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Summary

Macrophages are cells of the innate immune system and play essential roles in the regula-
tion of inflammatory responses in all parts of the body. Furthermore, macrophages are also
involved in different tissue–specific functions and maintenance of the tissue homeostasis.
These functions are controlled by the epigenetic landscape, consisting of promoters and
enhancers that together regulate gene expression. Enhancers are stretches of regulatory
genomic sequences in the non–coding regions of the genome that can be bound by lineage–
determining transcription factors. These enhancers can loop in three–dimensional space
to be in close proximity to promoters and contribute to the regulation of gene expres-
sion. Previous studies suggest that there are about 1 million enhancers in the mammalian
genome, of which only about 30,000 – 40,000 are selected in each specific cell type. This
dissertation studies the regulation of the epigenetic landscape of murine macrophages by
utilizing different tissue macrophages, different complex and simple stimuli, as well as nat-
ural genetic variation as a mutagenesis screen.
The overarching research question of this dissertation is to understand how the enhancer
landscape in macrophages gets selected and regulated in order to control gene expression.
In more detail, the main questions answered in this dissertation are: What are the epi-
genetic mechanisms that are responsible for tissue–specific functions? How do complex
stimuli change the epigenetic landscape of macrophages in comparison to simple stimuli?
How does natural genetic variation influence the epigenetic landscape and gene expression
in murine macrophages?
In Chapter 1 (Gosselin, D., Link, V. M., Romanoski, C. E. et al. (2014) appeared in Cell)
we investigate the influence of the tissue environment on the epigenetic landscape in mouse
macrophages. We compare macrophages residing in the brain (microglia) with macrophages
from the peritoneal cavity by measuring mRNA expression, as well as enhancer activation
(H3K4me2, H3K27ac, and PU.1). We find highly expressed genes unique to one popula-
tion of macrophages, which correlates well with the activity signature at enhancers in the
corresponding cells. By analyzing the enhancer landscape, we find that the macrophage
lineage–determining transcription factor PU.1 plays a key role in establishing the enhancer
repertoire, creating a common, macrophage–specific enhancer landscape. Furthermore, ex-
pression of tissue–specific transcription factors in collaboration with PU.1 drives a subset
of tissue–specific enhancers regulating the differences in gene expression between different
tissue–specific macrophage populations.
In Chapter 2 (Eichenfield, D. Z., Troutman, D. T., Link, V. M. et al. (2016) appeared
in eLife) we investigate the effect of complex stimuli onto the epigenetic landscape in
macrophages on the example of wounds. Stimulation of macrophages with homogenated
tissue to mimic a wound environment shows a unique pattern of gene expression, which
is different from gene expression patterns found after single stimuli (e.g. LPS, IL–4 etc.).
To gain insight into the regulation of the enhancer landscape after complex stimuli, we
compare the epigenome after single stimuli and tissue homogenate and find substantial
differences in enhancer selection and activation. We find that the complex damage signal
promotes co–localization of several signal–dependent transcription factors to enhancers not
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observed under the single stimuli. Therefore, more complex polarizations of cells lead to
new combinations of signal–dependent transcription factors and an epigenetic landscape
different than observed with single stimuli.
In Chapter 3 (Link et al. (2018b) appeared in bioRxiv) MARGE (Mutation Analysis for
Regulatory Genomic Elements) is presented, a new method to analyze the effect of natural
genetic variation on transcription factor binding and open chromatin. MARGE provides a
suite of software tools that integrates genome–wide genetic variation data (including inser-
tions and deletions) with epigenetic data. It provides software to create custom genomes
based on a reference genome and variation data, to shift coordinates between different
custom genomes, as well as do downstream ChIP–seq analysis. The main algorithm in
MARGE analyzes if mutations in transcription factor binding motifs are significantly af-
fecting transcription factor binding or open chromatin. MARGE provides a pairwise com-
parison, in which the significance of each motif is calculated with a student’s t–test. It
compares the transcription factor binding distribution of each mutated motif in individ-
ual one with the distribution in individual two. For a more general approach that allows
comparisons of many individuals MARGE implements a linear mixed model, modeling
transcription factor binding with fixed effects motif existence and random effects locus and
genotype. The development of this software allows in depth analysis of genetic variation
data in combination with epigenetic data.
In Chapter 4 (Link et al. (2018a) under review in Cell) we analyze the effect of natural
genetic variation in five diverse strains of mice on the epigenetic landscape. We choose
three well–known laboratory inbred mouse strains, as well as two very diverse wild–derived
inbred mouse strains. We investigate the enhancer landscape, open chromatin and binding
of the most important macrophage lineage–determining transcription factors. We observe
substantial strain–specific differences in gene expression of which the majority can be ex-
plained by cis–regulatory elements. Application of MARGE onto the transcription factor
binding data reveals roles of about 100 transcription factors in establishing the enhancer
repertoire in macrophages. Unexpectedly, we find that a substantial fraction of strain–
specific DNA binding of transcription factors cannot be explained by local mutations.
Investigation of this phenomenon in more detail shows highly interconnected clusters of
transcription factors that reside within topologically associating domains. These intercon-
nected clusters are highly correlated with activation of enhancers and gene expression of
the nearest gene, uncovering a new layer of transcriptional regulation.
In Chapter 5, I briefly discuss additional contributions to the field of macrophage biology
I made during my Ph.D. Namely, I was involved in two additional projects. In the first
project (Pirzgalska et al. (2017) appeared in Nature Medicine) we identify sympathetic
neuron–associated macrophages (SAM) that import and degrade norepinephrine via ex-
pression of solute carrier family 6 member 2 (Slc6a2) and monoamine oxidase A (MAOa).
We demonstrate that SAM–mediated clearance of extracellular norepinephrine contributes
to obesity and we show the relevance of this finding in humans, as we found that SAMs
are also present in human tissues. The second project (Oishi et al. (2017) appeared in
Cell Metabolism) studies the role of nuclear receptors (LXR and SREBP) in induction of
anti–inflammatory fatty acids. We find that right after stimulation of TLR4 (during the
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induction phase) NF–kB dependent genes are upregulated, whereas LXR dependent genes
are repressed. This leads to activation of SREBP1, which drives the expression of enzymes
involved in mono–unsaturated and omega–3 polyunsaturated fatty acid biosynthesis. The
fatty acids produced by these enzymes repress inflammatory genes under the control of
NF–kB and the inflammatory signal gets resolved.
In summary, my studies used a combination of experimental and computational approaches
to investigate the effect of tissue–environment and factors, complex stimuli and natural ge-
netic variation on the epigenetic landscape in macrophages. These studies broadened our
understanding of the regulation of gene expression by the epigenetic landscape substan-
tially. We showed that there is a core set of lineage–determining transcription factors in
macrophages, which require diverse signal–dependent transcription factors to establish the
enhancer landscape. Not only did we show that transcription factors regulated by the local
environment play essential roles in establishing and maintaining tissue–specific functions
of macrophages, but also that more complex stimuli can re–direct and combine signal–
dependent transcription factors to establish new enhancers, not observed under the single
stimuli. Using natural genetic variation as a mutagenesis screen allowed us to estimate the
involvement of about 100 transcription factors in shaping the enhancer landscape, as well
as to uncover a new layer of transcription regulation due to highly interconnected clusters
of concordantly bound transcription factors.
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General Introduction

