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Zusammenfassung

Die kollektive Migration von Zellen ist maßgeblich für viele biologische Prozesse,
darunter Embryogenese, Wundheilung und die Ausbreitung von Krebs. Beobach-
tete Phänomene lassen sich nicht als Summe der Einzelbewegung vieler isolier-
ter Zellen erklären, sondern sind emergente Eigenschaften, die aus ihren Inter-
aktionen entstehen. Die Bewegung in epitheliale Zellverbänden zeigt eine reiche
Phänomenologie, wie das Auftreten von Wirbeln in der Größenordnung mehrerer
Zelldurchmesser oder den Übergang von fluidem Verhalten bei niedrigen Zelldich-
ten, hin zu glasartigem Verhalten bei hohen Dichten. In dieser Dissertation wurde
die kollektive Invasion epithelialer Zellverbände in Mikrokanäle auf einer phäno-
menologischen Ebene, im Rahmen von theoretischen Ansätzen zu aktiven Flüssig-
keiten, untersucht.

Zunächst wurde das Bewegungsprofil einer Zellmonolage in geraden Kanälen
mit Hilfe von Einzelzellverfolgung und “Particle Image Velocimetry” (PIV) an Zeit-
raff-Mikroskopiedaten untersucht. Quer über den Kanal wurde ein definiertes Pfrop-
fenströmungsprofil beobachtet. Das Dichteprofil der Zellen konnte gut mit Hilfe
der Fisher-Kolmogorov Reaktions-Diffusions-Gleichung beschrieben werden, wel-
che aktive Migration der Zellen und den Beitrag von Zellteilung zur Bewegung
umfasst. Diese Studie offenbarte eine Veränderung kurzreichweitiger Störungen
in Folge der global ausgerichteten Bewegung.

Um die Proliferationskomponente des Systems genauer zu studieren, wurde der
Einfluss einer zu Grunde liegenden globalen Migrationsrichtung auf die Ausrich-
tung der Zellteilungsachsen untersucht. Es konnte eine starke Ausrichtung der
Orientierung der Achsen mit der auferlegten Bewegungsrichtung beobachtet wer-
den. Konkret wurde die stärkste Korrelation zwischen der Ausrichtung der Zell-
teilungsachsen und der Hauptachse des lokalen Dehnungsratentensors gefunden.
Diese Ergebnisse sind konsistent mit dem Konzept, dass im migrierenden Zellver-
band die Spannungen die Zellteilungen ausrichten.

Als Erweiterung der Untersuchung mit geraden Kanälen wurde eine Engstel-
le eingefügt, die der Zellverband durchqueren musste, um weiter vorzudringen.
In der Region vor der Engstelle konnte ein Plateau niedriger Geschwindigkei-
ten beobachtet werden, welches auf eine lokale Erhöhung der Zelldichte zurück
geführt wurde. Diese Ergebnisse wurden mit einem aktiven Isotropen-Nematen-
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Mischmodell verglichen. Eine Eignung dieses Modells zur Beschreibung dieses Ex-
periments konnte jedoch ausgeschlossen werden, nachdem es qualitativ ein deut-
lich anderes Verhalten als das Experiment demonstrierte.

Abschließend wurden in einem minimalen Modellsystem die Häufigkeit topolo-
gischer Nächster-Nachbar T1 Übergänge in einem Zellverband untersucht. Um die
kleinstmögliche Grundeinheit für solche Übergänge zu untersuchen, wurden Grup-
pen aus vier Zellen auf ein Kleeblattmuster eingegrenzt, von dem gezeigt werden
konnte, dass es das Einsetzen kollektiver Rotationszustände unterdrückt. Die Er-
gebnisse zeigten, dass T1 Übergänge bei Zellgruppen, deren Länge des im Über-
gang schrumpfenden Zell-Zell-Kontakts im Mittel kürzer ist, häufiger vorkommen.
Diese Resultate sind konsistent mit der Vorstellung, dass die Energiebarriere, die
für diese Übergänge überwunden werden muss, mit der ursprünglichen Länge des
schrumpfenden Zell-Zell-Kontakts skaliert.

Zusammengefasst tragen die Ergebnisse dieser Dissertation zu einem besseren
Verständnis von Strömungsfeldern kollektiver Zellmigrationsprozesse in begren-
zenten Geometrien bei. Zusätzlich zu den Erkenntnissen, die die phänomenolo-
gischen Beobachtungen dieser Arbeit direkt liefern konnten, werden sie auch als
Maßstab zur Bewertung und Plausibilitätsprüfung detaillierter theoretischer Mo-
delle nützlich bleiben.



Abstract

The collective migration of cells governs many biological processes, including em-
bryonic development, wound healing and cancer progression. Observed phenomena
are not simply the sum of the individual motion of many isolated cells, but rather
emerge as a consequence of their interactions. The movements in epithelial cell
sheets display rich phenomenology, such as the occurrence of vortices spanning se-
veral cell diameters and the transition from fluid-like behavior at low densities to
glass-like behavior at high densities. In this thesis, collective invasion of epithelial
cell sheets into microchannels was studied on a phenomenological level within the
scope of theoretical approaches to active fluids.

In a first project, the motion profile of a cell layer in straight channels was in-
vestigated using single cell tracking and particle image velocimetry (PIV) on time-
lapse microscopy data. A defined plug-flow like velocity profile was observed across
the channels. The cell density profile is well-described by the Fisher-Kolmogorov
reaction-diffusion equation, which includes active migration and the contribution
of proliferation. This study revealed a change in the short scale noise behavior in
the presence of this global invasion into a channel.

For a closer look at the system’s proliferation component, the effect of an un-
derlying global migration direction on the orientation of the cells’ division axes
was examined. We found strong alignment of the axes’ orientation with the im-
posed movement direction. Specifically, the strongest correlations were observed
between the orientation of the cells’ division axes and the local strain rate tensor’s
main axis. This is in agreement with the notion that stresses in the migrating cell
sheet orient the cell divisions.

Expanding the assay of invasion into straight channels, we introduced a constric-
tion, which the cell sheet needs to pass through in order to progress. A plateau of
low velocities was observed in the region ahead of the constriction, which was at-
tributed to an increase in local cell density accompanied by jamming. These results
were compared to an active isotropic-nematic mixture model. The suitability of this
model to describe this assay could be ruled out, however, as it showed qualitatively
very different behavior than the experiments.

Finally, the frequency of topological nearest-neighbor T1 transitions within a cell
sheet was investigated in minimal model systems. In order to study the smallest
possible fundamental unit for such transitions, groups of four cells were confined to
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cloverleaf patterns, which could be shown to inhibit the onset of collective rotation
states. Results showed that T1 transitions occurred more frequently for groups
of cells with a lower average length of the cell-cell junction that shrinks in the
process of this transition. These results are consistent with the notion that the
energy barrier which needs to be overcome by the cells in order to perform this
transition, scales with the original length of the shrinking junction.

Taken together, the results of this thesis contribute to a better understanding
of the flow fields for collective cell migration processes in confined geometries. In
addition to the insights the phenomenological observations in this work could pro-
vide directly, they will also continue to prove useful as a standard for validating
detailed theoretical models.
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Chapter

1 Introduction

Cells are the smallest, most basic structural building block of living matter capable of

functioning autonomously. They come in various forms and fulfill a near endless amount

of functions necessary for the existence and persistence of life. In recent years, cells and

tissues have emerged as prime examples of soft active matter [1–4], a subcategory of con-

densed matter physics. A key feature of active systems is that they are out of equilibrium

due to perpetual energy injection at the sites of the constituent agents [5, 6].

For many of the cells’ functions, their ability to achieve locomotion and change shape

is crucial. This is, for instance, the case when leukocytes migrate as part of the immune

response [7–9], or in the complicated process that allows neurons to reach their destina-

tions in the developing nervous system [10, 11]. These processes, where single cells move

on their own, are intriguing in themselves, but in many physiologically relevant scenarios,

cells occur in larger groups rather than being isolated. As such, multi-cellular motion is es-

sential in several processes highly relevant to life and disease, most notably morphogenesis

[12–16], wound healing [17, 18] and cancer progression [19–22].

Random walk dynamics of networks are of great interest in physics. Unfortunately, even

single cell migration is already complex and depends on many factors, such as cell type

[23], rigidity of the underlying substrate [24] or the extracellular environment in general

[25], as well as molecular expression levels [26]. In addition, collective cell migration is not

simply the sum of the individual movement of all the involved single cells, but rather an

emergent phenomenon that arises from interactions between the individual agents. The

resulting mutli-cellular motion displays rich dynamics and cooperativity with correlations

spanning several cell lengths in space, and hours in time [27–29].

Intriguingly, collective cell migration is frequently reminiscent of a fluid flow when

examined on sufficiently long time scales. This is the case for the spreading of cellular

aggregates on a surface [30], the expansion of circular colonies released from confinement

[31, 32] and the wound healing process [33]. By virtue of the complexity of the process and

the difficulties of live-cell imaging in vivo, much work has gone into creating artificial model
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systems to study collective cell migration in vitro. In this way, the boundary conditions of

the experiment can be defined in a reproducible manner, and imaging can be simplified by

designing the samples to be compatible with the desired microscopy setups. The scratch

assay represents a very typical example of this sort of experiment [34]. Here, a scratch is

created in a monolayer, customarily with a pipette tip, though more advanced setups use

laser ablation to produce scratches in a more defined manner and with higher throughput

[35]. Collective migration into the wound in response to this injury is then observed

and characterized. The recent advent of diverse microstructuring techniques, which can

be used to place cells in very well-defined environments, has allowed for even further

refinement of in vitro assays. For instance, Poujade et al. used thin polydimethylsiloxane

(PDMS) films to introduce a model wound into an epithelial monolayer, which allowed

studying collective cell migration into an open region without the issue of injured cells at

the periphery [17]. This allowed decoupling of some possible reasons for migration (such

as cell damage following an injury), and showed that freely available surface is sufficient

to trigger migration.

As collective migration in vivo frequently occurs in confinement [36], it makes sense to

use available microstructuring techniques to introduce geometrical constraints and obser-

ve the effect on migrating cells. Following this train of thought, Vedula et al. studied the

occurrence of different modes of migration of epithelial sheets migrating into strips with

widths ranging from one to several cell diameters [37]. Whereas in wide stripes, they found

the occurrence of large scale vortices that are typical of epithelial monolayers [27], a new

contraction-elongation type of migration appeared in narrow stripes. These findings high-

light the existence of cooperative patterns within collective cell migration, and strikingly,

these patterns show noteworthy behavior upon changes in the cell density. Specifically,

heterogeneous regions in the velocity field of confluent or advancing monolayers grow in

size with increasing density, while, conversely, the velocity decreases [38, 39]. In addition,

measurements of the intercellular tension within a monolayer reveal severe fluctuations in

space and time, with force clusters over roughly 10-50 cells that pull cohesively and co-

operatively [38–41]. Despite these dynamic heterogeneities, local cell migration frequently

follows the local orientation of the maximal principal stress. This powerful collective gui-

dance mechanism termed plithotaxis seems to require cooperativity of mechanical stresses

across many cell-cell junctions [39, 42].

All these behaviors are the very signatures of a so-called glass transition, leading to a

big question: How can collective systems of cells act as fluids in some cases, but like a

rigid solid in others? A potential explanation is the notion that these glass transitions are
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associated with jamming [41], a phenomenon known (though far from fully understood)

from colloidal and granular materials, as well as foams [43]. Recently, much effort has

gone towards studying jamming-transitions in collective cell assemblies. For instance,

Park et al. showed that in asthmatic airway epithelia, the transition from unjammed,

fluid-like phase to a jammed, solid-like phase is significantly delayed compared to healthy

tissue. They put forward the hypothesis that fluidization and subsequent re-jamming

might function as a mechanism that allows the bronchial epithelium to self-repair from

mechanical perturbations in the course of breathing [44]. Meanwhile, Nnetu et al. observed

that two collectively migrating monolayers that collide do not mix, even when both consist

of the same cell type, and even if this is a type that shows weak cellular interactions. They

explain this phenomenon as each of the layer boundaries being in a jammed state [45].

Very recent work by Chepizhko et al., however, showed a jammed monolayer can rapidly

transition back to a fluid state in response to a wound [46]. Finally, there is even evidence

that mesenchymal tumor cells that normally migrate on their own, migrate collectively

as a result of jamming due to confinement [22].

Indeed, the success of a description of collective cell behavior via a jammed system is

not entirely surprising, as condensed systems of cells are inhibited by a multitude of the

same factors also governing inert systems. These include volume exclusion, size, deforma-

bility, mutual crowding and mutual adhesion [41]. As mentioned above, describing dense

cellular assemblies via active matter approaches has gained prominence. The term active

matter is used to describe a number of systems that share the following characteristics

[5, 6]: They consist of a number of self-propelled, interacting particles that can convert

free energy into systematic movement. In contrast to other out-of-equilibrium systems,

energy is permanently injected into the system locally at each of the constituent units

rather than at the system boundaries. Active systems have representatives in living and

non-living matter, though the former are far more prevalent. Living active systems en-

compass, among others, bacteria swimming in suspension [47, 48], in vitro mixtures of

bio-filaments and associated motor proteins [49], eukaryotic cells [50], as well as flocks

of birds, fish or land based animals [51]. Meanwhile non-living systems are often arti-

ficial, and include things such as layers of vibrated granular rods [52] or collections of

robots [53]. The goal of active matter physics is to find generic behaviors common to the

multitude of systems the discipline encompasses, thus helping to understand mechanisms

arising in vivo [54]. Examples of such behavior include phase transitions or characteri-

stic instabilities. With this notion in mind, and returning specifically to the concept of

jamming transitions, one system that can also be considered active matter is particularly

noteworthy: traffic flow. The flow of traffic, and the dynamical jamming transition from
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free traffic at low densities to traffic jams at high density have been thoroughly studied

due to their relevance for humans’ everyday lives [55]. Though there are still many open

questions, the idea of relating the high density congestion of traffic flow to the high density

jamming of cell collectives is compelling, especially since microstructuring allows tailoring

the experimental situation for a cell collective to mimic a traffic flow problem, such as

the encounter of a bottleneck, where intriguing phenomena such as a density dependent

capacity drop-off have been observed [56].

On a more resolved level, fluid regimes and glassy regimes of cell collectives depend on

the energy barriers to cell rearrangement. In glassy phases, the energy barriers for cells

changing their organization are finite, while in a fluid phase they vanish (or are signifi-

cantly lower) [57]. Topological rearrangements within a tissue are only possible via cell

division, cell extrusion or so-called T1 transitions [58]. Four cells are involved in these

transitions, during which two threefold vertices (where three cells meet) degenerate into a

single fourfold vertex (where four cells meet), which is not stable and is resolved into two

threefold vertices again. T1 transitions have been shown to be relevant in developmen-

tal processes [59], but in the theoretical framework of modeling cell collectives as being

jammed, they are also relevant in wound healing and cancer invasion [57, 58]. These tran-

sitions, in principle, offer direct access to the energy barriers to cell rearrangements, and

studying them could thus also be of use in determining where on the fluid to glass phase

diagram a cell collective in any given situation falls. A detailed analysis, even in vitro, is,

however, challenging, given the complexity of even systems such as full scale monolayers.

Due to this, these energy barriers have been probed theoretically, finding an exponential

distribution and a dependence on number of neighbors [58].

This is only one of many instances, where a theoretical model of cell migration has

proven useful in gaining some insight into the mechanisms of collective cell migration

behavior. In fact, a vast range of models is available to choose from, though selection of

a model appropriate to a given scenario can be difficult. Feasible theoretical frameworks

range from the very simple reaction-diffusion models and continuum models, over less

coarse-grained particle-based models that describe each constituent agent explicitly, to

even more detailed descriptions of cells that include things like area, shape and potentially,

to some extent, molecular processes within each cell.

While the complex models are likely the most capable of reproducing intricate migration

phenomena if implemented correctly, they can also face computational limitations when

applied to systems consisting of very large cell numbers. Here, microstructuring techniques
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can offer some aid, reducing the system size to smaller groups of cells, where uncovering

molecular details is more feasible. In this context, Segerer et al. studied groups of two

to eight collectively rotating cells on small circular micropatterns [60]. With the help

of a modified cellular Potts model, they uncovered how crucial the interplay between

local cell arrangement and internal cell polarization is for collective migration. Ideally,

insights like this, and other molecular details gleaned from various small scale experiments,

can be implemented in a coarse-grained manner in the less intricate models, or even in

the complex models themselves, where a coarse-grained or rules-based implementation of

molecular details can cut down on computation times.

For many-cell systems, the test of whether such an implementation is sufficient comes

from examining whether the models correctly reproduce the occurring large scale phe-

nomena. To this end, however, a detailed phenomenological description of collective cell

migration in experiments is necessary, in order to give the theoretical implementations

a reference for comparison. Thus, the focus of this thesis was to provide such an expe-

rimental frame of reference and characterize the collective cell behavior within it. Due

to the similarities between migrating cell collectives and flowing fluids already discussed

above, phenomenological descriptions in this context can be thought of as a sort of cellular

hydrodynamics. In fact, many of the experiments within the scheme of this dissertation

were motivated by classical hydrodynamic experiments that had not previously had an

equivalent counterpart for collective cell migration, and one of the core analysis tools,

particle image velocimetry (PIV), was originally developed for visualization of fluid flows

[61, 62].

With this goal in mind, this thesis is structured in the following way:

Chapter 2 introduces the fundamental concepts behind the major components of this

work. It gives some background relating to the basic process of cell migration, both on

a single cell and a collective level. In addition, the hydrodynamic framework for the

description of fluid flows, as well as the theoretical framework for the glass transition

are introduced. An overview of the various different theoretical models for describing cell

migration is given, with a focus on approaches that were used to some extent within

this dissertation. Finally, the chapter gives a brief introduction into machine learning in

the context of image processing, a powerful but complex tool for analyzing biological

microscopy data.

Chapter 3 contains the results of this thesis and the discussion thereof. Its structure

mirrors that of this introduction:
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In section 3.1, collective migration of an epithelial cell sheet into channels created via

micromolding in capillaries (MIMIC) is studied, akin to the flow of a Newtonian fluid

through a pipe. The flow profile and the density profile are investigated. A flat, plug-flow

like behavior is uncovered for the velocity profile across the channel, in contrast to the

parabolic profile a Newtonian liquid would produce as a result of Hagen-Poiseuille’s law.

Interestingly, an increase of velocity from the back of the cell sheet to the front is uncover-

ed, paired with the reverse trend in density, which decreases upon approaching the leading

edge. We could show that on long time scales, the dynamics of this expanding cell layer

could be well described by a simple reaction-diffusion theory, and that bursts of collective

migration appear to contribute significantly to forward movement, in contrast to confined

cell sheets, where these bursts instead cause the formation of vortices. The results of this

section are recorded in publication P2 [63], as well as in the review publication P1 [64].

In section 3.2, the influence of the emerging flow field on cell division is discussed. Strong

alignment between orientation of the division axis and underlying migration direction was

uncovered. Specifically, the best correlation was found to exist with local flow gradients.

Experimental results were compared to a previously published particle-based model, and

both the density and the velocity profiles showed the same characteristic behavior in theo-

ry and experiment. Likewise, the strong correlation between division orientation axis and

the main axis of the strain rate tensor could also be correctly reproduced. The results of

this section are set down in publication P3 [65].

In section 3.3, the straight channel assay is expanded, and collective migration of cells

through a constriction is examined in analogy the flow of a Newtonian fluid following

Bernoulli’s principle. The introduction of a constriction in the channel does lead to a re-

duced velocity prior to the constriction, but from that point forward the velocity increases

towards the cell front, and does not drop off again after the bottleneck. Intriguingly, the

difference in velocity prior to the constriction does not appear to be the result of cells

speeding up in the narrow segment, but rather of cells slowing down in the wide segment

over time. This suggests that a buildup in density and potentially a transition to a more

jammed state are the dominant mechanisms behind this phenomenon. Results from the

experiment are briefly compared with simulations for an active isotropic-nematic mixture

model, though both the velocity fields and orientation fields were found to show qualita-

tively very different behavior, indicating the model is not suitable to these experimental

conditions.

In section 3.4, in order to study the microscopic rearrangements underlying macroscopic

collective cell migration, a novel oligocellular array is presented. Groups of four cells are

confined to a cloverleaf pattern created via microcontact printing (µCP) of extracellular
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matrix (ECM) proteins. Such a setup presents the minimal system required for under-

going T1 transitions, which represent the major source of rearrangements within a cell

layer necessary for collective migration and fluidization. The frequency of T1 transition

occurrence was studied for cloverleafs of different sizes, in an attempt to experimentally

probe the energy barrier cells need to overcome in order to rearrange. This minimal system

has the advantage of decoupling cells from other neighbors not involved in the transition

and thus making the energy barrier more easily accessible.

Finally, chapter 4 summarizes the ideas and results of this dissertation and discusses

their implications for the field of cell science. An outlook is given on reasonable follow-

up experiments or potential improvements to existing systems that could further the

research on collective cell migration. The appendix A provides further information on

and detailed descriptions of the experimental and data analysis methods used in the course

of this thesis.





Chapter

2 Fundamental Concepts

2.1 Cell biological aspects

In order to discuss the rich phenomena associated with collective migration, a basic un-

derstanding of the biological processes that are involved is necessary. To this end, this

chapter introduces the fundamental concepts of both single cell migration and collecti-

ve cell migration, before detailing the so-called T1 transitions, by which cells rearrange

within the tissue during collective movement.

2.1.1 Cell migration

Cell migration is crucial in many biological phenomena, such as wound healing, embryo-

genesis or vascularization of tissues, but also pathological processes, in particular cancer

metastasis [66]. Cells can migrate either on their own, or in tightly or loosely associated

groups. In the latter case, cells are typically linked to their neighbors via various juncti-

ons, and, depending on the biological context, can migrate as sheets, clusters, strands or

tubes [19, 67]. Due to the interplay between many cells, collective migration is more than

just the sum of the single cell migration of each individual cell, but the general principle

how individual cells move is still relevant for the emerging behavior.

Single cell migration

Locomotion of individual cells is achieved by turning forces generated within a cell into

translational movement of its body. This process is well understood for single, adherent

cells and consists of five distinctive steps [68]:

Initially, spatial asymmetries are developed, before the membrane is expanded and new

focal adhesions are produced. Then, a contractile force is generated and the old adhesion
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sites are released. In more detail, in the first step a front and a rear of the cell develop

by morphological polarization that creates spatial asymmetries. As part of this process,

the distribution of filamentous actin changes from symmetrical to concentrated regions

at the front, and integrin adhesion receptors and integrin-cytoskeleton linkages gather

towards the front of the cell. Once the cell is polarized, the migration process continues

with expansion of the membrane at the new front of the cell, by extension of broad, flat

lamellipodia and thin, cylindrical filopodia. These extensions result from local actin po-

lymerization, likely following a Brownian ratchet mechanism where thermal fluctuations

sporadically create enough room between the cell membrane and the actin filament that

a new actin monomer has room to be added to the polymer. Once filopodia and lamme-

lipodia protrude out ahead of the cell, new focal adhesions are created, linking cell and

substrate. These adhesion sites form primarily at the front of the cell and remain until

the locomotion of the cell has moved them towards the rear. Following this, a contraction

force is generated that moves the cell forwards, overcoming old adhesions (all other forces,

such as viscous drag of the surrounding medium, are negligible). The production of these

forces is generally attributed to myosin motor proteins, specifically myosin I and myosin

II. Finally, in order for the cell to actually move forward, adhesions at the back of the cell

need to be released, a process that leaves a large part of the involved integrins behind.

Thus, if a second cell migrates across a surface already traversed by another cell, it likely

encounters a modified substrate.

Collective migration

The multitude of interactions taking place between individual cells involved in collective

cell migration makes this process more complicated and less well understood. Physical

forces, chemical signals and combinations thereof are likely involved in coordinating the

separate members of the collective, though there are several options how exactly this

might happen. For instance, in the migration of 2D epithelial sheets, evidence has been

found supporting several different theories, such as the sheet being pulled by a leader cell,

pushed forward by the pressure of cell proliferation farther back, and, most recently, the

whole sheet being under tension in a sort of “tug of war” situation [17, 69, 70].

Depending on the situation, further modes of collective migration are possible besides

sheet migration. In branching morphogenesis, cells migrate via sprouting of the end bud.

Meanwhile, 3D invasion strands or masses consisting of several different cell types are

hallmarks of cancer cell migration. Despite superficial differences, all of these migration
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modes still share several common features, among them the retention of intercellular

cohesion, collective polarization and coordinated cytoskeletal activity [19].

Cohesion is maintained through adherens junctions proteins, such as cadherins and

integrins. They couple, directly or indirectly to the actin and/or intermediate filament

network, in a robust but dynamic way. The most important of these mediators for col-

lective cell migration appears to be epithelial cadherin (E-cadherin), the loss of which

has been shown to promote the onset of the epithelial-mesenchymal transition (EMT),

where cells move using a single cell migration mode. Depending on the cell type, loss of

E-cadherin may be compensated by the other cell-cell adhesion pathways [19].

Most collectively migrating cell systems described to date develop a front-rear asym-

metry by the development of so-called “leader” or “tip” cells. These cells have a very

distinct and polarized morphology different from the rest of the collective. Though the

mechanism selecting leader cells is still unclear, with both chemical signaling via growth

factors [71, 72] and dynamic instabilities [73] having been suggested, it appears that cells

that do become leader cells effectively undergo partial EMT [67]. Recent work shows that

the selection of leader cells is influenced by the pre-migratory dynamics of the followers

immediately behind them. These cells locally unjam long before the actual leaders appe-

ar [74]. About one hour after the surrounding area becomes available for migration, the

distinct phenotype leaders appear, at which point they typically remain in the leading

position for several hours [17, 75, 76]. During this time, they show distinct behavior, such

as never dividing [77]. The exact role these “leaders” play has been the subject of much

debate, though traction force measurements have now shown they are not solely respon-

sible for pulling the sheet along behind them as originally conceivable [70]. Instead, it

seems their role is more the detection of extracellular guidance cues and determining the

direction of migration for the followers [71].

Similar to how actin organization and targeted force generation take place in single

cell migration, the same principles also apply to cell collectives. In this case, however, the

mechanisms are coordinated between the various cells in the group. How this coordination

is achieved is still unclear, though it likely involves a combination of cadherin-mediated

cell-cell coupling and local release of cytokines or growth factors [19]. Correspondingly,

how mechanical forces are transmitted between cells is not entirely understood, though

distinct receptor-ligand pairs seem to be responsible in different biological contexts [19].

In this work, sheets of epithelial cells are used as model systems for studying collec-

tive migration. Much work has already been done studying these types of systems via
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wound healing assays [78–81]. These investigations involve creation of an artificial wound

in an epithelial cell layer through scratching and observation of the subsequent motion

of epithelial cells while they close this new gap. As there is some concern as to the effect

that damaging the cells at the boundary of the scratch might have (such as the release of

chemoattractants or other chemical signals) on the migration, in recent years alternative

setups have been developed where an artificial wound is created instead. These function,

for instance, by removal of a PDMS barrier the cells were grown around [17] or lift-off of

a confining poly(ethylene glycol)-dimethacrylate (PEG-DMA) layer [32]. Further refine-

ment allows the dimensionality of the problem to be reduced by confining the collectively

migrating cell front to stripes or channels of defined widths [37, 63].

The results from these sorts of experiments reveal that at a coarse-grained level, col-

lective phenomena are well-described by reaction-diffusion type models. At the scale of a

few cells, however, collective migration reveals highly intriguing phenomena, such as the

formation of vortices or pulsating waves [37, 63, 82]. These properties are interesting to

study as they can provide great insight into intercellular coupling.

2.1.2 The role of the T1 transition in tissue development

Collective motion of cells plays an important role in morphogenesis, where it contributes

to such things as shape and formation of compartments in an organism [15, 16]. However,

the details of how, for instance, tissue shape emerges as a a result of collective mechanical

properties and the behavior of individual cells is not well understood. The typical model

system for the study of development is the growth of the wing of the Drosophila mela-

nogaster ’s larval stage [59, 83–85]. In principle, cell divisions, cell shape changes and cell

rearrangements are potential contributors to the final result [59]. Shape changes of the

Drosophila wing blade correspond to elongation along an axis, i.e. pure shear [59]. The

pure shear rate tensor ṽ can be decomposed into contributions from the aforementioned

processes. Tissue shear is then given by:

ṽxx =
DQxx

Dt
+ Txx + Cxx + Exx +Dxx (2.1)

Here, DQxx
Dt

characterizes shear by elongation changes of individual cells, Txx the contri-

bution to shear by T1 transitions, Cxx the shear contribution resulting from cell divisions,

Exx the contribution of cell extrusions (also known as T2 transitions), and Dxx the effect
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of correlated cell shape changes and cell rotations [59].

It is of particular note that the contribution of topological rearrangements within the

cell sheet has been shown to contribute significantly to the resulting tissue flow [59, 86].

As seen in Eq. 2.1, one major possible topological rearrangement is the so-called T1

transition, a process originally introduced in the context of soaps and foams [87, 88].

A classical T1 transition is illustrated in Fig. 2.1. In the minimal case, they require four

cells, which are arranged in such a way that they share two threefold vertices, i.e. two of the

cells share interfaces with only two other cells, while two of the cells share interfaces with

all three other cells. In a T1 transition, the connecting bond between two cells shrink and

all cells come together to meet in a single fourfold vertex. Then, a new bond is formed in

a manner that has cells switch neighbors from the original configurations. Specifically, the

two cells that were initially separated remain together, and the other two are separated.

It is also possible for the four way vertex to revert back to its original conformation, or for

the neighborhood to fluctuate between both possible confirmations with two three way

vertices [83]. Fig 2.2 illustrates how shear can be created by T1 transitions without any

change of cell shape.

“Half” T1 transitions in which a bond is lost but no new one is formed can also be

defined, but these can also be generated by other events in the cell sheet [86].

It is worth noting that the fourfold vertices that appear temporarily in T1 transitions

are unstable in most scenarios [89] and decompose into one of the two possibilities with

a pair of threefold vertices. As these two vertices can be shifted against each other, each

of these two possibilities has infinite realizations, some of which are energetically more

favorable than others if examined by e.g. the vertex model (see chapter 2.5.4) [89].

As it turns out, shear resulting from T1 transitions and shear by cell elongation con-

tribute to total shear in a significant manner, and oppose each other [59]: Early in the

process of wing development, T1 transitions cause shear along the anterio-posterior (AP)

axis, which is opposed by the increase of cell elongation along the proximal-distal (PD)

axis. In intermediate and late stages of the process, the average orientation of T1 tran-

sitions shifts, so that they instead cause a PD shear, which is opposed by an AP shear

caused by a reduction of cell elongation. Interestingly, upon examining the formation and

loss of connections over time as a result of these transitions, even more complex dynamics

arise. At early times, when the T1 shear is mainly oriented along the AP axis, connections

between cells are typically lost along the PD axis, whereas they are preferentially gained
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Figure 2.1: Schematic of a T1 transition. This transition occurs at the interface of four cells. Such
cells break symmetry in their arrangement (left), with two cells sharing interfaces with two
cells (green cells) and two cells sharing interfaces with three cells (yellow cells). In a T1
transition, the two three-neighbored cells lose their shared boundary (indicated in red), and
after passing through a perfectly symmetrical configuration where all cells share one common
vertex (middle), a new boundary is formed between the two remaining cells (right). This
configuration is energetically equivalent to the initial arrangement, though each cell now has
a different number of neighbors it shares boundaries with. Despite energetic equivalency, an
energy barrier must still be overcome to perform a T1 transition.
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Figure 2.2: Tissue deformation by T1 transition. Multiple T1 transitions can significantly reshape the
tissue and create shear. Cells that share interfaces with two cells involved in the rearran-
gement are highlighted in green, those that share interfaces with three involved cells are
highlighted in yellow. The lost and gained shared boundaries are indicated in red.
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along the AP axis. At intermediate times, both lost and gained connections are preferen-

tially oriented along the PD axis, and the type of T1 transition where the four way vertex

reverts back to two threefold vertices oriented as they were initially is the most common.

Finally, at the end of the process, when T1 shear along the PD axis dominates, bonds

along the AP axis are preferentially dissolved, while the new ones created are preferen-

tially oriented along the PD axis. This seems to indicate that the PD-oriented epithelial

stresses have two threshold values, a lower one at which point they promote expansion of

cell boundaries along this axis, and a higher one at which they also block the dissolution

of connections in this direction.

Interestingly, PD oriented T1 transitions appear to depend on tissue stresses, whereas

AP oriented transitions are driven autonomously, and the rearrangement of T1 transitions

depends on external stress, but reacts with a time delay [59].

In general, microscopic rearrangements such as T1 transitions are relevant in allowing

cell collectives to become fluid and thus have an influence on resulting migration behavi-

or. Probing these transitions is difficult, however, as they are mostly studied in complex

systems with many cells. Thus, in the project detailed in section 3.4, we created a mini-

mal system of four epithelial cells, arranged in the typical geometry with two threefold

vertices, which should allow probing such things as the transition frequency between the

two possible sets of realization of two threefold vertices.

2.2 Soft active matter

One potential approach to studying collective cell behavior is by accessing it as a subcate-

gory of soft active matter research. Soft matter is a field of study attributed to condensed

matter physics that has seen increasing interest in the last twenty-five years. It concerns

itself with materials that have important length scales between atomic and macroscopic,

and that are easily deformable by thermal fluctuations around room temperature [90].

These types of systems come in both active and inactive form, with the latter typically

being more straightforward to describe from a physics perspective. Active systems are

out of equilibrium, which is where their allure lies, as this can give rise to a multitude of

fascinating phenomena.

Though non-living systems exist, a multitude of biological (living) systems make up

a large population of active matter. These include such things as bacteria swimming in
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a)

b)

Figure 2.3: Bird flocks as a representative sample of living active matter. a) A flock of birds high in
the sky, viewed at a coarse-grained level b) A flock of birds close to the ground viewed at a
much more detailed level, revealing distinctions between the individual components. Image
copyrights 2016-2018 Matthias Lawrence Zorn.
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suspensions [47, 48], in vitro mixtures of bio-filaments and associated motor proteins [49],

eukaryotic cells [50], as well as flocks of birds (see Fig. 2.3), fish or land based animals

[51]. Thus, they cover an entire range of length scales from microscopic to macroscopic.

On the flip side, non-living systems are often artificial, and include things such as layers

of vibrated granular rods [52] or collections of robots [53].

All of these diverse materials share some common characteristics that define active

matter [5, 6]: Each of these systems consists of a number of self-propelled, interacting

particles that can convert free energy into systematic movement. In order to maintain

an out-of-equilibrium state, energy needs to constantly be fed into a system from the

outside. In contrast to other non-equilibrium systems, in active matter this influx of

energy happens directly at each individual self-propelled unit, and not at the system

boundaries (as is for example the case for sheared fluids). The resulting motion is thus

not defined by an external force or field, but rather by each particle’s orientation [54].

The interaction of individual particles with each other highlights the biggest difference

to typical equilibrium statistical physics. In particular in biological systems, the energy

dissipated into the surrounding medium is non-negligible, so unlike in equilibrium systems,

the total momentum of colliding and interacting particles need not be preserved [91].

The goal of (soft) active matter physics is to find generic behaviors common to the

multitude of systems the discipline encompasses, such as phase transitions or characteristic

instabilities. This knowledge can be used in order to understand mechanisms arising in

vivo [54] and, ideally, to reproduce biological components for chemomechanical systems

artificially [52, 92].

Given the nature of the discipline, a common approach to understanding the complex

systems it involves is by borrowing tools from condensed matter physics and statistical

mechanics, expanding them to account for the diverging features of active matter [6].

For instance, when only examining systems over large time and length scales, they can

be well described with a hydrodynamic theory that only needs to take into account the

symmetries of the problem. It does not need to make any assumptions about an underlying

microscopic model, and thus the system can be characterized by a few parameters and

their relation to one another. A detailed description of all the microscopic interactions

taking place between every single self-propelled particle in the system would be much

more complicated (especially since the systems in question quite frequently have very

large numbers of particles present), but can hereby be avoided [6].
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2.3 Hydrodynamic framework for the description of

flow

The term fluid dynamics typically refers to the study of a liquid with specified properties

in a particular scenario, in particular when such a configuration involves the movement

of said fluids [93, 94]. Classical problems might involve the flow of oil through a pipeline,

determining the forces acting on an aircraft, or examining the increase of blood pressure

as a result of vasoconstriction (blood vessel narrowing). While the well known laws of

mechanics govern the behavior of fluids, the consequences of these laws are often excep-

tionally complex to the point where solving them analytically in order to construct a

formalism that predicts fluid behavior is no longer possible.

At any given point in time t, a flow can be quantified at each point (x, y, z) by its velocity

v = (vx, vy, vz), its temperature T , its pressure p and its mass density ρ. Depending on the

specific scenario, not all of these state variables will be equally important. For instance,

when examining a flowing cell sheet in analogy to a fluid, temperature is rather irrelevant.

For collectively migrating cells, active migration of the individual components would take

the role of temperature, but when working with a population of only a single type of cell,

the energy each of these cells can inject into the system should be identical (assuming

a scenario where all cells are healthy and there are no external influences that would

cause parts of the population to behave differently). As such, temperature should only

play a role when comparing experiments with populations of cells that show a different

individual activity.

The issue with calculating fluid flow in a specific scenario (or finding a general solu-

tion for fluid flow) is that six (in part) nonlinear differential equations are necessary to

determine the state variables:

• Law of conservation of mass

• Law of conservation of momentum (3 equations)

• Law of conservation of energy

• Equation of state (thermodynamic relation between T , p and ρ)

In addition, initial and boundary conditions of specific problems play an important role
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and need to be considered. Taken together, it can be hard (or even impossible) to solve

these equations mathematically for a given scenario. Thus, in fluid dynamics problems, a

formal theory often needs to be supplemented by experimental observation.

Even for simple configurations, complex behavior can emerge for classical fluids. In this

work, experiments analogous to “traditional” fluid dynamic experiments are performed

with collectively migrating cell sheets. Due to the rich interplay between and the active

movement of the individual components of such an active system, the “fluid” in these cases

are already different than a straightforward Newtonian liquid, such as water. Accordingly,

it is extremely important to understand how more simple fluids would behave in the

analogous experiments, and to gain a detailed comprehension of in which aspects they

differ from a collectively migrating cell sheet. While many properties cannot be transferred

one-to-one from classical liquids to cell sheets, it is worth noting that some of the properties

of these actively moving collective systems might fill a role that causes a given phenomenon

in a simple fluid.

In consequence, this chapter details the basics of fluid mechanics, highlighting the dif-

ferent classifications of liquids and what differentiates them, as well as discussing where

on the spectrum a migrating sheet of epithelial cells would fall in each case. Following

this, two classical hydrodynamic problems are examined, flow through a pipe and flow

through a constriction. It is these two scenarios that will later be studied analogously for

migrating cell sheets.

2.3.1 The Navier-Stokes equation

In classical mechanics, the relationship between the acceleration of an object of mass m

and the forces acting upon it is given by Newton’s second law:

mdtv =
∑
j

Fj (2.2)

Here,
∑
j

Fj represents the external forces acting upon the particle, and v describes

the particle’s velocity. This law can be applied to fluids by means of some conversions,

as outlined in reference [95]: In order to apply Eq. 2.2 to fluids, one must divide by the

fluid’s volume. This leads to the mass being replaced by the density ρ and the forces being

replaced by force densities fj. Replacing the particle’s velocity with the Eulerian velocity
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field v(r, t) and the time derivative dt with the material time derivative Dt, Newton’s

second law of motion becomes the so called Navier-Stokes equation:

ρDtv =
∑
j

fj (2.3)

Inserting the explicit form of the material time derivative, the Navier-Stokes equation

becomes:

ρ
(
∂tv + (v · ∇)v

)
=
∑
j

fj (2.4)

Finally, the explicit expressions for the force densities fj can also be inserted, leading

to the full Navier-Stokes equation for compressible fluids:

ρ
(
∂tv + (v · ∇)v

)
= −∇p︸ ︷︷ ︸

pressure-gradient
force density

+ η∇2v +
(1

3
η + ζ

)
∇(∇ · v)︸ ︷︷ ︸

viscous force density

+ ρg + ρelE︸ ︷︷ ︸
body force density

(2.5)

Here, ∇p stands for the pressure-gradient, whereas η and ζ represent the viscosity and

bulk viscosity (assumed to be constant), respectively. The last two terms of the sum on

the right hand side of the equation stem from external forces acting throughout the entire

fluid, typically (though not necessarily exclusively) the gravitational force (given by the

product of the density ρ and the acceleration of gravity g) and the electrical force (given

by the product of the charge density ρel and the external electric field E).

While the Navier-Stokes equation is not too complicated to write down, solving this

non-linear differential equation analytically is a much bigger problem, and only possible

for the right circumstances. As a result, whenever possible, special types of fluids, such as

incompressible ones, are used as approximation as they allow the equation to be simplified.

Numerical solutions of the full equation are possible, but even there, working with a

simplified version is preferable.
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2.3.2 Categorizations of fluid flows

As mentioned above, analytical solutions to the full Navier-Stokes equation can only

be found for a few specific cases. For some special types of fluid flows, however, it can

be sufficient to work with a reduced, more simple version. To this end, this chapter

examines the different ways fluids and fluid flows can be categorized depending on their

characteristics, and discusses how the Navier-Stokes equation can be simplified for some

of these cases. Where possible, an assessment is given as to where collectively migrating

cell sheets fit on the scale of each classification.

Newtonian vs. non-Newtonian fluids

One of the first distinctions that can be made when characterizing fluids is whether

they are Newtoninan or non-Newtonian. The classification depends on the relationship

between its strain rate and the resulting viscous stresses. In the most general case, a fluid

is considered Newtonian if the viscosity tensor µij describing the relationship between

stress and strain does not depend on either the strain rate or the velocity of the flow

(though a dependence on temperature is still possible).

In the more specific, but very common case that the liquid in question is isotropic (i.e.

the mechanical properties of the fluid are the same in any direction) and incompressible

(see section 2.3.2), the definition of a Newtonian fluid can be stated in a simple equation

[94]:

τ = µ
dvx
dy

(2.6)

Here, τ is the shear stress in the fluid, µ is the scalar dynamic viscosity constant, and
dvx
dy

is the derivative of the velocity component parallel to the shear with respect to a

displacement perpendicular to this direction (i.e. the strain rate).

Some typical examples of fluids that can be considered Newtonian, at least in all ty-

pically examined regimes, are water and most gasses [96]. On the other hand, the more
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general case

τ = f

(
dvx
dy

)
(2.7)

with f being a nonlinear function, describes all non-Newtonian fluids [94]. Typical ex-

amples for these cases include blood and starch suspensions. More generally speaking,

emulsions and mixtures are frequently non-Newtonian, as are liquids of complex molecu-

lar structure (in particular long-chained molecules), such as polymers [96].

Cell sheets are visco-elastic, showing creep and stress relaxation behavior in response

to mechanical loading [97], and as such will likely be more closely described by non-

Newtonian liquids.

