 

An accurate motion estimate and self-motion percept is a necessary requirement for 

gaze-stabilizing reflexes to keep the eyes of animals stable in space and thereby 

minimize retinal image slip and maximize visual acuity. But what are the prerequisites 

for an effective motion estimate? And how are the steadily changing features of our 

dynamic world influencing self-motion perception? 

During behaviors in daily life, the multi-modal integration of inputs from different 

sensory modalities makes the discrimination of each systems’ contribution difficult. 

However, in the laboratory, the VOR and the OKR can be studied in isolation (Beck et al., 

2004; Robinson, 1968). In particular, to study how features of a visual scene influence 

visual motion estimates under a variety of different scene conditions, the OKR presents 

several advantages: This brainstem-mediated reflex can be elicited by large-field motion 

stimuli, does not require any training and is easy to monitor experimentally. Since this 

reflex is exclusively driven by a visually-generated neuronal correlate of the velocity of 

the moving scene (Cohen et al., 1981b; Maioli, 1988; Raphan et al., 1979), the 

optokinetic response relates monotonously to the internal visual motion estimate (see 

chapter 2, manuscript 1). Thus, for dynamically similar stimuli, a higher internal estimate 

of stimulus velocity translates into a stronger optokinetic response. Accordingly, the 

magnitude of the OKR offers a convenient behavioral substrate to reveal influences of 

various image characteristics on visual motion perception. In this thesis, the optokinetic 

reflex was therefore used as a behavioral measure to investigate how features of a 

moving visual scene influence speed estimation processes. 
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1.5 I can see it in your eye 

All living beings, whether vertebrates or invertebrates, large or small, share the same 

world and are therefore confronted with similar challenges to extract meaningful 

information from their surroundings and perform adequate behavioral tasks. Examining 

the integration of visual and mechanosensory information in different animals can 

thereby give interesting insights into how animals combine signals from qualitatively 

different sensors in their central nervous systems. However, animals with simpler 

central nervous systems are still often underestimated in terms of significance for 

comparative studies (Prete, 2004), whereas especially these animals can give us crucial 

insights into basic and likely common information-processing mechanisms in different 

species. In the last years, more and more studies have been performed in animals with 

“simpler” brains and demonstrated that these organisms can reveal valuable 

information about organizational commonalities of sensory systems (Prete, 2004). This 

increasing evidence that visual motion perception depends on similar features across 

the animal kingdom (Borst & Helmstaedter, 2015) shows that simpler organisms, such 

as fruit flies (Borst, 2009), frogs (Lettvin et al., 1959) or zebrafishes (Gestri et al., 2012) 

are an auspicious avenue of research. 

1.5.1 Xenopus laevis tadpoles 

In this thesis, I used the amphibian Xenopus laevis, more specifically semi-intact 

preparations of Xenopus laevis tadpoles at mid-larval stages, to investigate motion 

processing mechanisms of the visual system. Xenopus laevis tadpoles offer many 

advantages, including facilitated experimental access (Straka & Simmers, 2012) to both 

visual and vestibular sensory systems. In the last years, this animal model was a key 

factor in elucidating the functional mechanisms of the vestibular sense, providing new 

insight into developmental and adaptive processes of this system (Straka & Simmers, 

2012). Concerning the visual system of Xenopus tadpoles, one crucial advantage is that 

they possess the basic layout of vertebrates’ eyes, including rods and different types of 

cones with three distinct absorption spectra (Witkovsky, 2000). Further, the relative 

simplicity of Xenopus tadpoles’ visual system and the short-latency pathway through the 

accessory optic system, pretectal nuclei and extraocular motor nuclei (Cochran et al., 



Introduction 

19 
 

1984), offers the unique possibility to study visual motion processes at the brainstem 

level. Indeed, the absence of cortical areas in these animals in contrast to mammals 

(Busse et al., 2011; Pinto & Enroth-Cugell, 2000), specifically allows elucidating the role 

of retinal and brainstem computations (see chapter 2, manuscript 1). 

Another advantage of isolated Xenopus tadpole preparations is that they evoke robust 

and easily measurable sensory-driven motor behaviors, such as the vestibulo-ocular 

reflex and the optokinetic reflex. Both reflexes were shown to be functionally present at 

mid-larval stages (Branoner et al., 2016; Schuller et al., 2014) and robustly elicit 

characteristic eye movements. While the VOR provokes compensatory eye movements 

in the opposite direction of head motion, the OKR is evoked by large-field visual 

sceneries and elicit slow, following eye movements in the direction of the image motion, 

interrupted by fast, resetting eye movements when necessary. Like many other 

vertebrates, Xenopus laevis does not possess a fovea, i.e. a point of sharpest vision on 

the retina: This characteristic presents a great advantage to monitor pure OKR 

responses, in contrast to e.g. humans, where optokinetically-induced eye movements 

can be suppressed by smooth pursuit eye movements or visual fixation. 

All these features make Xenopus laevis tadpoles an ideal animal model in vision and 

oculomotor research, to provide further insight into common image processing 

mechanisms across species. 

1.5.2 Virtual reality setups 

Over the last decades, a whole range of novel experimental setups have been developed 

to investigate multi-sensory integration mechanisms in different species. In particular, 

virtual reality technologies and self-motion simulators (Campos & Bülthoff, 2012) 

developed rapidly, providing researchers with the opportunity to present well-

controlled stimulus conditions and life-like environments to their subjects. Virtual reality 

setups are therefore valuable tools for investigating a wide spectrum of behaviors, as 

these technologies close the loop between sensory stimulation and motor actions 

(Thurley et al., 2017). 
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The experiments reported in this thesis were performed on such a virtual reality setup, 

consisting of a motion platform with three projectors projecting on a cylindrical large-

field screen. The semi-intact Xenopus tadpole preparations were placed in the center of 

the platform and an IR-camera permitted the online tracking of VOR and OKR eye 

movement responses during stimulation of the motion platform and large-field visual 

image, respectively. The performance measure of both gaze-stabilizing reflexes was 

given by the ratio of eye speed to the respective stimulus speed. A crucial advantage of 

this setup is to simultaneously and precisely be able to control and monitor both sensory 

stimulation and motor output of in-vivo like semi-intact Xenopus preparations. 

Natural environments 

When attempting to elucidate common sensorimotor processes between different 

species in virtual reality setups, a crucial question arises: Are the used virtual reality 

devices recreating a natural environment to the species? Computer screens used in 

virtual reality setups show an image composed of individual pixels, each of which is 

composed of the three colors, red, green and blue. These devices are based on 

knowledge about the trichromatic vision of humans, which possess three types of color-

sensitive cones, with peak sensitivities in the red, green and blue spectrum, respectively. 

Computer displays are able to simulate a large variety of different colors on a screen by 

choosing the red-green-blue ratio that mimics the activation of human cones under 

natural lighting conditions. The relationship between the ratio of red, green and blue 

light and the perceptual experience of that light was defined by psychophysical 

experiments performed in human subjects (Tedore & Johnsen, 2017). Therefore, this 

relationship is specific to humans and is not generally applicable to other species. 

Indeed, different animals can possess different numbers of cones or have different peak 

sensitivities over the light spectrum (Osorio & Vorobyev, 2008). Therefore, when using 

virtual reality devices, a correct calibration of these setups to the “color intensity 

perception” of a particular species should be taken into account. As sometimes the exact 

anatomical composition or spectral sensitivity of retinal photoreceptors is not available 

in an animal species, the monitoring of low-level optomotor responses, such as the 

optokinetic reflex, provides a relatively simple tool to test how animals perceive the 

brightness of presented colors in virtual reality devices. By tracking the optomotor 
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responses in an animal model for different colored visual motion stimuli, the relative 

sensitivities to the red, green and blue channels of a monitor screen can be estimated. 

In this thesis, I introduce this simple assay (see chapter 4, manuscript 3) that permits 

researchers to calibrate the colors of their virtual reality setups to the eye of their 

studied species. This increased control over the visual stimuli used for different species 

will help to elucidate more reliably common traits between species (Levy et al., 2014; 

Tedore & Johnsen, 2017). 

1.6 Aim of the thesis 

To obtain information from their dynamic world and guide behavior, animals possess 

different sensory systems and a variety of sensors that inform them about their own 

movements and the motion of objects in their environment. In particular, when actively 

locomoting through the environment, animals predominantly rely on sensory cues from 

their vestibular and visual systems. 

In this thesis, I focused on the visual system and aimed at elucidating how characteristics 

of a moving large-field visual scenery influence an animal’s internal representation of 

self- or world motion, respectively. Features of a visual scene were already shown to 

strongly influence how animals perceive and interpret motion in their environments 

(e.g. (Rinner et al., 2005)). However, it still remains unclear how the visual system 

extracts characteristics of a moving visual image to form a reliable estimate of large-field 

visual motion. This task is however crucial in daily life to control behavioral 

performances, such as gaze stabilization, navigation or goal-directed actions. 

Since visual motion processing in vertebrates is a distributed process across multiple 

hierarchical levels – from the retina to various areas of the central nervous system – the 

question arises as to whether and how different scene qualities of a full-field visual 

image impact the speed estimation process in these animals and how these biases 

translate into behavioral output. 

A suitable tool to test for the influence of visual scene characteristics on visual 

performance, is to monitor gaze-stabilizing responses, such as the optokinetic reflex. As 
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the reflex correlates with the velocity of a moving image, the OKR response relates to 

the internal motion estimate of an animal. Monitoring eye movement reflexes and 

recording neuronal signals of the optic nerve can thus give crucial insights into how a 

speed estimate is encoded on a retinal level and how this internal representation 

translates into behavior. 

In the first manuscript of this thesis, I specifically investigated how the manipulation of 

contrast polarity in a visual scene influences retinal signaling and how these biases 

translate into the optokinetic reflex performance of Xenopus tadpoles. 

In the second manuscript, the question of whether the retina already exploits color 

contrast of a visual scene for motion vision was researched. Based on behavioral 

observations of the optokinetic reflex and recordings of the optic nerve, this study 

investigated whether and how luminance and color information interact on a brainstem-

mediated reflex. 

In the field of neurosciences, virtual reality setups facilitate the investigation and 

comparison of sensory-motor behaviors of different animal species. However, whether 

these virtual reality setups actually mimic natural environments of the animal models is 

still a matter of debate and presents a serious limitation of these devices. In the third 

manuscript, I therefore propose a simple behavioral assay to test for color sensitivity of 

different animal models in virtual reality setups, that will help in calibrating the devices 

accordingly. 
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Abstract 

The maintenance of visual acuity during active and passive locomotion is ensured 

by gaze stabilizing reflexes that aim at minimizing retinal image slip. For the optokinetic 

reflex (OKR), large-field visual motion patterns form the essential stimuli that activate 

eye movements that follow the motion of the visual surround. Since properties of the 

visual world are known to influence cognitive motion perception, estimation of visual 

image velocity and thus the performance of brainstem mediated visuo-motor behaviors 

might also depend on various characteristics of the image scene. Employing semi-intact 

preparations of mid-larval stages of Xenopus laevis tadpoles, we studied the influence 

of contrast polarity, intensity, contour shape and motion stimulus patterns on the 

performance of the OKR and multi-unit optic nerve discharge during motion of a large-

field visual scene. At high contrast intensities, the OKR amplitude was significantly larger 

for visual scenes with a positive contrast compared to those with a negative contrast. 

This effect persisted for luminance-matched pairs of stimuli, and was independent of 

contour shape. The relative biases of OKR performance as well as the independence of 

the responses from contour shape was closely mirrored by the discharge of the optic 

nerve in response to the respective stimuli. However, the multi-unit activity of the latter 

in response to a single moving vertical edge with a height of 2.5 mm was strongly 

influenced by the light intensity in the vertical neighborhood. This suggests that the 

underlying mechanism of OKR biases related to contrast polarity directly derives from 

visual motion processing properties of retinal circuits. 
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Introduction 

Most vertebrates live and locomote within highly dynamic and structured 

environments of animate and inanimate objects. To ensure adequate visual acuity 

during locomotion and passive perturbations of the head/body, retinal images are 

stabilized by two brainstem-mediated ocular motor reflexes: the vestibulo-ocular reflex 

(VOR), which operates best at high frequencies and accelerations and elicits 

compensatory eye movements following stimulation of the vestibular sensory system 

(Straka and Dieringer, 2004) and the optokinetic reflex (OKR), which is activated by large-

field visual image motion and triggers eye movements that aim at stabilizing the residual 

retinal image drift (Collewijn, 1969; Dieringer and Precht, 1982). During prolonged 

artificial visual stimulation in one direction, an optokinetic nystagmus emerges, in which 

tracking movements are interrupted by rapid eye movements in the opposite direction 

(Collewijn, 1969). These fast phases reset the eyes to a central position from which the 

tracking movements are repetitively activated. 

The OKR in all vertebrates is subject to two requirements: providing a rapid 

processing of image motion while maintaining a faithful representation of the actual 

image velocity over a broad range of viewing conditions that can range from e.g. bright 

sunlight to dusk/dawn or from clear to murky water in aquatic environments. These 

different conditions have vastly different visual scene characteristics such as contrast 

intensity and polarity as well as total luminance. Some of these characteristics are 

already known to influence visual motion driven reflexes and perception capabilities in 

vertebrates (Donaghy, 1980; Lisberger and Westbrook, 1985) as well as insects (Dvorak 

et al., 1980; Straw et al., 2008; Nityananda et al., 2015). At variance, the influence of 

contrast polarity, i.e. the sign of brightness differences between objects and 

background, or contrast intensity on the performance of the optokinetic reflex is only 

poorly understood so far.  

Moreover, it is unknown if an influence of the various visual scene properties on 

OKR performance is due to a differential processing within the underlying brainstem 

network or if it derives already from an immanent feature of the retinal motion 

detection system. As support for the latter, manipulation of visual scene characteristics 
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can lead to a differential excitation of retinal photoreceptors, which in turn might elicit 

different activation patterns in motion-sensitive ganglion cells (Enroth-Cugell and 

Robson, 1966) and thus generate a different velocity estimate. Furthermore, the center-

surround organizational structure of retinal edge detectors allows the assumption that 

the properties of a uniform background in the particles’ neighborhood influences the 

extraction of motion information from the small moving edges. In fact, within visual 

image textures, only the edges of moving particles generate a motion percept, while the 

large uniform areas of the large-field image (which is construed as background) make 

no immediate contribution to visual motion perception (Adelson and Bergen, 1985). 

These possible scene-related differences in retinal speed estimations might then 

translate into differences in signal processing within brainstem circuits and thus into 

behavioral responses, such as the OKR. 

Here, we studied the influence of contrast polarity on OKR performance in 

tadpoles of the African clawed toad Xenopus laevis. These vertebrates allow studying 

respective visuo-motor transformations in semi-intact preparations that offer a 

facilitated accessibility to all synaptic levels of the underlying brainstem neuronal 

network (Straka and Simmers, 2012; von Uckermann et al., 2016). Presentation of visual 

scenes, randomly scattered with particles defined by filled closed contours (e.g. solid 

dots, squares or crescent shapes), elicited optokinetically driven eye movements of 

different amplitudes that depended on contrast polarity and intensity as well as 

luminance levels. Recordings of multi-unit spike discharge from the optic nerve of 

isolated eyes revealed similar dependencies from the various stimulus parameters, 

suggesting that major differences in OKR performance derive from the signal processing 

with retinal circuits. 
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Methods 

Animal Experiments 

Animals. Experiments were performed in vitro on isolated, semi-intact preparations of 

Xenopus laevis tadpoles (n = 42) and comply with the National Institute of Health 

publication entitled "Principles of animal care", No. 86-23, revised 1985. Permission for 

these experiments was granted by the governmental institution at the Regierung von 

Oberbayern/Government of Upper Bavaria (55.2-1-54-2532.3-59-12). Animals at 

developmental stages 52-55 (Nieuwkoop and Faber, 1994) were obtained from the in-

house animal breeding facility at the Biocenter-Martinsried of the Ludwig-Maximilians-

University Munich. For all experiments, tadpoles were anesthetized in 0.05% MS-222 

(Pharmaq Ltd., UK) in frog Ringer (75 mM NaCl, 25 mM NaHCO3, 2 mM CaCl2, 2 mM KCl, 

0.5 mM MgCl2, and 11 mM glucose, pH 7.4) and decapitated at the level of the upper 

spinal cord. 

Experimental approach. For behavioral experiments, the skin covering the dorsal head 

was removed, the soft skull tissue opened and the forebrain disconnected (Lambert et 

al., 2012). This surgical procedure anatomically preserved the remaining CNS and the 

eyes including the optic nerve, extraocular motor innervation and eye muscles. Such 

preparations allowed prolonged behavioral and neuronal recordings and in vivo-like 

activation of the OKR by horizontal large-field image motion under controlled in vitro 

conditions. For electrophysiological recordings of retinal ganglion cell axons in these 

preparations, the optic nerve of the right eye was cleaned from surrounding connective 

tissue and transected at the level of the optic chiasm. All extraocular muscles of this eye 

were transected at their proximal insertion to immobilize the eye in its natural position 

within the head. Semi-intact preparations were allowed to recover from the surgical 

intervention at 14°C for 3 hours (Ramlochansingh et al., 2014). 

Setup. Semi-intact preparations were fixed with insect pins to the Sylgard floor of a Petri 

dish (5 cm diameter). The chamber, which was constantly perfused with oxygenated frog 

Ringer solution at a rate of 3.0 - 5.0 ml/min, was mechanically secured in the center of 

an open cylindrical screen with a height of 5 cm and a diameter of 8 cm, encompassing 

275° of the visual field (Fig. 1A). Three digital light processing (DLP) video projectors 
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(Aiptek V60), installed in 90° angles to each other projected visual motion stimuli onto 

the screen (Packer et al., 2001) at a refresh rate of 60 Hz. For behavioral recordings, a 

CCD camera (Grasshopper 0.3 MP Mono FireWire 1394b, PointGrey), mounted 20 cm 

above the center of the recording chamber, permitted on-line tracking of horizontal eye 

movements by custom-written software (Beck et al., 2004). The chamber was 

illuminated from above using an 840 nm infrared light source. An infrared long-pass 

filter in the camera ensured selective transmission of infrared light and a high contrast 

of the eyes for motion tracking and online analysis of induced eye movements.  

Electrophysiological recordings of multi-unit optic nerve spike activity were performed 

in the same setup. The spike discharge was recorded extracellularly (EXT 10-2F, npi 

electrodes, Tamm, Germany) with glass microelectrodes. Electrodes were produced 

with a horizontal puller (P-87 Brown/Flaming, Sutter Instruments Company, USA) and 

the tips were broken and individually adjusted to fit the respective optic nerve diameter. 

The multi-unit spike discharge was digitized at a sampling rate of 28.6 kHz (CED 

Micro1401-3, Cambridge Electronic Design Ltd., UK) along with the visual motion 

stimulus and the horizontal position of both eyes, respectively. Data were recorded by 

a data acquisition program (Spike2 version 7.04, Cambridge Electronic Design Ltd., 

United Kingdom).  