Macrophages

Macrophages are important cells in the innate immune system where they play an im-
portant role in responding to infection, inflammation and tissue injury (Geissmann et al.
(2010), Wynn et al. (2013) Lucas et al. (2010)). Macrophages can be found in every tissue
of the body where they perform their general immune functions, as well as contribute to
maintaining homeostasis of the host tissue (Wynn et al. (2013), Gordon et al. (2014)). One
of the first described in vivo functions of macrophages was surfactant recycling by lung
alveolar macrophages (Wright (1990)). Other known examples of tissue–specific functions
of macrophages include bone resorption and remodeling by osteoclasts (Teitelbaum (2000))
and control of insulin sensitivity and adaptive thermogenesis in adipose tissue (Odegaard
et al. (2007), Qiu et al. (2014)). Furthermore, it is known that microglia (macrophages
in the brain) are involved in neuronal synaptic pruning (Paolicelli et al. (2011)). These
functions are essential for the development and maintenance of healthy tissue. However,
dysregulation of macrophages can lead to chronic inflammatory diseases. A prominent ex-
ample is the important role of macrophages in the development of atherosclerosis (Moore
and Tabas (2011), Pollard (2004)). Dysregulation of macrophages in cancer can lead to
tumor growth and metastasis (Noy and Pollard (2014)). This makes macrophages an inter-
esting cell type to target for therapeutic purposes, which requires a detailed understanding
of the mechanisms by which macrophage phenotypes are controlled. This, however, re-
mains a largely unmet goal so far.
Macrophages have been studied for a long time with special focus on their response to var-
ious ligands in vitro (Takeuchi and Akira (2010)). This led to the characterization of two
different polarization programs. Macrophages can be classically activated with a proinflam-
matory phenotype (M1 macrophages) or alternately activated and show anti–inflammatory
traits (M2 macrophages) (Gorden (2003), Mosser and Edwards (2008)). M1 polarization
can be mainly achieved by stimulation of macrophages with lipopolysaccharide (LPS), a
component of Gram–negative bacteria. Stimulation with LPS leads to activation of toll–like
receptor (TLR)4, which induces members of the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF–kB) complex and activator protein 1 (AP–1) (Figure 1) (Medzhitov
and Horng (2009), Smale (2012)). M1 phenotypes can also be observed after stimulation of
cytokine receptors through tumor necrosis factor (TNF) or interleukin (IL)–1/IL–6, as well
as activation of signal transducer and activator of transcription (STAT)1 after exposure to
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interferon gamma (IFNγ) and activation of its receptor (Liu et al. (2014)). Activation of
any of these factors induces hundreds of pro–inflammatory genes in macrophages leading to
the initiation of an adaptive macrophage immune response. In order to activate the alter-
nate M2 phenotype, macrophages can be treated with IL–4, which in turn induces STAT6
and interferon regulatory factor (IRF)4. These transcription factors activate a gene expres-
sion profile against parasitic infection (Gorden (2003), Takeda and Akira (2000)) (Figure
1). Furthermore, free fatty acids can induce peroxisome proliferator-activated receptor
gamma (PPARγ), which also drives M2 polarization.

Figure 1: Pathways that lead to classically activated/proinflammatory M1 macrophages
(upper part – red), as well as to the alternately activated/anti–inflammatory M2
macrophage phenotype (bottom part – blue). Figure is taken from Liu et al. (2014).