Incompressible vs. compressible flow

In many flowing fluids, the density of a flowing element of fluid can be seen as constant

over the entire motion and in the entire examined volume, i.e. there is no notable expan-

sion or compression of the liquid over the observation period [98]. Such flows are termed

incompressible, or flows of incompressible liquids and in many cases the nature of incom-

pressibility significantly simplifies the governing hydrodynamic equations. For instance,

the continuity equation [94]

∂ρ

∂t
+∇ · j = 0, (2.8)

where ρ is the mass density and j = ρv is the mass flux, simplifies to

∇ · v = 0. (2.9)

As ∂kvk = 0 holds true for incompressible fluids, the Navier-Stokes equation (Eq. 2.5)

likewise simplifies to Eq. 2.10.

ρ
(
∂tv + (v · ∇)v

)
= −∇p+ η∇2v + ρg + ρelE (2.10)
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Due to the simplification of many of the relevant equations that follows from incom-

pressibility, the question of whether the collective migration of sheets of epithelial cells

can be considered an incompressible flow is a very relevant one. In order to answer this

question, it is necessary to clarify whether the cell sheets themselves are compressible in

general. If they are not compressible in the traditional sense (i.e. force leads to instan-

taneous deformation), it is important to consider that they might still slowly remodel

their shape due to external pressure, by remodeling their cytoskeleton. In terms of flow

behavior, such remodeling to adjust for pressure could well take the role of compressi-

bility even if the cells themselves were incompressible. If such a pseudo-compressibility

occurs, it then becomes essential to determine whether it happens on a time scale relevant

to their migration in a particular scenario. In this scenario, the question of whether or

not their migration can nonetheless be modeled as an incompressible flow remains. While

compressible fluids generally lead to compressible flows, under the right conditions they

can nonetheless be approximated very well by incompressible flows.

In principal, the difference between an incompressible fluid and an incompressible flow is

which derivative of the density is required to be zero. An incompressible fluid is one where

the partial derivative with respect to time ∂ρ
∂t

= 0, i.e. the density of a control volume of

the fluid does not change at a fixed point in space. On the other hand, in an incompressible

flow, ∂ρ
∂t

can be nonzero, as long as the material derivative Dρ
Dt

vanishes [99]. This constraint

is the equivalent of saying that the density of a control volume moving at the same velocity

as the fluid is constant. It is worth noting that this second, weaker constraint is sufficient

to yield the aforementioned simplified continuity equation (Eq. 2.9). Thus, determining

whether or not the divergence of the velocity is zero is sufficient to determine whether a

flow is incompressible or not. The flow of sheets of epithelial cell sheets (including Madin-

Darby Canine Kidney (MDCK) and Michigan Cancer Foundation-10A (MCF10A), the

two epithelial cell lines used in this thesis) has been shown to have an average divergence

close to zero [100], though the experimental boundary conditions likely play a role in

whether or not this holds true in any particular scenario. Thus, while it is possible to

treat the flow of migrating cell sheets as incompressible, examining the divergence of the

flow for each experiment at hand would be ideal.

Laminar vs. turbulent flows

In fluid dynamics, a flow is considered to be laminar if the liquid can be subdivided into

parallel layers that slip past each other at different velocities [101]. In particular, this
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means that there is no mixing of these sublayers (i.e. there are no currents perpendicular

to the direction of flow). In contrast, in turbulent flows such mixing does occur, typically

in the form of so called vortices or swirls. Whether a fluid flows laminarly or turbulent

depends on how fast it is flowing relative to how viscous it is. This relation is captured

in the dimensionless Reynolds number Re, which varies depending on the boundaries of

the examined problem. In the simplest case, for the flow of a fluid through a straight pipe

with radius a, it is given by Eq. 2.11 [101].

Re =
2ρav

µ
(2.11)

Here ρ represents the density of the fluid, v its velocity, and µ the dynamic viscosity.

Though it is not straightforward to determine an exact transition point (due in part to the

stability of pipe flow to infinitesimal perturbations and the fact that at low Re turbulence

is only transient), a value around Re = 2000 is a good approximation [102]. This means

that laminar flow generally occurs for liquids that flow slowly or are very viscous.

Still, the concept of the Reynolds number cannot be transferred on a one-to-one basis to

the migration of cellular sheets, as it was not conceived for active materials. One striking

difference to passive liquids is the fact that individual cells can inject energy into the

system, and, in principle, single cells or small groups of cells can temporarily move against

the general direction of flow. In addition, cell divisions create new “particles” in the middle

of the migrating sheet, and the whole process of rounding up and dividing can also act as

a perturbation to the system, whereas for more classical systems such disturbances must

be introduced externally. These differences might help explain why despite the fact that

generally speaking, migrating cell sheets move slowly (on the scale of tens of micrometers

per hour) and viscously (with strong adhesions between the individual cells in the layer),

they still tend to behave in a turbulent manner. For instance, the formation of vortices

during cell migration is a frequently observed phenomenon [27, 37].

Due to this, the migration of cell sheets is unlikely ever to be entirely reminiscent of

a laminar flow. It cannot be ruled out, however, that despite small scale perturbations,

on long time scales in the right geometries, the cells’ motion can be approximated by a

laminar flow. As such, while the default assumption should be that the cell behavior will

be turbulent, an investigation on a case-by-case basis is necessary.
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Steady vs. unsteady flows

A rather straightforward classification of flows is into steady and unsteady flows. In this

context, a steady flow is one that does not change over time, i.e. the flow profile is identical,

independently of the time point at which it is examined. Mathematically speaking, a

steady flow is one for which ∂/∂t = 0 for any quantity pertaining to flow [93]. An unsteady

flow therefore is one that is not constant over time.

Steadiness or unsteadiness always depends on the frame of reference. For instance, flow

around an obstacle might be steady, while in a reference frame where the obstacle is

instead dragged through the fluid, the motion is not steady [93]. In the case of collectively

migrating cells that invade channels (either straight or with a constriction), as were studied

in this thesis, the flow is not steady in the reference frame of the observer. Over time, the

cell sheet invades deeper into the channel (potentially even encountering a constriction)

and changes accordingly. For instance, at t = 0, there is no flow of cells 100 µm ahead

of the front, but several hours later, once the cell sheet has invaded past that point,

there clearly is. It is still possible that flow might be steady (or approximately steady)

in different reference frames in this situation, however. For example, in a reference frame

moving with the velocity of the cell front, the flow might not change over time (i.e. the

flow 200 µm behind the front of the cell sheet might always be approximately the same,

no matter how far the cell sheet has penetrated into the channel).

Inviscid vs. viscous vs. stokes flow

Both inertial and viscosity effects influence the dynamics of fluids. Flow can be categorized

into different regimes according to which of the forces is dominant. Again, this behavior

is captured by the Reynolds number.

When viscous forces are very strong compared to inertial forces (Re� 1), inertial forces

can be neglected, leading to a regime known as Stokes flow (also referred to as creeping

flow) [103]. Conversely, when inertial effects dominate over viscous ones (Re � 1), the

flow can be modeled as inviscid by entirely neglecting the viscosity [93]. In both cases,

neglecting some contributions serves to simplify the Navier-Stokes equation, to the point

where it can sometimes be solved.

For inviscid flow, the Navier-Stokes equation (Eq. 2.5) simplifies to the Euler equations.
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For an incompressible fluid, this is:

ρ
Dv

Dt
= −∇p+ ρg (2.12)

For Stokes flow, the unsteady and convective terms in the Navier-Stokes equation are

neglected, leading to the so-called Stokes equation [103]:

∇p = η∇2v (2.13)

Aside from potential time-dependent boundary conditions, the Stokes equation con-

tains no more time dependence (which by default also makes it time reversible) [103].

Unfortunately, Stokes flows is always only an approximation, as all real flows have a fi-

nite Reynolds number. An acceptable rule of thumb for when the approximation is good

appears to be Re < 0.1 [103].

Phenomenological observation of collectively migrating cell sheets regrettably indicates

that they likely fall into the regime of viscous flows, where neither approximation is valid,

and thus the full Navier-Stokes equation must be used, or it must be simplified in some

other way.

2.3.3 Poiseuille flow through a pipe

As mentioned in section 2.3.1, there are, a handful of special cases for which the Navier-

Stokes equation (Eq. 2.5) can be analytically solved. One of the most straightforward of

these cases is a pipe with a circular cross-section, with an incompressible liquid driven

through it due to a pressure difference between its two ends. In this case, some further

simplifications of the Navier-Stokes equation for compressible fluids (Eq. 2.10) are possible

[95]:

Translational invariance of the channel in x-direction (i.e. the direction the pipe is

parallel to) and the fact that the gravitational force balances out with a hydrostatic

pressure gradient in opposite direction lead to (v · ∇)v = 0 and consequently:

0 = −∇p+ η∇2 [vx(y, z)ex] (2.14)
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Figure 2.4: Flow of a Newtonian fluid through a pipe, showing the characteristic parabolic flow pro-
file resulting from Hagen-Poiseuille’s law. At the center of the tube the velocity is at its
maximum, before dropping off all the way to zero at the pipe’s edges.

Taking the condition for the boundary ∂C of a circular cross section C of radius a (Eq.

2.15) and the no-slip boundary condition (Eq. 2.16), the Navier-Stokes equation can be

further reshaped and simplified.

∂C : 1− y2 − z2

a2
= 0 (2.15)

vx(y, z) = 0 for (y, z) ∈ ∂C (2.16)

The result is a second-order partial differential equation for vx(y, z) inside C (Eq. 2.17)

and the corresponding solution (Eq. 2.18).

[
∂2
y + ∂2

z

]
vx(r) = −∇p

ηL
(2.17)

v = − 1

4η

∆p

∆x
(R2 − r2) (2.18)

Thus, an incompressible fluid driven through a pipe by a pressure gradient shows a

characteristic parabolic flow profile, where the velocity depends on the distance to the

wall (see Fig. 2.4). For visualization, the fluid can be imagined as several circular layers

(lamina) that each move with a velocity that only depends on their radial distance from

the center. Due to the no-slip condition, the lamina touching the tube wall must be

stationary, and viscosity slows down the proximate lamina as well. On the other hand,

the velocity is maximal in the center of the channel, and viscosity drags along neighboring
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lamina, speeding them up. Taken together, all the acting forces result in the parabolic

shape.

Naturally, physical models for a pressure driven incompressible fluid need to expan-

ded to describe collectively migrating cells, which include other contributions such as cell

activity. Changes in the properties of the flowing material can drastically alter the flow

profile. For instance, more turbulent flows show a profile that more strongly resembles a

plug flow over most of the width [104]. As discussed, the Navier-Stokes equation is hard

to solve analytically, however, so even finding a solution for something more closely re-

sembling the dynamics of collectively migrating cells can be difficult. Phenomenologically,

however, the problem can easily be accessed from the opposite direction, and the flow

profile determined experimentally.

2.3.4 Fluid flow through a constriction

Expanding on the scenario of flow through a straight pipe, the diameter of the cross

section need not be constant, such as in the case of fluid flow through a constriction. An

incompressible Newtonian fluid in this situation (see Fig. 2.5) moves at a higher velocity

in the part of the tube where the diameter is smaller, because the principle of conversation

of mass dictates that the same amount of mass needs to be transported in the same time

as in the areas with large diameter (where the same mass transport can be achieved with

a slower velocity).

A
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v
2

v
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A
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Figure 2.5: Flow of a Newtonian fluid through a constriction. Due to conservation of mass, the velocity
of the fluid increases as it flows through the narrow part of the constriction, before dropping
back to its original value once the original diameter is reached again.

In principle, in classical hydrodynamic situations this increase in velocity is accompa-
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nied by a decrease in hydrostatic pressure, following Bernoulli’s equation:

v2

2
+ gz +

p

ρ
= constant (2.19)

Here, the velocity of the fluid is given by v, g is the acceleration due to gravity, z is

the elevation above a reference plane, p is the pressure at the chosen point and ρ is the

density of the fluid. However, for the migrating cell sheets in this thesis, no equivalent

parameter to the pressure was measured, and as such, the reduction in pressure is less

interesting then the change in the flow field. The notion of the existence of a homeostatic

pressure in tissue, however, highlights its potential importance in future work [105].

The intriguing question examined in this thesis is what the flow profile of a 2D cell sheet

migrating through a constriction will look like. As mentioned above, the incompressible

Newtonian fluid develops an increased velocity in the constriction, compared to both in

front of it and behind it. This is a direct result of the mass continuity principle, however,

which ad initium already does not hold true for migrating cell sheets, due to cell prolifera-

tion. On top of this, the cell sheet might be compressible, which would additionally break

the incompressibility requirement. Given these differences, it is particularly intriguing to

see how the cells will migrate when the constriction in the channel reduces the room they

have available.

2.3.5 Diffusion theory

Diffusion is a term that can refer to two distinct processes. On the one hand, self-diffusion

describes the random motion of individual particles in the absence of external gradients

driving a mass flux. The most common case of self-diffusion is the diffusive movement of

molecules propelled by thermal energy. On the other hand, collective diffusion indicates

the movement of a large number of particles as a result of a particle density gradient. In

contrast to self-diffusion, the interactions between the individual agents plays a critical

role for collectively diffusing particles.

Even though both phenomena are distinct, they can be characterized by diffusion coef-

ficients. The self-diffusion coefficient and the collective diffusion coefficient for a substance

will have disparate values, however, unless the system in question includes no interactions

between the individual particles (e.g. ideal gas). In a way, the discrepancy between self-
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diffusion and collective diffusion is a measure for these interactions, and thus, measuring

them both for any given system can be of interest.

Single particle diffusion: random walks

Self-diffusion constants are often determined by fitting the observed mean squared displa-

cement (MSD) with random walk models. These are typically used to describe a variety

of phenomena, such as the search paths of foraging animals [106], the folding of polymers

[107], or the motion of isolated cells [108]. The term random walk defines motion in the

form of successive steps, with both the step size and the direction of the step entirely ran-

dom for each time point. There are several different instances of random walks, distinct

from one another by whether or not they include such things as bias and correlation.

The most basic random walk model to describe mathematically is the unbiased and

uncorrelated random walk [109]. In the context of these models, unbiased refers to the

equal likelihood to move in all directions (as opposed to some directions being prefer-

red), whereas uncorrelated indicates that each step is independent of all preceding steps.

Unfortunately, this simple isotropic random walk model is often insufficient to describe

biological scenarios. The most predominant expansions of the simple random walk mo-

del are the biased random walk, which includes a preferential direction for all steps, and

the correlated or persistent random walk, in which each step has a higher probability of

maintaining the same direction as the previous one than going in any other direction.

It is also possible to extend models by including waiting times between steps or incorpo-

rating barriers (implemented via reflecting or absorbing boundary conditions). Typically,

when models allow for varying step sizes, only step size distributions with finite variances

are considered. For sufficiently long times, the distribution of the location coordinate of a

walker on any axis converges to a Gaussian distribution in these cases [109]. One example

to the contrary is the Lévy flight, which has a heavy-tailed distribution of steps, meaning

the occasional long step is included with the more frequent short steps. While Lévy flights

have been used to successfully describe animal search patterns [110], their applicability is

still controversial and unclear [111, 112].

In the context of this thesis, the self-diffusion of migrating cells is studied. The most

prominent model to describe such cells is the persistent random walk [113, 114]. As noted

above, the self-diffusion constant is related to the MSD, which is calculated by measuring

the distance from the position at any starting point x0 on the cell track to the position of
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the cell ∆t later, and then averaging over all possible starting points (Eq. 2.20). For the

persistent random walk model, this relation is given by Fürth’s formula (Eq. 2.21), with

the MSD denoted as 〈x2〉, the diffusion coefficient denoted as D, and t and Tp indicating

the time and the persistence time (the time scale on which the correlation in the steps’

direction is preserved), respectively [113].

〈x2〉 = 〈(x(t+ ∆t)− x0(t))2〉 (2.20)

〈x2〉 = 4D ·
(
t− Tp · (1− e

− t
Tp )
)

(2.21)

For t� Tp, this formula can be simplified to Eq. 2.22. For short persistence times, this

simplified equation also serves as a good approximation [114].

〈x2〉 = 4Dt (2.22)

Collective diffusion: Fick’s law

Collective diffusion refers to the diffusion of a large number of particles, typically with

interactions between each other. In the presence of a spatial density gradient ∂c
∂x

, this

particle diffusion with collective diffusion coefficient D will result in a macroscopic flux j

as described by Fick’s first law [115]:

j = −D∂c

∂x
(2.23)

More generally, the collective motion of a multitude of particles is described by the

diffusion equation, which can be derived from the continuity equation:

∂c

∂t
+∇ · j = σ (2.24)

Here, c is the density of particles per unit volume, t is the time, j is the particle flux, and

σ represents the particle generation per unit volume per unit time (“sources” or “sinks”).

Assuming there is no generation or destruction of particles (σ = 0) and the only source
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of flux is diffusive flux (j taken from Eq. 2.23), the resulting diffusion equation is:

∂c

∂t
= D

∂2c

∂x2
(2.25)

Expansion of this equation, to include other terms necessary to capture a system’s fea-

tures (e.g. reaction terms), is easily possible, as described in section 2.5.1. These equations

then allow a good access point for determining the collective diffusion coefficient from ex-

perimental measurements of a system, such as, in this thesis, collectively migrating cell

sheets.

2.4 Glass transitions in supercooled liquids and cell

collectives

Cell sheets are known to flow like fluids at long scales, yet act more like a rigid solid on

short scales, where motions of each cell are strongly confined by their neighbors [27, 70].

Intriguingly, such a solid-like character over short times, paired with collective flow over

longer times is reminiscent of the behavior of supercooled liquids approaching a glass

transition. Angelini et al. have suggested the notion that the collective motion of cells

might undergo a similar transition, with density taking the role of temperature [38]. In

particular, the idea is that an increase in cell density restricts the motion of each cell due

to stronger crowding, forcing the cells to move in groups. Recent work has confirmed the

role of this jamming or glass transition in cell migration [41, 46, 57]. To this end, this

chapter gives a very brief introduction to the concept of the glass transition observed in

supercooled fluids, and highlights the key characteristics of such fluids as they approach

the transition that have also been found in cell collectives.

Glasses are materials that act mechanically like solids, but lack the periodicity of cry-

stals [116]. They are most commonly produced by supercooling, i.e. cooling a viscous

liquid fast enough to avoid crystallization. Specifically, the process works as follows [117]:

As the liquid is cooled, viscosity increases and the constituent molecules move more and

more slowly. This means that a longer time is necessary for the molecules to sample the

available configuration space and the time for finding the optimal configuration for that

temperature (i.e. the equilibrium) will increase. If the temperature is decreased at a con-
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stant rate, eventually the time for finding this equilibrium will be longer than the time

scale of cooling, and the configuration will begin to deviate from the optimum. Eventually,

as the temperature continues to decrease, the molecules will move too slowly to sample

any available configurations on the relevant time scales, essentially becoming “frozen”. As

no periodicity was reached, the resulting material is a glass. This changeover defines the

glass transition temperature, though there are multiple options for the exact definition of

its value [116].

While the field of supercooled liquids and the glass transition is very wide, and still has

many unanswered questions, there are some phenomenological characteristics of supercoo-

led fluids approaching the transition that are shared by cell collectives. Specifically, these

are the appearance of dynamic heterogeneities, a transition from collective relaxation to

highly constrained localized motion and the appearance of peaks in the density of states

(DOS). Dynamic heterogeneities can be observed in the velocity fields of confluent epithe-

lial monolayers. This means that the field is spatially heterogeneous, with variations in

magnitude from region to region. Importantly, these different velocities are not randomly

distributed, but rather organized in clusters, with faster cells (and, correspondingly, slower

cells) frequently being grouped together. Likewise, the stress landscape throughout the

monolayer shows the same dynamic clusters. These clusters of high velocity/stress are not

structural, which means they do not relate to the cell density and they occur in a dynamic

matter [38, 39]. As density increases, these dynamic heterogeneities increase in size, while

at the same time the magnitude of observed velocities decreases, behavior known from

supercooled fluids approaching a glass transition [38].

Collective cell sheets also show a transition density, below which cells move greater

distances by directed migration than by stochastic motion. Above this density, motion

is predominantly diffusive. Again, this transition from collective relaxation to confined,

localized single cell motion is behavior reminiscent of a glass transition [38]. Intriguin-

gly, the inverse cell diffusivity D0, as a function of the cell density, is well-fitted by the

Avramov-Milchev equation (Eq. 2.26), which describes stress relaxation in glass forming

molecular fluids and glass forming colloidal fluids, as a function of temperature and den-

sity, respectively [118].

1

D0

=
1

Dmax

exp

[
ε

(
σ

σg

)α]
(2.26)

Here, Dmax is the diffusivity at zero density, ε is a dimensionless activation energy at
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the glass transition density σg, and α is a fragility parameter. Fitting of experimental data

by Angelini et al. resulted in values of α = 2.4 and ε = 1.8 [38]. This fragility parameter

is about in the middle between “strong” glasses (α ≈ 1) and fragile glasses (α ≈ 5 − 6),

indicating epithelial cell layers are best described as moderately fragile glass forming

fluids. Meanwhile, the relative width of the activation energy spectrum is large compared

to most molecular glasses, in which ε ≈ 30 [38, 118]. In summary, these findings indicate

that collective migration within a confluent cell monolayer shows relaxation behavior very

reminiscent to the non-Arrhenius relaxation of moderately fragile glass forming fluids.

The final characteristic behavior of supercooled fluids approaching a glass transition

found in cell collectives is given by the appearance of peaks in the DOS. To analyze

this, Angelini et al. studied the dynamic structure factor S(q, ω) of confluent cell motion,

defined as the modulus squared of time and space Fourier transform of the image intensity.

They fit their data by the frequently used damped harmonic oscillator model [38]:

S(q, ω)

S(q)
= I0(q)

1
2
Γ0(q)

ω2 +
(

1
2
Γ0(q)

)2 + I(q)
Ω(q)Γ2(q)

[ω2 − Ω2(q)]2 + ω2Γ2(q)
(2.27)

The first term of the sum is a Rayleigh peak, which quantifies the systems self-diffusivity.

Its amplitude and its width are given by I0(q) and Γ0(q), respectively. The second term in

the sum is a Brillouin peak, which measures the elastic response to density fluctuations.

Its amplitude and width are given by I(q) and Γ(q) respectively. This fit can then be

used to calculate the group velocity c = dΩ(q)/dq, the reciprocal of which is dq/dω and is

necessary to calculate the DOS, which in 2D is given by Eq. 2.28 with a maximum wave

vector qmax.

n(ω) = 2q−2
maxq(dq/dω) (2.28)

This DOS is found to have one peak at low densities, corresponding to cell body shape

fluctuations, whereas at higher densities, a second peak corresponding to the cell division

time appears [38].

Understanding the glass transition is already far from trivial for supercooled fluids,

but for a system of cells there are several more features that will have to be taken into

account, namely the fact that the system is active, and particles can generate forces

internally, actively or passively change their shape, as well as proliferate. Similar to foams
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which display a coarsening of bubbles over time [119], cell layers also age, increasing their

density over time, which can lead to a change of local stresses and thereby adds another

challenge to the issue.

In summary, hardly anything is known about active systems approaching a glass transi-

tion, though phenomenologically cell layers certainly display the features associated with

such a transition. As a result, cells at low densities behave like a fluid, whereas cells at

higher densities act as a glass, and structural relaxations take on the order of days [38].

2.5 Overview of cell migration models

A wide variety of theoretical frameworks is available for describing and reproducing col-

lective cell behavior, a good overview of which is given in reference [4]: Reaction-diffusion

models are the simplest approaches, taking only a term to describe collective diffusion and

a term to describe cell proliferation and examining to what extent this (often analytically

solvable) description is sufficient. More complex models that still aim at good conceptual

understanding are continuum models. They can include far more detailed parameters to

describe cell behavior (such as friction, viscosity, or diffusivities), but still work best at

scales that are large compared to the individual agents (in this case cells). Less coarse-

grained models attempt to achieve more detailed descriptions by modeling each cell as

an individual particle and having them interact with each other. Of these particle-based

models, the Vicsek model is probably the most well known. Finally, the most detailed

models describe cells in an even more extended manner, not simply modeling each cell

as an individual agent, but also including things like cell area, cell-cell adhesions, cell

contractility and cell polarization explicitly. These quantities are key determinants of cell

shape and motility, making their incorporation necessary if the goal is to study features

on the scale of only a few cells. The two most prominent models from this category are

the vertex model and the cellular Potts model.

This chapter gives a short introduction into each category of models, with special detail

to models that were used in the course of this thesis.
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2.5.1 Reaction-diffusion equations: Fisher-Kolmogorov
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Figure 2.6: Theoretical population curve for ideal logistic growth. The population begins growing ex-
ponentially but slows down as it approaches the carrying capacity k=500, indicated by the
dashed black line.

Random motion of individual particles and their interactions can result in macroscopic

diffusion, described by Fick’s law (see section 2.3.5). The most coarse-grained approach

to modeling collective cell migration is to simply assume that the change of the cell

density c over time t is described by the diffusion equation (Eq. 2.25). This is unlikely

to be sufficient in most cases, however, as the cell density will change due to changes

in cell number, following proliferation. Thus, the regular diffusion equation (Eq. 2.25) is

expanded to include a term to account for this “reaction” of one cell turning into two

cells. The result is a reaction-diffusion equation, generally of the form given in Eq. 2.29.

∂c

∂t
= f +D

∂2c

∂x2
(2.29)

Here, f is a function of c, x and t that accounts for all reactions in the system [115].

While it is possible to choose many different reaction terms f , in the absence of any

further knowledge of the system, the simplest approach is the best. In this case, the

simplest model for cell proliferation is logistic growth, which assumes exponential growth

at a rate λ until the system saturates when it approaches a maximum carrying capacity

k as illustrated in Fig. 2.6.
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Figure 2.7: Traveling wave propagating in x-direction. As the time t increases (indicated by the color
gradient from yellow to dark blue), the wave moves in positive x-direction. During this time,
the density profile c remains in a constant shape. The wave moves with a constant velocity
as can be seen by the equal distance between the wave fronts.

The result of inserting logistic growth into Eq. 2.29 is the Fisher-Kolmogorov equation

(Eq. 2.30), the simplest nonlinear reaction-diffusion equation in one dimension.

∂c

∂t
= λc · (1− c

k
)︸ ︷︷ ︸

reaction term

+ D
∂2c

∂x2︸ ︷︷ ︸
diffusion term

(2.30)

As mentioned in the introduction of this system, one great advantage of simple descripti-

ons via reaction-diffusion equations is that they can have analytical solutions. Specifically,

the Fisher-Kolmogorov equation can be solved by traveling waves. These are waves that

fulfill two distinct criteria: the shape of the propagating wave front is preserved over time,

and the velocity of the wave front is constant [115], as illustrated in Fig. 2.7. Mathema-

tically speaking, a solution of Eq. 2.30 is a traveling wave if it satisfies:

c(x, t) = c(x− vt) (2.31)

Physically, such solutions can make sense for scenarios of expanding cell sheets, such as

wound healing assays or invasion of channels. Such traveling wave solutions to the Fisher-

Kolmogorov equation result in a well-defined relation (Eq. 2.32) between the collective
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diffusion coefficient D and the front propagation speed v [115].

v =
√

4Dλ (2.32)

The growth rate λ is readily accessible through independent experimental measurements,

and the front speed of an expanding cell sheet is also relatively straightforward to de-

termine in a corresponding experiment. This makes this relation an intriguing possibility

to validate whether the reaction-diffusion model properly describes the experimental sy-

stem. Independently determining the third parameter, the collective diffusion coefficient

D, however, is less straightforward and will complicate matters. In general, for purposes

other than validating the model, a value can be obtained by fitting the Fisher-Kolmogorov

equation’s analytical solution (Eq. 2.33) to the experimentally determined density profiles

[120]. In the process, this gives an additional check as to the applicability of Eq. 2.30 to

the experimental system on hand.

f(x) = k ·

[
1 + exp

(
−5

6
λt+

√
λ

6D
· x

)]−2

(2.33)

In publication P2, which is discussed in section 3.1 of this thesis, we studied collective

cell migration of 2D epithelial sheets into microstructured channels [63]. The tempo-

ral and spatial evolution of the cell density profile is examined and modeled with the

Fisher-Kolmogorov equation. At coarse-grained scales, these models reproduce observed

phenomena surprisingly well given the simplicity of the approach.

2.5.2 The active isotropic-nematic mixture model

Continuous media approaches can be slightly more detailed than a description via a sim-

ple reaction-diffusion equation. While they cannot include biological details of cells and

their interactions to the degree that more complex, cell based models can, mathematical

analysis and thus conceptual understanding is typically simpler with continuous media

approaches [4]. In these frameworks, the spatiotemporal dynamics of cell sheets are des-

cribed using fields, while ignoring the individual cells that make up the studied matter.

Typically, these models work well on length scales that are significantly larger than the

scale of the agents that are being ignored, so they should be expected to be capable of

giving accurate results down to a length scale of several cell lengths. Conceptually, the
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a) b)

isotropic

phase

nematic

phase
Figure 2.8: Illustration of orientation of liquid crystals in different mesophases. a) In the isotropic phase,

the elongated liquid crystal molecules are randomly oriented. b) In the nematic phase, liquid
crystals align so that they share long-range directional order, but the molecules share no
positional order.

principle equations in continuum based models are partial differential equations derived

from conservation laws (e.g. conservation of mass or momentum).

An example of this class of models, which has recently been used successfully for des-

cribing the relationship between topological defects and cell extrusion from an epithelium

is a nematohydrodynamics simulation that accounts for the effects of both cell velocity

and orientation [100]. It models cell sheets as an active mixture of a nematic phase and

an isotropic phase (see Fig. 2.8). More specifically, the regions covered by the cell-sheet

are modeled as nematic, and the “free area” the cell sheet can expand into is modeled as

isotropic. The key parameters describing the system in this framework are the velocity

and the nematic order. In brief, the model describes the evolution of the nematic order

by the Beris-Edwards equation and the evolution of the velocity by the incompressible

Navier-Stokes equation, with order influencing the evolution of velocity and vice versa.

This chapter details the specifics of this model as they are outlined in reference [100]:

Order is one of the key parameters in this model, and the orientational order of cells is
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given by the nematic order tensor:

Q =
3S(nn− I/3)

2
(2.34)

Here, n is the cell orientation, I is the identity matrix and S is the magnitude of

the order. This equation accounts for the fact that unlike regular liquid crystals, cells

are not symmetric and have a front end and a back end when they are polarized. The

Beris-Edwards equation then gives the evolution of the nematic order [121]:

(∂t + uk∂k)Qij − Sij = ΓHij (2.35)

Here, (∂t + uk∂k) is the total derivative, u is the velocity field and the co-rotation term

accounting for the response of cell orientation to velocity gradients is denoted by Sij and

given by:

Sij = (λEik+Ωik)(Qkj+δkj/3)+(Qik+δik/3)(λEkj−Ωkj)−2λ(Qij+δij/3)(Qkl∂kul) (2.36)

The velocity gradients, in form of extensional and rotational flows are characterized by

the strain rate tensor Eij (Eq. 2.37) and the vorticity tensor Ωij (Eq. 2.38), respectively.

Eij = (∂iuj + ∂jui)/2 (2.37)

Ωij = (∂iuj − ∂jui)/2 (2.38)

Finally, Hij from Eq. 2.35 is a field describing the relaxation of orientational order

towards the minimum of the free energy F (i.e. the equivalent of potential forces):

Hij =
δF

δQij

+
δij
3

Tr

(
δF

δQkj

)
(2.39)

The free energy f is calculated as the sum of the bulk free energy Fb and the free
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a) b) c)

parallel

alignment

splay bend

Figure 2.9: Orientations of liquid crystals in a nematic phase. a) Parallel alignment is energetically
the most favorable. b) Splayed alignment, in which cells diverge. c) Bending alignment, in
which cells groups of cells form an arc. Deviations from parallel alignment as seen in b) and
c) cost energy.

energy corresponding to spatial inhomogeneities in the orientation field (i.e. deviations

from parallel alignment):

F = Fb + Fel (2.40)

The bulk free energy and the spatial inhomogeneity free energy are calculated accor-

ding to Eq. 2.41 and 2.42, using the Landau-De Gennes expansion and the Oseen-Frank

expansion with single elastic constant approximation, respectively:

Fb =
AQ(QijQji)

2
+
BQ(QijQjkQhi)

3
+
CQ(QijQji)

2

4
(2.41)

Fel =
K(∂kQij)

2

2
(2.42)

AQ, BQ and CQ are material constants in these equations, whereas K is the elastic

constant. The elastic constant was set to equal values for both deviations from parallel

alignment that are possible in 2D (splay and bend, as illustrated in Fig. 2.9).

Evolution of the nematic order is an important part of the model, but far from sufficient

for the complete description of the system, which must also include equations for the
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evolution of the velocity field. Under the assumption that the cell monolayer can be

treated as an incompressible fluid (see chapter 2.3.2), the evolution of the velocity is

given by the incompressible Navier-Stokes equation:

ρ (∂t + uk∂k)ui = ∂jσij (2.43)

Stress gradients drive the rate of change of the velocity, and the total stress, σ is made

up of several contributions: isotropic pressure σisotropic, viscous stress σviscous, nematic

elastic stress σel and active stress σactive:

σisotropic
ij = −Pδij (2.44)

σviscous
ij = 2ηEij (2.45)

σel
ij = 2λ(Qij + δij/3)(QklHlk)− λHik(Qkj + δkj/3)− λ(Qik + δik/3)Hkj

−∂iQkl

(
δF

δ∂jQik

)
+QikHkj −HikQkj

(2.46)

σactive
ij = −ζQij (2.47)

Here, ζ is the activity coefficient, which determines the strength of activity of proces-

ses in the cell that generate local stresses, such as actomyosin polymerization and cell

contractility. ζ can be set to positive or negative values, to create extensile or contractile

stresses. In addition to the Navier-Stokes equation, the incompressibility assumption also

gives:

∂iui = 0 (2.48)

Finally, a field φ, coupled to the nematic order parameter, defines the state of the

system. For φ = 0 the system is isotropic, for φ ≥ 1 the system is nematic. In the context
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of this model, any part of the system that is in the nematic state is considered to be part of

the cell sheet, whereas the isotropic regimes represent the free area. Parameters are chosen

so that transitions between isotropic and nematic are sharp. Cell division is implemented

by local increases of φ randomly distributed throughout the cell sheet, occurring at a set

division rate α.

These equations of motion (Eq. 2.35, 2.43 and 2.48) are then solved by a hybrid Lattice-

Boltzman algorithm described in reference [122]. In section 3.3, this active nematic-

isotropic mixture model was applied to the collective cell migration through channels

with a constriction, and results from experiment and simulation compared.

2.5.3 Dissipative particle dynamics simulations

In the approaches presented so far, collective cell migration was described on a very coarse-

grained level that ignored the individual agents in the system. In contrast, particle-based

models represent each cell by a single particle with local interactions between neighbors

that nonetheless give rise to correlated motion over long scales [4]. They are more complex

than continuous media based approaches, but modeling the individual agents allows the

inclusion of biological behavior of cells and their interactions. Best-known among these

types of models is the Viscek model, originally established by Viscek et al. in 1995 [123],

though by now many variations thereof and many similar models have been published.

In publication P3, which is discussed in section 3.2 of this thesis, the orientation of

cell division in migrating epithelial sheets was studied and compared to the results from

a dissipative particle dynamics simulation [65]. The full description of the model can be

found in references [124] and [125]. This section gives a brief overview of the model as

defined in those publications:

The idea behind this model is a minimalistic approach, modeling each cell as two

particles i and j that repel each other with force FG
ij. Each cell’s size is given by the distance

between the two particles that form it. Due to the repulsive force between two particles of

the same cell, each cell grows, until the distance between the two particles exceeds a size

threshold Rc, at which point it deterministically divides. Division is implemented by the

random placement of new particles a short distance rc from the original cell (see Fig. 2.10).

In contrast, apoptosis (respectively all forms of cell death in general) is implemented by

randomly removing cells at a constant rate ka.
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Figure 2.10: Illustration of the dissipative particle dynamics simulation. a) Cells are represented by
two particles with a repulsive growth force acting between them. b) This growth force
drives the two particles forming the cell farther apart until they reach a predefined critical
distance Rc, at which point they divide. c) Cell division is implemented by insertion of a
second particle (indicated in orange) a small distance rc away from each original particle
in a random direction.

The dissipative particle dynamics model assumes interactions between the cells only

in the form of adhesion and volume exclusion. To this end, forces are defined between

all particles i and j that do not belong to the same cell. The total force Fi acting on a

particle i is given by:

Fi = FG
ic +

∑
j

Fcc
ij + Fa

ij (2.49)

Here, Fcc
ij is a short range repulsive force, and Fa

ij is a constant attractive force if the

particles i and j are within a certain range of each other. The sum over j is defined as

running over all particles j except for the one particle that belongs to the same cell c as

i.

The model must include some form of energy dissipation, which is achieved by using a

dissipative particle dynamics (DPD) type thermostat, implemented according to reference

[126]. Viscous dissipation between cells is implemented, while at the same time momentum
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balance is preserved. The dissipative force in this case is given by Eq. 2.50.

FD
i = −γω (rij) ((vj − vi) rij) r̂ij (2.50)

Here, the vector between the particles i (located at ri) and j (located at rj) is defined

by:

rij = ri − rj (2.51)

Direction and modulus of rij are given by r̂ij and rij, respectively. A similar notation is

used for the velocity vi, and ω is a weight function as defined in reference [126]. The dis-

sipation constants are given by γ, which is chosen independently for particles of different

cells (γt) and particles of the same cell (γc). The model also includes a background dissi-

pation of γb, which represents the effect of an extracellular matrix. This DPD simulation

is mainly designed for the modeling of epithelial sheets, however, where there is no bulk

extracellular matrix and where dissipative forces are transferred mostly to neighboring

cells and not the background. The striking advantage of the DPD approach versus Lan-

gevin simulations is that by choosing small values for γb, the model can accommodate the

background dissipation not being dominant. Forces from the cytoskeleton are mimicked

by addition of a random force, with noise amplitude kBTn.

The forces in Eq. 2.49 are defined in the following way:

The growth force FG
ij driving the particles i and j (making up one cell) apart is propor-

tional to the growth coefficient B according to:

FG
ij =

B

(rji + r0)2 r̂ji (2.52)

The repuslive force between particles belonging to different cells to implement volume

exclusion of cells is given by:

FCC
ij =

f0

(
R5
pp/r

−5
ji − 1

)
r̂ji if rji ≤ Rpp

0 if rji > Rpp

(2.53)
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Finally, the constant adhesion is given by:

Fa
ij =

−f1r̂ij if rji ≤ Rpp

0 if rji > Rpp

(2.54)

While these interactions obviously are much simpler than all the interplay going on in

actual tissue, this simple model is already successful at capturing some key behavior found

in empirical systems, such as rounding up of unconfined tissue aggregates into spherical

shape and the unmixing of combinations of tissue types with different adhesion properties.

The model can then be extended to account for the idea that motility forces in a

migrating collective are coordinated by each individual cell’s tendency to align its motility

force with its velocity. Motility forces are implemented as follows: Cells can either be in

a motile or a non-motile state. In the former, a cell actively exerts a force against the

substrate in a random direction to propel itself forward in any direction. In the latter

state, cells do not actively exert any force on the substrate. The rate kmot with which cells

switch from the non-motile into the motile state is constant, whereas the rate with which

they switch back is a function of the velocity v and motility force m. The simplest case

for this is choosing two rates k−non and k+
non, depending on whether m and v are parallel

or anti-parallel. When the component of m along v is positive (i.e. the motility force

points in the same direction as the velocity), the rate for switching back to the non-motile

state is given by k+
non, whereas it is k−non when the component of m along v is negative.

To achieve the desired effect of cells having a tendency to align their motility force with

their velocity, k+
non is chosen to be smaller than k−non. In this way, cells where velocity and

motility force are aligned stay in the motile state longer than those where this is not the

case (and the others, once returned to the non-motile state have a chance of switching to

motile again, with their motility force oriented in a random direction). This method of

having cells align their motility force with their velocity is illustrated in Fig. 2.11.

Thus, the equation of motion for a particle in this DPD simulation can be stated as:

dp

dt
= m + FG + Fint + FB +

∑
r≤Rpp

(
Frep/ad + Fdf + η

)
(2.55)

Here, p is the particles momentum. Fint, FB and Fdf are the explicit terms of the

dissipative force (Eq. 2.50). Fint is the intracellular friction force between the two particles
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Figure 2.11: Illustration of the mechanism for aligning the motility force with velocity in the simulations.
In the non-motile state, cells do not actively exert a motility force m on the substrate, in
the motile state they do. Cells switch into the motile state with a constant rate kmot, at
which point the direction of the motility force is chosen at random. The transition back
into the non-motile state, however, depends on the alignment of m and the velocity v,
specifically whether m · v is positive or negative. For m · v > 0, the rate for switching is
k+, for m · v < 0 it is k−. Typically, these rates are chosen with k− > k+ so as to achieve
alignment of motility force and velocity.
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that make up the same cell (Eq. 2.56a), FB is the friction force with the substrate (Eq.

2.56b) and Fdf is the friction force between neighboring particles of different cells (Eq.

2.56c). Furthermore, Frep/ad are the volume exclusion and adhesion terms (see Eq. 2.53

and 2.54) combined into one term (Eq. 2.57) and η is a momentum conserving noise force

between particles.

Fint = −γintv (2.56a)

FB = −γBv (2.56b)

Fdf = −γdfv (2.56c)

Frep/ad = −
(
f0

(
1

r
− 1

)
− f1

)
r̂ (2.57)

Using this refined model, several empirical phenomena observed in collectively migrating

2D epithelial sheets can be successfully reproduced, including the buildup of tensile stress

throughout the tissue, and the density dependence of size and velocity of spontaneously

occurring vortices.

2.5.4 The vertex model

Some phenomena in cell dynamics, for example cell segregation and developmental pro-

cesses, are primarily controlled by interactions of cells with their neighbors rather than

locomotion on a substrate [4]. To better capture these sorts of processes in models, it is de-

sirable to explicitly include a description of cell shape and of the cell interface with a cell’s

neighbors. At an even less coarse-grained level than particle-based approaches, the vertex

model belongs to the class of models that implement a detailed description of the cells and

their interactions, including such things as cell-cell adhesion, cell substrate adhesion and

cell contractility [4]. The 2D vertex model approximates each cell boundary by a straight

segment, so that an epithelial sheet becomes a network of bordering polygons. Fig. 2.12

illustrates the good accuracy of such an approximation and clarifies the vertex model’s

nomenclature. The model adapts the theory of foams’ assumption that in an equilibrium



2.5 Overview of cell migration models 49

b)a)

c)

cell j

vertices 

of L
i,j

cell i

Figure 2.12: The shapes of an epithelical cell layer are close to polygons. a) Cells in an MDCK mono-
layer have very straight borders, reminiscent of polygons. Scale bar corresponds to 50 µm.
b) A subsection of the same cell sheet with a polygonal network created by a Voronoi
construction around the black dots marking the cells center points overlain in green. The
Voronoi construction reproduces the orientation of the cell boundaries very well. c) De-
finition of the nomenclature for the vertex model. Figure adapted with permission from
reference [64]. Copyright 2015 Elsevier B.V.

configuration the forces at each vertex have to vanish and thus cell/polygon motion is

assumed to be driven by minimization of energy in the network. Several Hamiltonians

have been used in this context as energy terms to minimize, though they are typically

dependent on the same parameters, namely the cell areas Ai, the cell perimeter Pi and

the length of the junction between two neighboring cells i and j, given by Li,j. While the

exact term incorporating each of these variables can be chosen in a number of ways based

on the assumptions made, a popular choice was introduced by Farhadifar et al. [89]:

E(Ri) =
∑
i∈cells

Ki

2

(
Ai − A0

i

)2
+
∑
j∈ν(i)

αi,jLi,j +
∑
i

κi
2
P 2
i (2.58)

In addition to the parameters mentioned above, this equation includes several constants:

Ki is the elastic coefficient of the area, A0
i is the preferred area of the cell, αi,j is the line

tension per unit area and κi describes the cells contractility. As stated in reference [4],
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this equation can also be rewritten as follows:

E(Ri) =
∑
i

[
κi
2

(
Pi − P 0

i

)2
+
Ki

2

(
Ai − A0

i

)2
]

+ const. (2.59)

This sets a preferred cell perimeter P 0
i according to:

P 0
i = −

∑
j∈ν(i)

αi,j
4κi

(2.60)

This model is already able to capture polygon class distribution, variation of cell areas

and packing geometry found in the Drosophila wing disc [89], as well as explain how

increased tension along boundaries can preserve cell compartment boundaries even in the

presence of remodeling through cell divisions.

