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Abstract 
 

The adult mammalian brain has a limited capacity to replace the loss of neurons 

following the traumatic brain injury or disease, therefore requiring innovative 

strategies to promote tissue regeneration and functional repair of the central 

nervous system (CNS). Direct lineage reprogramming of non-neuronal cell types 

(reactive astrocytes and oligodendrocytes), resident within the injured CNS to 

generate new neurons is a promising approach to repair damaged brain. Despite 

very good conversion rate of isolated postnatal astrocytes in vitro and recent 

advances to produce induced neuronal cells in vivo, the molecular understanding 

of the reprogramming process remains largely unknown. Toward this end, we 

developed an in vitro model with adjusted growth factor composition lacking 

epidermal growth factor (EGF) that reduces the reprogramming efficiency of 

astroglia into neurons to the rate similar to reactive astrocytes in vivo. By 

comparing the cultures prone and resistant to reprogramming we aimed to identify 

molecular features required for the efficient conversion. The proteome analysis of 

EGF+FGF and FGF cultures revealed the chromatin state changes as the main 

factor that could maintain the astrocytes in the glial lineage even after neurogenic 

factor overexpression. To test this hypothesis, we overexpressed the most 

regulated chromatin-related protein, HMGB2, together with NEUROG2 and 

analysed the reprogramming efficiency. Indeed, the simultaneous overexpression 

of both factors in the astrocytes resistant to the fate transition significantly 

increased direct reprogramming suggesting the role of chromatin-associated 

proteins in bypassing the lineage roadblocks. To understand the role of global 

chromatin rearrangement, we performed ATAC-sequencing comparing both 

culture conditions and searched for HMGB2 induced changes in the chromatin 

compaction. The chromatin accessibility analysis revealed an enrichment of 

opened promoters assigned to the neuronal genes in the astrocytes with good 

reprogramming capacity and the ability of HMGB2 to open these specific 

promoters in the culture resistant to reprogramming. In order to access the 

transcriptional changes induced by HMGB2 and NEUROG2 overexpression, we 

performed RNA-sequencing that indicated the involvement of HMGB2 in 
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repression of the myogenic alternative fate, possibly by the opening the repressor 

binding sites. Taken together, we identified the novel candidate HMGB2 in the 

prospect of direct neuronal reprogramming making the chromatin states in the glial 

cells permissive for lineage conversion and thereby enabling acquisition of the 

neuronal phenotype in the cultures with limited reprogramming capacity. 
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1 Introduction 
 

In most mammalian species, the main part of neurogenesis occurs during embryonic 

development. During this time, the majority of the neurons are generated, which will, 

later on, contribute to the formation of a complex brain structure. In the adult 

mammalian brain, neurogenesis persists only in a few restricted areas, while the 

remainder of the brain exhibits highly gliogenic characteristics (Ninkovic and Götz, 

2013). This means, only the astroglia-like cells in the neurogenic niches continuously 

progress towards neurogenic lineage, whereas astroglial progenitors in all the other 

regions normally do not generate neurons (Berninger et al., 2007), but almost 

exclusively the cells of the oligodendrocyte lineage (Ninkovic and Götz, 2013). This 

might be an issue especially after the traumatic brain injury and in neurodegenerative 

diseases, which lead to a critical loss of neurons that in mammals cannot be replaced 

by the organism itself. In order to reactivate and reinstruct neurogenesis after the 

neuronal loss in otherwise non-neurogenic areas, a detailed understanding of the 

underlying molecular mechanisms of neurogenesis is required. Therefore, a 

considerable research is focused on mechanisms allowing neural stem cells to 

successfully generate neurons during embryonic neurogenesis as well as in the 

restricted regions in the adult brain where neurogenesis continues to occur and 

implementation of these mechanisms to elicit neurogenesis. Indeed, in the past 15 

years, a great progress has been made in uncovering key transcription factors and 

other modulators of neurogenesis, which led to a novel avenue for repair, namely 

eliciting neurogenesis from glial cells outside of the neurogenic niches. The field of 

direct neuronal reprogramming from non-neuronal cells in vitro and recently as well in 

vivo has shown promising results in replacing damaged or lost neurons. Recent 

advances in understanding of molecular basics of the reprogramming highlighted that 

the changes in chromatin structure may be an important player to achieve the 

neuronal cell fate acquisition. A group of chromatin architectural proteins, High 

Mobility Group B proteins are due to their high and specific expression in the adult 

neurogenic niches, very interesting candidates to examine the chromatin-associated 

changes and their importance in our ability to reprogram the cell fates. 

 

The following sections will lead through the general concept of neurogenesis by 

describing the basic features of embryonic and adult neurogenic areas. Furthermore, 
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the recent advances of direct neuronal reprogramming in vitro and in vivo will be 

discussed. Finally, the members of the High Mobility Group (HMG) protein family will 

be presented, summarizing the knowledge about their functional motifs, mechanisms 

of action, their expression and potential roles in the mammalian brain. 

 

1.1 Mammalian brain development 
 

1.1.1 Regionalization of the neural tube and patterning of the forebrain 

 

The mammalian central nervous system (CNS) develops from the neural plate, a 

structure of ectodermal origin. During primary neurulation, neural plate folds into a 

neural tube, filled with cerebrospinal fluid (CSF). In the mouse, neurulation begins at 

the embryonic day E8.5 and ends at day E10.5, when the neural tube closure is 

completed. Following anterior-posterior regionalization, the front part of the neural 

tube gives rise to the brain, whereas the middle and caudal portions form the spinal 

cord. However, even before the closure of the posterior neural tube is completely 

finished, the formation of three primary vesicles occurs anteriorly: forebrain 

(prosencephalon), midbrain (mesencephalon), and hindbrain (rhombencephalon) 

(Fig. 1). In the next step, five secondary brain vesicles are formed. The forebrain 

subdivides into the anterior telencephalon (future cortex and basal ganglia) and more 

posterior diencephalon (future thalamus, hypothalamus, and retina). The hindbrain 

further separates into an anterior metencephalon (future pons and cerebellum) and 

posterior myelencephalon (future medulla) (Fig. 1) (Gilbert, 2014; Sanes et al., 2012).  
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Figure 1: Formation of primary and secondary brain vesicles from the neural 
tube. 
Anterior part of the neural tube divides primarily into three brain vesicles: the 
forebrain (prosencephalon), midbrain (mesencephalon) and hindbrain 
(rhombencephalon). The next step of subdivisions generates two secondary brain 
ventricles from the forebrain: telencephalon and diencephalon, as well as two from 
the hindbrain: metencephalon and the myelencephalon. At the end of anterior-
posterior regionalisation, the caudal part of the neural tube gives rise to the spinal 
cord.  
Adapted by permission from Elsevier: Elsevier Books, (Sanes et al., 2012), 
4318200138020, (2012)  
https://www.sciencedirect.com/science/book/9780080923208 
 

Within the telencephalon, the patterning continues along the dorsal-ventral axis 

generating two main regions: dorsal telencephalon (pallium) and ventral 

telencephalon (subpallium). Dorsal telencephalon gives rise to the cerebral cortex, 

hippocampus, cortical hem, and choroid plexus. The ventral telencephalon is 

subdivided to the lateral ganglionic eminence (LGE), medial ganglionic eminence 

(MGE) and caudal ganglionic eminence (CGE) (Fig. 2). While the telencephalon is 

specified by the induction of the transcription factor FOXG1 at about E8.5, its 

subdivisions into specific domains are controlled by extrinsic signaling gradients, 

named morphogens such as sonic hedgehog (SHH), fibroblast growth factors (FGF), 

Wingless-Int proteins (WNT) and bone morphogenic proteins (BMP). They define the 

expression and activity of specific transcription factors in each domain (Hébert and 

Fishell, 2008; Nat et al., 2013; Tole and Hébert, 2013) (Fig. 2). The expression of 

BMP and WNT proteins is involved in the specification of dorsal fate by inducing 

transcription factors like EMX1/2 and PAX6. SHH promotes the formation of all 
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ventral telencephalic subdivisions by positively regulating the expression of Nkx2.1, 

Dlx-genes, and Ascl1 (Hébert and Fishell, 2008; Nat et al., 2013).  

 

1.1.2 Neuronal specification during early development 

 

Extrinsic signaling gradients are not only involved in patterning of distinct regions of 

developing brain, but they also initiate transcriptional cascades that instruct neural 

stem cells and their progenitors to generate specific neuronal and glial subtypes 

(Masserdotti et al., 2016). The dorsal telencephalon generates primarily 

glutamatergic neurons, while the ventral telencephalon produces mainly GABAergic 

neurons (Hébert and Fishell, 2008; Tole and Hébert, 2013). Glutamatergic neuronal 

fate in the dorsal telencephalon is driven by the expression of downstream targets of 

NEUROG1 and NEUROG2 such as NeuroD and the T-box brain genes Tbr2 (also 

know as Eomes) and Tbr1 (Fode et al., 2000; Guillemot, 2007; Mattar et al., 2004). 

Glutamatergic neurons originate from the regions of high Wnt expression, where 

neural stem cells positive for PAX6 and EMX1/2 up-regulate the proneural basic 

helix-loop-helix (bHLH) transcription factors NEUROG1 and NEUROG2 (Ohtaka-

Maruyama and Okado, 2015). GABAergic neurons are specified by Ascl1 and Dlx 

genes in the ventral telencephalon (Casarosa et al., 1999; Petryniak et al., 2007)  

from where they subsequently migrate dorsally into the developing cortex (Hébert 

and Fishell, 2008; Nat et al., 2013) (Fig. 2). 

 

 
 
Figure 2: Morphogens are involved in the generation of unique domains that 
give rise to specific neuronal and glial subtypes. 
The forebrain patterning (left picture) is organized by signaling gradients: sonic 
hedgehog (SHH) presented in green, fibroblast growth factors (FGF) in pink and light 
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blue, Wingless-Int proteins (WNT) and bone morphogenic proteins (BMP), both 
shown in purple. They divide telencephalon to the dorsal region labeled with red and 
ventral region labeled in blue and green on the right picture.  The dorsal region 
includes the cortex, a source of pyramidal glutamatergic neurons and astrocytes. The 
ventral region is subdivided into the lateral, medial and caudal ganglionic eminences 
and the pre-optic area, which give rise to GABAergic interneurons and 
oligodendrocytes. Transcription factors that are associated with the corresponding 
area are indicated.  
Adapted by permission from Macmillan Publishers Ltd: Nature, (Rowitch and 
Kriegstein, 2010), 4310920713940, (2010) 
https://www.nature.com/articles/nature09611 
 

1.1.3 Neurogenesis in the cortex 

 

Most of our understanding of neurogenesis in the telencephalon is derived from 

studies in the cerebral cortex, however, the basic principles of cortical neurogenesis 

are mostly transferable also to the other brain regions (Kriegstein and Alvarez-Buylla, 

2009). In the mouse telencephalon, neurogenesis occurs about E9-10 and continues 

until about E18, having its peak at E14. Neurogenesis starts at the stage of the 

neuroepithelium, composed of a single layer of rapidly dividing neuroepithelial cells 

(NC) lining the cerebral ventricles. These neuroepithelial cells begin to acquire neural 

stem cell features and transform into so-called apical radial glial cells (aRG) (Taverna 

et al., 2014) (Fig. 3), expressing markers such as astrocyte-specific glutamate 

transporter (GLAST), brain lipid-binding protein (BLBP) and intermediate filament 

proteins including nestin and vimentin. Radial glia are located at the apical surface of 

the ventricular zone (VZ) having a contact to the ventricle via apical process and to 

the outer pial surface via basal process (Fig. 3). During the thickening of the cortex 

throughout neurogenesis, the basal process is extended in order to maintain contact 

with both the ventricle and the pial surface (Fig. 3) (Kriegstein and Alvarez-Buylla, 

2009; Paridaen and Huttner, 2014). At early neurogenic stages at about E11, the 

apical radial glia mainly undergo symmetric cell divisions in order to expand their pool 

(Götz and Huttner, 2005). After that, they start dividing asymmetrically to self-renew 

and generate a population of transit-amplifying progenitors (basal or intermediate 

progenitors) or neurons (Kriegstein and Alvarez-Buylla, 2009; Noctor et al., 2007). 

The basal process contacting the pial surface serves as a scaffold to guide neuronal 

migration to their final destination layer (Fig. 3). Newly generated basal progenitors 
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do not contact the ventricle or pial surface but have multipolar nature (Kriegstein and 

Alvarez-Buylla, 2009). In addition to apically located radial glia, another type of radial 

glial cells has been identified, termed as subapical progenitors due to their dividing 

properties at subapical positions (Pilz et al., 2013). Moreover, some more cells 

having radial glia features were observed, positioned more basally outside the 

ventricular zone and having apically and/or basally directed processes. They are 

named basal radial glial cells or outer radial glial cells and are mostly present in 

species with gyrencephalic brains, while lissencephalic species animals like mice 

show only low numbers of basal radial glia in the developing dorsal telencephalon 

(Borrell and Götz, 2014; Paridaen and Huttner, 2014). A high number of newly 

generated basal progenitors leads to the formation of the subventricular zone (SVZ) 

in the cortex (Fig. 3). In contrary to apical radial glial cells, which mostly undergo 

asymmetric divisions at the peak of neurogenesis, basal progenitors divide 

symmetrically to produce two neurons or self-renew to generate two additional 

intermediate progenitors (Kriegstein and Alvarez-Buylla, 2009; Noctor et al., 2007) 

(Fig. 3). These progenitors are important for cortical expansion in some mammals 

during evolution (Paridaen and Huttner, 2014). 

 

 
 

Figure 3: Neurogenesis during cortical development.  
At early stages, neuroepithelial cells divide to generate radial glia. As the brain 
development proceeds, they convert into radial glial cells that divide both 
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symmetrically to self-renew and asymmetrically to generate basal progenitors 
(nIPCs) and neurons. Neurons move along basal processes of radial glia out to the 
developing cortical plate. At later stages of embryogenesis, neurogenic radial glia 
become gliogenic to produce astrocytes and oligodendrocytes (oIPC). Colored 
arrows present symmetric, asymmetric or direct transformation. Abbreviations: NE, 
neuroepithelium; CP, cortical plate; IZ, intermediate zone; MZ, marginal zone; nIPC, 
neurogenic intermediate progenitor cell; oIPC, oligodendrocytic intermediate 
progenitor cell; RG, radial glia; SVZ, subventricular zone; VZ, ventricular zone. 
Adapted by permission from Annual Reviews: Annual Review of Neuroscience, 
(Kriegstein and Alvarez-Buylla, 2009), 4318211074016, (2009)  
https://doi.org/10.1146/annurev.neuro.051508.135600 
 

1.1.4 Cortical layer formation  

 

Progenitors residing the dorsolateral ventricular and subventricular zone generate the 

projection neurons from embryonic day E11.5 to E17.5 in a precisely controlled 

temporal order. Projection neurons are glutamatergic neurons, having pyramidal 

morphology and spreading their projections between different regions of the cortex 

and regions of the brain (Molyneaux et al., 2007). Newly generated neurons in the 

cortex radially migrate through the intermediate zone (IZ) and form six-layered 

cortical plate (CP) in an inside-out manner, meaning that early-born neurons colonize 

deeper cortical layers VI and V, and late-born neurons migrate past them to form 

more superficial layers IV and II/III (Greig et al., 2013) (Fig. 4). Correspondingly, 

early-born neurons are situated close to the ventricle, while the late-born neurons are 

close to the pial surface. The earliest-born neurons appear around E11.5 and form 

the preplate close to the intermediate zone. Later-born neurons migrate into the 

preplate, dividing it into the marginal zone and subplate, and establishing the 

multilayered cortical plate in-between (Greig et al., 2013; Molyneaux et al., 2007). At 

E12.5, layer VI corticothalamic neurons are generated (Fig. 4), expressing 

transcription factors FOXP2 and TBR1. Next, at E13.5, layer V CTIP2 positive sub-

cortical neurons are produced, followed by layer IV excitatory spiny neurons at E15.5 

(Fig. 4) expressing SATB2 (Arlotta et al., 2005; Greig et al., 2013; Lodato and Arlotta, 

2015; Molyneaux et al., 2007). Some layer II/III callosal projection neurons that are 

CUX1+ are being produced already at E12.5, with a peak of their production around 

E15.5 (Molyneaux et al., 2007). Layer I is composed of neurons termed Cajal-Retzius 

cells (Fig. 4), which are generated in early stages of development, but have a 
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different origin from three different regions outside the cortex (Greig et al., 2013). In 

addition to cortical projection neurons, cortex is also colonized by GABAergic 

projection neurons and interneurons derived from GE.  They are produced between 

E11 and E18 and migrate tangentially to their final locations within the cortex. 

Majority of them originate from MGE and CGE in the ventral telencephalon, while the 

LGE contributes interneurons to the striatum and olfactory bulb (Molyneaux et al., 

2007; Taverna et al., 2014). Once the projection neurons in the embryonic cortex 

migrate to the correct layer, they undergo terminal neuronal differentiation, dendrite 

and axon formation, synaptogenesis, and the establishment of neuronal connectivity 

(Taverna et al., 2014) that is mostly completed by postnatal day P21. Neurogenesis 

is followed by gliogenesis, myelination, angiogenesis, and formation of the blood-

brain barrier (Taverna et al., 2014). 

 

 
 

Figure 4: Layer specific neuronal formation in the dorsal telencephalon. 
(a) Sequential generation of different neuronal subtypes and formation of a 6-layered 
cortical plate over the time course of neurogenesis. (b) Specific subtypes of 
projection neurons are born in sequential waves of neurogenesis. The peak of 
subplate neurons (SPN) generation occurs at E11.5, corticothalamic layer VI neurons 
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(CThPN) at E12.5, subcortical layer V neurons (SCPN) at E13.5 and granular layer 
IV neurons (GN) at E14.5. Most of callosal layer II/III neurons are born between 
E14.5 and E16.5. Peak sizes represent approximate amount of neurons generated 
on each embryonic day. Abbreviations: NE, neuroepithelial cell; oRG, outer radial 
glia; SPN, subplate neuron; GN, granular neuron; RG, radial glial cells; CThPN, 
corticothalamic projection neuron; CPN, callosal projection neuron; IP, intermediate 
progenitor, CR, Cajal-Retzius cell; SCPN, subcortical projection neuron; VZ, 
ventricular zone; SVZ, subventricular zone; SP, subplate. 
Adapted by permission from Macmillan Publishers Ltd: Nature Reviews 
Neuroscience, (Greig et al., 2013), 4311050235529, (2013) 
http://www.nature.com/articles/nrn3586 
 
1.1.5 Generation of astrocytes and oligodendrocytes  

 

Following neurogenesis, from E18 until early postnatal stages, astrocytes, 

oligodendrocytes, and ependymal cells are generated (Kriegstein and Alvarez-Buylla, 

2009; Paridaen and Huttner, 2014; Rowitch and Kriegstein, 2010). Astrocytes are 

mainly generated from radial glia that lose their ventricular contact and migrate 

toward the cortical plate (Kriegstein and Alvarez-Buylla, 2009) (Fig. 3). 

Oligodendrocytes originate from different telencephalic regions and are during 

development born at early embryonic stages as well as later stages. There are three 

known waves of oligodendrocyte production (Fig. 5). First cortical oligodendrocytes 

are generated in the MGE, migrate towards the cortex and arrive there at the 

beginning of day E16 (Fig. 5). In the second wave, oligodendrocytes are produced 

more dorsally in the LGE and CGE and migrate to dorsal cortex (Fig. 5). Finally, in 

the third wave starting after E18, cortical oligodendrocytes are locally born from 

cortical progenitors in the dorsal cortex (Fig. 5). Interestingly, in the adult cortex, only 

late-born oligodendrocytes remain, while most of the early born oligodendrocytes 

disappear. Oligodendrocytes are also generated postnatally, however, the exact 

origin of progenitors generating these oligodendrocytes is still unknown. Some 

evidence indicate that at least a subpopulation of these cells, including new NG2+ 

progenitors, is derived from the adult neurogenic niche subventricular zone 

(Kriegstein and Alvarez-Buylla, 2009).  

 



 

 

 
Introduction 

 
  

12 

 
 
Figure 5: Three sequential waves of oligodendrocyte generation in the 
mammalian telencephalon.  
The first wave of OPC (green arrows) arises from MGE, the second wave of OPC 
(blue arrows) emerges from precursors in the MGE and CGE, and the third wave of 
OPC (red arrows) is generated in the cortex.  
Adapted by permission from Macmillan Publishers Ltd: Nature, (Rowitch and 
Kriegstein, 2010), 4310120093154, (2010) 
https://www.nature.com/articles/nature09611 
 

Embryonic radial glial cells do not only give rise to neurons and glia during brain 

development but are also the source of neural stem cells in the adult brain (Merkle et 

al., 2004). Adult neural stem cells maintain some cellular and molecular hallmarks of 

their embryonic counterparts, like epithelial apico-basal organization, contact with the 

blood vessels, apical processes with specialized apical junctions and a primary cilium 

at the ventricle (Kriegstein and Alvarez-Buylla, 2009) and the expression of many 

radial glial and astroglial genes including GFAP and GLAST (Falk et al., 2017). 

However, they differ in their proliferation rate and their genome-wide gene expression 

patterns (Götz et al., 2016). Labelling with BrdU and retroviral lineage tracing 

revealed that the majority of the adult neural stem cells were generated from 

embryonic cells that divided between E13.5 and E15.5. They remain relatively 

quiescent until postnatal life when they are reactivated to produce olfactory bulb 

neurons in the process known as adult neurogenesis (Fuentealba et al., 2015). 
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1.2 Adult neurogenesis 
  

1.2.1 Neurogenic niches in the adult mouse brain 

  

Adult neurogenesis, defined as a process of generating functional neurons from adult 

neural stem cells (NSC) (Ming and Song, 2011), includes many processes 

recapitulated from embryonic development such as neuronal differentiation, 

migration, maturation, and cell death (Alvarez-Buylla et al., 2008). Adult 

neurogenesis occurs throughout life in two restricted regions of adult the mammalian 

brain (Ming and Song, 2011). These two neurogenic niches where endogenous 

neural stem cells reside are the subventricular zone (SVZ) of the lateral ventricle and 

the subgranular zone (SGZ) in the dentate gyrus (DG) of the hippocampus (Bond et 

al., 2015; Ming and Song, 2011) (Fig. 6,7a). Adult neural stem cells in the 

subventricular zone (also named type B cells) are located beyond the ependymal cell 

layer, but contact the cerebrospinal fluid (CSF) in the ventricle with a primary cilium 

that projects from the apical surface (Fig. 6). In addition, they extend long basal 

process ending on blood vessels (Mirzadeh et al., 2008; Tong et al., 2014) (Fig. 6). 

Type B NSCs give rise to transient amplifying progenitor cells (TAPs or type C cells), 

which divide a few times before generating migratory neuroblasts (type A cells). 

Neuroblasts then form a complex network of chains, called rostral migratory stream 

(RMS) and migrate towards olfactory bulb. After arriving to the olfactory bulb, 

neuroblasts detach from chains, migrate radially, differentiate into multiple types of 

interneurons and finally integrate into the preexisting circuits (Alvarez-Buylla et al., 

2008; Bond et al., 2015; Doetsch et al., 1999; Lim et al., 2006; Ming and Song, 2011; 

Taupin and Gage, 2002). The second neurogenic niche, subgranular zone in the 

dentate gyrus of the hippocampus, is a thin area between the granule cells layer and 

the hilus (Gonçalves et al., 2016). Radial glia-like NSCs (RGLs or type 1 cells) reside 

the SGZ and span their radial process through the granule cell layer to the upper 

molecular cell layer (Fig. 6). They give rise to intermediate progenitor cells (IPCs), 

which exhibit limited rounds of proliferation before generating neuroblasts. 

Neuroblasts migrate tangentially along the SGZ and develop into immature neurons. 

Finally, these neurons migrate radially into the granule cell layer to differentiate into 

dentate granule neurons (Bond et al., 2015). In other parts of adult brain 
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neurogenesis is generally believed to be very limited under normal physiological 

conditions but could be induced after injuries (Ming and Song, 2011). Some studies 

reported the signs of neurogenesis also in the hypothalamus (Kokoeva et al., 2005; 

Rojczyk-Gołȩbiewska et al., 2014), however, it is mostly restricted to early postnatal 

stages (Goodman and Hajihosseini, 2015; Robins et al., 2013).  

 

 
 
Figure 6: Neurogenic niches in the adult mammalian brain. 
(a) A schematic representation of the neural stem cell niche in the subventricular 
zone (SVZ). Ependymal cells line the lateral ventricle and separate radial glia-like 
neural stem cells (type B cells) from the ventricular lumen. They are in the contact 
with blood vessels and extend a single cilium through the ependymal layer to contact 
the CSF. Once adult neural stem cells get activated, they give rise transient 
amplifying type C cells and migratory neuroblasts (type A cells). (b) Graphical 
illustration depicting the composition of the SGZ niche. Radial glia-like NSCs (type 1 
cells) have cell bodies that reside in the SGZ and the process that extend into the 
molecular layer of the DG. Type 1 cells give rise to type 2 cells that differentiate into 
neuroblasts that become immature neurons and then mature into dentate granule 
cells, which finally migrate into the granule cell layer of the dentate gyrus. In addition 
to the described cell types, astrocytes, microglia, endothelial cells, mature neurons 
and components of the extracellular matrix contribute to the cellular architecture of 
both neurogenic niches. Abbreviations: CSF, cerebrospinal fluid; ECM, extracellular 
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matrix; EZ, ependymal zone; GCL, granule cell layer; ML, molecular layer; SGZ, 
subgranular zone; SVZ, subventricular zone. 
Adapted by permission from Elsevier: Cell Stem Cell, (Bond et al., 2015), 
4311840816388, (2015) 
http://www.cell.com/cell-stem-cell/fulltext/S1934-5909(15)00410-5 
 

1.2.2 Adult neurogenesis in the adult mouse and human brain 

 

Two neurogenic niches SVZ and SGZ appear to be well conserved amongst the 

mammals, including humans (Bergmann et al., 2015). While the neural stem cells in 

the SVZ generate neurons for the olfactory bulb, the human SVZ supplies the 

neighboring striatum with new interneurons (Ernst et al., 2014) (Fig. 7). Olfactory bulb 

neurogenesis in mammals plays an important role in odor discrimination (Lazarini 

and Lledo, 2011), whereas the functional significance of striatal neurogenesis and 

the integration of the new neurons into existing neuronal circuits in humans remains 

to be explored (Ernst et al., 2014). New neurons continue to be generated also in the 

mammalian SGZ (Fig. 7a), linked to learning and memory, pattern separation 

(Gonçalves et al., 2016) and possibly to some neuropsychiatric disorders (Hsieh, 

2012). In humans, some studies reported a substantial turnover of dentate granule 

cells (Spalding et al., 2013), while the other studies found much less putative new 

neurons (Dennis et al., 2016; Eriksson et al., 1998; Knoth et al., 2010) (Fig. 7b). Very 

recently, two contradictory studies were published, despite using very similar 

immunohistochemical approaches to detect newly generated neurons (Boldrini et al., 

2018; Sorrells et al., 2018). The study from Alvarez-Buylla lab showed the rapid 

decrease of the young neurons production in the primate hippocampus within the first 

years of life. They propose that neurogenesis in the dentate gyrus does not continue 

in adult humans or is extremely rare, raising the questions about the differences in 

human and rodent hippocampal plasticity (Sorrells et al., 2018). On the other hand, 

Boldrini and colleagues found the persistent adult hippocampal neurogenesis into the 

eighth decade of life (Boldrini et al., 2018). This long-standing debate, whether and to 

what extent adult human neurogenesis occurs, will continue. Therefore, further 

studies are clearly needed, including new and more reliable methods to track 

neurogenesis in human adults. 
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Figure 7: Comparison of the adult neurogenesis in the adult rodent and human 
brain. 
(a) In rodents, new neurons (labeled in green) are generated in the subventricular 
zone lining the lateral ventricle, from where they migrate to the olfactory bulb. The 
second source of new neurons in the rodent brain is the subgranular zone in the 
dentate gyrus. (b) In humans, neurons are generated in the subventricular zone but 
integrate into the adjacent striatum. Some of the studies also reported the continuous 
generation of new neurons in the dentate gyrus of the human brain. Abbreviations: 
OB, olfactory bulb; LV, lateral ventricle; DG, dentate gyrus. 
Adapted by permission from PLOS: PLOS Biology, (Ernst and Frisén, 2015), Open 
Access article distributed under the terms of the Creative Commons Attribution 
License, (2015) 
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002045 
 

  



 

 

 
Introduction 

 
  

17 

1.3 Direct neuronal reprogramming 
 

The adult mammalian brain lacks the capacity to replace the loss of neurons upon 

the traumatic brain injury or neurodegeneration. Therefore, functional replacement of 

depleted neurons appears to be one of the major challenges for regenerative 

therapies. Stem-cell-based therapeutic approaches primary focus on differentiation of 

either embryonic stem cells or induced pluripotent stem cells to induced neural stem 

cells or neural progenitors that could be used as a source for cell transplantation 

(Dametti et al., 2016) (Fig. 8). An alternative way to create the cells to be used for the 

transplantation is direct reprogramming of the patient’s skin fibroblasts into induced 

neurons in vitro (Fig. 8). Direct neuronal reprogramming allows the conversion of a 

differentiated cell into neuronal cell type without passing through a pluripotent stage. 

Direct neuronal reprogramming is not only the valuable source of patient-derived 

neurons for the transplantations but also crucial application in the field of human 

disease modeling and drug discovery. Importantly, induced neurons maintain the age 

and epigenetic signatures of the donor, which is critical due to the fact that many 

neurodegenerative diseases are age-related (Arenas et al., 2015; Drouin-Ouellet et 

al., 2017; Huh et al., 2016; Mertens et al., 2015). 

 

Recently, in vivo direct neuronal reprogramming, which makes the use of 

endogenous CNS cells in the adult brain to generate induced neurons in situ, 

emerged as a new approach to circumvent cell transplantation (Arenas et al., 2015; 

Chen et al., 2015) (Fig. 8). Astrocytes, one of the most abundant and widely 

distributed cell type in the adult brain (Doetsch et al., 1999), become in response to 

traumatic brain injury or neurodegeneration reactive, a subpopulation of them starts 

dividing (Bardehle et al., 2013; Buffo et al., 2008; Sirko et al., 2013, 2015) and they 

contribute to the scar formation (Ghasemi-Kasman et al., 2015; Mattugini et al., 

2018).  Reactive gliosis and glial scars are initially protective in order to limit further 

damages but later on present both physical and biochemical barriers for the axonal 

regeneration (Burda and Sofroniew, 2014; Silver et al., 2014; Sofroniew, 2009). A 

novel approach to convert resident astrocytes to the induced neurons has a potential 

to reduce the scar formation and provides a new source of neurons at the injury site. 

Thus, direct lineage reprogramming of non-neuronal cell types resident within the 
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central nervous system to generate new neurons is a promising strategy to repair 

damaged brain. 

 

 
 

Figure 8: Therapeutic approaches to replace the loss of neurons after the 
traumatic brain injury or neurodegeneration. 
Schematic representation depicting the possible strategies for the brain repair, which 
include the transplantation of fetal brain tissue, neurons generated from induced 
pluripotent stem cells originating from blastocyst or reprogrammed from fibroblasts. 
An alternative approach the transplantation of induced neurons directly 
reprogrammed from patient’s skin fibroblasts. Direct reprogramming could also be 
performed directly in vivo in the adult brain by applying the viruses encoding for 
neurogenic transcription factors to generate desired neuronal subtypes from non-
neuronal cell types. Abbreviation: PSCs, pluripotent stem cells. 
Adapted by permission from John Wiley and Sons: Journal of Internal Medicine, 
(Grealish et al., 2016), 4312050467516, (2016) 
https://onlinelibrary.wiley.com/doi/full/10.1111/joim.12475 
 

1.3.1 Direct reprogramming of different non-neuronal cell types into induced 

neurons in vitro 

 

The first successful experiment to reprogram non-neuronal cells types isolated from 

the brain into induced neurons was reported 15 years ago (Heins et al., 2002), 

opening new avenues towards a potential use of endogenous astroglia for brain 

repair (Heinrich et al., 2010). Our group has pioneered the conversion of astroglia 

into functional neurons in vitro by overexpression of neurogenic transcription factor 
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Pax6 (Heins et al., 2002). This encouraged many other researchers and resulted in a 

huge progress in direct neuronal reprogramming field in vitro. Many follow up studies 

showed that astroglia from the postnatal mouse cortex can be redirected towards 

neurogenesis following overexpression of transcription factors that have been 

discovered to play critical roles in the regulation of neurogenesis and neural stem 

cells, for example PAX6, ASCL1, NEUROG2, DLX2, BRN2, NEUROD1, NEUROD2, 

SOX2, SOX11, NEUROD4 and others (Amamoto and Arlotta, 2014; Berninger et al., 

2007; Blum et al., 2011; Buffo et al., 2005; Gascón et al., 2016; Heinrich et al., 2010; 

Heins et al., 2002; Masserdotti et al., 2015; Ninkovic et al., 2013) (Fig. 9b). By forced 

expression of neurogenic transcription factors, also other non-neuronal cell types 

have been shown to adopt a neuronal fate, for example prenatal or postnatal mouse 

fibroblasts (Caiazzo et al., 2011; Colasante et al., 2015; Gascón et al., 2016; 

Tsunemoto et al., 2015; Vierbuchen et al., 2010) (Fig. 9d-f), human fibroblasts 

(Colasante et al., 2015; Drouin Ouellet et al., 2017; Pang et al., 2011; Pfisterer et al., 

2011; Tsunemoto et al., 2015) (Fig. 9d-f), human pericytes (Karow et al., 2012) (Fig. 

