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1. Abbreviations 

µg microgram 

µL microliter 

2´-5´-OAS 2´-5´-oligo-adenylate synthase 

AIV avian influenza A virus 

ATV Alsever's trypsin-versen solution  

ATV-D Alsever's trypsin-versen solution (double trypsin) 

BSA bovine serum albumin  

bw body weight 

By09 A/Bayern/74/09 (H1N1pdm09) 

CMV cytomegalovirus 

cRNA complementary RNA 

CTL cytotoxic T lymphocytes 

dNTPs deoxynucleotides 

dpi days post infection 

dsRNA double-stranded RNA 

E.coli Escherichia coli 

EDTA ethylenediaminetetraacetic acid 

EID50 50 % embryo infectious dose 

ELISA enzyme linked immunosorbent assay 

FBS fetal bovine serum 

FLI Friedrich-Loeffler-Institut 

g gram 

HA hemagglutinin  

HA titer titer determined by hemagglutination assay 

HA1 hemagglutinin subunit 1 

HA2 hemagglutinin subunit 2 

HE hematoxylin eosin 

HEK-293T human embryotic kidney cells 

HI hemagglutination inhibition 

HPAIV highly pathogenic avian influenza A virus 

IAV influenza A virus 

IFN interferon 

IgA immunoglobulin A 

IgG immunoglobulin G 

IgM immunoglobulin M 

kg kilogram 

L liter 

LAIV live-attenuated influenza vaccine 
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LALLF-MV state office for agriculture, food safety and fishery in 

Mecklenburg-Western Pomerania 

LPAIV low-pathogenic avian influenza A virus 

M matrix protein 

m meter 

M1 matrix protein 1 

M2 matrix protein 2 

MAD  mucosal atomization device 

MDCK-II Madin-Darby canine kidney cells 

MEM minimal essential medium 

mg milligram 

MHC major histocompatibility complex 

mL milliliter  

mm millimeter 

mM millimolar 

MOI multiplicity of infection 

mRNA messenger RNA 

NA neuraminidase  

NEP nuclear export protein 

NLS nuclear localization signal 

nm  nanometers  

NP nucleoprotein 

NS the non-structural protein 

NS2  the non-structural protein 2 

nt nucleotides  

PA polymerase acidic protein 

PB1 polymerase basic protein 1 

PB2 polymerase basic protein 2 

PBS phosphate buffered saline 

pc post challenge 

PCR polymerase chain reaction 

pdm09 pandemic 2009 

PFU plaque forming units 

pi post infection 

PK-15 porcine kidney cells 

PKR protein kinase R 

PMWS postweaning multisystemic wasting syndrome 

PNP proliferative necrotizing pneumonia 

pol I polymerase I 

pol II polymerase II 

PR-8 A/PR/8/34 (H1N1) 
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PRDC porcine respiratory disease complex 

qRT-PCR quantitative reverse transcription PCR 

RIG-I retinoic inducible gene I 

RKI Robert Koch-Institut  

RNA ribonucleic acid  

rpm revolutions per minute 

RT room temperature 

RT-PCR reverse transcription PCR 

SI swine influenza  

SIV  swine influenza virus 

ssRNA single-stranded RNA 

SwBel01 A/Swine/Belzig/2/01 (H1N1) 

SwBiss03 A/Swine/Bissendorf/IDT/1864/03 (H3N2) 

TAE tris-acetate-EDTA 

TCID50 50 % tissue culture infective dose 

TE tris-EDTA buffer 

TLR toll-like receptors 

TPCK N-tosyl-L-phenylalanine chloromethyl ketone 

TRIG triple internal gene  

vRNA viral RNA 

vRNP viral ribonucleoprotein 
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2. Literature Review 

2.1 Influenza A Viruses 

Influenza A viruses (IAVs) as members of the family Orthomyxoviridae (greek: ortho = right, 

myxa = mucus) form the genus influenza virus A. They are enveloped viruses with a single 

stranded, segmented RNA genome of negative polarity (-ssRNA). The family Orthomyxoviridae 

includes the genera: influenza virus A, B, C and D, Thogotovirus, Isavirus, and some not 

classified orthomyxoviruses (Modrow, Falke et al. 2010, Su, Fu et al. 2017). The different 

genera of orthomyxoviruses are defined by serological characteristics of the nucleoprotein 

(NP) and matrix protein (M) (Heckler and Klenk 2009). Moreover, influenza A and B viruses 

(eight gene segments) have two glycoproteins while influenza C viruses (seven gene segments) 

possess only one glycoprotein (Herrler, Nagele et al. 1981, Modrow, Falke et al. 2010). 

IAVs are divided into different subtypes/serotypes based on the antigenicity of their surface 

proteins hemagglutinin (HA) and neuraminidase (NA). Currently, 16 classical HA and 9 classical 

NA subtypes are known (Fouchier, Munster et al. 2005). Besides, novel influenza-like 

orthomyxoviruses subtyped as H17 or H18 and NA-like N10 or N11 have been discovered in 

bats (Tong, Zhu et al. 2013, Wu, Wu et al. 2014, Ma, Garcia-Sastre et al. 2015).  

The different IAV isolates are named corresponding to their type, species from which the virus 

was isolated (excluding human isolates), location of isolation, optional isolation number or 

additional designation, and isolation year. The serotype is additionally named behind the 

isolate (for example: A/Swine/Belzig/2/01 (H1N1)) (Heckler and Klenk 2009). 

The viral genome of IAV is approximately 13.6 kilobases long and consists of eight segments. 

The segments have a length between 890 and 2341 nucleotides (nt). They are ordered 

according to their length (segment 1: PB2, segment 2: PB1, segment 3: PA, segment 4: HA, 

segment 5: NP, segment 6: NA, segment 7: M, segment 8: NS) and encode for at least ten viral 

proteins (Palese and Shaw 2007, Bouvier and Palese 2008, Modrow, Falke et al. 2010). The 

virion is spherical or filamentous in shape and measures 80 to 120 nanometers (nm) (Noda, 

Sagara et al. 2006). Its viral membrane is a lipid-bilayer derived from the host cell membrane, 

in which the three transmembrane proteins HA, NA and matrix 2 (M2) are embedded. HA is 

the most abundant surface protein, which makes up approximately 80 percent of total surface 

protein. NA takes up approximately 17 percent while M2 occurs only rarely (16 to 20 

molecules) (Samji 2009). The inner side of the viral membrane is coated by the matrix protein 
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1 (M1), which is associated with the eight viral ribonucleoprotein complexes (vRNPs) in the 

viral core (Bui, Whittaker et al. 1996, Liu, Muller et al. 2002). Each vRNP is composed of the 

single-stranded viral RNA (vRNA) segment associated with multiple copies of the 

nucleoprotein (NP) and linked to the heterotrimeric polymerase complex consisting of the 

subunits polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), and polymerase 

acidic protein (PA) (Noda, Sagara et al. 2006). Segment 8 (NS) of the IAV genome encodes for 

two non-structural proteins (Lamb and Choppin 1979). The non-structural protein 1 (NS1) is 

known to be a major virulence factor (section 2.4) (Hale, Randall et al. 2008) whereas the non-

structural protein 2 (NS2) is also called nuclear export protein (NEP). It is involved in the export 

of vRNPs from the nucleus into the cytoplasm during viral replication cycle (Boulo, Akarsu et 

al. 2007). 

Segment 2 (PB1) also encodes an additional non-structural protein PB1-F2 by an alternative 

reading frame. Some IAV possess PB1-F2, which is assumed to be an inducer of apoptosis in 

infected cells (Chen, Calvo et al. 2001, Lowy 2003). 

 

 
 

Figure 1. Schematic structure of the influenza A virus virion (Horimoto and Kawaoka 2005). 
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2.2 Replication Cycle of Influenza A Viruses 

Replication of IAV is initiated by the attachment of the virion to the host cell membrane, 

mediated by the viral HA (section 2.3) (Skehel and Wiley 2000). Its receptor binding domain, 

located on the HA1 subunit, binds to N-sialic acids on the cell surface. Subsequently, the virion 

is incorporated by endocytosis (penetration) (Rust, Lakadamyali et al. 2004). For the following 

uncoating process, the acidification of the endosome by cellular H+ ATPases is crucial (Bouvier 

and Palese 2008). It causes a conformational change in the HA leading to exposure of the N-

terminal fusion peptide in the HA2 subunit. This conformation is competent to mediate fusion 

of the viral and the endosomal membranes (Maeda, Kawasaki et al. 1981, Huang 1991). 

Additionally, the type III transmembrane protein M2 is activated at low pH. Working as an ion 

channel, it mediates the influx of H+ ions resulting in a further increased acidification within 

the virion (Pinto, Holsinger et al. 1992, Wang, Lamb et al. 1994). As a result, vRNPs detach 

from M1 and are released into the cytoplasm. Thereafter, the vRNPs are transported to and 

imported into the nucleus via the classical import pathway by importin α1 and α5 (O'Neill, 

Jaskunas et al. 1995, Hutchinson and Fodor 2012) due to nuclear localization signals (NLSs) 

(Bui, Whittaker et al. 1996, Wang, Palese et al. 1997, Cros and Palese 2003, Bouvier and Palese 

2008). Within the nucleus, the viral genome is transcribed and replicated by the viral 

polymerase complex, supported by NP (Huang, Palese et al. 1990, Kimura, Nishida et al. 1992). 

The viral polymerase synthetizes messenger RNA (mRNA) and complementary RNA (cRNA) for 

genome replication. While synthesized cRNA acts as an intermediate for synthesis of negative-

sense vRNA copies for new viral genomes for encapsidation (Lamb and Choppin 1983), the 

mRNA serves as templates for translation of viral proteins by the host cell. To ensure 

polyadenylation of mRNA, vRNA includes a stretch of five to seven uracil residues which 

provide the template for a poly(A) tail of IAV mRNA. Additionally, a cap-snatching mechanism 

is used for mRNA capping (Plotch, Bouloy et al. 1979). To this end, the PB2 subunit binds cap 

structures of cellular pre-mRNAs to the viral polymerase complex (Blaas, Patzelt et al. 1982). 

Pre-mRNAs are then cleaved 10-13 nt behind the cap structure by the PA subunit, which 

possesses an endonuclease activity (Dias, Bouvier et al. 2009). The obtained capped mRNA 5’ 

oligomers then serve as primers for transcription (Beaton and Krug 1981). 5’-capped, 3’-

polyadenylated viral mRNA is exported and translated like host mRNA, while the vRNA export 

is supported by M1 and NEP (Cros and Palese 2003). Segments 7 and 8 have to undergo 

splicing (Whittaker, Bui et al. 1996). The three viral transmembrane proteins HA, NA and M2 
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are transported to the rough endoplasmic reticulum and Golgi apparatus for folding and post-

translational modifications. Due to apical sorting signals, they are afterwards directed to the 

cell membrane for virion assembly (Bouvier and Palese 2008). Translation of PB2, PB1, PA, NP, 

M1, NS1, and NEP occurs at free ribosomes in the cytoplasm. Afterwards, they are imported 

into the nucleus where NP and the polymerase complex further enhance RNA transcription, 

replication and vRNP assembly. M1, on the other hand, accumulates at vRNPs and stimulates 

their export into the cytosol (Whittaker, Bui et al. 1996). For virus assembly, M1 and vRNP 

complexes associate at the cell membrane. Eventually, the new virion is budding and is able 

to detach from the cell surface due to the receptor-destroying NA activity (Pleschka 2013). 

 

 

Figure 2. Schematic diagram of the influenza A virus life cycle (Neumann, Noda et al. 2009). 

2.3 Hemagglutinin  

HA is a type I glycoprotein and responsible for receptor-binding and membrane fusion during 

viral replication (Skehel and Wiley 2000). The native HA monomer (precursor HA0) is 

composed of the two subunits HA1 and HA2 which are linked by a disulphide bond. Mature 

HA occurs as homotrimer (Wilson, Skehel et al. 1981, Samji 2009). The HA1 subunit contains 

the receptor-binding domain, which recognizes terminal sialic acids of glycoproteins and 

glycolipids on the cell surface. The HAs of different IAVs vary in their recognition specificity for 

the linkages between sialic acid and the penultimate galactose residues of the carbohydrate 

side chain (Skehel and Wiley 2000). According to receptor prevalence in the hosts tissue, the 

HA of avian IAVs binds preferably α(2,3)-linked sialic acids while human strains are biased to 
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bind α(2,6)-linked sialic acids (Connor, Kawaoka et al. 1994). Some species such as pigs, 

however, possess both α(2,3)- and α(2,6)-linked sialic acids on their tracheal epithelium (Ito, 

Couceiro et al. 1998). Indeed, several studies demonstrated that pigs are susceptible hosts for 

IAVs of mammalian and avian kind (Brown 2000).  

The fusion peptide, located at the N-terminus of HA2 subunit, mediates fusion of the viral and 

endosomal membranes during IAV replication (Dopheide and Ward 1980, Bottcher-

Friebertshauser, Freuer et al. 2010, Pleschka 2013). However, previous cleavage, followed by 

a conformational change of HA in low pH-environments, is necessary to gain fusion 

competence. Therefore, the proteolytic cleavage of precursor HA0 into subunits HA1 and HA2 

is crucial for virus infectivity (Bogs, Veits et al. 2010). Mammalian-adapted and low-pathogenic 

avian IAVs (LPAIV) carry a monobasic cleavage site motif, which is dependent on trypsin-like 

host cell proteases for proteolytic activation (Klenk, Rott et al. 1975, Bottcher-Friebertshauser, 

Klenk et al. 2013). These proteases are synthesized in the respiratory tract of birds and 

mammals as well as in the avian digestive tract. In contrast, highly pathogenic avian influenza 

viruses (HPAIV) of the subtype H5 and H7 carry a polybasic cleavage site susceptible for 

ubiquitously occurring intracellular subtilisin-like proteases (Klenk and Garten 1994, Horimoto 

and Kawaoka 1995, Steinhauer 1999) which is the prime virulence determinant (Bosch, Orlich 

et al. 1979, Horimoto and Kawaoka 1994, Bogs, Veits et al. 2010).  

 

 

Figure 3. Left: Schematic structure of HA0 monomer with subunits HA1 (blue) and HA2 (red) and cleavage site 
(arrow); Right: after cleavage (Steinhauer 1999). 



Literature Review 

10 

 

2.4 The Role of NS1 as Interferon Antagonist 

NS1 is a multifunctional protein and virulence factor of IAVs (Garcia-Sastre, Egorov et al. 1998, 

Hale, Randall et al. 2008). The dimeric protein has a molecular weight of 26 kilo Dalton and is 

built of an N-terminal domain (Chien, Xu et al. 2004, Newby, Sabin et al. 2007, Hale, Randall 

et al. 2008), which binds nonspecifically to double-stranded RNA (dsRNA) (Krug, Yuan et al. 

2003) and a C-terminal effector domain, which interacts with specific host-cell proteins 

(Wang, Basler et al. 2002).  

Among other functions, NS1 plays an important role as a host type-I-interferon antagonist 

(Kochs, Garcia-Sastre et al. 2007). The initial immune response reacts to viral infections by 

induction of the α/β interferon (IFN) system, which stimulates the expression of antiviral 

genes through autocrine and paracrine ways (Randall and Goodbourn 2008). NS1 is able to 

form complexes with Retinoic Inducible Gene 1 (RIG-I) in the cytoplasm of infected host cells. 

RIG-I, an important sensor of viral infections, is then blocked for IFN-β-induction (Guo, Chen 

et al. 2007). NS1 can also inhibit protein kinase R (PKR) (Li, Min et al. 2006), which usually 

detects dsRNA after viral infection leading to inhibition of viral protein synthesis (Meurs, 

Chong et al. 1990).  

Besides PKR, another antiviral protein named 2´-5´-oligo-adenylate synthase (2´-5´-OAS) is 

normally induced by interferons and activated by binding dsRNA. Activation of 2´-5´-OAS leads 

to formation of 2’-5’ oligoadenylates, which inhibit virus replication by induction of RNase L 

leading to degradation of mRNAs and ribosomal RNAs. NS1 is able to inhibit the IFN-α/β-

induced 2´-5´-OAS/RNase L pathway (Min and Krug 2006).  

2.5 Host Range 

Aquatic birds are the natural reservoir for all known classical subtypes of IAVs (H1-H16, N1-

N9) (Webster, Bean et al. 1992, Alexander and Brown 2000, Fouchier and Munster 2009). In 

particular, the orders Anseriformes (geese and ducks), Galliformes (chicken and turkey), and 

Charadriiformes (waders and gulls) are susceptible to infection (Wallensten, Munster et al. 

2007, Zell, Scholtissek et al. 2013). Most avian influenza A viruses (AIVs) are LPAIV 

 and cause mild or even subclinical infections in birds (Webster, Bean et al. 1992). In contrast, 

HPAIV of the subtypes H5 and H7 can cause severe symptoms with high mortality rates leading 

to devastating consequences in poultry (Swayne and Suarez 2000, Luczo, Stambas et al. 2015). 



Literature Review 

11 

 

Although AIVs are usually not adapted for efficient replication in humans, they bear a constant 

zoonotic threat to human society (Beare and Webster 1991, Horimoto and Kawaoka 2001). 

Human infections with H5 or H7 viruses of avian origin are rarely reported but often have a 

fatal outcome (Belser and Tumpey 2014, Harfoot and Webby 2017, Ke, Mok et al. 2017). 

Human-to-human transmission, on the other hand, was not observed until today (Luczo, 

Stambas et al. 2015). 

However, some IAV subtypes are adapted for efficient replication in mammalian species 

including primates, marine mammals, horses, pigs and humans (Alexander and Brown 2000, 

Kothalawala, Toussaint et al. 2006, Ducatez, Webster et al. 2008). Pigs are reservoir hosts for 

H1N1, H1N2 and H3N2 influenza viruses (Brown 2000, Sandbulte, Spickler et al. 2015). Swine 

influenza viruses (SIVs) have a high zoonotic potential and can be transmitted to humans. 

Especially people in close contact with livestock can be infected and become a source of 

infection for pigs themselves (Alexander and Brown 2000). 

 

 
 

Figure 4. IAV reservoir (waterfowl) and other susceptible host species (Manz, Schwemmle et al. 2013). 
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2.6 Diversity of Influenza A Viruses 

IAVs have acquired a broad antigenic variability (Salazar, Lopez-Ortega et al. 2010). The viral 

polymerase lacks an exonuclease activity required for proof reading, leading to continuous 

acquisition of point mutations, randomly distributed over the whole viral genome (error rate 

approximately 1,5x105 nucleotides/nt/genome replication) (Parvin, Moscona et al. 1986). 

These accumulations of mutations provide high variability and adaptation to changing 

environments. Accordingly, conformational changes in the surface proteins HA and NA enable 

the virus to evade existing immunity. The globular head of the HA1 subunit is the major 

antigenic determinant against which specific neutralizing antibodies are elicited. Changes in 

this region can lead to an ineffective binding of pre-existing antibodies to the epitope and an 

insufficient neutralization (Laver, Air et al. 1981). This gradual antigenic modification of IAVs 

is called antigenic drift (Pleschka 2013).  

Moreover, some IAVs are able to cross the species-barrier and infect another host species. 