The vertex model can be expanded to include cell motility [127]. To do so, an average

location Ri, at which cell i adheres and pulls on the substrate, is introduced. The energy

equation is then extended by:

Emot =
κ

2

∑
i

||Ri −Xi||2 (2.61)

Here, Xi is the “center of mass” of cell i, defined as the average coordinate of its vertices.

The dynamics of the pulling location are assumed to be relaxational:

σ
dRi

dt
= κ (Xi −Ri) + ηi(t) (2.62)

Here, ηi is a Langevin-type random force that represents motility and is defined by its

second moment:

〈ηi(t)ηj(0)〉 = κδ(t)δij (2.63)

As with the other energy terms in this model, motility could also be implemented with

other approaches [4]. With these sorts of expansions, the vertex model becomes capable
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of describing a wide range of collective phenomena. For instance, Puliafito et al. were able

to reproduce all aspects of collective and single cell behavior observed in their epithelial

contact inhibition experiments.

In the project detailed in section 3.4, we examine to what extent the vertex model can be

used to calculate cell mechanics parameters from observations of epithelial arrangements

without any force measurements.

2.5.5 The cellular Potts model

Similar to the vertex model the cellular Potts model is a prominent representative of the

most detailed models, which explicitly take into account factors such as cell shape. The

implementation of molecular processes on subcellular level is also possible. The cellular

Potts model was adapted for the context of cell mechanics by Graner and Glazier [128,

129]. In this framework, each cell is represented by a domain of sites in a given Potts state

σ. Each site i can be in a state σ(i) = 1, ..., Q with each state representing one of Q− 1

cells and the intercellular medium [4]. If each site is defined by the corresponding lattice

vector xj, then the cell α is represented by the set of connected lattice sites {x(α)
k } (see

Fig. 2.13a). Both cell motion and the deformation of the cell membrane are implemented

as the annexation or rejection of individual boundary lattice sites (see Fig. 2.13b). In

this context, annexation of a single lattice site corresponds to the formation of a cellular

protrusion, whereas rejection of a lattice site corresponds to cellular retraction. Thus,

cell migration is achieved as a consequence of subsequent annexations and rejections,

analogous to how it is the consequence of subsequent cellular protrusions and retractions

in biological systems. The occurrence of the annexations and rejections are stochastic,

modeled with a Monte-Carlo scheme. Cell adhesion, cell polarity and cell adhesion are

assumed to contribute via independent Hamiltonians to a goal function p that determines

the scheme’s update rules [130]:

p(E) = pelastic(E) · ppolarization(E) · pcell-adhesion(E) (2.64)

E in this context is a placeholder for annexation events (Ea) and rejection events (Er).

Cortical contractility of cells is implemented via two elastic parameters (“area stiffness”

a and “perimeter stiffness” m), which penalize growing cells. The cell’s elastic energy is
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Figure 2.13: Illustration of the cellular Potts model. a) Hexagonal Potts lattice, with lattice sites in the
states “cell α” (illustrated in blue), “cell β” (illustrated in green), or substrate (illustrated
in white). b) Illustration of annexation and rejection of lattice sites. Cell α protrudes into
the lattice site at its top left corner, as well as into one of cell β’s lattice sites (annexed
sites indicated in dark blue). Cell β retracts from the lattice site at its bottom right corner.
At the end of each Monte-Carlo time step, lattice sites within the signaling radius (indi-
cated by the dashed line circles) of these annexation/rejection events receive a chemical
marker c+/c− that influences the cytoskeletal density ρ(x). This polarization rule leads to
a positive feedback loop that enables effective cell migration in the model.

given by:

Hα
el = mαP

(α)2 + aαA
(α)2 (2.65)

Here, A(α) denotes the cells area, and P (α) its perimeter. The total elastic energy diffe-

rence resulting from event E is then given by:

∆Hel(E) =
∑
α

∆Hα
el(E) (2.66)

Using this, the elastic contribution to the goal function is defined as:

pelastic(E) ≡ exp [−∆Hel(E)] (2.67)

The shrinkage of cells this would result in is counteracted by implementation of a scalar

concentration field ρ(x) which represents the filamentous cytoskeletal structure inherent

to the cells. This field is defined over the whole body of each cell α, i.e. x ∈ {x(α)
k } and
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provides a force that pushes on the cell boundary.

The cellular Potts model described in reference [130] focuses on the mechanical aspects

of cell migration. To this end, a feedback rule for mechanical signals in the form of cell

polarization is essential. The implementation thereof is handled as follows: Each time any

lattice site x
(α)
0 is annexed by cell α, all lattice sites x ∈ {x(α)

k } within a defined “signaling

radius” R receive a chemical marker c+. Conversely, each time a lattice site is rejected, all

lattice sites within R receive a chemical marker c−. At the completion of each Monte-Carlo

time step, the scalar field ρ(x) representing cytoskeletal structures is updated according

whether the marker c+ is dominant at any given lattice position, as defined by Eq. 2.68.

ρ(x, t+ ∆t) =

ρ(x, t) + τ [Q− ρ(x, t)] , predominantly c+

ρ(x, t) + τ [q − ρ(x, t)] , else
(2.68)

Here, Q and q denote the maximal and minimal levels of ρ(x), so that if c+ dominates

ρ(x) is increased, otherwise it is decreased. τ gives the rate at which the polarization field

reacts to the chemical markers. This rule implies a positive feedback loop between cellular

protrusions and cytoskeletal remodeling, and thus will favor successive cell protrusions and

reactions and thereby enable effective cell migration.

In addition to the scalar field ρ(x), which describes the cytoskeleton within the cells,

the model includes a second scalar field ρf (x) that measures the local density of ancho-

ring points that cells can form focal adhesions with. This variable can be used either in

a time-dependent manner to include changes to the substrate over time (such as because

a cell has previously migrated over this surface and deposited ECM proteins, see section

2.1.1 for details), or to incorporate static micropatterns in an attempt to mimic a gi-

ven experimental scenario (in which case its value can be kept constant throughout the

simulation).

Taking the anchoring strength of focal adhesions to be given by the sum ρ(x) + ρf (x),

the difference in polarization energy ∆Hp(E) is defined according to Eq. 2.69, which will
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determine the polarization’s contribution to the goal function.

∆Hp(E) ≡



ρ(xl)− ρ(xk), E =̂ annexation ∧ β ≥ 0

ρ(xk)− ρ(xl), E =̂ rejection ∧ β ≥ 0

−[ρ(xk) + ρf (xl)], E =̂ annexation ∧ β < 0

ρ(xk) + ρf (xl), E =̂ rejection ∧ β < 0

(2.69)

Here, xk is the source grid site for the annexation or rejection event and xl is the target

site. β defines whether the target site is part of an actual cell (β ≥ 0), or part of the

“empty” substrate (β < 0). The contribution of polarization to the goal function p is then

defined as follows:

ppolarization(E) ≡ exp [−∆Hp (E)] (2.70)

Finally, to account for the effect of cell-cell adhesion, the adhesion matrices Aα,β and

Bα,β are defined, which quantify the system’s change in energy upon formation of a new

bond between cells α and β and upon breaking of an existing bond between cells α and β

by a third, intruding cell γ. These matrices are defined as having the following properties:

Aα,β = Aβ,α ≥ 0 (2.71a)

Bα,β = Bβ,α ≥ 0 (2.71b)

Aα,α = Bα,α = 0 (2.71c)

Aα,β = Bα,β = 0 if α < 0 ∨ β < 0 (2.71d)

Making use of these adhesion matrices, the difference in the cell adhesion energy

∆Ha(E) can be defined separately for annexation and rejection events. For annexati-

on of a grid site xl by cell α, it is given by Eq. 2.72a, whereas for rejection of site xk by
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cell α, it is instead defined by Eq. 2.72b.

∆Ha(E) ≡ −
∑
j∈Nl

[
Aα,c(xj) − δα,c(xj)Aα,β

]
+
∑
j∈Nl

Bβ,c(xj)(1− δα,c(xj)) (2.72a)

∆Ha(E) ≡ −
∑
j∈Nk

[
Aβ,c(xj) − δβ,c(xj)Aα,β

]
+
∑
j∈Nk

Bα,c(xj)(1− δβ,c(xj)) (2.72b)

Here, c(xj) ∈ {α, β, · · · } is the index of the cell the lattice site xj is associated with,

and Nj is the neighborhood of the lattice site xj, defined as:

Nj =

{
l ∈ {1, · · · ,M}

∣∣∣∣min ||xj − xl|| = 1

}
(2.73)

Using the above definitions, the adhesion contribution to the Monte-Carlo goal function

is defined as:

pcell-adhesion(E) ≡ exp [−∆Ha (E)] (2.74)

This is the last contribution to the complete goal function (Eq. 2.64), but one final

component is necessary for the model, which is handling the rupture of cell-cell contacts,

which can occur as a result of a successful rejection event. To this end, the total energy

differences for both cases E = Erupt and E = Eretract (Eq. 2.75a and 2.75b) are examined

and the energetically favorable event, rupture or regular retraction, is chosen.

∆H(Eretract) = ∆Hel(Eretract) + ∆Hp(Eretract) + ∆Ha(Eretract) (2.75a)

∆H(Erupt) = ∆Hel(Erupt) + ∆Hp(Erupt) + ∆Ha(Erupt) (2.75b)

The cellular Potts model was not directly used in the course of this thesis. It would,

however, seem to be a suitable candidate for modeling collective cell migration through

constricted channels, as described in section 3.3. We could show that in that context more

coarse-grained models were insufficient to reproduce observed behavior. Consequently, a

model that explicitly accounts for things such as cell shape is more promising for future

work.
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2.6 Machine learning for image processing

Image processing refers to the use of computer algorithms to analyze data that exists in the

form of digital images. In particular, image processing is used for such tasks as pattern re-

cognition, feature extraction or classification, using information such as pixel coordinates,

intensities or gradients between neighboring pixels. Oftentimes this data analysis is either

semi-automated (requiring some user input, such as setting intensity thresholds for each

individual data set) or fully automated (requiring no user input). Traditionally, however,

automated image processing in biosciences is performed with classical, non-adaptive al-

gorithms. In essence, this means the computer is given rules in advance by which to make

any decisions, such as a simple classification rule that divides an image into two subpo-

pulations based on whether a pixel’s intensity is greater than a value x or not. For many

problems, such an analysis is sufficient, but in some cases, designing explicit rules that

perform well can be infeasible. This can be the case if the quality of the data set fluctuates

over time (e.g. due to fluctuating light sources, unstable flurophores, etc.), data sets that

change over time (e.g. because cell divisions cause great modifications) or in cases where

the human eye can recognize features, but it is not entirely clear which features allow this

(and thus it is not clear how to capture the humans’ ability in strict rules). When the

design of explicit, static rules for the image processing algorithm becomes impractical or

infeasible, machine learning offers a potential solution.

In machine learning, the rules for data processing are not defined by the user in advance,

but rather the program learns from a series of examples [131]. Many applications of

machine learning outside of biosciences have already found their way into our everyday

lives. Some examples of this include spam filters for e-mails [132], automated recognition

of speech [133] or handwriting [134], as well as evaluation of satellite images [135, 136].

2.6.1 Basic types of machine learning problems

Though a wide variety of problems can be addressed via machine learning, most of them

fall into one of two groups [137]: classification or regression problems. In the case of

regression, given an independent input variable X and a dependent output variable Y ,

the goal is to find a function f(X) so that ŷ = f(x) predicts the true value y of the output

variable Y for input x of X as accurately as possible. Examples include algorithms for

estimating a person’s age from a photo or predicting a company’s future stock price from
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inputs such as performance measures and macroeconomic indicators [137].

In contrast, classification problems take an input X belonging to a finite set of classes

l = 1, 2..., k and attempt to determine the correct label l = g(x) (with l ∈ C) indicating

which class the input belongs to. Examples include the detection of human faces in a

photograph, detecting all goals in the video of a soccer match, or classifying tissue images

into healthy and diseased cells [137].

Other significant types of problems tackled by machine learning algorithms are hypothe-

sis testing and confidence interval testing. These are less common, however, in particular

when it comes to image processing applications.

2.6.2 General process

The process a machine learning algorithm uses to determine its dynamic decision rules

varies between the studied problem and the algorithm used to tackle the issue. In most

cases, however, the underlying structure of the process is the same. Taking classification

problems as an example, the input data for machine learning comes in the form of values

for individual attributes (such as “height”, “weight” and “age”) each associated with

several objects (such as “person A”, “person B”, etc.) and the desired output is a label

categorizing each object (such as “high risk” or “low risk” of falling ill with a specific

disease). The input data is divided into a training sample, a validation sample and a

test sample. The learner uses the training data to determine the model it will use to

make its decisions or predictions. This model then predicts its response for the validation

data set and compares its performance to the correct solution, potentially adjusting its

model in order to improve its viability. Two things are typically accomplished during this

step: the features relevant for the model are selected and the parameters are tuned, both

while studying the model’s performance on the validation data. This reduces the risk of

overfitting to the training data set (i.e. coming up with rules so specific they work perfectly

for the training data but not at all for any other data). Finally, the test data is used to

evaluate the performance of the model in an unbiased way, which allows comparing and

selecting between different algorithms.
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2.6.3 Supervised and unsupervised learning

In principle, machine learning algorithms are categorized as either supervised or unsuper-

vised learners, the distinction between the two being the form the test sample is presented

in. Supervised learning algorithms receive labeled data as input, which means they are

given both the data they are supposed to predict as well as the correct answer they are

supposed to come up with [138]. These algorithms are frequently used for ranking and

classification problems. For instance, spam filters for e-mails are trained by being given

a collection of e-mails that have already been manually classified into which are spam

and which are not. A more biological example would be a classification of an image of

cells where different compartments are visible. Here, the training data would be images

with labels which pixels belong to one organelle (e.g. the nucleus) and which to others

(e.g. the actin cytoskeleton), which the algorithm would use to create a model that can

then classify further images itself. In addition to ranking and classification problems, most

regression algorithms use supervised learning methods [137]. The big disadvantage of su-

pervised learning is this requirement of labeled training data, which can be hard to come

by. For instance, in the cell image classification example, correctly labeling each pixel of

the training data as belonging to the nucleus or actin cytoskeleton can quickly become te-

dious, in particular if large quantities of training data are necessary so that the algorithm

performs well.

While there are many supervised algorithms for classification, a multitude of unsuper-

vised approaches also exists for this class of problems. In contrast to their supervised

counterparts, unsupervised learners receive no labeled training data. Instead of the al-

gorithm trying to classify the objects into predetermined classes, it just groups them

according to similarity. Depending on the specific case, the objects might be grouped into

a defined amount of classes (e.g. when there is prior knowledge that there are exactly three

classes the objects can be categorized into) or the algorithm might be asked to determine

the most likely (according to a given criteria) number of classes itself. Unsupervised ma-

chine learning algorithms for classification are also frequently referred to as “clustering”

algorithms.
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2.6.4 Decision trees and random forests

In the context of this work, machine learning was of interest for classification of image data,

specifically for identifying the junctions between cells in noisy fluorescence images. Thus,

the problem at hand required the use of a machine learning algorithm for classification (as

opposed to regression). Due to the noise in the image data, and the fact that the desired

classes were known (namely “cell junction” and “not cell junction”), a supervised learning

algorithm was chosen. From the multitude of possible algorithms available, in the context

of this thesis only algorithms based on decision tree learning were implemented, though

others, such as neural network approaches, should be possible as well.

spam

number of links

number of $-signs
number of mentions of

“Nigerian prince”

not spam number of mentions of

“password”
spam

spam not spam

≥1<1

≥2 <2

≥4 <4

≥2 <2

Figure 2.14: Simple, exemplary decision tree for categorizing e-mails into “spam” and “not spam”,
according to the amount of links, $-signs and mentions of “Nigerian prince” or “password”
the mail contains.

Decision trees are essentially a hierarchical set of decision rules that are used to predict

the output by taking the input and having it subsequently run through one path of

decisions until its category is selected in a so-called terminal node (also referred to as

leaves, in sticking with the tree nomenclature). For instance, Fig. 2.14 shows a simple

decision tree for an e-mail spam filter. In this example, each e-mail starts at the first

internal node (drawn at the top of the tree), where it is examined for the number of

external web links it contains. If this amount is 2 or higher, the e-mail follows the left

branch, if it is less than two it instead follows the right branch of the tree. Any e-mail

that was sent along the left branch is then examined at the next internal node for the

amount of $-signs that appear in its text. This is the final decision along this branch, and

e-mails are categorized into “spam” or “not spam” based on whether they contain 4 or



60 2. Fundamental Concepts

more $-signs, or not. In contrast, most paths along the right branch of the first internal

node (where the number of links was checked) are longer before they reach a terminal

node, and the decision at the second internal node along this path can lead to instant

classification at a terminal node or further differentiation according to another parameter

at a third terminal node. More complex decision trees might also include decision rules

for the same parameter more than once along a branch, splitting according to different

values. In the example of Fig. 2.14, this could for instance see the terminal node along the

≥ 2 “number of mentions of password”-branch replaced by an internal node that makes a

decision based on the number of links (that was already used at the first node), this time

splitting according to ≥ 1 and < 1.

The example decision tree in Fig. 2.14 could be interpreted in the following manner:

The most important factor determining whether an e-mail should be classified as spam

is the number of links it includes, with e-mails containing more links more likely to be

spam than those with few or none. Accordingly, the tree indicates that the number of

times the words “Nigerian prince” are mentioned is only important in e-mails with few

links. Intuitively, this likely does not hold true in reality (even e-mails with few links

claiming to be from a Nigerian prince are likely spam), indicating that the presented

tree is presumably an oversimplification. The fact that human intuition clashes with the

rules of this particular tree highlights a crucial advantage decision tree algorithms have

compared to some other approaches: They can be easily visualized and understood and

the reasoning that leads them to their classification followed [139]. In contrast, algorithms

such as neural networks offer little to no insight into which variables played strongly into

the classification decision, acting more like a “black box” that transforms the input into

the output in an unexplained way [140]. While this disadvantage makes decision trees a

more favorable first choice for the problem at hand, the main goal machine learning is

used for in this thesis is the pixelwise classification of an image, and an understanding

of the causality that leads to this segmentation is not strictly necessary. Thus, neural

networks might offer a feasible alternative approach to this problem in the future.

Classifying data along a given decision tree is no challenge, nor is it in fact actually

machine learning, but rather just a simple application of predetermined decision rules

to a given observation. In principle, there is nothing preventing the use of decision trees

with rules designed by humans a priori. The difficulty in most cases, however, is the

construction of the actual tree. Rather than coming up with the rules “manually”, it is

typically more convenient to let the computer find the entire decision tree (at which point

the algorithm does become a machine learning application). The following description of
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how this is typically achieved follows reference [139]:

The random variable for our observation (i.e. our input) shall be denoted by X, with

the individual predictors denoted by Xi. In the above example of the spam filter, X

would be {number of links, number of $-signs, number of mentions of “Nigerian prince”,

number of mentions of “password”} and the predictors X1, ...X4 would be “number of

links”, “number of $-signs”, etc. A particular instantiation of X, denoted by x, would,

for instance, be {3, 0, 5, 2} in this example. To construct a decision tree, the space of all

possible values the predictorsX1, X2, ..., Xp can take is divided into J regionsR1, R2, ..., RJ

that do not overlap. These regions will later be used to make predictions, with every

observation that falls into a region Rj being assigned the same response. Specifically, this

response will be the most frequently appearing response value for observations from the

training data set that fall into Rj. For instance, in a simple example with only two regions

R1 and R2, if the majority of training observations that fall into R1 are labeled as “spam”,

and the majority training observations that fall into R2 are labeled as “not spam”, then

the resulting decision tree would classify all observations that fall into R1 as “spam”, and

all that fall into R2 as “not spam”. The number of regions scales with the complexity of

the used decision tree. Specifically, it is equal to the amount of terminal nodes in the tree.

For instance, the example tree shown in Fig. 2.14 would have five regions, R1, R2, ..., R5

(with e.g. R1 being the region defined by “number of links”≥ 2 and “number of $-signs”

≥ 4, which corresponds to the very first terminal “spam”-node).

The main problem is how to divide the entire observation space into regionsR1, R2, ..., RJ

so that these regions do a good job of classifying observations. A measure useful to this

end is the classification error rate (see Eq. 2.76), which is the fraction of training obser-

vations in any given region whose label does not match the label predicted by this region

(i.e. the most frequently occurring training label in this region).

E = 1−max
k

(p̂mk) (2.76)

Here, p̂mk denotes the fraction of training observation in the m-th region labeled with

k. In practice, two other measures are preferable to the classification error rate, however,

as they are more sensitive for constructing a decision tree: The Gini index (see Eq. 2.77)
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and the cross-entropy (see Eq. 2.78).

G =
K∑
k=1

p̂mk(1− p̂mk) (2.77)

D = −
K∑
k=1

p̂mk log p̂mk (2.78)

Both the Gini index and the cross-entropy measure the purity of a region/node, i.e.

they give an indication whether the node contains mostly observations from a single class

or not. If the node is relatively pure, then all of the p̂mk will be close to zero or one

and correspondingly the Gini index will take on small values. The same can be shown

mathematically for the cross-entropy, but it is less straightforward to see than for the

Gini index. Due to this, both can suitably be used to evaluate the splits in a decision tree.

As it is infeasible from a computational standpoint to consider every possible division of

the space into J boxes, a recursive binary splitting approach is used. This method works

top-down, beginning at the top of the tree, where all observations still belong to one

region, before successively dividing into the J desired regions. It also belongs to a type of

approaches known as greedy algorithms, which means it makes each decision (in this case

how to split the observation region) according to the currently optimal choice, without

looking ahead at future choices (and choosing a split of the region that would lead to a

better final result based on knowledge of future splits).

All predictors X1, ...Xp are considered, as well as all possible cutoff-points s for each

predictor, splitting the initial region into two subregions given by {X|Xj < s} (i.e. the

part of the predictor space where the value of Xj is smaller than s) and {X|Xj ≥ s}
(i.e. the part where Xj is larger than or equal to s). The split that leads to the highest

node purity as indicated by the lowest value of the chosen measure (Gini index or cross-

entropy) is chosen for the actual tree. This step of choosing the best predictor and cutoff

is then repeated for each resulting branch of the tree, so that it minimizes the node-purity

measure for each of the resulting regions. This process continues to repeat itself, with

the regions divided into ever smaller subregions, until some predefined stop-criterion is

reached. Such a criterion can be arbitrarily imposed on the algorithm in any way, such

as by limiting the depth of the tree along each branch to a maximal number of nodes,

though this would possibly be a poor choice that leads to some terminal nodes with much

lower node-purity than others. A more useful stop-criterion might be limiting the amount
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of training observations that may remain in each node.

While this greedy algorithm is unlikely to find the globally optimal solution, it typically

produces decision trees that are good at correctly predicting the training data. Such trees

frequently suffer from an issue of overfitting, however, which is to say the trees are too

complex, splitting observations due to trivial differences that happen to be present in the

training data but do not accurately capture the behavior of all data, in general. Overfitted

trees tend to perform excellent (or, in the extreme case, perfectly) on the training data

used to construct them, but perform poorly on the test set. The best way to circumvent

this issue is by “pruning” the trees, i.e. initially growing a large decision tree and then

reducing it to a simpler test tree. Which of the many possible subtrees the original tree is

pruned to is determined by minimizing the cross-validation error (i.e. examining how the

different subtrees perform on the test data set).

Despite the big advantage decision trees offer in terms of simplicity and interpretability,

they lack the predictive accuracy of some other classification methods [139]. The reason

for this lower accuracy compared to other classification algorithms is the high variance

in decision trees, which in this context refers to the fact that if the training data were

split into two halves and a decision tree constructed from each, the results would likely be

very different. In comparison, an algorithm with low variance would likely return similar

results when trained by each half of the training data.

Several different techniques are available for overcoming this weakness: bagging (also

referred to as bootstrap aggregation), random forests and boosting. All of these methods

greatly improve their predictive performance by combining many decision trees rather

than using an individual one. The most straightforward approach in this case is bagging,

which repeatedly takes large subsets of the training set and constructs a decision tree

from each. The high variance in this method means that even when there is much overlap

between the subsets of training data, the small differences that are present are enough

to produce different decision trees. To keep variance between the trees high, unpruned

trees are used for this method. While previously each observation x ran through one

decision tree in order to be classified, it now runs through multiple (typically on the

order of hundreds to thousands of trees), with each tree “voting” on the label that should

be returned for this observation. Classification then follows according to the majority

vote. In the above e-mail spam filter example, one e-mail running through 1000 different

decision trees might return 750 votes for “spam” and 250 votes for “not spam” and thus

be classified as spam. The use of multiple decision trees also allows statements to be
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made about the certainty of the classification. For instance, an e-mail that is classified as

“spam” by 900 out of 1000 trees is significantly more likely to be classified correctly than

an e-mail that was only voted “spam” by 501 of 1000 trees.

It is worth noting that this improved prediction accuracy for the bagging approach

comes at the cost of losing the decision tree’s ease of interpretation. While a single decision

tree clearly highlights which variables were important for classifying the data, this is no

longer easily visible when the decision is the result of a majority vote between hundreds

or thousands of trees.

Random forests, a simple example of which is shown in Fig. 2.15, are an approach that

improves on bagged trees, specifically by decorrelating the multitude of used trees. A big

issue for bagged trees is that if one of the predictors X1, ...Xp is a stronger predictor than

most others, most of the trees grown even on different (overlapping) subsets of the training

data will use the same predictor for the first split, which in turn leads to the trees being

very correlated. For example, in the e-mail spam filter case, if the amount of links contained

in an e-mail is a very strong predictor of whether or not an e-mail is spam, whereas the

other predictors are only moderately strong, most of the constructed trees would initially

split the data according to the number of links. This would result in many trees that

do not differ too strongly from each other, and hence their predictions would strongly

correlate. A greater reduction in variance by using many trees is achieved by the use of

uncorrelated trees, however. Random forests manage to reduce correlation between the

individual trees by only considering a randomly chosen subset of the predictors (typically

on the order of m =
√
p) for each split, forbidding the algorithm from even examining

the rest. In the spam filter example, this would mean that one tree might only have the

option of splitting its data according to either “number of links” or “number of mentions

of password” at the first node, while the next tree might also be allowed to use “number

of mentions of password”, but have “number of $-signs” as its second option. This second

tree would not even consider the strong predictor “number of links” (for its first split)

and thus would automatically look significantly different than the first one. Due to their

greater predictive power over individual decision trees, the machine learning applications

in this thesis were performed via random forests.

An alternative to bagging or random forests that also shows improved performance

over individual trees is boosting. In brief, the major difference in this approach is that

the multitude of used decision trees are not grown independently from one another, but

rather they are constructed sequentially, each learning from the previous.



2.6 Machine learning for image processing 65

spam

number of $-signs

number of links
mentions of

“Nigerian prince”

not spam mentions of
“password” spam

spam not spam

≥1<1

≥2 <2

≥2 <2

≥3 <3

spam

number of links

number of $-signs
mentions of

“Nigerian prince”

not spam mentions of
“password” spam

spam not spam

≥1<1

≥2 <2

≥4 <4

≥2 <2

spam

spam

number of links

mentions of
“password”

mentions of
“Nigerian prince”

not spamnumber of $-signs spam

spam not spam

≥1<1

≥2 <2

≥3 <3

≥1 <1

spam

mentions of 
“password”

number of links number of $-signs

not spam mentions of
“Nigerian prince” spam

spam not spam

≥2<2

≥1 <1

≥2 <2

≥2 <2

spam

spam

spam

not spam

Figure 2.15: Simple, exemplary random forest for categorizing e-mails into “spam” and “not spam”,
consisting of four decision trees. For each tree, the path a sample e-mail with {number of
links=1, number of $-signs=2, number of mentions of “password”=2, number of mentions
of “Nigerian Prince”=0} takes on its way to being classified is highlighted in orange. The
final classification node is likewise highlighted in orange. As the majority of the trees (three
out of four) votes to do so, the random forest classifies the e-mail as spam.





Chapter

3 Cellular Hydrodynamics

Collective cell migration plays an important role in cancer progression, embryonic deve-

lopment and wound healing. Due to the relevance in these phenomena, many experiments

have already been performed concerning collectively migrating cells and many models try

to capture and describe observed behavior. On one end of the spectrum, cell-biological

approaches attempt to account for the underlying molecular dynamics. This vast field

includes such things as cytoskeleton dynamics, molecular motors generating forces, che-

mical signaling both between cells and as a result of external stimuli, as well as dynamic

molecular activation and inhibition mechanisms (e.g. the interplay of RhoA and Rac1

and their role in the polarization of cells as part of the migration process). This classical

bottom-up approach follows the logic that if all the individual components contributing

to collective migration of connected cell groups are understood, the emergent behavior

will necessarily follow.

While this sort of approach is necessary for a complete understanding of all molecular

dynamics occurring in collective migration, it is also highly complex. On the other end

of the spectrum, mechanistic, biophysical approaches eschew the objective of a faultless,

exhaustive understanding of everything going on in the rich and complex observed phe-

nomena. Instead, they focus on the multitude of intriguing features observed in collective

cellular migration and attempt to determine mathematical rules that govern them. Fre-

quently (but not exclusively), these approaches focus on phenomena where cells act like

complex fluids, though the typical time scale found in flow behavior of cells is hours to

days rather than the orders of magnitude faster time scales of more typical fluids. Further

distinguishing them, cell sheets are always out-of-equilibrium systems, with each subunit

capable of self-propulsion but in return consuming energy, and, critically, the ability to

proliferate and thus change the number of players in the system. More generally, the-

se out-of-equilibrium systems are studied in the field of active matter, where intriguing

hydrodynamic properties such as swarming and turbulent swirling are known. For many

phenomenological models, these behaviors, found in collectively migrating epithelial cells

just the same as in other active matter systems, are the first point of contact. Instead of

trying to understand the detailed underlying molecular occurrences, mechanistic approa-
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ches aim to parametrize said activities in a very coarse-grained manner that is nonetheless

sufficient to reproduce the observed phenomena.

Both approaches have their merits and their weaknesses, and in the end, it is likely

that a combination of both approaches will lead to the best results. While computational

limitations may make it infeasible to model and simulate the complete molecular processes

going on within each cell for a large assembly, doing so for smaller groups of cells might be

possible. The insights into molecular details gleaned from such systems can then in turn

be implemented in a coarse-grained manner in the phenomenological models capable of

describing large scale cellular behavior. For now, the gap between both approaches remains

large enough that it has not been bridged, but every step on either side brings both ends

of the spectrum closer together. To this end, this chapter focuses on the phenomenological

analysis of cellular flow behavior. In particular, the focus is placed on collective migration

in artificial confining geometries of microstructured environments.

Due to the similarities with fluids, these phenomenological descriptions can be thought

of as a sort of cellular hydrodynamics. It is thus unsurprising that PIV (see section A.2.1),

now established as a powerful tool for the analysis of collective cell migration, was origi-

nally used to visualize flows and currents in liquids. With such a method to extract the

flow fields available, and with microstructured environments allowing us to dictate where

cells can and cannot go, it is possible to study some of the typical phenomena of hydro-

dynamics that can be found in any physics textbook on the matter. Examples thereof

include flow through a pipe, flow through a constriction or flow around an obstacle. The

following four sections, detailing the results of publications P2 and P3, review publicati-

on P1, as well as two unpublished projects, discuss the results of typical hydrodynamic

experiments performed on collectively migrating cells.



3.1 Flow and diffusion in channel-guided

cell migration

One very standard experiment that every physics student is confronted with at the be-

ginning of studying classical hydrodynamics is the flow of a liquid through a pipe. For a

Newtonian fluid, such as water, the flow behavior through this cylindrical body is descri-

bed by Hagen-Poiseuille’s law (see section 2.3.3). Friction at the edge (no-slip condition)

causes the water touching the edge to be stationary, while the water in the middle moves

the fastest, leading to a parabolic flow profile throughout the channel. Sheets of epithelial

cells are a distinctively non-Newtonian fluid, however, and as such, the flow profile across

the channel for a collectively migrating epithelial sheet will deviate from an ideal para-

bola. The changes in this macroscopic behavior might allow insights into the underlying

microscopic properties.
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Figure 3.1: Overview of channel-guided cell migration study. Cells invade microstructured channels
created from PEG-DMA polymer (center image). The influence of the confining geometry
can be studied by variation of channel width. PIV analysis of brightfield microscopy data
yields velocity fields describing the collective invasion of channels by cell sheets, which can
be used to study the flow profile and the spontaneous formation of vortices (indicated in
blue). Fluorescence images of nuclei allow for tracking of individual cells within the cell
sheet and automated density determination (indicated in red).
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In order to answer the question of the flow profile’s shape, in publication P2 we confined

a monolayer of MDCK cells to channels of 100−300 µm width via the MIMIC method (see

appendix A.1.1) [63]. This size corresponds to about 5 to 15 times the width of a single

MDCK cell. In addition to the flow profile, several other features of the cell behavior (such

as the evolution of the density profile and the formation of vortices) were investigated as

well, as briefly highlighted in the overview of the study (see Fig. 3.1).

3.1.1 Cell front velocity and analysis of the flow field

The process of cell-sheet invasion into the channels is studied by time-lapse phase-contrast

and fluorescence microscopy. In a first step, we analyzed the velocity of the invading cell

front, as detected by an automated algorithm (see Fig. 3.2), and could determine that

for our chosen range of channel widths there was no discernible difference in the speed

(average velocity v = 22± 5 µm
h

) (see Fig. 3.3). This leads us to conclude that the mode

of migration is the same throughout all of our chosen channel widths. That this need not

necessarily hold true can be seen in similar experiments performed by Vedula et al. [37],

where a completely new, contraction-elongation type of migration appears for very low

channel widths (corresponding to roughly the width of a single MDCK cell, approximately
1
5
th of the narrowest channels used in our publication). Further analysis was no longer

split according to channel size, as no effect on the invasion velocity was observed in the

width range present in our experiments.

Taking all channels together, PIV analysis was performed to obtain the flow fields of the

invading cell sheets (see Fig. 3.4). Immediately, strong spatial and temporal fluctuations

become visible, overlaying a still clearly visible net flux towards the area not yet covered in

cells. Successive time averaging as well as spatial coarse-graining revealed that on longer

scales the directional flow becomes smooth (see Fig. 3.5).

Taking this flux purged of the fluctuations allows us to make statements about the

general flow behavior that would otherwise be lost among the noise. In particular, this

homogeneous flow field uncovers a decrease in flow velocity from the front of the sheet

towards the back, potentially even in a linear manner (see Fig. 3.6). At the same time, the

flow profile across the channel does indeed reveal distinctive differences from a parabolic

Hagen-Poiseuille flow, as expected (see Fig. 3.7). Firstly, across almost the entirety of

the channel, a flat plug-like flow is found, with all cells moving at the same speed. It is

only at the very edge, close to the channel boundaries, that a steep decrease in velocity is
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Figure 3.2: Time series showing invasion of channels by cell sheets. a) Brightfield images of a repre-
sentative measurement, taken from selected time points at t = 0, 5, 10, 15 and 20 h. Good
agreement of the actual cell front with the front detected by the automated algorithm (in-
dicated by the red line) is confirmed. b) Fluorescence image of the cell nuclei corresponding
to the brightfield images of a). The nuclei are later used for both cell separation during
automated density measurements and cell tracking within the sheet. Scale bars correspond
to 100 µm.

observed over the width of about two cell layers. The second biggest difference to Hagen-

Poiseuille’s law becomes visible in these outermost cell layers. Unlike for a perfect no-slip

boundary condition, the velocity of these outermost cells is not zero and they still move

at very roughly half of the speed of the center cells. Given the fact that the outermost

cells in an epithelial layer are still discrete objects spanning a certain distance from the

walls, and have strong adhesions to the cells further inside, it is not entirely surprising

that these outermost cells do not stop entirely.

While they mask the general features of the flow behavior to a certain extent, the

fluctuations in the original velocity fields also offer the opportunity to determine charac-

teristic length and time scales of the system. To this end, the variance of the vertical

flow component was plotted as a function of the coarse-graining length and the averaging

time (see Fig. 3.8). Fitting exponential decay curves to this data yields lc = 80± 10 µm

and tc = 1.1± 0.1 h as the distance/time by which point the variance has dropped to 1/e

times its original value. This length scale is in good agreement with the value determined

by other groups for the correlation length of coordinated cell migration in MDCK cells of

comparable densities [38]. On the other hand, to our knowledge the equivalent correlation

time scale for collective cellular migration had not been reported previous to our findings.
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Figure 3.3: Average front displacement and velocities for invading cell sheets. a) The average front
displacement shows no clear trend for different channel widths. b) For comparison, the
scatter of the individual measurements for 300 µm wide channels is just as large as the
difference between the averages of different widths. c) Average velocities of the cell front for
different channel widths, calculated from the maximum average displacement for a particular
width and the corresponding time needed to reach this distance. As already indicated by
Fig. a), no dependence of the velocity on the channel width is visible. Fig. c) adapted with
permission from reference [63]. Copyright 2014 Elsevier B.V.
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a)

b)

c)

Figure 3.4: PIV analysis and resulting velocity fields. a) A representative brightfield image taken from
the time-lapse movies that form the input for the PIV analysis. b) Pixel wise cross-
correlation of subwindows in successive brightfield images yields a discrete velocity field
quantifying the cells’ motion. The overlay with the brightfield image shows that with the
exception of the channel walls and slightly beyond the leading cells, the PIV analysis accu-
rately finds motion only in areas covered by cells. c) For easier viewing and further use, the
vector field is depicted without the underlying brightfield image.
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Figure 3.5: Smoothing of the velocity field by spatial and temporal averaging. The original vector field
(top left) is coarse-grained over 4×4 neighboring vectors (middle row) and 8×8 neighboring
vectors (bottom row), or averaged in time with all vector fields 1 or 6 hours before and
after the current time point (center column and right column, respectively). Either of these
averaging processes leads to visibly smoother vector fields, while the combination increases
this effect even more. Clearly, despite temporal and spatial fluctuations, on long scales there
is a smooth, directed flow parallel to the channel. Adapted with permission from reference
[63]. Copyright 2014 Elsevier B.V.
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Figure 3.6: Profile of the velocity component vx along the channel. Even in the raw data (unaveraged
result of the PIV analysis of a single frame) a clear trend of increasing vx towards the front
of the cell sheet is visible. This tendency is highlighted more clearly when the individual
frames are averaged over two hours and 50 µm in x-direction significantly reducing noisy
behavior. The ensemble average over all measured channels shows that this trend holds up
and becomes even more distinct when examining the entirety of the data. In this case, the
increase appears to be linear with the exception of a dip in the velocity at the leading edge.
Error bars indicate the standard error.

Notably, the time of one hour is significantly shorter than the cell doubling time (in this

case approx. 25 h), introducing an entirely new time scale into the system. It is unclear

where this new time stems from biologically speaking, though one potential candidate

would be the time scale on which cells repolarize internally. Maiuri et al. measured the li-

fetime of stably polarized states in mouse bone-marrow-derived dentritic cells to be on the

order of 10 min [141], while still unpublished work in our lab measured the repolarization

time in MDA-MD 231 cells to be roughly on the order of 100 min (determined from the

turn-around times of such cells oscillating on short stripes). While both are obviously very

different cell lines from epithelial MDCK cells, the observed times are on the same order

as the correlation time of tc = 1.1± 0.1 h, supporting the hypothesis that repolarization

relates to this underlying time scale.
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Figure 3.7: Average profile of the velocity component vx (parallel to the channel) in y-direction (per-
pendicular to the channel). Over most of the width of the channel, the velocity is constant
and a plug-flow like behavior is found. Only at the very edge of the channels, over about a
width of two cells, is a drop in velocity discernible. Strikingly, the velocity does not drop
to zero, however, as it would for perfect no-slip boundary conditions. In order to receive
a profile where the short-term fluctuations are smoothed out, the points in the middle of
the channel (everything connected by the solid line fit) are calculated by first averaging the
individual velocity profiles in time (2 h) and space (15 µm× 15 µm) before averaging over all
measured 300 µm channels. Since this would leave only very few points to characterize the
drop in velocity, however, for the points at the edge of the channel the coarse-graining step
is eschewed. This way, more points remain along the y-axis (at the cost of correspondingly
higher error bars). Error bars indicate the standard error.
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Figure 3.8: Variance of the vy component of a velocity field in dependence on degree of averaging
for representative channels. The variance of vy is calculated after averaging over different
temporal and spatial lengths and plotted against these values. Exponential decays can be
fitted to calculate the correlation time τcor = 1.2 h and length ξcor = 70 µm over which
averaging has to be performed to decrease the variance of the field in y-direction to 1/e.
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3.1.2 Cell density and diffusive flux

In addition to the flow field extracted via PIV analysis, further information about the ob-

served collective cell migration in these experiments can be gleaned from the distribution

of the cell number density throughout the channel. Extracted via automated counting of

fluorescent nuclei, the density profile along the channel quickly reveals higher cell number

densities at the back of the channels, towards the reservoir, and lower densities toward the

tip of the migrating cell sheet. Hence, the average flow in these cell sheets (from the back

towards the tip) is oriented along a density gradient. It is thus an intriguing possibility

that the cell flux might follow a linear Onsager relation equivalent to Fick’s first law of

diffusion. To investigate this notion, the flux J = v · c was determined from the measured

cell density c and flow velocity v. Again, the immediate values fluctuated strongly, and

time averaging was necessary to allow studying of the general flux behavior. A linear

Onsager relation would imply that the cell density flux J is directly proportional to (with

the collective diffusion constant Dc as proportionality constant) a density gradient dc/dx,

with a possible offset J0 for an underlying density independent contribution to the flow,

according to Eq. 3.1.

J = −Dc ·
dc

dx
+ J0 (3.1)

As illustrated in Fig. 3.9, even for the time averaged data, a linear correlation between

cell flux and density gradient is not immediately apparent. A more detailed analysis,

splitting the data points according to total density, however, shows a clearer picture. Step

by step exclusion of data, starting with the lowest absolute density and incrementally

increasing the cutoff density below which the data points are discarded reveals a sigmoidal

dependence of the Pearson product-moment correlation coefficient r on said threshold.