Data Acquisition. To assess the performance of the horizontal OKR during sinusoidal 

large-field visual motion stimulation, the position of both eyes was preprocessed by a 

Gaussian low-pass filter at a frequency of 5 Hz, and segmented into individual cycles of 

the stimulus, excluding all cycles with a peak eye velocity >50°/s. Thereby, cycles with 

oculomotor behaviors other than optokinetic slow phase responses, such as high-

frequency horizontal oscillations during spontaneous episodes of locomotor activity 

(Lambert et al., 2012) were discarded. Also, four out of 42 preparations with very small 

optokinetic response amplitudes (< 0.5°/s) during the initial screening, likely due to prior 

surgical complications, were excluded. The remaining 38 tadpoles were used for 

subsequent experiments. For horizontal optokinetic motion stimulation at constant 

speed, the velocity of the slow-phase following eye movement was computed in a 

window of ±5° around the resting position of the eye by evaluating the slope of a least-

squares fit of a straight line to the eye position trace. Additionally, the number of fast-
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phases over the duration of the applied stimulus (i.e. 120 s) was counted. 

The rate of spontaneous and motion-evoked multi-unit spike discharge was 

extracted from optic nerve recordings using a threshold method. The resulting spike 

train was then convolved with a raised cosine window (FWHM = 0.5 s) to compute the 

firing rate. The modulation depth during sinusoidal visual motion stimulation was then 

computed by averaging the firing rate (FR) over all cycles of a single trial, approximating 

the resulting average curve by a function  

𝐹𝑅 = 𝑎 + 𝑏 ∗ |sin(
𝑡

𝑇
)|, 

in which b is the modulation depth, a is the baseline firing rate and T is the period. For 

constant velocity visual motion stimuli, the modulation depth was computed as the 

difference between the maximum and the baseline firing rate. 

Stimulus paradigm. Horizontal eye movements were elicited by large-field visual motion 

stimuli using one of two stimulus velocity profiles: Sinusoidal visual motion stimuli with 

a peak velocity of 10°/s and a frequency of 0.125 Hz triggered sinusoidally modulated 

slow conjugate following movements of both eyes (Fig. 1B). Constant velocity visual 

motion stimuli (120 s in each direction, respectively) with a velocity of ±10°/s provoked 

a nystagmic OKR with slow following eye movements (* in Fig. 1C) and intermittent 

resetting fast-phases in the opposite direction (> in Fig. 1C). 

Large-field horizontal visual motion stimuli consisted of gray scale random-dot (ø 

2.5 mm, visual angle 1.8°) patterns with different tones of grey for the dots and 

background and light intensities between 251 and 6428 cd/m2 (Photo Research, 

SpectraScan PR655). Sample sizes were based on a-priori power analysis performed in 

G*Power 3.1.9.2 (Faul et al., 2007, 2009) using effect sizes from pilot experiments. 

Contrast polarity was defined as the sign of the difference between dots and background 

(i.e. positive contrast for bright dots on a dark background and negative contrast for dark 

dots on a bright background; see left and right visual scene in Fig. 1A). 

Influence of visual scene properties on OKR performance. To test how scene properties 

such as contrast intensity and total luminance influence the OKR in scenes with positive 

and negative contrast, semi-intact preparations of Xenopus tadpoles were presented 



Manuscript 1 

30 
 

with sinusoidal large-field motion stimuli, in which contrast intensity and total 

luminance were systematically manipulated (Fig. 1D). 

Effect of contrast intensity. The effect of contrast intensity was tested in preparations (n 

= 8) using sinusoidally moving random-dot scenes. Eight different visual scenes (contrast 

intensities between -100% for black dots on a white background and +100% for white 

dots on a dark background, four negative, four positive; see left panel in Fig. 1D) were 

presented in sparsely populated random-dot images (fill rate 13%).  

Effect of total luminance. To explicitly test the effect of total luminance on OKR 

performance under both contrast polarity conditions, preparations (n = 10) were 

presented with five different textures (fill rate 35%) with positive contrast and the same 

contrast magnitude but different total luminance levels (middle panel in Fig. 1D). In 

addition, five visual motion stimuli of different total luminance were presented with the 

same contrast magnitude but negative contrast. This resulted in a total of 10 stimuli. 

These stimuli were chosen such that eight stimuli formed four pairs (* in panel scheme 

in Fig. 1D): For each pair, the stimulus had a different contrast polarity but the same 

total luminance. The remaining two stimuli (# in middle panel in Fig. 1D) had no match 

with opposite contrast polarity stimuli due to technical limitations of the display device. 

Effect of contrast polarity. The third set of stimuli investigated the effect of contrast 

polarity on OKR amplitude. Preparations (n = 12) were presented with two random-dot 

scenes, in which the total luminance was identical between both contrast polarities by 

filling 50% of the screen area with dots, while leaving the other 50% as background (right 

panel in Fig. 1D). Thereby, inverting contrast polarity did not change the ratio of bright 

vs dark patches on the screen and thus preserved the total luminance. 

Influence of contour shapes on OKR performance. To test if biases related to contrast 

polarity in the previous experimental conditions can be explained, at least partly, by the 

different structural organization of contours in positive as compared to negative 

contrast stimuli (concave vs convex edges), two additional stimulus protocols were 

presented to semi-intact Xenopus preparations (n = 8). These stimuli were identical to 

the 50% fill rate stimuli in the previous condition, except that in the first of the two sets 

of experiments all dots were replaced by squares of the same area (left panel in Fig. 1E). 
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This allowed identifying whether an influence of contrast polarity on the OKR is related 

to the shape of contours or rather to a foreground/background distinction.  

To test whether the direction of the curvature of the contours (concave vs convex) 

influences OKR performance, the dots in the two maximal-contrast conditions (±100%; 

see left panel in Fig. 1D) were replaced by crescent shaped contours with the same area 

and radius of the curvature (right panel in Fig. 1E). This resulted in four different visual 

stimuli, presented to the semi-intact preparations (n = 6): Positive and negative contrast 

with the opening either in or against movement direction (to the left or to the right; see 

right panel in Fig. 1E). Due to the asymmetry of the contours, the stimuli were presented 

at constant velocity of 10°/s in counter-clockwise direction. 

Influence of contrast polarity-related biases of multi-unit optic nerve spike discharge. To 

elucidate whether contrast polarity related biases of the OKR is a property of retinal 

motion detection or an emerging feature during further signal processing in central 

visual relay centers, a subset of the previously described stimuli was presented to 

isolated Xenopus eyes while recording multi-unit spike activity from the severed optic 

nerve. 

Optic nerve discharge in response to single moving edges. To evaluate the spike 

discharge pattern in the optic nerve, induced by a moving edge, a single vertical edge 

(height = 2.5 mm, 1.8° visual angle) was moved through the isolated eye’s field of view 

at a constant stimulus velocity of 10°/s in temporo-nasal direction (Fig. 1F). The edge 

had one of three shapes (concave, CV; convex, CX; straight, ST), was shown either in 

front of a dark (+) or bright (-) background, and was either a local change of light intensity 

from dark to bright (ON) or from bright to dark (OFF; see Fig. 1F). 

Data analysis and statistics. The critical level of significance for all statistical comparisons 

was chosen as α < 0.05 unless otherwise stated. The influence of contrast intensity and 

contrast polarity was tested by a 2-way repeated measures ANOVA, with factors 

contrast intensity and contrast polarity. The correlation between total texture 

luminance and normalized OKR amplitude was analyzed by performing a linear 

regression analysis, using the model: 
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 𝐴 = 𝛽1 + 𝛽2 ∗ 𝐿 

individually for both contrast polarities with A as the relative OKR amplitude and L as 

the relative normalized total luminance; β2 is the slope of the regression curve and 

indicates the sensitivity of the OKR amplitude to total luminance changes, and β1 is the 

offset of the regression line. 

Corresponding 40 data points of the four pairs of overlapping luminance conditions 

(* in middle panel of Fig. 1D) were used to allow for unbiased comparison of positive 

and negative contrast stimuli. The slope of the regression was then compared between 

the responses to positive and negative contrast stimuli, using a bootstrap approach: In 

100,000 permutations, 10 values were randomly drawn from the OKR amplitudes 

obtained from the four pairs of overlapping luminance conditions each, resulting in 40 

data points in total. The model was then fitted as described above to each randomly 

drawn dataset to generate a distribution for the b2 parameter, centered on its mean 𝜇2. 

Significance was then assessed by counting the relative amount of fits to random 

permutations, which had |𝛽2,perm − μ2| > |𝛽2,data − μ2| and comparing to the critical 

value of significance. OKR amplitude differences between the two contrast polarities in 

the 50% fill rate textures were tested using a paired t-test. 
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Figure 1: Stimulation and recording paradigms of the horizontal OKR in Xenopus tadpoles. 

(A) Schematics, illustrating the experimental setting with a central recording chamber for semi-

intact larval Xenopus preparations (adapted from Hänzi and Straka, 2016), surrounded by a 

cylindrical screen onto which a rotating large-field random-dot pattern with positive (white dots 

on black background, left) or negative (black dots on white background, right) contrast polarity 
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is projected. (B,C) Representative examples of movements of the left eye (upper traces) evoked 

by sinusoidal (frequency: 0.125 Hz, peak velocity: ±10°/s; B) or temporo-nasal constant velocity 

(10°/s; C) visual motion stimuli (lower traces); the evoked nystagmic eye movement in C consists 

of slow following-phases (*) interrupted by resetting fast-phases (>). (D-F) Graphical illustration 

of variations in visual scene properties such as contrast intensity, total luminance, contrast 

polarity (left, middle and right panel in D, respectively), contour shapes (E) and shape of single 

moving edges (F). In the middle panel of D, * indicates pairs of stimuli with different contrast 

polarity but same total luminance; # indicates those stimuli that had no match with stimuli of 

opposite contrast polarity. 

 

 

Results 

Activation of horizontal optokinetic responses in Xenopus tadpoles 

Large-field sinusoidal image motion provokes phase-coupled following movements 

of both eyes in semi-intact in vitro preparations of Xenopus laevis tadpoles (Schuller et 

al., 2014). This reflexive eye motion is termed optokinetic reflex and represents the 

sensory feedback component of gaze stabilization during head/body motion (Collewijn, 

1969; Straka and Dieringer, 2004). Pilot experiments in semi-intact Xenopus 

preparations using a sinusoidally oscillating large-field random-dot pattern in the 

framework of the current study evoked respective responses. Accordingly, stimulus 

frequencies of 0.1 - 0.2 Hz and peak velocities of ±10°/s elicited robust eye movements 

at mid-larval stages of this amphibian species (e.g. red trace in Fig. 2A). The pilot 

experiments also revealed that the magnitudes of the evoked optokinetic responses 

were not only correlated with the frequency and amplitude of the motion stimulus, but 

also depended on contrast polarity, i.e. bright dots on dark background or vice versa 

(compare red and blue traces in Fig. 2A, B). This result suggests that the contrast of a 

moving visual scene plays an important role for the reflex performance. Thus, the first 

set of experiments systematically explored the influence of contrast polarity on the 

amplitude of the OKR. 
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Figure 2: Dependency of horizontal OKR amplitude on contrast polarity and intensity. 

(A) Representative examples of horizontal positional oscillations of the left eye (upper red and 

blue traces) extracted from video sequences during sinusoidal large-field image motion 

(frequency: 0.125 Hz, peak velocity: ±10°/s; lower traces) of a random-dot pattern with positive 

(left) and negative contrast (right); calibration bars on the left also apply to the traces on the 

right, respectively. (B) Averaged responses over a single cycle (from 20 cycles each) during visual 

motion stimulation with four textures of decreasing contrast intensity (color-coded in red and 

blue, respectively) for positive (left) and negative (right) contrast polarity; icons in the upper left 

corner depict the different contrast intensities, respectively. 

 

 Influence of visual stimulus parameters on OKR performance 

The effect of contrast polarity on the OKR of Xenopus tadpoles was investigated by 

presenting four different contrast magnitudes of dots vs background (n = 8 

preparations). The random-dot stimuli had either a positive (dots were brighter than the 

background; see left scheme in Fig. 1A) or a negative contrast (dots were darker than 

the background; see right scheme in Fig. 1A). The systematic variation of this parameter 
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revealed a gradual diminution of the OKR response amplitude with decreasing stimulus 

contrast, for both contrast polarities (F(3,52) = 24.17, p <0.001, η = 0.30; see red and 

blue colored traces in Fig. 2B, respectively; Fig. 3A). This decrease in OKR performance 

with decreasing contrast magnitude was very similar between different preparations as 

indicated by the relatively small variability across different experiments (Fig. 3A). In 

addition, a pronounced asymmetry was observed when varying contrast polarity (Fig. 

3A). Response amplitudes were significantly larger for random-dot patterns with a 

positive than with a negative contrast (F(1,52) = 57.62, p <0.001, η = 0.24). In fact, at the 

same contrast intensity, the average OKR response to stimuli with a positive contrast 

out-sized the responses that were evoked by stimuli with a negative contrast by a factor 

of 2.24 ±1.01 (n = 8). This indicates that OKR performance depends on both contrast 

magnitude as well as contrast polarity. 

The effect of contrast polarity on OKR performance under different total luminance 

conditions was tested in another group of semi-intact Xenopus tadpole preparations (n 

= 10 preparations) by presenting motion stimuli with different textures (fill rate 35%). 

These stimuli had the same magnitude of contrast, respectively, but different total 

luminance levels and either positive or negative contrast polarity, resulting in a total of 

10 different stimuli (see middle panel in Fig. 1D). To compare the effect of stimuli with 

opposite contrast polarity, the luminance for dots and background was chosen such that 

the total luminance was matched in 4 pairs of stimuli with positive and negative contrast 

(marked by * in Fig. 3B). Even though the obtained results were somewhat variable 

between different preparations (see individual lines in Fig. 3B), OKR amplitude 

nonetheless exhibited a clear and highly significant negative correlation with the total 

luminance of the visual scene (ρ(99) = -0.691, p <0.001, df = 99). The two individual 

regression fits resulted in slopes of β2= -2.65 for bright dots on a dark background and 

of β2 = -1.44 for dark dots on a bright background. The two slope values were 

significantly different (positive contrast: p = 0.021; negative contrast: p = 0.022) 

compared to the mean slope of the bootstrap permutations. Accordingly, at lower 

overall brightness, the effect of contrast polarity is more pronounced, but vanishes for 

stimuli with higher total luminance (Fig. 3B). This indicates that contrast polarity 

differentially influences the OKR of Xenopus tadpoles depending on the total luminance 

of the optokinetic stimulus pattern.  
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Thirdly, a potential impact of variations in contrast intensity and total image 

luminance was tested by presenting a moving scene in which 50% of the screen area 

was filled with dots, while the other half was a uniform background (n = 12; right panel 

in Fig. 1D). Thereby, the presented stimuli with inverse contrast polarity differed only by 

either having a positive or a negative contrast, but neither in total luminance nor in 

contrast magnitude. This experimental approach confirmed the asymmetry of OKR 

response amplitudes for motion stimuli with different contrast polarities (Fig. 3C). 

Accordingly, the OKR amplitude was significantly larger (t (11) = 2.97, p = 0.0126, d = 

0.64; Fig. 3C) with bright dots on dark background than with dark dots on bright 

background. Again, responses evoked by stimuli with positive contrast out-sized those 

that were elicited with negative contrast stimuli by a factor of 1.49 ± 0.49 (n = 12). The 

smaller relative difference between the responses to the presented textures compared 

to the previous result (Fig. 3B), however, suggests that the effect of contrast polarity 

inversion is complemented by concurrent changes in image brightness. This difference 

can be attributed to two structural variations in the image pattern that were caused by 

changing contrast polarity: Either the signal processing within the OKR circuitry is able 

to dissociate between foreground (dots) and background (one large connected area 

between the dots) and adjust its response based on this distinction, or it responds 

differently as a result of changing the curvature of contours from convex to concave and 

vice versa. 

A potential impact of contour shape (convex vs concave curvature) on OKR 

performance was tested by presenting a set of stimuli in which 50% of the area was filled 

with squares with either positive or negative contrast polarity (left panel in Fig. 1E, Fig. 

3D). Compatible with the dependency of the OKR magnitude on contrast polarity, the 

optokinetic response amplitude was significantly higher for stimuli with a positive, 

compared to a negative contrast by a factor of 1.29 ± 0.24 (t(6) = 3.48, p = 0.013, d = 

2.63). This therefore suggests that contour curvature is not the main cause for the 

observed differences related to contrast polarity. 
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Figure 3: Influence of large-field visual image properties on OKR performance. (A) Dependency 

of OKR amplitudes on the contrast intensity of the random-dot pattern with positive (+) and 

negative contrast (-); note the asymmetry of responses to different contrast polarity; light grey 
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lines represent data from individual experiments; the black line indicates the mean (±SD). (B) 

Dependency of the normalized OKR amplitude on relative luminance; dotted lines represent 

data from individual preparations, dashed lines indicate the mean (±SD) and solid lines the linear 

regression for positive (red; slope = -2.65, r2 = 0.49) and negative contrast polarities (blue; slope 

= -1.44, r2 = 0.45). *, p < 0.05. (C,D) Bar plots, depicting normalized OKR amplitudes under equi-

luminant conditions of the motion stimuli with circular (C) and square contours (D) and positive 

(dark grey) and negative contrast polarity (light grey), respectively. Icons above the plots in A-D 

depict the image properties of the different visual stimuli, respectively. Amplitudes in A-D were 

normalized to the mean amplitude for each preparation in the corresponding experimental 

conditions. 

 

This conclusion was supported by another set of experiments that directly tested 

the impact of contour curvature on OKR performance. In these experiments, the 

presented images consisted of randomly scattered crescent shaped contours (13% fill 

rate) with the opening either in or against the motion direction (Figs. 1F, 4). These 

direction-specific stimulus shapes with a positive or a negative contrast (left and right 

schemes in Fig. 4A) were presented at a constant velocity in one direction. In contrast 

to responses evoked by sinusoidal motion stimuli (e.g. Fig. 2A), constant velocity visual 

motion elicited nystagmic eye movements that consisted of slow following movements 

in stimulus motion direction interrupted by resetting fast-phase in the opposite 

direction (Fig. 4B). This allowed quantifying two parameters of the OKR: slow-phase 

velocity, which was calculated as the average slope of the slow following movement (Fig. 

4B) and the number of resetting fast-phases. 

Systematic variations of contrast polarity revealed consistent differences with 

respect to both parameters. Positive contrast stimuli (white crescent shapes on black 

background; red traces in Fig. 4C) evoked an OKR with a significantly higher slow-phase 

velocity and more fast-phases independent of the orientation of the crescent shaped 

pattern relative to the stimulus direction (compare red and blue traces in Fig. 4C). This 

is illustrated by the highly significant main effect of contrast polarity on the velocity of 

the slow following movements (compare red and blue bars in Fig. 4D1; repeated 

measures ANOVA; F(1, 19) = 138.4, η2 = 0.71) and the number of fast-phases (compare 

red and blue bars in Fig. 4D2; repeated measures ANOVA; F(1, 19) = 26.01, η2 = 0.44). 