9a), and mouse hepatocytes (Marro et al., 2011) (Fig. 9c). In addition, many other 

transcription factors, microRNAs, and small molecules have been discovered and 

implemented into the reprogramming protocols, largely enhancing the efficiency and 

maturation state of induced neurons (Gascón et al., 2017). Two of the most used and 

studied neurogenic transcription factors in the direct reprogramming paradigm are 

ASCL1 and NEUROG2 (Masserdotti et al., 2016). During mammalian brain 

development, ASCL1 is required and sufficient to instruct stem and progenitor cells to 

acquire GABAergic interneuron identity within the ventral telencephalon, while 

NEUROG2 instructs dorsal progenitors towards glutamatergic neuronal fate 

(Casarosa et al., 1999; Fode et al., 2000). Resembling their role in the developing 

brain, the overexpression of ASCL1 in the cortical astroglial cells in vitro triggers the 

generation of GABAergic neurons and forced expression of NEUROG2 results in the 

acquisition of glutamatergic phenotype (Heinrich et al., 2010; Masserdotti et al., 

2015). Interestingly, the efficiency of neuronal conversion differs between two factors, 

NEUROG2 can induce neurons with 70-80% efficiency, while ASCL1 generates only 

about 40% of induced neurons from transduced cells (Heinrich et al., 2010). 

Furthermore, the outcome of reprogramming largely depends on the starting 

populations, which may represent a permissive or repressive environment to fulfill 

their neurogenic potential (Masserdotti et al., 2016). ASCL1 overexpression in the 
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other cell types, such as midbrain astrocytes or MEFs, induces a mix of 

glutamatergic and GABAergic neurons or mainly glutamatergic neurons (Chanda et 

al., 2014; Liu et al., 2015; Masserdotti et al., 2016). NEUROG2 alone is on the other 

site, not able to induce any neurogenesis in the fibroblasts and only in combination 

with small molecules or other factors can generate somatic motor neurons (Liu et al., 

2013, 2016; Smith et al., 2016; Son et al., 2011; Vierbuchen et al., 2010), contrary to 

glutamatergic program induced in astrocytes. This suggests that the efficiency of 

reprogramming largely depends on the cellular context and that the very same 

neurogenic transcription factor induces different downstream targets dependent on 

starter cells and the presence or absence of the other co-factors.  

 

 
 
Figure 9: Direct reprogramming of different cell types into induced neurons in 
vitro using defined transcription factors. 
In vitro cultured pericytes (a), astrocytes (b), hepatocytes (c), and fibroblasts (d-f) can 
be reprogrammed into induced neuronal cells by defined factors depicted in the 
boxes. Blue boxes represent reprogramming factors that efficiently convert different 
cell types isolated from mouse, while red boxes depict factors used for human 
pericytes or fibroblasts reprogramming. 
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Adapted by permission from PubMed Central: Science, (Amamoto and Arlotta, 2014), 
Free from known copyright as described by the Creative Commons Public Domain 
Mark 1.0., (2014) 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122114/ 
 

1.3.2 The role of proliferation in direct neuronal reprogramming 

 

In regard to starting cell populations, the cells selected for the reprogramming in vitro 

like astroglial cells or fibroblasts, are mostly proliferative. However, the proliferative 

state of the cell is not essential for the efficient conversion (Fishman et al., 2015), but 

has rather detrimental effects. Induction of the proliferation in fibroblasts by Myc 

overexpression, reduced the reprogramming efficiency (Fishman et al., 2015), while 

genetically or chemically induced cell-cycle exit improved neuronal reprogramming 

(Patel et al., 2012). Continuous live cell imaging of postnatal astrocytes or pericytes 

during the reprogramming process revealed that most of the cells directly convert into 

neurons without any cell division (Gascón et al., 2016; Heinrich et al., 2010; Karow et 

al., 2012). Furthermore, direct neuronal reprogramming can be efficiently induced 

also from postmitotic cells like hepatocytes, neurons, and astrocytes (Marro et al., 

2011; Masserdotti et al., 2015; Rouaux and Arlotta, 2013).   

 

1.3.3 Metabolic switch during reprogramming of astroglial cells to the induced 

neurons 

 

Active proliferation of the starting populations might not be prerequisite for the 

efficient reprogramming, however the metabolic state of the starter cells that largely 

depends also on cell-cycle phase (Ito and Suda 2014), has been recently discovered 

as a major hurdle for the efficient conversion from one cell type to the other (Gascón 

et al., 2016) (Fig. 10). Astrocytes that in their in vivo environment play important 

functions in energy production, utilization, delivery and storage (Bélanger et al., 

2011), rely mostly on the glycolysis to meet the high-energy needs. Glycolysis leads 

due to the fast degradation of glucose to low ATP production but efficiently generates 

precursors of amino acids, lipids, nucleotides, and co-factors like NADPH (Lunt and 

Vander Heiden, 2011). On the other side, neurons use an oxidative phosphorylation 

(OxPhos) as the main source of energy, where the glucose is more efficiently 

catabolized through the complete oxidation inside the mitochondria and results in a 
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high outcome of ATP. Direct conversion from astrocytes to induced neurons, 

therefore, requires a metabolic switch from glycolysis to oxidative phosphorylation 

(Magistretti and Allaman, 2015), that leads to an increased intracellular level of 

oxidative stress and reactive oxidative species (ROS) production (Quadrato et al., 

2016). ROS include the superoxide anion (O2−), hydrogen peroxide (H2O2), and 

hydroxyl radicals (OH’) that can act as signaling molecules but can also damage 

lipids, proteins, and DNA (Schieber and Chandel, 2014) and induce cell death (Ito 

and Suda 2014). The increase of oxidative stress and elevated levels of ROS turned 

out to be one of the major hurdles for the efficient cellular conversion (Gascón et al., 

2016) (Fig. 10). The activation of OxPhos during metabolic switch exceeds the levels 

of antioxidant molecules produced by protective machinery, making the cells 

incapable to properly cope with the new metabolic profile (Gascón et al., 2017) (Fig. 

10). However, the overexpression of BCL-2, other antioxidant treatments, and 

ferroptosis inhibitors help to overcome this critical barrier by restoring redox 

homeostasis and result in more than 90% reprogramming efficiency when converting 

reactive astrocytes into neurons in vitro (Gascón et al., 2016) (Fig. 10). To sum up, 

the metabolic state of the starter cell population plays an important role for the 

conversion into another cell type (Gascón et al., 2017). The reduction of the oxidative 

stress during the metabolic shift is not only necessary to allow survival of the neurons 

during reprogramming but also a prerequisite for the efficient cell fate transition 

(Gascón et al., 2017). However, the downstream molecular targets of redox 

metabolism remain to be identified (Quadrato et al., 2016) as well as understanding 

how these targets are regulated by the neurogenic transcription factors itself. This 

would help us understand the relationship between the induction of neurogenesis 

and metabolic changes, as well as the target level of expression needed for such an 

efficient conversion rate.  
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Figure 10: The reduction of the oxidative stress is crucial for the efficient 
neuronal reprogramming. 
Graphical illustration showing that high levels of oxidative stress limit successful 
direct neuronal reprogramming with neurogenic transcription factors NEUROG2 and 
ASCL1 from astrocytes or fibroblasts. Inhibitors of ferroptosis, antioxidants or BCL-2 
restore redox homeostasis remarkably improve the efficiency of reprogramming. 
Abbreviation: ROS, reactive oxygen species. 
Adapted by permission from Elsevier: Cell Stem Cell, (Quadrato et al., 2016), 
4312361301913, (2016) 
http://www.cell.com/cell-stem-cell/fulltext/S1934-5909(16)00070-9 
 
1.3.4 Chromatin dynamics, transcriptional initiation, and repression during direct 

neuronal reprogramming 

 

While the transcription factors that can efficiently reprogram non-neuronal cells to 

induced neurons have been largely identified, the molecular understanding of the 

reprogramming process remains largely unknown. On a mechanistic level, it is 

unclear how the expression of a single transcription factor can accomplish such a 

biologically complex task of converting one differentiated cell type into another. To 

elicit the reprogramming event, transcription factors must be able to engage genes 

that are originally not expressed in the donor cells and are typically embedded in the 

closed chromatin. In addition, the original program has to be silenced in order to 

suppress the non-neuronal identity of the donor cells. A subset of transcription 

factors that have a special ability to access their targets in a non-permissive 

chromatin state are described as “pioneer factors” (Iwafuchi-Doi and Zaret, 2014; 

Wapinski et al., 2017) (Fig. 11). Their access at the closed chromatin sites typically 

enables the subsequent binding of other transcription factors (non-pioneers), 
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cofactors and chromatin modifying and remodelling enzymes, initiating the 

expression of genes required to adopt a new cell fate. However, how such 

transcription factors interact with their chromatin targets and the mechanisms 

underlying chromatin remodeling in response to pioneer factor binding is only starting 

to be explored (Pataskar et al., 2016). 

 

One of the important factors in the neuronal reprogramming, ASCL1, has an ability to 

access its targets in closed chromatin regions, therefore being described as ‘‘on-

target’’ pioneer factor (Chanda et al., 2014; Iwafuchi-Doi and Zaret, 2014; Wapinski 

et al., 2013) (Fig. 11). While its on-target pioneering nature was previously well 

examined, the recent studies focused on changes in chromatin dynamics during 

ASCL1 mediated reprogramming of mouse embryonic fibroblasts (MEFs) into 

induced neurons using ATAC-seq assay (Wapinski et al., 2017) (Fig. 11). ATAC-seq, 

Assay for Transposase Accessible Chromatin with high-throughput sequencing, is a 

rapid and sensitive technique based on transposase-mediated insertion of 

sequencing primers into open chromatin regions to study chromatin accessibility 

(Buenrostro et al., 2013, 2015). The data from this study revealed that 

reprogramming is a highly dynamic process, whereby pioneer factor ASCL1 opens 

closed chromatin at its target sites already within 12 hours after the induction. 

However, more than 80% of the accessibility changes occurred between days 2 and 

5 of the reprogramming process (Fig. 11). Interestingly, later on, during 

morphological and functional maturation of induced neurons, only minor chromatin 

changes were observed (Wapinski et al., 2017). The chromatin reconfiguration 

reflects the previously described transcriptional response to ASCL1 (Treutlein et al., 

2016), with the enrichment of sites related to neuronal and muscle GO terms, 

suggesting also the determination of the alternative myogenic cell fate. This could be 

explained by a common ASCL1 and MYOD1 (a myogenic bHLH transcription factor) 

E-box binding motif (Wapinski et al., 2017) that makes ASCL1 inefficient to restrict 

conversion only to the neuronal fate (Treutlein et al., 2016). Similar to ASCL1, 

NEUROG2 also acts as a pioneer transcription factor accessing closed chromatin 

(Smith et al., 2016). The majority of its binding events identified by ChiP-seq 

occurred at the sites that could not be detected with ATAC-seq (Smith et al., 2016). 

While NEUROG2 is sufficient to reprogram glial cells into neurons, somatic 

fibroblasts reprogramming requires the help of the forskolin (FK) and dorsomorphin 
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(DM) (Liu et al., 2013). Upon NEUROG2 overexpression only a modest increase in 

open chromatin was detected, however, FK+DM significantly enhanced the 

accessibility of the chromatin at NEUROG2 binding sites and other pro-neural 

genetic regulatory elements. Small molecules simultaneously activate signaling 

cascade that induces Sox4 expression and promotes SOX4 dependent chromatin 

remodeling. That enhances NEUROG2 chromatin occupancy and induces the 

expression of diverse pro-neural transcription factors, leading to a new neuronal cell 

fate (Smith et al., 2016). The influence of chromatin status on direct neuronal 

reprogramming was until now poorly understood (Gascón et al., 2017), but recent 

studies proposed rapid chromatin switch during reprogramming driven by pioneer 

transcription factors. Thus, these factors are capable of binding their closed target 

sites, rapidly reorganize the chromatin structure, and activate its target program that 

can subsequently facilitate a conversion of the cell fate to the target identity 

(Wapinski et al., 2017) (Fig. 11). 

 

 
 

Figure 11: Pioneer activity of ASCL1 during neuronal reprogramming of 
fibroblasts. 
Schematic illustration of ASCL1 binding to nucleosome rich, closed chromatin, 
inducing chromatin reorganization during day 2 and 5 that leads to the activation of 
neuronal program and generation of mature induced neurons by day 22.  



 

 

 
Introduction 

 
  

26 

Adapted by permission from Elsevier: Cell Reports, (Wapinski et al., 2017), This 
article is published under the terms of the Creative Commons Attribution-
NonCommercial-No Derivatives License (CC BY NC ND), (2017) 
http://www.cell.com/cell-reports/fulltext/S2211-1247(17)31272-X 
 

Induced reprogramming requires not only the activation of target cell program but 

also silencing of original cellular identity and removal of the repressors that might not 

allow the acquisition of new non-donor cell program (Heinrich et al., 2015; Mall et al., 

2017). In addition, with the induction of a new cellular fate, also some alternative fate 

programs might emerge as reported in the fibroblast reprogramming (Mall et al., 

2017; Treutlein et al., 2016; Wapinski et al., 2017). One of the cell type-specific 

guardians relevant for reprogramming is the RE-1 transcription repressor complex 

(REST) that is expressed in non-neuronal cells where it represses neuronal genes 

(Jørgensen et al., 2009). By inhibiting the genes that should be activated to induce 

neuronal fate it acts as an obvious barrier for the efficient reprogramming. Indeed, 

down-regulation of REST in astrocytes results in dramatically increased NEUROG2 

induced neuronal reprogramming reaching almost 90% efficiency (Masserdotti et al., 

2015). Similarly, the repression of the RNA binding polypyrimidine tract binding (PTB) 

protein, is sufficient to induce reprogramming of mouse embryonic fibroblasts into 

functional neurons by microRNA associated reduction of REST activity and 

derepression of neuronal genes (Xue et al., 2013). However, efficient neuronal 

reprogramming from the human fibroblasts requires also the inactivation of the PTB 

paralog nPTB and its crosstalk with BRN2 and miR-9 (Xue et al., 2016). Recent 

studies identified also the importance of the repressors of the non-neuronal fates 

during reprogramming, like MYT1L. MYT1L binds preferentially to gene promoters 

and represses many fibroblasts genes, suggesting its role in establishment and 

maintenance of the neuronal identity during fibroblasts to neuron conversion (Mall et 

al., 2017). Taken together, cell fate re-specification critically depends on the removal 

of repressors of the targeted cell fate program as well as on the presence of 

repressors of the donor cell program (Gascón et al., 2017).  

 

1.3.5 In vivo direct neuronal reprogramming  

 

Encouraged by in vitro reprogramming studies, several groups attempted to 

reprogram the cells directly in the brain parenchyma (Brulet et al., 2017; Buffo et al., 
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2005; Gascón et al., 2016; Grande et al., 2013; Guo et al., 2014; Heinrich et al., 

2014; Kronenberg et al., 2010; Niu et al., 2013, 2015; Rivetti di Val Cervo et al., 

2017; Torper et al., 2013, 2015). Despite very low efficiency, the initial in vivo direct 

neuronal reprogramming experiments delivered exciting proof of principle that 

reactive glial cells at the injury site can be converted into young neurons in vivo 

(Buffo et al., 2005). Follow up experiments mostly focused on the targeting of two 

cellular populations: the astrocytes and the oligodendrocyte progenitors/NG2 glia in 

two regions of the brain: in the cortex or striatum (Gascón et al., 2017) (Fig. 12). The 

cortex is a favorable model for the in vivo reprogramming trials due to well-

established and studied model of stab wound injury. Striatum and generation of 

midbrain dopaminergic neurons or medium-sized spiny neurons are of great interest 

because of their loss in Parkinson’s disease or Huntington’s disease (Amamoto and 

Arlotta, 2014; Masserdotti et al., 2016). After the traumatic brain injury, astrocytes 

became reactive and enter the cell cycle, while NG2 glia increase their number and 

become a major population surrounding the lesion site (Wang and Zhang, 2018). 

Astrocytes become also more plastic as they can form self-renewing multipotent 

neurospheres when cultured in vitro (Buffo et al., 2008; Sirko et al., 2013, 2015). 

Therefore they are good targets for the retroviral delivery of neurogenic genes such 

as Neurog2, NeuroD1, and Sox2. Moreover, they can be involved in the scar 

formation and inflammatory processes (Robel et al., 2011; Sofroniew, 2009; 

Sofroniew and Vinters, 2010), therefore the direct conversion of these cells might be 

beneficial to reduce the glial scar and at the same time provide new source of 

neurons at the injury site (Grade and Götz, 2017). For direct in vivo neuronal 

reprogramming in the intact striatum, the viral vectors like AAVs or lentiviruses 

encoding for neurogenic transcription factors were used, allowing the targeting of 

non-proliferative astrocytes or slow-proliferating NG2 (Buffo et al., 2008; Torper et al., 

2013, 2015) (Fig. 12). This suggests that in vivo direct neuronal reprogramming does 

not require proliferation, similarly to the in vitro direct conversion. However, regional 

differences and starting population strongly influence the efficiency of reprogramming 

(Gascón et al., 2017; Grade and Götz, 2017). Astrocytes in the striatum seem to be 

more susceptible for the reprogramming, as shown using SOX2 reprogramming 

factor that was not able to induce any neurogenesis in cortical astrocytes or NG2 glia 

(Heinrich et al., 2014) but was sufficient to convert striatal astrocytes to induced 

neurons with the addition of brain-derived neurotrophic factor (BDNF) induced by 
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valproic acid (VPA) (Niu et al., 2013, 2015) (Fig. 12). Furthermore, Guo and 

colleagues showed that reactive glial cells in the cortex after the injury or in 

Alzheimer’s disease (AD) model mice can be converted into glutamatergic neurons, 

following expression of single neurogenic transcription factor NEUROD1, while NG2 

cells were reprogrammed into glutamatergic and GABAergic neurons (Guo et al., 

2014) (Fig. 12). Simultaneous overexpression of ASCL1, LMX1A, and NURR1 in the 

intact striatal NG2 glial cells converted them into mainly GABAergic and some 

glutamatergic neurons, but not dopaminergic neurons (Torper et al., 2015). However, 

dopaminergic neurons were obtained from striatal astrocytes when using the 

combination of ASCL1, LMX1A, and NEUROD1 together with miR218 (Rivetti di Val 

Cervo et al., 2017). Although the efficiency was relatively low, the induced 

dopaminergic neurons were functional and could even partially rescue some aspects 

of motor behavior in Parkinson’s disease animal model (Rivetti di Val Cervo et al., 

2017). 

 

A real breakthrough in the field of direct in vivo neuronal reprogramming, was, 

however, achieved since we learned from in vitro cultures that the increase of 

oxidative stress at the intracellular level during the metabolic switch from glycolysis in 

the astrocytes to oxidative phosphorylation in the neurons, functions as a barrier for 

an efficient cellular conversion. This metabolic obstacle interferes also with efficient 

glia to neuron conversion in vivo but can be overcome by co-expression of single 

neurogenic factor, NEUROG2 with BCL-2 and addition of antioxidants, such as 

vitamins D and E. Excessive levels of reactive oxygen species lead to cell death by 

ferroptosis characterized by accumulation of lipid peroxidation products (Klempin et 

al., 2017). However, ROS inhibition increases the efficiency of reprogramming up to 

90% when converting reactive glial cells into neurons upon the stab injury in the 

cerebral cortex. Importantly, these induced neurons survive until late time points and 

acquire a deep layer identity in the cortex (Gascón et al., 2016). 
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Figure 12: Direct in vivo reprogramming of cortical and striatal NG2 glia and 
astrocytes by the forced expression of neurogenic transcription factors. 
Graphical scheme depicting some in vivo reprogramming studies that demonstrated 
the generation of induced neurons from non-neuronal cells directly in the adult brain 
in vivo. The induction of neurons from astrocytes was achieved by lentiviral 
expression of SOX2 and VPA treatment in the adult mouse striatum and spinal cord 
(Niu et al., 2013; Su et al., 2014). Cortical astrocytes and NG2 glia were 
reprogrammed after the brain injury into different neural subtypes by NEUROD1 
overexpression (Guo et al., 2014). NG2 glia in the cortex can be also converted by a 
combination of SOX2 and ASCL1 (Heinrich et al., 2014). Astrocytes in the intact 
striatum were reprogrammed by ASCL1, BRN2, and MYT1L (Torper et al., 2013). 
The induction of neuronal fate from both, striatal NG2 glia and astrocytes can be 
achieved by NEUROG2 overexpression and exposure to growth factors (Grande et 
al., 2013). Abbreviations: GF, growth factor; VPA, valproic acid. 
Adapted by permission from Elsevier: The American Journal of Pathology, (Smith 
and Zhang, 2015), 4312580340664, (2015) 
http://ajp.amjpathol.org/article/S0002-9440(15)00258-8/fulltext 
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1.4 High Mobility Group (HMG) proteins are chromatin architectural 

proteins 
 

The ability of neurogenic transcription factors or other regulatory factors to access 

their target sites to alter the gene expression is largely depended on the chromatin 

structure. Nuclear proteins involved in maintaining or altering the chromatin structure 

are named “chromatin architectural proteins”. These structural proteins lack 

enzymatic activity but are able to bind to nucleosomes without DNA sequence 

specificity and change the local and global architecture of chromatin. There are two 

major groups of architectural proteins: linker histone H1 protein family, which is the 

most abundant family of chromatin binding proteins, and High Mobility Group (HMG) 

protein family (Postnikov and Bustin, 2016). The linker histone H1 binds to the DNA 

entering and exiting the nucleosomal core particle and has an important role in 

establishing and maintaining higher-order chromatin structures (Izzo et al., 2008). In 

general, H1 proteins promote and stabilize the compacted chromatin structures, 

while HMG proteins promote chromatin decompaction and higher accessibility. Thus, 

HMG family of chromatin binding proteins, which are involved in changing chromatin 

configuration, can affect many DNA dependent processes such as transcription, 

replication, and the repair of damaged DNA (Postnikov and Bustin, 2016). Thereby 

they can control the expression of several genes by interacting with nucleosomes, 

transcription factors, nucleosome-remodeling machines and with histone H1 (Bianchi 

and Agresti, 2005).   

 

1.4.1 HMG protein families and their functional motifs 

 

The HMG superfamily is subdivided into three families, based on their DNA binding 

domains: HMGA (containing AT-hooks), HMGB (containing HMG-boxes) and HMGN 

(containing nucleosomal binding domains) (Bianchi and Agresti, 2005; Bustin, 2001; 

Catez and Hock, 2010) (Fig. 13a). Following their specific functional motif, there is a 

common C-terminal chromatin regulatory domain, important for protein-protein 

interactions (Furusawa and Cherukuri, 2010; Hock et al., 2007) (Fig. 13a). HMGA 

proteins contain AT-hooks, nine amino acid segments which bind AT-rich DNA 

stretches in the minor groove (Bianchi and Agresti, 2005; Postnikov and Bustin, 
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2016) (Fig. 13a). HMGB proteins contain two highly conserved HMG Boxes and a 

negatively charged C-terminal tail containing about ~40 highly acidic residues 

(Kalinowska-Herok and Widłak, 2008; Postnikov and Bustin, 2016; Štros, 2010; Štros 

et al., 2007) (Fig. 13a). HMG boxes are 80 amino acid long domains that bind to the 

minor groove of DNA with limited or no sequence specificity (Agresti and Bianchi, 

2005). The HMGN protein family is characterized by nuclear localization signal 

(NLS), positively charged nucleosomal binding domain (NBD) and C-terminal 

regulatory domain (Postnikov and Bustin, 2016) (Fig. 13a). HMGN proteins bind 

inside nucleosomes, between the DNA spires and the histone octamer (Bianchi and 

Agresti, 2005). 

 

1.4.2 HMG proteins: the mechanisms of action  

 

High mobility group (HMG) proteins are architectural chromatin-associated proteins, 

that have been implicated in many DNA-dependent processes at the chromatin level 

(Štros, 2010). All members bind to chromatin in a dynamic and reversible way, either 

directly inside nucleosomes (in the case of HMGN), or to multiprotein complexes of 

transcription factors and cofactors (HMGA) or to both nucleosomes and transcription 

factors (HMGB) (Bianchi and Agresti, 2005). Although HMG proteins do not possess 

intrinsic transcriptional activity, they have the ability to modulate transcription of their 

target genes by altering the chromatin structure by a variety of different mechanisms 

(Ozturk et al., 2014) (Fig. 13b). First, they can bend the DNA and facilitate the 

binding of the other factors, which preferentially bind to the distorted DNA (Fig.13 b_i) 

(Hock et al., 2007). They use so-called ‘hit and run’ mechanism whereby the HMG 

box prebends DNA to favour the binding of transcription factors with DNA (Malarkey 

and Churchill, 2012). The induction of the changes in DNA conformation by HMG is 

one of the major mechanisms to enhance the access of transcription factors to their 

target sequences (Ueda and Yoshida, 2010). Second, by altering the chromatin 

structure they either prevent or enable an access of modulating factors on their 

targets on chromatin or nucleosomal DNA (Fig.13 b_ii) (Hock et al., 2007). Third, 

they can promote assembly of regulatory nucleoprotein complexes, such as 

enhanceosomes and transcription initiation complexes (Fig.13 b_iii) (Hock et al., 

2007; Ozturk et al., 2014). Enhanceosomes are dynamic multiprotein 3D-structures 

of transcription factors (Agresti and Bianchi, 2003). Fourth, HMG proteins introduce 
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structural changes like DNA bending at sites to which they bind together with the 

specific regulatory factors (Fig.13 b_iv) (Hock et al., 2007). They can also participate 

in enhancing and stabilising the binding of interacting transcription factors to their 

target sequences. Their protein-protein interactions are usually transient or unstable 

and appear only when the complex is bound to chromatin (Ueda and Yoshida, 2010). 

Fifth, they facilitate nucleosome positioning and thereby accessibility of DNA to 

transcription factors (Fig.13 b_v) (Ozturk et al., 2014). Mostly they assist in loosening 

the histone–DNA contacts within the nucleosome through interactions with chromatin 

modifying enzymes, histone chaperones and ATP-dependent chromatin remodelling 

complexes (Malarkey and Churchill, 2012; Reeves, 2015). Sixth and the last 

mechanism is their competition with other nuclear proteins for chromatin binding 

sites, altering the local or global structure of the chromatin fibre (Hock et al., 2007) 

(Fig.13 b_vi). One example is displacement of histone H1 leading to chromatin 

decompaction (Ozturk et al., 2014), that has been demonstrated by different 

techniques including fluorescence recovery after photobleaching (FRAP), nuclear 

fractionation analysis and micrococcal nuclease digestion (MNase) assays (Catez 

and Hock, 2010; Kishi et al., 2012). 

 

The interaction of HMG proteins with chromatin is not associated with specific sites 

but is rather highly dynamic. Each HMG molecule can scan the nucleosomes for 

potential binding sites and continuously move from one binding site to another in a 

“stop and go” fashion (Gerlitz et al., 2009; Hock et al., 2007). In the nucleus, they are 

one of the most mobile and dynamic nuclear proteins (Štros, 2010). HMG proteins 

can recognize the DNA structure rather than a specific nucleotide sequence and are 

able to bind to in a sequence-independent fashion via their respective functional 

domain (Reeves, 2001). 
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Figure 13: Architectural functions of HMG proteins. 
(a) The main structural domains of three HMG families. Family members are listed 
above each schematic drawing. HMGAs contain three AT-hooks in green and an 
acidic C-terminal part in blue, except HMGA1c that contains only two AT-hooks. 
HMGB family members have two HMG boxes depicted in yellow and an extended 
acidic C-terminus labelled in blue. The HMGN proteins contain two nuclear 
localization signal domains (NLS, grey), a positively charged nucleosomal binding 
domain (NBD, red), and a negatively charged C-terminal region named chromatin 
unfolding domain (CHUD, blue). (b) HMG proteins (green) alter chromatin structure 
by a variety of mechanisms and facilitate the binding of additional factors (round 
shapes of various colours), described in detail in the text above. Abbreviations: NBD, 
nucleosomal binding domain; CHUD, chromatin unfolding domain. 
Adapted by permission from Elsevier: Trends in Cell Biology, (Hock et al., 2007), 
4312661474794, (2007) 
http://www.cell.com/trends/cell-biology/fulltext/S0962-8924(06)00338-2 
 

HMG proteins also play an important role in modulating DNA damage recognition 

and repair in the context of chromatin in eukaryotic cells. They modulate the 

efficiency of DNA repair by all of the major cellular pathways: nucleotide excision 

repair, base excision repair, double-strand break repair and mismatch repair 

(Reeves, 2015). 

 

1.4.3 HMG protein family members, their expression and potential roles in the brain 
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1.4.3.1 HMGA proteins 

 

HMGA family is comprised of four proteins HMGA1a, HMGA1b, HMGA1c and 

HMGA2 (Fig. 13a), encoded by two genes Hmga1 and Hmga2. The Hmga1 

transcript is alternatively spliced and gives rise to three proteins (Ozturk et al., 2014). 

HMGA proteins are very small proteins with the molecular weight about 10 kDa 

(Agresti and Bianchi, 2003), highly expressed during embryonic development in 

various undifferentiated tissues. At later stages, their levels are strongly reduced 

(Bianchi and Agresti, 2005). HMGA1 can be still detected in some adult tissues, like 

testis, skeletal muscles, and thymus. Similarly, HMGA2 expression is rarely 

detectable in healthy adult tissues, except testis, skeletal muscle cells, and adipose 

tissues (Ozturk et al., 2014). HMGA2 protein is also highly expressed in fetal neural 

stem cells, where it increases their self-renewal, partly by repressing the expression 

of p16Ink4a and p19Arf. HMGA2 expression declines with age due to negative 

regulation via let-7b microRNA, resulting in reduced self-renewal and loss of the stem 

cell function. This study indicated an important role of HMGA2 in regulating age-

related changes in neural stem cell numbers (Nishino et al., 2008). The contribution 

of HMGA proteins to the neurogenic and self-renewal potential of neural precursor 

cells (NPCs) in the early stages of neocortical development, was also shown by Kishi 

and colleagues (Kishi et al., 2012). They found that the chromatin of neocortical 

NPCs becomes globally more condensed and less dynamic during the time frame of 

cortical neurogenesis. This leads to the restriction of the differentiation potential of 

NPCs, which start to preferentially produce glial cells at postnatal stages. High 

expression of HMGA proteins in NPCs during the early developmental stage is 

therefore essential to keep chromatin open at the global scale and consequently for 

the neurogenic potential of NPCs. They proposed that HMGA proteins are able to 

antagonize the function of linker histone H1 and therefore loosen the chromatin fibre, 

which eventually leads to an open chromatin state (Kishi et al. 2012). The changes in 

the chromatin opening might be also important in the process of direct 

reprogramming (Yu et al., 2015b). Recently it was reported that HMGA2 

overexpression in combination with SOX2 facilitates direct reprogramming of different 

human somatic cells (human adult fibroblasts, senescent somatic cells, and blood 

cells) into human induced neural stem cells (hiNSCs) and promotes their self-renewal 

(Yu et al., 2015b). 
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1.4.3.2 HMGN proteins 

 

HMGN are small proteins with the molecular weight around 10 kDa (Reeves, 2015). 

Their nucleosome binding domain flanked by nuclear localization signals (NLS) 

allows them to recognize the structure of the 146-bp nucleosome core (Bustin, 1999) 

and specifically bind inside the nucleosomes (Bianchi and Agresti, 2005). The HMGN 

protein family is composed of 5 closely related proteins: HMGN1, HMGN2, HMGN3, 

HMGN4 and HMGN5 (Reeves, 2015) (Fig. 13a). The HMGN3 protein has two splice 

variants: HMGN3a and HMGN3b (Furusawa and Cherukuri, 2010) (Fig. 13a). HMGN 

genes are ubiquitously expressed in all embryonic tissues and are required for the 

proper development and differentiation (Furusawa and Cherukuri, 2010). During 

mouse embryogenesis, they are progressively down-regulated throughout the entire 

embryo, except in the stem cells and stem cell derived transiently amplifying 

progenitors (Furusawa and Cherukuri, 2010; Hock et al., 2007). HMGN1, HMGN2, 

HMGN3 are reported to be expressed in the brain during development but also in 

adult animals (Ito and Bustin, 2002; Nagao et al., 2014). Their expression was 

detected in neural progenitor cells (NPCs), glial progenitors, and astrocytes in the 

perinatal and adult brains and proposed their role in promoting astrocyte and 

oligodendrocyte differentiation during brain development (Deng et al., 2017; Ito and 

Bustin, 2002; Nagao et al., 2014). In the adult subventricular zone, HMGN1 is 

expressed in the NESTIN+ neural progenitor cells. The number of NESTIN-positive 

cells in the SVZ was decreased by 40% in the Hmgn1-/- animals, suggesting that 

loss of HMGN1 interferes with the differentiation or with the survival of NPCs (Deng 

et al., 2013). 