Therefore, an adaption period is usually required to gain efficient replication in the new host 

species (Van Reeth 2007). One example is the introduction of a H1N1 of avian origin into swine 

population which occurred in 1979. This strain has been successfully established in European 

swine herds and became the predominant lineage in this region (section 2.7) (Schultz, Fitch et 

al. 1991, Ludwig, Stitz et al. 1995).  

The segmented nature of the IAV genome allows another central mechanism of genetic 

plasticity, the gene reassortment. When a host cell is co-infected with at least two different 

IAV, an exchange of gene segments can occur during replication (Pleschka 2013). This 

mechanism allows a particularly fast evolution and adaptation. Diverse variants can occur, 

including those, which carry an exchanged HA or NA, or both, resulting in antigenic shift. These 

shift variants have an unknown virulence and major differences in antigenic epitopes. 

Therefore, some reassortants are able to evade pre-existing immune responses completely 

(Zell, Scholtissek et al. 2013). Overall, preceding reassortment events gave rise to all 

pandemics of the 20th and 21th century (perhaps except that of 1918) so far (Smith, Bahl et al. 

2009). 

Pigs are considered to play a key role for reassortment and adaption processes of IAVs to 

mammals. They are susceptible for mammalian as well as avian IAVs (section 2.5) and 

reassortment events between IAVs of avian, human and swine origin have previously occurred 

in the porcine host. In some cases, this new virus variants where also able to infect humans 
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(section 2.7) stressing the zoonotic aspect and cross-species transmission (Ma, Kahn et al. 

2008).  

These observations led to the “mixing vessel” theory, which postulates pigs to be central 

intermediate hosts for reassortment and adaption processes (Scholtissek 1995, Alexander and 

Brown 2000, Ma, Kahn et al. 2008, Hass, Matuszewski et al. 2011). Indeed, former or currently 

circulating field viruses in swine populations demonstrate the establishment and 

reassortment of IAVs of different origin (section 2.7) (Ma, Kahn et al. 2008).  

 

 
 

Figure 5. Swine as “mixing vessel” for IAVs of avian and mammalian origin (Stevens, Blixt et al. 2006). 

2.7 Swine Influenza A Viruses 

Currently, SIVs of three major subtypes, H1N1, H1N2 and H3N2, are circulating in pigs (Ma, 

Vincent et al. 2010, Brown 2013, Sandbulte, Spickler et al. 2015). Swine influenza (SI) is a 

widespread enzootic disease, which can reach high rates of seroprevalence. Epizootics occur 

when new drift variants enter naïve herds (Brown, Harris et al. 1995, Brown 2000). SIVs 

obtained a high diversity due to frequent introduction and establishment of novel gene 

segments or whole viruses from human or avian origin (Lewis, Russell et al. 2016). The 

established lineages differ considerably in their geographical distributions on the continents 

(Van Reeth 2007, Lewis, Russell et al. 2016). First SI cases were detected in 1918 

simultaneously to the occurrence of highly virulent Spanish flu in humans. The Spanish flu was 

caused by an H1N1 IAV and claimed at least 20 million to about 50 million deaths worldwide 
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(Brown 2000, Johnson and Mueller 2002). Interestingly, linked outbreaks of disease in families 

and their swine herds were observed in that time (Myers, Olsen et al. 2007) and retrospective 

studies revealed that disease in pigs was indeed caused by a closely related IAV (Gorman, Bean 

et al. 1991). Therefore, it is assumed that the virus was transmitted between humans and pigs.  

Thereafter, the H1N1 virus circulated in humans and pigs, but underwent different evolution. 

While human H1N1 further changed antigenically, swine H1N1 viruses remained relatively 

stable until today in pigs in North America (Vincent, Ma et al. 2008) as well as southeast Asia 

(Choi, Pascua et al. 2013). Viruses of this lineage are named classical H1N1 SIVs (Sandbulte, 

Spickler et al. 2015).  

First isolated in 1979, another antigenically and genetically distinguishable H1N1 lineage 

became established in swine closely related to viruses collected from ducks (Pensaert, Ottis 

et al. 1981). This avian-like SIV has replaced the classical H1N1 in Europe and became the 

predominant lineage on the European mainland. Besides, another independent avian-like 

H1N1 was collected from swine in China in 1993 forming a sub-lineage of the Eurasian avian-

like H1N1 (Brown 2000).  

The 2009 pandemic H1N1 strains (H1N1pdm09) arose from another cross-species transmission 

event leading to an establishment of an IAV strain in both humans and swine (Stech, Beer et 

al. 2010). H1N1pdm09 was first detected in humans in Mexico and the United States spreading 

worldwide by human-to-human transmission. The virus was highly distinct from seasonal 

H1N1 strains in humans and is considered to originate from reassortment events in swine 

(Centers for Disease and Prevention 2009, Garten, Davis et al. 2009, Smith, Vijaykrishna et al. 

2009, Guan, Vijaykrishna et al. 2010). Indeed many swine herds were found infected 

(Sandbulte, Spickler et al. 2015). The gene segments PB2, PB1, PA, H1, NP, and NS of H1N1pdm09 

derived from North American triple-reassortant viruses (H3N2 and/or H1N2). These triple-

reassortant viruses originate themselves from North American gene segments of avian and 

human origin as well as from the classical H1N1 in swine. N1 and M, on the other hand, 

descend from the European avian-like H1N1 SIV lineage (Guan, Vijaykrishna et al. 2010, 

Neumann and Kawaoka 2011).  

Besides classical and avian-like H1 SIV lineages, the human-like H1 SIVs occur in swine in 

Europe, the United States and Asia. These lineages were introduced from human seasonal H1 

IAVs (Lewis, Russell et al. 2016). A human-like H1N1 was also isolated from European pigs after 

the Russian pandemic in 1977 (Kuntz-Simon and Madec 2009).  
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Besides H1 lineages, H3 IAVs have become established in swine. H3N2 was first isolated in 

1970 from pigs in Taiwan (Kundin 1970, Brown 2000). The isolate was closely related to human 

IAV and therefore named human-like H3N2 SIV (Tumova, Mensik et al. 1976, Ottis, Sidoli et al. 

1982). In the following, this lineage was detected in swine from several Asian and European 

countries while it only occurred very rarely on the North American continent (Haesebrouck, 

Biront et al. 1985, Pritchard, Dick et al. 1987, Chambers, Hinshaw et al. 1991, Brown 2000, 

Choi, Pascua et al. 2013). In 1984, an H3N2 virus was isolated from European pigs which 

carried internal genes of avian origin and surface proteins of human origin due to a 

reassortment between human-like H3N2 and avian-like H1N1 (Castrucci, Donatelli et al. 1993, 

Kuntz-Simon and Madec 2009). This reassortant human-like H3N2 SIV lineage has replaced 

the original one in European pigs (Kuntz-Simon and Madec 2009). Eventually, it was also 

isolated from pigs in China in 1999 where further reassortment with classical H1N1 SIV was 

observed subsequently (Choi, Pascua et al. 2013) .  

In 1994, human-like H1N2 virus was detected in Great Britain carrying surface glycoproteins 

of human origin (human-like H1 and human-like H3N2) and internal genes of avian-like SIV 

(Brown, Harris et al. 1998). Until today, this virus had spread to several European countries 

(Kuntz-Simon and Madec 2009).  

In Asia, circulating SIVs are of particularly diverse and complex origin. Probably due to regular 

imports of pigs, SIVs of several European and North American lineages have been isolated 

frequently. Besides, several lineages have been detected in Asia exclusively. Diverse 

reassortant H1N2 SIVs in China originate from classical H1N1 viruses and European 

reassortant or North American triple reassortant viruses (Choi, Pascua et al. 2013). 

In North America, diverse SIVs of the subtypes H3N2 as well as H1N1 and H1N2 were detected 

which contain a specific combination of internal genes of classical, avian and human IAVs, 

called the triple internal gene (TRIG) cassette. These isolated viruses containing the TRIG 

cassette carry surface proteins of different lineages and origin. Some of these SIVs have 

successfully established in the North American swine population (Vincent, Ma et al. 2008, 

Sandbulte, Spickler et al. 2015).  
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Figure 6. Origin of H1N1pdm09: PB2, PB1, PA, H1, NP, and NS derive from triple reassortant swine viruses; N1 and 
M originate from avian-like H1N1 (Neumann, Noda et al. 2009). 

2.8 Disease 

SIVs belong to the most important respiratory pathogens in modern pig husbandry (Brown 

2000). Basically, all age groups can be affected. The viral infection spreads rapidly in the 

infected herd and can reach morbidity rates of 100 percent. Lethality, on the other hand, is 

usually only about 1 percent (Ritzmann 2013) but depends on the viral strain (Zell, Scholtissek 

et al. 2013), since some isolates can cause more severe disease (Jung, Ha et al. 2005). 

Generally, the clinical picture is characterized by fever, loss of appetite, fatigue and respiratory 

symptoms such as tachypnea, coughing, dyspnea and increased abdominal breathing. 

Moreover, subclinical forms or very mild diseases with less predominant respiratory 

symptoms are common (Janke 2013, Ritzmann 2013). Therefore, SIVs are able to persist in 

affected herds for a long time and bear the risk of self-perpetuating re-infection or carry-over 

to other herds (Plonait and Bickhardt 2004). Generally, infected pigs recover after 6 to 7 days 

although the infection may circulate in the herd for over two weeks since not all animals are 

infected simultaneously (Janke 2013). Secondary bacterial and viral infections can exacerbate 

disease considerably (Plonait and Bickhardt 2004). In many pig farms, such disease complexes 
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are of more importance than mono-causal infections and cause major economic losses 

(Ritzmann 2013). Here, SIV infections are often associated with multifactorial clinical pictures 

such as porcine respiratory disease complex (PRDC), postweaning multisystemic wasting 

syndrome (PMWS) and proliferative necrotizing pneumonia (PNP) (Plonait and Bickhardt 

2004, Grau-Roma and Segales 2007, Grau-Roma, Stockmarr et al. 2012, Ritzmann 2013). 

Economic damages are especially caused by disease-associated loss of body weight in 

fattening pigs (Plonait and Bickhardt 2004, Van Reeth and Ma 2013). Beyond that, decreased 

fertility rates, abortion and birth of weak litters or an increased amount of dead piglets are 

associated with SIV infections in sows and can become economically relevant (Plonait and 

Bickhardt 2004, Wesley 2004, Ritzmann 2013).  

2.9 Pathogenesis 

Acutely infected pigs spread the virus via secretions and by aerosol (Plonait and Bickhardt 

2004). Viral replication is usually restricted to the respiratory tract and occurs in epithelial cells 

of the nasal mucosa, tonsils, trachea, lungs and tracheobronchial lymph nodes (Lanza, Brown 

et al. 1992, Heinen, van Nieuwstadt et al. 2000). It reaches its peak after 24 to 72 hours (Plonait 

and Bickhardt 2004) .  

Macroscopic lesions from a monocausal SIV infection are only rarely seen. A typical 

macroscopic finding during dissection of acutely diseased animals is a cathartic inflammation 

from the nasal passages to the bronchioles. The increased amount of mucus can block the 

airways leading to lobular or multi-lobular atelectasis in cranio-ventral regions of the lung. In 

the lungs of deceased animals, severe alveolar and interstitial edema is often observed. 

Microscopic lesions are typically necrotizing bronchitis und bronchiolitis. In severe cases, the 

inflammation reaches the alveoli characterized by swelling of alveolar walls and infiltration 

with mononuclear cells. The alveolar lumen is filled with aggregated macrophages, neutrophil 

granulocytes, mucus and necrotic cells inducing lobular atelectasis (López 2009). Viral antigen 

can be demonstrated in epithelial cells by immunohistochemistry already after 24 h post 

infection (pi) (López 2009, Janke 2013).  
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2.10 Immunology  

The immune system of an infected host reacts to an IAV infection with innate, mucosal and 

systemic (humoral and cell-mediated) immune responses. Innate immunity is important 

during the early stages of infection although it is not antigen-specific. Viral RNA is first 

recognized by toll-like receptors (TLRs) and cytoplasmic sensors, especially RIG-I, inducing the 

IFN system. As a result, cells transform to an antiviral state (White, Doss et al. 2008, Ma and 

Richt 2010). Generally, diverse soluble innate inhibitors and immune cells like dendritic cells, 

phagocytes, macrophages and natural killer cells are involved in innate immune reactions. 

They provide the first line of defense and not only restrict viral replication but also promote 

the adaptive immune response (White, Doss et al. 2008).  

As part of the adaptive immune reaction to an IAV infection, the humoral immunity plays an 

important part preventing new infections and disease. Specific antibodies of different isotypes 

are synthesized by B lymphocytes. At first, they produce IgM antibodies but after initiation of 

a class switch by T helper cells, B lymphocytes are able to make high quality IgG and IgA 

(Sandbulte, Spickler et al. 2015).  

Mucosal IgA and IgM in the respiratory tract of recovered or intranasally vaccinated animals 

specifically target the IAV surface proteins, HA and NA. They are present at the main entry 

sites of infection and are therefore able to neutralize virus, inhibiting entry and replication 

early (Cox, Brokstad et al. 2004). Mucosal immunity is additionally considered to offer a 

broader protection against different virus variants then systemic humoral immunity (Ichinohe, 

Iwasaki et al. 2008).  

Systemic neutralizing antibodies against HA are most effective against virus infection blocking 

the initial attachment of IAV to its sialic acid receptors on the cell surface (Ma and Richt 2010, 

Sandbulte, Spickler et al. 2015). However, the efficiency of the neutralization depends heavily 

on the similarity between the HA epitopes of the infecting virus to the HA epitopes against 

which the antibodies have been elicited (Kreijtz, Fouchier et al. 2011, Sandbulte, Spickler et 

al. 2015). NA-specific antibodies are known to inhibit the release of newly formed viral 

particles from infected cells (Ma and Richt 2010). Although antibodies against NA are known 

to be less effective then HA neutralizing antibodies, they are able to decrease viral replication 

and reduce disease severity (Marcelin, Sandbulte et al. 2012). However, antibodies against the 

internal proteins, M and NP, are not known to offer sufficient (direct) protection against 

infection (Ma and Richt 2010). 
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Cell-mediated immunity is the second line of defense to an IAV infection. Besides T helper 

cells, which initiate class switch of B lymphocytes, cell-mediated immunity is considered to be 

particularly important for viral clearance after IAV infection (Graham and Braciale 1997). 

Infected cells present viral proteins in major histocompatibility complex (MHC) I molecules on 

their cell surface recognized by cytotoxic T lymphocytes (CTLs). The CTL response is especially 

directed against highly conserved NP of IAV enabling cross reactivity against different IAV 

strains and subtypes (Flynn, Riberdy et al. 1999, Kreijtz, Fouchier et al. 2011, Sandbulte, 

Spickler et al. 2015). CTLs are able to eliminate IAV infected cells either by the production of 

perforins, which cause lysis of the infected cell or by Fas/FasL mechanism, which initiates self-

destruction of the infected cell (Sandbulte, Spickler et al. 2015). 

2.11 Control of the Disease and Vaccination 

Mild cases of SI do not necessarily require treatment. However, an increased stable 

temperature with appropriate ventilation may accelerate recovery. Acutely infected herds can 

only be treated symptomatically with inflammation inhibitors while secondary bacterial 

infections require treatment with antibiotics (Plonait and Bickhardt 2004). Therefore, disease 

prevention is highly desirable.  

Currently, divalent (H1N1 and H3N2) and trivalent (H1N1, H1N2 and H3N2) inactivated, 

adjuvanted whole virus vaccines are commercially available. Chosen vaccine strains differ 

between the continents and are produced for local use taking into account the variability in 

circulating field viruses (section 2.7) (Van Reeth and Ma 2013). For these inactivated vaccines, 

viruses are propagated in embryonated specific pathogen free chicken eggs or in cell culture. 

In the following process, they are chemically inactivated and combined with suitable adjuvants 

based on mineral oil. Pigs obtain two immunizations 2-4 weeks apart by subcutaneous or 

intramuscular injection (Van Reeth and Ma 2013, Rahn, Hoffmann et al. 2015). The vaccines 

are provided for animals at the age of 56 days or older. The major aim of vaccination programs 

is the reduction of infection risk and interruption of infection chains. Vaccination is often 

administered to breeding sows targeting their offspring as well, which receive maternally 

derived antibodies (Ritzmann 2013). Inactivated vaccines trigger predominantly a systemic 

humoral immune response, which is especially elicited against the viral most abundant surface 

protein HA. After vaccination, the induced serum antibodies are then transferred to the 

mucosa of the respiratory tract (Van Reeth and Ma 2013). Although inactivated vaccines 
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usually induce considerable high serum antibody titers after boost immunization (≥320-640 

HI titer), they do not induce virus-specific CD8+ T lymphocytes or the endogenous pathway 

for antigen presentation (Van Reeth and Ma 2013). Therefore, protection is mostly restricted 

to antigenically identical or very similar strains. Due to high diversity of IAVs, vaccine-

mismatching and insufficient protection levels frequently occur in the field (Ma and Richt 

2010, Sandbulte, Spickler et al. 2015). Besides, several novel SIVs have been observed 

especially during the last 10-15 years which considerably complicated vaccine strain selection 

(Van Reeth and Ma 2013).  

To overcome this issue, several approaches have been performed in the last years to increase 

vaccine efficiency and cross-protection (Ma and Richt 2010). 

Live-attenuated influenza vaccines (LAIV) are a promising alternative to traditional, 

inactivated vaccines (section 2.13). Some LAIV can be delivered intranasally mimicking the 

natural infection. The limited viral replication in the upper respiratory tract is able to trigger 

mucosal IgA-producing cells (Hoft, Lottenbach et al. 2017). In contrast to inactivated vaccines, 

LAIVs are able to stimulate beyond a humoral a cell-mediated immune response. Viral proteins 

produced in infected cells, although in restricted manner, can activate desirable T cell 

responses. Cellular immunity, as previously described (section 2.10), is directed against 

epitopes in the highly conserved internal proteins (especially NP) and therefore able to offer 

broader protection (Kreijtz, Fouchier et al. 2011, Sandbulte, Spickler et al. 2015). 

2.12 Reverse Genetics 

Reverse genetics has become a common method in IAV research (Stech, Stech et al. 2008) and 

is widely used to generate full-length cDNA copies of the viral genome, integrate specific 

mutations or replace full gene segments for analyses of the resulting phenotype (Palese, 

Zheng et al. 1996, Neumann and Kawaoka 1999, Neumann, Watanabe et al. 1999, Hoffmann, 

Neumann et al. 2000). Here, an eight-plasmid DNA transfection system was used for 

generation of recombinant IAVs from cloned cDNA (Hoffmann, Neumann et al. 2000). To this 

end, the viral cDNA is inserted in the plasmid vector between the human RNA polymerase I 

(pol I) promoter and terminator as well as the truncated CMV RNA polymerase II (pol II) 

promotor and a polyadenylation site. Therefore, the cellular polymerases I and II are able to 

synthesize negative-sense viral RNA as well as positive-sense mRNA. The cellular transcription 

and translation machinery then generates the viral proteins and the newly reconstituted viral 
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polymerase complex (PB2, PB1, PA, and NP) additionally activates the viral replication 

machinery resulting in the generation of recombinant infectious IAV.  

 

 
 

Figure 7. Virus rescue from an 8-plasmid set after transfection of a suitable cell line (Hoffmann, Neumann et al. 
2000). 

