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Summary 

 

Antibiotic resistant pathogens are one of the most dangerous threats to public health of our time. 

Understanding of resistance mechanisms is the basis for the development of new drugs to counter 

resistant bacteria. 

Tetracycline antibiotics belong to the most important classes of antimicrobial drugs, they have been 

in use for decades and therefore numerous resistances have developed. Ribosome protection 

proteins (RPPs), like TetM, represent one of the most widespread resistance mechanisms. A high 

resolution cryo-EM structure of TetM in complex with the E. coli ribosome and analysis of TetM 

mutants gained further insights into the principle of how these proteins protect ribosomes from 

tetracyclines and which residues of TetM remove the drug from its binding site. RPPs are GTPases 

highly homologue to elongation factor G, it was observed whether the G´ domain, which has been 

studied in the elongation factor, plays the same role in the RPP that it does for EF-G. However TetM 

does not confer resistance to the latest generation of tetracyclines including tigecycline, 

omadacycline and eravacycline. It was therefore analyzed whether bacteria expressing TetM from a 

plasmid could develop mutants that are able to confer resistance against tigecycline when grown in 

the presence of raising concentrations of the drug. Although the bacteria became resistant, no 

mutant versions of TetM were observed, instead changes in the genome of the bacteria, that 

resulted in the over-expression of a multidrug efflux pump complex were identified as the main 

source for the resistance. Thermorubin is an antibiotic whose chemical structure shows some 

similarities to tetracycline even though the mechanism of action of the drug differs from the later. No 

resistance mechanism against thermorubin have been described in detail so far, therefore bacteria 

were grown in the presence of increasing concentrations of the drug until they gained high level 

resistance compared to their parental strain. Sequencing and analysis of their genome identified a 

loss-of-function mutation in a transcriptional repressor protein that regulates the expression of a 

multidrug efflux pump system. 

Antimicrobial peptides (AMPs) are regarded as an alternative to traditional small-molecule 

antibiotics. Natural occurring thiopeptides represent one important class of AMPs and have been 

discovered decades ago as natural products of bacteria. Amythiamicin D and three semi-synthetic 

derivatives were produced via a de novo synthesis pathway. The natural occurring thiopeptide and 

derivative 3a showed antibacterial activity against numerous pathogens when tested in vivo. Further, 

it could be shown that the derivative 3a contains superior translation inhibition activity in vitro 
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compared to the natural occurring thiopeptide. Derivatives 3b and 3c were inactive. Molecular 

dynamics simulations found a conformation of amythiamicin D and derivative 3a similar to the 

conformation that was found for the chemically related elongation factor Tu inhibitor GE2270 A. 

Inhibition of translation by derivative 3a could be neutralised by the addition of external EF-Tu. A 

point mutation on EF-Tu conferring resistance to GE2270 A also conferred resistance to derivative 3a 

indicating that both antibiotic share the same binding site on the elongation factor. 

In eukaryotes, numerous AMPs were isolated. Some of which belong to the class of proline-rich 

antimicrobial peptides. Unlike most AMPs, the proline-rich class (PrAMPs) does not primarily 

perforate the bacterial membrane but targets translation instead. Crystal structures of the PrAMPs 

Onc112, pyrrhocoricin, metalnikowin I and Bac7 bound to the ribosome of Thermus thermophilus 

identified the binding site of the peptides to be located in the ribosomal exit tunnel. They bind in a 

reverse orientation compared to the nascent chain with the N-terminus reaching into the A-site of 

the ribosome. Onc112 and Bac7 binding allows the formation of the initiation complex but their 

binding sites overlap with the binding site of the A-site tRNA. Biochemical analysis of truncated 

versions of the PrAMPs showed that the N-terminus of the peptide Onc112 is the active part that 

binds to the ribosome whereas the C-terminus is required for the uptake of the drug into the 

bacterial cell. It could further be shown that the inner membrane transporter SbmA is the key protein 

for the import of Onc112 into the cytoplasm of Gram-negative bacteria. Other antibacterial peptides 

of various species were tested for their potential as translation inhibitors. Mammalian PrAMPs with 

high sequence similarity to Bac7 turned out to be potent inhibitors of protein synthesis whereas the 

tested arthropod and amphibian PrAMPs showed weak activity. To overcome one of the most critical 

drawbacks of AMPs, their susceptibility to proteases, a Bac7 derivative containing D-amino acids was 

created. However it inhibited translation with lower efficiency than the natural occurring PrAMP.  

More research will be necessary before PrAMPs can be used to supplement traditional antibiotics but 

the understanding of their mechanism of action is an important step towards clinical application of 

PrAMPs. 

 

 

The aims of this thesis were to get further insights into resistance mechanisms against tetracycline 

antibiotics and the structural related drug thermorubin. Further the mechanism of action of peptide 

antibiotics was to be determined. 
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1. Introduction 

Antibiotic resistant bacteria represent one of the most important threats to public health. The World 

Health Organization categorized carbapenem-resistant Acinetobacter baumannii, Pseudomonas 

aeruginosa and Enterobacteriaceae as the most critical bacteria with other pathogens like 

vancomycin-resistant Enterococcus faecium (VRE) or methicillin-resistant Staphylococcus aureus 

(MRSA) being next on the priority list for the development of new therapeutics1. One of the main 

reasons for the proliferation of resistant pathogens is the overuse in human2 and animal3 medicine. 

In Germany, the latest report estimated the total consumption of antibiotics in human medicine to 

be in the range of 700-800 tons for 20144.  In animal medicine a total of 1.238 t were applied, which 

was a significant decrease compared to 2011 (1.706 t). The most important classes were penicillins 

(450 t); tetracyclines (342 t); sulfonamides (121 t) and macrolides (109 t)5. Further, a recent study 

found high concentrations of antibiotics in the wastewater of pharmaceutical factories producing 

these drugs6. Numerous multi-resistant pathogens were found in the environment of these factories. 

However antibiotic resistance is not new. The first reports about sulfonamide-resistant bacteria 

appeared only few years after their discovery in the 1930´s7–9. Whereas the first resistance against 

penicillin was reported in the same year its in vivo efficiency was published10 and even before the 

clinical application of the drug11–13. Most antibiotics are natural products, produced by 

microorganisms or higher species to kill (other) microorganisms. The producing cell has to protect 

itself from the toxicity of its own antibiotic(s) whereas the target cell tries to become resistant as well 

as to develop its own antibiotic(s) to compete with the first. This arms-race did not start by human 

activity but what has changed in the decades since the clinical introduction of antibiotics is the 

dimension of antibiotics in the environment that lead to an unseen selective pressure on bacteria to 

develop resistance mechanisms. The latest study for Germany found that around 15% of analyzed 

strains of Acinetobacter baumannii showed resistance against carbapenems, whereas the portion of 

resistant Pseudomonas aeruginosa is in the range of 8%4. The share of MRSA dropped from 16.7% in 

2010 to 13.5% in 2013 whereas VRE rate increased from 12.6% in 2010 to 16.6% in 2013. These high 

numbers of resistant pathogens highlight the need to discover and develop new and better 

antimicrobial drugs and strategies to overcome resistance mechanisms.  
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1.1 Discovery of antibiotics 

Moulds were already used in medicine long before the discovery of microorganisms in the late 17th 

century14–16. In the 19th century, it was observed that liquid culture tubes exposed to the air are 

colonized by bacteria very fast but that tubes containing Penicillium could not be populated by 

them17,18. In 1884 a Penicillium glaucum culture was used to heal a patient’s gluteal abscess but the 

results were not published19. In 1897, the activity of Penicillium mould against Salmonella typhi was 

shown19.  

Mycophenolic acid is considered to be the first antibacterial agents that has been isolated and 

systematically analyzed. It is produced by Penicillium brevicompactum and was shown inhibit the 

growth of Bacillus anthracis as early as 1893 but its discovery did not lead to its medical 

application20–22. Today mycophenolic acid and its derivatives are used as immunosuppressives after 

organ transplantations23 or to treat autoimmune diseases like systemic lupus erythematosus24 but 

their side effects do not justify their use as antibiotics. The first commercially successful 

chemotherapeutic to treat bacterial infections was arsphenamine, marketed under its brand name 

Salvarsan®25. It was an advancement of the earlier arsenic compound atoxyl which was effective in 

treating the African sleeping sickness caused by the protozoa Trypanosoma brucei in an animal 

model but turned out to be too toxic for use in human medicine. Arsphenamine was reported to be 

an effective drug to treat syphilis in 1910 and was successfully tested clinically soon after26–28. In spite 

of this success, arsphenamine has major drawbacks: it is still very toxic due to the arsenic content 

and oral application is impossible due to its low water solubility29. The discovery of penicillin by 

Alexander Fleming in 1928 is widely regarded as the hour of birth of antibiotics30. However it took 15 

more years until penicillin was in large scale clinical use12. Before the clinical introduction of 

penicillin, sulfamidochrysoidin was discovered as the first member of the class of sulfonamide 

antibiotics. The drug was patented as Prontosil® in 193231. It was shown to be highly active against 

infections by Streptococcus sp. in animal models8. Prontosil is not effective in vitro but a pro-drug 

that has to be transformed into its biological active form inside of the bacterial cell32. The first 

translation inhibitor, streptomycin, was originally isolated from Actinomyces griseus in 194433. It was 

the first antibiotic that was able cure Mycobacterium tuberculosis infections. Its discoverer Selman 

Waksman also introduced the term “antibiotic”34. In the next two decades most of the antibiotic 

classes used today were discovered35 (see Figure 1). Semi-synthetic derivatives of natural occurring 

antibiotics were developed in the following years but the number of totally new classes of antibiotics 

has been steadily decreasing. Between January 2010 and December 2015 only eight new antibiotics 

were approved by the U.S. Food and Drug Administration: ceftaroline, fidaxomicin, bedaquiline, 

dalbavancin, tedizolid, oritavancin, ceftolozane-tazobactam and ceftazidime-avibactam36. Seven of 

https://en.wikipedia.org/wiki/Trypanosoma_brucei
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these eight antibiotics are derivatives of established antibiotic classes or combinations of a ß-lactam 

antibiotic and a ß-lactamase inhibitor. Only bedaquiline, the first member of diarylquinolines, uses a 

novel mechanism of action: it targets subunit C of ATP synthase and is used against mycobacteria37. 

 

Figure 1: Timeline of antibiotic discovery. Most classes were found between the beginning of the 1940´s and the 

end of the 1960´s terming this period the “golden age” of antibiotic discovery38–57. PrAMPs: Proline-rich 

antimicrobial peptides.  

Translation, the synthesis of new proteins, is one of the most important targets for antibiotics. 

Translation inhibitors like macrolides, tetracyclines and aminoglycosides belong to the most used 

classes of antibiotics58. These drug families, together with numerous others, inhibit the synthesis of 

proteins via many different mechanisms of action. Some bind directly to the protein synthesis 

machinery whereas others act by inhibiting specific factors required for translation.  

 

1.2.1 The synthesis of proteins is performed by a large complex of RNA and proteins: the ribosome 

First isolations of ribosomes were already performed in 194859 and 195260 by ultracentrifugation of 

the cytoplasm of normal and leukemic mouse spleen. They were named “ultramicrosomes” or 

“macromolecules” respectively and were already identified as ribonucleic acid complexes. Ribosomes 

were first visualized in 1955 observing OsO4 fixed rat and chicken tissues and organs under an 

electron microscope61. They were described as small, almost spherical particles with 100 to 150 Å in 

diameter. Furthermore it was already seen that some of the particles were associated with the 

membrane of the endoplasmic reticulum whereas others were freely distributed in the cytoplasm.  

The ribosome is the key player in the production of novel proteins. In bacteria it is composed of a 

small subunit with a mass of 0.8 MDa and a sedimentation coefficient of 30 S and a large subunit 
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with a mass of 1.5 MDa and a sedimentation coefficient of 50 S62. Both subunits unite to form a 

complex with a sedimentation coefficient of 70 S. In E. coli, the small subunit contains of 21 proteins 

and a single RNA chain of 16 S. The decoding site is part of this subunit. Here, the interactions of the 

codons on the mRNA and the anticodons of the tRNAs decide over the amino acid sequence of the 

synthesized proteins. The large subunit of E. coli ribosomes contains 34 proteins and two RNA chains 

that sediment at 5 S and 23 S. The peptidyl transferase centre (PTC), which is the active site that 

catalyzes the formation of peptide bonds, represents the core of the large subunit. It is exclusively 

composed of rRNA residues of domain V of the 23S rRNA, the nearest protein side-chain lies about 

18 Å away suggesting that the ribosome is a ribozyme63. In the E. coli genome, 7 ORFs for rRNA genes 

have been found64, each contains one sequence for 16S, 23S and 5S rRNA. A 30S precursor rRNA is 

transcribed that is cleaved by RNase III into fragments which are further processed by other RNases 

into the final 16S, 23S and 5S rRNA sequences65. The subunits form by folding of the rRNA and the 

association of ribosomal proteins in a defined order66,67. After assembly of the ribosome, the 

synthesis of proteins can start. The process of translation can be divided into four steps: Initiation, 

Elongation, Termination and Ribosome recycling.  

 

1.2.2 Initiation of bacterial translation 

The mature 70S bacterial ribosome consists of a 30S and a 50S subunit, before these subunits can 

associate, the mRNA and the initiator tRNA, fMet-tRNAf
Met, have to be incorporated correctly68. This 

process requires the help of three initiation factors (IFs). In a first step IF1 and IF3 bind to the 30S 

subunit. The binding site of IF1 overlaps with the A-site, directing the initiator tRNA to the P-site69. 

IF3 binding permits premature joining of the 50S subunit70. The mRNA and the GTPase IF2 (GTP) join 

the complex. IF2 binding promotes the binding of initiator fMet-tRNAf
Met forming the 30S pre-

initiation complex71. A highly conserved sequence was found on the 3´-terminal part of the 16S rRNA: 

ACCUCC72. It was shown that this sequence directly interacts with the ribosome binding site of 

coliphage mRNAs73. The sequence on the mRNA has been named Shine-Dalgarno sequence and 

interacts with the complementary sequence located at the 3´end of the 16S rRNA which has been 

named Anti-Shine-Dalgarno sequence72. The Shine-Dalgarno sequence is positioned 5-13 nucleotides 

upstream of the initiator codon positioning the start codon into the P-site of the ribosome74. 

Variations in the Shine-Dalgarno sequence, its length and its distance to the start codon lead to 

weaker interaction of the 16S rRNA with the mRNA generating a level of translation regulation. The 

fMet-tRNAf
Met is first bound in a codon-independent way, the complex undergoes a conformational 

change that promotes codon-anticodon interaction between the fMet-tRNAf
Met and the mRNA that 
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results in the 30S initiation complex75–77. IF1 and IF3 leave the complex enabling the 50S subunit to 

join. GTP hydrolysis of IF2 is stimulated by the joining of the 50S subunit and the factor dissociates 

from the complex. This last step forms the 70S initiation complex with empty E-, and A-sites and 

fMet-tRNAf
Met in the P-site. The ribosome is now ready to start into the elongation cycle. 

 

1.2.3 Elongation of bacterial translation 

After formation of the 70S initiation complex the ribosome has an fMet-tRNAf
Met in the P-site and an 

empty A-site, the second amino acid can associate. However, amino acids cannot directly bind to the 

ribosome, they have to be coupled to a tRNA molecule. This task is fulfilled by tRNA-synthetases 

which link every amino acid to a specific tRNA molecule. The error rate of this process is as little as 

10-6 78,79. Elongation factor Tu (EF-Tu) binds GTP and an aminoacyl-tRNA (aa-tRNA) to form the ternary 

complex. This complex binds to the ribosome to deliver the aa-tRNA into the A-site of the ribosome. 

It is very important that the ribosome recognizes wrong amino acids to prevent the incorporation of 

mistakes. Therefore the codon on the mRNA, consisting of three nucleotides per codon, has to 

interact with the anticodon of the tRNA forming the Watson-Crick base pairs A-U and G-C in a 

process called decoding80,81. The incoming tRNA-anticodon can either match perfectly (cognate) or 

with one (near-cognate) or 2-3 mismatches (non-cognate) to the codon on the mRNA. Initial 

association of the ternary complex is independent of the mRNA82 but the binding of a non-cognate 

tRNA is excluded through the lack of binding energy between the codon and the anticodon83. 

However in the case of a near-cognate aa-tRNA this is not enough. Therefore, an additional 

discrimination mechanism is necessary. The original model proposed that interactions of mRNA and a 

cognate tRNA induces a conformational change in the bases A1492 and A1493 of the 16S rRNA 

flipping them out of helix 44 of the 30S subunit to interact with the first and the second base pair of 

the codon-anticodon helix84. Together with universally conserved bases G530 of the 16S rRNA and 

A1913 of the 23S rRNA, these two bases monitor Watson-Crick base pairing to distinguish between 

cognate and near cognate codon-anticodon interaction83,85. But another study found that a single 

mismatch at position one or two in the codon-anticodon helix is forced to form a Watson-Crick base 

pair-like geometry by 30S domain closure 86. In this model, the ribosome discriminates cognate from 

near-cognate aa-tRNAs by the energy that is needed to force a non-Watson-Crick base pair into a 

Watson-Crick conformation86,87. The latest publication enabled a more detailed view on the 

nucleotides G530 and A1492 of the 16S rRNA and A1913 of the 23S rRNA88. Formation of a codon-

anticodon helix between a cognate aa-tRNA and the mRNA is stabilized by interactions of G530 and 

the backbone of the helix. Stacking of A1913 on A1492 is disturbed by the binding of the tRNA´s 
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anticodon stem loop next to helices 44 and 69. A1492 therefore moves towards the minor groove of 

the codon-anticodon helix rearranging G530 to induce the closure of the 30S subunit. In case of a 

near-cognate aa-tRNA, the closure of the 30S subunit is not favored88.  

The third or wobble base pair of the codon-anticodon helix is not monitored so closely. In contrast, it 

could be shown that the interactions between the third position of a codon with the anticodon 

tolerates variations from Watson-Crick base pairing89.  

Before 30S closure, the aa-tRNA is simultaneously bound to the A-site and to EF-Tu (GTP), termed 

A/T conformation90. The tRNA has to be distorted to bind in A/T conformation. Interactions of the 

tRNA with the shoulder domain of the 16S rRNA, ribosomal protein S12 and the L11 region of the 23S 

rRNA stabilize this distortion which is further strengthened by interactions of EF-Tu (GTP)  with the 

sarcin-ricin loop of the 23S rRNA90. The tRNA has to move from the A/T state to the full A/A state. 

30S subunit closure after codon recognition rearranges the domains of EF-Tu (GTP) pulling it into the 

factor binding site inducing the hydrolysis of its GTP. GTP hydrolysis requires the attack of a water 

molecule on its y-phosphate which is provided by catalytic His84 of EF-Tu91. Is has been proposed 

originally, that the water is protected from the solvent by two of EF-Tu´s amino acids, Val20 and Ile60 

forming a hydrophobic gate that has to be opened to make the y-phosphate of GTP accessible for the 

water92. However another study showed that there are only minor conformational changes of Val20 

and Ile60 before and after GTP hydrolysis, instead His84 has to be positioned by interaction with 

A2662 of the sarcin-ricin loop to bring the water molecule in line for the attack on the y-phosphate93. 

After GTP hydrolysis, EF-Tu undergoes conformational changes interrupting the interactions of its 

G domain with the sarcin-ricin loop and between switch II of EF-Tu and the tRNA acceptor arm92. EF-

Tu-GDP then leaves the ribosome. EF-Tu´s stabilization of the aa-tRNA distortion is gone and the 

tRNA either relaxes into the accommodated state or dissociates from the ribosome if the codon-

anticodon interaction of a near-cognate base pair is not strong enough to keep the aa-tRNA at the 

ribosome in the absence of EF-Tu85. After that the tRNA has been completely accommodated into the 

A-site.  

The 3´CCA-end of the tRNA now enters the peptidyl transferase centre forming a stacking interaction 

of its C74 and 23S rRNA base U2555 and a base pair between its C75 and 23S rRNA base G255363,94. 

A76 of the tRNA forms a class I A-minor interaction with G2583. The α-amine is within hydrogen 

bond distance of N3 and the 2´OH of 23S rRNA base A2451 as well as of the 2´OH of A76 of the 

peptidyl tRNA. C74 and C75 of the P-site tRNA form base pairs with P-loop nucleotides G2251 and 

G2252 whereas A76 forms a stacking interaction with A2451 and hydrogen bonds with A245063. The 
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α-amino group is now positioned to perform a nucleophilic attack on the aminoacyl ester of the 

peptidyl tRNA (see Figure 2).  

 

Figure 2: Peptidyl transferase reaction. The free electron pair of the N-terminal amino group of the A-site tRNA 

attacks the carbonyl atom of the C-terminal amino acid binding the A-site aa-tRNA to the nascent chain. In a 

second step, the bond between the P-site tRNA and the nascent chain is broken95,96.  

The exact mechanism of peptide bond formation remains an issue of debate. A recent model focuses 

on water molecules inside of the PTC97. One water lies within a pit formed by 23S rRNA bases A2602 

and A2451, the 3´CCA of the A-site tRNA and the N-terminus of protein L27. The water is positioned 

to deprotonate the α-amino group of the A-site tRNA which is thereby activated to perform the 

nucleophilic attack on the ester carbonyl carbon of the P-site tRNA forming a tetrahedral 

intermediate state before the bond to the P-site tRNA is broken.  

After peptide bond formation, the ribosome has a deacylated tRNA in the P-site and a peptidyl tRNA 

in the A-site which represents the pre-translocation complex. To enable the next round of 

elongation, the P-site tRNA has to move to the E-site and the A-site tRNA has to move to the P-site in 

a process called translocation. Elongation factor G (EF-G) has to help the ribosome in this process98, it 

accelerates the rate of the reaction by 4-5 orders of magnitude99. The movement of the tRNAs takes 

place in two steps. First, the anticodon ends of both tRNAs stay bound to the small subunit, while the 

CCA-ends of the tRNAs move to the P- and E-sites of the large subunit forming an A/P and a P/E 

hybrid state87,100,101. In a second step, EF-G moves the anticodon ends into the P- and E-site of the 30S 

subunit. EF-G cannot translocate ribosomes with a tRNA in the P-site but no tRNA in the A-site to 

prevent premature translocation102. EF-G interacts with the intersubunit space at the A-site of the 

ribosome103,104. EF-G domain I binds the sarcin-ricin loop of the 23S rRNA and the L7/L12 stalk 

whereas domain V contacts the 1067 region of the 23S rRNA. Domain II interacts with the 360 region 

of the 16S rRNA. Domain III of EF-G interacts with ribosomal protein S12 whereas domain IV pushes 

into the decoding centre on the small subunit. After binding, EF-G immediately hydrolyses GTP and 

releases Pi phosphate undergoing a conformational change in EF-G that induces a rotation of the 

small with respect to large subunit without changing the positions of the tRNAs; the mRNA channel is 
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widened allowing the mRNA to advance by one codon105,106. The ribosome now has the peptidyl-

tRNA in the P-site and the deacylated tRNA in the E-site which represents the post-translocational 

complex. The A-site is left empty and ready to accept the next aa-tRNA-EF-Tu-GTP complex. The E-

site is too small to bind an aa-tRNA ensuring that the P/E hybrid state can exclusively be formed after 

transpeptidylation107.  

Depending on the growth conditions 12-20 codons per second are translated by the ribosome108, 

thereby increasing the rate of peptide bond formation by the factor of 2 x 107 compared to the 

reaction in free solution109. The rate of transcription has been measured to be 28-89 nucleotides per 

second in E. coli 
110. Given that one codon is made of three nucleotides one can say that both rates 

are similar, enabling the coupling of these processes. Ribosomes have been visualized that translate 

nascent mRNAs while they are synthezised by RNA polymerase111. Besides its high speed, translation 

also occurs with a very high accuracy. Missense errors, the incorporation of a wrong amino acid, have 

been estimated to rates of 10-5 to 10-3 112–115. That is again comparable with the situation during 

transcription which has an error rate of about 10-5 per nucleotide116.  

 

1.2.4 Termination of bacterial translation 

At the end of an open reading frame one of three universally conserved stop or termination codons 

(UAA, UAG and UGA) appears without a corresponding tRNA to bind it. Instead, a class I release 

factor binds to the mRNA. Two class I release factors have been identified and named RF1 and RF2 in 

bacteria117. RF1 recognizes the stop codons UAA and UAG whereas RF2 recognizes UAA and UGA118. A 

mutational analysis has identified the residues responsible for stop codon recognition119. The 

tripeptide Pro-Ala-Thr in RF1 enables UAA and UAG recognition whereas RF2 uses a Ser-Pro-Phe 

sequence to recognize UAA and UGA. Another important sequence is the strictly conserved GGQ 

motive found in class I release factors. Mutations of the glycines resulted in a complete loss of ability 

for the hydrolytic reaction, whereas the mutation of the glutamine resulted in partial defective 

factors120. Furthermore, it has been shown that the glutamine side-chain of the GGQ motif is N5 

methylated. Lack of methylation reduces the activity of RF1 and RF2 by 4-5 fold121,122. The 

methylation is performed by the enzyme PrmC (former named HemK) in E. coli 
123. The methylation 

of the GGQ motif packs the glutamine side chain against A2451 of the 23S rRNA stabilizing the GGQ 

motif and positioning the amide of the side chain away from the active site124. This helps in orienting 

the carbonyl oxygen of the C-terminal amino acid into the active site to coordinate the catalytic 

water. The GGQ motif inserts into the PTC moving the 23S rRNA nucleotides U2506 and U2585 out of 

the A-site aminoacyl-binding pocket into a conformation they have when an aminoacyl-tRNA is 
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bound to the A-site.  The glutamine side chain of the GGQ motif fills the space that is normally 

occupied by the aminoacyl group of an A-site bound aa-tRNA125. A catalytic water molecule enters 

the PTC126, the 2´OH group of A76 brings the water molecule in position for nucleophilic attack on the 

ester bond between the nascent chain and the tRNA125. The backbone amide of the Gln253 is 

positioned to form a hydrogen bond with the 3´-OH group of the terminal nucleoside A76 of the P-

site tRNA after deacylation. When the backbone amide of the GGQ glutamine is removed by 

mutation to proline, the ability of RF2 to catalyze splitting of the peptide chain of the P-site tRNA is 

reduced to zero127. The class II release factor RF3 binds to the ribosome in its GDP form128. The 

deacylation of P-site tRNA enables RF3 to exchange GDP to GTP128,129. RF3-GTP induces 

conformational changes resulting in the dissociation of RF1 and RF2. RF3 hydrolyses GTP before it 

leaves the ribosome128,130. 

 

1.2.5 Recycling of bacterial translation 

After dissociation of the nascent polypeptide chain and release factors, the ribosome is still bound to 

the deacylated P-site tRNA and the mRNA. Two factors are required to split the complex into its 

components to make them available for the next round of translation131. Ribosome recycling factor 

(RRF) binds to the large subunit of the ribosome132. Its three dimensional structure has been reported 

to strongly mimic the structure of tRNA in shape and size, suggesting that RRF binds the A-site like a 

tRNA. However subsequent structural studies showed that the conformation of RRF differs drastically 

from a bound A-site tRNA132–134. EF-G bound to GTP enters the complex. GTP hydrolysis of EF-G 

triggers a movement of domain II of RRF destabilizing inter-subunit bridges B2a and B3 resulting in 

the separation of the subunits132,135–137. After splitting of the ribosome into subunits, IF3 associates to 

prevent rejoining of the subunits138. The exact mechanism of how the deacylated tRNA and the 

mRNA dissociate remains unclear. According to one study, the tRNA and the mRNA are removed 

simultaneously to the splitting without the help of IF3139. However another model says that IF3 is 

necessary to remove the tRNA whose dissociation allows the mRNA to slide along the 30S subunit 

and reinitiate translation or leave the subunit137,140. The free subunits are now available to start with 

the next round of translation.  

 

1.3 Intracellular targets for antibiotics 

Many antimicrobial drugs that act inside of the bacterial cell inhibit the synthesis of new proteins 

described above but there are also compounds that target other intracellular targets like replication, 

transcription and tetrahydrofolate synthesis.  
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1.3.1 Antibiotics targeting translation 

Every step of translation is targeted by numerous antibiotics. Many translation inhibitors bind to the 

ribosome directly whereas others target factors involved in translation.  

Numerous translation inhibitors were found as natural products of bacteria, fungi and eukaryotes. In 

general, translation inhibitors do not lyse bacteria but prevent them from growing i.e. they employ a 

bacteriostatic rather than a bactericidal mechanism141. As a consequence, the bacteria stay intact and 

the content of the bacterial cell is not released into the environment. In some cases this is very 

favourable as some bacteria contain highly toxic molecules in their cells142. Their release can cause 

significant problems and should be avoided143. Bactericidal drugs generally work better in growing 

than static cells, therefore a combination therapy with bactericidal and bacteriostatic antibiotics is 

usually not the method of choice144. However when bacteriostatic antimicrobials are administered at 

very high concentrations they can also act bactericidal145. But there are also exceptions among 

translation inhibitors like aminoglycosides or ketolides which exert a bactericidal mechanism at low 

concentrations146,147.  

The ideal antibiotic inhibits the growth of bacteria without effecting eukaryotic cells. The uptake of 

many antimicrobial drugs into eukaryotic cells is weak due to the differences of membrane 

composition between eukaryotic and prokaryotic cells148. Some antibacterials are even substrates of 

eukaryotic efflux pumps removing the drugs from the inside of the cells149. This protects the own 

ribosomes of the cell against the drugs but on the other hand limits the efficiency of these 

compounds against intracellular pathogens. Further, the differences of bacterial and cytoplasmic 

eukaryotic ribsosomes are enough to make the later insensitive to some but not to all translation 

inhibitors150,151. As mitochondrial (and in plants also chloroplast) ribosomes are evolutionarily related 

to bacterial ones they are also more vulnerable to translation inhibiting antibiotics152.  

Almost every single step of translation is the target of antibiotics. Many translation inhibitors have 

more than one effect on translation, it is therefore not easy to categorize them into pure initiation or 

elongation inhibitors. But it is possible to say that some antibiotics are first and foremost initiation 

inhibitors as the concentration for secondary effects is far higher than for disturbing initiation. For 

example, kasugamycin is an aminoglycoside antibiotic but it utilizes a different mode of action than 

other antibiotics of this family. Kasugamycin binds within the mRNA channel inhibiting the correct 

codon-anticodon interaction that is necessary for the binding of fMet-tRNAf
Met 153,154. Edeine binds to 

bases in helices 24, 28, 44 and 45 of the 16S rRNA blocking the binding site of P-site tRNA and 

therefore preventing the binding of fMet-tRNAf
Met to the initiation complex155–157. The tetrapeptide 

GE81112  holds the small subunit in the 30S pre-initiation complex state, preventing the dissociation 
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of IF3 and the association of the 50S subunit158,159. Orthosomycins interact with a binding site 

containing nucleotides of helices 89 and 91 of the 23S rRNA160. The binding site of orthosomycins 

overlaps with the binding site of Initiation Factor 2 preventing the joining of the small with the large 

subunit. The binding site also overlaps with the binding site of A-site tRNA interfering with the 

accommodation of the tRNA into the A-site161.  The synthetic nitrovinylfuran antibiotic G1 (MW297) 

binds to the P-site of the 30S subunit blocking the binding of fMet-tRNAf
Met 162.  

Elongation is targeted by a higher number of antibiotics. The peptidyl transferase centre is the target 

of many of them. Chloramphenicol binds to domain V of the 23S rRNA and blocks the binding of A-

site tRNA163–165. The binding site of Lincosamides partly overlaps with chloramphenicol´s but they 

bind to the A- and P-site166. They therefore disturb the correct positioning of the A- and P-site tRNA. 

They also block a part of the exit tunnel preventing the growth of the nascent chain167. Macrolides 

bind at the entrance of the exit tunnel166. The first proposed mechanism suggested that this class of 

antibiotics blocks the tunnel independently of the sequence of the nascent chain167 but later studies 

identified discrete stalling and bypass sequences168.  Pactamycin interacts with the E-site of the 30S 

subunit. It displaces the mRNA preventing the interaction of E-site tRNA with the corresponding 

mRNA169. Aminoglycosides bind to bases in the A-site that work together with A1492 and 1493 for 

precise codon-anticodon selection170,171. As a consequence, wrong amino acids get incorporated into 

the nascent chain. Aminoglycosides are bactericidal, even at low concentrations, the incorporation of 

membrane proteins containing wrong amino acids is seen as the reason for the bactericidal action146. 

Oxazolidinones bind to the A-site overlapping with the binding site with A-site tRNA172. Hygromycin A 

and A201A allow the binding of the ternary complex of aa-tRNA-EF-Tu-GTP but prevent complete 

accommodation of the tRNA into the A-site173. Pleuromutilins interact with domain V of the 23S rRNA 

inhibiting the correct binding of the tRNA into the P-site174,175. Streptogramins consist of mixtures of 

type A and type B compounds which act synergistically176. Type A streptogramins block tRNA binding 

to the A-site177. Their presence induces a conformational change of the ribosome increasing the 

affinity for type B streptogramins drastically. The binding of type B streptogramin causes incorrect 

positioning of the P-site tRNA stimulating its dissociation178. Viomycin binds the ribosome only after a 

tRNA has been accommodated into the A-site, it binds between helix 69 of the 23S rRNA and helix 44 

of the 16S rRNA179 blocking the translocation process catalyzed by EF-G forcing the ribosome to stay 

in a pre-translocational state180. Blasticidin S binds to the P-site of the ribosome inducing a 

conformation of the P-site tRNA that inhibits peptide release via release factor RF1 and peptidyl 

transfer during elongation181. 

Other translation inhibitors do not bind directly to the ribosome but block protein synthesis by the 

inhibition of other translation factors. Fusidic acid binds to EF-G on the ribosome after GTP 
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1.3.2 Antibiotics targeting tetrahydrofolate synthesis 

Tetrahydrofolate is an important cofactor for multiple biochemical pathways including the produc-

tion of nucleotides and amino acids. Its synthesis is a multi-step process requiring multiple en-

zymes194. Two classes of antibiotics target this reaction cascade195. Sulfonamides inhibit the conden-

sation of p-aminobenzoic acid (pABA) with 7,8-dihydropterin-pyrophosphate to form 7,8-

dihydropteroate by acting as a substrate analog of the enzyme dihydropteroate synthetase196,197. 

Trimethoprim on the other hand targets the reduction of dihydrofolate to tetrahydrofolate198 cata-

lyzed by the enzyme dihydrofolate reductase198.  

 

1.3.3 Antibiotics targeting transcription 

Transcription of mRNA is targeted by various natural occurring antimicrobial compounds199. But only 

two classes made it into clinical use so far. Rifamycines, like Rifampicin, bind to the ß subunit of DNA-

dependent RNA polymerase blocking the tunnel of the nascent RNA chain200,201. Fidaxomicin (also 

named Lipiarmycin) binds to the sigma(70) subunit and the ß subunit of DNA-dependent RNA poly-

merase disturbing the incorporation of the DNA into the polymerase202,203. 

 

1.3.4 Antibiotics targeting bacterial topoisomerases 

Topoisomerases are enzymes that relax torsional tensions that appear during replication and tran-

scription in the DNA double helix204. Two classes of antibiotics target this essential process. Coumarin 

drugs such as novobiocin target bacterial DNA gyrase. They block the ATPase activity of the enzyme 

by stabilizing the gyrase in a conformation with low affinity to ATP205,206. Quinolones target bacteria 

gyrase or topoisomerase IV, depending on the applied quinolone and the target bacterium, either 

the first or the latter is targeted. Quinolone binding converts the enzymes into toxic enzymes that 

fragment the bacterial chromosome, therefore quinolones should be termed topoisomerase toxins 

rather than inhibitors which would block the reaction of the enzymes instead207,208. 

 

1.4 The bacterial cell envelope as a target of antibiotics 

The bacterial cell envelope is the permeability barrier separating the inside of the cell from its envi-

ronment209. However it is not only a physical border. Many important biochemical processes take 

place at or through the cell membrane. The synthesis of ATP is driven by a proton gradient between 

the cytosol and the periplasmatic space210. Import and export of nutrients and other substances is 

highly regulated through pores and active transporters. Therefore, the cell membrane(s) or the syn-

thesis of cell-wall components are attractive targets for antibiotics. The composition of the cell enve-



 

 
14 

 

lope of Gram-positive and Gram-negative bacteria differs drastically211. Gram-positive bacteria pos-

sess one cell membrane that is coated with a thick cell wall with teichoic acids spanning through its 

network. In contrast, Gram-negative bacteria possess two cell membranes with a thin cell wall be-

tween them. The outer membrane is further coated with a layer of lipopolysaccharides. The bacterial 

cell wall is composed of a network of peptidoglycan (murein) polymers to stabilize the shape of the 

cell against the intracellular pressure. In a peptidoglycan-monomer, one N-acetylglucosamin forms a 

ß(1->4) glycosidic bond with one N-acetylmuramic acid. An amino acid chain is bound to the N-

acetylmuramic acid which is used by transpeptidases  (penicillin binding proteins) to crosslink single 

peptidoglycan chains to a three-dimensional network212. Depending on the bacteria, the amino acid 

chain is composed of four or five residues. In E. coli, its composition is L-alanine; D-glutamine; meso-

diaminopimelic acid; D-alanine; D-alanine213. The terminal D-alanine is removed in most chains of 

E. coli whereas other bacteria keep the fifth amino acid214. In most species, D-Ala of position four 

covalently binds with its carboxyl group to the amino group of the opposing chain, either directly or 

using a small peptide as a bridge. However, variations in peptide composition, length and binding 

mode exist in some bacteria213. 

 

1.4.1 Antibiotics targeting cell wall synthesis 

Cycloserine acts as a substrate analog of alanine and inhibits two enzymes:  alanine racemase and D-

alanine:D-alanine ligase215,216. Fosfomycin blocks the enzyme MurA which is involved in the synthesis 

of N-acetylglucosamin217. ß-lactam antibiotics like penicillins, cephalosporines and carbapenemes 

prevent the cross-linking of peptidoglycan chains by acting as substrate analogs of acyl-D-alanyl-D-

alanine blocking the binding site of acyl-D-alanyl-D-alanine on transpeptidases218–220. Glycopeptides 

like Vancomycin or teicoplanin directly bind to the acyl-D-alanyl-D-alanine groups of peptidoglycan 

making them inaccessible for crosslinking221,222. The cyclic polypeptide antibiotic bacitracin inhibits 

the dephosphorylation of bactoprenol pyrophosphate (C55-isoprenyl pyrophosphate)223,224. Bactopre-

nol pyrophosphate transports N-acetyl-glucosamine-N-acetylmuramic-acid monomers across the 

inner cell membrane of bacteria. Dephosphorylation is required for the reuse of the transporter225.  

 

1.4.2 Antibiotics targeting bacterial membranes 

Polymyxin B and E are cationic peptide antibiotics which integrate into both membranes of Gram-

negative bacteria226, their main target is the lipid A component of the lipopolysaccaride permeabiliz-

ing the outer membrane227,228, but polymyxins also form pores in the inner membrane at higher con-

centrations229. Lantibiotics are peptide antibiotics containing lanthionine- and methyllanthionine-
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site256,257 or by conformational changes of the target protein that allows it to fulfil its purpose in the 

presence of the antibiotic258. If the antibiotic targets a specific molecule, bacteria can overcome its 

activity by overproduction of the target out-numbering the drug259,260. If the antibiotic targets an 

enzyme, bacteria which are able to use an alternative enzyme for the same reaction can live in the 

presence of the drug261,262. Another possibility for bacteria to escape antibiotic treatment lies in the 

modification of the drug target263. In case of protein binding antibiotics, changes in the amino acid 

sequence can confer resistance264,265. To overcome antibiotics that bind to the ribosomal RNA, 

bacteria can change the rRNA sequence266,267 or modify the rRNA by methylation268,269 or other 

modifications270. At the same time, the lack of modifications which are present in wild-type 

ribosomes can also cause antibiotic resistance271,272. Some antibiotics directly target essential 

elements of the bacterial membranes rather than the enzymes producing them. Chemical 

modifications of the components can confer resistance273,274. Some antibiotics are administered as a 

pro-drug that has to be modified by cellular enzymes275, loss of function mutations in the enzyme can 

lead to resistant bacteria276. Some bacteria developed specialized enzymes that modify the chemical 

structure of the antibiotics instead of the antibiotic targets to prevent the correct interaction of the 

drug with its binding site202,277,278.  Other enzymes destroy antibiotics inside or outside of the 

bacterial cell before they can reach their targets10,279,280.  

 

1.5.1 Strategies to overcome antibiotic resistance 

The most obvious way to treat an antibiotic resistant pathogen is the selection of alternative antibi-

otics that the pathogen cannot handle. If that is not possible, changes in the chemical structure of 

antibiotics can make them overcome resistance mechanisms281–283, however the alterations must not 

decrease its efficiency or add side-effects. In case of intracellular pathogens which are hardly reach-

able for antibiotics, the addition of helper molecules can be used to shuttle the antibiotics into the 

infected cell284 or into bacterial cells which became resistant through a reduction of antibiotic up-

take. Formation of biofilms can be overcome through the addition of anti-quorum sens-

ing285,286/biofilm dispersal agents287. If bacteria use an alternative enzyme to catalyze the reaction 

that is blocked by the antibiotic, another inhibitor for the alternative enzyme could restore the sus-

ceptibility of the pathogen. Resistance conferred by additional factors like efflux pumps, protection 

factors or drug- or target modifying enzymes can be countered by addition of inhibitors for these 

factors36,288,289. Resistance through inactivation of pro-drug maturation might be countered by activa-

tion of an alternative maturation pathway290.   
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1.6 Tetracycline antibiotics represent an important class of translation inhibitors 

The first tetracycline antibiotic was discovered as a natural product of Streptomyces aureofaciens and 

was named aureomycin but it is now designated as chlorotetracycline291. Other isoforms including 

oxytetracycline and tetracycline were discovered soon after281.  

 

Figure 6: Chemical structures of tetracycline antibiotics281,292. Position 11a, that is targeted by the TetX 

monooxygenase280 is marked with a green arrow. 

The semi synthetic derivatives doxycycline and minocycline with improved antimicrobial activity 

were developed on the basis of the natural products293. The 9-t-butylglycylamido derivative of 

minocycline has been shown to overcome most resistance mechanisms against tetracyclines294 and is 

marketed as Tigacyl® as the first third generation tetracycline295. More third generation tetracyclines 

are in development at the moment. Omadacycline and eravacycline have already completed phase III 

clinical studies296–299. From the beginning on, tetracyclines were used as broad spectrum antibiotics 

with activity against both Gram-positive and Gram-negative pathogens300. With a marked share of 

1.6 billion dollars in 2009, tetracyclines belong to the most important classes of antimicrobial drug 

for human and animal medicine58. Oral application is possible due to their good solubility in water301. 

Tetracyclines exist in two forms: in a polar environment (i.e. water) the zwitterionic form dominates 

explaining its good solubility in water; in order to pass the unpolar cell membrane, tetracyclines 

adopt the non-ionized free base form302. Tetracyclines are bacteriostatic antibiotics inhibiting the 

synthesis of proteins by binding to the small ribosomal subunit. The drugs D ring forms stacking 

interactions with base C1054 of helix 34 of the 16S rRNA. Hydrogen bonds are formed with A965 and 

G966 of helix 31; C1195 and U1196 of helix34. A magnesium ion is further complexed by G1197 and 

G1198 of helix 34 forming a salt bridge to rings C and B of tetracycline169,303. Binding of tetracycline 

competes with binding of amino-acyl-tRNA to the ribosomal A-site preventing the accommodation of 

amino-acyl tRNAs into the A-site304,305. Due to the long use of tetracyclines, numerous resistance 
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mechanisms have been developed. Specific efflux pumps like the proton antiporter TetA transport 

the drug from the cytosol to the periplasm306 but not through the outer membrane307. In a study 

analyzing avian E. coli, TetA was by far the most prevalent tetracycline resistance gene308. But 

unspecific multidrug resistance efflux pumps are also able to confer high level resistance against this 

class of antimicrobial255. Further, ribosome protection proteins have developed removing the drug 

from its ribosomal binding site309. Monooxigenases like TetX specifically attack carbon atom C11a 

(see Figure 6) of all known tetracyclines310. Mutations in the ribosomal binding site of tetracyclines 

are rare but have been found to confer resistance in Propionibacterium acnes
311 and Helicobacter 

pylori
312,313. Tetracyclines are also used for treatment314 and prophylaxis315 against the malaria germ 

Plasmodium falciparum where they target mitochondrial ribosomes316 and Plasmodium´s 

dihydroorate dehydrogenase, an enzyme involved in the synthesis of pyrimidine317. Atypical 

tetracyclines like chelocardin represent another branch of the tetracycline family318. Chelocardin is 

produced by Nocardia sulphurea but its primary target is not the ribosome. It does interfere with 

protein synthesis but it mainly targets the bacterial membrane resulting in membrane depolarization 

but not in the formation of pores319,320. Only the lipophilic but not the zwitterionic conformation of 

chelocardin has been reported, which offers an explanation for its accumulation in the cell 

membrane and its mode of action319,321. Beside general side effects observed for most orally uptaken 

antibiotics, tetracyclines are phototoxic322,323, under influence of visible light, the drugs are converted 

into toxic photoproducts. 

 

1.7 The antibiotic thermorubin has a similar chemical structure than tetracyclines but uses a 

different mechanism 

Thermorubin has been identified as a product of Thermoactinomyces antibioticus
324 . It is an orange-

red product crystallizing in fine radiating needles soluble in dioxane, pyridine, tetrahydrofuran, 

dimethylformamide and dimethylsulfoxide but hardly in methanol, ethanol and acetone and 

insoluble in water. Thermorubin is highly active against Gram-positive bacteria, less active against 

Gram-negative bacteria and almost inactive against yeast and filamentous fungi324. It showed low 

toxicity with an LD50 of 300 mg/kg in mice by intraperitoneal injection325. The chemical structure was 

determined using X-ray diffraction (see Figure 7)326. Thermorubin selectively inhibits translation with 

little effect on DNA replication and no effect on transcription327,328. The drug has been shown to 

interact with both subunits of the ribosome329. With dissociation constants of 1.9x10-6 and 1.4x10-6 

for the 30S and 50S subunit respectively. But it binds the mature 70S ribosome far more efficiently 
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with a dissociation constant of 1.9x10-8. Ultracentrifuge studies clearly showed a 1:1 ratio of 

thermorubin and ribosomes indicating a single binding site. 

 

Figure 7: Chemical structure of thermorubin326. The core of the antibiotic is composed of four rings like 

tetracyclines (see Figure 6) but the aromatic ring system is totally planar, unlike tetracyclines which have a kink in 

the ring system. 

Thermorubin inhibits the binding of initiator tRNA only in the presence of initiation factors and only 

on 70S particles, it does not interfere with the formation of 30S-fMet-tRNAf
Met complexes or the 

joining of the subunits328. Besides of its antimicrobial potency, thermorubin has also been shown to 

be an inhibitor of aldose reductase330, an enzyme playing an important role in complications of 

diabetic patients331. A co-crystal structure of thermorubin bound to the ribosome of Thermus 

thermophilus uncovered its mode of action332. The drug binds helix 69 of the 23S rRNA and helix 44 of 

the 16S rRNA in the area of inter-subunit bridge B2a. It stacks against the residues C1409 and G1491 

of helix 44 and A1913 and U1915 of helix 69. Furthermore, bases C1409 and A1913 of the 16S rRNA 

appear to form hydrogen bonds to the drug and two cations coordinate thermorubin with the 

ribosomal RNA. Binding of the drug changes the position of A1913 and C1914, whereas A1913 is 

pulled towards the thermorubin binding site to stack against the aromatic core of the drug, C1914 is 

pushed away from its normal position stacking with U1915, instead it is rotated out of helix 69 and 

pushed into a position normally occupied by the A-site tRNA.  

 

1.8 Peptide antibiotics could serve as an alternative for traditional antimicrobial drugs 

Due to the increasing number of pathogens containing antibiotic resistance phenotypes, new 

antimicrobial drugs are needed. Peptide antibiotics have been discovered decades ago as natural 

products of bacteria, animals and plants but only few are in clinical use. Therefore, a lot of potential 

lies in this field of research. 
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1.8.1 Thiopeptides are antimicrobial peptides made of highly modified amino acids 

Thiopeptides are natural products of various bacteria, the first member of this class of antibiotics, 

thiostrepton, has been isolated from Streptomyces azureus 
333–335. It is highly active against Gram-

positive bacteria including MRSA336. Besides their antimicrobial mode of action, thiopeptides have 

also been found to have signalling functions inducing biofilm formation337. Thiopeptides are 

characterized by a central six-folded ring containing a nitrogen which is part of a macrocycle of 

different sizes with numerous highly modified amino acids (see Figure 8)336,338. Therefore, a precursor 

peptide has to be produced by the ribosome which is modified posttranslationally by enzymes339,340. 

 

Figure 8: Chemical structures of A) amythiamicin D341 and B) thiostrepton334.  

Thiopeptides inhibit translation but two different modes of action have been found. Thiopeptides like 

amythiamicin or GE2270 A inhibit the formation of the ternary complex EF-Tu-GTP-aa-tRNA342,343. The 

structure of GE2270 A bound to E. coli EF-Tu shows that the antibiotic binds to the second domain of 

EF-Tu-GDP contacting residues 215-230; 256-264 and 273-277. The binding site of the antibiotic 

overlaps with the binding sites of the guanine in the GTP but not in the GDP conformation and with 

the aminoacyl-tRNA binding site on EF-Tu344. On the other hand, other thiopeptides like thiostrepton 

inhibit translation by direct binding to the ribosomal large subunit. Thiostrepton interacts with 

helices 43 and 44 of the 23S rRNA and ribosomal protein L11345. Its presence prevent GTP hydrolysis 

of EF-G that is necessary for translocation346.  

 

1.8.2 Antimicrobial peptides are part of the innate immune system of animals 

The innate immune system is the first line of defense against pathogens that managed to invade 

a host after penetrating physical barriers like skin or bark. Antimicrobial peptides (AMPs) represent 
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an important part of the innate immune system in plants, vertebrate and invertebrate animals347. 

Several classes of AMPs have been identified including anionic peptides and cationic peptides, they 

can be linear or form α-helices, in many cases the active antimicrobial peptide is a fragment of a 

larger precursor protein348. Most AMPs kill bacteria by integrating into the membrane forming pores 

but some also possess intracellular targets.  