 

1.4.3.3 HMGB proteins 

 

The High Mobility Group Box (HMGB) proteins are most abundant HMG proteins with 

both nuclear and extracellular roles in key biological processes (Hock et al., 2007; 

Moleri et al., 2011). HMGB family consists of four members: HMGB1, HMGB2, 

HMGB3 and HMGB4 (Fig. 13a). They are highly homologous with more than 80% 

similarity and are also very conserved amongst all mammals (Müller et al., 2004). 

HMGB1-3 proteins have a molecular weight in the range of about 25 kDa (Agresti 
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and Bianchi, 2003). HMGB4 protein has a molecular mass of 21 kDa and like other 3 

members contains two HMG-boxes but lacks the acidic tail (Štros, 2010). 

 

HMGB proteins preferentially bind to the minor groove of DNA using the HMG box 

domains that fold up into the typical shape of three α-helices (Kalinowska-Herok and 

Widłak, 2008). Applying electrostatic and hydrophobic interactions these domains 

can unfold the minor groove and induce a bend towards the major groove (Malarkey 

and Churchill, 2012). Therefore, the main function of HMGB box domains is bending 

and unwinding of DNA. HMGB proteins with high affinity recognize non-linear DNA 

structures (Štros, 2010) and prefer binding on distorted and damaged DNA 

(Postnikov and Bustin, 2016; Ueda and Yoshida, 2010). HMGB also binds to 

nucleosomes with linker DNA, but not to the nucleosome core particle. This indicates 

that the primary binding target of HMGB proteins is the linker DNA adjacent to the 

entry or exit sites of the nucleosome, which is close to the histone H1 binding site. 

Therefore, they continuously compete with each other for these adjacent binding 

sites (Ueda and Yoshida, 2010). Despite their HMGB transient contact with the 

chromatin (Ueda and Yoshida, 2010), HMGB proteins are known to be involved in 

many important biological processes such as transcription, replication, 

recombination, DNA repair (Reeves, 2015; Štros, 2010), transposition, in the 

maintenance of genome integrity and V(D)J recombination (Bianchi and Agresti, 

2005). 

 

All four members of HMGB protein family are highly expressed during 

embryogenesis, but only HMGB1, which is the most abundant member of this family 

(Kalinowska-Herok and Widłak, 2008), continues to be broadly expressed in adult 

organs (Bianchi and Agresti, 2005). Hmgb1-/- animals die within 24 hours after birth 

due to an inability to use glycogen stored the liver (Moleri et al., 2011). HMGB2 

protein has a limited presence in adult organs, being prominently expressed in 

thymus, testes and lymphoid organs (Bianchi and Agresti, 2005; Ronfani et al., 

2001). The HMGB3 protein expression in the adult mouse appears to be restricted to 

hematopoietic stem cells within the bone marrow (Bianchi and Agresti, 2005; Moleri 

et al., 2011). Mouse mutants lacking the Hmgb2 or Hmgb3 genes have less severe 

defects, which correlate with their expression patterns. Male Hmgb2-/- mice show 

reduced fertility and defects in spermatogenesis (Ronfani et al., 2001), while Hmgb3 
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deficiency alters the generation and differentiation of primitive hematopoietic 

progenitor cells (Moleri et al., 2011). The HMGB4 protein expression is limited to 

testis, suggesting its important role in the spermatogenesis (Catena et al., 2009). The 

knockout experiments indicate that HMGB proteins are functionally not completely 

redundant and therefore suggest their distinct roles in different biological processes 

(Ueda and Yoshida, 2010). 

 

1.4.3.3.1 HMGB1 

 

During development, the expression of the HMGB1 protein is restricted to newly 

generated neurons in the cortical plate. In the adult mouse brain, its expression 

remains only in the areas of continuous neurogenesis. This suggests its high 

expression in less differentiated cells - neural stem cells, whereas differentiated cells 

such as mature neurons show only low or undetectable expression levels (Guazzi et 

al., 2003; Müller et al., 2004). Oppositely, more recent studies reported its expression 

in various adult brain regions such as cortex, hippocampus, and striatum, where they 

found its predominant localization in the nuclei of neurons and astrocytes. During 

aging, HMGB1 expression levels reduce specifically in neurons (Enokido et al., 

2008). 

 

Following traumatic brain injury, HMGB1 acts as an important pro-inflammatory 

cytokine mediating inflammation, neuronal apoptosis and tissue damage (Li et al., 

2014) (Fig. 14). Despite its role in the nucleus, under inflammatory conditions, it 

translocates to the cytoplasm and is actively released into the extracellular space by 

innate immune cells, such as macrophages and dendritic cells (Fig. 14). HMGB1 is 

also passively released from damaged and necrotic neurons, which serves as an 

endogenous “danger signal” that alerts the immune system to the presence of injured 

cells (Fig. 14). This results in an increased infiltration of neutrophils, monocytes, 

cytokines, natural killer cells, and activates the microglia (Fig. 14). Outside the cell, 

HMGB1 binds to the transmembrane Toll-Like receptors (TLR) 2 and 4, and the 

Receptor for Advanced Glycation End products (RAGE). Activation of these 

receptors leads to the phosphorylation of several MAP kinases that activate the 

downstream transcription factor NF-κB and induce an immediate inflammatory 
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response. Moreover, this signalling cascade leads to further release of HMGB1 other 

pro-inflammatory cytokines, thereby propagating inflammation (Parker et al., 2017) 

(Fig. 14). Although HMGB1 contributes to the pathogenesis after the brain injury, 

some studies reported its beneficial effects during the recovery stage of brain injury. 

HMGB1 promotes neurovascular remodelling by recruiting endothelial progenitor 

cells and increasing their proliferation (Li et al., 2014). 

 

 
 

Figure 14: HMGB1 signaling after the traumatic brain injury. 
Upon the brain injury, HMGB1 is secreted from the cells to the extracellular space, 
CSF and serum. Extracellular HMGB1 exhibits cytokine activity and acts as a 
damage-associated molecular pattern (DAMP) molecule that stimulates the release 
of proinflammatory factors and immune cell recruitment. This leads to an excessive 
immune response and inflammation following the injury. 
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Adapted by permission from Taylor & Francis: BRAIN INJURY, (Parker et al., 2017), 
Reuse of the content for a thesis or dissertation free of charge contingent on 
resubmission of permission request, (2017) 
https://doi.org/10.1080/02699052.2016.1217045 
 

An increased expression of HMGB1 has been also found in the Alzheimer's diseased 

brain (Guazzi et al., 2003; Müller et al., 2004), where it plays a proneurogenic role by 

promoting neuronal differentiation of adult hippocampal neural progenitors via 

RAGE/NF-κB axis activation (Meneghini et al., 2013).  

 

1.4.3.3.2 HMGB2 

 

The HMGB2 protein is widely expressed during embryonic development and its 

expression pattern in the brain becomes evident already at E12.5. The strongest 

signal is detected in the ventricular zone, containing proliferating neuroepithelial cells. 

At E17, HMGB2 protein localizes in the ventricular and subventricular zone as well as 

in the differentiated cortex. At the postnatal stages, the expression remains only in 

the granular layer of the cerebellum and hippocampus (Ronfani et al., 2001). In the 

adult brain, the expression patterns still remain elusive. Single cell RNA-sequencing 

based transcriptome analysis revealed the enrichment of Hmgb2 (and Hmgb1) 

mRNA in the adult NSCs isolated from the hippocampus (Shin et al., 2015). Recently 

Kimura and colleagues investigated the expression and function of the HMGB2 

protein in the dentate gyrus of the adult mouse brain and showed that HMGB2 is 

expressed in the subset of neural stem cells and progenitors cells but not in the 

granule neurons. On the contrary, HMGB1 expression was detected in the entire 

granule cell layer of the dentate gyrus. They observed the strong association of 

HMGB2 expression with the transition from the quiescent to the proliferative state of 

NSCs, supporting the hypothesis that HMGB2 participates in the activation of 

quiescent NSCs. These findings propose HMGB2 as a novel marker to identify NSCs 

primed for activation in the adult hippocampus and its involvement in the regulation of 

adult neurogenesis (Kimura et al., 2018). 

 

In the second adult neurogenic niche, the SVZ, HMGB2 has been reported to 

potentially regulate NSCs proliferation (Abraham et al., 2013), however, the 
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expression in the specific populations residing neurogenic niche and precise function 

remained to be explored. Therefore we decided to perform the immunostaining 

against HMGB2 protein in the adult mouse brain and explore its colocalization within 

different cell types in the SVZ. To distinguish between the major cell populations in 

the SVZ, we used cellular and proliferation markers that showed distinct 

colocalization with HMGB2 in two cell populations of the SVZ: transit-amplifying 

progenitors (TAPs) and neuroblasts (Lepko, 2012). Furthermore, we have also 

prospectively isolated the neural stem cells and its progeny using fluorescence- 

activated cell sorting (FACS) (Beckervordersandforth et al., 2010; Fischer et al., 

2011) and examined gene expression of the Hmgb members. We confirmed the high 

expression of Hmgb2 in the progeny of neural stem cells compared to the other 

populations. Interestingly, Hmgb1 showed very similar expression pattern with the 

highest expression in TAPs and neuroblasts (Lepko, 2012). Due to the similar 

expression of Hmgb2 and Hmgb1 in the subventricular zone and their possible 

redundancy, we also performed the immunostaining for the HMGB1 protein that 

showed its high abundance in the whole brain in contrast to the published data 

(Guazzi et al., 2003; Müller et al., 2004). The restricted expression of the HMGB2 

protein in neurogenic niches prompted us to explore its potential functional role in the 

neurogenesis. Preliminary data from HMGB2 gain and loss of function experiments 

(Lepko, 2012) support the hypothesis that HMGB2 has a role in the proliferation of 

the neuronal progenitors and their progression toward neurogenic fate. Recent 

findings highlight the importance of HMGB2 in the regulation of neurogenesis in both 

neurogenic niches, therefore it is an interesting candidate to be explored in the 

context of forced neurogenesis during the direct reprogramming of the glial cells into 

induced neurons. 

 



 

 

 
Aims of the Thesis 

 
  

41 

2 Aims of the thesis 
 

Direct neuronal reprogramming opened a new venue in our understanding of the 

cellular plasticity, but more importantly, it is also a promising approach for potential 

treatments of brain injuries and neurological diseases. Despite very high efficiency of 

reprogramming in the cultured cells in vitro and recent advances to produce induced 

neuronal cells from somatic cells residing within the injured brain, the molecular 

understanding of the reprogramming process remains largely unknown. A number of 

important issues need to be explored, such as the influence of the starting population 

to be reprogrammed into induced neurons, essential pathways that must be induced 

or repressed and the role of the environment surrounding the conversion place in 

vivo. In my PhD thesis, I aimed at getting a better understanding of the molecular 

mechanisms underlying reprogramming process, which is the key for the potential 

future neuronal replacement therapies. 

 

A general limitation to study molecular mechanisms of the direct neuronal conversion 

in vivo is the complexity of the injury microenvironment. Several signaling factors are 

released simultaneously in response to the injury, therefore it is very difficult to 

identify which of them have the beneficial effects on the permissiveness of astroglial 

cells to the forced neurogenesis and which would rather inhibit this process. To that 

end, a well-controlled cell culture models are essential to gain a better mechanistic 

understanding of direct reprogramming process and to identify potential barriers for in 

vivo lineage reprogramming. Most of the astroglia-to-neuron reprogramming studies 

rely on in vitro model resulting in very high conversion rate that can be achieved 

already by applying a single neurogenic transcription factor. Despite being an 

attractive model system to study the role of neurogenic transcription factors, such 

system alleviates reprogramming hurdles. Therefore, to challenge the established 

reprogramming paradigms I aimed to establish a new in vitro model that better 

recapitulates in vivo environment following the brain injury with a rather limited 

number of neurons induced by an individual neurogenic transcription factor.   

 

Using this new in vitro model, my first aim of the thesis was to explore the intrinsic 

differences of two different starting populations used for neuronal reprogramming, 

one being very susceptible for the direct conversion and the other with limited 
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reprogramming capacity. I aimed to identify the molecular features and possible 

candidates that would be involved in maintaining the astrocytes in the glial lineage 

even after neurogenic factor overexpression.  

 

With this approach, I identified the differential expression of chromatin architectural 

protein HMGB2 between two cultures with different reprogramming capacities. The 

next objective of the present study was, therefore, to exploit whether the 

manipulation of the HMGB2 levels in both astrocyte cultures has any effect on the 

reprogramming efficiency in vitro. Based on these findings, I next aimed at testing its 

potential to reprogram reactive glial cells directly at the injury site in vivo.  

 

Having achieved improved astro-to-neuronal conversion efficiency upon induced 

expression of HMGB2 in the culture with limited reprogramming capacity, my next 

goal was to examine the chromatin-associated changes and their importance in 

cellular plasticity and fate decisions using the direct reprogramming as a model 

system. Supported with the establishment of novel genome-wide methods, I aimed at 

unravelling the molecular role of this protein in the chromatin compaction with an 

ultimate goal to identify the crucial chromatin regions that have to undergo chromatin 

rearrangement to enable efficient direct conversion from gliogenic to neurogenic fate. 

 

With the combined effort of integrating several high-throughput approaches and 

reprogramming experiments using the novel in vitro system, I asked the question 

what are the transcriptional changes induced by neurogenic transcription factors and 

our novel candidate HMGB2 during the reprogramming process. To this aim, I 

explored the transcriptomes of two cultures transduced with NEUROG2 and HMGB2 

and tried to discover, how are these changes dependent on the cellular context and 

investigated which of them are crucial to elicit the proper neuronal program from glial 

the cells.   

 

This work is aiming to dissect the molecular network underlying the forced 

conversion of astroglial cells into neurons by studying their proteomes, chromatin 

organisation and transcriptomes. A better understanding of the molecular features of 

the reprogramming will not only provide new insights into the mechanisms 
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maintaining cell identity but also contribute to the breakdown of such cellular barriers 

in direct reprogramming in vivo. 

 



 

 44 



 

 

 
Results 

 
  

45 

3 Results 
 

3.1 Different responsiveness of glial cultures to the neurogenic fate 

determinants 
 

Direct reprogramming of primary postnatal cortical astroglial cells into functional 

neurons in vitro can be achieved by forced expression of neurogenic transcription 

factors that instruct neurogenesis during development (Berninger et al., 2007; Blum 

et al., 2011; Buffo et al., 2005; Heinrich et al., 2010; Heins et al., 2002; Masserdotti et 

al., 2015). So far, in vitro studies of direct lineage reprogramming described initial 

culturing conditions for astroglial cells using two common growth factors, epidermal 

growth factor (EGF) and basic fibroblasts growth factor (bFGF, also known as FGF2) 

in order to retain their proliferating capacity and expand the amount of the cells that 

can be used for the reprogramming. To convert these astroglial cells into induced 

neurons, neurogenic transcription factors were applied by the retroviral delivery and 

this resulted in general in a very high reprogramming capacity. Despite very good 

conversion rate of isolated postnatal astrocytes in vitro, the molecular understanding 

and the possible barriers appearing during the reprogramming process, remain 

largely unknown. 

 

In order to investigate the molecular mechanisms involved in direct reprogramming of 

astroglial cells into neurons, we established a new in vitro model with adjusted 

growth factor composition. We decided to withdraw the EGF from the culturing 

medium, similarly to the in vivo conditions generated at the injury site. Upon the brain 

injury, the levels of EGF increase with the peak within the first 24 h and return to 

baseline levels by 3 days. On the contrary, the increase in FGF occurs already 4 h 

after the injury and persist for 14 days (Addington et al., 2015). Therefore, we 

cultured astroglial cells obtained from postnatal mouse cerebral cortex for 10 days in 

two different culturing conditions with two growth factors EGF+FGF or only one 

growth factor FGF. Next, the cells were re-plated and transduced with retroviral 

vectors expressing fluorescent protein only (GFP or dsRED) as a control, or single 

neurogenic transcription factors Neurog2, Brn2 or Sox11 together with dsRED or 

GFP reporter protein (Fig. 15a). After 24 h, the medium was replaced with the one 
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that did not contain any growth factors and the cells were kept in the reprogramming 

process for the following 7 days. After one week we assessed the reprogramming 

efficiency by morphology and doublecortin immunostaining (Fig. 15b). Doublecortin 

(DCX) is a microtubule-associated protein expressed by neuronal precursor cells and 

immature neurons and is used as a marker for neurogenesis. Only DCX+ cells that 

fulfilled the previously published criteria (Gascón et al., 2016), having ellipsoid soma 

with at least one thin process 3x longer than the soma, were quantified as 

reprogrammed neuronal cells. 

 

In both culturing conditions EGF+FGF and FGF, we first quantified the proportion of 

induced neurons out of all GFP or dsRED+ transduced cells (Fig. 15c,d). Cells 

transduced with control retroviral vector (GFP+ or dsRED+) did not generate any 

DCX+ neurons. The small amount of DCX+ cells in the control condition (2.59±1.63% 

in EGF+FGF and 1.20±0.12% in FGF) represents transduced neuronal progenitors 

that were co-isolated together with the cortical astroglia. In general, only astroglial 

cells can be maintained as a monolayer in the primary culture, however, some 

escapers of neurogenic origin can still be found. Next, we assessed the proportion of 

neurons generated by different neurogenic transcription factor overexpression in both 

cultures. As expected, the astroglia cultured with two factors EGF+FGF could be 

converted into induced neurons with a very high efficiency rate. The percentage of 

reprogrammed neuronal cells out of all transduced cells was with Neurog2 

85.71±3.41%, with Brn2 62.99±5.59%, and with Sox11 52.43±8.18% (Fig. 15c,d). 

However, we observed a considerable decrease in the reprogramming capacity of 

the cells cultured with FGF only. Cultures were analyzed at 3.41±2.05%, 

10.42±3.96%, and 33.70±14.94% of induced neurons following transduction with 

Neurog2, Brn2, and Sox11, respectively (Fig. 15c,d). While the astroglia can be 

converted into functional neurons with high efficiency when cultured with both growth 

factors EGF and FGF, removing the EGF from the culture resulted in decreased 

number of generated induced neurons using the same neurogenic transcription 

factors. 
 

We identified a new in vitro model to culture the cells that can be successfully 

reprogrammed (EGF+FGF culture) or the cells that became resistant to 

reprogramming (FGF culture). Comparing both cultures could help us to identify 
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unique molecular features required for the efficient direct reprogramming and the 

possible barriers maintaining the cells in the glial lineage even after the neurogenic 

transcription factor overexpression. 
 

 

 
Figure 15: Growth factor composition defines the reprogramming capacity of 
glial cultures in vitro. 
(a) Schematic structure of the control retroviral vector and retroviral vector to 
overexpress neurogenic transcription factors. (b) Graphic representation of the 
reprogramming protocol with two different growth factor conditions. (c) Micrographs 
showing astroglial culture transduced with Neurog2-dsRED, 7 days post- 
transduction. White arrowheads point to cells reprogrammed into induced neurons. 
Boxed areas correspond to the higher magnification images of induced neurons (c’, 
c’’). (d) Dot plot showing quantification of reprogramming efficiency in two cultures 7 
DPI with different neurogenic transcription factors. Abbreviations: IRES, internal 
ribosomal entry site; TF, transcription factor; DPI, days post induction. Data are 
shown as median±IQR; each of the single dots represents independent biological 
replicate. Scale bars (c) 50 µm, (c’, c’’) 25 µm. 
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3.2 Comparison of the cellular and molecular features of astroglial cells 

grown in two culture conditions 
 

In order to address the question what are the intrinsic differences of the cells cultured 

in two different growth factor conditions that are possibly responsible for their 

different reprogramming capacity, we performed the set of experiments to explore 

their identity as described in following chapters. The primary astroglial cultures are 

quite heterogeneous, containing different cells types that could respond differently to 

the forced neurogenic factors overexpression. Removal of EGF from the culturing 

medium could induce an expansion of the populations resistant to the reprogramming 

which would result in a decreased amount of induced neurons. To test this 

hypothesis, we immunostained the cultures for different proteins that label astrocytes 

and other populations that could be co-isolated from the postnatal mouse cortex. In 

addition, we decided to explore the differences in the global protein expression in 

both culturing conditions and to this aim performed proteome analysis using liquid 

chromatography (LC) with mass spectrometry (MS) in collaboration with Dr. 

Stephanie Hauck (Research Unit Proteome Science, Helmholtz Zentrum München). 
 

3.2.1 Cellular markers expression of EGF+FGF and FGF cultures based on 

immunocytochemistry 

 
To investigate how similar are the cultures based on their identity markers, we 

performed immunostaining for several proteins (GFAP, S100β, DCX, OLIG2, αSMA, 

Ki67, PH3) 24 hours upon transduction with the control retrovirus encoding for the 

GFP. Retroviruses can exclusively transduce dividing cells, meaning that only 

proliferating cells within the culture represent the targeting population for the 

reprogramming. Therefore, we investigated the cellular marker expression 

specifically in the population labeled by the control retrovirus. We observed that the 

majority of cells express astrocyte marker S100β in both EGF+FGF and FGF 

cultures, 92.84±3.81% and 91.19±4.14%, respectively (Fig. 16a,b). The proportion of 

GFAP+ cells was a bit lower, 57.03±2.17% in EGF+FGF and 63.07±2.13% in FGF 

culture (Fig. 16a,b). Importantly, we confirmed the minimal contamination with the 

neuronal progenitors labeled with DCX (Fig. 16a,b). We also tested for the OLIG2 
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expression and observed 79.70±3.28% positive cells in EGF+FGF treated cells and 

80.35±2.25 in FGF culture (Fig. 16c,d). On the other hand, we observed only a tiny 

proportion of αSMA+ pericytes in both cultures (0.30±0.43% in EGF+FGF and 

2.15±0.26% in FGF) (Fig. 16c,d). Based on the immunostaining experiments, we 

concluded that two cultures do not differ in their cellular composition and their marker 

expression. However, we observed an interesting feature during their expansion 

phase in the first 10 days of culturing. When starting with the same amount of the 

postnatal cortical tissue in both conditions, we constantly observed 2-3 times lower 

number of single cells in the FGF condition at day 10, when cells were counted and 

re-plated prior to viral transduction. This suggested the lower proliferation capacity in 

the FGF culture. Therefore, we assessed the proliferation in two different culture 

conditions using immunocytochemistry against Ki67 that labels all cycling cells and 

PH3 labeling mitotic cells. Indeed, we observed a significant decrease in the amount 

of proliferating cells in the culture grown with FGF alone compared to cultures grown 

with both EGF and FGF. In the EGF+FGF culture, there were around 18.79±1.64% 

Ki67+ cells, while in the FGF culture this number is reduced to 12.59±1.11% (Fig. 

16d,e), both calculated from the GFP transduced cells. Similar reduction could be 

also observed using a PH3 marker (Fig. 16d,e). While we counted 9.07±0.86% of 

PH3+ cells in the EGF+FGF condition, in the FGF there was 6.03±0.60% PH3+ cells 

(Fig. 16d,e). In addition to different cell cycle properties, the increased cell death in 

the FGF culture could also account for the lower number of the cells after the 

expansion phase. To address the proportion of the cells that undergo apoptosis, we 

performed the TUNEL assay (Gavrieli et al., 1992) in both cultures. Apoptotic cells 

undergo an extensive DNA degradation during the last stage of apoptosis and the 

blunt ends of double-stranded DNA breaks can be enzymatically labeled and 

visualized by ApopTag technology (Millipore). We observed very few TUNEL+ cells 

in both conditions (Fig. 16j), 1.68% out of all DAPI+ nuclei in EGF+FGF culture and 

2.49% in FGF cultured cells. Taken together, removal of the EGF from culturing 

medium does not change the proportion of different cell types within the culture, but it 

results in the decreased proliferation rate of the cultured cells. Therefore, we cannot 

confirm our hypothesis of an expansion of the populations resistant to the 

reprogramming in the FGF culture that would explain its lower conversion rate.  
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Figure 16: Immunocytochemistry reveals the similarity of the EGF+FGF and 
FGF cultures based on their marker expression and differences in their 
proliferation rate.  
(a) Micrographs depicting immunostaining for S100β, GFAP and DCX in EGF+FGF 
and FGF cultures 24 h after transduction with the control virus. (b) Quantification of 
the S100β+ and GFAP+ astrocytes and DCX+ neuronal progenitor cells out of 
transduced cells. (c,d) Astroglial cultures in two conditions stained for OLIG2 and 
αSMA (c) and proportion of the positive cells out of control transduced cells fixed 1 
DPI (d). (e) Micrographs showing the examples of KI67+ cells or PH3+ cells in both 
cultures. (f) Dot plot showing quantifications of both proliferation markers expressed 
as a percentage of GFP+ cells at the time point 24 h. (g) Micrographs depicting the 
TUNEL+ cells (white arrowheads) in EGF+FGF or FGF culture. Abbreviation: OPC, 
oligodendrocyte progenitor cell. Data are shown as median±IQR; each of the single 
dots represents independent biological replicate; significance was tested by non-
parametric Mann-Whitney U test. Scale bars (a, c, e, g) 50 µm. 
 

3.2.2 Proteome analysis of EGF+FGF and FGF cultures 
 

With the previous analysis based on identity markers, we did not observe any 

heterogeneity between the cultures that could explain the different reprogramming 

capacity of the cells. However, we were able to test only for few proteins by 

immunostaining and might miss the differences that could explain their different 

responsiveness to the neurogenic transcription factor overexpression. Therefore, we 

decided to perform the proteome analysis of astrocytes prone and resistant to 

reprogramming to address the possible differences in global protein expression in 

both cultures. To test the differences in initial populations, we collected the cells for 

the proteome analysis after 10 days of culturing with EGF+FGF or FGF growth 

factors and prior to viral transduction. We submitted them to our collaborators at the 
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Research Unit Proteome Science (Helmholtz Zentrum München) for the label-free 

LC-MSMS based protein quantification (Fig. 17a).  They detected about 1700 

proteins from which 174 showed significantly changed levels (1.5-fold change, 

p<0.05). 81 proteins were significantly enriched in the EGF+FGF culture, 93 had 

higher levels in the FGF culture (1.5-fold change, p<0.05) while the vast majority was 

common for both cultures (Fig. 17a,b). Using the DAVID 6.8 Gene Ontologies tool 

(Huang et al., 2009a, 2009b), we performed the GO enrichment analysis of the 

proteins enriched in astroglia more and less prone to reprogramming (Fig. 17c,d). 

Focusing on the category cellular components, we found that the proteins enriched 

specifically in the FGF cultured cells were related to GO terms cytoskeleton or 

muscle tissue (Fig. 17c), suggesting some morphological differences in the FGF 

culture. The GO term analysis of 81 proteins, highly enriched in EGF+FGF astroglia 

revealed the mitochondrial respiration and chromatin remodeling as most regulated 

categories between two cellular populations (Fig. 17d-f), suggesting that both have 

an important role for the efficient reprogramming process.  
 

We decided to focus more on the changes in the chromatin states that could maintain 

the astrocytes in the glial lineage even after neurogenic factor overexpression. 

Looking through the candidates related to category chromatin reassembly, we found 

the chromatin architectural protein High Mobility Group B2 (HMGB2) having 1.88-fold 

higher protein levels in the EGF+FGF culture (Fig. 17f). We confirmed its 2-fold 

enrichment in the EGF+FGF culture with the Western blot (Fig. 17g). Interestingly, 

we also observed the enrichment of the HMGB1 protein, which belongs to the same 

family (Fig. 17f). In the adult mouse brain, HMGB2 is specifically expressed in cells 

committed to neurogenic lineage (transit amplifying progenitors, neuroblasts) in both 

neurogenic niches, suggesting that it might contribute to the specification of neuronal 

cell identity (Lepko, 2012). On the other side, the immunostaining for the HMGB1 in 

the sections from the adult mouse brain revealed its high abundance in the most of 

the brain regions (data not shown). We, therefore, hypothesized that HMGB2 might 

be a good candidate to enable the better transition of the EGF+FGF astrocytes 

during reprogramming process and we speculated its possible involvement in setting 

up the permissive chromatin states for direct glia to neuron conversion. 
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Figure 17: Different reprogramming capacity of two cultures in vitro is possibly 
influenced by metabolic states and chromatin accessibility landscapes.  
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(a) Schematic illustration of the protocol to collect astroglial cells for the proteome 
analysis 10 days after culturing with EGF+FGF or FGF growth factors. (b) Volcano 
plot showing 93 proteins enriched specifically in FGF culture and 81 proteins 
enriched in EGF+FGF culture (fold change>1.5; p value<0.05). (c,d) GO terms – 
cellular components of the proteins present at higher levels in the FGF culture (c) or 
proteins having higher levels in the EGF+FGF culture (d) (p value<0.05). (e,f) List of 
proteins related to respiratory chain (e) and chromatin organisation (f), two 
overrepresented GO terms in EGF+FGF culture. (g) WB for HMGB2 protein in both 
cultures and bar chart showing its 2-fold enrichment in the EGF+FGF culture. 
Abbreviations: LC-MSMS, liquid chromatography tandem-mass spectrometry; GO, 
gene ontology; E, EGF; F, FGF. Data are shown as median±IQR; n=4; significance 
was tested by non-parametric Mann-Whitney U test. 
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3.3 Testing the Hmgb2 overexpression vector  
 

To test whether HMGB2 protein could be involved in the reprogramming process, we 

decided to perform retroviral-driven overexpression of HMGB2 in the astroglial 

cultures. To do so, we first produced the retrovirus encoding for Hmgb2 (see 

Materials and methods) and tested its efficiency by immunostaining in the primary 

cortical astrocytes isolated from Hmgb2 full knock out animals (Fig. 18a). This culture 

is the best tool to test the overexpression since the most of the mouse cell lines 

already contain a high level of HMGB2 (Ronfani et al., 2001). Astrocytes were 

prepared following standard protocol, transduced either with the control virus 

encoding for GFP only or Hmgb2 overexpression virus with the GFP reporter 

separated by IRES. 1 week after transduction we performed the immunostaining 

against HMGB2 and observed cells endogenously expressing HMGB2 protein in +/+ 

and +/- glial cultures, interestingly at different levels in different cell types. GFAP+ 

cells showed much lower levels than cells negative for this marker that are most 

possibly oligodendrocyte progenitor cells. Nevertheless, we could not detect any 

signal in the cells isolated from Hmgb2-/- animals that also confirmed the specificity 

of the HMGB2 antibody. Most importantly, the Hmgb2-GFP transduced Hmgb2-/- 

astrocytes showed a high amount of the HMGB2 (Fig. 18a), pointing out the efficient 

overexpression of this protein using our retroviral vector. 

 

 
  

Figure 18: Testing the efficiency of HMGB2 overexpression in astrocytes 
isolated from Hmgb2 deficient animals.  
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(a) Micrographs showing the HMGB2 immunostaining in WT Hmgb2+/+ 
untransduced astroglial cells (left panel) and in CAG-GFP transduced Hmgb2+/- 
astroglial cultures (second left panel). The micrographs on the right present cells 
isolated from Hmgb2-/- animals, transduced with control virus to test the specificity of 
the Hmgb2 antibody (second from the right) and transduced with retrovirus encoding 
for Hmgb2 and GFP reporter to test the efficiency of overexpression. Pictures were 
taken 7 days after plating the cells. Scale bars (a) 50 µm. 
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3.4 HMGB2 protein increases the reprogramming efficiency in vitro in 

the FGF culture 
 

3.4.1 Reprogramming of astroglial cultures by HMGB2 overexpression 

 

Proteome analysis revealed 2-fold lower expression of HMGB2 protein in the 

astroglial cells that are less prone to be reprogrammed in comparison to the culture 

with high reprogramming efficiency. We, therefore, asked whether we could improve 

the acquisition of neuronal program from FGF astrocytes with the elevated levels of 

HMGB2 protein and thereby rescue the phenotype. To this aim, we overexpressed it 

in EGF+FGF and FGF cultures together with NEUROG2, a neurogenic transcription 

factor that showed the most dramatic differences in the conversion rate between two 

conditions. We performed our standard reprogramming protocol, first culturing the 

cells for 10 days in two different conditions, followed by retroviral transduction and 7 

days of the reprogramming process. As shown previously, the reprogramming with 

single transcription factor NEUROG2, showed about 3-fold higher efficiency of 

reprogramming in the culture grown with EGF+FGF (56.28±13.50%) when compared 

to the FGF culture (17.47±10.17%) (Fig. 19a,b). We then transduced the astrocytes 

with two retroviruses encoding for Neurog2-dsRED and Hmgb2-GFP (Fig. 19a,b). 