Enhancers

Much effort has been put into characterizing enhancer–like regions in different cell types
and organisms. There are about one million enhancers, of which about 30,000 to 40,000
are activated in any specific cell type. Enhancers were initially identified as discreet re-
gions of deoxyribonucleic acid (DNA) that increase transcriptional activity of promoters
from a distance (Banerji et al. (1981)). DNA is not openly accessible in vivo but as-
sembled in chromatin. DNA is wrapped around proteins, called histones. These histones
build octamers (consisting of the subunits H2A, H2B, H3, and H4) and can be modi-
fied post–translationally. The assembly of the histone subunits including DNA is called
nucleosome, which can be further packed into chromatin. Enhancer elements are estab-
lished by the binding of sequence–specific transcription factors (TFs), which compete with
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nucleosomes and push them to the side to generate nucleosome–free regions. Several ex-
perimental methods have been developed to measure open chromatin (see experimental
methods). Most TFs expressed in each cell type are not able to recognize their DNA–
binding motifs in closed chromatin. However, so–called pioneer factors (e.g. PU.1 in
macrophages) possess this unique ability and are therefore able to establish enhancers.
Systematic analysis of chromatin led to the recognition that enhancers are marked by
high abundance of mono– and dimethylation at histone H3 lysine 4 and concomitantly low
levels of trimethylation (i.e., H3K4me1high/H3K4me2high/H3K4me3low) (Heintzman et al.
(2007)). Promoters, on the other hand, display an opposite molecular phenotype (i.e.,
H3K4me1low/H3K4me2high/H3K4me3high).
Enhancers can be marked by different histone modifications, which are used to catego-
rize them as primed, poised or active (Heintzman et al. (2007), Barski et al. (2007),
Ernst et al. (2011)). Primed enhancers are usually marked by H3K4me1 or H3K4me2
(He et al. (2010)) without any additional active marks. Poised enhancers can be marked
with H3K4me1 or H3K4me2, but they are additionally marked with the repressive mark
H3K27me3 (trimethylation of histone H3 on lysine 27), which is mutually exclusive with
acetylation on the same residue (Rada-Iglesias et al. (2011)). On the other hand, active
enhancers are marked with acetylation of histone H3 lysine 27 (H3K27ac) additionally to
H3K4me1 and H3K4me2 (Rada-Iglesias et al. (2011), Creyghton et al. (2010)). Further-
more, studies showed that active enhancers are often actively transcribed by RNA poly-
merase II (Pol II), giving rise to enhancer RNAs (eRNAs) (Ernst et al. (2011), Hah et al.
(2011), Kaikkonen et al. (2013), Step et al. (2014)). All or a combination of these features
can be used to identify enhancers in different cells and tissues by chromatin immunoprecip-
itation coupled to massively parallel sequencing (ChIP–seq) and other sequencing–based
methods. Using these approaches, the mouse and human genomes have been estimated to
contain several hundred thousand enhancers, the great majority of which are present in
cell–restricted patterns (ENCODE Project Consortium (2012)). Some studies have demon-
strated that chromatin looping is facilitated by eRNAs (Schaukowitch et al. (2014), Hsieh
et al. (2014), Li et al. (2013b)). Consistent with this, changes in eRNA levels correlate
with changes in target gene expression (Li et al. (2013b), Kaikkonen et al. (2013), Bonn
et al. (2012), Kieffer-Kwon et al. (2013), Wang et al. (2011)).
The overall function of enhancer transcription, as well as the regulatory importance of eR-
NAs remain mostly elusive. Some studies in macrophages suggest potential roles in at least
some regional control of gene expression, however, the overall genome–wide significance is
still under debate. First, enhancer transcription at newly selected enhancers was linked to
the deposition of H3K4me1/H3K4me2 at these locations (Kaikkonen et al. (2013), Ostuni
et al. (2013)). Therefore, enhancer transcription might be potentially important in initiat-
ing and/or maintaining the histone signature characteristic of enhancers. Second, at least
some eRNAs appear to contribute to enhancer function. For example REV–ERB nuclear
receptors actively repress gene transcription in mouse macrophages by inhibiting eRNA
transcription of target enhancers (Lam et al. (2013)). In particular, binding of REV–ERB
at enhancers regulating matrix metallopeptidase 9 (Mmp9) and CX3C chemokine receptor
1 (Cx3cr1) gene expression represses enhancer activity and eRNA transcription, causing
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low levels of Mmp9 and Cx3cr1 messenger RNAs (mRNAs). This likely occurs through
the recruitment of the NCoR–HDAC3 repressor complex (Zamir et al. (1996), Yin, L. and
Lazar, M. A. (2005)). In the absence of REV–ERB factors, these enhances are de–repressed
and transcribe high levels of eRNAs, which translates into aberrant increase of Mmp9 and
Cx3cr1 gene expression.
More recently, the concept of stretch or super enhancers (SEs) was introduced (Hnisz et al.
(2013), Whyte et al. (2013)). SEs are defined as large genomic regions, (about one order
of magnitude larger than traditional enhancers) with an unusually strong enrichment of
active histone marks (e.g. H3K27ac), as well as binding of transcriptional coactivators.
Most cells show between 300 and 800 SEs, many of which are associated with genes encod-
ing cell type–specific TFs and other genes important for the identity and function of that
particular cell (Hnisz et al. (2013), Adam et al. (2015)).
Several studies estimate that there are between 35,000 and 45,000 primed and active en-
hancers in mouse macrophages (Ghisletti et al. (2010), Heinz et al. (2010)). Therefore, en-
hancers substantially outnumber the 12,000 active promoters in these cells. De-novo motif
analysis showed that macrophage enhancers are enriched for motifs that are recognized by
TFs relevant to macrophage ontogeny and functions. For example, one of the most enriched
binding motifs is an ETS motif, which is recognized by PU.1. Furthermore, experimen-
tally obtained PU.1 binding sites show a strong enrichment for H3K4me1high/H3K4me3low,
a combination of marks commonly found on primed and active enhancers. Motifs associ-
ated with CCAAT-enhancer-binding protein (C/EBP), AP–1, IRF, NF–kB, and liver X
receptor (LXR) TFs are also prevalent within enhancers in macrophages (Barish et al.
(2010), Ghisletti et al. (2010), Heinz et al. (2010)).

A collaborative/hierarchical model for enhancer selection and ac-
tivation

To select enhancers in closed chromatin the binding of so–called pioneer factors is required.
A subset of these factors functions as lineage–determining transcription factors (LDTFs)
(McPherson et al. (1993), Bossard and Zaret (1998), Lee et al. (2005), Heinz et al. (2010)).
Various examples of LDTFs include PU.1 in macrophages (Heinz et al. (2010)), forkhead
box protein A1 (FOXA1) in breast cancer cells (Lupien et al. (2008)), octamer transcription
factor (OCT)–4 and sex determining region Y–box (SOX)2 in cell reprogramming (Soufi
et al. (2012)), and paired box protein (PAX)7 in reprogramming a corticotrope cell line into
a melanotrope–like cell line (Budry et al. (2012)). A defining feature of pioneering TFs is
their ability to recognize and bind their DNA recognition motifs in closed chromatin, thus
effectively competing with nucleosomes to create nucleosome–free regions. TF binding is
then followed by modifications of the histone tails of the enhancer–associated nucleosomes
located in the vicinity of the nucleosome–free regions.
All TFs recognize short DNA sequences (6-12 bp) and their motifs show varying levels
of degeneracy (D’haeseleer (2006)). Binding of TF can be measured by ChIP–seq experi-
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ments (Johnson et al. (2007)). Analyses of a wide variety of different TFs have shown that
only a small subset of all possible binding sites is occupied by each TF (Carr and Biggin
(1999), Iyer et al. (2001), Yang et al. (2006)) and that the binding sites for the same factor
can vary between cell types. For example, given the size of the mouse genome, there are
potentially between 650,000 and 1.4 million sites where PU.1 can bind DNA (Heinz et al.
(2013), Barozzi et al. (2014)), yet only about up to 45,000 of those are selected in differ-
entiated macrophages (Heinz et al. (2010)).
There are likely a multitude of factors contributing to these restricted, yet functional, bind-
ing events of LDTFs. Among these factors, the collaborative activity between LDTFs and
other TFs appear to be fundamental to a significant proportion of actual LDTF binding
(collaborative enhancer selection) (Figure 2A). For example, the TF PU.1 is an impor-
tant LDTF in macrophages and B cells. ChIP–seq experiments showed that macrophage–
specific enhancers are enriched for binding motifs of PU.1 and macrophage–specific col-
laborative factors C/EBP and AP–1, whereas in B cells enhancers are enriched for PU.1
and B cell–specific factors E2A, early B–cell factor 1 (EBF1), and OCT–2 (Ghisletti et al.
(2010), Heinz et al. (2010)).
Further support of the model was gathered by analyzing TF binding in different strains
of mice. The natural genetic variation between mouse strains can be used to study selec-
tion of actual LDTF binding in macrophages (Heinz et al. (2013)). These studies showed
that mutations in a C/EBP consensus motif not only eliminate C/EBP binding, but also
abrogate the neighboring PU.1 binding. Importantly, mutations also affect associated en-
hancer and decrease abundance of H3K4me2 and H3K27ac marks at mutated enhancers.
Using human white adipose tissue cells from several different individual, it was possible
to show that mutations in C/EBP motifs disrupt nearby PPARγ binding (Soccio et al.
(2015)). Many cells possess the ability to quickly adapt their gene expression program to
changes in the environment. Further, the same signal can lead to the induction of the same
signal–dependent transcription factor (SDTF) but different transcriptional outcomes and
enhancer landscapes in different cell types. Studies showed that in more than 60%, SDTFs
bind to enhancers already established by LDTFs (hierarchical enhancer selection), explain-
ing how the same broadly expressed SDTF can exert cell–specific functions and responses
(Figure 2B). Investigation of the role of natural genetic variation between inbreed mouse
strains on binding of the NF–kB subunit p65, showed that 34% of mouse strain–specific
p65 binding was due to mutations in LDTF motifs, whereas only 9% was due to mutations
in the p65 binding motif itself (Heinz et al. (2013)).
The exact biochemical mechanisms involved in the collaborative binding of LDTFs is not
well understood. The motifs of the collaborative factors are in close proximity to each
other in sequence (<100 bp), but most of these are not found at a distance of < 20 bp
(Kazemian et al. (2013)). This implies a collaborative model that is not strictly dependent
on protein–protein interactions and allows for a limited flexibility in spacing requirements.
Consistent with this flexibility, the precise genomic location of cell–specific enhancers rel-
ative to target genes are largely not conserved between mice and humans (Cheng, Y., Ma,
Z. et al. (2014)), however, the cell type–specific combinations of LDTF motifs appear to be
conserved between species (Stergachis et al. (2014)). This suggests that while the spacing
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Figure 2: Collaborative/hierarchical model for enhancer selection and activation:
A Macrophage lineage–determining transcription factors (LDTFs) PU.1 and C/EBP bind
collaboratively to regions of closed chromatin where both of their binding motifs are
present. Upon binding they open the chromatin and mono– and di–methyl groups are
added to histone 3 lysine 4 (H3K4me1/H3K4me2) creating a primed enhancer (collab-
orative enhancer selection). B After macrophages are stimulated with LSP, the signal–
dependent transcription factor NF–kB gets transported into the nucleus and can bind to
the already established enhancers, thus activating them. This leads to acetylation of hi-
stone 3 lysine 27 (H3K27ac) and the production of enhancer RNA (eRNA) (hierarchical
enhancer selection). Figure adapted from Link et al. (2015).

