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The clathrin-binding domain of CALM and the OM-LZ domain of AF10 are sufficient
to induce acute myeloid leukemia in mice

AJ Deshpande1,2,3,9, A Rouhi4,9, Y Lin5, C Stadler1,2, P Greif1,2, N Arseni1,2, S Opatz1,2, L Quintanilla-Fend6, K Holzmann7,
W Hiddemann1,2, K Döhner8, H Döhner8, G Xu5, SA Armstrong3, SK Bohlander1,2 and C Buske4
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for Environmental Health, Munich, Germany; 3Division of Hematology/Oncology, Children’s Hospital, Harvard Medical School,
Boston, MA, USA; 4Institute of Experimental Cancer Research, Comprehensive Cancer Center, University Hospital of Ulm, Ulm,
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Shanghai, China; 6Eberhard-Karls-University of Tübingen, Institute of Pathology, Tübingen, Germany; 7Chip Facility/ZKF, University
Hospital of Ulm, Ulm, Germany and 8Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany

The t(10;11)(p13-14;q14-21) translocation, giving rise to the
CALM–AF10 fusion gene, is a recurrent chromosomal rearran-
gement observed in patients with poor prognosis acute myeloid
leukemia (AML). Although splicing of the CALM–AF10 fusion
transcripts has been described in AML patients, the contribu-
tion of different CALM and AF10 domains to in vivo leukemo-
genesis remains to be defined. We therefore performed detailed
structure-function studies of the CALM–AF10 fusion protein.
We demonstrate that fusion of the C-terminal 248 amino acids
of CALM, which include the clathrin-binding domain, to the
octapeptide motif–leucine-zipper (OM-LZ) domain of AF10
generated a fusion protein (termed CALM–AF10 minimal fusion
(MF)), with strikingly enhanced transformation capabilities in
colony assays, providing an efficient system for the expedi-
tious assessment of CALM–AF10-mediated transformation.
Leukemias induced by the CALM–AF10 (MF) mutant recapitu-
lated multiple aspects of full-length CALM–AF10-induced
leukemia, including aberrant Hoxa cluster upregulation, a
characteristic molecular lesion of CALM–AF10 leukemias. In
summary, this study indicates that collaboration of the clathrin-
binding and the OM-LZ domains of CALM–AF10 is sufficient to
induce AML. These findings further suggest that future
approaches to antagonize CALM–AF10-induced transformation
should incorporate strategies, which aim at blocking these key
domains.
Leukemia advance online publication, 17 June 2011;
doi:10.1038/leu.2011.153
Keywords: CALM; AF10; acute myeloid leukemia

Introduction

The CALM–AF10 fusion gene results from in-frame fusions of the
CALM gene on chromosome 11 to the AF10 gene on
chromosome 10. CALM–AF10 fusions are observed in acute
myeloid leukemia (AML), acute lymphoblastic leukemia and
malignant lymphoma1–6 and are especially prevalent in g–d
lineage T-acute lymphoblastic leukemias.6 AML patients with
this translocation have a significantly poorer prognosis as
compared with patients without these translocations.7 AF10
belongs to a family of proteins that includes AF17 and BR140.8

These proteins harbor a highly conserved plant homeodomain in
the N-terminal portion and an octapeptide motif (EQLLERQW)
and leucine-zipper (OM-LZ) domain in the C-terminal region.8,9

Leukemia-associated translocations consistently fuse the
C-terminal OM-LZ domain either to the MLL gene (in the case
of MLL–AF10 and MLL–AF17 fusions) or to CALM (in the case of
CALM–AF10 fusions).8,10,11 Consistent inclusion of the AF10
and AF17 OM-LZ domains in leukemic fusions highlights the
potential importance of these highly conserved motifs in
leukemogenesis. Indeed, it has been demonstrated that the
interactions of AF10 with critical components of the chromatin
modifying machinery are mediated by the OM-LZ domain.12–14

Importantly, aberrant recruitment of the histone methyltransfer-
ase DOT1L by the OM-LZ domain of AF10 is thought to be
critical for the leukemogenesis of MLL–AF10 and CALM–AF10
fusions.13,15,16 Since MLL–AF10 and CALM–AF10-positive
leukemias are marked by global hypomethylation of histone
H3 lysine 79 (H3K79), as well as HOXA cluster-specific local
H3K79 hypermethylation, these diseases could serve as
excellent models for studying the contribution of aberrant
epigenetic marks to neoplastic development.17 We have
demonstrated that the expression of the human CALM/AF10
fusion gene in murine bone marrow (BM) stem and progenitor
cells results in an aggressive AML in vivo.18 Similar results have
also been obtained by expressing this fusion gene under the
control of the hematopoietically active Vav promoter in
transgenic mice.19 In a separate study, continuous expression
of this fusion gene was shown to be necessary for leukemia
propagation, since suppression of CALM/AF10 transcripts by
shRNA knockdown significantly increased the latency of
leukemia induced by the t(10;11)(p13-14;q14-21) positive
U937 human leukemia cell line.16 Data from patients with
CALM–AF10-positive leukemia have demonstrated that despite
splicing events, key functional domains of the fusion gene are
retained.20 In this study, we define the leukemogenic activity of
key domains of CALM–AF10 by appropriate in vitro and in vivo
assays and demonstrate that the leukemogenic activity of
CALM–AF10 is due to the function of two regions, the
clathrin-binding domain and the OM-LZ domain.

Materials and methods

Generation of CALM–AF10 mutant constructs
The pMIG-CALM-AF10 construct has been described pre-
viously.18 A PCR amplified fragment corresponding to aminoReceived 21 April 2011; accepted 3 May 2011
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acids 1–648 of CALM (NCBI accession NP_009097.2) with a
stop codon was cloned into the MSCV-IRES-YFP (pMIY) plasmid
vector for generating the CALMD30 mutant. For the
CALMþOM-LZ mutant, a PCR amplified fragment correspond-
ing to amino acids 1–648 of CALM was fused to a PCR amplified
fragment encoding amino acids 677–758 of AF10 (Accession:
NP_001182555), comprising the OMþ LZ with a stop codon.
The CALM–AF10 DOM-LZ construct was generated by ligating
two separate PCR fragments of CALM–AF10 such that the
OM-LZ domain was excluded from between the two fragments,
thereby excluding amino acids 677–758 of AF10. Mutants for
interrogation of the CALM portion were generated by fusing
an EcoR1–BamH1 fragment of either amino acids 1–410 or
400–648 of CALM to the AF10 amino acids 677–758 of AF10 in
the MSCV-IRES-GFP vector.

Mice and retroviral infection of BM cells
Parental strain mice were bred and maintained at the Helmholtz
Centre Munich animal facility. Donors of primary BM cells were
8- to 12-week-old (C57BL/6Ly-Pep3b�C3H/HeJ) F1 (PepC3)
mice, and recipients were 8- to 12-week-old (C57BL/6J�C3H/
HeJ) F1 (B6C3) mice. Donors were treated with 5-fluorouracil and
5 days later, BM from these mice was harvested and plated in BM
medium (Dulbecco’s modied Eagle’s medium, 15% fetal bovine
serum, 1% Pen/Strep) þ cytokines (100ng/ml stem cell factor,
10ng/ml interleukin 6 (IL6), 6 ng/ml interleukin 3 (IL3)). After 48h
of pre-stimulation, the BM cells were transduced with different
viruses by overlaying them on virus-producing irradiated (40Gy)
GPþE86 producers in the presence of cytokines and protamine
sulfate (5mg/ml). The transduction was stopped by removing the
BM cells from the GPþ E86 cells and plating them in BM
medium with cytokines for another 48h to allow for green
fluorescent protein (GFP) expression. Retrovirally transduced cells
were sorted based on expression of GFP by using a FACSVantage
(Becton Dickinson, Franklin Lakes, NJ, USA). Sorted GFP or
yellow fluorescent protein (YFP)-positive cells were used for
colony forming cell (CFC) or colony forming unit-spleen (CFU-S)
assays or injected directly into recipient mice.

CFU-S assay
The CFU-S assay was performed as previously described.21

Transduced and sorted 5-fluorouracil-treated BM cells were
injected intravenously into lethally irradiated (800 cGy of 137Cs
g-radiation) (C57BL/6J�C3H/HeJ) F1 (B6C3) mice at cell
numbers adjusted to give 5 to 15 macroscopic spleen colonies.
Cell doses ranged from 1.5 to 5� 104 sorted cells. At 12 days
after injection, animals were killed and the number of
macroscopic colonies on the spleen was evaluated after fixation
in Telleyesniczky solution (absolute ethanol, glacial acetic acid
and formaldehyde mixed in a 9:1:1 ratio, respectively). For the
CALM (400–648)þAF10 (677–758) mutant, mice were injected
with fewer cells to ensure scoring resolution (1000 GFP sorted
cells per mouse).

BM transplantation and assessment of mice
In all, 8- to 10-week-old recipient mice (C57BL/6J�C3H/HeJ)
F1 (B6C3) were irradiated (800 cGy) from a 137Cs g-radiation
source. Fluorescence activated cell sorting-purified transduced
BM cells, or a defined ratio of transduced and untransduced
cells was injected into the tail vein of irradiated recipient mice.
Hematopoietic engraftment of GFP-positive cells was assessed
by flow cytometry of regularly collected peripheral blood

samples. Mice were closely monitored for signs of disease
manifestation and killed when moribund. BM, peripheral blood
and spleen cells of killed leukemic or control mice were analyzed
for morphology and flow cytometric assessment of lineage
markers as described.18 Gr-1, ScaI, Ter-119, CD4, Mac1, Kit,
B220 or CD8 antibodies were used for analysis (all antibodies
from BD Biosciences, San Jose, CA, USA). Stained cells were
analyzed on a FACSCalibur flow cytometer using the CellQuest-
Pro software (BD Pharmingen, San Diego, CA, USA). Histological
analysis and immunohistochemistry was performed on fixed
organs of representative leukemic mice using standard protocols.

Colony forming cells
For in vitro CFC assays, transduced cells were sorted for GFP
and directly plated in 1% myeloid-conditioned methylcellulose
containing Iscove’s modified Dulbecco medium-based
Methocult (Methocult M3434; StemCell Technologies, Vancouver,
Canada) at a concentration of 1000 cells/ml. Single cell
suspensions of colonies were serially replated at the same
concentration for upto 6 weeks or until the exhaustion of cell
growth.

Immunostaining and confocal laser scanning
fluorescence microscopy
For intracellular localization studies, the human osteosarcoma
cell line U2-OS was grown on coverslips in six-well plates and
transiently transfected with pcDNA3-FLAG-AF10, pcDNA3-FLAG-
CALM–AF10 or pcDNA3-FLAG-CALM (400–648)þAF10
(677–758) plasmids using 1mg plasmid DNA and 1.5mg poly-
ethyleneimine (Sigma, St Louis, MO, USA). After 24h, cells were
fixed with phosphate-buffered saline 2% paraformaldehyde for
10min, permeabilized with phosphate-buffered saline 0.1% Triton
X for 10min and blocked with phosphate-buffered saline 10% fetal
calf serum for 1h. Coverslips were incubated overnight with
monoclonal mouse FLAG antibodies (Sigma). Following extensive
washing with phosphate-buffered saline, Alexa555-conjugated
secondary antibodies (Invitrogen, Carlsbad, CA, USA) were added
for 1h. After further washing steps, cells were stained with 40,60-
diamidine-20-phenylindole dihydrochloride (Hoechst, Frankfurt,
Germany) and mounted using Cytomation medium (DAKO,
Glostrup, Denmark). Finally, immunostained species were ana-
lyzed in a confocal fluorescence laser scanning system (TCS-SP2
scanning system and DM IRB inverted microscope; Leica, Solms,
Germany).