Simultaneous overexpression of NEUROG2 and HMGB2 did not increase the 

amount of the induced neurons in the culture having already very good 

reprogramming capacity (57.19±15.41% induced neurons in EGF+FGF). However, 

we observed about 20% higher reprogramming rate in FGF culture when 

overexpressing both factors together (Fig. 19a,b). Addition of HMGB2 to neurogenic 

transcription factor NEUROG2 in FGF culture resulted in a significantly higher 

amount of induced neurons – from 17.47±10.17% with NEUROG2 alone to 

40.71±25.12% together with HMGB2, respectively (Fig. 19b). This suggests that 

elevated levels of HMGB2 can rescue the low responsiveness to the forced 

neurogenesis in the culture lacking EGF and can help this culture to achieve better 

reprogramming capacity similar to double growth factors conditions.  

 

Given its promising function to enhance the reprogramming process in the FGF 

culture, we next asked, whether the overexpression of HMGB2 alone is sufficient to 
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promote the conversion of astroglia into neurons. 7 days after transduction with the 

retrovirus encoding for Hmgb2 we did not observe any acquisition of neuronal 

phenotype in both cultures, indicating that HMGB2 alone is not sufficient to induce 

neurogenesis (Fig. 19b,c,d). The majority of the transduced cells remained GFAP+, 

similarly to the control transduction with the CAG-GFP retrovirus, suggesting that 

HMGB2 on its own does not change the cell identity (Fig. 19c,d). Interestingly, we 

observed a slightly higher proportion of GFAP negative cells within the control 

transduced cells in the FGF culture, meaning that we might initially target different 

starting population in the FGF culture when compared to the EGF+FGF culture. 

Taken together, HMGB2 protein on its own does not alter the cell fate, but together 

with the NEUROG2 overexpression induces the reprogramming in the FGF culture 

that otherwise exhibits a limited efficiency in neuronal conversion. 
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Figure 19: Simultaneous overexpression of HMGB2 and NEUROG2 improves 
the reprogramming efficiency in the FGF culture.  
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(a) Micrographs of the astroglial cultures after 7 days of the reprogramming process. 
Boxed areas correspond to the higher magnification images in adjacent panels (a’, 
a’’, a’’’ and a’’’’) and depict examples of induced neurons – in the first two panels 
transduced with Neurog2-dsRED and in the third and fourth panel double positive for 
HMGB2-GFP and NEUROG2-dsRED. (b) Quantification of the induced neurons in 
EGF+FGF or FGF cultures 7 days after transduction with Hmgb2 or Neurog2 alone 
or both together. The percentage of induced neurons is calculated as a proportion 
out of transduced cells. (c) Dot plot showing the quantification of the cells transduced 
with the CAG-GFP or Hmgb2-GFP retrovirus that express DCX or GFAP marker 7 
DPI. (d) Z-stack confocal micrographs of astrocytes 7 DPI in two culturing conditions 
and transduced with control CAG-GFP or Hmgb2-GFP retrovirus. Abbreviation: DPI, 
days post induction. Data are shown as median±IQR; each of the single dots 
represents independent biological replicate.  Significance in (b) was tested by non-
parametric Mann-Whitney U test. Scale bars (a, d) 50 µm, (a’, a’’, a’’’, a’’’’) 10 µm. 
 

3.4.2 Reprogramming of astroglial cultures by HMGB1 overexpression 

 

HMGB1 is the second member of the HMGB protein family that was enriched in the 

EGF+FGF culture based on the proteome analysis (Fig. 17f). Despite their different 

expression pattern in the adult mouse brain, we were still speculating about their 

similar roles in the astroglial cultures and decided to test the HMGB1 potential in 

facilitating NEUROG2 reprogramming capacity. To this aim, we overexpressed it 

together with the NEUROG2 in the FGF culture and asked whether it would give 

similar results that we observed with NEUROG2 and HMGB2 overexpression (Fig. 

20a,b). In two out of three experiments we did not observe higher amount of induced 

neurons after simultaneous overexpression of HMGB1 and NEUROG2 when 

compared to NEUROG2 alone (Fig. 20b). While HMGB2 boosts the acquisition of the 

neuronal phenotype and increases the final neuronal yield if the FGF culture, this 

was not obtainable with the HMGB1. However, the variability between the replicates 

was quite high and more experiments need to be done to verify it statistically.  
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Figure 20: HMGB1 does not resemble the function of HMGB2 in the astroglial 
cells. 
(a) Micrographs of the FGF culture 7 days after simultaneous overexpression of 
HMGB1 and NEUROG2 proteins. Arrowheads are pointing out the examples of 
GFP+ and dsRED+ double positive induced neurons. (b) Dot plot displaying the 
quantification of induced neurons in the FGF culture after HMGB2 and HMGB1 
overexpression alone or together with NEUROG2. Abbreviation: DPI, days post 
induction. Data are shown as median±IQR; each of the single dots represents 
independent biological replicate. Scale bars (a) 50 µm. 
 

3.4.3 Reprogramming of astroglial cultures by simultaneous overexpression of 

HMGB2 and BRN2  

 

Since HMGB2 protein together with NEUROG2 showed a prominent effect in the 

reprogramming of the FGF culture, we next asked whether this is specific for one 

particular neurogenic transcription factor or it has more general effect in the astrocyte 

culture and could improve the reprogramming efficiency also in a combination with 

different neurogenic determinants. In order to address this question, we decided to 

test it together with the BRN2, the factor that was also not sufficient to promote the 

conversion of reactive glia into neurons in the FGF culture (Fig. 15d, Fig. 21a,b). 

Similarly to the NEUROG2, simultaneous overexpression of HMGB2 and BRN2 in 
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the EGF+FGF culture did not result in the higher amount of the induced neurons 

(37.82±14.42% with Brn2 and 32.36±22.16% with Hmgb2+Brn2) (Fig. 21a,b). On the 

contrary, in both performed experiments with HMGB2 and BRN2 co-expression in the 

FGF culture, we observed the increase in the reprogramming efficiency (from 

15.71±5.37% with Brn2 to 42.88±5.75% with Hmgb2+Brn2), similar to the levels 

obtained in the EGF+FGF culture (Fig. 21a,b). This suggests that HMGB2 helps the 

reprogramming in the transcription factor-independent manner, however, we would 

need to prove this statistically by performing at least two more experiments with 

BRN2 and with other known reprogramming factors like ASCL1. Taken together, 

HMGB2 overexpression induces the intrinsic changes in the FGF cultured astroglia, 

which help the neurogenic transcription factors to trigger the generation of induced 

neurons. 

 

 
 
Figure 21: Simultaneous overexpression of HMGB2 and BRN2 improves the 
reprogramming efficiency in the FGF culture.  
(a) Example pictures of astrocytes transduced with Brn2-dsRED alone (upper panels) 
or in combination with Hmgb2-GFP retrovirus (lower panels) 7 days post transduction 
in two culturing conditions. Boxed areas correspond to the magnified images in 
adjacent panels (a’, a’’, a’’’ and a’’’’) and show examples of induced neurons. (b) 
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Quantification of reprogramming efficiency after simultaneous overexpression of 
HMGB2 and BRN2 in EGF+FGF and FGF culture in comparison to BRN2 
overexpression alone. Abbreviation: DPI, days post induction. Data are shown as 
median±IQR; each of single dots represents independent biological replicate. Scale 
bars (a) 50 µm, (a’, a’’, a’’’, a’’’) 10 µm. 
 

3.4.4 Reprogramming of HMGB2 deficient astrocytes  

 

In vitro reprogramming experiments in two different culturing conditions revealed the 

limited reprogramming capacity of the FGF culture that could be affected by lower 

levels of HMGB2 protein. To test whether this protein is necessary for the conversion 

of astroglial cells to induced neurons, we isolated the astroglia from the Hmgb2-/- 

animals, cultured them with EGF+FGF growth factors and induced neurogenesis by 

NEUROG2 overexpression. We first looked at the composition of the cultures 

isolated from the Hmgb2+/+, Hmgb2+/- and Hmgb2-/- siblings to prove that the loss 

of HMGB2 protein does not affect the cellular identity of the starting populations (Fig. 

21a). More than half of the CAG-GFP transduced cells were positive for GFAP 

protein 7 days after the transduction; in Hmgb2+/+ astrocytes 57.77±22.83%, in 

Hmgb2+/- astrocytes 70.73±3.96% and in Hmgb2-/- astrocytes 66.04±14.99%, 

indicating the enrichment of cortical astrocytes in the culture regardless of their 

genotype. Based on the GFAP expression, cultures from Hmgb2 knock out animals 

do not seem to be different to the wild-type ones (Fig. 15a; Fig. 22a). The only 

observed difference compared to our previous reprogramming experiments was 

higher contamination of endogenous neuronal progenitors in the culture. However, it 

was not Hmgb2-/- specific but present in all astroglial cultures isolated from the 

siblings having different genotypes. Small proportion of these progenitors could be 

transduced by the retrovirus, as quantified by the proportion of DCX positive CAG-

GFP transduced cells that was slightly higher compared to our initial experiments in 

wild-type astroglia: in Hmgb2+/+ astrocytes 5.77±12.92%, in Hmgb2+/- astrocytes 

4.01±6.61% and in Hmgb2-/- astrocytes 3.17±14.02%, respectively. Nevertheless, 

we were able to recognize and exclude them based on their morphology, as they 

mostly formed clusters of cells and did not show mature neuronal phenotype having 

a long thin process like reprogrammed neurons. Finally, to address the question 

whether cultures lacking HMGB2 show the altered fate transition, we overexpressed 

NEUROG2 in all three conditions and followed our standard reprogramming protocol 
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(Fig. 22b,c). The reprogramming of Hmgb2+/+ astroglia was consistent with our 

previous experiments, demonstrating a relatively high reprogramming rate with 

58.41±16.26% induced neurons out of Neurog2-dsRED transduced cells (Fig. 22b). 

We were also able to efficiently reprogram Hmgb2+/- astroglial cells with the 

efficiency of 51.44±23.91% (Fig. 22b). The conversion rate of Hmgb2 deficient 

astroglia was decreased, with 34.55±16.15% reprogrammed neurons from 

transduced cells (Fig. 22b). These results indicate a small gradual decrease in the 

number of induced neurons depended on the amount of the HMGB2 protein. The 

reduced reprogramming efficiency in Hmgb2-/- astrocytes, however, varied between 

different experiments and was therefore not significant. All in all, we observed that 

the neuronal phenotype can still be acquired in the cells lacking the HMGB2 protein, 

but the final neuronal yield is reduced, suggesting that HMGB2 is involved in 

facilitating the reprogramming process induced by NEUROG2. 

  



 

 

 
Results 

 
  

65 

 
 

Figure 22: Astrocytes lacking HMGB2 protein are less efficiently 
reprogrammed into induced neurons.  
(a) Dot plots showing the proportion of DCX and GFAP positive cells out of CAG-
GFP transduced cells in the astroglial cultures isolated from Hmgb2+/+, Hmgb2+/- 
and Hmgb2-/- siblings. (b) Quantification of the converted cells out of Neurog2-
dsRED transduced astroglia with different genotypes 7 DPI. (c) Micrographs 
depicting the reprogramming with the overexpression of NEUROG2 in the astrocytes 
lacking HMGB2 protein and homo or heterozygous controls. Abbreviation: DPI, days 
post induction. Data are shown as median±IQR; each of the single dots represents 
one animal, siblings from the same litter have same colors, separate experiments are 
labeled by separate colors. Significance in (b) was tested by non-parametric Mann-
Whitney U test. Scale bars (c) 50 µm. 
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3.5 HMGB2 helps to reprogram reactive glial cells in vitro 
 

Following the ability of HMGB2 to complement the neurogenic transcription factors in 

the FGF culture where the acquisition of the neuronal program is impaired, we 

decided to test it also in another in vitro model that appears to be rather challenging 

in the reprogramming context. We examined the reprogramming potential of reactive 

astroglia isolated from the adult injured cerebral cortex gray matter. Although these 

cells expanded as neurospheres can generate functional neurons upon forced 

expression of NEUROG2 (Heinrich et al., 2010),  the direct conversion of reactive 

glial cells in adherent culture is rather limited. We, therefore, asked whether the role 

of HMGB2 could be also exerted in this culture and it could help NEUROG2 to 

achieve better reprogramming efficiency. We performed local stab wound lesion in 

the cortical gray matter of adult wild-type mice and dissociated injured cortical 

hemispheres 3 days later for subsequent adherent cultures. After 3 days of culturing, 

cells were transduced with different combinations of retroviruses and 7 days after the 

transduction we fixed and immunostained the cultures for neuronal marker β-III 

TUBULIN in order to quantify the amount of neuronal-like cells (Fig. 23a). In the 

control condition, we used two retroviruses encoding for GFP and dsRED and 

quantified the amount of GFP+ cells only, dsRED+ cells only or double positive cells 

(Fig. 23d). All the cells in the control conditions were negative for β-III TUBULIN – red 

dot in the graph (Fig. 23d). We obtained similar results when overexpressing 

HMGB2-GFP in combination with control CAG-dsRED virus (green dot, Fig. 23d), 

indicating that HMGB2 does not induce any neurogenesis in reactive glial cells in 

vitro. Next, we overexpressed neurogenic transcription factor NEUROG2-dsRED in 

combination with HMGB2-GFP (Fig. 23b). We compared the amount of the induced 

neurons in dsRED+ cells only to the double positive cells that have simultaneous 

overexpression of both factors (Fig. 23d, blue dot). We observed the appearance of 

some cells positive for β-III TUBULIN, which haven’t yet developed a proper neuronal 

morphology, and we decided to quantify them in a special category called β-III 

TUBULIN+ “non-neuronal” cells (labeled with arrows in Fig. 23c).  Forced expression 

NEUROG2 alone resulted in 5.3% β-III TUBULIN+ “non-neuronal” cells and no cells 

with mature neuronal morphology. Looking at the double transduced cells, there were 

6.0% β-III TUBULIN+ “non-neuronal” cells, but we could also find 4.2% β-III 
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TUBULIN+ “neuronal” cells (Fig. 23b,d) that adopted elongated neuronal-like 

morphology (labeled with arrowheads in Fig. 23b). This result suggests that HMGB2 

overexpression does not only help NEUROG2 to reprogram the reactive astroglia 

more efficiently but also boosts the acquisition of the neuronal phenotype. Gaining 

very promising results, we decided to test another neurogenic transcription factor 

ASCL1 that is broadly used in the reprogramming field.  We transduced the adherent 

reactive glial culture with Ascl1-dsRED in combination with Hmgb2-GFP retrovirus 

and analyzed all single and double transduced cells for β-III TUBULIN expression. 

ASCL1 alone converted 3.8% of all transduced cells, however morphologically they 

were still not identified as induced neurons (Fig. 23c,d). Simultaneous 

overexpression of both factors together resulted in a noticeable increase in the β-III 

TUBULIN+ “non-neuronal” cells up to 22.4% and only 1.7% induced neurons (Fig. 

23c,d). HMGB2 seems to help ASCL1 in at least starting the reprogramming process, 

but we would need to keep the cells longer in the reprogramming process to prove 

whether this 20% of the cells would manage to acquire the proper neuronal 

phenotype. To sum up, HMGB2 showed a good potential to increase the conversion 

efficiency of the culture that is otherwise very resistant to the reprogramming. 

Similarly to the postnatal astroglial cultures, its effect seems to be neurogenic 

transcription factor independent. We performed only one pilot experiment using 

adherent reactive gliosis culture, in order to test whether HMGB2 might have some 

potential to improve the reprogramming capacity also in the reactive astrocytes in 

vivo. Since it gave quite promising results, we definitely need to confirm the outcome 

in at least three more experiments but also try its potency after the brain injury in 

direct reprogramming in vivo. 



 

 

 
Results 

 
  

68 

 

 

Figure 23: Simultaneous overexpression of HMGB2 in combination with 
NEUROG2 or ASCL1 induces the reprogramming of the adherent reactive 
astroglia in vitro.  
(a) Scheme presenting the preparation of the adherent reactive gliosis culture after 
the brain injury and the reprogramming protocol. (b) Example pictures of some 
reprogrammed cells 7 days post transduction with Hmgb2 and Neurog2. Arrowheads 
show the examples of the cells that were quantified as reprogrammed “neuronal” 
cells. (c) Micrographs depicting some transduced cells 7 DPI in ASCL1+HMGB2 
condition that express β-III TUBULIN+ already, but do not show proper neuronal-like 
morphology (labelled with arrows). (d) Dot plots showing the quantification of β-III 
TUBULIN+ “non-neuronal” cells (arrows in c) or “neuronal” cells (arrowheads in b,c) 
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as a proportion of transduced cells. Abbreviation: DPI, days post induction. Each of 
the single dots represents one condition shown in the legend on the right. Scale bars 
(b,c) 50 µm. 
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3.6 Reprogramming of reactive glial cells in vivo 
 

Previous attempts of in vivo reprogramming by overexpression of NEUROG2 alone 

demonstrated its insufficiency to promote the conversion of reactive glia into neurons 

upon the stab wound injury, when molecules alleviating oxidative stress (BCL-2, 

vitamin D or E) are not provided (Gascón et al., 2016; Grande et al., 2013). Besides 

metabolic barriers, other roadblocks like chromatin and epigenetic states might play a 

role in maintaining a stable cell identity and consequently do not allow the fate 

transition. We identified a chromatin-associated protein HMGB2 as a possible 

candidate to overcome these barriers. In vitro results indicate the involvement of the 

HMGB2 protein in neuronal reprogramming and suggest its potent effect in the 

cultures where the neuronal program is difficult to obtain, including the reactive 

gliosis culture in vitro. Promising results from these cultures motivated us to address 

the question whether elevated levels of HMGB2 could help to reprogram the reactive 

astrocytes directly at the injury site in vivo.  

 

3.6.1 Preparation and testing the construct for the simultaneous overexpression of 

HMGB2 and NEUROG2 in vivo 

 

To test whether the HMGB2 role in vitro could be exerted also in vivo, we performed 

test experiments injecting the mixture of two retroviruses Neurog2-dsRED and 

Hmgb2-GFP upon the cortical stab wound injury in the adult mouse brain. These first 

attempts, however, resulted in a minimum amount of co-transduced cells. Already in 

the astroglial cultures in vitro, the amount of double transduced cells with both 

retroviruses was rather limited, suggesting that this approach is rather challenging to 

access the simultaneous overexpression of both factors in vivo. We, therefore, 

prepared a new retroviral construct containing both factors Neurog2 and Hmgb2 (Fig. 

24a). They are separated by T2A “self-cleaving peptide” that makes the ribosome to 

skip the synthesis of a peptide bond at the C-terminus of a 2A peptide, which leads to 

separation between the end of the 2A sequence and the next peptide downstream 

(Kim et al., 2011). We also included the dsRED reporter separated by IRES (see 

Materials and methods) in order to visualize transduced cells (Fig. 24a). We first 

tested our construct in vitro in our standard EGF+FGF and FGF cultures (Fig. 24b,c), 
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to ensure that both proteins are functional, especially NEUROG2 that has a few 

additional residues from T2A added to the end. We quantified the amount of the 

induced neurons one week after transduction and compared the numbers to the 

overexpression of NEUROG2 alone and HMGB2+NEUROG2 delivered by two 

separated retroviruses. We also performed the immunostaining for HMGB2 protein 

and observed clear overexpression in dsRED+ cells (Fig. 23b). In the EGF+FGF 

culture, we observed comparable amount of reprogrammed cells with all 3 

combinations of retroviruses, with Neurog2-dsRED 58.95±13.70%, with Neurog2-

dsRED+Hmgb2-GFP 58.60±6.44% and with Neurog2-T2A-Hmgb2-dsRED 

54.88±9.41%, respectively (Fig. 24c). Most importantly, we also confirmed the 

increase in the conversion efficiency of the FGF culture using double construct, 

reaching even higher levels of reprogramming compared to the transduction with two 

separate viruses (Fig. 24c). The Neurog2 alone induced 21.11±10.23% of neurons, 

Neurog2+Hmgb2 delivered by two retroviruses 36.09±12.69% and double construct 

44.91±5.91%. We confirmed that the newly generated vector is functional since it can 

induce the neuronal fate in vitro and can be also used for the simultaneous 

overexpression of NEUROG2 and HMGB2 in vivo.  
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Figure 24: Testing the construct encoding for both Hmgb2 and Neurog2 in 
astroglial cultures in vitro.  
(a) Schematic representation of the retroviral vector for NEUROG2 overexpression 
alone (left) or together with HMGB2 in the newly generated retroviral construct 
pCAG-Neurog2-T2A-Hmgb2-IRES-dsRED (right). (b) Micrographs showing astroglia 
transduced with double construct depicted in (a), 7 days post transduction in both 
culturing conditions. White arrowheads point to cells reprogrammed into DCX+ 
induced neurons that also show the efficient overexpression of HMGB2 protein. (c) 
Quantification of reprogramming efficiency after the overexpression with a retrovirus 
encoding for both Hmgb2 and Neurog2 and compared to Neurog2 alone or 
Hmgb2+Neurog2 delivered by two separated retroviruses. Abbreviations: IRES, 
internal ribosomal entry site; DPI, days post induction. Data are shown as 
median±IQR; each of the single dots represents independent biological replicate; 
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significance was tested by non-parametric Mann-Whitney U test. Scale bars (b) 50 
µm. 
 

3.6.2 The simultaneous overexpression of NEUROG2 and HMGB2 in reactive glial 

cells in vivo is not sufficient to facilitate the neuronal reprogramming 
 

After confirming that double construct is sufficient to promote the conversion of 

astroglia into neurons in vitro, we performed the stab wound injury in the adult mouse 

brain and applied the retrovirus to the injury site to investigate whether elevated 

levels of HMGB2 can help NEUROG2 in the acquisition of the neuronal phenotype 

from reactive glial cells in vivo. The stab wound injury was performed in the grey 

matter of somatosensory cortex, as previously described (Buffo et al., 2005; Heinrich 

et al., 2014). Three days after the surgery, the same animals were injected with a 

retroviral suspension in the injured cortex within the stab wound area (Fig. 25a). By 

using the retrovirus we stably transduce only actively dividing cells at the injury site 

that are mostly NG2+OLIG2+ oligodendrocyte precursor cells (OPCs), GFAP+ 

reactive astrocytes and IBA1/CD45+ microglia as shown previously (Heinrich et al., 

2014). With this approach, we exclude the transduction of endogenous neurons that 

would represent the false positive cells when quantifying the amount of 

reprogrammed induced neurons. 10 days after the injections, animals were perfused, 

brain tissue was cut into coronal sections and immunostained for the dsRED to 

identify the transduced cells (Fig. 25a). Some of the sections were also stained with 

HMGB2 antibody to confirm its overexpression in the cells transduced with retrovirus 

encoding for Neurog2-T2A-Hmgb2-IRES-dsRED (Fig. 25b). To investigate whether 

transduced dsRED+ cells converted into induced neurons, we performed the 

immunohistochemistry for NeuN, commonly used marker for mature neurons (Fig. 

25c-f). 

 

In the control condition, we injected the retrovirus encoding Neurog2 alone to confirm 

that overexpression of this single neurogenic transcription factor does not result in 

any appearance of induced neurons as published previously (Gascón et al., 2016; 

Grande et al., 2013). 10 days post injection many dsRED+ cells were found at the 

injury site, however, the majority of them maintained the glial morphology (Fig. 25c). 

Nevertheless, we quantified the proportion of dsRED and NeuN double positive cells 
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in order to determine the conversion rate. As expected, the number of induced 

neurons out of all transduced cells upon NEUROG2 overexpression was less than 

3% (Fig. 25f). Next, we injected the retrovirus 3 days after they injury encoding for 

both factors, Neurog2 and Hmgb2. In 3 out of 5 injected animals, we observed very 

similar results to the overexpression of NEUROG2 alone (Fig. 25d). Most of the 

dsRED+ cells did not change their identity and only a small proportion (2.07±1.09%), 

displayed a detectable NeuN signal (Fig. 25d,f). Interestingly, in 2 animals 

transduced with both factors, Neurog2 and Hmgb2, we observed quite some cells 

having small round soma and long thin processes. Almost all of them were also 

positive for NeuN, suggesting that these could be reprogrammed neurons (Fig. 25e). 

We quantified the number of such cells having neuronal-like features and observed 

even up to 25% of induced neurons out of all dsRED+ transduced cells (Fig. 25f). 

Trying to understand this discrepancy between experiments, we looked more 

carefully at the injury site and observed that in both animals with the higher amount 

of neuronal-like cells, the injury was much deeper, touching the underlying white 

matter (WM) (Fig. 25e). On the other side, in the first 3 animals where we did not 

observe any improvement of the reprogramming compared to the NEUROG2 

overexpression alone, the injury was only in the grey matter of the cortex (GM) (Fig. 

25d). In previous in vivo reprogramming experiments (Buffo et al., 2005; Gascón et 

al., 2016; Heinrich et al., 2014), the stab wound injury was limited to the upper layers 

of the cortical gray matter, avoiding the deep layers in order to minimise the risk of 

migration of neural progenitors from the underlying white matter. Since we observed 

the presence of neuronal-like cells only in the GM+WM injury paradigm and induced 

neurons were mostly located at the border of the white matter (Fig. 25e), we would 

conclude that we transduced the neuronal progenitors that differentiated and 

migrated up to the cortical grey matter. Taken together, these data show that the 

forced expression of HMGB2 does not increase the yield of NEUROG2-mediated 

conversion of reactive glial cells into neurons after the grey matter stab wound injury, 

but it might induce differentiation and migration of neuronal progenitors to the injury 

site from the underlying white matter. 
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Figure 25: Hmgb2 is not sufficient to increase the reprogramming efficiency 
after the grey matter stab wound injury.  
(a) Scheme of the protocol for in vivo reprogramming in the injured cortex of the adult 
mouse brain. (b) Confocal micrograph showing the brain section with stab-wound 
injury (labelled with a white line) with an injection of retrovirus encoding for Neurog2-
T2A-Hmgb2-IRES-dsRED, immunostained for dsRED and HMGB2 at 10 DPI. 
Adjacent panels (b’) represent a high-magnification view of the area boxed in (b). (c, 
d, e) Confocal micrographs depicting the injury site with Neurog2-IRES-dsRED 
transduced cells (c) or Neurog2-T2A-Hmgb2-IRES-dsRED transduced cells (d, e) at 
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10 DPI. White lane is marking the position of the injury. Boxed areas correspond to 
the higher magnifications in the adjacent panels (c’, d’, e’, e’’). In c’ and d’ they show 
examples of NeuN negative transduced cells with glial morphology (white 
arrowheads). Higher magnifications in e’ and e’’ are pointing out transduced NeuN 
positive neuronal-like cells labelled with the arrowheads and numbers. (f) The table 
summarizing the proportion of NeuN+ dsRED+ cells out of all transduced cells 10 
days after NEUROG2 overexpression only or together with HMGB2 and 
corresponding injury paradigm. All fluorescent images are full Z-projections of 
confocal Z-stack, except in pictures (c’, d’) and NeuN staining in (e’, e’’), which are 
single plane pictures. Abbreviations: DPI, days post injection; GM, gray matter; WM, 
white matter. Scale bars (b-e) 50 µm, (b’, e’, e’’) 25 µm, (c’, d’) 20 µm. 
 

3.6.3 Endogenous HMGB2 expression is increased at the lesion site after the stab 

wound injury 

 

Although HMGB2 was not sufficient to help NEUROG2 to induce neuronal 

reprogramming in vivo, we made an interesting observation while looking for the 

overexpression of HMGB2 in Neurog2-T2A-Hmgb2-IRES-dsRED transduced cells at 

the injury site (Fig. 25b). Immunostaining against HMGB2 in the injured and injected 

brain did not reveal its expression only in the transduced cells but also its high 

abundance in the injured cortex 10 days post transduction (Fig. 25b). This finding 

was quite unpredictable since we previously never observed any HMGB2 expression 

outside the two neurogenic niches in the uninjured brain. We, therefore, first asked 

when after the injury this HMGB2 up-regulation appears and until when it persists. To 

address this point, we immunostained the sections for HMGB2 and GFAP to 

recognize the lesion site from the animals sacrificed at different time points (1, 5, 7 

and 14 days) after the injury (Fig. 26a-d). We compared its levels to the levels in the 

hippocampus or subventricular zone in the same brain section and also looked to the 

contralateral side as a negative control. On the first day after the injury, we observed 

some sparse HMGB2+ cells at the lesion site (Fig. 26a). On the contrary, at 5 DPI 

there was a huge increase in the amount of the cells that up-regulated HMGB2. The 

intensity of the signal was, however, considerably weaker than in the cells expressing 

HMGB2 in the subgranular zone of hippocampus (Fig. 26b). The HMGB2 expression 

declined 7 days post injury and the amount of the cells expressing it was much lower 

(Fig. 26c). Some positive cells still could be found even 14 days after the injury (Fig. 

26d). As we observed the most abundant expression at day 5 after the injury, when 
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the peak of the proliferation of the reactive astrocytes takes place, we next explored 

whether GFAP+ reactive astrocytes up-regulate HMGB2 and we could detect some 

colocalisation of both proteins. We observed some double positive cells (Fig. 26e), 

however, there were many more cells positive for the HMGB2 only. We also used 

Ki67+ proliferation marker to label dividing cells at 5 DPI and observed that all Ki67+ 

cells express HMGB2 (Fig. 26e), but not the other way around, since only a 

subpopulation of HMGB2 appeared to be Ki67+ positive. Unfortunately, the antibody 

combination did not allow us to simultaneously label HMGB2 together with the 

markers for other main populations that react after the injury such as for OPC and 

microglia. Taken together, HMGB2 protein is up-regulated after the injury in the adult 

mouse cortex, reaches the peak of expression at 5 DPI that slowly declines until 14 

DPI. It was detected in all proliferating cells, some reactive astrocytes and is possibly 

enriched in many other different populations involved in the response to the injury 

such as OPCs, astroglia microglia, and macrophages.  
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Figure 26: HMGB2 is up-regulated in the reactive glial cells upon the cortical 
stab wound injury.  
(a-d) Micrographs depicting HMGB2 expression at the injury site at different time 
points after the injury. The lesion site was recognized by GFAP staining that labels 
reactive astrocytes. Expression levels were compared to the HMGB2 expression in 
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neurogenic niches SGZ or SVZ. The contralateral site at 1 and 7 DPI is shown as a 
negative control with no HMGB2 expression. The schemes of the coronal sections in 
the upper left edges of (a) are depicting the position in the brain where the picture 
was taken. (e) Higher magnification picture (60X) of HMGB2 expression at the injury 
site 5 DPI and its colocalisation with GFAP and Ki67 positive cells. e’ represents the 
zoomed picture of the boxed area in e. All fluorescent images are full Z-projections of 
confocal Z-stack, except of high magnifications in (e’). Abbreviations: SGZ, 
subgranular zone; SVZ, subventricular zone; Contralat.; contralateral; DPI, days post 
injection; SW, stab wound. Scale bars (a-e) 50 µm, (e’) 10 µm. 
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3.7 Molecular changes induced by HMGB2 overexpression to 

reprogram the cell fates 
 

In vitro experiments demonstrated the involvement of HMGB2 protein in the transition 

from gliogenic to neuronal cell fate, but underlying molecular mechanisms still remain 

to be addressed. HMGB2 is a nuclear protein that belongs to one of the two major 

groups of the “chromatin architectural proteins”. Architectural proteins are defined as 

structural proteins, lacking enzymatic activity, but are able to bind to nucleosomes 

without DNA sequence specificity and change the local and global architecture of 

chromatin (Postnikov and Bustin, 2016). During the neuronal reprogramming, 

neurogenic transcription factors have to efficiently bind to their binding sites in order 

to induce the transcription of the neuronal program. However, for the ones that do not 

exhibit pioneer activity, this might be rather difficult when these sites are embedded 

in the closed chromatin. The dynamic interaction of HMGB2 protein with its chromatin 

targets could influence the ability of these regulatory factors to access their genomic 

binding sites. Recently it became very clear that not only induction of the neurogenic 

transcriptional network is crucial for the efficient reprogramming, but also the 

repression of the endogenous program in the glial cells and inhibition of alternative 

fates that might emerge during the reprogramming process (Mall et al., 2017).  

 

Based on this knowledge, we developed three hypotheses how HMGB2 could act on 

the molecular level. In the first place, we propose the less permissive chromatin 

states in the FGF culture due to the lower levels of chromatin-associated proteins, 

which would interfere with NEUROG2 binding to its target sites. The HMGB2 protein 

might open these sites and enable binding of NEUROG2 that can finally induce the 

neurogenic program. Secondly, we hypothesize that forced expression of NEUROG2 

in the FGF culture still can induce neurogenic fate, however, the insufficient 

repression of the gliogenic or alternative programs leads to the impaired acquisition 

of neuronal phenotype. We, therefore, speculate the involvement of HMGB2 in 

facilitating the repressor binding or opening the repressor binding sites that would 

exhibit the repression of the endogenous or alternative fates. Based on the fact, that 

transcriptional gene regulation does not only depend on promoters and nearby cis-

regulatory elements, but also on distal regulatory elements, which are often located 
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far away from the genes they control, we developed our third hypothesis. The 

HMGB2 protein might elaborate opening or closing chromatin at the distal regulatory 

regions that represent binding sites of transcription factors involved in the 

reprogramming process.  