has changed since mice and humans diverged, the meaningful combinations of TFs that
drive specific functions have largely remained the same. This is confirmed by experiments
with transgenes between species. For example, when the human globin locus is inserted
in mice, it is expressed with the same fetal–to–adult switch as it is in humans (McConnell
et al. (2011), Peterson et al. (1993)).
The collaborative/hierarchical model addresses three key issues with regard to enhancer
selection. First, it explains how relatively low numbers of binding sites are occupied by a
factor in comparison to all potential binding sites. In addition, it provides a molecular and
epigenetic mechanism whereby the same LDTF can set up very different enhancer reper-
toires in different cell types, as is the case of PU.1 in macrophages and B cells. Finally it
explains how broadly expressed SDTF can result in different cell–specific transcriptional
outcomes.
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Experimental Methods

This dissertation took advantage of many next–generation sequencing (NGS) methods.
This section gives a short introduction into the different techniques used and their advan-
tages and disadvantages, as well as the most common analysis strategies.

RNA–seq and nascent transcription

Measuring the transcriptome of a cell has been a long–standing goal in the research commu-
nity. It is an essential step in order to understand cell function, development and disease.
The earliest methods to quantify ribonucleic acid (RNA) in a large–scale approach go back
to the 1990s. The expressed sequence tag (EST) method (Adams et al. (1991)) measures
gene expression by partially sequencing complementary DNA (cDNA) clones in order to
detect the sequence, as well as the abundance of the transcripts. However, this method is
based on Sanger–sequencing and therefore relatively low throughput, as well as very ex-
pensive. Subsequentially, tag–based methods were developed that cut down on sequencing
cost by only sequencing small tags of the mRNA (e.g. serial analysis of gene expression
(SAGE) (Velculescu et al. (1995)), massively parallel signature sequencing (MPSS) (Bren-
ner et al. (2000)), and cap analysis of gene expression (CAGE) (Kodzius et al. (2006))).
Although cheaper than the EST assay, many of the tag–based methods were still based
on Sanger–sequencing resulting in low throughput. Furthermore, many of the tags cre-
ated in these methods could not be mapped to the reference genome. Another approach
was the usage of hybridization methods in which known oligonucleotides complementary
to known mRNAs were fluorescently labeled and attached to a microarray (Schena et al.
(1995), Lockhart et al. (1996)). After adding mRNA to the array, oligonucleotides that
bound to the microarray started to fluorescence and the presence of mRNAs could be
detected. These methods are high throughput and inexpensive, however they require pre-
vious knowledge of existing transcripts and produce a high level of background noise due
to cross–hybridization. Furthermore, these assays are not quantitative and comparison of
gene expression levels between different microarrays requires sophisticated normalization
methods.
The development of RNA sequencing (RNA–seq) (Nagalakshmi et al. (2008), Ozsolak et al.
(2009)) allowed to directly sequence mRNA molecules in a high throughput manner, sub-
stantially reducing the amount of background noise, as well as eliminating the need of a
priori knowledge of the transcriptome. Furthermore, RNA–seq provides a quantitative
measurement of mRNA expression, which has been demonstrated by using spike–in RNA
controls (Mortazavi et al. (2008)). Due to the higher stability of DNA in comparison to
RNA, as well as the limitations provided by most high–throughput sequencing machines,
mRNA is usually converted to cDNA. In order to eliminate ribosomal RNA (rRNA) (which
makes up approximately 80% of total RNA (Lodish et al. (2002))), two different methods
are commonly used (Figure 3A and B). For eukaryotic organisms, enrichment of polyadeny-
lated RNA is one of the most commonly used methods. Almost all protein–coding RNAs,
as well as many long non–coding RNAs contain a poly(A) tail, which can be easily targeted
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by oligo–dT molecules that are attached to magnetic beads (Figure 3A). Another approach
is the removal of rRNA by hybridizing cDNA probes and subsequentially digestion of the
DNA–RNA hybrid with ribonuclease H (RNase H) (Figure 3B).