Manuscript 1 

40 
 

At variance with this result, the curvature of the crescent shaped pattern with 

respect to the motion direction elicited an OKR with similar slow-phase velocities and 

number of fast-phases independent of the contrast polarity as indicated by the 

representative example in Fig. 4C (compare CV with CX traces, respectively). 

Accordingly, no significant main effect of the crescent curvature nor a significant 

interaction between curvature and contrast polarity was encountered for the slow-

phase eye velocity (main effect: F(1, 19) = 0.49, p = n.s., interaction: F(1, 18) = 0.19, p = 

n.s.) and number of fast-phases (main effect: F(1, 19) = 0.71, p = n.s., interaction: F(1, 

18) = 0.09, p = n.s.; Fig. 4D1, D2). The tight link between slow-phase optokinetic eye 

velocity and number of induced fast-phases is further indicated by the close correlation 

between both parameters (Fig. 4D3; ρ = 0.82, n = 28, p <0.001). This is likely due to the 

fact that the neuronal correlate responsible for generating higher eye velocities during 

an OKR also causes fast-phase generating neuronal substrates to reach the activation 

threshold in a shorter time and thereby triggers fast-phases more often. In contrast, the 

higher slow-phase velocity during visual motion stimulation with a positive contrast 

might derive from a differential activation of motion detection circuits already within 

the retina. 
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Figure 4: Influence of contour shape on OKR performance. (A) Schematics, illustrating the 

cylindrical large-field visual projection of crescent-shaped contours with positive (left) and 

negative (right) contrast polarity rotating at a constant velocity of 10°/s. (B) Typical nystagmic 

eye movement during unidirectional constant velocity image motion, consisting of slow 

following-phases (dotted line) interrupted by resetting fast-phases. (C) Representative examples 

of nystagmic movements of the left eye during constant velocity image motion of crescent-

shaped contours in temporo-nasal direction with positive (+, red traces) and negative contrast 

polarity (-, blue traces) and different orientations of the curvature (concave, CV vs. convex, CX).  

(D) Bar plots comparing average slow-phase velocity (D1) and number of fast phases (D2) of eye 

movements evoked by constant velocity large-field image motion of crescent-shaped contours 

with positive (CV+, CX+, red) and negative contrast (CV-, CX-, blue); dependency of the number 
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of fast phases on slow phase eye velocity (D3) for constant velocity crescent-shaped contour 

images with positive (red; n = 14) and negative contrast (blue; n = 14); ***, p < 0.001 in D1 and 

D2 (Wilcoxon signed-rank test; n = 14, respectively); n.s., not significant. 

 

Optic nerve activation during large-field visual motion stimulation 

The implementation of a contrast polarity-biased motion detection system already 

at the retinal level was tested by extracellular recordings of retinal ganglion cell activity 

as multi-unit spike discharge from the severed optic nerve in isolated Xenopus eye 

preparations (Fig. 5A). During sinusoidal horizontal large-field image motion, the multi-

unit optic nerve discharge was cyclically modulated for both contrast polarities, i.e. 

white dots on background or black dots on white background (Fig. 5B). However, motion 

stimuli with a positive contrast consistently yielded a more pronounced and robust 

discharge modulation (compare red and blue traces in Fig. 5B). Since the multi-unit 

recordings likely included units with a motion-sensitivity for either of the two stimulus 

directions, the population activity in the optic nerve could not be specified for naso-

temporal or temporo-nasal motion. Accordingly, the multi-unit optic nerve firing rate 

was quantified by the bidirectional maximal discharge for further analysis. Despite the 

likely presence of different motion-sensitive retinal ganglion cells in the recordings with 

sensitivities to one or the other stimulus direction, the multi-unit discharge of the optic 

nerve proved to be a reliable estimate for the efficacy of large-field motion stimulus 

velocity. Thus, based on these results, a differential processing in the retina is the likely 

origin of the contrast sign-dependent differential OKR performance described above 

(Fig. 3A). 

The influence of contrast polarity and total luminance of the visual scene on retinal 

ganglion cell activity during large-field image motion was further tested with the same 

protocol that was used above for determining OKR performance (see left and middle 

panel in Fig. 1D). Accordingly, the effect of contrast polarity on modulated optic nerve 

activity was evaluated by presenting four different contrast magnitudes of dots vs 

background (n = 6 preparations, red and blue dotted lines in Fig. 5C). The differential 

influence of contrast polarity on the discharge modulation magnitude was more 

pronounced at low total luminance levels, and gradually decreased with higher light 
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intensities (solid red and blue lines in Fig. 5C), similar to the impact of this parameter on 

the dependency of the OKR (dashed red and blue lines in Fig. 5C). In addition, the 

changes in modulation depth during both 50% fill rate stimulus conditions indicated that 

the modulation depth was significantly larger in response to positive than to negative 

contrast stimuli (dots: t(6) = 3.10, p = 0.021, d = 2.35; squares: t(6) = 2.95, p = 0.26, d = 

2.23), compatible with the representative example shown in Fig. 5B. Moreover, the 

effect of contrast polarity was very similar for dots and squares, respectively, suggesting 

that contour shape plays at most a minor role for retinal motion detection (left and right 

bar plot in Fig. 5D). These results indicate that the multi-unit optic nerve discharge 

during large-field image motion has a similar dependency from basic contrast and 

luminance parameters as the horizontal OKR behavior and thus suggests that the 

differential signal processing of contrast and luminance within the retina is at the origin 

of this effect. 
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Figure 5: Influence of large-field visual image properties on multi-unit optic nerve spike 

discharge. (A) Schematic, illustrating the experimental setting for extracellular recordings of the 

severed right optic nerve with suction electrodes. (B) Representative example of modulated 

multi-unit optic nerve spike discharge during sinusoidal rotation (frequency: 0.125 Hz; peak 

velocity: ±10°/s) of a large-field image of circular contours with positive (red) and negative (blue) 

contrast. (C) Dependency of the normalized discharge modulation depth on relative luminance; 

dotted lines represent data from individual preparations for positive and negative contrast 

polarities and solid lines the mean (±SD), respectively; dashed red and blue lines indicate 

corresponding relative changes in OKR amplitude over the same range of relative luminance 

shown in Fig. 3B. (D) Bar plots, depicting the normalized firing rate of multi-unit optic nerve 

discharge under equi-luminant conditions of the motion stimuli with circular (left) and square 

contours (right) and positive (dark grey) and negative (light grey) contrast polarity, respectively. 

Icons above the plots in C,D depict the image properties of the different visual stimuli, 

respectively. Normalization in C,D was performed with respect to the mean firing rate for each 

preparation in the corresponding experimental conditions. 
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Optic nerve responses to individual moving edges 

All motion stimuli, employed so far consisted of different moving shapes (dots, 

squares, crescents) that were randomly scattered across the visual scene. The 

magnitude of the optic nerve discharge however might depend on the entirety of the 

large-field image properties (i.e. explicit distinction between fore- and background) or 

on the characteristics of individual moving edges that move through the visual field in 

any of the used stimulus patterns. In fact, every moving shape consisted of two relevant 

moving vertical edges: the leading edge, facing the motion direction and the trailing 

edge, facing the rear end. Depending on contrast polarity of the respective stimulus 

pattern, the two edges have different characteristics. For positive contrast stimuli, the 

leading edge presents a light intensity increment (ON edge), while the trailing edge 

presents a light decrement (OFF edge), and vice versa for negative contrast stimuli.  

In order to elucidate the impact of moving edges, several sets of experiments were 

conducted that investigated the influence of single edges moving through the visual field 

under different conditions on the magnitude of the multi-unit optic nerve discharge (Fig. 

6A). In a first set of experiments, a single moving edge with a height of 2.5 |mm (vertical 

visual angle 1.8°) was presented in front of a dark (+) or bright background (-) and with 

three different shapes (concave, CV; convex, CX; straight, ST), respectively. Multi-unit 

neuronal optic nerve activity evoked by the motion of the edge was independent of edge 

shape (repeated measures ANOVA, F(2, 89) = 0.05, p = n.s.), but showed a highly 

significant difference related to the background (F(1, 89) = 56.19, p <0.001,  η2 = 0.36; 

Fig. 6B). This indicated that for a given contrast polarity, the curvature of an edge was 

not a discriminating factor for motion detection. 

Since edge shape was not a confounding factor, we next assessed a potential impact 

of edge type (ON edge or OFF edge) and contrast polarity (dark or bright background) 

on the multi-unit optic nerve discharge by using moving straight vertical edges (Fig. 6C). 

In agreement with the general definition, ON edges are characterized by a change in 

intensity of the horizontal moving bar from black to white, while OFF edges mark a 

change of the bar from white to black. Accordingly, stimuli were constructed such that 

stimuli of the same edge type (ON+/ON- or OFF+/OFF-) were identical in the horizontal 
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neighborhood of the moving edge (i.e. dark in front of the edge, bright behind the edge 

of ON edges, and vice versa for OFF edges; see Fig. 6C). Accordingly, these stimuli only 

differed in the vertical neighborhood under the two contrast polarity conditions (dark 

background for positive contrast and bright background for negative contrast), 

respectively. Recordings of multi-unit optic nerve activity during image motion revealed 

considerable differences in the firing rate magnitude during the four different stimulus 

conditions (spike discharge in Fig. 6C). In fact, OFF edges evoked on average significantly 

greater (compare white and grey bars in Fig. 6D, respectively) motion-related optic 

nerve discharge magnitudes (repeated measures ANOVA, F(1, 89) = 51.2, p <0.001, η2 = 

0.19). However, this difference was much less pronounced for negative compared to 

positive contrast edges (compare bottom with top traces in Fig. 6C and right and left 

bars in Fig. 6D). In fact, responses to light decrements (OFF edges) were on average 126% 

stronger than to light increments, suggesting that motion detection in the retina of larval 

Xenopus is predominantly performed by the OFF pathway.  Moreover, the contrast 

polarity related bias observed in the previous experiments was also reproduced at the 

level of single moving edges. This was demonstrated by a significant main effect of 

contrast polarity (F(1, 89) = 94.84, p <0.001, η2 = 0.36) as well as a significant interaction 

between edge type and contrast polarity (F(1, 89) = 10.2, p = 0.002, η2 = 0.04), suggesting 

that the stimulus velocity-related retinal ganglion cell discharge is influenced by the light 

intensity in the vertical neighborhood of the horizontally moving edge. 
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Figure 6: Multi-unit optic nerve discharge pattern in response to moving single edges. (A) 

Schematic, illustrating the experimental setting for extracellular recordings of the severed right 

optic nerve with suction electrodes; motion of a long horizontal bar (180°) with either positive 

or negative contrast polarity at constant velocity in temporo-nasal direction at 10°/s caused 

stimulation of the eye with a single moving vertical edge. (B) Comparison of multi-unit optic 

nerve discharge rates over a range of 90° centered on the right eye during motion of a horizontal 

bar with different edge shapes (concave, CV; convex, CX; straight, ST) and positive (+) or negative 

(-) contrast polarity; grey arrows indicate the motion direction. (C) Multi-unit optic nerve 

discharge (traces in black) and firing rates over a range of 90° centered on the right eye (open 

and solid bar plots) during motion of a horizontal bar with a straight moving vertical ON or OFF 

edge in front of a dark (+) or bright (-) background (icons above spike discharge traces); note 

that both ON edges (ON+, ON-) and both OFF edges (OFF+, OFF-) were identical in their 

respective horizontal neighborhoods and only differed in the vertical surroundings. (D) Bar plots 

depicting the average normalized modulation depth, (normalized to the mean modulation depth 

per preparation in all corresponding conditions) of multi-unit optic nerve discharge in response 

to moving bars with ON and OFF edges in front of a dark (ON+, OFF+) or bright background (ON-

, OFF-). *, p < 0.05; **, p < 0.01; ***, p < 0.001 (Wilcoxon signed-rank test; n = 14, respectively). 
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Discussion 

At low light intensities, OKR performance in Xenopus tadpoles is superior for 

positive (white dots on black background) compared to negative contrast large-field 

visual stimuli (black dots on white background). This effect is independent of contrast 

intensity, contour shape and motion stimulus pattern. Recordings of multi-unit optic 

nerve discharge during visual motion stimulation yielded similar results, thus indicating 

that the neuronal basis for this effect might originate from signal processing properties 

of the retinal circuitry. 

OKR performance in semi-intact preparations 

Effective gaze stabilization of the residual retinal image slip during passive or self-

motion in all vertebrates requires an estimate of the velocity of the large-field visual 

world motion (Collewijn, 1969). This image velocity directly determines the performance 

of the OKR with the purpose of minimizing the retinal slip, thereby ensuring high visual 

acuity (Cohen et al., 1977). In amphibians, the horizontal OKR is mediated by a short-

latency, three-neuronal reflex arc that involves retinal ganglion cells, a set of accessory 

optic neurons in the pretectum and extraocular motoneurons that activate synergistic 

muscles of the two eyes (Cochran et al., 1984). The employment of semi-intact 

preparations of Xenopus laevis tadpoles offers a convenient approach to evoke and 

quantify this sensory-driven motor behavior (Straka and Simmers, 2012). Based on the 

presence of intact sensory (eyes), motor structures (eye muscles) and central circuits as 

well as the experimental accessibility, this preparation facilitates studying the dynamic 

range of visual motion processing at the brainstem level as well as the dependency of 

the behavioral performance on visual scene features.  

The generally robust performance of the OKR in semi-intact Xenopus tadpole 

preparations in the current study is similar to previous results obtained in these animals 

(Schuller et al., 2014) and also complies with expectations from studies of adult frog 

optokinetic responses under in vivo conditions (Dieringer and Precht, 1982). Thus, the 

present in vitro approach represents a convenient method with high validity and 

accountability to decipher the influence of general visual scene properties on the 

performance of this visuo-motor behavior. Moreover, the anatomically very similar 
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basic layout of vertebrate eyes and subcortical visual circuits (Maximino, 2008; Masseck 

and Hoffmann, 2009) make the visual system of Xenopus laevis ideally suited to provide 

insight into basic mechanisms of image motion processing across vertebrate species. 

OKR performance is influenced by contrast polarity 

Experimental manipulations of visual scene parameters in the current behavioral 

experiments indicated that the OKR amplitudes varied strongly as a result of inverting 

contrast polarity of the visual scene. This dependency is remarkable, given that the 

stimulus texture with respect to number and intensity of contours is identical. 

Moreover, the influence of contrast polarity is clearly at variance with prior expectations 

based on e.g. spatiotemporal motion energy (Adelson and Bergen, 1985; Reichhart, 

1987). According to the latter parameter, motion perception including visual stimulus 

velocity estimation should be unaffected by pure inversion of contrast polarity. 

However, this is not the case, even though this effect is limited to lower light levels. A 

uniform increase of the total luminance of the visual scene by a constant value caused 

a decrease in both the amplitude of the optokinetic response as well as in the influence 

of contrast polarity on OKR performance (Fig. 3B, red and blue lines). Interestingly, the 

slopes, intercept, and point at which the contrast polarity effect vanished (intersection 

of the two lines) were identical for the visuo-motor behavior and the spike discharge of 

the optic nerve. The general corresponding effects of these alterations in visual scene 

parameters on both OKR and optic nerve discharge suggests that the origin of the 

dependency of OKR performance on large-field visual scene properties is due to an 

influence of the latter directly on retinal signal processing (see below). Accordingly, 

pretectal and extraocular motor signal processing has a rather limited impact compared 

to the influence of retinal processing for the calculation of the motion velocity estimate. 

The asymmetry in OKR performance that is related to contrast polarity and likely 

caused by retinal velocity computations is not only expressed in the magnitude of the 

slow-phase eye velocity during constant velocity stimulation but also by the number of 

evoked fast-phases during constant velocity stimulation (Fig. 4C, D2). In general, fast-

phase generation is directly related to an internal estimate of the visual surround 

velocity (Anastasio, 1996), and thus influenced by those parameters that affect the 
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estimation of the image slip velocity at retinal/central nervous system levels. The strong 

correlation between fast-phase number and slow-phase eye movements supports this 

assumption. Accordingly, the motor commands for slow-phase following eye 

movements as well as the neural signals for fast-phases derive directly or indirectly from 

the same velocity estimate.  

Functional relevance of OKR asymmetry 

From a functional point of view, the OKR asymmetry appears counterintuitive at 

first. However, most animals, including Xenopus tadpoles, have to cope with a large 

range of visual scenarios. This requires a robust estimate of the motion velocity of the 

residual visual slip to generate appropriate eye movements for a constant maintenance 

of high visual acuity. Thus, in complex environments enriched by stationary and moving 

objects, distinctions based on contrast polarity would facilitate the adjustment of visuo-

motor responses to relevant portions of the possibly incoherent large-field visual 

motion. The preference in response to small bright objects in front of a dark background 

as shown in the present study in Xenopus tadpoles might be considered as a low-level 

functional interpretation of image motion. This would thereby assist distinguishing self-

motion from motion of external objects in the visual field. The more effective activation 

of an OKR by positive contrast stimuli is consistent with findings in zebrafish where large 

dark spots on a bright background were highly efficient in evoking a behavioral response 

in a virtual hunting assay (Bianco and Engert, 2015). This suggests that closed contours 

with negative contrast are likely interpreted as prey (Bianco and Engert, 2015) and not 

as background, compatible with the activation of specific visual pathways in predatory 

zebrafish (Semmelhack et al., 2014).  Similar prey/non-prey distinctions were also found 

in adult frog (Lettvin, 1959; Barlow and Hill, 1963). However, even though adult Xenopus 

are predators, the required circuitry for prey detection in visual pathways might not yet 

be in place in the herbivorous larval stages and potentially implemented only after 

metamorphosis. 

Optic nerve population activity encodes stimulus velocity 

The population activity of the optic nerve is modulated with the velocity of a moving 

large-field visual scene, however differentially in strength depending on contrast 
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polarity. This suggests that the information about this parameter is already encoded as 

population rate code at the level of the retinal ganglion cell axons in the optic nerve. The 

striking similarity between visual scene-related biases of oculomotor behavior and optic 

nerve discharge observed in this study (Figs. 3, 5) suggests that the latter population 

activity is interpreted as a velocity signal by the OKR circuitry and directly forms the basis 

for the performance of this visuo-motor behavior. However, the rate code of the entire 

retinal ganglion cell population does not provide information about the direction of 

motion. The information for both motion directions, i.e. temporo-nasal and naso-

temporal is likely processed in separate channels, which begin with motion-sensitive 

retinal ganglion cells and project to different premotor nuclei in the pretectum (Fite et 

al., 2008). 