 

To test these different possibilities, we established the ATAC-sequencing in our lab, 

promising method to identify regions of increased chromatin accessibility and 

nucleosome positioning, described by (Buenrostro et al., 2013, 2015). First, we 

aimed to identify the changes in the chromatin states upon EGF removal that are 

responsible for maintaining the astrocytes in the glial lineage even after neurogenic 

transcription factor overexpression. Next, we asked how does the chromatin 

accessibility change when overexpressing HMGB2 and NEUROG2 and planned to 

identify the regions that open or close via HMGB2 remodeling. Furthermore, we tried 

to correlate the chromatin-induced changes with the changes on the transcriptome 

level and therefore performed RNA-seq analysis. We looked at the gene expression 

in the control transduced cells and transcriptional changes induced by NEUROG2 

overexpression, in order to explain the limited efficiency in neuronal conversion in the 

FGF culture. Next, we examined the gene expression changes by simultaneous 

overexpression of both, HMGB2 and NEUROG2 and tried to extract the ones that 

were missing before. This could explain how HMGB2 rescued the impaired 

acquisition of the neuronal program. Comparing both, ATAC-seq and RNA-seq 

datasets will give new insights into the chromatin-associated roadblocks and 

consequently transcriptional barriers in the process of direct reprogramming and 

molecular mechanism by which HMGB2 protein acts to overcome these barriers.  

 

3.7.1 Collection of the transduced cells for the ATAC-seq and RNA-seq 

 

For both sets of experiments, we cultured the astroglial cells for 10 days in two 

different growth factor conditions as previously described for the reprogramming. At 

day 10, cells were replated and transduced either with control retrovirus CAG-GFP, 

retroviruses encoding for Hmgb2-GFP or Neurog2-dsRED or both viruses 

simultaneously (Fig. 27a). 48 hours after transduction we used FACS (fluorescence 

activated cell sorting) in order to enrich for transduced cells only (Fig. 27b-d). After 

excluding dead cells and doublets, we set the gates using untransduced cells (Fig. 
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27b). We then collected all GFP+, dsRED+ or double positive cells from both 

conditions (Fig. 27c,d) and separated them into two batches. 50000 cells were used 

for the ATAC-sequencing library preparation and the rest to prepare RNA-seq 

libraries. We finally sequenced these libraries using the Illumina Next Generations 

Sequencing  (NGS) approach (Fig. 27a). 

 

 
 

Figure 27: Astroglia collection after HMGB2 and NEUROG2 overexpression for 
the ATAC-seq and RNA-seq.  
(a) Schematic representation of the protocol for the astroglia transduction, sorting 
and library preparation for the ATAC-seq and RNA-seq. (b) FACS plots showing the 
gates set up using untransduced cells to sort out the debris (first left), doublets 
(second left) and to sort GFP+, dsRED+ and double+ cells. (c,d) FACS plots 
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depicting the sorting strategy of transduced cells 48h DPI in EGF+FGF culture (c) 
and FGF culture (d). Abbreviations: DPI, days post induction; FACS, fluorescence 
activated cell sorting, ATAC, assay for transposase accessible chromatin; SSC-A, 
side scatter area; FSC-A forward scatter area; FSC-W forward scatter width. 
 

3.7.2 ATAC-sequencing 

 

ATAC-sequencing, assay for transposase accessible chromatin with high throughput 

sequencing, is a method to study the accessible sites of chromatin. The assay is 

based on direct in vitro transposition of sequencing adaptors into native chromatin 

using hyperactive Tn5 transposase, that has an ability to integrate into regions of 

opened chromatin, while less accessible sites make such transposition less probable. 

With this simple method, we can generate the amplifiable DNA fragments suitable for 

the high-throughput sequencing and the sequencing reads can then be used to 

identify regions of increased accessibility. Despite current methods for assaying 

chromatin structure and composition that require a couple of millions of cells as input 

material, the major advantage of this method is that it can be carried out with a 

sample size only of 50000 cells (Buenrostro et al., 2015). This was especially 

advantageous due to the limited amount of the sorted cells that we collected with the 

FACS after the retroviral transduction.  

 

After establishing this novel method in our lab, we first performed the ATAC 

sequencing of the astroglia cultured for 10 days with growth factors EGF+FGF or 

FGF, transduced with the control virus (CAG-GFP) and collected 48 h after 

transduction. Next, we overexpressed HMGB2, NEUROG2 or both proteins in the 

astroglial cells for 48 h and prepared the chromatin for the sequencing. Following the 

sequencing of at least three biological replicates from each condition, the analysis 

was performed in collaboration with the Maren Büttner and Aaron Taudt (Institute of 

Computational Biology, Helmholtz Zentrum München). Quality control of the raw 

sequencing data showed good quality of the sequencing, but the remarkably high 

content of duplicates. The insert size distribution of sequenced fragments had a 

characteristic nucleosome-associated periodicity of approximately 200 bp, as shown 

in the original paper (Buenrostro et al., 2013, 2015). Confirming the required quality 

of the sequencing data, the BAM files were processed using the chromstaR software 
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(Taudt et al., 2016), followed by peak calling and differential peak analysis between 

different conditions (details described in Materials and methods).  

 

First, we investigated the number of specifically enriched peaks comparing two 

control conditions. We aimed to pick up some differences in opened chromatin sites 

that might explain their different responsiveness to the reprogramming factors. In the 

CAG-GFP transduced cells grown in the EGF+FGF condition, we detected 283 

peaks that were not present in the FGF condition (Fig. 28a). About 25% of these 

peaks were positioned at the promoters, therefore we created a list of the associated 

genes and looked for their functional annotation using David Gene Ontologies tool 

(Huang et al., 2009a, 2009b). Interestingly, the opened promotes in the EGF+FGF 

culture were enriched for the GO terms biological processes associated with nervous 

system development and neurogenesis (Fig. 28b). These genes were, for example, 

Ascl1, Sox2, Neurog2, which was quite surprising for the astroglial cells transduced 

with the control virus and not with any of neurogenic transcription factors. On the 

other hand, we also found GFAP promoter opened in this culture, suggesting that 

these astrocytes are somehow more plastic, having opened neurogenic promoters in 

parallel to gliogenic genes. Focusing on the FGF culture, we found 160 peaks 

specifically enriched in this condition, from which only 7 were located at the 

promoters with the rest assigned to the distal intragenic regions as annotated using 

the ChIPseeker tool (Yu et al., 2015a) (Fig. 28a). Next, we investigated the Neurog2 

transduced cells and searched for the peaks significantly changed by the condition. 

Upon NEUROG2 overexpression there were 16 peaks present in the EGF+FGF 

culture and 109 in FGF only (Fig. 28a), suggesting that the cells do not equality 

respond to the forced neurogenesis on the chromatin levels due to their differences 

in the initial chromatin states. However, these differences between the two cultures 

are completely abolished upon HMGB2 overexpression. We did not find any 

specifically enriched peaks in one or the other condition anymore (Fig. 28a). These 

results suggest, that FGF cultured astrocytes with elevated HMGB2 levels and 

EGF+FGF astroglia become more homogenous regarding the chromatin states. A 

similar outcome was also observed after the simultaneous overexpression of both 

factors, where we detected only 12 specific peaks in the EGF+FGF culture and 17 in 

the FGF treated astroglia, respectively (Fig. 28a). 
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Observing this interesting function of HMGB2 making the chromatin states similar in 

both cultures, we next asked the question, what are the HMGB2 induced changes. 

To this aim, we performed the pairwise comparisons of the cells transduced with 

Hmgb2 and control transduced cells for both conditions. HMGB2 opens some 

regions, 391 in EGF+FGF and 263 in FGF (Fig. 28c) that are mostly located in the 

distal intragenic regions. However, investigating the 17 opened promoters in the FGF 

culture, revealed the opening of Ascl1, Sox2, and Neurog2, genes that were exactly 

the ones that were closed in the FGF culture, but opened in the EGF+FGF culture. 

This finding points out the important role of HMGB2 in opening the neurogenic 

regions. Interestingly, we observed that HMGB2 mostly functions in making 

chromatin more fluidic, since there were almost no peaks that would get closed upon 

HMGB2 overexpression (Fig. 28c). In the next step, we asked what are the 

NEUROG2-induced changes in both cultures. Compared to the HMGB2 

overexpression, the number of newly opened or closed peaks was much higher. In 

the EGF+FGF culture, NEUROG2 opens 2722 peaks, while 575 peaks get closed 

(Fig. 28c). In the FGF culture, there were 2071 enriched peaks compared to the 

control and 206 closed peaks in the control (Fig. 28c). Only a few percents of these 

peaks are located at the gene promoters while the others can be found in noncoding 

regions. We closely investigated the peaks at the promoters opened upon 

NEUROG2 overexpression, looked at the proportion of their overlap in both cultures 

using the BioVenn tool (Hulsen et al., 2008) and performed the GO term analysis. 46 

peaks at the promoters specific for EGF+FGF culture were related to the GO terms 

retina development and regulation of phosphorylation (Fig. 28d). Interestingly, the 39 

FGF specific peaks were assigned to the genes related to neurogenesis (Fig. 28d). 

Similarly to the HMGB2 function, also NEUROG2 opens the promoters of neurogenic 

genes such as Ascl1, Sox2, and Neurog2 that were previously closed in this culture. 

Overlapping 19 genes did not show any GO terms enrichment due to their very 

different functions in metabolism, phosphorylation, apoptosis, regulation of 

transcription, transcription factor binding, and many others. Similarly, the promoters 

closed in both cultures show very little overlap and no enrichment for specific GO 

terms. Lastly, we investigated the chromatin changes induced by simultaneous 

overexpression of both, HMGB2 and NEUROG2. The numbers of differentially 

expressed opened peaks were very similar to the Neurog2-induced ones (2910 in 

EGF+FGF and 2024 in FGF), resulting also in a very similar number of opened 
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promoters (71 in EGF+FGF and 53 in FGF) (Fig. 28c). We looked for their overlap in 

both cultures and corresponding GO terms as we did before, and observed 

completely comparable results to the Neurog2-induced peaks, showing the specific 

enrichment of neurogenic promoters opened in the FGF culture (Fig. 28e). Since the 

GO terms were completely comparable, we asked the question how big is the 

overlap of the peaks at the promoters when overexpressing NEUROG2 alone or in 

combination with HMGB2. This overlap was basically 100%, pointing out that the 

addition of HMGB2 does not result in any additionally opened peaks, at least not at 

the promoters. However, there was a big decrease in the number of closed peaks 

upon the simultaneous expression of both factors, we found only 32 in EGF+FGF 

cultured cells and 33 in FGF astroglia (Fig. 28e). This shows again that HMGB2 does 

not participate in any closure of the chromatin and actually even opens the sites that 

were closed by NEUROG2. To summarize the ATAC-sequencing data, we found a 

surprising difference between two cultures with EGF+FGF culture having opened 

promoter of the neurogenic genes that might explain the more efficient 

reprogramming. HMGB2 protein makes these two cultures more similar by opening 

exactly these promoters and possibly erases the other differences in chromatin 

compaction in the distal intragenic regions. However, NEUROG2 on its own is also 

able to open these promoters in the FGF culture, but this might delay the whole 

reprogramming process, which can more efficiently start if these regions are already 

opened. The simultaneous overexpression of both factors has a comparable effect to 

the NEUROG2 alone, due to the fact that HMGB2 works similarly and might only 

complement the role of the NEUROG2. This is important in the FGF culture, where 

the neurogenic promoters are closed and by adding HMGB2 the opening might 

happen faster and more efficient. In the next step, we decided to investigate how the 

changes in the chromatin states influence the transcriptional program of both cultures 

and therefore performed the RNA-seq analysis from the same sample conditions. 
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Figure 28: ATAC-seq analysis of two cultures to explore the chromatin-related 
changes. 
(a) The summary of differential peaks analysis done by ChromstaR software 
comparing EGF+FGF culture versus FGF culture upon transduction with the control 
CAG-GFP virus or overexpression of HMGB2, NEUROG2 or both together. 
Highlighted 74 peaks at the promoters were used as an input in GO terms analysis in 
(b). (b) Bar chart depicting GO terms related to 74 peaks at the promoters enriched in 
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EGF+FGF culture in the control conditions. (c) The table summarizing the number of 
opened or closed peaks upon overexpression of HMGB2, NEUROG2 or both 
compared to the control transduced cells in both cultures. (d-e) Venn diagram 
presenting the overlap of peaks at the promoters in both cultures and their 
associated GO terms upon induction of Neurog2 (d) or Hmgb2+Neurog2 (e). 
Abbreviations: E+F, EGF+FGF; F, FGF; GO, gene ontology; BP, biological process; 
OE, overexpression. 
 

3.7.3 Transcriptome analysis of the EGF+FGF and FGF cultured astroglial cells 

upon transduction with different retroviruses 

 

3.7.3.1 Transcriptome of the CAG-GFP transduced cells 

  

In order to explore the transcriptional changes induced during the reprogramming 

process, we isolated the mRNA from the cells overexpressing NEUROG2, HMGB2 or 

both factors and performed transcriptome analysis. First, we performed the 

comparison of the control-transduced cells cultured in two different conditions, in 

order to address the question whether we could identify some intrinsic differences 

between the cultures that are possibly responsible for their different reprogramming 

capacity. Surprisingly, we observed a relatively high number of genes that were 

enriched specifically in one or the other culture, suggesting that culturing the cells in 

different growth factor conditions induces quite some differences at the transcriptome 

level. We detected 234 genes (fold change>2, p<0.05) specifically enriched in 

EGF+FGF cultured cells 48 h after transduction with the CAG-GFP control virus. This 

set of EGF+FGF enriched genes was related to many different gene ontology (GO) 

terms (fold enrichment>2, p<0.05) in the category biological processes (Huang et al., 

2009a, 2009b), such as cellular response to different stimuli, metabolic processes, 

and regulation of protein functions (Fig. 29a). In the FGF cultured cells, we detected 

329 enriched genes that have a significantly higher expression when compared to 

EGF+FGF culture. Interestingly, the most represented GO terms biological processes 

were related to oligodendrocyte cell fate specification (Fig. 29b), but there were also 

some genes associated with the terms such as nervous system development, 

regulation of transcription and metabolic processes (Fig. 29b). Taken together, due to 

the high number of deferentially expressed genes between two culturing conditions it 

is rather difficult to determine which of them might be involved in limited 
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reprogramming capacity of the FGF culture. However, there were many genes 

specific for the FGF culture, which are related to the oligodendrocyte differentiation 

suggesting the enrichment of oligodendrocytic population in this growth condition. 

This subpopulation might be resistant to neurogenic transcription factor induction and 

would not undergo the fate transition. To test this hypothesis, we next explored the 

Neurog2 induced changes in both cultures. 

 

 
 

Figure 29: EGF+FGF and FGF cultured astroglia transduced with the control 
virus exhibit differences in their transcriptional programs.  
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(a,b) Bar charts depicting GO terms biological processes assigned to the 234 genes 
specifically enriched in the EGF+FGF culture (a) and to the 329 genes specific for 
the FGF culture (b). Abbreviations: GO, gene ontology. 
 

3.7.3.2 Transcriptional changes induced by NEUROG2 overexpression 
 

Following the comparison of two control conditions, we analyzed the transcriptome of 

Neurog2 transduced astroglial cultures grown with EGF+FGF or FGF. Based on 

lower reprogramming capacity of FGF culture, one of the hypotheses was that 

overexpression of NEUROG2 in this culture might not efficiently induce neuronal 

program at the transcriptional level. In order to address this point, we carefully 

investigated the genes enriched in both conditions upon NEUROG2 overexpression 

and their overlap. Activation of NEUROG2 after 48 hours changed the expression of 

596 genes in EGF+FGF culture and 711 in FGF culture compared to the CAG-GFP 

transduced control in each condition (fold change>2, p<0.05). Inspecting the top 25 

genes with the highest fold enrichment compared to control in both cultures revealed 

induction of quite some genes that were present in both conditions (Fig. 30a). We, 

therefore, looked at the proportion of the overlapping genes in both cultures that were 

significantly enriched after NEUROG2 overexpression using the BioVenn tool 

(Hulsen et al., 2008) and found 283 genes common for both cultures (Fig. 30b). This 

set of common regulated genes was significantly enriched for the gene ontology 

(GO) terms biological processes (Huang et al., 2009a, 2009b) associated with 

neuronal differentiation and regulation of neurogenesis (Fig. 30b,c). Interestingly, 

most of the published NEUROG2 downstream targets like NeuroD1, Rnd2, Dll1, Dll3 

(Castro et al., 2006; Gohlke et al., 2008; Henke et al., 2009; Ochiai et al., 2009; 

Schuurmans and Guillemot, 2002; Seo et al., 2007) or previously reported 

NEUROG2 induced genes in the reprogramming of the astrocytes like Hes6, Insm, 

Prox1, Sox11, Trnp1 and Cnr1 (Masserdotti et al., 2015) were up-regulated in both 

cultures. This suggests the ability of NEUROG2 to induce its targets regardless of the 

culture condition. As this does not explain why the FGF cultured cells do not turn into 

the neurons although they have induction of the neurogenic transcriptional program 

similar to the EGF+FGF culture, we investigated whether the levels of induction are 

lower and not sufficient to promote neurogenesis (Fig. 30d).  This was not the case, 

as we observed similar enrichment of NEUROG2 targets expression when compared 
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to the control in both cultures for most of the investigated genes (Fig. 30d). The next 

hypothesis would be the emergence of a competing alternative program that would 

not allow the cell to acquire neurogenic fate. However, we found genes that are 

related to the GO terms linked to the alternative fate commitment of mesodermal 

origin in both cultures (Fig. 30b). NEUROG2 induces the different sets of genes in 

both cultures but most of them are related to the similar alternative program. In 

addition, in both cultures, NEUROG2 induces the changes in transcription rate. 

Searching for the GO terms present specifically in the EGF+FGF culture revealed 

that forced expression of NEUROG2 resulted in the high expression of genes 

involved in the regulation cell cycle (Fig. 30b). On the other side the genes that are 

specific for the FGF culture are involved in different signaling pathways (Fig. 30b). To 

sum it up, we found a subset of NEUROG2 genes specific for the culture condition 

and subset of commonly induced genes that are enriched for GO terms related to 

neurogenesis. Since these genes are in both cultures induced to the same level, we 

can also confirm that there is not only a subpopulation in the FGF culture that would 

respond to forced neurogenesis. Induction of the neurogenic transcriptional program 

and the partial emergence of the alternative program are similar in both cultures and 

therefore cannot account for the differences in the reprogramming efficiency.  

 

Induced reprogramming does not only require the induction of the neurogenic genes 

but also silencing of transcriptional program defining the starting cell population and 

the alternative fates that might be induced in parallel. By investigating the genes 

down-regulated in both cultures and their overlap, we tried to address the question 

whether the gliogenic fate in the FGF culture was not efficiency silenced and this 

resulted in the reprogramming failure.  In general, we found much less down-

regulated genes as up-regulated. In the EGF+FGF culture, the total amount of down-

regulated genes compared to the control was 257, while in the FGF culture 362 (fold 

change>2, p<0.05) (Fig. 30e). 100 overlapping genes were enriched for the GO 

terms biological processes associated with the development of alternative fate 

mesodermal origin (angiogenesis, cartilage development, muscle development) or 

signaling pathways (BMP, protein kinase signaling) (Fig. 30e). Genes specifically 

down-regulated in the EGF+FGF culture were related to the regulation of 

transcription, while the ones in the FGF culture to the alternative fate of mesodermal 

and endodermal origin and signaling pathways (Wnt and FGF) (Fig. 30e). 
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Interestingly, the NEUROG2 overexpression stimulates the genes of the alternative 

program, which cells possibly try to repress at the same time to keep their identity. As 

we could not find any astrocyte markers down-regulated in the subset of significantly 

repressed genes, we manually looked for their expression levels compared to the 

control. While glutamate transporter 1 (Slc17a7 gene) was not detected, there were 

many transcript variants of GLAST (encoded by Slc1a3 gene) and glutamine 

synthetase (Glul), however not showing any differences upon NEUROG2 

overexpression. We investigated some further markers for the astroglia, such as 

GFAP, S100β, Aldh1l1, Aqp4, Acsbg1, and Gjb6 - Connexin30 (Cahoy et al., 2008) 

(Fig. 30f).  In the EGF+FGF culture, GFAP, some transcript variants of Acsbg1 and 

connexin30 showed a slight decrease already, while in the FGF culture, only the 

GFAP and one variant of Acsbg1 were down-regulated compared to the control (Fig. 

30f). These changes were not significant, however, they show the trend in repression 

of the endogenous program. In contrary to neurogenic genes induction, that appears 

very rapidly, the silencing of the endogenous cell program might be slower as a 

consequence of the neuronal fate acquisition. In order to address the question, 

whether this can be done efficiently in both cultures, we would need to investigate the 

transcriptional changes at the later time point. This might help us to interpret the 

differences in the reprogramming capacity of the EGF+FGF and FGF cultures since 

they cannot be explained by transcriptional changes observed at 48 h after 

NEUROG2 overexpression. 
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Figure 30: Transcriptional changes induced or repressed by NEUROG2 
overexpression. 
(a) Heatmap showing the expression of 25 most induced genes after NEUROG2 
overexpression compared to the control in EGF+FGF and FGF culture. The arrows 
are pointing out the genes that are commonly induced in both cultures. (b) Venn 
diagram showing the number of the Neurog2-induced genes in both cultures, their 
overlap and corresponding GO terms biological processes. (c) Bar chart depicting 
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GO terms related to the commonly induced genes after NEUROG2 overexpression. 
Boxed areas are labeling the GO terms associated with neurogenesis. (d) Graph 
showing fold change enrichment of neurogenic genes compared to control in both 
conditions. (e) Venn diagram presenting the numbers of down-regulated genes in 
both cultures their overlap with associated GO terms. (f) Bar chart showing the fold 
change differences in expression of astrocyte markers compared to the control in 
EGF+FGF and FGF culture. Abbreviations: OE, overexpression; TPM, transcripts per 
million; E+F, EGF+FGF; F, FGF; GO, gene ontology; BP, biological process; expr., 
expression. 
 

3.7.3.3 HMGB2-related changes in the gene expression in the EGF+FGF and FGF 

cultures 

 

Next, we investigated the transcriptional changes introduced by HMGB2 

overexpression in EGF+FGF and FGF cultures cells. We aimed to elucidate the ones 

enabling better reprogramming and improved neuronal yield of the FGF culture. 

HMGB2 overexpression induced an independent set of genes in both cultures (111 in 

EGF+FGF and 102 in FGF), with very little overlap (9 genes) (Fig. 31a). However, 

the GO terms biological processes assigned to the differentially expressed genes are 

similar in both culturing conditions indicating the involvement of HMGB2 in the 

regulation of transcription (Fig. 31a). Specifically, in the EGF+FGF culture, HMGB2 

facilitates the DNA repair and regulates apoptotic signaling pathways. In the FGF 

culture, it promotes the expression of different kinases involved in protein 

phosphorylation (Fig. 31a). The 9 commonly regulated genes in both cultures are 

related to the regulation of transcription and regulation of the neuronal differentiation 

(Fig. 31a). Interestingly, the most up-regulated gene in the EGF+FGF culture upon 

HMGB2 overexpression is Neurog2, which is also in the FGF culture one of the top 

10 up-regulated ones. In addition, we discovered up-regulation of some known 

Neurog2 targets like Heyl, Dll4, and Elavl4, which might be induced by HMGB2 

directly or as a consequence of Neurog2 up-regulation. These results suggest that 

HMGB2 induces Neurog2 expression and possibly enhances its function during the 

reprogramming process. Similarly as described above, we found a specific subset of 

down-regulated genes in each of the cultures upon HMGB2 overexpression with only 

6 common ones (Fig. 31b). These 6 genes are involved in different processes like 

DNA repair, cell cycle regulation, apoptosis, and phosphorylation. Genes specifically 

down-regulated in the EGF+FGF culture are assigned to the GO term regulation of 



 

 

 
Results 

 
  

95 

transcription and DNA damage checkpoint (Fig. 31b). Similarly, also the FGF culture 

specific genes that were lower in their expression are related to the regulation of 

transcription and DNA repair (Fig. 31b).  

 

To sum up, despite most of the significantly up and down-regulated genes being 

different in both cultures upon HMGB2 overexpression, the majority of them play a 

role in the gene expression regulation and response to the DNA damage. 

Importantly, HMGB2 induced transcriptional changes that stimulate Neurog2 and its 

targets expression, which might enhance the reprogramming process in the FGF 

culture where NEUROG2 alone is not sufficient to do so. In addition, HMGB2 

promotes changes in the transcripts involved in the DNA repair that might become 

very relevant when the cells undergo the reprogramming. During the metabolic 

switch from the glycolysis to the oxidative phosphorylation in the conversion process 

from the astroglial cells to the neurons, there is an excessive production of the 

reactive oxidative species (ROS) (Gascón et al., 2016; Quadrato et al., 2016) that 

can cause a lot of endogenous DNA damage. Therefore HMGB2 induced DNA repair 

mechanisms might be very beneficial after overexpression together with NEUROG2, 

to help the cells survive and properly acquire a neuronal identity. 

 

3.7.3.4 Simultaneous overexpression of HMGB2 and NEUROG2 and its related 

transcriptional changes 

 

To explore more about the transcriptional changes stimulated by simultaneous 

overexpression of NEUROG2 and HMGB2, we investigated the genes up and down-

regulated (fold change>2, p<0.05) 48 h after the viral transduction with both factors 

(Fig. 31c,d). The number of differentially up-regulated genes was similar to the 

NEUROG2 overexpression alone, showing a subset of genes induced specifically in 

EGF+FGF culture (378 genes), FGF culture (367 genes) and around one third of 

genes being commonly up-regulated (254 genes). The GO term analysis of biological 

processes (p<0.05) gave a quite similar outcome to the one with NEUROG2 

overexpression only (Fig. 30b; Fig. 31c). Commonly enriched genes were related to 

neurogenesis, while in each of both cultures there were some specific genes related 

to the alternative fate induction and regulation of transcription (Fig. 31c). The analysis 

of the gene repression upon NEUROG2 and HMGB2 overexpression showed many 
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more genes down-regulated when compared to NEUROG2 alone in the EGF+FGF 

culture and also more commonly down-regulated genes (Fig. 30e; Fig. 31d). In both 

cultures, we observed repressed genes associated to the alternative fate, as well as 

endogenous gliogenic fate in the EGF+FGF culture (Fig. 31d), with down-regulation 

of astrocytic marker S100β for 2-fold. Interestingly, when HMGB2 is overexpressed 

together with NEUROG2, many genes repressed in both cultures were related to the 

GO term metabolic processes (Fig. 31d). In the EGF+FGF culture, these were lipid 

metabolic processes and glycogen metabolic processes, while in FGF culture in 

addition to lipid metabolic processes there were genes down-regulated as a 

response to oxidative stress. HMGB2 proteins seem to work at the different levels, 

for example enhancing the transcription, facilitating DNA repair and together with 

NEUROG2 participating in changes in metabolic states.  

 

To elucidate which of these processes are the most relevant for the conversion, we 

decided to overlay differentially expressed genes in the conditions where 

reprogramming works efficiently (EGF+FGF upon NEUROG2 overexpression, FGF 

upon NEUROG2+HMGB2 overexpression) and exclude the genes showing 

differences in the inefficient reprogramming paradigm (FGF upon NEUROG2 

overexpression) (Fig. 31e,f). With this approach we found 36 common up-regulated 

genes having functions in chromatin remodeling, regulation of gene expression, and 

transcription factors binding (Fig. 31e). The examination of commonly down-

regulated genes from 3 conditions revealed only 15 genes related to alternative fate 

repression, for example, cardiac muscle cell development (Fig. 31f). All in all, 

HMGB2 incudes transcriptional changes in the FGF culture possibly by his chromatin 

remodeling function. Although NEUROG2 manages to induce its targets in both 

cultures, this seems not to be enough for the efficient reprogramming in the FGF 

cultures. Therefore, additional transcriptional changes also need to take place and 

can be induced by higher levels of HMGB2 in the culture. On the other side, HMGB2 

also helps to more efficiently down-regulate the emerging alternative program leading 

to muscle cells differentiation mostly likely by enabling the access to some repressor 

complexes via chromatin remodeling.  

 

To summarize the transcriptome analysis results, we observed considerable 

differences in the global gene expression that are influenced by different growth 
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factors conditions.  NEUROG2 is able to induce neurogenic program in both cultures 

and to repress genes specific for each of the condition, however, having a role in 

similar biological processes. HMGB2 shows its involvement mostly in the regulation 

of transcription including the induction of Neurog2 levels and DNA damage response. 

Synergistic effect of both factors results in a similar outcome as with Neurog2 alone 

when investigating the up-regulated genes, however, it reveals more repressed 

genes related to the metabolic changes that were not regulated upon the 

overexpression of NEUROG2 alone. 

 

 
 

Figure 31: Transcriptional changes induced by HMGB2 overexpression and 
simultaneous overexpression of HMGB2 and NEUROG2. 
(a-d) Venn diagrams showing up or down-regulated genes in both cultures, their 
overlap and corresponding GO terms biological processes after transduction with the 
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retrovirus encoding for Hmgb2 only (a,b) or Neurog2 and Hmgb2 together (c,d). (e) 
Venn diagrams overlaying the up-regulated genes from three different conditions, 
showing 36 genes relevant for the conversion and their functional annotations. (f) 
Venn diagram showing 18 down-regulated genes and corresponding GO term that is 
important to enable efficient reprogramming identified by overlapping the conditions 
of the cultures with a good neuronal yield. 
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4 Discussion 
 

Our ability to manipulate cell fate depends very much on our understanding of the 

underlying molecular mechanisms specifying or maintaining particular cell fate. In 

order to study the molecular changes and hurdles of the direct reprogramming, we 

first developed a new in vitro model that revealed the influence of extrinsic factors on 

the capacity of the cells to undergo the fate transition. I will first discuss how we 

developed this model and what we have learned from comparing the two paradigms 

with good and impaired reprogramming capacity. I will then focus on chromatin-

associated changes and the role of architectural protein HMGB2, which is largely 

responsible for increasing the efficiency of reprogramming in the cells that are 

otherwise difficult to convert in vitro. I will continue the discussion with the main 

principles of NEUROG2 and HMGB2 transcriptional regulation during direct neuronal 

conversion, trying to pinpoint the changes that are sufficient to silence the programs 

of the starting cells and to activate those of the target cells. Finally, I will conclude by 

summarizing the newly gained knowledge on the molecular mechanism of the 

reprogramming and raised some questions that still remain to be addressed.  

 

4.1 New in vitro model suitable to study challenging reprogramming 

conditions and identify possible barriers in the cell fate transition 
 

The knowledge about the cellular and molecular mechanisms and possible hurdles of 

glial to neuronal cell fate transition can be only gained by analysing the less efficient 

reprogramming paradigms, similar to the in vivo environment conditions. To better 

recapitulate in vivo environment after the brain injury and establish more challenging 

model for molecular studies in vitro, we adjusted growth factors composition and 

cultured postnatal astrocytes in the medium lacking EGF, as its levels rapidly 

decrease after the injury. At the lesion site, 3-4 days post injury when neurogenic 

transcription factors are applied to induce the neuronal reprogramming, EGF levels 

already reach their baseline (Addington et al., 2015) and rather limited number of 

neurons from adult glial cells by forced expression of single neurogenic factor 

NEUROG2 can be achieved (Gascón et al., 2016). The removal of EGF from the 

culturing medium, similarly to the in vivo conditions, rendered the astroglia into the 



 

 

 
Discussion 

 
  

100 

cell types resistant to the reprogramming by the overexpression of neurogenic 

transcription factors in vitro. Therefore, we established a new in vitro model, 

consisting of the cells cultured with two growth factors EGF+FGF, having a good 

reprogramming capacity and the cells with limited conversion rate cultured with FGF 

growth factor only. Next, we performed different sets of experiments to compare the 

molecular features of the cells prone and resistant to reprogramming to identify the 

ones that enable efficient acquisition of neuronal fate and the ones that inhibit this 

process. 

 

4.2 EGF+FGF and FGF cultured astroglia are not different based on 

their markers identity but differ in their cell cycle properties 
 

We first investigated similarities between two cultures based on their cellular markers 

expression, to exclude the influence of the growth factors on the culture composition. 

It was important to prove that the removal of the EGF from the culturing medium 

does not result in the enrichment of some specific populations during the expansion 

phase, which would respond differently to the neurogenic transcription factor 

overexpression. Since the astroglial cells are obtained directly from the piece of 

postnatal cortical tissue, different cell types such as astrocytes, oligodendrocytes, 

pericytes, microglia, and neurons can be co-isolated. However, using published 

protocol (Heinrich et al., 2011), we enrich mostly for the GFAP+ astrocytes. The 

purity of the EGF+FGF culture was previously confirmed with various astrocyte 

markers and genetic fate mapping (Berninger et al., 2007; Heinrich et al., 2010; 

Heins et al., 2002), where they also proved that these cells do not have any intrinsic 

neurogenic potential or contamination with β-III TUBULIN+ neurons. Importantly, we 

demonstrated that the withdrawal of the EGF does not change the characteristics of 

the culture, as the majority of cells remained S100β+ and GFAP+ in both conditions. 