Western blotting
Total protein was extracted from GFPþ E86 cells to assess the
sizes and amounts of CALM–AF10 and CALM (400–648)þAF10
(677–758) proteins via western blotting, as described before.18

The membranes were incubated overnight with goat polyclonal
anti-CALM antibodies A-2 and C-18 (Santa Cruz Biotechnolo-
gies Inc., Santa Cruz, CA, USA) used at a concentration of
200 ng/ml. A horseradish peroxidase conjugated donkey anti-
goat antibody (100 ng/ml) was used as secondary antibody.

Gene expression profiling and microarray analysis
Mouse BM cells were transduced with CALM–AF10, CALM
(400–648)þAF10 (677–758), CALM–AF10 DOM-LZ and empty
vector (MIG). Three days post-transduction, GFP-expressing
cells were sorted by fluorescence activated cell sorting and total
RNA (including both long and short RNA fractions) was
extracted using Qiagen miRNeasy Mini Kit (Hilden, Germany).
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For each construct, three biological replicates were produced.
Microarray analysis was performed using Affymetrix GeneChip
Mouse Gene 1.0 ST and GeneChip miRNA arrays. For the
GeneChip Mouse Gene 1.0 ST Array, analyses were performed
using 200 ng total RNA as starting material and 5.5mg ssDNA
per hybridization (GeneChip Fluidics Station 450; Affymetrix,
Santa Clara, CA, USA). The total RNAs were amplified and
labeled following the whole transcript sense target labeling
assay (http://www.affymetrix.com). Labeled ssDNA was hybri-
dized to Mouse Gene 1.0 ST Affymetrix GeneChip arrays
(Affymetrix). The chips were scanned with an Affymetrix
GeneChip Scanner 3000 and subsequent images analyzed using
Affymetrix Expression Console Software (Affymetrix). For the
GeneChip miRNA Array, 1 mg of total RNA was labeled using
the FlashTag Biotin HSR labeling Kit (Genisphere, Hatfield, PA,
USA). In all, 21.5ml biotin-labeled sample were hybridized to
GeneChip miRNA Arrays at 48 1C and 60 r.p.m. for 16 h. After
washing Wash at a Fluidics Station 450 using fluidics script
FS450_0003 arrays were scanned with an Affymetrix GeneChip
Scanner 3000. Raw data were background corrected and
quantile normalized using the miRNAQCTool from Affymetrix
with default parameters recommended by Affymetrix.
A transcriptome analyses was performed using BRB-ArrayTools

developed by Dr Richard Simon and BRB-ArrayTools Develop-
ment Team (http://linus.nci.nih.gov/BRB-ArrayTools.html). Raw
feature data were normalized and log2 intensity expression
summary values for each probe set were calculated using robust
multiarray average22 using Affymetrix Expression Console Soft-
ware (Affymetrix). For class comparison, we identified genes/
miRNAs that were differentially expressed among the two classes
using a two-sample t-test. Genes were considered statistically
significant if their P-value waso0.05 and displayed a fold change
between the two groups of at least 1.5-fold.
Our complete mRNA and miRNA array data are accessible at

a gene expression omnibus (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?token¼ ltmtnyguieagozi&acc¼GSE27514).

Results

CALM–AF10 significantly increases the CFU-S
frequency of normal BM progenitors
Sequencing of CALM–AF10 transcripts has revealed splicing
events, but has shown that the C-terminal part of CALM with its
clathrin-binding domain and the OM-LZ domain are present in
patients with AML.12,20 We confirmed these findings in three
patients with CALM–AF10-positive AML, demonstrating that the
C-terminal clathrin-binding domain of CALM and the OM-LZ
domain of the AF10 part in the CALM–AF10 fusion gene are not
spliced out (data not shown). Based on this finding, we gauged
the extent of the contribution of these two domains to the
leukemogenic activity of the CALM–AF10 fusion gene. The full-
length CALM–AF10 fusion, which was derived from the
t(10;11)(p13-14;q14-21) translocation of the U937 cell line,
includes the amino acids 1 to 648 of CALM to amino acids
81–1042 of AF10 (Figure 1a). In order to assess the impact of
short-term CALM–AF10 expression on early hematopoietic
progenitors in vivo, we employed the day-12 CFUs in spleen
(d-12 CFU-S) assay21 (Figure 1b). Upon injection of BM cells
expressing the empty MSCV-IRES-GFP (MIG) vector, an average
of 3±1.2 d-12 CFU-S colonies could be recovered per 105 input
cells, whereas sorted CALM–AF10 transduced BM cells generated
an average of 81±5 d-12 CFU-S colonies (Figure 1b). CALM–
AF10 expression therefore increases the d-12 CFU-S activity by
B27-fold as compared with empty vector (Po0.0001). We then

used this assay to test several deletion mutants to identify protein
domains that contribute to the aforementioned hematopoietic
activity of the CALM–AF10 fusion.

The OM-LZ of AF10 is necessary and sufficient for the
enhancement of CFU-S activity by CALM–AF10
We initially focused on the AF10 part of the fusion and
constructed several deletion mutants of the AF10 region.
Expression of the CALM gene truncated at the breakpoint of
CALM–AF10 (designated CALMD30) or the CALM–AF10 fusion
gene with a deleted OM–LZ domain (designated CALM–AF10
DOM-LZ) gave an average of three and four d-12 CFU-S
colonies, respectively, per input 105 BM cells. These numbers
were similar to d-12 CFU-S colonies obtained from empty vector
(MIG) transduced cells, indicating that the AF10 portion of
CALM–AF10, especially the OM-LZ domain (amino acids
677–758 of AF10) is necessary for the CFU-S enhancement
phenotype. BM cells transduced with a construct harboring the
CALM gene fused only to the OM-LZ region of AF10
(CALMþOM-LZ) showed an average of 54 colonies per 105

input cells (an 18-fold increase compared with MIG;
P¼ 0.0005). This effect was comparable to the activity of the
full-length CALM–AF10 fusion (CALM–AF10 vs CALMþOM-LZ;
P¼ 0.065) (Figure 2a).

Fusion of the clathrin-binding domain of CALM to the
OM-LZ domain of AF10 enhances CALM–AF10-
mediated transformation
Having established the OM-LZ domain of AF10 as the important
determinant of the enhancement in d-12 CFU-S, we turned our
attention to the CALM part of the fusion. The N-terminal amino
acids of CALM have a high homology to AP180, the neuronal
homolog of the CALM protein. These residues (amino acids
1–413), which include the ENTH or ANTH (Epsin or AP180
N-terminal homology) domain, have been shown to be insuffi-
cient for the targeting of CALM to clathrin-coated pits. The binding
of clathrin to CALM was shown to primarily involve the C-
terminal residues 414–652 of CALM. We therefore interrogated
these N- and C-terminal portions of CALM for their contribution to
the oncogenicity of the CALM–AF10 fusion gene. We generated
two CALM deletion mutants fused to the AF10 OM-LZ domain.
The CALM (aa 1–410)þOM-LZ fusion generated an average of 37
d-12 CFU-S colonies, which was comparable to the CALMþOM-
LZ construct. Strikingly, expression of the CALM (aa 400–
648)þAF10 (aa 677–758) mutant, henceforth referred to as the
CALM–AF10 minimal fusion (MF) or CALM–AF10 (MF) mutant,
profoundly augmented the ability of BM cells to form d-12 CFU-S
colonies, with an average of 800 colonies per 105 input cells (P-
value of 0.0033 compared with MIG and o0.0001 compared
with CALM–AF10) (Figure 2b).

The dramatic increase in colony numbers by the CALM–AF10
(MF) mutant suggested that this mutant might confer a significant
proliferative advantage to hematopoietic progenitors. We tested
the effect of CALM–AF10 (MF) expression in 5-fluorouracil-treated
BM cells using methylcellulose-based CFC assays. Unlike the full-
length CALM–AF10 fusion, which fails to transform BM progeni-
tors, under defined conditions in vitro (in the presence of medium
supplemented with 6ng/ml IL3, 100ng/ml stem cell factor,
10 ng/ml IL6), CALM–AF10 (MF) expression led to a rapid
immortalization of hematopoietic precursors (Figure 3). Speci-
fically, CALM–AF10 (MF) showed a significant increase in the
number of secondary CFCs (32-fold vs MIG; 15.38-fold vs
CALM–AF10). While CALM–AF10-expressing BM cells typically
lost their replating potential in the second week of culture,

Key functional domains of the CALM–AF10 fusion gene
AJ Deshpande

3

Leukemia



! "&!

+

+

CALM–AF10 (MF)-expressing BM colonies could be serially
replated for at least 4 weeks in CFC assays (Figure 3a) and
proliferated extensively in culture for at least 8 weeks in medium
supplemented only with 6 ng/ml IL3 (data not shown). Colonies
obtained from CALM–AF10 (MF)-expressing progenitors were
typically compact and hypercellular and composed predomi-
nantly of cells with a blast-like morphology (Figure 3b).

Induction of AML by the CALM–AF10 (MF) mutant
In order to ascertain that the transformation potential of the
CALM–AF10 (MF) mutant would translate into leukemia
generation, we injected CALM–AF10 (MF)-expressing 5-fluor-
ouracil-enriched BM progenitors into lethally irradiated mice.
CALM–AF10 (MF) expression induced leukemia in the recipients
(n¼ 9), with a median survival of 110 days (mean 116 days). The
latencies of disease in these leukemias were not significantly
different (P¼ 0.86) from leukemias initiated by the full-length
CALM–AF10 fusion (median survival 138 days, n¼ 8). More-
over, similar to the CALM–AF10 mice described previously,18

CALM–AF10 (MF)-induced leukemias showed diffuse infiltration
of large cells with blastic chromatin and prominent nucleolus in
the spleen, liver, kidney, intestine, lung and lymph nodes.
Myeloperoxidase staining showed massive infiltration of the
spleen and other organs with myeloblastic cells (Figure 4a). The
disease induced by the CALM–AF10 (MF) mutant could also be
transplanted into secondary recipients who died with a median
latency of 31 days post-transplantation (n¼ 8). Analysis of BM
cells from leukemic CALM–AF10 (MF) mice demonstrated the
presence of Gr-1/Mac1þ myeloid blasts. Importantly, all the
mice analyzed (n¼ 5) harbored distinct populations of Mac1þ /

B220–, Mac1þ /B220þ and Mac1–/B220þ cells (Figure 4b),
similar to the hierarchically arranged cell populations described
for the full-length CALM–AF10 fusion gene.18 These findings
demonstrate the striking similarity in leukemia presentation,
disease latency and transplantability between CALM–AF10 and
CALM–AF10 (MF)-induced leukemias, despite the lack of larger
portions of the fusion gene in the CALM–AF10 (MF) construct.

Enhanced expression and increased nuclear localization
of the CALM–AF10 (MF) mutant
In order to assess the localization and relative expression levels
of CALM-AF10 and the CALM-AF10 (MF) mutant, we performed
immunofluorescence microscopy using FLAG-tagged, full-
length CALM–AF10 or the CALM–AF10 (MF) mutant constructs
transfected in U2-OS cells and used wild-type AF10 as a control.
As it has been demonstrated previously,23 AF10 was predomi-
nantly nuclear, whereas CALM–AF10 could be detected in a
punctuate pattern in the cytoplasm. Moreover, in contrast to the
speckled appearance of CALM–AF10, the CALM–AF10 (MF)
protein was rather homogeneously distributed throughout the
cytoplasm, with some cells showing an increased level of
CALM–AF10 (MF) protein expression in the nucleus (Figure 5a).
Protein expression of the CALM–AF10 (MF) was also confirmed
by western blotting (Figure 5b).