To integrate the amplified cDNA into the vector plasmid, a restriction-enzyme independent 

modified QuikChange™ reaction was performed. In this reaction, the viral cDNA serves as a 

megaprimer for target-primed plasmid amplification (Geiser, Cebe et al. 2001, Stech, Stech et 

al. 2008). To this end, viral RNA is transcribed into cDNA using universal primers, which bind 

the highly conserved regions at 3´-end termini of all IAV gene segments. Each gene is 

separately amplified by using segment-specific primers homologous to 12 or 13 nt at the 3´- 

and 5´-termini. These primers also include extended 5´-ends (13 nt) homologous to the 

insertion site of the cloning vector. The used parenteral vector plasmid pHWSccdB, on the 

other hand, includes itself the highly conserved IAV gene termini. An integrated negative 

selection marker ccdB considerably increases cloning efficiency. In addition, ccdB has the 

function of a placeholder enabling an efficient full-length insertion of the largest IAV genes, 

PB2 and PB1 (2341 nt each) (Stech, Stech et al. 2008). 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=18566_pq1101336002.jpg
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Figure 8. Target-primed plasmid amplification (Stech, Stech et al. 2008). 

2.13 Live Attenuated Influenza Vaccines 

Although there are several promising experimental studies demonstrating high protection 

conferred by different LAIVs, none of them are approved for swine (Rahn, Hoffmann et al. 

2015) except one bivalent H1N1 and H3N2 NS1-truncated LAIV recently introduced to the 

market (Genzow, Goodell et al. 2017). Reverse genetics has become pivotal to generate 

tailored recombinant viruses for new vaccine approaches (Sandbulte, Spickler et al. 2015).  

Pena et al. generated e.g. an attenuated mutant strain with an impaired polymerase activity 

and temperature-sensitive growth behavior, which was highly attenuated in mice and swine 

against wild type infection (Pena, Vincent et al. 2011).  

Another LAIV expresses two different SIV HAs, H1 and H3, generated by fusion of the H3 

ectodomain to the cytoplasmic tail, transmembrane domain, and stalk region of NA from a 

H1N1 SIV. The following experimental studies revealed that this LAIV was attenuated in swine 

and offers protection against challenge infections with H1 and H3 SIV (Masic, Pyo et al. 2013, 

Pyo and Zhou 2014).  

Stech et al. generated influenza A and B virus mutants carrying an elastase-sensitive HA 

cleavage site motif, which are highly attenuated in mice and offer full protection against lethal 

challenge with the wild type (Stech, Garn et al. 2005, Gabriel, Garn et al. 2008, Stech, Garn et 

al. 2011). As mentioned previously (section 2.3), the cleavage of the HA precursor HA0 into 

the HA1 and HA2 fragments is essential to complete the viral replication cycle and strictly 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2588516_gkn646f1.jpg
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depends on host proteases (Klenk, Rott et al. 1975, Bottcher-Friebertshauser, Klenk et al. 

2013). The HA cleavage site mutants, on the other hand, require elastase, which is not 

sufficiently accessible in the respiratory tract for proteolytic activation of the HA, resulting in 

severely restricted viral replication in vivo. Follow-up studies in swine confirmed the 

attenuation of elastase-dependent mutants as well as efficient protection (Masic, Babiuk et 

al. 2009, Masic, Booth et al. 2009, Babiuk, Masic et al. 2011). 

Another promising vaccine approach targets the viral non-structural protein 1 (NS1), which is 

a multifunctional protein and major virulence factor (section 2.4). Mutants carrying a C-

terminally truncated NS1 are not only highly attenuated in mice and swine but also confer 

high protection against challenge (Talon, Salvatore et al. 2000, Solorzano, Webby et al. 2005, 

Richt, Lekcharoensuk et al. 2006, Vincent, Ma et al. 2007, Kappes, Sandbulte et al. 2012, 

Vincent, Ma et al. 2012, Wang, Qi et al. 2012, Genzow, Goodell et al. 2017). 

2.14 Experimental Challenge Infection of Pigs 

Experimental infection of pigs with SIV does normally not reproduce the severity of clinical 

disease in the field. Clinical signs as fever, depression, anorexia, serous nasal discharge, ocular 

discharge, and tachypnea in particular during activity are frequently observed but their 

appearance and severity are quite variable. Intensive coughing, as known from field infections, 

is extremely limited under experimental conditions (Janke 2013).  

Moreover, clinical signs can differ considerably depending on the inoculation method and 

protocol (Landolt, Karasin et al. 2003, Richt, Lager et al. 2003, De Vleeschauwer, Atanasova et 

al. 2009, Hemmink, Morgan et al. 2016). With the nebulization method, the virus solution is 

efficiently administered via aerosol since high amounts of aerosolized virus are delivered to 

the entire respiratory tract. Nonetheless, the procedure is labor-intensive and increased 

safety issues need to be considered (Janke 2013, Hemmink, Morgan et al. 2016). By contrast, 

the intranasal infection allows an easier handling and resembles the natural infection route as 

well. Still, the efficiency of this method varies widely because pigs may swallow most of the 

inoculum. Therefore, experimental results might not be easily reproducible. The intratracheal 

infection route, however, offers a high reproducibility and most consistent experimental 

infection (De Vleeschauwer, Atanasova et al. 2009, Janke 2013). A major disadvantage of this 

method is that the virus solution only reaches the lower respiratory tract. Therefore, it mostly 

deviates from the natural infection route (Hemmink, Morgan et al. 2016).  
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Generally, virus titers of >106-107 TCID50, EID50 or PFU/pig provide the most significant clinical 

picture in swine (Janke 2013). Nasal shedding after experimental inoculation usually starts on 

day 1 to 3 pi and lasts for 4 to 5 or sometimes 7 days (Brown, Done et al. 1993, Van Reeth, 

Nauwynck et al. 1996, Landolt, Karasin et al. 2003, Olsen, Brown et al. 2006). The inoculation 

method seems to have only a minor influence on the onset and course of viral shedding (Janke 

2013). Studies revealed that viral titers in the lung peak on day three pi until day five pi without 

major variations (Van Reeth, Nauwynck et al. 1996, De Vleeschauwer, Atanasova et al. 2009, 

Ma, Vincent et al. 2010). 
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3. Aim of the Thesis 

IAV are able to escape the host immunity. Accordingly, inactivated IAV vaccines frequently 

provide insufficient protection. Despite several promising LAIV approaches (section 2.13) 

offering broader immune responses, there are still major safety issues regarding possible 

reversion or reassortment with circulating viruses. 

The present work describes the evaluation of a double-attenuated LAIV, which originates from 

the IAV A/Bayern/74/2009 (H1N1pdm09) generated by reverse genetics. For further 

development and increased safety, the virus mutant By09-Ela/NS1-99 combines two 

established features: (1) an artificial, strictly elastase-dependent HA cleavage site and (2) a C-

terminally truncated NS1 protein. This virus was characterized in vitro.  

Furthermore, to determine a suitable immunization and challenge method for practical and 

effective application of By09-Ela/NS1-99, we performed a preliminary study with a mucosal 

atomization device (MAD).  

Subsequently, we investigated the attenuation and efficiency of By09-Ela/NS1-99 in an 

immunization and challenge trial.  
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4. Material and Methods 

4.1 Material  

4.1.1 Cells 

Cell Line  Description Reference 

HEK-293T Human embryotic kidney cells University of Gießen, Germany, 

Faculty of Medicine, Institute of 

Virology 

MDCK-II Madin-Darby canine kidney 

cells  

University of Marburg, Germany, 

Institute of Virology 

PK-15 Porcine kidney cells Cell bank, FLI Riems, Germany 

 

4.1.2 Bacteria 

Bacterial Strain Reference 

One Shot® TOP10 Chemically Competent  

E. coli 

Invitrogen, Carlsbad, USA 

SURE2 Supercompetent Cells™ Agilent Technologies, USA 

XL1-Blue Competent Cells™ Stratagene, La Jolla, USA 
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4.1.3 Recombinant Viruses 

4.1.3.1 Wild Type Strains 

Description Reference  Abbreviation  

A/Bayern/74/09 (H1N1pdm09)  Elke Lange, FLI Riems, 

Germany 

By09 

A/Swine/Belzig/2/01 (H1N1) Elke Lange, FLI Riems, 

Germany 

SwBel01 

A/Swine/Bissendorf/IDT/1864/03 

(H3N2) 

Elke Lange, FLI Riems, 

Germany 

SwBiss03 

 

4.1.3.2 Virus Mutants  

Abbreviation Parent Strain  Description  

By09-Ela/NS1-99  By09  Elastase-dependent HA cleavage 

site, 

NS truncation (amino acids 1-99) 

SwBiss03-Ela SwBiss03 Elastase-dependent cleavage site 

By09-NS1-99/SwBiss03-HA-

Ela_NA 

By09  

SwBiss03 (HA,NA) 

Elastase-dependent HA cleavage 

site, 

NS truncation (amino acids 1-99) 

 

4.1.4 Enzymes 

Description Reference 

DpnI New England BioLabs, Ipswich, MA, USA 

NheI New England BioLabs, Ipswich, MA, USA 

Porcine Pankreatic Elastase Serva Electrophoresis, Heidelberg, Germany 

TPCK-Trypsin Sigma-Aldrich, Taufkirchen, Germany 
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4.1.5 Plasmids, Nucleotides, Buffer and Marker  

Description Reference  

pHWSccdB  J. Stech et al., 2008 

O’GeneRuler™DNA Ladder Mix Fermentas, St.Leon-Rot, Germany 

6X TriTrack DNA Loading Dye Thermo Scientific, Ulm, Germany 

dNTP-Mix New England BioLabs, Ipswich, MA, USA 

PB2, PB1, PA, HA, NP, NA, M, NS of 

A/Puerto Rico/8/1934 (H1N1) cloned in 

pHWSccdB 

(Grimm, Staeheli et al. 2007) 

pcDNA3.0 NS1 Thorsten Wolff, RKI Berlin, Germany 

 

4.1.6 Antibodies 

Specificity/Dye  Species/Isotype/Clone Reference 

Alexa Fluor® 488 anti-rabbit IgG 

(H+L) 

Goat Invitrogen, Carlbad, CA, 

USA 

anti-human CD197/AlexaFluor 

647 

Rat/IgG2a κ/3D12 BD Bioscience, Heidelberg, 

Germany 

anti-mouse 

IgG1/BrilliantViolett421 

Rat/IgG/RMG1-1 Biolegend, San Diego, CA, 

USA 

anti-pig CD27 Mouse/IgG1/b30c7 In-house 

anti-pig CD4/PerCp-Cy5.5 Mouse/IgG2b κ/74-12-4 BD Bioscience, Heidelberg, 

Germany 

anti-pig CD45RA/FITC Goat/IgG1/MIL13 Bio-Rad, München, 

Germany 

anti-pig CD8α/PE Mouse/IgG2a κ/74-2-11 In-house 

Biotinylated Goat Anti-Rabbit 

IgG1  

Goat Vector, Burlingame, CA, 

USA 

IAV NP  Rabbit GeneTex, Irvine, CA, USA 

polyclonal anti- human CD20 

antiserum  

(RB-9013) 

Rabbit Thermo Scientific, 

Braunschweig, Germany  

polyclonal anti- human CD3 

(K3464) 

Rabbit  Dako, Carpinteria, CA, USA 
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4.1.7 Primers 

4.1.7.1 Cloning  

Description 5‘-3‘ - Sequence  

Uni12 agcaaaagcagg 

pHW-PB2f gaagttgggggggagcgaaagcaggtc 

pHW-PB2-2341r ccgccgggttattagtagaaacaaggtcgttt 

pHW-PB1-17f gaagttgggggggagcgaaagcaggcaaac 

pHW-PB1-2341r ccgccgggttattagtagaaacaaggcattt 

pHW-HAf gaagttgggggggagcaaaagcagggg 

pHW-NSr gaagttgggggggagcaaaagcagggg 

 

4.1.7.2 Mutagenesis 

Description 5‘-3‘ – Sequencec 

SB03-HA-AAAAfa aggaatataccagaaGCaGCaGctGCaggcatattcggtgca  

pHW-NSra gaagttgggggggagcaaaagcagggg 

H3-518b aaatcaggtaacacatacccg 

SB03-HA-AAAArb tgcaccgaatatgcctGCagCtGCtGCttctggtatattcct 
 

aprimers used to generate Megaprimer 1 in a Phusion PCR 
bprimers used to generate Megaprimer 2 in Phusion PCR 
Nucleotide exchanges are written in bold letters.  
 

4.1.7.3 One Step RT PCR and Sanger Sequencing 

Description 5‘-3‘ - Sequence 

M13 PB2f tgtaaaacgacggccagttcatctcgagagcaaaagcaggtc 

PB2-R595 caattttacaatcctggagc 

PB2-502 gcacaggatgtaatcatgg 

PB2-R1210 ggttgcctttctgaggatagc 

cPB2r-1722 tttgttgtataacattgtggg 

PB2-834R tctcctaacaatgtttctgg 

PB2-648 ggaaagagagctggttcgc 

PB2-1366R atcaataggttcaattcccc 

PB2-1100 ggaattcacaatggttggg 

PB2-1578 tctcctaacaatgtttctgg 

M13 PB2r caggaaacagctatgaccatctgtcacagtggaaacaaggtc 

M13 PB1f tgtaaaacgacggccagttcatctcgagagcaaaagcaggca 

PB1-689R agtgctcttattagatagcc 
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PB1-478 ctaatgaatcggggaggc 

PB1-R1621 gtccaaggtcattgtttatc 

PB1-1091 tgttcgagagtaagagtatg 

PB1-R1680 ccgatatgtgtatctgtagt 

PB1-1602 gataaacaatgaccttggac 

PB1-822R aagtttctcacagatactcc 

PB1-586 accaagaaaatggtcacac 

PB1-1091 tgttcgagagtaagagtatg 

PB1-1288 tcaatcctgaatcttgggc 

PB1-1680R ccgatatgtgtatctgtagt 

PB1-1531 gccaatttcagtatggagc 

M13 PB1r caggaaacagctatgaccatctgtcacagtggaaacaaggca 

M13 PAf tgtaaaacgacggccagttcatctcgagagcaaaagcaggtac 

cPA-R649 ggtcggcaagcttgcgc 

cPA-504 ggcaagaatcaaaactaggc 

cPA-R1281 gtctgtcaattcacatgcc 

PA-1057 ctgcaggacattgaaaatg 

PA-1806R ctcgatcatgctctcaatc 

PA-1688 gccaagtgtcaaggccc 

PA-613 ggcgaagagacaattgaag 

PA-R1211 ctctgaatccagcttgcc 

PA-R1796 tctttaacagaagattccgc 

PA-1720 atggaaatgagacgttgcc 

M13 PAr caggaaacagctatgaccatctgtcacagtggaaacaaggtac 

M13 HAf tgtaaaacgacggccagttcatctcgagagcaaaagcagggg 

cH1-R543 ggatttgctgagctttggg 

cH1-405 caagacaagttcatggccc 

cH1-R1010 ttcctcaatcctgtggcc 

cH1-906 tataaacaccagcctccc 

H3-763R gattatcaggatgtcccctgg 

H3-518 aaatcaggtaacacatacccg 

HA-1450R gcaaccatttcccatgtcctca 

H3-1007 gggatgaggaatataccaga 

M13 NSr caggaaacagctatgaccatctgtcacagtagaaacaagggtg 

M13 NPf tgtaaaacgacggccagttcatctcgagagcaaaagcagggta 

cNP-R547 ccgcagcacctgcggc 

NP-464 aggatgtgctctctgatgc 

cNP-R1221 actgatctggcctgcgg 

NP-1160 tgcttcaaatgagaacatgg 

NP-812R ccagtactgagagagtgg 

NP-729 ccagtactgagagagtgg 



Material and Methods 

32 

 

JSMPB2M4-1493 ccagtactgagagagtgg 

NP-1359 agaacatctgacatgagg 

M13 NPr caggaaacagctatgaccatctgtcacagtagaaacaagggta 

M13 NAf tgtaaaacgacggccagttcatctcgagagcaaaagcaggagt 

M13 NAr caggaaacagctatgaccatctgtcacagtagaaacaaggagt 

M13 Mf tgtaaaacgacggccagttcatctcgagagcaaaagcaggtag 

M13 Mr caggaaacagctatgaccatctgtcacagtagaaacaaggtag 

M13 NSf tgtaaaacgacggccagttcatctcgagagcaaaagcagggtg 

 

4.1.7.4 Primers and TaqMan Probes for RT-qPCR 

Description 5‘-3‘ - Sequencec 

IAV-M1.1 R tgcaaaaacatcttcaagtytctg 

IAV-M1.2-R tgcaaagacactttccagtctctg 

IAV-M1-FAM FAM-tcaggccccctcaaagccga-BHQ1 

EGFP-11-F cagccacaacgtctatatcatg 

EGFP-10-R cttgtacagtctgtccatgc 

EGFP-1HEX HEX-agcacccagtccgccctgagca-BHQ1 

IAV-M1-F agatgagtcttctaaccgaggtcg 
 

cPrimers and TaqMan probes in IAV-M1.2- FAM-Mix originate from Spackman et al., 2002 (Spackman, Senne et 
al. 2002)(modified); Primers and TaqMan probes in EGFP-Mix4(5)-HEX originate from Hoffmann et al., 2006 
(Hoffmann, Depner et al. 2006). FAM, 6-Carboxyfluorescein; HEX, Hexachlorofluorescein; BHQ1, Black Hole 
Quencher 

 

4.1.8 Antibiotics  

Description  Reference  

Ampicillin Roche, Basel, Switzerland 

Baytril® (Enrofloxacin) Bayer, Leverkusen, Germany 

Gentamycin AniMedica, Senden, Germany 

Lincomycin  WDT, Garbsen, Germany 

Penicillin-Streptomycin Sigma-Aldrich, Steinheim, Germany 
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4.1.9 Cell Culture Media 

Description Composition  

ATV 8.5 g NaCl 

0.4 g KCl 

1.0 g Dextrose 

0.58 g NaHCO3 

0.5 g Trypsin (1:250) 

0.2 g EDTA 

ad 1 L Aqua dest.  

ATV-D 8.5 g NaCl 

0.4 g KCl 

1.0 g dextrose 

0.58 g NaHCO3 

1 g Trypsin (1:250) 

0.2 g EDTA 

ad 1 L Aqua dest. 

Growth Medium  5.32 g MEM Eagle 

4.76 g MEM 

120 mg Sodium pyruvate 

10 vol. % FBS 

10 mL NEA 

ad 1 L Aqua dest. 

Infection Medium 

 

5.32 g MEM Eagle 

4.76 g MEM 

1.25 g NaHCO3 

120 mg Sodium pyruvate 

10 mL NEA 

0.2 vol. % BSA 

100 Units Penicillin 

0.1 mg Streptomycin 

ad 1 L Aqua dest. 
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4.1.10 Media for Bacteria 

Description Composition  

LB Agar 300 mL LB-Medium 

4.5 g Agar Bacteriological Grade 

300 µL Ampicillin 

LB Medium 10 g Casein 

5 g Yeast extract powder 

4 ml NaOH (1N) 

5 g NaCl 

ad 1 L Aqua dest. 