Cathelicidins are an important class of small, cationic peptides found in many species349. They are 

constructed of an N-terminal cathelin domain of about 100 amino acids and the C-terminal active 

peptide350. The sequences of the active peptides are very variable including proline/arginine rich 

peptides, helical peptides and disulfide-linked peptides. Cathelicidins are expressed as pre-pro-

peptides351. The pre-region serves as signal sequence guiding the cathelicidin to a granule where the 

pre-region is cleaved of and the cathelicidin is stored as an inactive pro-peptide. After contact with a 

pathogen, the pro-region is cleaved by a protease to release the active mature peptide only when it 

is needed. In humans, one member of this class has been identified. The full length 19 kDa protein 

hCAP-18 was found in granules of neutrophil352. It is encoded by a 1963 bp gene containing four 

exons. The first three coding for a signal sequence and the cathelin region and the fourth coding for 

the mature peptide of 37 amino acids in length353. As this peptide starts with two leucines, it was 

named LL-37354. Like most cathelicidins, LL-37 kills bacteria by permeabilizing the outer and inner cell 

membrane of bacteria355. But another group of cathelicidins, the family of proline-rich antimicrobial 

peptides (PrAMPs) must have a different mechanism of action since PrAMPs have been reported to 

inhibit the growth of bacteria at concentrations far lower than necessary for lysis356–358. Although 

PrAMPs share a similar cathelin domain with pore forming AMPs, their active C-terminal peptide is 

totally different containing a high percentage of proline and arginine residues (see Figure 9).  

 

Figure 9: Amino acid alignment of bovine cathelicidin Bac7 and human cathelicidin hCAP18. The pre-signal 

sequence is marked in green, the pro-cathelin sequence is marked in blue, the active antimicrobial peptide 

sequence is marked in orange. Pre- and pro- sequences are very similar although the active antimicrobial peptide 

fragments are totally different in sequence and length. 

Bac7      1 METQRASLSLGRWSLWLLLLGLVLPSA-SAQALSYREAVLRAVDRINERSSEANLYRLLE 
hCAP18    1 MKTQRDGHSLGRWSLVLLLLGLVMPLAIIAQVLSYKEAVLRAIDGINQRSSDANLYRLLD 
 
 
Bac7     60 LDPPPKDVEDRGARKPTSFTVKETVCPRTSPQPPEQCDFKENGLVKQCVGTITLDQSDDL 
hCAP18   61 LDPRPTMDGDPDTPKPVSFTVKETVCPRTTQQSPEDCDFKKDGLVKRCMGTVTLNQARGS 
 
 
Bac7    120 FDLNCNELQSVRRIRPRPPRLPRPRPRPLPFPRPGPRPIPRPLPFPRPGPRPIPRPLPFP 
hCAP18  121 FDISCDKDNKRFALLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES---------- 
 
 
Bac7    180 RPGPRPIPRPL 
hCAP18      ----------- 

pre-signal domain pro-cathelin domain

Active antimicrobial peptide
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PrAMPs were identified in numerous mammalians including cow (Bac5, Bac7); pig (PR-39, prophenin, 

PRP-SP-B); sheep (Bac5, Bac6, Bac7, Bac11); goat (Bac3.4, Bac5, Bac7) and buffalo (Bac7)359. Insects 

also produce PrAMPs although non-vertebrate PrAMPs do not contain a cathelin-like domain at their 

N-terminus. Analysis of the genes for insect PrAMPs showed that the genes contain a single pre-pro 

region followed by multiple copies of the PrAMP which are separated by conserved linker    

regions360–362. In some species multiple genes have been found coding for different isoforms of the 

PrAMP.  The first insect PrAMPs has been identified in the European honey bee Apis mellifera and 

named apidaecin363. Similar peptides have been isolated from numerous other insects like the fire 

bug Pyrrhocoris apterus (pyrrhocoricin)364; the green shield bug Palomena prasina (metalnikowins)360; 

the milkweed bug Oncopeltus fasciatus (oncocin)365; the bean bug Riptortus pedestris (riptocin); and 

the fruit fly Drosophila melanogaster (drosocin)366.  

A) Bac7     RRIRPRPPRLPRPR------PRPLPFPRPGPRPIPRPLPFPRPGPRPIPRPLPFPRPGPR 
   Bac11    RRLRPRRPRLPRPRPRPRPRPRSLPLPRPKPRPIPRPLPLPRPRPKPIPRPLPLPRPRPR 
   PR-39    -RRRPRPPYLPRPR------PPPFFPPRLPPRIPP-G--FPPR----F--PPRFP----- 
 
 
   Bac7     PIPRPL---------------------------- 
   Bac11    RIPRPLPLPRPRPRPIPRPLPLPQPQPSPIPRPL 
   PR-39    ---------------------------------- 

                             
B) Metalnikowin_I     VDKPDYRPRPRPPNM----- 
   Onc112             VDKPPYLPRPRPPRRIYNR- 
   Pyrrhocoricin      VDKGSYLPRPTPPRPIYNRN 

 
C) Api1A            GNNRPVYIPQPRPPHPRI 
   Api1AL           GNNRPVYIPQPRPPHPRL 
   Api88         gu-ONNRPVYIPRPRPPHPRL-NH2 
   Api137        gu-ONNRPVYIPRPRPPHPRL-OH 

 
D) Abaecin            YVPLPNVPQPGRRPFPTFPGQGPFNPKIKWPQGY 
   Drosocin           GKPRPYSPRPTSHPRPIRV 
   Metchnikowin       HRHQGPIFDTRPSPFNPNQPRPGPIY 
   Penaeidin I(1-31)  YRGGYTGPIPRPPPIGRPPLRLVVCACYRLS 

 

Figure 10: Amino acid alignment of AMPs used in this thesis. A) Mammalian PrAMPs align well to each other but 

differ in lenght. B) The insect derived PrAMPs metalnikowin I; Onc112 and pyrrhocoricin are almost identical. C) 

Natural occurring apidaecins Api1A and Api1AL only differ by their C-terminal amino acid whereas semi-synthetic 

derivatives Api88 and Api137 contain a modified C- and a modified N-terminus; gu: N, N, 

N´,N´tetramethylguanidino; O: L-ornithine D) The other arthropod AMPs have a different amino acid composition. 

Drosocin´s O-glycosylated threonine 11 is marked in green. 

In the genome of Drosophila melanogaster, the pro-region of pre-pro-drosocin lies behind the 

mature peptide, it has further to be O-glycosylated on threonine 11 to gain its activity366. Penaeidins 

found in the hemolymph of the shrimp Penaeus vannamei contain a proline-rich N-terminal region 

and a cysteine-rich C-terminal region367.  

As PrAMPs target an intracellular process, they have to cross the bacterial membrane. The inner 

membrane protein SbmA has been identified to be the major transporter for the PrAMP Bac7 in 
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E. coli 

368. Mutations in SbmA or knock-out of this gene produced strains with strongly reduced 

susceptibility for PrAMPs369 but the uptake of the peptides was not fully stopped. The inner 

membrane protein MdtM was identified to be an alternative importer for PrAMPs252. Once inside the 

cell, PrAMPs were first reported to inhibit the chaperone DnaK370. However the finding, that a dnaK 

knockout strain is as susceptible as wild type ones questions this mechanism of action371. In parallel, 

the process of translation was found to be a target for PrAMPs.  

Besides mammals and insects, amphibians have been shown to posses numerous antimicrobial 

peptides. Magainins belong to the best-studied members of amphibious AMPs. They have been 

shown to be active against bacteria and fungi372 and protozoa by accumulating in the cell membrane 

creating pores373,374. On the other hand magainin 2 hardly target eukaryotic cell membranes. 

Differences in the composition of the membranes like the presence of cholesterol, the lack of trans-

membrane potential and the absence of acidic phospholipids in the eukaryotic membrane were 

reported to be the reason for magainins selectivity375. Numerous magainin derivatives were 

produced and tested for their antibacterial potential. Pexiganan (MSI-78) turned out to be one of the 

most promising candidate containing high activity against both Gram-positive and Gram-negative 

bacteria376,377.  

The use of antimicrobial peptides as an alternative to traditional antibiotics has been considered 

since many years but further research is required to characterize their mode of action and their 

clinical potential.  
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Cumulative thesis: summary of published 
results 
 

Paper 1: Amythiamicin D and related thiopeptides as inhibitors of the bacte-

rial elongation factor EF-Tu: Modification of the amino acid at carbon atom C2 

of ring C dramatically influences activity 

 

Stefan Gross, Fabian Nguyen, Matthias Bierschenk, Daniel Sohmen, Thomas Menzel, Iris Antes, Daniel 

N. Wilson and Thorsten Bach 

ChemMedChem 2013; 8(12):1954-1962 

Amythiamicins belong to the class of thiopeptide antibiotics and have been isolated from 

Amycolatopsis sp. MI481-42F4378. They show significant structural similarities with GE2270 A, an 

antibiotic that has been shown to inhibit translation by binding to elongation factor Tu, preventing 

the formation of the ternary complex342. Amythiamicin D and three semi-synthetic derivatives were 

synthesized and tested for their antimicrobial activity. De novo synthesis of amythiamicin D and the 

three derivatives 3a, 3b and 3c was based on the synthesis strategy for the structurally related 

thiopeptide GE2270 A379, with 2,6-dibromo-3-iodopyridine as basis. Derivative 3a contains a 

hydroxylmethyl group in (S)-configuration similar to the α-hydroxybenzyl group of GE2270 A at 

carbon atom C2 of ring C; derivative 3b contains the same hydroxylmethyl group of 3a in                  

(R)-configuration. Derivative 3c carries a benzyloxymethyl group instead of the hydroxylmethyl group 

in (S)-configuration at carbon atom C2 of ring C. Derivative 3a was able to inhibit the growth of 

Gram-positive but not of Gram-negative bacteria which has already been shown for parental 

amythiamicins378, whereas derivatives 3b and 3c were not able to inhibit bacterial growth. To 

determine whether the lack of activity against Gram-negative bacteria is caused by inefficient uptake 

of amythiamicin into the cells, an in vitro translation system was created on the basis of an S12 

extract from E. coli BL21 DE3 cells380. Amythiamicin D and derivative 3a inhibited the expression of 

the reporter protein Firefly luciferase whereas derivatives 3b and 3c were completely inactive at all 

tested concentrations. The high similarity of the chemical structure of amythiamicin D to EF-Tu 

inhibitor GE2270 A suggests a similar mode of action. The in vitro translation system was partly 

blocked by 5 µM of derivative 3a, addition of external EF-Tu completely re-established translation in 

a concentration dependent manner. Further, the EF-Tu mutation G257S has been shown to confer 
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resistance to GE2270 A381. To test the effect of this mutation on amythiamicins, the in vitro 

translation system was completely blocked by 30 µM of derivative 3a. Addition of up to 5.8 µM EF-Tu 

G257S partly re-established translation in a concentration dependent manner. The crystal structure 

of GE2270 A bound to EF-Tu GDPNP identified its binding site to be at the interface of domains I and 

II where the 3´-end of the amino-acyl tRNA would bind188. 1H-NMR spectra and molecular dynamics 

simulations of the amythiamicin derivatives showed a similar conformation in solution for the natural 

amythiamicin D and derivatives 3a and 3c but not for 3b that was found in the crystal structure for 

GE2270 A. Further simulation showed that binding of derivatives 3b and 3c to the GE2270 A binding 

site is not stable explaining the lack of activity of these derivatives in vivo and in vitro.  

Taken together, this study proves the value of de novo synthesis to gain derivatives of naturally 

occurring thiopeptide antibiotics with improved antibacterial activity. The study further shows that 

amythiamicins target EF-Tu in the same way that was reported for GE2270 A. 

 

Paper 2: Tetracycline antibiotics and resistance mechanisms 

 

Fabian Nguyen, Agata L. Starosta, Stefan Arenz, Daniel Sohmen, Alexandra Dönhöfer and Daniel N. 
Wilson 

Biol. Chem. 2014; 395(5): 559-575 

The first members of the tetracycline family of antibiotics, chlorotetracycline and oxytetracycline, 

were discovered in the late 1940´s and early 1950´s as natural products of Streptomyces spp.291, their 

chemical structure was identified a few years later382–384. Tetracyclines are composed of a 

naphtacene core with four rings termed DCBA, containing various side groups. Semi-synthetic 

derivatives have been developed with improved antimicrobial activity and reduced susceptibility for 

resistance mechanisms293,385. Tetracyclines inhibit bacterial translation by binding to the ribosome, 

with the primary binding site being located at the base of the head of the small subunit386. The 

hydrophilic surface of tetracycline interacts with helix 34 of the 16S rRNA by forming hydrogen bonds 

to the phosphate backbone of nucleotides C1054, G1197 and G1198 of helix 34156,169,387,388. A further 

Mg2+ mediated interaction between the phosphate backbone of G966 of helix 31 has been proposed. 

The primary binding site overlaps with the anticodon loop of A-site tRNA inhibiting the 

accommodation of aminoacyl-tRNA into the A-site388–390. Next to innate resistance through inefficient 

uptake or multidrug efflux pumps391, bacteria developed four specific resistance mechanisms against 

tetracyclines. Tetracycline-specific efflux pumps are present in Gram-negative and Gram-positive 

bacteria392, most of them belong to the class of proton antiporters like TetA306,307,393.  These efflux 
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pumps are very effective against naturally occurring tetracyclines but are less successful in conferring 

resistance against semi-synthetic derivatives394,395. Another common resistance mechanism is factor-

assisted protection. EF-G homologs, called ribosome protection proteins remove the drug from the 

ribosome using GTP hydrolysis as energy source256,309,396,397. Loop III of domain IV of the ribosome 

protection protein directly overlaps with the drug-binding site removing the drug from the 

ribosome256,257. Mutations in the tetracycline-binding site represent another way for bacteria to 

become resistant to this class of antibiotics. The resistance mutation G1058C inside of helix 34 of the 

16S rRNA has been found in clinical isolates of Propionibacterium acnes
311. In addition, the triple 

mutation A965U/G966U/A967C has been shown to confer resistance to tetracyclines in Helicobacter 

pylori isolates398,399. The fourth mechanism to confer tetracycline resistance is the modification of the 

drug by the enzymes TetX or Tet37310,400. These monooxygenases consume NADPH and O2 to 

hydroxylate position C11a inside the naphtacene core resulting in further disintegration of the 

drug280,401. Third generation tetracyclines overcome resistance conferred by most efflux pumps and 

all ribosome protection proteins but pathogens mutating their rRNA or expressing the TetX 

monooxygenase are still able to grow in the presence of the latest tetracyclines.  

In perspective, tetracyclines will still be one of the most important classes of antibiotics in the future, 

with new derivatives in development and clinical trials. 

 

Paper 3: Cryo-EM structure of the tetracycline resistance protein TetM in 

complex with a translating ribosome at 3.9 Å resolution 

 

Stefan Arenz, Fabian Nguyen, Roland Beckmann and Daniel N. Wilson 

Proc Natl Acad Sci USA. 2015; 112(17): 5401-5406 

Ribosome protection proteins (RPPs) are a common resistance determinant against tetracycline 

antibiotics. 12 different classes have been identified in different bacteria with TetO of Campylobacter 

jejuni and TetM of Enterococcus faecalis being the best characterized RPPs256,257,309,396,396. They share 

a high sequence homology to each other (approximately 85% sequence similarity) and to elongation 

factor G (approximately 35% sequence similarity256,257). A cryo-EM structure with an average 

resolution of 3.9 Å of TetM-GDPCP bound to the E. coli ribosome has been created on the basis of 

ErmCL-stalled ribosomes. Three loops protrude from the remote end of domain IV of TetM. Previous 

publications suggested that tyrosine 506 and tyrosine 507 are the key amino acids of loop III of 

domain IV as their mutation to alanine inactivate RPPs256,257,402. But the higher resolution of the 
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structure of this publication shows that proline 509 at the tip of loop III of TetM stacks against C1054 

of helix 34 of the 16S rRNA, which is part of the primary binding site of tetracycline antibiotics, 

pushing the drug from the ribosome. Instead of directly interacting with the drug, tyrosine 507 links 

loop III with loop I while tyrosine 506 hydrogen bonds with glycine 467 of loop II and with C1051 of 

helix 34 of the 16S rRNA stabilizing the correct conformation of loop III. Another conserved residue of 

all RPPs is phenylalanine 516. The structure shows F516 to be located in the hydrophobic core of 

loop III. E. coli BL21 DE3 cells were transformed with wild-type or mutant versions of TetM. The wild-

type RPP raised the concentration necessary to inhibit the bacterial growth to 50% (MIC50) to 10 

µg/ml compared to 0.6 µg/ml for bacteria without TetM. Mutation F516A created an intermediate 

phenotype with a MIC50 of 3 µg/ml. The mutation of F516 to negatively charged aspartate completely 

inactivated TetM underlining the importance of the hydrophobic character of F516 for the 

conformation of loop III. Tryptophan 442 within loop I further stabilized the conformation of loop III 

by interaction with valine 510. Its mutation to alanine in combination with S508A or P509A 

inactivated TetM while these mutations had little effect by themselves256.  

Taken together, this study provides a more detailed view on the action of ribosome protection 

proteins identifying proline 509 as the residue pushing tetracyclines from their binding sites whereas 

tyrosines 506 and 507 are important to stabilize the conformation of loop III rather than to overlap 

with the drug binding site. 

 

Paper 4: The proline-rich antimicrobial peptide Onc112 inhibits translation by 
blocking and destabilizing the initiation complex 

 

A. Carolin Seefeldt, Fabian Nguyen, Stéphanie Antunes, Natacha Pérébaskine, Michael Graf, Stefan 
Arenz, K. Kishore Inampudi, Céline Douat, Gilles Guichard, Daniel N. Wilson and C. Axel Innis 

Nat Struct Mol Biol. 2015; 22(6):470-5 

Onc112 is a semi-synthetic derivative of naturally occurring proline-rich antimicrobial peptide 

(PrAMP) oncocin, which is part of the immune system of the milkweed bug Oncopeltus 

fasciatus
365,403. The crystal structure of the PrAMP bound to the ribosome of Thermus thermophilus 

has been solved at a resolution of 3.0 Å. Onc112 binds within the ribosomal exit tunnel in a reverse 

orientation compared to a nascent chain, positioning its N-terminal residues near the peptidyl 

transferase centre whereas its C-terminal amino acids extend into the ribosomal exit tunnel. The 10 

N-terminal residues showed numerous interactions with nucleotides of the 23S rRNA. Asp2 of 

Onc112 interacts with G2553 blocking a base pairing that normally occurs between G2553 and C75 of 
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the A-site tRNA. Toe-print analysis showed that Onc112 allows the formation of the 70S initiation 

complex but does not allow the accommodation of the tRNA into the A-site. The structure further 

suggests that the formyl-methionine group of fMet-initiator tRNA would clash with Tyr6 and Leu7 of 

the PrAMP destabilizing the initiation complex. Ribosomes were incubated together with a dicistronic 

mRNA in the presence or absence of Onc112. An analytical sucrose gradient experiment showed a 

smaller increase in disome formation in the presence of Onc112 compared to a control experiment 

without antibiotic, than in the presence of erythromycin or thiostrepton, confirming that the 

formation of initiation complexes were destabilized by Onc112. Truncated versions of the PrAMP 

missing the last seven or nine C-terminal amino acids were produced and tested in vivo for their 

ability to inhibit bacterial growth and in vitro to test their ability to inhibit the translation of the 

reporter protein Firefly luciferase in a translation reaction based on a cell lysate of E. coli. In vivo, 

both derivatives lacking C-terminal residues were inactive at concentrations of up to 160 µM, 

whereas the full length (19mer) Onc112 already inhibited bacterial growth at 25 µM. In the in vitro 

system, 0.8 µM of full-length Onc112 were enough to reduce the translation activity to 50% (IC50) 

whereas 5 µM of the derivative lacking the seven C-terminal amino acids were necessary. The 

derivative lacking the nine C-terminal amino acids showed an IC50 of almost 100 µM. Other proline-

rich antimicrobial peptides have been shown to enter the bacterial cell using the transporter 

SbmA368. To determine whether that is also the case for Onc112, E. coli BW25113 wild-type cells and 

BW25113 cells lacking the gene for SbmA were grown in the presence of different concentrations of 

the PrAMP. The growth of BW25113 wild-type cells was reduced to 10% by 40 µg/ml of Onc112 

whereas the growth of the SbmA knockout strain showed almost no inhibition at 80 µM of Onc112.  

In conclusion, this study identified the binding site of Onc112 and showed that the N-terminal 

residues are responsible for interaction with the ribosome whereas the C-terminal residues are 

important for cellular uptake of this peptide antibiotic. 

 

Paper 5: Structure of the mammalian antimicrobial peptide Bac7(1-16) bound 
within the exit tunnel of a bacterial ribosome 

 

A. Carolin Seefeldt, Michael Graf, Natacha Pérébaskine, Fabian Nguyen, Stefan Arenz, Mario 
Mardirossian, Macro Scocchi, Daniel N. Wilson and C. Axel Innis 

Nucleic Acids Res. 2016 44(5):2429-38 

Bactenecin-7 (Bac7) is a proline-rich antimicrobial peptide which is part of the innate immune system 

of Bos taurus
404. The crystal structure of a shortened Bac7 fragment containing its 16 N-terminal  
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residues, Bac7(1-16), bound to the ribosome of Thermus thermophilus was solved. Insect derived 

PrAMPs metalnikowin I and pyrrhocoricin were also co-crystallized with Thermus thermophilus 

ribosomes. Bac7, metalnikowin I and pyrrhocoricin bind in the ribosomal exit tunnel in an inverted 

orientation compared to nascent chains with the N-terminus pointing towards the peptidyl 

transferase centre and the C-terminus protruding into the tunnel. Bac7´s N-terminal amino acids 

formed hydrogen bonds and stacking interactions with 23S rRNA nucleotides. Arg6 of Bac7 is 

clamped between Arg2 and Arg4 creating a positively charged block removing two Mg2+ ions from a 

groove formed by 23S rRNA bases anchoring the peptide to the ribosome. A competition assay in 

which 14C-labelled erythromycin was bound to ribosomes showed that the first five N-terminal amino 

acids of Bac7 are vital to push the macrolide away from the ribosome. To further characterize the 

effect of truncations of Bac7, Bac7 fragments containing residues 1-16; 1-35 and 5-35 were titrated 

into an in vitro translation system based on an E. coli cell extract. Production of the reporter protein 

Firefly luciferase was reduced to 50% by Bac7 (1-16) and Bac7 (1-35) at a concentration of 1 µM 

whereas Bac7 (5-35) showed an IC50 of 10 µM. Bac7 (1-35) also inhibited translation in an eukaryotic 

in vitro system on the basis of a rabbit reticulocyte cell extract. But the IC50 of 2.5 µM was about 

2.5 fold higher than compared to the bacterial system. The mechanism of translation inhibition was 

further analyzed performing toe-print analysis. It showed, that Bac7 (1-16) and Bac7 (1-35) allow the 

formation of the 70S initiation complex but block elongation; partly at 1 µM and completely at 

10 µM; Bac7 (5-35) on the other hand was only able to block the progression of translation at 

100 µM.  

Taken together, this study identified the binding mode of Bac7(1-16), it illustrated the importance of 

the N-terminal four residues, showed the higher susceptibility of bacterial compared to eukaryotic 

ribosomes to the drug and the mechanism of action of this peptide antibiotic. 

 

Paper 6: Proline-rich antimicrobial peptides targeting protein synthesis 

 

Michael Graf, Mario Mardirossian, Fabian Nguyen, A. Carolin Seefeldt, Gilles Guichard, Marco 
Scocchi, C. Axel Innis and Daniel N. Wilson 

Nat Prod Rep. 2017 34(7):702-711 

The first PrAMP, apidaecin, was discovered in the honey bee Apis mellifera in 1980363. Proline-rich 

antimicrobial peptides have since been found to be parts of the innate immune system of numerous 

insects and mammals364,365,405–409. In insects, the genes for PrAMPs contain multiple copies of the 

peptides linked by inactivating spacer sequences361,362. In some cases, different isoforms of the 
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mature PrAMPs are present in one species360,361. In mammals, PrAMPs are synthesized as inactive 

pre-pro-peptide precursors by immature myeloid cells410. Bos Taurus produces two PrAMPs, Bac5 

and Bac7, both of which contain a 29 amino acids (aa) pre-signal sequence that target the peptide 

precursor into large granules of neutrophils where the pre-signal sequence is cleaved off. The 101 aa 

pro-sequence is not removed until pathogens are recognized. After recognition of a pathogen, the 

granules can then either release the pro-peptides to the outside of the cell or fuse with phagosomes 

that have internalized a pathogen411. The serine protease elastase cleaves the pro-sequence from the 

pro-peptide to mature it into the active PrAMP412. PrAMPs, unlike other antimicrobial peptides, do 

not primarily target the bacterial membrane but have to be internalized to reach their intracellular 

target356,356. The inner membrane protein SbmA has been shown to be the most important factor for 

the uptake of PrAMPs368, its deletion results in a phenotype with high resistance against these 

peptides. However another inner membrane protein, MdtM, is also able to import PrAMPs252. The 

Hsp70 family chaperone DnaK was originally proposed to be the binding partner for PrAMPs370. But 

further studies have shown that a DnaK knockout strain is as susceptible to the PrAMPs as the 

parental strain containing the chaperone. Instead, the ribosome has been identified to be the 

primary target for PrAMPs as ribosomal protein L10 was found to co-precipitate with biotin labelled 

apidaecin derivative Api88413. Structures of PrAMPs bound to bacterial ribosomes show that the 

peptides bind in the ribosomal exit tunnel with reversed orientation compared to nascent      

chains414–416. Multiple hydrogen bonds and stacking interactions are formed by the backbone and by 

side-chains of the PrAMPs with the 23S rRNA. Further, PrAMPs reach into the binding site of the       

A-site tRNA. The binding of PrAMPs does not prevent the association of amino-acyl tRNA to the        

A-site but rather inhibit correct accommodation.  

In perspective, proline-rich antimicrobial peptides offer a promising alternative to common 

antibiotics. The understanding of the mechanism of action of PrAMPs offers the opportunity to 

develop derivatives with increased stability and antimicrobial activity. 

  





 

 
33 

 

The mutants containing tyrosine to phenylalanine and the Y507R mutation were less efficient than 

wild-type TetM but still conferred significant resistant. On the other hand the TetM mutant 

containing the Y506V or the Y506V/Y507R mutations were not able to grow in higher concentrations 

of tetracycline than the negative control E. coli BL21 DE3 without TetM. Further, OtrA did not confer 

resistance when transformed into E. coli. However the gene coding for OtrA was cloned out of cDNA 

(see Materials and Methods 5.5), its amino acid sequence differed from the originally published 

version (see Appendix A). Its loop III composition is not VRSPV like in the original publication but 

FASPV. 

 

3.2 The G´subdomain is crucial for the GTPase activity of elongation factor G  

During translation elongation, EF-G helps the ribosome to translocate the mRNA by one codon, the 

A-site tRNA to move to the P-site and the P-site bound tRNA to move to the E-site. Release of 

inorganic phosphate after GTP hydrolysis leads to a conformational change that allows EF-G to leave 

the ribosome again99,418.  The binding of EF-G to the ribosome includes the interaction with EF-G´s   

G´ domain with ribosomal proteins L7/L12419. It has been reported that the binding of negatively 

charged amino acids on EF-G with positively charged amino acids on L7/L12 is required for the 

release of inorganic phosphate after the hydrolysis of the GTP bound to EF-G153,183,420. Ribosomal 

protection proteins like TetM are highly homologous to transcription factor EF-G256,421. They also 

contain a G´ domain, which has a similar amino acid composition like the G´ domain of EF-G (see 

Figure 12).  

 

EF-G 181kGVVDLVKMKAINWNDADQGVTFEYEDIPADMVELANEWHQNLIESAAEASEELMEKYLGG 
TetM 163ak-------------------------NVCVTNFTESEQW-----DTVIEGNDDLLEKYMSG                     

Figure 12: Amino acid alignment of parts of the G´domains of TetM and EF-G. Residues in red were reported to 

affect GTPase activity in EF-G and were mutated in TetM419. 

Mutation of the corresponding residues in TetM´s G´ domain were constructed to compare their 

effect on GTPase activity of TetM to the published effects on EF-G. 

 

3.3 Effect of G´ subdomain mutation of TetM on tetracycline resistance  

All G´ domain mutants were created using site directed mutagenesis (see Materials and Methods 5.6) 

of TetM wild-type on the plasmid pET-46 LIC. E. coli BL21 DE3 was transformed with plasmids 
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filtration column (see Materials and Methods 5.9). An SDS (see Materials and Methods 5.10) PAGE 

analysis displayed the purified protein with a calculated size of 72.4 kDa (see Figure 14).                                

d  

Figure 14: SDS-PAGE analysis of TetM purification stained with Coomassie blue. The protein of interest is marked 

with a red star. Gefi: gel filtration. 

The purification procedure was repeated for all TetM G´domain mutants. The gel filtration fractions 

containing pure protein were pooled and concentrated by the use of a centrifugal filter. The 

concentration of the obtained proteins was determined via absorbance measurement (see Materials 

and Methods 5.9 and Table 1).  

Table 1: Concentrations of TetM G´domain mutants after Ni2+-affinity chromatography, gel filtration and 

concentration. 

 Concentration [mg/mL] Concentration [µM] 

TetM wild-type 1.423 19.18 

TetM E187K 0.32  4.312 

TetM D176KE180K 2.57  34.63 

TetM E180KE187K 4.84  65.23 

TetM D176KE180KE187K 3.45  46.49 

 

The proteins were aliquoted and frozen in liquid nitrogen to be stored at -80°C in gel filtration buffer 

(see Buffers and Media 6.2). 
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3.5 Purification of E. coli ribosomes 

E. coli ribosomes were purified from a 1.6 L culture of E. coli BL21 DE3. Cells were grown in LB 

medium to an OD600 of 1.8, lysed and the ribosomes were isolated via multiple centrifugation steps 

(see Materials and Methods 5.11). The 70S peak was isolated after sucrose gradient centrifugation 

(see Figure 15). 

 

Figure 15: Absorption profiles at 254nm of ribosome purifications after gradient centrifugation. Fractions between 

dashed red lines were pelleted and solved in sucrose gradient buffer B (see Buffers and Media 6.3) to be stored at 

-80°C. 

Pelleting of the 70S peak resulted in two pellets which were dissolved in 1000 µL of sucrose gradient 

buffer B each (see Buffers and Media 6.3). Concentration determination measuring OD260 (with 1 

OD260 = 24 pmol of 70S422) gave a concentration of 4.3 µM for pellet A and 4.1 µM for pellet B.  

 

3.6 Effect of G´domain mutation on TetM´s GTPase activity 

To analyze the effect of mutations in the G´domain of TetM, phosphatase assays were performed 

quantifying the free phosphate that is released when GTP is hydrolyzed to GDP by TetM or TetM 

mutants (see Materials and Methods 5.12). A standard curve was created resulting in the following 

equation: 

C(PO4
3-)=50.676xOD620-3.4355 

The GTPase activity of 60 nM of TetM and TetM mutants, 30 nM of Ribosomes and 20 µM of GTP was 

calculated as GTP molecules hydrolyzed per ribosome (see Figure 16). 
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Figure 16: Effect of TetM G´domain mutations on the GTPase activity of the protein. GTP molecules per ribosome 

hydrolyzed over 90 min by TetM wild-type (red), TetM E187K (green), TetM D176K E180K (blue), TetM E180K 

E187K (dark pink) and TetM D176K E180K E187K (dark yellow). GTPase activity was quantified by the absorption 

at 620 nm of the complex formed between free phosphate and the dye Malachite Green. The error bars represent 

the standard deviation of the mean for three independent experiments. 

The assay shows a strong decrease of GTPase activity from wild-type over single mutant to double- 

and triple mutants of TetM which were almost inactive. The rate of GTP hydrolysis appears rather 

slow with about 2 GTP molecules hydrolyzed per ribosome and minute. This is significantly slower 

than published in an earlier study that also investigated TetM´s GTPase activity and reported a 

hydrolysis rate of about 5 GTP molecules per ribosome and minute423. A possible explanation for this 

finding is the fact that the TetM mutants were first purified one after another and stored at -80°C 

before they were analyzed simultaneously. The freezing and thawing resulted in visible aggregation 

of the protein. The precipitates were pelleted and the concentrations of the remaining TetM were 

determined before they were used in the assay. Still, the hydrolysis rates were lower than in a 

control experiment performed with freshly purified TetM wild-type which had similar rates than in 

the cited publication. 

 

3.7 Tigecycline resistance selection 

Ribosomal protection proteins like TetM do not confer resistance to third generation tetracycline 

antibiotics such as tigecycline424. To find out whether changes in the TetM amino acid sequence 

could create a mutant that does confer resistance to third generation tetracyclines, two serial 

dilutions were performed. Wild-type TetM on the plasmid pET-46 LIC was transformed into E. coli 

BL21 DE3, the strain was grown overnight in the presence of 0.1 µg/mL of tigecycline, which is below 
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the MIC of 0.25 µg/mL. On the second day the tigecycline concentration was raised by 0.1 µg/mL and 

the strain was grown overnight in the presence of 0.2 µg/mL tigecycline in fresh medium. This 

process was repeated until the MIC of the strain for tigecycline reached 7.0 µg/mL (see Figure 17). 60 

days were necessary to reach 7.0 µg/mL and the resulting strain was termed WT60. An intermediate 

strain after 30 days, termed WT30, was also kept for analysis.  

 

Figure 17: Serial dilution scheme of tigecyline resistance selection.  Starting point were sub-MIC 0.1 µg/mL, 

tigecycline concentrations were raised in 0.1 µg/mL steps. A) E. coli BL21 DE3 transformed with TetM-RM could be 

selected to a final concentration of 2.5 µg/mL tigecycline. B) E. coli BL21 DE3 transformed with TetM-WT could be 

selected to a final concentration of 7.0 µg/mL tigecycline. 

A second serial dilution was performed with E. coli BL21 DE3 that contained TetM with random 

mutations within loop III on the plasmid pET-46 LIC. To create the mutations, random primer (see list 

of primers No. 10) were created. These primers contain overlaps with the sequence before (forward 

primer) or after (reverse primer) loop III with a random sequence within the loop. The primers were 

used to perform MEGAWHOP (see Materials and Methods 5.5) with TetM wild-type on the plasmid 

pET-46 LIC as template. The resulting plasmids were transformed into E. coli BL21 DE3 and the serial 

dilution was performed identical to the WT-strain. The final strain after 60 days, termed RM60 

reached a MIC of 2.5 µg/mL of tigecycline. As for the WT-strain, an intermediate strain after 30 days 

was kept for analysis.  

After 60 days, both the WT60 and the RM60 strains showed significant resistance to tigecycline (see 

Figure 18). 
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Table 2: Mutations found in tigecycline serial dilution strains WT60 and RM60. 

Wild-type TetM strain day 30 (WT30) 

Genomic mutation Gene Changes on amino acid level 

T455131G Transcriptional repressor acrR L109V 

Duplication of 10bp 
1568697-1568706 

Transcriptional repressor marR 

 
Disrupts coding sequence 

 
G1665930A 

 
Global transcription regulator 

sylA 
Q31STOP 

 

C3314272G Ribosomal protein S10 V57L 

C4097383A RNA polymerase subunit beta T1328N 

G4239373T Sensory histidine kinase R237S 

Wild-type TetM strain day 60 (WT60): one additional mutation 

Genomic mutation Gene Changes on amino acid level 

Deletion of 7bp 
3809872-3809878 

F0F1 ATP synthase subunit C 
 

Disrupts coding sequence 
 

Random-mutation TetM strain day 30 (RM30) 

Genomic mutation Gene Changes on amino acid level 

G452464C Multidrug efflux protein acrB T329S 

G455077T Transcriptional repressor acrR E91STOP 

Deletion of 4bp 
1568517-1568520 

Transcriptional repressor marR 

 
Disrupts coding sequence 

 
Deletion of 1371bp 
1664544-1665914 

 
 
 
 

Anhydro-N-acetylmuramic 
acid kinase; 
Outer membrane lipoprotein 
slyB; 
Global transcriptional 
regulator slyA 

Disrupts coding sequence  
of three genes 

 
 
 
 

Integration of an IS-
element 

2447410-2447418 

GDP-mannose 
pyrophosphatase nudK 

 

Disrupts coding sequence 
 
 

C4097383T 
 RNA polymerase beta  subunit 

T1328I 
 

Deletion of 28 bp 
4240622-4240649 

Component of the basR-basS 

system 
Disrupts coding sequence 

 

Random-mutation TetM strain day 60 (RM60): no additional mutations 
 

Mutations were found in the regulation of the expression of the efflux pump AcrAB, which belongs to 

the class of resistance-nodulation-cell division efflux systems. The complex is composed of the 

secondary transporter AcrB that integrates into the inner membrane as a trimer and the periplasmic 

AcrA-hexamer that links AcrB to the outer membrane pore TolC425. The AcrAB-TolC complex confers 

resistance to a wide variety of antibiotics, dyes and detergents, such as tetracyclines, 

chloramphenicol, fluoroquinolones, ß-lactams, macrolides, fusidic acid, ethidium bromide, crystal 

violet, sodium dodecyl sulfate and bile acids426. The expression level of AcrAB is negatively regulated 
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by the repressor protein AcrR427. The gene of acrR lies upstream of the acrA and acrB genes, the AcrR 

repressor directly interacts with the acr promoter located between acrR and acrAB (see Figure 18). 

Besides its repressor, the AcrAB pump also possesses activator proteins. In E. coli, the general 

transcriptional activators SoxS, Rob and MarA enhance the expression of AcrAB. MarA itself is 

regulated by the mar regulon428. In other bacteria like Klebsiella pneumoniae, the RamA global 

transcriptional activator increases the expression of AcrAB429,430. The expression of RamA is repressed 

by RamR in a similar way that AcrR represses AcrAB production (see Figure 19).  

 

 

 

 

 

 

 

 

 

Figure 19: Overview of expression regulation of the AcrAB efflux pump429,431 . AcrR is the product of the acrR gene 

(black arrow) and represses the expression of AcrAB (red inhibition line). SoxS, MarA and Rob activate AcrAB 

expression in E. coli (green arrow); RamA activates AcrAB expression in Klebsiella pneumoniae.  MarA and RamA 

production is repressed by MarR and RamR in a similar way than AcrAB by AcrR. 

Over-expression of AcrAB has been reported previously to confer tigecycline resistance and was 

therefore not further analyzed432. On the other hand, mutations within AcrB itself have not been 

reported before. The point mutation G452464C causes an amino acid exchange in AcrB: T329S. To  

test the effect of the mutation found in strains WT30 and WT60; AcrB was cloned into pQE-70 using 

MEGAWHOP (see Materials and Methods 5.5). The AcrB T329S mutation was introduced by site 

directed mutagenesis (see Materials and Methods 5.6). The AcrB knock-out strain BW25113 ΔacrB 

was transformed with acrB wild-type or acrB T329S and the effect on tigecycline resistance was 

analyzed in a growth assay (see Materials and Methods 5.7 and  Figure 20). No difference between 

BW25113 ΔacrB transformed with AcrB wild-type or AcrB T329S is visible.  

 

acrA acrB acrR 

AcrR 

RamA SoxS MarA Rob 

RamR MarR 
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A further point mutation in the rpsJ gene coding for ribosomal protein S10 has been identified in the 

genome of WT30. The mutation results in the amino acid exchange valine 57 to leucine. This 

mutation in ribosomal protein S10 has already been described in the literature to confer resistance 

to tetracycline in Neisseria gonorrhoeae
435 and to tigecycline in Klebsiella pneumoniae

436 and was not 

further analyzed.  

 

Figure 21: Effect of slyA or slyB knockout on tigecycline susceptibility. Relative growth of E. coli BW25113 wild-

type (red), BW25113 ΔslyA (green) and BW25113 ΔslyB (blue). The growth of the cultures was determined by 

OD600 measurement after 20 h of incubation. The growth of the strains in the absence of tigecycline was defined 

as 100%. The error bars represent the standard deviation of the mean for three independent experiments.  

The selection strain WT60 was also tested for multi-resistance against other antibiotics. WT60 

showed higher resistance against first- and second-generation tetracycline antibiotics compared with 

the parental BL21 DE3 strain expressing wild-type TetM (see Table 3).  

Table 3: MIC90 values of E. coli BL21 DE3; E. coli BL21 DE3+TetM WT and selection strain WT60 against tetracycline 

antibiotics.  

 
BL21 DE3 WT BL21 + TetM WT 

WT60 

Tetracycline 0.5 µg/mL 8 µg/mL >128 µg/mL 

Oxytetracycline 0.5 µg/mL 5 µg/mL >128 µg/mL 

Chlorotetracycline 0.5 µg/mL 7 µg/mL >128 µg/mL 

Tigecycline 0.2 µg/mL 0.2 µg/mL 15 µg/mL 
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MIC90 values of WT60 were further determined against non-tetracycline antibiotics (see Table 4) to 

see whether the strain developed a multi-resistant phenotype.  

Table 4: MIC90 values of WT60 strain against antibiotics unrelated to tetracycline compared with E. coli BL21 DE3 

wild type strain. 

 BL21 DE3 WT WT60 

Chloramphenicol 4 µg/mL 32 µg/mL 

Kanamycin 2 µg/mL 2µg/mL 

Norfloxacin 0,5 µg/mL 2 µg/mL 

Rifampicin 6.25 µg/mL 25 µg/mL 

 

Chloramphenicol and norfloxacin and rifampicin have already been reported to be substrates of the 

AcrAB efflux pump complex255,437,438, confirming the over-expression of AcrAB in the WT60 strain. On 

the other hand no difference in kanamycin susceptibility is visible in the serial dilution strain which 

has not been reported to be a substrate for the efflux pump complex. 
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3.8 Effect of thermorubin on bacterial and eukaryotic translation  

Thermorubin has been reported to be non-toxic for eukaryotic cells324. This could either be due to 

low affinity of the antibiotic to eukaryotic ribosomes or due to inefficient uptake into the eukaryotic 

cell or due to a combination of both. To get further information about the reason for its good toxicity 

profile, in vitro translation reactions were performed using E. coli and Rabbit reticulocytes lysates 

(see Materials and Methods 5.17 and 5.18) in the presence of increasing concentrations of 

thermorubin (see Figure 22).  

 

Figure 22: Inhibition of translation of the reporter protein Firefly luciferase (Fluc) by thermorubin. A coupled in 

vitro transcription/translation system on the basis of an E. coli cell extract (red) or in an in vitro translation system 

on the basis of a rabbit reticulocyte lysate (black) expressed Fluc in the presence of different concentrations of 

thermorubin. The expression of the Fluc was quantified by luminescence measurement after 1h of incubation at 

30°C. The luminescence in the absence of thermorubin was defined as 100%, error bars represent the standard 

deviation of the mean of three independent experiments.  

The inhibitory effect of thermorubin on eukaryotic translation was 100-fold lower than when using a 

bacterial translation system i.e. IC50 of 0.7 µM for E. coli compared with 70 µM for the rabbit system.  

No resistance mechanisms against thermorubin have been reported so far. In 1991 a patent was 

submitted showing that a fragment of about 4 kb of the genome of the thermorubin producer 

Thermoactinomyces antibioticus ATCC14570 can confer resistance when cloned and transformed into 

E. coli but no mechanism of action was published439. Therefore, a thermorubin resistant strain was 

generated to gain insights into the ability of bacteria to become resistant against thermorubin. 
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3.9 Construction of a thermorubin resistant strain  

A serial dilution was performed to create a thermorubin resistant strain (see Materials and Methods 

5.21 and Figure 22). E. coli BW25113 ΔsbmA, with an MIC of 20 µg/mL, was used as starting point. 

 

 

 

Figure 23: Serial dilution scheme of thermorubin resistance selection using E. coli BW25113 ΔsbmA. Starting point 

were sub-MIC 2.0 µg/mL, thermorubin concentration was raised in 0.25 µg/mL steps to a final concentration of 80 

µg/mL. 

A culture of E. coli BW25113 ΔsbmA was grown in the presence of 5.0 µg/mL of thermorubin over 

night. On the second day the overnight culture was used to inoculate fresh medium with 5.25 µg/mL 

of thermorubin. This process was repeated until the bacteria were able to grow in the presence of 80 

µg/mL of thermorubin. The final strain was named T80. The MIC for thermorubin was determined 

(see Material and Methods 5.7 and Figure 25). Mutations in the 16S rRNA were suspected to be the 

reason for the resistance, however, sequencing of the DNA encoding the 16S rRNA of the T80 strain 

did not reveal any mutations. Therefore, the whole genome was sequenced (see Materials and 

Methods 5.22). Two single point mutations and a region with four mutations compared to the 

parental BW25113 ΔsbmA strain were found (see Table 5). 

Table 5: List of mutations identified by whole genome sequencing of the strain T80 compared to the parental E. 

coli BW25113 ΔsbmA strain.  

Genomic 

mutation Gene 

Changes 

on amino 

acid level 

T3774480C 

G3774486C 

C3774493G 

A3774500G 

Not within an open reading frame 

 

 

 

None 

 

 

 

A2811218C transcriptional repressor emrR Q150P 

T3905227C 

 

Glutamine-fructose-6-phosphate aminotransferase 

 

None 

 

 

Mutation A2811218C results in an amino acid exchange of Q150P in the transcriptional repressor 

EmrR. EmrR regulates the expression of the efflux pump complex EmrAB-TolC, which confers 

resistance to the antibiotics nalidixic acid and thiolactomycin. EmrAB further reduces the 

5.25 µg/mL 
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culture 

5.0 µg/mL ... 
+0.25 µg/mL 

Overnight 
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80 µg/mL 
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susceptibility to the protonophores carbonyl cyanide m-chlorophenylhydrazone and 

tetrachlorosalicylanilide440. The complex contains a dimer of the inner membrane protein EmrB, a 

dimer of the periplasmic protein EmrA and a single copy of the outer membrane pore TolC441. The 

emrR gene is part of the emrRAB operon. The EmrR protein regulates the transcription of the whole 

operon by binding on the promoter site of the operon down-regulating the expression of the EmrAB-

efflux pump complex442 (see Figure 24).  

 

 

 

 

Figure 24: Organization of the emrRAB operon.  EmrR is the product of the emrR gene (black arrow), it inhibits the 

transcription of the emrRAB operon (red inhibition line) by direct binding into the promoter site of the operon442.  

The BW25113 ΔemrR strain showed a high level of thermorubin resistance, although the MIC of the 

T80 selection strain was not attained (see Figure 26). Therefore, the A2811218C mutation was 

introduced into the genome of BW25113 (see Figure 25).  

 

 

 

 

 

 

Figure 25: Construction of genomic mutation Q150P in the gene coding EmrR. The kanamycin cassette of the Keio 

collection434 was introduced between the native promoter region of the emrRAB operon and the upstream gene 

ygaH. The resulting strain was termed P80. 

The kanamycin resistance cassette from the Keio collection434 was cloned in front of the native 

promoter region of the gene coding for EmrR containing the Q150P mutation on the plasmid pQE-70. 

PCR product of this plasmid containing an overlap with the gene ygaH was produced and used as a 

template for λ red recombination (see Materials and Methods 5.23 and Figure 25). The resulting 

strain carrying the genomic mutation inside the emrR gene was termed P80. The ability of the 

genomically mutated BW25113 to grow in the presence of thermorubin was comparable to the 

emrR emrA emrB ygaH 

λ-red recombination 

+ 

emrR Q150P KanR 

emrR Q150P KanR emrA emrB ygaH 

emrR emrA emrB ygaH 

EmrR 
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BW25113 ΔemrR knockout strain, showing that a single point mutation can inactivate the protein 

(see Figure 26).  

 

Figure 26: Effect of the EmrR mutation Q150P on thermorubin resistance. Relative growth of E. coli BW25113 

wild-type (red), T80 (green), BW25113 ΔemrR (blue), BW25113 ΔemrR + emrR wild-type on pQE-70 (dark pink), 

P80 (BW25113 containing the mutation Q150P in the gene for EmrR) (dark yellow), P80 transformed with emrR 

wild-type on the plasmid pQE-70 (black) in the presence of growing concentrations of thermorubin. The growth of 

the cultures was determined by OD600 measurement after 20 h of incubation. The growth of the strains in the 

absence of thermorubin was defined as 100%. The error bars represent the standard deviation of the mean for 

three independent experiments.  

The effect of the emrR knockout or of the EmrR-Q150P mutation was verified by the creation of 

competent cells of BW25113 ΔemrR and of P80, which were then transformed wild-type emrR on the 

plasmid pQE-70. The effect of the deletion and mutation could both be reversed by the expression of 

the wild-type EmrR (see Figure 26).  

The EmrAB efflux pump is associated with resistance against the first generation quinolone antibiotic 

nalidixic acid440. To verify the effect of the EmrR Q150P mutation on EmrAB expression, the nalidixic 

acid susceptibility of the T80 and of the P80 strain was tested. Both strains showed reduced 

susceptibility to nalidixic acid compared to parental BW25113 i.e. both strains could still grow in the 

presence of 60 µg/mL whereas the wild-type strain had an MIC of 30 µg/mL. The effect was reversed 

by expression of the wild-type EmrR from the plasmid pQE-70 in the P80 strain carrying the genomic 

mutation (see Figure 27).  
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Figure 27: Effect of the EmrR mutation Q150P on nalidixic acid resistance. Relative growth of E. coli 

BW25113 wild-type (red), T80 (green), BW25113 ΔemrR (blue), P80 (BW25113 containing the mutation 

Q150P in the gene coding for EmrR) (dark yellow), P80 transformed with emrR wild-type on the plasmid 

pQE-70 (black) in the presence of increasing concentrations of nalidixic acid. The growth of the cultures 

was determined by OD600 measurement after 20 h of incubation. The growth of the strains in the 

absence of nalidixic acid was defined as 100%. The error bars represent the standard deviation of the 

mean for three independent experiments. 

 

Figure 28: Comparison of norfloxacin susceptibilities of T80 and BW25113 wild-type. Relative growth of 

E. coli BW25113 wild-type (red) and T80 (green) in the presence of increasing concentrations of 

norfloxacin. The growth of the cultures was determined by OD600 measurement after 20 h of incubation. 

The growth of the strains in the absence of norfloxacin was defined as 100%. The error bars represent 

the standard deviation of the mean for three independent experiments. 

On the other hand, EmrAB has been reported to confer no resistance to second generation 

fluoroquinolones443. To confirm the mechanism of T80 resistance the strain and BW25113 wild-type 

were tested against fluoroquinolone norfloxacin (see Figure 28). As expected, no differences in 
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growth were observed between wild-type E. coli BW25113 and the selection strain T80 in the 

presence of norfloxacin, with both strains having MICs of 0.3 µg/mL.  