However, most of the cells were also OLIG2+ regardless of the growth factor 

composition. Previous studies indicated the OLIG2 expression in immature 

developing astrocytes and its role in astrocyte development in the brain (Cai et al., 

2007; Marshall et al., 2005), therefore it is not surprising that we detected it in our 

postnatal astroglial cells. Despite expecting a low proportion of contaminating 

oligodendrocyte progenitor cells in both cultures, we would need to use other 
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markers that would exclusively label OPCs, such as SOX10 or PDGFRα to properly 

quantify the abundance of this population.  

 

Based on tested markers we concluded that the different growth factor composition 

doesn’t affect the starting population, yet, it also doesn’t account for their different 

reprogrammability. We, therefore, asked whether the observed differences in the 

proliferation rate could explain the lower neuronal yield in the FGF culture. Most of 

the published data suggest that proliferative behavior and direct fate conversion of 

the cells are not necessarily directly linked. Many cell types can switch their cell fate 

into neurons without cell division (Fishman et al., 2015; Heinrich et al., 2010; Karow 

et al., 2012; Marro et al., 2011). Live cell imaging of postnatal astrocytes during 

reprogramming process revealed that most of the astrocytes directly converted into 

neurons without dividing after the retroviral transduction (Gascon et al., 2015). Based 

on this observation from previous studies we assumed, that the better conversion 

efficiency of EGF+FGF culture is not a consequence of its higher proliferation 

activity.  

 

All in all, we observed that culturing the cells with or without EGF growth factor does 

not affect heterogeneity of the cultures apart from observed differences in the cell 

cycle. However, this analysis was based on a few commonly used cellular markers. 

To investigate the composition of the cultures at the single cell level, recent advances 

in single cell transcriptomics might provide valuable insights into cellular 

heterogeneity. We performed first pilot experiments using Fluidigm single cell RNA-

sequencing approach on untransduced astrocytes 10 days after the culturing with 

EGF+FGF of FGF growth factors, which present the starting point of the 

reprogramming. The preliminary PCA analysis suggested that most of the cells of 

both cultures cluster together, however it revealed the subpopulation in the FGF 

culture that formed a separate cluster. We would speculate that this might be the 

population that favors astrocytes lineage commitment over neurogenesis, but the 

analysis is still ongoing and will hopefully give more insights into the heterogeneity of 

our starting cultures. In the meantime, we investigated the intrinsic differences 

between two cultures more into details using the proteome analysis. With 

immunostaining, we were able to test only for few markers that did not reveal the 
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differences, which would explain the altered reprogramming capacity of FGF culture. 

With this aim, we investigated the global protein expression in both cultures.  

 

4.3 Changes in metabolic states and chromatin compaction could be 

responsible for different reprogramming capacity of two cultures 
 

The proteome analysis did not reveal the major differences between two cultures 

what was not completely unexpected since the majority of cells exhibited the 

astrocyte features and showed similar expression of tested cellular markers 

regardless of the culture condition. Still, we identified some proteins specifically 

enriched in the each of the cultures and carefully investigated them in order to 

identify the molecular features that could explain the differences in the 

reprogramming capacity. The GO terms assigned to the proteins enriched specifically 

in the FGF culture suggest some morphological differences of these cells and the 

enrichment of the cell populations with the muscle cell identity. The only source of 

such cells in the culture could be vascular smooth muscle cells and pericytes. 

Published data reported that many different FGF growth factors, including FGF2, 

induce vascular smooth muscle cells proliferation in vitro (Yang et al., 2015). 

Nevertheless, comparing EGF+FGF and FGF cultures, we did not observe any 

differences in αSMA marker, which should label both of the above-mentioned 

populations. Furthermore, the percentage of transduced cells expressing smooth 

muscle actin was so low that it cannot account for different reprogramming capacity 

of two cultures. As we did not identify any other features in the FGF culture that 

would maintain these cells in the glial lineage after the overexpression of neurogenic 

transcription factors, we decided to investigate the proteins enriched in the 

EGF+FGF culture with the aim to identify the factors necessary for the efficient 

reprogramming.  

 

Proteins highly enriched in the EGF+FGF culture were mostly related to the 

metabolism and chromatin remodeling. The importance of the metabolic transition in 

the neuronal reprogramming was recently published in our lab (Gascón et al., 2016). 

The astrocytes mostly rely on anaerobic glycolysis and β-oxidation (Tsacopoulos and 

Magistretti, 1996) but during reprogramming, they need to switch to an oxidative 
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metabolism, which is required by neurons. This can lead to an excessive oxidative 

stress (Gascón et al., 2016; Quadrato et al., 2016), that results in the cell death and 

interferes with the successful reprogramming. The proteins identified to be specific 

for the EGF+FGF culture are mostly components of the electron transport chain in 

oxidative phosphorylation. Higher expression of these proteins in the EGF+FGF 

cultured astrocytes could allow them to acquire the most appropriate metabolism 

more efficiently than FGF cultured cells. The metabolic transition might occur more 

smoothly as these cells already have the necessary components that FGF astrocytes 

still need to gain. However, to test this hypothesis we would need to perform the 

Seahorse analysis (Agilent) that enables measurement of the two major energy 

pathways (mitochondrial respiration and glycolysis) in live cells in real time. We 

would expect that EGF+FGF astrocytes exhibit higher mitochondrial respiration and 

rely less on the glycolysis compared to the FGF cultured cells.  

 

Along with the enrichment of proteins related to the respiratory chain, the proteome 

analysis revealed the abundance of the chromatin-associated proteins in the 

EGF+FGF culture. This raised an important question about the role of the chromatin 

status of the starter cell in modulating reprogramming. While the differences in the 

chromatin compaction in both cultures were addressed using ATAC-sequencing and 

will be discussed later on, we first focused on the candidates that were identified in 

the EGF+FGF culture based on the proteome analysis. One of the candidates 

enriched in the culture more prone to be reprogrammed was chromatin-associated 

protein HMGB2. Due to its high and specific expression in neuronal progenitors 

similarly to the other neurogenic transcription factors, we speculated that it might help 

to instruct the neuronal fate from the astroglial cells. Moreover, some recent studies 

reported about its role in the regulation of adult hippocampal neurogenesis (Kimura 

et al., 2018), although its molecular mechanism is yet to be elucidated. Therefore it is 

not only the potential candidate to be tested in the reprogramming paradigm, but we 

might also reveal how it works on the molecular level and what are its related 

changes in the chromatin architecture. Interestingly, HMGB2 was not the only 

member of HMGB protein family enriched in the EGF+FGF culture. HMGB1 also 

showed higher levels in the culture with better conversion rate. However, HMGB1 

shows completely different expression in the adult brain, it is much more abundant in 

the whole brain and not specifically enriched in neuronal progenitors.  This would 
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suggest different function of both proteins in different brain cell types. In addition to 

the HMGB proteins, we also found two members of the second major family of the 

chromatin structural proteins, linker histones H1. This was quite surprising since 

these two families play the opposite role at the chromatin level. In general, H1 

proteins stabilize the compacted chromatin structures, while HMG proteins promote 

chromatin decompaction and higher accessibility. All HMGs compete with H1 for 

chromatin binding sites in a dose-dependent fashion but each HMG family member 

has interactions with specific variants of H1 members (Postnikov and Bustin, 2016). 

Therefore, the histone variants that are highly expressed in the EGF+FGF culture 

might not be the ones that directly compete with HMGB1 or HMGB2. An alternative 

explanation for their simultaneous enrichment in the EGF+FGF culture could be that 

their expression has to be tightly regulated and cannot allow much higher enrichment 

of one or the other family since this could result in completely disrupted balance in 

the chromatin structure. 

 

The observed enrichment of HMGB proteins in the cells cultured with EGF+FGF, 

lead to the question whether the expression of this proteins could be directly induced 

by the EGF signaling. Although we did not find any literature reporting about this, 

there might be some evidence supporting this hypothesis (Holth et al., 1997; Müller 

et al., 2004). HMGB1 gene is transcriptionally controlled by steroid hormones, 

probably by the cytokine-activated JAK/STAT signaling pathway (Müller et al., 2004). 

JAK/STAT pathway is also signaling cascade initiated by EGF growth factor (Henson 

and Gibson, 2006; Kisseleva et al., 2002), therefore it is not completely exclusive that 

it has an effect on the Hmgb1 (possibly also Hmgb2) transcription. The second study 

reported that the treatment of a human mammary epithelial cancer cell line with EGF 

induces transcription of the HMGA1 gene (Holth et al., 1997). There are no direct 

indications about Hmgb2 being regulated by EGF signaling pathways but based on 

the studies with the other HMG members, this might not be completely unexpected 

(Holth et al., 1997; Müller et al., 2004). However, searching for the upstream 

regulators of the HMGB2 would be a new project on its own and in this study, we 

rather focused on its downstream effects. 
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4.4 HMGB2 enhances the neuronal conversion in the cultures less 

prone to be reprogrammed 
 

To test the importance of the proteins involved in the chromatin rearrangement 

during the reprogramming process, we overexpressed the HMGB2 protein alone or 

together with NEUROG2 in the EGF+FGF and FGF culture and investigated its role 

in facilitating the cell fate transition. HMGB2 on its own is not neurogenic and also did 

not change the glial cell identity. However, it plays an important role in the process of 

forced neurogenesis, specifically in the cells that are otherwise difficult to reprogram. 

The number of induced neurons was not increased in the EGF+FGF culture, where 

the NEUROG2 allows the acquisition of a neuronal phenotype very efficiently. We 

would speculate that this culture already reached its reprogramming capacity and we 

would correlate this to the number of GFAP+ cells at the starting point. We observed 

about 60% of GFAP+ cells from transduced cells and the comparable number of 

induced neurons upon NEUROG2 overexpression, suggesting that only the GFAP+ 

cells can be converted. Although also the FGF culture contains a similar number of 

GFAP+ cells, only the small percentage of them can undergo the cell fate transition. 

One of the reasons might be the lower level of HMGB2 protein. Indeed, elevated 

expression of HMGB2 together with NEUROG2 induced neurogenesis in the FGF 

culture almost to the levels that can be reached in the EGF+FGF culture. 

Interestingly, HMGB2 does not only help the NEUROG2 but it also seems to have 

the similar effect together with the BRN2. Although the other neurogenic factors 

might be tested, such as ASCL1 or SOX11, we would conclude that HMGB2 does 

not work as a specific co-factor of NEUROG2.  

 

We next asked whether the presence of HMGB2 is crucial for the cells undergoing 

the fate transition. The experiments in the astrocytes isolated from Hmgb2-/- animals 

showed that HMGB2 is not necessary for the reprogramming since cells can still 

convert, however with limited efficiency. This brings up a question, how much can 

other members of the HMGB family compensate for its loss, especially due to the fact 

that they are structurally very similar and based on the enrichment of HMGB1 along 

with HMGB2 in the EGF+FGF culture. On the other hand, HMGB1 did not facilitate 

NEUROG2-mediated reprogramming in the FGF culture in wild-type astrocytes, 
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suggesting that HMGB1 does not resemble the function of HMGB2 in the astroglial 

cells and reprogramming process. Nevertheless, the situation might be different if the 

HMGB2 protein is not expressed from the beginning on likewise in Hmgb2-/- 

astrocytes. In this case, the partial redundant functions are suggested since the 

complete absence of HMGB2 is not lethal for the animals, while Hmgb1-/- animals 

die immediately after the birth (Bianchi and Agresti, 2005). The Hmgb2-/- animals are 

smaller in size, males are sterile, but in general phenotypically do not differ to the 

wild-type animals (Bronstein et al., 2017), therefore the redundancy with the other 

family members is not excluded. To test this in our reprogramming paradigm, we 

would need to knock down the HMGB1 protein in Hmgb2-/- astrocytes and test the 

reprogramming capacity of the cells or create the inducible line for the Hmgb2 

deletion. It would be also interesting to see whether the reprogramming efficiency in 

the FGF cultured astrocytes from Hmgb2-/- animals would be limited even further. 

Many questions still remain to be explored, however, based on the reprogramming of 

Hmgb2-/- astrocytes we can conclude that HMGB2 protein is not necessary for the 

neuronal conversion but is it definitely involved in this process and it is sufficient to 

enhance the neuronal conversion in the cultures with a limited acquisition of the 

neuronal program. This is also supported by the results from the reprogramming of 

the reactive glial cells isolated after the injury, where HMGB2 also showed a 

promising outcome in inducing the reprograming together with NEUROG2 and 

ASCL1.  

 

4.5 HMGB2 does not increase the efficiency of the reprogramming in 

vivo but is abundantly expressed after the brain injury  
 

Promising results from in vitro experiments motivated us to test whether the role of 

HMGB2 could be exerted also in vivo, by helping NEUROG2 to acquire neuronal 

program in reactive glial cells after the brain injury. The simultaneous overexpression 

of both factors was not sufficient to facilitate the reprogramming after the injury 

limited to the cortical gray matter, however, some induced neurons emerged when 

the injury was deeper, reaching the white matter. The retroviral injection does not 

exclude the transduction of neural progenitors in the white matter, therefore, the 

observed induced neurons possibly originate from these progenitors that migrated 
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from the white matter up to the gray matter where they finally differentiated. It would 

be interesting to explore, whether this phenotype is related to the HMGB2 induction 

or it can be also triggered by the overexpression of the NEUROG2 alone. To address 

this point, deeper GM+WM injury needs to be performed, followed by the injection of 

the retrovirus encoding for Neurog2 and quantification of the NEUN+ induced 

neurons in comparison to the GM injury. Comparable numbers upon NEUROG2 

overexpression regardless of the injury type would indicate the involvement of 

HMGB2 in differentiation and migration of the neuronal progenitors to the injury site. 

Although HMGB2 helped NEUROG2 and other neurogenic transcription factors to 

overcome the barriers of reprogramming in vitro, the other roadblocks (like oxidative 

stress) are most possibly still present in vivo. Therefore, some additional strategies 

are acquired to ameliorate the final acquisition of a neuronal program in the reactive 

glial cells after the brain injury. 

 

Despite being insufficient to allow the conversion of reactive glial cells to neurons in 

vivo, HMGB2 still might be involved in the response to the injury. The high 

abundance of HMGB2+ cells at the injury site suggested its up-regulation associated 

to the several cell types. To prove this hypothesis, the investigation of the HMGB2 

colocalisation with the markers for different populations that react upon the injury – 

NG2 glia, reactive astrocytes, microglia, and macrophages, is required. The 

response of HMGB2 seems to be very similar to the previously described HMGB1 

secretion at the injury site (Parker et al., 2017). HMGB1 gets highly up-regulated 

already 12 h after the injury and then gradually decreases until day 10 when it 

reaches its basal levels (Parker et al., 2017). HMGB2 expression dynamics appeared 

to be slightly delayed. 1 day after the injury there were only a few HMGB2+ cells at 

the injury site, with their highest numbers at day 5 post injury and their decline up to 

14 days after the injury. Despite delayed response, the question how similar is the 

role of HMGB2 compared to the HMGB1 in response to injury, remains elusive. 

HMGB1 gets activated under inflammatory conditions, translocates to the cytoplasm 

and is released into the extracellular space by innate immune cells, such as 

macrophages and dendritic cells as well as from damaged and necrotic neurons 

where it exhibits the chemoattractant activity for inflammatory cells (Parker et al., 

2017). It would be very interesting to investigate the possible translocation of the 

HMGB2, similar to the HMGB1 and the cells types involved. In line with this 
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hypothesis, we observed some HMGB2 staining surrounding DAPI labelled nuclei. 

Additionally supporting this observation, there is a study reporting the secretion of the 

HMGB2 from cultured monocytes, promoting proliferation and migration of 

endothelial cells (Pusterla et al., 2009). These functions of HMGB2 are exerted via 

binding to the receptor for advanced glycation endproducts (RAGE) that is also 

activated by HMGB1 (Pusterla et al., 2009). Overall, this publication indicates the 

same biological properties of extracellular HMGB2 and HMGB1, suggesting that they 

might play a similar role after the injury. This role, however, might not only be in 

promoting the inflammation but might also have some beneficial effects during the 

recovery stage of brain injury. Likewise, the HMGB1 promotes neurovascular 

remodelling by recruiting endothelial progenitor cells and increasing their proliferation 

(Li et al., 2014), the HMGB2 shows the similar role in promoting the proliferation and 

migration of endothelial cells in vitro (Pusterla et al., 2009). It would be extremely 

interesting to test the beneficial or detrimental effect of HMGB2 protein in our injury 

paradigm using our Hmgb2-/- mouse model, exploring the reaction of different cell 

populations in and investigating whether the glial scar formation would be rather 

induced or inhibited when HMGB2 protein is not present. It might be necessary to 

target HMGB1 at the same and knock it down in parallel, but due to such a high 

abundance of HMGB2, it is rather difficult to believe that HMGB1 can completely take 

over its function. Taken together, we could not confirm the involvement of HMGB2 in 

facilitating the in vivo reprogramming, but we discovered its up-regulation at the 

lesion site suggesting its involvement in response to the injury that still remains to be 

explored and would be very interesting follow up of the project.  

 

4.6 ATAC-sequencing revealed permissive chromatin states in the 

EGF+FGF culture and the role of HMGB2 in defining such states 
 

Proteome analysis revealed the enrichment of chromatin structural proteins in the 

culture more prone to be reprogrammed, which could enable more permissive 

chromatin states for the efficient glia to neuron conversion. Using the ATAC-

sequencing method, we confirmed this hypothesis, observing a higher number of 

opened regions in EGF+FGF culture when compared to FGF culture, many of them 

being located at the promoters. Interestingly, most of these promoters were assigned 
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to the neurogenic genes. This result suggests that EGF+FGF culture is more “plastic” 

in regard to chromatin states having neurogenic genes already opened that can get 

immediately transcribed upon induction. This might explain why the EGF+FGF 

culture is more prone to be reprogrammed. In addition, we identified the peaks 

located at the noncoding sites, which could represent the binding sites for the distal 

regulatory elements. The importance of these regions still remains elusive. To 

investigate which regulatory factors would bind there, we plan to perform the 

transcription factor binding site analysis and to evaluate whether they might be 

involved in the transition from gliogenic to neurogenic fate. In the FGF culture, we 

were able to extract much less information from the opened regions, as they were 

almost exclusively intergenic. Nevertheless, regardless where these sites are 

located, HMGB2 protein erases the differences between two cultures and opens 

specifically the neurogenic promoters that were closed in the FGF culture. We 

identified the required chromatin rearrangements to elicit the proper neuronal 

program the FGF culture and thereby the novel mechanism of the HMGB2 facilitating 

the reprogramming. However, when looking into the NEUROG2 induced changes, 

we observed that even on its own, this factor is able to open the closed neurogenic 

promoters due to its pioneering activity. To explain why these astrocytes still exhibit 

the limited reprogramming capacity, we developed two different hypotheses. One 

hypothesis would be that the required opening of neurogenic regions delays the 

whole process and thereby affects the efficiency of the reprogramming. In the 

EGF+FGF culture, the transcription of the neuronal program can immediately start 

upon NEUROG2 induction, while in the FGF culture NEUROG2 needs to first open 

this sites before the neurogenic transcription program can be applied. Exactly at this 

point involvement of the HMGB2 might be essential, resembling the role of 

NEUROG2, opening the same target sites of neurogenic genes and leading to the 

faster and more efficient induction of neurogenic fates. This explains also very well 

why we did not see any improvement of reprogramming in the EGF+FGF culture 

upon simultaneous expression of both factors. In this culture, the target sites of 

HMGB2 are already opened so the chromatin rearrangement of these regions via 

HMGB2-mediated remodeling is not needed. It would be very interesting to explore 

the spatial dynamics of the chromatin opening in the FGF culture comparing the 

NEUROG2 induced changes to the NEUROG2+HMGB2 induced ones, trying to 

confirm that HMGB2 can enhance this process. We would expect that such changes 
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take place very rapidly as reported for ASCL1 in the fibroblast reprogramming, where 

the first changes appear as early as 12 h after induction (Wapinski et al., 2017). 

However, this study discovered that the majority of the accessibility changes occur at 

day 2-5, therefore, we would also like to test whether the HMGB2 might be important 

during the later stages of the reprogramming and not only at the starting point.  

 

The second hypothesis how the HMGB2 could help NEUROG2 in facilitating the 

neuronal reprogramming at the chromatin level comes from another study of the 

fibroblasts reprogramming. Similarly to our FGF culture, NEUROG2 was reported to 

show limited reprogramming capacity in human fibroblasts (Smith et al., 2016). To 

induce the reprogramming of fibroblasts, NEUROG2 required the help of the small 

molecules forskolin (FK) and dorsomorphin (DM) that induced the Sox4 expression 

and consequentially SOX4 dependent chromatin remodeling. While NEUROG2 on its 

own induced only a modest increase in open chromatin, the Sox4 expression 

enhanced NEUROG2 chromatin occupancy that activated the expression of neuronal 

transcription factors, leading to a new neuronal cell fate (Smith et al., 2016). SOX4 

and HMGB2 have one common feature, HMG box binding domain (Dy et al., 2008), 

therefore it could very well be that HMGB2 plays a similar role in the FGF culture as 

reported for SOX4 in the fibroblast reprogramming. It would be also interesting to 

address whether HMGB2 physically interact or HMGB2 only sets up the chromatin 

states for the NEUROG2 binding.  

 

4.7 HMGB2 and NEUROG2 induced changes at the transcriptome level 
 

In the last aim of this study, we addressed the differences between the EGF+FGF 

and FGF cultures at the transcriptional level, explored the changes in the 

transcription upon NEUROG2 and HMGB2 overexpression and tried to correlate 

them to the changes in the chromatin dynamics. Examination of the differences in the 

control transduced cells resulted in a quite surprising finding of a high number of 

differentially expressed genes between two cultures, that was unexpected due to 

small differences in the proteome and high similarities based on the cellular marker 

expression. This analysis unraveled some specific characteristics of both cultures, 

but it could not answer why only a subset of cells can successfully complete the 
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reprogramming process. However, one observation was very clear, namely the high 

enrichment of genes related to the oligodendrocyte fate specification in the FGF 

culture. This was again quite unexpected since we proved that the majority of the 

transduced cells express astrocyte markers in both cultures. As discussed above, the 

oligodendrocyte progenitor cells need to be labeled with additional markers, but the 

proportion of this population is expected to be rather low with the remainder of the 

cells being astrocytes in both culturing conditions. 

 

Next, we investigated the NEUROG2 induced changes and found a lot of genes 

differentially expressed compared to the control, however, only about one-third of 

these genes were commonly induced in both cultures. The larger the differences 

between the transcriptomes of the starting population were, the more different 

changes had to be implemented in two cultures. The common genes were 

exclusively related to neurogenesis meaning that NEUROG2 induced neuronal 

transcriptional program in both cultures. Therefore, the explanation for the different 

reprogramming capacity of two conditions remained elusive. We speculate that at the 

48 h upon NEUROG2 induction, we do see the same transcriptional levels of 

neurogenic genes, but at the earlier time point, they might differ due to the fact that 

NEUROG2 still needs to open their closed chromatin sites (as seen on the ATAC-

seq). Transcriptional changes have to take place very rapidly, and if this is not 

efficient the reprogramming might be impaired and delayed. To prove this 

hypothesis, the earlier investigation of the changes in the transcriptome is required - 

the earliest time point to be able to select for the transduced cells would be 24 h 

upon the transduction. In agreement with the hypothesis of delayed reprogramming 

would be the also fact that the non-reprogrammed Neurog2 transduced cells were 

not positive for GFAP in the FGF culture. They could be still a transition phase, being 

somewhere between the astrocytes and induced neurons and will start expressing 

neuronal markers at the later time point. Some of them might do so already, but 

cannot be considered as induced neurons due to non-neuronal morphology. This 

question might be addressed keeping the cultures longer in reprogramming process 

and quantifying their reprogramming efficiency a week or two later.  

 

The next hypothesis to explain the different reprogramming efficiency would suggest 

that forced expression of NEUROG2 in the FGF culture still can induce neurogenic 
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fate, however, the insufficient repression of the gliogenic or alternative programs 

leads to the impaired acquisition of neuronal phenotype. We observed different 

genes being differentially expressed and related to the similar alternative fates in 

both cultures, suggesting their efficient down-regulation regardless of the culture 

condition. However, we did not observe the clear repression of the endogenous 

program in any of the two cultures. We would need to investigate further in one of the 

later time points in order to explore whether this can to be the major efficiency limits 

of direct reprogramming. The initial transcriptional response to induce neurogenic 

program is triggered very rapidly, instead, the down-regulation of starting cell 

program might take more time. 

 

In the next step, we investigated the HMGB2 functions as a transcriptional activator 

through the modulation of chromatin structure. Due to big differences in the starting 

populations, also HMGB2 induces a very different transcriptional response in both 

cultures. However, the assigned GO terms are similar in the EGF+FGF and FGF 

condition, related to gene expression regulation and response to the DNA damage. 

This fits well to the previously published role of HMGB2 protein, being known to 

affect many DNA dependent processes such as transcription, replication, and the 

repair of damaged DNA (Postnikov and Bustin, 2016). In agreement with ATAC-seq 

data, we also detected transcriptional changes at the Neurog2 locus, where HMGB2 

stimulates Neurog2 and its target genes expression. Interestingly, in the subset of 

genes induced by NEUROG2 overexpression, we also found Hmgb2 gene as 

differentially expressed when compared to the control. However, this was only in the 

EGF+FGF culture, meaning that it is probably a consequence of the changing cell 

identity when the cells start acquiring the neuronal phenotype. This is another proof 

of the importance of the HMGB2 in the neuronal transition since only the cells that 

can efficiently reprogram to the neurons up-regulate its levels.   

 

Looking at the simultaneous overexpression of both factors showed that the induced 

genes do not greatly differ to the ones induced by NEUROG2 alone, however, there 

were many more genes down-regulated with the help of HMGB2. These genes are 

related to the GO term metabolism, which is already a well-known regulator of the 

reprogramming. In addition to its previously discussed functions, HMGB2 seems to 

help the NEUROG2 to navigate through the metabolic switch. Since HMGB2 on its 
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own does not close any chromatin regions, we speculate that its effect in the down-

regulation might be achieved by opening the repressor binding sites. In addition to 

repression of some metabolic genes, HMGB2 improves the repression of the 

myogenic cell fate, which seems to be the reprogramming hurdle also in the 

astrocytes and not only in the fibroblasts as previously reported (Mall et al., 2017). 

We confirmed this role of the HMGB2 protein by a pilot experiment, trying to 

reprogram the astrocytes into the muscle cells by forced expression of MyoD1. While 

MYOD1 on its own induced myogenic fate in some cells, in combination with HMGB2 

all cells died, which would fit with the hypothesis that HMGB2 inhibits the muscle cell 

fate. 

 

We tried to further correlate the observed transcriptional changes upon the 

simultaneous overexpression of both factors with the HMGB2 induced chromatin 

rearrangements. Based on the observed opening of the regions at the neurogenic 

promoters, we proposed that HMGB2 enhances the acquisition of neuronal program 

induced by NEUROG2 overexpression. This could result in a shortened time of the 

metabolic transition and consequently reduce the levels of the oxidative stress that is 

a major hurdle in the cell fate transition. Overcoming these barriers rapidly, might 

enhance the survival of the cell during conversion and thereby improve the 

reprogramming capacity. 

 

4.8 Summary and conclusions 
 

The present work highlights the importance of the chromatin status of the starting 

cells by measuring the chromatin accessibility that is influenced by different growth 

factors and results in heterogeneous responsiveness to the activation of the 

neurogenic factors. The chromatin architectural factor HMGB2 plays a role in 

modulating the conversion susceptibility of differentiated cells at the different levels. 

With the help of HMGB2, astrocytes undergo the transition to a more plastic cell state 

by undergoing chromatin rearrangements, which makes them more permissive to 

fate specifying transcription factors and results in the acquisition of a new neuronal 

identity. We showed that this happens at the promoters of neuronal genes and 
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possibly at some distal regulatory regions, that contain the binding motives for the 

repressors of myogenic cell fate.  

 

In vivo situation seems to be more complicated due to many more environmental 

influences that might additionally inhibit the NEUROG2 pioneering activity. We 

believe that the chromatin remodeling is apart from the metabolic switch the second 

hurdle for the efficient reprogramming in vivo that was until now very much neglected 

since it happened in parallel with the effect on the metabolism. It would be interesting 

to explore the chromatin states of the reactive glial cells upon the injury using ATAC-

sequencing and the specific regions that need to undergo the chromatin 

rearrangements in order to acquire the new cell identity. It would be also crucial to 

find the specific candidates that can perform these rearrangements in vivo. With this 

project, we provided new insights into the mechanisms maintaining the glial cell 

identity and explored the new approaches to overcome such blocks to improve the 

reprogramming in vitro. Understanding the molecular basis of the reprogramming 

process is of fundamental importance when it comes to translating this approach to 

the clinic, either for disease modeling, drug screening or cell therapies. Although 

there is a lot to be explored, we still hope that our study contributed a piece of 

knowledge to this important field.  
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5 Materials and methods 
 

5.1 Materials 
 

5.1.1 Chemicals and reagents 

 

2-mercaptoethanol, Merck 

Acetic acid, Merck 

Acetone, Millipore 

Acrylamide, 30%, Roth 

Agarose, Biozym 

Amersham ECL Western Blotting Detection Reagent, GE Healthcare 

Ammonium peroxide disulphate (APS), Sigma-Aldrich 

Ammonium persulfate, Thermo Fischer Scientific 

Ampicillin, Roth 

AMPure XP beads, Beckman Coulter 

Aqua Poly/Mount mounting medium, Polyscience 

Bacto-Tryptone, BD Biosciences 

BD Difco™ Dehydrated Culture Media: LB Agar, Miller (Luria-Bertani), A. Hartenstein 

BD FACSFlow™, BD Biosciences 

Bromphenol Blue, Sigma-Aldrich 

Buffer EB, Qiagen 

cOmplete™ Protease Inhibitor Cocktail, Roche 

DAPI (4’,6-diamidino-2-phenylindole), AppliChem 

DNA Polymerase I, Large (Klenow) Fragment, NEB 

Ethanol (EtOH), Merck 

Ethylene glycol, Sigma-Aldrich 

Ethylenediaminetetraacetic acid (EDTA), Merck 

Gateway™ LR Clonase™ II Enzyme mix, Thermo Fisher Scientific 

GeneRuler 1 kb DNA Ladder, Thermo Fisher Scientific 

Glycerol, Sigma-Aldrich 

Glycine, Sigma-Aldrich 

Glycogen, Molecular Biology Grade, Roche 

Hydrochloric acid (HCl), 37%, Merck 
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IGEPAL CA-630, Sigma-Aldrich 

Immersion oil 518N, Zeiss 

Isopropanol, Merck 

Kanamycin sulphate, Roth 

Ketavet, 100 mg/ml, Pfizer 

Magnesium chloride (MgCl2), Sigma-Aldrich 

Methanol, Merck 

Milk powder, Roth 

Mineral oil, Sigma-Aldrich 

NaCl 0.9%, B. Braun 

NEBNext High-Fidelity 2X PCR Master Mix, New England Biolabs 

NEBuffer 2 (10X), New England Biolabs 

NEBuffer 2.1 (10X), New England Biolabs 

NEBuffer 3.1 (10X), New England Biolabs 

Normal goat serum (NGS), Vector Laboratories 

Orange G, Sigma-Aldrich 

Paraformaldehyde (PFA),  Merck 

PCR dNTP Mix (25 mM), Fermentas (Thermo Fisher Scientific) 

Pierce Ripa buffer, Thermo Fischer Scientific 

Potassium chloride (KCl), Sigma-Aldrich 

Potassium phosphate monobasic (KH2PO4), Sigma-Aldrich 

Proteinase K, Roche 

Restriction enzymes, New England Biolabs 

Ringer-Infusionslösung, B. Braun  

Rompun, 2%, Bayer 

SeeBlue™ Plus2 Pre-stained Protein Standard, Invitrogen (Thermo Fisher Scientific) 

Sodium azide (NaN3), Merck 

Sodium bicarbonate, 7.5%, Invitrogen (Thermo Fisher Scientific) 

Sodium chloride (NaCl), Merck 

Sodium citrate (C6H5Na3O7), Merck 

Sodium dodecyl sulphate (SDS), Roth 

Sodium hydroxide (NaOH), Roth 

Sodium phosphate dibasic (Na2HPO4), Sigma-Aldrich 
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SYBR™ Green I Nucleic Acid Gel Stain, Invitrogen (Thermo Fisher Scientific) 

SYBR™ Safe DNA Gel Stain, Invitrogen (Thermo Fisher Scientific) 

T4 DNA Ligase Buffer (10X), New England Biolabs  

T4 DNA Ligase, New England Biolabs 

TE Buffer (pH 8.0), Qiagen 

TEMED, Sigma-Aldrich 

Tris Base, Sigma-Aldrich 

Tris-HCl, Roth 

Triton-X-100,  Roth 

Tween 20, Sigma-Aldrich  

Yeast extract, Sigma-Aldrich 

  

5.1.2 Tissue culture reagents 

 

B27 serum-free supplement (50X), Gibco (Thermo Fischer Scientific) 

Bovine basic fibroblast growth factor - bbFGF, Roche 

D-(+) Glucose solution, Sigma-Aldrich 

DMEM, high glucose, Gibco (Thermo Fischer Scientific) 

DMEM/F-12, no glutamine, Gibco (Thermo Fischer Scientific) 

DMEM/F12+GlutaMAX, Gibco (Thermo Fischer Scientific) 

DPBS (1X), Gibco (Thermo Fischer Scientific) 

Epidermal growth factor – EGF, Roche 

Fetal Bovine Serum - FBS, heat inactivated, Gibco (Thermo Fischer Scientific) 

Fetal calf serum - FCS, PAN-Biotech 

Geneticin (G418 Sulfate), Gibco (Thermo Fischer Scientific) 

GlutaMAX™ Supplement, Gibco (Thermo Fischer Scientific)  

HBSS with calcium and magnesium (10X), Gibco (Thermo Fischer Scientific) 

HBSS with calcium and magnesium (1X), Gibco (Thermo Fischer Scientific) 

HEPES, 1M, Gibco (Thermo Fischer Scientific) 

Horse serum, PAN-Biotech 

Hyaluronidase from bovine testes, Sigma-Aldrich 

Lipofectamine® 2000 Transfection Reagent, Invitrogen (Thermo Fisher Scientific) 

Opti-MEM, Gibco (Thermo Fischer Scientific) 

Penicillin/Streptomycin (10000 U/ml), Gibco (Thermo Fischer Scientific) 
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Poly-D-Lysine (PDL), Sigma-Aldrich 

Puromycin Dihydrochloride, Gibco (Thermo Fischer Scientific) 

Tetracycline, Sigma-Aldrich 

Trypsin from bovine pancreas, Sigma-Aldrich 

Trypsin-EDTA (0.05%), Gibco (Thermo Fischer Scientific) 

 
5.1.3 Kits 

 

Agilent High Sensitivity DNA Kit, Agilent 

Agilent RNA 6000 Pico Kit, Agilent  

ApopTag Red In Situ Apoptosis Detection Kit, Millipore 

BigDye Terminator v3.1 Cycle Sequencing Kit, Applied Biosystems (Thermo Fisher 

Scientific) 

Dye Ex 2.0 Spin Kit, Qiagen 

MicroPlex Library Preparation kit v2, Diagenode 

MinElute PCR Purification Kit, Qiagen 

Nextera DNA Library Prep Kit, Illumina 

Nextera Index Kit, Illumina 

PicoPure RNA Isolation Kit, Thermo Fisher Scientific 

Pierce™ BCA Protein Assay Kit, Thermo Fisher Scientific 

Qiagen Plasmid Maxi kit, Qiagen 

QIAprep Spin Miniprep Kit, Qiagen 

QIAquick Gel Extraction Kit, Qiagen 

QIAquick PCR Purification Kit, Qiagen 

Qubit™ dsDNA HS Assay Kit, Invitrogen (Thermo Fisher Scientific) 

SensiMix™ SYBR® No-ROX Kit, Bioline 

SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing, Clontech Laboratories 

Taq DNA Polymerase Kit, Qiagen 
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5.2 Methods 
 

5.2.1 In vivo methods 

 

5.2.1.1 Experimental animals 

 

The described experiments were conducted on both, female and male animals, 

which were either wild types (C57BL/6J mice) or transgenic Hmgb2-/- animals. 