 

4.1.11 Buffer and Solutions 

Description Composition  

1 X Phosphate Buffered Saline (PBS) 1 PBS Tablet 

ad 200 mL Aqua dest. 

Chicken Erythrocytes 1 % Chicken Erythrocytes in PBS 

Tris-Acetate-EDTA (TAE) 48.4 g Tris 

11.4 mL Acetic acid (100 %) 

20 mL EDTA [0.5 M] 

ad 1 L Aqua dest. 

Red blood cell lysis buffer (10x) 8.3 g NH4Cl 

1 g KHCO3 

0.37 Na4EDTA 

NaOH (pH adjustment) 

 ad 100 mL Aqua dest. 

FACS-blood-buffer 0.1 % BSA 

1 mL EDTA (0.5 M) 

0.1 % NaN3 

ad 500 ml Ca2+/Mg2+-free PBS 

FACS buffer 0.1 % BSA 

0.1 % NaN3 

ad 500 ml Ca2+/Mg2+-free PBS 
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4.1.12 Ready-For-Use Kits 

Description  Reference 

AgPath-ID™ One-Step RT-PCR Kit Applied Biosystems, Carlsbad, USA 

BigDye™ Terminator v1.1 Cycle Sequencing 

Kit 

Applied Biosystems, Carlsbad, USA 

ID Screen® Influenza A Antibody 

Competition 

ID.vet, France  

NucleoSEQ®Columns Macherey-Nagel, Düren, Germany 

NucleoSpin®96 Virus Core Kit Macherey-Nagel, Düren, Germany 

Omniscript® RT Kit (50) Qiagen, Hilden, Germany 

Phusion® High-Fidelity DNA Polymerase 500 

U 

New England BioLabs, Ipswich, MA, USA 

QIAamp®Viral RNA Mini Kit Qiagen, Hilden, Germany 

QIAfilter™Plasmid Midi Kit Qiagen, Hilden, Germany 

QIAGEN®OneStep RT-PCR Kit  Qiagen, Hilden, Germany 

QIAprep®Spin Miniprep Kit Qiagen, Hilden, Germany 

QIAquick® Gel Extraction Kit Qiagen, Hilden, Germany 

RNase-Free DNase Set (50) Qiagen, Hilden, Germany 

RNeasy Mini Kit Qiagen, Hilden, Germany 

VECTASTAIN® Elite® ABC-HRP Kit  Vector, Burlingame, CA, USA 

 

4.1.13 Reagents and Chemicals  

Description Reference  

3-amino-9-ethyl-carbazol Sigma-Aldrich, Taufkirchen, Germany 

Acetic acid MP Biomedicals, Eschwege, Germany 

Agar bacteriological grade MP Biomedicals, Eschwege, Germany 

Agarose  Invitrogen, Darmstadt, Germany 

Bovine Serum albumin 35% (BSA) MP Biomedicals, Eschwege, Germany 

Casein Oxoid, Wesel, Germany 

Cholera Filtrate lyophilized powder Merck, Darmstadt, Germany 

Eosin MEDITE, Orlando, FL, USA 

Ethanol Roth, Karlsruhe, Germany 

Ethidium bromide  Sigma-Aldrich, Taufkirchen, Germany 

Ethylendiamintetraacetic acid (EDTA) Serva, Heidelberg, Germany 

Fetal Bovine Serum (FBS) MP Biomedicals, Eschwege, Germany 

Formalin 37 % p.a.  Roth, Karlsruhe, Germany 

Formamide Applied Biosystems, Waltham, USA 

Glycine  Roth, Karlsruhe, Germany 

HCl Sigma-Aldrich, Taufkirchen, Germany 
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Hematoxylin MEDITE, Orlando, FL, USA 

Isopropanol Roth, Karlsruhe, Germany 

KCl Roth, Karlsruhe, Germany 

KH2PO4 Roth, Karlsruhe, Germany 

Lipofectamine®2000 Reagent Invitrogen, Darmstadt, Germany 

MEM Eagle Applied Biosystems, Waltham, USA 

Methanol  Roth, Karlsruhe, Germany 

MgCl2 x H2O Roth, Karlsruhe, Germany 

Minimal Essential Medium (MEM) Invitrogen, Darmstadt, Germany 

Na2HPO4 x H2O Roth, Karlsruhe, Germany 

NaCl Roth, Karlsruhe, Germany 

NaHCO3 Roth, Karlsruhe, Germany 

NaOH Roth, Karlsruhe, Germany 

Non essential amino acid (NEA) Biochrom AG, Berlin, Germany 

Opti-MEM® Thermo Scientific, Braunschweig, Germany 

Paraformaldehyde Serva, Heidelberg, Germany 

Skimmed milk powder MAMIPU Hobbybäcker-Versand, Bellenberg, 

Germany 

Sodium pyruvate  Merck, Darmstadt, Germany 

Sucrose Roth, Karlsruhe, Germany 

Tris(hydroxymethyl)aminomethan Invitrogen, Darmstadt, Germany 

Trypsin Invitrogen, Darmstadt, Germany 

TWEEN20  Sigma-Aldrich, Taufkirchen, Germany 

Yeast Extract Powder MP Biomedicals, Eschwege, Germany 

Β-Mercaptoethanol  MP Biomedicals, Eschwege, Germany 
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4.1.14 Animal trial 

4.1.14.1 Material  

Description  Reference 

S-Monovette® 7.5 ml Serum Sarstedt, Nümbrecht, Germany 

S-Monovette® 7.5 ml EDTA Sarstedt, Nümbrecht, Germany 

  

3M™ 1883+ respiratory mask 3M Deutschland GmbH, Neuss, Germany 

Adapter Luer cone KABE Labortechnik, Nümbrecht-Elsenroth, 

Germany 

DuPont Tyvek® Single use overalls DuPont, Neu-Isenburg, Germany 

KABEVETTE® G EDTA 7,5 ml KABE Labortechnik, Nümbrecht-Elsenroth, 

Germany 

KABEVETTE® G Serum 7,5 ml KABE Labortechnik, Nümbrecht-Elsenroth, 

Germany 

Membrane-Adapter  Sarstedt, Nümbrecht, Germany 

Multi-Safe Twin  Sarstedt, Nümbrecht, Germany 

Needle LUER-LOCK 18 G x 2” Dispomed Witt, Gelnhausen, Germany 

Needle LUER-LOCK 21 G x 1 1/2” Henry Schein, Gilligham, United Kingdom 

ProSAMD™-Nasal Mucosal Atomization 

Device  

Prosys International Ltd, Wimbledon, 

United Kingdom 

Sterile Pouched Dryswab® Medical Wire & Equipment, Corsham, 

Wiltshire, England 

Syringe Omnifix® solo Luer 10 ml  B. Braun Melsungen AG, Meslungen, 

Germany 

Syringe Omnifix® solo Luer 5 ml  B. Braun Melsungen AG, Meslungen, 

Germany 
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4.1.14.2 Pharmaceuticals  

Description/  

Trade Name 

Active Drug 

Substance  

Reference 

Ursotamin®, 100mg/mL Ketamine  Serumwerk Bernburg AG, 

Bernburg, Germany 

Release® 500 Pentobarbital  WDT, Garbsen, Germany 

T61 Tetracaine  

Mebezonium  

Embutramide 

Intervet, Unterschleißheim, 

Germany  

Xylazin 2% Bernburg Xylacine Serumwerk Bernburg AG, 

Bernburg, Germany 

Zoletil 100 ad us. vet. Tiletamine  

Zolazepam  

Virbac, Glattbrugg, Switzerland 

 

4.1.15 Consumable Materials 

Description  Reference 

12 Well Cell Culture Cluster flat bottom Corning, New York, USA 

6 Well Cell Culture Cluster flat bottom Corning, New York, USA 

96 Well Cell Culture Cluster flat bottom  Corning, New York, USA 

96 Well Cell Culture Plate U bottom Greiner Bio-One, Kremsmünster, Austria 

Blot paper Whatman, Dassel, Germany 

Capillary tips 200 µL  Biozym Scientific GmbH, Hessisch 

Oldendorf, Germany 

Cell Culture Dish 35x10 mm; 60x15 mm Corning, New York, USA 

Cell Culture Flask T 25; T 75; T162 vented 

cap  

Corning, New York, USA 

Centrifuge tubes  Beckmann, Palo Alto, CA, USA 

Centrifuge tubes 15, 50 mL Sarstedt, Nümbrecht, Germany 

Centrifuge tubes 50 mL Sarstedt, Nümbrecht, Germany 

Coverslip Wiemann Lehrmittel, Muldestausee, 

Germany  

Cryo.S™ tubes with screw cap, 2 mL  Greiner Bio-One, Kremsmünster, Austria 

FACS tubes Sarstedt, Nümbrecht, Germany 

Filter System 0,22 µm: 250; 500; 1000 mL Corning, New York, USA 

Filter Tips 0.5-10µL; 0-100µL; 0-200 µL; 100-

1000 µL 

Nerbe plus, Winsen, Germany 

Nitrile ecoSHIELD™ gloves  SHIELD Scientific, The Netherlands  

Nitrocellulose Whatman, Dassel, Germany 

Parafilm® Laboratory Film  Bemis, Neenah, WI, USA 
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Petri dish 92x16 mm Sarstedt, Nümbrecht, Germany 

Pipette tips 0-10 µL STARLAB, Hamburg, Germany 

Pipette tips 100/200 µL, 100-1000 µL Greiner Bio-One, Kremsmünster, Austria 

Safe-Lock Tubes 1,5; 2 mL Eppendorf, Hamburg, Germany 

Serological pipette 5; 10 mL Sarstedt, Nümbrecht, Germany 

Serological pipette 5; 10; 25 mL Corning, New York, USA 

Stainless steel balls, type Martin  TIS Wälzkörpertechnologie GmbH, Gauting, 

Germany 

Sterile Surgical Blades Aesculap AG, Tuttlingen, Germany 

Tubes 0,2 mL Biozym Scientific GmbH, Hessisch 

Oldendorf, Germany 

Tubes 0,5; 1,5; 2 mL Eppendorf, Hamburg, Germany 
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4.1.16 Hardware Devices 

Description  Reference 

Agarose Gel Electrophoresis apparatus Bio-Rad, München, Germany 

Aria Mx Realtime PCR System Agilent Technologies, St. Clara, USA 

Microscope Axio Scope. A1  Carl Zeiss, Göttingen, Gemany 

Centrifuge 5415 R Eppendorf, Hamburg, Germany 

Centrifuge 5415 R Eppendorf, Hamburg, Germany 

CO2 Incubator Sanyo Sanyo, Japan 

Flow cytometer BD Canto II BD Bioscience, Heidelberg, Germany 

Heraeus Multifuge 1S-R Centifuge Thermo Scientific, Ulm, Germany 

Incubator Heraeus  Thermo Scientific, Ulm, Germany 

Infinite® 200 PRO ELISA reader Tecan, Männedorf, Switzerland 

MACSQuant® Analyzer 10 Miltenyi Biotec GmbH, Teterow 

Magnetic Mixer IKA Labortechnik, Staufen, Germany 

Mastercycler®ep Eppendorf, Hamburg, Germany 

MaxQ™ 800 Shaker Thermo Scientific, Ulm, Germany 

NanoPhotometer™P-Class Implen, Dietikon, Switzerland 

Nikon ECLIPSE Ti-5 Nikon, Chiyoda, Japan 

Nikon TMS inverted Microscope Nikon, Chiyoda, Japan 

Optima™ LE-80K Ultracentrifuge Beckman Coulter, Brea, CA, USA 

Pipettes 2,5; 10; 100; 1000 µL Eppendorf, Hamburg, Germany 

Primus 96 advanced® PEQLAB Biotechnologie GmbH, Germany 

SAFE 2020 Safety Bench Thermo Scientific, Rockford, USA 

SDS Gel Electrophoresis chambers Bio-Rad, München, Germany 

Thermomixer Comfort Eppendorf, Hamburg, Germany 

TissueLyser II Qiagen, Hilden, Germany 

Trans-Blot® SD Semi-Dry Transfer Gel Bio-Rad, München, Germany 

Ultracentrifuge Optima™ LE-80K Beckman, Krefeld, Germany 

UV-Transilluminator Herolab, Wiesloch, Germany 

UV-Transilluminator BIO view Biostep, Meinersdorf, Germany 

VersaDoc 5000MP Bio-Rad, München, Germany 

Vortexer Scientific Industry, Bohemia, NY, USA 
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4.1.17 Software 

Description  Reference 

FlowJo 7.6.5 Tree Star Inc. 

Geneious®  Biomatters  

GraphPad Prism GraphPad Software 

ImageJ Wayne Rasband 

Microsoft Office 2016 Microsoft Corporation 

Tecan i-control™ Tecan 
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4.2 Methods 

4.2.1 Molecular Genetics Methods 

4.2.1.1 RNA Isolation 

Viral RNA from supernatant of infected cell cultures was extracted using QIAamp Viral RNA 

Mini Kit (Qiagen). Isolated RNA was eluted in distilled H20. For isolation of viral RNA from nasal 

swab samples, we used the NucleoSpin 96 RNA Kit (Macherey-Nagel). Both kits were applied 

according to manufacturer´s specifications. 

4.2.1.2 Reverse Transcription 

Viral RNA (section 4.2.1.1) was transcribed into cDNA using Omniscript RT Kit (Qiagen) 

according to manufacturer´s instructions. For each reaction 4 µL RNA and 1 µL Unit12-Primer 

was used.  

9.0 µL Aqua dest.  

2.0 µL10x Buffer RT  

1.0 µL RNAsin  

1.0 µL Primer (20 µM)  

2.0 µL dNTP mixture (10 mmol/L)  

1.0 µL Ominscript RT  

4.0 µL RNA 

 Duration [min] Temperature [°C]  Cycles 

Reverse Transcription 60:00 37 1 

Final Extension 3:00 93 1 
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4.2.1.3 One Step PCR 

For genotyping and sequence analyses, amplification of whole viral gene segments or segment 

parts was performed by OneStep PCR using OneStep RT-PCR Kit (Qiagen) according to 

manufacturer´s instructions. Viral RNA for this reaction was previously isolated from 

supernatant or other samples as described in section 4.2.1.1. For OneStep RT-PCR, gene 

specific M13 primers and different internal primers were used (section 4.1.7.3).  

32.0 µL Aqua dest. 

10.0 µL 5x Buffer 

1.5 µL Primer #1 (20 µM)  

1.5 µL Primer #2 (20 µM)  

2.0 µL dNTP mixture (10 mM)  

2.0 µL Enzyme mixture 

1.0 µL RNA  

 Duration [min] Temperature [°C]  Cycles 

Reverse Transcription 30:00 50 1 

Initial PCR Activation 15:00 95 1 

Denaturation  1:00 94 35 

Annealing 0:30 52 35 

Extension  3:00 72 35 

Final Extension 10:00 72 1 

 
PCR amplicons were subsequently loaded on agarose gel for electrophoretic separation 

(section 4.2.1.6). 
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4.2.1.4 Amplification of IAV Gene Segments  

After RNA isolation (section 4.2.1.1) and transcription into cDNA (section 4.2.1.2), the targeted 

IAV gene segment was amplified using segment-specific primers (section 4.1.7.1) which 

contain 3´- and 5´-termini homologous to the specific IAV segment (12 or 13 nucleotides (nt)). 

These primers additionally contain extended 5´-ends (13 nt) homologous to the insertion site 

of the cloning vector pHWSccdB enabling the subsequent modified QuikChange™ reaction 

(section 4.2.1.9).  

35.0 µL Aqua dest. 

10.0 µL 5x HF Buffer  

2.0 µL cDNA Template  

1.5 µL Primer #1 (20 µM)  

1.5 µL Primer #2 (20 µM)  

1.0 µL dNTP Mix (10 mM) 

1.0 µL Phusion Polymerase (2 U/µL) 

 

 Duration [min] Temperature [°C]  Cycles 

Initial Denaturation 0:30 98 1 

Denaturation  0:10 98 35 

Annealing 0:30 57 35 

Extension  4:00 72 35 

Final Extension 5:00 72 1 

 
PCR amplicons were subsequently loaded on agarose gels for electrophoretic separation 

(section 4.2.1.6). 

4.2.1.5 Concentration Determination of RNA and DNA 

The concentration of DNA or RNA was determined by a NanoPhotometer™P-Class (Implen). 

Distilled H20 was used as blank sample. 
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4.2.1.6 Agarose Gel Electrophoresis  

Electrophoretic separation of DNA was performed in an agarose gel (1 %), which was stained 

with GelRed (1 µL/mL) or ethidium bromide (0.5 µL/mL). DNA samples were loaded with 

TriTrack DNA Loading Dye (Thermo Scientific) and bands were visualized with ultraviolet light 

from a transilluminator. DNA bands at the accurate size were excised for purification (section 

4.2.1.7). 

4.2.1.7 Gel Extraction  

For DNA purification, gel slices were treated with QIAquick Gel Extraction Kit (Qiagen) 

following manufacture´s specifications. Purified DNA was eluted in distilled H20. 

4.2.1.8 DNA Sequencing 

For sequencing, sanger chain-termination method was performed (Sanger, Nicklen et al. 

1977). For initial amplification, the BigDye Terminator v1.1 Cycle Sequencing Kit (Applied 

Biosystems) was used according to manufacturer’s specifications.  

280 ng DNA (1-5 µl) 

1.0 µL Buffer Big Dye  

2.0 µL Big Dye Terminator Mix (Thermo Fisher Scientific)  

1.0 µL Primer (5 µM)  

filled up with Aqua dest. to an end volume of 10 µL 

 Duration [min] Temperature [°C]  Cycles 

Initial Denaturation 1:00 96 1 

Denaturation  0:10 96 25 

Annealing 0:05 55 25 

Extension  4:00 60 25 

 
Subsequently, 10 µL distilled H20 were added to amplified DNA products and used 

NucleoSEQ®Columns (Macherey-Nagel) for purification. DNA sequencing was provided by Dipl. 

Chem. Günther Strebelow, FLI, Riems. Sequences were subsequently evaluated with Genious 

(Biomatters Inc.). 
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4.2.1.9 Target-Primed Plasmid Amplification  

Amplified (section 4.2.1.4) and purified (section 4.2.1.7) PCR products were inserted into 

vector plasmid pHWSccdB by modified QuikChange™ reaction (Stech, Stech et al. 2008). It is 

restriction enzyme-independent since the PCR amplicon serves as a megaprimer. 

31.0 µL Aqua dest.  

10.0 µL 5x HF Buffer 

1.0 µL pHWSccdB (1 µg/µL)  

5.0 µL purified PCR Product (section 4.2.1.7) 

1.0 µL dNTP-Mix (10 mM) 

2.0 µL Phusion Polymerase (2 U/µL) 

 

 Duration [min] Temperature [°C]  Cycles 

Initial Denaturation 0:30 98 1 

Denaturation  0:10 98 35 

Annealing 1:00 48 35 

Extension  5:30 72 35 

 
Subsequently, the sample was incubated with 2 µL DpnI (5 U/µL) for 3 hours at 37°C to allow 

cleavage of parental methylated DNA. Thereafter, the sample was transformed into 

competent Escherichia coli (E. coli) (section 4.2.2).  
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4.2.1.10 Generation of Megaprimers  

Mutagenesis primers and internal primers listed in (section 4.1.7.2) for PCR were used to 

generate two megaprimers for mutagenesis of HA-encoding plasmid of SwBiss03. To this end, 

we combined each primer pair respectively with the HA-encoding plasmid of SwBiss03 in a 

modified QuikChange™ mutagenesis. 