Analysis of global gene expression changes induced by
the CALM–AF10 mutants
Our results demonstrated that the CALM–AF10 (MF) mutant
can profoundly enhance the proliferative capability of BM
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progenitors in short-term assays. We therefore sought to analyze
the differences in global gene expression between CALM–AF10
and CALM–AF10 (MF) transduced BM cells. We performed
microarray analysis of BM cells transduced with empty MIG
vector, CALM–AF10, CALM–AF10 (MF) or CALM–AF10(DOM-
LZ) using Affymetrix GeneChip Mouse Gene 1.0 ST and
GeneChip miRNA arrays. Transcripts from 49 mRNAs and 13
miRNA were differentially expressed between the CALM–AF10
and the CALM–AF10 (MF) transduced BM cells (Supplementary
Tables S1 and S2, respectively). Most notably, a number of
genes known to be highly expressed in CALM–AF10 leukemias,
especially genes of the Hoxa cluster, were significantly
upregulated in the CALM–AF10 (MF)-expressing cells as
compared with BM cells expressing the full-length CALM–
AF10. Figure 6 depicts the differential expression of the Hoxa

cluster genes (coding and non-coding) among CALM–AF10,
CALM–AF10 (MF) or CALM–AF10 DOM-LZ and empty MIG
vector. Interestingly, the Hox cluster embedded microRNA,
miR-196b, which has been shown to be upregulated in the
human CALM–AF10 T-cell acute lymphoblastic leukemia,24

was also highly upregulated in CALM–AF10 (MF)-expressing

cells (Figure 6). Supplementary Tables S3 and S4 list
the differentially expressed mRNAs and miRNAs between
CALM–AF10 and CALM–AF10 DOM-LZ, respectively.

Discussion

Breakpoint heterogeneity in chromosomal translocations can be
instructive for the identification of domains that are crucial for
the transformation potential of oncogenes generated by those
fusions. The C-terminal portion of AF10 is retained in all
reported CALM–AF10 and MLL–AF10 fusions.1,20,25 This
C-terminal region includes the OM-LZ domain and a glutamine-
rich (Q-rich) domain that are both highly conserved. The OM-LZ
domain of AF10 has been shown to interact with a number of
important proteins such as the Swi/Snf interacting protein
Gas41,14 the lineage determining transcription factor Ikaros23

and the histone methyltransferase Dot1l.13 The OM-LZ domain
was shown to be critical for the in vitro transformation capability
of the MLL–AF10 fusion gene.15 Okada et al.16 demonstrated
that the OM-LZ region of AF10 is important for the interaction of
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CALM–AF10 with Dot1l and that the deletion of this region
reduces the proliferative capacity of CALM–AF10 transduced
BM cells. We now demonstrate that the OM-LZ domain of AF10
is both necessary for the expansion of early hematopoietic
progenitors and also sufficient for in vivo leukemic transforma-
tion by the CALM–AF10 fusion gene.

Under conditions routinely used to assay the in vitro

myeloid transformation activity of oncogenes, the CALM-AF10

fusion gene failed to transform BM cells in vitro. This is in
contrast to its strong leukemogenic effect in vivo.18,19 However,
expression of the CALM–AF10 (MF) mutant rapidly immorta-
lized BM progenitors in vitro and dramatically increased the
recovery or d-12 CFU-S progenitors. It could be that transforma-
tion by the full-length CALM-AF10 protein is dependent on
collaboration with in vivo niche signaling such as certain growth
factors or cellular interactions absent under the aforementioned
myeloid in vitro culture conditions, whereas transformation
driven by CALM-AF10 (MF) is independent of these factors. In
this regard, it is pertinent to observe that CALM–AF10
transduced BM cells can proliferate extensively in media
supplemented with fetal thymic organ culture and IL3,16 but
not under more defined cytokine supplemented conditions
(unpublished observations), supporting the hypothesis that
additional, hitherto unknown growth factors are required for
transformation by the full-length CALM–AF10 fusion. Alterna-
tively, it is possible that the in vitro transformation potential of
CALM-AF10 (MF) is caused by a greater abundance in the

nucleus as compared with the full-length CALM-AF10 protein.
We and others have observed that CALM–AF10 disrupts the
physiological activity of the AF10–DOT1L complex, resulting in
global H3K79 hypomethylation and HoxA-locus-specific hy-
permethylation although the exact molecular mechanisms of
these epigenetic abnormalities remain obscure. Disruption of
the H3K79 methyltransferase activity of the AF10–DOT1L
complex is believed, inter alia, to lead to the aberrant
overexpression of the HOXA cluster genes typically observed
in the CALM–AF10 leukemias. These Hoxa cluster genes
(including the microRNA miR-196b) were significantly upregu-
lated after short-term expression of the CALM–AF10 (MF)
protein, but to a much lesser extent in the full-length CALM–
AF10 transduced BM. These results suggest that the CALM–AF10
(MF) protein might more rapidly and efficiently disrupt the
AF10–DOT1L complex, leading to the observed in vitro

transformation phenotype.
Lastly, it is possible that the CALM–AF10 (MF) mutant is

more efficient at in vitro transformation because the N-terminus
(aa 1–410) of the CALM protein, which is not present in the MF,
normally impairs the in vitro transformation capability of the
full-length CALM–AF10 fusion. Interestingly, the expression
of the MF mutant did not alter the latency or phenotype of the
disease in the BM transplant setting, suggesting that the lack
of pronounced transformation in vitro by the full-length
CALM–AF10 protein is compensated by microenvironmental
factors in vivo.
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Although several prior studies on CALM–AF10 have focused
on the role of AF10, the potential contribution of the different
CALM domains remains to be elucidated. The CALM protein,
which is involved in clathrin-mediated endocytosis, has several
defined domains. The N-terminal region of CALM (aa 1–300) is
highly homologous to the N-terminal region of Epsin and
AP180, important components of the endocytic machinery.26

This domain, which has been termed the ENTH/ANTH domain,
binds inositol phospholipids and contributes to the formation of
clathrin coats on cell membranes.27,28 A large part of this
domain is excluded from the MLL–CALM fusion observed in a
case of infant AML.29 Our studies show that the exclusion of the
N-terminal amino acids of CALM (which include the E/ANTH
domain) from the CALM–AF10 fusion enhances the clonogenic
capability of the fusion protein in short-term assays. Further-
more, the presence of the C-terminal amino acids 414–648 of
CALM is sufficient to induce leukemia that recapitulates several
features of full-length CALM–AF10-induced disease. The
C-terminal amino acids (414–648) of CALM have been shown
to bind clathrin.26 A separate study demonstrated that these
amino acids possess transcriptional activation potential when
fused to a heterologous DNA-binding motif in yeast.30 Interest-
ingly, since the CALM–AF10 (MF) mutant showed enhanced in

vitro transformation potential, several plausible contributions of
the C-terminal amino acids of CALM could be hypothesized.
Either C-terminal CALM-mediated disruption of endocytosis
may interfere with cytokine receptor internalization, or alter-
natively C-terminal CALM domains may transactivate genes at
loci targeted by the Af10–Dotll complex. Our results that the

OM-LZ domain of AF10 (aa 677–758) is necessary and sufficient
for in vivo leukemia initiation and phenocopies the full-length
CALM–AF10 fusion strongly underline the importance of
targeting the oncogenic activity of this domain in CALM–AF10
leukemias. Aberrant recruitment of the H3K79 methyltransferase
DOT1L by the oncogenic AF10 fusions has been proposed as a
major mechanism of leukemogenesis of AF10-rearranged
leukemias. This is based on the observation that the DOT1L
protein binds to the AF10 OM-LZ domain and that genes of the
HoxA gene cluster show H3K79 hypermethylation in CALM–
AF10 and MLL–AF10 leukemia cells.13,16 Exciting new findings
have shown that AF10 is crucial for catalyzing Dot1l-mediated
H3K79 methylation, since RNAi-mediated suppression of AF10
leads to a significant reduction in this chromatin modifica-
tion.17,31 The importance of this process is highlighted by the
fact that Dot1l-mediated hypermethylation of H3K79 at the
HoxA gene cluster could be a critical leukemogenic mechanism
in non-AF10 leukemias as well.32 However, the changes in
H3K79 methylation patterns caused by AF10 containing fusion
genes are more complicated. We have previously reported a
genome-wide hypomethylation of H3K79 in MLL–AF10 and
CALM–AF10-expressing leukemias. This genome-wide hypo-
methylation at H3K79 could be linked to an increase in
chromosomal instability.17

Eight differentially expressed miRNAs were found between
the full-length CALM–AF10 and CALM–AF10(DOM-LZ) trans-
duced BM cells. Of note is the downregulation of the
pro-apoptotic and anti-proliferative miR-128 in CALM–AF10
compared with CALM–AF10(DOM-LZ).33,34 There are 28

100

MIG

CALM-AF10

CALM-AF10 (MF) 1'

CALM-AF10 (MF) 2'
50

P
e

rc
e

n
t 

s
u

rv
iv

a
l

0 100 200 300

0

Days

105

104

103

102

0

0 102 103

B220

104 105

M
a

c
1

Figure 4 Leukemia initiation by the CALM–AF10 (MF) mutant. (a) (Left panel) Survival of mice injected with BM cells transduced with MIG
(control vector), CALM–AF10 or CALM–AF10 (MF) plotted on a Kaplan–Meier curve. The survival curve of secondary mice injected with CALM–
AF10 (MF) primary leukemias is depicted in green. (Right panel) Wright–Giemsa-stained histological preparations of various organs from leukemic
primary CALM–AF10 (MF) mice are shown with respective magnifications inserted at the bottom. (b) Flow cytometric analysis of CALM–AF10 (MF)
leukemic BM cells co-stained for Mac1 and B220.

Key functional domains of the CALM–AF10 fusion gene
AJ Deshpande

7

Leukemia



! #+!

+

+

mRNAs significantly differentially expressed between CALM–
AF10 and CALM–AF10(DOM-LZ) samples. Of these 28 differ-
entially expressed mRNAs, none corresponded to the Hoxa

cluster, indicating that this genomic region is not overtly
activated in the 3 days post-transduction of the full-length
CALM–AF10 BM, in vitro. However, the Hedgehog pathway
gene Smo, a homolog of the Drosophila smoothened gene,35

was upregulated upon full-length CALM–AF10 expression
compared with CALM–AF10(DOM-LZ), suggesting that it may
have a role in CALM–AF10-mediated transformation. The
Hedgehog pathway has been shown to be activated in chronic
myeloid leukemia and the loss of the Smo gene was shown to
impair chronic myeloid leukemic stem cells. However, it
remains to be seen if this pathway is also activated in CALM–
AF10 leukemias. Comparison between the full-length

CALM–AF10 and CALM–AF10 (MF) transduced BM cells
showed that interestingly, in contrast to the full-length CALM–
AF10 protein, short-term expression of the CALM–AF10 (MF)
mutant significantly upregulated genes of the Hoxa cluster
(including miR-196b). Taken together, these results indicate that
the CALM–AF10 (MF) mutant is more efficient in activating
some of the CALM–AF10-specific leukemogenic programs
but lacks the full capacity to induce a more aggressive leukemia
in vivo compared with the full-length CALM–AF10.

Since most leukemic fusion products are poor targets for
pharmacologic inhibition, biochemical changes brought about
by these fusions offer promising targets for rational drug design.
Even as murine models of CALM–AF10 leukemia recapitulate
aspects of their corresponding human malignancies, mechan-
istic or therapeutic studies on these leukemias could be
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DAPI Merge

CALM-AF10 (173 kD)

CALM-AF10 (MF) (37 kD)

Endogenous CALM (62-72 kD)

Beta-Actin

Flag

Figure 5 CALM–AF10 (MF) expression and subcellular localization. (a) Confocal laser scans of U2-OS cells transfected with FLAG-tagged AF10,
CALM–AF10 or CALM (400–648)þAF10 (677–758) probed with anti-Flag monoclonal antibodies, and visualized by Alexa555-conjugated anti-
mouse secondary antibodies. Left panels show 40,60-diamidine-20-phenylindole dihydrochloride (DAPI) stained cell nuclei, middle panels show
Alexa555-signals and overlay images are shown in the left panels. (b) Western blots showing CALM–AF10 and CALM (400–648)þAF10 (677–758)
expression using anti-CALM antibodies A-2 and C-18 (Santa Cruz Biotechnologies Inc.). Bands for endogenous CALM and b-actin were used as
loading controls.
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hampered by the prolonged latency of leukemia initiation in the
CALM–AF10 retroviral BM transplantation model18 and incom-
plete disease penetrance in the CALM–AF10 transgenic
model.19 In this study, we have demonstrated that the d-12
CFU-S assay can be used as a relatively rapid in vivo assay for
CALM–AF10 activity. Using this method, we screened for
domains essential for CALM–AF10 function and identified a
potent leukemogenic mutant of CALM–AF10, which can
immortalize BM progenitors in vitro, and phenocopy leukemia
generated by the full-length CALM–AF10 fusion in vivo. The
CALM–AF10 (MF) mutant, therefore, lends itself very well to
expeditious assessment of transformation in the CALM–AF10
leukemias from mechanistic as well as therapeutic perspectives.
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Key Points

• FLT3 N676K mutations

without concurrent internal

tandem duplication (ITD) are

associated with core-binding

factor leukemia.