 A further group of four mutations was found in the genome of T80. These mutations are not located 

within an open reading frame, but are instead positioned between the ORFs encoding LidR, a 

transcriptional regulator involved in L-lactate metabolism444, and the tRNA 2´-O-methyltransferase, 

TrmL445. No connection between these mutations and the thermorubin resistant phenotype were 

obvious, therefore these mutations were not analyzed further. The only other mutation found in the 

T80 genome T3905227C results in a silent mutation in glutamine-fructose-6-phosphate 

aminotransferase and was therefore also not analyzed further.  

 

3.10 Inhibition of E. coli in vitro translation by peptide antibiotics 

Proline-rich antimicrobial peptides (PrAMPs) have been shown to inhibit translation446, but only few 

have been characterized in detail359,447,448. PrAMPs from mammalians and arthropods as well as 

amphibian antimicrobial peptides of Xenopus spp. were tested for their possible inhibitory effect on 

coupled in vitro transcription/translation based on an E. coli cell extracts using Firefly luciferase as a 

reporter protein (see Materials and Methods 5.17). 

 

3.10.1 Characterization of mammalian PrAMPs 

Bac7 from Bos taurus has already been shown to be a potent translation inhibitor446. Other PrAMPs 

of mammalian origin like Bac11 from Ovis aries or PR39 from Sus scrofa show high sequence 

similarity to Bac7 and were therefore tested for their translation inhibition potential.  

Table 6: Amino acid sequences of mammalian PrAMPs tested for their translation inhibition potential.  

Peptide name Amino acid sequence Species 

PR-39 RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPR

FP 

Sus scrofa 

Bac11(1-25) RRLRPRRPRLPRPRPRPRPRPRSLPLPRPKPRPIPRP

LPLPRPRPKPIPRPLPLPRPRPRRIPRPLPLPRPRPR

PIPRPLPLPQPQPSPIPRPL 

Ovis aries 

Bac7 RRIRPRPPRLPRPRPRPLPFPRPGPRPIPRPLPFPRP
GPRPIPRPLPFPRPGPRPIPRPL 

Bos taurus 
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The mammalian PrAMPs Bac11(1-25) and PR-39 were tested for their ability to inhibit an in vitro 

translation reaction (see Materials and Methods 5.17). Both PrAMPs showed excellent inhibitory 

activity (see Figure 29). 

 

Figure 29: Inhibition of translation of the reporter protein Firefly luciferase (Fluc) by mammalian PrAMPs. A 

coupled in vitro transcription/translation system on the basis of an E. coli cell extract expressed Fluc in the 

presence of different concentrations of Bac11(1-25) (red) and PR-39 (blue). The expression of the Fluc was 

quantified by luminescence measurement after 1h of incubation at 30°C. The luminescence in the absence of an 

antibiotic was defined as 100%, error bars represent the standard deviation of the mean of three independent 

experiments.  

PR-39, with an IC50 of about 1.5 µM, was slightly less efficient in inhibiting the reaction than bovine 

Bac7, which was previously reported to have an IC50 of 0.8 µM414. In contrast, Bac11 (1-25) from Ovis 

aries was >10-fold more efficient displaying an IC50 of 0.02 µM. Thus, mammalian PrAMPs are potent 

translation inhibitors that should be considered interesting lead compounds for clinical usage. 

However, one mayor drawback associated with the use of PrAMPs as therapeutics is their 

susceptibility to proteases.  

 

3.9.2 Construction and testing of retro-D-Bac7 

In order to improve the protease stability of antimicrobial peptides, replacements of the natural 

occurring L-amino acids with D-amino acids has been performed. However, the drawback was a 

significant loss of antimicrobial activity357. One reason might be that the different orientation of the 

side chains does not allow the correct interactions with the target of the peptide. To assess this 
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hypothesis, a retro-D-derivative of Bac7 was generated in which the amino acid sequence was 

reversed and the L-amino acids were replaced with D-amino acids (see Figure 30).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Chemical structures of the first six residues of the PrAMP Bac7.  A) L-peptide hexamer RRIRPR B) D-

peptide hexamer rrirpr C) retro-D-peptide rprirr D) retro-D-peptide rprirr flipped by 180°. 

 

Figure 31: Inhibition of translation of the reporter protein Firefly luciferase (Fluc) by L-Bac7 and retro-D-Bac7. A 

coupled in vitro transcription/translation system on the basis of an E. coli cell extract expressed Fluc in the 

presence of different concentrations of L-Bac7 (1-16) (red) and retro-D-Bac7 (1-16). The expression of the Fluc 

was quantified by luminescence measurement after 1h of incubation at 30°C. The luminescence in the absence of 

an antibiotic was defined as 100%, error bars represent the standard deviation of the mean of three independent 

experiments. 

C) D) 

RRIRPR rrirpr 

180° 

rprirr rprirr 

A) B) 
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The orientations of the amino acid side chains of natural L-peptide and the flipped retro-D-peptide 

are identical. The inverse sequence derivative of Bac7(1-16) was synthesized with D-amino acids and 

was named retro-D-Bac7 (1-16). The activity of retro-D-Bac7(1-16) was tested for its ability to inhibit 

a coupled in vitro transcription/translation reaction based on an E. coli  cell extract(see Figure 31). 

The replacement of the natural L-amino acids with the retro-D-amino acid sequence did not yield a 

compound with significant inhibitory activity. The concentration required to inhibit translation was 

100-times higher than that of naturally occurring Bac7(1-16) derivative. 

 

3.10.3 Characterization of arthropod PrAMPs 

PrAMPs have also been found in arthropods, some of them show sequence similarity to mammalian 

PrAMPs, whereas others are totally different402,447. Some arthropod PrAMPs, like Onc112, 

pyrrhocoricin and metalnikowin I, have already been shown to be potent translation inhibitors414,415. 

They share high sequence homology to each other (see Figure 10) and have been shown to bind to 

the ribosome in a similar way. However numerous PrAMPs containing no or only little sequence 

homology have been found in insects as well359,447. To determine whether they also inhibit 

translation, PrAMPs without sequence similarity to Onc112 were selected and analyzed. Apidaecins 

were the first class of arthropod PrAMPs that were identified363. First in the European honeybee Apis 

mellifera and later also in related species like Apis cerana
362. Several isoforms of apidaecins are 

known, further, semi-synthetic derivatives with improved antibacterial properties and increased 

serum stability were developed449,450. To determine their potential as translation inhibitors, the two 

natural occurring apidaecins Api1A and Api1AL and the two semi-synthetic derivatives Api88 and 

Api137 were selected (see table 7). 

Table 7. Amino acid sequences of apidaecin PrAMPs used in this thesis. gu: N, N, N´, N´-tetramethylguanidino;  

O: L-ornithine. 

Peptide name Amino acid sequence 

Api1A GNNRPVYIPQPRPPHPRI 

Api1AL GNNRPVYIPQPRPPHPRL 

Api88 gu-ONNRPVYIPRPRPPHPRL-NH2 

Api137 gu-ONNRPVYIPRPRPPHPRL-OH 
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been shown to be a potent inhibitor of bacterial growth in vivo only if it carries an O-glycosylation on  

threonine 11366. However, it remains unclear whether the glycosylation is required for cellular uptake 

and/or for target inhibition. The drosocin used in this thesis did not posses the O-glycosylation.  

Table 8: Amino acid sequence of arthropod PrAMPs tested for their translation inhibition potential. The N-

terminal 31 amino acids that were used in this thesis are printed in bold. 

Peptide name Amino acid sequence Species 

Abaecin YVPLPNVPQPGRRPFPTFPGQGPFNPKIKWPQGY Apis 

mellifera 

Drosocin GKPRPYSPRPTSHPRPIRV Drosophila 

melanogaster 

Metchnikowin HRHQGPIFDTRPSPFNPNQPRPGPIY Drosophila 

melanogaster 

Penaeidin-1 

(1-31) 

YRGGYTGPIPRPPPIGRPPLRLVVCACYRLSVSDAR
NCCIKFGSCCHLVK 

 

Penaeus 

vannamei 

 

The arthropod PrAMPs abaecin, metchnikownin, drosocin and penaeidin-1 (1-31) were all tested for 

inhibitory activity in an E. coli in vitro transcription/translation system (see Figure 33). Penaeidin-1 

isolated from the white-leg shrimp Penaeus vannamei is a peptide with a total length of 50 amino 

acids containing an N-terminal proline-rich region and a C-terminal cysteine-rich region456. The 

proline-rich 31 N-terminal amino acids were chosen for analysis (see Table 9). The PrAMPs abaecin, 

metchnikownin, drosocin and penaedin-1 (1-31) did inhibit the translation system but only at very 

high concentrations above 100 µM (see Figure 33).  
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4. Discussion and Outlook 
 

4.1.1 Proline 509 of TetM interacts with the tetracycline binding site 

The new cryo-EM structure of TetM with a resolution of 3.9 Å allows a more detailed look into the 

mechanism of action of this ribosome protection protein than was possible before. Like already 

published before, loop III of domain IV represents the key feature of ribosome protection proteins 

pushing the drug from the ribosome256,257. However, an earlier publication claimed that the amino 

acids Y506 and Y507 of TetM are the residues removing tetracycline from its binding site by changing 

the conformation of C1054 of the 16S rRNA that forms a stacking interaction with ring D of 

tetracycline256. The double mutant TetM Y506A/Y507A has been shown to be unable to confer 

resistance against tetracycline whereas the triple mutant TetM S508A/P509A/V510A was almost as 

active as wild-type TetM. The corresponding tyrosines in TetM analogs Tet(O) and Tet(S) were also 

mutated to alanine resulting in the same decrease of resistance402. The new structure still sees an 

important role for the tyrosines but shows that the tyrosines do not directly interact with the drug 

binding site. Instead P509 overlaps with the tetracycline binding site via stacking interactions with 

C1054 of the 16S rRNA. The tyrosines are required to stabilize the correct conformation of loop III. 

Y506 interacts with G467 of Loop II and C1051 of helix 34 of the 16S rRNA and Y507 interact with 

E435 of loop I positioning P509 into the right position. In addition, W442 of loop I of domain IV 

interacts with V510 of loop III to further stabilize its conformation. The finding that TetM still works if 

P509 is mutated to alanine indicates that residue 509 overlaps with the tetracycline binding site via 

backbone interactions rather than with its side chain as long as the conformation of loop III is 

stabilized by loops I and II. The mutation W442A did not have an impact on tetracycline resistance by 

itself but it destabilized loop III´s conformation in a way that the double mutants W442A/S508A and 

W442A/P509A were almost inactive. The fact that serine and proline are conserved at positions 3 

and 4 within loop III over all 12 known RPPs whereas there are some variations at positions 1 and 2 

of the loop further supports the importance of these residues402. Instead of YY, FF and FA were found 

in loop III of the RPPs Tet and TetB(P). TetM mutants Y506F/Y507F and Y506F/Y507A were less active 

but could still confer resistance when transformed into E. coli BL21 DE3. The activity of the TetM 

Y506F/Y507A in E. coli is surprising as this amino acid sequence was found in the RPP Tet isolated 

from Streptomyces lividans. An earlier study found that this RPP does not confer resistance when 

transformed into E. coli
461

, however only these two amino acids were mutated whereas the overall 

sequences of Tet and TetM differs at many more positions. Furthermore, the RPP OtrA of the 
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oxytetracycline producer Streptomyces rimosus was reported to contain the amino acids VR at the 

corresponding positions within loop III417. TetM mutants carrying the Y506V or the Y506V/Y507R 

mutations were unable to confer tetracycline resistance (see Figure 11). One explanation for these 

findings is that the stabilization of loop III´s conformation within TetM, performed by aromatic 

tyrosines 506 and 507, can also be created by aromatic phenylalanine’s even though with lower 

efficiency, whereas a replacement of the aromatic tyrosine 506 with hydrophobic valine is not 

sufficient to bring loop III in the right position to remove tetracycline from its binding site. The OtrA 

of this thesis was cloned from cDNA of Streptomyces rimosus subsp. rimosus ATCC 10970 containing 

some  differences to the published sequence (see Appendix A), its loop III possesses the amino acid 

composition FASPV instead of VRSPV and has been shown to be unable to confer tetracycline 

resistance (see Figure 11). On the other hand, TetM mutated to FASPV in loop III was able to confer 

resistance, therefore it cannot only be loop III of OtrA which is incompatible with the E. coli 

ribosome. The overall amino acid sequences of OtrA and TetM differ drastically, they show an 

identity of only 37% compared to 77% between TetM and TetO (see Appendix B and Appendix C). It 

would therefore be very interesting to see a structure of OtrA bound to the ribosome of S. rimosus to 

understand how the conformation of OtrA’s loop III is stabilized in its native context and why it 

cannot work in E. coli.  

A cryo-EM study of TetO bound to the E. coli ribosome came to a similar conclusion than the TetM 

structures showing loop III to overlap with the tetracycline binding site257. The authors further 

described a different role for loop I claiming that it rearranges the 30S subunit to form a corridor 

from the tetracycline binding site to the outside of the ribosome explaining how the drug leaves the 

ribosome. However the claimed conformation of loop I of the TetO publication would overlap with 

the mRNA binding site making this conformation unlikely402,462. 

 

4.1.2 The G´domain of TetM is vital for its GTPase activity 

Mutations on the G´domain diminished TetM´s ability to confer tetracycline resistance, in case of the 

triple mutation D176K E180K E187K, it was reduced to zero. It could be shown that deficits in the 

GTPase activity of TetM are the result of the mutations. Ribosome protection proteins bind to the 

ribosome in their GTP-form, hydrolysis of GTP is not required for removal of tetracycline from the 

ribosome as it was reported that TetM analog TetO still decreases the affinity of tetracycline to the 

ribosome when bound to non-hydrolysable GTP analogs GMPPNP or GTPγS397, however  hydrolysis of 

GTP is necessary for multiple turnover of  RPPs421,462. Therefore the reduced GTPase activity explains 

why G´domain mutants lost the ability to confirm tetracycline resistance in vivo. However it was not 
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clarified whether the mutants cannot hydrolyze GTP anymore or whether the subsequent release of 

inorganic phosphate (Pi) is affected by the mutation. Elongation factor G is highly homologous to 

TetM256 and in EF-G the consequences of mutations in EF-G´s G´domain and mutations on 

G´domain´s binding partner, the C-terminal domain of ribosomal proteins L7/L12 have been further 

analyzed and have been reported to cause a problem with phosphate release418,419. The release of Pi 

is not required for EF-G´s activity in translocation but for the dissociation of EF-G from the ribosome 

afterwards418,463. Similar experiments could be performed with TetM to clarify the exact reason for 

the loss of GTPase activity of the TetM G´domain mutants. Further, it has been shown that L7/L12 

are required for stable binding of the elongation GTPases EF-G, RF3 and IF2 by the finding that L7/L12 

depleted ribosomes cannot bind these factors in their GTP form stably464. The GTPase activity of EF-G 

was reduced to zero in the absence of L7/L12. However in the same study an EF-G mutant lacking the 

G´domain was created. It hydrolyzed GTP with lower efficiency than wild-type EF-G but was immune 

against the depletion of L7/L12. It would be very interesting to repeat these experiments with 

TetM/TetM ΔG´to see whether similar findings will result. 

 

4.1.3 Over-expression of the AcrAB efflux pump complex is the major source of tigecycline 

resistance in the RM60 and WT60 serial dilution strains 

No TetM mutation that confers resistance to third generation tigecycline could be gained by serial 

dilution of the drug with a culture of BL21 DE3 containing wild-type TetM or TetM with random 

mutations in loop III. However, another study reported that the deletion of leucine 505 and 

mutations of serine 508, serine 310 and glutamine 620 resulted in TetM variants which reduced the 

susceptibility to tigecycline465. The L505 deletion resulted in a phenotype that was able to grow in the 

presence of 0.5 µg/mL of tigecycline compared to 0.1 µg/mL for bacteria expressing wild-type TetM. 

However TetM ΔL505 lost its ability to confer resistance against tetracycline, doxycycline and 

minocycline completely. A possible explanation for this paradoxical finding is that the deletion of 

L505 reduces the overlap of loop III with the tetracycline binding site but on the other hand enables 

the RPP to disturb the interactions of tigecycline´s 9-t-butylglycylamido group with the ribosome 

which is not present in all other tested tetracyclines. The impacts of the S508R and S508G mutations 

alone were to small to be significant however double mutations S508R/Q620R and S310P/S508R 

resulted in MICs of 0.4 µg/mL and 0.25 µg/mL respectively. The first representing a 4-fold effect 

compared to wild-type TetM whereas the second only gained a 2.5-fold higher MIC which is at the 

border of significance. The double mutants were also less efficient in conferring resistance to 

tetracycline and minocycline however the effect was smaller than for TetM ΔL505, whereas on the 
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other hand the double mutations had almost no effect on doxycycline resistance. Q620R and S310P 

alone had no significant effect on tigecycline or doxycyline resistance but resulted in a slightly higher 

resistance to tetracycline and minocycline. S310 is too far away to directly influence the interaction 

of loop III with the drug binding site, however an indirect mechanism remains possible. As TetM 

competes with tetracyclines for ribosome binding, a higher affinity of the factor to the ribosome 

through S310P mutation would explain the superior activity of the mutants to remove tigecycline 

from the ribosome. Q620 on the other hand is part of a linker that connects domain V of TetM with a 

C-terminal α-helix that has been shown to interact with h44. As the deletion of the helix has been 

reported to inactivate TetM256 this interactions is important for the binding of TetM to the ribosome, 

the Q620R mutation might enhance this process. However the effects of S310, S508 and Q620 

mutations are only minor and will probably not lead to a TetM variant with a clinically relevant level 

of tigecycline resistance.  

Still, the existence of TetM mutants conferring reduced susceptibility to tigecycline raises the 

question why no TetM mutations were found in the RM60 or WT60 strain after the serial dilution. 

The random mutagenesis of loop III of TetM should have contained all possible amino acid 

combinations for the residues 506-511 including S508R and S508G, however these mutations by 

themselves were without a significant effect. On the other hand no deletions were introduced into 

the random mutagenesis of loop III. A possible explanation for the absence of TetM mutations in 

RM60 and WT60 lies in the low efficiency of these mutants compared with the high concentrations of 

tigecycline (up to 7 µg/mL, compared with an MIC of only 0.5 µg/mL in case of the ΔL505 mutant) 

that were added during the serial dilutions. Even if the bacteria did develop TetM mutants conferring 

low level resistance to tigecycline these did not survive the higher concentrations that were added in 

the further course of the experiment. Therefore the bacteria had to find another way how to deal 

with the presence of high tigecycline concentrations. 

Whole genome sequencing of the serial dilution strains WT30, WT60, RM30 and RM60 identified 

numerous mutations at other loci than TetM. Mutations in the regulation system of the AcrAB efflux 

pump system and ribosomal protein S10 have already been reported to confer tigecycline resistance 

and were therefore not further analyzed432,435,436. The mutation T329S within AcrB itself however was 

not reported before. It was reproduced by transformation of the mutated version of AcrB into the 

AcrB knockout strain BW25113 ΔacrB with AcrB wild-type transformed in the BW25113 ΔacrB as a 

control. No difference between the strains expressing AcrB T329S or wild-type were visible (see 

Figure 19).  This finding is rather surprising as the efflux pump component AcrB plays a key role in the 

tigecycline resistance of these strains. A mutation in the sequence of AcrB has already been reported 

to increase the resistance of Salmonella typhimurium against ciprofloxacin466, however the T329S 
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mutation of the RM30 strain did not fulfil this task. Additionally, the gene for the protein SlyA was 

inactivated in both serial dilution strains. In the case of WT30, Glu31 was mutated to a stop codon 

whereas RM30 had a 1371 bp deletion in the genome removing the N-terminal 29 amino acids of the 

sequence of slyA and the whole sequence for slyB. SlyA belongs to the MarR family of transcription 

regulation proteins433, which negatively regulate the expression of various resistance genes428. 

Comparison of BW25113 ΔslyA to wild-type BW25113 only showed a very small effect of the knock-

out on the susceptibility to tigecycline which is at the border of significance. However the fact that 

the gene was inactivated in two independent serial dilutions using two different ways of inactivation 

indicates that this knock-out plays a role for the phenotype of the strains. A possible explanation for 

the lack of BW25113 ΔslyA´s tigecycline resistance would be that the knock-out of SlyA exclusively 

works in the context of other mutations that developed during the serial dilution.  In the RM30 

strain, the sequence of the gene for SlyB has been deleted. SlyB has been reported to be an outer 

membrane protein in Burkholderia multivorans
467

. The knock-out strain BW25113 ΔslyB showed 

again only a minor decrease in tigecycline susceptibility compared with the parental BW25113 strain. 

All other mutations of the tigecycline serial dilution strains were not further analyzed. Mutations in 

ATP synthase subunit C; DNA dependent RNA polymerase, histidine kinase BasR and NUDIX 

hydrolase have no direct connection with antibiotic susceptibility and were not further analyzed, 

although secondary effects cannot be excluded.  

All in all, the over-expression of the AcrAB efflux pump system caused by the inactivation of marR 

and the mutation of acrR in both serial dilutions are the major reason for the tigecycline resistance of 

the RM60 and WT60 strains, the mutation within acrB had no effect whereas the knock-out of slyA in 

both serial dilution strains and the knock-out of slyB in the RM30 strain only gained a minor 

reduction in susceptibility when tested by themselves but might enhance the resistance in 

combination with other mutations found in the strains. 

Over-expression of AcrAB has already been detected in clinical isolates of various bacteria468–470. 

Given the large amounts of tigecycline and other tetracycline antibiotics used in human and animal 

medicine at the moment58, it is predictable that this mechanism of tigecycline resistance will spread 

in the near future. One possible solution would be the parallel application of tigecycline with an 

efflux pump inhibitor. This strategy has been reported to limit the efficiency of numerous efflux 

pumps against a variety of antibiotics288,471,472. Piperazine arylideneimidazolones were reported to 

inhibit the AcrAB-TolC efflux pump complex decreasing the MICs of oxacillin, linezolid and 

clarithromycin for E. coli cells473. It would be very interesting to test whether the MICs for tigecycline 

would decrease again if the RM60 and WT60 strains of this thesis were grown in the presence of 

tigecycline and a piperazine arylideneimidazolone or another suitable efflux pump inhibitor.  
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4.2 Thermorubin is an antibiotic with specificity to bacterial ribosomes and a substrate of the 

EmrAB efflux pump complex 

Thermorubin proved to be an efficient translation inhibitor under laboratory conditions. The in vitro 

translation assays showed that it inhibits bacterial protein synthesis at concentrations of 10 µM. On 

the other hand, it was less efficient in the eukaryotic system where 100 µM were needed to stop the 

expression of the reporter protein. The results are in line with an earlier study reporting that low 

concentrations of thermorubin are enough to inhibit the growth of both Gram-positive and Gram-

negative bacteria in vivo while the antibiotic was not able to prevent the growth of yeast and 

filamentous fungi324. With the in vitro assay, it could be shown that this difference is not (only) 

caused by inefficient uptake of the drug into eukaryotic cells, instead a clear difference was found 

between the inhibition of bacterial and cytoplasmic eukaryotic ribosomes. On the other hand 

mitochondrial ribosomes have not been tested. Due to the high similarity of bacterial and 

mitochondrial ribosomes152 it would be very interesting to see how much thermorubin will be 

necessary to inhibit them. 

The whole genome sequencing of the thermorubin serial dilution strain T80 showed a mutation in 

the gene for the transcription regulator protein EmrR which suppresses the expression of the efflux 

pump system EmrAB-TolC440,442. It has already been reported that the insertion of a nucleotide into 

the sequence of emrR, which creates a frame-shift, results in an phenotype resistant to the antibiotic 

thiolactomycin and to the protonophore carbonyl cyanide m-chlorophenylhydrazone440. The data 

presented here show that a single point mutation, leading to the amino acid exchange Q150P, is 

enough to reach the same effect. The thermorubin resistant phenotype of the T80 selection strain 

was partly reproduced by introduction of the mutation into the genome of E. coli BW25113 using the 

λ-red recombinase system474, the resulting strain was termed P80. P80 and the emrR knock-out strain 

BW25113 ΔemrR showed significant thermorubin resistance although the level of resistance of the 

T80 strain was not reached. Further, the T80 and the P80 strain were resistant against the quinolone 

antibiotic nalidixic acid but not against the second generation fluoroquinoline norfloxacin. This 

finding is in line with an earlier study showing nalidixic acid but not norfloxacin to be a substrate of 

the EmrAB-TolC efflux pump complex440. Two more loci of mutation were found in the genome of 

T80 compared to the parental strain. The cluster of the four mutations T3774480C, G3774486C, 

C3774493G, A3774500G is not located within an open reading frame and was therefore not further 

analyzed. The last nucleotide exchange T3905227C creates a silent mutation in the gene for 

glutamine-fructose-6-phosphate aminotransferase which has no obvious connection to antibiotic 

susceptibility and was also not further analyzed. The over-expression of the multidrug efflux pump 

EmrAB is the first documented thermorubin resistance mechanism, however more are thinkable. As 
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thermorubin exclusively interacts with ribosomal RNA332,416, it is imaginable that mutations within or 

near the drug binding site might change its conformation in a way that the drug cannot bind 

anymore. Numerous antibiotic resistant pathogens are exploiting mutations or modification of their 

rRNA to decrease the affinity of drugs to their ribosomes266,267. No rRNA mutations were identified 

within the T80 genome but rRNA mutations in E. coli generally develop slowly because E. coli 

possesses seven ORFs for rRNA475 making E. coli an unfavourable model organism for these kinds of 

mutations. Therefore a special E. coli knockout strain, SQ110 ΔtolC, was created by the Mankin group 

that has only one ORF for rRNA476. One could use this special strain to repeat the selection 

experiment in order to identify rRNA mutations that confer resistance to thermorubin. As this strain 

does not contain the outer membrane pore TolC it is impossible to recreate resistance based on 

EmrAB over-expression as this efflux pump requires TolC477. Site directed mutagenesis of nucleotides 

involved in thermorubin binding, namely C1409G; A1401U; G1491U; G1491A, were introduced into 

the plasmid pAM552 which was transformed into E. coli SQ171 ΔtolC to substitute the plasmid 

pCSacB that carries the sequence for wild-type rRNA whereas all genomic ORFs coding for rRNA have 

been deleted  (see Materials and Methods 5.13)478. The mutation was intentioned to break the 

hydrogen bond C1409-G1491 which have been reported to be part of the thermorubin binding 

site332. But no resistance was observed (data not shown). This either means that a single point 

mutation is not enough to lower the affinity of the drug to the ribosome or that the plasmid 

exchange was not successful. The control experiment showing no paromomycin resistance for 

G1491U even though this mutation was reported to confer resistance479 questions the success of the 

plasmid exchange. Because thermorubin interacts with both the 16S and the 23S rRNA and that all 

tested mutations were exclusively on the 16S rRNA, one could imagine that the binding affinity of the 

drug to the unaltered part of its binding site on the 23S rRNA was enough for thermorubin to bind. It 

would be interesting to further mutate the 23S rRNA part of the thermorubin binding site, alone and 

in combination with mutations on its 16S rRNA part, to see whether this could create a thermorubin 

resistant ribosome.  

In spite of its high antimicrobial activity and low toxicity, neither naturally occurring thermorubin, nor 

semi-synthetic derivatives of this drug are in clinical use. The main reason is the lack of water 

solubility of the drug that makes oral application impossible. It has been shown to efficiently protect 

mice when infected with Streptococcus pyogenes as long as the drug was administered 

intraperitoneally whereas the antibiotic was not able to protect the mice when administered orally 

or subcutaneously325.  Lack of water solubility and/or inactivation by serum proteins were discussed 

to be the most likely reasons for the poor bioavailability by the authors. In all experiments of this 

thesis, the drug was dissolved in dimethylsulfoxide (DMSO), the final concentration of the solvent 
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was 4.8% in the in vivo MIC assays and <4% in the in vitro translation assays. DMSO is used in human 

medicine but its application is linked with side effects480,481, it would also be difficult to reach the 

necessary DMSO concentration during treatment, therefore it should not be used to solve 

thermorubin for antimicrobial therapy. Instead, chemical modification of the drug adding polar 

groups/removing non-polar groups could enhance water solubility. Another possibility would be a 

change in pH value to increase solubility, which is used to enhance the bioavailability of other 

drugs482. Some lipophilic drugs are encapsulated into polymeric micelles or cyclic oligosaccharides for 

administration483. Similar approaches could create bio-available thermorubin derivatives or bring 

thermorubin to its target site. 

 

4.3 Amythiamicin D derivative 3a possesses superior translation inhibiting properties compared to 

the parental compound inhibiting elongation factor Tu 

De novo synthesis enabled the production and analysis of amythiamicin D and the three chemically 

derivatives 3a, 3b and 3c underlining the high value of this technique for the production of highly 

branched natural molecules and for the creation of semi-synthetic derivatives. Derivative 3b was 

totally inactive in vivo and in vitro at all tested concentrations. The 1H-NMR and molecular dynamics 

simulations indicate that the steric conformation of derivative 3b destabilizes the overall macrocycle 

conformation that was found in parental amythiamicin D and derivatives 3a and 3c. This 

conformation was also seen in the crystal structure of GE2270 A bound to EF-Tu-GDPNP188,344 

suggesting that it is required for the binding of this kind of drugs to the elongation factor. Derivative 

3c was also completely inactive, molecular dynamics simulations indicate that polar groups next to 

the hydrophobic benzyloxymethyl group destabilize the conformation of the macrocycle of the 

derivative. Derivative 3a showed lower antibacterial potential in vivo compared to natural occurring 

amythiamicin D. On the other hand, it inhibited the in vitro translation assay at a lower concentration 

than the parental compound. A higher affinity of derivative 3a to the drug target coupled with a 

decrease of membrane permeability caused by the replacement of the isopropyl group of the natural 

thiopeptide with the hydroxymethyl group of derivative 3a would be an explanation for this paradox 

results. Due to the high similarities in the chemical structures of amythiamicins and GE2270 A, it was 

assumed that the first inhibit the formation of the ternary complex of EF-Tu, GTP and an aminoacyl 

tRNA the same way that was found for GE2270 A. The addition of external EF-Tu could restore 

translation in the presence of inhibitory concentrations of derivative 3a indicating that derivative 3a 

indeed targets the elongation factor. The finding that the EF-Tu mutation G257S, that has been 
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shown to confer resistance against GE2270 A381, also confers resistance against amythiamicins 

suggests that both antibiotics share the same binding site on EF-Tu.  

Cross-resistance between amythiamicins and GE2270 A with clinically established EF-Tu inhibitors is 

unlikely to appear as their binding site is different from the other EF-Tu targeting drugs, such as 

enacyloxin II and kirromycin. However, a partial overlap with the binding site of GE2270 A and 

clinically established pulvomycin has been found186,484 and it should be examined whether mutations 

on EF-Tu conferring pulvomycin resistance are also able to create a thiopeptide resistant EF-Tu 

mutant. One major problem limiting the clinical application of thiopeptides in general is the lack of 

water solubility of this kind of antimicrobial. Like thermorubin, amythiamicin D and its derivatives 

were dissolved in DMSO for all experiments of paper 1. The same strategies discussed for 

thermorubin could be used to overcome this problem. A further way to create thiopeptide 

derivatives that is not available for small molecule antibiotics lies in the nature of thiopeptide 

production. As these antimicrobials are processed precursor peptides, derivatives could be gained by 

changes in the amino acid sequence of the precursor peptide and/or in changes of the processing 

enzymes485.  

A way to bypass the solubility problem is the topical use of thiopeptides. Thiostrepton, another 

thiopeptide antibiotic with a different mode of action but with the same solubility issue486, for 

example is already in use as a component of Animax® ointment (Dechra Veterinary Products) in 

animal medicine. The GE2270 A derivative NAI003 is in clinical trials to cure infection of 

Propionibacterium acnes, a typical skin pathogen487. These two examples represent first steps for 

thiopeptides into clinical practice but the bio-availability problem has to be solved for applications 

beyond topical use. 

 

4.4.1 Proline-rich antimicrobial peptides inhibit translation by binding to the bacterial ribosome 

The crystal structures of Onc112, Bac7, metalnikowin I or pyrrhocoricin bound to the ribosome of 

Thermus thermophilus showed that all these peptides bind in a reverse orientation in the ribosomal 

exit tunnel, with the N-terminal residues reaching into the PTC. In the Onc112 structure, residues     

1-12 could be well resolved while the C-terminus remained flexible. A second crystal structure of 

Onc112 bound to the Thermus thermophilus ribosome published by another group could see the N-

terminal residues 1-13 but not the C-terminal ones, confirming the flexibility of the C-terminus416. 

The N-terminus of Bac7 (1-16) further contains a substructure with Arg6 pushed between Arg2 and 

Arg4 forming a positively charged block, that is not present in the insect peptides. Onc112 and 
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Bac7(1-16) allow subunit joining during initiation but the overlap of the drug binding site with the 

binding site of A-site tRNA indicates that they prevent the accommodation of amino acyl-tRNAs into 

the A-site. The finding that Bac7(1-35) also inhibits eukaryotic translation explains why it is stored as 

an inactive pro-peptide that is only matured when pathogens are recognized410–412. Onc112 exploits 

the inner membrane transporter SbmA for its uptake into the bacterial cell, the same pathway that 

was already described for Bac7, as the knock-out strain BW25113 ΔsbmA was able to grow in 

significantly higher concentrations of Onc112 than the parental strain containing the transporter249. 

However for Bac7, the proton antiporter MdtM has been identified as an alternative way for the 

PrAMP to enter the bacteria cell252. It would be interesting to test whether that is also the case for 

insect derived PrAMPs like Onc112 or pyrrhocoricin. The other tested mammalian proline-rich 

antimicrobial peptides Bac11 and PR-39 turned out to inhibit translation at similar or even lower 

concentrations than Bac7. The high sequence homology between Bac11 and PR-39 with Bac7 

suggests that they bind to the ribosome in a similar way. Especially regarding the first 16 residues 

which have been shown to be sufficient for ribosome inhibition by Bac7. Bac11(1-16) and Bac7(1-16) 

only differ by two amino acids, at position three there is leucine in case of Bac11 and isoleucine in 

the case of Bac7; at position seven Bac11 has an arginine instead of the proline of Bac7. PR-39 shows 

some differences to Bac7 but can still be aligned (see Figure 10). The tested apidaecins inhibited the 

translation reaction at much higher concentrations of about 100 µM for the semi-synthetic 

derivatives Api88 and Api137. In contrast, low MIC values for apidaecin against E. coli have been 

published. One study presents MICs of 4 µg/mL for E. coli ATCC 25922 and 0.5 µg/mL for E. coli BL21 

AI449. Still, Api137 was shown to interact with a single binding site on the ribosome448. However, its 

mechanism of action differs from other PrAMPs like Onc112 or Bac7. Instead of blocking the A-site 

preventing tRNA accommodation, it traps class I release factors (RF1 or RF2) on the ribosome after 

the release of the nascent peptide chain448,488. The low MICs mean that the apidaecin concentration 

that is necessary to inhibit the growth of E. coli is remarkably lower than the concentration that is 

required to inhibit the intracellular target of the drug. A possible explanation for this discrepancy 

would be an intracellular accumulation of the peptide. It has been shown that SbmA actively 

transports the peptide through the inner membrane which could create a higher intracellular 

concentration than at the outside of the cell249. However the accumulation would be rather high and 

no such effects were observed in case of other SbmA substrates like Onc112 or Bac7. 

Drosocin and peaeidin 1 (1-31) inhibited the translation reaction only at high concentrations but they 

were not tested in their natural form. The tested drosocin lacked the O-glycosylation at Thr11. This 

has been reported to be required for antibacterial activity in vivo, in its O-glycosylated form it 

showed bacteriacidal activity at concentrations of 0.075 µM against E. coli and of 0.5 µM against M. 
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luteus
366. The finding that 500 µM of non-O-glycosylated drosocin were necessary to inhibit the in 

vitro reaction either means that the modification is necessary for target binding and not (only) for 

uptake into the bacterial cell or that drosocin targets another cellular process than translation. A 

repetition of the experiment with O-glycosylated drosocin has to be performed to finally answer 

whether drosocin acts as a translation inhibitor or not. 300 µM of penaeidin-1 almost inhibited the 

translation reaction. However only the N-terminal 31 (out of 50) amino acids of penaeidin-1 were 

tested as the proline-rich N-terminal domain shows some similarities to translation inhibiting PrAMPs 

(see Figure 10). It would be interesting to see whether full-length penaeidin-1 is able to inhibit a 

translation reaction at lower concentrations than the N-terminus alone.  

The other arthropod peptides and all Xenopus AMPs were tested in their native forms. 2000 µM of 

abaecin were necessary to inhibit the reaction, which is significantly higher than the in vivo MICs of 

25-50 µg/mL (6.4-12.8 µM) published for different E. coli strains405. Another study however found 

that abaecin alone was unable to inhibit the growth of E. coli D31 at concentrations up to 200 µM489. 

Instead a cooperative mode of action was published showing abaecin to work together with 

hymenoptaecin to inhibit bacterial growth when 1.3 µM of hymenoptaecin (which are inactive by 

themselves) are administered in parallel to 20 µM of abaecin. The authors claimed that the pore 

forming hymenoptaecin enables abaecin to enter the bacterial cell to target which they identified as 

the chaperone DnaK.  However DnaK has already been proposed to be the target for other PrAMPs 

and it turned out not to be the primary target for these peptides370,490. To validate the effect of 

abaecin on DnaK it would be interesting to see whether a DnaK knockout strain remains susceptible 

to the hymenoptaecin/abaecin combination, like a DnaK knockout has been reported to have no 

influence on the susceptibility to Onc112 or Api137413.  

In case of metchnikowin, the highest tested concentration of 600 µM did not inhibit the translation 

reaction, a repetition of the experiment using higher concentrations than 600 µM is necessary to 

determine the final IC90. Metchnikowin has been shown to inhibit the growth of Gram-positive 

bacterium Micrococcus luteus and of the filamentous fungus Neurospora crassa at concentrations as 

little as 0.5-1 µM, however in the same study the growth of (Gram-negative) E. coli was not inhibited 

at 5 µM of metchnikowin, the highest concentration tested452. The authors of this study reported a 

bactericidal/fungicidal mechanism of action for the peptide. A further study, describing               

β(1,3)-glucanosyltransferase Gel1 (FgBGT) as the intracellular target for metchnikowin in fungi, 

supports the proposed fungicidal mechanism as this is an enzyme involved in the biosynthesis of 

fungal cell wall454. Metchnikowin can be seen as a potent antifungal peptide, in this role, it has 

already been shown to perform well when introduced into the genome of plants as an alternative to 

chemical fungicides491. On the other hand the mechanism of action against bacteria remains unclear, 
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however, the finding that it is more active against a Gram-positive than against Gram-negative 

bacteria indicates that the cell envelope is the most probable target of this peptide. 

The Xenopus peptides were reported to target the bacterial membrane492,493. It was analyzed 

whether secondary effects on translation occur. High concentrations of magainin-1 (883 µM), CPF-

MW1 (393 µM) and XT-1 (717 µM) inhibited the translation reaction almost completely whereas the 

highest tested concentrations of PGLa-AM1 (233 µM) and Pxt-2 (250 µM) were not able to stop the 

synthesis of the reporter protein. In an earlier publication magainin 2 has been shown to inhibit the 

growth of E. coli at 5 µg/mL and to perform bacteriolysis at 10 µg/mL (4.15 µM), the authors of this 

study claimed a similar activity for magainin-1 without publishing the data372. This is significantly 

lower than the IC90 of 883 µM found for translation inhibition. Another study found an MIC of 

12.5 µM for magainin-1 against E. coli and an MIC of 3 µM for CPF-MW1 against E. coli
493. Again far 

lower than the concentration of CPF-MW1 that was necessary to inhibit the translation reaction.  In a 

study characterizing XT-1, only 6 µM of the peptide were required to inhibit the growth of E. coli in 

vivo 
460. It appears unlikely that magainin-1, CPF-MW1 and XT-1 target protein synthesis in vivo. The 

inhibition at very high concentrations probably results from unspecific binding of the positively 

charged peptides to the negatively charged rRNA of the ribosome rather than from specific 

interaction with a defined binding site. Even if there is a discrete binding site on the ribosome for 

these peptides it would not have a biological significance as the bacterial membranes would be lysed 

long before the concentration would be reached that is necessary to inhibit translation.  For         

PGLa-AM1 and Pxt-2 on the other hand no final conclusions can be drawn, a repetition of the 

experiments with higher concentrations are necessary to determine the IC90s; however the finding 

that more than 200 µM did not inhibit the translation reaction suggests a similar behaviour of the 

peptides compared to the other Xenopus peptides. 

 

4.4.2 Clinical use of antimicrobial peptides is limited by stability of the compounds and possible 

development of cross-resistance 

Some antimicrobial peptides are already in clinical trials494, some of which are derivatives of human 

cathelicidin LL-37. The administration of AMPs similar to contents of the human innate immune 

system includes the danger that bacteria develop resistance mechanisms that would also decrease 

the efficiency of the innate immune system. In a recent study, Staphylococcus aureus was serially 

diluted with LL-37 and the proline-rich antimicrobial peptide PR-39. Both strains became less 

susceptible to human LL-37 and human ß-defensins hBD1 and hBD4 although the amino acid 

sequences of PR-39 and LL-37/ß-defensins show no similarities495. Thickening of the bacterial cell wall 
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and/or reduced uptake of the AMPs during resistance selection were discussed to be reasons for the 

unexpected cross-resistance by the authors. Another possible mechanism of cross-resistance 

between antimicrobial peptides without sequence similarities and different modes of action is the 

secretion of proteases by bacteria. This mechanism of resistance has already been found in some 

pathogens with resistance against LL-37496,497.  

Bacteria might react with changes in their cell membrane and an increase of protease secretion as a 

reaction of a future use of antimicrobial peptides in clinical practice. Therefore, It should be carefully 

examined whether these effects are controllable or whether the clinical use of AMPs in human or 

animal medicine could create pathogens which are even more dangerous than the multi-resistant 

bacteria that should be cured by using AMPs.  

 

4.4.3 Incorporation of peptidomimetics into the amino acid sequence of PrAMPs could generate 

protease stable derivatives 

A major drawback of using peptides as antibiotics (or drugs in general) is their susceptibility to 

proteases which would target orally administered drugs in the digestion system as well as in the 

blood stream. One way of dealing with this problem is the confinement of AMPs as topical agents to 

cure skin infections avoiding contact with many proteases. Some AMPs, like the magainin II 

derivative pexiganan, are in development for this purpose498. A more general approach is the 

creation of protease resistant AMP derivatives. Developments like the semi-synthetic derivatives 

Onc112 and Onc72 have already been reported to exhibit superior protease stability through the 

substitution of two residues with the unnatural amino acids D-arginine or L-ornithine respectively403.  

A recent study, describing the antibacterial effect of the N-terminal arginine-rich domain of the 

hepatitis B core protein points into the same direction. It could be shown that the substitution of all 

natural L-arginines with unnatural D-arginines creates a protease stable derivative while maintaining 

antimicrobial activity against almost all tested strains499. Retro-D-bac7(1-16) did not fulfil this 

expectation, the concentration needed to inhibit the in vitro translation system is 100 times higher 

than for the L-fragment. One possible reason is the conformation of the D-prolines which is not 

compensated by the inversion of the sequence. Further, the N-terminal amino group and the            

C-terminal carboxyl group were not inversed. A new derivative inversing the amino acid sequence, 

changing all amino acids into D-conformation but keeping all prolines in natural L-configuration and 

at their position and also changing the terminal groups would be an interesting next step to create a 

protease stable PrAMP derivative.  
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An alternative to D-amino acids could be the incorporation of other peptidomimetics (see 

Figure 35)500. In depsipeptides/thiodepsipeptides, half of the peptide bonds are replaced by ester 

bonds or thioester bonds respectively. The side chains are still attached to the α-carbon atom of the 

peptide chain. Depsipeptides and thiodepsipeptides are common modification in various natural 

products including antibiotics. Valinomycin for example is a cyclic depsipeptide antibiotic produced 

by Streptomyces spp. inhibiting bacterial growth by transporting potassium across the bacterial 

membrane destroying its potential236,237. The translation inhibitor nosiheptide contains one thioester 

bond and was in use in animal medicine but did not make it into human medicine501,502. In peptoids 

on the other hand, the side-chain is not attached to the α-carbon but to the nitrogen atom of the 

peptide bond whereas another CH2 group is added between the α-carbon and the carbon atom 

forming the peptide bond in ß-peptides503. Peptoids and ß-peptides are not part of natural occurring 

peptides, although ß-alanine is an intermediate product of pantothenic acid synthesis which is 

further used for the production of coenzyme A504,505. But, some synthetic peptides containing            

ß-amino acids have been published. A promising example is the design of a magainin-derivative using 

ß-peptides which has been shown to exhibit similar antimicrobial activity than the parental magainin 

with low hemolytic toxicity506. 

 

 

 

 

 

 

 

 

 

 

Figure 35: Chemical structures of peptidomimetics. L-peptides are the building block of natural proteins. The 

inversion of the stereochemistry leads to D-peptides. In depsipeptide every second peptide bond is replaced by an 

ester bond, in thiodepsipeptides by a thioester bond. The side chain is connected to the nitrogen atoms in 

peptiods507 whereas ß-peptides508 contain an additional CH2 group between the carboxyl group and the CH2 group 

carrying the side chain. 
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Proteases cannot target chains of peptidomimetics making them completely immune. Therefore, 

resistance against peptidomimetic derivatives of AMPs through an increase of protease secretion 

would also be impossible protecting the efficiency of the innate immune system from possible multi-

resistant pathogens that could develop through the application of protease susceptible peptide 

drugs. 

Taken together, complete or partial replacement of natural L-amino acids to peptidomimetics could 

result in new derivatives of antimicrobial peptides with increased stability and without loss of 

antimicrobial activity paving the way for this kind of antibiotics into clinical use.  
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5. Materials and Methods 

 

5.1 Production of chemically competent cells 

100 mL of LB medium were inoculated with 1 mL of overnight culture. Bacteria were grown at 

37°C/150 rpm to an OD600 of 0.6-0.8. Cells were harvested at 3000g/15min/4°C and washed once 

with ice-cold 100 mL MgCl2 solution (100 mM). Cells were centrifuged again and resuspended in 2 mL 

of ice-cold 100 mM CaCl2/15% glycerol solution. The suspension was aliquoted into 100 µL portions 

and zip frozen in liquid nitrogen to be stored at -80°C. 

 

5.2 Production of electro-competent cells 

100 mL of LB medium were inoculated with 1 mL of overnight culture. Cells were grown to an OD600 

of 0.4-0.5 and harvested at 3000g/15 min/4°C. The pellet was washed twice with 100 mL of ice-cold 

water and once with 50 mL of 10% glycerol. The pellet was resuspended in 200 µL 10 % glycerol, 

aliquoted into 40 µL fraction and snap-frozen in liquid nitrogen to be stored at -80°C. 

 

5.3 Heat shock transformation 

Chemically competent cells were thawed on ice. 1 µL of plasmid DNA (20-100 ng) was added. 

Bacteria were incubated for 30 min on ice, heat-shocked for 30 s at 42 °C in a Thermomixer 

(Eppendorf) and incubated for another 2 min on ice. 800 μL of LB medium (see Buffers and Media) 

were added before another incubation step of 60 min at 37 °C followed. Cells were either plated on 

LB-Agar Plates or directly used to inoculate an overnight culture in liquid medium. 

 

5.4 Transformation with the electroporation method 

Electro-competent cells were thawed and added into a 0.1 cm Gene Pulser® (BIO RAD Cat. No. 

1652083) cuvette. One µL of plasmid DNA or PCR product were added. The cuvette was incubated on 

ice for 2 min, dried and adjusted into an E. coli pulser (BIO RAD Cat. No. 165-2104). One electroshock 

at 1.8 kV was performed. Cells were resuspended in 750 µL of pre-warmed (37°C) LB medium and 

incubated at 37°C/700 rpm.  
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5.5 Megaprimer PCR of whole plasmid (MEGAWHOP) cloning 

Primers containing overlaps with the desired gene and the target plasmid were designed. Genomic 

DNA or lysed bacteria were taken as template for PCR to create megaprimer. Genomic DNA of 

Streptomyces rimosus subsp. rimosus ATCC 10970 (DSM No. 40260) was used as template for OtrA 

cloning. In a second PCR, the megaprimer were incorporated into the target plasmid. PCR was 

performed using peqSTAR Thermocycler (peqlabs), Xtreme KOD HOT-polymerase (Merck Cat. No. 

71975-3) was used for both PCRs. The PCR product was incubated for 3h with 35 units of DpnI (NEB 

Cat. No. R0176L) at 37°C/750rpm. PCR purification was performed using QIAquick® PCR Purification 

Kit 250 (QIAGEN Cat. No. 28106) following the instructions of the manufacturer. 50-80ng of purified 

PCR product were transformed into E. coli XL-1 blue (NEB Cat. No. C3019I) to inoculate 5 mL of LB 

medium. The culture was grown over night at 37°C/150rpm. Plasmids were isolated and the success 

of the insertion was observed by sequencing. 

 

5.6 Site directed mutagenesis 

The PCR primers containing the desired mutation were designed following the suggestions of the 

manufacturer of the Polymerase. PCR was performed using peqSTAR Thermocycler (peqlabs), Xtreme 

KOD HOT-polymerase (Merck Cat. No. 71975-3) was used. PCR product was incubated for 3h with 35 

units of DpnI (NEB Cat. No. R0176L) at 37°C/750rpm. PCR purification was performed using 

QIAquick® PCR Purification Kit 250 (QIAGEN Cat. No. 28106) following the instructions of the 

manufacturer. 50-80ng of purified PCR were transformed into E. coli XL-1 blue (NEB Cat. No. C3019I) 

to inoculate 5 mL of LB medium. The culture was grown over night at 37°C/150rpm. Plasmids were 

isolated and the success of the mutagenesis was observed by sequencing. 

 

5.7 MIC determination  

Overnight cultures were diluted 1:100 in fresh LB medium, 1 mM of IPTG and/or antibiotics were 

added when needed. 200 µL of test cultures were transferred into a well of a 96 well Microtest plate 

(SARSTEDT REF 82.1581). 10 µL of antibiotic solution were added. Plates were incubated at 

37°C/400rpm in a thermomixer (Eppendorf) for 17-20h. OD600 was measured in a TECAN infinite 1000 

plate reader. 
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5.8 Test purification of proteins 

100 mL of LB medium were inoculated with 1 mL of overnight culture. Cells were grown at 37°C/150 

rpm to an OD600 of 0.5-0.6. Expression of the desired protein was started by adding 1mM of IPTG. 