This indicates that for higher absolute densities in the analyzed section of the invading

cell sheet - r is found to be larger than 0.5 here - the cell density flux does indeed depend

linearly on the density gradient in accordance with Eq. 3.1. On the other hand, for lower

absolute densities, where r drops to roughly 0.2, the Onsager relation does not hold true

at all, even though the high density data points are included in this calculation as well.

Interestingly, the density for which a sigmoidal fit to the correlation coefficient values

reaches half (c = 2.2× 10−3 1
µm2 ) of its maximum height, corresponds well to the critical

density (roughly c = 2× 10−3 1
µm2 ) reported by Doxzen et al. for the onset of collective

behavior in their systems [142] and Rosen et al., who observed that wound healing did not
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occur until their monolayer had reached this density [143]. It is possible that the ability to

properly follow a density gradient is also a form of behavior that requires collectivity in cell

migration, and thus requires the same density threshold to be surpassed as in these earlier

works. A linear fit of flux to density gradient for the data points above the critical density

yields a collective diffusion coefficient of Dc = 1500± 500 µm2

h
. It is clear, however, that

this linear fit does not go through 0, but instead intersects the flux axis at a positive value

J0 = (24± 3)× 10−3 1
µm h

. Taking into account the average cell density of c = 0.0026 cells
µm2

in the area the flux was determined from, this J0 corresponds to a velocity of 9± 2 µm
h

.

As discussed above, this is the velocity of an underlying, spatially uniform and density

independent drift. Thus, at the macroscopic level, there are two contributions to channel-

guided cell migration. Specifically, there is firstly a density gradient dependent, diffusion

mediated transport and secondly, the density independent drift. In regular matter, such

a drift typically only occurs as a result of an externally applied field. In contrast, for

our system of collectively migrating cells, this drift might well correspond to polarization

and the resulting active self-propulsion of the individual cells. Symmetry-breaking by the

walls of the channel might even induce a state of collective polarization in the direction of

the channel. Independent of the cause of this underlying drift, it is worth taking note of

the fact that both the constant drift and the density gradient dependent flux (including

proliferation) are of the same magnitude. Together they need to approximately add up to

the determined velocity of the cell front of 22 µm
h

. Thus, both effects contribute roughly

equally to generate the entirety of the collective migration.
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Figure 3.9: Cell density flux in a migrating monolayer. The cell flux and corresponding density gradient
are calculated for three pairs of 50 µm wide observation windows, with each pair being
150 µm apart. All the examined bins together span an area 100 µm to 400 µm from the front
of the cell sheet. a) Fluorescence image of the nuclei used for density determination, with
one pair of the bins used for calculation shown as an example (200 µm and 350 µm away from
cell front). b) Time evolution of cell density and velocity for one representative measurement
and one bin combination, showing strong fluctuations. c) Splitting all data points according
to the absolute density they were measured at shows very weak correlation for low overall
densities, whereas the correlation is stronger when the values recorded at c ≥ 2.3× 10−3 1

µm2

are examined. In this case, a linear fit of the Onsager relation yields a collective diffusion

coefficient of Dc = 1500± 500 µm2

h . d) In order to choose the cutoff-density used in c), the
correlation coefficient r between the cell flux and the density gradient is calculated. Initially
(ct = 0 in the plot), all value pairs are included, then all values below the incrementally
increasing cutoff density ct are removed. The relation between correlation coefficient and
average included density is well-fitted by a sigmoidal curve, and the point of half height
chosen as the cutoff density. Fig. a) and b) reprinted with permission from reference [63].
Fig. c) and d) adapted with permission from reference [63]. Copyright 2014 Elsevier B.V.
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3.1.3 Reaction-diffusion model

The above description via a linear Onsager relation and an underlying, spatially uniform

drift does not explicitly take into account the effect of cell proliferation on the observed

collective motion. With a measured cell doubling time of 25.2± 4.2 h very much of the

same order as the experimental observation time, however, it is unlikely that cell divisions

do not contribute in any way. To gain access to the contribution of cell divisions more

easily, it is helpful to analyze the spatially uniform drift and the diffusion-mediated effects

separately. This is possible because mass balance dictates the cell density profile c(x, t)

does not depend on the actual flux J , but rather on its gradient ∇J . Thus, the spatially

uniform component of J does not contribute at all, and the diffusion-mediated component

can be studied decoupled from it. The cell density profile hence should only depend

on unordered motion and proliferation. With no further information available how the

individual components contribute in a system, the most reasonable approach to modeling

is to use the most generic model and not make any assumptions. In this case, the most

universal model to incorporate both cell proliferation (reaction) and diffusive-like motion

(diffusion) is a reaction-diffusion equation. Specifically, inserting logistic growth for the

cell proliferation results in the Fisher-Kolmogorov Eq. 3.2.

∂c

∂t
= Dc∇2c︸ ︷︷ ︸

diffusion term

+λc
(

1− c

K

)
︸ ︷︷ ︸

reaction term

(3.2)

Here Dc designates the collective diffusion coefficient, λ is the growth rate and K is the

maximum carrying capacity supported by the cell monolayer. For simplicity, this equation

is given in the reference frame moving with the underlying drift velocity of 9 µm
h

.

The analytical solution to the Fisher-Kolmogorov equation (Eq. 3.3) results in traveling

waves with a constant front speed given by Eq. 3.4.

u(x, t) = k

[
1 + exp

(
−5

6
λ · t+

√
λ

6D
· x

)]−2

(3.3)

s =
√

4Dcλ (3.4)

Again, it is worth noting that this is the front speed in the moving reference frame and



3.1 Flow and diffusion in channel-guided cell migration 81

the underlying drift velocity of 9 µm
h

will need to be added back on top of it to obtain

the actual front velocity in the observer’s resting frame of reference. Experimentally, the

evolution of the density profiles does indeed show a traveling wave-like behavior (see

Fig. 3.10), though the stationary, shallow shape of the density profile is not reached

immediately but instead develops from an initially steep profile. We thus analyzed the

late stage density profiles of various channels (in order to sensibly average the density

profiles were transformed in such a way that the coordinate origin is at the current position

of the cell front) and found that the resulting averaged density profile is well-described

by fitting the theoretical profile resulting from Eq. 3.2. The main shortcoming of the

theoretical curve is that it fails to predict the sharp drop at the front of the cell sheet.

Here, the Fisher-Kolmogorov equation predicts an asymptotical behavior, whereas the

experimental data, consisting of discrete cells by its nature has a discrete end where the

density drops to zero. In addition, it is not ideal that all the measured cell densities only

fall on the front part of the fitted curve, with none of them reaching close to the resulting

carrying capacity. Presumably the traveling wave penetrates beyond the channel entrance

and into the bulk cell monolayer and densities in this unobserved area would reach closer

to the carrying capacity.

Nonetheless, the carrying capacity of K = 0.0100± 0.0003 cells
µm2 resulting from fitting

the theoretical curve is in good agreement with values given in literature [127, 143] and

the collective diffusion coefficient of Dc = 1150± 120 µm2

h
agrees well with the value

of 1500± 500 µm2

h
determined from fitting the linear Onsager relation (Eq. 3.1) to the

cell flux in the previous section. The third parameter, the growth rate, was fixed at

λ = 0.0283± 0.0005 1
h
, as determined from independent measurements of exponentially

increasing cell number in a confluent monolayer confined to the same channels used for

this experiment. It is noteworthy that with one of the parameters fixed in this way, the

obtained values for the other two fit parameters are not arbitrary. Significant changes

to either Dc or K cause the respectively other parameter of the pair to take values

inconsistent with expectations and, additionally, lead to strong deviations between the

shape of the theoretical curve and the experimental data points.

As expected, the theoretical speed of the cell front predicted by Eq. 3.4 is in good

agreement with the empirically observed velocity. Inserting the obtained values for Dc and

K results in a theoretical sth = 11 µm
h

, which, as noted above, is the velocity in the moving

reference frame. Adding the previously determined drift velocity of v = 9 µm
h

, we obtain

stot = 20 µm
h

, well within the range of error of the experimental value sexp = 22± 5 µm
h

.

Confirmation that the solution of the Fisher-Kolmogorov equation only works as long as
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Figure 3.10: Traveling wave analysis of the cell density profile a) Time evolution of the cell density
profile. Once the migrating cell sheet has invaded the channels to a certain extent, the
density profile takes a relatively stationary shape that is translated along the channel at a
constant velocity. b) End-point density distributions of all measurements that penetrate at
least 750 µm into the channel (gray curves) and the average density profile (black crosses).
With the exception of the leading edge of the cell sheet, the fit of the analytical solution of
the Fisher-Kolmogorov equation matches the experimental values well, with the resulting

values of Dc = 1140± 120 µm2

h and K = 0.0110± 0.0003 cells
µm2 in good agreement with the

collective diffusion coefficient determined from the linear Onsager relation and maximum
cell density values found in literature, respectively. The expanded view in the inset high-
lights that the experimental values only cover a small fraction of the density profile the fit
implies. Reprinted with permission from reference [63]. Copyright 2014 Elsevier B.V.
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Figure 3.11: Fit of the traveling wave for several time points. A fit (solid red line) of the time-dependent
solution to the Fisher-Kolmogorov equation to the density profile of a single time point
(red crosses). The quality of agreement between data and fit is good, in particular when
taking into account the higher scattering due to lack of any averaging. With the resulting
parameters fixed, the fit is performed twice more but with the time shifted by 7h in both
directions (dashed lines). While the shape of both of these curves looks to be in relatively
good agreement with the trend of the empirical values (blue and black crosses), they show
an insufficient x-shift compared to the first curve to align properly with these values.

the moving frame of reference is taken into account is given by the result of trying to

fit the density profile for multiple time points (see Fig. 3.11). Good agreement can be

found by fitting Eq. 3.3 to the middle time points, but using the same fit parameters for

earlier and later time points results in an x-offset between the fits and the empirical data

points, even though the shape of the fit would seem to follow the data points’ trend. As

the fitted parameters for D and c result in a lower front speed s (namely the speed in the

moving reference frame) the theoretical curves are displaced less along the x-axis than the

measured data points. Beyond confirming that there really must be a spatially uniform

drift, our resulting values of sth = 11 µm
h

for the diffusion component and v = 9 µm
h

for

the drift prove that both the density gradient-driven diffusive migration and the spatially

uniform, density independent drift contribute about equally to the overall migration speed.

3.1.4 Analysis of vorticity in the flow field

The occurrence of spontaneously forming vortices is a well-documented aspect of cell

migration [27, 37, 60] and can also be observed in our experiments. While cell density has

been shown to play a role on the size of emerging vortices [27], the effect of an underlying
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preferential migration direction as it is present in our channels had to our knowledge not

been studied yet prior to our publication. In order to properly scrutinize the influence

of directional migration and separate it from other potential influence factors such as

the confinement in the channel, we created a comparable control system (for details see

appendix A.1.1) in which cells are seeded in the same channels evenly from the top. Rather

than migrating in one general direction, the cells fill the entire channel in this case and

are effectively at rest, which here refers to the absence of large scale displacements of

individual cells. Instead, movement is limited to short range motion of cells or groups of

cells in a wafting manner. Frequently, areas of cells contract, temporarily increasing the

local cell number density while decreasing it in surrounding areas, before relaxing again.

In addition, the expected short scale collective rotational motion (spontaneous vortex

formation) is also frequent.

In order to investigate the vortex formation in a quantitative manner, both in the resting

case and the case with a preferential migration direction, we calculated the vorticity Ω

from the PIV vector fields. To this end, a coarse-graining distance was chosen so that in

the resulting flow field each vector corresponds to roughly the area of one cell. The curl

is then calculated from the perpendicular components of the relative velocities v of the

neighboring lattice sites according to Eq. 3.5 by using the unit vector in z-direction ez.

Ωi = ez · (curl · v)i (3.5)

As it is harder to distinguish areas of rotation from those without activity while the

sign of the vorticity is preserved (see Fig. 3.12), the squared value Ω2 is considered for all

further investigations. Immediately, the data for the resting, confluent cell sheets confirms

the effect of cell density on vorticity. Both heatmaps and a direct plot of vorticity value

distribution against density show that with increasing cell density, vorticity decreases

significantly (see Fig. 3.13). This also holds true for the channels with invading cell sheets.

In the manner examined in the previous section, a density gradient develops in the cell

sheet in these cases, with high densities towards the bulk of the cell monolayer, and low

densities towards the cell front. As the heatmaps clearly show, the strength of vorticity is

highest towards the front of the cell sheet, where densities are lowest.

Despite the same qualitative behavior in relation to density, quantitatively things are

quite different in both cases. When comparing areas of the invading cell sheets to channels

of the same average density in the resting case, the frequency of vortex formation is
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Figure 3.12: Vortex formation in confined cell sheets. a) Underlying PIV field used for vorticity cal-
culation, visibly showing several vortices. One clockwise (black square) and one counter-
clockwise vortex (red square) highlighted for ease of viewing. b) Heatmap of calculated
vorticity with sign taken into account. Positive values (counter-clockwise rotation) are in-
dicated in purple, negative values (clockwise rotation) are indicated in blue. While upon
close examination the vortices highlighted in a) can be found again, it is hard to distin-
guish areas with strong rotational activity from calmer areas at a glance. c) Heatmap
of squared vorticity values calculated from the same underlying PIV field of Fig. a). It
becomes much more intuitive to distinguish areas of high activity (dark red) from areas of
low activity (dark blue), though in return the information on directionality is lost. White
squares indicate areas where no vorticity values could be calculated.
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Figure 3.13: Effect of density on vorticity in confluent cell layers without preferential migration directi-
on. a) Representative heatmap from a confluent channel for an early time point of low cell
density. As above, area of high activity are shown in dark red, whereas areas of low activity
are dark blue. b) Representative heatmap for late time point with high density from the
same measurement. Rotational activity has decreased significantly for the higher density.
c) Histograms of |Ω|-value occurrence across all grid squares in both cases. Quantifying
the above visual result, a broad distribution of vorticity values is found at low densities,
while at high densities the distribution becomes narrow, with predominantly low values
and high values becoming rare. Heatmaps in a) and b) reprinted with permission from
reference [63]. Copyright 2014 Elsevier B.V.
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Figure 3.14: Heatmaps depicting the influence of density and flow on vorticity. In the resting case,
cell sheets have a relatively well-defined density, while in the flowing case large density
gradients appear throughout one sheet. The gray shaded areas indicate the mapping of
heatmaps to the density axis. Heatmaps for the cell sheets without flow are rotated by
90° compared to their typical orientation to indicate they are uniformly assigned to the
indicated density region. Heatmaps for the directionally migrating cell sheets are depicted
in their usual orientation and their density is indicated separately for the front of the sheet
and the back. The flowing cell sheets show the same density dependence found in confluent
sheets: Vortices appear predominantly close to the leading edge, where the density is lowest.
Comparing regions of similar density (e.g. 3.5·10−3 µm2) shows that vorticity is reduced in
the presence of directed migration. Adapted with permission from reference [63]. Copyright
2014 Elsevier B.V.
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Figure 3.15: Quantification of the influence of flow on vorticity. At equal densities, vorticity is much
lower under flow (blue circles) compared to the resting case (red triangles), indicating that
there is less rotational migration in this scenario. Fits to guide the eye (solid lines) show
that while without flow there is a decrease in Ω2, the value seems to hold relatively constant
for cells invading the channel. Adapted with permission from reference [63]. Copyright 2014
Elsevier B.V.

consistently higher in the resting cases. This difference can be most clearly seen for the

abundance of vortex formation observed for the channel without preferential migration

direction at a density of 3.5× 10−3 cells/µm2, which vanishes entirely in flowing cell sheets

of equivalent density (see Fig. 3.14). Fig. 3.15 shows this relation in a quantitative manner

across all measured cell sheet densities.

Naturally, with spontaneously occurring rotations, the question of directionality arises.

For collectively rotating cells, the question of a preferential direction, perhaps resulting

from an underlying chirality of e.g. the actin cytoskeleton, has been posed before [144].

Within the accuracy of our measurement, however, we found left-handed and right-handed

vortices to be equally present, both for our resting and for our invading cell sheets (see

Fig. 3.16). The size of our observed vortices, as estimated from the heatmaps, appears to

be up to six cell diameters, which is in good agreement with values from literature [37].

Due to the strong confinement of the individual cells, particularly in the confluent

channels, it is worth taking note of the average lifetime of the observed vortices, as well

as the average path lengths the cells actually travel in these rotations. The standardized

auto-correlation of the time evolution of the vorticity was calculated on each grid point
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Figure 3.16: Directionality of vorticity. Within the accuracy of the measurement, there is no preference
for clockwise (negative vorticity values) or counterclockwise (positive vorticity values) vor-
tices to form both for the confluent resting case (red curve) and for cell sheets under flow
(blue curve). Reprinted with permission from reference [63]. Copyright 2014 Elsevier B.V.

according to Eq. 3.6.

G(τ) =
〈Ω2(t) · Ω2(t+ τ)〉

〈Ω4〉
(3.6)

This auto-correlation, a measure for the self-similarity of the vorticity values on each

grid point, gives an indication about the decay times of the observed vortices. In order to

quantify this lifetime, an exponential decay was fitted to the average of all individual auto-

correlation curves (see Fig. 3.17). The relaxation time over which G(τ) drops to 1/e times

the value of G(0) − G(τ → ∞) was thus determined to be tR = 15± 1 min. These short

lifetimes are close to the resolution limit with which images were acquired (one every 10

minutes), so for a closer examination of the dynamics of individual vortices a higher time

resolution of image acquisition would be advantageous. In any case, however, this short

lifetime must also correspond to a short actual distance covered by the collectively rotating

cells. In order to get a feeling for this path length, the vorticity values for a hypothetical

set of eight cells rotating around a center cell were calculated for incrementally increasing

rotation angles (see appendix A.2.6). By comparing the squared vorticity values for this

optimal, synchronized and uninhibited rotation to the measured squared vorticity values
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Figure 3.17: Decay time of vortices in confluent cell layers. The normalized correlation function of Ω2 is
calculated on individual grid points of the vorticity map (gray curves). While the individual
curves show large fluctuations, the average curve appears to be very smooth (black circles).
The decay is quantified temporally by fitting of an exponential decay (red line) to the mean
values and retrieving the time τdecay = 15 min necessary for the original amplitude to drop
to 1/e. Reprinted with permission from supporting information of reference [63]. Copyright
2014 Elsevier B.V.

in the heatmaps, the effective path length of collective rotation could be estimated to be

within the range of 9°(dark red squares in the heatmaps). As for the correlation time of

collective motion calculated from the decay of the variance of the PIV field, the time scale

observed here is much shorter than the cell doubling time. On the other hand, with 15 min

this vortex lifetime is on the same order of magnitude as the 1.1 h correlation time for

collective migration (albeit a factor 4.4 times smaller). Given this, the idea that perhaps

the same underlying physical process plays a role in both collective rotation and collective

directed migration suggests itself.

3.1.5 Single cell motility

It is well known that the migration of individual cells can be described by some manner of

random walk, with both persistent random walk models and bimodal models (alternating

states of directional migration and reorientation) enjoying success [145–148]. The situati-
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on is more complicated and less well studied when it comes to the motion of individual

cells within a connected monolayer. Thus, we investigated whether in this scenario cells

still undergo effectively random motions. In addition, we asked the question of whether in

the case of channels with a preferential collective migration direction, the individual cells’

motion can be recovered from a superimposition of diffusive motion and directional cell

migration. The latter tracks were centered by subtracting an average drift velocity from

the individual cell traces, chosen in such a manner that the average displacement from

their starting point in x-direction was zero (see appendix A.2.8). The justification for this

is straightforward. The previous findings suggest that the collective motion of the cell

sheet is well-described by the traveling wave solutions of the Fisher-Kolmogorov equation

with underlying drift. As these traveling waves move at a constant velocity, there has to be

a constant velocity that can be subtracted to remove this collective migration component

and transform the cell tracks into a coordinate system where only their individual motion

remains. A simple visual inspection of representative tracks from both classes (see Fig.

3.18) shows that at a glance, the discrepancies between cells within one class are larger

than the discrepancies between both classes. This is a first clue that the nature of the mo-

tion of the individual cells might indeed be a superposition of directed migration and the

diffusive behavior they show in confinement, however, a closer, quantitative examination

is necessary.

One quantity typically studied to gain insight into the diffusivity of single particle tracks

is the MSD. Thus, we calculated the two-dimensional MSD of cells both in the resting and

in the flowing (centered) scenario. For robustness, the MSD is averaged over all tracked

cells belonging to the same class. Despite the similarity of the single cell tracks of both

cases, the MSD instantly reveals striking differences (see Fig. 3.19). While in the short

time scale and length-scale regime the slopes of both classes are very similar, as soon as

displacements beyond one cell area are examined, only the flowing cells show a slope close

to 1 (the value expected for perfectly diffusive motion) in the log-log plot. On the same

time scales, the cells from the resting tissue show clear subdiffusive behavior and even

over a time of ten hours do not significantly translocate farther than one cell length. This

indicates that in a regular confluent monolayer, the bonds between individual cells are

strong enough that rearrangements, such as two cells switching position, rarely transpire.

In contrast, when all cells are already in motion due to a present collective migration in

a preferential direction, tissue remodeling is significantly easier. Thus, in this case the

individual cells are not as tied to their local position in the cell sheet and can perform

what is effectively a random walk over a distance amounting to several cell lengths. By

fitting a persistent random walk (Fürth’s formula, Eq. 3.7) model to the MSD data, a
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Figure 3.18: Tracks of the motion of individual cells within the sheet with and without flow. Represen-
tative tracks obtained by following cell nuclei are depicted on the right hand side, with
cells from the flowing sheets centered in x-direction by subtraction of one constant velocity
from all time points. Tracks from both classes of cells look qualitatively similar, with va-
riations between cells of the same class appearing equally large. Adapted with permission
from reference [63]. Copyright 2014 Elsevier B.V.

self-diffusion coefficient of Dflow = 25.3± 0.1 µm2

h
is obtained.

〈x2〉 = 4D ·
(
t− Tp ·

(
1− e−

t
Tp

))
(3.7)

The obtained persistence time is on the order of 0, however, and a straight random walk

fit results in the same diffusion coefficient, indicating that the contribution of persistence

to the random walk does not account for a significant part of the cells’ motion. The

diffusion coefficient is nearly twice as high as the coefficient received for the confluent

case, Dconfluent = 13.7± 0.1 µm2

h
, indicating that cells move around much more in this

case. However, this value needs to be taken with considerable care, as it is obtained by

fitting a persistent random walk model to data that is clearly subdiffusive in nature.

The resulting fit thus does a poor job of capturing the qualitative features seen in the

MSD values for the confluent data. In contrast, Dflow is the result of a fit that captures

the qualitative behavior of the data it is supposed to model. The obtained value is of

particular noteworthiness for two reasons. Firstly, it is two order of magnitudes smaller

than the collective diffusion coefficient Dc = 1150± 120 µm2

h
. It is not to be expected that

the resulting values for single cell diffusion and collective diffusion would be similar, as this
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Figure 3.19: MSD of cells under flow (centered) and in confluent layers. Whereas the cells in sheets
migrating in a preferential direction show diffusive behavior even on long time scales (slope
1 black line drawn for comparison), the cells in the resting layers behave in a strikingly
subdiffusive way except at very short time scales. This becomes increasingly apparent for
areas above the approximate area of one cell (indicated by the hatched area for the resting
cells and the shaded box for the directionally migrating cells). A random walk fit (orange
line) agrees well with the values measured for flow (there are some deviations at the very
short time scales, but due to the nature of the log plot this is comparatively small fraction
of the time looks exaggerated). The grayed out areas of the MSD curves indicate the points
where the standard deviation of the individual measurements has reached 90% (with flow)
and 70% (without flow) of the depicted mean values. In particular due to cell divisions,
few cells can be tracked over sufficiently long time scales that they can contribute to these
sections of the curves, rendering the obtained MSD values increasingly less reliable for high
times. Error bars indicate standard errors. Adapted with permission from reference [63].
Copyright 2014 Elsevier B.V.
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Figure 3.20: MSD analysis split in x- and y-direction, parallel and perpendicular to flow, respectively.
In the case with a preferential migration direction (blue triangles), the MSD parallel to
this direction appears to be higher than perpendicular to it. In contrast, for the resting
cells (red circles), there appears to be no such effect. Error bars indicate standard errors.

would only be the case if there were no interactions between the cells. The significantly

higher collective diffusion coefficient confirms the cooperative behavior present in the

system. Secondly, the found value of 25 µm2

h
agrees well with the value Angelini et al.

obtained from studying the dynamic structure factor of a confluent MDCK monolayer

at zero density (Dmax = 30± 4 µm2

h
) [38]. While the density of the migrating monolayer

is not zero in reality, the difference in diffusive behavior between the confluent and the

flowing case observed in our experiments hints at the cells in the flowing sheet being

less confined by their neighbors. Thus, this presence of the global migration might act

as an effective reduction in the density the cells “feel” from their neighbors, letting the

diffusivity approach the theoretical value for no density.

An interesting question arises as to the similarity of the MSDs in both cases (confluent

and flowing) for short time scales (roughly the first 2.5 h). Given that in the long term

the differences in motion are as pronounced as they are, the fact that the slope is nearly

identical for short times indicates that this MSD does not describe actual cell locomotion.

Instead, it is likely that at these short time scales the MSD captures features such as

fluctuations of the nuclei position within the cell, or cell shape fluctuations that result

in minor fluctuations of the nucleus position, the latter of which happens on time scales

comparable to 1 h [38].
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In addition to just examining the two dimensional MSD, it is also possible to separate

it into its contributions coming from motion in x-direction (parallel to the channel walls)

and y-direction (perpendicular to the channel walls). For cells in flowing cell sheets, the

parallel component seems to contribute 1.4 times more strongly than the perpendicular

component, whereas no significant difference is observed in the resting cells. It is, howe-

ver, impossible to rule out that this is an artifact resulting from the centering routine

performed on the cell tracks from the directionally migrating sheet. If the effect is real,

it would imply that cells can glide past each other more easily parallel to the direction of

motion, as opposed to perpendicular to it, which makes for an interesting notion.

3.1.6 Discussion

In summary, studying the flow of cells confined to channels from a hydrodynamic per-

spective leads to intriguing results. In contrast to the classical parabolic flow profile found

according to Hagen-Poissueille’s law for a Newtonian liquid in a pipe, migrating cell sheets

develop a very flat, plug-flow like profile. The cells move at roughly the same speed in-

dependent of their distance to the wall up until roughly the two cell layers immediately

proximate to the boundary. Unlike for a laminarly flowing fluid, however, the discrete-

sized cells cannot be divided into infinitely thin lamina flowing at different speeds and

exerting a shear force on one another. Unless the cells are torn apart, it is impossible for

one part of the cell to move at a different speed than another part of the cell for a prolon-

ged period of time. While for short time periods this would be possible by deformation

of the cell, eventually the cells’ elasticity would no longer be sufficient. Thus, for sustai-

ned collective flow through a channel, even if the channel walls were to represent perfect

no-slip boundary conditions, the outermost cell layer would still be left with a nonzero

velocity, which we indeed find in our experiments. Here, the speed of the cells proximal

to the wall drops to roughly half the speed of the cells in the center of the channel.

A deeper investigation taking into account the cells’ area density throughout the channel

reveals that the shape of the density profile eventually reaches a steady state and is then

only moved along the channel at a constant velocity in traveling wave like manner. The

shape of the density profile is well-described by the solution of the Fisher-Kolmogorov

equation, the simplest reaction-diffusion equation containing diffusive balancing out of a

density gradient and cell proliferation by logistic growth. While it recovers the shape, the

Fisher-Kolmogorov equation is insufficient to reproduce the profile’s time evolution. In

order to successfully capture the dynamics, an underlying density-independent drift of a
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constant velocity needs to be added on top of the mechanism that balances out the density

gradient in the system. Intriguingly, we find both contributions to be on the same order

of magnitude. The underlying mechanism that leads to this macroscopic drift remains

unclear. It seems plausible, however, that it could be the same mechanism responsible for

the spontaneous occurrence of collective rotation observed in disc-like systems [60, 142],

where due to the circular geometry there are no front or back edges, and hence no density

gradients. Here, the most likely candidate leading to the rotation is polarization of the

cells along the symmetry breaking boundary conditions. The outermost cells do not have

an equal probability of polarizing in all directions and thus are more likely to polarize

along the boundary. This polarization is then passed on to neighboring cells up to one

correlation length, as indicated by the fact that for very large discs, Doxzen et al. observe

a breakdown of collective rotation [142]. Transferring this idea to our channel system,

symmetry is broken by the boundary walls, thus cells immediately adjacent to them have

an increased probability to polarize parallel to the direction of migration. Possibly, the fact

that there is already a preferential migration direction present due to balancing out the

density gradient further biases the preferential polarization direction to align towards the

cell front and away from the bulk. This polarization is then again passed on to neighboring

cells as far as one correlation length. In our case, with a measured correlation length on the

order of 100 µm, and polarization stemming from two opposing walls, this would imply

that this polarization mechanism works well up to channel widths of 200 µm, close to

the greatest width of 300 µm used in our experiments. For significantly larger channel

widths, up to the limit case of unconfined cell sheets such as in wound healing assays, the

contribution of a biased polarization might vanish. This could explain why in such cases,

people have found the Fisher-Kolmogorov equation to be an adequate description [149–

151] within the accuracy of their measurements. On the other hand, it cannot be ruled out

that the confinement by neighboring cells on the side is sufficient to reduce likelihood of

polarization in that direction. In this case, polarization would not necessarily be induced

by the walls but rather by the fact that cells at the leading edge would have a higher

probability of polarizing towards the open area, where they are not confined. Again, this

polarization could then couple across multiple cell layers into the sheet. Correspondingly,

cells in an expanding monolayer would then be expected to move just as fast as those

confined by walls.

Interestingly, the global, long-range flow also seems to alter the short scale noise in

our system. Both the MSD of individual cells and the vorticity are good measures of

short scale fluctuations in the system. Our study showed that the MSD of single cells

within the monolayer is increased under flow, indicating nearly diffusive behavior, as
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opposed to the resting monolayers, where cells appear caged by their neighbors and show

subdiffusive motion. The remodeling already going on in the tissue when it migrates

collectively into one direction seems to facilitate the movement of individuals within this

assembly, allowing them to switch places or squeeze by each other. It is worth noting that

an increase of the MSD is not a phenomenon unique to migrating cells, but in fact is well

known from systems, such as colloidal glasses, that show shear melting [152]. Given other

similarities of cell monolayers to glass-like behavior, such as the appearance of dynamic

heterogeneities that grow in size as the density increases and other observations evocative

of a glass transition [38], it is perhaps not entirely surprising that these initially very

different seeming types of systems would have this in common. Very recently, Chepizhko

et al. found evidence for unjamming of a monolayer from a glassy state to a fluid state

in response to a wound [46], which confirms our findings of cells being more capable of

moving around in this situation.

At the same time as the MSD of individual cells increases, the second indicator of short

scale fluctuations in our system, the frequency of vortex formation, decreases under flow. It

seems unlikely that the simple presence of a preferential migration direction could suppress

these bursts of collective rotation. The MSD analysis, however, showed that while cells

are relatively caged in the resting case, they are more free to move around in the flowing

case. As such, the interpretation that the bursts of collective behavior can also break out

of their cages suggests itself. In the resting case, the bursts would be confined to short

range rotational movement, as this does not actually require any directional translocation

of the cells. Under flow, however, these bursts could instead orient themselves along the

density gradient and even it out. It is thus likely not the motion of single cells that causes

the long range diffusion, but rather bursts of correlated short scale active migration of

parts of the cell sheet. A confirmation of this theory is to some extent given by examining

the obtained correlation length lc = 80 µm and correlation time tc = 1.1 h of coordinated

migration. Interpreted as diffusing quasi-particles, these random bursts of coordinated

motion would yield a diffusion coefficient of Dburst = l2/4tc = 1500 µm2

h
, in good agreement

with the measured collective diffusion coefficient of Dc = 1200 µm2

h
. The presence of such

active bursts in collective cell migration has recently been observed by Chepizhko et al.

for a variety of cell lines, though intriguingly, they find a distribution of length of these

clusters of coordinated activity that covers several orders of magnitude (100 to 103) [1].

Hence, bursts of collective activity truly exist in collective cell migration, as they do in

many externally driven glassy systems [153], lending credibility to the notion that they

are responsible for the balancing out of the density gradient with the observed collective

diffusion coefficient. With the bursts of collective activity displaying a wide range of
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length scales, it is possible that Dc is actually an effective diffusion coefficient resulting

from surges on different length scales.

Our results thus indicate that collective cell migration shows bursts of motion of cell

mass that, depending on the confinement of the cells, either is more rotational or more

directed in nature. Strikingly, Vedula et al. also find the disappearance of vorticity and

the emergence of a new contraction-elongation type of movement when they confine the

cells even farther on strips with a width of roughly one cell diameter, giving a further

hint at the fact that the boundary conditions can change the behavior and directionality

of the coordinated movement of collectively migrating epithelial cell sheets [37].

The rich phenomena that already emerge from a simple experiment of confinement in

channels lend credibility to the notion that the tools available for microstructuring of sur-

faces are ideal for creating experimental conditions reminiscent of classical hydrodynamic

investigations. In addition, these initial successes also arouse interest in the phenomena

cells might exhibit when placed into other, more complicated geometries known from clas-

sical fluid experiments, vindicating the notion of cellular hydrodynamics as a legitimate

phenomenological approach to studying collective cell migration.



3.2 Alignment of cell division axis in directed epi-

thelial cell migration

In the previous section, cell migration in channels was described using an analytically

solvable continuum model. We found that three components contribute to the collective

migration of cells: a diffusion-like part that attempts to balance out density gradients

together with the second contribution, the proliferation of cells, and finally a constant,

underlying drift (possibly directed migration due to alignment of cell polarization). Cell

divisions clearly play an important role in the overall behavior, considering the balancing

out of the density gradient had to be described by the Fisher-Kolmogorov equation,

which includes a reaction term for cell proliferation in addition to “pure” diffusion. In

this section, which deals with the contents of publication P3, we examine cell division

events in migrating epithelial sheets [65]. In particular, as tensile stresses apply to cells

in collective cell migration and these affect cell shape and polarity, the orientation of cell

divisions is predicted to correlate with the cellular flow pattern. The orientation of the

cell division axis plays a vital role, both in maintaining tissue functionality over time

and in embryogenesis. For instance, oriented cell division has been shown to be capable

of controlling shape changes during tissue developments, such as the development of the

imaginal disks of the fruit fly Drosophila melanogaster [154]. An understanding of cell

division orientation is therefore essential.

Thus, using the experimental setup from the previous section, we investigated the degree

of the orientation of the cell division axis in directed channel invasion and compare it to

the degree of orientation in the “resting” case where there is no preferential migration

direction. We compare the experimental results to simulations performed with a previously

published [105, 124, 125], particle-based model (for details see section 2.5.3). Fig 3.21

shows an overview over the experimental setup and the simulation.
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a) b)

c)

Figure 3.21: Collective migration into channels in experiment and simulation. a) As in publication P2,
MDCK cells are confined to PEG-DMA channels of different widths [63]. The coordinate
s measures the distance to the front. b) Computer simulation of expansion into micro-
channels using a particle-based approach. c) Fluorescence image of labeled nuclei used for
detection of division events with the drawn vectors illustrating the used coordinate system.
The x -coordinate runs parallel to the channel walls from the entrance to the front, while
y denotes the distance to the wall. The cell division axis d is defined as the vector connec-
ting the nuclei of two daughter cells in the first frame after the division. The orientation
of this axis compared to the x-direction of the channel is denoted by the angle θ. Scale
bars correspond to 200 µm. Reprinted from reference [65] within the framework of Creative
Commons Attribution 3.0 license.
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3.2.1 Flow and density profiles in the model

In order to confirm the chosen model’s applicability to our experimental system, in a

first step the simulated data is compared to the experimental data concerning several

key phenomenological features observed in chapter 3.1 (see Fig. 3.22). In particular, we

find a constant, channel-width independent invasion velocity, in good agreement with

the experiment. For the velocity profiles, simulation yields a perfect plug-flow across the

channel, which matches experimental data except for the behavior at the boundary. In

addition, the velocity profile along the channel shows the same behavior of speed increasing

towards the cell front that was found in the experiment. Likewise, the yielded density

profile matches the experimental one. Given the good agreement between both the shapes

of the density profile and the constant invasion velocity in experiment and theory, they

are used as units of measure to rescale the simulation to physical units.

a) b)

c) d)

Figure 3.22: Flow profiles and density distribution in experiment and simulation. a) Velocity vx re-
sulting from PIV analysis as a function of the distance to the front. The values from the
simulation of the particle-based model show the same general trend. b) Velocity as a func-
tion of the distance to the wall y for different distances to the front s. The experimental
data shows the decrease previously discussed in chapter 3.1 with decreasing distance to
the wall. The simulated data on the other hand shows a perfect plug flow. c) Illustration
of the velocity profile at various distances to the front. d) Profile of the cell density ρ.
The simulated data agrees well with the shape of the experimental profile already discus-
sed in chapter 3.1. All plots result from averages over ten measurements. Reprinted from
reference [65] within the framework of Creative Commons Attribution 3.0 license.
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All in all, good agreement is found between the data from simulation and experiment on

a phenomenological level. This is a good indication that the chosen model is in principle

applicable. The discrepancies in the flow profile at the boundaries, however, suggests that

the model works best for the bulk of the cell sheet and it is worth paying particular

attention to the behavior at boundaries in the following analysis.

3.2.2 Orientation of the cell division axis with respect to global flow

With the model deemed principally in agreement with the experiment, it is feasible to also

use it to study cell divisions. The first question we ask is to what extent the orientation

of the division axes of all cell divisions are affected by a global flow. To this end, the

axes of all individual cell divisions in the experimental data are determined manually

from the position of the two daughter cells in the first frame after their appearance. Their

orientation is described by the angle θ between the axis and the x-direction of the channel

(see Fig. 3.21c) or by a unit vector d. As the cell division axis is mirror symmetric,

the orientation is characterized well by the nematic order tensor Qij (see Eq. 3.8), more

typically known from liquid crystals.

Qij = 2didj − δij (3.8)

Here, i and j represent the spatial directions. In particular, we can describe the order

of one orientation (a) relative to another (b) by a simpler, scalar quantity:

Sab = 2(a · b)2 − 1 (3.9)

We want to study the order of the division axes with respect to the global flow. Consi-

dering that in publication P2 we found that the average flow in the experimental system

is oriented parallel to the channel [63], we can simply take the x -axis of the channel to

represent the orientation of the global flow. Thus, we examine the order of the cell division

axes with respect to this channel axis:

Sdx = exQex = 2〈cos2θ〉 − 1 (3.10)
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a)

b) c)

Figure 3.23: Order of the division axis in cell sheets invading channels with preferential migration
direction. a) Examples of order parameter for illustrative purposes. Sdx indicates no order
(isotropic), while Sdx signifies absolute alignment of the cell division axis with the x-axis.
b) Order parameter Sdx, indicating orientation of the cell division axis with respect to
the x -axis, as a function of the distance to the front s. For the simulation values, cells
closer than 42 µm to the wall were excluded. The simulation quantitatively reproduces
the experimental data, though it deviates close to the cell front. c) Order parameter
Sλx , capturing the orientation of the eigenvector of the greatest eigenvalue of the velocity
gradient tensor with respect to the x -axis, as a function of the distance to the front s. The
order is examined both for all positions and only for sites of cell division. No correlation is
found for the overall average, but there is a weak correlation at the division sites. Again,
the simulation agrees well with the experimental behavior in the bulk, but differs near the
front. All plots result from averages over ten experiments. Reprinted from reference [65]
within the framework of Creative Commons Attribution 3.0 license.
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While Sdx = 0 describes isotropy, Sdx = 1 represents perfect alignment of the two chosen

axes (see Fig 3.23a for illustration of what degree of order different values represent).

Over most of the cell sheet, we find significant alignment (order in the range of Sdx =

0.2 to 0.5) of the cell division axes with the x -axis in the experimental data (see Fig

3.23b). Upon drawing closer to the leading edge, however, the order parameter begins

to drop, even reaching negative values, which represent an alignment of the orientation

axis perpendicular to the channel. Movies of the experiments confirm this behavior. The

correlation length in fingers of MDCK cells has been determined to be 200 µm [28], so

we expect cells further than these 200 µm behind the front to be unaffected by border

instabilities. Everything falling beyond this cutoff is thus defined as the “bulk” of the cell

sheet. This definition, made independently of any of our own measurements, accurately

excludes the range of distances to the cell front where we find the order parameter Sdx to

drop below 0.2, with divisions in the bulk showing good alignment with the x -axis.

The simulation shows the same qualitative behavior, though deviations are found at

the boundaries (both at the channel walls and the leading edge). Given that the model

was already incapable of correctly reproducing the flow profile at the boundaries, this is

not unexpected. Excluding the division of particles closer to the wall than 42 µm from the

evaluation of the simulation data even yields quantitative agreement of the dimensionless

order parameter (see Fig 3.23b).

In order to confirm that this alignment is really caused by the presence of a global flow

and not an artifact of the channel walls influencing the orientation of cell divisions, we used

the data from the experiments where cells were seeded uniformly throughout the channels

and have no preferential migration direction (for details see chapter 3.1). Simulations

were performed to mimic these conditions. As the values for the order parameter Sdx

demonstrate (see Fig. 3.24), both experiment and simulation show no order in the bulk

of the sheet. The experimental data, however, reveals nearly perfect alignment with the

PEG-DMA walls close to these boundaries, while the simulated data remains isotropic.

The decay of alignment with increasing distance to the wall for the empirical data is well

described by:

Sdx = exp

(
−y − y0

ξ

)
+ S0 (3.11)

The resulting fit yields a minimal distance to the wall of y0 = 6.2± 0.7 µm, a nearly

isotropic average order S0 = −0.04 ± 0.02 and a decay length of ξ = 6.7± 1.3 µm for
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a) b)

Figure 3.24: Order of the cell division axis in sheets without preferential migration direction. a) Cell
division and velocities are tracked for confluent monolayers that do not migrate collectively
in a preferred direction. The two pictures show an early and a late time point of experiment
and simulation, respectively. The density starts at 2.6× 10−3 1

µm2 for t=0 min and reaches

4.4× 10−3 1
µm2 at t = 1000 min for both cases. b) Order parameter Sdx capturing the

degree of alignment between the division axis and the x -axis for the confluent cell sheet, in
dependence on the distance to the wall. The simulation data shows isotropic behavior (Sdx
around 0) over the entire width, whereas the experimental data only follows this behavior
in the bulk, but shows parallel alignment close to the walls (Sdx = 1 would indicate perfect
parallel alignment, Sdx = −1 perfect perpendicular alignment to the wall). A simple volume
exclusion simulation reproduces the shape of the experimental data. The plot is the result of
averaging over the whole channel length and seven experiments. Reprinted from reference
[65] within the framework of Creative Commons Attribution 3.0 license.

the order, which corresponds to one cell layer or less. The straightforward assumption

that cell divisions are entirely random under constraint is supported by the success of

a simple volume exclusion model in reproducing the experimentally observed behavior.