Hmgb2-/- breeding pairs on a C57BL/6 background were obtained from Dr. Lorenza 

Ronfani (Core Facility for Conditional Mutagenesis, San Raffaele Scientific Institute, 

Milan, Italy). The Hmgb2 deficient mouse line was generated by replacing the Hmgb2 

coding sequence with the ble-lacZ coding sequence, using homologous 

recombination in ES cells, starting from the ATG translation start site in exon 2 to 

exon 4. Hmgb2 gene has in total 5 exons, from which the first one is not translated 

(Ronfani et al., 2001). The Hmgb2-/- animals are smaller in size, homozygous null 

males are viable, but in general, they phenotypically do not differ to the wild-type 

animals (Ronfani et al., 2001). 

 

For all in vitro experiments, animals at postnatal stage P5-P6 were used, except for 

reactive gliosis culture that was prepared from adult mice (8-10 weeks old). For the 

reprogramming experiments with Hmgb2 deficient astrocytes, heterozygous females 

were crossed with heterozygous males to obtain the pups of all 3 possible genotypes 

(see “Genotyping” section). In vivo reprogramming experiments were performed in 

adult 8-10 weeks old animals. 

 

Animals were kept under standard conditions with access to water and food ad 

libitum. All animal experimental procedures were performed in accordance with the 

German and European Union guidelines and were approved by the Institutional 

Animal Care and Use Committee (IACUC) and the Government of Upper Bavaria 

under license number: AZ 55.2-1-54-2532-171-2011 and AZ 55.2-1-54-2532-150-11. 

All efforts were made to minimize animal suffering and to reduce the number of 

animals used. 
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5.2.1.2 Surgical Procedures 

 

5.2.1.2.1 Stab wound injury 

 

Prior to every surgery, mice were deeply anesthetised by intra-peritoneal injection of 

sleep solution (10 µl per g body weight) that was provided by the Research Unit 

Comparative Medicine (Helmholtz Zentrum München). After the injection of the 

anaesthesia, mice were checked for pain reactions by pinching their tail and toes. 

The fur on top of the head was removed with a small electric razor and Bepanthen 

(Bayer) was administered to the eyes to prevent their dryness. The animals were 

then fixed in a stereotaxic frame and the skin of the head was cut following the 

midline with a scalpel to expose the skull surface. Stab wound injury was performed 

in the somatosensory cortex, as previously described (Buffo et al., 2008; Heinrich et 

al., 2014). For the in vivo reprogramming experiments, the injury was performed only 

in one hemisphere, while for the reactive gliosis culture, both hemispheres were 

injured in order to obtain a higher amount of reactive glial cells. To perform the injury, 

bregma was searched using the forceps by pressing gently on the skull bones. Once 

bregma was found, the stereotactic apparatus was set to coordinate zero. Next, a 

small circular cranial window (diameter of ~3 mm) was drilled above the cerebral 

cortex with the high-speed rotary micromotor (Foredom) and the cranial window was 

collected in a drop of a Ringer solution. Following coordinates below, 1 mm long stab 

wound was performed in the cortical grey matter parenchyma by moving the V-lance 

shaped knife (Alcon) back and forth.  

 

medio-lateral (x): ±1.8 from bregma 

rostro-caudal (y): -1.6 to -2.5 from bregma 

dorso-ventral (z): -0.6 from the meninges  

 

Importantly, the depth of the cut was restricted to 0.6 mm to avoid the deeper cortical 

layers and underlying white matter and therefore minimise the risk of migrating 

neuroblasts into the injured cortex. At the end of the procedure, the cranial window 

was placed back to protect the wounded area and the skin covering the skull was 

closed by Vicryl suture (Ethicon) with at least three stitches. Anaesthesia was 
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antagonized with an intra-peritoneal injection of awake solution (10 µl per g body 

weight), pre-prepared by Research Unit Comparative Medicine (Helmholtz Zentrum 

München), and the mice were kept on a pre-warmed pad until they were awake and 

recovered from the surgery. 

 

5.2.1.2.2 Injection of retroviral suspension at the injury site 

 

Three days after the stab wound injury in the retroviruses encoding for Neurog2-

IRES-RFP or Neurog2-T2A-Hmgb2-IRES-dsRED were injected at the lesion site. 

Mice were anesthetised and fixed in the stereotaxic frame as described before. The 

skin was opened along the previous cut, cranial window was removed and stored in a 

Ringer solution. Next, glass capillary was filled with the mineral oil and then with the 

viral suspension. After determining the injury site, 1 µl of retrovirus was injected with 

a glass capillary using Sys-Micro4 Controller for Micro Syringe Pumps (World 

Precision Instruments) at the z position -0.5 from the brain surface. The starting 

infusion speed was very low with 30 nl/min and was gradually increased to 50 nl/min, 

in order to avoid retroviral leakiness on the brain surface and allow the tissue to 

absorb the viral suspension. The capillary was retracted after 5 minutes when the 

injection was completed to avoid reflux along the needle tract. The bone flap was put 

back in place to cover the injured area followed by the procedures described above.  

 

5.2.1.3 Perfusion 

 

Prior to perfusion, animals were deeply anesthetized with a cocktail of Ketamin 

Rompun (20 µl per g body weight). Subsequently, they were transcardially perfused 

first with 1X PBS, followed by fresh ice-cold 4% PFA in PBS, which was left to 

circulate in the organism for about 20 minutes. The brain was then carefully removed 

from the skull and post-fixed in the same fixative overnight at 4°C. 

 

Ketamin-Rompun anaesthetic  

0.5 ml 100 mg/ml Ketavet 

0.5 ml 2% Rompun 

9 ml NaCl 0.9% 
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10X Phosphate Buffered Saline (PBS) 

400 g NaCl  

10 g KCl  

10 g KH2PO4  

58.75 g Na2HPO4 

Final pH=7.4. Dissolve in 5 l in Milli-Q water, autoclave and dilute 1:10 in autoclaved 

Milli-Q water to obtain 1X PBS. 

 

4% PFA 

40 g PFA 

3 NaOH pellets 

100 ml of 10X PBS 

900 ml Milli-Q water 

Dissolve 40 g PFA in 800 ml MilliQ water by gentle heating while stirring with the 

addition of 3 NaOH pellets to enable the PFA powder to dissolve. Cool down the 

solution to the room temperature and adjust the pH with the HCl extremely slowly 

drop by drop. When the pH drops dramatically to 1-3, quickly add 100 ml of 10X 

PBS. Adjust the pH to 7.2-7.3 and add Milli-Q water to final volume 1 l. Filter the 

solution through a paper filter and store at 4°C. 

 

5.2.2 Methods in cell biology 

 

5.2.2.1 Vibratome sectioning 

 

To perform vibratome sectioning, brain tissue was washed in PBS and allowed to 

dry. Both olfactory bulbs and cerebellum were removed and the brain was placed in 

an embedding mold (Polysciences) with the rostral part facing the bottom. A solution 

of 3% (w/v) agarose in 1X PBS was then poured into the mold and left to polymerize 

at the room temperature. Subsequently, brain tissue was cut into 70-80 µm thick 

coronal sections and collected in PBS. For long-term preservation, vibratome 

sections were kept in storing solution at  -20°C. 

 

10X Phosphate Buffered Saline (PBS) 
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400 g NaCl  

10 g KCl  

10 g KH2PO4  

58.75 g NaH2PO4 

Final pH=7.4. Dissolve in 5 l in Milli-Q water, autoclave and dilute 1:10 in autoclaved 

Milli-Q water to obtain 1X PBS. 

 

Storing solution 

30 ml Glycerol  

30 ml Ethylene glycol 

10 ml 10X PO4 buffer 

30 ml ddH2O 

Store at 4°C. 

 

10X PO4 buffer 

13.8 g NaH2PO4 x 2H2O 

3.0 g NaOH 

40 ml ddH2O 

Final pH=7.2-7.4. 

 

5.2.2.2 Preparation of PDL-coated glass coverslips 

 

Glass coverslips are first washed with acetone and boiled for 30 min in ethanol 

containing 0.7% (v/v) HCl. After two washing steps in 100% ethanol, coverslips are 

dried at the RT and autoclaved for 2 h at 180°C. To each well of a 24-well plate, one 

sterilized cover slip was added and pre-wetted with DPBS. Next, DPBS was replaced 

by 1X poly-D-lysine (PDL) solution and plates were incubated for at least 2 h at 37°C. 

Wells were washed three times with autoclaved ultrapure water and dried in the 

laminar flow before being transferred to the fridge and stored at 4°C until needed. 

 

50X poly-D-lysine (PDL) 

Poly-D-lysine powder 1 mg/ml in ddH2O  

Filter-sterilize, aliquot and store at -20°C for up to 6 months. Dilute to 1X poly-D-

lysine (PDL) in ddH2O water before use. 
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5.2.2.3 Primary culture of postnatal cortical astroglial cells  

 

Postnatal cortical astroglia were isolated and cultured as described previously 

(Heinrich et al., 2011). Following decapitation of postnatal (P5-P6) wild-type 

C57BL/6J mice, the skin and the skull were carefully removed and the brain was 

extracted avoiding any tissue damage and placed into the dissection solution. After 

separating the two hemispheres, the meninges was removed and a piece of cerebral 

cortex was dissected using fine forceps and collected in a tube with astrocyte 

medium. After the mechanical dissociation with a 5 ml pipette, cells were placed into 

uncoated plastic flasks for expansion in astrocyte medium supplemented with two 

growth factors EGF+FGF or with the FGF only. Usually, the dissociated tissue from 2 

P5-P6 pups (4 pieces of cortex) was placed into one T75 culture flask. After 4-5 

days, the medium was exchanged and supplied with the fresh growth factors. After 

10 days of culturing, cultured cells were rinsed with DPBS and contaminating 

oligodendrocyte precursor cells were removed by brusquely shaking the culture 

flasks several times. Astroglial cells were then detached from the flask by 

trypsinization and seeded onto poly-D-lysine (PDL)-coated glass coverslips (see 

protocol above) at a density of 8x104 cells per well in a 24-well plate with astrocyte 

medium. Alternatively, for the ATAC-seq and RNA-seq experiments, cells were 

plated to T75 flasks with the seeding density 3x106 cells per flask. At 2-4 h after the 

seeding, the cells were transduced with different retroviral vectors (see section 

“Expression plasmids and retroviral production”), usually in ratio 1 µl of virus per 1 ml 

of medium to prevent the toxicity of the virus. On the next day, astrocyte medium was 

changed to differentiation medium containing no growth factors for the 

reprogramming experiments. For the ATAC-seq and RNA-seq experiments, the cells 

were kept in the astrocyte medium. 

 

Cells were kept in the reprogramming process for 1 week and were then fixed an 

immunostained as described below (see chapter “Immunocytochemistry and 

immunohistochemistry”). To access the cellular identity and proliferation of the 

EGF+FGF and FGF cultured cells, they were fixed at the earliest possible time point 

(24 h after the transduction). Astrocytes in the T75 culture flasks were collected 48 h 
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after transduction, prepared for the FACS and sorted for the following ATAC-seq and 

RNA-seq experiments (see chapters below). 

 

The astroglial cultures from the Hmgb2-/- transgenic animals were prepared following 

the same protocol, however, the cortical tissue from each of the animal was kept 

separately and placed into the small T25 flask. In addition, the tips of the tails were 

collected to perform the genotyping (see chapter “Genotyping of Hmgb2 transgenic 

animals”). The cultures from Hmgb2-/- transgenic mouse line were grown only in the 

double growth factor condition EGF+FGF. 

 

Dissection solution 

500 ml 1X HBSS  

5 ml 1 M HEPES (10 mM final concentration) 

 

Astrocyte medium 

5 ml Fetal calf serum-FCS (10% (v/v) final concentration) 

2.5 ml Horse serum-HS (5% (v/v) final concentration) 

0.5 ml 45% glucose (3.5 mM final concentration) 

1 ml 50X B27 supplement (1X final concentration) 

0.5 ml Penicillin/Streptomycin (final dilution 1:100) 

Up to 50 ml DMEM/F12+GlutaMAX 

 

Growth factors are added freshly prior to the culturing in dilution 1:1000. 

Epidermal growth factor-EGF (10 ng/ml final concentration) 

Basic bovine fibroblast growth factor-bbFGF (10 ng/ml final concentration) 

 

Differentiation medium 

0.5 ml 45% glucose (3.5 mM final concentration) 

1 ml 50X B27 supplement (1X final concentration) 

0.5 ml Penicillin/Streptomycin (final dilution 1:100) 

Up to 50 ml DMEM/F12+GlutaMAX 

 

5.2.2.4 Reactive gliosis culture 
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To prepare the adherent reactive gliosis culture, cells from the lesioned area were 

isolated 3 days after the stab wound injury performed in the cortical grey matter of 

the adult wild-type animals (see chapter “Surgical procedures, Stab wound injury”). 

After removing the meninges, the cortical tissue around the lesion site from both 

injured hemispheres was carefully isolated avoiding any white matter contamination 

and cut into small pieces in the dissection solution. Pieces were collected into 15 ml 

falcon tube and centrifuged for 5 min at 1400 rpm. Dissection solution was replaced 

by pre-warmed Trypsin+Hyaluronidase mix and the tissue was gently homogenized 

following by 5 min incubation at 37°C. In the next step, the tissue was homogenized 

strongly by 1 ml pipette and incubated again for 5 min at 37°C. This step was 

repeated once more and then stopped by addition of the FBS. To remove the 

dissociation mix, cells were centrifuged for 5 min at 1400 rpm and finally 

resuspended in basis medium without EGF or FGF growth factors. Cells were plated 

on poly-D-lysine coated coverslips (see protocol above), placing the cells from one 

injured hemisphere into one well of a 24-well plate and transferred into low oxygen 

incubator with 5% CO2 and 5% O2. The basis medium was exchanged with the fresh 

medium already 24 h after the plating. After 3 days of culturing the cells, the medium 

was changed again prior to the retroviral transduction. Subsequently, the cells were 

transduced with different combinations of retroviruses (see the chapter “Expression 

plasmids and retroviral production”) and 24 h after transduction the medium was 

changed again and replaced with basis medium without FBS. 7 days after the 

transduction cells were fixed and immunostained as described below (see section 

“Immunocytochemistry and immunohistochemistry”). 

 

Dissection solution 

500 ml 1X HBSS  

5 ml 1M HEPES (10 mM final concentration) 

 

Trypsin+Hyaluronidase mix 

3.4 mg Trypsin 

3.5 mg Hyaluronidase 

5 ml Solution 1 

 

Solution 1 
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50 ml 10X HBSS (1X final concentration) 

9 ml 45% glucose (0.81% final concentration) 

7.5 ml HEPES (15 mM final concentration) 

Up to 500 ml ddH2O 

Adjust pH to 7.5 with 7.5% (w/v) sodium bicarbonate and sterilize by filtration with 

0.22 µm PVDF filter. 

 

Basis medium 

500 ml DMEM/F-12, no glutamine 

5 ml Penicillin/Streptomycin (final dilution 1:100) 

5 ml 45% glucose (3.5 mM final concentration) 

50 ml Fetal bovine serum-FBS (10% (v/v) final concentration) 

10 ml 50X B27 supplement (1X final concentration) 

5 ml GlutaMAX™ Supplement (final dilution 1:100) 

 

5.2.2.5 Immunocytochemistry and immunohistochemistry 

 

Immunostaining was performed on a cell culture samples or on free-floating sections. 

Cells were first fixed in 4% PFA in 1X PBS for 20 min at the room temperature and 

washed 3x 10 min in PBS. Sections stored in the storing solution were washed well 

with PBS prior to immunostaining. Meanwhile, antibodies were diluted in 0.5% Triton-

X-100 in 1X PBS with 10% normal goat serum (NGS) to reduce non-specific binding. 

Antibodies were used in different combinations; all the details about primary 

antibodies used are listed below. Antigen labelling was performed overnight at 4°C or 

2 hours at the RT, followed by 3x 10 min washing steps in PBS. In order to visualize 

primary antibody binding, samples were exposed to appropriate species and/or 

subclass specific secondary antibodies conjugated to Alexa Fluor 488, 546 or 647 

(Invitrogen). They were diluted 1:1000 in 0.5% Triton-X-100 in 1X PBS with 10% 

NGS and incubated with the specimen for about 90 min at the room temperature in 

the dark. Nuclei were visualized with DAPI (4’,6-diamidino-2-phenylindole) that was 

added to the mix of secondary antibodies in dilution 1:1000. Following extensive 

washing steps with PBS, coverslips or sections were mounted with Aqua Poly/Mount 

(Polysciences), a glycerol-based mounting medium that enhances and retains 

fluorescent stains. 
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* Heat-mediated antigen retrieval with citrate buffer required 

 

4% PFA 

40 g PFA 

3 NaOH pellets 

100 ml of 10X PBS 

900 ml Milli-Q water 

Dissolve 40 g PFA in 800 ml MilliQ water by gentle heating while stirring with the 

addition of 3 NaOH pellets to enable the PFA powder to dissolve. Cool down the 

solution to the room temperature and adjust the pH with the HCl extremely slowly 

drop by drop. When the pH drops dramatically to 1-3, quickly add 100 ml of 10X 

PBS. Adjust the pH to 7.2-7.3 and add Milli-Q water to final volume 1 l. Filter the 

solution through a paper filter and store at 4°C. 

 

10X Phosphate Buffered Saline (PBS) 

Antigen Company,  

ordering number 
Dilution 

Chick-anti-GFP Aves Lab, GFP-120 1:1000 

Rabbit-anti-RFP Rockland, 600-401-379 1:500 

Mouse IgG1-anti-GFAP Sigma-Aldrich, G3893 1:500 

Rabbit-anti-GFAP DakoCytomation, Z0334 1:1000 

Mouse IgG1κ-anti-S100β Sigma-Aldrich, S2644 1:500 

Rabbit-anti-OLIG2 Millipore, AB9610 1:500 

Mouse IgG2a-anti-αSMA Sigma-Aldrich, A2547 1:400 

Rabbit-anti-Ki67 Abcam, 15580 1:200 

Rat-anti-Ki67 DakoCytomation, M7249 1:200 

Rabbit-anti-PH3 (Ser10) Millipore, 06-570 1:200 

Guinea pig-anti-DCX Millipore, AB-2253 1:1000 

Mouse IgG2b-anti-β-III-TUBULIN Sigma-Aldrich, T8660 1:500 

Mouse IgG1-anti-NEUN Chemicon, MAB377 1:250 

Rabbit-anti-HMGB2 Abcam, ab67282 1:1000 

Mouse IgG2aκ-anti-HMGB2 Sigma-Aldrich, 07173-3E5 1:500* 

Rabbit-anti-HMGB1 Abcam, ab18256 1:1000 
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400 g NaCl  

10 g KCl  

10 g KH2PO4  

58.75 g NaH2PO4 

Final pH=7.4. Dissolve in 5 l in Milli-Q water, autoclave and dilute 1:10 in autoclaved 

Milli-Q water to obtain 1X PBS. 

 

5.2.2.6 Heat-mediated antigen retrieval with citrate buffer  

 

For some nuclear stainings, sections had to be pre-treated to enable primary 

antibody binding, for example, mouse-anti-Hmgb2. To perform heat-mediated 

antigen retrieval, free-floating sections were transferred into 1.5 ml tubes filled with 

1X citrate buffer and cooked for 15 min at 95°C. Following the treatment, they were 

stained using the protocol described above. 
 

10X citrate buffer 

29.4 g sodium citrate 

1000 ml ddH2O 

Adjust pH to 6.0 and dilute 1:10 in ddH2O to obtain 1X citrate buffer. 

 

5.2.2.7 Cell death assay  

 

To assess the cell death in cultured astroglial cells, the cultures were prepared as 

described before (see section “Primary culture of postnatal cortical astroglial cells”). 

24 h after re-plating the cells into 24-well PDL-coated plate, they were fixed in 4% 

PFA for 20 min at the room temperature and washed 3x 10 min in PBS. To detect the 

apoptotic cells, the ApopTag Red In Situ Apoptosis Detection Kit was used according 

to the manufacturer’s instructions. Afterward, the immunostaining for GFAP was 

performed to label the astrocytes following the standard protocol described above 

(see chapter “Immunocytochemistry and immunohistochemistry”).  

 

4% PFA 

40 g PFA 

3 NaOH pellets 
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100 ml of 10X PBS 

900 ml Milli-Q water 

Dissolve 40 g PFA in 800 ml MilliQ water by gentle heating while stirring with the 

addition of 3 NaOH pellets to enable the PFA powder to dissolve. Cool down the 

solution to the room temperature and adjust the pH with the HCl extremely slowly 

drop by drop. When the pH drops dramatically to 1-3, quickly add 100 ml of 10X 

PBS. Adjust the pH to 7.2-7.3 and add Milli-Q water to final volume 1 l. Filter the 

solution through a paper filter and store at 4°C. 

 

10X Phosphate Buffered Saline (PBS) 

400 g NaCl  

10 g KCl  

10 g KH2PO4  

58.75 g NaH2PO4 

Final pH=7.4. Dissolve in 5 l in Milli-Q water, autoclave and dilute 1:10 in autoclaved 

Milli-Q water to obtain 1X PBS.  

 

5.2.2.8 FACS analysis and sorting 

 

To enrich for the transduced cells that were further used for the ATAC-seq and RNA-

seq, we performed the fluorescence activated cell sorting (FACS). Primary cortical 

astrocytes were isolated and cultured as described above (see section “Primary 

culture of postnatal cortical astroglial cells”). They were collected by trypsinization 48 

h after retroviral transduction, washed, resuspended in DPBS and transferred to the 

FACS tubes. Next, they were analyzed using a FACS Aria II instrument (BD 

Biosciences) in the FACSFlowTM medium. Debris and aggregated cells were gated 

out by forward scatter area (FSC-A) and side scatter area (SSC-A). Forward scatter 

area (FSC-A) vs. forward scatter width (FSC-W) was used to discriminate doublets 

from single cells. To set the gates for the sorting, untransduced astrocytes were 

recorded. Sorted cells were collected in the DPBS, counted and divided into two 

batches: 50000 cells were immediately processed for the ATAC-seq and the 

remainder of the cells was collected for the RNA-seq library preparation (see 

chapters “ATAC-sequencing” and “Preparation of libraries for RNA-sequencing”). 
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5.2.3 Methods in molecular biology 

 

5.2.3.1 Genotyping of Hmgb2 transgenic animals 

 

For DNA extraction, mouse ear punches or tips of the tails were collected and 

incubated in 0.5 ml lysis buffer with proteinase K (100 µg/ml final concentration), 

shaking overnight at 55°C. On the next day, hairs and tissue residues were removed 

by centrifugation at 12000 rpm for 20 minutes. The supernatant was transferred to a 

new 1.5 ml tube and DNA was precipitated by adding 0.5 ml isopropanol, mixing well 

and centrifuging 20 min at the maximum speed. The supernatant was removed from 

the pellet and tubes were dried upside down at the room temperature. Dried DNA 

was dissolved in 150 µl of H2O, followed by 1-2 hours incubation at 55°C in the 

shaker. The DNA was kept at 4°C until PCRs were performed. Primers, solutions, 

and cycling conditions used in the PCR to characterise the genotype of transgenic 

mice are listed below. 

 

Lysis buffer 

100 ml 1 M Tris-HCl pH=8.5 (100 mM final concentration) 

10 ml 0.5 M EDTA (5 mM final concentration) 

20 ml 10% SDS (0.2% (v/v) final concentration) 

200 ml 1 M NaCl (200 mM final concentration) 

660 ml ddH2O 

 

Primers: 

Hmgb2 forward primer 5’ CGGACAGCTAGGAGCTTTGAAGTC 3’ 

Hmgb2 reverse primer 5’ GCGATGGGTTCGTTAGTTCTCAG 3’ 

LacZ forward primer 5’ GCTGGCGTAATAGCGAAGAGG 3’ 

LacZ reverse primer 5’ ATGCGCTCAGGTCAAATTCAGAC 3’ 

 

PCR reaction mix:  

10x CoralLoad PCR buffer (Qiagen): 2.5 µl 

dNTPs: 0.5 µl 

10 µM Hmgb2 forward primer: 0.5 µl 

10 µM Hmgb2 reverse primer: 0.5 µl 
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10 µM LacZ forward primer: 0.5 µl 

10 µM LacZ reverse primer: 0.5 µl 

Taq Polymerase (homemade): 0.2 µl 

DNA: 1 µl 

H2O: up to 25 µl 

 

The DNA was amplified under following cycling conditions:  

 

3 min 95°C  (hotstart)       

45 sec 95°C 

30 sec 60°C  35x 

30 sec 72°C    

5 min 72°C 

 

The product was loaded on 2% agarose gel (see chapter “Gel electrophoresis” 

below). Expected band sizes were: WT allel-236 bp and LacZ allel-413 bp.  

 

5.2.3.2 Gel Electrophoresis 

 

To prepare 1-2% (w/v) gel, depending on product size, the appropriate amount of 

agarose was dissolved in 1X TAE buffer by boiling in a microwave. After the solution 

cooled down, SYBR™ Safe DNA Gel Stain was added (1:25000) and the gel was 

poured in a prepared electrophoretic chamber. After the gel solidified, DNA samples 

were mixed with 6X loading dye and loaded into the wells, along with a 1 kb DNA 

ladder. Electrophoresis was performed at 100-150V. Finally, the band sizes were 

imaged at the Biorad Gel Doc™ XR+ System. 

 

For the cloning of Neurog2-T2A-Hmgb2-IRES-dsRED construct, DNA fragments with 

the right size were cut under UV light at the Biorad Gel Doc™ XR+ System, 

transferred into a 1.5 ml tube and purified with the QIAquick gel extraction kit 

according to the manufacturer’s instructions. 

 

50X TAE Buffer 

242 g Tris base 
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57.1 ml Acetic acid 

100 ml 0.5 M EDTA (50 mM final concentration) 

Dissolve in 800 ml autoclaved H2O, adjust pH to 8.0 with HCl and fill up to 1 l with 

autoclaved H2O. Dilute 1:50 in autoclaved H2O to obtain 1X TAE Buffer. 

 

5.2.3.3  ATAC-sequencing 

 

Assay for Transposase Accessible Chromatin with high-throughput sequencing 

(ATAC-seq), a method to detect chromatin accessibility genome-wide, was 

performed following the published protocol (Buenrostro et al., 2013, 2015). Briefly, 

right after the FACS sorting, 50000 cells were lysed and centrifuged. Extracted nuclei 

were resuspended in transposase reaction mix, following by transposition reaction for 

30 minutes at 37°C. To stop the transposition reaction, samples were purified using a 

Qiagen MinElute PCR purification kit according to the instructions provided with the 

kit. Library fragments were first amplified for 5 cycles and then for additional 7-8 

cycles, as determined by RT-qPCR reaction, using the combination of primer 

Ad1_noMX and one of the Nextera Index Kit primers listed below. Finally, the 

libraries were purified using a Qiagen MinElute PCR purification kit and their quality 

was assessed using the Agilent Bioanalyzer High-Sensitivity DNA kit according to the 

manufacturer’s instructions. The concentration was measured by Qubit using 

provided protocol and the maximum of 6 libraries was pooled together in order to 

obtain 20 ng of each library. Prior to the sequencing, pooled libraries were 

additionally purified with AMPure beads (ratio 1:1) to remove contaminating primer 

dimers and quantified using Qubit and Agilent Bioanalyzer High-Sensitivity DNA kit. 

Single pools were combined into one lane, and 50-bp paired-end deep sequencing 

was carried out on HiSeq 4000 (Illumina) at the Next Generation Sequencing facility 

at the Helmholtz Zentrum München. 

 

Ad1_noMX primer (Buenrostro et al., 2013) 

5’ AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG 3’ 

Nextera Index Kit (Illumina) primers N701-N706 

 

Transposase reaction mix 

25 µl 2x TD buffer (Illumina) 
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2.5 µl Transposase (Illumina) 

22.5 µl nuclease free water 

 

5.2.3.4 ATAC-sequencing analysis 

 

Next Generation Sequencing facility at the Helmholtz Zentrum München 

demultiplexed the sequenced data, which were subsequently transferred for the 

analysis to the Institute of Computational Biology (ICB) at the Helmholtz Zentrum 

München. In collaboration with Maren Büttner (ICB), reads were aligned to the 

mouse genome mm10 using Bowtie (Langmead et al., 2009). For all data files, the 

data quality control was performed using FastQC*. Duplicates and mitochondrial 

reads were removed using Picard** and SAMtools (Li, 2011; Li et al., 2009). 

 

* https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

**https://broadinstitute.github.io/picard/ 

 

ATAC-seq peaks were called with chromstaR 1.5.1 (Taudt et al., 2016) in 

collaboration with Aaron Taudt (ICB) with the following parameter settings: 

binsize=100bp, stepsize=100bp, prefit.on.chr=chr1 and default settings otherwise. 

For the pairwise comparisons, peaks were called in a multivariate analysis using 

samples "CAG-GFP", "Neurog2", “Hmgb2" and “Hmgb2+Neurog2" in both 

“EGF+FGF” and “FGF” conditions. The multivariate analysis was performed with 

setting “mode=differential” for comparisons between conditions EGF+FGF and FGF, 

and “mode=combinatorial” for comparisons between "CAG-GFP", "Neurog2", 

“Hmgb2" and “Hmgb2+Neurog2”. Pairwise differential peaks were extracted by 

requiring a maximum posterior difference (maxPostInPeak) between bins of greater 

or equal to 0.99999. The genomic distribution of peaks was annotated with the 

annotatePeak function from ChipSeeker 1.12.1 (Yu et al., 2015a). 