35.0 µL Aqua dest. 

10.0 µL 5x HF Buffer  

2.0 µL Plasmid (1 µg/µL) 

1.5 µL Primer #1 (20 µM)  

1.5 µL Primer #2 (20 µM)  

1.0 µL dNTP Mix (10 mM) 

1.0 µL Phusion Polymerase (2 U/µL) 

 

 Duration [min] Temperature [°C]  Cycles 

Initial Denaturation 0:30 98 1 

Denaturation  0:10 98 35 

Annealing 0:30 57 35 

Extension  4:00 72 35 

Final Extension 5:00 72 1 

 
PCR amplicons were subsequently loaded on agarose gels for electrophoretic separation 

(section 4.2.1.6). 
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4.2.1.11 Site-Directed Mutagenesis  

For introduction of mutations into IAV SwBiss03 HA-expressing plasmids, specific 

megaprimers containing the desired mutations (section 4.2.1.10) were used.  

33.0 µL Aqua dest. 

10.0 µL 5x HF Buffer 

1.0 µL Plasmid (1 µg/µL)  

2.0 µL Primer #1 (20 µM) 

2.0 µL Primer #2 (20 µM) 

1.0 µL dNTP Mix (10 mM) 

1.0 µL Phusion Polymerase (2 U/µL) 

 

 Duration [min] Temperature [°C]  Cycles 

Initial Denaturation 0:30 98 1 

Denaturation  0:10 98 20 

Annealing 1:00 48 20 

Extension  5:30 72 20 

Final Extension 5:00 72 1 

 
For cleavage of parental methylated DNA, the amplicon was subsequently incubated with 2 µL 

DpnI (5 U/µL) for 3 hours at 37°C. Afterwards, the sample was transformed into competent E. 

coli (section 4.2.2).  

4.2.1.12 Plasmid Isolation 

Extraction and purification of plasmid DNA from bacterial cultures (section 4.2.2) up to 5 mL 

was performed using QIAprep® Spin Miniprep Kit (Qiagen). For bacterial cultures up to 50 mL, 

we used QIAfilter™Plasmid Midi Kit (Qiagen). Kits were used following the manufacturer´s 

protocol and purified DNA was subsequently resuspended in distilled H2O and stored at -20°C. 

After digestion (section 4.2.1.13), presence of the cloned DNA was verified by agarose gel 

electrophoresis (section 4.2.1.6) and sequence analysis (section 4.2.1.8).  
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4.2.1.13 DNA Restriction Digest 

Double-stranded DNA of plasmids was digested with NheI for 2 hours at 37°C.  

4.2.1.14 Quantitative Reverse Transkriptase PCR 

For detection of viral RNA in nasal swab samples from pigs, quantitative reverse transkriptase 

PCR (RT-qPCR) (Spackman, Senne et al. 2002) as modified by Hoffmann et al. (Hoffmann, 

Depner et al. 2006) was used. RT-qPCR was combined with a universal heterologous internal 

control system (HEX canal). Additionally, we used an optimized reverse primer (IAV-M1.2-R) 

to increase the sensitivity for H1N1pdm09. RNA samples were previously isolated from nasal 

swabs using the NucleoSpin®96 Virus Core Kit (Macherey-Nagel) according to manufacturer’s 

instructions (section 4.2.1.1). Internal control was added afterwards. RT-qPCR was performed 

using Ag-Path-ID™ One-Step RT-PCR Kit (Applied Biosystems). 

IAV-M1.2-Mix-FAM (Spackman et al., 2002, modified): 

20.0 µL IAV-M1-F 

15.0 µL IAV-M1.1-R  

15.0 µL IAV-M1.2-R  

2.5 µL IAV-M1-FAM 

147.5 µL 0,1 TE (pH 8.0) 

 

EGFP-Mix4(5)-HEX (Hoffmann et al., 2006): 

5.0 µL EGFP-11-F 

5.0 µL EGFP-10-R  

2.5 µL EGFP-1HEX 

187.5 µL 0,1 TE (pH 8.0) 
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Master Mix per reaction: 

2.5 µL Aqua dest. 

12.5 µL 2x Reaction Mix  

1.0 µL Reverse Transcriptase  

2.0 µL IAV-M1.2-Mix-FAM 

2.0 µL EGFP-Mix4 (5)-HEX 

 

 Duration [min] Temperature [°C]  Cycles 

Reverse Transcription 10:00 45 1 

Activation Taq 10:00 95 1 

Denaturation 0:15 95 42 

Annealing  0:20 55 42 

Elongation 0:30 72 42 

 

4.2.2 Bacterial Transformation 

Transformation of plasmid DNA into competent E. coli strains XL-1 Blue™, SURE2 and One Shot® 

TOP10 was performed according to the manufacturer´s protocol. Transformed bacteria were 

plated on LB agar plates supplemented with ampicillin 100 µg/mL and incubated over night at 

37°C. Colonies were picked and added to 5 mL or 50 mL LB medium supplemented with 

ampicillin. Cultures were incubated over night at 37°C in a shaker and DNA was purified 

subsequently (section 4.2.1.12).  

4.2.3 Cultivation of cells  

MDCK-II, HEK 293T and PK-15 cells were cultivated in growth medium at 37°C, 5% carbon 

dioxide (CO2) and 95% humidity. For passaging, supernatant was removed and cells were 

supplemented with 2 mL ATV (for HEK 293T) or ATV-D (for MDCK-II, PK-15). After detachment 

of the cells, they were added in an appropriate dilution (ratio 1:6 to 1:10) to fresh growth 

medium.  
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4.2.4 Virus Rescue  

4.2.4.1 Transfection  

For generation of recombinant viruses, eight plasmids encoding for all gene segments of a 

specific IAV were transfected into cells. To this end, a 60 mm2 plate grown with a co-culture 

of MDCK-II and HEK 293 T (ratio of 1:4) supplemented with infection medium was used. 20 µL 

Lipofectamine 2000® were incubated with 250 µL Optimem for 5 minutes at room 

temperature. Afterwards, 8 µg plasmid DNA (1 µg for each plasmid) in 250 µL Optimem was 

added and the DNA- Lipofectamine 2000® -mixture was incubated for 20 minutes at room 

temperature. Afterwards,it was added to the cell co-culture. After 6 to 12 hours incubation at 

37°C, 5% CO2 and 95% humidity, supernatant was removed from the cells and replaced with 

infection medium supplemented with 2 μg/mL N-tosyl-L-phenylalanine chloromethyl ketone 

(TPCK)–treated trypsin or 5 µg/mL porcine pancreatic elastase (in case of elastase-dependent 

virus mutants). Cells were incubated for 42 hours at 37°C, 5% CO2 and 95% humidity.  

4.2.4.2 Infection of MDCK-II Cells 

After transfection (section 4.2.4.1), 500µL supernatant was transferred to a culture of MDCK-

II cells supplemented with infection medium containing 2 μg/mL TPCK–treated trypsin or 

5 µg/mL porcine pancreatic elastase (in case of elastase-dependent virus mutants). Cells were 

subsequently incubated for 72 hours at 37°C, 5% CO2 and 95% humidity. Successful virus 

rescue was verified by hemagglutination assay (section 4.2.6.1). Rescue supernatants were 

centrifuged at 5.000 rpm for 10 minutes and stored at -75°C.  

4.2.4.3 1+7 Rescue 

To verify the functionality of each cloned plasmid, virus rescue was performed utilizing the 

PR-8 virus background. The cloned plasmid was supplemented with the seven remaining IAV 

gene-encoding plasmids of the strain A/Puerto Rico/8/1934 (H1N1) in a virus rescue (section 

4.2.4.1 and 4.2.4.2).  
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4.2.5 Virus Propagation 

For virus propagation, confluent cells in T162 tissue culture flasks were washed with 

phosphate buffered saline (PBS), afterwards covered with 30 mL infection medium and 

infected with 50-200 µL virus suspension. By09 and SwBel01 were propagated on MDCK-II 

cells while SwBiss03 was cultivated on PK-15 cells. All three viruses were propagated with 2 

μg/mL TPCK–treated trypsin (Sigma Aldrich). For By09-Ela/NS1-99 and By09-NS1-

99/SwBiss03-HA-Ela_NA on MDCK-II cells and SwBiss03-Ela on PK-15 cells, we added 5 µg/mL 

porcine pancreatic elastase (Serva), respectively.  

Infected cells were incubated at 37°C, 5 % CO2 and 95 % humidity and visually evaluated daily 

under the microscope. When a pronounced cytopathic effect was detected, the supernatant 

was removed and centrifuged at 5.000 rpm for 10 minutes. Successful virus propagation was 

validated by hemagglutination assay (section 4.2.6.1) and TCID50 (section 4.2.6.2). Supernatant 

was then aliquoted and stored at -75 °C.  

4.2.6 Determination of Viral Titers 

4.2.6.1 Hemagglutination Assay  

Twofold dilutions of 50 µL virus suspension were made in PBS across a V-bottomed 96-well 

plate starting with a 1:2 dilution. Afterwards, each well was dispensed with 50 µL of a 1 % 

solution of chicken erythrocytes. Titer was analyzed after 30 minutes incubation at room 

temperature (RT). In the case of settled erythrocytes, the well was assessed as negative. When 

agglutination of erythrocytes was observed, the well was evaluated as positive. The HA titer 

was defined as the highest dilution determined as positive.  

4.2.6.2 50 % Tissue Culture Infective Dose (TCID50) 

For TCID50 assay, serial tenfold dilutions were prepared in infection medium (starting at 

dilution 1:10) supplemented with 2 μg/mL TPCK-treated trypsin or 5 µg/mL elastase. Dilutions 

were added to MDCK II cells on 96-well tissue culture plates and incubated 3 days at 37°C, 5 

% CO2 and 95 % humidity. Each well was monitored for cytopathic effect and viral titers were 

calculated according to Spearman-Kärber (Mahy and Kangro 1996).  
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4.2.7 Growth Kinetics 

For growth curves, we infected confluent MDCK-II or PK-15 cells in a T75 tissue culture flask 

(approximately 9.4×106 cells) at a multiplicity of infection (MOI) of 0.001 TCID50/cell. After a 

1-hour incubation period at 37°C, 5 % CO2, and 95 % humidity, infected cells were washed five 

times with PBS. Cells were then overlaid with 20 mL infection medium supplemented with 

2µg/mL TPCK-treated trypsin or 5 µg/mL porcine pancreatic elastase. We collected 

supernatants at 0, 8, 24, 48, and 72 hours pi and determined viral titers by TCID50 assay 

(section 4.2.6.2). 

4.2.8 Infectivity Assay  

A 6-well plate of confluent cells (MDCK-II or PK-15) was infected with virus in PBS (MOI 0.5) 

for one hour at 37 °C and 5% CO2. After two washing steps with PBS, 3 mL infection medium 

supplemented with either 2 μg/mL TPCK-treated trypsin, 5 µg/mL elastase, or without 

protease, was added to separate wells in duplicate. After 12 hours, we added 500 µL of the 

supernatant from the first infection to another 6-well plate of confluent cells (MDCK-II cells or 

PK-15). After one hour, cells were rinsed with PBS and infection medium with the same 

protease was added. For immunofluorescence, cells were fixed with 3.7 % formalin and 

permeabilized them with 0.5 % Triton X-100 in PBS. Nonspecific binding sites were blocked 

with 1 % skimmed milk in PBS. Subsequently, plates were incubated with rabbit antisera 

against Influenza virus NP (Gene Tax) 1:1000 diluted in 1 % skimmed milk one hour at RT and 

then with Alexa Fluor® 488-conjugated goat anti-rabbit IgG (Invitrogen) (1:1000) in 1% 

skimmed milk for 45 minutes at RT. After each step, cells were washed with PBS. Samples 

were evaluated by a fluorescence microscope (Nikon Eclipse Ti-5) for green fluorescence 

excited at 488 nanometers. 
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4.2.9 Animal Trials 

4.2.9.1 Authorization 

Animal trials were approved by the State Office for Agriculture, Food Safety and Fishery in 

Mecklenburg-Western Pomerania (LALFF M-V) (reference number 7221.3-1004/16). 

4.2.9.2 Intranasal Infection of Pigs with a Mucosal Atomization Device 

4 mL inoculum (viral solution or PBS) was prepared in a 5 mL syringe, which was subsequently 

connected to a mucosal atomization device (MAD) (ProSAMD™-Nasal Mucosal Atomization 

Device, Prosys International Ltd). Pigs were fixated and 2 mL inoculum was slowly delivered in 

each nostril. 

4.2.9.3 Clinical Evaluation 

Clinical scores for each individual animal were determined daily. Total scores were added 

according to the severity of symptoms in each of these categories: “general status”, 

“respiration”, “nasal discharge”, or “eyes and conjunctiva” as 0 (not affected), 1 (slightly 

affected), 2 (moderately affected), 3 (severely affected). Individual group scores were 

summarized in mean daily group scores. 
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Category  Assessment  Description  

General status 0 

1 

2 

3 

Curious, alert, active  

Calmer, slight fatigue  

Lethargic  

Apathetic  

Respiration 0 

1 

2 

 

3 

Respiratory rate 10-15 per minute 

Respiratory rate >20 per minute 

Respiratory rate >20 per minute, significant 

breathing movements 

Respiratory rate >30 per minute, heavy 

breathing through the mouth  

Nasal Discharge 0 

1 

2 

3 

No secretion 

Serous secretion 

Murky secretion 

Purulent secret in high abundance  

Eyes and Conjunctiva  0 

1 

2 

3 

Clear eyes, no reddening  

Slight reddening, clear secretion 

Reddening, murky secretion  

Highly reddened eyes and conjunctiva, 

purulent secretion  

 

4.2.9.4 Nasal Swab Samples 

Nasal swabs were inserted 20-30 millimeter (mm) into each nostril of the pig. After sample 

collection, both nasal swabs of each individual animal were immediately put into 2 mL of 

infection medium. Subsequently, samples were shaken for 2 hours at 21°C. Swabs were 

removed and samples were stored at -70 °C until testing.  

4.2.9.5 Collection of Blood Samples 

Blood samples were collected from the Vena cava cranialis of the pigs using collection tubes. 

Collected sera were centrifuged at 10.000 revolutions per minute (rpm) for 5 minutes and 

stored at -20 °C until analyses. EDTA blood was directly subjected for flow cytometry analyses. 
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4.2.9.6 Euthanasia 

Pigs were anaesthetized by an intramuscular injection of Xylazine (0.3 mg/kg of body weight 

(bw)), Ketamine (20 mg/kg bw) and Zoletil (15-25 mg/kg bw). Unconsciousness and 

insensibility was monitored by checking corneal and palpebral reflexes. In deep anaesthesia, 

pigs were euthanized by intracardiac injection of T61 (6 mL/50 kg bw).  

Euthanasia with pentobarbital (450 mg/kg bw) was done with an intravenous injection into 

the Vena cava cranialis. 

4.2.10 Pathological Examinations 

4.2.10.1 Dissection 

Sacrificed animals (section 4.2.9.6) were dissected to examine the entire respiratory tract 

macroscopically. Dissection and macroscopic evaluation was performed by PD Dr. Reiner 

Ulrich and Dr. Jan Schinköthe.  

4.2.10.2 Histology  

Sample collection for histological examinations was performed by PD Dr. Reiner Ulrich and Dr. 

Jan Schinköthe. Samples from nasal cavity, pharynx, trachea, Lymphonodi tracheobronchiales, 

and seven standardized locations within the lung were treated with 4 % formalin and used to 

prepare histological slices in Hematoxylin and Eosin (HE) staining. Histological samples were 

sliced by Silvia Schuparis. PD Dr. Reiner Ulrich performed the histological examination and 

evaluation.  

4.2.10.3 Immunohistochemistry  

Virus antigen detection in situ was performed with the avidin–biotin–peroxidase complex 

method (VECTASTAIN® Elite® ABC-HRP Kit, Vector) using a polyclonal rabbit IAV (A 

FPV/Rostock/34) nucleoprotein antiserum (dilution 1:750) and a secondary biotinylated 

antibody (Vector, goat anti-rabbit IgG1 Burlingame) (dilution 1:200) with 3-amino-9-ethyl-

carbazol as chromogen and hematoxylin counterstain (Klopfleisch, Werner et al. 2006). 

Immunohistochemistry was performed by PD Dr. Reiner Ulrich. 
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4.2.10.4 Titration of Organ Samples 

Samples from nasal cavity, pharynx, trachea, Lymphonodi tracheobronchiales, and 6 

standardized locations within the lung were put separately into 2 mL safe-lock tubes, each 

containing 1.5 mL infection medium and a stainless steel ball. All samples were mechanically 

crushed using a TissueLyser (Qiagen). Viral titers in samples were determined by TCID50 assay 

(section 4.2.6.2).  

4.2.11 Immunological Examinations 

4.2.11.1 Hemagglutinin Inhibition Assay 

Sera (25 µL) were pretreated with cholera filtrate in calcium salt solution (100 µL) for 16 hours 

at 37°C and then added to sodium citrate solution (125 µL). Subsequently, those samples were 

heat-inactivated at 56°C for 30 minutes. We added 100 µL 1% chicken erythrocytes to 250 µL 

of the diluted sera, incubated the samples for 30 minutes and centrifuged them at 14.000 rpm 

for 5 seconds. For HI assay, supernatants were serially diluted two-fold (starting at 1:2) on 96-

well plates in PBS. Afterwards, 4 hemagglutinating units of the virus were added to each well 

and plates were incubated for 45 minutes. Eventually, 1% chicken erythrocytes were added 

and the plates were incubated for 30 minutes to evaluate the HI titers.  

4.2.11.2 Enzyme Linked Immunosorbent Assay (ELISA) 

Pig sera were tested for IAV NP-specific antibodies by ID Screen Influenza A Antibody 

Competition ELISA (ID.vet) following manufacturer’s instructions. For each reaction, 10 µL pig 

serum was used.  
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4.2.11.3 Flow Cytometry  

In cooperation with Dr. Ulrike Blohm and Dr. Theresa Schwaiger, single cell suspensions were 

prepared from spleen and the right tracheobronchial lymph node from pigs using 100 µm cell 

strainers. Immune cell subsets from single cell suspensions and whole blood were identified 

using these fluorescent dye-labelled antibodies: mouse anti-pig CD4 PerCp-Cy5.5, rat anti-

human CD197 AlexaFluor 647, goat anti-pig CD45RA FITC, mouse anti-pig CD8α PE, and mouse 

anti-pig CD27; the latter was stained with secondary rat anti-mouse IgG1 BrilliantViolet421. 

Red blood cells were lysed after staining before analyses. All analyses were run on BD Canto 

II flow cytometer, FACS DIVA (BD Bioscience) and FlowJo software (Tree Star Inc.). 

  



Results 

59 

 

5. Results 

5.1 SIV Strain SwBiss03 (Subtype H3N2) 

5.1.1 Generation of Recombinant Wild Type SIV SwBiss03 

The HA-encoding plasmid of SwBiss03 was generated using a modified QuikChange™ reaction 

(section 4.2.1.9). The subsequent transformation was performed with SURE2 competent 

bacteria (section 4.2.2).  