Figure 3: Overview of RNA–seq and GRO–seq method. A polyA RNA–seq: genes contain-
ing a polyA tail are pulled down using oligo–dT molecules. After library preparation and
sequencing, data can be analyzed. B Ribo–zero RNA–seq: ribosomal RNA (rRNA) is hy-
bridized with specific probes and subsequentially digested, removing all ribosomal RNA in
the total RNA. After library preparation and sequencing, data can be analyzed. C GRO–
seq: transcription is temporarily interrupted and labeled nucleotides are added (run–on)
which can subsequentially be pulled down. Transcription is started again and biotin la-
beled RNAs are pulled down, measuring transcription of polymerase directly. After library
preparation and sequencing, data can be analyzed. D. Example of RNA–seq and GRO–seq
data in the mouse genome. RNA–seq signal is only observed over exons, whereas GRO–seq
signal can be observed over the whole gene body. Furthermore, bidirectional transcription
can be seen in GRO–seq data.

Measurement of the transcriptome gives valuable information about the expressed mRNA,
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but does not give any information about pre–spliced RNAs, a more direct read–out of poly-
merase activity. Furthermore, many active enhancers produce eRNAs, which can not be
measured by RNA–seq due to their short half–life time. Therefore, more sensitive methods
were developed, that measure nascent transcription (e.g. global run-on sequencing (GRO–
seq) (Figure 3C) (Core et al. (2010)) and transient transcriptome sequencing (TT—seq)
(Schwalb et al. (2016))). Instead of measuring mRNA, these methods measure nascent
transcription, convert RNA to cDNA and sequence these transcripts.
To get equal sequence coverage over the complete gene, a fragmentation step is necessary
(e.g. RNA fragmentation with hydrolysis or DNA fragmentation with deoxyribonuclease
I (DNase I) treatment or sonication). Each method introduces different biases that need
to be accounted for in the analysis step. After library preparation one common step is
to size–select for a certain fragment size to eliminate fragments that are too short (often
times micro RNAs), as well as very long fragments.
In order to analyze the sequenced libraries, the transcripts are either mapped to an already
known reference genome or assembled into contigs for unknown reference genomes. Short
reads, as well as highly repetitive reads provide great challenges for the mapping, whereas
longer reads or unique sequences can be mapped relatively easily. Most mapping software
(e.g. bowtie2 (Langmead and Salzberg (2012)), TopHat (Trapnell et al. (2009)), bwa (Li
and Durbin (2009)) or STAR (Dobin et al. (2013))) allow a certain number of mismatches
to offset potential sequencing errors. However, a great number of short polymorphisms, as
well as very long polymorphisms provide challenges for the mapping tools and might re-
quire a more precise annotation of the genome, deeper sequencing, or longer read lengths.
RNA–seq data can be used for a variety of different applications (e.g. examination of
splice junctions or alternative splicing events (Wang et al. (2008), Sultan et al. (2008),
Mortazavi et al. (2008), Cloonan et al. (2008), Trapnell et al. (2010), Griffith et al. (2010),
Colla et al. (2015)), detection of gene fusion (Maher et al. (2009), Asmann et al. (2012),
Velusamy et al. (2013), Qin et al. (2015)), as well as the description of novel transcripts
(Nagalakshmi et al. (2008), Mortazavi et al. (2008), Cloonan et al. (2008), Morin et al.
(2008), Lister et al. (2008), Wilhelm et al. (2008)). The most common application to date
is the quantification of differently expressed genes in different experiments (Wilhelm et al.
(2008), Mortazavi et al. (2008), Lister et al. (2008), Cloonan et al. (2008)).
RNA–seq methods only cover exonic reads, as mRNA is already spliced. GRO–seq however
covers the whole gene body, as it measures active transcription pre–splicing. Additionally,
GRO–seq also show bidirectional transcription, often a sign for an active enhancer (Figure
3D).

ChIP–seq and ATAC–seq

Studying epigenetic regulation requires information about the loci of TF binding, histone
modifications and open chromatin. One of the earliest methods developed for this is chro-
matin immunoprecipitation coupled with microarrays (ChIP–chip) (Iyer et al. (2001), Ren
et al. (2000)). Following the development of cheap high–throughput sequencing techniques
chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP–seq) was
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developed (Johnson et al. (2007), Robertson et al. (2007), Barski et al. (2007)). ChIP–seq
is one the most commonly used method to detect TF binding, as well as histone modifi-
cations, and has led to many important discoveries in the last years (e.g. Deardorff et al.
(2012), Schaub et al. (2012), Mikkelsen et al. (2010), Ernst et al. (2011), Gerstein et al.
(2010), modENCODE et al. (2010)).
In order to measure TF binding or histone modifications, chromatin is cross–linked and
sonicated. The TF (Figure 4A) or histone modification (Figure 4B) is subsequentially
immunoprecipitated with an appropriate antibody. It is highly advised to keep some frag-
mented chromatin without pull–down as an input experiment. After pull–down, DNA
fragments are sequenced and analyzed. One important consideration for ChIP–seq ex-
periments is that not one single protocol will work in all cell types, under all conditions,
and with all antibodies. Furthermore, the quality of the ChIP–seq experiment is highly
dependent on the quality of the antibody used for the pull–down. Even different lots of
the same antibody can have highly variable degrees of pull–down efficiency. In a study
conducted by the model organism ENCODE project (modENCODE et al. (2010)), 25% of
antibodies failed specificity tests and another 20% of antibodies failed immunoprecipitation
experiments (Egelhofer et al. (2011)). Furthermore, ChIP–seq experiments only report the
average binding over the complete cell population per experiment. When ChIP–seq ex-
periments are performed for several factors and binding of these factors is observed at the
same locus, it is unclear whether these factors co–bind to this locus in the same cell, or
bind to this locus independently or even mutually exclusive in some cells of the population.
To address these question, sequential ChIP–seq methods have been used, that use two or
more antibodies in sequential order (Mendoza-Parra et al. (2012)).
ChIP–seq assays show the binding of one particular TF or histone modification. In order
to get a more general understanding of loci where the chromatin is open (and therefore
any TF can bind), several other methods have been developed. Some of the earliest meth-
ods were enzyme–based (e.g. MNase–seq (Schones et al. (2008)), DNase I hypersensitivity
sites sequencing (DNase–seq) (Sabo et al. (2006))) or sonication–based (e.g. formaldehyde–
assisted isolation of regulatory elements (FAIRE) (Giresi et al. (2007)), sonication of cross–
linked chromatin sequencing (Sono–seq) (Auerbach et al. (2009))). However, all of these
methods require large quantities of cells. Furthermore, the enzyme–based assays are chal-
lenging protocols to perform and give plenty of opportunity for failure. Recently, a new
method was developed to measure open chromatin, termed assay for transposase–accessible
chromatin using sequencing (ATAC–seq) (Figure 4C) (Buenrostro et al. (2013)). This
method requires relatively few cells (down to 10,000 cells per assay), is easy to perform
(about 1 day of bench work) and gives comparable results to FAIRE and DNase–seq.
Many computational pipelines have been implemented in recent years, however the most
fundamental steps are very similar between the different pipelines. Sequencing reads are
mapped to a reference genome and subsequentially genomic regions are identified that con-
tain an enrichment of sequencing reads greater than the background noise. For ChIP–seq
experiments, the usage of an input sequencing experiment is recommended. However, it
is not possible to generate an input sequencing experiment for ATAC–seq, requiring more
stringent enrichment calls. There are several different biases that can influence the data
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Figure 4: Overview of ChIP–seq and ATAC–seq methods. A Transcription factor binding
ChIP–Seq: a specific antibody for a transcription factor is used for pull–down. After
ligation of sequencing adapters, amplification and sequencing the library, data can be
analyzed. B Histone modification ChIP–seq: a specific antibody for a histone modification
is used for pull–down. After ligation of sequencing adapters, amplification and sequencing
the library, data can be analyzed. C ATAC–seq: Transposase Tn5 with specific barcodes
is used to fragment open chromatin. After ligation of sequencing adapters, amplification
and sequencing the library, data can be analyzed. D Visualization of ChIP–seq data for a
transcription factor, showing a very local enrichment of signal and a histone modification,
showing a broad signal that spans large domains. ATAC–seq shows similar signals as
ChIP–seq, but enrichment is found at more loci, as it measures all open chromatin, not
only the binding of one specific transcription factor.