Retinal motion velocity signals in retinal circuits are influenced by contrast polarity 

Directionally sensitive signals in neurons of the peripheral visual circuitry have been 

reported in numerous vertebrate (Barlow and Hill, 1963; Oyster et al., 1993; Pinsky et 

al., 2015) and invertebrate (Haag et al., 2016) species and appear to be a common 

feature in the processing of visual motion. The neuronal substrate is known to be 

organized in different information streams, which operate as edge detectors and 

respond either to light increments (ON), light decrements (OFF) or both (ON/OFF; Borst 

and Euler, 2011).  These cells in the vertebrate retina extract motion information but 

also perform an advanced processing of the incident image (Lettvin et al., 1959; Clifford 

and Ibbotson, 2002; Gollisch and Meister, 2010). In particular, neuronal computation in 

retinal ganglion cells allows toads to perceptually discriminate between prey- and non-

prey objects simply based on the sign of contrast (Ewert and Siefert, 1974). This notion 

is supported by a pattern analysis based on image contrast in tectal and thalamic areas 

(Ewert and von Wietersheim, 1974). The organization of the visual scene, however, 

strongly influences the extraction of motion information. Even when presented with an 

identical velocity profile, retinal ganglion cell population activity modulates differently 

depending on whether the image was presented with positive or negative contrast. One 

possible mechanism would be different temporal characteristics in the interaction 

between ON and OFF edge detectors. Another cause of the contrast polarity-related 

asymmetry could be the change in curvature of ON and OFF edges. For positive contrast, 
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a moving closed contour consists of a convex leading ON and a concave trailing OFF edge 

and vice versa for stimuli with negative contrast.  

Differential modulation of responses to ON or OFF edges depending on contour 

curvature was however not observed in the present study, excluding the latter 

possibility as relevant mechanism for the observed contrast polarity effects. Instead, our 

study suggests another mechanism as the cause for a differential activation of retinal 

ganglion cells that depends on the light intensity in the vertical neighborhood of 

horizontally moving edges (Fig. 6). Optic nerve population responses to a single moving 

vertical edge showed different activation patterns depending on whether the moving 

edge was presented on a bright or a dark background. This could be due to the size of 

receptive field properties of retinal ganglion cells extending across the dimensions of 

the edge into the background area. High uniform light intensities illuminating the 

receptive field appear to suppress/inhibit responses of these neurons to moving 

contours compatible with the weaker optic nerve discharge modulation during motion 

of random particle scenes with bright backgrounds. This is also consistent with our 

observation that the overall modulation depth as well as the difference related to 

inversion of contrast polarity decreases with higher overall luminance (Fig. 5C, red and 

blue line). Accordingly, at high light intensities, the background brightness appears to be 

intense enough to attenuate retinal ganglion cell discharge even for objects with a 

positive contrast (i.e. brighter than the background). In zebrafish, the OKR is activated 

by the retinal ON but not the OFF pathway (Emran et al., 2007). Whether this is also the 

case for Xenopus laevis is unknown so far. However, since the relative decrease of retinal 

ganglion cell discharge modulation by a bright background was similar for responses to 

ON and to OFF edges (Fig. 6D), a direct correlate of retinal biases can be observed in the 

OKR, independent of which channel(s) drive the OKR. 

Conclusion 

Visuo-motor behavior and motion stimulus-related retinal output signal amplitudes 

are highly influenced by contrast polarity in otherwise identical visual scenes. This is due 

to retinal signal processing of moving edges that depends on the local context of the 

stimulus environment. For horizontal moving vertical edges, the light intensity in the 
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area beyond the edges has a large impact on the computations underlying retinal 

motion processing. This directly translates into OKR performance, which scales in 

magnitude with population discharge activity of retinal ganglion cells. 
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Abstract 

While moving through dynamic environments, vertebrates ensure gaze stability through 

compensatory reflexes, such as the optokinetic reflex (OKR) that responds to large-field 

image motion and drives eye movements that follow the motion of a visual scene. 

Information of these visual scenes, such as luminance or color contrasts, can be used to 

detect and estimate motion. However, the role and contribution of color to motion 

perception has been a matter of controversy in the literature of the last decades. Using 

the animal model Xenopus laevis tadpoles, we investigated how luminance and color 

information interact on the optokinetic reflex. 

To test color motion perception of Xenopus tadpoles, characteristic slow following eye 

movements of the OKR were monitored during stimulation with rotatory large-field 

images, consisting of chromatic and luminance contrasts. The brightness ratio of the two 

colors (red and blue), at which the OKR response was minimal, was determined. The 

results showed that, at this point of equiluminance (POE), color contrast is able to evoke 

a minor following OKR response and is therefore sufficient to elicit motion vision. To 

assess the interaction of color and luminance at high luminance contrast levels, visual 

motion stimuli were presented at high intensity levels. The results showed that the OKR 

of Xenopus tadpoles responds differentially to motion stimuli presented in different 

colors, advising an influence of color on the OKR. Further, electrophysiological 

recordings of the optic nerve revealed that the behavioral observations were not 

mirrored at a population activity level. However, single units of the optic nerve showed 

a clear color preference, suggesting that these units may be differentially coupled to the 

optokinetic circuitry in the midbrain. 

Taken together, this study shows that color influences the optokinetic reflex in Xenopus 

tadpoles and may be behaviorally relevant to distinguish between self-motion patterns 

and movements of other objects in dynamic environments.  
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Introduction 

Most vertebrates possess mechanisms to ensure a stable image on the retina while 

moving through dynamic environments. While the vestibulo-ocular reflex (VOR) 

compensates for self-motion-induced retinal slip by means of the vestibular signal 

(Straka and Dieringer, 2004), the brainstem-mediated optokinetic reflex (OKR) responds 

to large-field image motion and drives eye movements that follow the visual surround’s 

motion (Collewijn, 1969; Dieringer and Precht, 1982). This latter reflex relies on an 

internal estimate of the velocity of the visual scenery (Raphan et al., 1977) and is 

strongly influenced by the image characteristics of the visual motion stimulus (Rinner et 

al., 2005; see chapter 2, manuscript 1). Natural environments present various different 

forms of visual information that can be used to detect and estimate motion:  In 

particular, the visual scene can be structured by luminance and color cues, both of which 

can provide information for motion vision. While most images are well-defined only by 

local changes in light intensity, adjacent image components need not vary in brightness, 

but could also vary only in color, such that also color could provide relevant information 

for motion vision. 

The role of color information in motion perception has been a matter of debate for over 

20 years (Gegenfurtner and Hawken, 1996). Early studies purported that color and 

motion are perceived in strict separation based on neurophysiological and lesion studies 

(Livingstone and Hubel, 1987). At the same time, other studies argued in favor of a 

contribution of color information to motion perception (Cavanagh and Anstis, 1991; 

Dobkins and Albright, 1994), observing that motion of patterns of two equiluminant 

colors could still be detected in human psychophysical experiments (Cavanagh et al., 

1984). In the meantime, the bulk of evidence supports the idea that motion vision does 

not operate totally independent of color. 

This study uses an amphibian species, Xenopus laevis tadpoles, to study how luminance 

and color information interact on a brainstem-level visuomotor reflex (OKR). The use of 

such simpler model species (Zoccolan et al., 2015) enables researchers to investigate 

and understand neuronal computations underlying visual processing. Xenopus tadpoles 

show a large range of advantages, such as the relative simplicity of its central nervous 
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system as well as an easy experimental accessibility of the visual circuitry. Like in various 

other vertebrates, including humans, the Xenopus eye has different types of cones with 

three distinct absorption spectra (Witkovsky, 2000) making it a model of choice for 

investigating the principles underlying low-level vision processes. 

So far, different studies investigating color motion vision found conflicting results in 

different species. Yamaguchi et al. (2008) found that in the fly Drosophila color is strictly 

excluded from motion information processing, suggesting two separate functional 

pathways. On the other hand, a study performed by Matsuura et al. (2016) in monkeys 

suggest that, although color cues play a subordinate role compared to luminance cues, 

color information contributes not only to the sensation of motion but also to the 

generation of visuomotor responses (here ocular following responses, OFR) and thereby 

provide evidence that color and luminance information are processed together to 

activate motor responses.  

Already the retina performs advanced image processing and is able to extract motion 

information from a moving image (Lettvin et al., 1959). This raises the question of 

whether the retinal already exploits color contrast for motion vision or whether motion 

detection based on color contrast occurs further downstream. 

Based on behavioral observations of the OKR and extracellular recordings of signals 

transmitted from the retina to the oculomotor system via the optic nerve, this study 

investigated whether and how luminance and color information interact on a brainstem-

mediated reflex and to what extent these interactions are already present at the level 

of the optic nerve. 
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Methods 

Animal Experiments. Experiments were performed in-vitro on isolated, semi-intact 

preparations of Xenopus laevis tadpoles and comply with the National Institute of Health 

publication entitled "Principles of animal care", No. 86-23, revised 1985. Permission for 

these experiments was granted by the governmental institution at the Regierung von 

Oberbayern/Government of Upper Bavaria (55.2-1-54-2532.3-59-12). Animals were 

obtained from the in-house animal breeding facility at the Biocenter-Martinsried of the 

Ludwig-Maximilians-University Munich. A total of 46 Xenopus laevis tadpoles of 

developmental larval stages 50-55 (Nieuwkoop and Faber, 1994) were used for 

experimentation. For preparation, tadpoles were anesthetized in 0.05% 3-aminobenzoic 

acid ethyl ester (MS-222; Pharmaq) in frog Ringer solution (in mM: 75NaCL, 25NaHCO3, 

2CaCl2, 2KCL, 0.5MgCl2 and 11glucose, pH7.4). The telencephalon was removed 

according to the preparation procedure described by Lambert et al. (2012).  

For behavioral experiments, the skin covering the dorsal head was removed, the soft 

skull tissue opened and the forebrain disconnected. This surgical procedure 

anatomically preserved the remaining CNS and the eyes including the optic nerve, 

extraocular motor innervation and eye muscles. Such preparations allowed prolonged 

experimentation and in vivo-like activation of the OKR by horizontal large-field image 

motion under controlled in-vitro conditions.  

For electrophysiological recordings of the optic nerve, in addition to the procedure 

described above, the optic nerve of the right eye was freed of surrounding tissue and 

transected at the level of the optic chiasma. All eye muscles connected to the right eye 

were then transected at their medial end to immobilize the eye while retaining it in its 

natural position within the body and thus prevent retinal image motion evoked by 

optokinetic eye movements. Preparations were kept at 14°C for 3 hours after the 

preparation, allowing their central nervous system to recover (Ramlochansingh et al., 

2014). 

Setup. Semi-intact preparations were fixed with insect pins to the Sylgard floor of a Petri 

dish (5 cm diameter). The chamber, which was constantly perfused with oxygenated frog 

Ringer solution at a rate of 3.0 - 5.0 ml/min, was mechanically secured in the center of 
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an open cylindrical screen with a height of 5 cm and a diameter of 8 cm, encompassing 

275°. Three digital light processing (DLP) video projectors (Aiptek V60), installed in 90° 

angles to each other, projected visual motion stimuli onto the screen (Packer et al., 

2001) at a refresh rate of 60 Hz. A CCD camera (Grasshopper 0.3 MP Mono FireWire 

1394b, PointGrey), mounted onto the table, permitted on-line tracking of horizontal eye 

movements by custom-written software (Beck et al., 2004). The chamber was 

illuminated from above using an 840 nm infrared light source. An infrared long-pass 

filter in the camera ensured selective transmission of infrared light and a high contrast 

of the eyes for online analysis of induced movements. The visual motion stimulus, the 

extracellular signals and the position of both eyes were digitized and read out into the 

data acquisition program (Spike2, Version 7.04, Cambridge Electronic Design Ltd., 

United Kingdom). 

Electrophysiological recordings were performed in the same setup. Spike discharge of 

the optic nerve was recorded extracellularly (EXT 10-2F, mpi electrodes, Tamm, 

Germany) with individually adjusted electrodes and digitized at a sampling rate of 

28.6kHz (CED Micro1401-3, Cambridge Electronic Design, UK). Glass microelectrodes for 

extracellular recordings were produced with a horizontal puller (P-87 Brown/Flaming, 

Sutter Instruments Company, USA) and the tips were individually adjusted to fit the 

respective optic nerve diameter. 

Experimental paradigm. A convenient method to test for color motion perception in 

animal models is to monitor the optomotor response to moving chromatic and 

luminance contrast stimuli and determine the brightness ratio of the two colors, at 

which the optomotor response is minimal (Schaerer and Neumeyer, 1996, Yamaguchi et 

al., 2008). At this point of equiluminance (POE), the subjective brightness of the scene is 

homogeneous, such that the scene is only structured by color changes. At the POE, the 

optomotor response can either be absent, arguing in favor of a color-blind motion 

perception system or show a residual response, indicating that color information does 

provide motion cues. 
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The optokinetic reflex was assessed by a rotatory large-field visual motion stimulus 

moving with a rectangular velocity profile with a speed of ±10°/s and a frequency of 0.2 

Hz (i.e. alternating directions ever 2.5 s). 

Condition 1: Point of equiluminance. To determine the point of equiluminance (POE), the 

presented visual stimulus consisted of alternating red and blue vertical chromatic 

stripes. The radiance of the red stripes was manipulated in a range of 0.29 to 3.18 W*sr-

1m-2, while the intensity of the blue stripes was maintained at a constant value of 4.66 

W*sr-1m-2. As a control condition, the optokinetic response to rotation of a uniformly 

grey screen was measured to obtain the reference level for comparison of the minimum 

OKR amplitude (Grey condition). 

Condition 2: Interaction of color and motion at high intensities. In another experimental 

condition, three additional visual motion stimuli were presented at high intensity levels 

in randomized order to assess the interaction of color and luminance motion at high 

luminance contrast levels. Stripes were either white (18.7 W*sr-1m-2), red (3.39 W*sr-

1m-2), blue (4.66 W*sr-1m-2) or black (0.187 W*sr-1m-2) and were presented in alternating 

White/Black, Red/Black, Blue/Black, and Red/Blue stripes arrangement.  

Condition 3: Optic nerve activity at high intensities. To investigate how colored motion 

stimuli at high intensities are represented on the population activity of the optic nerve, 

electrophysiological recordings from the optic nerve were performed during stimulation 

with rotatory large-field image motion. To identify optic nerve responses modulating 

with stimulus velocity, a sinusoidal velocity profile with a peak velocity of ±10°/s and a 

frequency of 0.125 Hz was used, resulting in a similar position amplitude to the 

behavioral conditions. Otherwise, the stimuli were identical to those presented in 

Condition 2. 

Condition 4: Optic nerve activity near the POE. To determine whether velocity 

modulated activity at the level of the optic nerve is exclusively driven by luminance 

contrasts, or whether some units respond also to pure color contrast, optic nerve 

activity was measured in response to red and blue stripes at three red light intensities 

(1.14, 1.19 and 1.25 W*sr-1m-2), while the intensity of the blue stripes was held constant 

(4.66 W*sr-1m-2). 



Manuscript 2 

66 
 

Spectral distribution of color stimuli. The individual red and blue colors were generated 

using the red and blue channels of the image projectors, the white bars were generated 

using all three color channels (for spectra see Appendix 1). The spectra and radiance 

values were measured using a spectrometer (PhotoResearch SpectraScan PR655). 

Data Analysis. To obtain a robust measure of the strength of the optokinetic response, 

the amplitude of the OKR was then computed by fitting a triangular position profile to 

the recorded eye position trace and evaluating the amplitude of the fit. 

To account for the fact that the “true” value of the point of equiluminance (POE) might 

lie between the sampled intensities, we fitted the resulting intensity-amplitude curve 

with a function for the normalized OKR amplitude A defined by 

𝐴 = 𝑚 ∗
|𝑏𝑅𝑒𝑑 − 𝑏𝐵𝑙𝑢𝑒 |

|𝑏𝑅𝑒𝑑 − 𝑏𝐵𝑙𝑢𝑒| + 𝑐
+ 𝐴𝐶𝑅 , 

with the subjective brightness for red or blue: 

 𝑏𝑅𝑒𝑑,𝐵𝑙𝑢𝑒 = log(𝐿𝑅𝑒𝑑,𝐵𝑙𝑢𝑒 + 1) ∗ 𝑐𝑅𝑒𝑑,𝐵𝑙𝑢𝑒 . 

and cRed and cBlue as the relative sensitivities to red and blue, respectively. The 

parameters m and c were required to model the sensitivity of each preparation’s 

optokinetic reflex to changes in subjective contrast. This model was able to fit the 

observed data well, especially near the point of equiluminance. 

The POE was identified as the radiance value of the red stripes at which the fitted 

optokinetic response amplitude function became minimal (ACR) in each preparation. The 

OKR amplitude at this point was then defined as the isolated chromatic response (CR) 

component of the optokinetic response. 

For electrophysiological recordings, optic nerve activity was quantified by the total 

count of action potentials during each trial. Since all trials had the same length and 

surround velocity profile, this gave a robust estimate of nerve activity during stimulation 

with differently colored optokinetic stimuli. 
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Spike sorting. To distinguish the response properties of individual retinal ganglion cells 

at the level of the optic nerve, spike sorting was performed in MATLAB (R2016a) on the 

recorded extracellular signals from the optic nerve. 

For each preparation, all trials were pooled, action potentials were detected using a non-

linear energy operator threshold (Malik et al., 2016). Artifacts were identified as all 

segments of the dataset in which the electrical signal was greater than 1000mV and 

subsequently removed by replacing the respective values with zeroes. Spikes were then 

extracted in a 7 ms window around their respective peaks. The collected spike shapes 

were then subjected to a singular value decomposition. The three largest singular values 

were then used for spike sorting. The values were clustered using k-means clustering 

(MATLAB 2016a). The number of clusters was determined by visual inspection of the 3D 

scatter plot of singular values. The success of clustering was verified by visual inspection 

of the 3D-plot. 

Statistical Procedures. The critical value of significance was chosen as α = 0.05 for all 

statistical tests. The optokinetic response amplitudes at the POE were compared to the 

reference values obtained from the Grey condition using a two-sample t-test. The OKR 

amplitudes in response to White/Black, Blue/Black, Red/Black and Red/Blue visual 

motion stimuli were compared using a repeated measures ANOVA. Post-hoc-tests were 

performed using pairwise paired t-tests between all conditions, using the Bonferroni 

method to compensate for multiple comparisons. 

To reveal a possible linear interaction between color and luminance motion information, 

the correlation between the chromatic component of the OKR and the differences 

between the responses to Red/Blue – Black and White-Black stimuli was computed. 

To determine the strength of single units’ neuronal responses to colored compared to 

pure luminance stimuli, color preference (gRed, Blue), as the relative increase or decrease 

of activity in response to colored vs white stimuli was measured by computing the log 

of the ratio of spike counts (SC) in either the red or blue color conditions over the spike 

count in the white condition: 

 𝑔𝑅𝑒𝑑,𝐵𝑙𝑢𝑒 = log (
𝑆𝐶𝑅𝑒𝑑,𝐵𝑙𝑢𝑒

𝑆𝐶𝑊ℎ𝑖𝑡𝑒
). 
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Results 

Point of equiluminance 

The point of equiluminance (POE) at which the luminance contrast with respect to blue 

stripes with a radiance of 4.66 W*sr-1m-2 vanished was robust across animals and was at 

a value of 1.22 ± 0.09 W*sr-1m-2. The normalized amplitude of the OKR at the POE was 

0.22 ± 0.15 times the mean amplitude over all conditions (Fig. 1B). This residual 

optokinetic response, albeit small, was still significantly greater than the baseline (Two-

sampled t-test: t(57) = 3.02, p =0.004, d = 0.86; Fig. 1C), indicating that pure color 

contrast is sufficient to elicit motion vision and thereby evoke a minor ocular following 

response. 
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Figure 1: Experimental setting for recording optokinetic reflexes (OKR) in Xenopus tadpoles. 