When center of mass positions and division angles are drawn from uniform distributions,

with all events where the line connecting the two daughter cells (distance set to a fixed

value of 16 µm) intersects the wall discarded, the resulting order agrees well with the

experimental data. It thus stands to reason that the observed alignment with the channel

wall is simply a result of a decreased range of possible orientations for the division axis

when the dividing cell is too close to the wall. As shown in the supplement of publication

P3, such an alignment is also seen in the presence of a global flow, though it is less

pronounced [65]. Taking the observations from the resting monolayers into account, we

deduce that the strong alignment seen in invading cell sheets is indeed caused by the

global orientation of the flow, and not by the presence of the boundaries.

While a value of 0.5 for the order parameter already indicates good alignment of the

division axes with the global flow, it is not high enough that it rules out other contribu-

ting factors that could play a role in aligning the axis of a cell division in the sheet. We

thus investigate the question of whether stresses in the monolayer could be responsible for

orienting cell divisions. While no direct stress measurements were performed in the expe-
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riments, it is known in principle that a tensile stress is built up in collectively migrating

cell sheets [39, 70, 82]. In addition, in fluids (including most complex fluids) the stress

tensor is directly proportional to the strain rate tensor, which can be calculated from the

derivatives of the velocities according to Eq. 3.12.

Eij =
1

2

(
dvi
dxj

+
dvj
dxi

)
(3.12)

It describes the deformation rates in all directions at each point. We designate the di-

rection of the largest extensile (or least contractile) flow as the “main axis”. This direction

is given by the eigenvector λ associated with the larger eigenvalue λ1. We also define the

difference between λ1 and λ2 (the smaller eigenvalue) as the dipole strength p = λ1 − λ2,

in analogy to a force dipol. It is indicative of the asymmetry of the flow gradient. On the

other hand, the sum of the eigenvalues gives the divergence of the flow. Examining the

orientation of the main axis with respect to the x -axis, we find isotropic order (see Fig.

3.23c for values of the order parameter Sλx ). At the points of division, a weak correlation

between the two axes appears. In the bulk of the cell sheet, the simulations agree with

the experiment, showing no correlation between λ and the x -axis, though the trend of

higher correlation for the points of division is not confirmed. Close to the front, however,

the results of experiment and simulation diverge. While in the experiment λ follows the

trend of the cell division axes and aligns perpendicular to the channel walls (Sλx < 0), the

simulation actually shows increased order compared to the x -axis.

3.2.3 Orientation of the cell division axis with respect to local flow

The previous section clearly showed the presence of alignment of the cell division axes

with the orientation of global flow, however, cells have no known mechanism for sensing

long-range parameters. Thus, something other than the global flow field should arguably

be responsible for the division axes’ orientation. In this section, a possible underlying

cause is investigated by analyzing the correlation between the division axes and various

local variables.

Examination of the relationship between local velocity vectors and the orientation of

cell divisions rules out assumptions of flow aligning the division axis. Most strikingly, the

degree of alignment of division axes with the x -axis and vx show opposite behaviors for

increasing distance to the front of the cell sheet (the velocity decreases, whereas the order
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increases). In a quantified manner, the order between the local velocity vector and the

division axes is on average 0.16± 0.014 with directed migration present, and 0.06± 0.014

without (errors indicate standard deviation of mean). These values, smaller than the

correlations found with the global flow, are interpreted as results of both local velocity

and cell divisions on average being oriented with the x -axis, so sharing a common cause

rather than actually depending on each other.

Local flow being ruled out does not, however, preclude the possibility of local flow

gradients orienting the cell division axes. This idea is supported by the fact that it has

been shown in literature that mechanical stresses orient cell divisions [155] and this is

actually a necessity for explaining fluidization of tissue due to cellular divisions [105]. In

order to investigate the relationship between orientation of the division axes and local

flow gradients, the average order of divisions with the direction of the flow gradients is

calculated:

Sdλ = 2〈cosΦ〉 − 1 (3.13)

Here, Φ defines the angle between the division axis and the eigenvector corresponding to

the strain rate tensor’s largest eigenvalue (see inset in Fig. 3.25b). The resulting average

value of Sdλ = 0.29 ± 0.02 shows a clear correlation in cell sheets with a preferential

migration direction. Reinforcing this notion of correlation between cell division axes and

local flow gradient, we find that the degree of alignment scales linearly with the asymmetry

of the flow gradient (see Fig. 3.25), as quantified by the dipolar strength (i.e. the difference

between the strain rate tensor’s largest and smallest eigenvalue). While in the absence of

a preferential migration direction for the cell sheet the alignment between flow gradient

and division axis is smaller (Sdλ = 0.15 ± 0.02), the found alignment is twice as large as

with the local flow velocity both for the resting and the migrating case. This result is in

good agreement with the simulations, which show an even more pronounced alignment of

division axes with the local flow gradient, independent of global flow.

Detailed analysis of the local velocity field shows a discrepancy in the divergence at

the site of divisions. While in experiments these events are overall contractile (〈div(v)〉 =

−0.10 1
h

with a preferential migration direction, 〈div(v)〉 = −0.11 1
h

without), in simulati-

ons they are extensile (〈div(v)〉 = 0.06 1
h

with preferential migration direction, 〈div(v)〉 =

0.04 1
h

without). Both for experiments and simulations, however, the fluctuations are large

(σ = 0.34 1
h

and σ = 0.27 1
h
, respectively). It is worth noting that the overall flow field in
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a) b)

Figure 3.25: Alignment of cell divisions with local flow gradients in experiment and simulation, in
dependence on the dipolar strength p = λ1−λ2, a measure for the asymmetry of the local
flow gradient. a) A clear correlation between divisions and the strain rate tensor is found
in invading sheets in the experiment. A less pronounced correlation is also present for the
confluently plated cells. A seemingly linear dependence of the alignment on the dipolar
strength is observed. b) In the simulations, the alignment with the local flow gradient is
even stronger, independently of the presence or absence of a global flow. The inset shows
a sketch of a division axis and a velocity field, along with its corresponding eigenvector.
The plots are averages consisting of ten and seven experiments, for the flowing and the
confluent case, respectively. Reprinted from reference [65] within the framework of Creative
Commons Attribution 3.0 license.

the bulk in experiments showed positive divergence in the presence of a global flow (see

Fig. 3.22), and divergence close to zero for the confluently plated cells. Furthermore, while

an excluded area larger than the cell size for calculation of the derivative avoids taking

into account directed motion within the dividing cell, it is still possible that the fact that

cells round up at the moment of division biases the results. A more detailed study of the

flow gradients along the cells’ trajectory prior to the division would allow investigation of

the growth and orientation phase

In contrast to the divergence, the dipole moment is positive both for experiment and

simulation data. We found 〈∂‖v‖ − ∂⊥v⊥〉 = 0.16 1
h
, σ = 0.36 1

h
in the experiments with

a preferential migration direction, and, in good, even quantitative agreement, 〈∂‖v‖ −
∂⊥v⊥〉 = 0.15 1

h
, σ = 0.33 1

h
in the corresponding simulations. Without the preferential

migration direction, agreement between experiment and simulation is only qualitative

(〈∂‖v‖−∂⊥v⊥〉 = 0.07 1
h
, σ = 0.38 1

h
) and 〈∂‖v‖−∂⊥v⊥〉 = 0.16 1

h
, σ = 0.24 1

h
, respectively).

3.2.4 Discussion

In conclusion, the results of this section show the effect of an underlying global migration

direction on the orientation of the cell division axes in collective invasion of MDCK cells

into PEG-DMA channels. The correlation of flow fields and cell division events yielded
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quantitative insight into the motion of cell sheets. Strong alignment is present between

the orientation of the division axes and the underlying migration direction. To confirm the

global flow as the cause, a control experiment was performed with the same cells seeded

uniformly into PEG-DMA microchannels. In this quasi-resting scenario, the cell division

axis is oriented randomly, ruling out boundary effects of the walls and confirming the

hypothesis of a preferential migration direction as the major cause of orientation.

With cells unable to sense global quantities such as underlying flow, the relationship

between the division axes’ orientation and local quantities was investigated. The best

correlation exists between the axes’ orientation and local flow gradients. Specifically, the

average order between the division axes’ orientation and the strain rate tensor’s main

axis is twice that between division axes and the local flow direction. This agrees well with

the hypothesis that stresses in the migrating cell sheet are proportional to the velocity

gradient, and these stresses subsequently orient the cell divisions.

Most of the experimental results agreed well with simulations based on a previously pu-

blished particle model [105, 124, 125]. In this model, cells are represented by two particles

that repel each other in order to grow. This results in the intrinsic, oriented feedback bet-

ween growth and mechanics necessary to study rheology of three-dimensional tissues, the

model’s original purpose. Without any further modifications, this model was sufficient

to reproduce viscoelastic properties of tissue spheroids [105] and describe their growth

[156, 157]. Even with the model later on extended by a simple motility algorithm in order

to understand certain phenomena of growing motile tissues (such as fingering instabilities

at the front of the cell sheet), it was never meant to study divisional orientation. Thus,

the agreement between the experiment and the computer simulations in many phenome-

na is particularly noteworthy. Specifically, the simulations showed the same characteristic

cell number density profile, similar velocity profiles both along and across the channels,

and strong correlations between the main axis of the strain rate tensor and the orienta-

tion of the division axes. Despite this good agreement, discrepancies between experiment

and simulations were found near boundaries (both at the leading edge of the cell sheet

and the channel walls). It is clear that the model would need to be extended in order

to achieve a better agreement here. For instance, it might be necessary to describe cells

by more than two particles in order to capture their deformability and complex interior

structure, both of which could play an important role for the dynamics close to interfaces.

Of course, such a change would complicate the model and likely increase the necessary

computational resources.
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On the experimental side, the current setup can easily be adapted to other adherent cell

lines (e.g. MCF10A) in order to investigate the universality of the discovered results. More

intriguingly, there is no reason that the orientation mechanism for the cell division axes

should not work in three dimensions. Confirming this with the help of motility experiments

extended into three dimensions, an adaption not without significant challenges, would be

highly intriguing. Such an investigation would be aided by the fact that the particle-based

simulations are already inherently three-dimensional and would require little adjustment.

How the cell division axis is oriented in migrating tissues continues to be of interest

due to the role it could play in wound healing and development. Our experiments showed

that expanding tissue will orient individual cell divisions in the direction of growth, thus

reducing principal stress. While it makes sense for them to do so, it would be of particular

interest to see if these results hold up in in vivo experiments, both in 2D and 3D, or if

cell divisions show a different behavior in these cases.



3.3 Collective cell migration through a

constricted channel

In the previous two chapters of this thesis, collective migration of cells in a straight chan-

nel was studied in detail. In particular, the motion of the cell sheet was related to that

of a fluid. Despite the success of this approach, cell monolayers at high densities display

glass-like dynamics (for more details see section 2.4), with increasing cell density leading

to lower velocities but also increased regions of cooperative movement [38]. This raises the

question, how it is possible that cell collectives can be both fluid-like and solid? Recently,

one attempted explanation has risen to prominence, in which the answer to this dilemma

is given by jamming of the monolayer [41]: The notion here is that the dynamics of the

monolayer are constrained by several physical factors that also dominate the behavior

of other condensed systems, such as foams or groups of colloidal particles. These factors

include, among others, volume exclusion, size, deformability, mutual crowding and adhe-

sion. Thus, depending on these factors, a monolayer might find itself at different points

on a phase diagram in different situations, being more solid-like when density and thus

crowding is higher, and more fluid-like when the opposite is the case.

Relating this notion back to biology, it would make sense for a monolayer to be in a

jammed state naturally, when it functions primarily as a barrier, but then unjam when

necessary, such as in order to collectively migrate for wound healing [41, 46, 82]. Conver-

sely, this jamming phenomenon also seems to play a crucial role in the other direction,

in the case of cancer invasion. For quite some time, collective invasion phenotypes have

been known to occur in at least some types of cancers, such as melanoma and rhabdo-

myosarcoma [76, 158]. Recent results, however, suggest the collective migration mode of

mesenchymal cells in confined environments likely occurs as a consequence of being jam-

med [22]. This further highlights how important the microenvironment really is to cell

migration, which is in agreement with other recent findings [18, 159]. In particular, it is

noteworthy that collective cell migration in vivo does often occur in confinement [36],

and that frequently this confinement is sufficient to induce jamming. Specifically, in 3D

environments this is the case when cells follow the path of least resistance through pre-

sent tracks, which are either the result of proteolytic activity of a leader cell [160, 161] or

simply preexisting in vivo [162, 163].

Live-cell imaging in vivo can be problematic, however, between high intensities causing
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damage to the living systems and two-photon processes not necessarily penetrating far

enough into the tissue to see everything of interest. In addition, the environment the

cells migrate in under such circumstances cannot really be characterized well, which ma-

kes understanding the observed behavior complicated. Thus, artificial systems mimicking

confinement are good alternatives, and particularly for 2D migration, a lot of work has

been performed in that direction. The simplest approach to confining collective cell migra-

tion is straight stripes, as already discussed in chapter 3.1. On such geometries, Vedula et

al. found the emergence of an entirely new contraction-elongation type of migration when

the cells were confined to particularly narrow channels [37]. Though a density gradient

develops over the length of the channel in such systems [63], they are not particularly ide-

al for studying the notion of jamming. More promising towards this goal are geometries

from the work of Yang et al. [164], where the cells migrate on converging and diverging

stripes. Though their goal in these experiments was to study the effect of leader cells in

cell migration, their geometries still force cells to encounter regions where they gradually

have less room available and the monolayer could thus potentially be jammed (conver-

ging stripes) or where there is gradually more area available and cells might become less

jammed (diverging stripes). These experiments result in velocity profiles with maximum

velocity at the front of the cell sheet and a decrease further back independent of the

geometry. They do find higher (lower) velocities in general for the converging (diverging)

stripes compared to the straight reference, explaining this with the change in leader cell

density. This behavior has in principle been reproduced with a particle-based model with

Viscek-type orientational interactions by Tarle et al. [165]. It is of particular note, howe-

ver, that even though the model is specifically constructed with a curvature-dependent

motility feedback that allows the formation of leader cells [166], these are not the driving

reason behind the velocity difference for straight, converging and diverging channels. In-

stead, Tarle et al. find that the different velocities in all three scenarios are mainly driven

by the Bernoulli effect (see chapter 2.3.4), as a consequence of mass conservation.

This raises an interesting question, however, from a more physical perspective: To what

extent can an active cellular flow be expected to follow a classical liquid theory that obeys

Bernoulli’s principle, when over long time periods proliferation breaks mass conservation

and remodeling of cells into 3D can mimic compressibility? In particular, if the notion

of jamming in high density regimes is correct, the behavior of collectively migrating cells

can be expected to deviate strongly from that of a Newtonian liquid if the confinement

induces areas of high densities.

To this extent, this chapter deals with the collective migration of epithelial cell sheets
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through a channel that includes a constriction, mimicking another experiment from clas-

sical hydrodynamics. In these experiments, MCF10A cell sheets migrate into an initially

straight channel, eventually encounter a constriction to pass through, before reemerging

into the original channel width. The central question posed is how the flow profile for this

system deviates from what would be expected from a Newtonian fluid. This would simply

be a constant flux as a result of mass conservation, and thus a higher flow velocity in the

constriction compared to both before and after it.

In contrast, several factors are likely to contribute to the velocity profile of cell layers

in this system: First of all, our results in the straight channels and the findings of other

groups in various scenarios, show that migrating cell sheets exhibit a gradient in velocity,

with maximal velocity at the front, which decreases further back [18, 63, 164]. Thus the

monolayer is already expected to display a gradient in velocity simply in the straight part

of the channel before the constriction. Secondly, the presence of a constriction can be

expected to cause the cells to become backed up, as more cells arrive than can continue

progressing through the constriction, which would lead to a build-up of density at its

entrance. Following previous results [38], this increased density would lead to a decrease

in velocity. Thirdly, such a build up in density would break the previously present density

gradient. The balancing out of this gradient by bursts of collective cell migration was found

to be one of the main contributions to the forward motion of the migrating cell sheets (see

chapter 3.1), so this gradient vanishing, or potentially even being temporarily reversed in

parts of the monolayer could have significant consequences on the overall motion. Due to

the intriguing behavior each of these effects on its own could have, observing the result

of their interplay on the velocity profile is particularly interesting.

In an attempt to understand the mechanisms underlying the observed behavior, expe-

rimental results are compared to an active isotropic-nematic mixture model. This type of

continuous media based approach typically work well on scales significantly above that

of the individual constituent agents that are not explicitly accounted for. As even the

smallest constriction used in this thesis was chosen so as to still allow several cells to pass

through it in parallel, this, coarse-grained model should ideally be capable of reproducing

the experimental results and provide some insight into them.

In summary, this chapter investigates the collective migration of an epithelial cell sheet

through a constricted channel, comparing experiment and theory. Particular interest is

placed on how the jamming prior to the constriction influences the velocity profile, and

how this resulting profile for a cellular flow without mass conservation deviates from that
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of a Newtonian fluid governed by the Bernoulli effect and mass conservation.

3.3.1 Evolution of the cell front

In order to investigate the effect of a constriction on collective cell migration, human

mammary epithelial cells (MCF10A) are confined to 300 µm wide channels with various

constriction geometries via micromolding in capillaries (see section A.1.1). All channels

are created in such a way that cell sheets have a distance of 600 µm to cross in a straight

channel, before the environment begins confining. Length and diameter of this constricted

area, as well as abruptness of how quickly the channel constricts to its minimal width were

varied in an attempt to answer different questions about the resulting velocity profile. In

principle, constriction widths ranging from 100 µm (i.e. 1/3 of the initial channel width)

to 300 µm (i.e. no constriction at all, for reference) were used. The length of constrictions,

defined as the segment where the channel is at minimal width without the transition areas

before and afterward, was varied from 50 µm to 700 µm. The transition area in which the

channel shrinks from its maximal width to the minimal constriction width (and after the

constriction, expands again to the initial width) was set to either 300 µm or 500 µm.

The process of cells invading into the channels as a connected monolayer is studied by

time-lapse phase-contrast microscopy (see Fig. 3.26). Compared to the MDCK cells used

in chapter 3.1, the MCF10A cells migrate slightly less collectively in this experimental

setup, with occasionally an individual cell (or a small group of cells) detaching from the

cell collective at the front and migrating individually.

As this makes an automated detection of the cell front analogous to chapter 3.1 proble-

matic, the evolution of the cell front over time is only evaluated exemplarily, by manual

tracking. Fig. 3.27 shows the evolution of the front position for measurements of one par-

ticular constriction geometry and a straight, unconfined channel as reference. Again, quite

some variance can be seen between individual measurements. In principle, however, cell

sheets seem to progress linearly through the channels both with constriction and without

constriction (when ignoring the occasional sharp drops in the position of the cell front

which correspond to detachments at the front of the sheet). There is no clear effect of the

constriction, in the sense that the evolution of the front position shows no difference in

slope before, during or after passing through the constriction. Likewise, when comparing

the evolution of the front position for the constricted and the unconstricted channel, the

differences between individual measurements for each case are as large as the differences
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t = 0 h

t = 20 h

t = 40 h

Figure 3.26: Time series of MCF10A cells collectively migrating through a constriction in a channel.
Cells enter the channel and migrate as a sheet towards the constriction, which they have to
squeeze through to progress. Once they reach the other side, the cells expand once more.
Halos in illumination at early time point result from condensation on sample lid during
temperature equilibration at the beginning of an experiment. Scale bar corresponds to
200 µm.

between both measurements and there is no systematic trend. Thus, it can be concluded

that the front of the cell sheet moves through the constriction relatively uninfluenced,

neither speeding up nor slowing down.

This makes it even more intriguing to analyze the entire velocity profile over the whole

channel, however. A Newtonian fluid flowing through a constriction speeds up in the

narrow part so that a constant flux can be achieved. If the cell sheet does not do so, as

the data indicates, there are two options: Either cells have to be tightly compressed as they

flow through the constriction so that the cell flux density remains constant throughout

the channel, which seems unlikely, or the flux of cells arriving at the entrance of the

constriction is higher than the flux of cells being transported away. In this case, cells

necessarily need to back up prior to the constriction, causing an increase in density and

potentially entering a jamming regime.

In addition to the position of the front, the evolution of the shape of the front is also

interesting, but even harder to analyze systematically. Fig. 3.28 shows one representative
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Figure 3.27: Evolution of the position of the cell front over time. a) Position of the cell front over time
for different channels with the same constriction. Each individual channel is depicted as
a gray curve, one of which is highlighted in red for ease of viewing. The horizontal lines
indicate the position of the constriction (from bottom to top: position where channel begins
constricting, position where channel reaches minimal width, position where channel begins
expanding, position where channel reaches maximum width). No systematic effect of the
constriction upon the velocity of the front is observed. The curves display characteristic
buckling where the position of the front rapidly drops to a lower value when an individual
cell or a small group of cells tear off from the front of the sheet. b) For comparison,
the evolution of the cell front position for unconstricted channels of the same width as
depicted in a) is shown. All curves from both graphs are overlayed in the inset (red with
constriction, black without), again highlighting that there is no clear effect of a constriction
being present.
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individual measurement of migration through constricted channel (corresponding to the

geometry also depicted in Fig. 3.27a). The contour of the cell front was traced manually

every four hours. As is common in collective cell migration, the leading edge is rough when

the front is in the 300 µm wide sections (prior to or after the constriction). While passing

through the 100 µm narrow constriction, the cell front is much smoother, as there is much

less room for it to actually become rough. In the initial period after passing through

the constriction, the cells seem to spread along the channel boundary (i.e. the cell sheet

covers the entire channel width). This would be in agreement with the results seen by

Tarle et al., who briefly qualitatively examined the emergence of a cell monolayer from a

constriction and find highly anisotropic invasion into a wide region mostly perpendicular

to the previous migration direction, guided by curvature induced leader cells [165]. This

would not necessarily need to be the case in the experiments presented here, as the

curvature at the exit of their constriction is much higher than the smoother exit here.

It is of note, however, that as the migration of the cell sheet further into the region of

maximal width is examined, the monolayers in the experiments of this thesis frequently

do not keep in contact with the boundaries, but rather progressed in a narrower finger

that does not span the entire width of the channel.

While the evolution of the front shape shown in Fig. 3.28 is representative of the ge-

nerally observed development, studying its behavior in more detail would require a more

systematic evaluation. As this is a whole additional question, this analysis was not per-

formed as part of this thesis. Though this might well be of interest in future work, the

example presented here is only intended to give a general impression of how a cell sheet

migrates through the constricted channel and does not claim to be a complete description.

3.3.2 Influx at channel entrance

Prior to a detailed analysis of the flow field for cell sheets migrating through channels with

constrictions, it makes sense to briefly examine the boundary conditions in an attempt to

understand the source of the cell sheet’s migration. What the driving component behind

the monolayer’s expansion is, plays a major role in understanding what is actually happe-

ning when it encounters a constriction, and it is also essential when attempting to create

a model that does not only reproduce the experimental results, but correctly emulates

the underlying process. Specifically, the question for invasion of a channel by a cell sheet

is whether the sheet (in the experiments discussed in this thesis) expands primarily due

to an influx of cells at the channel entrance, or due to proliferation of cells already inside
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Figure 3.28: Evolution of the shape of the front of a cell sheet invading a constricted channel. The cell
sheet’s contour was traced manually every four hours, and is depicted with a color scale
going from dark green to dark red. Before the constriction, the cell front is rough, whereas
within the narrow constriction it is smoother by necessity. After leaving the choked part
of the channel, the cell front roughens once more. Initially, the cells seem to spread along
the boundaries, but eventually, the sheet moves forward in a narrower finger that does not
cover the entire width of the channel. Scale bar corresponds to 200 µm

the channel, or due to some combination of both. Naturally, in the beginning, when no

cells are yet inside of the channel, the dominant mechanism has to be an influx from the

outside reservoir, but it is possible a transition occurs once enough cells have entered that

the contribution from proliferation becomes dominant. One big reason why this difference

is relevant is that a constant influx from the channel entrance presumably has the same

effect throughout the cell sheet, whereas proliferation occurring throughout the channel

at a similar rate would affect different areas of the sheet in different ways. Specifically,

cells far from the front would have few cell divisions behind them that would push them

forwards, whereas cells close to the front would be pushed by the sum of all cell divisions

in the full length of the sheet behind them. This would be a possible explanation for why

higher velocities were observed in chapter 3.1 the closer one got to the front of the sheet.

With only the phase-contrast images of the invading cell sheets available, it is much

harder to answer this question than it might be with, for instance, a fluorescence image of

the nuclei. This would allow easy cell number counting for proliferation measurement, as

well as tracking of individual cells within the layer and thus easy counting of how many

cells actually enter the channel, as we did in the supporting information of publication P2

to show the cell influx depended linearly on the channel width [63]. While the experiments

in that publication are not identical to the experiments in this chapter (the cell line is

different, the invasion into channels was studied over a shorter distance, and the channels

had no constriction), they offer a first reference point. For the MDCK cells in those expe-

riments, for 300 µm wide channels, the cell influx at the channel entrance was determined

to be roughly JInflux = 12 1
h
, while the cell growth rate was measured at λ = 0.0283 1

h
.
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With this growth rate, assuming exponential growth according to N(t) = N0 exp(λt),

N0 = 418 cells need to be already present in the channel in order for proliferation to pro-

duce 12 new cells in one hour (and thus match the influx at the channel entrance). Due to

the density gradient that forms in expanding monolayers, it is hard to estimate an exact

density, but for a rough approximation, c = 0.003 cells
µm2 is assumed from Fig. 3.10. If the

cell sheet uniformly assumed this density while invading 300 µm wide channels, an MDCK

monolayer would need to penetrate 464 µm into them for this many cells to be present in

the channel. This distance is less than the 600 µm before the channels in this chapter even

begin to constrict. Thus, within the framework of this very rough approximation, before

the cell sheet enters the constriction, influx at the channel entrance and proliferation are

contributing new cells at an equal rate. The cell influx at the channel remains roughly

constant, however, while the contribution from proliferation continues to increase as more

and more cells fill the channel.

The presence of the constriction changes things, however, both for the influx and for

cell proliferation. If the previous notion that cells back up at the entrance to the con-

striction is correct, the density here will increase. Thus there will initially be more cells

and proliferation will contribute even more strongly than it otherwise would for the same

depth of invasion into the channels, unless the density increases so much that cells in the

backed up region become affected by contact inhibition of proliferation. In that case the

proliferation contribution would be lower than the total number of cells in the channel

would suggest.

Likewise, there are some clues as to changes in the influx behavior at the nozzle entrance

as well, as highlighted exemplarily in Fig. 3.29. The figure shows kymographs at the

channel entrance (one in the center of the channel and one closer to each of the channel

walls) that extend the first 100 µm into the channel (for the data set also shown in Fig.

3.28). In contrast to the situation when using cells with fluorescently labeled nuclei, a

quantitative evaluation of the cell influx is not possible from these kymographs, however,

the features can still give some qualitative information about the influx behavior: The part

of the images corresponding to early time points are dominated by lines tilted diagonally

from top left to lower right (at a relatively shallow angle), which corresponds to dark or

light features in the image moving along the kymograph lines in positive x-direction (i.e.

into the channel) over time. The parts of the image corresponding to later time points,

however, are lines that curve back and forth, which indicates that the noticeable features

are not moving into the channel consistently, but rather back and forth along the lines

over which the kymograph was taken. This indicates that while early in the measurement,
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Figure 3.29: Influx of cells into the channel. a) Phase-contrast image of a late time point from the data
set shown in Fig. 3.28. The influx is examined along one pixel wide lines of 100 µm length,
at the channel entrance. Their exact position is marked by the light blue, dark blue and
green line (drawn wider than one pixel for visibility purposes). b) Kymographs along the
three lines shown in a). At early time points, the behavior both in the middle and at the
edge is dominated by sloped lines from top left to bottom right, as indicated by the top
orange line traced along one of these prominent features. This corresponds to dark or light
regions associated with cells and their boundaries moving along the lines shown in a), and
thus cells flowing into the channel. At late time points, starting around 25 h this behavior
changes, and the dominant features in the kymograph become lines that curve back and
forth, as highlighted by the second orange curve. This time roughly corresponds to the cell
front emerging from the constriction for this particular data set, as seen in Fig. 3.28.
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when the cell sheet is still moving in the part of the channel prior to the constriction,

influx into the channel is occurring as expected. Later on, however, which at least for this

particular measured channel corresponds roughly to the point where the cell sheet has

emerged from the constriction, there is no real positive net flux into the channel, or it is

at least reduced compared to early on. A possible interpretation is that the influx into the

channel stops once cells have backed up outside of the entrance to the constriction to a

sufficient degree (potentially once they have backed up enough that the density gradient

between the channel entrance and the entrance to the constriction has balanced out).

All in all, a deeper investigation of influx and proliferation in this specific experimental

system is likely necessary for future work. The above rough approximation of how far the

cells likely would have to migrate into the channel before proliferation starts outperfor-

ming the influx, and the fact that the kymographs suggest the influx slows down as time

progresses and the cell sheet penetrates farther into the channel, however, suggest that

proliferation is the dominant component driving migration into the channel by the time

the cell sheet emerges from the constriction. Likely, it is already the more dominant part

when the cell sheet enters the narrowing part of the channel .

3.3.3 Flow field analysis

In order to answer the central question as to the effect of the constriction on the velocity

profile, a more detailed analysis of the cell sheet’s flow field is necessary. To this extent,

PIV is performed between successive frames of the time-lapse sequence as detailed in

appendix A.2.1. One example of a resulting velocity field can be seen in Fig. 3.30. Though

the majority of velocity vectors are roughly pointing in positive x-direction, as is to be

expected, on short scales there can also be more complex behavior, as highlighted in the

magnified regions.

Given the large area spanned by the data and the resolution of the PIV analysis, it is

hard to make out any detail just examining the velocity field, unless specific regions are

magnified. This is convenient for a closer study of certain subsections of the field, but

not practical for a general overview. To this end, Fig. 3.31 shows heatmaps depicting the

magnitudes of the x-component of the velocity and the absolute velocity. Intriguingly,

domains form where vx takes negative values. After the constriction, this is perhaps less

surprising, as the cell sheet does not fill the entire width, and thus there is space available

where the groups of cells at the edges can “curve back”. In front of the constriction,
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a)

b)

c)

Figure 3.30: PIV analysis and resulting velocity fields. a) A representative phase-contrast image taken
as input for the PIV analysis. b) The same image with the velocity field resulting from the
pixel wise cross-correlation of successive images performed by the PIV analysis overlaid on
top. c) For ease of viewing, the vector field is shown without the underlying phase-contrast
image.

however, a large domain has developed in the depicted example along the bottom edge of

the narrowing segment, where cells run back towards the channel entrance. This is just a

snapshot of a single moment, and this behavior is not expected to be stable. In fact, in

addition to the inherent asymmetry of cells moving in the opposite direction along the top

narrowing wall, cells farther back along the bottom wall are moving forward. If the cells

towards the back are moving forward, and the cells farther forward are moving backwards,

this would lead to an accumulation and thus a higher cell density somewhere in between.

Since part of the expansion of the monolayer in this experiment is due to balancing out of

density gradients, eventually this density gradient along the bottom wall would become

large enough to reverse the flow towards the forwards direction again. Purely speculatively,

it is possible that at that point the flow along the constriction entrance at the top part of

the channel would reverse, causing a build up of a stronger density gradient there, while

the one at the bottom is balanced out.

The other thing that immediately becomes apparent, especially when examining the

heatmap of the absolute values of velocities, is that the cell sheet moves faster in and after

the constriction than prior to it. This already shows a first difference to how a Newtonian

fluid following mass conservation would behave. While an increase in velocity within the
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Figure 3.31: Heatmap corresponding to the PIV field shown in Fig. 3.30. a) Heatmap indicating the
magnitude of the x-component of the velocity (i.e. parallel to the channel). Intriguingly,
some small domains of backflow (blue regions) seem to form. b) Heatmap indicating the
absolute magnitude of the velocity. Immediately, it becomes apparent that the velocities
before the constriction are lower than inside, but not than after it.

constriction is consistent, Bernoulli’s principle dictates a decrease in the velocity once

the fluid returns to the original width, which does not appear to be the case here. This

will become even more apparent later in a more precise quantification of the flow profile

and will be discussed in more detail at that point. It is intriguing to see, however, that

there does appear to be a jamming effect due to an increase of cell density prior to the

constriction, leading to a decreased velocity in that region.

As learned in the previous work on straight channels (see chapter 3.1), the velocity

profiles can be smoothed via time averaging and coarse-graining, removing short scale

noise and making general trends of the flow behavior more readily apparent. At the

same time, this noise can be used to quantify the characteristic time and length scales of

the system by examining how it changes during this smoothing process. Fig. 3.32 shows

the effect on the velocity field of averaging over two different time scales, whereas Fig.

3.33 respectively shows this for coarse-graining on two different scales. In both cases, the

variance of the velocity component perpendicular to the channel (representing the short

scale fluctuations in the system) is plotted against the respective averaging parameter

in analogy to chapter 3.1. Here, however, the variance is examined not over the whole

channel but separated into three regions: prior to, in and after the constriction. Strikingly,

the variance is highest after the constriction and lowest prior to the constriction. The fact

that the lowest variance is found before the constriction might simply be a result of the

velocities being lower there in general. In contrast, high velocities were found both inside

and after the constriction, but the variance of the perpendicular velocity component is
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much higher in the latter of the two regimes. It follows that the cells flowing through the

narrow constriction are more limited in their movement perpendicular to the channel, as

they are jammed in by the many neighbors who are all moving through the thin passage

simultaneously. In contrast, after the constriction, the cell sheet does not even fill the entire

width of the channel. Thus cells are much less confined, allowing ample opportunity for

movements perpendicular to the general direction of motion.

Independent of the examined region, the variance decreases both for temporal and

spatial averaging. To extract the characteristic time and length scales, exponential decays

are fitted to each curve and the degree of averaging required for the variance to drop to

1/e of its original value determined. For the time averaging, the resulting correlation times

range from τcorr = 2.23 h before the constriction, over τcorr = 1.50 h in the constriction to

τcorr = 0.86 h after the constriction. This would be in agreement with the cells at higher

densities being jammed and correlations increasing as a consequence. For the spatial

averaging, resulting correlation lengths range from ξcorr = 58 µm before the constriction,

over ξcorr = 72 µm in the constriction to ξcorr = 144 µm after the constriction. This would

be exactly contrary to expectations of the higher density increasing correlation lengths,

however, these values must also be treated much more carefully than the correlation times.

It is relatively straightforward to average over long periods of time and thus achieve a

significant reduction of the variance, but in contrast, it is not really feasible to average over

length scales much above 60 µm simply due to the diameter of the constriction only being

100 µm. Coarse-graining over that distance still leaves the variance comparatively high,

however, and thus the fit of the exponential decay is based on points only on that part of

the curve, which makes it much less robust, especially when trying to compare three fits

with each other. In an attempt to ensure more equality between the three scenarios, the

exponential decays can be forced to go to zero, rather than allowing them a minimal y-

offset that might result in a slightly better fit. Doing this for the spatial variance, resulting

correlation lengths suddenly only range from ξcorr = 82 µm before the constriction, over

ξcorr = 99 µm in the constriction to ξcorr = 110 µm after the constriction, which is hardly

any difference at all. In contrast, doing the same for the time averaged curves maintains the

trend of a clear difference, with the resulting correlation times ranging from τcorr = 3.47 h

before the constriction, over τcorr = 3.13 h in the constriction to τcorr = 1.06 h after the

constriction. Given that a loss of spatial resolution in the narrow segments of the channel

is impractical, and that coarse-graining only has a very limited effect on smoothing out the

flow field, compared to averaging over time, which even performed over very reasonable

time scales leads to a significant reduction in the variance of the perpendicular velocity

component, it makes sense to refrain from coarse-graining the velocity field prior to further
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Figure 3.32: Smoothing of velocity field through time averaging. a) Velocity fields from PIV analysis,
calculated from two subsequent image frames (top), or by averaging over a period of
2 h (middle) or 12 h (bottom). Holes in the velocity field are the results of missing vectors
during the averaging step (for details, see appendix A.2.2). The magnified region shows how
the noise in the y-component of the velocity is reduced by increased averaging, to the point
where the resulting field is very homogeneous. b) For quantification of the smoothing, the
channel is divided into three regions, as indicated by the blue (before the constriction), the
black (inside the constriction) and the red (after the constriction) arrows. c) The smoothing
is quantified by calculating the variance in the y-component of the velocity field, averaged
over the entirety of each subregion defined in b). It is immediately apparent that the
variance is much higher after the constriction, where the cell sheet does not necessarily
fill out the entire width of the channel and the cell density is much lower than before the
constriction, both of which likely leads to less confinement for the cells. Additionally, in
all three of the subregions, the variance decreases the more the velocity field was averaged
in time prior to determining the variance. Fitting an exponential decay (solid lines) to
each of the three curves, a velocity correlation time can be calculated in each case. The
resulting values range from τcorr = 2.23 h before the constriction, over τcorr = 1.50 h in the
constriction to τcorr = 0.86 h after the constriction. This would be in agreement with both
density and confinement increasing correlations.
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analysis. Instead, velocity fields will be averaged over 2 h to achieve relatively smooth fields

without losing too much information.

3.3.4 The detailed velocity profile

As discussed above, gaining a true understanding of the effect of the constriction on

the collectively migrating cell sheet requires a detailed analysis of the velocity profile that

develops. For the purpose of comparison to a Newtonian liquid obeying mass conservation,

the relevant part of the flow field is that along the channel (as opposed to across the

channel). To this end, all velocity profiles in this section are taken by averaging the

velocity (either the x-component or the absolute magnitude) from the PIV analysis over

the entire channel width for each grid point along the channel. Due to the results from the

previous section, PIV flow fields are averaged over two hours prior to this average over the

channel width, to smooth out the short scale fluctuations. Finally, the velocity profiles

are ensemble-averaged over multiple invaded channels in order to uncover the general

behavior inherent to the process. For the purpose of averaging multiple measurements,

time points are taken at which each of the sheets had invaded to the same point in the

channel (e.g. 250 µm past the constriction).

In order to understand the effect of a constriction on the flow profile of a collectively

migrating cell sheet, it is first necessary to understand the effect confinement of different

widths has. To this end, Fig. 3.34 shows the flow profile of the velocity component par-

allel to the channel and the absolute magnitude of velocity for unconstricted channels of

different widths when the cell sheets had migrated 1500 µm into them. In agreement with

the work on MDCK cells in chapter 3.1 (though on a three times longer length scale),

an increase in velocity towards the front of the cell sheet is observed. This behavior is

present independently of the width (over the width range studied here). Similarly, like for

the MDCK cells, at the very front of the cell sheet the velocity decreases slightly. The

fact that this decrease is more pronounced in the x-component of the velocity than in

the absolute magnitude shows that part of the reason is that at the monolayer’s leading

edge it does not fill the entire width of the channel and thus more of the cells’ velocity

can be diverted perpendicular to the channel than farther back. This does not explain the

entire velocity decrease, however. In addition, it seems like the velocity decrease spans a

longer distance from the front of the sheet than in previous results, which could be either

a consequence of the different cell line used, or the significantly longer distance the cell

sheets were allowed to invade into the channels.
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Figure 3.33: Smoothing of velocity field through coarse-graining. a) Velocity fields from PIV analysis,
calculated from two subsequent image frames at a resolution of 8 × 8 µm (top), or by
subsequently larger coarse-graining. b) For quantification of the smoothing, the channel
is divided into three regions analogous to Fig. 3.32, as indicated by the blue (before the
constriction), the black (inside the constriction) and the red (after the constriction) arrows.
c) The smoothing is quantified by calculating the variance in the y-component of the
velocity field, averaged over the entirety of each subregion defined in b). As in Fig. 3.32,
the variance is highest for the area after the constriction and decreases with increasing
averaging, though the effect is less pronounced. Fitting an exponential decay (solid lines)
to each of the three curves, a velocity correlation length can be calculated in each case.
The resulting values range from ξcorr = 58 µm before the constriction, over ξcorr = 72 µm
in the constriction to ξcorr = 144 µm after the constriction.
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For all of the observed widths except for the most narrow channels (100 µm), there

seems to be no effect of the size of the confinement, as the velocity profiles are very

similar and for the most part overlap within their margins of error. For the 100 µm wide

channels, however, a clear difference appears and the velocity seems to be lower over most

of the channel length. Interestingly, this difference appears to be less pronounced in vx

than in |v|. The velocity profile is also different qualitatively. For an unclear reason, in the

narrowest channels, the profile increases stepwise, with intermittent plateaus, somewhat

reminiscent of the velocity profiles found by Vedula et al. when they observe a contraction-

elongation mode of migration (albeit on even narrower stripes) [37]. It is possible that the

mode of migration in these channels changes (or begins to change) compared to the wider

channels and the threshold for this change is just at a wider width for MCF10A cells.

Of particular note is that over about the first 300 µm, the velocity profiles, especially for

x-component of the velocity, do not deviate too strongly from that of wider channels. In

addition, the velocity reached by the cell sheet in the narrow channels still reaches up to

the same values as the velocity in the wider channels, as these seem to eventually reach

a plateau prior to the decay right at the leading edge. Taking all of this into account, the

constrictions used in this thesis were limited to a minimal width of 100 µm and, where

possible, to a maximal length of 300 µm. Going forward, only velocity profiles for vx are

examined, as this is also where there seems to be less of an effect of just the width of the

channel. All of this should ideally prevent the introduction of new modes of migration

into the system and allow studying the effect of a constriction on collective cell migration

more cleanly. Of course, in the context of cells invading collectively through narrow, pre-

existing passages in the body, examining even smaller constrictions where different modes

of migration are relevant would also be of interest in potential future work.

With the effect of the size of confinement examined for a straight channel, the next step

is to introduce a constriction and study how this changes the velocity profile. Fig. 3.35

compares the profile for the unconstricted channel with those of channels with various

constriction diameters ranging all the way down to 100 µm, at the time point when the

cell sheets have penetrated 250 µm into the area of maximal width after the constriction

(or the equivalent distance for the unconstricted reference). While no clear, systematic

difference can be seen between the curves for various constriction diameters, all of them

show a clear difference to the profile without constriction. Specifically, the velocity in the

straight channel increases from the channel entrance up until it reaches a plateau around

30 µm
h

, whereas the velocity profiles for all of the constricted channels exhibit a plateau

immediately from the entrance of the channel until roughly halfway into segment where

the channel narrows prior to the constriction. It is only at that point that they begin
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Figure 3.34: Velocity profile of collectively migrating cells in straight channels in dependence on channel
diameter. a) x -component of the velocity (i.e. parallel to the channel) for different positions
along the channel (averaged across the width of the channel at that position) for cell sheets
that had penetrated 1500 µm into the channels (averaged over a period of 2 h centered
around the time when said depth was reached). As previously found, the velocity increases
towards the front of the cell sheet. For 300 µm, 400 µm and 500 µm there appears to be
no clear effect of the channel width, as there is no systematic trend in the data. For
the 100 µm wide channels, there seems to be a noticeable decrease in velocity. The inset
shows the color code for the different channel widths. b) Same data as in a), except the
absolute value of the velocity is examined rather than the x -component. Though the values
change, the quantitative behavior is relatively similar to the behavior of the x -component,
as most of the cell motion is oriented parallel to the channel. There still seems to be no
pronounced effect of the width in the wider regime, and only the 100 µm wide channels
show a noticeably lower speed. Shaded regions indicate standard error of the mean.
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increasing, at roughly the same incline, which seems to be steeper than the incline of the

gradient for the unconstricted channel. Eventually, the velocity profiles level off at roughly

the same level as the straight channel profile levels off. The absolute plateau values in

most cases do appear to be slightly below the plateau for the straight reference, but given

the small difference and the margin of error, it is hard to determine whether this is a

real effect or mainly the result of day to day variations between the collectively migrating

cells.