and have been studied extensively (Chen et al. (2010), Khrameeva and Gelfand (2012),
Schwartz et al. (2011), Cheung et al. (2011), Minoche et al. (2011), Benjamini and Speed
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(2012), Nakamura et al. (2011)). As previously discussed the quality of the antibody for
ChIP–seq experiments is crucial for a good enrichment. Furthermore, the machine used for
sequencing can introduce biases. Other types of biases include uneven nucleotide distribu-
tions across reads, GC content, the distribution of sequencing errors and mappability of the
reads. However, commonly used mapping software (e.g. TopHat (Trapnell et al. (2009)),
bowtie2 (Langmead and Salzberg (2012)), bwa (Li and Durbin (2009)), STAR (Dobin et al.
(2013))), as well as analysis pipelines (e.g. Model–based Analysis of ChIP–Seq 2 (MACS2)
(Zhang et al. (2008)) or Hypergeometric Optimization of Motif EnRichment (HOMER)
(Heinz et al. (2010))) are accounting for most of these biases.
Genomic regions with enriched signal over noise are called ’peaks’. Peaks can be highly
localized signals, showing a sharp peak (Figure 4D), usually observed for TFs and open
chromatin. ATAC–seq signal can be found on more loci than ChIP–seq signal, as ATAC–
seq measures all regions of open chromatin, not only the binding of one specific TF. Fur-
thermore, peaks can also be signals that span large domains (then often called ’regions’)
(Figure 4D) usually observed for histone modifications, as well as Pol II. Each of these
shapes require different detection strategies. Some tools are able to detect both shapes
(e.g. MACS2 (Zhang et al. (2008)) and HOMER (Heinz et al. (2010))), whereas others are
specialized for one (e.g. SICER (Xu et al. (2014))).
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SUMMARY

Macrophages reside in essentially all tissues of the
body and play key roles in innate and adaptive im-
mune responses. Distinct populations of tissue mac-
rophages also acquire context-specific functions
that are important for normal tissue homeostasis.
To investigate mechanisms responsible for tissue-
specific functions, we analyzed the transcriptomes
and enhancer landscapes of brain microglia and
resident macrophages of the peritoneal cavity. In
addition, we exploited natural genetic variation as
a genome-wide ‘‘mutagenesis’’ strategy to identify
DNA recognition motifs for transcription factors
that promote common or subset-specific binding of
the macrophage lineage-determining factor PU.1.
We find that distinct tissue environments drive diver-
gent programs of gene expression by differentially
activating a common enhancer repertoire and by
inducing the expression of divergent secondary
transcription factors that collaborate with PU.1 to
establish tissue-specific enhancers. These findings
provide insights into molecular mechanisms by
which tissue environment influences macrophage
phenotypes that are likely to be broadly applicable
to other cell types.

INTRODUCTION

Macrophages are phagocytic cells of the innate immune system

that populate every organ, making key contributions to their

development, functions, and protection against infections and

injuries (Geissmann et al., 2010; Gordon et al., 2014; Wynn

et al., 2013). Accordingly, each population of tissue macro-

phages must adapt to its surrounding environment and engage

in tissue-specific functions to be effective auxiliary cells. In sup-

port of this, recent mRNA profiling studies revealed significant

differences between distinct populations of resident tissue mac-

rophages (Gautier et al., 2012; Okabe and Medzhitov, 2014).

Thus, in spite of common elements shared across all subtypes

of tissue macrophages, including dependency on the transcrip-

tion factor PU.1 and signaling downstream of the CSF1 receptor

for ontology and survival (Schulz et al., 2012; Wynn et al., 2013),

each subset of tissue macrophage possesses its own unique

gene expression profile that presumably allows it to function in

synergy with the tissue in which it resides.

Accumulating evidence suggests that signaling factors

derived from tissue environments play key roles in promoting

the ontology and phenotype of the residing macrophage popula-

tions. For example, absence of TGF-b1 signaling in the mouse

brain impairs the development of the microglia population (Bu-

tovsky et al., 2014; Makwana et al., 2007). In the peritoneum,

omentum-derived retinoic acid (RA) promotes expression of

Gata6 in a subpopulation of local macrophages (Okabe and

Medzhitov, 2014). Interestingly, Gata6 expression is exclusive

to this particular tissue macrophage population, and decreasing

or eliminating its expression interferes with their functions and

survival (Gautier et al., 2012, 2014; Okabe and Medzhitov,

2014; Rosas et al., 2014).

Precisely how these and other signals act on macrophages at

the genomic level to promote specialized phenotypes and

unique transcriptional signatures remains unknown. However,

strong evidence suggests that enhancers, which are funda-

mental determinants of gene expression, may play a key role in

this context (Andersson et al., 2014; Levine, 2010; Shlyueva

et al., 2014). Enhancers, in comparison to promoters, exhibit sig-

nificant enrichment for combinations of DNA recognition motifs

that correspond to binding sites for lineage-determining tran-

scription factors (LDTFs), which are required for the develop-

ment of distinct cell types. Different patterns of LDTF expression

drive the selection of cell-specific repertoires of enhancers that

are considered to be central to the establishment of cell identity

and regulatory potential.