Cells were harvested after 2h of further incubation by centrifugation at 3000g/4°C. 630 µL of lysis 

buffer (see Buffers and Media), 70µL of lysozyme (10 mg/mL; Sigma Aldrich Cat. No. L6876-25G) and 

2 µL of DNase I (10 mg/mL) were added. Mixture was incubated one ice for 30 min and frozen over 

night at -80°C. After thawing, purification was performed using QIAprep Spin® Miniprep Kit (250) 

(QIAGEN Cat. No. 27106) kit following the instructions of the manufacturer. Samples were analyzed 

via SDS Page. 

 

5.9 Large scale protein purification 

1.6 L of LB medium were inoculated with 20 mL of overnight culture. 1% of ethanol was added. Cells 

were grown to an OD600 of 0.3-0.4 at 37°C/120rpm. Temperature was reduced to 30°C. At an OD600 of 

0.5-0.6 over-expression was started by addition of 1 mM of IPTG and stopped after 2h. Cells were 

harvested by centrifugation at 3000g/20min/4°C. Cells were resuspended in 25 mL of lysis buffer and 

lyzed using a MICROFLUIDICS microfluidizer at 18000 psi in two passages. Lysate was centrifuged in 

an SS34 rotor at 17000g/15min/4°C. Supernatant was mixed with 1 mL of Protino® Ni-NTA beads 

(Machery-Nagel Cat. No. 45400.25) and incubated for 1 hour at 4°C under permanent mixing. The 

suspension was transferred to a chromatography column (BioRad Cat. No. 7321010). The beads were 

washed twice with 5 mL of washing buffer and eluted twice with 1 mL of elution buffer. Elutions 

were pooled for size exclusion chromatography using a High load 16/60 Superdex 75 column (GE 

Healthcare Product code 28989333). Samples of all steps of the Ni2+ purification and all relevant gel 

filtration fractions were analyzed via SDS Page. Fractions containing clean protein were pooled and 

centrifuged through a centrifuge filter (Merck-Millipore Cat. No. UFC803008) to raise the 

concentration. The final concentration of the protein was determined by absorbance measurement 

at 280 nm509.  

 

5.10 SDS Page 

SDS PAGES510 were performed with 15% acrylamide gels at 180V for one hour. The gels were stained 

for 15 minutes in EtOH-Comassie staining solution; destained with destain solution containing 50% of 

EtOH and 10 % of acetic acid until clean bands appeared.  
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5.11 Isolation of ribosomes 

The isolation of ribosomes was based on earlier protocols166,511. 1.6 L of LB medium were inoculated 

with 20 mL of overnight culture. Cells were grown at 37°C/120rpm to an OD600 of 1.8 and harvested 

through centrifugation at 3000g/20min/4°C. Cell pellet was resuspended in 30 mL of cell buffer and 

lyzed in a MICROFLUIDICS microfluidizer at 18000 psi in two passages. DNAse I was added to a final 

concentration of 0.2 µg/mL and incubated on ice for 30 min. Lysate was centrifuged at 14000g/30 

min/4°C. Supernatant was mixed with 30% sucrose cushion solution and centrifuged at 

20000rpm/30min in a Ti-70 rotor. Supernatant was overlaid in Ti45 tubes over a 7mL 30% sucrose 

solution and centrifuged at 44000rpm/25h/4°C in a Ti45 rotor. Pellets were resuspended in 1mL 

sucrose gradient buffer and loaded on a 10-40% sucrose gradient to be centrifuged at 

19000rpm/14h/4°C in a SW40 rotor. The gradient was fractionated on a Piston gradient Fractionator 

(Biocomp) and pelleted at 41600rpm/19.7h/4°C in a Ti45 rotor. Pellets were resuspended in 1 mL of 

sucrose gradient buffer. The concentration was determined measuring the OD260. 

 

5.12 Phosphatase assays  

Phosphatase assays to quantify GTPase activity were performed using Malachite Green Phosphate 

Assay Kit423 (BioAssaySystems Cat. No. POMG-25H). Standard curve was created following the 

instructions of the manufacturer. Each reaction contained 30 nM of purified ribosomes and 60 nM of 

purified; nuclease free water was added to a final volume of 70 µL. The reaction was started by the 

addition of 10 µL of 160 mM GTP. Reactions were incubated for 10, 20, 30, 45, 60, 75 and 90 min at 

room temperature. 20 µL of working solution were added. After 30 min of further incubation at room 

temperature, OD620 was measured in a Tecan INFINITE M1000 plate reader.  

 

5.13 Mutation of the ribosomal RNA 

Mutations were introduced into the plasmid pAM552476,478,512 via site directed mutagenesis. The 

plasmid was transformed into chemically competent E. coli SQ171 ΔtolC
512 and plated on LB-Agar 

containing 100 µg/mL ampicillin. Single colonies were picked and transferred on a LB-Agar plate with 

5% sucrose+100µg/mL ampicillin and on a LB-Agar plate containing 50 µg/mL kanamycin. Colonies 

that grew on the sucrose/ampicillin plate but not on the kanamycin plate were selected to inoculate 

5 mL of LB medium containing the same sucrose/ampicillin concentration and grown overnight. The 

presence of the mutation was verified by sequencing. 
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5.14 S12 extract preparation 

The preparation of S12 extracts was based on an earlier protocol380. 100 mL of medium were 

inoculated with one mL of overnight culture. If the extract was prepared from E. coli containing rRNA 

mutations the culture was grown in LB medium with additional 5% sucrose. Cells were incubated at 

37°C/150rpm to an OD600 of 0.7-0.9. The culture was harvested via centrifugation at 

3000g/4°C/20min. Washed twice with Buffer A and resuspended in 2 mL of Buffer B. E. coli cells were 

lyzed using Branson Sonifier 250 with Output control set to 5 and Duty Cycle set to 30%. Lysate was 

centrifuged for 10 min at 12000g. Supernatant was aliquoted into 100µL fraction and zip-frozen in 

liquid nitrogen. S12 extracts were stored at -80°C. 

 

5.15 In vitro transcription 

Firefly luciferase (Fluc) on the plasmid pIVEX 2.3 was used as a template to create Fluc PCR product 

using primers containing overlaps with the luciferase and a 5´ T7 promoter sequence (see list of 

primers 64). Transcription reaction mixture containing 40 mM Tris (pH 7.9); 2.5 mM Spermidine; 26 

mM MgCl2; 0.01% Triton X-100; 5 mM DTT; 6,25 mM of each XTP; 4 µL T7-Polymerase were 

assembled on ice. Fluc PCR Product was added to a final volume of 100 µL. The mixture was 

incubated for 4 hours at 30°C with 750 of shaking in a Thermomixer (Eppendorf). 150 µL of nuclease 

free water and 125 µL of LiCl solution (7.5 mM LiCl + 50 mM EDTA) were added. The mixture was 

frozen over night at -80°C. After thawing it was centrifuged for 20 min at 14000 rpm/4°C in an 

Eppendorf centrifuge 5415R. The pellet was washed with 1 mL of 70% ethanol and centrifuged again 

for 10 min at 14000 rpm/4°C for 10 min. The dried pellet was dissolved in nuclease free water to gain 

a final concentration of 200 ng/µL of mRNA.  

 

5.16 In vitro Translation on the basis of an S12 extract 

Reaction mix was generated on ice containing 0.24 M hepes (pH=8.2); 65 mM Glucose; 2.5 mM PEG 

8000; 4.4 µg tRNA; 1.2 mM ATP; 0.85 mM; 0.85 µg folinic acid; 0.05 M DTT; 90 mM potassium 

glutamate; 80 mM ammonium acetate; 20 mM K2HPO4; 2.1 mM Cysteine; 1.8 mM of each amino 

acid; 7.5 mM MgOAc; 6.75 µL cell extract; 175 pmol Fluc mRNA. All reactions were aliquoted into PCR 

tubes to a final volume of 24 μL. 1 µL Antibiotic and/or protein solutions were added. Reaction time 

was 60 min at 30°C/750°C. 5 μL of each reaction were taken as sample and pipetted into a well of a 

96 well plate (Greiner-bio-one REF 655095) containing 5 μL of Kanamycin (50 mg/mL). 40 μL of Fluc 

Substrate (Promega Cat. No. E1501) were added to each well, measurement of the activity of the 
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produced luciferase was done by measuring emitted light of luciferin oxidation catalyzed by the 

luciferase in a TECAN infinite M1000 plate reader.   

 

5.17 In vitro transcription/translation using Rapid Translation Kit 

The coupled in vitro transcription/translation method was based on earlier protocols513,514. The RTS 

100 E. coli HY kit was delivered by biotechRabbit (Cat. No. BR1400201). 130 pmol of PCR product (ds 

DNA) of Firefly luciferase was produced using primers 64 (see list of primers). A promoter for T7-

bacteriophage DNA dependent RNA polymerase was cloned before the sequence for the luciferase 

(see plasmid map of Fluc in pIVEX 2.3). Reaction mixes were assembled following the instructions of 

the manufacturer and aliquoted to 5µL reactions. 1µL of antibiotic solution was added to each 

reaction. The mixtures were incubated in an Eppendorf Thermomixer R for 1 h at 30°C/750 rpm. 0.5 

µL of each reaction was taken as sample and added into a well of a 96 well plate (Greiner Bio-One 

ref. 655207) containing 7.5 µL of Kanamycin (50mg/mL) solution. 40 μL of Fluc Substrate (Promega 

Cat. No. E1501) were added to each well, measurement of the activity of the produced luciferase was 

done by measuring emitted light of luciferin oxidation catalyzed by the luciferase in a TECAN infinite 

M1000 plate reader. 

   

5.18 In vitro translation using Rabbit Reticulocyte Lysate system 

The Rabbit Reticulocyte Lysate kit was delivered by Promega (Cat. No. L4960). Reaction mixture was 

assembled following the instructions of the manufacturer, and aliquoted to single 5 µL reactions. 1µL 

of antibiotic solution was added to every reaction. The mixtures were incubated in an Eppendorf 

Thermomixer R for 1H at 30°C/400 rpm. One µL of each reaction was taken as sample and 

transferred into wells of a 96 well plate (Greiner Bio-One ref. 655207) containing 7 µL of Kanamycin 

solution (50mg/mL). 40 μL of Fluc Substrate (Promega Cat. No. E1501) were added to each well, 

measurement of the activity of the produced luciferase was done by measuring emitted light of 

luciferin oxidation catalyzed by the luciferase in a TECAN infinite M1000 plate reader. 
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5.19 Random mutagenesis of TetM 

Primers containing 15 random nucleotides instead of the sequence of loop III of domain IV and an 

overlap with the sequences 5´and 3´of loop 3 (see list of primers No 1 and No 10) were used for 

MEGAWHOP. TetM on the plasmid pet-46 LIC was used as template to create a library of loop 3 

mutants. 

 

5.20 Tigecycline serial dilution 

TetM wild-type on pET-46 LIC and TetM containing the random mutagenesis of loop III of domain IV 

were transformed into one aliquot of BL21 DE3 (NEB Cat. No. C2527I) each. The resulting cultures 

were used to inoculate 20 mL of LB medium containing 0.1 µg/mL of tigecycline. Culture was grown 

overnight. 1 mL of this culture was used to inoculate another 20 mL of fresh LB medium, tigecycline 

concentration was increased by 0.1 µg/mL. Procedure was repeated until the addition of further 

tigecycline inhibited the growth of the bacteria. To identify the mutations responsible for the 

resistance, the whole genomes of the serial dilution strains were sequenced at Helmholtz Zentrum 

für Infektionsforschung Saarbrücken by the laboratory of Prof. Dr. Rolf Müller515. 

 

5.21 Thermorubin serial dilution 

20 mL of LB medium were inoculated with one mL of E. coli BW25113 ΔsbmA overnight culture. 

Thermorubin was added to a final concentration of 5 µg/mL (25% of MIC). Culture was grown 

overnight. 1 mL of this culture was used to inoculate another 20 mL of fresh LB medium, 

Thermorubin concentration was increased by 0.25 µg/mL. Procedure was repeated until the bacteria 

were able to grow in 80 µg/mL of Thermorubin (=4xMIC). The final strain was therefore named T80. 

 

5.22 Whole genome sequencing of thermorubin resistant strain T80 

Genomic DNA of T80 was isolated using Wizard® Genomic DNA Purification Kit (Promega Cat. No. 

A1120) following the instructions of the manufacturer. DNA was indexed using Accel-NGS 1S Plus 

DNA Library Kit (Swift Biosciences Cat. No. 10024) for bar code primer D710 (TCCGCGAA). The DNA 

was sequenced on an Illumina HighSeq 1500 sequencer. Resulting data were analyzed on the Galaxy 

platform of the Blum work group to identify genomic mutations. 
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5.23 Genomic Mutation 

Genomic mutation was performed using λ-red system474. First, electro competent cells of E. coli 

BW25113 containing pdk46 were produced. The emrR gene was cloned into pQE-70 with the Q150P 

mutation observed in T80´s genome sequencing with a Kanamycin-resistance cassette in front of the 

gene. PCR primers with overlaps for the construct on pQE-70 and the target locus inside of the E. coli 

genome were designed (see list of primers No 71). PCR product was transformed into E. coli 

BW25113 containing pdk46. Cells were incubated at 30°C for one hour before temperature was 

raised to 37°C. Cells were plated on LB-Agar containing Kanamycin. Success of mutation was 

confirmed by sequencing, the final strain was termed P80. 
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6. Buffers and Media 

6.1 Media 

LB Medium (1L) 

NaCl   10g 

Yeast extract  5g 

Trypton e  10g 

YPTG Medium (1L) 

NaCl   5g 

Yeast extract  10g 

 

Trypton e  16g 

NaH2PO4xH2O  3.04 g 

Na2HPO4  7.12 g 

Glucose  19.8 g 

YP Medium (1L) 

Yeast extract  10 g 

Trypton e  20 g 

 

6.2 Protein purification buffers 

 

Lysis buffer 

NaCl   300 mM 

NaH2PO4  50 mM pH=7,4 

Imidazole  5mM 

Wash buffer 

NaCl   300 mM 

NaH2PO4  50 mM  pH=7.4 

Imidazole  10mM 

 

 

 

Elution buffer 

NaCl   300 mM 

NaH2PO4  50 mM  pH=7.4 

Imidazole  500mM 

Gelfiltration buffer 

Hepes   50 mM pH= 7.8 

KCl   100 mM 

NaCl   200 mM 

MgCl2   10 mM 

Glycerol  2% 
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6.3 Ribosome purification buffers 

Cell buffer 

Hepes   10 mM pH=7.8 

MgCl2   30 mM 

NH4Cl   150 mM 

ß-Mercaptoethanol 6 mM 

Sucrose cushion buffer 

Hepes   50 mM pH=7.8 

Mg(CH3COO)2  30 mM 

NH4Cl   500 mM 

Sucrose   1.1 M 

Sucrose gradient buffer A 

Hepes   10 mM pH=7.8 

MgCl2   30 mM 

NH4Cl   75 mM 

ß-Mercaptoethanol 6 mM 

Sucrose   10%/40% 

Sucrose gradient buffer B: Sucrose gradient buffer A without sucrose.    
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7. Plasmid maps 

 

Figure 36: Plasmid map of TetM in the plasmid pET-46 Ek/LIC. The loci of mutations: the G´domain and 

loops I, II and III are highlighted. 

 

Figure 37: Plasmid map of Firefly luciferase (Fluc) in the plasmid pIVEX 2.3. 
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Figure 38: Plasmid map of the λ-red plasmid pdk-46, the three components of the system exo, beta, gam 

are highlighted. 

 

Figure 39: Plasmid map of emrR in the plasmid pQE-70, point mutation Q150P is highlighted. 
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8. List of Primers 

1 Loop Random Mutation 
for. tttaagtatggcttaNNNNNNNNNNNNNNNagtaccccagcagat 

 Loop Random Mutation 
rev. atctgctggggtactNNNNNNNNNNNNNNNtaagccatacttaaa 

2 TetM E173K for. aactttaccgaatctaaacaatgggatacggta 
 TetM E173K rev. taccgtatcccattgtttagattcggtaaagtt 
3 TetM D176K for. gaatctgaacaatggaaaacggtaatagaggga 
 TetM D176K rev. tccctctattaccgttttccattgttcagattc 
4 TetM E180K for. tgggatacggtaataaaaggaaacgatgacctt 
 TetM E180K rev. aaggtcatcgtttccttttattaccgtatccca 
5 TetM E187K for. aacgatgaccttttaaagaaatatatgtccggt 
 TetM E187K rev. accggacatatatttctttaaaaggtcatcgtt 
6 TetM D173K for 2 GTGTGTGTGACGaactttaccgaatctaaacaatgg 
 TetM D173K rev 2 ccattgtttagattcggtaaagttCGTCACACACAC 
7 TetM D176K for 2 gaatctgaacaatggaaaacggtaatagaggg 
 TetM D176K rev 2 ccctctattaccgttttccattgttcagattc 
8 TetM E180K for 2 caatgggatacggtaataaagggaaacgatgaccttttagag 
 TetM E180K rev 2 ctctaaaaggtcatcgtttccctttattaccgtatcccattg 
9 TetM E187K for 2 cgatgaccttttaaagaaatatatgtccggtaaatcattag 
 TetM E187K rev 2 ctaatgatttaccggacatatatttctttaaaaggtcatcg 

10 TetM Random Mutation 
for 2 ctgttttaagtatggcttaNNNNNNagccctgttagtaccccagc 

 TetM Random Mutation 
rev 2 gctggggtactaacagggctNNNNNNtaagccatacttaaaacag 

11 TetM D176K for 3 ccgaatctgaacaatggaagacggtaatagagggaaacg 
 TetM D176K rev 3 cgtttccctctattaccgtcttccattgttcagattcgg 

12 

TetM E187K for 3 
gagggaaacgatgaccttttaaagaaatatatgtccggtaaatca
ttag 

 

TetM E187K rev 3 
ctaatgatttaccggacatatatttctttaaaaggtcatcgtttc
cctc 

13 TetM Random Mutation 
phosphorylated primers 
for P-NNNtatagccctgttagtaccccagcag 

 TetM Random Mutation 
phosphorylated primers 
rev P-taagccatacttaaaacagattttacagtccgtcac 

14 

TetO Y507A for 
ctgttttgaaTatggattgtatgcgagtcctgtaagtacccccgc
ag 

 

TetO Y507A rev 
ctgcgggggtacttacaggactcgcatacaatccatAttcaaaac
ag 

15 

TetO Y506A Y507A for 
ctgttttgaaTatggattggcggcgagtcctgtaagtacccccgc
ag 

 

TetO Y506A Y507A rev 
ctgcgggggtacttacaggactcgccgccaatccatAttcaaaac
ag 

16 

TetS Y512A for 
ctgttttaagtatggtctatatgcgagccctgtcagtacgccagc
ag 

 

TetS Y512A rev 
ctgctggcgtactgacagggctcgcatatagaccatacttaaaac
ag 

17 

TetS Y511A Y512A for 
gatctgttttaagtatggtctagcggcgagccctgtcagtacgcc
agcag 

 TetS Y511A Y512A rev ctgctggcgtactgacagggctcgccgctagaccatacttaaaac
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agatc 

18 TetM D183K for gagggaaacaaggaccttttagagaaatatatgtccg 
 TetM D183K rev ctaaaaggtccttgtttccctctattaccgtatcccattg 

19 

TetM D176K E180K for 
caatggaagacggtaataaagggaaacgatgaccttttagagaaa
tatatg 

 

TetM D176K E180K rev 
gtttccctttattaccgtcttccattgttcagattcggtaaagtt
cgtc 

20 

TetM E180K E187K for 
ggaaacgatgaccttttaaagaaatatatgtccggtaaatcatta
g 

 TetM E180K E187K rev catatatttctttaaaaggtcatcgtttccctttattaccg 
21 

TetO Y507A for 2 
gaaTatggattgtatgcgagtcctgtaagtacccccgcagacttt
c 

 

TetO Y507A rev 2 
ggtacttacaggactcgcatacaatccatAttcaaaacagatttt
aCagtctgtcac 

22 

TetS Y512A for 2 
gttttaagtatggtctatatgcgagccctgtcagtacgccagcag
atttccgaatg 

 

TetS Y512A rev 2 
gctggcgtactgacagggctcgcatatagaccatacttaaaacag
atcttacagtc 

23 

TetM D183K for 2 
gatacggtaatagagggaaacAAGgaccttttagagaaatatatg
tccggtaaatc 

 

TetM D183K rev 2 
catatatttctctaaaaggtcCTTgtttccctctattaccgtatc
ccattgttcag 

24 

TetM E180K E187K for 2 
gtaataAAGggaaacgatgaccttttaAAGaaatatatgtccggt
aaatcattag 

 

TetM E180K E187K rev 2 
gatttaccggacatatatttCTTtaaaaggtcatcgtttccCTTt
attaccg 

25 

TetS Y511A Y512A for 2 
gttttaagtatggtctaGCGGCGagccctgtcagtacgccagcag
atttccgaatg 

 

TetS Y511A Y512A rev 2 
gctggcgtactgacagggctcgccgctagaccatacttaaaacag
atcttacagtc 

26 

TetS Y511A Y512A for 3 
gttttaagtatggtctaGCGGCGagccctgtcagtacgccagcag
atttc 

 

TetS Y511A Y512A rev 3 
gctggcgtactgacagggctcgccgctagaccatacttaaaacag
atc 

27 TetM Y506V for gttttaagtatggcttaGTAtatagccctgttagtaccccagcag 
 

TetM Y506V rev 
gtactaacagggctataTACtaagccatacttaaaacagatttta
c 

28 

TetM Y507R for 
gttttaagtatggcttatacAGAagccctgttagtaccccagcag
attttc 

 

TetM Y507R rev 
gctggggtactaacagggctTCTgtataagccatacttaaaacag
attttac 

29 

TetM Y506V Y507R for 
gttttaagtatggcttaGTAAGAagccctgttagtaccccagcag
attttc 

 

TetM Y506V Y507R rev 
gctggggtactaacagggctTCTTACtaagccatacttaaaacag
attttac 

30 TetM Y506F Y507S V510L 
for 

gtatggcttaTTTTCTagccctTTGagtaccccagcagattttcg
gatgcttg 

 TetM Y506F Y507S V510L 
rev 

catccgaaaatctgctggggtactCAAagggctAGAAAAtaagcc
atacttaaaac 

31 TetM Y506F Y507F V510A 
for 

gtatggcttaTTTTTTagccctGCTagtaccccagcagattttcg
gatgcttg 

 TetM Y506F Y507F V510A 
rev 

catccgaaaatctgctggggtactAGCagggctAAAAAAtaagcc
atacttaaaac 

32 

TetM Y506F Y507S for 
gttttaagtatggcttaTTTTCTagccctgttagtaccccagcag
attttc 

 

TetM Y506F Y507S rev 
gctggggtactaacagggctAGAAAAtaagccatacttaaaacag
attttac 

33 TetM S465Y for cagtatgagagctcggttTATcttggatacttaaatcaatcattt
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c 

 TetM S465Y rev gatttaagtatccaagATAaaccgagctctcatactgcattccac 
34 

TetM L466Y for 
gagagctcggtttctTATggatacttaaatcaatcatttcaaaat
g 

 

TetM L466Y rev 
gattgatttaagtatccATAagaaaccgagctctcatactgcatt
c 

35 

TetM G467Y for 
gagctcggtttctcttTATtacttaaatcaatcatttcaaaatgc
ag 

 

TetM G467Y rev 
gaaatgattgatttaagtaATAaagagaaaccgagctctcatact
gcattc 

36 TetM Y468F for ctcggtttctcttggaTTTttaaatcaatcatttcaaaatgcag 
 TetM Y468F rev gaaatgattgatttaaAAAtccaagagaaaccgagctctcatac 

37 

TetM L466G for 
gagagctcggtttctGGCggatacttaaatcaatcatttcaaaat
g 

 

TetM L466G rev 
gattgatttaagtatccGCCagaaaccgagctctcatactgcatt
c 

38 TetM Y468G for ctcggtttctcttggaGGCttaaatcaatcatttcaaaatgcag 
 TetM Y468G rev gaaatgattgatttaaGCCtccaagagaaaccgagctctcatac 

39 

TetM S465Y L466Y for 
cagtatgagagctcggttTATTATggatacttaaatcaatcattt
c 

 TetM S465Y L466Y rev gatttaagtatccATAATAaaccgagctctcatactgcattccac 
40 TetM L466G Y468G for ctcggtttctGGCggaGGCttaaatcaatcatttcaaaatgcag 
 TetM L466G Y468G rev ctgcattttgaaatgattgatttaaGCCtccGCCagaaaccgag 

41 TetM Y506C for gttttaagtatggcttaTGCtatagccctgttagtaccccagcag 
 

TetM Y506C rev 
gtactaacagggctataGCAtaagccatacttaaaacagatttta
c 

42 

TetM Y507C ro 
gttttaagtatggcttatacTGCagccctgttagtaccccagcag
attttc 

 

TetM Y507C rev 
ctggggtactaacagggctGCAgtataagccatacttaaaacaga
ttttac 

43 TetM S508C for gtatggcttatactatTGCcctgttagtaccccagcagattttc 
 Tetm S508C rev ctggggtactaacaggGCAatagtataagccatacttaaaacag 

44 TetM P509C for gcttatactatagcTGCgttagtaccccagcagattttcggatg 
 

TetM P509C rev 
ctgctggggtactaacGCAgctatagtataagccatacttaaaac
ag 

45 

TetM V510C for 
cttatactatagccctTGCagtaccccagcagattttcggatgct
tg 

 

TetM V510C rev 
gaaaatctgctggggtactGCAagggctatagtataagccatact
taaaac 

46 

TetM S511C for 
cttatactatagccctgttTGCaccccagcagattttcggatgct
tgctc 

 TetM S511C rev gaaaatctgctggggtGCAaacagggctatagtataagccatac 
47 

TetM F635A for 
gataaagtacgatatatgGCGaataaaataacttagaccgggctt
c 

 

TetM F635A rev 
gtctaagttattttattCGCcatatatcgtactttatctatccga
c 

48 

TetM F635D for 
gataaagtacgatatatgGATaataaaataacttagaccgggctt
c 

 

TetM F635D rev 
gtctaagttattttattATCcatatatcgtactttatctatccga
c 

49 

TetM N636A for 
gataaagtacgatatatgttcGCGaaaataacttagaccgggctt
ctcctc 

 

TetM N636A rev 
gaagcccggtctaagttattttCGCgaacatatatcgtactttat
ctatccgac 

50 

TetM N636D for 
gataaagtacgatatatgttcGATaaaataacttagaccgggctt
ctcctc 
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TetM N636D rev 
gaagcccggtctaagttattttATCgaacatatatcgtactttat
ctatccgac 

51 

TetM W442A for 
gtgccgccaaatcctttcGCGgcttccattggtttatctgtatca
ccgcttc 

 

TetM W442A rev 
gataaaccaatggaagcCGCgaaaggatttggcggcacttcgatg
tgaatg 

52 

TetM W442C for 
gtgccgccaaatcctttcTGCgcttccattggtttatctgtatca
ccgcttc 

 

TetM W442C rev 
gataaaccaatggaagcGCAgaaaggatttggcggcacttcgatg
tgaatg 

53 

TetM W442H for 
gtgccgccaaatcctttcCATgcttccattggtttatctgtatca
ccgcttc 

 

TetM W442H rev 
gataaaccaatggaagcATGgaaaggatttggcggcacttcgatg
tgaatg 

54 

TetM V510R for 
cttatactatagccctCGTagtaccccagcagattttcggatgct
tg 

 

TetM V510R rev 
gaaaatctgctggggtactACGagggctatagtataagccatact
taaaac 

55 

TetM F516A for 
gttagtaccccagcagatGCGcggatgcttgctcctattgtattg
gaac 

 

TetM F516A rev 
caataggagcaagcatccgCGCatctgctggggtactaacagggc
tatag 

56 

TetM F516D for 
gttagtaccccagcagatGATcggatgcttgctcctattgtattg
gaac 

 

TetM F516D rev 
caataggagcaagcatccgATCatctgctggggtactaacagggc
tatag 

57 

TetM K637A for 
gtacgatatatgttcaatGCGataacttagaccgggcttctcctc
aaatc 

 

TetM K637A rev 
gaagcccggtctaagttatCGCattgaacatatatcgtactttat
ctatc 

58 

TetM K637D for 
gtacgatatatgttcaatGATataacttagaccgggcttctcctc
aaatc 

 

TetM K637D rev 
gaagcccggtctaagttatATCattgaacatatatcgtactttat
ctatc 

59 

TetM P440A for 
catcgaagtgccgccaaatGCGttctgggcttccattggtttatc
tg 

 

Tetm P440A rev 
gataaaccaatggaagcccagaaCGCatttggcggcacttcgatg
tgaatg 

60 

TetM G467A for 
gagctcggtttctcttGCGtacttaaatcaatcatttcaaaatgc
ag 

 

TetM G467A rev 
gaaatgattgatttaagtaCGCaagagaaaccgagctctcatact
gcattc 

61 

TetM F516A II for 
gttagtaccccagcagatGCGcggatgcttgctcctattgtattg
gaac 

 

TetM F516A II rev 
caataggagcaagcatccgCGCatctgctggggtactaacagggc
tatag 

62 

TetM F516D II for 
gttagtaccccagcagatGATcggatgcttgctcctattgtattg
gaac 

 

TetM F516D II rev 
caataggagcaagcatccgATCatctgctggggtactaacagggc
tatag 

63 TetM L466G G467A Y468G 
for 

gagctcggtttctGGCGCGGGCttaaatcaatcatttcaaaatgc
ag 

 TetM L466G G467A Y468G 
rev 

gaaatgattgatttaaGCCCGCGCCagaaaccgagctctcatact
gcattc 

64 Fluc PCR product for 
IVT cgagatctcgatcccgc 

 Fluc PCR product for 
IVT ttattaatgatgatgatgatgatg 

65 TetM S465G for cagtatgagagctcggttGGCcttggatacttaaatcaatcattt
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c 

 TetM S465G rev gatttaagtatccaagGCCaaccgagctctcatactgcattccac 
66 AcrB megaprimer 

production  for 
CAATTTCACACAGAATTCATTAAAGAGGAGAAATTAAGCATGCat
gcctaatttctttatcgatc 

 into pQE-70                 
rev 

GCTAATTAAGCTTAGTGATGGTGGTGGTGATGAGATCTGGATCCT
Ctcaatgatgatcgacagtatg 

67 AcrB T329S for gtttacccatacgacAGCacgccgttcgtgaaaatctctattc 
 AcrB T329S rev gattttcacgaacggcgtGCTgtcgtatgggtaaacaattttcag 

68 AcrB Seq 2 cagcttaacgcctctattattg 
69 AcrB removal of double 

start codon                       
for 

CATTAAAGAGGAGAAATTAAGCatgcctaatttctttatcgatcg
cc 

                             
rev gataaagaaattaggcatGCTTAATTTCTCCTCTTTAATGAATTC 

70 AcrB removal of Stop 
codons before his-tag              
for catactgtcgatcatcatGAGGATCCAGATCTCATCACCACCAC 

                             
rev GAGATCTGGATCCTCatgatgatcgacagtatggctgtgctc 

71 emrR megaprimer for 
cloning for 

CAGAATTCATTAAAGAGGAGAAATTAAGCATGCATGGATAGTTCG
TTTACGCCCATTG 

 Into pQE-70                 
rev 

CTTAGTGATGGTGGTGGTGATGAGATCTGGATCCTCGCTCATCGC
TTCGAGAACCACACCGTC 

72 

emrR A449C for 
CAGCACAACAGAAAAAGATCCGCTCGAGCAAATCACCCGCAAATT
GCTC 

 

emrR A449C rev 
CAATTTGCGGGTGATTTGCTCGAGCgGATCTTTTTCTGTTGTGCT
GAGCGCGGACCAG 

73 

emrR his 
GTTCTCGAAGCGATGAGCGGATCCAGATCTCATCACCACCACCAT
C 

 

 
GTGATGAGATCTGGATCcgCTCATCGCTTCGAGAACCACAC 

74 emrR genomic A449C 
Mutation for 

TCA ACT CTG GTC CGC GCT CAG CAC AAC AGA AAA 
GGA CCC CCT TGA ACA 

 emrR genomic A449C 
Mutation rev 

AAT CAC CCG CAA ATT GCT CTC CCG 

75 

emrR T7 sequencing for 
TAA TAC GAC TCA CTA TAG GG 
ATGGATAGTTCGTTTACGCCCATTG 

76 emrR T7 term 
sequencing ACCGCTGAGCAATAACTAgGCTCATCGCTTCGAGAACCACAC 

77 pdk46 sequencing CAACTCTCTACTGTTTCTC 
78 emrR ds for ATGGATAGTTCGTTTAC 
 emrR ds rev GCTCATCGCTTCGAGAAC 

79 

Kan Kas emrR for 
CTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTATTCCGGGG
ATCCGTCGACC 

 

Kan Kas emrR rev 
CGAAGCAGCTCCAGCCTACAGAAAAATGATTCTTGTGGGGATTTC
TCGAGGTGA 

 

 

 

 



 

 
90 

 

9. List of software 
 

The thesis was written using Microsoft Office versions 2007 and 2013. 

Figures 1, 3, 4 and 5 were created using Adobe Illustrator Version CS6. 

Figures 2,6,7,8,30 and 35 were created using ACD/ChemSketch. 

ACD/ChemSketch (Freeware), File Version C10E41, Build 76694, Advanced Chemistry Development, 

Inc., Toronto, ON, Canada, www.acdlabs.com, 2015. 

Figures 11, 13, 16, 18, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33 and 34 were created using SigmaPlot 

Version 13.0. 

Amino acid alignments of Figures 9, 10 and 12 were created using Clustal omega:  

https://www.ebi.ac.uk/Tools/msa/clustalo/ 

and were edited in Boxshade:  

https://embnet.vital-it.ch/software/BOX_form.html 

The genome of strain T80 was analyzed using Integrated Genome Viewer version 2.3.94.  

All plasmid maps were created using SnapGene® Viewer version 2.7.1 

The References-chapter of this thesis was created using Citavi version 5.7 
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Appendix A: Amino acid alignment of OtrA isoforms 
 
 

CAA37477.1    1 MNKLNLGILAHVDAGKTSLTERLLHRTGVIDEVGSVDAGTTTTDSMELERQRGITIRSAV 
OtrA3-4       1 MNKLNLGILAHVDAGKTSLTERLLHRTGVIDEVGSVDAGTTTTDSMELERQRGITIRSAV 
 
 
CAA37477.1   61 ATFVLDDLKVNLIDTPGHSDFISEVERALGVLDGAVLVVSAVEGVQPQTRILMRTLRRLG 
OtrA3-4      61 ATFVLDDLKVNLIDTPGHSDFISEVERALGVLDGAVLVVSAVEGVQPQTRILMRTLRRLG 
 
 
CAA37477.1  121 IPTLVFVNKIDRGGARPDGVLREIRDRLTPAAVALSAVADAGTPRARAIALGPDTDPDFA 
OtrA3-4     121 IPTLVFVNKIDRGGARPDGVLREIRDRLTPAAVALSAVADAGTPRARAIALGPDTDPDFA 
 
 
CAA37477.1  181 VRVGELLADHDDAFLTAYLDEEHVLTEKEYAEELAAQTARGLVHPVYFGSALTGEGLDHL 
OtrA3-4     181 VRVGELLADHDDAFLTAYLDEEHVLTEKEYAEELAAQTARGLVHPVYFGSALTGEGLDHL 
 
 
CAA37477.1  241 --------------------------------VHGIRELLPSVHASQDAPLRATVFKVDR 
OtrA3-4     241 VHGIRELLPSVHASQHPVYFGSALTGEGLDHLVHGIRELLPSVHASQDAPLRATVFKVDR 
 
 
CAA37477.1  269 GARGEAVAYLRLVSGTLGTRDSVTLHRVDHTGRVTEHAGRITALRVFEHGSATSETRATA 
OtrA3-4     301 GARGEAVAYLRLVSGTLGTRDSVTLHRVDHTGRVTEHAGRITALRVFEHGSATSETRATA 
 
 
CAA37477.1  329 GDIAQAWGLKDVRVGDRAGHLDGPPPRNFFAPPSLETVIRPERPEEAGRLHAALRMLDEQ 
OtrA3-4     361 GDIAQAWGLKDVRVGDRAGHLDGPPPRNFFAPPSLETVIRPERPEEAGRLHAALRMLDEQ 
 
 
CAA37477.1  389 DPSIDLRQDEENAAGAVVRLYGEVQKEILGSTLAESFGVRVRFDPTRTVCIEKPVGTGEA 
OtrA3-4     421 DPSIDLRQDEENAAGAVVRLYGEVQKEILGSTLAESFGVRVRFDPTRTVCIEKPVGTGEA 
 
 
CAA37477.1  449 LIELDTRTHNYFWGAPWVCASDRPSPARAITFRLAVELGSLPLAFHKAIEETVHTTLRHG 
OtrA3-4     481 LIELDTRTHNYFWATVGLRVG-PAEPGAGITFRLAVELGSLPLAFHKAIEETVHTTLRHG 
 
 
CAA37477.1  509 LYGWQVTDCAVTLTRTGVRSPVSAADDFRKANARLVLMDALGRAGTEVHEPVSSFELEVP 
OtrA3-4     540 LYGWQVTDCAVTLTRTGFASPVSAADDFRKATP-LVLMDALRQAGTEVHEPVSSFELEVP 
 
 
CAA37477.1  569 AARLSPVLAKLAELGATPGVPTAEGDVFRLEGTMPTSLVHDFNQRVPGLTQGEGVFLAEH 
OtrA3-4     599 AARLSPVLAKLAELGATPGVPTAEGDVFRLEGTMPTSLVHDFNQRVPGLTQGEGVFLAEH 
 
 
CAA37477.1  629 RGYRPAVGQPPVRPRPEGPNPLNRDEYILHVLKRV 
OtrA3-4     659 RGYRPAVGQPPVRPRPEGPNPLNRDEYILHVLKRV 
 
 

 

CAA37477.1: originally published sequence for OtrA417. 

OtrA3-4: cloned in this thesis out of genomic DNA of Streptomyces rimosus subsp. rimosus ATCC 

           10970 (DSM No.40260) 
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Appendix B: Amino acid alignment of OtrA and TetM 
 
OtrA    1 MNKLNLGILAHVDAGKTSLTERLLHRTGVIDEVGSVDAGTTTTDSMELERQRGITIRSAV 
TetM    1 MKIINIGVLAHVDAGKTTLTESLLYNSGAITELGSVDKGTTRTDNTLLERQRGITIQTGI 
 
 
OtrA   61 ATFVLDDLKVNLIDTPGHSDFISEVERALGVLDGAVLVVSAVEGVQPQTRILMRTLRRLG 
TetM   61 TSFQWENTKVNIIDTPGHMDFLAEVYRSLSVLDGAILLISAKDGVQAQTRILFHALRKMG 
 
 
OtrA  121 IPTLVFVNKIDRGGARPDGVLREIRDRLTPAAVALSAVADAGTPRARAIALGPDTDPDFA 
TetM  121 IPTIFFINKIDQNGIDLSTVYQDIKEKLSAEIVIKQKVELY--PNVCVTNFTES--E--- 
 
 
OtrA  181 VRVGELLADHDDAFLTAYLDEEHVLTEKEYAEELAAQTARGLVHPVYFGSALTGEGLDHL 
TetM  174 --QWDTVIEGNDDLLEKYMSGKSL-EALELEQEESIRFQNCSLFPLYHGSAKSNIGIDNL 
 
 
OtrA  241 VHGIRELLPSVHASQDAPLRATVFKVDRGARGEAVAYLRLVSGTLGTRDSVTLHRVDHTG 
TetM  231 IEVITNKFYSSTHRGPSELCGNVFKIEYTKKRQRLAYIRLYSGVLHLRDSVRVSEKEKIK 
 
 
OtrA  301 RVTEHAGRITALRVFEHGSATSETRATAGDIAQAWGLKDVRVGDRAGHLDGPPPRNF--F 
TetM  291 V-TE-------MYTSINGELCKIDRAYSGEIVILQN-EFLKLNSVLGDTKLLPQRKKIEN 
 
 
OtrA  359 APPSLETVIRPERPEEAGRLHAALRMLDEQDPSIDLRQDEENAAGAVVRLYGEVQKEILG 
TetM  342 PHPLLQTTVEPSKPEQREMLLDALLEISDSDPLLRYYVDS-TTHEIILSFLGKVQMEVIS 
 
 
OtrA  419 STLAESFGVRVRFDPTRTVCIEKPVGTGEALIELDTRTHNYFWGAPWVCASDRPSPARAI 
TetM  401 ALLQEKYHVEIELKEPTVIYMERPLKNAEYTIHIEVPP-NPFWASIGLSVSPLP-LGSGM 
 
 
OtrA  479 TFRLAVELGSLPLAFHKAIEETVHTTLRHGLYGWQVTDCAVTLTRTGVRSPVSAADDFRK 
TetM  459 QYESSVSLGYLNQSFQNAVMEGIRYGCEQGLYGWNVTDCKICFKYGLYYSPVSTPADFRM 
 
 
OtrA  539 ANARLVLMDALGRAGTEVHEPVSSFELEVPAARLSPVLAKLAELGATPGVPTAEGDVFRL 
TetM  519 L-APIVLEQVLKKAGTELLEPYLSFKIYAPQEYLSRAYNDAPKYCANIVDTQLKNNEVIL 
 
 
OtrA  599 EGTMPTSLVHDFNQRVPGLTQGEGVFLAEHRGYRPAVGQPPVRPRPEGPNPLNRDEYILH 
TetM  578 SGEIPARCIQEYRSDLTFFTNGRSVCLTELKGYHVTTGEPVCQPRRPNSR-IDKVRYMFN 
 
 
OtrA  659 VLKRV 
TetM  637 KIT-- 
 
 

OtrA: GenBank: CAA37477.1 
TetM: GenBank: CAA63530.2 
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Appendix C: Amino acid alignment of TetO and TetM 
 
 
TetO    1 MKIINLGILAHVDAGKTTLTESLLYTSGAIAELGSVDEGTTRTDTMNLERQRGITIQTAV 
TetM    1 MKIINIGVLAHVDAGKTTLTESLLYNSGAITELGSVDKGTTRTDNTLLERQRGITIQTGI 
 
 
TetO   61 TSFQWEDVKVNIIDTPGHMDFLAEVYRSLSVLDGAVLLVSAKDGIQAQTRILFHALQIMK 
TetM   61 TSFQWENTKVNIIDTPGHMDFLAEVYRSLSVLDGAILLISAKDGVQAQTRILFHALRKMG 
 
 
TetO  121 IPTIFFINKIDQEGIDLPMVYREMKAKLSSEIIVKQKVGQHPHINVTDNDDMEQWDAVIM 
TetM  121 IPTIFFINKIDQNGIDLSTVYQDIKEKLSAEIVIKQKVELYPNVCVTNFTESEQWDTVIE 
 
 
TetO  181 GNDELLEKYMSGKPFKMSELEQEENRRFQNGTLFPVYHGSAKNNLGIRQLIEVIASKFYS 
TetM  181 GNDDLLEKYMSGKSLEALELEQEESIRFQNCSLFPLYHGSAKSNIGIDNLIEVITNKFYS 
 
 
TetO  241 STPEGQSELCGQVFKIEYSEKRRRFVYVRIYSGTLHLRDVIRISEKEKIKITEMCVPTNG 
TetM  241 STHRGPSELCGNVFKIEYTKKRQRLAYIRLYSGVLHLRDSVRVSEKEKIKVTEMYTSING 
 
 
TetO  301 ELYSSDTACSGDIVILPNDVLQLNSILGNEILLPQRKFIENPLPMLQTTIAVKKSEQREI 
TetM  301 ELCKIDRAYSGEIVILQNEFLKLNSVLGDTKLLPQRKKIENPHPLLQTTVEPSKPEQREM 
 
 
TetO  361 LLGALTEISDGDPLLKYYVDTTTHEIILSFLGNVQMEVICAILEEKYHVEAEIKEPTVIY 
TetM  361 LLDALLEISDSDPLLRYYVDSTTHEIILSFLGKVQMEVISALLQEKYHVEIELKEPTVIY 
 
 
TetO  421 MERPLRKAEYTIHIEVPPNPFWASVGLSIEPLPIGSGVQYESRVSLGYLNQSFQNAVMEG 
TetM  421 MERPLKNAEYTIHIEVPPNPFWASIGLSVSPLPLGSGMQYESSVSLGYLNQSFQNAVMEG 
 
 
TetO  481 VLYGCEQGLYGWKVTDCKICFEYGLYYSPVSTPADFRLLSPIVLEQALKKAGTELLEPYL 
TetM  481 IRYGCEQGLYGWNVTDCKICFKYGLYYSPVSTPADFRMLAPIVLEQVLKKAGTELLEPYL 
 
 
TetO  541 HFEIYAPQEYLSRAYHDAPRYCADIVSTQIKNDEVILKGEIPARCIQEYRNDLTCFTNGQ 
TetM  541 SFKIYAPQEYLSRAYNDAPKYCANIVDTQLKNNEVILSGEIPARCIQEYRSDLTFFTNGR 
 
 
TetO  601 GVCLTELKGYQPAIGKFICQPRRPNSRIDKVRHMFHKLA 
TetM  601 SVCLTELKGYHVTTGEPVCQPRRPNSRIDKVRYMFNKIT 
 

TetM: GenBank: EFQ13124.1 
TetO: NCBI Reference Sequence: WP_010790859.1 
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Amythiamicin D and Related Thiopeptides as Inhibitors of
the Bacterial Elongation Factor EF-Tu: Modification of the
Amino Acid at Carbon Atom C2 of Ring C Dramatically
Influences Activity
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Introduction

The bacterial elongation factor Tu (EF-Tu) was first described in

1966[1] and plays a crucial role in bacterial protein biosynthe-

sis.[2] EF-Tu is a guanosine triphosphatase (GTPase) and displays

high binding affinity for aminoacyl transfer RNA (aa-tRNA) in

the GTP-bound form.[3] During translation, EF-Tu is responsible

for the delivery of aa-tRNA to the ribosome in the form of a ter-

nary complex with GTP. Upon delivering the correct aa-tRNA to

the ribosome—that is, specific for the mRNA codon—GTP hy-

drolysis occurs, allowing dissociation of EF-Tu from the ribo-

some and accommodation of the aa-tRNA. Peptide bond for-

mation then occurs, incorporating the newly delivered amino

acid into the growing peptide chain.[4]

EF-Tu has been established as a validated drug target; it is

a ubiquitous enzyme essential for bacterial protein biosynthe-

sis.[5] EF-Tu differs significantly from the human elongation

factor eEF-1, guaranteeing desirable target specificity. Current-

ly, four structurally distinct compound classes are known to in-

hibit EF-Tu efficiently, for which prototypical examples are kir-

romycin, enacycloxin IIa, pulvomycin, and GE2270 A (1). It has

been shown that the binding sites of pulvomycin and

GE2270 A are similar,[6] whereas kirromycin[7] and enacyclo-

xin IIa[8] possess a different mode of action. GE2270 A and pul-

vomycin hinder the formation of the ternary complex between

EF-Tu, GTP, and aa-tRNA by binding to domain D2 of the

enzyme. Binding of GE2270 A and related thiopeptides does

not influence the GTPase activity of EF-Tu,[9] in accordance

with the fact that binding of GE2270 A to EF-Tu does not sig-

nificantly affect the catalytically active domain D1 of the pro-

tein.[6] Structural information about the interaction between

GE2270 A and EF-Tu is based on crystallographic data obtained

for EF-Tu·GDPNP·GE2270 A (GDPNP=guanosine-5’-(b,g-imino)-

triphosphate)[6b] and EF-Tu·GDP·GE2270 A (GDP=guanosine di-

phosphate).[6a] Binding occurs essentially along the cyclic thio-

peptide, whereas peripheral substituents are less important for

binding. All known naturally occurring GE2270 analogues,[10]

Three analogues of amythiamicin D, which differ in the substi-

tution pattern at the methine group adjacent to C2 of the thia-

zole ring C, were prepared by de novo total synthesis. In amy-

thiamicin D, this carbon atom is (S)-isopropyl substituted. Two

of the new analogues carry a hydroxymethyl in place of the

isopropyl group, one at an S- (compound 3a) and the other at

an R-configured stereogenic center (3b). The third analogue,

3c, contains a benzyloxymethyl group at an S-configured ste-

reogenic center. Compounds 3b and 3c showed no inhibitory

effect toward various bacterial strains, nor did they influence

the translation of firefly luciferase. In stark contrast, compound

3a inhibited the growth of Gram-positive bacteria Staphylococ-

cus aureus (strains NCTC and Mu50) and Listeria monocytogenes

EGD. In the firefly luciferase assay it proved more potent than

amythiamicin D, and rescue experiments provided evidence

that translation inhibition is due to binding to the bacterial

elongation factor Tu (EF-Tu). The results were rationalized by

structural investigations and by molecular dynamics simula-

tions of the free compounds in solution and bound to the EF-

Tu binding site. The low affinity of compound 3b was attribut-

ed to the absence of a critical hydrogen bond, which stabilizes

the conformation required for binding to EF-Tu. Compound 3c

was shown not to comply with the binding properties of the

binding site.
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which vary in the substituents at rings D and G or at the aspar-

agine-derived amide in the southwestern part of the molecule

(Figure 1), show an inhibitory effect on EF-Tu.[9–11] Because hy-

drolysis of the oxazoline (R at ring G) to a carboxylic acid is

facile, several modification studies were devoted to derivatiza-

tion at this site. In an early study the acid and reduced deriva-

tives of it were converted by conventional nucleophilic dis-

placement reactions into a plethora of compounds.[12] It was

shown that these modifications can lead to a higher aqueous

solubility while retaining biological activity. More recently, the

same thiazole carboxylic acid was degraded by a Curtius rear-

rangement to deliver the respective 4-aminothiazole.[13] Deriva-

tives of this compound showed promising activity toward sev-

eral multi-resistant bacterial strains.[14] Optimization studies led

to the discovery of two compounds with excellent physico-

chemical properties, including high water solubility.[15] Further

development resulted in an investigational drug (LFF571),

which shows superior activity against Clostridium difficile, a bac-

terium responsible for severe infections of the large intes-

tine.[16]

Chemical modifications were also performed at the phenyl-

glycine-derived northeastern part of GE2270 A located at posi-

tion C2 of thiazole ring C.[17] Removal of the a-hydroxybenzyl

group led to a complete loss of activity, whereas some activity

was retained in other derivatives in which the phenyl group

was still present. It was thus concluded that this part is insert-

ed into a lipophilic cavity of EF-Tu. Crystallographic data con-

firmed this view regarding the position of the phenyl group,[6]

but also indicated a hydrogen bond between the hydroxy

group of the phenylglycine to amino acid Glu226 of EF-Tu.