The effect the introduction of a constriction has on the early part of the velocity profile

is particularly interesting. The appearance of a plateau in velocity indicates that cells are

indeed being jammed, either by increased density or by the confinement simply preventing

them from flowing away through the constriction as fast as they are reaching the area in

front of it. The part of the cell sheet in the constriction, however, is clearly unjammed,

as this is the area where the velocity begins increasing. Of particular note is the fact that

the diameter of the constriction seems to have no clear effect on the slope of this increase,

or the point of onset of this increase, which confirms the idea that cells within them are

moving in an unjammed state, and are not noticeably more or less jammed for different

diameters. In future work, a more detailed analysis, including the actual cell densities in

the various constrictions and in the region prior to them could help give further insights

into this jamming and the correlations between density and cell velocities.

Without a fluorescent nucleus label to measure the cell densities, further insight into

the effect the constriction has on the velocity profile can still be gained by examining the

evolution of the velocity profile before it reaches the state shown in Fig. 3.35. One relevant

question, for instance, is how much of an immediate effect encountering the constriction in

the channel has on the velocity profile compared to the buildup in density (and consequent

jamming) that is expected to occur over time as more cells arrive at the entrance to the

narrow part than can continue moving on. To investigate this, the velocity profile for the

channel with the strongest constriction is examined at four points: once the leading edge

of the cell sheet has reached the segment where the channel begins to narrow, once it has

reached the minimal width, once it has passed through the constriction and arrived in the

segment where the channel begins to widen again, and finally at 250 µm past the point

where the confinement has returned to maximal width (see Fig. 3.36).

This final point corresponds to the invasion depth at which the velocity profiles are

shown in Fig. 3.35, where the plateau prior to the nozzle entrance had already fully

developed. At earlier time points, however, this is not yet the case. Cell sheets migrating
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Figure 3.35: Profile of the x -component of the velocity (i.e. parallel to the channel) along the channel
in dependence on constriction diameter. The ensemble average of two hour time averages
around the moment when the cell sheets have penetrated 250 µm past the point of maximal
width is shown from no constriction (dark blue) to a constriction 1/3 of the full channel
width (dark red) as indicated by the color scheme in the inset. The dashed gray lines
indicate (from left to right) the point where the channel begins constricting, the point
where minimal width is reached, the point where the channel begins widening again, and
the point where the channel has once more reached full width. This is reiterated in the
gray schematic of the channel which highlights the channel segment corresponding to each
region of the velocity profile. While the reference profile with no constriction (dark blue)
shows an increase in velocity towards the cell front until a plateau (or possibly even a slight
decrease) is reached, all channels with a constriction show a plateau at the beginning of the
channel and do not show a pronounced increase until about midway through the narrowing
channel segment. The total velocity they reach before going into another plateau is no lower
than for the unconstrained channel within the margin of error. Shaded regions indicate
standard errors of the mean.
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in the straight part of the channel, before it begins to narrow, show the expected increase

in velocity towards the cell front. Even after cells have migrated through the entire 500 µm

of the channel’s narrowing segment and the leading edge has reached the minimal width of

the constriction, the velocity profile still shows the same qualitative behavior: vx increases

towards the front until a plateau value is reached. Things appear to begin to change as the

front of the sheet progresses farther through the constriction, and, presumably, the density

before the constriction entrance begins to increase as cells accumulate. The velocity profile

still displays high values in the region prior to the constriction, but seems to have already

formed a plateau to a certain degree, which is not yet quite as smooth as those observed

for deeper invasion depths. About halfway through the narrowing segment, the increase

in velocity begins, reaching up roughly to the maximal values also achieved at earlier time

points. Finally, as already discussed, by the time the leading edge of the cell sheet has

reached 250 µm past the return to maximal width, the plateau in front of the constriction

has fully formed and the velocities there have significantly dropped. Thus, this effect is

not instantaneous, as it would be if it were simply a result of cells being slowed down by

not being able to migrate through the constriction at the same velocity.

For reference, these profiles are compared to the velocity profiles in the straight channels

at depths equivalent to these last two points. For the first case, when the leading edge has

reached the point where the channel is getting wider again, the magnitudes of velocities

in the early part of the channel are similar, though the straight channel shows the typical

increase in velocity towards the leading edge, as opposed to the plateau for the constricted

case. In the latter case, where the constricted channel now shows a strikingly different

behavior than for the earlier points, the velocity profile for the straight channel has barely

changed in the back part of the channel, though the increase eventually reaches a plateau.

All in all, these observations support the hypothesis that it is a buildup in density prior

to the nozzle that leads to the striking change in the velocity profile upon introduction of

a constriction into the channel, likely via a mechanism of a certain degree of jamming.

To further investigate the notion of to what degree the cells in the actual constriction

are jammed, the velocity profiles for channels with constrictions of different lengths are

compared (see Fig. 3.37). Interestingly, the length of the nozzle plays no role in determi-

ning the location of the switch from plateau in the velocity profile to the sloped portion.

This holds true both when comparing the flow profile of the channel with the 100 µm wide

constriction used up until now to an identical set of channels with a longer constriction,

and also for a second set of geometries that is identical to each other aside from varying

length of the constriction but differs from the previously studied geometry in length of
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Figure 3.36: Evolution of flow through a constricted channel over time. The profile of the x -component
of the velocity (i.e. parallel to the channel) along the channel for the narrowest constriction
from Fig. 3.35 is depicted at different points of invasion into the channel: dark green as the
cell sheet enters the narrowing part of the channel, light green as it has reached minimal
width, orange as the segment where the channel widens is reached and dark red for 250 µm
past the point of maximal width (as indicated in the schematic channel representation
below the profiles). The plateau in the velocity prior to the constriction seen for this
geometry in Fig. 3.35 does not develop until the cell sheet has already reached the area of
the channel where it has returned to its maximal width, as opposed to it quickly developing
once the constriction is encountered (all curves after dark green). For reference, the velocity
profiles corresponding to a distance of equal penetration into a straight, unconstricted
channel are shown as well for the two farther invasion depths (black circles correspond
to orange curve, gray triangles correspond to dark red curve). The deviation between the
two profiles when the cells in the constricted case have migrated through the tightest part
of the channel is within the margin of error, and only becomes clearly visible for the last
velocity profile. Velocity profiles for the same geometry were retrieved from the same set
of measurements at time points corresponding to the various invasion depths, with the
exception of the earliest velocity profile for the constricted case (dark green), which was
determined from a separate set of measurements as statistics are too poor to observe both
very shallow and very deep penetration depths from a consistent set. The dark red curve
corresponds to the dark red curve in Fig. 3.35, except that channels were excluded from
which no data was measured for the earlier invasion depths. Velocity profiles are slightly
shorter than the current invasion depth due to the time averaging step. Shaded regions
indicate standard error of the mean.
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the narrowing/widening region (i.e. the steepness at which the channel is reduced to its

constricted width).

As channels with these shorter transition regions are easier to achieve good statistics for

due to the way the microstructuring process works, five different lengths of the constriction

were examined in this instance. The length of the constriction was varied from 50 µm to

700 µm, with the resulting velocity profiles showing almost no difference in the location of

the onset of the slope (see Fig. 3.37b). Any differences observed do not follow a systematic

trend according to the length of constriction. Likewise, there is no real difference in the

height of the plateau at the channel entrance, and at least for this second set of geometries,

the initial slope when the velocity does begin increasing seems to be very similar within

the margin of error. In summary, these results indicate that the cells in front of the

constriction do not become more jammed even if the constriction is longer, and further

support the hypothesis that the sheet moves through the constriction in a relatively

unjammed manner.

As the results so far indicate that the plateau always reaches to about the halfway point

of the segment where the channel is narrowing, it is worth directly comparing the velocity

profile for geometries that are identical except in the length of this transition area. To this

end, Fig. 3.38 shows the velocity profile for constricted channels with two different degrees

of steepness for the narrowing (and widening) channel region. Immediately, it becomes

apparent that the difference between the position of onset of the velocity increase is much

more pronounced than it was for different lengths of constriction, so it either is influenced

by the steepness of the transition area or its location simply depends on the location of

the point where the constriction reaches its minimal width. To fully clarify the cause,

further experiments would be necessary, that keep the position where the constriction

reaches minimal width constant while varying the steepness of the transition area in front

of it (which would consequently then begin at varying points) and examining whether or

not the onset points fall together or are spatially separated.

Perhaps even more striking than the difference in onset points for the velocity increase

in the curves in Fig. 3.38 is the behavior prior to that onset. Here the velocity profile

corresponding to the geometry with the steeper transition region shows a clear pronounced

dip in the velocity, rather than a simple plateau (which upon closer examination can

actually be seen in all of the curves in Fig. 3.37b to a certain extent). This is intriguing

behavior, as this region, immediately prior to the entrance into the constriction is where

one would expect to get the highest cell density and thus the strongest jamming. In
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Figure 3.37: Profile of the x -component of the velocity (i.e. parallel to the channel) along the channel
for different constriction lengths. a) Profile for the same constriction geometry as shown
in Fig. 3.36 (lighter red) compared to identical geometry with the segment of minimal
width extended from 300 µm to 500 µm (darker red). Both profiles are ensemble averages
of measurements time averaged over 2 h around the point where the cell sheet has reached
250 µm into the area where the channel returns to maximal width. Arrows at the top of the
figure indicate the position of the constriction (thick arrow denotes segment of minimal
width, thin arrow includes area where channel becomes thinner). The dashed lines indicate
where the plateau ends and the increase in velocity occurs. In both cases this onset occurs
at roughly the same position in the channel, indicating that the longer constriction does
not lead to more of a backup at its entrance. The difference in the steepness of this incline
is likely a result of low statistics for the longer constriction length. b) Profiles for a separate
set of geometries from those shown in a). Again the channels only vary among each other
in the length of their constriction, though compared to the geometries in a) the segments
where the channel becomes narrower or widens are reduced from 500 µm to 300 µm. Higher
statistics and more different constriction lengths were achieved for these geometries. As
in a), position of the constrictions are indicated by the arrows, and the approximate end
of the plateau is indicated by the dashed lines. Again, no real effect of the constriction
length on the beginning of the incline can be seen, confirming that longer constrictions
do not lead to more backing up in front of them. The slope of the velocity profile during
this initial incline seems to be very similar for the various geometries within the margin of
error. Shaded areas indicate standard errors of the mean.
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Figure 3.38: Profile of the x -component of the velocity (i.e. parallel to the channel) along the channel
for different steepness of the narrowing (and widening) segments. Two velocity profiles
(ensemble averages of 2 h time averages around the point the sheet has reached 250 µm
into the area of maximal width) for channel geometries that are identical except in the
steepness of the transition area from maximal to minimal width. The dark red curve
corresponds to the dark red curve in Fig. 3.37a (length of the transition area: 500 µm) ,
the dark gray curve to the dark gray curve in Fig. 3.37b (length of the transition area:
300 µm), as shown schematically in the inset (difference exaggerated for clarity). Arrows at
the top of the figure indicate the position of the constriction (thick arrow denotes segment
of minimal width, thin arrow includes area where channel becomes thinner). The dashed
lines indicate where the plateau ends and the increase in velocity begins. The difference in
this onset is more pronounced than any difference for width of the constriction, indicating
the greater steepness either causes more of a backup of cells prior to the constriction, or
the backup depends only on where the area of minimal width begins. Within the margin
of error, both inclines seem to show the same slope, however, the velocity profile for the
geometry with the steeper transition to minimal width seems to show a more pronounced
dip in velocity prior to the incline. Shaded areas indicate standard errors of the mean.

particular, it would be unsurprising to find a stronger or quicker buildup of a high density

here for the channels with the steeper geometry, which then likely results in even stronger

local jamming in precisely this spot. Again, this is something that could be studied in

even more detail in future work, both by use of a fluorescent nucleus marker to actually

evaluate the local cell density and correlate it with the velocity, and by further variation

of the transition steepness.

3.3.5 Comparison with cell migration models

Further insights into the whole process of collective migration through a constricted chan-

nel can be gained by attempting to model the process. Seeing which features underlying

the cell behavior are necessary to reproduce the emergent phenomena in a model can lead
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to an understanding of how these phenomena arise in the experiment.

To this end, experimental data for collective epithelial cell migration through constricted

channels is compared to an active isotropic-nematic mixture model that was recently

successfully used to relate cell extrusions in an epithelium to underlying topological defects

[100]. The implementation of the model was performed by Felix M. Kempf in the group

of Prof. Erwin Frey (LMU München).

In brief, this model is a continuous medium approach that describes the spatiotemporal

dynamics of cell sheets via fields and corresponding time-evolution equations derived

from conservation laws (e.g. mass or momentum conservation), ignoring the individual

agents making up the monolayer. In particular, the cell sheet is modeled as nematic phase

and the “free region” it invades into is modeled as isotropic phase. The evolution of

the nematic order is modeled by the Beris-Edwards equation and the evolution of the

velocity is modeled by the incompressible Navier-Stokes equation, with order influencing

the evolution of velocity and vice versa. A more detailed description of the model can be

found in section 2.5.2 or in reference [100].

The two key observables in both experiment and simulation are the velocity field and

the orientation field, so the initial step for comparison between the two is an examination

of qualitative behavior in both cases. To this end, Fig. 3.39 shows the distribution of

magnitudes of velocity over the constricted channel in a representative measurement for

both theory and experiment. The experimental data is averaged over 2 h to smooth out

short scale fluctuations in the velocity field, but this averaging does not change anything

about the field’s qualitative behavior.

Immediately, striking differences are apparent between simulation and experiment. In

the model, the highest velocity magnitudes occur in the region prior to the constriction,

whereas velocity is low within it. In contrast, as described previously, the experimental

data shows exactly opposite behavior, with velocities in front of the constriction entrance

low, but increasing within the constriction and assuming the highest values close to the

cell sheet’s leading edge.

Disagreement is even more pronounced when examining the direction of the velocity

(see Fig. 3.40). Here, the simulation shows large flows perpendicular to the channel, in

particular in the region ahead of the constriction. The experimental data instead shows

a pronounced migration parallel to the channel, with perpendicular velocities only occur-

ring on small scales and not in a coordinated manner. While in the data from the model
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Figure 3.39: Comparison of the magnitude of velocity in experiment and theory. a) Velocity field re-
sulting from the active isotropic-nematic mixture model, with color-coded velocity magni-
tudes. The white dashed line illustrates the current border between nematic phase and
isotropic phase. Velocities are highest in the region before the constriction. b) Heatmap of
velocity field from experiment. Velocities are lowest prior to the constriction and increase
towards the front of the cell sheet. Simulation image courtesy of F.M. Kempf, AG Erwin
Frey, LMU München. Experimental data is averaged over 2 h to smooth out short scale
noise. Colormap for the experimental data adjusted to be comparable to theory.
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Figure 3.40: Comparison of orientation of velocity in experiment and theory. a) Velocity field orientation
from the active isotropic-nematic mixture model. The red dashed line illustrates the current
border between nematic phase and isotropic phase. Flows perpendicular to the channel
dominate in the region prior to the constriction, and formation of vortices within the
constriction is a hallmark of the model behavior. b) Velocity field from the experimental
data. The general orientation of the flow tends to be parallel to the channel in most regions,
and particularly so in the constricted area, as seen in the magnified area. Vortices seem
to form very rarely, if ever, in the constriction. Simulation image adapted from Fig. 3.39a,
courtesy of F.M. Kempf, AG Erwin Frey, LMU München. Experimental data is averaged
over 2 h to smooth out short scale noise.
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Figure 3.41: Comparison of orientation field in experiment and theory. a) Orientation field in the ac-
tive isotropic-nematic mixture model. Orientation varies throughout the channel, but in
general there are significant domains where orientation is perpendicular to the channel,
in particular at the front of the cell sheet/the front of the nematic phase. The color scale
represents the φ-field, which defines whether the system is in the nematic phase (φ ≥ 1) or
the isotropic phase (φ = 0). b) Orientation in the experiment. There is much less variation
in orientation, and orientation parallel to the channel dominates. In particular, in the con-
stricted region of the channel, cells are almost exclusively oriented parallel, as highlighted
in the magnified region. Scale bar corresponds to 100 µm. Simulation image courtesy of
F.M. Kempf, AG Erwin Frey, LMU München.

the perpendicular movement is so pronounced that it forms visible domains, in the expe-

riment the perpendicular contributions are mostly removed when some spatial averaging

is performed (as was discussed in Fig. 3.33).

In addition, the behavior within the constriction shows very clear differences between

simulation and experiment. The nematic phase in the model forms very prominent and

defined vortices within the constriction, while for the experiment the velocities become

even more strongly aligned parallel to the channel. This striking vortex formation within

the constriction is a robust feature in the model that occurred over a wide range of

parameter regimes that the simulations were run for.

Similar issues come to light when examining the orientation fields (see Fig. 3.41). For

the purpose of comparison with the theory, the orientation field for the experimental

data was retrieved from the phase-contrast time-lapse microscopy images via an intensity
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gradient-based orientation estimator (for details see appendix A.2.7). This method works

relatively well, though interpretation of the results makes the most sense in the constricted

region of the channel. Here, cells tend to be more elongated and thus it is easier to

really define an orientation. In contrast, in the region prior to the nozzle, where cells are

more symmetrically shaped and thus do not even necessarily have a real orientation, the

resulting values for the orientation must be taken with a grain of salt. Still, even in these

regions, the algorithm seems to perform decently well.

The simulated data shows varying domains of orientation both parallel and perpendi-

cular to the channel, and in particular a significant area at the edge of the nematic phase

where all orientation is perpendicular to the channel. In contrast, in the experimental

data, parallel orientation is the much more dominant feature, with perpendicular orien-

tations being very rare, though parts of the orientation field prior to the nozzle do show

some contribution in that direction. Within the constriction, however, such orientation is

nonexistent and all cells are aligned parallel to the channel walls (as well as frequently

elongated along that direction to a certain extent). There is some agreement between

simulation and experiment directly behind the leading edge of the cell sheet, where the

migrating cell sheet also shows perpendicular order, though over a much shorter region

than this is the case in the simulated nematic.

All in all, over a wide regime of parameters used for the simulation, qualitatively stri-

king differences remained between theory and experiment, that could not be overcome.

Thus, it must be concluded that the model is not a good fit for describing cell migra-

tion, at least in this scenario. It is possible that the model might still succeed and be

useful for describing cell migration in other geometric arrangements, but for migration

of an epithelial layer through a channel with a constriction, other models are likely more

suitable. One possible big reason why no agreement could be reached between the acti-

ve isotropic-nematic mixture model and experimental data even on a qualitative level is

compressibility. A key assumption for the model is that the evolution of the velocity is

given by the incompressible Navier-Stokes equation. In principle, the divergence of the

velocity field for MCF10A cells has been shown to be close to zero on average by Saw et

al. [100], which is a sufficient condition for the flow field to be incompressible. Geometrical

boundary conditions, however, likely play a role. In this scenario of collective cell migrati-

on through a constriction, experimental data revealed evidence to support the hypothesis

that the cells are being jammed in the region ahead of the constriction. For such a situa-

tion, where outside confinement leads to a large buildup in density, it is possible that this

incompressibility requirement is no longer sufficiently true. The consequence would then
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be qualitatively very different behavior between model and experiment.

For future work, attempting to model epithelial cell migration through a constricted

channel with a model that takes into account individual cells, and can thus account

for such things as regions of denser packing, makes sense. To this end, the cellular Potts

model (for details see section 2.5.5) is a promising candidate. While computationally more

expensive than a continuous medium approach, it offers the necessary level of detail to

study whether the observed changes in the velocity profile as result of migration through

a constriction are emergent properties of an active and proliferating particle system. If

jamming is really the key mechanism driving this behavior, it should be a physically

relatively universal phenomenon. Thus it should be reproducible by a more detailed model

that accounts for compressibility.

3.3.6 Discussion

In summary, epithelial cells migrating collectively through a constricted channel reveal

intriguing behavior that changes over the time course of the experiment. Early on, when

the cell layer migrates in the straight part of the channel, prior to encountering a constric-

tion, the velocity profile takes the shape, already observed in previous experiments for

straight channels and circular wound closure, which is an increase of velocity towards the

leading edge. Upon encountering the constriction, this leading edge appears to continue

migrating relatively undeterred, and the flow profile throughout the sheet also does not

show any significant change initially.

As the cell sheet progresses through the constriction, the continued imbalance between

the number of cells that arrive at the narrow part of the channel and the lower number

of cells that can actually continue moving forward leads to a buildup of density in the

segment where the channel narrows. This is accompanied by the formation of a plateau

in the velocity profile, which eventually shifts down towards lower values. While further

investigation is necessary in future work, this behavior is consistent with a density depen-

dent jamming mechanism, in particular since the effect is not immediate when the leading

edge encounters the narrow confinement, but rather develops over time. Further proof of

this notion is given by the fact that the influx at the channel seems to decrease over time,

though this could only be analyzed in a very approximate manner.

The low velocity plateau spanning the area prior to the choke point appears indepen-
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dently of the diameter of the constriction over the entire examined range down to 1/3 of

the original channel width, but did not appear when cells were allowed to invade into a

straight channel over the same distance. No clear difference in the flow profile was visi-

ble for the different constriction diameters, though the data comes with relatively large

error margins. One potential reason for the large deviations observed for individual mea-

surements of the same geometry is that the initial density the cell sheet arriving at the

constriction is only controllable to a certain extent within the experimental framework.

Thus, in some cases, cells might already arrive at the constriction at a slightly higher den-

sity than in others. Correspondingly, by the time the leading edge has migrated through

the constriction, the density and corresponding jamming in the region prior to the con-

striction would also be slightly higher than in cases where the initial density upon arrival

at the narrow segment was lower.

Interestingly, the plateau of velocity before the constriction seems to span the same

distance independently of the length of the narrow segment, and the increase in speed

always seems to begin roughly halfway through the narrowing region. This is consistent

with the notions that cells are jammed prior to this entrance, but not jammed in the

actual constriction, where the sheet seems to behave as if unconfined.

A noticeable effect on the velocity profile does occur, however, when the steepness of the

transition area, where the channel becomes narrower, is changed. For steeper changeovers,

the velocity profile seems to develop a dip prior to the constriction, with velocity actually

dropping off to a minimal value before the increase in region of minimal width begins. It is

conceivable that a steeper transition area leads to a quicker or more pronounced buildup

of density localized to that area and less spread through the channel up until that point

as might be the case for a “gentler” transition.

Comparing experimental data with simulation results from a continuous medium model

where the migrating cell sheet is represented by an active isotropic-nematic mixture,

deviations are found for both of the most important observables, velocity and nematic

orientation. In the simulation, velocities are highest in the region prior to the constriction.

Flows perpendicular to the channel are frequent throughout the entire nematic phase,

which corresponds to the cell layer, and the occurrence of vortices within the constricted

area is a key feature, which is robust to changes in the model parameters over a large

examined regime. In contrast, in the experiment, the velocities are highest towards the

leading edge, and higher throughout the entire constriction compared to the area before

the narrow segment. Velocities are generally aligned predominantly parallel to the channel,
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and perpendicular flows are rare and less pronounced. In particular, vortices never seem to

form within the constricted area. Instead, velocities in this region are even more strongly

aligned parallel to each other, and perpendicular components are suppressed even more

strongly than in the wider regions.

Likewise, the orientation field shows discrepancies between experiment and simulation,

with the experiment predominantly showing orientation of the cells parallel to the channel,

while the model also features large domains of perpendicular nematic orientation. Again,

this discrepancy is most noticeable within the constriction, where cells in the experiment

tend to be aligned parallel to the channel almost exclusively, whereas this is not the case

in the simulation. Best agreement for the orientation between experiment and simulation

is found close to the leading edge, where both scenarios favor perpendicular alignment,

though even here this region extends much farther back into the cell sheet in the model.

As a consequence, in future work a different choice of model makes sense. As the most

likely reason for the incompatibility between experiment and theory is the fact that the

continuous media model was based on the assumption of an incompressible flow, a theo-

retical approach that takes into account individual cells is conceivably more promising for

capturing the experimental phenomena. The cellular Potts model is a strong candidate in

this case, as it not only accounts for individual agents, it also includes details like cell sha-

pe, which has recently been shown to play a role in jamming transitions of cell collectives

[57]. Modeling the experiment in a way that can account for this, it should hopefully be

possible to elucidate the role of jamming in the observed changes of the velocity profile,

and study to what extent this phenomena is simply a generic, emergent property from

actively migrating, self-replicating cells.

On the experimental side, the introduction of a fluorescent nucleus label would be

very advantageous. With its help, it would be possible to determine the local cell number

density throughout the channel. This would allow a closer study of the correlation between

cell density and velocity, and thus help shine a light onto the role and strength of the

jamming that seems to occur at the constriction entrance. Without an actual density

measurement, it is only possible to say that the constriction does lead to cells backing

up and thus density increasing before its entrance. To what extent this is the case, and

whether this density buildup is very local or propagates through the whole wide channel

segment in front of the constriction, however, is hard to even speculate.

To this end, a stable cell line with a fluorescent nucleus would be the best possible

solution. First attempts at the creation of such a cell line (MCF10A transfected with
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mCherry expressing histone 2B (H2B)) were performed in the course of this thesis, but

proved troublesome in the short term. Still, in the long term producing this stable cell

line should be possible. Alternative approaches to determining the density are a transient

messenger RNA (mRNA) transfection, or fixing the cells and staining the nuclei with a

fluorescent probe such as DRAQ5. The latter would at least allow for a static examination

of the density at different invasion depths. Live cell imaging with 25 nM Hoechst 33342

dye (Invitrogen) is not possible, as the autofluorescence of the PEG-DMA channel walls

in the UV range proved to be too high.

In addition to measurements of density, a fluorescent nucleus label would also allow

easy tracking of individual cells within the monolayer, which could help quantify how the

influx at the channel entrance changes as the leading edge of the sheet moves through

different regimes. Furthermore, following single cell movement might be beneficial to a

further investigation of the backflow that can occur at the entrance to the narrow channel

segment, where parts of the channel move against the general direction of motion.

Aside from an investigation of density and single cell behavior, the velocity profile in

the experiment can still be studied in further detail. Previous work has, for instance,

shown the emergence of vortices in channel-guided cell migration. Decomposing the ex-

perimental flow fields into rotational and diverging components might be of interest to

study how the constriction affects this behavior. Many factors come into play where this

is concerned, from the increased density prior to the constriction (which would typically

be associated with larger, but slower vortices), over the gradient in general velocity, to the

narrower confinement within the constriction that appears to be restrictive to perpendi-

cular movements. On top of all of that, it is possible that the curvature of the narrowing

channel segments leads to some alignment of the velocities following this bend, which in

turn could be favorable starting conditions for the formation of full scale vortices.

This more detailed decomposition of the velocity field also makes sense in terms of

comparison to future modeling results. Once the model is in principle qualitative agree-

ment with the experiment, an examination of specific features of the flow fields, such

as where vortices predominantly occur, is necessary for fine-tuning the simulation, and

hence gaining a deeper understanding of the components relevant for the emergence of

the experimentally observed behavior.

In terms of comparison to a Potts model, the use of inhibitor drugs or small interfering

ribonucleic acid (siRNA) to change some of the underlying cell parameters, and seeing

whether the model can predict qualitative changes to the emergent collective behavior, will



146 3. Cellular Hydrodynamics

be of interest. For instance, blebbistatin, which inhibits myosin II-mediated contractility,

has been used in the past to inhibit actomyosin activity and thus the activity of the

constituent cells in the monolayer [100]. The effect of this reduced activity on the collective

behavior and whether the model captures this would be an intriguing question. Another

potential avenue is the application of Mitomycin C, a cell cycle antagonist that can be

used to separate the effects of proliferation and migration, especially as it appears to have

no effect on the migration of MCF10A cells [167]. In this way, the influx at the channel

entrance could be cleanly separated from movement as a result of cell proliferation. At

the same time, tuning the division rate in a cellular Potts model is straightforward. An

intriguing question suggests itself, as to whether the jamming behavior at the constriction

entrance changes qualitatively when cells no longer contribute to a density buildup by

proliferating.

The work in this thesis has shown the experimental geometry of cells migrating through

a channel with a constriction to be of great interest from a hydrodynamics perspective,

as the phenomenon of jamming might be responsible for the transition from fluid like

behavior of epithelial sheets to more glassy behavior. In a long term view, from a biological

perspective it would be intriguing to use such a constricted channel geometry with a cell

line that normally does not migrate collectively and see whether the jamming within a

sufficient constriction can lead to the emergence of collective migration in this case, as

the jamming theory would predict [41].
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The previous chapters examined the hydrodynamics of large-scale assemblies consisting

of many cells. Emphasis was placed on the fact that collectively migrating cells were on

the one hand shown to behave like a fluid in many ways, but on the other hand also show

behavior typically associated with glassy materials, such as dynamic heterogeneities and

caging [38, 168, 169]. In order for this behavior to be possible, cells within the epithelium

need to be able to rearrange. These rearrangements are governed by the interplay of

mechanical forces within the cell layer [59, 170–172] and their significance, in particular

when it comes to morphogenesis, has been highlighted in recent years [83, 170, 173].

For better understanding, a glassy material is one that spends most of its time near a

mechanically stable minimal potential energy, where the potential energy of the material

is specified by all the degrees of freedom, such as particle position [58]. Rearrangements

are thus accompanied by an energy barrier that needs to be overcome, yet unlike inactive

glassy materials, cells in confluent layers regularly do surpass these and rearrange [174],

to the point of the whole material acting like a fluid under some circumstances, such as

lower density.
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Figure 3.42: Schematic of a T1 transition. This transition occurs at the interface of four cells. Such
cells break symmetry in their arrangement (left), with two cells sharing interfaces with
two cells (green cells) and two cells sharing interfaces with three cells (yellow cells). In
a T1 transition, the two three-neighbored cells lose their shared boundary (indicated in
red), and after passing through a perfectly symmetrical configuration where all cells share
one common vertex (middle), a new boundary is formed between the two remaining cells
(right). This configuration is energetically equivalent to the initial arrangement, though
each cell now has a different number of neighbors it shares boundaries with. Despite ener-
getic equivalency, an energy barrier must still be overcome to perform a T1 transition. This
figure is identical to Fig. 2.1 in section 2.1.2, but repeated here to clarify the T1 process.

Upon examination, topological rearrangements within a confluent cell layer turn out

to only be possible via cell division, cell extrusion or so-called T1 transitions [58]. This

type of transition (shown schematically in Fig. 3.42) can take place when four cells within

the tissue are arranged in such a way that they form two threefold vertices, so that two
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of the cells share a border with all three other cells, whereas the remaining two cells

only share a border with two of the others, having no direct contact with each other.

In the T1 transition, the two threefold vertices move closer together until they join in a

single fourfold vertex where all four cells meet, before two new threefold vertices appear

in such a manner that the two cells that previously were not in contact remain neighbors,

while the other two cells no longer share a common border (for more details, see chapter

2.1.2). Theoretical work can show that such fourfold vertices must always be unstable

unless tensions are allowed to depend on edge orientation [175]. In recent years, studies

have shown T1 transitions are common during remodeling of epithelial layers [174] and

that their occurrence contributes significantly to arising shear, for instance in the case

of large scale deformations occurring during the formation of the Drosophila wing blade

[59]. In the framework of describing cells with glassy dynamics and a jamming transition,

however, these rearrangements play a crucial role in all processes that involve collective

migration, such as wound healing and cancer invasion [57, 58]. In addition to density

dependent transitions, theoretical work on the vertex model has used these transitions to

show a shape parameter dependent transition that relates only to single cell properties

and helps explain how different tissues of the same density can show distinct relaxation

times, while at the same time being potentially relevant to the occurrence of EMT during

cancer tumorigenesis [176].

The mechanical properties of cell sheets are highly relevant, due to their relation to

forces and shear within them. Direct measurements of these properties in-vivo are chal-

lenging, however, given the complexity of the systems at hand, which typically consist

of hundreds to thousands of cells. One common approach to accessing at least some of

the parameters is laser ablation of the tissue, followed by observation of the subsequent

relaxation processes in the epithelium, which can give information about cortical tension

[177]. Given the invasive nature of this method, a way of studying the undisturbed tissue

mechanics in a time-resolved way would be preferable.

In this chapter, a novel oligocellular in-vitro array is presented, where groups of up

to four cells share a micropattern, offering an intermediate stage between experiments

performed on whole cell sheets (e.g. wound healing assays) and single cell measurements,

both of which are quite common nowadays [23, 37, 63, 178]. With the micropatterns’

defined boundaries, and with the controlled, low number of cells, this assay allows studying

phenomena that are too intricate to analyze at the scale of whole tissues, but that are

emergent properties of multiple cells and thus do not appear when observing single cells. In

particular, four cells together on one adhesive island present the minimal system necessary
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for the occurrence of a T1 transition. In recent theoretical work, Bi et al. showed that

even in a full-scale tissue, most of the change in energy caused in the system by such a

T1 transition is localized to the four involved cells [58], so in principle our model system

without the surrounding tissue should be sufficient to study these rearrangements. The

basis for the energy calculation in their publication is the vertex model, which abstracts

cell-cell contacts as straight lines and calculates the mechanical energy of the cells from

its perimeter and its area and has shown great success at predicting cell arrangements

according to minimal energy shapes [89, 179–181].

Using the vertex model on our small groups of cells, we ask the question to what extent

mechanical parameters can be calculated simply from the arrangement of cells, assuming

they organize according to minimal energy patterns. As Segerer et al. recently showed,

however, oligocellular epithelial groups confined to micropatterns do not arrange in one

static configuration, instead displaying collective rotational states [60]. To this extent, we

study how varying the geometry from a large square shared by all cells to a more complex

cloverleaf shape, with four smaller adhesion islands connected by a cross, can stifle the

emergence of these rotational states for groups of four cells. We find that on these patterns,

cells preferentially arrange in the same geometrical pattern typically found for quartets of

cells on large square adhesion sites (two threefold vertices connected by a junction), but

with each individual cell tending to sit on one of the four adhesion islands rather than all

of them moving collectively. Taking the length of the junction connecting the two threefold

vertices as an example, we find that pinning the cells down in such a manner also reduces

the temporal fluctuations of parameters characterizing the cell arrangement, suggesting

that in this case the cells might not fluctuate as much from an equilibrium configuration

as for the less confined case. Thus, they are the more attractive targets for application of

the vertex model for calculation of mechanical parameters from the observed oligocellular

arrangements.

Additionally, we use our assay to probe the dynamics of multicellular systems. It is

known that energy barriers exist between different configurations of cells, which must

be overcome in order for cells to rearrange [58]. As cells use these reorganizations to

generate stresses within the tissue during development [59], they must therefore regularly

overcome these barriers. As such, the height of the energy barrier and its dependence

on the concrete cell arrangement is of great interest. We investigate the statistics of T1

transitions in our minimal model system of four cells, an arrangement that has previously

been examined theoretically [176]. This is only made possible by the introduction of the

cloverleaf geometry, which inhibits the onset of collective rotation states that otherwise
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form in such systems due to internal polarization. This leads to transiently stable cell

arrangements that are sufficient to allow first observations of T1 transitions. By increasing

(decreasing) the distance between the four adhesion islands of the cloverleaf pattern, we

can artificially stretch (compress) the four connected cells apart, mimicking a change

of cortical tension. Our results show that the average junction length between the two

threefold vertices that have to degenerate into one fourfold vertex for the T1 transition to

occur scales with the size of the four cell system. Though the data comes with large error

bars, the results from the experiments suggest that T1 transitions occur more frequently

for smaller systems, where the mean junction length is smaller, in agreement with the

expectation that the energy barrier that needs to be overcome would be reduced in these

cases.

3.4.1 Cell arrangement and description via the vertex model

In order to study the mechanics and energy barriers of systems of few cells, arrays of

adhesive patterns are created via microcontactprinting (see appendix A.1.2). Initially,

this pattern consists of a simple square with a side length of 57 µm. MDCK cells were

seeded in such a way that as many of the squares in the array are occupied by one cell or

few cells as possible. After a few hours for the cells to adhere, the sample is rinsed with

phosphate buffered saline (PBS) to remove cells not on the adhesive patterns. The sample

is then left to rest for 24 to 48 h, giving the cells that have spread on the pattern time

to divide. The resulting array then has squares occupied by arrangements of various cell

numbers. Fig. 3.43 shows the appearance of systems consisting of one to four cells, though

more cells can also occur. The work in this thesis focused on systems of two and four cells,

though in principle other cell numbers could also be of interest. In particular, systems of

three or five cells might give access to further mechanical insights into the cells, though

for five cells a closer examination of whether they have sufficient space on the pattern and

do not shove each other off would be necessary. In contrast, as seen in Fig. 3.43, a single

MDCK cell does not typically spread across the whole area of the large adhesive square,

which renders it unsuitable for studying mechanical properties as the cell will never relax.

In the following, the geometry of how systems of two and four cells pack into square

adhesive patterns is examined and analyzed in terms of a vertex model (see section 2.5.4).

In particular, the question whether the cells arrange into stable packing states that are

described by energetically minimal configurations of the vertex model is investigated. To

this extent, the cell-cell boundary lines are approximated as shown in Fig. 3.44. Given the
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boundary conditions of the adhesive micropatterns, the total area available to the cells is

fixed. For two cells, experimental data suggests the pair divides the area evenly between

them, and thus for these cases Ai = Atotal/2 is assumed to hold true in order to simplify

the model. With this condition, Eq. 2.58 simplifies to Eq. 3.14 as the contribution of area

elasticity vanishes.

E =
N∑

i∈cells

κP 2
i − α

∑
j∈ν(i)

Li,j

 (3.14)

Here, κ represents the cell cortex contractility, α the cell-cell adhesion parameter, Pi the

perimeter of cell i and Li,j the cell-cell contact line between cell i and one of its neighbors

j ∈ ν(i). More specifically, for two cells the total energy of the system can explicitly be

written as:

E = 8κl2 +
8κl2

cos(ϑ)
+

2κl2

cos2(ϑ)
− 2αl

cos(ϑ)
(3.15)

Here, the geometric parameters are defined as in Fig. 3.44: l is the side length of the

adhesive square and ϑ is the angle between the cell junction and the pattern border. Due

to symmetry of the problem, only ϑ ∈ [0, 45◦] designates energetically distinct packing

states, and thus the angle is defined over this region. Eq. 3.15 has also made use of

replacing the junction length L as follows:

L =
l

cos(ϑ)
(3.16)

As can be seen, the energy of a two cell system on a square of a given size (l fixed)

depends only on the angle between the cell-cell junction and the pattern boundary. The

energetically optimal configuration (assuming one exists) thus corresponds to a specific

angle of this junction. Specifically, setting the derivative of Eq. 3.15 to zero, the condition

for minimization of the energy is found to be:

cos(ϑ) =
( α

2κl
− 2
)−1

(3.17)

As shown in Fig 3.45, systems of two cells do not remain in any stable position over
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a)

b)

Figure 3.43: Arrangement of cells on large square micropatterns. a) Brightfield images of one, two, three
and four cells on a micropattern. The single cell is too small to fill out the entire pattern,
whereas two to four cells easily fill out the entire square, even pushing slightly into the
passivated area around it. The occurrence of the various cell numbers on each adhesion site
is stochastic to a certain extent. b) Overlay of corresponding fluorescent images of the cells
from a). Actin, labeled by lifeact-eGFP is indicated in green, the nucleus, labelled by H2B
expressing mCherry, is indicated in red. The actin label highlights the boundaries between
individual cells, whereas the nucleus label can be used as a surrogate for the position of
each cell. Scale bar corresponds to 25 µm.

time, instead, in agreement with the results of Segerer et al. [60], they rotate on the

pattern due to internal polarization. Fig 3.45b shows the evolution of the junction angle

for several representative pairs of cells (the cell-cell junction was tracked manually from

the lifeact-enhanced green fluorescent protein (eGFP) fluorescence images). Even over a

period of 20 h, none of the two cell systems reaches a stable configuration. Still, compared

to circular patterns, the square adhesion geometry breaks the symmetry, leading to a

fluctuating cell-cell junction length (and correspondingly cell perimeter) with fluctuating

angles. Thus, an energetically preferential arrangement as given by Eq. 3.17 might still

play a role (such as the cells spending more time there than in energetically less favorable

configurations). Indeed, as shown in Fig 3.45c, the distribution of all angle configurations

observed for 127 pairs of cells is far from uniform, with small angles occurring much

more frequently than larger angles (observed angles were grouped into 14 bins of 3.21◦

to create the histogram). Systems of two cells on similar geometries have already been

studied by Tseng et al. [182]. For systems where the underlying ECM pattern was a square

frame, they found the same behavior of cells moving in most image frames, and the most

frequently occurring angles of the nucleus-nucleus axis were those parallel to the borders

of the square.
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Figure 3.44: Geometrical arrangement of cells on pattern and their representation with cell-cell juncti-
ons abstracted as straight lines. a) A typical pair of cells sitting on a large square pattern.
b) If the cell-cell junction is assumed to be a straight line, the organization of the two cells
can be described by the side length l of the square pattern, the length of the junction L
and the angle ϑ between junction and the pattern boundary. Two of these parameters are
sufficient to fully characterize the arrangement. c) A typical arrangement of four cells on a
large square pattern. d) More parameters are necessary to characterize the arrangement of
four cells on the pattern. In addition to the length of the junction δ shared by the two cells
that have three neighbors, the angle β, which defines the angle the cell-cell junction lines
meet at in the threefold vertices, is required for the full characterization. The arrangement
is assumed to be symmetrical in the sense that the angle β is identical for both threefold
vertices and that both these vertices are the same distance from the corner of the pattern.
Scale bars correspond to 25 µm.
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Figure 3.45: Rotation of two-cell system. a) Phase-contrast time-lapse images of a pair of cells over
time. As can be seen by the junction between the two cells (light), the system rotates over
time. b) Time development of the angle ϑ (defined according to Fig. 3.44) of the junctions
shown for five exemplary traces (one highlighted in red, one in blue for ease of viewing). c)
Frequency of occurrence of the junction angle ϑ during each observed time point for 127
systems of two cells. Small angles dominate, whereas large angles are infrequent. Each bin
encompasses 3.21◦. The solid black line indicates a fit of the distribution of angles with
the vertex model, showing very poor agreement. Scale bar corresponds to 50 µm.

Contrary to the first indication in our data given by the presence of a maximum in the

angle distribution, its shape is poorly fitted by the vertex model assumed above (solid

black line in Fig. 3.45c).

This fit is performed by assuming the packing states for various angles are distributed

according to a statistical weight, in analogy to a Boltzmann distribution, with an effective

inverse temperature τ :

p(ϑ) =
e−τE(ϑ)∫
dϑe−τE(ϑ)

(3.18)

The fit is performed assuming the minimum in the energy is found at the most frequently

encountered angle (which in this case is the bin centered around the angle 1.6◦). Inputting

this angle into Eq. 3.17 results in α/lκ = 6.0008, which leaves only τ as a free fit parameter.