• N676K activates FLT3 and

downstream signaling
pathways.

The t(8;21) and inv(16)/t(16;16) rearrangements affecting the core-binding factors RUNX1

and CBFB, respectively, are found in 15% to 20% of adult de novo acute myeloid leukemia

(AML) cases and are associated with a favorable prognosis. Since the expression of the

fusion genes CBFB/MYH11 or RUNX1/RUNX1T1 alone is not sufficient to cause leukemia,

we performed exome sequencing of an AML sample with an inv(16) to identify mutations,

which may collaborate with the CBFB/MYH11 fusion during leukemogenesis. We

discovered an N676K mutation in the adenosine triphosphate (ATP)-binding domain

(tyrosine kinase domain 1 [TKD1]) of the fms-related tyrosine kinase 3 (FLT3) gene. In a

cohort of 84 de novo AML patients with a CBFB/MYH11 rearrangement and in 36 patients

with a RUNX1/RUNX1T1 rearrangement, the FLT3 N676K mutation was identified in

5 and 1 patients, respectively (5 [6%] of 84; 1 [3%] of 36). The FLT3-N676K mutant alone

leads to factor-independent growth in Ba/F3 cells and, together with a concurrent FLT3-

ITD (internal tandem duplication), confers resistance to the FLT3 protein tyrosine kinase inhibitors (PTKIs) PKC412 and AC220.

Gene expression analysis of AML patients with CBFB/MYH11 rearrangement and FLT3 N676K mutation showed a trend toward a

specific expression profile. Ours is the first report of recurring FLT3 N676 mutations in core-binding factor (CBF) leukemias and

suggests a defined subgroup of CBF leukemias. This trial was registered at www.clinicaltrials.gov as #NCT00266136. (Blood.

2013;122(10):1761-1769)

Introduction

The inversion inv(16)(p13;q22), the translocation t(16;16)(p13;q22),

and the translocation t(8;21)(q22;q22) are recurring rearrangements

in acute myeloid leukemia (AML), which result in the fusion genes

CBFB/MYH11 or RUNX1/RUNX1T1, respectively. These rearrange-

ments are found in 15% to 20% of adult de novo AML cases and

represent recognized World Health Organization entities that are

associated with a favorable prognosis.1,2

CBFB and RUNX1 form the core-binding factor (CBF), a het-

erodimeric transcription factor essential for normal hematopoiesis.

The CBFB/MYH11 and RUNX1/RUNX1T1 fusion proteins disrupt

the physiologic activity of CBF, leading to the repression of CBF

target genes and resulting in a block of differentiation and impaired

hematopoiesis. Since knock-in mouse models have demonstrated

that the expression of CBFB/MYH11 and RUNX1/RUNX1T1 by

themselves is not sufficient to cause leukemia, it is highly likely that

additional mutations are required for malignant transformation.1,3,4

Leukemogenesis is a multistep process. Mutations associated with

myeloid malignancies have been found in genes involved in several

functional classes: signaling pathways (eg, FLT3, KIT, RAS),

transcription factors (eg, RUNX1/RUNX1T1, CBFB/MYH11), epige-

netic regulators (eg, DNMT3A, IDH1, IDH2, TET2), tumor sup-

pressors (eg, TP53, WT1), and splicing machinery (eg, SF3B1,

SRSF2).5 In CBF leukemia, mutations in genes coding for signaling

proteins (so-called proliferation drivers) are commonly found to

collaborate with the CBF fusion genes.6 Mutations in KIT, FLT3,

or NRAS/KRAS have frequently been detected in CBF leukemia.7-9

Up to 90% of AML patients with a CBFB/MYH11 fusion have

either a mutation in a receptor tyrosine kinase (RTK) or in RAS.10,11
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In general, these signaling pathway mutations are mutually exclusive.5

However, about 10% of AML patients with a CBFB/MYH11 fusion

do not carry any of the currently known mutations.

To systematically identify additional collaborating mutations in

CBFB/MYH11-positive AML patients, we performed exome sequenc-

ing of an AML with an inv(16) without any additional known

genetic alterations. Using this approach, we identified an FLT3

N676K mutation. Screening a cohort of 120 CBF AML patients,

we discovered the FLT3 N676K mutation to be present in 6 of

these patients. Mutations affecting the ATP-binding pocket, in

particular position N676, resulting in variable amino acid changes

(N676D or N676S), were initially discovered in a screen for

resistance to tyrosine kinase inhibitors (TKIs) in FLT3 internal

tandem duplication (ITD)-expressing Ba/F3 cells.12,13 To the best

of our knowledge, an FLT3 N676K point mutation has been reported

just once before in a cytogenetically normal (CN) AML patient

with an FLT3-ITD mutation who was screened to determine the

cause of the acquired TKI resistance after PKC412 therapy.14 In this

study, we report recurring FLT3 N676K mutations at first diagnosis

of CBF AML without concurrent FLT3-ITD. Importantly, Ba/F3 cells

expressing the FLT3 N676K mutation show factor-independent

growth and sensitivity toward commonly used TKIs, suggesting

that the presence of the FLT3 N676K mutation in CBF leukemia

patients might open up new treatment options including TKI

therapy.

Materials and methods

Patient samples

A diagnostic bone marrow sample was collected from an 18-year-old patient

diagnosed with AML M4eo according to standard French-American-British

and World Health Organization criteria in December 2003. The inv(16)

(p13;q22) was detected by standard cytogenetics analysis (karyotype: 46,

XY,inv(16)(p13;q22)[10]). The CBFB/MYH11 fusion transcript was con-

firmed by reverse-transcriptase polymerase chain reaction (RT-PCR). No

additional genetic alterations were detected at this time. The patient was

enrolled in the AMLCG-1999 trial of the German AML Cooperative Group

(NCT00266136), and written informed consent was obtained in accordance

with the Declaration of Helsinki. The samples were obtained under AMLCG

study protocols approved by the ethics committees of the participating centers.

After induction chemotherapy and autologous peripheral blood stem cell

transplantation, complete remission was achieved (,5% bone marrow blasts;

CBFB/MYH11 transcripts no longer detectable by RT-PCR). A bone

marrow sample at complete remission was used as normal control for

exome sequencing.

In total, bone marrow or peripheral blood samples from 84 adult

patients with newly diagnosed and untreated AML M4eo (CBFB/MYH11

fusion–positive, including the case analyzed by exome sequencing), from

36 patients with t(8;21) and from 90 patients with CN AML were used for

targeted mutation screening.

Sample preparation and high-throughput sequencing

Genomic DNA was extracted from patients’ bone marrow or peripheral

blood samples using QIAcube technology (Qiagen, Hilden, Germany). For

exome sequencing of the index patient, 3 mg of genomic DNA was

fragmented to an average size of 150 bp by using the Bioruptor sonicator

(Diagenode, Liège, Belgium). Paired-end sequencing libraries were prepared

using DNA sample prep reagent set 1 (NEBNext). Library preparation

included end repair, adapter ligation, and PCR enrichment and was carried

out as recommended by Illumina protocols. Exon-coding sequences were

then captured by using SureSelect human all exon 50Mb kit version 3 (Agilent,

Santa Clara, CA) according to the manufacturer’s instructions. Exome

libraries were sequenced by performing 76-bp paired end reads on a

Genome Analyzer IIx platform (Illumina, San Diego, CA). Sequence

alignment and variant detection was performed as described previously.15

Sanger sequencing

The nonsynonymous somatic variant in the FLT3 gene (detected in the

AML but not in the remission sample) was verified by sequencing both

DNA strands using ABI 3100-Avant technology (Applied Biosystems) after

PCR amplification of FLT3 exon 16. PCR and sequence analysis of genomic

DNA was performed with forward primer 59-TGCAGATTGACTCTG

AGCTG-39 and reverse primer 59-CACTGTGACTGAGAAAAGACAA

AG-39, located in the 59 and 39 flanking introns, spanning the complete exon

16 and yielding a 327-bp PCR product corresponding to AA 649 to 685 of

the human FLT3 protein (National Center for Biotechnology Information

reference sequence NM_004119). The same assay was used on a total of

209 de novo AML patients (84 CBFB/MYH11- rearranged, 36 RUNX1/

RUNX1T1-rearranged, and 90 CN-AML patients). Routine diagnostic tests

included mutation analysis at defined positions of FLT3, KIT, KRAS, NRAS,

NPM1, MLL andWT1 of all 84 AMLM4eo samples (supplemental Table 3).

DNA constructs and vectors

The human FLT3-wild-type (WT) and the FLT3-ITD-NPOS constructs con-

taining a 28 AA duplicated sequence (CSSDNEYFYVDFREYEYDLK

WEFPRENL) inserted between AA 611/612 of human FLT3-WT were

kindly provided by Gary Gilliland (Harvard Medical School, Boston,

MA). The FLT3 constructs were subcloned into the MSCV-IRES-EYFP

retroviral expression vector (kindly provided by R. K. Humphries, Terry Fox

Laboratory, University of British Columbia, Vancouver, BC, Canada).

In vitro mutagenesis

The N676K mutation was introduced into the FLT3-WT and the FLT3-ITD-

NPOS vectors by using the QuikChange II XL Site-Directed Mutagenesis Kit

(Stratagene, La Jolla, CA) according to the manufacturer’s instructions.

The mutant FLT3 D835Y construct was generated by using the QuikChange

Site-Directed Mutagenesis Kit.16 The correct sequence of all constructs was

confirmed by sequencing.

Cell lines, reagents, and antibodies

Phoenix Eco cells were purchased from Orbigen (San Diego, CA) and

cultured in Dulbecco’s modified Eagle medium supplemented with 10%

fetal bovine serum and 0.5% penicillin/streptomycin. Low-passage murine

Ba/F3 cells and WEHI-3B cells were obtained from Deutsche Sammlung von

Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany)

and maintained in RPMI-1640 medium containing 10% fetal bovine serum,

0.5% penicillin/streptomycin, and 10% WEHI-3B conditioned medium as

a source of interleukin-3 (IL-3). Recombinant human FLT3 ligand and

recombinant murine IL-3 were obtained from Immunotools (Friesoythe,

Germany). FLT3 inhibitor PKC412 was obtained from Novartis (Basel,

Switzerland) and AC220 was obtained from SYNthesis Med Chem

(Cambridge, United Kingdom).

The following antibodies were used: anti-AKT (9272), anti-pAKT (4060),

anti-MAPK (9107), anti-pMAPK (9101), and anti-pSTAT5 (9351) (Cell

Signaling Technology, Danvers, MA); anti-FLT3 (sc-480), anti-pTyr (sc-7020),

anti-STAT5 (sc-835), and anti-GAPDH (sc-32233) from Santa Cruz Bio-

technology (Santa Cruz, CA); and CD135-PE (IM2234U) and IgG1-PE

isotype control (A07796) from Immunotech (Marseille, France). Stable

transduction of Ba/F3 cells, western blot analysis, and detection of surface

markers were performed as described previously.17,18

Proliferation and apoptotic cell death of Ba/F3 cells

Proliferation and apoptosis assays were carried out as described previously.17

For long-term proliferation assays, cells were seeded at a density of 23 105/mL

in growth medium containing 0.1% WEHI-conditioned medium as source

of murine IL-3 and as control in the presence of 10 ng/mL IL-3. After

72 hours, Ba/F3 cells were cleared from IL-3 by two centrifugation steps
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with phosphate-buffered saline and resuspended in medium without IL-3.