The proximity of this binding site to domain D1 of EF-Tu and

in particular to an a helix (His85–Ala97), the C-terminal end of

which is located in direct proximity to the catalytically active

site, makes this position attractive for further studies.

The research presented herein addresses the latter issue by

studying non-natural thiopeptides[18] for the first time, which

were synthesized de novo and modified at this critical site.

Compounds 3 (Figure 2) are analogues of amythiamicin D (2).

In the amythiamicins,[19] which are closely related to the GE fac-

tors, the residue at C2 of thiazole ring C is derived from

(S)-valine. Hydrogen bond formation with Glu226 of EF-Tu is

therefore unfeasible. However, there is evidence that the amy-

thiamicins also inhibit EF-Tu,[11,20] although they have been

studied less thoroughly than GE2270 A. Compound 3a bears

a hydroxymethyl group at an S-configured stereogenic center,

mimicking the a-hydroxybenzyl group present in GE2270 A.

Compound 3b is an epimer of compound 3a, exhibiting the

non-natural R configuration at the stereogenic center. Com-

pound 3c has a lipophilic benzyloxymethyl (BOM) group in-

stead of the polar hydroxy group.

Results and Discussion

De novo synthesis of thiopeptides 3a–3c

The synthetic strategy[21] toward compounds 3 was based on

earlier work that had culminated in the total synthesis of

GE2270 A[22] and amythiamicins C and D.[23] Key to this strategy

was the use of 2,6-dibromo-3-iodopyridine as pivotal building

block, to which the various thiazolyl fragments were coupled

in successive order.

In this context, the synthesis of the southern fragment 4 of

compounds 3 was reported earlier,[23] and its synthesis is not

discussed further. It is available from (S)-valine in seven steps

and with an overall yield of 22%. While the southern trithiazol-

yl part (rings D–F) and the northern thiazolyl fragment (ring G)

of compounds 2 and 3 are identical, synthetic access to the

eastern part (rings B and C) had to be individually secured by

preparation of compounds 5 (Scheme 1, TBS= tert-butyldime-

thylsilyl).

The Grignard addition to chiral sulfinyl imines has been es-

tablished by Ellman et al. as a useful method to generate chiral

amines,[24] and it was previously shown that 4-bromthiazolyl-2-

magnesium bromide adds efficiently to various imines derived

from enantiomerically pure tert-butylsulfinamide.[23] The auxili-

ary can be cleaved after addition by acidic methanolysis. A pu-

tative starting material for the desired target compound was

consequently an appropriately protected glycolaldehyde. Upon

monosilylation of glycol, the resulting primary alcohol was oxi-

dized to the respective aldehyde by Swern oxidation, which in

turn was immediately converted into the known[25] imine 6 by

Figure 1. Ring numbering in the thiazolyl peptide GE2270 A (1). Figure 2. Molecules 2 and 3a–c, of which the antibiotic activity and mode

of action on EF-Tu was investigated in this study.
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treatment with commercially available (R)-tert-butylsulfinamide

(see Supporting Information for details). Grignard addition of

the above-mentioned thiazolyl magnesium bromide (prepared

by bromine magnesium exchange of 2,4-dibromothiazole with

isopropyl magnesium bromide in THF/Et2O
[26]) proceeded

smoothly and delivered the desired products 7 as a mixture of

diastereomers (Scheme 2). Gratifyingly, their separation by

chromatography was facile, and products 7a and 7b were em-

ployed as individual diastereomers in the next step. Given that

both enantiomeric amino alcohols 8a and 8b were required

for our further investigations, the Grignard addition was not

thoroughly optimized. When performed at �78 8C in a 6:1 sol-

vent mixture of CH2Cl2 and ethers (THF/Et2O), there was no no-

table diastereoselectivity. As previously observed,[23] a larger

fraction of CH2Cl2 was required to achieve diastereoselectivity.

In the present case, the diastereomeric ratio (7a/7b) improved

to 73:27 in a 14:1 mixture of CH2Cl2/ether. The configuration at

the newly formed stereogenic center was determined by the

Mosher method[27] upon removal of the chiral auxiliary (Sup-

porting Information). The major enantiomer of the diastereose-

lective addition was shown to be S-configured. Based on the

conventional model for the Grignard addition to chiral sulfinyl

imines,[24] the result appears surprising, but the unusual behav-

ior of imine 6 had been previously discussed by Barrow

et al.[25]

Because removal of the auxiliary also led to silyl deprotec-

tion, the silyl group was installed again by treatment of alco-

hols 8 with TBSCl/NEt3. Introduction of the BOM group was

facile at this stage and delivered the required amine 9c from

amino alcohol 8a (Supporting Information). Peptide coupling

of amines 9 to 9-fluorenylmethyloxycarbonyl (Fmoc)-protected

glycine (Fmoc-Gly-OH) was achieved by treatment of the cou-

pling partners with bromotri(pyrrolidino)phosphonium hexa-

fluorophosphate (PyBrop).[28] To convert bromides 10 into suit-

able nucleophiles for a regioselective cross-coupling reaction

with the second thiazole fragment,[29] a stannylation was per-

formed with hexamethylditin at 100 8C in toluene using tetra-

kis(triphenylphosphine)palladium as the catalyst.[30] Stannanes

11 underwent a smooth Stille cross-coupling[31] with 2,4-dibro-

mothiazole,[32] which was used in slight excess (1.4 equiv),

yielding the desired dithiazoles 12 in high yields (Scheme 3).

4-Bromodithiazoles 12 were converted into the correspond-

ing stannanes by another palladium-catalyzed stannyl debro-

mination. Removal of the Fmoc protecting group with piperi-

dine delivered the free amines 5 in high yields. The order of

events for the incorporation of building blocks 5 into a pyridine

fragment and the choice of this fragment was based on previ-

ous experience (Scheme 4). In the synthesis of GE2270 A,[22] it

had been found that a macrocyclization by Stille cross-cou-

pling after preceding amide bond formation provides signifi-

cantly higher yields than an initial Stille cross-coupling fol-

lowed by macrolactamization. In the synthesis of amythiami-

cin C,[23] it was found that amide bond formation with the acid

derived from ester 4 is feasible, but the subsequent ring clo-

sure, which requires a regioselective Stille cross-coupling at C2

of the pyridine core, is not sufficiently selective. Therefore,

Scheme 1. Retrosynthetic disconnection of compounds 3a–3c leading to

different eastern fragments 5a–5c, which were to be individually synthe-

sized. See Figure 2 for the configuration in the dashed (a) box.

Scheme 2. Preparation of enantiomeric amino alcohols 8a and 8b via the

respective diastereomeric sulfinyl amines 7a and 7b and their conversion

into the O-protected amino alcohols 9a and 9b.

Scheme 3. Synthesis of stannylated compounds 5a–5c from the respective

bromothiazoles 9a–9c, employing regioselective Stille cross-coupling reac-

tions on 2,4-dibromothiazole as the key step.
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ester 4 was converted according to known method-

ology[23] into the previously described pyridine frag-

ment 13. Coupling of the two fragments to amides

14 was achieved with diphenylphosphoryl azide

(DPPA)[33] in the presence of H�nig’s base. We were

pleased to note that the Stille cross-coupling proto-

col was also successful for substrates 14 and deliv-

ered macrolactams 15 in moderate to good yields.

Cleavage of the tert-butyl ester in ring G was possible

with trifluoroacetic acid (TFA), which also led to

cleavage of the TBS ether. Because TBS deprotection

was relatively slow for substrate 15a leading to side reactions

and a diminished yield, deprotection of substrate 15b was per-

formed by an initial treatment with TFA and subsequent addi-

tion of HF·pyridine. Yields were significantly higher with this

modification than the TFA deprotection used for 15a. Conver-

sion of the free acids into the desired methyl esters 3 was per-

formed with trimethylsilyl diazomethane.

Biological activity and translation assays

To assess the biological activities of amythiamicin D (2) and the

synthetic derivatives 3a–3c, the minimal inhibitory concentra-

tion (MIC) was determined for the Gram-positive bacteria

Staphylococcus aureus (strains NCTC and Mu50), Listeria mono-

cytegenes EGD and Streptococcus pyogenes ATCC 10231, as well

as the Gram-negative bacterium Pseudomonas aeruginosa PA01

and compared with control antibiotics kirromycin and the ami-

noglycoside kanamycin (Table 1).[34] Amythiamicin D was previ-

ously shown to inhibit the growth of many Gram-positive bac-

teria, but not Gram-negative bacteria such as E. coli.[19] We con-

sistently found that compound 2 displays excellent biological

activity against S. aureus and L. monocytogenes with an MIC50

value of 0.32 mm, yet displays no activity against S. pyogenes or

P. aeruginosa. A similar activity profile was observed for the

synthetic derivative 3a, although the MIC values were some-

what higher for the S. aureus and L. monocytogenes strains,

when compared with 2. In contrast, compounds 3b and 3c

displayed no activity against any of the strains tested, even at

concentrations up to 100 mm (Table 1).

Although amythiamicins display poor activity against Gram-

negative organisms such as P. aeruginosa (Table 1) and E. coli,[19]

inhibitory effects of amythiamicins on translation of poly(U)-di-

rected poly(Phe) synthesis using an E. coli in vitro translation

system has been demonstrated.[20] This indicates that the inac-

tivity of amythiamicins in blocking bacterial growth can be re-

lated to other factors such as membrane penetration rather

than a lack of effect on translation. Therefore, to directly assess

the effect of amythiamicin derivatives 3a–3c on protein syn-

thesis, we monitored the translation of firefly luciferase (Fluc)

in an E. coli cell-free in vitro translation system in the presence

of increasing concentrations of amythiamicin D (2) or one of

the synthetic derivatives 3a–3c (Figure 3A). As expected,[20] 2

is a potent inhibitor of protein synthesis with a half-inhibitory

concentration (IC50 value) of ~10 mm. Surprisingly, however, the

synthetic derivative 3a displayed improved inhibitory activity,

with IC50 ~4 mm, at least twofold better than amythiamicin D.

In contrast, derivatives 3b and 3c were completely inactive,

even at high drug concentrations up to 40 mm. This suggests

that the lack of effect of thiopeptides 3b and 3c on the

growth of S. aureus and L. monocytogenes strains (Table 1) may

indeed be due to an inability to inhibit protein synthesis,

rather than an inability to penetrate the cell wall.

The structural similarity between amythiamicins and

GE2270 A (1) suggests that amythiamicins also inhibit transla-

Scheme 4. Peptide bond formation between pyridine core fragment 13 and the individual building blocks 5a–5c (cf. Schemes 1–3) followed by a macrocycli-

zation via Stille cross-coupling and two functional group transformation steps toward products 3a–3c. The hydrolysis of the tert-butyl ester 15b with TFA

was followed by addition of HF·py to complete the desilylation.

Table 1. Minimal inhibitory concentrations of synthetic derivatives 3a–3c relative to

amythiamicin D (2), kirromycin, and kanamycin.

Strain MIC [mm]

kanamycin kirromycin 2 3a 3b 3c

S. aureus NCTC 8325 2.56 >100 0.32 0.64 >100 >100

S. aureus Mu50 >100 >100 0.32 1.28 >100 >100

L. monocytogenes EGD-e 12.8 2.56 0.32 5.12 >100 >100

S. pyogenes ATCC 10231 100 0.32 >100 >100 >100 >100

P. aeruginosa PA01 >100 >100 >100 >100 >100 >100
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tion by interaction with EF-Tu, consistent with the observation

that resistance to amythiamicins results from mutation with

tufA, the gene for EF-Tu.[20] We reasoned that if EF-Tu is the

target of amythiamicin derivative 3a, then increasing the con-

centration of EF-Tu within the in vitro translation assays should

relieve the inhibition of translation resulting from amythiami-

cins. As is apparent in Figure 3B, the presence of 3a at 5 mm

decreases translation to 20%, which can be restored to 100%

by the addition of an extra 5 mm recombinantly purified EF-Tu

protein. As a control, the presence of additional EF-Tu was

shown to have no significant effect on translation of Fluc in

the absence of the drug.

The rescue of translation by the presence of additional EF-Tu

is analogous to the target overexpression mechanisms that are

used by some bacteria to obtain resistance to various antibiot-

ics.[35] Consistently, when the same experiment was performed

in the presence of higher saturating concentrations of 3a

(30 mm), no rescue was observed (Figure 3C).

Next, we rationalized that if amythiamicins do indeed target

EF-Tu, then titrating in an EF-Tu mutant protein that is resistant

to thiopeptides should rescue translation to some extent, even

in the presence of saturating drug concentrations. It has been

reported that mutation of glycine at position 257 to serine in

E. coli EF-Tu confers resistance to the thiopeptide GE2270 A by

allowing simultaneous binding of the antibiotic and aa-tRNA

to EF-Tu.[36] We found that EF-Tu-G257S protein alone inhibits

translation by ~60% at 1 mm (Supporting Information). Never-

theless, in the presence of 30 mm 3a, it was indeed possible to

rescue translation with the EF-Tu-G257S mutant, but not with

wild-type EF-Tu. These findings not only support that the amy-

thiamicin D derivative 3a binds to EF-Tu, but also suggests

that it interacts with EF-Tu in a manner analogous to

GE2770 A, as expected based on the similarity in their chemical

structures.

Structural investigations

The experimental structure of GE2270 A bound to

EF-Tu·GDPNP[6b] was used to investigate the structural basis of

the binding behavior of the synthesized compounds;

GE2270 A binds competitively to the aa-tRNA binding site of

EF-Tu (Figure 4). The binding site of GE2270 A is located at the

interface between domains D1 and D2, where the aa-tRNA

binds with its 3’ end. GE2270 A predominantly binds to D2

with the upper part of its thiazolyl ring contacting D1 in EF-

Tu·GDPNP. Through binding of the antibiotic the interface ge-

ometry is widened, leading to a gap between the two domains

in which the antibiotic compound is bound. Consequently, the

binding site is blocked and thus binding of the 3’ end of the

aa-tRNA is inhibited by steric hindrance (Figure 4).

To elucidate the structural basis for the different binding be-

haviors of compounds 2 and 3a–3c we first investigated their

structures in aqueous solution by preliminary NMR experi-

ments (Supporting Information) and by more extensive molec-

ular dynamics (MD) and docking simulations. In previous

work,[38] it was established by a detailed NMR study of amythia-

micin D that a single hydrogen bond is present between the

carbonyl group at C28 and the proton at N13 (Figure 2), signifi-

cantly stabilizing the ring conformation. The same hydrogen

bond is present in the crystal structure of the EF-Tu·GDPNP·

GE2270 A complex (Figure 4),[6b] indicating that the stabilized

Figure 3. Translation inhibition by amythiamicin D and synthetic derivatives. A) Effect of increasing concentrations of amythiamicin D (2, ^) and the amythia-

micin D derivative 3a (&), 3b (~), and 3c (*) on the translation of firefly luciferase. B) Effect of increasing concentrations of EF-Tu in the presence of 5 mm

amythiamicin D derivatives 3a (^) and absence of drug (^). C) Effect of increasing concentrations of wild-type EF-Tu (^) or EF-Tu-G257S (^) in the presence

of 30 mm amythiamicin D derivatives 3a (^). The firefly luminescence in the absence of drug was assigned as 100%, and error bars display the standard devia-

tion from the mean for three individual experiments.

Figure 4. Structure of EF-Tu·GDPNP (blue/green ribbons) with bound

GE2270 A (red sticks) (PDB ID: 2C77).[6b] The additionally shown Phe-tRNA

strand (grey) was extracted from the corresponding superimposed

EF-Tu·GDPNP·Phe-tRNA structure (PDB ID: 1TTT),[37] and superimposition

was performed based on the EF-Tu backbone.
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ring conformation in solution is retained upon binding to

EF-Tu. As a result of the fixed conformation, the diastereotopic

protons at the methylene group C11 of the side chain between

rings E and F result in distinct peaks, which are clearly separat-

ed in the 1H NMR spectrum (see 1H NMR data in the Support-

ing Information). In stark contrast, a significant peak broaden-

ing was detected for the same protons in the 1H NMR spec-

trum of compound 3b. Only one peak was recorded at room

temperature, which was significantly broadened upon cooling

(Supporting Information). Although this observation could be

explained by other biophysical effects, it is most likely to indi-

cate that the unusual R-stereogenic center at R1 in compound

3b leads to significant changes in the ring conformation and

to a higher degree of ring flexibility, averaging out the environ-

ment of the two protons. The higher flexibility, in turn, appears

to be due to the lack of a hydrogen bond between the car-

bonyl group at C28 and the proton at N13 in 3b.

To further investigate this topic we performed MD simula-

tions of the free compounds in solution and bound to the EF-

Tu binding site. The solution results are shown in Figure 5. For

compounds 2, 3a, and 3c the same predominant ring confor-

mation was observed (Figure 5A–C,E and Supporting Informa-

tion (SI) figure SI4) for all three compounds. This conformation

is very similar to the bound conformation of GE2270 A in EF-Tu

(Figure 4) and is in agreement with the NMR results, as the

ring is stabilized in all three cases by the same hydrogen bond

between the C28 carbonyl group and the proton at N13 as

also observed by Lewis et al.[38] In compound 3b the R-stereo-

genic center at C2 of the thiazole ring C leads to a geometrical

inversion of its bonds to its neighboring ring atoms and its

side chain. This causes a 1808 rotation of the neighboring pep-

tide group containing C28, and thus the ring stabilizing the hy-

drogen bond between N13 and the C28 carbonyl group is

broken (Figure 5D, SI figure SI4d). Therefore, significant altera-

tions in the overall ring conformation can be observed, togeth-

er with a higher flexibility in its side chains. This leads to a dif-

ferent and less planar overall conformation than the ring con-

formation of compounds 2, 3a, and 3c (see Figure 5E,F).

Therefore compound 3b has different steric and interaction re-

quirements for successful protein binding. As the bound con-

formation of GE2270 A is close to the solution structures of

compounds 2, 3a, and 3c and also features the conserved hy-

drogen bond, it can be assumed that adopting this conforma-

tion in solution is a prerequisite for stable binding of the com-

pounds to EF-Tu, which may explain the nonbinding behavior

of compound 3b (Figure 3).

To further substantiate this hypothesis, docking-based MD

simulations were performed for all four compounds using the

docking software DynaDock.[39] As the algorithm is MD based,

it allows full flexibility of the whole system and a proper treat-

ment of the changes in the protein binding site upon ligand

binding. This is important in the case of EF-Tu, as the binding

site is very flexible, and large movements can be observed

upon ligand binding. For the docking simulations the com-

pounds were placed within the binding site based on their so-

lution conformation of the ring system. Conformational sam-

pling of all side chains and rotation and translation of the

whole compound was then performed. In a second step, MD

simulations were performed for the best-docked conforma-

tions to investigate the stability of the predicted complexes.

The final equilibrated structures after MD refinement are

provided in Figure 6 and in the Supporting Information (figur-

es SI1 and SI2). In the case of compounds 2 and 3a, stable

complexes with a bound ring conformation close to GE2270 A

could be obtained, indicating stable, strong binding to EF-Tu

(see SI figure SI1c,d). In both cases a strong hydrogen bond

network was formed between the ring system and the neigh-

boring residues Asn285 and Gln98, which is further stabilized

by an additional hydrogen bond between His67 and Gln98.

The ring-stabilizing intramolecular C28O–N13 hydrogen bond

as observed for GE2270 A was retained (SI figure SI6). In addi-

tion, for the hydroxy group at R1 in compound 3a, fluctuating

hydrogen bonds were observed with Glu226, Thr239, and

Gln98 (SI figure SI2a).

This hydrogen bond pattern is consistent with the pattern

observed for the experimental structure of the EF-Tu·GDPNP·

GE2270 A complex.[6b] In both cases the hydroxy groups of R1

(Figure 1) form additional hydrogen bonds, but the hydrogen

bond pattern of the hydroxy group is more restricted in

GE2270 A due to the steric lock position by the additional

phenyl ring. The hydroxy group in compound 3a is very flexi-

ble and is thus able to form alternative hydrogen bonds

Figure 5. Solution structures of compounds A) 2, B) 3c, C,E) 3a, and D,F) 3b

after 1 ns MD simulation. In E) and F) compounds 3a and 3b are shown

with the ring plane being rotated by 908 with respect to the perspective

shown in parts C) and D).
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throughout the surrounding lipophilic sub-pocket. Conse-

quently, its position fluctuates between the corresponding hy-

drogen bond forming residues.

The nonbinding behavior of compound 3c is more difficult

to explain: During the initial placement of compound 3c only

one favorable binding mode was found in which the BOM side

chain is located in a stretched conformation inside a side

cavity of the binding site (Figure 6c, red ligand conformation).

However, due to the large amount of charged and polar side

chains alongside this cavity, the bound conformation is not

stable during the following MD simulation, leading to an al-

tered ring conformation and movement of the BOM side chain

out of its cavity (Figure 6C, SI figure SI5). Therefore, it is unlike-

ly that BOM moves into this cavity during the real binding pro-

cess, explaining its nonbinding behavior.

In the case of compounds 3b and 3c, the MD simulations

showed that the complexes are not stable, as the compounds

slowly move out of the binding site (Figure 6B,C, SI figure SI5).

In the case of compound 3b this is due to inversion of the

binding geometry at the R-stereogenic center and thus forma-

tion of a bulky ring conformation, which is not compatible

with the rather flat b-sheet-based surface of the binding site

and its hydrogen bonding pattern, thus leading to a movement

of the ligand out of the binding site (Figure 6B, SI figures SI1b

and SI5), consistent with the lack of EF-Tu binding observed

experimentally (Figure 3).

Conclusions

Based on an expedient synthetic access, three analogues (3a–

3c) of amythiamicin D (2) have become available, which

cannot be obtained by degradation studies or any other

means. Translation studies revealed that compound 3a shows

enhanced potency in EF-Tu inhibition relative to the natural

product. The activity of both amythiamicin D and compound

3a could be nicely corroborated based on MD simulations:

Compounds 3b and 3c were inactive in both antibacterial and

in vitro translation assays. The nonbinding behavior of 3b can

be explained by a ring conformation that is—due to the ab-

sence of a crucial hydrogen bond—different from those of the

other thiopeptides. The conformational change is induced by

the stereogenic center at the crucial methine carbon atom ad-

jacent to C2 of thiazole ring C, which is distinct from the 2 and

3a R configuration. The inactivity of 3c is remarkable because

it was envisioned that the lipophilic BOM group would be

complementary to the hydrophobic pocket between domains

D2 and D3. However, due to the size, electrostatic properties,

and flexibility of the BOM group, it appears that it does not

comply with the binding properties of the binding site.

The present study is the first to have used de novo synthe-

sized non-natural thiopeptides. It provides unambiguous evi-

dence that readily available synthetic analogues of the amy-

thiamicins and the GE factors bind efficiently to the previously

described binding site of EF-Tu. In this regard, compound 3a

can serve as a versatile scaffold to study the effect of various

substitution patterns on the activity of EF-Tu and on conforma-

tional changes induced by non-natural ligands.

Experimental Section

Synthetic studies : Experimental procedures and characterization

data (including NMR spectra) for all new compounds are provided

in the Supporting Information. Analytical data for the three amy-

thiamicin derivatives 3a–3c are given below.

Thiopeptide 3a. Rf=0.35 (CH2Cl2/MeOH=10:1, UV); [a]D
20
= +

33.0 cm3g�1dm�1 (c=0.10 in CHCl3) ;
1H NMR (CDCl3, 500 MHz): d=

0.93 (d, 3J=6.5 Hz, 3H), 1.00 (d, 3J=6.7 Hz, 3H), 2.19 (mc, 1H), 2.40

(br s, 2H), 2.62 (br s, 3H), 2.68 (s, 3H), 4.01 (s, 3H), 4.12 (br s, 2H),

4.28 (d, 2J=17.1 Hz, 1H), 4.63 (d, 2J=17.1 Hz, 1H), 5.28–5.34 (m,

2H), 5.47 (s, 1H), 6.76 (br s, 1H), 7.34 (s, 1H), 7.92 (s, 1H), 7.99–8.10

(m, 2H), 8.06 (d, 3J=7.5 Hz, 1H), 8.11 (s, 1H), 8.24–8.35 (m, 4H),

8.37 ppm (d, 3J=7.5 Hz, 1H); 13C NMR (CDCl3, 126 MHz): d=12.6,

18.5, 19.0, 26.3, 35.0, 38.3, 42.8, 49.1, 52.7, 54.7, 55.0, 64.2, 115.8,

118.9, 121.7, 123.8, 125.4, 128.2, 130.6, 139.7, 141.3, 142.2, 148.2,

148.6, 148.8, 150.0, 150.7, 154.0, 160.3, 160.7, 161.4, 161.7, 161.8,

165.1, 166.0, 168.7, 169.2, 169.8, 170.3, 170.4 ppm; IR (ATR): ~n=

2956 (w), 2924 (m), 2850 (w), 1654 (m), 1542 (m), 766 (w), 667 cm�1

Figure 6. Stable binding of A) GE2270 A (1) and unstable binding of compounds B) 3b and C) 3c after 1 ns MD simulations. The final ligand conformations of

the simulations are shown in stick representation colored by atom type. The starting conformations of compounds 3b and 3c are provided in red for com-

parison. The ring-stabilizing hydrogen bond is shown in magenta.
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(w); MS (ESI): m/z (%)=1041 (45), 1019 (100); HRMS (ESI): m/z=

C41H39N12O8S6 [M+H]+ , calcd: 1019.1333, found: 1019.1332.

Thiopeptide 3b. Rf=0.35 (CH2Cl2/MeOH=10:1, UV); [a]D
20
= +

33.0 cm3g�1dm�1 (c=0.10 in CHCl3) ;
1H NMR (CDCl3, 500 MHz): d=

0.93 (d, 3J=6.5 Hz, 3H), 1.00 (d, 3J=6.7 Hz, 3H), 2.19 (mc, 1H), 2.40

(br s, 2H), 2.62 (br s, 3H), 2.68 (s, 3H), 4.01 (s, 3H), 4.12 (br s, 2H),

4.28 (d, 2J=17.1 Hz, 1H), 4.63 (d, 2J=17.1 Hz, 1H), 5.28–5.34 (m,

2H), 5.47 (s, 1H), 6.76 (br s, 1H), 7.34 (s, 1H), 7.92 (s, 1H), 7.99–8.10

(m, 2H), 8.06 (d, 3J=7.5 Hz, 1H), 8.11 (s, 1H), 8.24–8.35 (m, 4H),

8.37 ppm (d, 3J=7.5 Hz, 1H); 13C NMR (CDCl3, 126 MHz): d=12.6,

18.5, 19.0, 26.3, 35.0, 38.3, 42.8, 49.1, 52.7, 54.7, 55.0, 64.2, 115.8,

118.9, 121.7, 123.8, 125.4, 128.2, 130.6, 139.7, 141.3, 142.2, 148.2,

148.6, 148.8, 150.0, 150.7, 154.0, 160.3, 160.7, 161.4, 161.7, 161.8,

165.1, 166.0, 168.7, 169.2, 169.8, 170.3, 170.4 ppm; IR (ATR): ~n=

2956 (w), 2924 (m), 2850 (w), 1654 (m), 1542 (m), 766 (w), 667 cm�1

(w); MS (ESI): m/z (%)=1041 (45), 1019 (100); HRMS (ESI): m/z=

C41H39N12O8S6 [M+H]+ , calcd: 1019.1333, found: 1019.1332.

Thiopeptide 3c. Rf=0.20 (CH2Cl2/MeOH=20:1, UV); [a]D
20
= +

137 cm3g�1dm�1 (c=0.09 in CHCl3) ;
1H NMR (CDCl3, 500 MHz): d=

0.88 (d, 3J=6.8 Hz, 3H), 0.96 (dd, 2J=17.5 Hz, 3J=5.9 Hz, 1H), 1.00

(d, 3J=6.8 Hz, 3H), 2.28 (mc, 1H), 2.63 (d, 3J=4.8 Hz, 3H), 2.65 (s,

3H), 2.70 (dd, 2J=17.5 Hz, 3J=3.5 Hz, 1H), 3.59 (dd, 2J=17.6 Hz,
3J=3.3 Hz, 1H), 3.94 (dd, 2J=10.7 Hz, 3J=3.6 Hz, 1H), 4.01 (dd, 2J=

10.7 Hz, 3J=4.0 Hz, 1H), 4.02 (s, 3H), 4.59 (d, 2J=11.7 Hz, 1H), 4.67

(d, 2J=11.7 Hz, 1H), 4.79 (dd, 2J=17.6 Hz, 3J=9.7 Hz, 1H), 4.84 (d,
2J=6.8 Hz, 1H), 4.89 (d, 2J=6.8 Hz, 1H), 5.23 (dd, 3J=7.9, 4.7 Hz,

1H), 5.39 (mc, 2H), 6.80 (d, 3J=4.8 Hz, 1H), 6.91 (d, 3J=6.0 Hz, 1H),

7.27 (s, 1H), 7.33–7.42 (m, 5H), 7.71 (dd, 3J=9.7, 3.3 Hz, 1H), 8.11

(s, 1H), 8.13 (d, 3J=8.1 Hz, 1H), 8.26 (s, 1H), 8.36 (s, 1H), 8.38 (s,

1H), 8.38 (d, 3J=8.1 Hz, 1H), 8.76 (d, 3J=7.9 Hz, 1H), 8.99 ppm (d,
3J=9.2 Hz, 1H); 13C NMR (CDCl3, 126 MHz): d=12.3, 18.0, 18.4, 26.2,

34.7, 38.3, 41.1, 48.2, 52.6, 53.3, 56.1, 69.9, 70.8, 95.9, 115.0, 118.7,

123.2, 123.8, 125.2, 127.7, 127.9, 128.3, 128.8, 130.5, 137.1, 140.4,

140.5, 142.1, 148.2, 148.4, 148.8, 150.2, 150.3, 150.5, 154.5, 159.8,

161.2, 161.3, 161.8, 162.0, 164.8, 167.6, 168.5, 169.0, 169.7,

170.7 ppm; IR (ATR): ~n=2928 (w), 1658 (s), 1543 (s), 1494 (m), 1210

(m), 1051 (m), 751 cm�1 (s) ; MS (ESI): m/z (%)=1161 (50), 1139

(100), 1107 (4); HRMS (ESI): m/z=C49H47N12O9S6 [M+H]+ , calcd:

1139.1907, found: 1139.1887.

Determination of MIC values :[40] Substances were added in different

concentrations to 1 mL B-broth [yeast extract (5.0 g), tryptic pep-

tone (10.0 g), NaCl (5.0 g), K2HPO4 (1.0 g), H2O (1.0 L)] including

a control with DMSO. The tubes were inoculated with 1�106 bac-

teria per mL (OD: 0.6–0.8) and incubated overnight with shaking at

37 8C. The OD600 value of 1:10 diluted overnight cultures was mea-

sured to determine the minimal inhibitory concentration (MIC). All

experiments were conducted at least in triplicate, and DMSO

served as control.

Reagents, bacterial strains, and vectors : The E. coli EF-Tu gene (tufA)

cloned into pPROEX-Ht-b was a kind gift from Prof. Knud Nierhaus

(MPIMG, Berlin).

In vitro translation assays : In vitro translation assays were per-

formed using a homemade E. coli strain BL21 (Invitrogen) S12

lysate-based system, as described previously.[41] As before,[42] trans-

lation of the firefly luciferase (Fluc) reporter was monitored by

measuring the luciferase activity in the presence and absence of

antibiotic and/or EF-Tu.

Protein expression and purification : The QuikChange Site-directed

Mutagensis kit (Stratagene) was used to generate E. coli EF-Tu

mutant G257S in pPROEX-Ht-b. Wild-type EF-Tu and the G257S

mutant were overexpressed in E. coli strain BL21(DE3) and purified

using the N-terminal histidine tags via Ni-NTA affinity columns

(QIAGEN) and subsequent gel-filtration chromatography on HiLoad

16/60 Superdex 75 prep grade column (Amersham–Pharmacia) in

a buffer containing 20 mm HEPES (pH 7.8) and 150 mm NaCl.

Computational studies : Details of the methods employed for in

silico experiments as well as additional figures (SI1–SI6) and a brief

discussion of the simulation details are provided in the Supporting

Information.
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Abstract: The ribosome and protein synthesis are major 
targets within the cell for inhibition by antibiotics, such 
as the tetracyclines. The tetracycline family of antibiot-
ics represent a large and diverse group of compounds, 
ranging from the naturally produced chlortetracycline, 
introduced into medical usage in the 1940s, to second 
and third generation semi-synthetic derivatives of tetracy-
cline, such as doxycycline, minocycline and more recently 
the glycylcycline tigecycline. Here we describe the mode 
of interaction of tetracyclines with the ribosome and 
mechanism of action of this class of antibiotics to inhibit 
translation. Additionally, we provide an overview of the 
diverse mechanisms by which bacteria obtain resistance 
to tetracyclines, ranging from efflux, drug modification, 
target mutation and the employment of specialized ribo-
some protection proteins.
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Introduction: the ribosome as a 

target for antibiotics

The ribosome is one of the major targets within the bacte-
rial cell for antibiotics, with a diverse range of antibiotics 
that have been discovered and shown to inhibit a variety 
of distinct steps during protein synthesis (Sohmen et al., 
2009a,b; Wilson, 2009, 2013). This wealth of biochemical 
and structural data has demonstrated that the majority of 

antibiotics interact with the functional centers of the ribo-
some: Many clinically important antibiotics bind at or near 
to the peptidyltransferase center (PTC) on the large riboso-
mal subunit where peptide bond formation occurs; these 
include the chloramphenicols, pleuromutilins (retapamu-
lin), oxazolidinones (linezolid), lincosamides (lincomy-
cin), macrolides (erythromycin), ketolides (telithromycin) 
and streptogramins (quinupristin and dalfopristin). On 
the small ribosomal subunit, antibiotic binding sites are 
clustered along the path of the mRNA and tRNAs, for 
example, spectinomycin, streptomycin, aminoglycosides 
(kanamycin), tuberactinomycins (viomycin) and tetra-
cyclines (doxycycline) (Sohmen et  al., 2009a,b; Wilson, 
2009, 2013). This review focuses on the latter class of 
antibiotics, the tetracyclines, which bind at the decoding 
center of the small subunit, i.e., where the codon of the 
mRNA is recognized by the anticodon of the tRNA. There 
have been many excellent reviews on different aspects of 
tetracycline inhibition and tetracycline resistance mecha-
nisms (Roberts, 1996; Chopra and Roberts, 2001; Connell 
et al., 2003b; Thaker et al., 2010; Nelson and Levy, 2011), 
so here we focus on the most recent biochemical and 
structural insights with an emphasis on aspects related 
directly to the translation machinery.

The tetracycline class of antibiotics

Discovery and chemical structure of 

tetracyclines

The first compound belonging to the tetracycline family, 
chlortetracycline, was discovered in 1948 by Dr. Benja-
min Duggar working at Lederle Laboratories (American 
Cyanamid) (Duggar, 1948). Chlortetracycline (Figure  1A) 
was isolated from Streptomyces aureofaciens, and called 
aureomycin because of the gold coloring of the bacteria 
(Duggar, 1948). Shortly afterwards, in the early 1950s 
Alexander Finlay from Pfizer discovered oxytetracycline 
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(Figure 1B), a secondary metabolite of soil bacteria Strep-

tomyces rimosus from the Terra Haute, Indiana, and there-
fore called ‘terramycin’ (Finlay et  al., 1950). Although 
both antibiotics were already on the market, their chemi-
cal structure remained elusive until 1953. The chemi-
cal  structures of chlortetracycline and oxytetra cycline 
(Figure  1A and B) were the results of joint efforts of a 
Pfizer team, together with the Nobel Prize  laureate, Robert 
B. Woodward (Stephens et al., 1952, 1954;  Hochstein et al., 
1953).

The basis of these structures is the DCBA naph-
thacene core comprising four aromatic rings (inset to 
Figure 1), therefore this family of antibiotics was named 
‘tetracyclines’ (Stephens et  al., 1952). It was noted that 
compared with oxytetracycline, chlortetracycline lacks 
a hydroxyl group at the C5 position of ring B and has a 
chlorine atom substituent present at the C7 position of 
ring D (Figure 1A and B). Moreover, as a result of chemical 
modifications, Pfizer-Woodward described C7-deschloro 
derivative of chlortetracycline, with a higher potency 
against bacterial pathogens, which was called ‘tetracy-
cline’ (Figure 1C, teracyn) (Conover et al., 1953), because 
it is the simplest member of the ‘tetracycline’ family of 
antibiotics. Subsequently, tetracycline was also detected 
in the broth of S.  aureofaciens (Backus et  al., 1954) and 

S. rimosus (Perlman et al., 1960), consistent with the dis-
covery that tetracycline is a precursor of chlortetracycline 
( McCormick et al., 1960).

Soon after the discovery of first generation tetracy-
clines, Pfizer and Lederle began developing the second 
generation tetracycline compounds with improved phar-
macokinetic properties, increased antimicrobial potency 
and decreased toxicity. A series of chemical modifications 
of ring C led Pfizer to the semi-synthesis of methacycline 
(Boothe et  al., 1959; Blackwood et  al., 1961), which was 
further used as a precursor for the synthesis of doxycycline 
(Figure 1D; Vibramycin) (C6-deoxy-tetracycline) (Stephens 
et al., 1963), one of the most commonly used tetracyclines 
to date. Additionally, Lederle analyzed biogenesis mutants 
of chlortetracycline in S. aureofaciens, and discovered the 
precursor demeclocycline (C6-demethyl-C7-chlorotetracy-
cline) (McCormick et al., 1957), which was further reduced 
to sancycline (C6-demethyl-C6-deoxytetracycline), a tet-
racycline with the minimal chemical features necessary 
to retain antimicrobial activity ( McCormick et  al., 1960). 
Subsequently, sancycline was converted to C7-amino-
sancycline or minocycline (Figure  1E; Minocin) (Martell 
and Boothe, 1967), the most powerful tetracycline of that 
period, and the last tetracycline to be introduced into the 
market in the 20th century.

Figure 1 Chemical structures of tetracyclines.
Chemical structures of (A–C) first generation tetracyclines. (A) chlortetracycline (aureomycin), (B) oxytetracycline (terracycline) and (C) 
tetracycline (teracyn), (D–E) second generation tetracyclines; (D) doxycycline (vibramycin) and (E) minocycline (minocin), and (F–G) third 
generation tetracyclines; (F) the glycylcycline tigecycline (tygacil), (G) the aminomethylcycline omadacycline (PTK 0796) and (H) the fluoro-
cycline eravacycline (TP-434). The numbers in parentheses indicates the year the antibiotic was discovered/reported. The inset of the DCBA 
naphthacene core provides the carbon atom assignments for rings A–D.
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Emerging antibiotic resistance renewed interest in 
the development of a third generation of tetracyclines. In 
the late 1980s, Lederle (later Wyeth) reopened the tetra-
cycline program. Already known tetracycline derivatives 
were re-evaluated and their action revisited according 
to the recent knowledge about tetracycline action (Tally 
et  al., 1995), leading to a focus on modifications of the 
C7 and C9 positions of ring D of the sancycline core. 
The breakthrough came with the synthesis of a series of 
C9-aminotetracyclines bearing a glycyl moiety (Sum et al., 
1994), leading to the development of a new class of third 
generation tetracyclines, referred to as glycylcyclines. 
A glycyl derivative of minocycline, tigecycline (Figure F; 
Tygacyl) (Petersen et al., 1999), with a t-butyl amine group 
was one of the most potent antimicrobials and is the first 
tetracycline introduced into the market in over 40 years. 
Currently, two additional third generation tetracyclines 
are in phase III clinical trials: Omadacycline (PTK 0796; 
Figure 1G) is a 9-alkylaminomethyl derivative of minocy-
cline (aminomethylcycline) (Draper et al., 2013) and was 
developed by Paratek Pharmaceuticals, which applies 
transition metal-based chemistry to produce tetracycline 
derivatives (Nelson et  al., 2003). Conversely, Tetraphase 
Pharmaceuticals utilized Meyers’ chemistry (Sun et  al., 
2008) to obtain the fluorocycline eravacycline (TP-434; 
Figure 1H), which bears C7-fluoro and C9-pyrrolidinoace-
toamido modifications of ring D (Grossman et al., 2012).

The binding site of tetracycline on the 30S 

subunit and 70S ribosome

X-ray structures of tetracycline in complex with the 
Thermus thermophilus 30S subunit provided the first 
direct visualization of the drug binding sites (Figure 2A) 
(Brodersen et  al., 2000; Pioletti et  al., 2001). In the first 
study, the crystals were soaked in 80 µm tetracycline and 
the structure determined to 3.4 Å revealed two tetracycline 
binding sites on the 30S subunit (Brodersen et al., 2000). By 
contrast, in the second study crystals were soaked in 4 µm 
tetracycline and the resulting structure at 4.5 Å reported 
six distinct tetracycline binding sites (Pioletti et al., 2001). 
However, only one tetracycline binding site was common 
between the two studies, termed the ‘primary binding 
site’ (Tet1), which is located at the base of the head of the 
30S subunit (Figure 2A), and was subsequently verified 
biochemically (Connell et al., 2002). The identification of 
multiple lower occupancy secondary binding sites (Tet2) 
was not unexpected, as earlier biochemical evidence indi-
cated that tetracyclines have multiple binding sites on the 
small and large subunit (Gale et al., 1981). For example, 

tetracycline binding enhances the reactivity of U1052 and 
C1054 of the 16S rRNA present in the primary binding site, 
but also protects the nucleotide A892, located in one of 
the secondary binding sites, from chemical modification 
(Moazed and Noller, 1987). Recently, an X-ray structure 
of tetracycline bound to an initiation complex compris-
ing the T. thermophilus 70S ribosome bound with P-site 
tRNAfMet and mRNA was determined at 3.5 Å (Jenner et al., 
2013). Interestingly, only one molecule of tetracycline was 
bound to the 70S ribosome, namely at the primary binding 
site (Figure 2B) and no secondary binding sites were 
observed (Jenner et al., 2013), re-emphasizing the higher 
affinity and occupancy of the primary binding site relative 
to the secondary binding sites.

In the primary binding site, tetracycline utilizes the 
hydrophilic surface of the molecule to interact with the 
irregular minor groove of helix 34 (h34) and the loop of 
h31 of the 16S rRNA (Figure 2C). This is consistent with the 
observations that alterations of the hydrophilic surface 
(C1–C4, C10–C12) of tetracycline abolish the antimicro-
bial activity of the drug, whereas the hydrophobic surface 
(C5–C9) is more amenable to modification without loss of 
inhibitory activity (Nelson, 2001), as seen in many natural 
product tetracyclines (Figure 1). The hydrophilic side of 
tetracycline establishes hydrogen-bond interactions with 
the phosphate-oxygen atoms of nucleotides C1054, G1197 
and G1198 in h34 of the 16S rRNA, directly and/or via coor-
dination of a magnesium ion (Mg1) (Figure 2C) (Brodersen 
et al., 2000; Pioletti et al., 2001; Jenner et al., 2013). The 
possibility of an additional magnesium ion (Mg2) medi-
ating the interaction between the phosphate backbone of 
G966 in h31 and ring A of tetracycline was proposed based 
on the recent 70S structure (Jenner et  al., 2013). These 
findings are consistent with the earlier studies indicating 
the importance of divalent magnesium for binding of tet-
racycline to the ribosome (White and Cantor, 1971).

The interaction of tetracycline with the backbone of 
the rRNA, rather than by establishing sequence-specific 
nucleobase interactions (Figure 2C), is consistent with 
the broad-spectrum activity of tetracycline antibiotics 
( Bradford and Jones, 2012). The single interaction between 
ring D of tetracycline and the nucleobase of C1054 of the 
16S rRNA involves stacking interactions (Figure 2C) and 
is therefore unlikely to be sequence-specific. The high 
structural conservation of the tetracycline binding site in 
eukaryotic ribosomes (Ben-Shem et al., 2011) is consistent 
with the documented inhibitory activity of tetracycline 
against eukaryotic translation in vitro (Budkevich et  al., 
2008). Thus, antibiotic uptake probably makes a larger 
contribution to the natural resistance of eukaryotic cells 
to tetracyclines.
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Figure 2 Binding site of tetracyclines on the ribosome.
(A) Primary (Tet1) and secondary (Tet2) binding sites of tetracycline on the 30S subunit (Brodersen et al., 2000; Pioletti et al., 2001). (B) 
Binding site of tetracycline/tigecycline (Tet1/Tig) on the 70S ribosome (30S, yellow; 50S, blue) (Jenner et al., 2013) relative to mRNA (teal), 
A-tRNA (orange) (Voorhees et al., 2009). h44 of the 16S rRNA and H69 of the 23S rRNA are indicated for reference. (C) Interaction of tetra-
cycline within the primary binding site (Jenner et al., 2013). The charged side of tetracyclines coordinates magnesium ions to interact with 
the backbone of residues h34 and h31. (D) Binding position of tetracycline (Jenner et al., 2013) relative to mRNA (teal) and A-tRNA (orange) 
(Voorhees et al., 2009). (E) Interaction of tigecycline within the primary binding site, illustrating the additional interaction between the 
C9-substitution of tigecycline and C1054 of the 16S rRNA (Jenner et al., 2013). (F) Binding position of tigecycline (Jenner et al., 2013) relative 
to mRNA (teal) and A-tRNA (orange) (Voorhees et al., 2009).
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The mechanism of action of tetracyclines 

during translation

During translation, aminoacyl-tRNAs are delivered to 
the ribosome by the elongation factor EF-Tu. A proof-
reading process ensues that monitors correctness of the 
interaction between the anticodon of the aminoacyl-
tRNA and the A-site codon of the mRNA. Selection of the 
correct or cognate tRNA stimulates the GTP hydrolysis 
activity of EF-Tu, resulting in conformational changes 
in EF-Tu that lead to dissociation of EF-Tu·GDP from the 
ribosome, and the concomitant accommodation of the 
aminoacyl-tRNA into the A-site. The primary binding 
site of tetracycline is located within the decoding center 
of the small subunit and overlaps in position with the 
anticodon loop of an A-site bound tRNA (Figure 2B 
and D). Specifically, rings C and D of tetracycline steri-
cally clash with the first nucleotide of the anticodon 
of the tRNA that interacts with the third (or wobble) 
base of the A-site codon of the mRNA (Figure 2D). The 
competition for ribosome binding between tetracycline 
and A-tRNA was observed during the crystallization of 
the tetracycline-70S complex, where initial co-crystal-
lization studies using 60 µm tetracycline and five-fold 
excess of tRNAfMet (over ribosomes) led to non-specific 
binding of tRNAfMet to the A-site, rather than tetracy-
cline (Jenner et al., 2013). To obtain electron density for 
tetracycline, co-crystallization experiments were per-
formed with higher concentrations of tetracycline (300 
µm) coupled with lower excess (1.5-fold) of tRNAfMet. 
These findings are consistent with biochemical experi-
ments demonstrating that tetracycline inhibits binding 
of tRNAs to the ribosomal A-site, but not the ribosome-
stimulated EF-Tu GTPase activity (Gale et  al., 1981; 
 Blanchard et  al., 2004). Specifically, single molecule 
FRET experiments indicate that in the presence of tetra-
cycline (40 µm; 10 × K

d
), aminoacyl-tRNA accommoda-

tion is efficiently blocked, resulting in repetitive ternary 
complex binding and release events (Blanchard et  al., 
2004; Geggier et al., 2010; Jenner et al., 2013). Indeed, 
the overlap between tetracycline and A-tRNA is similar 
regardless of whether the A-tRNA is still bound to EF-Tu 
in an initial selection state or whether the A-tRNA has 
fully accommodated into the A-site on the 70S ribosome.

Second generation tetracycline derivatives: 

doxycycline and minocycline

Second generation tetracyclines, such as doxycycline and, 
in particular, minocycline, exhibit superior antimicrobial 

activities compared to tetracycline against a range of Gram-
negative (e.g., Escherichia coli and Pseudomonas aerugi-

nosa) and especially Gram-positive (Staphylococcus aureus 
and Enterococcus faecalis) bacteria (Bradford and Jones, 
2012), including some strains of tetracycline-resistant 
bacteria (Testa et al., 1993; Sum et al., 1994). Consistently, 
minocycline has a ∼20-fold higher affinity to the ribosome 
than tetracycline (but 5-fold lower than tigecycline) and 
inhibits in vitro translation 2–7-fold more efficiently than 
tetracycline (Bergeron et  al., 1996; Olson et  al., 2006). 
The similarity in chemical structure between minocycline 
and tetracycline (Figure 1) and the ability of minocycline 
to compete with tetracycline for ribosome binding (Olson 
et al., 2006), suggests that minocycline binds analogously 
to the ribosome as tetracycline. Presumably the improved 
binding properties of minocycline result from presence of 
the C7-dimethylamido group on ring D that may facilitate 
stacking interactions with C1054 (Figure 2C). Addition-
ally, second generation tetracyclines, such as minocycline, 
are more lipophilic than their parent compounds and as 
a result display better absorption and pharmacokinetic 
parameters (Agwuh and MacGowan, 2006).