Studies of primary macrophages and B cells indicated that

PU.1 acts as an essential LDTF that contributes to the selection
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of a large fraction of the cell-specific enhancer-like elements in

each of these cell types (Barozzi et al., 2014; Ghisletti et al.,

2010; Heinz et al., 2010). Macrophage-specific enhancer selec-

tion by PU.1 required collaborative interactions with additional

macrophage-restricted transcription factors (TFs), including C/

EBP and AP-1 factors (Heinz et al., 2013). In contrast, B-cell-spe-

cific enhancer selection by PU.1 required collaborative interac-

tions with B-cell-restricted factors, including EBF and E2A (Heinz

et al., 2010).

Pre-existing enhancer landscapes occupied by PU.1 and/or

C/EBP factors were shown to be the major sites that bound

signal-dependent transcription factors (SDTFs), such as NFkB,

nuclear receptors, and STAT proteins (Ostuni et al., 2013; Heinz

et al., 2010). A similar hierarchical relationship for LDTFs and

SDTFs was found in regulatory T cells, embryonic stem cells,

and dendritic cells (Mullen et al., 2011; Samstein et al., 2012;

Garber et al., 2012). The collaborative and hierarchical relation-

ship of LDTFs and SDTFs at pre-existing enhancers was vali-

dated at the level of the DNA template by studies of effects of

natural genetic variation on enhancer selection and function

(Heinz et al., 2013). Mutations in PU.1 motifs causing loss of

PU.1 binding resulted in loss of the collaborative binding of C/

EBPa. Conversely, mutations in C/EBP motifs causing loss of

C/EBPa binding resulted in a loss of collaborative binding of

PU.1. Either type of mutation abolished signal-dependent bind-

ing of NFkB, whereas mutations in NFkB motifs that abolish

NFkB binding rarely affected the binding of PU.1 or C/EBPa.

However, in contrast to the picture at pre-existing enhancers,

NFkB was also shown to be capable of selecting ‘‘latent’’ or

‘‘de novo’’ enhancers by collaborating with PU.1 to bind to

genomic locations lacking prior features associated with active

enhancers (Kaikkonen et al., 2013; Ostuni et al., 2013). These ob-

servations provide an example of an environmentally driven

modification of the enhancer repertoire by a broadly expressed

SDTF that is nonetheless cell type specific due to the obligatory

participation of PU.1.

Given that each tissue environment is distinguished by a

unique combination of signaling factors, it is likely that gene

expression in each corresponding macrophage population is

under the control of distinct combinations of SDTFs that can

modulate the activity of a pre-existing enhancer repertoire to

achieve context-dependent gene expression. In addition, it is

also possible that environmental signals control the expression

and activities of TFs that result in selection of tissue-specific en-

hancers, analogous to the establishment of ‘‘latent’’ or ‘‘de novo’’

enhancers. Here, we sought to determine the extent to which

environment shapes distinct macrophage enhancer repertoires

and the underlying mechanisms.

RESULTS

Environment-Specific Gene Expression
To investigate mechanisms responsible for tissue-specific

macrophage phenotypes, we isolated microglia (MG; brain

macrophages) and two distinct populations of resident perito-

neal macrophages (RPMs) that are discriminated by cell-sur-

face expression levels of MHCII—large peritoneal macrophages

(LPMs, low MHCII) and small peritoneal macrophages (SPMs,

high MHCII)—by flow cytometry (Figures S1A and S1B available

online) (Ghosn et al., 2010; Okabe and Medzhitov, 2014) (Fig-

ure 1A). These three populations of macrophages allow com-

parisons of gene expression and epigenetic landscapes in

distinct macrophage populations residing in the same envi-

ronment (i.e., LPMs versus SPMs), as well as different envi-

ronments (i.e., LPM versus MG). In addition, we included

thioglycollate-elicited peritoneal macrophages (TGEMs) and

bone-marrow-derived macrophages (BMDMs) for comparison,

as these macrophages, although maintained in culture condi-

tions, are widely used models of macrophage biology that are

derived from different sources (Figure 1A).

Gene expression profiles determined by RNA sequencing

(RNA-seq) from independent biological replicates revealed sub-

stantial differences in the patterns of gene expression across the

different macrophage populations examined (Figures 1B, 1C,

and S1C and Table S1), in agreement with previous studies

(Gautier et al., 2012; Okabe and Medzhitov, 2014). In particular,

�7,000 genes are differently expressed in MG compared to

LPMs (p value < 0.01), with >500 genes being >16-fold more

highly expressed in MG and >600 genes being >16-fold more

highly expressed in LPMs. On the other hand, LPMs and SPMs

share strong similarities (Figure 1C), with SPMs expressing

only 108 genes > 16-fold higher than LPMs, and LPMs express-

ing only 5 genes > 16-fold higher than SPMs. These results

corroborate many previous findings, including the highest level

of expression of Cx3cr1 in MG and the selective expression of

Gata6 in RPMs (Figure 1D) (Cardona et al., 2006; Gautier et al.,

2012; Jung et al., 2000; Okabe and Medzhitov, 2014). Interest-

ingly, Ciita, a transcription factor that regulates MHCII expres-

sion (Steimle et al., 1993), is preferably expressed in the SPM

population (Figure 1D). Finally, gene clustering analyses

confirmed that, whereas LPMs and SPMs show highly similar

gene expression, MG differ substantially from the other macro-

phage subsets (Figure 1E). TGEMs and BMDMs are also more

similar to one another than either one is to any of the three in vivo

subsets, potentially reflecting the similarity of the cell culture

environment. Overall, these findings suggest a strong role of

environment in determining macrophage gene expression.

Common and Distinct Macrophage Enhancer
Repertoires
The dissimilarities in gene expression between different macro-

phage subsets revealed by RNA-seq analysis imply important

differences in how these cells organize and/or use their enhancer

repertoires. To examine this, we analyzed dimethylation status

of lysine 4 of histone 3 (H3K4me2) and acetylation status of

lysine 27 of histone H3 (H3K27ac) by chromatin immunoprecip-

itation sequencing (ChIP-seq) in these cells (Figure S2 and Ta-

bles S2, S3, and S4). H3K4me2marks promoters and enhancers

(He et al., 2010; Kaikkonen et al., 2013), whereas H3K27ac

correlates positively with transcriptional activity at these ele-

ments (Creyghton et al., 2010). Deposition of H3K4me2 results

from the binding of LDTFs and other TFs but is not necessarily

associated with enhancer activity. We therefore use a heuristic

of defining H3K4me2-positive/H3K27ac-negative regions as

‘‘primed’’ and regions positive for both marks as ‘‘active.’’