Control cells were cultivated in the presence of 10 ng/mL IL-3. Viable cells

were counted every day, and a cell density of 2.5 3 106 was not exceeded.

Gene expression profiling and microarray analyses

Pretreatment bone marrow samples from 33 patients (data deposited in

GSE37642) were analyzed by using Affymetrix HG-U133 A/B oligonucleotide

microarrays (Affymetrix, Santa Clara, CA) as described previously.19,20 For

probes to probe set annotation, we used custom chip definition files based

on GeneAnnot version 2.0, synchronized with GeneCards Version 3.04

(http://www.xlab.unimo.it/GA_CDF/).21 Normalization was carried out by

the robust multichip average method as described by Irizarry et al.22 The

Linear Models for Microarray Data (Limma) package was used to compute

differentially regulated probe sets by comparing patients with CBFB/MYH11

rearrangement and mutations affecting FLT3 D835, NRAS, KRAS, KIT, or

FLT3-ITD to patients with CBFB/MYH11 rearrangement and FLT3 N676K.

Gene set enrichment analysis (GSEA) was performed with GSEA software

(Broad Institute of Massachusetts Institute of Technology and Harvard)

to assess significant changes in gene expression levels.23 The GSEA was run

with 1000 permutations and compared with the “c2_kegg” collection from

the Molecular Signatures Database (MsigDB 3.0) consisting of 186 gene

sets. All statistical analyses were performed by using R 3.0.1 software and

routines from the biostatistics software repository Bioconductor.

Figure 1. FLT3 N676K mutations identified in CBFB/MYH11-rearranged AML. (A) Exome data sets of a CBFB/MYH11-positive AML sample (upper panels) and the

corresponding follow-up sample from the same patient (lower panels) are displayed using the integrative genomics viewer.24 Horizontal gray bars symbolize the 76-bp reads

aligned to the reference sequence. The frequency of 24% of the mutant nucleotide T in the diagnostic leukemia sample indicates a heterozygous point mutation causing an

amino acid substitution (NM_004119.2:c.2028C.A; p.N676K), whereas in the follow-up sample, only the wild-type nucleotide G is detected at this position. Read depth and

base count are indicated for the affected positions, respectively. (B) Sanger sequencing confirmed the FLT3 N676K mutation found initially by exome sequencing.

Chromatograms are shown for both the diagnostic AML sample and the corresponding follow-up sample at complete remission (CR) from the same patient. (C) The structure

of the human FLT3 protein includes the transmembrane domain (TM), the juxtamembrane domain (JM), and TKD1 and TKD2. Amino acid positions targeted by known

recurrent mutations in AML are indicated in green above the corresponding domains. N676 is indicated in blue below the TKD1 domain. (D) Frequency distribution of

additional genetic aberrations in 84 CBFB/MYH11-rearranged patients. Each column indicates one patient. Dark gray boxes indicate patients who are positive for the

respective mutation; light gray boxes indicate wild-type status. Missing information is shown as a white space (N/A, not available). Gene names and types of mutations are

indicated on the left. Mutation frequencies are indicated on the right. MLL-PTD, partial tandem duplications in the MLL gene.
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Results

Exome sequencing of an AML M4eo patient

To systematically identify mutations that may collaborate with

CBFB/MYH11 during leukemogenesis, we performed exome

sequencing of an AML sample with inv(16). The sample was selected

on the basis of sample availability and the absence of additional

genetic alterations (FLT3-ITD, MLL-PTD [partial tandem duplica-

tion], FLT3-TKD, NPM1, NRAS, KRAS, KIT, and WT1 mutation

negative). We sequenced the exome (protein coding regions) of the

diagnostic sample and a remission sample from the same patient,

generating at least 4 Gbp of sequence from each exome. This allowed

us to cover more than 80% of RefSeq coding exon positions

with a minimum read depth of 10 (supplemental Table 1). By

comparing both exome sequences and excluding known poly-

morphisms, we were able to identify somatically acquired, leukemia-

specific sequence variants. Nonsynonymous coding mutations

were confirmed by using Sanger sequencing. We found a total

of 2 somatic mutations, namely an N676K missense mutation in

the ATP-binding domain (TKD1) of FLT3 (NM_004119.2:

c.2028C.A; Figure 1A-C)24 and an A251V missense mutation

in the CAT gene, which encodes the cytoplasmic enzyme catalase

(supplemental Table 2).

Recurring FLT3 N676K mutations in CBF AML

We sequenced FLT3 exon 16 (containing the codon of N676) in a

cohort of 84 AML patients with CBFB/MYH11 rearrangement (71

patients with inv(16) and 13 patients with t(16;16)). Strikingly, we

detected heterozygous missense mutations (N/K) at position 676 of

FLT3 in 5 patients (6%) with inv(16) or t(16;16) (4 [6%] of 71 and

1 [8%] of 13, respectively). Thus, in AML with a CBFB/MYH11

fusion, FLT3 N676K mutations have a frequency similar to FLT3

D835 mutations (Figure 1D).

In 36 AML samples with a t(8;21)(q22;q22) and an RUNX1/

RUNX1T1 fusion, 1 patient with an FLT3 N676K mutation could

be identified (1 [3%] of 36). None of the CBF AML patients with

an FLT3 N676K mutation had an additional FLT3-ITD or a D835

mutation. In contrast, in 90 AML patients with normal karyotype,

we detected only a single patient with an FLT3 N676K mutation,

and this patient had a concurrent FLT3-ITD similar to that of the

patient described by Heidel et al.14 The incidence of FLT3 N676K

without concurrent ITD in CBF AML (6/120) was compared with

the incidence in CN-AML (0/90) by using a two-tailed Fisher’s

exact test (P 5 .039). These results suggest a specific association

between FLT3 N676K mutations and CBF leukemias.

To determine whether the FLT3 N676K mutations are somatically

acquired, we sequenced remission samples where available. Paired

diagnostic and remission material was available only from the

N676K-positive patient with t(8;21) and from 1 patient with inv

(16). In both patients, the N676K mutation could be detected at

diagnosis but not in the remission sample (supplemental Figure 1).

Deep amplicon sequencing of N676K-positive cases confirmed

variable allele frequencies ranging from 11% to 44% indicating

clonal heterogeneity (supplemental Table 5).

Additional mutations in CBFB/MYH11-rearranged AML

We analyzed mutational hotspots (see Materials and methods) of

several commonly mutated genes (FLT3, KIT, KRAS, NRAS, NPM1,

MLL, and WT1) in our 84 CBFB/MYH11-positive cohort. The

Figure 2. Transforming potential of FLT3 mutants in Ba/F3 cells. All experiments

were performed in triplicates. Error bars represent standard deviation of the mean.

(A) Ba/F3 cells expressing indicated FLT3 constructs were seeded at a density of

43 104 cells per mL in the presence or absence of 10 ng/mL IL-3 and 100 ng/mL FL.

Viable cells were counted by trypan blue exclusion after 72 hours. (B) Ba/F3 cells

transduced with the indicated FLT3 constructs were seeded at a density of 2 3 105

cells per mL in 0.1% WEHI-conditioned medium and cultured for 10 days. After

72 hours, cells were cleared from previous medium and resuspended in 0% WEHI-

conditioned medium. Control cells were cultured in 10 ng/mL IL-3–supplemented

medium. (C) Cells were cultured in the presence or absence of 10 ng/mL IL-3 for 72

hours and stained with Annexin V and 7-aminoactinomycin D. The percentage of

apoptotic cells was determined by fluorescence-activated cell sorter analysis.
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mutation frequency of these genes in our cohort (Figure 1D) was

similar to that in previous reports.7,8,25-27 We found KIT mutations

in 18% of CBFB/MYH11-positive AMLs (14% exon 8 frameshift

mutations, known to be frequent in inv(16) AML,7,9 and 4% D816

missense mutations). RAS missense mutations were present in

51% of the patients (14% KRAS, 37% NRAS). As expected, the

FLT3-ITD mutation was rare in our cohort (2%), whereas the

FLT3-TKD (D835) mutation had a frequency of 10%. Together

with the 6% FLT3 N676K-mutated patients, a total of 18%

(15/84) of the CBFB/MYH11-positive patients had an FLT3

mutation.

In addition to the common signaling pathway mutations, we

found 7% of samples with WT1 mutations causing a frameshift in

exon 7.MLL PTDs (1%) and NPM1mutations (0%) were rare in our

CBFB/MYH11-positive patients. In 18% of the patients, no mutation

was detected in the mutational hotspots analyzed. In 12 patients

(14%), more than one mutation was present. Seventy-nine percent of

the patients (66/84) carried a mutation in FLT3, KRAS, NRAS, or KIT.

FLT3 N676K is strongly expressed on the cell surface of

Ba/F3 cells

To analyze the transforming potential of the FLT3 N676K mutant,

Ba/F3 cell lines stably expressing various FLT3 constructs were

established. The expression of WT and mutant (mut) FLT3 receptors

was confirmed by immunoblotting or flow cytometry (supplemental

Figure 2). Like FLT3-WT, the FLT3 N676K receptor was highly

expressed on the cell surface (mature receptor, 160 kDa) compared

with FLT3-ITD and FLT3 D835Y. The FLT3-N676K-ITD double

mutant showed the weakest cell surface expression. A weak cell

surface expression was correlated with an enhanced expression of

the immature receptor with a molecular weight of 130 kDa.28

Figure 3. Constitutive activation of FLT3 signaling by the FLT3 N676K mutant. Ba/F3 cells expressing indicated constructs were starved for 24 hours in media containing

0.3% fetal calf serum. Cells were left untreated or were stimulated with 100 ng/mL FL for 10 minutes. Crude cell lysates were separated by sodium dodecyl sulfate

polyacrylamide gel electrophoresis and analyzed by western blot for phosphorylation of signaling molecules. (A) STAT5, AKT, and MAPK activation was analyzed by using

phospho-specific antibodies, and then stripped and reprobed with antibodies against total STAT5, AKT, and MAPK. Ba/F3 native cells were stimulated with 100 ng/mL IL-3 for

5 minutes; control and an antibody against GAPDH were used as loading control. (B) FLT3 receptor was immunoprecipitated with polyclonal FLT3 antibody, analyzed for

tyrosine phosphorylation status by immunoblotting with a phospho-tyrosin antibody, stripped, and reprobed with FLT3 antibody.
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The FLT3 N676K mutant receptor leads to cytokine-independent

growth and resistance to apoptosis

Proliferation assays of Ba/F3 cells expressing FLT3 mutant receptors

revealed a cytokine-independent growth. As described before,

FLT3-ITD was able to fully transform Ba/F3 cells reaching 100%

of IL-3–mediated growth. FLT3 D835Y-expressing cells reached

41%. The mutant FLT3 N676K receptor led to IL-3 and FLT3-

ligand (FL) independent cell growth, and the Ba/F3 cells reached

about 25% of the IL-3 reference proliferation rate at 72 hours of

culture time (Figure 2A). This pro-proliferative phenotype increased

over time and, eventually, FLT3 N676K-expressing cells reached

a proliferation rate similar to that of FLT3 D835Y-expressing cells

(Figure 2B). In addition to an enhanced proliferation, Ba/F3 cells

expressing the various FLT3 mutants showed a strong resistance to

apoptosis after cytokine deprivation (Figure 2C). This antiapop-

totic phenotype was strongest in FLT3-ITD–expressing cells (only

4.5% apoptotic cells) followed by FLT3 D835Y (7%) and FLT3

N676K (10%)-expressing cells.