Third generation tetracycline derivatives: 

glycylcyclines and tigecycline

The third generation of tetracycline derivatives includes 
the glycylcyclines, which bear an N,N-dimethylglycyla-
mido (DMG) moiety on the C9 position of ring D (Figure 1F) 
(Barden et al., 1994; Sum et al., 1994). Compared to first 
(e.g., tetracycline) and second generation tetracyclines 
(e.g., minocycline), the 9-DMG derivatives of minocycline 
(termed tigecycline or DMG-MINO) (Figure 1F) and san-
cycline (DMG-DMDOT) display improved inhibitory activi-
ties against a wide range of Gram-positive and negative 
bacteria and in particular have similar minimal inhibitory 
concentrations against susceptible and resistant bacterial 
strains (Testa et al., 1993; Barden et al., 1994; Sum et al., 
1994). Consistently, glycylcyclines, such as tigecycline, 
exhibit ∼10–30 fold lower half inhibitory concentrations 
(IC

50
) during in vitro translation compared with tetracy-

cline (Bergeron et al., 1996; Olson et al., 2006; Grossman 
et al., 2012; Jenner et al., 2013) as well as having improved 
ribosome binding properties. Specifically, DMG-DMDOT 
and DMG-DOX bind to the ribosome with a ∼5-fold higher 
affinity than tetracycline (Bergeron et al., 1996), whereas 
tigecycline has been reported to have a ∼10–100-fold 
higher binding affinity for the ribosome compared to tet-
racycline (Olson et al., 2006; Grossman et al., 2012; Jenner 
et al., 2013).
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A 3.3 Å resolution X-ray structure of tigecycline bound 
to the T. thermophilus 70S ribosome reveals that tigecycline 
binds to the decoding center on the 30S subunit analo-
gously to tetracycline (Figure 2B) (Jenner et al., 2013). No 
secondary binding sites were observed (Jenner et al., 2013). 
Moreover, unlike tetracycline, crystallization in the pres-
ence of 60 µm tigecycline and 5-fold excess of tRNAfMet (over 
ribosomes) was sufficient to yield clear electron density for 
the drug and prevent non-specific binding of tRNAfMet to 
the A-site, thus re-emphasizing the higher binding affinity 
of tigecycline for the ribosome compared to tetracycline. 
As expected, based on the common features of the chemi-
cal structures of tetracycline and tigecycline (Figure 1C 
and F),  tigecycline uses the polar face of the drug to estab-
lish an analogous network of hydrogen-bond interactions 
with two Mg2+ ions and the phosphate-oxygen backbone 
of h34 and h31 of the 16S rRNA (Figure 2E). The similarity 
in binding site of tigecycline with tetracycline is also sup-
ported by the competition between tigecycline and tetracy-
cline for ribosome binding (Olson et al., 2006; Grossman 
et al., 2012; Jenner et al., 2013), as well as the similarity in 
chemical footprinting and hydroxyl-radical cleavage pat-
terns generated in the presence of either drug (Moazed and 
Noller, 1987; Bauer et  al., 2004). However, in the case of 
tigecycline, ∼10-fold lower concentrations of the drug were 
required compared to tetracycline in order to generate the 
same modification patterns (Bauer et al., 2004).

The major differences between tigecycline and tetracy-
cline are the 7-dimethylamido and 9-t-butylglycylamido sub-
stitutions attached to ring D of tigecycline (Figure 1F). While 
the 7-dimethylamido moiety does not appear to establish 
interactions with the ribosome, the glycyl nitrogen atom of 
the 9-t-butylglycylamido moiety of tigecycline stacks with the 
π-orbital of nucleobase C1054 (Figure 2E). The remainder of 
the 9-t-butylglycylamido moiety of tigecycline adopts a very 
rigid conformation (although it does not make any appar-
ent contact with the ribosome), which may contribute to the 
stacking interaction with C1054. Indeed, the interaction of 
tigecycline with C1054 appears to further enhance the stack-
ing interaction between C1054 and U1196 (Figure 2E), similar 
to what is seen when tRNA is bound to the A-site ( Schmeing 
et  al., 2009). Thus, the stacking interaction between the 
9-t-butylglycylamido moiety of tigecycline and C1054 and 
U1196, which is lacking or less optimal in tetracycline (Figure 
2E), provides a structural basis for the improved ribosome 
binding properties of  tigecycline. Additionally, the 9-t-butyl-
glycylamido moiety of tigecycline significantly increases 
the steric overlap of tigecycline and the anticodon loop of 
the A-tRNA (Figure  2F), compared to the modest overlap 
observed between tetracycline and the A-tRNA (Figure 2D). 
Collectively, the enhanced binding affinity of tigecycline, 

together with the increased steric overlap with the A-tRNA, 
provides a likely explanation for the increased effectiveness 
of tigecycline (2 µm) to prevent stable binding of the ternary 
complex EF-Tu·GTP·aa-tRNA to the A-site, compared to 40 
µm tetracycline (Jenner et al., 2013).

Third generation tetracycline derivatives: 

omadacycline and eravacycline

Two additional third generation tetracycline derivatives 
with C9 substitutions on ring D, which display broad-spec-
trum activity against tetracycline-susceptible and -resistant 
bacterial strains, are in phase III clinical trials. Omadacy-
cline is an aminomethylcycline (Figure 1G) developed by 
Paratek Pharmaceuticals (Boston, MA, USA; Draper et al., 
2013). Competition studies with radiolabeled tetracycline 
indicate that omadacycline has a 2-fold higher affinity for 
the ribosome than tetracycline and, consistently, omadacy-
cline inhibits in vitro translation at 2-fold lower drug con-
centrations than tetracycline (Draper et  al., 2013; Jenner 
et  al., 2013). Eravacycline (Tetraphase Pharmaceuticals, 
Watertown, MA) is a glycylcycline bearing a fluorine atom at 
position C7 and a pyrrolidinoacetamido group at the C9 of 
ring D (Figure 1H). Competition studies with radiolabelled 
tetracycline indicate that eravacycline has 10-fold higher 
affinity for the ribosome than tetracycline and inhibits in 

vitro translation at 4-fold lower drug concentrations than 
tetracycline (Grossman et al., 2012). The similar ribosome 
binding affinity of eravacycline (0.2 µm) and tigecycline 
(0.2 µm) (Grossman et al., 2012; Jenner et al., 2013) and the 
reduced affinity of compounds with amide bond replace-
ments in the 9-position, such as omadacycline (2 µm) 
(Draper et  al., 2013; Jenner et  al., 2013) and 9-propylpyr-
rolidyl-7-fluorocyline (4 µm) (Jenner et al., 2013) is consist-
ent with an important role of the amide to strengthen the 
stacking interactions of the C9 substitution with C1054. 
Introduction of an additional aromatic ring E to generate 
pentacyclines (Sun et al., 2010) also improves the binding 
and inhibitory properties of the drug relative to tetracycline 
(Jenner et al., 2013), further supporting the hypothesis that 
stacking interactions with C1054 enhance the binding and 
inhibitory properties of tetracycline derivatives.

Tetracycline resistance mechanisms

There are four main mechanisms by which bacteria can 
acquire resistance to tetracyclines (Table 1). In addi-
tion, innate mechanisms exist because some bacteria 
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Table 1 Tetracycline resistance determinants.

Efflux   Ribosomal 

protection

  Degradation   rRNA 

mutations

tetA   tet31   tetM   tetX   G1058C
tetB   tet33   tetO   tet37   A926T
tetC   tet35   tetQ     G927T
tetD   tet38   tetS     A928C
tetE   tet39   tetT     ∆G942
tetG   tet40   tetW    
tetH   tet41   tetB(P)    
tetJ   tet42   tet32    
tetK   tet45   tet36    
tetL   tetAB(46)   tet44    
tetA(P)   tcr3   otrA    
tetV   otrC   tet    
tetY   otrB      
tetZ        
tet30        

are naturally more resistant to tetracyclines due to dif-
ferences in the permeability of the cell membrane. For 
example, Gram-negative bacteria are naturally resistant 
to several antibiotics because of the presence of a 
lipopolysaccharide containing outer membrane layer. 
In addition, the presence of small molecule transport-
ers can also act on drugs to differing extents in differ-
ent bacteria, conferring resistance by pumping the drugs 
out of the cell. Of the acquired resistance mechanisms, 
the most prevalent tetracycline resistance mechanism 
is efflux, with 28 distinct classes of efflux pumps identi-
fied so far (Table 1). Following closely are the so-called 
ribosome protection proteins, which bind to the ribo-
some and remove the drug from its binding site, with 12 
distinct classes reported (Table 1). Less prevalent resist-
ance mechanisms include two distinct genes that encode 
monooxygenases, which modify tetracyclines and 
promote their degradation, and mutations within the 
16S rRNA that reduce the binding affinity of the drug for 
the ribosome (Table 1). In addition, a novel tetracycline 
resistance determinant, tetU, encoded on the plasmid 
pKq10 in E.  faecium has been reported to confer some 
tetracycline resistance (Ridenhour et al., 1996), however, 
a recent study questions the validity of this conclusion 
(Caryl et al., 2012).

Efflux pumps to expel tetracycline from 

the cell

The 28 different classes of efflux pumps (Table 1) present in 
Gram-negative and Gram-positive bacteria fall into seven 

defined groups based primarily on sequence homology 
(Guillaume et al., 2004). By far the largest group are the 
group 1 drug-H+ antiporters containing 12 transmembrane 
helices, and comprise the well characterized tetracycline 
efflux pumps, such as TetA, the most frequently occurring 
tetracycline-resistance determinant in Gram-negative bac-
teria. Although no structures exist for tetracycline efflux 
pumps, the high homology of the group 1 efflux pumps 
like TetA with the major facilitator superfamily (MFS) of 
secondary active transporters, implies a similar mem-
brane topology and structural ‘inward-outward’ mecha-
nism of action within the cell membrane (Figure 3A). Such 
efflux proteins exchange a proton (H+) for the tetracycline 
molecule against a concentration gradient (Piddock, 
2006). Most tetracycline efflux pumps confer resistance 
to tetracycline, but are less effective against second gene-
ration doxycycline and minocycline, and confer little or 
no resistance to third generation glycylcyclines, such as 
tigecycline (Chopra and Roberts, 2001). For example, the 
MIC of E. coli strain DH10B expressing the TetA efflux 
pump is  > 128 µg/ml for tetracycline, 32 µg/ml for doxycy-
cline, 8 µg/ml for minocycline and 1 µg/ml for tigecycline 
( Grossman et al., 2012). Nevertheless, laboratory-derived 
mutations in tetA and tetB have been generated that can 
confer some glycylcycline resistance, but at the expense of 
tetracycline resistance (Guay et al., 1994).

In many cases, there is a fitness cost associated with 
the expression of antibiotic resistance genes, therefore 
many bacteria regulate the expression of the resistance 
gene(s) using translational attenuation, transcriptional 
attenuation and translational coupling (Chopra and 
Roberts, 2001). Another mechanism that is used for regu-
lation of tet resistance genes is negative control by a Tet 
repressor protein (TetR) (Hillen and Berens, 1994; Saenger 
et al., 2000). In the absence of tetracycline, TetR binds as 
a homodimer to two tandemly orientated tet operators to 
block transcription of the efflux pump (Figure 3B), such 
as observed in the structure of the TetR-DNA complex 
(Figure 3C) (Orth et al., 2000). However, in the presence 
of tetracycline, the drug binds to TetR, which dissociates 
from the tet operator, thus inducing transcription and 
induction of expression of the TetA efflux pump (Figure 3B) 
(Saenger et al., 2000). In some cases, the tetR gene is also 
encoded directly in front of the efflux pump, and there-
fore TetR will rebind the tet operator only when insuffi-
cient amounts of tetracycline are in the cell and re-block 
transcription of its own gene and that of the downstream 
efflux pump (Hillen and Berens, 1994). Crystal structures 
of tetracycline in complex with the TetR homodimer 
reveal that tetracycline binds to the C-terminal effector-
binding domain and induces conformational changes in 
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the N-terminal helix-turn-helix DNA-binding domain of 
TetR (Hinrichs et al., 1994; Kisker et al., 1995). The confor-
mational changes lead to an increase in the separation of 
the DNA-binding domains such that interaction with the 
tet operator sequence of the DNA is precluded (Figure 3D) 
(Orth et al., 2000; Saenger et al., 2000). Although glycyl-
cyclines, such as tigecycline, can bind to the C-terminal 
effector-binding domain of TetR, this interaction induces 
only a limited conformational change in the DNA-binding 
domain (Figure 3E) (Orth et  al., 1999), consistent with 
the reduced (5-fold) induction of TetR-regulated TetA 

expression observed in the presence of tigecycline com-
pared to tetracycline (Orth et al., 1999).

Modification of tetracyclines leads to drug 

degradation

The tetX and tet37 tetracycline resistance determinants 
encode FAD-requiring monooxygenases (Figure 4A) 
that confer resistance to tetracyclines through modifica-
tion of the drug (Speer et al., 1991; Yang et al., 2004). The 

Figure 3 TetR-mediated regulation of the tetracycline resistance TetA efflux pump.
(A) Schematic for mechanism of action of efflux pump TetA, illustrating that efflux of tetracycline (but not tigecycline) is coupled to proton 
transport. The homology model for the TetA efflux pump was generated by HHPred (Söding et al., 2005) based on similarity with the 
proton-driven MFS transporter YajR from Escherichia coli (PDB ID 2WDO) (Jiang et al., 2013). (B) Schematic for TetR-mediated regulation of 
TetA, illustrating that tetracycline binding to the TetR homodimer leads to activation of transcription of the tetA gene. (C–E) Structures of 
TetR homodimer in complex with (C) DNA (Orth et al., 2000), (D) tetracycline (Hinrichs et al., 1994; Kisker et al., 1995) and (E) tigecycline 
(Orth et al., 1999). In (D), the binding of tetracycline to the C-terminal effector domain induces conformational changes in the DNA-binding 
domain (arrowed) that leads to loss of interaction with the DNA.
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mono oxygenases utilize NADPH and O
2
 to hydroxylate 

position C11a located between ring B and C of  tetracyclines 
(Figure  4B). The hydroxylated form of the drug has 
 significantly altered chemical properties that perturb 
the magnesium coordination properties of the drug and 
presumably therefore reduce the drugs affinity for the 
 ribosome. Moreover, the hydroxylated tetracycline under-
goes a non-enzymatic decompo sition. The requirement of 
O

2
 for the mono oxygenase activity means that the resistance 

mechanism only operates in bacteria growing in aerobic 
conditions.

Crystal structures indicate that monooxygenases, 
such as TetX, recognize the common core of the tetracy-
clines, specifically moieties present on rings A and B of 
the drug (Volkers et al., 2011, 2013), thus explaining why 
these enzymes also modify tetracycline derivatives, such 
as the glycylcycline tigecycline (Moore et al., 2005), which 
has an identical ring A and B arrangement as  tetracycline 
(Figure  1C and F). Moreover, the ring D substitutions 
present in glycylcyclines protrude from the active site 
(Figure 4A) and therefore do not prevent binding and 
 modification of these derivatives by the TetX enzyme 
(Volkers et  al., 2013). While C11a-hydroxytigecycline has 
an MIC of 64 µg/ml against E. coli compared to 0.5 µg/
ml for tigecycline, the presence of the tetX gene in E. coli 
results in an MIC of only 2 µg/ml for tigecycline but 128 µg/
ml for tetracycline (Moore et  al., 2005; Grossman et  al., 
2012). This suggests that even if tigecycline is a substrate 

for TetX, the enzymatic reaction is severely impaired 
with tigecycline compared to tetracycline. Furthermore, 
there have not been any reports to date of TetX in clini-
cal isolates conferring tetracycline resistance therefore, at 
present, TetX is unlikely to influence the effectiveness of 
new glycylcyclines, such as tigecycline.

Ribosome mutations conferring resistance to 

tetracyclines

Mutations conferring resistance to tetracycline antibiotics 
have been reported within the 16S rRNA. The first reported 
mutation was a G1058C substitution in h34 of the 16S rRNA 
of clinical isolates of the Gram-positive bacteria Propioni-

bacterium acnes (Ross et al., 1998). These bacterial isolates 
encode three homozygous copies of the rRNA bearing the 
G1058C substitution, resulting in an increased MIC for tet-
racycline as well as for doxycycline and minocycline (Ross 
et  al., 1998). Some resistance (4-fold increase in MIC) to 
tetracycline was also observed when the 16S rRNA operon 
bearing the G1058C substitution was overexpressed from a 
plasmid in a wildtype E. coli strain bearing seven copies of 
the susceptible 16S rRNA operon (Ross et al., 1998). Over-
expression of the G1058C rRNA operon in an E. coli strain 
lacking the seven rRNA operons produced an 8-fold increase 
in MIC for tetracycline and tigecycline (Bauer et al., 2004). 
Consistently, tetracycline has a lower affinity for ribosomes 

Figure 4 Tetracycline resistance via drug modification and degradation.
(A) Overlay of structures of the TetX monooxygenase (yellow) in complex with tigecycline (green) (Volkers et al., 2013) or tetracycline (blue) 
(Volkers et al., 2011). (B) Reaction pathway for TetX-mediated hydroxylation of tetracycline, which requires cofactors FAD, NADPH2 and O2. 
(C–D) FAD and residues of TetX recognize moieties of ring A and B of (C) tigecycline (Volkers et al., 2013) and (D) tetracycline (Volkers et al., 
2011) to mediate hydroxylation of position C11a (arrowed), which leads to degradation of the drugs.
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bearing the G1058C mutations than wildtype ribosomes 
(Nonaka et  al., 2005). In wildtype bacterial ribosomes, 
G1058 forms a base-pair interaction with U1199 in h34, 
which would be disrupted by a G1058C mutation. Therefore, 
the decreased affinity of tetracycline for G1058C containing 
ribosomes most likely results from local conformational per-
turbations of the neighboring nucleotides G1197 and G1198 
that are involved in direct interactions with tetracycline as 
well as in the coordination of a Mg2+ ion (Figure 2C).

Tetracycline resistance mutations have also been 
identified within the stem loop of helix 31 of the 16S rRNA 
in Helicobacter pylori strains, with the triple mutation 
A965U/G966U/A967C conferring high-level resistance 
against tetracycline (Dailidiene et  al., 2002; Trieber and 
Taylor, 2002) as well as an increased MIC for doxycycline 
and minocycline (Gerrits et al., 2002). Overexpression of 
the 

965
AGA-UUC

967
 triple mutation containing rRNA operon 

in an E. coli strain lacking the seven rRNA operons pro-
duced a 4-fold increased MIC for tetracycline and tigecy-
cline (Bauer et al., 2004). Studies performing systematic 
site-directed mutagenesis of positions 965–967 indicate 
that the strength of the tetracycline resistance was gener-
ally proportional to the severity of the changes relative to 
the wildtype sequence, i.e., with single and double muta-
tions tending to confer lower level resistance than triple 
mutations (Gerrits et al., 2003; Nonaka et al., 2005). Con-
sistently, binding of tetracycline was the least efficient 
to ribosomes bearing the triple mutation (AGA-UUC), 
although still reduced for ribosomes bearing single muta-
tions (e.g., AGC or GGA) when compared with wildtype 
(AGA) ribosomes (Nonaka et  al., 2005). The decreased 
affinity of tetracycline for ribosomes bearing mutations in 
positions 965–967 most likely arises from perturbations in 
the conformation of the loop of helix 31, thus disrupting 
the interaction between the phosphate-oxygen of G966 of 
the 16S rRNA and the Mg2+ ion that is coordinated by ring 
A of tetracycline (Figure 2C). It is noteworthy that although 
the AGA-UUC triple mutation and G1058C cause a similar 
fold increase in the MIC for tigecycline and tetracycline, 
the absolute MIC90 of tigecycline for G1058C (1 µg/ml) and 
AGA-UUC (0.5 µg/ml) is still 16-fold lower when compared 
with the respective MIC90s for tetracycline (Bauer et al., 
2004), consistent with the increased affinity and effective-
ness of tigecycline over tetracycline.

Factor-assisted protection: ribosome protec-

tion proteins

To date, there are 12 distinct classes of ribosome protec-
tion proteins (RPPs) that confer resistance to tetracycline 

(Table 1), with the best-characterized being TetO and TetM 
(reviewed by Connell et al., 2003a). TetO is usually found 
on plasmids present in Campylobacter species, but has 
also been discovered chromosomally in several Gram-
positive organisms, e.g., Streptococcus and Staphylococcus 
(Roberts, 1994). In contrast, TetM, which is usually present 
on conjugative transposons (such as Tn916 and Tn1545), 
was first identified in Streptococcus sp., but has subse-
quently been found in a wide variety of Gram-positive 
and Gram-negative species (Roberts, 1994). The different 
classes of RPPs have high homology with one another; for 
example, TetO from Campylobacter jejuni displays  > 75% 
identity ( > 85% similarity) with TetM from E. faecalis. The 
presence of mosaic RPPs comprising regions from dis-
tinct RPP classes have also been reported, for example the 
novel mosaic tetS/M gene identified in foodborne strains 
of Streptococcus bovis (Barile et al., 2012). In general, RPPs 
are thought to have derived from otrA, which confers tet-
racycline resistance in the natural producer of oxytetracy-
cline, Streptomyces rimosus (Doyle et al., 1991).

Sequence alignments indicate that RPPs are GTPases 
with the most significant homology (∼25% identity and 
∼35% similarity) to translation factor EF-G (Burdett, 1991), 
which has allowed homology models for RPPs such as 
TetM to be generated (Dönhöfer et al., 2012) (Figure 5A–D). 
However, RPPs, such as TetM, cannot complement tem-
perature sensitive E. coli EF-G (or B. subtilis EF-Tu) mutants 
(Burdett, 1991) and thus RPPs are considered paralogs of 
EF-G that have attained the specialized function to improve 
translation in the presence of tetracycline (Connell et al., 
2003a) (Figure 5E). Analogous to EF-G, biochemical 
studies indicate that TetM and TetO bind to both GTP and 
GDP (Burdett, 1991; Taylor et al., 1995), and that mutation 
of the conserved Asn128 of the nucleotide binding G4 motif 
within the G domain of TetO results in reduced tetracycline 
resistance (Grewal et al., 1993), consistent with the impor-
tance of GTP binding for RPP action. Moreover, binding 
of TetO and TetM to the ribosome requires GTP or GDPNP, 
and does not occur with GDP (Dantley et al., 1998; Trieber 
et al., 1998). The GTPase activities of both TetM and TetO 
are stimulated (10–20-fold) by the presence of ribosomes 
(Burdett, 1991; Taylor et  al., 1995; Connell et  al., 2003b), 
however the release of tetracycline from the ribosome by 
TetM or TetO can occur in the presence of non-hydrolyz-
able GTP analogs, such as GDPNP (Burdett, 1996; Trieber 
et al., 1998; Connell et al., 2002). This indicates that GTP 
hydrolysis is not strictly necessary for tetracycline release, 
but rather for dissociation of the RPP from the ribosome. 
Curiously, the ribosome-dependent GTPase of TetM, but 
not of EF-G, is slightly stimulated by the presence (up 
to 1  mM) of tetracycline (Burdett, 1996). In contrast, the 
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ribosome-dependent GTPase activity of TetM and TetO is 
inhibited by thiostrepton (Connell et  al., 2003b; Starosta 
et al., 2009; Mikolajka et al., 2011) and the toxin α-sarcin 
(Connell et  al., 2003b), as observed previously for other 
translation factors, such as EF-G (Wilson, 2009).

TetO binds preferentially to the POST translocational 
state ribosome (Connell et al., 2003b), which is expected as 
during translation elongation, it is the POST state ribosome 
that is stabilized by the action of tetracycline to prevent 
delivery of aa-tRNA to the ribosomal A-site (Figure 5E). Cryo-
electron microscopy (EM) structures of TetM (Figure 6A) and 
TetO (Figure 6B) in complex with ribosome reveal that RPPs 
occupy a similar binding site as EF-G (Figure 6C) (Spahn 
et al., 2001; Dönhöfer et al., 2012; Li et al., 2013), consist-
ent with the competition observed between TetM and EF-G 
for ribosome binding (Dantley et al., 1998). As EF-G binds 
to the PRE translocational state and specifically stabilizes 

a rotated ribosome with hybrid site tRNAs before convert-
ing it into a POST state (Figure 5E), RPPs are unlikely to 
compete with EF-G during translation in the cell. Competi-
tion between RPPs and EF-G/EF-Tu might however explain 
the inhibition observed when high concentrations of RPPs 
are used in in vitro translation systems (Trieber et  al., 
1998).

Although no crystal structures of RPPs exist to date, the 
cryo-EM structure of the TetM·70S complex (Figure 6A) was 
sufficiently resolved (∼7 Å resolution) as to allow docking of 
a molecular model for the TetM protein, generated based on 
homology with EF-G (Figure 5A–D) ( Dönhöfer et al., 2012). 
This exercise led to the discovery of a conserved C-terminal 
extension (CTE) in RPPs that adopts a short α-helix, which 
is absent in EF-G ( Figure  5 A–D). Truncation of the CTE 
abolished the ability of TetM to confer resistance to tetra-
cycline in E. coli, indicating the critical importance of the 

Figure 5 Tetracycline resistance mediated by ribosome protection proteins.
(A) Schematic comparing the domain arrangement of EF-G and the RPP TetM. (B–D) Comparison of (B) the crystal structure of Thermus ther-

mophilus EF-G (PDB ID 2WRI) (Gao et al., 2009) with a homology model for TetM [colored as in (A); PDB ID 3J25 (Dönhöfer et al., 2012)] and 
(D) superimposition of (B) and (E). (E) Schematic illustrating the translation elongation cycle (green) and cycle of tetracycline inhibition and 
TetM-mediated tetracycline resistance (blue).
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short α-helix for TetM function (Dönhöfer et al., 2012). On 
the ribosome, the CTE of TetM is observed to be sandwiched 
between domain IV of TetM and helix 44 (h44) of the 16S 
rRNA (Figure 6D), consistent with chemical patterns in h44 
observed upon TetO binding (Connell et al., 2002;  Dönhöfer 
et  al., 2012). Although the CTE of TetO was modeled dif-
ferently in the 10 Å resolution cryo-EM structure of the 
TetO·70S complex (Figure 6E) (Li et al., 2013), the electron 
density of the TetO·70S map suggests that the CTE of TetO 
does in fact adopt a short α-helix and interact with h44 as 
observed in the TetM-70S structure (Figure 6D and E), and 
consistent with the high identity ( > 75%) between TetM and 
TetO. A similar discrepancy was also observed for loop 1 of 
domain IV, which was modeled in an extended conforma-
tion in the TetO-70S complex (Figure 6D) and proposed to 
form, together with surrounding rRNA nucleotides, a cor-
ridor which the tetracycline molecule navigates during its 
release from the ribosome (Li et al., 2013). However, careful 
inspection of the cryo-EM maps of both the TetO and TetM 
complexes does not support an extended conformation, 
but rather suggests that loop 1 adopts a kinked conforma-
tion for both TetO and TetM in order to establish interac-
tions with the CTE (Figure 6D and E). In contrast, both the 
TetO·70S and TetM·70S structures are in agreement with 
respect to an interaction between loop 2 of domain IV and 
nucleotides in h34 (Dönhöfer et  al., 2012; Li et  al., 2013), 
consistent with the chemical protections of h34 observed 
upon TetO binding to the ribosome (Connell et  al., 2002; 
Connell et al., 2003b).

In the first cryo-EM structure of a TetO·70S complex 
at 16 Å, density for TetO was not observed to overlap 
with tetracycline in the primary binding site, leading to 
the proposal that the RPPs remove tetracycline from the 
ribosome, not directly, but by inducing a local distur-
bance in h34 (Spahn et  al., 2001). However, the subse-
quent higher resolution RPP·70S structures reveal that 
loop 3 of domain IV interacts with the vicinity of C1054 
of the 16S rRNA (Dönhöfer et al., 2012; Li et al., 2013), and 
thus directly encroaches upon the binding site of tetra-
cycline (Figure  7A and B), and more extensively tigecy-
cline (Figure 7C) (Jenner et  al., 2013). This suggests that 
residues within loop 3 of RPPs are involved in directly dis-
lodging tetracycline from its binding site. Alanine scan-
ning mutagenesis of loop 3 of domain IV of TetM however 
did not reveal any single critical amino acid, but rather the 
double Y506A/Y507A mutation was required to abolish 
TetM-mediated tetracycline resistance (Dönhöfer et  al., 
2012). Surprisingly, despite the high sequence conserva-
tion of loop 3 across different RPPs (Figure 7D), a single 
mutation Y507A was reported to inactivate C. jejuni TetO 
(Li et al., 2013). The system used to assess the tetracycline 
resistance however yielded only ∼2-fold changes in MIC 
for the wildtype TetO protein (Li et al., 2013), whereas  > 10-
fold differences were observed with wildtype TetM (Dön-
höfer et al., 2012). Therefore, a reanalysis of C. jejuni TetO 
and Listeria monocytogenes TetS was performed, reveal-
ing that like TetM, these RPPs confer a  > 10-fold increase 
in MIC compared to the parental strain, and that while the 

Figure 6 Structures of TetM, TetO and EF-G in complex with the 70S ribosome.
(A–C) Cryo-EM structures of (A) TetM (blue) (Dönhöfer et al., 2012) and (B) TetO (orange) (Li et al., 2013) on the ribosome, compared with (C) 
the binding position of EF-G (red) (Gao et al., 2009). (D–F) Cryo-EM map (grey) of the (D) TetM·70S (Dönhöfer et al., 2012) complex or (E, F) 
TetO·70S (Li et al., 2013) complex, with molecular model for domain IV of (D, F) TetM (blue) (Dönhöfer et al., 2012) and (E) TetO (orange) (Li 
et al., 2013).
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single mutation Y507A reduces the MIC, the Y506A/Y507A 
double mutation was necessary to completely inactivate 
TetO and TetS (Figure 7E and F), as reported previously 
for TetM (Dönhöfer et al., 2012). Based on these findings, 
it is tempting to speculate that these aromatic tyrosine 
residues in loop 3 establish stacking interactions with 

C1054 to dislodge tetracycline from its binding, however, 
higher resolution structures of RPP·70S complexes will be 
required to validate this hypothesis.

The enhancement of C1054 to chemical modification 
that is observed upon TetO binding remains subsequent 
to dissociation of TetO from the ribosome, suggesting that 

Figure 7 The role of Loop 3 of domain IV of RPPs for tetracycline resistance.
(A) Overview of relative position of TetM (blue) (Dönhöfer et al., 2012), tetracycline/tigecycline (red) (Jenner et al., 2013) and 30S subunit 
(yellow). (B–C) Relative binding positions of loop 3 of domain IV of TetM (Dönhöfer et al., 2012) compared to (B) tetracycline (blue) and 
(C) tigecycline (green) (Jenner et al., 2013). (D) Sequence alignment of RPPs showing conservation of loop 3 (red box) of domain IV (black 
boxes indicate identical residues, grey boxes indicate similar residues). (E–F) Growth curves of wildtype E. coli strain BL21 (-TetO or -TetS, 
black) in the presence of increasing concentrations of tetracycline (0–128 µg/ml) compared with the WT strain harboring a plasmid encod-
ing wildtype (E) C. jejuni TetO (+TetO WT, red) or (F) L. monocytogenes TetS (+TetS WT, red), or single (blue) or double (green) mutants. 
 Experiments were performed as described in (Dönhöfer et al., 2012).
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RPPs may imprint a defined conformation of C1054 in the 
ribosome, which on one the hand prevents rebinding of 
tetracycline and on the other hand favors delivery of the 
aa-tRNA by EF-Tu (Connell et al., 2002, 2003a,b). In this 
context, it is interesting to note that mutations in the miaA 
gene of E. coli interfere with the ability of TetM and TetO 
to confer tetracycline resistance (Burdett, 1993; Taylor 
et al., 1998). The miaA gene encodes an enzyme involved 
in the modification of tRNA position A37, which is located 
3’ adjacent to the anticodon of tRNAs that decode codons 
starting with U (Esberg and Bjork, 1995). The modifica-
tion [2-methylthio-N

6
-(D

2
-isopentenyl)adenosine] has 

been shown to stabilize the anticodon-codon interaction 
by improving stacking interactions (Vacher et al., 1984), 
and the lack of this modification significantly reduces the 
affinity of these tRNAs for the ribosome as well as reduc-
ing the efficiency and fidelity of translation (Vacher et al., 
1984; Esberg and Bjork, 1995). Thus, the lower level of 
tetracycline resistance in E. coli miaA mutants suggests 
that RPP induced alterations within the decoding site that 
promote binding of modified tRNAs are unfavourable for 
binding of the unmodified aminoacyl-tRNAs.

Although RPPs increase the MIC for tetracycline, 
doxycycline and minocycline, these proteins have little or 
no effect on the potency of third generation tetracyclines, 

such tigecycline, eravacycline and omadacycline (Gross-
man et al., 2012; Draper et al., 2013; Jenner et al., 2013). 
The ability of third generation tetracyclines to over-
come TetM action does not appear to be related only to 
an increase in binding affinity compared to tetracycline, 
since omadacycline displays a similar affinity to azacy-
cline, which does not overcome TetM action (Jenner et al., 
2013). The C9-moiety of the third generation tetracyclines 
might therefore contribute not only to the binding affinity 
of the drug, but also enhance the on-rate of the drug as 
well as sterically hinder residues within loop 3 of the TetM 
from accessing nucleotide C1054 to dislodge the drug from 
its binding site on the ribosome (Figure 7C). It will be inter-
esting to see whether alterations within loop 3 of domain 
IV can give rise to RPPs that confer resistance against third 
generation tetracyclines, such as tigecycline.
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Ribosome protection proteins (RPPs) confer resistance to tetracy-
cline by binding to the ribosome and chasing the drug from its
binding site. Current models for RPP action are derived from 7.2- to
16-Å resolution structures of RPPs bound to vacant or nontranslat-
ing ribosomes. Here we present a cryo-electron microscopy recon-
struction of the RPP TetM in complex with a translating ribosome
at 3.9-Å resolution. The structure reveals the contacts of TetMwith
the ribosome, including interaction between the conserved and
functionally critical C-terminal extension of TetM with a unique
splayed conformation of nucleotides A1492 and A1493 at the decod-
ing center of the small subunit. The resolution enables us to un-
ambiguously model the side chains of the amino acid residues
comprising loop III in domain IV of TetM, revealing that the tyrosine
residues Y506 and Y507 are not responsible for drug-release as
suggested previously but rather for intrafactor contacts that appear
to stabilize the conformation of loop III. Instead, Pro509 at the tip of
loop III is located directly within the tetracycline binding site where
it interacts with nucleotide C1054 of the 16S rRNA, such that RPP
action uses Pro509, rather than Y506/Y507, to directly dislodge and
release tetracycline from the ribosome.

ribosome | antibiotic | tetracycline | resistance | TetM

The ribosome is one of the major targets for antibiotics within
the bacterial cell (1, 2). A well-characterized class of broad-

spectrum antibiotics in clinical use are the tetracyclines, which
bind to elongating ribosomes and inhibit delivery of the EF-
Tu•GTP•aa-tRNA ternary complex to the A-site (1, 3). X-ray
crystal structures of ribosomal particles in complex with tetra-
cycline have revealed that the primary drug binding site is lo-
cated in helix 34 (h34) of the 16S rRNA, overlapping the binding
position of the anticodon-stem loop of an A-site tRNA (4–6).
The widespread use of tetracyclines has led to an increase in
tetracycline resistance among clinically relevant pathogenic
bacteria, thus limiting the medical utility of many members of
this class (7). Drug efflux and ribosome protection are the most
common tetracycline resistance mechanisms acquired by bacteria
(8) and have led to the development of the third generation of
tetracycline derivatives, such as tigecycline, which display en-
hanced antimicrobial activity and overcome both the efflux and
ribosome protection resistance mechanisms (6, 9–11).
To date, there are 12 distinct classes of ribosome protection

proteins (RPPs) that confer resistance to tetracycline, with the
most prevalent and best characterized being TetO and TetM
(3, 8, 12). The different classes of RPPs have high homology
with one another; for example, Campylobacter jejuni TetO dis-
plays >75% identity (>85% similarity) with Enterococcus faecalis
TetM. Based on the presence of conserved nucleotide binding
motifs, RPPs are grouped together within the translation factor
superfamily of GTPases (13). Accordingly, TetO and TetM
catalyze the release of tetracycline from the ribosome in a GTP-
dependent manner (14, 15). Biochemical studies indicate that,
although GTPase activity is necessary for multiturnover of RPPs,
GTP hydrolysis is not strictly required to dislodge tetracycline

because the drug is also released when nonhydrolysable GTP
analogs are used (14, 15).
Nonhydrolysable GTP analogs have been used to trap RPPs

on the ribosome for structural analysis by cryo-EM. The first
structure of an RPP-ribosome complex was a cryo-EM re-
construction of a TetO•70S complex at 16-Å resolution. This
structure revealed that TetO binds analogously to the ribosome
as translation elongation factor EF-G (16), consistent with
the significant homology (∼25/35% identity/similarity) between
RPPs and EF-G (17). Because the electron density for TetO did
not come within 6 Å of the tetracycline-binding site (16), TetO
was suggested to chase the drug from the ribosome by in-
ducing conformational changes within h34 (12, 16, 18). In con-
trast, two subsequent structures at higher resolution, a TetM•70S
complex at 7.2 Å (19) and a TetO•70S complex at 9.6 Å (20),
revealed electron density for the RPPs directly overlapping with the
tetracycline binding site. Based on the homology with EF-G, mo-
lecular models for the RPPs were generated and docked into the
cryo-EM maps, suggesting that residues within loop III of
domain IV of TetM/TetO come into direct contact with the
tetracycline molecule (19, 20). Consistently, mutagenesis studies
identified specific residues within loop III that are critical for
RPP activity (19–21), in particular the conserved tyrosine resi-
dues Y506 and Y507 (19, 20). However, the exact role of these
tyrosine residues and a detailed molecular understanding of the
mechanism by which RPPs dislodge tetracycline from its binding
site was not possible at the reported resolutions.
Here we present a cryo-EM structure of TetM in complex with

a translating ribosome at an average resolution of 3.9 Å. Local
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resolution calculations indicate that the majority of the core of
the ribosome and domain IV of TetM extends toward 3.5 Å,
enabling bulky side chains to be modeled. We provide a detailed
account of the interactions between TetM and the ribosome, in
particular revealing a complex network of interactions of the
C-terminal helix and domain IV of TetM with the ribosomal
decoding site and intersubunit bridge B2a. The structure reveals
that Pro509 at the tip of loop III, rather than the previously
identified tyrosine Y506 and Y507, overlaps the binding site of
tetracycline and is therefore directly involved in releasing tetra-
cycline from the ribosome.

Results and Discussion

Cryo-EM Structure and Molecular Model of a TetM•RNC. In our
previous study (19), the TetM•70S complex was formed using
vacant 70S ribosomes, which led to high heterogeneity because
the vacant ribosomes adopted both rotated and nonrotated states.
Moreover, because TetM only interacts with the nonrotated ri-
bosomes, the heterogeneity reduced the overall occupancy of
TetM on the ribosome. A further reduction in occupancy resulted
from the presence of tigecycline, the binding of which (contrary to
initial expectations; refs. 16 and 19) was mutually exclusive with
TetM binding (19). As a result, the final reconstruction of the
TetM•70S complex was derived from only 52,701 (12%) of the
initial 406,687 particles and yielded a resolution of 7.2 Å (19). To
reduce sample heterogeneity and increase the TetM occupancy,
we omitted tigecycline and formed a complex between TetM and
a translating, rather than vacant, 70S ribosome. We have pre-
viously prepared and determined cryo-EM structures of 70S
ribosomes stalled during translation of Erm leader peptides
by the presence of the macrolide antibiotic erythromycin (22–24).
These studies revealed that the ErmCL-stalled ribosome is an
ideal substrate for TetM binding because the ribosome adopts a
nonrotated conformation with a peptidyl-tRNA in the P-site and a
vacant A-site (22, 24). Therefore, the ErmCL-stalled ribosomes

were bound with TetM in presence of the nonhydrolysable GTP
analog, GDPCP, and the resulting sample was subjected to multi-
particle cryo-EM (Materials and Methods).
Data were collected on a Titan Krios transmission electron

microscope, fitted with a Falcon II direct electron detector, and
processed with the SPIDER software package (25). After re-
moval of nonaligning and edge particles, in silico sorting re-
vealed the presence of two subpopulations of ribosomes bearing
peptidyl-tRNA in the P-site, and either a vacant A-site (25%) or
an A-site occupied by TetM (75%) (SI Appendix, Fig. S1A). The
latter volume, which we term the TetM•ribosome nascent chain
complex (TetM•RNC), contained 78,186 particles and was re-
fined further to produce a final cryo-EM map of the TetM•RNC
(Fig. 1A) with an average resolution of 3.9 Å (based on the
Fourier shell correlation cutoff at 0.143, SI Appendix, Fig. S1B).
Similar to our recent cryo-EM structure of the ErmCL-RNC
(22), local resolution calculations indicate that the ribosomal
core of the TetM•RNC extends to 3.5 Å (SI Appendix, Fig. S1 C
and D). The resolution of domains I-V of TetM was pre-
dominantly between 3.5–4.5 Å (Fig. 1B), but with some regions
extending to >5 Å, indicating flexibility as observed recently
for other ribosome-bound ligands (26–29). Strand separation in
β-sheets and the pitch of helices is observed, allowing a more
accurate and complete backbone model to be presented for all
639 residues in domains I–V of TetM (Fig. 1C).
Moreover, the high resolution of the ribosome enabled us to

more precisely map the sites of interaction with TetM (Fig. 1D
and SI Appendix, Table S1) compared with previous reports (16,
19, 20). Overall, the interactions of TetM are similar to those for
translation GTPases, such as EF-G (30), such that on the 50S
subunit, the G domain of TetM contacts the sarcin-ricin loop
(SRL, H95 of the 23S rRNA) and ribosomal protein L6, whereas
the G′ subdomain interacts with one of the C-terminal domains
of L7 (Fig. 1 D and E and SI Appendix, Fig. S2 A–F). Domain V
of TetM inserts into the cleft formed by H43/H44 of the

Fig. 1. Cryo-EM reconstruction of TetM•RNC. (A) Cryo-EM density map of the TetM•RNC, with TetM (orange), 30S (yellow), 50S (gray), and P-tRNA (green).
(B and C) Extracted cryo-EM density for TetM colored according to local resolution (B) and with fitted polyalanine model into the density (gray mesh) for
domains I (G domain), G′ subdomain, II, III, IV, V, and C-terminal extension (CTE) (C). (D) Overview of the TetM•RNC showing cryo-EM density with fitted
models for 30S (yellow) and 50S (gray) subunits, and TetM (orange). Ribosomal proteins contacting TetM are colored (S12, brown; L6, cyan; L7, yellow; L10,
red; L11, violet). (E) Model for the TetM•RNC with rRNA helices that interact with TetM colored (h34, green; h44, pink; H43/H44, dark green; H69, light blue;
H95, dark blue). (F) Side-view of E. (G) Side view of E with zoom onto 16S rRNA helices h34 (green) and h44 (pink) and 23S rRNA helix H69 (blue) that directly
interact with domain IV and the CTH of TetM (orange).
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23 rRNA and L11, overlapping the binding site of thiostrepton (31)
(SI Appendix, Fig. S2 A–F) and explaining the inhibition of TetM
by this antibiotic (32–34). On the small subunit, domain III of
TetM contacts ribosomal protein S12 (Fig. 1 D and E), whereas
domain IV of TetM wedges between the head and body of the
30S, reaching into the decoding center where contacts with h34
(head) and h44 (body) of the 16S rRNA are observed, as well as
between the C-terminal extension of TetM and H69 of the 23S
rRNA (Fig. 1 F and G).

Interaction of Domain IV of TetM with the 30S Subunit. Domain IV
of TetM comprises a four-stranded β-sheet and two α-helices,
with an overall βββαβα topology. Three loops (termed Loop I, II,
and III) protrude from the distal end of domain IV of TetM (Fig.
2A). The proline-rich loop I, located between β24 and β34, was
modeled differently in the recent TetM- and TetO-bound ribo-
some structures (3, 19, 20). In our structure, loop I adopts a bent
conformation to establish interactions with the C-terminal helix
αACTE of TetM (Fig. 2A), similar to that predicted previously for
TetM (19), but quite unlike the extended conformation sug-
gested for TetO (20) (SI Appendix, Fig. S3 A–D). We believe that
a bent conformation of loop I of TetO would be more consistent
with the electron density for the TetO•70S complex as well as
with the high sequence conservation between TetO and TetM
(SI Appendix, Fig. S3 A–F). Moreover, the extended conforma-
tion modeled for the TetO•70S structure is incompatible with
the presence of mRNA (SI Appendix, Fig. S3A), suggesting that
loop I is unlikely to form part of a corridor that tetracycline
navigates during its release from the ribosome (20).

The density for Loop II between β44 and αA4 is poorly or-
dered, however interaction with helix 34 of the 16S rRNA is
apparent, with residues Ser465 and Leu466 of TetM coming into
close proximity with the backbone of C1209 and the nucleobase
of C1214 (Fig. 2B). This finding is in agreement with the pro-
tection of C1214 from DMS modification upon TetO binding to
the ribosome (18, 32). With the exception of Gly467, the residues
of loop II are not highly conserved and mutagenesis of these
residues exhibited only moderate affects on TetM activity (SI
Appendix, Fig. S3 G and H). We note, however, that shortening
of the loop by removal of two amino acids was previously shown
to completely inactivate TetO (20).

Interaction of TetM at the Ribosomal Decoding Site. The C-terminal
extension (CTE) of TetM comprises a short 11-aa α-helix (resi-
dues 627–637) connected to domain V by a flexible linker (Fig.
2C), consistent with previous reports (19). Sequence alignments,
secondary structure predictions, as well as the electron density
for the TetO•70S complex (SI Appendix, Fig. S4 A–F) lead us to
suggest that the topology of the CTE observed here for TetM is
a conserved feature of all RPPs. The C-terminal helix (CTH)
is likely to stabilize domain IV of TetM on the ribosome, as we
observe contact between the CTH and A1913 located at the tip
of H69 of the 23S rRNA (Fig. 2C). A1913 adopts a very defined
position, similar to that observed when A-tRNA or A/T-tRNA
(in complex with EF-Tu) is bound to the ribosome (35, 36) (Fig.
2D and SI Appendix, Fig. S4 G and H), but distinct from the
conformation observed in the absence of A-tRNA where A1913
inserts into h44 of the 16S rRNA (6) (Fig. 2D). Although nu-
cleotides A1492 and A1493 of h44 exhibit some flexibility

Fig. 2. Interactions of domain IV and the CTH of TetM. (A) Overview of domain IV (orange) and the C-terminal extension (cyan) of TetM, indicating in-
teraction of loops I-III with rRNA helices h34, h44 and H69 as well as loop I with the C-terminal helix (CTH) of TetM. (B) Proximity of loop II residues (Cα atoms
shown as yellow spheres) to the nucleotides C1209, C1051 and C1214 of h34 of the 16S rRNA. (C and D) Interaction of the CTH of TetM (orange) with nu-
cleotide A1913 of H69 of 23S rRNA (deep blue). In D, the positions of A1913 with ribosome lacking A-tRNA (green, PDB 4G5U; ref. 6) or containing A-tRNA
(blue, PDB 3TVE; ref. 36) or A/T-tRNA (pink, PDB 2XQE; ref. 35) are shown. (E and F) Flipped-out conformations of nucleotides A1492 and A1493 of h44 of the
16S rRNA (blue) upon TetM (orange) binding to the ribosome. In F, the positions of A1492 and A1493 with ribosome lacking A-tRNA (green, PDB 4G5T; ref. 6)
or containing A-tRNA (blue, PDB 3TVF; ref. 36) or A/T-tRNA (pink, PDB 2XQD; ref. 35) are shown.
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(SI Appendix, Fig. S4 I and J), both nucleotides clearly adopt
preferred conformations when TetM is bound, such that both
nucleotides are flipped-out of h44 and extend toward Loop I and
the CTH, respectively, of TetM (Fig. 2E). The flipping of A1492
and A1493 by TetM binding was suggested previously at 7.2 Å
(19) to resemble the conformation observed during decoding of
the mRNA–tRNA duplex (35–37) (Fig. 2F). At higher resolu-
tion, however, it is evident that the exact conformations of A1492
and A1493 are distinct and the nucleotides adopt an unusual
splayed conformation (Fig. 2 E and F), which to our knowledge
has not been observed before. The most similar conformation for
A1493 was observed in the P-tRNA bound ribosome with a va-
cant A-site (Fig. 2F); however, in this structure, A1492 remains
buried within h44. Although the resolution of the previous
TetO•70S structures (16, 20) was insufficient to unambiguously
assign the conformational state of A1492 and A1493, biochemical
studies suggest that binding of TetO to the ribosome also flips
A1493 from h44, as indicated by exposure of A1408 of the 16S
rRNA to DMS modification (18, 19). Because removal of the
CTH by truncation of 17 amino acids inactivates TetM (19), it is
likely that the interaction of TetM, and presumably TetO, with
A1492 and A1493 is critical for stabilization of the RPP on the
ribosome.

Pro509 of Loop III of TetM Directly Encroaches Upon the Tetracycline-

Binding Site. Loop III of TetM linking β54 to helix αB4 is the best
resolved part of the TetM structure with a local resolution pre-
dominantly around 3.5 Å, which enabled the bulky aromatic
sidechains, such as tyrosines and phenylalanines, to be modeled
(Fig. 3 A and B). In contrast to the previous TetM/O•70S re-
constructions at lower resolution (19, 20), where the density for
Loop III was ambiguous (SI Appendix, Fig. S5 A and B), we are
confident of the register of the amino acids within Loop III of
TetM as well as the orientation of the side chains in most cases
(Fig. 3 A and B and SI Appendix, Fig. S5C). Based on this model,
Pro509 at the tip of loop III stacks against C1054 within h34 of
the 16S rRNA (Fig. 3C), explaining the protection of C1054
from DMS modification observed upon TetO binding to the ri-
bosome (18). C1054 comprises part of the primary tetracycline-

binding site and establishes stacking interactions with ring D of
tetracycline (4–6) (Fig. 3D). Our structure indicates that Pro509
of Loop III of TetM clashes with tetracycline and is therefore
directly responsible for dislodging the drug from the ribosome
(Fig. 3D). This contrasts with previous suggestions that the two
conserved tyrosines, Y506 and Y507, within loop III of TetM are
directly involved in tetracycline release (19, 20). It is worth
noting that although Pro509 is identical in all available RPP
sequences, Y506 and Y507 are substituted with Phe/Val and
Ser/Phe/Arg, respectively, in some RPPs (SI Appendix, Fig. S5D).
Our structure would also suggest that shortening loop III would
remove the overlap with tetracycline, consistent with the lack of
activity of TetO mutants where two residues were deleted from
loop III (20). Although tigecycline exhibits an even greater
overlap with TetM (Fig. 3E), we believe that, in addition to the
increased affinity of tigecycline compared with tetracycline (10,
11, 38), the C9-glycyl substituent of tigecycline hinders access of
the loop III residues to C1054 and thus contributes to tigecyclines
ability to overcome TetM-mediated resistance (6, 11).