The fit shown in Fig. 3.45c) results in τ = 0.23κ−1l−2, but the fitted curve does not capture

any of the features seen in the angle distribution. Other values of τ do not significantly

alter the qualitative shape of the curve. Likewise, taking the energy minimum to be at
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the average observed angle 〈ϑ〉 = 19.89◦ rather than the most frequently observed angle

does not lead to a fit that captures the shape of the distribution any better.

Consequently, either the underlying vertex model is insufficient and needs to be expan-

ded to include other contributions (though for instance even the inclusion of a cellular

anisotropy term does not appear to significantly change the qualitative shape of the ener-

gy landscape for pairs of cells [183]), or minimization of energy from cell arrangement is

not the driving force underlying the observed behavior.

3.4.2 Stabilization of cell arrangements through choice of the

underlying geometry

As the previous section clearly shows, application of the vertex model to a system of two

cells is not particularly promising, as the rotation behavior seems to outweigh the desire to

minimize the energy of the system by choice of the geometry. Thus, the goal of this chapter

is to improve on the simple square adhesion geometry, creating a pattern where cells still

organize in the same general way as they originally did, but where collective rotation

is inhibited. As the energy in the two-cell system was entirely defined by the angle of

the cell-cell junction, which would be fixed by any geometry that inhibits rotation, the

focus is placed on systems of four cells. To this end, a cloverleaf geometry is chosen,

which consists of four individual adhesive islands, one for each cell. These islands are

connected by narrow bridges, that allow the cells to spread and come into contact in the

middle. The full length of the diagonal of the cloverleaf pattern from the outer edge of one

adhesive island to the opposite one is 85 µm, very slightly above the 81 µm diagonal of the

square (which has a side length of 57 µm). The same geometry was also tested without

the connecting bridges, leaving just four individual islands, but this was found to result

in the cells not forming any cell-cell adhesions in a large percentage of cases and cells just

sitting on their individual, small islands.

As can be seen in Fig. 3.46, groups of four cells on the cloverleaf patterns do form

cell-cell junctions, spreading some of their area over the passivated regions. Frequently,

these cells will arrange with one cell sitting predominantly on each island, as desired (see

Fig. 3.46b), though some cells might need to migrate some distance to reach this position

(see the red and purple tracks in Fig. 3.46d). Compared to the square geometries, where

the cell collective spends most of the time rotating, on the cloverleaf patterns states that

are at least transiently stable can sometimes be observed (see Fig.3.46b-d).



156 3. Cellular Hydrodynamics

The analyzed groups (N = 25) of four cells that ever reached this arrangement on

patterns during observation were found to be in a stable configuration in 58.3± 0.3 % of

the observed time frames (determined by manual observation), with the lifetime of such

a state lasting anywhere from around 1 h to roughly 8 h. While a more stable occupation

of these transient configurations would be preferable and might be achieved in future

work by changing the patterning process to something with improved passivation of the

non-adherent areas (thus more strongly confining each cell to its individual island), the

process is robust enough to hint at some initial results.

Firstly, in terms of energy examination with the vertex model, during these transiently

stable configurations, the angle ϑ between the junction connecting the two threefold ver-

tices and the boundary of a hypothetical square pattern overlaid over the cloverleaf, can

be assumed to be constant at ϑ = 45°, as it can be seen not to deviate from this strongly

in the experiment. This already simplifies the geometrical arrangement significantly and

eliminates the parameter ϑ from the ansatz for the energy of the system. Unlike in the

two cell system, however, groups of four cells do not appear to necessarily distribute the

area available to them evenly, with some cells appearing to be significantly larger than

others. Thus, at the very least, the energy term needs to be expanded again to include

the term for area elasticity:

E =
4∑

i∈cells

κP 2
i − α

∑
j∈ν(i)

Li,j +
Ki

2
(Ai − A0)

 (3.19)

On top of this, inclusion of a term explicitly accounting for the energy of free spanning

arcs over none-adhesive areas, as suggested by Albert et al. [184] makes sense given that

large parts of the area in the observed cell arrangements are actually not on top of the

adhesive pattern. Such a term would take the shape:

Earc =
∑
arc i

k

2L0,i

(ξi − ξ0,i)
2 (3.20)

Here, k is the elastic rigidity, which controls the degree to which the arc regions contri-

bute to the energy, and ξi and ξ0,i are the length of each edge and the rest length of each

edge, respectively.

Even without inclusion of the energy contribution of these arcs, however, the energy
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term for four cells is already significantly more complicated than for two cells:

E = κ (2P1 + 2P2) +K
(
A2

1 + A2
2 + 2A2

0 − 2A0 (A1 + A2)
)
− 2α (4L1,2 + δ) (3.21)

Here, P1 = P3 denotes the perimeter of the two cells not in direct contact with each

other, and P2 = P4 denotes the perimeter of the other two cells. Likewise, A1 = A3 and

A2 = A4 give the areas of these cells, and L1,2 = L1,4 = L2,3 = L3,4 describes the junctions

between all cell pairs other than the one junction connecting the two threefold vertices,

which is given by δ as defined above. This equation assumes the case that the system is

symmetrical as shown in Fig. 3.44.

The terms for the perimeters are given by Eq. 3.22 and 3.23 (assuming β > 90°):

P1 = P3 =

(
l − δ

2

)
·

[
1 + 2 tan

(
|β − 90°|

2
+

√
2

cos(β/2) + sin(β/2)

)]
(3.22)

P2 = P4 = δ +

(
l − δ

2

)
·

[
1− 2 tan

(
|β − 90°|

2

)
+

√
2

cos(β/2) + sin(β/2)

]
(3.23)

The terms for the areas are given by Eq. 3.24 and 3.25:

A1 = A3 =

(
l − δ/

√
2

2

)2

·

[
1 + 3 · tan

(
|β − 90°|

2

)
+

(
tan

(
|β − 90°|

2

))2
]

(3.24)

A2 = A4 =
l2 − 2A1

2
(3.25)

And finally, the junction lengths are given by:

L1,2 = L1,4 = L2,3 = L3,4 =

√
2l − δ

2 [cos (β/2) + sin (β/2)]
(3.26)
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Despite the complexity of the terms, the energy of the four cell system using this

approach depends only on two parameters that describe their geometric arrangement (see

Fig. 3.44d for definition of the parameters): the length of the junction connecting the two

threefold vertices δ and the “opening” angle β, which describes the angle under which the

cell-cell junctions meet in each threefold vertex.

For the sake of confirming that the cloverleaf geometry contributes to pinning the

cells down into an energetically stable configuration, the junction length δ was tracked

manually for both cells on this geometry and the original square pattern. Fig. 3.46e) shows

the evolution of this parameter for five systems in both cases. The cells on the cloverleaf

geometry show reduced fluctuations of their junction length over time, as can be seen by

the fact that these traces show narrower confinement along the δ-axis than the cells on

the squares. This is also quantified in the inset to this figure, which shows the mean value

〈δ〉 of each time trace, along with their variance in the form or error bars. Though there is

fluctuation between the individual four cell systems, in general the groups on the simple

square pattern show a higher variance.

This confirms that even though the stable states observed on the cloverleafs are only

transient, this already helps reduce the fluctuations in one of the key parameters that

determines the energy of the system. This could be interpreted as meaning that with

collective rotation suppressed (to a certain degree), the system spends more time close to

its energetic minimum, which would make the vertex model more applicable than it was

for the system of two cells discussed above.

For the purpose of this test, the parameter δ was determined by manual tracking of

the two threefold vertices from the lifeact-eGFP images. This work is tedious, however,

especially when hoping to achieve larger statistics, and, on top of that, is error prone, in

particular when the junction assumes small lengths. A proper examination of the energy,

however, requires an accurate measurement of not only δ but also β, for a large number

of time points of a large number of systems (to ensure their mean values are captured

properly despite the fluctuations that are still present in the “stabilized” systems).

To this end, part of this thesis was devoted to developing an automated algorithm for

extraction of said parameters from the lifeact-eGFP images.
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Figure 3.46: Pinning of cells by choice of ad-
hesion geometry. a) Fluorescence
image of the two different adhesi-
on geometries for systems of four
cells. b) Phase-contrast images of
initial configuration of four cells on
the square (left) and the cloverleaf
(right). Time point for the clover-
leaf chosen so the four cells have
reached a configuration where each
cell predominantly sits on one of
the adhesive islands and arbitrarily
for the square. Contact lines bet-
ween the cells on the square tra-
ced in black. The nuclei, as extrac-
ted from the corresponding fluore-
scence image, are overlaid in color.
c) Configurations of the cell arran-
gement at time points four or five
hours later. The cells on the squa-
re pattern have rotated, as indica-
ted by the dashed pink line rough-
ly highlighting the pink cells trajec-
tory and the contact lines between
the cells. On the cloverleaf pattern,
the cells have not moved much. d)
Exemplary cell tracks of a four cell
system on a square (left) and a
cloverleaf (right). The cells on the
square rotate, whereas the cells on
the cloverleaf only move from their
initial positions (see the red and
the purple trace) until they reach
a stable arrangement as the one
shown in b) and c), at which point
the only fluctuate around that po-
sition. e) Junction length for five
sets of four cell systems on squares
(red) and cloverleafs (blue) over ti-
me, with one of each highlighted for
easier viewing. The junction length
seems to fluctuate more for the ro-
tating cells on the square, where-
as those pinned on the cloverleaf
show less scattering in their time
courses. The inset shows the time
averaged junction length for each
track (dot), along with their varian-
ce (bar), confirming that the length
of the junction fluctuates more on
the square. Scale bars correspond
to 25 µm.
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3.4.3 Towards a machine learning algorithm for automated cell-cell

junction readout

Actin is present throughout the entire cell bodies, though the lifeact-eGFP fluorescence

images show a preferred accumulation along the cell-cell junctions (see e.g. Fig. 3.43).

While most of the time this stronger fluorescence signal is sufficient for the human eye to

be able to determine the contact lines between the cells and the vertices where they meet,

the signal is too noisy (and too variable between groups of cells) for a classical image

processing algorithm to consistently achieve good results. As described in chapter 2.6,

when traditional algorithms with fixed rules are insufficient, machine learning algorithms

can offer a powerful alternative.

In the course of this work, two machine learning approaches were compared, one based

on custom code written in Matlab (The MathWorks Inc., Natick, Massachusetts, United

States) and one based on the freely available software Ilastik [185]. A priori, the completely

developed Ilastik software has the advantage of a more convenient interface and a better

performance when it comes to calculation times. On the other hand, a self-written program

can be perfectly tailored to the presented problem. It can thus be programmed to account

for any desired feature, whereas a preexisting program allows only the choice between

predefined features.

Details for both approaches can be found in appendix A.2.11, but in short, the key

difference between the two programs is that the Ilastik software uses a large number

of features describing intensity, edge and texture (on several length scales) of the input

images for its prediction, while in contrast the less efficient custom algorithm uses less of

these parameters but includes information about the x- and y-coordinate of each pixel,

as well as how far it is from a Voronoi construction created from the nuclei positions. In

essence, the custom algorithm makes use of the a priori knowledge of the expected posi-

tion of the cell-junctions, namely that they are approximately described by the Voronoi

construction and should not deviate too strongly from it [186] and that they are located

more towards the centers of the cell and farther from the corner. The expectation is thus

that the Ilastik software will be more sensitive in cell-cell junction detection, but also more

likely to falsely identify points not on the cell-cell junctions (in particular signal stemming

from an actin cortex forming along the cells perimeter) than the custom algorithm.

The results from both algorithms agree with this, as seen in Fig. 3.47. The custom

algorithm has a low error rate of pixels falsely identified as belonging to cell-cell junctions,



3.4 Hydrodynamics of minimal collective cellular units 161

especially towards the edge of the image. It does, however, also fail to identify significant

portions of the junctions. In contrast, the Ilastik algorithm is more sensitive to correctly

identifying the junctions, but as expected, it also picks up a lot of noise, in particular

along the cell boundaries.

These impressions are quantified in Fig. 3.48 which shows the junction identification

rate and the misclassification rate for both algorithms for the 25 images belonging to the

test data set. The junction identification rate is defined as the ratio of pixels correctly

identified as belonging to the cell-cell junctions Ncorrect over the total number of pixels

manually determined to belong to the junction Njunction:

rjunc =
Ncorrect

Njunction

(3.27)

Meanwhile, the misclassification rate is defined as the ratio as points incorrectly labeled

as belonging to the cell-cell junctions Nwrong over the total number of pixels belonging to

the junction Njunction:

rmissclass =
Nwrong

Njunction

(3.28)

As already seen by visual inspection, the custom algorithm has a much lower junction

identification rate of rjunc = 8.5± 5.8 % (error here and for following rates indicates the

standard deviation) than the Ilastik algorithm’s rate of rjunc = 90.0± 5.1 %. On the flip si-

de, however, the missclassification rate of the Ilastik prediction is also significantly higher,

with rmissclass = 439± 196 % compared to the custom algorithm’s rmissclass = 7.2± 5.0 %.

These error rates show that the algorithms qualitatively behave as expected: The cu-

stom algorithm is less sensitive but more robust to noise, whereas the Ilastik algorithm

is more prone to misidentifying other features in the image as part of the cell-cell junc-

tion, but much less likely to miss parts of the actual junction. Quantitatively, however,

both algorithms perform poorly, with the custom algorithm detecting less than 10 % of

the junction and the Ilastik algorithm misidentifying four times as many points as are

actually present in the real junctions. As could be seen in Fig. 3.47, however, much of the

misclassification occurs along the cell perimeter. Assuming the cell-cell junctions are only

of interest for the energetic description via the vertex model, however, these areas are not

necessarily relevant. If the cell-cell junction lines are approximated by straight lines, then
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Figure 3.47: Machine learning algorithm results for automated cell-cell junction recognition. For the
images shown, the algorithms were trained on 25 % of the available data. The first two
columns show images that belonged to the training data set, the second two column show
the results for images that were not part of the training data. a) Lifeact-eGFP fluorescence
images used as input for the image analysis. b) The same images after preprocessing with
a Gaussian blur and a bandpass filter. c) Reference cell-cell junction lines for training and
validation, obtained by manual image segmentation. d) Results for the custom recognition
algorithm. e) Results obtained with the preexisting Ilastik software. The dashed blue
square highlights the area considered when examining the algorithms performance only
around the center.
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the angle under which they meet in the vertices is the important parameter that fully

defines the junctions all the way out to the perimeter. It is of course worth noting that

the approximation of this angle might be more precise if taking the full junctions into

account, but if the actual junctions are close to straight lines to begin with the deviations

are minor.

To this end, an examination of how the Ilastik algorithm performed just in the central

part of the image makes sense. If the misclassification rate there is low, the algorithm

might still be useable and only require exclusion of the outer part of the image. Thus,

the third curves in Fig. 3.48 show rjunc and rmisclass for the Ilastik prediction when only

taking into account the center of the image (specifically a square with the side lengths

reduced to 30 % of the full image, centered around the middle of the image as highlighted

in Fig. 3.47). The result is a drop in the misclassification rate by more than a factor of 2

to rmissclass = 176.0± 99.2 %. At the same time, the rate of correct junction identification

is barely affected at rjunc = 89.3± 6.2 %. This confirms that a majority of the misclas-

sifications occur along the cell periphery. Consequently, this approach seems to be more

promising than the custom algorithm for future work, though even the reduced misclas-

sification rate is still very high. A best case scenario would thus combine the multitude

of intensity, texture and edge features used by the Ilastik algorithm with the additional

parameters implemented in the custom algorithm (x- and y-coordinates, distance to the

approximation via Voronoi construction) that help suppress misidentification along the

periphery. Alternatively, pre- or postprocessing to reduce the images or the prediction

results to their central part would also be a feasible approach. Unfortunately, the junction

identification rate is also not quite high enough to expect the cell-cell interfaces to be

extracted robustly. Fig. 3.48a shows that for some of the images in the test set, where the

signal-to-noise ratio was particularly poor, the rate fell below 80 %. In cases where the

observed distances in the image become particularly small (e.g. the junction connecting

the two threefold vertices can drop below 5 µm as seen earlier in Fig. 3.46), this rate will

be insufficient. It remains to be seen, however, what rate is really necessary to extract

all the important parameters. For the time being though, the algorithms are incapable

of producing the necessary robustness that is required for measuring the parameters δ

and β, and thus an examination of the energetic behavior of the four cell systems via the

vertex model was not possible. Further improvements of the algorithms or even the noisy

underlying image data would change this, however.
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Figure 3.48: Quantification of classification rates for the various algorithms. a) Rate at which pixels
labeled as belonging to the junction are correctly identified. The custom algorithm has a
low accuracy and misses many of the pixels belonging to the junction, while the Ilastik
algorithm performs well most of the time. Despite this, there are instances where the accu-
racy drops below 80 %, typically when the signal-to-noise ratio in the images is particularly
poor. b) Rate at which pixels labeled as not belonging to the junction are falsely identified
as such by the algorithms. The custom algorithm has a very high accuracy and has hardly
any false positives, whereas the Ilastik algorithms labels many pixels as belonging to the
junction even though they do not. This performance is significantly improved (roughly by
a factor of 2) when the edge is excluded, but even so the rate is still high.
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3.4.4 T1 transitions in minimal four cell systems

While an investigation into the packing states of the four cell systems in terms of the

energy levels in a vertex model requires complete knowledge of length and orientation

of the cell-cell junctions which was not yet possible, these groups also allow probing T1

transitions. The necessary information for this is simply the change of the orientation

of the junction connecting the threefold vertices, which could also be extracted from a

successful automated image analysis. Lacking this, however, it is still possible to observe

the occurrence of T1 transitions manually. Fig. 3.49 schematically shows a T1 transition

for a minimal system on the cloverleaf pattern, as well as the lifeact-eGFP fluorescence

images showing the time evolution of one T1 transition observed in the experiment. This

confirms that the fundamental grouping of four cells is sufficient for these critical cell

rearrangements to arise. It also indicates that the effective noise in the system is sufficient

to overcome the energy barrier associated with shrinkage of the distance between the

two threefold vertices [58], as the system is symmetrical in itself and isolated from any

surrounding cells or other sources of external forces that could actively drive the transition.

No stable fourfold vertices are observed, in contrast to some recent findings of tissues

where they are stable over relatively long periods of time [187–189]. This is, however, in

agreement with theoretical findings that these vertices are always unstable unless the edge

tensions depend on edge orientation, which in this symmetrical arrangement should not

be the case [175].

To further probe this energy barrier, the size of the adhesive pattern is reduced. The

theoretical work by Bi et al. examined the energy of a four cell system within a monolayer

as it undergoes a T1 transition [58]. The system’s energy increases as the junction length

decreases until it reaches a maximum when the two threefold vertices fuse into a fourfold

vertex. Fig. 3.50 shows a rough hypothetical schematic for the energy of two different

groups of four cell systems, one on larger and one on smaller patterns. The energy mini-

mum E0,s for the smaller pattern lies higher up on the slope than the minimum for E0,l,

assuming the average length of the junction shrinks with shrinking pattern size and the

length of this junction dominates the energy term. As the energy barrier ∆E the cells

need to overcome to run through a T1 transition is given by the difference between the

minimal and the maximal energy Eδ=0, the cells need to overcome a smaller barrier ∆Es

on the small cloverleafs than the barrier ∆El the cells on the large cloverleafs need to

surmount.

Bi et al. suggest the rate of transition between the two metastable, energetically minimal
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Figure 3.49: T1 transitions in minimal four cell system. a) Schematic drawing of a T1 transition in
a system of four cells (labeled A, B, C and D). Each cell remains in the same position,
but their configuration changes. Initially, two of the cells (indicated in blue) only have
two directly neighboring cells, whereas the other two (indicated in yellow) have three
direct neighbors. The two threefold vertices move together until they fuse into one fourfold
vertex in an intermediate state, where all four cells have three neighbors. Finally, the
fourfold vertex degenerates into two threefold vertices, with the two initially separated cells
remaining in contact and the other two cells now separated. b) Experimental occurrence
of a T1 transition in a four cell system on a cloverleaf pattern. An observation period of
2.5 h is shown, during which the neighbor configuration switches as described in a). Scale
bar corresponds to 25 µm.

states is described in analogy to an Arrhenius process [58, 176]:

R = ω0e
−∆E/ε (3.29)

Classically, ∆E in this equation describes the energy barrier between the two states,

ε = kbT is the scale of fluctuations of the energy, whereas ω0 denotes the frequency at

which the system attempts to escape its metastable state. In cell collectives, ω0 and ε are

related to the frequency of cell protrusion formation and active fluctuations of the cell

shape. Taking only ∆E to be a collective property, and assuming ω0 and ε are single cell

properties, Eq. 3.29 predicts that the T1 transition rate between groups of four cells of the

same type on cloverleaf patterns scales (in some undetermined matter) with the energy

barrier. As detailed above, if cells are confined to smaller cloverleaf patterns, their energy

barrier ∆Es is smaller than for larger cloverleafs, and correspondingly the T1 transition

rate should be higher.

Despite the fact that the junction length fluctuates significantly over time even for cells

in transiently stable arrangements (see Fig. 3.51), this behavior is confirmed by the initial

results shown in Fig. 3.52. As expected, cells confined to smaller cloverleaf patterns show a
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Figure 3.50: Schematic of hypothetical energy landscape for the total energy of two different four cell
systems undergoing T1 transition. The simplified curve for the energy is chosen so that
it conforms to the general trend of increasing energy with decreasing junction length de-
termined theoretically by Bi et al. [58], though any further features such as curvature are
approximated by a linear trend, because the increase of E with decreasing δ is the feature
of relevance for discussion here. The larger four cell system’s energetic minimum (which
is assumed to correspond to a single junction length δ0,l) lies at E0,l. As the length of
the junction δ shrinks in the process of undergoing T1 transition, the energy of the sy-
stem increases, until it reaches its maximum Eδ=0 when the two threefold vertices have
fused into a fourfold vertex. The energy barrier for this system’s transition is given by
∆El = Eδ=0 − E0,l. In contrast, the energetic minimum for a system confined to a smal-
ler cloverleaf E0,s is assumed to be higher than E0,l, because its mean junction length is
already smaller (see Fig. 3.52). Consequently, the corresponding energy barrier ∆Es for a
T1 transition to occur is also smaller than ∆El.
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Figure 3.51: Fluctuation of junction length δ in a four cell system. The junction length was measured
by manual tracking of the positions of the threefold vertices. Traces of the time evolution
of the junction length are shown for five systems of four cells, with two curves highlighted
in blue for ease of viewing. Even in transiently stable states, the length of the junction
fluctuates significantly.

decreased mean junction length δ between the two threefold vertices. This is accompanied

by the inverse trend in the frequency of occurrence of T1 transitions, which appears to

be higher on the smaller patterns. The determined values come with high error bars,

however, as the manual observation of T1 transitions is not perfect. In particular, the

signal-to-noise ratio in the lifeact-eGFP fluorescence images is insufficient to clearly pick

up T1 transitions of the type where the new cell-cell junction that forms after reaching

a fourfold vertex is between the same pair of cells that was already sharing a junction

before assuming the fourfold vertex arrangement. T1 transitions where the junction forms

between the other pair are easier to identify, as they are characterized by a flip in the

orientation of said junction, but Etournay et al. showed that there are even regimes where

the dominant form of T1 transitions occurring both loses and gains connections oriented

along the same axis [59].

Naively, in the symmetric setup of the cloverleaf pattern with no outside cells or other

external forces, one would assume the probability of forming a junction between either of

the two possible cell pairs is equal when starting from the unstable arrangement with a

single fourfold vertex. This is reflected in the symmetry in the schematic energy landscape

sketched in Fig. 3.50, though it is worth noting that this was only roughly true for the

explicit Hamiltonian used by Bi et al. [176]. They also found a dependence of this energy

on the local topology when theoretically examining these transitions in a tissue where the
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Figure 3.52: Artificial stretching/compressing of cell arrangement. Cells are placed on cloverleaf struc-
tures of different diagonal length (scale bars corresponds to 25 µm). The mean junction
length δ and the frequency of T1 occurrence for groups of four cells are shown in depen-
dence of the size of the underlying pattern. For the junction length, the standard deviation
(red error bar) is shown in addition to the standard error of the mean (black error bar),
to highlight the large fluctuations. Error bar for T1 Frequency is calculated by Gaussian
error propagation of the estimated uncertainty in amount of T1 transitions observed and
estimated uncertainty in the time spent in the stable configuration.

four participating cells had neighbors [58]. In this case the energy landscape is no longer

symmetrical and thus there is likely a preferential direction for the new junction to be

formed. The presence of neighbors might be of particular relevance, as it can affect the
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shape of the cells involved in the T1 transition, which can in turn influence the height of

the energy barrier for the T1 transition, with a critical transition when the energy barrier

vanishes and the tissue becomes fluid [57].

3.4.5 Discussion

In conclusion, the study of minimal units necessary for the emergence of collective phe-

nomena in cell behavior is an intriguing field. Groups of two or four cells placed on large

square adhesive islands organize into typical geometrical arrangements. In agreement with

previous results, however, the cells do not remain stably pinned in any configuration, but

rather display collective rotation behavior. Still, the characteristic organizations that can

be observed at least transiently suggest energy minimization plays a critical role in the

small collectives’ behavior. Capable of capturing cell-cell interactions as well as cell sha-

pes, the vertex model is an intuitive choice to interpret observed phenomena. In addition,

by observing packing on the large squares, it might be possible to extract mechanical

parameters simply by optical measurements.

In the simplest case, the energy of a system of two rotating cells on a square depends only

on the current angle between their cell-cell junction and the pattern wall. The observed

distribution of angles for all time points of all observed cell pairs shows a maximum

around 0°, which decays relatively steadily as the angle increases. Assuming cell pairs

spend the most time in the energetically optimal arrangement, the minimal energy must

correspond to the peak in the observed angle distribution. Using this assumption, a ratio

α/lκ = 6.0008 can be calculated from the minimal energy condition of the vertex model

(Eq. 3.17) for the MDCK cells used in the experiment, defining a scaling between the cell-

cell adhesion parameter α and the cell cortex contractility κ (scaled by the side length of

the square pattern l). Unfortunately, however, fitting the distribution of observed angles

in analogy to a Boltzmann distribution results in very poor agreement.

Due to this discrepancy between the model and the experimental observations on ro-

tating cells, the adhesive geometry was optimized for systems of four cells, by replacing

the large square pattern with a more complicated cloverleaf. On these geometries, each

of the four cells is more or less pinned to its own adhesion island, but the collective still

forms cell-cell junctions on the adhesive bridges connecting them. Observed packing is

very reminiscent of a common arrangement of four cell systems observed on large square

patterns, with two threefold vertices, separated by a cell-cell junction between the two cells



3.4 Hydrodynamics of minimal collective cellular units 171

in the system that have three direct neighbors. While confinement was not yet perfect,

these systems were shown to suppress collective rotation to an extent, leading to tran-

siently stable arrangements. These stable states were observed to last between one hour

and eight hours, and the cell collectives were deemed to be in these stable arrangements

for about 58 % of the time they were observed.

These transiently stable states should be conducive for applying a vertex model and

extracting mechanical parameters from the optical measurements, as it seems likely that

these stabilized systems that can fluctuate less will spend more time near their energetic

minimum. For instance, the energy of the four cell system in the vertex model depends

on the length δ of the junction connecting the two threefold vertices. This work showed

that while the length of this junction fluctuates even for the stable arrangements, the

fluctuations in junction length for cells on the cloverleaf pattern appear to be reduced

compared to cells on the simple square patterns.

An exact analysis with the vertex model would require an automated algorithm for

extraction of this junction length as well as other parameters such as the angle β un-

der which the cell-cell junctions meet in the three-fold vertices, in order to achieve the

necessary statistics to extract meaningful parameters from the fluctuating systems. Un-

fortunately, the image quality of the lifeact-eGFP fluorescence time-lapse movies used in

this work proved to be insufficient for traditional image analysis algorithms. To this end,

in this work, automated image processing via machine learning algorithms was attempted.

Though the results via these decision tree methods were significantly improved compa-

red to standard methods, in the scope of this thesis it was not possible to overcome the

underlying problem of poor image quality entirely.

Unlike the exact analysis of energetic states, examining the occurrence of T1 transitions

in these four cell systems does not necessarily require and automated readout of the cell-

cell junction lines (though it would also benefit from it). Manual observation was sufficient

to hint at a dependence of the T1 transition rate on the average length of the junction

δ, which agrees with theoretical predictions of the energy landscape and its dependence

on said length. The results must be taken with care, however, as the difference in rates

observed for systems of four cells with smaller and larger mean junction lengths (achieved

via variation of the size of the underlying adhesive cloverleaf pattern) lies well within the

range of the rather large error.

One reason these rates cannot be determined more precisely is the same as for the failure

of the automated image analysis: the underlying image quality is insufficient, particularly
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when the junction length δ takes on small values. In future work, this problem could

be circumvented by switching to a cell line with a different fluorescent label. For a good

signal of the cell-cell junctions in comparison to their background, E-cadherin is a suitable

target, as well as the cell membrane, markers for which have successfully been used for

such image segmentation problems in the past, for instance in the Drosophila pupal wing

[190].

In the process, improving the confinement of the four cells to their individual places

would also be beneficial, either by fine tuning the cloverleaf patterns further, or by swit-

ching patterning techniques altogether from microcontact printing to gold patterns, with

the passivation by PLL-PEG replaced by something even more cell repellent, such as Plu-

ronic (F127). Improving this confinement would not only increase the frequency at which

four cells appear on a pattern together, it would likely also increase both the percentage

of time those four cell systems spend in their “stable” configurations, and the length of

these stable states. Currently, while these states last long enough that T1 transitions were

observed in the experiments, they are actually too short for a proper study. Transitions

were observed with a rate slightly below f = 0.1 1
h

for the smaller cloverleaf pattern,

which corresponds to a mean time t = 10 h between transitions, on the order of the lon-

gest stable periods observed in the experiment. Frequently, the quasi-stable states in the

experiment lasted less long. To make matters worse, on the large cloverleaf patterns the

observed mean time between transitions was even longer, at t = 12 h. In order to properly

study these transitions and the energy barriers governing them, the periods spent in stable

configurations need to be increased to be larger than the mean transition time.

In addition to improving the confinement, inhibition of cell division could prove bene-

ficial in achieving this goal. Frequently, experimentally observed systems of four cells had

very short lifetimes, as one of the cells on the pattern divided, greatly reducing the usable

statistics. Additionally, it is likely that preparations for division, during which cells dra-

stically change their shape, already introduce perturbations into the system, and these

perturbations might be one factor contributing to driving the system out of its quasi-

stable states. Preventing cell division thus could increase the stability of these systems.

In the past, Mitomycin C has been used successfully to inhibit proliferation in various

systems [100, 191, 192].

In particular, if cell proliferation were inhibited, but in general for an increase in the

currently poor statistics, having four cells on as many patterns as possible is necessary.

To this end, the use of still novel single cell printer technology might be conceivable, if it
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can be adjusted to print four cells next to each other rather than a single cell, and if a

sufficient throughput of cell seeding can be achieved.

Taken together, there is still much room for improvement on this project in future work,

though the initial results are intriguing enough to be worth the effort.





Chapter

4 Conclusion and Outlook

In this thesis, collective cell migration was studied in confined geometries. Microstruc-

turing methods were used to restrict cells to geometries akin to those found in classical

fluid dynamics experiments, and on long time scales, migration of cell collectives is very

reminiscent of fluid flows. Thus, the phenomenological description of this behavior can

be considered cellular hydrodynamics. The work in this thesis constitutes an expansion

of previous studies on collective cell migration. These have examined collective motion of

unconfined cell monolayers (e.g. in the Weitz group [27, 38]), as well as spreading of large

cell sheets into model wounds (e.g. in the Ladoux and Silberzan groups [17, 28]). Radial

spreading of large circular colonies (e.g. in the Losert group [29]), but also of smaller pat-

ches (e.g. in past work of the Rädler group [32]), has been analyzed as well. Most closely

related to the work of this thesis, the Ladoux group has studied the emergence of a new

mode of collective migration when cells were confined to sufficiently narrow stripes [37].

Using a similar straight confinement, in section 3.1 we explored the flow and diffusion

of an epithelial sheet expanding into artificial microchannels. It is well-known that a

Newtonian fluid in similar circumstances displays the parabolic flow profile associated

with Hagen-Poiseuille’s law, but this behavior depends on the underlying microscopic

properties. For instance, the inclusion of turbulence rather than strictly laminar flow would

lead to changes in the resulting velocity profile. Vice versa, with the help of modeling, it is

possible to relate observed velocity profiles back to the underlying microscopic behavior.

This is of particular interest when the underlying microscopic mechanisms are not as

clear as they are in externally driven Newtonian fluids. The flow profiles of active fluids in

pipe flow are less well studied, however, than those of their Newtonian counterparts, and

equivalent experiments examining the detailed velocity profile of collectively migrating

cells did not previously exist.

Our study showed that a collectively migrating epithelial sheet adapts a very flat, plug-

flow like profile. The cell number density along the channel displayed a gradient, with den-

sities increasing from the leading edge to the back of the cell sheet. The Fisher-Kolmogorov

reaction-diffusion equation successfully captures the form of the density profile, including
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its propagation in form of a traveling wave. These results are in agreement with previous

successful descriptions of collective migration of unconfined epithelial sheets via said equa-

tion [149, 150]. In order to reproduce the speed of the cell sheet’s leading edge, however,

a density independent constant drift velocity with unclear underlying mechanism needed

to be introduced. It seems plausible that this drift is related to cell polarization and is the

same mechanism that is responsible for collective migration in systems without density

gradients, such as circular systems that show the spontaneous onset of collective rotati-

on [60, 142]. Specifically, a break in symmetry at some point in the system leading to

a preferred polarization direction, in association with coupling of this polarization over

multiple rows of cells, is a good candidate for such a mechanism.

Our study showed that the MSD of single cells within the monolayer is increased when it

migrates collectively in one direction. This would be consistent with the notion of a mono-

layer in its confluent state approaching a jamming transition, whereas the appearance

of a free edge leads to an unjamming of the whole system. In contrast to the MSD,

the frequency of vortex formation also decreases under flow. These bursts of collective

migration are likely not being suppressed by the presence of a preferential migration

direction, but instead might be oriented along the density gradients, evening them out.

Thus, it is not the motion of single cells, but rather collective bursts of correlated short

scale active migration that cause the long range diffusive behavior. This interpretation

is also in agreement with more recently published results that likewise show evidence of

clusters of coordinated activity in collective cell migration [1].

Given the likely role of preferential polarization due to symmetry breaking on the resul-

ting collective migration, future experimental work visualizing the polarization dynamics

would be of interest. Fluorescent labeling of the early markers of polarization, such as

Rac1 or RhoA, might allow insights into the coupling of polarization, both between cells

and to the boundaries, and help elucidate its exact contribution. Experiments directly

comparing the collective migration in narrow channels to unconfined scenarios, such as

wound healing, might help shed light on the question of where the relevant symmetry

breaking in the system occurs. Polarization might be preferentially oriented by the pre-

sence of the channel walls, but it is also possible that the confinement of neighboring cells

suffices to reduce the likelihood of polarization in that direction.

As a significant contribution to the migration of the cell sheet in our channels stems

from proliferation, in section 3.2, we studied the effect of an underlying global migration

direction on the orientation of the cells’ division axes. Flow fields and cell division events
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were correlated to gain insight into the motion of expanding monolayers, revealing strong

alignment between the orientation of the division axes and the underlying migration

direction.

As cells have no known mechanism for sensing global quantities such as the underlying

flow, the relationship between division axes and local quantities was investigated. We

found the strongest correlation between the orientation of the cells’ division axes and

local flow gradients. Specifically, the average order between the axes’ orientation and the

strain rate tensor’s main axis was twice as high as the order between division axes and the

local flow direction. This agrees well with the hypothesis that stresses in the migrating cell

sheet are proportional to the velocity gradient, and that these stresses subsequently orient

the cell divisions. It would also make sense for an expanding tissue to orient individual

cell divisions in the direction of expansion, in order to minimize the principle stress.

Many of the phenomena observed in this context could be reproduced with a previous-

ly published particle-based model. This model had in the past successfully recreated the

viscoelastic properties of tissue spheroids and their growth as well as the fingering insta-

bilities at the front of a motile tissue [105, 124, 125, 156, 157]. The model’s success at

capturing the division orientation despite never having been intended for this purpose is

of particular noteworthiness. Despite good agreement in general, the simulations failed to

capture experimental behavior close to the boundaries. In future work, it might be neces-

sary to describe the cells by more than the two particles that are currently being used to

describe them. This would help better capture the cells deformability and complex inte-

rior structure, which might play crucial roles close to the boundary. On the experimental

side, future work might test other cell lines in the same experimental setup in order to

probe universality of the observed behavior. In addition, seeing whether the orientation

mechanism holds up in 3D would certainly be of great interest, as many collective cell

migration phenomena in vivo, in particular cancer invasion, occur in 3D.

In addition to the fluid-like behavior observed in straight channels, cell monolayers can

also show a more solid-like, glassy behavior under certain circumstances, such as high den-

sities. Thus, in section 3.3 we examined epithelial cell sheets migrating through channels

that contained a constriction, which is expected to lead to a buildup of cell density and

potentially jamming. For a Newtonian fluid under the same conditions, the resulting ve-

locity profile is determined by Bernoulli’s principle and mass conservation, with increased

velocities in the bottleneck. This allows maintaining a constant flux all throughout the

channel for these incompressible fluids. Migrating cell sheets are quite different, however,
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potentially being compressible and with proliferation breaking mass conservation. Again,

the resulting large scale flow profile should contribute to an insight into the underlying

microscopic mechanisms. Our results show that a plateau of low velocity forms prior to

the constriction, but from there on, through the constriction and reaching into the wider

area behind the channel, the velocity increases relatively linearly until eventually another

plateau is reached. This plateau in velocity prior to the constriction indeed seems to be

the result of the cell layer approaching a jamming transition and becoming more solid-like

as the cell density increases in this region. This result would agree with previous work

by Angelini et al. studying cell monolayers approaching a glass transition with increasing

density, that found increased regions of correlated motions but reduced velocities [38].

Our experimentally observed flow profile changes noticeably when the steepness of

the transition area from wide channel to narrow constriction is adjusted. For steeper

changeovers, the velocity profile seems to develop a dip prior to the constriction, with

velocity actually dropping off to a minimal value in front of the constriction. Starting

from this decrease, the velocity then increases roughly linearly in the constricted area, as

previously. Conceivably, the steeper transition area leads to a quicker or more pronounced

buildup of density localized to the width transition area, whereas for smoother transitions

the higher density might spread out more over the wide part of the channel. In future

work, it might be interesting to observe the development of this velocity dip over time. It

is possible that as more time passes, the localized high density in the transition region can

spread out more and thus the local minimum would vanish or become less pronounced.

Results from the experiment were compared with simulations from an active isotropic-

nematic mixture model, but strong qualitative differences were found for both the velocity

field and the orientation field. Based on these results, this continuous media approach is

deemed unsuitable for describing the collective migration of cell sheets through a constric-

ted channel. Potential compressibility of the cell sheet and the approaching of a jamming

transition in the region prior to the bottleneck are likely reasons for this failure. Thus,

in future work, modeling this process with a more detailed theoretical framework will

be necessary. The cellular Potts model is a strong candidate due to the fact that it not

only models the individual cells, but also accounts for details such as their shape. The

shape of cells has recently been shown to play a role in jamming transitions of cell col-

lectives [57], so a model capable of accounting for these should be more successful than

a simple self-propelled particle-based approach. Successful modeling of collective cell mi-

gration through a constricted channel will be a key component in linking the observed

macroscopic flow profiles to underlying microscopic mechanisms.
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a)

b)

Figure 4.1: Possible experimental setup for future cellular hydrodynamics studies. In traditional fluid
dynamics, the flow around an obstacle can be either laminar or turbulent, depending on
conditions. It is possible various regimes might be accessible for collective cell migration.
The flowlines for hypothetical collective cell migration under a) laminar conditions and b)
turbulent conditions are shown.

Experimental work continuing this project should focus on direct measurements of the

cell density through introduction of a fluorescent nucleus label. Determining the local cell

number density would allow a much closer investigation of the relation between velocity

and density, and thus could clarify the role and strength of jamming that seems to occur

at the constriction entrance.

Further work could also focus on a closer investigation of the backflow that was found

to sometimes occur at the entrance to the channel constriction, and its dependance on

the steepness of the transition area. To this end, both single cell tracking via fluorescent

nuclei and a more detailed local examination of the velocity profile in these regions might

prove fruitful. In addition to examining this backflow, the velocity field in general could

still be studied in more detail, for instance by examining how the constriction influences

the formation of vortices.

Going a step further, other experiments inspired by classical fluid dynamics are imagi-

nable to expand the “playing field” of cellular hydrodynamics. For instance, the collective

migration of cells around an obstacle might prove interesting, as even in classical fluid

dynamics, the flow field after the obstacle can be laminar or turbulent, depending on the

Reynolds number (see Fig. 4.1). It is unclear how cells would react in this situation, and
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whether or not both laminar and more turbulent behavior would be possible, depending

on such things as geometry, velocity, strength of adhesion and density. Again, with the

help of modeling, gaining some insight into the microscopic processes governing collective

cell migration from the observed macroscopic flow behavior in this situation should be

possible.

Finally, in section 3.4, microscopic rearrangements underlying macroscopic motion were

studied directly by examining minimal systems of four cells. This is the minimal number

of cells necessary for the occurrence of a T1 transition, and in this work, cloverleaf geome-

tries were successfully used to create transiently stable configurations. These suppressed

polarization induced collective rotation, which would perturb a regular appearance of T1

transitions. Our results showed an increased frequency of T1 transitions for smaller ave-

rage lengths of the cell-cell junction which disappears during this transition. These results

must be taken with a grain of salt, due to lying well within the range of the rather large

error. They would, however, be in agreement with recent theoretical descriptions of T1

transitions in the framework of an energy landscape, where the system energy depends

on the length of the contracting junction and is maximal at the transition point where it

vanishes [58, 176].

The reason for the high error in the transition rate measurement are twofold. One large

issue is the insufficient image quality associated with the lifeact-eGFP label used to vi-

sualized cell-cell junctions. This leads to the possibility of missing some T1 transitions or

counting false positives. Due to this, in future work switching to a cell line with a different

fluorescene label could prove fruitful. Both E-cadherin and the cell membrane are suitable

targets. The other issue is, that although the cloverleaf patterns suppress collective rota-

tion to a certain degree, they still only lead to transiently stable systems. The observed

mean time between T1 transitions is on the order of the lifetime of these quasi-stable cell

arrangements. For a cleaner study of the transition frequency, these lifetimes would need

to be increased, which requires an improved confinement. To this end, a further fine tuning

of the cloverleaf pattern might provide some improvement. Even more promising would

be switching patterning techniques to something with stronger cell-repellent properties

in the passivated area. Aside from improving confinement, suppression of cell prolifera-

tion could also help increase the lifetime of quasi-stable states, as the occurrence of a

cell division immediately ends the observation period for any given system of four cells.

In general, an increase in measurement throughput of these systems would also be very

beneficial. Currently, the bottleneck is the frequency at which exactly four cells appear on

the micropatterns. In the future, the use of still novel single-cell printer technology might
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be conceivable as a method for increasing these occurrences, if it can be adjusted to print

four cells adjacently.