The two largest segments, PB2 and PB1, were amplified (section 4.2.1.4) in two parts (150 nt 

overlapping areas), because initial approaches for a whole gene amplification resulted in 

insufficient yields. A modified QuikChange™ reaction was performed combining both amplified 

parts of one gene with the vector plasmid. Transformation was successfully performed in 

SURE2 competent bacteria for both segments.  

After sequencing, functionality of each cloned plasmid (HA, PB1, PB2) was verified separately 

in a complementation assay (1+7 rescue) using seven PR-8 plasmids (Grimm, Staeheli et al. 

2007) as backbone (section 4.2.4.3). All plasmids were functional. The other gene-encoding 

plasmids of SwBiss03 (PA, NP, NA, M, NS) were already available (cloned by Robert Scheffter 

and Stephanie Peitsch, Friedrich-Loeffler-Institut (FLI), Riems).  

Wild type virus SwBiss03 was rescued from 8 plasmids after transfection of 293T cells as 

previously described (section 4.2.4). HA titers (section 4.2.6.1) of the rescue supernatant were 

1:64. Subsequently, virus was propagated on PK-15 cells in the presence of TPCK-treated 

trypsin reaching a titer of 1.2 x 105 TCID50/mL.  

Afterwards, growth kinetics of SwBiss03 on PK-15 cells were determined. In the presence of 

trypsin, wild type virus reached the maximal titer of 1.3x105 TCID50/mL after 24 hours. Without 

substitution of a protease and especially in the presence of elastase, the virus replicated with 

considerably decreased titers (Figure 9.).  
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Figure 9. Growth curves of SwBiss03 in the absence of a protease (w/o protease) or in the presence of either 
trypsin or elastase. Titers in duplicates. Mean with standard deviation. Lower detection limit: dilution factor 1:10. 

5.1.2 Cloning of HA-Ela  

By site-directed mutagenesis, the amino acid motif RQTR at position four to one upstream 

from the HA cleavage site motif was replaced by four alanine residues (section 4.2.1.11). To 

this end, two megaprimers were generated as described previously (section 4.2.1.10). The PCR 

product of the site-directed mutagenesis was transformed into SURE2 competent bacteria. 

After amplification and purification, the desired mutations were confirmed by sequence 

analyses (Figure 10.). The plasmid was functional in the 1+7 rescue with PR-8 background as 

well as SwBiss03 background, both in the presence of elastase. The elastase-dependent 

mutant SwBiss03-Ela was rescued with an HA titer of 1:32. Propagation on PK-15 cells was 

successful with titers of 1.6x105 TCID50/mL in the presence of elastase.  



Results 

61 

 

 

Figure 10. Sequence and amino acid pattern of HA encoding plasmid (wild type) and HA-Ela encoding plasmid 
(mutant) at position (P) four to one upstream to the HA cleavage site motif. 

5.2 Generation of Recombinant SIV Strain By09-NS1-99/SwBiss03-HA-Ela_NA 

For generation of By09-NS1-99/SwBiss03-HA-Ela_NA, HA-Ela and NA encoding plasmids based 

on SIV SwBiss03 were combined with SIV By09-NS1-99 as backbone strain (six plasmids 

encoding for PB1, PB2, PA, NP, M, NS1-99 of By09; these six plasmids had previously been 

generated by Robert Scheffter and Olga Stech, FLI, Riems). Virus rescue was performed in the 

presence of the NS1 expression plasmid pcDNA3.0-NS1 (kindly provided by Thorsten Wolff). 

HA titer of the rescue´s supernatant was initially 1:2. After three passages on MDCK-II cells in 

the presence of elastase, the mutant strain reached an HA titer of 1:64 and a virus titer of 107 

TCID50/mL.  

Then, viral replication was analyzed on MDCK-II cells. Cells were infected with the 

recombinant SIV strains By09-NS1-99/SwBiss03-HA-Ela_NA or SIV By09 in the presence of 

trypsin or elastase. Recombinant wild type strain By09 replicated in the presence of trypsin 

reaching titers of 108 TCID50/mL after 48 hours. In the presence of elastase, it showed only 

slightly decreased titers (Figure 11.). 

Growth of SIV mutant strain By09-NS1-99/SwBiss03-HA-Ela_NA stagnated in the presence of 

trypsin after 8 hours with titers of approximately 102 to 103 TCID50/mL. In the presence of 

elastase, however, it reached titers of approximately 107 TCID50/mL after 48 hours (Figure 11.). 
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Figure 11. Growth curves of By09-NS1-99/SB03-HA-Ela_NA (black graphs, black symbols) and By09 (dotted 
graphs, hollow symbols) in the presence of either trypsin or elastase. Titers in duplicates; mean values. Lower 
detection limit: dilution factor 1:10. 

5.3  in vitro Characterization of By09-Ela/NS1-99  

Robert Scheffter and Olga Stech, FLI, Riems Germany, previously generated the double-

attenuated mutant strain By09-Ela/NS1-99 carrying an artificial elastase-dependent HACS 

motif and a C-terminally truncated NS1 protein.  

In order to evaluate the growth behavior of this mutant strain in vitro, growth curves were 

obtained by infection of MDCK-II cells with recombinant SIV strain By09-Ela/NS1-99 or SIV 

By09 in the presence of trypsin or elastase, or in the absence of any added protease (Figure 

12.). In the presence of elastase, the mutant SIV with the elastase cleavage site reached wild 

type titers (1.6 x 108 TCID50/mL) within approximately one magnitude after 24 hours. 

However, in the presence of trypsin or absence of any protease, the mutant virus stagnated 

after 8 hours with low titers of approximately 103 to 104 TCID50/mL.  
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Figure 12. Growth curves of SIV strain By09-Ela/NS1-99 (black graphs, black symbols) and SIV By09 (dotted 
graphs, hollow symbols) in the absence of an exogenous protease (w/o protease) or in the presence of either 
trypsin or elastase. Two technical duplicates are shown. Titers in duplicates. Mean with standard deviation. 
Lower detection limit: dilution factor 1:10. 

To determine the infectivity of recombinant SIV strain By09-Ela/NS1-99 under different 

conditions, two subsequent passages on MDCK-II cells were performed in the presence of 

elastase or trypsin (section 4.2.8). The infectivity was determined by detection of IAV NP. 

By09-Ela/NS1-99 was initially able to infect MDCK-II cells in the presence of trypsin but a 

subsequent passage of the supernatant resulted in no detectable infection. In the permanent 

presence of elastase, however, fresh MDCK-II cells could be successfully infected with the 

supernatant (Figure 13.).  



Results 

64 

 

 

Figure 13. Immunofluorescence and bright field images of MDCK-II cells 20 h after infection with 0.5 MOI of SIV 
strain By09-Ela/NS1-99 in the presence of either elastase or trypsin. After primary infection, supernatants were 
used to infect fresh MDCK-II cells in the presence of the corresponding protease. 

5.4 Infection Study with a Mucosal Atomization Device (MAD) in Swine  

Hemmink et al. previously described a mucosal atomization device (MAD) as a suitable 

experimental infection method for SI (Hemmink, Morgan et al. 2016). To evaluate the MAD as 

an application method for the planned immunization and challenge experiment, we 

performed a preliminary infection study over 14 days including four six-week old German 

landrace pigs. Pigs were tested antibody negative by NP ELISA (section 4.2.11.2) and HI Assay 

(section 4.2.11.1) with SIV strain SwBiss03 (H3N2) as antigen prior the experiment. Each pig 

was intranasally infected with 4x105 TCID50 of recombinant SIV SwBiss03 (H3N2) by MAD (4 

mL inoculation volume) (Figure 14.). Clinical scores were determined daily, and viral shedding 

was detected over the first 7 days post infection (pi) by nasal swab sampling. On day 4 pi, 

necropsy of two animals was performed to determine pathological changes and viral titers in 

different compartments of the respiratory tract. Blood samples were taken on day 0, 8 and 14 

pi for determination of antibody titers in serum. Animal trial was approved by the responsible 

State Office for Agriculture, Food Safety and Fishery in Mecklenburg-Western Pomerania 

(LALFF M-V) (reference number 7221.3-1004/16). 
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Figure 14. Left: Mucosal atomization device linked to a 5 mL syringe (LUER-Lock). Right: intra nasal infection by 
mucosal atomization device. 

5.4.1 Clinical Signs 

First clinical signs appeared on day 2 pi while a peak in clinical disease was observed on day 4 

pi. Pigs were lethargic (Picture 15.) and showed predominantly mild respiratory symptoms 

such as increased abdominal breathing, shortness of breath after moderate activity, wheezing, 

sneezing and slight nasal discharge. Daily clinical scores varied moderately in severity between 

the individuals (Figure 16.). One animal additionally experienced fever (≥ 40°C) on day 4 pi 

(Figure 17.).  

 

 

Figure 15. Lethargy on day 2 (left) and 3 (right) post infection. 
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Figure 16. Daily clinical scores after infection of six-week old pigs with SIV strain SwBiss03 (H3N2). OM 14, OM 
69 (in green): animals chosen for dissection on day 4 pi. 
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Figure 17. Internal Body temperature of pigs during the first ten days of the trial. Dotted line: fever marker 
(≥ 40°C). OM 14, OM 69: animals chosen for dissection on day 4 pi. 
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5.4.2 Viral Shedding 

Nasal shedding started at day 1 pi. Strongest viral excretion was detected on days 3 and 4 pi. 

Individual mean titers ranged between 101 and 103 TCID50/mL. After two animals were 

removed on day 4 pi for pathological examinations, the remaining animals shed challenge 

virus until day 5 pi (Figure 18.). 
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Figure 18. Nasal shedding after infection with SwBiss03 (H3N2). Titers in duplicates. Means with standard 
deviation. Lower detection limit. Dilution factor 1:10. Animals sacrificed on day 4 pi: OM 14, OM 69 (in green). 

5.4.3 Pathology  

On day 4 pi two animals (OM 14, OM 69) received deep general anesthesia (intramuscular 

injection of Xylazine (0.3 mg/kg bw), Ketamine (20 mg/kg bw) and Zoletil (15-25 mg/kg bw)) 

and were euthanized afterwards by intracardiac injection of T61 (6 mL/50 kg bw). Dissection 

was performed in cooperation with PD Dr. Reiner Ulrich. Viral titers in different samples of the 

respiratory tract were evaluated by TCID50 assay. The highest amount of virus was detected in 

samples of the nasal mucosa, trachea, and the cranial lung lobes (Figure 19.).  
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Figure 19. TCID50 titers (bars) from organ samples. Ln.: Lymphonodus ; L.: Lobus; P.: Pars; cran.: cranialis; med.: 
medialis; acc.: accessorius. Titers in duplicates. Mean with standard deviation. Downer detection limit: dilution 
factor 1:10. 
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5.4.4 Antibody Response 

On day 8 pi, both remaining animals (OM 67, OM 81) were tested seropositive in an HI assay 

using recombinant SIV strain SwBiss03 (H3N2) as antigen with titers of 1:112 (OM 81) and 

1:224 (OM 67). Both titer levels further increased on day 14 pi (1:672 for animal OM 67 and 

1:448 for animal OM 81; Figure 20.). 
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Figure 20. HI serum antibody titers of pigs against SwBiss03 (H3N2). Dotted line: lower detection limit at dilution 
factor 1:28. 
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5.5 Immunization and Challenge Experiment with Recombinant SIV  

By09-Ela/NS1-99 in Swine 

To determine protection provided by the recombinant SIV mutant strain By09-Ela/NS1-99 in 

swine, a challenge experiment was performed with three immunized groups (n=7) and three 

mock inoculated groups (n=6 and n=5, Table 1.). Prior to immunization, 33 animals were 

tested antibody-negative by NP ELISA and HI assay (antigens: By09 (H1N1pdm09), SwBel01 

(H1N1), SwBiss03 (H3N2)) while five animals were found positive (Table 2.), most likely due to 

maternally derived antibodies. These animals remained in the study and were distributed to 

five of the six experimental groups (Table 1). 21 pigs were immunized twice with 

By09-Ela/NS1-99 and 17 control pigs were inoculated with PBS.  

A clinical score was determined daily. Viral shedding was detected for 7 days after first and 

the boost immunization, respectively, and for 10 days after challenge infection. On day 4 post 

challenge (pc) infection, necropsy of two animals per group was performed to determine 

pathological changes and the amount of virus in the respiratory tract. Blood samples were 

taken on day 0, 2, 8 and 21 after first and booster immunization and pc, respectively. Animal 

trial was approved by the State Office for Agriculture, Food Safety and Fishery in Mecklenburg-

Western Pomerania (LALFF M-V) (reference number 7221.3-1004/16). 
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Table 1. Overview of the animal groups with identification numbers. 

 

imm/By09 mock/By09 imm/SwBel01 mock/SwBe01 imm/SwBiss03 mock/SwBiss03 

1 8 14 21p 27p 34 

2 9 15 22p 28 35p ab+ 

3* 10 ab+ 16 23 29 36p 

4 11p 17p 24 ab+ 30 ab+ 37 

5p 12p 18p 25 31 38 

6p 13 19 26 32p  

7 ab+  20  33  

 
Groups were immunized (imm) or mock immunized (mock) as described and later infected with mentioned 
challenge viruses. 
*animal had to be euthanized on day 1 post challenge because of a nonrelated injury. 
p: animals, which were sacrificed for pathology on day 4 post challenge infection. 
ab+: animals, which were tested antibody-positive on first day of trial. 
 

 

Table 2. Pigs tested antibody-positive. 

 

animal number By09 SwBel01 SwBiss03 

7 ab+ 1:28 1:56  

10 ab+ 1:28   

24 ab+  1:28  

30 ab+  1:56  

35p ab+  1:28  

 

Animals, which were tested antibody-positive (ab+) on first day of trial with titers against different challenge 
viruses: By09 (H1N1pdm09), SwBel01 (H1N1), SwBiss03 (H3N2) 
p: animals, which were sacrificed for pathology on day 4 post challenge infection. 
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5.5.1 Immunization Period  

21 pigs were immunized with 1.6 x 106 TCID50 of By09-Ela/NS1-99 using 4 mL inoculation 

volume (4 x 105 TCID50/mL) each (substituted with PBS) and 17 control pigs were inoculated 

with PBS. After the first immunization, 3 of the 21 inoculated pigs developed short fever on 

days 3 and 4 (Figure 21.), but no other clinical signs. Additionally, no infectious virus could be 

detected in nasal swab samples from day 1 to 7 (lower detection limit: dilution factor 1:10). 

Three weeks after immunization, the vaccinated animals received booster immunization in 

the same manner while control groups obtained PBS a second time. Neither clinical signs nor 

viral shedding was detected after boost immunization.  

 

 

Figure 21. Internal body temperature in the first week after immunization. Three of twenty-one animals (red 
lines) experienced fever (≥ 40°C) on day 3 and/or 4 post immunization. Dotted line: fever marker (≥ 40°C). 
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5.5.2 Challenge Infections 

Three weeks after boost immunization, one vaccinated and one mock-immunized group each 

were challenged with either 106 TCID50 of the homologous wild type SIV strain By09 

(H1N1pdm09), 106 TCID50 of the homosubtypic SIV strain SwBel01 (H1N1), or 4 x 105 TCID50 of 

the heterosubtypic SIV strain SwBiss03 (H3N2). Challenge infection was performed 

intranasally by MAD. 

5.5.3 Clinical Signs after Challenge Infection 

After homologous challenge, none of the immunized animals developed any clinical signs. In 

the respective mock control group, we observed distinct to mild fatigue from day 3 to 5 pc. 

Animals behaved calmer as usually and were restricted in their activity, interaction, and 

searching behavior. Respiratory symptoms were not observed in any animal (Figure 22.). 

After homosubtypic challenge, mild disturbance of the general condition was observed in 

immunized animals from day 3 to 6 pc. During that time, the pigs showed mild fatigue but 

respiratory symptoms were not observed. The corresponding control group, however, 

developed mild to moderate clinical disease. Animals showed a severely restricted activity and 

lethargy at day 4 and partially at day 5 pc (Figure 22. and 23.). Predominantly, respiratory 

symptoms were observed such as slight serous nasal discharge, abdominal breathing, and 

especially wheezing (Figure 22.). 

In both heterosubtypically challenged groups, mild clinical signs were detected after challenge 

infection. Both groups showed mild fatigue on day 3 to 6 pc. Some animals in both groups also 

developed mild intensified abdominal breathing but other clinical signs were not detected 

(Figure 22.). 
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Figure 22. Daily group scores after challenge infection with homologous By09 (H1N1pdm09), homosubtypic 
SwBel01 (H1N1), or heterosubtypic SwBiss03 (H3N2). Immunized groups (imm) and mock-immunized groups 
(mock) are represented by grey or red bars, respectively. 

 

 

Figure 23. Lethargy in the mock-immunized group on day 4 (left) and 5 (right) after challenge infection with 
SwBel01 (H1N1). 
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5.5.4 Nasal Shedding after Challenge Infection 

Only one of five pigs of the immunized group shed virus after homologous challenge infection 

(#7). This pig had been tested IAV antibody-positive prior to immunization (Table 1. and Table 

2.). Another animal of this group had to be euthanized because of an unrelated injury. In 

contrast, infectious virus was present in all samples of the mock-immunized animals. In this 

group, nasal shedding was detected from day 2 to 6 pc. The peak of viral shedding occurred 

on day 4 pi reaching a mean group value of approximately 105 TCID50/mL (Figure 24.).  
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Figure 24. Nasal shedding after homologous challenge. a immunized group (grey filled bars). b mock control (red 
filled bars). c animal #7 (dashed bars). Each titer was determined in duplicates. Mean daily group value (bar) with 
standard deviation. Lower detection limit: dilution factor 1:10. 

After homosubtypic challenge infection with SIV strain SwBel01 (H1N1), no nasal shedding 

was detected in the vaccinated animals. Challenge virus was found at low titers in nasal swab 

samples of the respective mock control group. Peak of nasal shedding was detected on day 

4 pi with a mean group titer of approximately 104 TCID50/ml (Figure 25.).  
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Figure 25. Nasal shedding after homosubtypic challenge. a immunized group (grey filled bars). b mock control 
(red filled bars). Each titer was determined in duplicates. Mean daily group value (bar) with standard deviation. 
Lower detection limit: dilution factor 1:10. 
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After heterosubtypic challenge infection, both groups developed nasal shedding. The control 

group shed challenge virus from day 1 to 6 pc. Vaccinated animals had a shorter period of 

nasal shedding from day 2 to 5 pc. The mean group titers in the vaccinated group were 

decreased by approximately one magnitude compared to its control group (Figure 26.).  
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Figure 26. Nasal shedding after heterosubtypic challenge. Immunized group (grey filled bars). Mock control (red 
filled bars). Each titer was determined in duplicates. Mean daily group value (bar) with standard deviation. Lower 
detection limit: dilution factor 1:10. 

5.5.5 Pathology 

Necropsy was performed on two pigs per group on day 4 pc to assess viral load and 

pathological changes in the respiratory tract. Dissection was done in cooperation with PD Dr. 