(A) Schematic, illustrating the experimental setup with a central recording chamber for semi-

intact larval Xenopus preparations (adapted from Hänzi and Straka, 2016), surrounded by a 

cylindrical screen onto which a rotating large-field striped pattern with alternating vertical 

stripes and different colors and intensities was projected. Representative eye position and 

stimulus traces for constant velocity stimulation (±10°/s, alternating every 2.5s). (B) Optokinetic 

response amplitudes for alternating red and blue stripes at different radiances of the red stripes. 

At the point of equiluminance (POE), the OKR amplitude became minimal. (C) Bar plot indicating 

that the chromatic response (CR) i.e. the OKR amplitude at the POE is significantly higher than 

baseline amplitude in the control condition (Grey condition). 
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Interaction of color and luminance on the OKR at high intensities 

In addition to the optokinetic response evoked by pure color contrast stimuli, also at 

high intensities colored motion stimuli led to higher OKR amplitudes compared to 

White/Black stimuli, indicated by a significant main effect of stimulus color (Repeated 

measures ANOVA: F (3, 102) = 46.62, p<0.001, η2=0.26; Fig. 2A) and the successive post-

hoc tests. This was surprising as the radiance of white bars was approximately four-fold 

that of blue and more than five-fold that of red stripes (18.7 W*sr-1m-2 compared to 4.66 

W*sr-1m-2 or 3.39 W*sr-1m-2, respectively), while the black bars always had the same 

intensity. The effect was still present when matching the radiance of the white stripes 

to the colored stripes (Two-sampled t-test for blue: t(5) = -2.90, p =0.034, d = -0.377). 

Interestingly, these additional color-related components were not correlated with the 

isolated chromatic OKR response (blue: ρ=0.04, p > 0.05; red: ρ=0.05, p>0.05; Fig. 2C). 

Nevertheless, the additional color-related components in the red and blue conditions 

were strongly correlated (ρ= 0.71, p <0.001), suggesting that some preparations are 

more sensitive to color motion stimuli than others (Fig. 2B). 

Furthermore, even comparisons between colored stimuli revealed a significantly larger 

optokinetic response to Blue/Black, than to Red/Black stimulus patterns, indicating that 

the optokinetic reflex in Xenopus tadpoles responds differentially to motion stimuli 

presented in different colors. 

Varying pure luminance contrast in achromatic stimuli in a previous study (see chapter 

2, manuscript 1) indicated that upon reaching a certain contrast level, the optokinetic 

response becomes maximal and does not increase at higher contrast levels. Therefore, 

increasing the luminance contrast of either of these stimuli would likely not change the 

optokinetic response amplitude, since all stimuli are bright enough to elicit the maximal 

response. Nevertheless, the increases in OKR amplitude in colored stimuli at distinctly 

lower luminance contrasts than black and white suggests that there is an additional 

color-related component that plays a role in driving the OKR of Xenopus tadpoles. 
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Figure 2: Optokinetic reflexe response to high intensity colored stimulation. 

(A) Bar plot indicating the relative optokinetic response amplitude to large-field visual motion 

stimuli presented with different colors. Surprisingly, responses were larger when black stripes 

were presented together with colored than with white stripes, suggesting an influence of color 

on the OKR. The smaller response to alternating red and blue stripes is likely due to the smaller 

luminance contrast in this condition. (B) Scatter plot showing the difference in response 

between blue and white (x-axis) and red and white (y-axis) for each preparation. The differences 

were strongly correlated across preparations. (C) Scatter plots showing the chromatic response 

over the difference in response between red and white (left) and blue and white (right). The 

differences were not correlated with the chromatic response. 
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Optic nerve population responses to colored moving stimuli 

Pilot experiments showed that for luminance motion stimuli, there is a close association 

between population activity on the level of the optic nerve, indicating that optic nerve 

population activity can be interpreted as surround velocity estimate. Whether this also 

applies when comparing the responses to stimuli which have distinct wavelength 

components – and therefore likely excite different retinal photoreceptors – was 

investigated by recording extracellularly from the optic nerve of Xenopus eye 

preparations. Surprisingly, at a population level, the relative neuronal response 

magnitude (spike count) appeared not to mirror the behavioral observations (Fig. 3B). 

Although the neuronal response to high intensity Red/Blue striped patterns was smaller 

than the response to the three other patterns (likely due to the smaller contrast in this 

condition), the response magnitudes in the other three conditions showed a different 

activation pattern than in the behavioral experiments. 

This suggests that the mechanism causing the different optokinetic response amplitudes 

for different colors at high light intensities is qualitatively different from the mechanism 

responsible for adjusting the optokinetic response based on luminance contrast, which 

would also be expressed in the relative size of the retinal responses. 

Optic nerve single unit responses to colored moving stimuli 

Rather, it suggests an alternative possible mechanism for the partially color-specific 

optokinetic response amplitude: Separate subgroups of retinal motion detectors, which 

respond preferentially to certain wavelengths differ in how strongly they are coupled to 

the optokinetic circuitry in the midbrain. 

To test this hypothesis, single unit responses were isolated from the extracellular 

recordings using SVD-based spike sorting (Matlab2015a), resulting in a total of n = 25 

discernable spike waveforms which modulated their activity with stimulus velocity. 

Single units’ color preference was then identified by evaluating the magnitude of their 

response to the four high intensity color stimuli (Fig. 3A). While the total spike count 

varied strongly between individual units, there were clear differences between the 

color-preference of different units. Units that responded preferentially to either white, 
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red or blue stripes were found. The distinction between units with color-sensitive and 

color-insensitive response characteristics was relatively clear-cut (indicated by the gap 

between squares and plusses in Fig. 3C). Among the color-sensitive units, however, 

there was no clear distinction based on the response preference to either red or blue 

color. Instead, units which responded strongly to one color also responded more 

strongly to the other, as demonstrated by the strong correlation between red and blue 

preference (gRed and gBlue) in Fig. 3C (ρ = 0.67, n = 25, p < 0.001). This, again, is in line 

with the behavioral findings that animals with a strong preference for one color 

(expressed by their relative OKR amplitude) also show a strong response to the other 

color stimulus. 

Retinal response at equiluminance 

While most of the measured units were inactive during stimulation near the point of 

equiluminance, a small number of single units still clearly modulated their activity along 

with stimulus velocity. 
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Figure 3: Optic nerve activity to high intensity colored stimulation. (A) Examplary spike trains 

for four different single units of the optic nerve with different luminance or color preferences. 

Unit 1 responded more strongly to high luminance contrast, Unit 2 responded more strongly to 

blue or red vs. black, Unit 3 and 4 responded more to red or blue stimulation, respectively. (B) 

Bar plot showing the relative spike count of all recorded units to visual motion stimulation with 

different colors. On average, the significantly stronger response to colored stimuli was not 

mirrored in the optic nerve activity. The smaller response to the alternating red and blue stripes 

is also present on the level of the optic nerve. (C) Scatter plot, showing the relative preference 

for red and blue color motion stimuli for all units recorded. Units in the grey box respond more 

strongly to pure luminance stimuli, whereas the other units respond more strongly to at least 

one chromatic stimulus. Units appear to fall in two clusters with either luminance (squares) or 

color (plusses) preference. 
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Discussion 

The color of a moving visual scene systematically influences the optokinetic reflex in 

Xenopus laevis tadpoles. Firstly, while the optokinetic response decreased in amplitude 

with decreasing luminance contrast, preparations showed a residual optokinetic 

response at the point of equiluminance, i.e. even in the absence of luminance contrasts, 

an oculomotor response was present. Furthermore, at high intensity stimuli, responses 

were larger when black stripes were presented together with colored than with white 

stripes, suggesting an influence of color on the OKR. Finally, on the optic nerve these 

differences of response magnitudes are not mirrored on a population level but single 

units show clear color preferences. 

The residual response at the POE (Condition 1) shows that pure color contrasts cannot 

be excluded to play a role in the visual motion detection mechanism which forms the 

basis of the optokinetic reflex. Anatomically, the necessary requirements for color vision 

have been shown to be present in adult Xenopus, who possess principal (red-sensitive) 

and thin (blue-sensitive) rods as well as four types of cones exhibiting red, blue and 

ultraviolet-sensitive opsins (Röhlich and Szél, 2000). This study provides further 

evidence that Xenopus tadpoles possess and employ the required anatomical structures 

to be able to see and distinguish different colors and adjust their behavior accordingly. 

In larval Xenopus, an influence of color on navigation and evasion behavior were 

reported by Rothman et al. (2016), who found that larval Xenopus could be trained to 

avoid a specifically-colored segment of their environment, concluding that color vision 

was behaviorally relevant for Xenopus tadpoles. 

Recording visual motion induced behavior at the point of equiluminance is an 

advantageous method to investigate how visual motion perception depends on color 

(Cavanagh, 1991) and can be applied especially in simple animal models. In both fly 

(Yamaguchi et al., 2005) and zebrafish (Krauss and Neumeyer, 2003), recording 

optomotor locomotion responses led to the conclusion that motion vision is ”color-

blind”. However, in comparison to locomotor behavior, the well-known system 

characteristics of the optokinetic reflex and its approximately linear input-output 

relationship (Robinson, 1981) advocate the use of this reflex as a more sensitive 
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behavioral assay, since it is possible to isolate even small responses based on their 

frequency characteristics and robustly distinguish them from spontaneous motor 

activity.  

This paradigm revealed a non-zero optokinetic response at the POE in the clear majority 

of animals (26 out of 35), suggesting that color information does indeed play a role in 

low-level motion vision. Also in higher-order motion vision, such as human subjective 

speed estimation, color has been shown to play a role (Gegenfurtner and Hawken, 

1996): While the speed of an equiluminant chromatic grating is only perceived to be 

moving at about half the speed of a corresponding luminance grating, a motion percept 

is still evoked in the absence of luminance contrast (Cavanagh et al., 1984). Since all 

animals used in this study were reared under identical artificial lighting conditions, it 

could reasonably be anticipated that the location of the POE is similar across animals 

(Kröger et al., 2003), which is indeed the case.  

An influence of color on the optokinetic reflex was also observed at high light intensities, 

in which alternating White/Black, Red/Black and Blue/Black stripes were presented. 

Surprisingly, Xenopus preparations showed a larger response to stimuli with either blue 

or red bars, compared to White/Black stimuli, even though the luminance contrast of 

white vs black stripes was the highest, independent of which measure was used 

(candela, radiance, photon radiance, see Table 1). Likely, all stimuli have sufficient 

luminance contrast to evoke the maximal optokinetic response, while the colored 

stimuli recruit additional sensorimotor pathways and thus lead to an increase in OKR 

amplitude. 

Variations in luminance characteristics of a large-field motion stimulus lead to strongly 

correlated changes in both the optokinetic reflex amplitude as well as the population 

activity of the optic nerve (see chapter 2, manuscript 1). However, varying stimulus color 

above the saturation level for luminance contrast evoked no conjugate variations in 

optic nerve activity. This suggests that the observed differences in response amplitude 

are not caused by luminance contrast artifacts, such as reflections, but rather motivates 

a different explanation for the increase of OKR amplitude during chromatic stimulation: 

The differences can be explained by retinal motion detectors with preferences for 
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specific colors, which differ in how strongly they are coupled to the optokinetic reflex 

circuitry in the brainstem (Orger and Baier, 2005). This hypothesis is supported by our 

observation of single units at the optic nerve level with varying preferences for large-

field motion stimuli in red, blue or white color (Fig. 3). Evaluating individual units based 

on how their response changed between white and red or blue stimuli, respectively 

showed a relatively large separation between two types (see Fig. 3C): In about half of 

the recorded units, activity decreased when colored stimuli were presented, while in the 

other half activity increased. This increase was typically similar comparing red and blue 

stimuli, although units with a preference for either color were found. This demonstrates 

that the neuronal substrate for color-specific processing of motion information in the 

optokinetic reflex is also in place in Xenopus tadpoles. 

Ecologically, including color information for optokinetic reflex performance appears 

advantageous: Color provides many additional cues about the environment and visual 

motion within it. It increases the saliency of objects, and it seems intuitive that color 

might also facilitate motion perception (Dobkins and Albright, 1994). It also appears 

likely that certain environmental features have consistent colors and – based thereupon 

– can be more easily distinguished from other objects. Especially in the distinction 

between visual motion of the entire scene (which is most likely caused by self-motion 

and therefore should elicit an optokinetic response), and motion of outside objects 

(which should be ignored by the optokinetic system), these characteristics might play a 

role. For example, distinguishing between the blue sky and other animals or objects 

moving through the water. 

Conclusion 

This study shows that in larval Xenopus, the optokinetic reflex is systematically 

influenced by color information. The underlying mechanism is likely to be found in 

separate channels for motion detection which have different color preferences and 

differ in their projections to the premotor optokinetic nuclei in the brainstem. 
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 Candela 
[cd·m−2] 

Radiance 
[W·m−2·sr−1] 

Photon Radiance 
[m−2·sr−1·s−1] 

White 5871 1.87·e+1 5.0·1019 

Black 101.7 3.21·e-1 8.6·1017 

Red 751.8 3.39·e+0 1.06·1019 

Blue 224.7 4.66·e+0 1.07·1019 

 

Table 1: Different photometric and radiometric measures. 

Different measures can be used to quantify the intensity of light with different colors. Note that 

while white has the largest intensity regardless of the used measure, whether red or blue are 

construed as more intense depends on the measure used. 

 

 

 

Appendix 1: Wavelength spectrum of the different stimuli produced by the used video 

projectors. 

(A) Graph, showing the spectra of white, black, blue and red light emitted by the projectors at 

their relative maximal intensities. (B) Graph illustrating how the intensity of the red stripes was 

modulated to identify the point of equiluminance in Condition 1. The intensity of the blue stripes 

was held constant, whereas the intensity of the red stripes was scaled without changing the 

wavelength. 

  



Manuscript 2 

79 
 

References 

Beck, J. C., Gilland, E., Baker, R., & Tank, D. W. (2004). Instrumentation for measuring 

oculomotor performance and plasticity in larval organisms. Methods in Cell 

Biology, 76, 385–413. https://doi.org/10.1016/S0091-679X(04)76017-3 

Cavanagh, P., & Anstis, S. (1991). The contribution of color to motion in normal and 

color-deficient observers. Vision Research, 31(12), 2109–2148. 

https://doi.org/10.1016/0042-6989(91)90169-6 

Cavanagh, P. (1991). Vision at equiluminance. In J. J. Kulikowski, I. J. Murray, & V. 

Walsh (Eds.), Vision and Visual Dysfunction: Limits of Vision (Vol. 5, pp. 234–250). 

Boca Raton, FL: CRC Press. 

Cavanagh, P., Tyler, C. W., & Favreau, O. E. (1984). Perceived velocity of moving 

chromatic gratings. Journal of the Optical Society of America. A, Optics and Image 

Science, 1(8), 893–9. https://doi.org/10.1364/JOSAA.1.000893 

Collewijn, H. (1969). Optokinetic eye movements in the rabbit: Input-output relations. 

Vision Research, 9(1), 117–132. https://doi.org/10.1016/0042-6989(69)90035-2 

Dieringer, N., & Precht, W. (1982). Compensatory head and eye movements in the frog 

and their contribution to stabilization of gaze. Experimental Brain Research, 47(3), 

394–406. https://doi.org/10.1007/BF00239357 

Dobkins, K. R., & Albright, T. D. (1994). What happens if it changes color when it 

moves? the nature of chromatic input to macaque visual area MT. The Journal of 

Neuroscience: The Official Journal of the Society for Neuroscience, 14(8), 4854–70. 

Gegenfurtner, K. R., & Hawken, M. J. (1996). Interaction of motion and color in the 

visual pathways. Trends in Neurosciences, 19(9), 394–401. 

https://doi.org/10.1016/S0166-2236(96)10036-9 

Hänzi, S., & Straka, H. (2016). Schemes of Xenopus laevis tadpoles. Figshare. Retrieved 

from 

https://figshare.com/articles/Schemes_of_Xenopus_laevis_tadpoles/3841173 



Manuscript 2 

80 
 

Krauss, A., & Neumeyer, C. (2003). Wavelength dependence of the optomotor 

response in zebrafish (Danio rerio). Vision Research, 43(11), 1273–1282. 

https://doi.org/10.1016/S0042-6989(03)00090-7 

Kröger, R. H. H., Knoblauch, B., & Wagner, H.-J. (2003). Rearing in different photic and 

spectral environments changes the optomotor response to chromatic stimuli in 

the cichlid fish Aequidens pulcher. Journal of Experimental Biology, 206(10), 

1643–1648. https://doi.org/10.1242/jeb.00337 

Lambert, F. M., Combes, D., Simmers, J., & Straka, H. (2012). Gaze stabilization by 

efference copy signaling without sensory feedback during vertebrate locomotion. 

Current Biology, 22(18), 1649–1658. https://doi.org/10.1016/j.cub.2012.07.019 

Lettvin, J. Y., Maturana, H. R., Maturana, H. R., Mcculloch, W. S., & Pitts, W. H. (1959). 

What the frog’s eye tells the frog’s brain. Proceedings of the IRE, 47(11), 1940–

1951. https://doi.org/10.1109/JRPROC.1959.287207 

Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate 

channels for the perception of form, color, movement, and depth. The Journal of 

Neuroscience: The Official Journal of the Society for Neuroscience, 7(11), 3416–

3468. Retrieved from http://www.jneurosci.org/content/7/11/3416.short 

Malik, M. H., Saeed, M., & Kamboh, A. M. (2016). Automatic threshold optimization in 

nonlinear energy operator based spike detection. In 2016 38th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC) (Vol. 2016, pp. 774–777). IEEE. 

https://doi.org/10.1109/EMBC.2016.7590816 

Matsuura, K., Kawano, K., Inaba, N., Miura, K., & Munoz, D. (2016). Contribution of 

color signals to ocular following responses. European Journal of Neuroscience, 

44(8), 2600–2613. https://doi.org/10.1111/ejn.13361 

Nieuwkoop PD, Faber J. (1994). Normal table of Xenopus laevis (Daudin): A 

systematical and chronological survey of the development from the fertilized egg 

till the end of metamorphosis. New York: Garland. 



Manuscript 2 

81 
 

Packer, O., Diller, L. C., Verweij, J., Lee, B. B., Pokorny, J., Williams, D. R., … Brainard, D. 