All in all, the results of this thesis contribute to expanding our current understan-

ding of the complex migration process of cell collectives. Such studies of the macroscopic

phenomenology, along with similar approaches in the community, can allow insights into

underlying microscopic mechanisms governing collective migration when combined with

theoretical modeling. Given the important role this migration plays not only in the deve-

lopment of life, but also in diseases as prevalent and fatal as cancer, a better understanding

of the entire mechanism is essential. The life sciences are becoming increasingly interdis-

ciplinary, with researchers from various fields making significant contributions. Recent

developments regarding how jamming or unjamming plays a role in cancer invasion prove

that physics contributes to this group of diseases in a significant manner. Thus, if huma-

nity wishes to continue making progress in its long-lived “war on cancer” [193–195], the

contributions of physicists will be just as integral to research and treatment as insights

coming from biology, chemistry or medicine.





Appendix

A

Methods and Experimental

Protocols

A.1 Microstructuring

A.1.1 Micromolding in capillaries for 3D structures

In order to perform experiments reminiscent of those from classical hydrodynamics with

collectively migrating cells, it is necessary to create microstructured channels. These struc-

tures must be created on cell compatible surfaces and cells need to be seeded selectively

only outside of them, so that they can then collectively invade.

To this end, poly(ethyleneglycol) dimethacrylate (PEG-DMA) channel walls are crea-

ted on treated polymer surfaces (“ibiTreat” surface, Ibidi, Martinsried, Germany) via the

micromolding in capillaries (MIMIC) method [196–199]. In this way, cells can be studied

on a substrate that is established in cell-culture and extensively tested concerning bio-

compatibility, while at the same time they can be restricted to the desired geometries.

The process for the production of samples, as it was used in publication P2 and P3 (see

chapters 3.1 and 3.2), is shown in detail in Fig. A.1.

A poly-dimethylsiloxan (PDMS) mold is created from a silicon master wafer produced

by laser direct imaging photolithography under cleanroom conditions. It is trimmed down

to the appropriate size (ensuring to leave a slight edge on one side so the channels do

not penetrate to the end of the PDMS). After treatment with argon plasma to render

the structures hydrophilic, the PDMS is placed on the dish face down. Before the hy-

drophilic treatment wears off, a large drop of 2 % (v/v) solution of the photoinitiator

2-hydrody-2-methylpropiophenone in PEG-DMA (Mn=550, both Sigma-Aldrich Chemie

GmbH, Munich, Germany), is placed in front of the PDMS, where capillary forces draw

it into the recessed areas of the mold. Once the channels in the PDMS are entirely filled

by PEG-DMA (confirmed by checking under a microscope), the whole sample is exposed

to UV irradiation for 15 min by irradiation with a UV-ozone cleaning system (UVOH 150
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LAB, FHR, Ottendorf, Germany) to crosslink the structuring polymer, turning it solid.

Structures are stored overnight in a 50 ◦C drying oven.

The PDMS stamp is left on the completed structures while cells are seeded, so that they

adhere outside of the channel area. Only after cells have grown confluent is the PDMS

mold gently peeled off, exposing the channel entrances and allowing the cells to migrate

into the channels in a collective fashion.

In some instances, reference measurements with cells seeded uniformly over the channel

are of interest (in particular to distinguish effects of the presence of a boundary from

effects resulting from the directional migration). For these cases, the PDMS mold is simply

removed before the cell seeding step was performed, and cells are seeded uniformly across

the channels.

For the project of collective cell migration through constricted channels (see chapter

3.3), this microstructuring process was improved (see Fig. A.2). As changing a variety

of geometric parameters relating to the constriction significantly increases the amount of

measurements that need to be performed, an increase in measurement throughput was

desirable. To this end, the geometry of the silicon master wafer is adjusted to display

fourfold symmetry, so that cells can migrate into channels from four directions at once.

The PDMS mold is trimmed down to the appropriate size (leaving a slight edge on all

four sides so the channels do not penetrate to the end of the PDMS) and a hole is

punched into the middle (ensuring that all channels are cut into and exposed). After

treatment with argon plasma to render the structures hydrophilic, the PDMS is placed

on the dish face down, as before. Immediately, a frame, which has been 3D printed to

have the correct size, is placed on the PDMS, with the hole in the middle remaining

open. Before the hydrophilic treatment wears off, a large drop of 4 % (v/v) solution of the

photoinitiator 2-hydrody-2-methylpropiophenone in PEG-DMA is placed in the middle of

the PDMS, where capillary forces draw it into the recessed areas of the mold. A weight

is quickly placed on to the frame so that pressure is exerted on the mold, ensuring its

proper adhesion to the substrate. This prevents leaks of the polymer from the area that

will later become the walls into the area that will later become the actual channel and

needs to remain free from it in order to remain adhesive for cells. Once the channels in

the PDMS are entirely filled by PEG-DMA (confirmed by checking under a microscope),

the whole sample is exposed to UV irradiation for 60 min to crosslink the structuring

polymer, turning it solid. Structures are stored overnight in a 50 ◦C drying oven.

As before, the PDMS stamp is left on the completed structures while cells are seeded,
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Figure A.1: Original microstructuring method for creation of channels for guided cell migration and
control samples of resting confluent cell sheets. a) A PDMS mold formed from a master is
placed onto a petri dish after plasma activation. b) A drop of PEG-DMA is placed in front
of the mold. Capillary forces are sufficient to draw the second polymer into the channels
of the mold. c) PEG-DMA is cross-linked by exposure to UV irradiation. d) To create the
resting confluent cell sheets as references, the PDMS stamp is peeled off at this step of
the microstructuring process. e) Cells are then seeded uniformly onto the sample, where
they adhere and grow confluent, filling up the channels. f) Alternatively, to create channels
that are initially free of cells and thus make a flow possible, cells are seeded before removal
of the PDMS stamp. g) Cells are allowed to grow to confluence around the still protected
channels. h) The PDMS mold is removed in the same manner as for the resting case. i) The
channels become accessible and cells begin migrating into them. Adapted from reference[65]
within the framework of Creative Commons Attribution 3.0 license.
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Figure A.2: Schematic of improved microstructuring method for creation of channels for guided cell
migration. a) A PDMS mold made from a master and cut into the shape of a hollow frame
is activated by plasma and placed on a petri dish. b) A 3D printed frame is placed on the
PDMS master so that pressure can be exerted on it without blocking access to the middle.
c) A drop of PEG-DMA is placed in the middle of the mold, where capillary forces draw
the polymer into the channels of the mold. d) A weight is placed on the frame immediately
after addition of the PEG-DMA, ensuring a tight connection between PDMS and dish so
there is no leakage of PEG-DMA to the sides. e) Once the PEG-DMA has entirely filled the
channels, UV irradiation is used to cross link it. f) Without removing the PDMS, cells are
seeded on the dish, where they are allowed to grow for several days. g) The mold protects
the actual channels from cell adhesion, so cells grow to confluence around it. h) The PDMS
is then peeled off the dish very carefully. i) Collective cell migration into the now accessible
channels begins from all directions. j) Zoom in on two channels on one side of stamp for
enlarged view.
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so that they adhere outside of the channel area. Only after cells have grown confluent is

the PDMS mold gently peeled off, exposing the channel entrances and allowing the cells

to migrate into the channels in a collective fashion.

A.1.2 Microcontact printing of ECM proteins

Microcontact printing was adapted to cell biology by Singhvi et al., who in 1994 stam-

ped islands of hexadecanethiol [HS(CH2)15CH3] in self-assembled monolayers onto gold

substrates. These islands support protein adsorption, whereas the remaining substrate,

passivated with polyethylene glycol (PEG)-terminated alkanethiol [HS(CH2)11 −
(OCH2CH2)6OH], does not. Through exposure to purified ECM protein (specifically la-

minin), cell-friendly and cell-repellent areas were created [200]. Due to its power as a tool

to study individual cells, in a predetermined shape that is consistent between all cells,

and to find those same cells again later in the measurement, microcontact printing has

found widespread use in the community since its original adaption. In particular, Théry

et al. showed the orientation of the cell division axis depends on the geometry that cells

are confined to [201]. Furthermore they showed the geometry of the adhesive environment

influences the cells’ stress fiber distribution [202] and polarization axis [203].

In addition to being very useful in the study of individual cells, microcontact printing

and other similar micropatterning techniques that create defined cell-adhesive and cell

repellent areas can be expanded to study systems of multiple cells. For instance, Tseng

et al. used such patterns to show that the spatial organization of the ECM plays an

important role in positioning of cell-cell junctions [182]. Expanding the use to dynamic

phenomena, Huang et al. showed how two endothelial cells on a micropattern turn around

each other in a very regular fashion [204]. Work by Segerer et al. expanded this to hold

true for between two and eight epithelial cells on a pattern, though a discontinuity in the

regularity of rotation occurs between four and five cells where there is a change in the

general geometric arrangement of the cells [60].

In this work, microcontact printing was used to create patterns for the study of geo-

metrical arrangement of four cells together on a micropattern. Both large squares and

cloverleaf (four small islands connected by a cross) patterns were created following the

same protocol (see Fig. A.3). A PDMS stamp with either the square or cloverleaf struc-

tures as protrusions is made from a silicon master wafer produced by laser direct imaging

photolithography under cleanroom conditions. After 5 min UV treatment, this stamp is
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Figure A.3: Schematic of procedure for microcontact printing. a) A PDMS stamp with protrusion in
the shape of the desired micropattern is prepared from a silicon master wafer. b) The stamp
is incubated in a fibronectin solution. c) Only a thin film of protein remains on the stamp
after removing the excess solution and rinsing the stamp. d) The stamp is brought into
contact with a UV treated dish. e) Smoothing out the stamp (e.g. with tweezers) ensures
all of its protrusions are fully in contact with the substrate for even protein transfer. f) The
stamp is gently removed, leaving behind a protein pattern in the desired shape. g) The dish
is incubated with a PLL-PEG solution. h) After removal of excess PLL-PEG and rinsing of
the sample, only a layer of the PEG copolymer remains. i) The substrate is now covered in
a pattern of fibronectin in the shape predetermined by the initial stamp, with intermittent
areas passivated by PLL-PEG. These intermittent areas act cell repellent, whereas cells can
adhere to the islands of ECM protein.
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incubated with a 50 µg
ml

fibronectin (YO Proteins AB, Huddinge, Sweden) solution for

60 min. To remove excess protein, the stamp is washed with a drop of Milli-Q water, befo-

re being brought into a contact with an uncoated ibidi dish (ibidi, Martinsried, Germany)

and smoothed by wiping over the surface with a pair of tweezers. A Poly(L-Lysine)-

Poly(Ethylene-Glycol) (PLL-PEG, SuSoS AG, Dübendorf, Switzerland) solution is added

to the edge of the stamp with a pipette, so that capillary forces pull it underneath the

PDMS, before the stamp is removed. This can make the stamp easier to remove and

improves protein transfer. After 30 min incubation with PLL-PEG, the sample is rinsed

several times with PBS to remove any unbound polymer. This should ideally result in

a sample covered in islands of a protein monolayer in the shape determined by the in-

itial stamp, with intermittent areas covered by a monolayer of PLL-PEG. If cells are

now seeded onto this sample, they will predominantly adhere to the fibronectin patches,

not however to the passivated area in between. In this way, the cells can successfully be

confined to the desired shapes of large squares or cloverleafs to study their arrangement.

Figure A.4: Fluorescence images of subregions of fibronectin patterns for various geometries, produced
by microcontact printing. Depending on the shape of the used master, the resulting pattern
in the dish can take various shapes. 20% fibronectin labeled with Alexa 647 is mixed into
the regular fibronectin to allow visualization.
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For control of the patterning procedure, about 20% of the fibronectin can be replaced by

fluorescently labeled protein. In this work, fibronectin labeled with Alexa 647 was used. In

this concentration the adhesion behavior of cells on the pattern should be nearly identical

to that on pure unlabeled fibronectin. At the same time, it is sufficient to visualize the

pattern very easily and the fluorescence spectrum does not overlap with any of those of

the fluorophores used to mark the cell (see Fig. A.4).

A.2 Evaluation tools for data analysis

A.2.1 Particle image velocimetry extracts cellular flow fields

An important tool for the study of collective cell behavior in the experiments of this

thesis is PIV. Stemming originally from classical hydrodynamics, PIV has now become

a prominent tool in the cell dynamics community [28, 38, 70, 82]. In its initial form,

PIV was performed to visualize flows and currents in liquids by seeding them with tracer

particles. Given the similarities between the migration of epithelial cell sheets and flowing

liquids, it is unsurprising that the technique has been adapted to visualize the flow in such

cells. While the time scale of flows is typically very different in epithelia as compared to

Newtonian liquids, the only major difference in the application of the technique is the fact

that tracer particles can be eschewed. Instead, the shapes of individual cells, as well as

intracellular compartments, that are easy to see under a microscope provide the necessary

patterns that visualize the flow.

PIV analysis is an intensity cross-correlation technique, typically performed on phase-

contrast microscopy images. Pictures of the studied sample are taken at the same position

at successive time points. The interval between two frames is set so that the typical

displacement of shape patterns is small in a single time step. In this work, and frequently

in PIV analysis on migrating cell layers in general, a time step of 10 min between frames

was used. Pairs of successive images are then correlated with each other (second with

first image, third with second image, etc.): to start off, the images are broken down into

equally sized, rectangular subwindows (see Fig. A.5). The size of these windows can be

chosen freely, with a smaller subwindow size increasing the resolution of the resulting PIV

analysis. Arbitrarily small windows do not work well, however, as a lower boundary for

the size is set by the fact that the typical length scale of patterns in the studied image
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Figure A.5: Particle image velocimetry extracts the velocity fields of cellular motion. Two consecutive
time frames (∆t = 10 min apart) are compared. Each individual frame is divided into
multiple interrogation windows (approx. 8 × 8µm in size). The interrogation window in
the first is then shifted in x - and y-direction and the pixelwise cross-correlation with the
unshifted identical interrogation window from the second frame calculated. The shift leading
to a maximum in the correlation is chosen as the correct displacement vector for this
particular interrogation window. Taking the displacement vectors of all interrogation fields,
together with the known time difference between the frames results in the velocity field
describing the collective motion of the cell sheet.

must easily fit inside of it. Thus, in this work interrogation windows were set to 32× 32

pixels (which corresponds to about 20 µm× 20 µm, or roughly the size of one cell). One

way to increase the spatial resolution past a reasonable lower limit for the window size is

by introducing an overlap between the interrogation windows. In this case, the original

image is not broken down into a perfect lattice of smaller images for interrogation, but

rather each subwindow is a snapshot of a small area of the original picture that also

is identical to a certain extent with its surrounding subwindows (see Fig. A.6). Due to

the redundantly used image information in this case the resulting velocity vectors are no

longer entirely independent, and there are diminishing returns in continually increasing

the overlap. Thus, values around 50% are typically used. In this work, an overlap of 62.5%

was chosen.

After decomposition of the original image, the pixel-wise intensity I of all subwindows

i, j of the first frame (I i,j1 ) are compared to the identical subwindows’ intensities I i,j2 in

the second frame. The intensity pattern of the first image is cross-correlated in a pixel-

wise manner with the intensity pattern of the second image, not only directly but also

after applying all possible pixel shifts (s,t) to it. The resulting cross-correlation function
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Figure A.6: Illustration of different degrees of overlap between the subwindows and the resulting PIV
analysis. a) Image of section of an MCF10A cell sheet with schematic PIV interrogation
windows overlayed for 0%, 25% and 50% overlap. All interrogation windows for this section
of the image are depicted in gray, with two neighboring windows highlighted in black (one
solid line, one dashed for easier differentiation). The overlap of the two highlighted windows
is marked in red. b) Schematic velocity fields resulting from the different overlaps in a).
Higher overlaps result in a more finely resolved grid of velocity vectors.
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described by Eq. A.1 (with m and n specifying the pixels in the interrogation window)

will display a peak when the examined shift (s,t) matches the actual shift of the pattern

in the image between successive time points.

R(s, t) =
M−1∑
m=0

N−1∑
n=0

·I i,j1 (m,n) · I i,j2 (m− s, n− t) (A.1)

Thus, PIV is in essence a pattern-matching technique that determines how the shapes

in an image (in this case the cells in an epithelium) have moved compared to a previous

picture. The result for each interrogated subwindow is a vector designating the most

likely displacement, yielding a vector field of local displacements throughout the entire

image. With the known time-interval between successive frames, this can easily be used

to calculate a velocity field instead.

While this completes the actual PIV analysis, it is customary to perform some post-

processing steps on the calculated flow field (see Fig. A.7). Filtering of outliers and inter-

polation of missing values from surrounding values can help smooth out the initially noisy

results. As the whole tissue in the experiment is connected, it is unlikely for a subregion to

move in the opposite direction from its surroundings. If anything, entire cells or groups of

cells could move contrary to the rest of the surrounding tissue. In this case, however, the

sub-cellular resolution of the PIV grid would result in clusters of velocities with a different

sign than the rest of the tissue, as opposed to only individual grid points with velocities of

different sign than the surrounding points. Thus, such individual outliers are almost cer-

tainly errors in the analysis algorithm (typically noise or accidentally matched patterns)

that can justifiably be filtered out. This does not only hold true for contrary directions of

velocities, however, but also for velocities with absolute values deviating significantly from

the surrounding grid points. Aside from the comparison to the immediate surrounding, it

is also possible to filter by comparing to all globally calculated values, and to implement

filters based on the heights of the correlation peaks that resulted in an (x,y)-shift being

chosen as the correct one. In this latter case, the assumption is that correctly identified

shifts will lead to larger peaks, whereas grid points with incorrect values will be the result

of low peaks that were only slightly higher than all of their surroundings.

Taking all this into account, in this work four filters were used. In the first step, a

signal-to-noise-ratio filter compares the the height of the correlation peak for each grid

point with the mean correlation level. The value for this filter is chosen very generously, so

that the correlation peak must be only slightly higher than the mean in order for the value
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a) c)b)

filtering inter-

polation

Figure A.7: Illustration of postprocessing steps of PIV data. a) Schematic of a velocity field with two
outliers, one with absolute value significantly different than all surrounding vectors (green)
and one with a similar absolute value but different sign (blue). b) In the filtering process,
one of the four successively applied filters excludes the outliers and replaces their values
by ’not a number’ (NaN). c) In the interpolation step, new values for these grid points are
interpolated from their neighbors.

a) b)

Figure A.8: Comparison of unfiltered and filtered PIV results. a) Phase-contrast image of a section of
a sheet of MCF10A cells with the corresponding velocity field overlayed in red. The values
calculated by the PIV analysis are depicted in their unfiltered form. b) Identical phase-
contrast image with the corrected PIV data overlayed in red. Application of four different
filters and subsequent interpolation of resulting missing values significantly cleans up the
initially very noisy vector field. Collective migration with a preferential direction towards the
right becomes much more pronounced. At the same time, the upper right corner highlights
that regions that do move against the stream of the rest of the sheet are captured correctly
and not eliminated by the filters.

to be kept. More strict rules would potentially make the use of this filter questionable,

as mismatched features and stationary background can produce misleadingly high levels

of correlation [205]. Following this, a global filter throws out all values outside of three

standard deviations around the global mean for the velocity. Then, a peak height filter
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removes all values that resulted from correlation peaks below a normalized value of 0.3.

Finally, a local filter excludes all vectors that deviate by more than a factor of two from

the mean of their surroundings.

To close the holes created in the velocity field by application of these filters, the final

postprocessing step of the PIV analysis interpolates missing values from their surrounding

neighbors. In this work, the interpolation algorithm was modified so that it only calculated

a value if there were at least five of eight surrounding neighbors where a value had been

calculated and not been excluded by the filtering steps. In this way, interpolation of values

past the leading front of the cell sheet and into the empty area is prevented. Fig. A.8 shows

the results of these postprocessing steps compared to the original PIV data.

A.2.2 Coarse-graining and time averaging

In order to smooth out short scale noise in the velocity fields resulting from the PIV

analysis, space and time averaging steps were performed with custom Matlab algorithms.

Coarse-graining steps were performed by calculating the average velocity vectors over

between 2 × 2 and 8 × 8 neighboring vectors. The resulting vector is associated with a

grid point at the center of the averaging region. Each velocity is calculated from distinct

sets of vectors without overlap.

Time averaging is performed by gridpoint, with the mean of all velocity vectors on that

grid point over the average interval taken and associated with that same grid point. A

time average was only calculated if a velocity vector existed at all time points on this grid

point, whereas grid points that had no velocity value during any frame are completely

excluded. While this can lead to regions that are excluded only because the filtering and

interpolation step resulted in a missing velocity vector in one of many time steps, it ensures

that averages are only calculated when the resulting time average would really be based

on the amount of points it is supposed to be based on. This is of particular importance at

the leading edge of migrating cell sheets, as this front might spread into areas originally

not covered by cells over the averaging period.

A.2.3 Determination of cell density

Local cell densities for chapters 3.1 and 3.2 were determined from fluorescence images

of cell nuclei, where cells are easy to differentiate. Cells were counted with the standard
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ImageJ [206] function “Find Maxima”, which finds all peaks in the intensity of the current

image. The noise tolerance was set individually for each measured position to give the

most accurate match with the cell nuclei, but kept at the same value throughout each

time point of the measurement. Manual counting for comparison revealed that the error

seems to be only about 6% over the whole channel.

Detected cells are grouped into 50 µm wide bins, and the cell density calculated by dividing

the number of cells in each bin by its area (50 µm× channel width).

A.2.4 Flux calculation

The flux calculation for chapter 3.1.2 is performed by taking the density data and the

data from the PIV analysis, averaged in 50 µm bins. Coordinates are transformed into

a moving frame of reference by calculating all coordinates as distances from the leading

edge. The density gradient over the analyzed bins (3-6, 4-7 and 5-8, measured from the

front, respectively) is determined by a linear fit to their four respective density values.

The corresponding flux is calculated by multiplying the density and the velocity from the

PIV analysis (J = ρv) obtained for the outer two bins. These values are then averaged

over all time points, resulting in three pairs of values (one for each set of bins) for each

measured channel.

A.2.5 Vorticity calculation

The rotational component of velocity fields is studied by calculation of the vorticity.

For each grid point i of the PIV analysis, the average perpendicular component of the

relative velocities of the eight neighboring grid points j is calculated. A coarse-graining

of 21× 21 µm2 is chosen so that each grid point roughly represents the area of one cell.

Perpendicular components of the relative velocity vector vi,j = vj − vi are extracted

according to Eq. A.2 by performing a scalar product with r⊥i,j, a vector orthogonal to the

relative position vector ri,j = rj − ri, calculated by Eq. A.3.

ci,j =
r⊥i,j · vi,j
r2
i,j

(A.2)
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r⊥i,j = ez × ri,j = (ex × ey)× ri,j (A.3)

Finally, the obtained value ci,j is averaged over all eight neighboring grid points j. This

entire vorticity calculation can be condensed into Eq. A.4.

Ωi = ez · (curl v)i (A.4)

Due to the fact that the vortex formation found in cell sheets is a highly localized

phenomenon, the determined vorticity will depend on the coarse-graining of the PIV grid

and on the amount of neighbors it is calculated over. Averaging over too many neighbors

carries the risk of smoothing out rotations. Averaging over too few neighbors on the

other hand is likely to produce error prone results by weighting potential outliers in the

PIV analysis too strongly. Eight neighbors is thus chosen as a compromise and should

encompass about two rows of cells around a center cell.

A.2.6 Equivalent angle approximation for vorticity

To better visualize how much rotation calculated vorticity values actually correspond to,

the equivalent vorticity value corresponding to different rotation angles per time step are

calculated. An idealized grid is assumed, where each grid point corresponds perfectly to

a cell (see Fig. A.9). The central cell positioned at rcenter is taken to be at rest relative to

its neighbors. Each of the eight neighboring cells is assumed to rotate around the central

cell on perfect circles. For each neighboring grid point i, the velocity vshift,i that would

result from the PIV analysis is calculated according to Eq. A.5

vshift,i = rstart,i − rend,i (A.5)

Here, rstart,i is the coordinate the grid point i starts out on and rend,i is the point it has

rotated to after one time step. As rotation is assumed to be on a perfect circle, rend,i can

be calculated by simple trigonometric equations of the form of Eq. A.6.

rend,i =

(
r · cosα

r · sinα

)
(A.6)
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Here, r is the magnitude of r = rstart,i − rcenter. The exact form of Eq. A.6 varies for each

grid point and depends on whether the angle pushes the end point into the next quadrant

of the coordinate system, but the general form always remains the same.

α

(0|0)

r
start

r
end

v
shift

r
center

center

Figure A.9: Schematic representation of the angle to vorticity conversion approximation. Each cell sits
on one grid point. One central grid point is at rest, while the eight surrounding cells rotate
collectively around it on perfect circles. Grid points are calculated relative to an arbitrary
origin. The velocities vshift define the directest route corresponding to each cell’s movement
in a time step. They can be calculated from rstart and rend.

A.2.7 Quantitative orientation analysis

A second key tool in the study of the cellular flow in this thesis is quantitative analysis

of the orientation in the cell sheets. The detection of orientation in image analysis has

grown in relevance and today there is a wide range of applications from astrophysics [207]

to biological and medical topics [208].

In the framework of this thesis, the analysis of alignment of cells within the cell sheet is of

particular relevance, as the orientation field is a second observable for direct comparison

with the active isotropic-nematic mixture model (in addition to the flow field). Given

the key role orientation plays in liquid crystals, studying it quantitatively is invaluable

when attempting to capture collective cell migration with such a model. In this work
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a combination of Matlab and ImageJ algorithms was used to achieve this, the core of

which is the OrientationJ plugin for ImageJ. OrientationJ implements a gradient-based

orientation estimator, a class of tools frequently used to study orientation due to the fact

that they are relatively simple to discretize and implement [209].

To this end, the directional derivative Duθ of the intensity f of an image along direction

uθ is considered (the entire theoretical derivation of how the local orientation is calculated

mathematically follows the book chapter Transforms and Operator for Directional

Bioimage Analysis: A Survey by Püspöki et al. [209]):

Duθf(x, y) = 〈uθ,∇f(x, y)〉 (A.7)

Here, ∇f(x, y) is the gradient vector of the intensity evaluated at (x, y), uθ is the unit

vector in direction θ and the angle brackets represent the inner product. The local direc-

tionality of an image can be estimated using uθ (Duθ vanishes when uθ is perpendicular to

∇f and is maximized when uθ is collinear to ∇f), however, this method is very sensitive

to noise [209].

Robustness to noise in gradient-based orientation estimators is improved by examining

the so called structure tensor J(x) [210], a matrix that can be derived from the gradient

of an image (Eq. A.8).

J(x0) =

∫∫
R2

w(x− x0)(∇f(x))∇Tf(x)dx1dx2 (A.8)

Here, w(x, y) ≥ 0 is a weighting function that defines the observation window (typically

a square centered on (x0, y0)). Written out, Eq. A.8 becomes:

J(x0) =

(
(w ∗ f 2

x)(x0) (w ∗ fxfy)(x0)

(w ∗ fyfx)(x0) (w ∗ f 2
y )(x0)

)
(A.9)

Here, w ∗ f designates the convolution of w and f , while fx represents the partial

derivative of f with respect to x. The structure tensor’s eigenvalues are designated as

λmax and λmin and they contain information about the predominant orientation within

the observation window. Two measures, the energy E (Eq. A.10) and coherency C (Eq.
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A.11), are defined in order to easily characterize this information.

E = |λmax|+ |λmin| (A.10)

C =
λmax − λmin
λmax + λmin

=

√
(J22 − J11)2 + 4J2

12

J22 + J11

(A.11)

Here, Jij refers to the ij-th element of the structure ternsor. If E ≈ 0 (or in other words

λmax = λmin ≈ 0) the region is homogeneous. If C ≈ 0 (or in other words λmax ≈ λmin)

then the region has no predominant direction and is rotational symmetric. If C ≈ 1 (or

in other words λmax > 0, λmin ≈ 0 or λmax >> λmin), the eigenvector and one of the

gradient directions are well-aligned.

The direction uθ along which the directional derivative in the observation window is

maximized is given by:

uθ = arg max
||u||=1

||Duf ||2w (A.12)

The relevant function ||Duθf ||
2
w can be interpreted as the average energy in the obser-

vation window w (which is centered at (x0, y0)) and is given by:

||Duθf ||
2
w = 〈uT∇f,uT∇f〉w = uT 〈∇f,∇f〉wu = uTJu (A.13)

The structure tensor’s eigenvector corresponding to the largest eigenvector at x0 maxi-

mizes Eq. A.13. Thus, the dominant (local) orientation of the pattern is calculated by:

uθ = (cosθ, sinθ) (A.14)

Here, the angle θ is given by:

θ =
1

2
arctan

(
2J12

J22 − J11

)
(A.15)



A.2 Evaluation tools for data analysis 201

a) b) c)

Figure A.10: Result of the orientation analysis compared to an E-cadherin antibody stain a) Phase-
contrast image used as input for the orientation analysis. b) Fluorescence image of E-
cadherin-eGFP stain of the same cells for better visualization of cell orientation. c) Result
of the orientation analysis (red lines) overlayed on a preprocessed version of the image
from b). Generally, good agreement seems to exist between the orientation analysis and
the orientation seen in the image. All three images have been rotated by 90° compared to
the usual orientation. Scale bar corresponds to 50 µm.

It is important to keep in mind that this calculation will always return a dominant

direction for the orientation, independent of how strongly oriented or homogeneous the

underlying image actually is. Only the coherency gives information about this, with values

close to 1 indicating local alignment and values close to 0 indicating the absence of any

preferred direction.

Further disadvantages, generally speaking, of the structure tensor method that Orien-

tationJ uses for orientation estimation is low accuracy for corner detection and the fact

that it only takes into account one scale [209]. For the quantification of orientation of

cells in migrating sheets, however, the corner detection is of little interest. The fact that

only one length scale is considered is less of an issue as well, as long as this length scale

is correctly set to the size of the cells, though if there are large variations in the cell sizes

throughout the same sheet, this would become more of an issue again.

Robustness to noise can further be increased by application of a bandpass filter prior
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to processing the image. In this thesis, this preprocessing step was performed in ImageJ

with a large filter size of 60 pixels, a small filter size of 9 pixels and a tolerance of 5.

In order to confirm the orientation detection algorithm worked on the input data, an

MCF10A cell sheet that had invaded a straight channel was fixed and stained with an

antibody to E-cadherin. Fig. A.10 shows the result of orientation detection applied to

the phase-contrast images overlayed on the E-cadherin image, where orientation can be

seen more clearly. In general, good agreement is found, though in areas where cells are

less elongated and do not really have a preferred orientation, the algorithm still returns a

clear result. Thus, the orientation analysis is deemed suitable for the experimental data,

but results must be taken with care and not overinterpreted.

A.2.8 Single cell tracking and drift correction

Trajectories of individual cells for MSD analysis are traced automatically with the soft-

ware openbox (Informationssysteme Schilling, Munich, Germany). A median filter (3× 3

square) is applied to each image prior to nuclei localization with a Gaussian correlation

algorithm. Using a reasonable maximum velocity estimated from the PIV analysis, images

are correlated with the previous frame to ensure cells are not mapped incorrectly between

time frames. Tracking is performed one cell at a time under supervision in case of issues.

Cell tracks are ended when cells divided.

For cells tracked in cell sheets spreading in a preferential direction, a centering step

is performed by subtracting a drift speed from each step of movement. This velocity is

chosen individually for each cell so that the average displacement of all track points from

the initial track point in x -direction is zero for the corrected track.

A.2.9 Automated cell front detection

Spreading of cell sheets into channels is followed via automated detection of the leading

edge (see Fig. A.11). The algorithm is based on the intensities of the brightfield images.

Specifically, plotting the intensities along the x-axis (summed over all y-values correspon-

ding to that position along the channel) reveals a noisy profile with many peaks. In the

region the cell sheet has not yet reached, however, the intensity profile is flat. This tran-

sition from fluctuation to plateau is used to detect the leading edge. A custom Matlab
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Figure A.11: Automated detection of the leading edge. a) Brightfield image of a channel with an inva-
ding cell sheet. The blue line marks the position of the front as detected by the algorithm,
showing good agreement with the actual leading edge. b) Intensity profile over the channel
depicted in a). The intensity values are summed up over all y-values for each x-value. The
graph shows a plateau on the right hand side corresponding to the area the cells have
not migrated into yet. Correspondingly, when coming from the right, a sharp increase is
detected at the position of the leading edge. The algorithm uses this slope to detect the
cell front.

script computes a rolling “coarse-grained” derivative coming from the right and moving to

the left until its value surpasses a predefined threshold. The location where this occurred

is defined as the cell front. This derivative is calculated by summing over ten adjacent in-

tensity values and subtracting this by the sum over then adjacent intensity values shifted

one pixel to the left (i.e. towards the leading edge). Finally, the quotient of this difference

between the two sums and the first of the sums is calculated. Results are manually com-

pared to the actual position of the cell front, and the few occurring outliers are removed.

Time points where no position of the cell front was calculated due to this are interpolated

linearly from the prior and succeeding time points.
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A.2.10 Image stitching

In order to achieve the large fields of view necessary for following cell sheets invading the

channels to a large depth, as described in chapter 3.3, several of the microscope field of

views need to be stitched together. To this end, images were recorded with some overlap.

Prior to stitching, the individual images were rotated so they all have the same orientation

(in this thesis horizontal orientation of the channels parallel to the image border was

chosen, with cells invading from the left) and trimmed down so the overlap between

images is roughly 200 µm. Pairwise stitching is performed with the freely available “Image

Stitching” plugin for ImageJ, linearly blending the overlap region and using subpixel

accuracy [211]. Depending on the length of the channels, either two or three fields of view

were stitched together to cover the necessary dimensions. To save computation time, only

the last time points of each image series were registered against each other and the results

applied to all other time points in that series.

A.2.11 Machine learning algorithms for cell-cell junction

identification

In order to automatically readout the positions of cell-cell junctions from lifeact-eGFP

images for systems of four cells on a cloverleaf pattern (see chapter 3.4), two different

machine learning algorithms were used. One was based on the freely available software

Ilastik [185], the other on a custom Matlab algorithm. Prior to the actual machine learning

algorithms, images were preprocessed in the freely available software ImageJ. To this end,

a Gaussian blur with a radius of σ = 2.0 px is applied, followed by a bandpass filter

with a lower limit of roughly 3 px and an upper limit of roughly 20 px. The result of this

preprocessing step can be seen in Fig. A.12.

The preprocessed image is turned over to the actual machine learning programs. Both

algorithms are random forest classification algorithms (see chapter 2.6 for details), but

use different features to perform the classification. The Ilastik algorithm uses a broad

number of features, specifically relating to intensity, edge and texture of the input image.

For intensity, the used feature was Gaussian smoothing. For the edges, the Laplacian of

a Gaussian was taken, as well as the Gaussian gradient magnitude, and the difference

of the Gaussians. For texture, the structure tensor eigenvalues as well as the Hessian of

Gaussian eigenvalues are used. All features are examined on scales of σ = 0.7 px, 1.0 px,
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a) b)

Figure A.12: Illustration of the preprocessing step. a) Original fluorescence input image (lifeact-eGFP).
b) Preprocessed image after application of Gaussian blur and bandpass filter. Scale bar
corresponds to 25 µm.

1.6 px and 3.5 px, with the exception of the Gaussian smoothing, which was examined at

0.3 px in addition to all the above scales. This multitude of intensity, edge and texture

based input features should result in a high sensitivity of the Ilastik algorithm.

In contrast, the less efficient custom Matlab algorithm uses fewer of these sorts of

features. It works solely on a pixel’s actual intensity value, as well as the local intensity

variance, calculated over 3 × 3 px2 and 7 × 7 px2. This is expected to result in a lower

sensitivity for cell junction detection. To compensate, the custom algorithm uses three

input features based on location, specifically the x-coordinate, the y-coordinate, and the

deviation of the current pixel from a Voronoi construction based off of the cells’ nuclei (see

Fig. A.13). This a priori knowledge of where the cell junctions are expected to be should

help prevent falsely identifying pixels far from the actual cell-cell junctions as being part

of them.

Both algorithms were trained on 25 % of the evaluated data. These image frames were

labeled manually. Due to differences in the algorithms, training data for the custom Matlab

algorithm was labeled by tracing the contours of the cell-cell junctions and defining all

points within that contour as being part of the junctions, while everything else is labeled as

not being part of the border. For the Ilastik algorithm, only parts of the cell-cell junctions

as well as parts of the non-border areas were traced and labeled, but the software’s live-

update and uncertainty displaying functions were used to choose regions the algorithm

would benefit most from.
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a) b)

Figure A.13: Illustration of the parameter “distance to Voronoi construction” a) The lifeact-eGFP input
image for a given frame is shown for reference, with the cell-cell junctions traced very
roughly as straight black lines for easier visibility. b) Voronoi construction resulting from
the position of the nuclei (automatically determined from the H2B mCherry fluorescence
image). The resulting lines very roughly capture the cell-cell junctions as seen in a), but
are too inexact to do more than serve as approximations. Three sample pixels are shown
(small crosses) and their distance to the Voronoi construction indicated by the white
dashed line. Distance is always calculated to whichever line is closest. When this distance
is used as input parameter in the machine learning algorithm, pixels with low values (such
as those indicated in red) should be more likely to be classified as belonging to the junction,
whereas those at greater distances (such as the one indicated in white) will be less likely
to be classified. Exact cutoffs will depend on the values the training data displays for this
parameter. Scale bar corresponds to 25 µm.
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A.3 Experimental protocols

A.3.1 Cell culture

All cells were grown in supplemented medium at 37 ◦C under 5 % CO2 in a humidified

atmosphere.

Doubly transfected Madin Darby canine kidney (MDCK) cells stably expressing mCherry-

labeled H2B and eGFP-labeled Lifeact were cultured in Dulbecco’s Modified Eagle Me-

dium (cc pro, Oderorla, Germany), supplemented with 10 % fetal bovine serum (FBS),

20 mM L-glutamine and high glucose (4.5 g
l
). Cells were grown to about 80 to 90 % con-

fluence before trypsinization and centrifuged at 1000 rcf for 3 min. The cell pellet was

resuspended in cell medium and cells were seeded in a fresh flask or on samples for expe-

riments. For measurements, standard culture medium was replaced by CO2 independent

Leibovitz’s L15 medium without phenol red, supplemented with 10 % FBS immediately

prior to measurement. Measurements were performed at 37 ◦C with 0 % CO2.

Wild type human mammary epithelial cells (MCF10A) were cultured in Dulbecco’s

Modified Eagle Medium: Nutrient Mixture F-12 (DMEM F-12, gibco, Fisher Scienti-

fic GmBH, Schwerte, Germany). This basal medium was supplemented with 2.5 mM

GlutaMAX (L-Alanyl-L-Glutamine), 5 % horse serum, 20 ng
ml

hEGF (Sigma-Aldrich Che-

mie GmbH, Munich, Germany), 0.5 µg
ml

hydrocortisone (Sigma-Aldrich Chemie GmbH,

Munich, Germany), 100 ng
ml

cholera toxin (Sigma-Aldrich Chemie GmbH, Munich, Germa-

ny) and 10 µg
ml

insulin (Sigma-Aldrich Chemie GmbH, Munich, Germany). For passaging,

once cells had reached roughly 80 % confluency, the supernatant is collected and centrifu-

ged at 300 rcf for 8 to 9 min, to retain floating, viable cells. The cell pellet is resuspended

in fresh medium and added back to the adherent population at the end of the process.

The adherent cell population is treated with accutase until cells dissociate (roughly 10

to 15 min), before being centrifuged at 500 rcf for 6 min. The cell pellet is resuspended

in fresh medium and the cells seeded in a fresh flask or on samples for measurements.

Measurements with MCF10A cells are performed in regular culture medium at 37 ◦C un-

der humidified atmosphere, with 10 % CO2. The 10 % CO2 is chosen based on the fact

that DMEM-F12 uses a sodium bicarbonate buffer system that maintains physiological

pH value in the range of 5 and 10 % and that the actual CO2 concentration that reaches

the sample in most microscopy setups is typically lower than the preset concentration.

Maintenance of physiological pH was confirmed by measurement with indicator paper



208 A. Methods and Experimental Protocols

after a 48 h time-lapse study.

A.3.2 Microscopy

Phase-contrast and fluorescence scanning time-lapse measurements were performed using

inverted TI Eclipse (Nikon) microscopes equipped with 10x and 20x Nikon phase-contrast

objectives and either a mercury fibre illuminator (Intensilight, Nikon) or a solid state based

light engine (Lumencor Spectra X, Lumencor Inc., Beaverton, OR, USA) as fluorescence

excitation sources for the projects in chapters 3.1 and 3.2 (Intensilight) and the projects in

chapter 3.3 and 3.4 (Spectra X), respectively. The microscopes were equipped with a CCD

camera (Clara E, Andor Technology, Belfast, United Kingdom) and an sCMOS camera

(pco.edge 4.2 LT, PCO AG, Kelheim, Germany), respectively for the projects in chapters

3.1 and 3.2 and the projects in chapter 3.3 and 3.4. Microscopes were equipped with

a temperature-controlled heating stage (ibidi GmbH, Martinsried, Germany) or a large

incubation box with a small gas mixer (Okolab10, Okolab, Naples, Italy), respectively for

the projects in chapters 3.1 and 3.2 and the projects in chapter 3.3 and 3.4. Phase-contrast

and fluorescent images were acquired in intervals of ∆t = 10 min.
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D. J. ; Heisenberg, C. P.: Tensile forces govern germ-layer organization in zebrafish.
In: Nature Cell Biology 10 (2008), Nr. 4. – DOI 10.1038/ncb1705

[173] Blanchard, Guy B. ; Kabla, Alexandre J. ; Schultz, Nora L. ; Butler, Lucy C. ;
Sanson, Benedicte ; Gorfinkiel, Nicole ; Mahadevan, L. ; Adams, Richard J.: Tis-
sue tectonics: Morphogenetic strain rates, cell shape change and intercalation. In:
Nature Methods 6 (2009), Nr. 6. – DOI 10.1038/nmeth.1327

[174] Guillot, Charlène ; Lecuit, Thomas: Mechanics of epithelial tissue. In: Science 340
(2013). – DOI 10.1126/science.1235249

[175] Spencer, Meryl A. ; Jabeen, Zahera ; Lubensky, David K.: Vertex stability and to-
pological transitions in vertex models of foams and epithelia. In: European Physical
Journal E 40 (2017), Nr. 1. – DOI 10.1140/epje/i2017–11489–4

[176] Bi, Dapeng ; Lopez, J. H. ; Schwarz, J. M. ; Manning, M. L.: A density-independent
rigidity transition in biological tissues. In: Nature Physics 11 (2015)

[177] Rauzi, Matteo ; Verant, Pascale ; Lecuit, Thomas ; Lenne, Pierre F.: Nature and
anisotropy of cortical forces orienting Drosophila tissue morphogenesis. In: Nature
Cell Biology 10 (2008), Nr. 12. – DOI 10.1038/ncb1798

[178] Lee, Rachel M. ; Kelley, Douglas H. ; Nordstrom, Kerstin N. ; Ouellette, Nicho-
las T. ; Losert, Wolfgang: Quantifying stretching and rearrangement in epithelial
sheet migration. In: New Journal of Physics 15 (2013). – DOI 10.1088/1367–
2630/15/2/025036

[179] Hufnagel, Lars ; Teleman, Aurelio A. ; Rouault, Hervé ; Cohen, Stephen M. ; Shrai-
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