Reiner Ulrich and Dr. Jan Schinköthe. After homologous challenge infection with By09 

(H1N1pdm09), the immunized pigs did not exhibit virus-positive tissue samples or macroscopic 

and histopathological lung lesions. Both mock-immunized animals were tested virus-positive 

by virus titration and immunohistochemistry. One pig developed a mild to moderate, 

multifocal, subacute, lymphohistiocytic, bronchiolointerstitial pneumonia with variable 

luminal debris accumulation and intralesional influenza A NP-positive bronchiolar and 

bronchial epithelia, alveolar macrophages and luminal debris (Figure 27., Table 3.). 

After homosubtypic challenge infection with SwBel01 (H1N1), we observed in the pharynx of 

one immunized pig a few foci of virus-infected cells, but there was no indication for other 

virus-positive or antigen-positive tissue samples. In the respective control group, virus-

positive samples were obtained from one pig. This animal displayed oligofocal atelectasis in 

the accessory and middle lung lobe. Accordingly, we found a characteristic moderate, 

multifocal, subacute, lymphohistiocytic, bronchiolointerstitial pneumonia with variable 
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luminal neutrophil accumulation and intralesional influenza A NP-positive bronchiolar and 

bronchial epithelia and luminal debris (Figure 27., 28., Table 3.). 

After heterosubtypic challenge infection with SwBiss03 (H3N2), two animals in both mock-

immunized and immunized groups displayed mild, variable oligo- to multifocal, subacute, 

lymphohistiocytic, bronchiolointerstitial pneumonia with variable luminal neutrophil 

accumulation and intralesional influenza A NP-positive bronchiolar, bronchial, bronchial gland 

epithelia and few alveolar macrophages. However, compared to the mock-immunized pigs, 

we observed in the immunized animals a reduced virus load in the upper respiratory tract and 

a strongly reduced amount of virus in lung samples. Semiquantitative immunohistochemistry 

revealed a considerably reduced virus antigen score in vaccinated animals (Figure 27., 

Table 3.).  
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group lnn lung pharynx trachea nose total 

imm/By09 0 0 0 0 0 0 
mock/By09 0 7 2 2 0 11 
imm/SwBel01 0 0 1 0 0 1 
mock/SwBel01 0 4 0 1 0 5 
imm/SwBiss03 0 3 0 0 1 4 
mock/SwBiss03 1 7 2 2 3 15 

 

 

Figure 27. Viral load in the respiratory tract in challenged pigs. Mean group virus titers (TCID50) with standard 
deviation (bars) and specific titers (symbols) from different organ samples (mean titer of samples from two 
animals per group): a nasal mucosa (filled circles), tonsils (open circles), trachea (cross), and tracheobronchial 
lymph node (open triangle) (n=4); b lung (n=6). Immunized groups (imm) and mock-immunized groups (mock) 
are represented by grey or empty bars, respectively. Downer detection limit: dilution factor 1:10. c Total group 
scores of tissue samples detected positive for influenza A virus nucleoprotein by immunohistochemistry. Score: 
negative 0, focal 1, multifocal 2, confluent or diffuse 3. The lung score represents the sum of the scores of the 
seven standardized lung locations. lnn: middle tracheobronchial lymph nodes.  
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Table 3. Histopathological findings in two pigs per group on day 4 post challenge. 

 

Group  Nasal 
mucosa 

Pharynx Trachea  Right lung, 
cranial lobe 

Right lung, 
middle lobe 

Right lung, 
caudal lobe 

Accessory 
lobe 

Left lung, 
cranial lobe, 
cranial part  

Left lung, 
cranial lobe, 
caudal part 

Left lung, 
caudal lobe 

imm/ 
By09 

 

IHC 
positive cell types  
Inflammation (HE) 

-/- 
 
-/+ 

-/- 
 
-/- 

-/- 
 
-/- 

-/- 
 
-/- 

-/- 
 
-/- 

-/- 
 
-/- 

-/- 
 
-/- 

-/- 
 
-/- 

-/- 
 
-/- 

-/- 
 
-/- 

mock/ 
By09 
 

IHC 
positive cell types  
 
 
Inflammation (HE) 

-/- 
 
 
 
+/- 

+/+ 
epithelium 
 

 
-/- 

+/+  
respiratory 
epithelium 
 
+/++ 

-/+ 
bronchial 
epithelium 
 
-/- 

-/++ 
bronchiolar, 
bronchial 
epithelium 
-/+++1 

-/+ 
bronchial 
epithelium 
 
-/++ 

-/+ 
bronchial 
epithelium 
 
-/+++1 

-/+ 
bronchial 
epithelium 
 
-/++1 

-/+ 
bronchial 
epithelium 
 
-/+ 

-/- 
 
 
 
-/- 

imm/ 
SwBel01 
 

IHC 
positive cell types  
Inflammation (HE)  

-/- 
 
+/+++ 

-/+ 
epithelium 
-/- 

-/- 
 
-/- 

-/- 
 
-/- 

-/- 
 
-/+ 

-/- 
 
-/++2 

-/- 
 
-/++2 

-/- 
 
-/- 

-/- 
 
-/- 

-/- 
 
-/- 

mock/ 
SwBel01 
 

IHC 
positive cell types  
 
 
Inflammation (HE) 

-/- 
 
 
 
+++/- 

-/- 
 
 
 
-/- 

-/+ 
epithelium 
 
 
-/+ 

-/- 
 
 
 
-/- 

-/++ 
bronchiolar, 
bronchial 
epithelium 
-/+++3 

-/- 
 
 
 
-/- 

-/++ 
bronchiolar, 
bronchial 
epithelium 
-/+++3 

-/- 
 
 
 
-/- 

-/- 
 
 
 
-/- 

-/- 
 
 
 
-/- 

imm/ 
SwBiss03 

IHC 
positive cell types  
 
Inflammation (HE) 

+/- 
respiratory 
epithelium  
+++/+++ 

-/- 
 
 
+/- 

-/- 
epithelium 
 
+++/- 

-/- 
 
 
++4/- 

-/- 
 
 
++4/- 

+/- 
bronchial 
epithelium 
++4/++5 

+/- 
bronchial 
epithelium 
++4/- 

-/- 
 
 
-/- 

-/- 
 
 
-/- 

+/- 
bronchial 
epithelium 
++4/- 

mock/ 
SwBiss03 
 

IHC 
positive cell types  
 
 
 
Inflammation (HE) 

+/++ 
respiratory 
epithelium 
 
 
+++/++ 

+/+ 
respiratory 
epithelium, 
macrophages, 
dendritic cells  
-/- 

+/+ 
respiratory 
epithelium 
 
 
+/+ 

-/- 
 
 
 
 
-/- 

+/- 
bronchial 
epithelium 
 
 
+/- 

+/+ 
bronchial 
epithelium 
 
 
-/- 

-/- 
 
 
 
 
-/- 

+/- 
bronchial 
epithelium, 
gland cells 
 
+/- 

++/- 
bronchiolar, 
bronchial 
epithelium; 
macrophages 
++4/- 

+/- 
bronchial 
epithelium 
 
 
+/- 

 

IHC - Immunohistochemical detection of influenza A virus nucleoprotein antigen and HE staining of organ samples from the respiratory tract of two sacrificed animals per 
group. Score for IHC: negative -, focal or oligofocal +, multifocal ++, confluent +++.  

HE – Hematoxylin eosin histopathology. Score for inflammation: negative -, minimal +, mild ++, moderate +++, severe ++++.  

1mild to moderate, multifocal, subacute, lymphohistiocytic, bronchiolointerstitial pneumonia with variable luminal debris accumulation and intralesional influenza A 
nucleoprotein-positive bronchiolar and bronchial epithelia, alveolar macrophages and luminal debris 
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2mild, multifocal, interstitial pneumonia with intranuclear inclusion bodies, suggesting background infection with common porcine cytomegalovirus 

3oligofocal atelectasis in the accessory and middle lung lobe. Microscopic: moderate, multifocal, subacute, lymphohistiocytic, bronchiolointerstitial pneumonia with variable 
luminal neutrophil accumulation and intralesional influenza A nucleoprotein-positive bronchiolar and bronchial epithelia and luminal debris 

4mild, variable oligo- to multifocal, subacute, lymphohistiocytic, bronchiolointerstitial pneumonia with variable luminal neutrophil accumulation and intralesional influenza A 
nucleoprotein-positive bronchiolar, bronchial, bronchial gland epithelia and few alveolar macrophages 

5mild, oligofocal, acute, purulent bronchitis 
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Figure 28. Histopathology from lung of mock-immunized pig challenged with SwBel01 (H1N1).  
© PD Dr. Reiner Ulrich, FLI 

A Moderate, multifocal, subacute, lymphohistiocytic, bronchiolointerstitial pneumonia with variable luminal 
neutrophil accumulation. Hematoxylin-Eosin. 

B Intralesional influenza A nucleoprotein-positive bronchiolar and bronchial epithelia and luminal debris. 
Influenza A virus-nucleoprotein immunohistochemistry using a polyclonal rabbit anti- influenza A 
FPV/Rostock/34-virus-nucleoprotein antiserum (diluted 1:750) (Klopfleisch, Werner et al. 2006), avidin-biotin-
peroxidase complex method with 3-amino-9-ethyl-carbazol as chromogen and hematoxylin counterstain. 

C Moderate bronchiolointerstitial infiltration of CD3-positive T-lymphocytes. CD3 immunohistochemistry using a 
polyclonal rabbit anti- human CD3 antiserum (diluted 1:100; Dako K3464), avidin-biotin-peroxidase complex 
method with 3-amino-9-ethyl-carbazol as chromogen and hematoxylin counterstain. 

D Mild bronchiolointerstitial infiltration of CD20-positive B-lymphocytes. CD20 immunohistochemistry using a 
polyclonal rabbit anti- human CD20 antiserum (diluted 1:100; Thermo Scientific RB-9013), avidin-biotin-
peroxidase complex method with 3-amino-9-ethyl-carbazol as chromogen and hematoxylin counterstain. 

Bars = 50 µm. 
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5.5.6 Humoral Immune Response 

Three weeks after the first immunization, a very low HI serum antibody titer was observed in 

one vaccinated animal (1:28) (Figure 29.). However, ten of the 21 vaccinated animals were HI 

antibody-positive three weeks after boost immunization (Figure 30a.). In the NP antibody 

ELISA, however, 18 sera tested positive at day 21 after boost immunization (Figure 31a.).  
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Figure 29. HI serum antibody titers against By09 (H1N1pdm) in pigs three weeks after first immunization. Mean 
(line) and individual values (symbols) of immunized groups (imm) and mock-immunized groups (mock). Dotted 
line indicates detection limit. HI titers were determined in duplicates. 

After homologous or homosubtypic challenge, all immunized animals tested HI antibody-

positive on day 8 pc against By09 (H1N1pdm) with increased HI titers (Figure 30b.). Additionally, 

all immunized pigs displayed higher NP antibody levels than mock-immunized animals 

irrespective of the challenge virus (Figure 31b.). In both homosubtypically challenged groups, 

few animals developed weak HI titers against SwBel01 (H1N1) at that time, whereas all 

heterosubtypically challenged animals developed already moderate antibody titers against 

SwBiss03 (H3N2) (Figure 32.).  
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Figure 30. HI serum antibody titers against By09 (H1N1pdm) in pigs. Mean (line) and individual values (symbols) 
of immunized groups (imm) and mock-immunized groups (mock) after homologous challenge infection with By09 
(H1N1pdm09), homosubtypic challenge infection with SwBel01 (H1N1), and heterosubtypic challenge infection 
with SwBiss03 (H3N2). a HI titers on 21 days after boost immunization, b HI titers 8 days after challenge. Dotted 
line indicates the detection limit. HI titers were determined in duplicates. 
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Figure 31. ELISA NP antibody levels in pig sera. a Levels at day 21 after boost immunization. b Levels at day 8 
after challenge. Mean (line) and individual values (symbols) of immunized groups (imm) and mock-immunized 
groups (mock) after homologous challenge infection with By09 (H1N1pdm09), homosubtypic challenge infection 
with SwBel01 (H1N1), and heterosubtypic challenge infection with SwBiss03 (H3N2). Dotted line indicates 
questionable range, solid line negative range. S/N % - Percent ratio of sample value to that of the negative test 
control. *Animal, tested antibody-positive on first day of trial (#35p ab+). 
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Figure 32. HI serum antibody titers in pigs on day 8 after challenge infection. Mean (line) and individual values 
(symbols) of immunized groups (imm) and mock-immunized groups (mock). a HI titers against SwBel01 (H1N1). 
b HI titers against SwBiss03 (H3N2). Dotted line indicates detection limit. HI titers were determined in duplicates. 

5.5.7 Cellular Immune Response 

To shed some more light on the involved cellular immune responses, different samples were 

investigated by flow cytometry. This work was done in cooperation with Dr. Ulrike Blohm and 

Dr. Theresa Schwaiger. During the immunization period, no considerable differences in T and 

B cell responses were detected between vaccinated and mock-immunized animals in blood 

samples (day 0, 2, 8 after first and boost immunization and on challenge day). T cell responses 

were then analyzed in organ samples from animals sacrificed on day 4 pc. In vaccinated 

animals challenged with By09 (H1N1pdm09), a two-fold higher percentage of CD4+ helper cells 

in the blood and a considerable increase of this cell type in the spleen compared to the mock-

immunized group were detected (Figure 33a.). In contrast, no differences in the percentage 

of CD8+ memory cells in lymphoid organs were observed after homologous challenge 

(Figure 33b.). Both immunized animals challenged with a homosubtypic SIV strain SwBel01 

(H1N1) showed a higher percentage of CD8+ effector memory cells in spleen samples but not 

in the draining lymph node (Figure 33b.). Compared to the control group, immunized animals 

challenged with SIV strain SwBiss03 (H3N2) displayed a two-fold higher percentage of CD8+ 

effector memory cells in both spleen and lung lymph node (Figure 33b.).  
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Figure 33. Cellular immune responses in pigs after challenge infection with homologous SIV strain By09 
(H1N1pdm09), homosubtypic SIV strain SwBel01 (H1N1), or heterosubtypic SIV strain SwBiss03 (H3N2). a CD4 
helper cells (CD4+) in percent of leukocytes versus mock in blood and spleen. b CD8+ effector memory (TEM) in 
percent of leukocytes in lymphoid organs versus mock, Ln: right tracheobronchial lymph node. Mean (bars) and 
individual values (black symbols: immunized animals; hollow symbols mock-immunized animals). Two animals 
per group sacrificed on day 4 after challenge infection. 
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6. Discussion 

SIVs belong to the most important and wide-spread respiratory pathogens in modern pig 

husbandry leading to major economic losses (Brown 2000). Currently, SIVs of the subtypes 

H1N1, H1N2 and H3N2 are circulating in the global swine population (Van Reeth 2007). Due 

to the occurrence of antigenic drift mainly in the surface protein HA, SIVs have achieved a 

broad antigenic variability (Olsen 2002). Moreover, pigs are susceptible hosts for IAVs of avian 

and human origin (Nelson, Gramer et al. 2012). It has been suggested that they play a role as 

“mixing vessel” for gene reassortment and adaptation processes of IAVs (Scholtissek 1995, 

Neumann and Kawaoka 2011). Although different inactivated vaccines have been available for 

decades, they frequently provide an insufficient level of protection due to vaccine 

mismatching and lack of cross-protection (Sandbulte, Spickler et al. 2015). To reduce disease 

burden steadily and exclude hidden virus reservoirs, a strong and broad-ranged immune 

protection remains a key issue. LAIVs offer a promising perspective since they are able to 

trigger a broad immune response (Jang and Seong 2013). However, they are still considered 

to bear safety risks because reversion and gene reassortment with circulating field viruses 

cannot be excluded (Rahn, Hoffmann et al. 2015). For new vaccine approaches, reverse 

genetics has become a widely used method to generate recombinant attenuated viruses 

(Nogales and Martinez-Sobrido 2016). Stech et al. generated influenza A and B virus mutants 

carrying an elastase-sensitive HA cleavage site motif, which are highly attenuated in mice and 

offer full protection against lethal challenge infection with wild type virus (Stech, Garn et al. 

2005, Gabriel, Garn et al. 2008, Stech, Garn et al. 2011). Follow-up studies in swine confirmed 

attenuation and high protection levels against challenge infection (Masic, Babiuk et al. 2009, 

Masic, Booth et al. 2009, Babiuk, Masic et al. 2011). Other vaccine approaches target the viral 

non-structural protein 1 (NS1) as an antagonist of the host type I interferon response (Hale, 

Randall et al. 2008). Several immunization studies showed that mutant strains carrying a C-

terminally truncated NS1 are attenuated and confer strong protection in mice and swine 

(Solorzano, Webby et al. 2005, Richt, Lekcharoensuk et al. 2006, Vincent, Ma et al. 2007, 

Kappes, Sandbulte et al. 2012, Vincent, Ma et al. 2012, Wang, Qi et al. 2012).  

To increase vaccine safety further and combine these two promising mutations, our group 

previously developed the double-attenuated mutant strain By09-Ela/NS1-99 expressing an 
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elastase-dependent HA cleavage site and a C-terminally truncated NS1 protein. In this study, 

we investigated the characteristics of that double-attenuated mutant and its abilities to serve 

as a LAIV candidate. The experiments included the in vitro and in particular the in vivo 

characterization of the recombinant strain By09-Ela/NS1-99 in swine as a natural and 

important host species for IAV infections.  

6.1 in vitro Characterization  

Initial in vitro studies confirmed a strict dependency of the mutant strain on elastase, as 

previously described for different single-attenuated mutants (Stech, Garn et al. 2005). In the 

absence of elastase, titers of the mutant stagnated at 8 hours pi while they reached nearly 

wild type level when incubation was performed in the presence of elastase (about one 

magnitude reduction compared to wild type virus). Therefore, the growth of By09-Ela/NS1-99 

was severely restricted in the absence of elastase. Infectivity studies using 

immunofluorescence confirmed that By09-Ela/NS1-99 indeed shows a single cycle replication 

in the absence of elastase. Whereas the mutant was initially able to infect MDCK-II cells in the 

presence of trypsin and in the absence of elastase, no virus infection was detected in the next 

passage. Only in the constant presence of elastase, multicycle replication was observed 

indicated by the successful infection of fresh cells by the passaged supernatant. Overall, a 

strong elastase-dependency of the mutant strain was demonstrated that is not affected by 

combination with a C-terminally truncated NS1 protein. Moreover, the double-attenuated 

mutant was propagated to appropriate titers in the presence of elastase like those of the 

parentel virus, making it usable for further studies. 

After initial in vitro characterization of By09-Ela/NS1-99, the internal genes of By09-NS1-99 

were used as backbone decorated with the surface proteins HA-Ela and NA of the SIV H3N2 

isolate SwBiss03. SwBiss03 (H3N2) represents another established and important IAV subtype 

in swine. We successfully rescued the mutant and in growth kinetics, it exhibited an elastase-

dependent replication as already observed with By09-Ela/NS1-99. Therefore, combinations of 

the By09-NS1-99-backbone with different surface proteins are possible. This feature enables 

continuous surface antigen updates of double-attenuated mutant strains as LAIV to relevant 

circulating field viruses and subtypes in different regions.  
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6.2 Infection Study 

For evaluation of By09-ELA/NS1-99 in vivo, an efficient infection and immunization route was 

established. The efficiency of an experimental infection can differ considerably depending on 

the inoculation method and applied protocol (Landolt, Karasin et al. 2003, Richt, Lager et al. 