Stabilization of Loop III Is Critical for TetM Activity. Given that
Ser508 and Pro509 located at the tip of Loop III are invariant
in all available RPP sequences (SI Appendix, Fig. S5D), it is
somewhat surprising that these and neighboring residues can be
mutated to alanine with little or no effect on RPP activity (3, 19).
Similarly, the double SP508-509/AA and triple SPV508-510/
AAA mutants of TetM were also shown to retain tetracycline
resistance activity (19). In silico mutagenesis based on our re-
fined model indicated that if loop III of the triple SPV508-510/
AAA mutant adopts the same conformation as the wildtype
TetM then the backbone of Ala509 would maintain a steric clash
with tetracycline (Fig. 4A), providing a possible explanation for
the retention in activity of the mutant. In contrast, mutation
of Y506/Y507 completely inactivates TetM/TetO (3, 19, 20),
indicating an important role for these tyrosine residues. Indeed,
in our structure, both tyrosines are involved in intradomain in-
teractions linking loop III with loops I and II (Fig. 4B). Specif-
ically, Y507 comes within 3.5 Å of E435 within loop I and the
side chain OH of Y506 is within hydrogen bonding distance to

Fig. 3. The role of loop III in TetM in tetracycline resistance. (A and B) Extracted Cryo-EM density of loop III of domain IV in TetM (gray mesh) with molecular
model for loop III (A) and colored according to local resolution (B). (C) Stacking interaction of P509 at the tip of loop III (orange) with nucleotide C1054 of h34 of
the 16S rRNA (blue). (D and E) Comparison of the binding positions of loop III of TetM domain IV (orange) with (D) tetracycline (Tet) and (E) tigecycline (Tig; ref. 6).
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the carbonyl of G467 in loop II, as well as to the ribose 2’ OH
of C1051 in h34 of the 16S rRNA (Fig. 4B). Collectively, these
results suggest that the role of Y506 and Y507 within loop III is
to stabilize the conformation of loop III.
To further investigate the importance of the stabilization of

loop III for TetM activity, we analyzed the activity of two addi-
tional TetM mutants: The first mutations were introduced
at position F516. F516 is invariant in all RPP sequences (SI
Appendix, Fig. S5D), and the phenylalanine side chain is well
resolved within the hydrophobic core of loop III, where it clamps
the proximal end of helix αB4 to the distal end of strand β54
(Figs. 3A and 4C). To monitor activity of TetM, the growth of
wild-type Escherichia coli strain BL21 (−TetM) in the presence
of increasing concentrations of tetracycline (0–128 μg/mL) was

compared with the same strain bearing a plasmid overexpressing
either Enterococcus faecalis TetM (+TetM) or one of the TetM
variants (Fig. 4D). In the absence of TetM, the wild-type
Escherichia coli strain (black circles) is sensitive to tetracycline
with a minimal inhibitory concentration (MIC50) of ∼0.6 μg/mL,
whereas as before (19), overexpression of Enterococcus faecalis
TetM (red circles) raises the MIC50 by 14-fold to ∼10 μg/mL
(Fig. 4D). Although mutation of F516 to alanine (F516A) had a
modest affect on TetM activity (MIC50 ∼3 μg/mL), mutation of
F516 to the negatively charged Asp (F516D) led to a complete
loss of activity (Fig. 4D), consistent with the importance of F516
for providing a hydrophobic environment to maintain the de-
fined conformation of loop III necessary for tetracycline release.
Another possible source of stabilization of Loop III is the

Fig. 4. Stabilization of loop III in TetM via intra-TetM interactions ensures TetM activity. (A) Relative binding position of TetM triple mutant SPV508-510AAA
(orange) and tetracycline (Tet, red; ref. 6). (B) Tyrosine residues Y506 and Y507 of loop III of TetM domain IV (orange) stabilize the conformation of loop III via
interactions with G467 of loop II, 16S rRNA residue C1051 and residue E435 of loop I, respectively. (C) Localization of TetM residue F516 within the hy-
drophobic pocket formed by loop III. (D) Growth curves of wildtype E. coli strain BL21 (black) in the presence of increasing concentrations of tetracycline
(0-128 μg/mL) compared with the wildtype strain harboring a plasmid encoding wildtype TetM (red) and TetM single mutants F516A (green) and F516D
(brown). (E) Interaction between the sidechain V510 of loop III of TetM with the invariant tryptophan (W442) located in loop I. (F) as in D but with TetM
mutant W442A (orange) and the double mutants W442A/Y506A (brown), W442A/Y507A (green), W442A/S508A (olive), W442A/P509A (blue) and W442A/
V510A (violet). In D and F, the error bars represent the SD from the mean for three independent experiments.

Fig. 5. Schematic model for TetM-mediated tetra-
cycline resistance. (A and B) Upon TetM binding to
tetracycline bound ribosomes, the proline residue
P509 located at the tip of loop III of domain IV is
directly responsible for chasing the drug off the ri-
bosome by interacting with its binding site nucleo-
tide C1054 of the 16S rRNA. (B) TetM binding to the
ribosome leads to interaction of the C-terminal helix
(CTH) with 23S rRNA nucleotide A1913 (dark blue)
and induces 16S rRNA decoding nucleotides A1492
and A1493 (blue) to flip out of helix 44 (h44) of the
16S rRNA. Intramolecular interactions that stabilize
the conformation of loop III are represented as green
clamps with C1 illustrating the interaction Y506/G467,
C2 for Y507/E435 and C3 for V510/W442.
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interaction between the side chain of V510 and an invariant
tryptophan (W442) located within loop I (Fig. 4E). Although
mutation of W442 to alanine (W442A) alone did not affect the
activity of TetM, the presence of the W442A mutation made
loop III sensitive to secondary mutations. In particular, muta-
tions of S508 or P509 to alanine in the context of W442A
abolished TetM activity (Fig. 4F), whereas wild-type activity was
observed for TetM with single S508A or P509A mutations (19).
Collectively, these results illustrate the importance of the struc-
tural integrity of loop III in the positioning residues S508 and
P509 located at the tip of loop III, which is necessary for efficient
tetracycline resistance.

Conclusion

In conclusion, our structure enables a molecular model to be
presented for how TetM confers resistance to tetracycline by
dislodging the drug from its binding site on the ribosome (Fig. 5
A and B): Specifically, Pro509 within loop III of domain IV of
TetM directly overlaps in position with ring D of tetracycline and
thus dislodges the drug from the ribosome. TetM is proposed to
prevent rebinding of tetracycline by altering the conformation of
nucleotides such as C1054 within the drug binding site that
persist following TetM dissociation (12, 18, 19, 32). Within the
constraints of the current resolution, TetM does not appear to
alter the conformation of C1054 to prevent drug rebinding (SI
Appendix, Fig. S5E), however, we cannot rule out that such an
alteration occurs during GTP hydrolysis and dissociation of
TetM from the ribosome. Previous studies identified two con-
served tyrosines within loop III of TetM as being important for
tetracycline resistance (3, 19, 20). Here we show that these ty-
rosine residues are not directly involved in displacing the drug

from its binding site, but rather act like clamps (termed C1 and
C2) that stabilize the loop III of domain IV of TetM by estab-
lishing intradomain interactions with loop I and II of TetM (Fig.
5A). We also identify an additional clamp C3 between loop I and
III that is important for stabilization of loop III. Additionally,
domain IV of TetM is positioned on the ribosome for tetracy-
cline displacement via interaction of loop I and the CTH with
residues located within intersubunit bridge B2a, namely, A1913
of H69 of the 23S rRNA and a splayed conformation of decoding
site nucleotides A1492 and A1493 (Fig. 5B). We believe that the
molecular details and mechanism of action reported here for
TetM will be conserved for other ribosome protection proteins,
such as TetO, that also confer resistance to tetracycline.

Materials and Methods

Enterococcus faecalis TetM was purified as described (34) and bound to
ErmCL-RNC (22). Cryo-EM data were collected using the EPU software on a
Titan Krios TEM (FEI) and processed using the SPIDER software package (25).
The backbone model of Enterococcus faecalis TetM was initially generated
using HHPred (39), then manually fitted using Chimera (40) and refined
using Coot (41) and PHENIX (42). A structure of the Escherichia coli 70S ri-
bosome (43) was fitted the cryo-EM density using Chimera (40), manually
adjusted and then refined with Coot (41). Site-specific mutations were in-
troduced into the tetM gene using KOD Xtreme Hot Start Polymerase
according to the manufacturers instructions and minimal inhibitory con-
centrations were determined as described (11, 19). Detailed materials and
methods can be found in the SI Appendix, SI Materials and Methods.
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SI Materials and Methods 

Purification of TetM protein 

Enterococcus faecalis TetM from TnFO1 (Q47810) was cloned into pET-46 Ek/LIC 

(Novagene) with an N-terminal 6x histidine tag. The plasmid was transformed into E. coli 

BL21(DE3) (Novagene) and incubated at 37°C/120 rpm overnight in 20 mL LB medium 

containing 100 µg/mL ampicillin. A volume of 20 mL overnight culture was used to inoculate 

1.6 L of LB medium containing 100 µg/mL ampicillin. The culture was grown at 37°C/120 rpm 

to an OD600 of 0.3. The temperature was then reduced to 30°C and 16 mL of ethanol was added 

until the OD600 value reached 0.6. Expression of TetM was induced by adding 1.6 ml of 1mM 

IPTG. After 2hrs, cells were harvested by centrifugation at 3000 x g for 15 min at 4°C and 

subsequently resuspended in 25 mL Lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 5 mM 

Imidazole, pH 8.0). Cells were lysed using the M-110L Microfluidizer (Microfluidics) and the 

lysate cleared by centrifugation at 17000 x g for 15 min at 4°C. The cleared lysate was then 

incubated at 4°C for 1h with 1 mL Ni-NTA agarose beads (Machery-Nagel) and loaded onto a 

20 mL Econopac Chromatography column (Biorad). Beads were washed twice with 5 mL 

Wash buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM Imidazole, pH 8.0) and eluted in 2 mL 

Elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM Imidazole, pH 8.0). The eluate was 

further purified by gel filtration using a SuperdexTM 75 pg column (Amersham) and GF buffer 

(50 mM Hepes, 100 mM KCl, 200 mM NaCl, 10 mM MgCl2, 5 mM ß-Mercaptoethanol, 10% 

Glycerol). 

 

Site directed mutagenesis 

Site directed mutagenesis was performed using the whole plasmid PCR method. Primers are 

attached in Supplementary Table 2.  E. faecalis tetM on pET-46 Ek/LIC (Novagene) was used 

as a template. Double mutants W442A + loop III were produced using loop III mutants as 

templates (1). KOD XtremeTM Hot Start Polymerase (Novagene) was used in the following 

PCR program: 94°C 2 min; 20x (98°C 10sec, 63°C 30sec, 68°C 7min); 68°C 7min. 

 

Generation and purification of ErmCL-SRC 

ErmCL-SRC was generated following the same procedure as previously described (2). The 

2XermCL construct contained a T7 promoter followed by a strong ribosome binding site (RBS) 

spaced by 7 nucleotides (nts) to the ATG start codon of the first ermCL cistron. A linker of 22 
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nts separated the stop codon of the first ermCL cistron and the start codon of the second ermCL 

cistron. The linker also comprised the strong RBS 7 nts upstream of the ATG start codon of the 

second ermCL cistron, enabling initiation of translation independent from the first ermCL 

cistron. Each ermCL cistron encoded amino acids 1-19 corresponding to ErmCL leader peptide 

(Genbank accession number V01278) present on macrolide resistance plasmid pE194 (3, 4). In 

vitro translation of the 2xermCL construct was performed using the Rapid Translation System 

RTS 100 E. coli HY Kit (Roche) and was carried-out in the presence of 10 µM erythromycin 

(ERY) for 1h at 30 °C. The ErmCL-SRC was purified from the disome fractions on sucrose 

gradients and concentrated using Amicon Ultra-0.5 mL Centrifugal Filters (Millipore). 

Monosomes of the ErmCL-SRC were obtained by annealing a short DNA oligonucleotide (5’-

ttcctccttataaaact-3’, Metabion) to the linker between the ermCL cistrons of the disomes, 

generating a DNA-RNA hybrid that was cleaved by RNase H (NEB) treatment in buffer A at 

25°C for 1h. The ErmCL-SRC monosomes were then purified and concentrated using the 

Amicon Ultra-0.5 mL Centrifugal Filters (Millipore).  

 

Generation of TetM●RNCs 

The ErmCL-SRC (0.5 µM) was incubated with a 4-fold excess (2 µM) of purified recombinant 

TetM protein in the presence of 500 µM GDPCP in buffer A (50 mM HEPES-KOH, pH 7.4, 

100 mM KOAc, 25 mM Mg(OAc)2, 6 mM β-mercaptoethanol, 100 µM evernimicin and 10 µM 

erythromycin) for 30 min at 30°C. Thereafter, the binding reaction was diluted using buffer A 

to yield a final ribosome concentration of 4 A260/ml for cryo-grid preparation. 

 

Cryo-electron microscopy and single particle reconstruction 

The TetM●RNC (4 A260/ml) was applied to 2 nm pre-coated Quantifoil R3/3 holey carbon 

supported grids and vitrified using a Vitrobot Mark IV (FEI Company). Data collection was 

performed using the EPU software at NeCEN (Leiden, Netherlands) on a Titan Krios 

transmission electron microscope (TEM) (FEI, Holland) equipped with a Falcon II direct 

electron detector at 300 kV with a magnification of 125,085x, a pixelsize of 1.108 Å and a 

defocus range of 0.9-2.2 µm. The data were provided as a series of seven frames (dose per 

frame is 4 e-/Å2) from which we summed frames 1-6 (accumulated dose of 24 e-/Å2) after 

alignment using Motion Correction software (5). Images were processed using a frequency-

limited refinement protocol that helps prevent over-fitting (6), specifically by truncation of high 

frequencies (in this case at 7-8 Å using a Butterworth filter). Power spectra and defocus values 

were determined using the SPIDER TF ED command and recorded images were manually 

inspected for good areas and power-spectra quality. Data were processed further using the 
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SPIDER software package (7), in combination with an automated workflow as described 

previously (8). After initial, automated particle selection based on the program SIGNATURE 

(9), initial alignment was performed with 127,205 particles, using E. coli 70S ribosome as a 

reference structure (2). After removal of noisy particles (22,207 particles), the dataset could be 

sorted into two main subpopulations using an incremental K-means-like method of 

unsupervised 3D sorting (10): The first subpopulation (26,814 particles; 25%) was defined by 

the presence of stoichiometric density for P-site tRNA. The second, major subpopulation 

(78,186 particles; 75%) was defined by the presence of stoichiometric densities for P-tRNA and 

TetM (SI Appendix, Figure S1A), and could be refined further to produce a map with an 

average resolution of 3.9  Å (0.143 FSC, SI Appendix, Figure S1B). The final refined map was 

subjected to the program EMBFACTOR (11) in order to apply an automatically determined 

negative B-factor for sharpening of the map. Local resolution calculations were performed 

using Resmap (12) revealing that the resolution of the majority of the core of the 30S and 50S 

subunits extended to 3.5 Å (SI Appendix, Figure S1C).  

 

Molecular modelling and map-docking procedures 

The initial molecular model for the 70S ribosome of the TetM●RNC was based on the cryo-EM 

structure of an E. coli 70S ribosome (PDB ID 5AFI, (13)). The 30S and 50S subunits were 

fitted as rigid bodies and were manually adjusted and refined in Coot (14). The model for the 

C-terminal domain of L7 was based on a rigid body fit of the NMR structure of L7/L12 

(1RQU, (15)). The molecular model for TetM was initially based on a homology model using 

EF-G as a template (generated by HHPred (16) and Modeller (17)). The model was split into 

five domains, which were individually fitted into the EM density as rigid bodies and then 

manually adjusted and refined using Coot (14) and PHENIX (18). Since the resolution of 

domains I-III and V of TetM was insufficient to model the amino acid side chains, only a 

backbone trace was generated. Domain IV of TetM was resolved up to 3.5 Å allowing the 

bulky amino acid side-chains in loop III to be modelled.  

 

Figure preparation 

Figures showing electron densities and atomic models were generated using UCSF Chimera 

(19) and PyMOL Molecular Graphics System (Version 1.5.0.4 Schrödinger, LLC). 
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Supplementary Figures 

 

Figure S1 Cryo-EM reconstruction of the TetM•RNC. (A) In silico sorting of the 

TetM•RNC dataset. After removal of non-aligning and edge particles, sorting of the dataset 

yielded two homogenous sub-datasets. The vast majority of the particles (75%; 78,186 particles 

in total) contained stoichiometric density for P-tRNA as well as for TetM and this 

subpopulation was chosen for refinement. (B) Fourier-shell correlation curve of the refined 

final map, indicating the average resolution of the TetM•RNC is 3.9 Å. (C) Overview of the 

TetM•RNC colored according to the local resolution as calculated using ResMap (12). (D) 

Histogram generated by ResMap showing the number of voxels of the cryo-EM map of the 

TetM•RNC distributed across the resolution bins ranging from 3.5 Å to 6.0 Å. 
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Figure S2 Interaction of TetM with the large ribosomal subunit. (A) Interaction of the G 

domain of TetM with the sarcin-ricin loop (SRL) of the 23S rRNA (blue). The switch 1 

(yellow) and switch 2 (purple) loops are indicated, as is the putative position for the GDPCP 

molecule (green). (B) Comparison of the conformation of switch 1 and 2 loops of TetM with 

equivalent region of EF-G (PDB ID 4CR1). Putative density for GDPCP molecule (grey mesh) 

corresponds with the position of the GDPNP molecule (green) from the EF-G structure (PDB 

ID 4CR1) aligned to the TetM based on the G domain. (C) Interaction between the C-terminal 

domain of L7/L12 (yellow) and the G’ domain of TetM (orange). (D) Overview of TetM 

(orange) showing interaction with L7 (yellow) and L11 (green). (E) Interaction between L11 

(green) and domain V of TetM (orange). (F) Overlap in the binding site of domain V of TetM 

(orange) with the antibiotic thiostrepton (cyan). In panels (A) and (C-E), the cryo-EM density 

for the TetM-RNC is shown as a grey mesh. 



  6 

 

Figure S3 Analysis of loops I and II of domain IV of TetM. (A-D) Cryo-EM map (grey 

mesh) of (A, D) TetO•70S complex (20), (B) TetM•70S complex (1) and (C) TetM•RNC, with 

molecular model for loop I of domain IV of (A) TetO (yellow, (20)), (B) TetM (grey, PDB 
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3J25, (1)) and (C, D) the revised molecular model for loop I of domain IV of TetM based on 

the cryo-EM map of the TetM•RNC at 3.9 Å resolution (orange). (E) Logo-Plot of residues 

433-443 of loop I of domain IV of TetM, numbered according to Enterococcus faecalis TetM. 

(F) Sequence alignment of residues 433-443 of loop I of Enterococcus faecalis TetM and 

Campylobacter coli TetO. (G) Logo-plot of residues 464-470 forming loop II of TetM domain 

IV. (H) Growth curves of wildtype E. coli strain BL21 (black) in the presence of increasing 

concentrations of tetracycline (0-128 µg/ml) compared with the wildtype strain harboring a 

plasmid encoding wildtype TetM (red) or TetM single mutants S465G (blue), L466G (brown), 

G467A (olive) and Y468G (green). 
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Figure S4 Interaction of the C-terminal helix of TetM with the ribosomal decoding center  

(A) Sequence alignment of residues 619-639 of the C-terminal helix (CTH) of Enterococcus 

faecalis TetM and Campylobacter coli TetO. (B) PSIPRED secondary structure prediction with 

sequence (AA), prediction (Pred) and confidence (Conf) as indicated. (C-F) Cryo-EM map 

(grey mesh) of (C, F) TetO•70S complex (20), (D) TetM•70S complex (1) and (E) TetM•RNC, 

with molecular model for the CTH of (C) TetO (yellow, (20)), (D) TetM (grey, PDB 3J25, (1)) 

and (E, F) the revised molecular model for loop I of domain IV of TetM based on the cryo-EM 

map of the TetM•RNC at 3.9 Å resolution (orange). (G-I) Identical views as Fig. 2C-F but 

including electron density colored according to the local resolution. (J) As (I) but with a higher 

threshold level for the electron density map. 



  9 

 

Figure S5 Structures of loop III of domain IV in TetO and TetM. (A-C) Cryo-EM map 

(grey mesh) of (A) TetO•70S complex (20), (B) TetM•70S complex (1) and (C) TetM•RNC, 

with molecular model for loop III of domain IV of (A) TetO (yellow, (20)), (B) TetM (grey, 

PDB 3J25, (1)) and (C) the revised molecular model for loop I of domain IV of TetM based on 

the cryo-EM map of the TetM•RNC at 3.9 Å resolution (orange). (D) Logo-Plot of residues 

504-517 of loop III of domain IV of TetM, numbered according to Enterococcus faecalis TetM. 

(E) Cryo-EM density (grey mesh) the TetM•RNC with molecular models for TetM (orange), 

and a comparison of the conformation of C1054 of the 16S rRNA from the TetM•RNC (blue) 

with the tetracycline-bound conformation (cyan, (21)).  
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Supplementary Table 1 

 

 
 
 
 

TetM 

 

Ribosome 

Domain Region Residue Region Residue 

     
loop between 11 
and A1 

V12 23S rRNA, H95 (SRL) G2661 

loop between 
A1 and 21 

G53 23S rRNA, H95 (SRL) G2663 

loop between 31 
and B1 

H78 23S rRNA, H95 (SRL) A2662 

loop between 
41 and C1 

K102 23S rRNA, H95 (SRL) A2657 

C1 A107 23S rRNA, H95 (SRL) G2661 
loop between 51 
and D1 

Q132 23S rRNA, H95 (SRL) A2657 

G  

 

loop between 51 
and D1 

G134 L6 V91, G92 

BG M190,S191 L7-CTD, helix α4 V69       G’ 

 BG G192,L193 L7-CTD, helix α4 V88 
32 R278 16S rRNA, h5 (body) U368 
52 T292 16S rRNA, h5 (body) U358 II 

62 L304 16S rRNA, h5 (body) A55 
III A3 D363 S12 H77 

loop II between 
44 and A4 

S465, L466, 
G467 

16S rRNA, h34 (head) backbone 
C1214, C1209, 
C1051 

loop III 
between 54 and 
B4 

Y506, S508, 
P509 

16S rRNA, h34 (head) backbone C1051  
U1052, C1054  

loop III 
between 54 and 
B4 

P513 16S rRNA, h18 (body) C518 
 

IV 

loop III 
between 54 and 
B4 

R517 16S rRNA, h18 (body) C519 

A5 Y555 23S rRNA, H43/H44 A1095 
A5 K560 23S rRNA, H89 U2473 
25  L570 L11  

310-helix 
G28, Q29 

B5 T594, F595 L6 K175, K176 
B5 T594, F595 23S rRNA, H95 (SRL) A2660 

V 

B5 N598, G599 23S rRNA, H95 (SRL) A2660 
loop between 45 
and C5 

 
 

R627 
 

S12 L49 

C5 R632 23S rRNA, H69 C1913 

CTE 

C5 F635, N636 23S rRNA, H69 C1914 
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Supplementary Table 2 

 

 
 

Construct Primer sense/ antisense (5’ – 3’) 

TetM W442A 

 

5’-GTGCCGCCAAATCCTTTCGCGGCTTCCATTGGTTTATCTGTATCACCGCTTC-3’   

5’-GATAAACCAATGGAAGCCGCGAAAGGATTTGGCGGCACTTCGATGTGAATG-3’   

TetM S465G 

 

5’-CAGTATGAGAGCTCGGTTGGCCTTGGATACTTAAATCAATCATTTC-3’   

5’-GATTTAAGTATCCAAGGCCAACCGAGCTCTCATACTGCATTCCAC-3’   

TetM L466G  5’-GAGAGCTCGGTTTCTGGCGGATACTTAAATCAATCATTTCAAAATG-3’   

5’-GATTGATTTAAGTATCCGCCAGAAACCGAGCTCTCATACTGCATTC-3’   

TetM G467A 

 

5’-GAGCTCGGTTTCTCTTGCGTACTTAAATCAATCATTTCAAAATGCAG-3’   

5’-GAAATGATTGATTTAAGTACGCAAGAGAAACCGAGCTCTCATACTGCATTC-3’  

TetM Y468G  

 

5’-CTCGGTTTCTCTTGGAGGCTTAAATCAATCATTTCAAAATGCAG-3’   

5’-GAAATGATTGATTTAAGCCTCCAAGAGAAACCGAGCTCTCATAC-3’  

TetM F516A 

 

5’-GTTAGTACCCCAGCAGATGCGCGGATGCTTGCTCCTATTGTATTGGAAC-3’   

5’-CAATAGGAGCAAGCATCCGCGCATCTGCTGGGGTACTAACAGGGCTATAG-3’ 

TetM F516D 

 

5’-GTTAGTACCCCAGCAGATGATCGGATGCTTGCTCCTATTGTATTGGAAC-3’   

5’-CAATAGGAGCAAGCATCCGATCATCTGCTGGGGTACTAACAGGGCTATAG-3’   
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Supplementary Figure 1 

Overlap of Onc112 with nascent polypeptide chains in the ribosome exit tunnel. 

Comparison of the binding position of Onc112 (orange) with (a) ErmCL (green), (b) TnaC (blue) and Sec61 (red) nascent chains. In 
(a)-(c), the CCA-end of the P-tRNA is shown in white and in (b) the two tryptophan molecules are in cyan. 
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Supplementary Figure 2 

Comparison of Tth70S–Onc112 with the DnaK–oncocin complex. 

The conformation of residues Lys3–Pro10 of the Oncocin peptide O2 (cyan, VDKPPYLPRPRPPROIYNO–NH2, where O represents 
ornithine) in complex with DnaK (white surface representation) was compared with residues Val1–Pro12 of Onc112 (orange) from the
ribosome-bound Onc112 structure. 

 



Nature Structural & Molecular Biology: doi:10.1038/nsmb.3034 

Supplementary Figure 3 

Conformation of the Onc112 peptide in solution. 

Far-UV circular dichroism (CD) spectra of the Onc112 peptide at concentrations ranging from 20 to 200 M. 
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Supplementary Figure 4 

Inhibitory activity of Onc112 peptide derivatives. 

(a-b) Effect of Onc112 (red) and Onc112 derivatives Onc112–L7Cha (blue) and Onc112–D2E (olive) on (a) the overnight growth of 
E. coli strain BL21(DE3) and (b) the luminescence resulting from the in vitro translation of firefly luciferase (Fluc). In (a), the error bars 
represent the standard deviation (s.d.) from the mean for a triplicate experiment (n=3). In (b), the experiment was performed in 
duplicate (n=2). The growth or luminescence measured in the absence of peptide was assigned as 100%. 
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Supplementary Figure 5 

Validation of Onc112 and derivatives. 

(a) Electrospray ionization high resolution mass spectrometry (ESI-HRMS) and reverse phase (RP) high performance liquid
chromatography (HPLC), and (b) 

1
H nuclear magnetic resonance (NMR) spectra of the Onc112 peptide. (c-f) ESI-HRMS and RP HPLC 

of the (c) Onc112–C9, (d) Onc112–C7, (e) Onc112–L7Cha and (f) Onc112–D2E peptides. 
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1Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac 33607, France, 2U1212, Inserm, Bordeaux

33076, France, 3UMR 5320, CNRS, Bordeaux 33076, France, 4Gene Center and Department for Biochemistry,

University of Munich, Munich 81377, Germany, 5Department of Life Sciences, University of Trieste, Trieste 34127,

Italy and 6Center for integrated Protein Science Munich (CiPSM), University of Munich, Munich 81377, Germany

Received October 13, 2015; Revised December 22, 2015; Accepted December 28, 2015

ABSTRACT

Proline-rich antimicrobial peptides (PrAMPs) pro-
duced as part of the innate immune response of
animals, insects and plants represent a vast, un-
tapped resource for the treatment of multidrug-
resistant bacterial infections. PrAMPs such as on-
cocin or bactenecin-7 (Bac7) interact with the bac-
terial ribosome to inhibit translation, but their sup-
posed specificity as inhibitors of bacterial rather than
mammalian protein synthesis remains unclear, de-
spite being key to developing drugs with low toxic-
ity. Here, we present crystal structures of the Ther-
mus thermophilus 70S ribosome in complex with the
first 16 residues of mammalian Bac7, as well as the
insect-derived PrAMPs metalnikowin I and pyrrho-
coricin. The structures reveal that the mammalian
Bac7 interacts with a similar region of the ribosome
as insect-derived PrAMPs. Consistently, Bac7 and
the oncocin derivative Onc112 compete effectively
with antibiotics, such as erythromycin, which target
the ribosomal exit tunnel. Moreover, we demonstrate
that Bac7 allows initiation complex formation but
prevents entry into the elongation phase of trans-
lation, and show that it inhibits translation on both
mammalian and bacterial ribosomes, explaining why
this peptide needs to be stored as an inactive pro-
peptide. These findings highlight the need to con-
sider the specificity of PrAMP derivatives for the bac-
terial ribosome in future drug development efforts.

INTRODUCTION

Antimicrobial peptides (AMPs) represent a large and di-
verse group of molecules that form part of the innate im-
mune response of a variety of invertebrate, plant and ani-
mal species (1). While many AMPs kill bacteria by disrupt-
ing the bacterial cell membrane, there is growing evidence
that some AMPs have intracellular targets (1). Members
of one such class of non-membranolytic peptides are re-
ferred to as proline-rich AMPs (PrAMPs) and are present
in the hemolymph of several species of insects and crus-
taceans, as well as in the neutrophils of many mammals
(2). PrAMPs exhibit potent antimicrobial activity against
a broad range of bacteria, especially Gram-negative, and
are therefore considered as potential lead candidates for
the development of therapeutic antimicrobial agents (3).
Well-characterized insect PrAMPs include the apidaecins
produced by bees (Apis melifera) and wasps (Apis Vesp-
idae), pyrrhocoricin from firebugs (Pyrrhocoris apterus),
drosocins from fruit flies (Drosophila), metalnikowins from
the green shield bug (Palomena prasina) and the milkweed
bug (Oncopeltus fasciatus) oncocins (2,4,5). PrAMPs are
synthesized as inactive precursors, which undergo prote-
olysis to release the active peptide. In contrast to the ac-
tive insect peptides, which are generally <21 amino acids in
length, the activemammalianmature forms tend to bemuch
longer; for example, the porcine PR-39 is 39 residues long,
whereas the bovine bactenecin-7 (Bac7), which is also found
in sheep and goats, is 60 residues long (2). Nevertheless, C-
terminally truncated versions of the mammalian PrAMPs
retain antimicrobial activity (6–9) and exhibit high sequence
similarity with the insect PrAMPs. Indeed, the Bac7(1–16)
andBac7(1–35) derivatives corresponding to the first 16 and
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35 residues of Bac7, respectively, display similar, if not im-
proved, antimicrobial activities compared to the full-length
processed Bac7 peptide (6,10,11). For instance, Bac7(1–35)
reduces mortality from Salmonella typhimurium in a mouse
model of infection (12) as well as in a rat model for septic
shock (13).
The insect-derived PrAMPs apidaecin and oncocin, as

well as the mammalian Bac7, penetrate the bacterial cell
membrane mainly via the SbmA transporter present in
many Gram-negative bacteria (10,14). Early studies iden-
tified interactions between both insect and mammalian
PrAMPs and DnaK, suggesting that this molecular chap-
erone was the common intracellular target (2,15). However,
subsequent studies questioned the relevance of this inter-
action by demonstrating that these PrAMPs also display
an equally potent antimicrobial activity against bacterial
strains lacking the dnaK gene (16–18). Instead, apidaecin,
oncocin and Bac7 were shown to bind to the ribosome and
inhibit translation (17,19). Subsequent crystal structures of
the oncocin derivative Onc112 in complex with the bacterial
70S ribosome revealed that this peptide binds with a reverse
orientation in the ribosomal tunnel and blocks binding of
the aminoacyl-tRNA to the A-site (20,21). However, there
are no crystal structures to date of a mammalian PrAMP in
complex with the ribosome.
Here we present 2.8–2.9 Å resolution X-ray struc-

tures of the Thermus thermophilus 70S (Tth70S) ribosome
in complex with either the mammalian Bac7 derivative
Bac7(1–16) or the insect-derived PrAMPs metalnikowin I
or pyrrhocoricin. The structures reveal that Bac7(1–16),
metalnikowin I and pyrrhocoricin bind within the ribo-
somal tunnel with a reverse orientation compared to a
nascent polypeptide chain, as observed previously for on-
cocin (20,21). In contrast to the insect PrAMPs oncocin,
metalnikowin I and pyrrhocoricin, themammalian Bac7(1–
16) utilizes multiple arginine side chains to establish stack-
ing interactionswith exposed nucleotide bases of the rRNA,
and we show that its unique N-terminal RIRRmotif is crit-
ical for inhibiting translation. Like oncocin, metalnikowin
I and pyrrhocoricin, the binding site of Bac7 overlaps with
that of the A-tRNA, consistent with our biochemical stud-
ies indicating that Bac7(1–16) allows 70S initiation complex
formation, but prevents subsequent rounds of translation
elongation. Furthermore, we demonstrate that Bac7(1–35)
displays activity in amammalian in vitro translation system,
providing a possible explanation for why Bac7 is produced
as a pre-pro-peptide that is targeted to large granules and
phagosomes, thus avoiding direct contact between the ac-
tive peptide and the mammalian ribosome.

MATERIALS AND METHODS

Peptide synthesis and purification

The Bac7 N-terminal fragments Bac7(1–16; RRIR-
PRPPRLPRPRPR), Bac7(1–35; RRIRPRPPRL-
PRPRPRPLPFPRPGPRPIPRPLPFP) and Bac7(5–35;
PRPPRLPRPRPRPLPFPRPGPRPIPRPLPFP) were
synthesized on solid phase and purified by reversed-phase
HPLC as described previously (22). Their concentra-
tions were determined as reported previously (4). All
peptides, with a purity of at least 95%, were stored in

milliQ water at −80◦C until use. The Onc112 peptide
was obtained from an earlier study (21). Metalnikowin I
(VDKPDYRPRPRPPNM) and pyrrhocoricin (VDKG-
SYLPRPTPPRPIYNRN) were synthesized to 97.5 and
98.1% purity by NovoPro Bioscience (China).

Purification of T. thermophilus 70S ribosomes

Tth70S ribosomes were purified as described earlier (23)
and resuspended in buffer containing 5 mM HEPES-
KOH, pH 7.5, 50 mM KCl, 10 mM NH4Cl and 10
mM Mg(CH3COO)2 to yield a final concentration of ∼30
mg/ml. Tth70S ribosomes were flash frozen in liquid nitro-
gen and kept at −80◦C for storage.

Preparation of mRNA, tRNAi
Met and YfiA

Synthetic mRNA containing a Shine-Dalgarno sequence
and anAUGstart codon followed by a phenylalanine codon
(5′-GGCAAGGAGGUAAAAAUGUUCUAA -3′) was
purchased from Eurogentec. Escherichia coli tRNAi

Met was
overexpressed in E. coli HB101 cells and purified as de-
scribed previously (24). YfiA was overexpressed in BL21
Star cells and purified as described previously (25).

Complex formation

A quaternary complex containing Tth70S ribosomes,
mRNA, deacylated tRNAi

Met and Bac7(1–16) peptide was
prepared by mixing of 5 �M Tth70S ribosomes with 10 �M
mRNA and 50 �MBac7(1–16), and incubating at 55◦C for
10 min. After addition of 20 �M tRNAi

Met, the mixture
was incubated at 37◦C for 10 min. The sample was then in-
cubated at room temperature for at least 15 min and cen-
trifuged briefly prior to use. Ternary complexes containing
50 �M metalnikowin I or pyrrhocoricin, 5 �M Tth70S ri-
bosomes and 50 �MYfiAwere formed by incubation for 30
min at room temperature. The final buffer conditions were
5 mM HEPES-KOH, pH 7.6, 50 mM KCl, 10 mM NH4Cl
and 10 mMMg(CH3COO)2.

Crystallization

Published conditions were used as a starting point for
screening crystallization conditions by vapour diffusion in
sitting-drop trays at 20◦C (23,26). Crystallization drops
consisted of 3 �l of quaternary or ternary complexes and
3–4 �l of reservoir solution containing 100 mM Tris–HCl,
pH 7.6, 2.9% (v/v) PEG 20,000, 7–10% (v/v) 2-methyl-
2,4-petanediol (MPD) and 175 mM arginine. Crystals ap-
peared within 2–3 days and grew to ∼1000 × 100 × 100
�m within 7–8 days. For cryoprotection, the concentration
of MPD was increased in a stepwise manner to yield a fi-
nal concentration of 40% (v/v). The ionic composition dur-
ing cryoprotection was 100 mM Tris–HCl, pH 7.6, 2.9%
(v/v) PEG 20,000, 50 mMKCl, 10 mMNH4Cl and 10 mM
Mg(CH3COO)2. Crystals were flash frozen in a nitrogen
cryostream at 80 K for subsequent data collection.
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Data collection and processing

Diffraction data for Bac7(1–16) were collected at
PROXIMA-2A, a beamline at the SOLEIL synchrotron
(Saclay, France) equipped with an ADSC Q315 detec-
tor. A complete dataset was obtained by merging 0.25◦

oscillation data collected at 100 K with a wavelength
of 0.98011 Å from multiple regions of the same crystal.
Diffraction data for metalnikowin I and pyrrhocoricin
were collected at PROXIMA-1, a beamline at the SOLEIL
synchrotron equipped with a DECTRIS PILATUS 6M
detector. Complete datasets were obtained by merging
0.1◦ oscillation data collected at 100 K with a wavelength
of 0.97857 Å from multiple regions of the crystal. Initial
data processing, including integration and scaling, was
performed with X-ray Detector Software (XDS) (27). The
data could be indexed in the P212121 space group, with
unit-cell dimensions approximating 210 × 450 × 625 Å and
an asymmetric unit containing two copies of the Tth70S
ribosome.

Model building and refinement

Initial phases were obtained by molecular replacement per-
formed with Phaser (28). The search model was obtained
from a high-resolution structure of the Tth70S ribosome
(PDB ID: 4Y4O) (29) where the RNA backbone had been
further improved with the ERRASER-Phenix pipeline (30),
using the deposited structure factors. Restrained crystallo-
graphic refinement was carried out with Phenix (31) and
consisted of a single cycle of rigid-body refinement followed
by multiple cycles of positional and individual B-factor re-
finement. Rigid bodies comprised four domains from the
small 30S subunit (head, body, spur and helix h44) and three
domains from the large 50S subunit (body, L1 stalk and the
C terminus of ribosomal protein L9). Non-crystallographic
symmetry restraints between the two copies of the Tth70S
ribosome in the asymmetric unit were also applied during
refinement. After confirming that a single tRNAwas bound
to the P site or that YfiAwas present at the decoding center,
and that additional density corresponding to the PrAMPs
was visible within the exit tunnel in a minimally biased FO–
FC map,models of the corresponding PrAMPswere built in
Coot (32). The models for the tRNA and mRNA were ob-
tained from a high-resolution structure of the Tth70S ribo-
some pre-attack complex (PDB ID: 1VY4). The model for
YfiAwas obtained from a high resolution Tth70S ribosome
structure (PDB ID: 4Y4O). Further refinement and model
validation was carried out in Phenix (31) and on the Mol-
Probity server (33), respectively. In the final models, 0.56–
0.95% of protein residues were classified as Ramachandran
outliers, and 92.4–94.3% had favourable backbone confor-
mations (Supplementary Table S1). Coordinates and struc-
ture factors have been deposited in the Protein Data Bank
under accession codes 5F8K (Bac7(1–16)), 5FDU (Metal-
nikowin I) and 5FDV (Pyrrhocoricin).

In vitro translation assays

Escherichia coli lysate-based transcription-translation cou-
pled assay (RTS100, 5Prime) were performed as described
previously for other translational inhibitors (34). Briefly, 6

�l reactions, with or without PrAMPwere mixed according
to the manufacturer’s description and incubated for 1 h at
30◦Cwith shaking (750 rpm). A total of 0.5 �l of each reac-
tion were stopped with 7.5 �l kanamycin (50 �g/�l). The
effect of Bac7(1–35) on eukaryotic translation was deter-
mined using Rabbit Reticulocyte Lysate System (Promega).
A total of 6 �l reactions, with or without Bac7(1–35) were
mixed according to the manufacturer´s description and in-
cubated for 1 h at 30◦C with shaking (300 rpm). A total of
5 �l of each reaction were stopped in 5 �l kanamycin (50
�g/�l). All samples were diluted with 40 �l of Luciferase
assays substrate (Promega) into a white 96-well chimney flat
bottom microtiter plate (Greiner). The luminescence was
then measured using a Tecan Infinite M1000 plate reader.
Relative values were determined by defining the lumines-
cence value of the sample without inhibitor as 100%.

Toe-printing assay

The position of the ribosome on the mRNA was mon-
itored with a toe-printing assay (35) based on an in
vitro–coupled transcription-translation system with the
PURExpress in vitro protein synthesis kit (NEB), as
described previously (21,36). Briefly, each translation
reaction consisted of 1 �l solution A, 0.5 �l �isoleucine
amino acid mixture, 0.5 �l tRNA mixture, 1.5 �l solution
B, 0.5 �l (0.5 pmol) hns37aa template: (5′-ATTAAT
ACGACTCACTATAGGGATATAAGGAGGAAAAC
ATatgAGCGAAGCACTTAAAattCTGAACAACCTGC
GTACTCTTCGTGCGCAGGCAAGACCGCCGCCGC
TTGAAACGCTGGAAGAAATGCTGGAAAAATTA
GAAGTTGTTGTTtaaGTGATAGAATTCTATCGTTA
ATAAGCAAAATTCATTATAAC-3′, with start codon
ATG, catch isoleucine codon ATT and stop codon TAA
in bold, the hns37aa ORF underlined and toe-print
primer binding site in italics) and 0.5 �l additional agents
(nuclease-free water, water dissolved Bac7(1–35) Bac7(1–
16), Bac7(5–35) (1, 10 or 100 �M final concentration)
or antibiotics (100 �M thiostrepton, 50 �M edeine, 50
�M clindamycin final concentration)). Translation was
performed in the absence of isoleucine at 37◦C for 15 min
at 500 rpm in 1.5 ml reaction tubes. After translation,
2 pmol Alexa647-labelled NV-1 toe-print primer (5′-
GGTTATAATGAATTTTGCTTATTAAC-3′) was added
to each reaction. Reverse transcription was performed with
0.5 �l of AMV RT (NEB), 0.1 �l dNTP mix (10 mM)
and 0.4 �l Pure System Buffer and incubated at 37◦C for
20 min. Reverse transcription was quenched and RNA
degraded by addition of 1 �l 10 M NaOH and incubation
for at least 15 min at 37◦C and then was neutralized with
0.82 �l of 12 M HCl. 20 �l toe-print resuspension buffer
and 200 �l PN1 buffer were added to each reaction before
treatment with a QIAquick Nucleotide Removal Kit (Qi-
agen). The Alexa647-labelled DNA was then eluted from
the QIAquick columns with 80 �l of nuclease-free water. A
vacuum concentrator was used to vaporize the solvent and
the Alexa647-labelled DNA was then dissolved into 3.5 �l
of formamide dye. The samples were heated to 95◦C for 5
min before being applied onto a 6% polyacrylamide (19:1)
sequencing gel containing 7 M urea. Gel electrophoresis
was performed at 40 W and 2000 V for 2 h. The GE
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Figure 1. Binding site of Bac7(1–16) on the ribosome and comparison
with Onc112. (A) Overview and closeup view of a cross-section of the
Tth70S ribosomal exit tunnel showing the Bac7(1–16) peptide (RRIR-
PRPPRLPRPRPR) in green and highlighting the three regions of inter-
action with the ribosome: the A-tRNA binding pocket (light pink), the
A-site crevice (light green) and the upper section of the exit tunnel (light
blue). (B) Structural comparison of Bac7(1–16) (green) with Onc112 (or-
ange)(20,21), Met1(1–10) (burgundy) and Pyr(1–16) (cyan), highlighting
the distinct structure of the Bac7 N-terminus (N-term) and the Pyr C-
terminus (C-term).

Typhoon FLA9500 imaging system was subsequently used
to scan the polyacrylamide gel.

Filter binding assay

Filter binding assays were performed as described previ-
ously (34,37). Briefly, 3 pmol of 70S ribosomes purified from
BL21E. coli strain were exposed to 30 pmol of radiolabelled
[14C]-Erythromycin (Perkin Elmer; 110 dpm/pmol) in pres-
ence of 1x filter binding buffer (10 mM HEPES/KOH
[pH 7.4], 30 mM MgCl2, 150 mM NH4Cl and 6 mM �-
mercaptoethanol) for 15 min at 37◦C. Our controls in-
dicated that approximately 65% of the 70S ribosomes (2
pmol) contained [14C]-Erythromycin previous to the addi-
tion of the different PrAMPs. The PrAMPs were diluted in
nuclease-free water to a concentration of 1 mM, 100 �M
and 10 �M. 2 �l of each PrAMP stock dilution (Onc112,
Bac7(1–35), Bac7(1–16) and Bac7(5–35)) were transferred
to the respective tube resulting in final concentrations of
100, 10 and 1 �M. Reactions were incubated for an addi-
tional 25 min at 37◦C. Afterwards the 20 �l samples were
passed through a HA-type nitrocellulose filter from Milli-
pore (0.45 �m pore size) and the filter subsequently washed
three times with 1 ml 1× filter binding buffer. Scintillation
counting was performed in the presence of Rotiszint R© eco
plus Scintillant. All reactions were performed in duplicate
and results were analysed using GraphPad Prism 5. Error
bars represent the standard deviation from the mean.

Disome formation assay

The disome formation assay was performed as described
previously (38,39). Briefly, in vitro translation of the
2xermBL construct was performed using the Rapid Trans-
lation System RTS 100 E. coli HY Kit (Roche). Transla-
tions were carried-out for 1 h at 30◦C and then analysed
on 10–55% sucrose density gradients (in a buffer contain-
ing 50 mM HEPES-KOH, pH7.4, 100 mM KOAc, 25 mM

Mg(OAc)2, 6 mM �-mercaptoethanol) by centrifugation at
154 693 × g (SW-40 Ti, Beckman Coulter) for 2.5 h at 4◦C.

RESULTS

The N-terminus of Bac7 adopts a compact conformation

We obtained a structure referred to here as Tth70S-Bac7
from co-crystals of Tth70S ribosomes in complex with dea-
cylated tRNAi

Met, a short mRNA and Bac7(1–16) (Sup-
plementary Table S1). In addition, we obtained two addi-
tional structures, Tth70S-MetI and Tth70S-Pyr, from co-
crystals of Tth70S ribosomes in complex with YfiA and
either metalnikowin I or pyrrhocoricin, respectively (Sup-
plementary Table S1). The quality of the electron den-
sity in the minimally biased FO–FC difference maps calcu-
lated after refinement of a model comprising Tth70S ribo-
somes and tRNAi

Met/mRNA or YfiA, made it possible to
build a model for the entire Bac7(1–16; RRIRPRPPRL-
PRPRPR), the first 10 (of 15; VDKPDYRPRPRPPNM)
residues of metalnikowin I (MetI) and the first 16 (of
20; VDKGSYLPRPTPPRPIYNRN) residues of pyrrho-
coricin (Pyr), as well as to position several neighbouring sol-
vent molecules (Supplementary Figure S1). Like the insect-
derived Onc112 peptide (20,21), MetI, Pyr and Bac7(1–16)
all bind to the ribosomal exit tunnel in a reverse orienta-
tion relative to the nascent polypeptide chain and make ex-
tensive interactions with three distinct regions of the large
50S ribosomal subunit: the A-tRNA binding pocket, the A-
site crevice and the upper section of the nascent polypep-
tide exit tunnel (Figure 1A, B and Supplementary Figure
S1). A nearly identical, extended backbone conformation
is seen for residues 7–13 of Bac7(1–16) and residues 4–10
of Onc112, Met1 and Pyr, with Arg9 of Bac7(1–16) sub-
stituting for Tyr6 of Onc112, Met1 and Pyr (Figure 1B).
The structural similarity however does not extend to the N-
terminus of Bac7(1–16), where the first six residues adopt a
structure that deviates substantially from that of the shorter
N-terminus of the insert-derived PrAMPs. Indeed, arginine
residues within this region are arranged such that the side
chain ofArg6 is sandwiched between the side chains ofArg2
and Arg4 to form a compact, positively charged structure
(Figure 1A and B). The binding site of Bac7(1–16) sug-
gests that the additional C-terminal residues of Bac7(1–
35) and of the full-length Bac7 (60 residues) would occupy
the entire length of the ribosomal tunnel. Consistently, a
photocrosslinkable derivative of Bac7(1–35) has been cross-
linked to two ribosomal proteins of ∼16 and 25 kDa (19),
which we suggest to be L22 and L4, respectively, based on
their size and close proximity to the Bac7(1–16) binding
site (Supplementary Figure S2). Compared to Onc112 and
Met1, additional density for the C-terminal PRPR motif
(residues 13–16) of Pyr is observed extending deeper into
the tunnel (Figure 1 and Supplementary Figure S1). With
the exception of Arg14 for which no density is observed,
the PRPR motif is quite well ordered despite not forming
any obvious direct interactions with the ribosome.
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Bac7 makes extensive interactions with the 50S ribosomal
subunit

As with Onc112 (20,21), binding of Bac7(1–16) to the ribo-
some is accompanied by an induced fit involving 23S rRNA
residues A2062, U2506 and U2585 (Supplementary Figure
S3A; E. coli numbering is used throughout this work for the
23S rRNA), such that the base of this last nucleotide occu-
pies a position that would normally clash with the formyl-
methionyl moiety of fMet-tRNAi

Met bound to the P-site of
an initiation complex (Supplementary Figure S3B). Three
modes of interaction are observed between Bac7(1–16) and
the large 50S ribosomal subunit (Figure 2A–E).