Constitutive activation of FLT3 signaling in FLT3

N676K-expressing cells

To determine critical pathways for the transforming potential of

the FLT3 mutants, we analyzed the activation of 3 key signaling

molecules downstream of FLT3: the mitogen-activated protein

kinase (MAPK), protein kinase B (AKT), and signal transducer and

activator of transcription 5 (STAT5). Protein lysates of unstimulated

and FL-stimulated Ba/F3 cells expressing FLT3 and the mutants

were immunoblotted (Figure 3A). MAPK was strongly activated in

all FL-stimulated FLT3 or FLT3 mutant-expressing cells. In contrast

to FLT3-ITD–expressing cells, STAT5 was not phosphorylated

in FLT3-WT or in the FLT3 N676K or the FLT3 D835Y

mutant-expressing cells. MAPK was constitutively phosphorylated

in unstimulated cells of the two TKD mutants N676K and D835Y

compared with WT and ITD cells. To determine the activation of

the FLT3 N676K mutant receptor, the protein was immunoprecipi-

tated and analyzed for tyrosine phosphorylation by immunoblotting.

The FLT3 N676K receptor showed a fivefold stronger constitutive

phosphorylation as well as a twofold stronger phosphorylation after

ligand stimulation compared with FLT3-WT, taking into account the

total protein loaded on the gel (Figure 3B). In conclusion, FLT3

N676K mutant-expressing cells showed an enhanced signaling

through the MAPK pathway but no aberrant activation of STAT5.

Thus, the increased MAPK activation is most likely responsible for

the mutant phenotypes.

FLT3 N676K-induced proliferation can be abrogated by

selective PTK inhibition

The FLT3 N676K mutation was previously described only in com-

bination with an FLT3-ITD to mediate resistance to PTKIs.14 In

previous studies it was not tested whether FLT3 N676K alone might

be sufficient to confer protein tyrosine kinase inhibitor resistance.

To address this question, we used PKC412 and AC220 as selective

FLT3 inhibitors in increasing nontoxic concentrations (Figure 4).

Nontoxicity of the inhibitors was confirmed in FLT3-WT–expressing

Ba/F3 cells (supplemental Figure 5). Both compounds potently

inhibited FLT3-ITD–expressing cells with a half maximal inhib-

itory concentration (IC50) of 13 nM for PKC412 and 2.5 nM for

AC220, respectively. FLT3 N676K-expressing cells were also

sensitive to FLT3 inhibitors with an IC50 of 7.5 nM for PKC412

and 3 nM for AC220. FLT3-ITD-N676K double mutants showed

a strong resistance to both inhibitors (IC50 greater than 80 nM for

PKC412 and greater than 16 nM for AC220). Taken together, the

FLT3 N676K mutation with an ITD is very resistant to FLT3

inhibitors. However, cell proliferation driven by FLT3 N676K

alone can be inhibited rather effectively.

Differential gene expression in FLT3 N676K-mutated

CBFB/MYH11-rearranged AML

To assess the impact of FLT3 N676K mutations on gene expression,

we analyzed the gene expression profiles of 33 patients with CBFB/

MYH11 rearranged AML. Four patients with FLT3 N676K mutations

were compared with 29 patients with FLT3 D835 (n 5 4), NRAS

(n5 15), KRAS (n5 3), KIT (n5 3),WT1 (n5 1), and FLT3-ITD

(n 5 2) mutations or no mutations in any of these genes (n 5 5).

Some patients had no (n 5 5) or more than 1 (n 5 3) mutation.

Finally, all unique probe sets with P, .005 and log fold-change.1.5

were selected for unsupervised clustering (n 5 18). Interestingly,

all cases with FLT3 N676K clustered together (supplemental

Figure 3). Of these 18 genes, six were highly correlated with sex,

since all cases with N676 mutation in our analysis were discovered

in male patients. Interestingly, genes with high association and

elevated levels in the N676K cluster were CCNA1 (cell cycle),

PRG3 (immune response), and HLA-DQA1 (immune response).

Genes with negative correlation to the N676K cluster were MEST

Figure 4. FLT3 N676K but not FLT3-ITD N676K is sensitive to AC220 and PKC412.

Ba/F3 cells expressing indicated FLT3 variants were seeded at a density of 4 3 104

cells per mL and counted by trypan blue exclusion after 72 hours. All experiments were

performed in triplicate. Error bars represent standard deviation of the mean.

(A) Cells were treated with increasing nontoxic concentrations of selective TKI AC220.

(B) Cells were treated with increasing nontoxic concentrations of TKI PKC412.

1766 OPATZ et al BLOOD, 5 SEPTEMBER 2013 x VOLUME 122, NUMBER 10

 For personal use only. at UBM Bibliothek Grosshadern on September 7, 2013. bloodjournal.hematologylibrary.orgFrom 



! #)!

+

+

+

+

(imprinting) and ARG1 (metabolism). To evaluate which pathways

were associated with FLT3 N676K mutations, we compared the 4

patients with this mutation to 29 patients without this mutation.

Nine gene sets were significantly enriched at a false discovery rate of

,25% and P , .05 including metabolic, inflammation and deg-

radation pathways (supplemental Table 4).

Structural mapping of the FLT3 N676K receptor mutation

Since we could demonstrate that a single point mutation in the ATP-

binding domain is sufficient to constitutively activate the receptor

and increase downstream signaling, we performed structural modeling

of the FLT3 N676K mutant to gain further insights into the conse-

quences of the mutation (Figure 5).

Mapping of the FLT3 N676K onto the crystal structure of FLT3

showed that this mutation destabilizes the fold of the kinase

domain between the juxtamembrane domain (JMD) and a hydro-

phobic pocket that is the target of FLT3 inhibitors. The crystal

structure of the inactive conformation of FLT3 showed that the

JMD serves as a key autoinhibitory element regulating the kinase

activity.29,30 N676K mutations might therefore interfere with the

FLT3 autoinhibition by reducing the stability of the JMD, thus,

suggesting a structural basis for the transforming activity observed

in our experiments with Ba/F3 cells.

Clinical characteristics associated with FLT3 N676K mutations

Fifty-six of the 84 CBFB/MYH11-rearranged AML patients screened

for mutations in this study were enrolled in the multicenter AMLCG-

1999 trial of the German AML Cooperative Group (NCT00266136).

Among these patients, five carried FLT3 N676K mutations. In this

cohort, which was homogeneous with regard to both treatment and

cytogenetics, the mutation was significantly associated with higher

leukocyte counts (P5 .02), elevated lactate dehydrogenase (P5 .02),

and male sex (P5 .02) (Table 1). There was no significant difference

in survival of patients with FLT3 N676K (n 5 4) compared with

patients with FLT3 N676 wt (n 5 47) (supplemental Figure 4A).

However, there was a trend toward reduced complete remission

rates associated with FLT3 N676K mutations (Table 1).

We also compared CBFB/MYH11-rearranged AML patients with

FLT3 point mutations affecting residues N676 or D835 (n5 9) to all

other CBFB/MYH11-rearranged patients (n 5 42) and did not

observe a significant difference in survival (supplemental Figure 4B).

Discussion

Ours is the first report of recurring FLT3 N676K mutations in CBF

leukemia. Despite the overall rather favorable prognosis associated

with CBF rearrangements, almost one third of patients relapses

within the first year after intensive chemotherapy and only 60%

of CBF AML patients are still alive after 5 years. This hetero-

geneous clinical outcome of CBF AML patients may reflect the

heterogeneity of additional genetic lesions in this subgroup and

underscores the need for further investigation. Understanding the

pathogenesis of AML is challenging because of the multitude of

genetic events. By sequencing known mutational targets, we and

others have demonstrated that between 80% and 90% of CBFB/

MYH11-rearranged patients have mutations that activate either

RAS signaling or RTK signaling (FLT3 and KIT), while other

Figure 5. Structural mapping of N676K. Structure of the autoinhibited FLT3 kinase (Protein Data Bank accession number 1RJB) is shown as a ribbon model with highlighted

secondary structure and color-coded domains. N676 forms hydrogen bonds to the backbone of H671, stabilizing a loop at the back of the substrate and inhibitor-binding

pocket (asterisk). N676K will remove these hydrogen bonds, likely destabilizing the loop and the nearby substrate-binding pocket. This structural effect can explain resistance

against TKIs, which target the nearby pocket. However, the mutation could also lift the autoinhibition of FLT3, providing a possible explanation for the observation that this

mutation alone shows transforming potential.
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common AML-related gene mutations (eg, in NPM1, WT1, and

MLL) are rarely found.7-11 The discovery of FLT3 N676K mutations

adds another piece to the puzzle of CBF-related leukemogenesis,

suggesting that the proportion of CBF leukemia with activating

RTK mutations has been underestimated. Our observation of

concurrent activating mutations in different genes (eg, KRAS and

NRAS or NRAS and KIT; Figure 1D) suggests either clonal

heterogeneity or multiple additive hits in synergistic pathways

within CBFB/MYH11-rearranged AML.

The specific occurrence of recurring FLT3 N676K mutations in

the CBFB/MYH11-rearranged AML subgroup, which accounts for

only 6% of AML, might explain why FLT3 N676K mutations have

remained undetected in previous full-length FLT3 mutation screens

of unselected AML patients.31 Other large studies limited FLT3 mu-

tational screening to FLT3-ITD mutations (exon 14/15) and TKD2

mutations (exon 20; eg, D835) and thus would have missed FLT3

N676K mutations (exon 16).7,26

Even though FLT3 N676K in combination with FLT3-ITD had

previously been shown to lead to PTKI resistance,12,14 we show

in this report that the FLT3 N676K mutant on its own exhibits

gain-of-function properties. Notably, FLT3 N676K alone has

direct transforming potential in Ba/F3 cells through increased

downstream signaling similar to that of the FLT3 D835 mutant

but weaker than FLT3-ITD (Figures 3 and 4). The power of the

gene expression analysis of the FLT3 N676K-mutated patients

is limited by the small sample size. However, FLT3 N676K-mutated

cases clustered together after unsupervised clustering analysis of

gene expression in CBFB/MYH11-rearranged AML with different

mutations affecting FLT3, NRAS, KRAS, KIT, and WT1 (supple-

mental Figure 3). These findings suggest a distinct biologic sub-

group within CBFB/MYH11-rearranged AML characterized by FLT3

N676K mutations.

On the basis of the crystal structure of FLT3, Cools et al12

proposed that mutation of N676 destabilizes the conformation of

the hinge segment, which makes H-bonds with the lactam ring of

the PTKI PKC412. We suggest that a mutation at position N676

may also activate FLT3 by disturbing its autoinhibition capacity

(Figure 5). Taken together, mutations at position N676 most probably

have two consequences: activating FLT3 and, together with a

concurrent FLT3-ITD, conferring PTKI resistance. The additional

N676K mutation on the ITD background might change the con-

formation of the FLT3-ITD protein in a way that the binding site of

the PTKIs is masked, since the ITD results in an extension of the

JMD, which leads to a conformational change of the kinase domain.

The fact that the FLT3 N676K alone (without concurrent ITD)

does not confer PTKI resistance, might also be related to its local-

ization on the cell surface, in contrast to the mostly intracellular

localization of the ITD-N676K double mutant. Hence, N676K-

mutated FLT3 might be exposed to higher inhibitor concentrations

at the cell surface, possibly allowing efficient inhibition of the

TKDs directly beneath the cell membrane. It was shown by others

that there is higher intracellular accumulation of PTKIs in the more

sensitive AML cells lines than in the less sensitive ones.32

In contrast to the initial report of an FLT3 N676K mutation as a

late arising, disease-modifying event, detected at the time of clinical

relapse while on PKC412 monotherapy,14 all of our N676K mu-

tations were detectable at initial diagnosis. Since cell proliferation

driven by FLT3 N676K alone could be greatly reduced by FLT3

inhibitors, N676K-positive patients without concurrent ITD may

actually benefit from treatment with FLT3 inhibitors.