2003, De Vleeschauwer, Atanasova et al. 2009, Hemmink, Morgan et al. 2016). Intratracheal 

application is unsuitable for routine purposes. We preferred the intranasal route as a local and 

most practical application method, which is likely to stimulate the local immune system 

offering cross-protection(Tamura, Tanimoto et al. 2005). Still, the efficiency of this method 

can also vary considerably in different experimental designs (Janke 2013). MAD (Hemmink, 

Morgan et al. 2016) was described as an application device producing droplets of about 100 

µm which are able to reach the upper part of the porcine trachea. To evaluate MAD for our 

experimental set-up, a preliminary experimental infection study was performed with SIV 

strain SwBiss03 (H3N2) in a moderate dose. The inoculated pigs developed IAV-associated 

clinical signs, nasal virus shedding as well as viral loads in the upper and lower respiratory 

tract. We thus concluded that intranasal inoculation via MAD is an appropriate method to 

induce a respiratory infection with IAV in pigs. Although the observed infection was 

predominantly associated with the upper respiratory tract, it also reached the lower 

respiratory tract and the lung. Additionally, infection induced an antigen specific humoral 

immune response. Overall, inoculation by MAD was identified as an appropriate method to 

perform the main immunization and challenge experiment investigating the potential of By09-

Ela/NS1-99 as an LAIV in the targeted species, the pig, being an authentic outbred influenza 

animal model.  

6.3 Immunization and Challenge Experiment 

In this study, we decided to perform boost vaccinations although a single application for basic 

immunization would be highly desirable. Booster immunization is widely used for vaccination 

with inactivated vaccines (Rahn, Hoffmann et al. 2015) and is therefore an appropriate 

immunization schema to determine fundamental protection abilities. Nonetheless, single 

immunizations could be considered for potential follow-up studies.  

After immunization, only negligible clinical signs and no viral shedding were observed 

demonstrating that By09-Ela/NS1-99 displays a severely limited replication in vivo and is highly 
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attenuated in swine. The occurrence of short fever in a restricted number of animals may 

reflect the onset of immune responses. However, HI serum antibodies were elicited only to a 

very limited extent even after booster immunization. Similar results were already observed in 

other studies with LAIVs (Loving, Lager et al. 2013, Morgan, Hemmink et al. 2016). Besides, 

investigations for potential T and B cell responses in the blood of vaccinated animals did not 

show any considerable differences to mock controls. Therefore, the investigations during the 

immunization period prior to challenge did not provide prognostic indications about the 

potential vaccine efficiency. However, we nonetheless observed different protection against 

the three challenge infections. Therefore, neutralizing serum antibody titers prior to challenge 

did not correlate with the protection level paralleling other LAIV studies (Loving, Lager et al. 

2013, Morgan, Hemmink et al. 2016). As already mentioned, there were no detectable 

differences in T cell subsets after immunization prior to challenge. Potentially induced 

memory cells may predominantly resided in lymphoid organs (Woodland and Kohlmeier 2009) 

not entering the blood system. Considering these results and interpretations, blood and serum 

samples may not provide sufficient information to evaluate the efficiency of the vaccination 

with By09-Ela/NS1-99 by local administration.  

After immunization, all pigs were challenged with the homologous wild type SIV strain By09 

(H1N1pdm09), homosubtypic SIV strain SwBel01 (H1N1), and heterosubtypic SIV strain SwBiss03 

(H3N2). For this challenge, we chose moderately dosed infections with titers ranging between 

4 x 105 and 1 x 106 TCID50. Although titers of >106 TCID50, EID50 or PFU/pig may have provided 

more severe clinical pictures (Janke 2013), we did not perform multiple cell passages to 

increase viral titers to avoid introduction of unintended mutations into the used challenge 

viruses. Especially, the growth efficiency of SwBiss03 (H3N2) was limited to titers of 

approximately 105 TCID50/mL. However, significant clinical disease had already been observed 

in our pilot infection study using those moderate dosages. 
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6.3.1 Homologous Challenge Infection 

Full protection was observed for five of six immunized animals after challenge infection with 

homologous By09 (H1N1pdm) as indicated by the absence of clinical symptoms, no detectable 

viral shedding, and no IAV- infection associated pathological changes or virus load in the 

respiratory tract. Mock-immunized control animals developed weak to mild clinical signs, 

nasal shedding and displayed virus and antigen in several organ samples.  

To determine the protection mechanisms of By09-Ela/NS1-99, we initially investigated the 

humoral immune response after homologous challenge infection. Although HA-inhibiting 

antibodies were only induced to a very limited extent at 21 days after boost immunization, 

considerably increased serum antibody titers were detected in the immunized animals 

compared to the mock group on day 8 after homologous challenge infection. Accordingly, a 

two-fold higher percentage of CD4+ T helper cells was observed in blood and spleen samples 

of day 4 pc. CD4+ T lymphocytes play an important role in promoting B cells to produce specific 

antibodies (Tamura and Kurata 2004, Bahadoran, Lee et al. 2016). Therefore, protection from 

vaccination against homologous challenge infection in naïve pigs is likely due to an immediate 

specific humoral immune response triggered by increased frequencies of CD4+ T helper cells. 

A predominant humoral immune response was probably elicited by the identity of all epitopes 

in By09 (H1N1pdm) to those in the LAIV By09-Ela/NS1-99. Although investigations for mucosal 

antibodies were not included in this pilot study, a local immune response may have 

contributed to full protection. In fact, mucosal IgA are already known to be induced by single-

attenuated NS1-truncated LAIV (Richt, Lekcharoensuk et al. 2006). Further studies would be 

needed to confirm these assumptions including a considerable number of animals for 

sampling (bronchoalveolar lavage and nasal mucosa).  

In contrast, one pig of this immunization group tested antibody-positive already on the first 

day of trial. In this case, we observed nasal shedding after homologous challenge infection, 

despite former immunization. Therefore, pre-existing antibodies may inhibit an efficient 

immunization. By09-Ela/NS1-99 is very restricted in its replication in vivo. Therefore, 

maternally derived antibodies are likely to limit its replication further, preventing a sufficient 

immune response to vaccination. A negative impact of maternally derived antibodies during 

immunization with a bivalent vaccine has been observed before (Kitikoon, Nilubol et al. 2006). 

Moreover, maternally derived antibodies can impair the development of active immunity 
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after infection as well as vaccination (Loeffen, Heinen et al. 2003, Salmon, Berri et al. 2009, 

Sandbulte, Spickler et al. 2015). Contrary to those observations, other studies demonstrated 

that LAIVs provided protection (Pyo, Hlasny et al. 2015) or reduction of viral shedding 

(Genzow, Goodell et al. 2017) despite the presence of maternally derived antibodies Taken 

together, we observed a potential interference of pre-existing antibodies and vaccine virus in 

only one animal. Accordingly, further studies would be necessary to address this specific issue. 

6.3.2 Homosubtypic Challenge Infection 

Although the homosubtypic challenge with SIV strain SwBel01 (H1N1) resulted in considerable 

clinical disease in the unvaccinated control group, very low amounts of infectious virus were 

detected in nasal swab samples. We therefore speculate that viral replication of SwBel01 

(H1N1) differed from the other two challenge viruses and occurred predominantly in the 

pharyngeal and tracheal epithelium and at very limited extent in the nasal tissue. Respiratory 

symptoms in this group including wheezing would confirm this assumption. At least in one of 

two sacrificed animals of this group, considerable pathological changes and IAV NP-positive 

tracheal, and bronchiolar and bronchial epithelia cells were found. Nonetheless, further 

investigations would require homosubtypic challenge viruses at higher dosages and with 

stronger virulence.  

However, the immunized group showed decreased clinical symptoms, no detectable viral 

shedding, and no virus in lung samples indicating partial protection against homosubtypic 

challenge. Interestingly, increased HA-inhibiting antibody titers against By09 (H1N1pdm09), the 

parental strain of By09-Ela/NS1-99, were observed in sera of immunized animals 8 days pc 

which might correspond to the original antigenic sin (Vatti, Monsalve et al. 2017). Those 

antibodies may bind less efficiently to differing epitope(s) of the HA (SwBel01) and were 

probably less protective. In HI assay, swine sera against By09 (H1N1pdm) indeed did not show 

any cross reactivity against SwBel01 (H1N1). However, antibodies against NA of By09 could 

have contributed to neutralization of the NA from SwBel01 (H1N1). NA-inhibiting antibodies 

(NAI) were not investigated in our study but are known to inhibit the release of progeny virions 

from infected host cells (Ma and Richt 2010). In fact, NA of both viruses originated from the 

avian-like SIV lineage established in swine since 1979 (Pensaert, Ottis et al. 1981, Brown 2000). 

Previous studies in swine demonstrated potential protection by T cells during IAV infection 
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with different subtypes (Talker, Koinig et al. 2015, Talker, Stadler et al. 2016, Tchilian and 

Holzer 2017). After homosubtypic challenge, an increased percentage of CD8+ effector 

memory cells were detected in spleens of immunized animals compared to the mock control. 

This observation suggests an increased systemic cellular immune response offered by former 

vaccination and triggered by homosubtypic challenge infection. We also investigated the 

percentage of local CD8+ effector memory cells in the lung lymph node. In this case, no 

differences between the vaccinated group and the control group were detected at day 4 pc. 

Presumably, the homosubtypic challenge virus was rapidly cleared in the upper respiratory 

tract of immunized animals and, therefore, could not trigger a local cellular immune response 

in the lung. Accordingly, neither viral nasal shedding nor virus in the lung could be 

demonstrated. Further detailed immunological studies including a significantly larger number 

of animals and homosubtypic viruses of high virulence may reveal the exact mechanism.  

6.3.3 Heterosubtypic Challenge Infection 

After heterosubtypic challenge infection with SIV strain SB03 (H3N2), immunized and mock-

immunized animals showed comparable mild clinical disease and nasal shedding of challenge 

virus. Nonetheless, titers and the duration of viral excretion were reduced in the immunized 

group, probably indicating some protective effect. In particular, a considerably decreased viral 

load in the lungs of the immunized animals was observed. This indicates that the vaccination 

had a limiting impact on viral replication in the lung. No significant differences were present 

in the humoral immune response between both heterosubtypically challenged groups. This is 

not surprising since the interaction of HA-inhibiting antibodies in this heterosubtypic 

constellation appears to be very unlikely. In fact, epitopes of the vaccine virus (H1) and the 

challenge virus (H3) derive from different HA subtypes and therefore differ considerably. 

Besides HA-specific antibodies, almost all immunized animals tested positive for NP-specific 

antibodies on day 21 after boost vaccination. NP, as a highly conserved IAV protein, is an 

optimal target for cross-reactive immune reactions (Kreijtz, Fouchier et al. 2011). However, 

NP-antibodies are considered to offer no protective effect (Ma and Richt 2010) and their 

influence on the viral load in the lungs is unclear. Accordingly, there were no indications for a 

protective impact of the humoral immune response in this immunization and challenge 

constellation. However, investigations by flow cytometry revealed an increased percentage of 

CD8+ effector memory cells in spleen as well as in the draining lung lymph node of both 
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vaccinated animals compared to control animals on day 4 pc. Previous studies in mice showed 

that T cells are able to mount heterosubtypic cross-protection (Benton, Misplon et al. 2001, 

Kreijtz, Fouchier et al. 2011). In this context, these results suggest that the vaccinated animals 

develop a higher amount of specific systemic and local CD8+ effector memory cells supporting 

a more effective viral clearance in the lung after challenge infection.  

6.4 Conclusions 

Overall, we conclude that the double-attenuated mutant By09-Ela/NS1-99 (H1N1pdm09) 

provides an increased safety compared to other LAIV and offers a broader range of protection 

than the currently available inactivated vaccines. Therefore, less frequent surface antigen 

updates with recent HA and NA genes would be required. Future studies should address the 

protection against drifted viruses in swine or other relevant IAV hosts. 
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7. Summary 

Swine influenza (SI) infections are observed frequently in pigs worldwide. This respiratory 

disease has a great economic relevance and bears high zoonotic risks. Novel pandemic strains 

in humans as in 2009 may emerge from pigs, serving as perpetual virus reservoir. Protection 

from conventional inactivated vaccines against SI depends heavily on a close match to 

circulating virus variants. Therefore, insufficient protection levels occur frequently in the field. 

Reverse genetics has become a common used method for the generation of alternative live-

attenuated influenza vaccines (LAIV) targeting a cross-protective cell-mediated and humoral 

immunity against different IAV subtypes. Despite several promising LAIV approaches, there 

are still major safety issues regarding possible reversion or reassortment with circulating 

viruses. The present work describes the evaluation of a potential double-attenuated influenza 

live vaccine from the IAV A/Bayern/74/2009 (H1N1pdm09), generated by reverse genetics. 

Aiming at increased safety, the virus mutant By09-Ela/NS1-99 combines two attenuating 

features: (1) an artificial, strictly elastase-dependent hemagglutinin cleavage site and (2) a C-

terminally truncated NS1 protein. This study describes its in vitro characterization but mainly 

focuses on the investigation in swine, as the target species, for determining attenuation and 

efficiency in a broad immunization and challenge trial. In vitro, the double-attenuated mutant 

replicated strictly elastase-dependently and could be used as a backbone strain carrying 

surface proteins from the important SI subtype H3N2. For in vivo experiments, pigs were 

vaccinated and challenged intranasally by a mucosal atomization device (MAD) which was 

evaluated as a suitable application method. After two immunizations, pigs were challenged 

with the homologous wild type A/Bayern/74/2009 (H1N1pdm09), homosubtypic 

A/Swine/Belzig/2/01 (H1N1), or heterosubtypic A/Swine/Bissendorf/IDT/1864/03 (H3N2) to 

address realistic challenge scenarios. Immunized pigs developed neither clinical symptoms nor 

detectable virus replication after homologous challenge. Additionally, we detected an 

increased serum antibody response and percentage of CD4+ T lymphocytes in the immunized 

animals indicating an efficient humoral immune response. Homosubtypically infected 

vaccinated animals showed considerably reduced clinical signs and no nasal virus shedding. 

After heterosubtypic challenge infection, reduced viral loads in respiratory tracts of the 

immunized animals were observed. Thus, a combination of both attenuation features can 

improve vaccine safety and still offers protection against homologous challenge and strong 
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reduction of disease severity after the homosubtypic challenge infection. An optimized 

backbone strain may require less frequent updates with recent HA and NA genes and still 

induce strong protection in swine against drifted virus variants. 
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8. Zusammenfassung  

Influenza-A-Viren gehören weltweit zu den bedeutendsten respiratorischen Erregern in der 

modernen Schweinehaltung. Die Erkrankung hat neben einer hohen ökonomischen 

Bedeutung auch ein erhebliches zoonotisches Potenzial. Schweine gelten als Zwischenwirte 

für Reassortment- und Adaptationsprozesse von Influenza-A-Viren, wobei vermutet wird, dass 

diese Spezies eine Schlüsselfunktion zum Entstehen von pandemischen Virusvarianten in der 

menschlichen Bevölkerung einnehmen kann wie zuletzt im Jahre 2009. Die Effizienz 

inaktivierter Vakzinen gegen porzine Influenza basiert primär auf der engen Übereinstimmung 

der Impfstämme mit zirkulierenden Viren und Virusvarianten. Dementsprechend kommt es 

regelmäßig zu einem insuffizienten Schutz im Feld. Um eine breitere Immunantwort zu 

stimulieren und damit eine höhere Kreuzprotektivität zu erzielen, wurden mittels reverser 

Genetik in der Vergangenheit bereits einige attenuierte Lebendimpfstoffe experimentell 

getestet und evaluiert. Trotz vielversprechender Ergebnisse bestehen noch immer erhebliche 

Sicherheitsbedenken, die vor allem auf das Risiko einer möglichen Reversion der Impfstämme 

und auf das potentielle Reassortment mit zirkulierenden Feldstämmen zurückzuführen sind.  

Diese Arbeit beschäftigt sich mit der Evaluierung doppelt-attenuierter Influenza-A-

Lebendvakzinen, welche mittels reverser Genetik generiert wurden und auf dem 

pandemischen Influenza-A-Isolat A/Bayern/74/2009 (H1N1pdm09) basieren. Hierfür wurden 

zwei bereits etablierte Attenuierungsmerkmale kombiniert, um die Sicherheit der potentiellen 

Lebendvakzine zu erhöhen. Die Doppelmutante By09-Ela/NS1-99 trägt dementsprechend 

neben einem Elastase-abhängigen HA-Spaltstellen-Motiv zusätzlich ein C-terminal verkürztes 

NS1-Protein. Diese Studie beschreibt die In-Vitro-Charakterisierung und beinhaltet im 

Besonderen In-Vivo-Studien im Schwein als Zielspezies und natürlichen Wirt. Die 

durchgeführten Experimente untersuchen die Attenuierung sowie die Effizienz der doppelt 

attenuierten Virusmutante in einem breit gefassten Immunisierungs- und Belastungsversuch. 

Unsere In-Vitro-Studien konnten zeigen, dass die Doppelmutante ein strikt Elastase-

abhängiges Wachstumsverhalten besitzt. Ebenfalls konnte By09-NS1-99 erfolgreich als 

Backbone-Stamm mit relevanten Oberflächenproteinen des Subtypen H3N2 kombiniert 

werden. In den durchgeführten In-Vivo Studien wurden Schweine zweifach intranasal mittels 

Mucosal Atomization Device (MAD) mit By09-Ela/NS1-99 immunisiert, wobei das MAD im 

Rahmen dieser Arbeit zuvor als passende Applikationsmethode evaluiert wurde. Die 
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Doppelmutante war im Schwein stark attenuiert und wurde nicht ausgeschieden. Die Tiere 

wurden anschließend mit dem homologen Wildtyp A/Bayern/74/2009 (H1N1pdm09), dem 

homosubtypischen A/Swine/Belzig/2/2001 (H1N1) oder einem heterosubtypischen Isolat 

A/Swine/Bissendorf/IDT/1864/2003 (H3N2) infiziert. Nach homologer Belastungsinfektion 

zeigten die immunisierten Tiere weder klinische Symptome noch Virusreplikation im 

Respirationstrakt. Gesteigerte spezifische HA-Antikörper-Spiegel und ein erhöhter 

Prozentsatz an CD4+-T-Zellen nach Belastungsinfektion sprechen für eine effiziente humorale 

Immunantwort. Des Weiteren zeigten immunisierte Tiere nach homosubtypischer 

Belastungsinfektion verminderte klinische Symptome und keine nasale Virusausscheidung, 

während nach heterosubtypischer Infektion lediglich eine verringerte Viruslast in den Lungen 

der immunisierten Tiere beobachtet wurde. Die Versuchsergebnisse zeigen, dass die 

Kombination beider Attenuierungsmerkmale die Sicherheit von attenuierten Influenza-A-

Lebendvakzine erhöhen kann. Hierbei bietet eine Boost-Vakzinierung vollständigen Schutz 

gegenüber der homologen Belastungsinfektion und führt darüber hinaus zu einer erheblichen 

Reduktion der Krankheitssymptome nach homosubtypischer Infektion. Ein optimierter 

Backbone-Stamm bietet somit potentiell auch einen breiteren Schutz gegenüber Drift-

Varianten innerhalb eines Influenza-A-Subtyps, so dass damit eine Aktualisierung der 

Vakzinestämme weniger oft notwendig ist. 
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