First, the N-terminal region of Bac7(1–16) forms multi-
ple hydrogen bonds and salt bridges with theA-tRNAbind-
ing pocket of the ribosome (Figure 2A and B). In particular,
the compact structure formed by Arg2, Arg4 and Arg6 pro-
vides a positively charged N-terminal anchor that displaces
twomagnesium ions from a deep groove lined by 23S rRNA
residues C2452, A2453 andG2454 on one side, and residues
U2493 andG2494 on the other (Figure 2B). This groove dif-
fers from the standard A-form RNA major groove in that
it occurs between two unpaired, antiparallel strands of the
23S rRNA. Consequently, the compact arginine structure
at the N-terminus of Bac7(1–16) is ideally sized and shaped
to fit into this groove and the resulting interaction is likely
to be specific in spite of its simple electrostatic nature. Fur-
ther contacts in this region are likely to increase the speci-
ficity of Bac7(1–16) for the ribosome, such as the two hydro-
gen bonds between the side chain of Arg1 and 23S rRNA
residues U2555 and C2556, and four hydrogen bonds be-
tween the backbone of Bac7(1–16) residues Arg2-Arg4 and
23 rRNA residues U2492, U2493 and C2573 (Figure 2A).
Second, the unusually high arginine (50%) and proline

(37.5%) content of Bac7(1–16) restricts the types of con-
tacts that this peptide can establish with the ribosome. This
results in �-stacking interactions between the side chains of
Arg2, Arg9, Arg12, Arg14 and Arg16 and exposed bases of
23S rRNA residues C2573, C2452/U2504, C2610, C2586
and A2062, respectively. Additional rigidity within the pep-
tide is provided through the packing of Arg1 against Ile3
and Arg9 against Leu10, and through the compact arginine
stack described above (Figure 2C).

Third, numerous possible hydrogen bonds can be estab-
lished between the backbone of Bac7(1–16) and the ribo-
some (Figure 2A, D and E), including many indirect inter-
actions via ordered solvent molecules (Figure 2D and E).
Many of the water-mediated contacts suggested forTth70S-
Bac7 are likely to occur with oncocin, even though the
lower resolution of the earlier Tth70S-Onc112 structures
precluded the modelling of any water molecules (20,21).
In addition, interactions such as those between 23S rRNA
residue U2506 and the backbone of Bac7(1–16) residues
Arg9 and Leu10 were also proposed to occur between the
Onc112 peptide and the ribosome (20,21).

Bac7 and Onc112 compete with erythromycin for ribosome
binding

The C-terminal residues 12–16 of Bac7(1–16) overlap with
the binding site of the macrolide antibiotic erythromycin

on the bacterial ribosome (40,41), in particular with the re-
gion occupied by the cladinose sugar and part of the lac-
tone ring (Figure 3A). Consistently, we could demonstrate
that Bac7(1–16) and Bac7(1–35) efficiently compete with
the binding of radiolabelled erythromycin to the 70S ribo-
some (Figure 3B). Similarly, Onc112 also efficiently com-
peted with erythromycin (Figure 3B), as expected based
on the similarity in binding mode with the ribosome for
these regions of Onc112 and Bac7 (Figure 1B). In contrast,
Bac7(5–35) was a poor competitor of erythromycin (Fig-
ure 3B), indicating that the highly cationic N-terminus of
Bac7 and its interaction with the A-tRNA binding pocket
(Figure 2B) are important for high affinity binding of Bac7
to the ribosome. Indeed, Bac7 derivatives lacking the first
four N-terminal residues (RRIR), Bac7(5–35) and Bac7(5–
23), exhibit dramatically reduced minimal inhibitory con-
centrations (MIC) againstGram-negative strains, such asE.
coli, as well as Salmonella typhimurium (6). We note, how-
ever, that the internalization of Bac7(5–35) into bacteria is
reduced, indicating that the N-terminal RRIR motif also
plays an important role for cell penetration (11).

Bac7 allows initiation, but prevents translation elongation

Consistent with the erythromycin binding assays and in
agreement with previous results (Figure 4A) (19), we ob-
served that Bac7(1–35) inhibits the production of luciferase
with an IC50 of 1�Min anE. coli in vitro translation system,
similar to MetI and Pyr (Supplementary Figure S1), as well
as that observed previously for Onc112 (20,21). Bac7(1–16)
was an equally potent inhibitor as Bac7(1–35), consistent
with the similar MICs observed for these two derivatives
(6,10,11). In contrast, Bac7(5–35) inhibited in vitro trans-
lation with an IC50 of 10 �M, i.e. 10-fold higher than ob-
served for Bac7(1–16) or Bac7(1–35), indicating that the re-
duced affinity for the ribosome, together with reduced cellu-
lar uptake (11), results in the higher MIC of the Bac7(5–35)
derivative (6,42).
Next we investigated the mechanism of inhibition by

Bac7 using two in vitro translation assays. First, we com-
pared the effect of Bac7(1–35) and Bac7(5–35) on the stabi-
lization of disomes formed upon the stalling of ribosomes
on a dicistronic mRNA (in this case 2XErmBL mRNA),
as measured by sucrose gradient centrifugation (21,38,39).
In the absence of inhibitor, the majority of ribosomes are
present as 70S monosomes (control in Figure 4B), whereas
the presence of erythromycin leads to translational arrest of
the ribosomes on both cistrons of the 2XErmBL mRNA,
thereby generating the expected disome peaks (Ery in Fig-
ure 4B). Consistent with the in vitro translation assays (Fig-
ure 4A), translation inhibition and thus disome formation
was observed in the presence of 10�MBac7(1–35), whereas
even 100 �Mof Bac7(5–35) did not produce significant dis-
omes (Figure 4B). These findings suggest that Bac7(1–35)
but not Bac7(5–35) stabilizes an arrested ribosome com-
plex, as observed previously for Onc112 (21).
Second, to monitor the exact site of translation inhibi-

tion of the Bac7 derivatives, we employed a toeprinting as-
say, which uses reverse transcription from the 3′ end of
an mRNA to determine the exact location of the ribo-
somes that are translating it (35). In the absence of in-
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Figure 2. Interactions between Bac7(1–16) and the ribosome. (A) Bac7(1–16) (green) makes extensive contacts with the A-site tRNA binding region of
the ribosome, in particular (B) electrostatic interactions between its N-terminal arginine stack and a deep groove lined by phosphate groups from the 23S
rRNA (B). (C) �-stacking interactions between arginine side chains (green) of Bac7(1–16) and 23S rRNA bases contribute to much of the binding and are
reinforced through further packing against aliphatic side chains (blue). (D and E) Water-mediated contacts between the peptide and the ribosome are also
proposed to occur further down the exit tunnel, in addition to direct hydrogen bonding interactions between the two.

Figure 3. Competition between Bac7 derivatives and erythromycin. (A) Superimposition of the binding site of erythromycin (blue) (40,41) with residues
11–16 of Bac7(1–16) (green). (B) A filter binding assay was used to monitor competition between radiolabelled [14C]-erythromycin and increasing concen-
trations (1–100 �M) of Bac7(1–35) (red), Bac7(1–16) (green), Bac7(5–35) (blue), Onc112 (grey) and cold (non-radioactive) erythromycin (ery, black).

hibitor, ribosomes initiated at the AUG start codon of the
mRNA, translated through the open reading frame and
ultimately became stalled on an isoleucine codon (Figure
4C) due to the omission of isoleucine from the translation
mix. In the presence of thiostrepton or clindamycin, ribo-
somes accumulated at the AUG codon (Figure 4C), since
these antibiotics prevent delivery and/or accommodation
of aminoacyl-tRNA at the A-site directly following initi-
ation (43). Similar results were observed when using the
Bac7(1–35) and Bac7(1–16) derivatives, such that complete

inhibition of translation elongation was observed at a pep-
tide concentration of 10 �M (Figure 4C). These findings
suggest that like Onc112 (21), Bac7 allows subunit joining
and fMet-tRNAi

Met binding, but prevents accommodation
of the first aminoacyl-tRNA at the A-site, as suggested by
the overlap in the binding site of Bac7 and the CCA-end of
an A-tRNA (Figure 4D). Curiously, the toeprint for ribo-
somes stalled during initiation became weaker at 100 �M
of Bac7(1–16) and Bac7(1–35) and the signal for the full-
length mRNA became stronger, similar to the effect ob-
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Figure 4. Mechanism of action of Bac7 on the ribosome. (A) Effects of increasing concentrations of Bac7 derivatives Bac7(1–16) (green), Bac7(1–35) (red)
and Bac7(5–35) (blue) on the luminescence resulting from the in vitro translation of firefly luciferase (Fluc) using an Escherichia coli lysate-based system.
The error bars represent the standard deviation from the mean for triplicate experiments and the luminescence is normalized relative to that measured in
the absence of peptide, which was assigned as 100%. (B) Sucrose gradient profiles to monitor disome formation from in vitro translation of the 2XErmBL
mRNA in the absence (control) or presence of 20 �M erythromycin (Ery), 10 �M Bac7(1–35) (red) or 100 �M Bac7(5–35) (blue). (C) Toe-printing assay
performed in the absence (−) or presence of increasing concentrations (1, 10, 100 �M) of Bac7(1–35), Bac7(1–16) or Bac7(5–35), or 100 �M thiostrepton
(Ths), 50 �M edeine (Ede) or 50 �M clindamycin (Cli). Sequencing lanes for C, U, A and G and the sequence surrounding the toe-print bands (arrowed)
when ribosomes accumulate at the AUG start codon (green, initiation complex) or the isoleucine codon (blue, stalled elongation complex) are included for
reference. (D) Structural comparison of Phe-tRNAPhe (slate) in the A-site and fMet-tRNAi

Met in the P-site (blue) (26) with the binding site of Bac7(1–16)
(green).

served when the antibiotic edeine was used (Figure 4C).
Edeine prevents 70S initiation complex formation by desta-
bilizing fMet-tRNAi

Met binding to the 30S subunit (43).
Thus, Bac7 may have a similar effect when high cytosolic
concentrations are achieved through active uptake into the
cell, possibly due to the presence of non-specific interactions
with the ribosome. In contrast to Bac7(1–16) and Bac7(1–
35), Bac7(5–35) only stabilized the initiation complex at a
much higher concentration (100 �M) (Figure 4C). This is
consistent with a reduced affinity of Bac7(5–35) for the ri-
bosome and reinforces the critical role played by the first
four residues of Bac7 in its inhibitory activity (Figure 1A)
(6,42).

Bac7 inhibits eukaryotic translation in vitro

Bac7(1–35) is internalized by mammalian cells (42,44), yet
no toxicity has been observed, even at concentrations well
above those effective against microbes (12,13,42), raising
the question as to whether Bac7 binds to eukaryotic cytoso-
lic ribosomes. A comparison of the binding site of Bac7(1–
16) on the bacterial 70S ribosomewith the equivalent region
of a mammalian 80S ribosome reveals that the rRNA nu-
cleotide sequence is highly conserved. Structurally, the con-
formation of three 25S rRNA nucleotides, C4519 (C2573),
U4452 (U2506) and A3908 (A2602), would be expected to
preclude Bac7(1–16) from binding to the mammalian ri-
bosome (Figure 5A). Nevertheless, these nucleotides are
highly mobile and adopt different conformations depend-
ing on the functional state of the ribosome (26,39,45,46),
suggesting that conformational rearrangements of these nu-

 at U
n
iv

ersitaetsb
ib

lio
th

ek
 M

u
en

ch
en

 o
n
 Jan

u
ary

 2
0
, 2

0
1
6

h
ttp

://n
ar.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m
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Figure 5. Specificity of Bac7 for bacterial and eukaryotic ribosomes. (A) Superimposition of Bac7(1–16) (green) onto amammalian 80S ribosome (PDB ID:
3J7O) (47) on the basis of the 23S and 25S rRNA chains in the corresponding structures, with inset illustrating three rRNAnucleotides whose conformation
differs in the 80S (grey) and Tth70S-Bac7 (yellow) structures. (B) Effect of increasing concentrations of Bac7(1–35) on the luminescence resulting from the
in vitro translation of firefly luciferase (Fluc) using an Escherichia coli lysate-based system (red) or rabbit reticulocyte-based system (black). The error bars
represent the standard deviation from the mean for triplicate experiments and the fluorescence is normalized relative to that measured in the absence of
peptide, which was assigned as 100%. (C) Model for the targeting of proBac7 to large granules and its processing by elastase to yield active Bac7 peptide.
The latter is transported through the bacterial inner membrane by the SbmA transporter and binds within the tunnel of bacterial ribosomes to inhibit
translation.

cleotides could allow Bac7(1–16) binding. Indeed, we ob-
served that increasing concentrations of Bac7(1–35) inhib-
ited in vitro translation using a rabbit reticulocyte system
(Figure 5B). Bac7(1–35) exhibited an IC50 of 2.5 �M, only
2.5-fold higher than that observed in the E. coli in vitro
translation system (Figure 5B). The excellent inhibitory ac-
tivity of Bac7(1–35) on mammalian ribosomes, combined
with its lack of toxicity on mammalian cells (42), would be
consistent with a mechanism of internalization via an endo-
cytotic process (42) to ensure that Bac7 minimizes contact
with the mammalian cytosolic ribosomes.

DISCUSSION

Our finding that Bac7 is active against eukaryotic trans-
lation, together with the current literature, allows us to
present a model that explains how and why the mammalian
cell prevents the active Bac7 peptide from being present in
the cytoplasm (Figure 5C). Bac7 is produced by immature
myeloid cells as a pre-pro-Bac7 precursor that is targeted
to large granules, where it is stored as pro-Bac7 in differ-
entiated neutrophils (48). The inactive proBac7 is cleaved
by elastase, a serine protease that is present in azurophil
granules, either upon (A) fusion with the phagosome, or (B)
exocytosis and release into the extracellular matrix (Figure
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5C) (48,49). The resulting activated Bac7 peptide can then
enter into the bacterial cell through the SbmA transporter
(10), where it subsequently binds to the ribosome to inhibit
translation (Figure 5C) (19). Our structure of the Tth70S–
Bac7 complex reveals specifically how Bac7 interacts with
the bacterial ribosome (Figures 1 and 2) and inhibits trans-
lation by allowing initiation but preventing translation elon-
gation (Figure 3). Although the overall mechanism of ac-
tion of Bac7 is similar to that of insect-derived AMPs like
oncocin (20,21), the high arginine content of Bac7 leads to
a distinct mode of binding to the ribosome, namely through
electrostatic and stacking interactions with the backbone
and bases of 23S rRNA nucleotides, respectively (Figure
2C). It will be interesting to see whether such interactions
are the basis for the translational arrest that has been ob-
served when the ribosome translates a nascent polypeptide
chain bearing positively charged arginine residues (50,51).
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Table S1. X-ray data processing and crystallographic refinement statistics 

 

 Bac7(1-16) MetI Pyr 

PDB code 5F8K 5FDU 5FDV 

Space group P212121 P212121 P212121 
Unit cell dimensions 
a 
b 
c 
α 
β 
γ 

 
209.8 Å 
450.3 Å 
622.2 Å 
90.0° 
90.0° 
90.0° 

 
209.7 Å 
448.1 Å 
623.4 Å 
90.0° 
90.0° 
90.0° 

 
209.9 Å 
450.1 Å 
622.9 Å 
90.0° 
90.0° 
90.0° 

Data processing    
Resolution 50 Å – 2.8 Å 50 Å – 2.9 Å 50 Å – 2.8 Å  
RMerge 51.3% (233.9%) 17.0% (181.0%) 17.8% (229.7%) 
I/σI 5.71 (0.95) 11.61 (1.10) 15.99 (1.29) 
CC 1/2 95.7 (16.1) 99.7 (34.9) 99.9 (41.1) 
Completeness 99.6% (97.6%) 99.6% (99.5%) 100% (100%) 
Redundancy 8.3 (8.1) 6.9 (6.7) 13.8 (13.4) 

Refinement    
Rwork/Rfree 24.8% / 29.2% 18.3% / 23.4% 18.9% / 24.0% 
Bond deviations 0.018 Å 0.030 Å 0.029 Å 
Angle deviations 1.083° 1.976° 1.942° 
Figure of merit 0.80 0.84 0.83 
Ramachandran outliers 0.56% 0.95% 0.87% 
Favorable backbone 94.3% 92.4% 93.3% 
 

 

	

  



 

Figure S1. Minimally biased electron density for (A) the Bac7(1-16) peptide (green) 
and surrounding solvent molecules, as well as the (B) Pyr(1-16) (cyan) and (C) 
MetI(1-10) (burgundy) peptides. The peptides are shown in the same orientation as 
in Figure 1A and solvent molecules are displayed as spheres (red). Continuous 
density for the entire peptide and clear density for the solvent molecules are 
observed in a minimally biased Fo–Fc difference map contoured at +2.0σ (blue mesh). 
(D) Superimposition of the Bac7(1-16), Onc112(1-12) (orange), Pyr(1-16) and MetI(1-
10) peptides. (E) Effects of increasing concentrations of Bac7(1-16) (red), 
Metalnikowin I (green) and Pyrrhocoricin (green) on the luminescence resulting from 
the in vitro translation of firefly luciferase (Fluc) using an E. coli lysate-based system. 
The error bars represent the standard deviation from the mean for triplicate 
experiments and the luminescence is normalized relative to that measured in the 
absence of peptide, which was assigned as 100%. 
  



 

Figure S2. Relative position of the ribosome-bound Bac7(1-16) peptide (green) to 
the ribosomal proteins L4 (red) and L22 (blue) that reach into the lumen of the 
ribosomal tunnel. The proposed path for the full-length Bac7 peptide is shown as a 
dotted green line. 
  



 

Figure S3. (A) Conformational changes in 23S rRNA nucleotides A2062, U2506 and 
U2585 that take place upon binding of Bac7(1-16) to the ribosome. Nucleotides from 
the Tth70S-Bac7 structure are shown in yellow, while nucleotides in the Bac7-free or 
“uninduced” conformation are in blue (1). (B) Clash between the formyl-methionyl 
moiety of a P-site bound fMet-tRNAi

Met (blue) and 23S rRNA residue U2585 in its 
Bac7-bound conformation (yellow). Bac7(1-16) is shown as a green Cα-trace in both 
panels. 
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The innate immune system employs a broad array of antimicrobial peptides (AMPs) to attack invading

microorganisms. While most AMPs act by permeabilizing the bacterial membrane, specific subclasses of

AMPs have been identified that pass through membranes and inhibit bacterial growth by targeting

fundamental intracellular processes. One such subclass is the proline-rich antimicrobial peptides

(PrAMPs) that bind to the ribosome and interfere with the process of protein synthesis. A diverse range of

PrAMPs have been identified in insects, such as bees, wasps and beetles, and crustaceans, such as crabs,

as well as in mammals, such as cows, sheep, goats and pigs. Mechanistically, the best-characterized

PrAMPs are the insect oncocins, such as Onc112, and bovine bactenecins, such as Bac7. Biochemical

and structural studies have revealed that these PrAMPs bind within the ribosomal exit tunnel with

a reverse orientation compared to a nascent polypeptide chain. The PrAMPs allow initiation but prevent

the transition into the elongation phase of translation. Insight into the interactions of PrAMPs with their

ribosomal target provides the opportunity to further develop these peptides as novel antimicrobial agents.

1 Discovery of PrAMPs

The innate immune system uses a broad range of antimicrobial

peptides (AMP) as the rst line of defense to kill invading

microorganisms. AMPs inhibit the proliferation of bacteria and

therefore can prevent the establishment of an infection. They can

either be induced through pathogen sensing receptors or are

continuously secreted into body uids.1 Based on their nature and

composition they can be divided into amphiphilic peptides, with

two to four b-strands, amphipathic a-helices, loop structures and

extended structures.2 Although most of these ve classes inhibit

bacterial cells by permeabilizing the membrane, the action of

AMPs is not limited to the surface of pathogens.3 Some AMPs have

intracellular targets which affect the metabolism of the invading

organism,4 such as the subclass of Proline-rich Antimicrobial

Peptides (PrAMPs).5–7 PrAMPs belong to the group of cationic

peptides that are enriched in proline residues and are oen

arranged in conserved patterns together with arginine resi-

dues (Fig. 1A and B). PrAMPs appear to be irregularly

dispersed amongst animals, being so far only identied in

some arthropods (insects and crustaceans) and mammals

(Fig. 1A). The discovery of the rst PrAMP started with api-

daecin in the late 1980s.8 Casteels and coworkers injected

a sub-lethal dose of Escherichia coli cells into the body cavity of

adult bees and subsequently monitored the appearance of

AMPs by HPLC.8 This led to the identication of three active

forms of apidaecin which were further characterized with

respect to their molecular mass and amino acid sequence.8

The discovery of apidaecins was quickly followed by the

identication of other insect and mammalian PrAMPs. Insect

PrAMPs include abaecin from the honey bee Apis mellifera,9

drosocin from the fruit y Drosophila melanogaster,10 pyr-

rhocoricin from the rebeetle Pyrrhocoris apterus,11

metalnikowin-1 from the green shield bug Palomena prasina12

and oncocin from the milkweed bug Oncopeltus fasciatus13,14

(Fig. 1A). In crustaceans, the PrAMP Arasin 1 has been isolated

from the spider crab Hyas araneus19 as well as a PrAMP with

similarity to Bac7 from the shore crab Carcinus maenas.20 Two

distinct mammalian PrAMPs have been identied in ruminant

species, such as cows (e.g. Bos taurus),15 sheep (e.g. Ovis

aries)16,17 and goats (e.g. Capra hircus) (Fig. 1A).16,17 These

PrAMPs were named bactenecin 5 and 7 (Bac5 and Bac7) due
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to the molecular weight of the mature peptides being 5 and 7

kDa, respectively.15 In pigs the corresponding PrAMP homolog

to Bac7 has been called PR-39 due to its length of 39 amino

acids.18 Additional bactenecin-like PrAMPs, such as Bac4,

Bac6.5 and Bac11, were identied in the sheep genome,16 but

remain to be characterized.

2 Synthesis of PrAMPs

The synthesis of AMPs, including PrAMPs, occurs mainly in

response to invading bacteria.1 While most of the PrAMPs

characterized to date are synthesized by the ribosome as inac-

tive precursors, interestingly, their paths of activation differ

signicantly between species.

Mammalian Bac5/Bac7 peptides are produced, as other non-

proline-rich mammalian AMPs, by immature myeloid cells as

pre-pro-peptide precursors (Fig. 2A). The Bac5 and Bac7 pre-pro-

peptides comprise a 29 aa pre-signal followed by a 101 aa pro-

region. Bac5/Bac7 are targeted to large granules, where the

targeting signals are cleaved upon import to yield pro-peptides

in differentiated neutrophils.21 When the immune system

recognizes invading bacteria, the maturation of pro-Bacs is

triggered by secretion and mixing of the contents of large and

azurophil granules.22 The inactive pro-Bacs are then cleaved by

elastase, a serine protease that is present in azurophils, either

upon (i) fusion with the phagosome, or (ii) exocytosis and

release into the extracellular matrix (Fig. 2A).22,23 The mature

Bac5 (43 aa) and Bac7 (60 aa) peptides can then pass through

the bacterial cell membrane via the SbmA transporter (see next

section), where they can subsequently interact with their

intracellular target (Fig. 2A).24,25 Similarly, cDNA analysis

showed that the pig PR-39 is synthesized as a 172 aa pre-pro-PR-

39 peptide, which is comprised of a 29 aa signal sequence, a 101

aa pro-region and a 42 aa N-terminal PR-39-containing region.
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The last 3 aa are removed post-translationally to generate the 39

aa active PR-39 peptide.26

PrAMPs have been found in many insect species. In Drosophila

melanogaster one gene encoding the PrAMP drosocin has been

identied.27 The gene encodes a 21 aa N-terminal signal sequence

(pre-sequence), the 19 aa PrAMP and a 24 aa inactivating pro-

sequence that lies behind the PrAMP.10 In contrast, some

PrAMPs are synthesized asmultiple copy peptides encoded within

a single ORF, conferring the advantage of a fast signal ampli-

cation in response to a bacterial infection (Fig. 2B).28 Examples

include the PrAMPs riptocin [Genebank AB842297.1] and api-

daecin.28 Themultiple copy product of apidaecin contains a single

pre-signal sequence of 16 or 19 aa followed by a pro-fragment of

13–16 aa in length (Fig. 2B).28 The mature 18 aa long apidaecin

peptide sequence follows in multiple copies containing different

isoforms (Fig. 2B).28,29 In Apis mellifera individual apidaecin

peptide sequences are separated by an inactivating RR-EAEPEAEP

spacer sequence (Fig. 2B).28 Upon activation amino-, endo- and

carboxypeptidases process the linker and liberate the multiple

copies of mature apidaecin (Fig. 2A and B). Strikingly, apidaecin is

not just encoded as multiple copies within one gene, it is also

encoded in several genes containing different isoforms.28,29 In the

Asian honey bee Apis cerana, multiple genes encoding four

different apidaecin isoforms are evident.29 Each gene contains

a single pre-pro-region that is followed by a variable number of 84

nt repeats containing a linker sequence, a RR or CR dipeptide and

a mature isoform of apidaecin.29

3 Membrane permeability and uptake
of PrAMPs

The majority of AMPs act by damaging bacterial membranes

and causing thereby metabolite efflux and cell destruction.

However, PrAMPs primarily kill bacteria using a non-lytic

mechanism i.e. without signicantly affecting membrane

integrity. The rst indications for this mode of action came

from studies on apidaecin and PR-39, both of which were shown

to inhibit bacterial growth without causing cell lysis.5,30 More-

over, it was shown that apidaecin was internalized by bacteria,

indicating that such PrAMPs do not lyse microorganisms but

rather kill them from within by inhibiting important metabolic

pathways.6 By contrast, previous investigations indicated that

Bac7 permeabilizes the envelope of Gram-negative bacteria

Fig. 1 Sequence alignments of PrAMPs. (A) Sequences of naturally occurring and synthetic PrAMPs derived from arthropods (insects and

crustaceans, blue) and mammals (green). The central PrAMPs were aligned first based on ribosome-bound structures of Onc112, Pyr, Met and

Bac7 and then on sequence similarity. Similar and identical residues are shown in grey and black, respectively. The O-glycosylation (Thr11) of

drosocin indicated (red) and position 11 of oncocin is unknown and indicated with an “X”. The number of amino acids (aa) comprising the mature

peptide is also indicated for each PrAMP. (B) Sequence conservation of the core residues I to XIII of the natural PrAMPs listed in the central region

of (A) between oncocin and PR-39 is shown using a WebLogo62 representation.
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under restrictive conditions, with a higher permeabilizing

activity correlating with longer and more hydrophobic

peptides.31 This contradiction was resolved when a dual mode

of action was demonstrated for shorter fragments of Bac7, such

as Bac7(1-35), against Enterobacteriaceae.32 The lytic mode of

action was relegated to a secondary effect of this molecule,

observable only in the presence of high peptide concentrations

(starting from 16 mM), much above the bacteriostatic and

bactericidal levels (0.5 mM and 1 mM respectively).32

The non-lytic mode of action of PrAMPs implies the presence

of one or more transporters for cellular uptake into bacteria.

The principal “Trojan horse” exploited by insect and mamma-

lian PrAMPs was shown to be the inner membrane protein

SbmA.24 The SbmA transporter is also involved in uptake of the

microcins B17,33 J25,34 and of the non-ribosomal peptide anti-

biotic bleomycin.35 SbmA transports PrAMPs inside the bacte-

rial cytosol exploiting the electrochemical proton gradient

across the inner membrane36 and is the major transporter

responsible for their uptake.24 The physiological role of SbmA

still remains unclear, but this protein can be found in phylo-

genetically distant species of Gram-negative bacteria (Fig. 2C).37

Evidence for SbmA homologs can be found amongst Gamma-

proteobacteria, in particular, the Enterobacteriaceae (e.g. E. coli,

S. dysenteriae, S. enterica, and Klebsiella pneumoniae) and Pseu-

domonadales (A. baumannii), but also amongst Alpha-proteo-

bacteria such as Rhizobiales (e.g. S. meliloti, A. tumefaciens and B.

abortus), Beta-proteobacteria (e.g. Neisseria meningitis), and

Epsilon-proteobacteria (Campylobacter spp.) (Fig. 2C). The

deletion of the sbmA gene in bacteria did not fully confer

resistance towards PrAMPs, but signicantly reduced their

sensitivity.24 This is likely due to a decrease but not abolishment

of peptide internalization in bacteria in the absence of SbmA (or

presence of non-functional SbmA),24 indicating that SbmA is not

the only transporter for uptake of PrAMPs. Indeed, a second

transport mechanism for PrAMP uptake was recently discov-

ered, namely, the inner membrane protein MdtM.38 MdtM is an

efflux pump that extrudes antibiotics from the bacterial

cytosol.39,40 Simultaneous deletions of MdtM and SbmA in E. coli

further decreased the susceptibility of bacteria to some PrAMPs,

but not to all of them.38 For PrAMPs with a dual mode of action,

such as Bac7 or the synthetic A3-APO, the lytic mode of action

becomes dominant at high concentrations, thus obliterating

the advantage that the deletion mutants have over wild-type

bacteria.38

Interestingly, there is a link between the presence of trans-

porters for PrAMPs in the membrane of a bacterial species and

the mode of action of the PrAMP towards a specic microor-

ganism. For example, Pseudomonas aeruginosa does not have

SbmA, therefore PrAMPs cannot easily reach the cytosol to

inhibit bacterial growth by targeting specic intracellular

pathways. The antimicrobial effect of Bac7 fragments is indeed

lower on Pseudomonas sp. if compared with other bacterial

species in which an sbmA gene is present.41 Similarly, insect

PrAMPs are also less active toward P. aeruginosa strains, and

studies optimizing apidaecins with improved antimicrobial

activity toward this pathogen, ended up selecting for derivatives

Fig. 2 Synthesis of PrAMPs. (A) Mammalian PrAMPs are synthesized as pre-pro-sequences and targeted to large granules. The PrAMPs are

activated upon bacterial infection by fusion of pro-PrAMP containing large granules with the elastase-containing azurophil granules and either

the plasmamembrane or the phagosome. Elastase activates the mature PrAMP by removal of the pro-sequence. The activated PrAMP is

transported via SbmA (or to a lesser extent MdtM) into the bacterial cell. (B) Schematic (left) illustrating the activation of insect PrAMPs synthesized

as multiple copies within one open reading frame. Liberation of the mature peptide involves the processing of a pre-pro-AMP by amino-,

carboxy- and endoproteases. An example for a pre-pro form (right) of apidaecin type 73 fragment from Apis mellifera, which contains several

isoforms of mature apidaecin. Putative cleavage sites are highlighted with arrows. (C) Phylogenic tree showing distribution of SbmA (orange)

across Eubacteria. Bacterial groups that have some members carrying SbmA have been highlighted in orange. The iTOL software was used to

draw the tree.37

This journal is © The Royal Society of Chemistry 2017 Nat. Prod. Rep., 2017, 34, 702–711 | 705

Highlight Natural Product Reports

P
u
b
li

sh
ed

 o
n
 2

4
 M

ay
 2

0
1
7
. 
D

o
w

n
lo

ad
ed

 b
y
 L

u
d
w

ig
 M

ax
im

il
ia

n
s 

U
n
iv

er
si

ta
et

 M
u
en

ch
en

 o
n
 0

9
/0

3
/2

0
1
8
 1

2
:0

9
:1

6
. 

View Article Online



with more membranolytic capabilities.42 However, if the exog-

enous E. coli SbmA is expressed in P. aeruginosa PA01, an

increase in internalization and antimicrobial activity was

observed.43 On the other hand, the PrAMP becomes less per-

meabilizing toward the bacterial cell. SbmA seems therefore to

drain Bac7 from the membrane, keeping the local concentra-

tion lower and thereby as a consequence reducing membrane

damage by the PrAMP.43

4 Intracellular targets of PrAMPs

Despite the identication of several PrAMPs, the exact target of

these peptides remained elusive for a long time and in the

beginning it was even unclear whether PrAMPs were lytic, like

most other AMPs, or whether they utilize a completely different

mode of action. Five years aer the initial discovery of apidae-

cin, permeabilization assays suggested that the PrAMP apidae-

cin utilizes a non-lytic mechanism5 and inhibits bacteria by

targeting intracellular components.6 In vivo metabolic labeling

assays monitoring the incorporation of radioactive methionine

indicated that protein synthesis may be the intracellular target

of apidaecin,6 however, these ndings were initially not inves-

tigated further. The second target suggested for PrAMP inter-

action were the chaperones of the Hsp70 family.44 In co-

immunoprecipitation assays the DnaK chaperone was shown

to co-purify with PrAMPs, such as drosocin, pyrrhocoricin,

apidaecin 1a44 and Bac7(1-35).45 Subsequent structural studies

visualized the interactions of PrAMPs with DnaK and revealed

that PrAMPs bind within the same pocket as natural DnaK

substrates.46–48 The hypothesis that DnaK is the primary target

for PrAMP action was challenged when studies reported that

DnaK-decient strains still remained susceptible to Bac7(1-35)

treatment.45 Subsequently, similar results were also obtained

for the insect PrAMPs oncocin and apidaecin.49 Thus, the

interaction of PrAMPs with DnaK appeared to be a secondary

effect, suggesting the existence of another intracellular target

for PrAMP action.

To identify the physiological target of PrAMPs, synthetic

derivatives of the insect PrAMP oncocin and apidaecin were

biotin-labeled and used to “sh” for interactors within bacterial

extracts.49 This led to the identication of ribosomal proteins,

suggesting that ribosomes may be the major target of PrAMPs.49

Consistently, oncocins and apidaecins derivatives were shown

to bind to E. coli 70S ribosomes and inhibit E. coli protein

synthesis using in vitro transcription/translation assays.49 A

second independent study reached the same conclusion,

demonstrating that the mammalian PrAMP Bac7 co-

sedimented with bacterial ribosomes, inhibited in vitro

transcription/translation reactions using bacterial lysates and

blocked protein synthesis in living bacteria.25 Recently, api-

daecin was proposed to have a distinct mechanism of action

compared to other insect PrAMPs, such as oncocin, namely, by

interfering with the assembly of the large ribosomal subunit.50

However, it remains to be determined whether this is a direct

effect on assembly or an indirect effect resulting from inhibition

of translation. Nevertheless, competition assays with other

translation inhibitors indicate that the apidaecin binding site

on the ribosome may differ somewhat from that of oncocin.50 A

distinct mechanism of action for apidaecins compared to

oncocins is also supported by differences in the importance of

their C- and N-terminal residues, respectively,6,41,49,51 as dis-

cussed in the following section.

5 Structure activity relationships of
PrAMPs

The antimicrobial potency of PrAMPs is most effective against

Gram-negative bacteria, especially Enterobacteriaceae such as E.

coli, whereas Gram-positive bacteria are generally less susceptible

to PrAMPs, presumably due to the absence of specic trans-

porters, such as SbmA.7 Given the potential of native PrAMPs for

development as antibacterial compounds against Gram-negative

bacteria, efforts have been made to identify which residues are

crucial or dispensable for their inhibitory activity. The best-

characterized PrAMP derivatives are those related to the insect

oncocins and apidaecins, as well as the bovine Bac7.

The original sequencing analysis of oncocin did not reveal

the nature of the residue at position 11 (see Fig. 1A),13 yet further

mutagenesis studies indicated that the antimicrobial efficiency

of oncocin derivatives strongly depends on this position.14 For

example, oncocin derivatives containing Pro11 or Thr11 dis-

played signicantly worse MICs (128 mg mL�1) against E. coli

compared to derivatives with Arg11 (8 mg mL�1). Subsequent

removal of Asn18 and addition of an amino group to the C-

terminus, coupled with the additional replacement of both

Arg15 and Arg19 with either D-arginine or L-ornithine, led to the

development of Onc112 and Onc72 derivatives, respectively,

both of which displayed increased serum stability without loss

in antimicrobial activity against E. coli and Micrococcus luteus

strains.14,52 Onc72 showed moderate activity against different E.

coli strains with MICs ranging from 18–44 mg mL�1, whereas

Onc112 was more active against E. coli in diluted tryptic broth

media with MICs of 2.5–6.8 mg mL�1.53 Alanine-scanning

mutagenesis of oncocin revealed that replacement of Tyr6 or

Leu7 with Ala led to a 32-fold increase of MIC against E. coli,48

whereas these mutations had little effect on the MIC against P.

aeruginosa.54 Onc112 and Onc72 both display potent inhibitory

activity in E. coli in vitro translation systems.49 While Onc112

derivatives lacking the last seven C-terminal residues

(Onc112D7) retained some translation inhibition activity,

truncation of an additional two residues (Onc112D9) led to

complete loss of activity.55 Both derivatives were unable to

inhibit the growth of E. coli BL21(DE3) in undiluted LB medium

at concentrations up to 383 mg mL�1, while full-length Onc112

inhibited the growth at 60 mg mL�1 indicating that the very C-

terminus of oncocin is more important for cellular uptake

than for ribosome binding and inhibition.55 An oncocin deriv-

ative lacking the rst two N-terminal residues (Onc112DVD) had

reduced capacity to inhibit bacterial growth in vivo and protein

synthesis in vitro,51 illustrating the signicance of N-terminal

residues for activity.

Given the increased length (60 aa) of Bac7 compared to

insect PrAMPs (<20 aa), structure-activity studies on Bac7 have
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so far focussed mainly on analyzing activity of truncated Bac7

derivatives, rather than specic amino acid substitutions.41

These studies demonstrated that the rst 35 N-terminal resi-

dues of Bac7 are necessary and sufficient to inhibit bacterial

growth with the same efficacy as the full-length native peptide.

Bac7(1-35) was shown to display excellent activity (MIC# 8.4 mg

mL�1) against a range of clinically relevant Gram-negative

pathogens, such as E. coli, A. baumannii, K. pneumoniae and

Salmonella enterica.41 The Bac7 peptide can be further shortened

to encompass only the rst 16 N-terminal residues (Bac7(1-16)),

sacricing only partially its antimicrobial potency, whereas

further truncation of even one amino acid (Bac7(1-15)) leads to

a complete loss of antimicrobial activity.41 The loss of activity of

Bac7(1-15) results from impaired transport into the cytosol,

indicating that Bac7(1-16) is the shortest Bac7 PrAMP that is

efficiently taken up by bacterial cells.56 Unlike the C-terminal

truncations, removal of the two N-terminal arginine residues

of Bac7(1-23) increases the MIC by 8-fold56 and truncation of the

rst four N-terminal residues basically inactivated Bac7(1-35).41

Thus, only the rst 16 amino acids of the full 60 of the native

Bac7 are crucial for its killing activity. Similarly, N-terminally

truncated Bac7(5-35) was shown to have reduced inhibitory

activity compared to both Bac7(1-16) and Bac7(1-35) when

analyzed using E. coli in vitro translation assays.57 This indicates

that the rst 16 amino acids of Bac7 are necessary to inhibit

bacterial growth, and are also necessary to efficiently block

protein synthesis.

The rst insights into which apidaecin residues are critical

for its inhibitory activity came from a comparative analysis of

natural apidaecin-type peptides from a diverse range of

insects.58 Comparison of these peptides revealed a conserved

core containing the sequence R/KPxxxPxxPRPPHPRI/L. Devia-

tions from the C-terminal consensus severely reduced the

antimicrobial activity of apidaecins, for example, an exchange

of penultimate Arg by Ala in hornet apidaecin resulted in an

2500-fold increase inMIC (from 0.01 mgmL�1 for the wildtype to

25 mg mL�1).6 In contrast, substitutions within the middle or N-

terminal part of hornet apidaecin produced milder effects.6 The

promising MIC values made apidaecin a potential candidate for

the development of new antimicrobial agents, however, api-

daecin displayed low stability in mouse serum.59 In order to

improve serum stability, the honey bee apidaecin 1b was

modied with an N-terminal tetramethylguanidino-L-ornithine

group instead of a glycine, yielding the apidaecin derivative

Api137.59 In addition to increased serum stability, Api137 also

exhibited a slightly improved MIC against E. coli strains.59 In

accordance with previous studies,6 the C-terminal of Api137 was

shown to be crucial for activity in vivo.49 In the absence of the

last C-terminal Leu18 residue, the MIC of Api137 increased by

16-fold (from 4 mg mL�1 to 66 mg mL�1),49 whereas removal of

the last two residues (Arg17-Leu18), increased the MIC towards

E. coli�140-fold (to 578 mgmL�1). By contrast, mutations within

the N-terminal region, for example the Arg4Ala mutation, did

not signicantly alter the MIC.49 Thus, unlike oncocin and Bac7

where the N-terminal terminus is critical for antimicrobial

activity and the C-terminus is to a large extent dispensable, it is

the C-terminus of apidaecins that is important for activity

whereas the N-terminus appears to be less critical.

6 Interaction of PrAMPs with the 70S
ribosome

The reports that PrAMPs bind to ribosomes and inhibit protein

synthesis25,49 prompted two independent studies to determine

structures of the oncocin derivative Onc112 in complex with the

bacterial 70S ribosome.55,60 Subsequently, structures were also

reported for the insect PrAMPs pyrrhocoricin (Pyr) and

metalnikowin-1 (Met) as well as mammalian Bac7 bound to the

ribosome.51,57 These structures revealed that these PrAMPs all

interact with the large (50S) subunit of the ribosome, speci-

cally, binding within the ribosomal exit tunnel (Fig. 3A and B).

The binding site of the PrAMPs was visualized within the upper

region of the exit tunnel, adjacent to the binding site of a pep-

tidyl-tRNA and overlaps with the path of the nascent poly-

peptide through the tunnel (Fig. 3C).

Within the tunnel, the PrAMPs adopt an elongated confor-

mation, predominantly consisting of random coil interspersed

with stretches of trans-polyproline helices (type II). The PrAMPs

bind with an opposite orientation compared to a nascent

polypeptide chain (for example MifM), namely, with the N-

terminus located at the tunnel entry and the C-terminus

extending deeper into the tunnel (Fig. 3C). For each of the

insect PrAMPs, the C-terminal residues (4 aa, 5 aa and 6 aa of

Pyr, Met and Onc112, respectively) were not visualized in the

structure (Fig. 3B), suggesting that they are not crucial for

stabilizing the interaction with the ribosome.51,55,57,60 Similarly,

while all 16 residues of Bac7(1-16) were observed,57 only 19

residues of Bac7(1-35) were visible with the C-terminal 16 resi-

dues being disordered. Consistently, the native Bac7 is 60 aa

long however the C-terminus of Bac7 is less crucial for activity

and C-terminal truncated derivatives of native Bac7, such as

Bac7(1-16), have been shown to retain activity.41

PrAMP interaction with the 70S ribosome is facilitated by

a multitude of hydrogen bonds and stacking interactions

(Fig. 3D–F).51,55,57,60 The majority of hydrogen bonds are formed

between the peptide backbone of PrAMP with the nucleobases

of the 23S rRNA. The high content of trans-proline residues

within PrAMPs seems to be important for maintaining the

elongated structure that maximizes the interaction of the

peptide backbone with the surrounding rRNA. For insect

PrAMPs, such as Onc112, Pyr and Met, additional hydrogen

bond interactions are established by amino acid sidechains

within the N-terminus of the PrAMP, specically, Asp2 (D2)

interacts with the nucleobase of G2553 and Lys3 (K3) with the

phosphate-oxygen rRNA of A2453 (Fig. 3D). Two conserved

stacking interactions are observed for the insect PrAMPs

Onc112, Pyr and Met, namely, Arg9 (R9) stacks upon 23S rRNA

nucleotide C2610 whereas Tyr6 is stacked between C2452 and

the neighboring Leu7/Asp7 sidechain of the PrAMP.51,55,57,60

These stacking interactions are likely to be important, since

exchange of Arg9 by Ala leads to a loss of activity when tested in

P. aeruginosa,54 and substitutions of Tyr6 or Leu7 with Ala in
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oncocin reduce the inhibitory activity in E. coli by 32-fold.48

Mutations within the ribosomal tunnel, namely, A2503C or

A2059C, increased resistance against Onc112 by about 4-fold,

and the double mutation by more than 15-fold.51 While neither

of these rRNA nucleotides directly contacts Onc112, both resi-

dues interact with A2062, which in turn forms stacking inter-

action with the peptide (Fig. 3E).51 In addition to revealing the

importance of A2062 for Onc112 activity, the mutagenesis data

establishes the ribosome as the immediate cellular target of

Onc112 and probably other PrAMPs.51

Compared to insect PrAMPs, the mammalian Bac7(1-16)

contains many more arginine residues. In fact, half (8) of the

16 residues are arginines, which establish multiple hydrogen

bonding and stacking interactions with the 23S rRNA (Fig. 3F).

The two stacking interactions observed in the insect PrAMPs

from Tyr6 and Arg9 have equivalents in Bac7(1-16), namely,

Arg9 in Bac7(1-16), which occupies the position of Tyr6, and

Arg12, which aligns with Arg9 of insect PrAMPs within the

conserved core PRP motif (Fig. 1A and B). This centrally

conserved core region is the most structurally conserved region

Fig. 3 Binding site of PrAMP within the ribosomal exit tunnel. (A) Overview showing the binding site of pyrrhocoricin (Pyr, salmon) within the exit

tunnel of the 50S subunit (grey) with P-site tRNA (green). (B) Superimposition of mammalian Bac7(1-16) (light blue) and insect derived PrAMPs

Onc112 (cyan), metalnikowin-1 (Met, yellow) and Pyr (salmon), with the conserved PRP motif highlighted. (C) Binding position of Pyr (salmon)

relative to the MifM polypeptide chain (dark blue). (D–F) Interactions of (D) insect Pyr (salmon), (E) Onc112 (cyan) and (F) mammalian Bac7(1-16)

with nucleotides situated within the polypeptide exit tunnel. Hydrogen bonds are indicated as dashed yellow lines and stacking interactions with

arrows.
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between PrAMPs, with diverse conformations being observed

for the N- and C-terminally anking regions of the various

PrAMPs. Bac7(1-16) establishes another three stacking interac-

tions involving the sidechains of Arg2, Arg14 and Arg16 with 23S

rRNA nucleotides C2573, C2586 and A2062, respectively

(Fig. 3F).51,57 The N-terminus of Bac7(1-16) is particularly

arginine-rich, comprising Arg1, Arg2, Arg4 and Arg6, which

generate a positively charged compacted structure that anchors

the N-terminus of the PrAMP to the negatively charged cle

created by the surrounding rRNA. Truncations of four N-

terminal residues of Bac7(1-35) inactivated the PrAMP indi-

cating that these interactions are also likely to be critical for

Bac7 activity.41

7 Mechanism of action of PrAMPs

The outcome of initiation of translation is the presence of the

initiator fMet-tRNA interacting with the AUG start codon of the

mRNA located within the P-site of the ribosome (Fig. 4A).

Translation elongation ensues with the delivery of an amino-

acylated tRNA (aa-tRNA) to the ribosomal A-site of the ribosome

by the elongation factor EF-Tu (Fig. 4B). Correct recognition of

the codon of the mRNA by the anticodon of the aa-tRNA leads to

dissociation of EF-Tu from the ribosome and accommodation

of the aa-tRNA on the large subunit (Fig. 4C). The binding

position of PrAMPs, such as Onc112 and Bac7(1-35), on the

ribosome indicates that they would allow delivery of the aa-

tRNA by EF-Tu to the ribosome, but would prevent accommo-

dation of the aa-tRNA on the large subunit (Fig. 4D). Specically,

overlapping the structure of an accommodated aa-tRNA shows

a steric clash between the aminoacylated CCA-end of the A-tRNA

and the N-terminal residues of these PrAMPs (Fig. 4E and

F).51,55,57,60 Bac7 shows the largest extension into the A-site,

surpassing Onc112, Pyr (Fig. 4E) and Met by four amino acids

at the N-terminus (Fig. 4F).51,57 This is consistent with the loss of

activity of Onc112 derivatives lacking the rst two N-terminal

residues and the reduced activity and binding affinity of N-

terminal truncated Bac7 derivatives.51,57 In contrast, the N-

terminus of the PrAMPs does not signicantly overlap with

the binding position of the P-tRNA, which is in agreement with

biochemical assays demonstrating that these PrAMPs allow

binding of the initiator tRNA at the P-site during translation

initiation but prevent the transition from initiation into the

elongation cycle to occur.51,55,57 Presumably, once ribosomes are

translating, they are immune to the effects of PrAMPs, such as

oncocin, since the binding position of PrAMPs within the

ribosomal exit tunnel is likely to be incompatible with the

presence of a nascent polypeptide chain (Fig. 3C). Thus, PrAMPs

are likely to bind to ribosomes following termination of trans-

lation when the polypeptide chain has been released from the

ribosome. Additionally, PrAMPs could bind during the late

stages of ribosome biogenesis when the binding pocket has

formed on the large ribosomal particle.

8 Outlook

A structural understanding of how different PrAMPs interact

with components of the ribosome provides further insight into

which residues of the PrAMPs as well as which interactions are

critical for their inhibitory activity. Importantly, the structures

also reveal which regions of the PrAMPs are less important and

can be further modied to increase stability and solubility as

well as establish additional interactions with the ribosome to

increase the binding affinity. This latter point may become

important since the binding site of PrAMPs overlaps with many

known translation inhibitors, such as chloramphenicol, clin-

damycin and erythromycin (Fig. 4G).55,60,61 Therefore, it will be

important to assess cross-resistance between such antibiotics

and PrAMPs, especially since initial reports reveal some ribo-

somal mutations that confer erythromycin resistance also

Fig. 4 Inhibition of protein synthesis by PrAMPs. (A–C) Canonical translation in absence of protein synthesis inhibitors, showing (A) translation

initiation with initiator P-tRNA (green) bound to the ribosomal P-site. (B) Delivery of aa-tRNA by EF-Tu to the A-site, followed by (C) tRNA

accommodation into the A-site on the large subunit and subsequent departure of EF-Tu. (D) In the presence of PrAMPs, such as oncocin, aa-

tRNA delivery can occur however the aa-tRNA accommodation is blocked. (E and F) Superimposition of (E) insect Pyr (salmon) and (F)

mammalian Bac7(1-16) with accommodated aa-tRNA (bright orange). (G) Superimposition of antibiotics chloramphenicol (Cam; yellow), clin-

damycin (Cln; slate) and erythromycin (Ery; cyan) with the binding position of the insect PrAMP Pyr (salmon).

This journal is © The Royal Society of Chemistry 2017 Nat. Prod. Rep., 2017, 34, 702–711 | 709
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reduce PrAMP inhibition.51 PrAMPs, such as Bac7, also bind to

and inhibit translation on eukaryotic ribosomes, albeit less

efficiently than on bacterial ribosomes,57 thus raising issues of

toxicity. Fortunately, it seems that most PrAMPs do not pene-

trate eukaryotic membranes, however, maintaining the non-

lytic mechanism of the PrAMPs during optimization will be

critical to avoid disrupting the eukaryotic cell membranes. One

major concern for development of PrAMPs as an antimicrobial

is the ease with which resistance arises in bacteria viamutation

of the SbmA transporter. Whether these resistant strains can be

overcome by the next generation PrAMPs remains to be seen.

Lastly, it is unclear as to the full scope of PrAMPs across

different species and, in particular, as to the conservation in

terms of mechanism of action. Initial indications suggest that

PrAMPs such as drosocin and apidaecin may differ from those

of well-characterized PrAMPs such as oncocin and Bac7.
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