H. (2001). Characterization and use of a digital light projector for vision research. 

Vision Research, 41(4), 427–439. https://doi.org/10.1016/S0042-6989(00)00271-6 

Ramlochansingh, C., Branoner, F., Chagnaud, B. P., & Straka, H. (2014). Efficacy of 

tricaine methanesulfonate (MS-222) as an anesthetic agent for blocking sensory-

motor responses in Xenopus laevis tadpoles. PLoS ONE, 9(7), e101606. 

https://doi.org/10.1371/journal.pone.0101606 

Raphan, T., Matsuo, V., & Cohen, B. (1979). Velocity storage in the vestibulo-ocular 

reflex arc (VOR). Experimental Brain Research, 35(2), 229–248. 

https://doi.org/10.1007/BF00236613 

Rinner, O., Rick, J. M., & Neuhauss, S. C. F. (2005). Contrast sensitivity, spatial and 

temporal tuning of the larval zebrafish optokinetic response. Investigative 

Ophthalmology and Visual Science, 46(1), 137–142. 

https://doi.org/10.1167/iovs.04-0682 

Robinson, D. A. (1981). The Use of Control Systems Analysis in the Neurophysiology of 

Eye Movements. Annual Review of Neuroscience, 4(1), 463–503. 

https://doi.org/10.1146/annurev.ne.04.030181.002335 

Röhlich, P., & Szél, Á. (2000). Photoreceptor cells in the Xenopus retina. Microscopy 

Research and Technique, 50(5), 327–337. https://doi.org/10.1002/1097-

0029(20000901)50:5<327: AID-JEMT2>3.0.CO;2-P 

Rothman, G. R., Blackiston, D. J., & Levin, M. (2016). Color and intensity discrimination 

in Xenopus laevis tadpoles. Animal Cognition, 19(5), 911–919. 

https://doi.org/10.1007/s10071-016-0990-5 

Schaerer, S., & Neumeyer, C. (1996). Motion detection in goldfish investigated with the 

optomotor response is “color blind.” Vision Research, 36(24), 4025–4034. 

https://doi.org/10.1016/S0042-6989(96)00149-6 



Manuscript 2 

82 
 

Straka, H., & Dieringer, N. (2004). Basic organization principles of the VOR: Lessons 

from frogs. Progress in Neurobiology, 73(4), 259–309. 

https://doi.org/10.1016/j.pneurobio.2004.05.003 

Witkovsky, P. (2000). Photoreceptor classes and transmission at the photoreceptor 

synapse in the retina of the clawed frog, Xenopus laevis. Microscopy Research and 

Technique, 50(5), 338–346. https://doi.org/10.1002/1097-

0029(20000901)50:5<338: AID-JEMT3>3.0.CO;2-I 

Yamaguchi, S., Wolf, R., Desplan, C., & Heisenberg, M. (2008). Motion vision is 

independent of color in Drosophila. Proceedings of the National Academy of 

Sciences of the United States of America, 105(12), 4910–5. 

https://doi.org/10.1073/pnas.0711484105 

Zoccolan, D., Cox, D. D., & Benucci, A. (2015). Editorial: What can simple brains teach 

us about how vision works. Frontiers in Neural Circuits (Vol. 9). Frontiers. 

https://doi.org/10.3389/fncir.2015.0005



Manuscript 3 

83 
 

4 Manuscript 3 

I spy with my little eye: A simple behavioral assay to test color 

perception in animal virtual reality setups 

Céline M. Gravot1,2,*, Alexander G. Knorr3,4,*, Stefan Glasauer3 and Hans Straka1 

1 Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152 

Planegg 

2 Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 

Großhaderner Str. 2, 82152 Planegg 

3 Center for Sensorimotor Research, University Hospital Großhadern, Feodor-Lynen-Str. 19, 

81377 Munich 

4 Institute for Cognitive Systems, TUM Department of Electrical and Computer Engineering, 

Technical University of Munich, Karlstraße 45/II, 80333 München 

* C.M.G. and A.G.K. contributed equally to this work 

Acknowledgments: The authors further acknowledge financial support from the 

German Science Foundation (CRC 870; STR 478/3-1 and GL 342/2-1), the German 

Federal Ministry of Education and Research under the Grant code 01 EO 0901 and the 

Bernstein Center for Computational Neuroscience Munich (BT-1). 

  



Manuscript 3 

84 
 

Abstract 

Virtual reality has become an increasingly popular and powerful tool to study behavior 

and perception in humans and – more recently – also in animals. Driven by the advances 

in computer animation technology, virtual realities (VR) can now closely mimic natural 

scenes. However, little is known about how animals (whose photoreceptors differ from 

those of humans) perceive colors that are presented on RGB digital screens. In this study, 

we present a simple behavioral assay to test color perception in an animal VR setup and 

demonstrate results from experiments employing semi-intact preparations of Xenopus 

laevis tadpoles at mid-larval stages. The optokinetic reflex (OKR) is a visual motion driven 

gaze-stabilizing motor reaction and appropriately elicited by an internal representation 

of the visual surround’s movement. Online eye tracking permits a measurement of the 

OKR in response to different visual scenes in a VR setup. Optokinetic stimuli were 

presented at a constant velocity (±10°/s, 0.2 Hz) using black/color striped patterns in 

any of the three component colors (red, green and blue). By varying the intensity of the 

colored stripes, we obtained response amplitude curves for each color. The intensities 

required to obtain an optokinetic response above a specific threshold level were 

determined by the relative sensitivity to an individual RGB color and was used to 

estimate the relative spectral sensitivity of Xenopus tadpoles. Systematic employment 

of this technique demonstrated that the relative sensitivity (cR,G,B) to the component 

colors of the display were  cR = 0.275 ± 0.032 for red, cG = 0.585 ± 0.028 for green and cB 

= 0.140 ± 0.017 for blue in Xenopus laevis tadpoles. This relatively simple method can 

thus be extended to other species using other suitable visuomotor transformations as 

behavioral readout to validate color presentation in virtual reality setups used for animal 

experiments. 
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Introduction 

Over the last two decades, virtual reality (VR) has undergone a development that is far 

from being completed. Ranging from military training purposes to video game 

technologies, VR also reached neurosciences (Bohil et al., 2011; Tarr et al., 2002; Thurley 

et al., 2017) as a powerful tool that opens up new avenues of research. VR enables 

experimenters to present situations to their subjects without limitations by the actual 

laboratory’s layout, and even scenarios that are impossible in the real world, thereby 

allowing for fundamentally new approaches to study human perception and behavior 

that were not feasible before (Tarr & Warren, 2002). Therefore, it is no suprise that VR 

setups have become more and more established as a tool also in the field of research 

on animals (Thurley, 2017). Driven by advances in computer processing power, visual 

virtual environments are getting increasingly more sophisticated and life-like. 

Typically, these environments are presented to the animals using readily available 

display technologies, such as LCD monitors and image projectors. These digital screens 

reproduce natural colors by mixing three distinct component colors (red, green and 

blue). This provides colors that appear realistic to the human eye, although the 

frequency spectrum of composite colors might differ from the colors observed in nature. 

The exact ratio between the three primary colors was determined through intensive 

psychophysical experimentation (Guild, 1932). 

However, since different animals have different combinations of photoreceptor types, 

it cannot be taken for granted that this technique of color reproduction also works in 

the same way for animals (D’Eath, 1998; Fleishman et al., 1998). Despite the technical 

advances of VR in the last years, relatively little is known about how animals perceive 

colors on digital monitors. This is a challenge when aiming for realistic life-like virtual 

environments since an animal might perceive an image presented on an RGB display 

differently than when looking at the same image in the real world (Chouinard-Thuly et 

al., 2017). 

Previous efforts towards an understanding of how to adequately calibrate display 

devices have relied on a detailed model of the retinal photoreceptors in the target 

species (Tedore & Johnsen, 2017). If an approximate calibration of the visual stimulus 
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suffices, as is the case in most VR experiments in the behavioral neurosciences, we 

propose a simple method for estimating the relative sensitivities to the three 

component colors of a RGB screen, that can be used on already-in-place VR setups. 

In this study, we demonstrate how a low-level optomotor response can be used to test 

how animals perceive colors presented on RGB displays: Tracking the optomotor 

response to visual motion stimuli presented in each of the three component colors at 

various intensities allows for estimating the relative sensitivities to the red, green and 

blue channels. 

Materials and Methods 

Animal Experiments. Experiments were performed in-vitro on isolated, semi-intact 

preparations of Xenopus laevis tadpoles and comply with the National Institute of Health 

publication entitled "Principles of animal care", No. 86-23, revised 1985. Permission for 

these experiments was granted by the governmental institution at the Regierung von 

Oberbayern/Government of Upper Bavaria (55.2-1-54-2532.3-59-12). Animals were 

obtained from the in-house animal breeding facility at the Biocenter-Martinsried of the 

Ludwig-Maximilians-University Munich. A total of 6 Xenopus laevis tadpoles of 

developmental larval stages 53-55 (Nieuwkoop & Faber, 1967) were used for 

experimentation. For preparation, tadpoles were anesthetized in 0.05% 3-aminobenzoic 

acid ethyl ester (MS-222; Pharmaq) in frog Ringer solution (in mM: 75NaCL, 25NaHCO3, 

2CaCl2, 2KCL, 0.5MgCl2 and 11glucose, pH7.4). The telencephalon was removed 

according to the preparation procedure described by Lambert et al. (2012). Preparations 

were kept at 14°C for 3 hours after the preparation, allowing their central nervous 

system to recover (Ramlochansingh et al., 2014). 

Setup. The semi-intact preparation was fixed with insect pins to the Sylgard floor of a 

Petri dish (5cm diameter). The chamber, constantly perfused with oxygenated frog 

Ringer solution, was fixed in the center of an open cylindrical screen, encompassing 275° 

with a diameter of 8cm and a height of 5cm. Three digital light processing (DLP) video 

projectors (Aiptek V60), installed in approximately 90° angles to each other, were fixed 

on the table around the screen and projected different visual motion stimuli (Packer et 

al., 2001) at a refresh rate of 60Hz onto the screen (Fig. 1A). A CCD camera (Grasshopper 
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0.3 MP Mono FireWire 1394b, PointGrey), fixed on the table, permitted on-line eye 

tracking by custom software following the procedure described by Beck et al. (2004). 

The chamber was illuminated from above using an 840 nm infrared light source. An 

infrared long-pass filter in the camera ensured selective transmission of the infrared 

light and a good contrast of the eyes for the online analysis. The exact position of the 

visual stimulus and both eyes was read out in the data acquisition program Spike2 

(Version 7.04, Cambridge Electronic Design). 

Data acquisition. We measured the optokinetic response of Xenopus tadpoles. Eye 

position data were preprocessed by a Gaussian low-pass filter at a frequency of 5Hz, and 

segmented into individual cycles of the stimulus, excluding all cycles with a peak velocity 

> 50°/s (i.e. discarding all cycles which showed other oculomotor behavior than 

optokinetic slow phase response, such as spontaneous swimming). We then computed 

the amplitude of the optokinetic reflex from the oculomotor response by fitting the 

stimulus profile to individual stimulus cycles and taking the median of all individual cycle 

amplitudes. The stimuli consisted of a 3 different stripe patterns: Red-black, green-black 

and blue-black at relative intensities of 0.0, 0.031, 0.063, 0.126, 0.251, 0.377, 0.502, 1.0. 

The stripe patterns moved following a rectangular velocity profile with a velocity of 

±10°/s and a frequency of 0.2Hz. 

Results  

A suitable optomotor response is the optokinetic reflex (see Fig. 1, text inset), a gaze-

stabilizing reflex which has been shown to scale with increasing contrast of a visual 

motion stimulus in zebrafishes (Rinner et al., 2005) and Xenopus tadpoles (see chapter 

1, manuscript 2). This reflex can be measured by an eye tracking setup (Fig. 1) and will 

be used as an example in the following study. Our method can also be applied for other 

optomotor responses, such as body kinematics or wing beat in insects (Duistermars et 

al., 2007; Gray et al., 2002). 

Experimental procedure. The relative perceived brightness B of any color (R, G, B) in the 

RGB color space can be computed as (ITU-R BT.601-7): 

𝐵 = 𝑐𝑅 ∗ 𝑅 + 𝑐𝐺 ∗ 𝐺 + 𝑐𝐵 ∗ 𝐵; 0 ≤ 𝑅, 𝐺, 𝐵 ≤ 1;𝑐𝑅 + 𝑐𝐺 + 𝑐𝐵 = 1   (1) 
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with cR,G,B denoting the relative sensitivities to the three component colors. 

To determine the values for the parameter cR,G,B we measured the optokinetic reflex of 

Xenopus laevis tadpoles in response to colored visual motion stimuli (rectangular 

velocity profile, triangular position profile; Fig. 1B). The stimulus consisted of a striped 

pattern of alternating colored and black vertical stripes. The colored stripes were 

presented in one of the three component colors, which were shown at 8 different 

intensity values (0.0, 0.031, 0.063, 0.126, 0.251, 0.377, 0.502, 1.0). 

As a measure for the optokinetic reflex, we used the amplitude of the eye movement 

response (Fig. 1C). To find the relative sensitivities to the red, green and blue 

components, we chose an appropriate threshold amplitude (Fig. 2). Our threshold of 0.8 

was at approximately half of the saturation amplitude observed for high-intensity 

stimuli. We then determined the three intensities (RTh, GTh, BTh) required for each of the 

three colors to reach the optomotor threshold amplitude by linear interpolation. 

The relative sensitivities to the individual primary colors can then be computed as: 

𝑐𝑹 =
1

𝑹𝑇ℎ(
1

𝑅𝑇ℎ
+

1

𝐺𝑇ℎ
+

1

𝐵𝑇ℎ
)
  𝑐𝑮 =

1

𝑮𝑇ℎ(
1

𝑅𝑇ℎ
+

1

𝐺𝑇ℎ
+

1

𝐵𝑇ℎ
)
 𝑐𝑩 =

1

𝑩𝑇ℎ(
1

𝑅𝑇ℎ
+

1

𝐺𝑇ℎ
+

1

𝐵𝑇ℎ
)

 (2) 

Results of animal experiments. The results from our experiments are shown in Fig. 2. For 

all below-saturation intensities in the three primary colors, the optokinetic response 

differs greatly between red, green and blue stripes of the same relative intensity. Green 

stimuli evoke relatively large responses, followed by a slightly weaker response to a 

purely red stimulus and the smallest response to a stimulus shown only in blue. 

Accordingly, the relative intensity of a blue stimulus required to reach the threshold 

response level is much greater than the intensity required in the red and green channels. 

For a threshold level of 0.8 of the mean amplitude in all trials, we obtain the following 

relative weights for the red, green and blue components, according to equation (2): cR = 

0.275 ± 0.032, cG = 0.585 ± 0.028, cB = 0.140 ± 0.017, which is surprisingly close to the 

values based on human perception (ITU-R BT.601-7: cR = 0.299, cG = 0.587, cB = 0.114). 

The estimates for the relative sensitivities were consistent between animals and robust 

to variations in threshold. 
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Figure 1: Optokinetic stimulation setup. 

(A) The horizontal optokinetic reflex (hOKR) is evoked by rotation of a striped pattern projected 

onto a full-field cylindrical screen in a virtual reality setup. Eye movements are recorded using a 

monochrome CCD camera and tracked using custom-written eye tracking software (adapted 

from Hänzi and Straka, 2016). (B) An examplary eye movement trace for each color (intensity 

level=0.1255) of the stimulus and the corresponding visual stimulus (black trace, v=±10°/s, 

f=0.2Hz). (C) Average OKR responses evoked by the different colors of the stimulus at different 

intensity levels. 
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Figure 2: Sensitivity curves for the RGB colors. 

Bold lines show averages between animals, shaded lines show individual animals’ data. A 

threshold level was set at 0.8. The relative intensities required to obtain an optokinetic response 

above the threshold level are denoted with RTh, GTh and BTh for the three component colors, 

respectively (inset). These values can then be used to estimate the relative spectral sensitivities 

of the animal model to the three primary colors of the display. 
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Discussion 

Although virtual reality is becoming increasingly popular to study behavior in animals, it 

remains unclear if animals perceive the virtual world like we do. To validate a visual 

animal VR setup, we propose in this study a simple behavioral assay based on the 

optokinetic reflex to test color perception in a VR environment. This method can be 

expanded to any optomotor response which scales with subjective brightness.  

Using Xenopus laevis tadpoles as a model, we were able to characterize animal RGB color 

perception in an already-in-place VR setup. An interesting observation of our results is 

that the relative sensitivities to the component colors of a RGB display we found in 

Xenopus tadpoles are strikingly similar to the ones used to calibrate monitors for human 

observers. Until now Xenopus laevis was mostly recognized as a model animal for 

developmental studies. Our results recommend Xenopus tadpoles as a viable species for 

research on the subcortical visual system. 

More generally our results demonstrate that the proposed method gives consistent 

estimates of the spectral sensitivity between animals and is robust to the choice of the 

threshold level. The determined sensitivities can be used to tune VR setups adequatly 

to provide approximately realistic color impression to the experimental animal. This is 

vital not only to get natural behavioral responses but also to distinguish e.g. pure color 

cues from combined color and intensity cues in the virtual world. On top of the 

optokinetic reflex as a powerful tool to gain insights into visuo-motor transformations 

(Benkner et al., 2013; Brockerhoff, 2006), many VR setups rely on other optomotor 

responses as a behavioral measure for perception, such as body kinematics (Gray et al., 

2002). While our proposed method might not be as accurate as the one from Tedore 

and Johnsen (2016), we introduce a way to easily obtain the required data that relies 

only on already-in-place methods. Further, it allows for non-invasive measurements of 

the primary spectral sensitivity for each individual animal, this way accounting for 

interindividual variations in color perception. As an alternative to using our method to 

calibrate an RGB display, it can also be used as a rapid procedure to validate calibration 

according to other methods (Chouinard-Thuly et al., 2017; Tedore & Johnsen, 2017). 
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5 Discussion 

5.1 Motion information 

By making use of different forms of physical quantities, the sensory systems of 

vertebrates and invertebrates collect information about their environment. Specialized 

sensors have evolved such that they selectively respond to these different physical 

modalities. The information that these sensors collect about a specific quantity is 

analyzed and processed by the central nervous system to transform e.g. the physical 

forces by hair cells or the movement of images across the retina into internal 

representations of some behaviorally meaningful state of the world and is, ultimately, 

used to control motor behavior. Such sensorimotor transformations are likely a defining 

feature that characterize how living animals interact with their environment. 

5.1.1 Detecting different forms of motion 

One of the undoubtedly most crucial types of information that must be encoded by 

every living organism is motion. Whether a predator notices the movement of a prey it 

wants to feed on or a pedestrian infers the speed of a car to avoid a collision while 

crossing the road: These examples clearly illustrate that mechanisms to detect and 

quantify motion are vital for life. More particularly, two main types of motion cues need 

to be detected by living organisms: The motion of individual objects in the immediate 

environment around oneself, as well as one’s own motion within the world. 