 

5.2.3.5 Preparation of libraries for RNA-sequencing 

 

Astroglial cells that were FACS sorted 48 h after transduction with different 

retroviruses, were counted and centrifuged to collect them in the 1.5 ml tube. The 

pellet was resuspended in 100 µl of extraction buffer from PicoPure RNA isolation kit 
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and the RNA was extracted according to the manufacturer’s protocol. The Agilent 

2100 Bioanalyzer was used to assess RNA quality and concentration. For the RNA-

seq library preparation, only high-quality RNA with the RIN value >8 was used. cDNA 

was synthesized from 10 ng of total RNA using SMART-Seq v4 Ultra Low Input RNA 

Kit for Sequencing, according to the manufacturer's instructions. The total number of 

amplification cycles was determined by RT-qPCR side reaction described below. 

 

Primer: 

PCR_SMARTer II A primer 5’ AAGCAGTGGTATCAACGCAGAGT 3’ 

 

RT-qPCR reaction mix:  

4 cycles amplified cDNA: 5 µl 

5 µM PCR_SMARTer II A: 1 µl 

SensiMix™ SYBR® 2x PCR Master Mix: 7.5 µl 

H2O: up to 15 µl 

 

Cycling conditions:  

 

10 min 95°C  (hotstart)       

10 sec 98°C 

30 sec 65°C  20x 

3 min 68°C    

10 min 72°C 

 

The Ct corresponding to ¼ of the maximum fluorescence represented the total 

amount of cycles needed for cDNA amplification. Additional cycles were performed to 

complete the cDNA amplification and PCR-amplified cDNA was purified by 

immobilization on AMPure XP beads. Prior to generating the final library for the 

sequencing, the Covaris AFA system was used to perform the cDNA shearing in 

Covaris microtubes (microTUBE AFA Fiber Pre-Slit Snap-Cap 6x16mm), resulting in 

200-500 bp long cDNA fragments that were subsequently purified by ethanol 

precipitation. The quality and concentration of the sheared cDNA were assessed on 

Agilent 2100 Bioanalyzer before proceeding to library preparation using MicroPlex 

Library Preparation kit v2 following user manual. Final libraries were evaluated using 
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an Agilent 2100 Bioanalyzer and the concentration was measured with Qubit 

Fluorometer (Thermo Fischer Scientific). The uniquely barcoded libraries were 

multiplexed onto one lane and 100-bp paired-end deep sequencing was carried out 

at the Next Generation Sequencing facility at the Helmholtz Zentrum München on 

HiSeq 4000 (Illumina) that generated ~20 million reads per sample.  

 

5.2.3.6 RNA-sequencing analysis 

 

The RNA-seq analysis was performed by Prof. Dr. Jovica Ninkovic. Kallisto pipeline 

(Bray et al., 2016) was used for the read mapping and the Sleuth pipeline (Pimentel 

et al., 2017) was used for the statistical analysis. The cut-off for the differentially 

regulated genes was based on the expression fold change (>2 fold) and p value 

adjusted for the 10% false discovery rate (q value<0.05). The genes having less than 

1 TPM in both compared conditions were excluded. Gene Ontology enrichment 

analyses were analyzed using DAVID 6.8 Gene Ontologies tool (p value<0.05, fold 

change>2) (Huang et al., 2009a, 2009b).  

 

5.2.3.7 Protein isolation and Western blot  

 

Postnatal cortical astroglia were isolated and cultured as described above. After 10 

days of culturing with growth factors EGF+FGF or FGF, they were detached from the 

flask by trypsinization, washed and counted. Around 0.5x106 cells were centrifuged 

to obtain the pellet, which was either frozen at -80°C or dissolved in RIPA buffer 

containing protease inhibitors in dilution 1:25, when proceeded with the protein 

isolation immediately after.  During the 30 min lysis performed on ice, samples were 

homogenized by passing five times through 27 G needle syringe. Lysed samples 

were then centrifuged at 13000 rpm for 10 min at 4°C to remove cell debris and the 

supernatant was transferred to a new tube. Protein concentration was measured by 

Pierce BCA Protein Assay Kit following the manufacturer’s instructions. Finally, the 

samples were mixed with the 5X sample buffer in ratio 5:1, denatured for 4 min at 

95°C, cooled down to room temperature and frozen at -20 °C till use. 

 

Western blot was performed using the Mini-PROTEAN Tetra Cell System (Biorad). 

Gels were polymerised in the corresponding gel casting system. First, the separating 
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gel (15% acrylamide) was prepared and covered by a thin layer of isopropanol in 

order to prevent air bubbles. When separating gel had set, isopropanol was 

discarded, the gel was rinsed with deionised water and the loading gel was poured 

on top followed by insertion of a comb to create the wells for the samples. The 

chamber was filled with the running buffer and a total amount of 20-25 µg protein per 

lane was loaded. Protein samples and coloured protein ladder were run for 

approximately 1 h with a constant current at 25 mA (voltage set at 200 V). Finishing 

the run, loading gel was cut off and the separating gel was equilibrated for 10 min in 

transfer buffer. 

 

In the next step, the proteins were transferred to a PVDF membrane (Millipore) that 

was first activated with methanol and washed in transfer buffer. The separating gel 

was placed on top of the equilibrated membrane and this gel-membrane sandwich 

was positioned between a stack of six Whatman filter papers. The entire stack 

covered by transfer buffer was placed into the semi-dry Trans-Blot® Turbo™ 

Transfer System (Biorad) and the transfer was performed using the preprogramed 

protocol for mixed molecular weight proteins. 

 

For the protein detection, the membrane was pre-incubated in blocking buffer for 1 h 

at RT and subsequently overnight at 4°C with a primary antibody directed against 

HMGB2 (1:5000) and α-ACTIN (1:10000), both diluted in blocking buffer. On the next 

day, the membrane was first washed three times in TTBS and then incubated for 90 

min with an HRP-coupled secondary antibody (dilution 1:20000 in TTBS) at RT. 

Proteins were detected by Amersham ECL Western Blotting Detection Reagent and 

visualized on the Biorad Gel Doc™ XR+ System. 

 

25X protease inhibitors 

Dissolve one cOmplete Protease Inhibitor tablet in 2 ml ddH2O and store at -20°C. 

 

5X sample buffer 

12.5 ml 1 M Tris-HCl pH=6.8 (250 mM final concentration) 

5 g SDS (10% (w/v) final concentration) 

15 ml glycerol (30% (v/v) final concentration) 

0.15 g Bromphenol Blue (0.3% (w/v) final concentration) 
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2.5 ml 2-mercaptoethanol  (5% (v/v) final concentration) 

20 ml Milli-Q water 

 

Separating gel buffer 

90.8 g Tris-HCl (1,5 M final concentration) 

20 ml 10% SDS  (0.4% (w/v) final concentration) 

500 ml Milli-Q water 

Final pH=8.8. 

 

Separating gel, 15% 

4.5 ml water 

2.5 ml separating gel buffer (pH=8.8) 

4.9 ml 30% Acrylamide 

0.1 ml 10% SDS 

75 µl 10% APS 

7.5 µl Temed 

 

Loading gel buffer 

30.3 g Tris-HCl (0.5 M final concentration) 

20 ml 10% SDS (0.4% (w/v) final concentration) 

500 ml Milli-Q water 

Final pH=6.8. 

 

Loading gel 

3.46 ml water 

625 µl loading gel buffer (pH=6.8) 

833 µl 30% Acrylamide 

50 µl 10% SDS 

25 µl 10% APS 

5 µl Temed 

 

10X Running buffer 

30.3 g Tris Base (250 mM final concentration) 

144.2 g Glycine (1.92 M final concentration) 
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1000 ml Milli-Q water 

Dilute 1:10 in Milli-Q water and add 10% SDS in 1:100 dilution (0.1% final 

concentration) to obtain 1X Running buffer. 

 

10X Transfer buffer 

30.3 g Tris Base (250 mM final concentration) 

144.2 g Glycine (1.92 M final concentration) 

1000 ml Milli-Q water 

Mix 100 ml 10X Transfer buffer, 200 ml Methanol (20% (v/v) final concentration) and 

700 ml Milli-Q water to obtain 1X Transfer buffer. 

 

10X TBS 

24.2 g Tris Base 

80 g NaCl 

1 l Milli-Q water 

Adjust pH to 7.6 with HCl.  

 

TBS Tween washing buffer (TTBS) 

100 ml 10X TBS 

10 ml 10% Tween 20 (0.1% (v/v) final concentration) 

1 l Milli-Q water 

 

Blocking buffer 

10 g Milk powder 

200 µl TTBS 

 

Antibodies for WB Company,  

ordering number 
Dilution 

Rabbit-anti-HMGB2 Abcam, ab67282 1:5000 

Mouse-anti-α-ACTIN Millipore, MAB1501 1:10000 

HRP-coupled anti-mouse IgG1 GE Healthcare, NA931 1:20000 

HRP-coupled anti-rabbit IgG 
Jackson ImmunoResearch, 

111-036-045 
1:20000 
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5.2.3.8 Quantitative mass spectrometry 

 

Preparation of astroglial cultures from the postnatal mouse cortex for the proteome 

analysis was performed as described above (see chapter “Primary culture of 

postnatal cortical astroglial cells”). The cells were collected after 10 days of culturing 

with EGF+FGF or FGF growth factors and prior to viral transduction. They were 

detached from the flask by trypsinization, centrifuged and resuspended in fresh 

medium. We submitted them to our collaborator Dr. Stephanie Hauck at the 

Research Unit Proteome Science (Helmholtz Zentrum München) for the label-free 

LC-MSMS based protein quantification. The collaborators also quantified detected 

proteins, performed statistical analysis and prepared the final list of the detected 

proteins including significantly enriched ones in EGF+FGF and FGF culture.  

 

5.2.3.9 Expression plasmids 

 

In order to overexpress different neurogenic transcription factors in the astroglial cells 

in vitro and in vivo, different constructs were used to produce Moloney murine 

leukemia virus (MMLV)-derived retroviral vectors. These factors were expressed 

under the regulatory control of a strong and silencing-resistant pCAG promoter 

together with GFP or dsRED reporter proteins that followed an internal ribosomal 

entry site (IRES) allowing simultaneous reporter expression. For control experiments, 

we used a retrovirus encoding for the fluorescent proteins (GFP or dsRED) behind 

the IRES driven by the same CAG promoter. Most of the plasmids are commonly 

used in our lab and are listed below. The Hmgb2 overexpression construct was 

kindly prepared by Dr. Alexandra Lepier. The vector preparation for the simultaneous 

overexpression of Neurog2 and Hmgb2 was part of this PhD project, as well as 

cloning of Hmgb1 overexpression vector (see following chapters). All the constructs 

with different genes and reporters that were used for the overexpression are listed 

below.  

 

pCAG-IRES-GFP  

pCAG-IRES-dsRED  

pCAG-Neurog2-IRES-dsRED 
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pCAG-Brn2-IRES-dsRED 

pCAG-Sox11-IRES-GFP 

pCAG-Ascl1-IRES-dsRED 

pCAG-Hmgb2-IRES-GFP 

pCAG-Neurog2-T2A-Hmgb2-IRES-dsRED  

pCAG-Hmgb1-IRES-GFP 

 

5.2.4 Cloning the pCAG-Neurog2-T2A-Hmgb2-IRES-dsRED construct for 

simultaneous overexpression of NEUROG2 and HMGB2 

 

In order to prepare the retroviral construct encoding for both, Neurog2 and Hmgb2 in 

a single vector, we ordered the cDNA sequences of both genes separated by T2A 

(Neurog2-T2A-Hmgb2) at the Genscript. The construct was designed with the BamHI 

restriction site upstream of the Neurog2 and EcoRV restriction site downstream of 

the Hmgb2 in order to clone it into the pENTR1A entry vector containing both 

restrictions sites. The synthesized sequence was delivered in the pUC57 vector, 

therefore, we first digested both vectors with the BamHI and EcoRV, expecting 1350 

bp long product of Neurog2-T2A-Hmgb2 and 2262 bp long linearized pENTR1A entry 

vector. The restriction reaction was prepared as described below: 

 

15 µl (3 µg) pUC57 plasmid or 10 µl (5.5 µg) pENTR1A plasmid 

5 µl 10X reaction buffer 3.1 (NEB) 

1 µl restriction enzyme BamHI (NEB)  

1 µl restriction enzyme EcoRV (NEB)  

Up to 50 µl H2O  

 

The reaction was incubated at 37°C overnight and the DNA digestion was assessed 

on the next day by gel electrophoresis on the 1% agarose gel as described in the 

chapter “Gel electrophoresis”. The bands of proper size were purified with the 

QIAquick Gel Extraction Kit according to the manufacturer’s instructions and their 

concentration was measured with Nanodrop spectrophotometer (Thermo Fischer 

Scientific). Next, the insert was ligated into the opened pENTR1A plasmid with the 

ratio insert:vector  3:1 in a ligation reaction performed 4 h at the RT using T4 DNA 

Ligase according to the manufacturer’s instructions. The ligation reaction was 
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followed by the transformation of 50 µl DH5-α E. coli competent cells. Briefly, the 

cells were first thawed on ice and then about the half of the ligation reaction was 

added to the competent cells and incubated for 30 min on ice. The mixture was heat 

shocked for 30 sec at 42°C and immediately placed on ice for 5 min. 250 µl of pre-

warmed LB medium was added to the transformation reaction mixture and the cells 

were then allowed to recover for 1 hour at 37°C in the shaking incubator. Finally, the 

cells were plated on LB-kanamycin agar plates and incubated overnight at 37°C. 

 

LB medium 

0.5% (w/v) NaCl 

1% (w/v) Bacto-Tryptone 

0.5% (w/v) Yeast extract 

20 mM Tris-HCl pH 7.5 

ddH2O 

Adjust pH to 7.0 with NaOH and sterilize by autoclaving. 

 

LB agar plates 

Add 15 g/l agar to the LB medium before autoclaving. After autoclaving cool down, 

add proper antibiotic (see below), and pour into Petri dishes. 

 

Ampicillin stock (100 mg/ml): use 1:1000 

Kanamycin stock (50 mg/ml): use 1:1000  

 

On the next day, single colonies from the agar plate were inoculated into 5 ml of LB 

medium, supplemented with the kanamycin and incubated overnight at 37°C under 

vigorous shaking. Plasmid DNA was then isolated with QIAprep Spin Miniprep Kit 

according to the instructions of the manufacturer. To test whether ligation of the 

Neurog2-T2A-Hmgb2 sequence into the pENTR1A entry vector worked properly, we 

performed the restriction reaction of purified plasmid with two restriction enzymes 

cutting inside the insert and checked the band sizes by the gel electrophoresis.  

 

Obtaining the expected results, we proceeded with the recombination reaction to 

shuttle the insert into the final retroviral destination vector pCAG-IRES-dsRED. This 

was accomplished through the Gateway cloning method (Invitrogen). Since both, 
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entry and destination vector contain the gateway cassette, the insert was transferred 

by site-specific recombination using Gateway LR Clonase II Enzyme Mix according 

to the manufacturer’s instructions. Next, the transformation of DH5-α E. coli 

competent cells was performed as described above and transformed bacteria were 

plated on LB-ampicillin agar plates. The colonies were picked and inoculated on the 

next day into LB medium supplemented with the ampicillin and grown overnight at 

37°C. Plasmids were isolated with the QIAprep Spin Miniprep Kit and sequenced to 

confirm the proper recombination and correct sequence of the insert. 

 

To perform sequencing of destination plasmid with the Neurog2-T2A-Hmgb2 insert, 

BigDye Terminator v3.1 Cycle Sequencing Kit was used including the primer S32 

recognizing the sequence in front of the insert and IRES primer located after the 

insert. Sequencing PCR was performed by preparing the reaction mix and cycling 

conditions as described below.  

 

S32 primer 5’ TAGAGCCGCCGGTCACACG 3’ 

IRES primer 5’ GCTTGGAATAAGGCCGGTG 3’ 

 

PCR reaction mix: 

Big Dye Terminator: 1 µl 

5X Big Dye Buffer: 1 µl 

S32 primer or IRES primer (from 100µM stock): 0.5 µl 

Miniprep plasmid: 2.5 µl 

 

Cycling conditions:  

 

1 min 96°C         

10 sec 96°C 

5 sec 50°C  35x 

4 min 60°C    

∞ 16°C 
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The sequencing PCR was then purified using Dye Ex 2.0 Spin Kit according to the 

protocol of the manufacturer and filled in a sequencing plate. The sequencing was 

performed at the Genome Analysis Center of the Helmholtz Zentrum München. 

 

For the retroviral production, the plasmid was amplified using large-scale bacterial 

cultures and isolated with Qiagen Plasmid Maxi kit following the manufacturer’s 

protocol. 

 

5.2.4.1 Cloning the pCAG-Hmgb1-IRES-GFP construct 

 

In order to overexpress the HMGB1, its cDNA (source Genscript) was cloned into the 

pENTR1A entry vector. The Hmgb1 construct was delivered in the pUC57 vector with 

the restriction site BamHI upstream and HindIII downstream of the Hmgb1 sequence. 

As the pENTR1A does not contain the HindIII restriction site, it was digested with 

BamHI and EcoRV and the blunt ligation at the EcoRV site was required. To do so, 

the cloning strategy described below was applied. First, the pUC57+Hmgb1 vector 

was linearized using HindIII restriction enzyme in the following restriction reaction: 

 

80 µl (4.5 µg) pUC57+Hmgb1 plasmid  

10 µl 10X reaction buffer 2.1 (NEB) 

3 µl restriction enzyme HindIII (NEB)  

Up to 100 µl H2O  

 

The digestion reaction was incubated for 2 h at 37°C and the plasmid linearization 

was assessed by gel electrophoresis as described in the chapter “Gel 

electrophoresis”. Next, to create the blunt ends, Klenow fragment was used in the 

following reaction mix: 

 

12 µl 10X Klenow buffer (NEBuffer 2) 

5 µl dNTP mix (2 mM) 

3 µl Klenow fragment 

97 µl linearized DNA from the restriction reaction mix 

Up to 120 µl H2O 
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The blunting was performed for 10 min at 37°C and the reaction was terminated by 

heating for 10 min at 75°C. DNA was purified by QIAquick PCR Purification Kit 

according to the manufacturer’s instructions and subsequently digested with the 

BamHI restriction enzyme to cut out the Hmgb1 sequence. In parallel, the double 

digest of pENTR1A plasmid with the BamHI and EcoRV was performed. Both 

digestion reaction mixes are described below.  

 

Restriction reaction of pUC57+Hmgb1 linearized plasmid with the blunt overhangs: 

30 µl pUC57+Hmgb1 

5 µl 10X reaction buffer 3.1 (NEB) 

1 µl restriction enzyme BamHI (NEB)  

Up to 50 µl H2O  

 

Restriction reaction of pENTR1A: 

10 µl (5.5 µg) pENTR1A plasmid 

5 µl 10X reaction buffer 3.1 (NEB) 

1 µl restriction enzyme BamHI (NEB)  

1 µl restriction enzyme EcoRV (NEB)  

Up to 50 µl H2O  

 

The restriction reaction took place for 2 h at 37°C and the bands were separated by 

the gel electrophoresis. Opened pENTR1A plasmid had the size of 2262 bp and 

Hmgb1 construct 654 bp. The bands of proper size were purified with the QIAquick 

gel extraction kit according to the manufacturer’s instructions.  The ligation reaction, 

bacterial transformation, inoculation and plasmid purification was performed as 

described in the previous chapter. To test the proper insertion of Hmgb1 into the 

entry vector, the plasmid was digested using the restriction site within the Hmgb1 

sequence.  

 

In the last step, the Hmgb1 cDNA was transferred to the retroviral destination vector 

pCAG-IRES-GFP using gateway recombination as described above. The final 

construct was amplified and purified from the transformed bacteria and the 

sequencing using the primers listed above (IRES, S32) was performed to confirm the 

insertion of the correct sequence.   
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5.2.4.2 Production of the retroviruses 

 

The VSV-G-pseudotyped retroviruses were prepared using the HEK293-derived 

retroviral packaging cell line (293GPG) (Ory et al., 1996), that stably express the 

gag-pol genes of murine leukemia virus and vsv-g under the control of a tet/VP16 

transactivator (Heinrich et al., 2011). Packaging cells were cultured in GPG medium 

and passaged 1:2 on a day before transfection to reach 80-90% confluency. On the 

next day, cells were first washed with DPBS to eliminate any traces of antibiotics and 

the GPG medium was replaced by 12 ml 0-medium 1-2 h prior to transfection. 

Meanwhile, two transfection mixes were prepared: 9 ml Opti-MEM + 360 µl 

Lipofectamine 2000 and 9 ml Opti-MEM + 144 µg DNA and separately incubated for 

5 min at the RT. After 5 min, the diluted Lipofectamine 2000 reagent was combined 

with the diluted DNA, mixed well and incubated at RT for 30 min shaking gently. 

Next, the cells were transfected by carefully pipetting 3 ml of the transfection mix to 

each plate (6x 10 cm dishes in total). The following morning, transfection medium 

was replaced by 6 ml of 0-medium. The first medium collection was performed 3 

days after transfection, followed by a second harvest 5 days after transfection and 

third and fourth harvest, on the day 7 and 9, respectively. To concentrate viral 

particles, the culture medium was filtered through a 0.45 µm PVDF filter and spun 

down at 50000 g for 90 min at 4°C. The supernatant was discarded and the pellet 

was covered by 30 µl TNE buffer and incubated at 4°C overnight. On the next day, 

pellet was carefully resuspended and the viral suspension was aliquoted and stored 

at -80°C. 

 

GPG medium 

500 ml DMEM, high glucose 

50 ml Fetal calf serum-FCS (10% (v/v) final concentration) 

1 ml 0.5 mg/ml Tetracycline (1 µg/ml (w/v) final concentration) 

100 µl 10 mg/ml Puromycin (2 µg/ml (w/v) final concentration) 

3 ml 50 mg/ml Geneticin (0.3 µg/ml (w/v) final concentration) 

3 ml Penicillin/Streptomycin 

3 ml 1M HEPES 

 

0-medium 



 

 

 
Materials and Methods 

 
  

147 

500 ml DMEM, high glucose 

25 ml Fetal calf serum-FCS (10% (v/v) final concentration) 

2.5 ml Penicillin/Streptomycin 

 

TNE buffer 

2.5 ml 1 M Tris-HCl pH=7.8 (50 mM final concentration) 

1.3 ml 5 M NaCl (130 mM final concentration) 

0.1 ml 0.5 M EDTA (1 mM final concentration) 

Up to 50 ml ddH2O  

 

5.2.5 Data analysis 

 

5.2.5.1 Image acquisition and quantifications 

 

Immunostainings were analysed with a fluorescent Microscope Axio Imager M2m 

(Zeiss) and the images from the cultured cells were acquired using the ZEN software  

(Zeiss) with a 20x or 40x objective. Fluorescent-labelled sections were photographed 

with FV1000 confocal laser-scanning microscope (Olympus), using the FW10-ASW 

4.0 software (Olympus). 

 

The quantifications of in vitro cultured cells were performed using the ZEN software  

(Zeiss) analysing at least 25 randomly taken pictures per coverslip depending on the 

number of transduced cells. These cultures were always prepared in triplicates for 

the same condition in the single experiment. Therefore, 3 coverslips per condition per 

experiment were analysed. In total, about 100-200 retroviral vector-transduced cells 

were quantified from randomly chosen fields on a single coverslip. The number of 

induced neurons was expressed as a percentage out of all transduced cells. To 

analyse the number of apoptotic cells, between 350-550 DAPI labelled cells were 

counted from 5 randomly selected fields on one coverslip. In the reprogramming 

experiments of the astrocytes isolated from Hmgb2+/+, Hmgb2+/- and Hmgb2-/- 

animals, each of the single animals was considered as a biological replicate and at 

least 3 coverslips were counted per animal. We analysed in total 6 litters from 

different time points with the different number of wild-type, heterozygous or 

homozygous littermates. In the reactive gliosis culture, one coverslip per condition 
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was analysed, by counting in total at least 100 double transduced cells from 

randomly chosen fields on the coverslip.  

 

Quantitative analysis of in vivo reprogramming was done by counting all transduced 

cells in all the sections with the injury site from ≥3 independent biological replicates. 

The numbers are indicating the proportion of NEUN+ cells out of all counted RFP+ 

transduced cells. Quantifications were performed using Fiji software (Schindelin et 

al., 2012) to analyze all the individual planes of an optical Z-stack and cells were 

examined in orthogonal planes to verify the markers coexpression.  

 

In order to analyse Western blot experiment, the gel analysing tool in the Fiji software 

was used (Schindelin et al., 2012). All lanes of interest were outlined using the 

rectangular selection tool and the signal intensity of each band was calculated by 

determining the area under the peak. The measurements of the corresponding α-

ACTIN bands were used to normalize the amount of proteins loaded on the gel.  

 

5.2.5.2 Statistical analysis 

 

Numbers of biological replicates can be seen on the dot plots or in the figure legend 

in case of the bar charts. All results are presented as a median ± interquartile range 

(IQR). IQR was calculated in RStudio (RStudio, 2015), using the default method 

based on type 7 continuous sample quantile. For the reprogramming experiments, 

statistical analysis was performed in R (RStudio, 2015) using non-parametric Mann-

Whitney U test to test for significance as indicated throughout the thesis. The 

statistical test was performed only in the experiments with at least 4 biological 

replicates. Results were considered significant with p<0.05 (one asterisk). Statistics 

performed in the proteome analysis was a log2 intensity based t-test. The statistical 

analysis of the RNA-sequencing data was carried out using Sleuth program 

(Pimentel et al., 2017). 
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6 Abbreviations 
 

Acsbg1 – Acyl-CoA Synthetase Bubblegum Family Member 1 

AD – Alzheimer’s disease 

ALDH1L1 – Aldehyde Dehydrogenase 1 Family Member L1 

aNSC – Adult neural stem cell  

Aqp4 – Aquaporin 4 

aRG – Apical radial glial cell 

ASCL1 – Achaete-Scute Family BHLH Transcription Factor 1 

ATAC – Assay for Transposase Accessible Chromatin 

ATP – Adenosine triphosphate 

BCL-2 – B-cell lymphoma 2 

BDNF – Brain-derived neurotrophic factor 

bHLH – Basic helix-loop-helix 

BLBP – Brain lipid-binding protein  

BMP – Bone morphogenetic protein 

bp – Base pair 

BP – Biological process 

BrdU – 5-bromo-2’-deoxyuridine 

Brn2 – Brain2 

CAG – Cytomegalovirus early enhancer/chicken beta-actin promoter  

cDNA – Complementary DNA 

CGE – Caudal ganglionic eminence 

ChiP – Chromatin immunoprecipitation 

CHUD – Chromatin unfolding domain 

CNS – Central nervous system 

CP – Cortical plate 

CPN – Callosal projection neuron 

CR – Cajal-Retzius cell 

CSF – Cerebrospinal fluid 

CThPN – Corticothalamic projection neuron 

CTIP – COUP-TF-Interacting Protein 2 

CUX – Cut Like Homeobox 1 

DPBS – Dulbecco’s phosphate-buffered saline 
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DAMP – Damage-associated molecular pattern 

DAPI – 4’,6-diamidino-2-phenylindole  

DCX – Doublecortin, x-linked lissencephaly  

DG – Dentate gyrus  

Dll4 – Delta-like 4 

Dlx – Distal-less homeobox 

Dlx2 – Distal-less gene 2 

DM – Dorsomorphin 

DMEM – Dulbecco’s modified Eagle’s medium 

DNA – Deoxyribonucleic acid  

dNTP – Deoxynucleoside triphosphate  

DPI – Days post induction/injury 

dsRED – Discosoma sp. red fluorescent protein 

E – Embryonic day 

E+F – EGF+FGF 

ECM – Extracellular matrix 

EDTA – Ethylene-diamine-tetra-acetic-acid  

EGF – Epidermal growth factor 

Elavl4 – ELAV Like RNA Binding Protein 4 

Emx1/2 – Empty spiracles homeobox 1/2  

EZ – Ependymal zone 

F – FGF 

FACS – Fluorescence activated cell sorting 

FBS – Fetal bovine serum 

FCS – Fetal calf serum 

FGF – Basic fibroblast growth factor 

FK – Forskolin 

FOXG1 – Forkhead box G1 

FOXP2 – Forkhead box protein P2 

FSC-A – Forward scatter area  

FSC-W – Forward scatter width 

GABA – γ-aminobutyric acid 

GCL – Granule cell layer 

GE – Ganglionic eminence 
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GF – Growth factor 

GFAP – Glial fibrillary acidic protein 

GFP – Green fluorescent protein  

Gjb6 – Gap junction protein beta 6 

GLAST – Astrocyte-specific glutamate transporter  

Glul – Glutamine synthetase 

GM – Gray matter 

GN – Granular neuron 

GO – Gene ontology 

HBSS – Hank’s balanced salt solution 

HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

Hey1 – Hairy/enhancer-of-split related with YRPW motif protein 1 

hiNSC – human induced neural stem cells 

HMG – High Mobility Group 

IBA1 - Ionized calcium-binding adapter molecule 1 

IHC – Immunohistochemistry 

IP – Intermediate progenitor 

IQR – Interquartile range 

IRES – Internal ribosome entry site 

IZ – Intermediate zone 

kDa – Kilodalton 

LC – Liquid chromatography 

LGE – Lateral ganglionic eminence 

LMX1A – LIM Homeobox Transcription Factor 1 Alpha 

LV – Lateral ventricle 

MAP – Mitogen-activated protein 

MGE – Medial ganglionic eminence 

miR – microRNA 

ML – Molecular layer 

MMLV – Moloney murine leukemia virus 

mRNA – Messenger ribonucleic acid 

MS – Mass spectrometry 

MyoD – Myogenic factor 3 

MYT1L – Myelin transcription factor 1-like protein 



 

 

 
Abbreviations 

 
  

152 

MZ –Marginal zone 

n – Number of experiments, sample number 

NADPH – Nicotinamide adenine dinucleotide phosphate 

NB – Neuroblast 

NBD – Nucleosomal binding domain  

NC – Neuroepithelial cells  

NE – Neuroepithelium 

NEUN – Neuronal nuclear antigen 

NeuroD1 – Neuronal differentiation 1 

NeuroD2 – Neuronal differentiation 2 

NeuroD4 – Neuronal differentiation 4 

NEUROG1 – Neurogenin1 

NEUROG2 – Neurogenin2 

NF-κB – Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 

NG2 – Neuron-glial antigen 2 

NGS – Normal goat serum  

nIPC – Neurogenic intermediate progenitor cell 

Nkx2.1 – NK2 Homeobox 1 

NLS – Nuclear localisation signal 

NPC – Neural precursor/progenitor cell 

NSC – Neural stem cell  

NURR1 – Nuclear receptor related-1 protein 

OB – Olfactory bulb 

OE – Overexpression 

oIPC – Oligodendrocytic intermediate progenitor cell 

OLIG2 – Oligodendrocyte Transcription Factor 2 

OPC – Oligodendrocyte progenitor cell 

oRG – Outer radial glia 

OxPhos – Oxidative phosphorylation 

P – Postnatal day 

Pax6 – Paired box 6 

PBS – Phosphate buffered saline  

PCA – Principle component analysis 

PCR – Polymerase chain reaction  
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PDGFRα – Platelet-derived growth factor receptor Alpha 

PDL – Poly-D-lysine  

PEN/STREP – Penicillin/streptomycin  

PFA – Paraformaldehyde 

PH3 – Phospho histone 3  

PSC – Pluripotent stem cell 

PTB – Polypyrimidine tract binding 

PVDF – Polyvinylidene fluoride  

Pol – Polymerase 

RT-qPCR – Quantitative reverse transcription polymerase chain reaction  

RAGE – Receptor for Advanced Glycation End products 

REST – RE-1 transcription factor repressor complex 

RG – Radial glial cells 

RMS – Rostral migratory stream 

RNA – Ribonucleic acid 

ROS – Reactive oxygen species 

RT – Room temperature 

SATB2 – SATB Homeobox 2 

SCPN – Subcortical projection neuron 

SDS – Sodium dodecyl sulfate  

Seq – Sequencing 

SGZ – Subgranular zone 

SHH – Sonic hedgehog homolog 

Sox – Sex determining region Y (SRY) 

SP – Subplate 

SPN – Subplate neuron 

SSC-A – Side scatter area 

SVZ – Subventricular zone 

TAP – Transient amplifying progenitor  

Tbr1 – T-Box, Brain 1 

Tbr2 – T-Box, Brain 2 

TF – Transcription factor 

TLR – Toll-like receptor 

TUNEL – Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling 
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VPA – Valproic acid 

VZ – Ventricular zone 

WM – White matter 

WNT – Wingless-Int 

αSMA – Alpha smooth muscle actin 

 

s – second 

min – minute 

h – hour 

 

µm – micrometer 

mm – millimeter 

 

ng – nanogram  

µg – microgram 

mg – milligram 

 

nl – nanoliter 

µl – microliter 

l – liter 

 

µM – micromolar  

mM – millimolar 

M – molar 

 

v/v – volume per volume 

w/v – weight per volume 
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