Our clinical data did not show a significant impact of FLT3

N676K mutations on survival within CBFB/MYH11-rearranged

AML patients, but there was a trend toward reduced complete

remission rates (Table 1). The significant association of FLT3 N676K

mutations with higher leukocyte counts, elevated lactate dehydro-

genase levels, and male sex (Table 1), suggests a distinct biology

of these leukemias. Given the small number of FLT3 N676K–

positive patients (n 5 4) in our patient cohort, the prognostic

significance of the FLT3 N676K mutation needs to be investigated in

larger patient cohorts.

The varying allele frequencies of the FLT3 N676K mutation

ranging from 14% to 44% in those cases in which the presence of

the CBFB/MYH11 rearrangement was detected by fluorescence

in situ hybridization in the majority of the bone marrow cells

(supplemental Table 5) indicate that the FLT3 N676K mutation did

not always represent the dominant leukemic clone at diagnosis. It

would be interesting to study the clonal evolution in those cases

by assessing the FLT3 N676 status at relapse; unfortunately, no

relapse samples from our patients were available.

Although FLT3 has been known for more than a decade to be

mutated in about one third of AML patients, it appears that the

spectrum of FLT3 mutations is still not fully understood. In

Table 1. Characteristics of CBFB/MYH11-rearranged patients

Variable

FLT3 N676 wt

FLT3 N676K

mut

PNo. % No. %

No. of patients 51 5

Age, years N/S

Median 42 54

Range 20-75 18-61

Male sex 22 43.1 5 100 .02

White blood cells 3 109/L .02

Median 38.5 134

Range 1.3-316 54.1-259

Hemoglobin, g/dL N/S

Median 8.6 9.1

Range 4.4-14.6 8-14.1

Platelets 3 109/L N/S

Median 32 44

Range 0.01-370 32-47

LDH (U/L) .02

Median 666 1326

Range 143-1870 717-2508

Bone marrow blasts (%) N/S

Median 80 60

Range 25-95 10-90

ECOG performance

status ‡ 2 (%)

14 29.2 1 20 N/S

de novo AML 46 90.2 3 75 N/S

NPM1 mut 0 0 0 0 N/S

FLT3-ITD 2 3.9 0 0 N/S

FLT3-D835 5 9.8 0 0 N/S

MLL-PTD 1 2 0 0 N/S

KRAS mut 7 13.7 0 0 N/S

NRAS mut 21 41.2 0 0 .15

KIT mut 10 19.6 0 0 N/S

WT1 mut 4 7.8 0 0 N/S

Complete remission 39 76 2 40 .11

Deceased 19 37.2 2 40 N/S

All patients were enrolled in the AMLCG-99 trial and received intensive

induction treatment. Categorical clinical variables of the FLT3 N676K-mutated

(mut) and FLT3 N676 wild-type (wt) cohorts were compared by Fisher’s exact

test. The continuous variables were compared by Mann-Whitney U test. P, .05 was

considered significant. ECOG, Eastern Cooperative Oncology Group; LDH, lactate

dehydrogenase.
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particular, defined genetic subgroups of AML might harbor specific

FLT3 mutations. Unbiased mutation screening using exome se-

quencing allows the detection of novel sequence variations even

in extensively studied genes such as FLT3.
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31. Fröhling S, Scholl C, Levine RL, et al.

Identification of driver and passenger

mutations of FLT3 by high-throughput DNA

sequence analysis and functional assessment

of candidate alleles. Cancer Cell. 2007;12(6):

501-513.

32. Hu S, Niu H, Minkin P, et al. Comparison of

antitumor effects of multitargeted tyrosine kinase

inhibitors in acute myelogenous leukemia. Mol

Cancer Ther. 2008;7(5):1110-1120.

BLOOD, 5 SEPTEMBER 2013 x VOLUME 122, NUMBER 10 FLT3 N676K MUTATIONS IN CBF AML 1769

 For personal use only. at UBM Bibliothek Grosshadern on September 7, 2013. bloodjournal.hematologylibrary.orgFrom 



! $"!

X++9"&$-'&.-2$-3$")*/"%$

!

*,! -./012345!6,5!78!91,5!!"#"$%&'()*(+,"-)%.(+/-%0#/#&%"'1(2/$3)0"#"$%&(/#.(&-%#%&/-(
%+2-%&/$%)#'4!:!;123!<3=/15!"++%,!!">"&?@!A,!&"(%B)%,!

",! CD87E5!C,!93F!G,!HI037.5!5&6$"(+,"-)%.(-"67/"+%/4!J07!K93=785!"++&,!"#$>)%%+?@!
A,!*()$B*)+',!

#,! :935!L,5!78!91,5!8-)#/-("9)-6$%)#()*(2:"-"67"+%&(3"+/$)2)%"$%&('$"+(&"--'(2:"&"."'(
36+/#(/&6$"(+,"-)%.(-"67"+%/4!6=2!J.93D1!L7F5!"+*",!%>*$)?@!A,!*$).9**(,!

$,! 601MD05!K,N,5!78!91,5!;."#$%*%&/$%)#()*(2:"<-"67/"+%&(3/"+/$)2)%"$%&('$"+(&"--'(%#(
/&6$"(-"67/"+%/4!O98M.75!"+*$,!&'#>'$((?@!A,!#"(B##,!

%,! P.Q7.5!H,P,5!78!91,5!=3"(>?@A(:"9%'%)#($)($3"(B):-.(C"/-$3(D:0/#%E/$%)#(
&-/''%*%&/$%)#()*(+,"-)%.(#")2-/'+'(/#.(/&6$"(-"67"+%/4!R1//F5!"+*&,!(!)>"+?@!A,!
"#)*,!

&,! HI037.5!G,5!78!91,5!F%/0#)'%'(/#.(+/#/0"+"#$()*(5GH(%#(/.6-$'1(>?@I(JHK(
:"&)++"#./$%)#'(*:)+(/#(%#$":#/$%)#/-("L2":$(2/#"-4!R1//F5!"+*',!(!*>$?@!A,!$"$,!

',! S.2TU9F75!H,5!78!91,5!M"*%#"+"#$()*(&,$)0"#"$%&(&-/''%*%&/$%)#(%#(/&6$"(+,"-)%.(
-"67"+%/1(."$":+%#/$%)#()*(2:)0#)'$%&('%0#%*%&/#&"()*(:/:"(:"&6::%#0(&3:)+)')+/-(
/N#):+/-%$%"'(/+)#0(OPIA(,)6#0":(/.6-$(2/$%"#$'($:"/$".(%#($3"(Q#%$".(R%#0.)+(
G".%&/-(M"'"/:&3(8)6#&%-($:%/-'4!R1//F5!"+*+,!((#>#?@!A,!#%$B&%,!

(,! S.2TU9F75!H,5!P,!NV7E5!93F!R,:,W,!GM381E5!G)-"&6-/:(-/#.'&/2"()*(/&6$"(+,"-)%.(
-"67"+%/(%#(,)6#0":(/.6-$'(/#.(%$'(&-%#%&/-(:"-"9/#&"4!R1//F5!"+*&,!(!)>*?@!A,!")B
$*,!

),! L./X7Y5!Z,5!78!91,5!S:)0#)'$%&('%0#%*%&/#&"()*($3"(J6:)2"/#(H"67"+%/K"$(
'$/#./:.%E".(','$"+(*):(:"2):$%#0(&,$)0"#"$%&(/#.(+)-"&6-/:(/-$":/$%)#'(%#(/.6-$'(
T%$3(/&6$"(+,"-)%.(-"67"+%/4!:!;123!<3=/15!"+*",!"'>#&?@!A,!$%*%B"#,!

*+,! H/037.5!G,!93F![,N,!S92FX2Y5!;+2/&$()*(0"#"$%&(*"/$6:"'()#($:"/$+"#$(."&%'%)#'(%#(
5GH4!>*%"+B$#(#!>C17=8./32=??,!

**,! ;/.3712DD735!:,:,5!78!91,5!=3"(J6:)2"/#(H"67"+%/K"$(5GH(B):7%#0(S/:$,(&)#'"#'6'(
'$/$"+"#$()#(/--)0"#"%&(CU8=(*):(2/$%"#$'(T%$3(5GH(%#(:"+%''%)#1(/#(%#$"0:/$".<
:%'7(/./2$".(/22:)/&34!>*'%)B$'("!>C17=8./32=??,!

*",! ;9MF7115!H,5!78!91,5!JL2:"''%)#()*(/(85HG<5V@?(*6'%)#(0"#"(-"/.'($)(C)L/(&-6'$":(
)9":"L2:"''%)#(/#.(/&6$"(-"67"+%/(%#($:/#'0"#%&(+%&"4!;93=7.!\7D5!"++',!#)>*'?@!
A,!(+""B#*,!

*#,! K235!],G,5!78!91,5!!-)N/-(:".6&$%)#()*($3"("2%0"#"$%&(CWRIX(+"$3,-/$%)#(+/:7(/#.(
%#&:"/'".(&3:)+)')+/-(%#'$/N%-%$,(%#(85HG<5V@?<2)'%$%9"(-"67"+%/'4!R1//F5!"++),!
((%>#?@!A,!&%*B(,!

*$,! ;0735!K,5!78!91,5!5N:)0/$%)#()*(GHH<5V@?(/#.(85HG<5V@?<+".%/$".($:/#'*):+/$%)#(
$3:)603(0"#"$%&(%#/&$%9/$%)#():(23/:+/&)-)0%&/-(%#3%N%$%)#()*($3"(CWRIX(
+"$3,-$:/#'*":/'"(F)$@-4!K7MY7T295!"+*#,!!)>$?@!A,!(*#B"",!

*%,! ;9D821195!K,G,5!78!91,5!;."#$%*%&/$%)#()*(0"#"'($3/$(',#":0%E"(T%$3(8N*N<GYC@@(%#($3"(
2/$3)0"#"'%'()*(/&6$"(+,"-)%.(-"67"+%/4!W./=!O981!P=9F!6=2!^!6!P5!"++$,!('(>*$?@!
A,!$)"$B),!

*&,! 6=07DD15!;,5!78!91,5!=3"(5GH@<J=D(*6'%)#(0"#"(/#.($3"(VH=W(-"#0$3(+6$/$%)#(
&)--/N):/$"(%#(%#.6&%#0(/&6$"(-"67"+%/(%#(+%&"4!:!;123!N3V7D85!"++%,!((&>(?@!A,!
"*%)B&(,!

*',! H.7E12345!L,G,5!78!91,5!GHH(/#.(85HG(/:"(*6'".($)(5V@?(%#(+):23)-)0%&/--,(.%'$%#&$(
'6N'"$'()*(/&6$"(-"67"+%/(T%$3($:/#'-)&/$%)#($Z@?[@@\1(N)$3(:"/::/#0"+"#$'(/:"(
/'')&%/$".(T%$3(/(2)):(2:)0#)'%'4!R1//F5!*))(,!*(>*"?@!A,!$&&"B',!



! $#!

*(,! H7D0A93F75!P,:,5!78!91,5!5&6$"(+,"-)%.(-"67"+%/(%'(2:)2/0/$".(N,(/(-"67"+%&('$"+(
&"--(T%$3(-,+23)%.(&3/:/&$":%'$%&'(%#(/(+)6'"(+)."-()*(85HG]5V@?<2)'%$%9"(
-"67"+%/4!;93=7.!;7115!"++&,!('>%?@!A,!#&#B'$,!

*),! H7D0A93F75!P,:,5!78!91,5!5V@?(:"06-/$"'(2:)0:"''%9"(CWRIX(+"$3,-/$%)#(/#.(CD^(
0"#"("L2:"''%)#(%#(.%9":'"(5GH('6N$,2"'4!;93=7.!;7115!"+*$,!!#>&?@!A,!()&B)+(,!