To differentiate between these two types of motion, animals can make use of their 

different sensory systems and locomotor efference copies. Many aquatic species, for 

instance, are able to distinguish between their own and the motion of predators and 

preys, relying on their lateral line system that senses motion of the surrounding water. 

However, this system cannot give a faithful representation of self-motion with respect 

to the world when the surrounding medium itself is in motion. The vestibular system, 

on the other hand, can detect self-motion with respect to the stationary world 

independent of any medium but is ill-suited to detect constant motion. The visual 

system ideally complements these two sensory systems, as it possesses characteristics 

that are neither provided by the vestibular nor the lateral line system, such as the ability 
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to work without a high-density medium, the capability to detect constant motions, or 

the skill to see into the distance. This illustrates that the combination of different 

sensory systems is profitable for animals to obtain reliable motion information from 

their environment and discern between object- and self motion.  

5.1.2 Visual motion detection 

During his time as an airplane pilot during World War II, J.J. Gibson observed that the 

visual perception of a pilot during flight or landing periods depended on different 

information of a large-field image scene, such as depth cues, edges or the texture of a 

visual scene (Gibson, 1950). He introduced the term optic flow field as the spatially 

coherent changes of the egocentric location of image features to describe the visual 

stimulus provided to an observer during self-motion. Gibson’s idea was that every 

movement has an associated optic flow pattern, permitting an observer to rely on optic 

flow information to reconstruct/estimate their own movement in space. And indeed, 

while locomoting, animals use visual motion information from a large-field image for 

both object detection and to guide their own movements through space. Self-motion 

thereby generates distinct optic flow patterns on the retina, that depend on the type of 

locomotor action (Krapp & Hengstenberg, 1996).  

However, computationally, the extraction of motion patterns from a sequence of retinal 

images is not trivial. While for the lateral line and vestibular organs, there is an 

immediate physical coupling of the force on each individual hair cell and the motion 

through the medium (lateral line) or acceleration with respect to the world (vestibular 

system), no such direct physical coupling exists for the sense of vision. Only by 

comparing the activation of multiple photoreceptor cells over space and time it is 

possible to obtain information about motion from the sequence of retinal images.  

One possible way for the visual system to discern between self- and object motion is to 

eliminate large-field image motion on the retina by means of eye movements that 

counteract the visual motion induced by self-motion through space (Lappe & Hoffmann, 

2000). These eye movements have important consequences as they ensure a stable 

image of the environment on the retina and thereby increase visual acuity. The resulting 

stability of the large-field image also enhances the sensitivity for small-field object flow 
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patterns. Thus, compensatory eye movements are a crucial process for appropriate 

vision and a behavioral correlate of self-motion-related information available to the 

animal via its visual system. 

In this thesis, I investigated how the eye assesses and encodes large-field motion 

information and how the downstream oculomotor circuitry in the midbrain controls eye 

movement reflexes based on these motion signals. 

5.2 Gaze-stabilizing reflexes 

To account for image displacements on the retina and achieve spatial constancy, two 

main gaze-stabilizing reflexes, the vestibulo-ocular reflex and the optokinetic reflex, 

tightly work together: While the vestibulo-ocular reflex produces compensatory eye 

movements in response to head motion, the optokinetic reflex elicits following eye 

movements in response to large-field image motion. These two reflexes ensure high 

visual acuity by relying on self-motion related signals from two different sensory 

modalities, namely the vestibular and the visual systems. 

Interestingly, as demonstrated in previous work (Beraneck & Straka, 2011; DeAngelis & 

Angelaki, 2012) and chapters 2 and 3 of this thesis, the type of information transmitted 

via the vestibular nerve and the optic nerve population is very similar, although it 

originates from two qualitatively very different sensory mechanisms. Through hair cell 

deflection and large field optic flow, the vestibular and visual systems encode 

comparable information: Both nerves modulate their activity according to sensory 

stimuli that are likely evoked by self-motion. The notion that both nerves encode the 

same behavioral entity is further demonstrated by the fact that both nerves partially 

converge on the same central nuclei. 

5.2.1 A behavioral correlate 

To investigate how the visual system assesses and evaluates large-field motion 

information, the optokinetic reflex was employed as a behavioral correlate for self-

motion perception. Indeed, as the optokinetic reflex is driven by the velocity of a large-

field moving scene (Cohen et al., 1981; Maioli, 1988; Raphan, 1979), this reflex can give 

crucial insights into how the visual motion processing system assesses on the velocity of 
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a moving scene. The involved visuomotor circuits likely form a speed estimate of the 

large-field signal and translate this information into a low-level motor behavior to 

estimate self-motion and thereby stabilize gaze. 

Typically, the percept of self-motion is acquired when animals locomote in their 

environments. However, large-field image motion around a stationary observer can also 

induce a compelling illusionary sense of self-motion (Campos & Bülthoff, 2012). In this 

thesis, Xenopus tadpoles were fixed in the center of a virtual reality setup and projectors 

projected different artificial virtual large-field sceneries on a cylindrical screen around 

the animals. Using a camera mounted on top of the setup, the optokinetic reflex of the 

animals could be monitored. As the moving visual images were presented with the same 

velocity profile, the optokinetic reflex provided an easily accessible way to compare 

internal speed representations in different visual scenes: A higher internal estimate of 

stimulus speed would translate into a stronger optokinetic response and a lower internal 

estimate into a lower optokinetic response. Accordingly, the magnitude of the 

optokinetic response in Xenopus tadpoles offers a convenient behavioral substrate to 

reveal influences of image characteristics on visual motion perception (see chapter 2, 

manuscript 1). 

5.3 Speed estimation 

When navigating within the environment and interacting with other animals, the ability 

to form an adequate internal representation of self-motion is crucial. This raises the 

question which signal the visual system of animals relies on to form a speed estimate of 

a large-field visual image scene and consequently control locomotion and navigation. 

5.3.1 A velocity signal present at the retinal level 

One possible mechanism is that low-level motion computation is already performed at 

the retinal level and that motion signals are directly assessed by gaze-stabilizing visual 

pathways. Several studies performed on invertebrates and vertebrates showed that 

extensive image computation is indeed already performed at the retinal level (Gollisch 

& Meister, 2010). Experiments performed by Lettvin (Lettvin et al., 1959) showed for 

instance that optic nerve fibers of a frogs’ eye report different abstract information 

about a visual scene (sharp edges and contrast, curvature of edges, movement of edges) 



Discussion 

99 
 

to the brain. In the seminal pubication “What the frog’s eye tells the frog’s brain” 

(Lettvin et al., 1959), Lettvin and colleagues reported that the optic nerve does not only 

signal the spatial distribution of light on the different places of the retina, but rather 

already extracts “perceptual” features. For instance, as some cells responded 

preferentially to small, dark objects moving on a visual scene, they were named the “bug 

perceiver”. 

To answer the question whether motion information of a large-field visual image is also 

already present at a retinal level, the optic nerve output signal transmitted from the 

retina to the midbrain was recorded in semi-intact Xenopus preparations. In the first two 

papers, where optic nerve activity was recorded, the results show that large-field 

horizontal image motion modulates the spike discharge activity in the optic nerve. These 

results indicate that the population signal, present at the level of the optic nerve, can 

already serve as an estimate of stimulus velocity and can be used to drive the optokinetic 

reflex (see chapter 2, manuscript 1). In the first manuscript, the strong similarity 

between image-related biases of the optokinetic reflex and optic nerve population 

activity further supports the point that the population activity at the level of the optic 

nerve is interpreted by the oculomotor circuitry as a velocity signal and is the basis for 

OKR performance (see chapter 2, manuscript 1, Figs. 3 and 5). 

The aim of this thesis was to explore how the retinal signal is interpreted as a speed 

estimate by the visual system of Xenopus tadpoles, and how this signal then translates 

into behavior (in particular the optokinetic reflex), without explicitly studying how this 

speed signal is computed by retinal circuits. 

5.3.2 The influence of visual scene parameters 

Velocity signals on the retinal level are read out by certain visuomotor reflexes to ensure 

gaze stability during behavioral tasks. However, natural moving scenes are very complex 

and may possess steadily changing image characteristics. This raises the questions 

whether the velocity estimate is robust to the complexity of a visual scene and what 

impact characteristics of a moving visual image has on gaze-stabilizing reflexes. Using 

optokinetic reflex performance as behavioral correlate, the first two manuscripts of this 
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thesis demonstrate that visual speed estimation in Xenopus tadpoles is indeed 

influenced by features of a visual scene, in particular contrast polarity and color. 

Contrast polarity 

In the first manuscript, the experimental manipulation of contrast polarity indicated that 

the optokinetic response amplitude varied strongly when inverting this parameter of the 

visual scene. The results suggest that for gaze-stabilizing reflexes, which are computed 

at early stages of visual processing, the speed estimation process is not only based on 

local motion of contours (Albright, 1992). Rather, the results suggested that more 

abstract properties of the visual surround, such as contrast polarity, heavily influence 

the speed estimation of a large-field visual scene. Therefore, the optokinetic reflex 

asymmetry must be a direct consequence of the neuronal processing underlying speed 

estimation, which obviously differed for different contrast polarities. Moreover, 

elimination of total luminance as an experimental parameter indicated that the sole 

inversion of contrast polarity is sufficient to elicit an asymmetric OKR. 

To understand the origin of the contrast polarity bias, I recorded from the optic nerve 

of Xenopus tadpoles while presenting a single moving bar on a large-field visual screen 

(black bar on white background versus white bar on black background). Interestingly, 

the contrast polarity bias could be reproduced, suggesting that the velocity signal 

present at the retinal level is influenced by the light intensity in the vertical 

neighborhood of a horizontally moving edge (see chapter2, manuscript 1, Fig. 6): High 

uniform light intensities impinging on the receptive field of retinal ganglion cells 

appeared to suppress their modulation in response to the moving edge. Taken together, 

as a direct correlate of retinal biases could be observed in the optokinetic reflex 

response, this suggests that the reflex directly relies on a speed signal, which is already 

present at the retinal level. 

Fast phases 

Interestingly, in the first study reported here, an asymmetry caused by retinal speed 

computations was not only observed in the immediate oculomotor following response, 

the optokinetic reflex, but also in a more indirect behavior, namely the number of fast 

phases during constant velocity stimulation (see chapter 2, manuscript 1, Fig. 4). Indeed, 
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a positive contrast polarity evoked both an optokinetic reflex with a higher slow phase 

velocity and more fast-phases. As the generation of fast phases is typically related to an 

internal estimate of surround velocity (Anastasio, 1996), the results suggest that the 

generation of fast phases is also influenced by how the central nervous system estimates 

the speed of image slip. The strong correlation between fast phase number and slow 

phase eye movements (see chapter 2, manuscript 1, Fig. 4) supports this hypothesis, 

suggesting that both the following response as well as the neural circuits responsible for 

fast phase generation draw on the same velocity estimate (see chapter 2, manuscript 1). 

However, how exactly the velocity signal is further processed to generate fast phases is 

still unclear in Xenopus tadpoles and in humans. Anatomical research on monkeys 

investigated which neural circuitries are involved in this process (Horn et al., 1996), but 

the question warrants further investigation. 

Color contrast 

The results of the second study indicate that the color of a moving visual scene has a 

minor effect but also influences the optokinetic reflex in Xenopus laevis tadpoles. When 

decreasing luminance contrast in a visual moving scene (composed of two colored 

stripes), preparations showed a residual optokinetic response at the point of 

equiluminance. This indicates that pure color contrast of a moving visual image cannot 

be excluded to play a role - together with luminance cues - in visual motion detection 

mechanisms, that form the basis of and drive the optokinetic reflex. In the last years, 

there was a long debate about the question (Gegenfurtner & Hawken, 1996) whether 

color and luminance signals cooperate in the process of motion detection. Early studies 

claimed that color and motion cues are strictly separated (Livingstone & Hubel, 1987), 

such that color does not play a role in the motion detection process. However, other 

experiments showed that a motion percept could still be evoked in the absence of 

luminance contrast in human subjects (Cavanagh et al., 1984). The results of the second 

manuscript of this thesis support the view that color plays a role, albeit minor, in motion 

detecting mechanisms already in a relatively simple vertebrate species. 

At high light intensity stimuli, larger responses were additionally observed when black 

stripes were presented together with colored than when presented together with white 

stripes, suggesting an influence of color on the optokinetic reflex of Xenopus tadpoles 
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(see chapter 3, manuscript 2). In experiments performed on human subjects, color has 

been shown to play a role in subjective speed estimation (Gegenfurtner & Hawken, 

1996). Based on the results of the second study, I stipulate that color, like contrast 

polarity, plays a role to form a speed estimate of a large-field visual scene, and 

consequently influences the control of self-motion perception. 

In contrast to the first manuscript, the biases observed at high intensities were not 

mirrored at the population level of the optic nerve. However, at a single unit level, 

response preferences to specific colors were present and could form the neural basis for 

color related biases. Since these observations are true for a large range of high-intensity 

luminance levels, this demonstrates that the observed differences in response 

amplitude are not caused by luminance artifacts, but suggests that another process 

explains the different increase of OKR amplitude during chromatic stimulation. It could 

for instance be that different retinal motion detectors with preferences for specific 

colors differ in how strongly they are coupled to the optokinetic reflex circuitry in the 

brainstem, and thereby differentially drive the reflex (Orger & Baier, 2005). 

5.4 Comparative aspect of visual motion processing 

In the last decades, non-human primates have been used as one main animal model to 

investigate visual processing mechanisms (Zoccolan et al., 2015). Indeed, it was often 

assumed that simpler brains lack important structures to perform advanced visual 

processing tasks and are therefore inadequate models to draw comparisons to 

mammalian brains (Zoccolan et al., 2015). However, as vision is widely distributed in 

many species and evolutionary conserved in the animal kingdom (Sanes & Zipursky, 

2010), simpler brains represent, in contrast, a very useful tool for gaining insight into 

common computations of visual processing. Nowadays, more and more studies are 

investigating visual processing mechanisms in simpler animal models, ranging from 

rodents (Busse et al., 2011) over simpler vertebrates (Orger & Baier, 2005) and even to 

nonvertebrate species (Borst, 2009), providing important findings about common 

computational principles in vision in general and motion vision in particular. 
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5.4.1 Through the eye of Xenopus laevis tadpoles 

The animal model Xenopus laevis developed over the last years in an excellent model to 

study the functional establishment of sensory-motor circuits during ontogeny (Straka & 

Simmers, 2012). In previous studies performed in this laboratory, the ontogenetic 

establishment and performance of both vestibular (Branoner et al., 2016) and 

optokinetic reflexes (Schuller et al., 2014) was characterized in Xenopus laevis tadpoles 

and froglets. The amphibian model hereby provides several advantages, such as the easy 

accessibility to both vestibular and visual systems as well as robust visuo-motor reflex 

responses. Further, the advantage of utilizing in vivo-like experimental paradigms in 

semi-intact in vitro preparations endows the experimenter with powerful opportunities 

for controlled manipulations of the involved circuits. Moreover, the use of these semi-

intact preparations in virtual reality setups opens up valuable experimental possibilities 

such as the ability to isolate both sensory stimulation inputs and motor behavioral 

output. 

In previous experiments performed by Schuller et al. (2014), large-field image motion 

was shown to evoke a robust optokinetic reflex in mid-larval stages of semi-intact 

Xenopus preparations with phase-coupled following movements of both eyes.  

In this thesis, Xenopus tadpoles is the model of choice to investigate low-level visual 

motion perception processes. As the large-field image velocity directly determines the 

performance of the OKR with the purpose of minimizing retinal image slip, the OKR 

represents a relatively easy means to compare speed estimation for different visual 

scenes, provided that all experimental stimuli have the same velocity profile. 

Furthermore, this amphibian model species possesses a vertebrate eye and, like various 

other vertebrates including humans, different types of cones with three distinct 

absorption spectra (Witkovsky, 2000), providing the basis for potential color vision. The 

easy access of the eyes also enables extracellular multi-unit recordings of extraocular 

eye muscles or the optic nerve. Moreover, the amphibian has no fovea which other 

species use to focus on individual parts of an image. This facilitates the monitoring of 

purely optokinetic reflex eye movements without smooth pursuit eye movements like 

for instance in humans. 
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All these aspects taken together demonstrate how advantageous semi-intact 

preparations of Xenopus laevis tadpoles and their optokinetic reflex are, to provide 

further insight into common image processing mechanisms across species. 

5.4.2 Human experiments 

The role of scene characteristics has been investigated extensively in human visual 

perception of static images (Khuu et al., 2016; Navon, 1977; Oliva, 2005). These studies 

demonstrated that image features, such as openness, luminance polarity or color 

influence perception and play a role in the interpretation of ambiguous images. 

However, although it is known that the perception of a visual scene depends crucially 

on the context in which it is presented (Stone et al., 1990; Vaziri-Pashkam & Cavanagh, 

2008), it still remains unclear how motion processing in humans - in particular subjective 

speed estimation - is influenced by image features to form a coherent percept of full-

field visual motion. 

By comparing data from our Xenopus animal model to human subjects (see chapter 6, 

appendix 1), I intended to gain further insight into how context-dependent perceptual 

influences are represented at an early and a late processing stage along the visual 

pipeline, bridging the gap between brainstem computations and cognitive-level 

subjective perception. The influence of contrast polarity on speed perception in healthy 

human subjects (n=10) was tested by conducting sets of psychophysical experiments 

(see chapter 6, appendix 1, methods and results). Based on the results in Xenopus 

tadpoles and previous findings (Stone et al., 1990; Thompson, 1982), a similar 

perceptual bias in human subjective motion perception as in the animal experiment was 

expected, with humans slightly overestimating the speed of white dots on a black 

background (positive contrast polarity). 

The psychophysical experiments however showed that subjective perception in human 

subjects is robust to a large range of visual features (total luminance and contrast 

polarity), except for a minor but significant individual bias with respect to contrast 

polarity. The functional basis of this bias could either be innate or adaptively acquired 

depending on lighting conditions of the recent environment. 
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5.4.3 Comparative approach 

The comparative approach revealed that manipulation of image features of a visual 

scene influences optokinetic responses and higher cognitive functions, such as 

subjective speed perception. However, the results showed that the optokinetic reflex in 

Xenopus tadpoles is affected much more strongly by manipulations to the visual scene 

than the human subjective speed perception. These two measures provide insight into 

visual motion perception within two hierarchical levels. The OKR is mediated exclusively 

by midbrain circuits, whereas subjective perception in human subjects can be construed 

as a cortical process. Büchel et al. (1998) found in a human fMRI study that attention, in 

the absence of eye movements, modulates the activation of superior colliculus neurons 

in the midbrain, however, without any functional explanation of this finding. The 

perceptual coupling between early- and higher-level (conscious) speed estimation could 

relate this modulation of neural activity to a sort of “active readout” process, in which 

attention-related networks actively access the speed signal encoded in 

pretectal/midbrain circuits. 

Given that cortical areas are involved in human visual motion perception (Bartels et al., 

2008; Dieterich et al., 1998; Vanduffel et al., 2001), the comparative Xenopus and human 

subject results of this thesis support the notion that cortical areas appear to compensate 

biases, which are unaccounted for at early levels of the visual system. Boynton et al. 

(1999) found that contrast information is represented in the visual cortex while 

performing a contrast discrimination task. This information could possibly be used 

during motion detection to estimate the bias at brainstem visual circuitries and to 

compensate accordingly. The lack of consistent bias with respect to contrast polarity in 

human speed perception might be indicative of this compensatory process. Future 

experiments such as tracking of eye movements could clarify how visual motion is 

perceived along hierarchical levels of the visual circuitry. 

5.4.4 Different speed estimates 

Our results demonstrate that in Xenopus tadpoles the velocity signal encoded in the 

optic nerve population activity directly determines the optokinetic reflex performance. 
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This means that the OKR directly relies on this speed estimation signal, that may have a 

rather poor quality but enables a quick activation of short-latency reflex pathways. 

In contrast, the fact that no systematic bias was observed in humans advocates that 

these subjects may rely on an additional speed signal that provides a more reliable 

estimate of a large-field visual scene. This is supported by the second study reported in 

this thesis: In contrast to the Xenopus OKR, which is barely present at equiluminance, 

humans can indeed detect motion when presented with a pure color contrast, albeit 

with qualitatively different discrimination thresholds for motion and direction 

discrimination (Derrington & Henning, 1993). This suggests that human subjects with 

cortical structures supplement the fast estimate at the retinal level by a second motion 

estimation process. For instance, human subjects could compensate for biases based on 

a higher-level representation of image properties. They may be able to use the different 

estimates for different processes, such as subjective perception or reflexes, depending 

on which information source appears more reliable. In this regard, human subjects could 

rely on (learned) a-priori information, that enable them to evaluate the correctness of 

the speed estimate more effectively. 

5.5 Internal representation of self-motion 

To make sense of the complex pattern of activations of sensory neurons, animals need 

to make an abstract internal representation about the relevant features of their 

environment. Indeed, perception is more than just the activation of sensory receptor 

cells but rather the construction of an internal representation of the state of the world. 

For instance, vision is not just the activation of green or blue receptors in the retina but 

rather an animal will perceive a tree on a green meadow in front of a blue sky. The same 

holds for motion vision, where animals do not only see a sequence of bright and dark 

spots but can infer the direction or the velocity of a whole moving image. 

Sensory systems have evolved in different animals to extract biologically meaningful 

information from the physical world they live in. Therefore, studying these systems can 

be used as a vehicle to understand how animals make sense of and form an internal 

representation of their complex environments. In this thesis, I was particularly 

interested in the way the visual system of Xenopus tadpoles forms a speed estimate of 
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a large-field moving scene. As living creatures deal with diverse habitats and a large 

range of visual scenarios, the internal representation of their visual world needs to be 

robust to adequately ensure gaze stability and in a broader sense control self-motion 

perception. 

The drastic OKR performance asymmetry with respect to contrast polarity in the first 

manuscript, therefore seems counterintuitive at first glance. Indeed, when coping with 

a large range of visual scenarios, the optokinetic reflex of sighted animals should not 

only be fast but also perform a robust estimate of the speed of the visual surround to 

maintain visual acuity. These results however suggest that a distinction based on 

contrast polarity assists animals in adjusting their optokinetic reflex to only relevant 

aspects of a large-field visual scene. The preference of specific fore- and background 

information (e.g. small bright objects in front of a black background) suggests that a low-

level interpretation of image motion is already made at the retinal level. The observed 

asymmetry might functionally help the optokinetic reflex to respond predominantly to 

visual motion evoked by self-motion within the world, and thereby restricts eye 

movements in response to object motion. 

This interpretation is consistent with findings in zebrafish, where large dark spots on a 

brighter background were shown to evoke a more efficient hunting behavior, than with 

a reversed stimulus. This suggests that closed contours with negative contrast are likely 

interpreted as prey (Bianco & Engert, 2015) and not as background (see chapter 2, 

manuscript 1). Almost seventy years ago, experiments performed in frogs (Barlow & Hill, 

1963; Lettvin et al., 1959) showed that a prey/non-prey distinction is already made at 

the retinal level. Further downstream, prey-like objects were also shown to activate 

specific visual pathways in the predatory zebrafish (Semmelhack et al., 2014). Although 

Xenopus tadpoles are not carnivorous and thereby do not necessarily require a 

prey/non-prey distinction, the distinction between self-motion from the motion of other 

objects (animals) is ecologically advantageous. Furthermore, since adults of Xenopus are 

indeed predators, the required circuitry for prey detection might already be in place at 

larval stages (see chapter 2, manuscript 1). 
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Noteworthy in this context is that Xenopus changes its lifestyle during metamorphosis: 

this development is not only accompanied by a switch in locomotor strategy (Straka & 

Simmers, 2012), but also by a change in habitat. While Xenopus tadpoles live purely in 

aquatic environments, adult frogs are semi-aquatic and capture insects from the air. This 

transition offers a unique opportunity to gain into adaptive processes of the visual 

system in Xenopus laevis. Further experiments in adult frogs could for instance reveal, if 

the asymmetry caused by contrast polarity reverses in adult frog, as they are now 

confronted with other visual scene characteristics. It could be that the optokinetic reflex 

is now more sensitive to black contours on a brighter background, such as the bright 

(blue) sky.  

Including color information from a moving visual scene to the optokinetic reflex also 

appears ecologically advantageous. As color is known to increase the saliency of objects, 

it might be assumed that color also facilitates motion perception (Dobkins & Albright, 

1994). Color information could be an advantage for distinguishing between visual 

motion of a large-field visual scene, that is most likely caused by self-motion and should 

therefore elicit an OKR, and motion of small objects, such as dust or plancton moving 

through the water, that should be ignored by the optokinetic system. For instance, 

motion with respect to the blue sky could likely be interpreted as self-motion and should 

elicit gaze stabilizing eye movements. 

As demonstrated in this thesis, features of a large-field moving scene can drastically 

influence the perception of the visual world in animals. Consequently, when performing 

experiments in different animal models, it is crucially important to control the visual 

environments that are presented to the laboratory animal. An incorrect calibration of 

the setup could distort interpretations or lead to premature conclusions regarding the 

behavioral data set. It is therefore important to understand how sensory systems adapt 

to different environmental constraints and how animals make an internal 

representation of these environments to support the guidance of their motor actions. 

5.5.1 Nature versus nurture 

In the last years, there was a long debate about whether behaviors are innate (nature) 

or are the product of adaptations to specific environments (nurture, (Powledge, 2011)). 
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The results of the third manuscript revealed that color sensitivity of Xenopus tadpoles 

to the three primary colors red, green and blue, projected on the screen of our virtual 

reality setup, is very similar to the sensitivity of human subjects. The results are 

validating our animal species as a model of choice to comparatively investigate visual 

processes. However, the striking similarity between the sensitivities in two species raises 

the question whether these relative color sensitivities are genetically hard-coded in 

Xenopus tadpoles, or if the results could be the product of an adaptation process to the 

environmental breeding conditions of the animal model. Indeed, as the Xenopus 

tadpoles used in this study grow up under fluorescent lamps (with emission peaks in 

exactly the red, green and blue parts of the visible spectrum) in the animal facility, it 

could be that the visual system of the animal model adapted to these lighting conditions. 

In rats, it was shown that light can become an uncontrolled variable in experimental 

research by affecting the physiology and behavior of these animals (Azar et al., 2008). 

Therefore, further experiments in which Xenopus eggs and tadpoles would be raised 

under different lighting conditions (e.g. monochromatic red or blue light) and the 

spectral sensitivities of the OKR would be reassessed, could elucidate whether the 

spectral sensitivities are due to an adaptive process or if these sensitivities are innate to 

Xenopus tadpoles independent of rearing conditions. 

5.6 From biology to technology 

Eye movements permit to explore properties of the visual surround. In the dynamic 

world, animals thereby need to filter sensory information by assessing certain 

characteristics and events in their environments. How is the visual system extracting 

relevant information from the complexity of visual scenes? 

The eye of Xenopus tadpoles can teach us much about basic computations performed in 

a “simpler brain” and elucidate common computation principles between species. In this 

thesis, I wanted to show that Xenopus tadpoles present a suitable animal model to help 

researchers from different fields understand and improve visual image analysis. Indeed, 

especially biophysicists and engineers try to understand design principles of biological 

nervous systems that enable them to design artificial neural systems. In particular, 

understanding the characteristics of the biological vision system, could help researchers 
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to overcome limitations of conventional vision sensors and develop more powerful 

visual sensors using bio-inspired imaging systems. 

Conventional vision sensors see the world as a series of still images. However, this kind 

of visual processing is highly inefficient, as it uses successive frames that contain an 

enormous amount of redundant information. In addition, each pixel in every frame 

needs the same exposure time, leading to a difficult visual processing under conditions 

with very dark and bright regions. In contrast, event-time cameras transmit only local 

pixel-level brightness changes caused by movement in a scene (Mishra et al., 2017). 

These devices offer significant advantages, namely the processing of events in a 

microsecond time resolution, short-latency and consequently high-speed vision. 

Similar to these technical devices, the eye of Xenopus tadpoles, and by extension the 

vertebrate eye in general, processes visual information only when changes in the image 

occur. The electrophysiological experiments revealed that the Xenopus eye responds to 

brightness changes and detects moving edges. The simplicity of the organisms and the 

easy accessibility of the visual system, could therefore provide crucial information for 

researchers that aim at improving visual technical devices. And especially since different 

features of visual scenes have a strong impact on neural activity in Xenopus tadpoles, 

this species could help in elucidating basic computations of the visual system and 

unraveling how image information is encoded by the retina to be sent to the visual areas 

of the brain. This knowledge is vital for e.g. the development of sensory protheses. While 

today’s commercially available cochlear implants can already restore patients’ abilities 

to understand speech, similar solutions for e.g. blind patients are still in clinical trials. 

Moreover, adult frogs could also give further insights into visual processes. By keeping 

their eyes still during prey detection, frogs eliminate biologically unimportant 

information about stationary objects (Dieringer & Daunicht, 1986). This behavior 

increases their ability to detect the movement of objects (food, mates, predators) amid 

complex environmental sceneries. When locomoting, although the stationary 

environment moves relative to the retina, this information can also be used to identify 

the location and distance of certain objects in the world (Ewert, 1970).  
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Taken together, simpler brains and neural circuitries such as the brain of Xenopus laevis 

can help to bridge the gap between biology and technology, and help in designing 

sophisticated and powerful bio-inspired visual devices, such as perhaps someday visual 

motion sensors on autonomous cars. 

5.7 Outlook 

Animals live in complex and dynamic environments, that require them to experience, 

explore and interact with their physical world (Prete, 2004). By studying simpler species, 

researchers of various fields can learn how the perceptual worlds of these animals are 

astonishingly rich and complex. To get a deeper understanding of how animals perceive 

their environments, scientists however first need to uncover how the sensory systems 

of these animals respond to and interpret different stimuli of the physical world. By 

introducing the term Umwelt, the famous biologist Jakob von Uexküll already 

emphasized at the beginning of the twentieth century, that the way of understanding 

nature is to investigate the complex relationship between the environment and an 

animal’s internal representation (Stella & Kleisner, 2010). The technical advances of the 

last years and novel virtual reality setups will certainly give critical insights into many 

unanswered questions.  

The fundamental question of how features of a visual scene influence visual speed 

processing have also been associated with driving performance problems on the road 

(Owsley & McGwin, 2010). In driving simulators, the “Thompson effect” can for instance 

induce faster driving in fog conditions, when subjects are asked to keep the speed 

constant but are deprived of speedometer reading (Snowden et al., 1998).  

The visual system of Xenopus tadpoles therefore not only presents an ideal candidate to 

provide insight into common perceptual mechanisms across species, building a bridge 

between the well-established separate fields studying the neurophysiology of motion 

detection in insects on one side, and mammalian and primate visual processing on the 

other hand, but also to increase driving safety or to elucidate the challenge of motion 

detectors in autonomous cars. 
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6 Appendix 1: Human Experiments 

Methods 

Psychometric studies. 10 healthy, naïve human subjects (9 female, 29.6 ± 4.6 years) were 

asked to perform a speed-discrimination task. Seated in a dark room, subjects were 

placed in front of a 58.4 cm (23”) LCD screen (ASUS VX238; 0.2652 mm pixel distance; 

1920 x 1080 px) at their natural viewing distance of ~50 cm. All subjects had normal or 

corrected to normal vision. The experimental protocol was approved by the local ethics 

committee at the University Hospital Großhadern, in accordance with the standards of 

the Declaration of Helsinki. 

Experimental Procedure. 480 pairs of two successive images of 400 random dots 

(randomly generated for each image, diameter 16 px (4.2 mm)) all moving at a speed 

between 25 and 75 px/s (6.6 and 19.9 mm/s) to either the left or the right were 

presented sequentially, with a pause of 0.75 s between two movement presentations, 

during which a grey screen was shown. Presentation times were drawn independently 

for each stimulus from a Gaussian distribution with a mean of 1.0 s and a standard 

deviation of 0.15 s. A red fixation point in the center of the screen was shown during the 

entire experiment. One of the two motion stimuli (chosen randomly) always moved at a 

speed of 50 px/s (13.3 mm/s), and will be referred to as reference stimulus. The speed 

of the test stimulus was chosen by an adaptive 1up-2down-staircase procedure starting 

at an absolute speed difference of 25 px/s (6.6 mm/s), with two individual staircases for 

each of the 4 different conditions (Table 1, Condition 1A, 1B, 2A, 2B). Each staircase was 

presented in 60 trials, resulting in a total of 120 trials per condition. In each trial, the 

sign of the speed difference with respect to the reference speed was chosen randomly 

and independently. Subjects were instructed to maintain fixation of the red point during 

the experiment and to indicate which of the two motion stimuli were perceived as 

moving faster by keypress on a computer keyboard. It was brought to subjects’ attention 

that presentation times were randomized and judging displacement would not be 

successful. Subjects had to press the Page Up button, if they estimated the first stimulus 

as the faster one or the Page Down button, if they estimated the second stimulus as the 

faster one. 
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Condition 1: role of total luminance. The influence of total luminance on speed 

perception in human subjects was tested by presenting two pairs of textures with the 

same contrast intensity but different total luminances (Table 1). Within each pair of 

stimuli, the contrast polarity was identical. One pair had a positive (Condition 1A), the 

second pair a negative (Condition 1B) contrast polarity. 

Condition 2: role of contrast polarity. The influence of contrast polarity on speed 

perception was tested by presenting two pairs of stimuli. Both pairs consisted of two 

stimuli with opposite contrast polarities. In one pair, which maximized contrast 

intensity, the total luminance differed (Condition 2A). In the other pair, the two stimuli 

had the same total luminance by adjusting the grey scale values of dots and background 

(Condition 2B). 

Data analysis and statistics. Responses were pooled per subject for the two staircases 

in each experiment. Then, the speed difference between the two stimuli was computed 

and the ratio that subjects answered in favor of one stimulus was determined. Individual 

subjects’ responses were fitted by cumulative Gaussian psychometric functions using 

the MATLAB fit function (MATLAB 2015b, The MathWorks Inc, Natick, MA), weighting 

the individual points by the number of presentations. For further analysis, the mean and 

standard deviation of the Gaussian fit was extracted as the point of subjective equality 

(PSE) and just noticeable difference (JND). 

To assess potential perceptual biases in speed estimation for stimuli with different 

contrast polarities and luminances, t-tests of the recorded PSE values for all 4 conditions 

of the two experimental paradigms were performed. To test for individual-specific 

biases with respect to luminance, the correlation coefficient between subjects’ PSEs in 

the positive contrast condition and the negative contrast (Condition 1) was computed. 

To test for intra-individual specific biases with respect to the contrast polarity, the 

correlation coefficient between the subject’s PSEs during stimulation with uncontrolled-

for and controlled-for total luminance (Condition 2) was computed. The critical value of 

significance was adjusted for multiple comparisons using Bonferroni correction. 
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Results 

Motion perception in human subjects 

A possible perceptual bias for speed estimation as observed for Xenopus tadpoles was 

tested in healthy human subjects by conducting two sets of psychophysical experiments. 

The different stimulus parameters and the statistics of the results are indicated in Table 

1 and 2, respectively. 

Role of total luminance on speed estimation 

The first set of experiments tested the influence of total luminance on motion 

perception. Subjects (n = 9) were asked to judge and compare the respective speeds of 

pairs of stimuli (see Methods for details) with the same contrast polarity and contrast 

intensity but different total luminances. As main result, neither a consistent bias with 

respect to the total luminance nor a correlation between the PSEs of the two pairs of 

stimuli was observed (Fig. 1A). This indicates that subjective motion perception in 

humans is largely unaffected by changes in total luminance for the brightness levels used 

in this study (Fig. 1A; Table 2). 

Role of contrast polarity on speed estimation 

The second set of experiments tested the influence of contrast polarity on motion 

perception, by presenting two pairs of stimuli with opposite contrast polarities (Table 

1). In one pair, the total luminance differed between both stimuli; in the other pair the 

total luminance was the same. On average, there was no consistent bias related to 

contrast polarity (Fig. 1B). Since the distribution of PSEs was non-normal in the equi-

luminant pair of stimuli (Lilliefors test, p = 0.019), a rank correlation analysis using 

Kendall’s τ was performed to reveal a potential association between individual biases in 

the two stimulus conditions with different contrast polarities. Interestingly, a significant 

strong association (τ = 0.64, p <0.01) between PSEs in both conditions was encountered, 

suggesting a consistent intra-individual perceptual bias related to contrast polarity 

(scatter plot in Fig. 1C2).  
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In summary, psychophysical experiments showed that subjective perception in humans 

is robust to a large range of visual features, however, with the exception of a minor 

individual bias with respect to contrast polarity. 

 

 

 

Table 1: Stimulus conditions for experiments in human subjects. 

Contrast intensity, contrast polarity and total luminance were manipulated to test the respective 

influence of these scene features on speed perception. Pictograms indicate the intensity and 

contrast polarity between the random-dot pattern and the background. 

 

 

 

Table 2: Statistical results from experiments in human subjects. 

PSE values are indicated as mean (±SD). t and p are the t-statistics and p-values for the different 

pairs of stimulus conditions. 
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Figure 1: Psychometric functions of human visual speed perception. 

(A,B) Dependency of speed estimation on speed difference (ΔS, mm/s) under experimental 

conditions that tested the role of total luminance (A1,2) and contrast polarity (B1,2) (see 

pictograms in the lower right corner, respectively); grey lines represent data from individual 

subjects (n = 9); black lines indicate the mean psychometric functions; the point (purple dotted 

line transecting the x-axis) at which individuals subjectively perceived the speed between pairs 

of stimuli as equal defines the Point of Subjective Equality (PSE). (C) Correlation of PSE values 

from individual subjects (n = 9) obtained from testing total luminance (C1) and contrast polarity 

(C2); the high τ value in C2 indicates an association of PSE values, suggesting an intra-individual 

perceptual bias between the two conditions. 
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