"+,! P.42./A/M1/D5!R,!93F!\,Z,!GMTA0.27D5!C)L(0"#"'(%#(3"+/$)2)%"'%'(/#.(
-"67"+)0"#"'%'4!<3=/47375!"++',!!#>$'?@!A,!&'&&B'&,!

"*,! 6A7=Y5!O,P,!93F!H,S,!S2112193F5!8):"<N%#.%#0(*/&$):'(%#(3/"+/$)2)%"'%'(/#.(
-"67/"+%/4!O98!\7V!;93=7.5!"++",!!>'?@!A,!%+"B*#,!

"",! L./X7Y5!Z,!93F!;,H,!R1//T_271F5!8-%#%&/-('%0#%*%&/#&"()*($3"(+)'$(&)++)#(
&3:)+)')+"($:/#'-)&/$%)#'(%#(/.6-$(/&6$"(+,"-)%.(-"67"+%/4!:!O981!;93=7.!N3D8!
L/3/4.5!"++(>#)?@!A,!%"B',!

"#,! S2112193F5!H,S,5!G)-"&6-/:(0"#"$%&'()*(36+/#(-"67"+%/'1(#"T(%#'%03$'(%#$)($3":/2,4!
67T23!G7T98/15!"++",!"*>$!6MAA1!#?@!A,!&B**,!

"$,! G9_7.19=05!;,5!78!91,5!5GH(T%$3(8_V_<GYC@@(:"/::/#0"+"#$(."+)#'$:/$"(M5U(
2/$3T/,(/-$":/$%)#'(%#(X>`()*(/--(&/'"'(%#&-6.%#0(/(3%03(*:"a6"#&,()*(KV@(
."-"$%)#'4!K7MY7T295!"+*+,!!%>%?@!A,!*+&%B),!

"%,! [91Y5!W,:,5!78!91,5!U"&)#.(3%$(+6$/$%)#'(%#($3"(M=R]M5U('%0#/-%#0(2/$3T/,(%#(/&6$"(
+,"-)%.(-"67"+%/(T%$3(%#9Z@A\4!G97T98/1/42=95!"++$,!$*>*?@!A,!*+&,!

"&,! LM.9825!P,5!78!91,5!G,"-)%.(+/-%0#/#&%"'1(+6$/$%)#'b(+)."-'(/#.(+/#/0"+"#$4!RL;!
;93=7.5!"+*",!(!>*?@!A,!#+$,!

"',! H/037.5!Z,!93F!G,!H/037.5!G)-"&6-/:(&3/:/&$":%E/$%)#()*(/&6$"(+,"-)%.(-"67"+%/4!
G97T98/1/42=95!"++(,!*">'?@!A,!)'&B(",!

"(,! R/2DD715!O,5!78!91,5!;#&%."#&"(/#.(2:)0#)'$%&(%+2/&$()*(&<R%$b(VH=Wb(/#.(M/'(0"#"(
+6$/$%)#'(%#(&):"(N%#.%#0(*/&$):(/&6$"(+,"-)%.(-"67"+%/(Z8_V<5GH\4!K7MY7T295!
"++&,!!'>&?@!A,!)&%B'+,!

"),! Z.9M805!L,J,5!78!91,5!C%03(#6+N":()*(/..%$%)#/-(0"#"$%&(-"'%)#'(%#(/&6$"(+,"-)%.(
-"67"+%/(T%$3($ZP[>@\]MQK^@<MQK^@=@1(*:"a6"#&,(/#.(%+2/&$()#(&-%#%&/-(
)6$&)+"4!K7MY7T295!"+*$,!!$>'?@!A,!*$$)B*$%(,!

#+,! L2=/15!:,BR,5!78!91,5!V:"a6"#$(5U^H>(+6$/$%)#'(%#(/&6$"(+,"-)%.(-"67"+%/(2/$%"#$'(
T%$3($ZP[>@\]MQK^@<MQK^@=@(&3:)+)')+/-($:/#'-)&/$%)#'4!R1//F5!"+*$,!(!%>)?@!
A,!*$$%B*$$),!

#*,! ;07.5!;,],5!78!91,5!K"L$<0"#":/$%)#('"a6"#&%#0(T%$3(/(+,"-)%.(0"#"(2/#"-(%#(&):"<
N%#.%#0(*/&$):(5GH('3)T".(R;=(/&$%9/$%)#(-))2(/#.(=J=>(+6$/$%)#'(2:".%&$%9"()*(
)6$&)+"4!R1//F!;93=7.!:5!"+*&,!#>'?@!A,!7$$",!

#",! S7FT935!P,K,5!78!91,5!=3"(-/#.'&/2"()*(')+/$%&(+6$/$%)#'(%#($3"(&):"<N%#.%#0(*/&$):(
/&6$"(+,"-)%.(-"67"+%/'4!;93=7.!\7D5!"+*#,!)%+!',-.//01@!A,!PQD8.9=8!3.!P*%,!

##,! G9.8T9335!K,5!78!91,5!c_=_I5(+6$/$%)#'(%#(/&6$"(+,"-)%.(-"67/"+%/(T%$3($ZP[>@\(
$:/#'-)&/$%)#4!O98!;/TTM35!"+*&,!)@!A,!**'##,!

#$,! W9D=0Y95!W,5!78!91,5!5.9":'"(2:)0#)'$%&('%0#%*%&/#&"()*(R;=(+6$/$%)#'(%#(/.6-$(/&6$"(
+,"-)%.(-"67"+%/(T%$3(%#9Z@A\(/#.($ZP[>@\1(/(8/#&":(/#.(H"67"+%/(!:)62(_(U$6.,4!
:!;123!<3=/15!"++&,!!%>"$?@!A,!#)+$B**,!

#%,! R/2DD715!O,5!78!91,5!F/'/$%#%N(%#(3%03<:%'7(&):"(N%#.%#0(*/&$):(/&6$"(+,"-)%.(-"67"+%/(
%#(*%:'$(&)+2-"$"(:"+%''%)#1(/(V:"#&3(5&6$"(G,"-)%.(H"67"+%/(;#$":0:)62($:%/-4!
G97T98/1/42=95!"+*%,!(''>&?@!A,!'(+B%,!

#&,! GM9345!Z,5!78!91,5!H"67"+)0"#%&(2)$"#&,()*($3"(#)9"-(VH=W<KAIAR(+6$/#$4!P33!
G7T98/15!"+*&,!*&>%?@!A,!'(#B)*,!



! $$!

#',! W9D=0Y95!W,!93F!Z,!HI037.5!8):"<N%#.%#0(*/&$):(/&6$"(+,"-)%.(-"67"+%/1(&/#(T"(
%+2:)9"()#(C%F58(&)#')-%./$%)#d!P6G!CFM=982/3!W./4.9T!R//Y5!"+*#,!!'(">*?@!
A,!"+)B"*),!

#(,! L9.=M==25!S,5!78!91,5!S:)0#)'$%&(*/&$):'(/#.()6$&)+"()*(&):"(N%#.%#0(*/&$):(/&6$"(
+,"-)%.(-"67"+%/(2/$%"#$'(T%$3($ZP[>@\(.%**":(*:)+($3)'"()*(2/$%"#$'(T%$3(%#9Z@A\1(/(
8/#&":(/#.(H"67"+%/(!:)62(_('$6.,4!:!;123!<3=/15!"++%,!!">"$?@!A,!%'+%B*',!

#),! 6=0173Y5!\,-,5!78!91,5!;#.%9%.6/-(2/$%"#$(./$/<N/'".(+"$/</#/-,'%'()*(2/$%"#$'(/0".(
@A($)(A?(,"/:'(T%$3(&):"(N%#.%#0(*/&$):(/&6$"(+,"-)%.(-"67"+%/1(/('6:9",()*($3"(
!":+/#(5&6$"(G,"-)%.(H"67"+%/(;#$":0:)624!:!;123!<3=/15!"++$,!!!>*(?@!A,!#'$*B
%+,!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!



! $%!

V++N'/:%'0./0$/+

+

!+$ %)&#&'$ M=&//&$ :i,-=&$ ),-$ :),-$ 68+*$ -&'*/),-$ L&)$ 8//&+$ L&%8+0&+G$ %)&$ *":$

T&/)+6&+$%)&#&'$!'L&)=$L&)6&='86&+$"+%$:),-$8"B$%&:$/8+6&+$J&6$L&6/&)=&=$-8L&+C$

$

(&)+$L&#2+%&'&'$@8+0$6)/=$:&)+&:$@20=2'<8=&'G$1'2B&##2'$M=&B8+$D2-/8+%&'G$%&'$:)'$

%)&#&$@)##&'=8=)2+$&':i6/),-$-8=$"+%$:)'$n&%&'*&)=G$)+$8"Z&'6&5i-+/),-&:$(8Z&G$:)=$

-)/B'&),-&+$!+'&6"+6&+$"+%$5&'=<2//&:$W8=$*"'$M&)=&$#=8+%C$

$

3,-$%8+0&$@'C$:&%C$1-)/)II$T'&)B$B?'$%)&$D&='&""+6$%)&#&'$!'L&)=C$M&)+&$T&%"/%G$#&)+&$

!"B6&#,-/2##&+-&)=$ "+%$ #&)+$ f&'='8"&+$ &':i6/),-=&+$ &#$ :)'$ %)&$ H'86&#=&//"+6&+$

%)&#&'$!'L&)=$)+$%)&#&:$;:B8+6$#&/L#=>+%)6$*"$&+=5&'B&+$"+%$*"$L&8'L&)=&+C$

$

(&)+$@8+0$6)/=$*"%&:$8//&+$.28"=2'&+$B?'$%)&$6"=&$c"#8::&+8'L&)=$*"'$1"L/)08=)2+$

%&'$6&:&)+#8:&+$@8=&+G$ )+#L&#2+%&'&$@'C$!+)'"%%-8$@&#-I8+%&G$@'C$:&%C$./8"#$

(&=*&/&'$"+%$@'C$:&%C$F2L)8#$O&'2/%C$

$

3,-$%8+0&$O&''+$1'2B&##2'$J2/B68+6$O)%%&:8++$B?'$%)&$(i6/),-0&)=$%)&#&$!'L&)=$ )+$

%&'$ (&%)*)+)#,-&+$ ./)+)0$ "+%$ 12/)0/)+)0$ 333$ %&'$ 4"%5)67(89):)/)8+#7;+)<&'#)=>=$

(?+,-&+$*"$<&'B8##&+C$

$

(&)+$@8+0$6)/=$+),-=$*"/&=*=$%&+$()=6/)&%&'+$%&'$&-&:8/)6&+$..T$4&"0>:)&$"+%$%&+$

.2//&6&+$ 8"#$ %&:$ 48L2'$ B?'$ 4&"0>:)&%)86+2#=)0C$ @)&$ B'&"+%#,-8B=/),-&$

!'L&)=#8=:2#I->'&$"+%$%)&$#=&=&$;+=&'#=?=*"+6$2L$=&,-+)#,-$2%&'$:2'8/)#,-G$-8L&+$

%)&#&$ !'L&)=$ )+$ )-'&:$ ;:B8+6$ "+%$ K'B2/6$ &'#=$ :i6/),-$ 6&:8,-=C$ (&)+$ 68+*$

L&#2+%&'&'$@8+0$6)/=$-)&'$H'8"$D)8+08$.#)&+*E0$s$%)&$2B=$#,-2+$<2'$:)'$5"##=&$58++$

),-$O)/B&$8:$%')+6&+%#=&+$L'8",-=&C$

$

;+%$ ),-$ %8+0&$ :&)+&'$ H8:)/)&$ "+%$ :&)+&+$ H'&"+%&+G$ B?'$ %&+$ W?,0-8/=$ "+%$ %)&$

(2=)<8=)2+C$

$

@8+0&t$

$
$