Genomic annotation enabled segregation of these regions into
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promoters or enhancers by proximity to gene transcriptional

start sites (TSS). Notably, the pattern of H3K4me2 deposition

in MG substantially differs from that of LPMs (Figure 2A),

indicating selection of distinct regulatory landscapes. Of 7,937

promoters marked by H3K4me2 in one or both subsets, 275

exhibit >4-fold differences (3%), far fewer than the �1,700

mRNAs exhibiting >16-fold differences in expression. Of

36,607 regions > 500 bp from TSS marked by H3K4me2 in one

A B C

D E

Figure 1. Variation in Gene Expression in Different Macrophage Subsets

(A) Macrophage subsets used for analysis and corresponding environmental factors (see Figures S1A and S1B for sorting protocols).

(B and C) Scatterplots illustrating relative gene expression of polyA-selected RNA transcripts in MG compared to LPMs (B) and SPMs compared to LPMs (C).

Values are log2 of tag counts normalized to 107 uniquely mapped tags. See Figure S1C for a representative replicate.

(D) Relative gene expression means for the indicated genes are shown from replicate RNA-seq experiments (error bars represent SD).

(E) Heat map of transcripts exhibiting an expression value of at least 64 normalized tags in at least one subset and differing in expression by at least 16-fold in at

least one of the indicated subsets.

See also Table S1.

Cell 159, 1327–1340, December 4, 2014 ª2014 Elsevier Inc. 1329



20 kb

Sall3 Sall3

TGEM

Microglia

LPM

Spi1
mRNA

H3K4me2 H3K27ac

BMDM

SPM

10 kb

Spi1

10 kb

Spi1

20 kb

Sall3
mRNA

H3K4me2 H3K27ac

H3K4me2 H3K27ac polyA RNA

norm tag ct
log2

norm tag ct
log2

norm tag ct
log2

H3K4me2 H3K4me2

LPM

0 84 0 84 0 168

LPM

M
ic

ro
gl

ia
M

ic
ro

gl
ia

LPM LPM

(log2 norm tag ct)

H3K27ac

TG
EM

H3K27ac

>500bp from TSS
<500bp from TSS

>500bp from TSS
<500bp from TSS

common H3K4me2
TGEM-spec. H3K4me2
LPM-spec. H3K4me2
No H3K4me2 call

A B

C

D

SE

SE

SE

SE

SE

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0 2 4 6 8 0 2 4 6 8

0 2 4 6 8 0 2 4 6 8

(log2 norm tag ct)

(log2 norm tag ct) (log2 norm tag ct)

3.
5E

3

2.
5E

3

Rarb

100 kb

Rarb

Rarb
mRNA

H3K4me2 H3K27ac

1.
5E

3

SP
M

100 kb

TG
EM

M
ic

ro
gl

ia
LP

M

B
M

D
M

SP
M

TG
EM

M
ic

ro
gl

ia
LP

M

B
M

D
M

SP
M

TG
EM

M
ic

ro
gl

ia
LP

M

B
M

D
M

SP
M

2.
5E

3
2.

5E
3

2.
5E

3
2.

5E
3

1.
5E

3
1.

5E
3

1.
5E

3
1.

5E
3

3.
5E

3
3.

5E
3

3.
5E

3
3.

5E
3

SE

common H3K4me2
TGEM-spec. H3K4me2
LPM-spec. H3K4me2
No H3K4me2 call

Figure 2. Variation in Enhancer Landscapes in Different Macrophage Subsets

(A) Scatterplots of normalized H3K4me2 tag counts at genomic regions marked by significant H3K4me2 tags in LPMs and/or MG (left) or LPMs and/or SPMs

(right). Points colored in blue are within 500 bp of a TSS. See Figure S2 for representative replicates.

(B) Heatmaps of normalized H3K4me2, H3K27ac, and nearest expressed gene RNA-seq tag counts at genomic locations showing >4-fold pairwise differences in

H3K4me2 tag counts between at least two of the five macrophage subtypes. Row order is the same for all three data types.

(C) Scatterplots of normalized H3K27ac tag counts at genomic regions marked by significant H3K27ac tags in LPMs and/or MG (left) or LPMs and/or SPMs

(right). Points are colored red if genomic locations are also marked by H3K4me2 (>16 tags) in both subsets, green if marked by H3K4me2 selectively in MG

(left) or SPMs (right), yellow if marked by H3K4me2 selectively in LPMs, or blue if not associated with H3K4me2 in either subset.

(legend continued on next page)
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or both subsets, 9,083 exhibit >4-fold differences (24%). The

vast majority of differential H3K4me2-marked regions are

thus distant from promoters and correspond to potential en-

hancers. In contrast to the comparison of LPMs and MG, both

the enhancer and promoter repertoires of the two subsets of

RPMs share a much higher degree of similarity (Figure 2A).

Furthermore, clustering analyses of the H3K4me2 deposition

pattern revealed that MG were more divergent from the other

subsets than any two other macrophage subsets are from

one another, which is consistent with gene expression data

(Figure 2B).

H3K27ac was present at a large fraction of H3K4me2-marked

regions and generally but imperfectly correlated with nearest

gene expression (Figure 2B). Overlap of the H3K27ac data

with H3K4me2-defined enhancers allowed the identification of

common but quantitatively differently activated enhancers, as

well as activation of enhancers unique to one subset. Figure 2C

illustrates such comparisons for LPMs versus MG and LPMs

versus TGEMs. Genomic regions marked by H3K4me2 in both

subsets are color coded in red and represent activation of an

enhancer landscape that is primed in both subsets. In contrast,

regions exclusively marked by H3K4me2 in LPMs, shown in yel-

low, represent LPM-specific enhancers. Conversely, regions

exclusively marked by H3K4me2 in MG or TGEMs, indicated in

green, represent MG or TGEM-specific enhancers, respectively.

Comparing LPMs versus MG, 60% of the active enhancers

resided at common regions of H3K4me2, 30% at LPM-specific

regions, and 10% at MG-specific regions. Specific examples

are indicated in Figure 2D. As expected, the Spi1 enhancer,

controlling expression of PU.1, is marked by H3K4me2 and

H3K27ac in all macrophage populations. Interestingly, the RA-

inducible Rarb gene is also marked by H3K4me2 in all macro-

phage populations, but high H3K27ac is only observed in

LPMs and SPMs, suggesting a role of local RA in enhancer acti-

vation. Finally, the Sall3 gene, which is exclusively and highly ex-

pressed in MG, is near a genomic region that is exclusively

marked by H3K4me2 and H3K27ac in MG. In sum, these ana-

lyses provide strong evidence that both differential activation

of a common enhancer landscape and the selection of sub-

type-specific enhancers contribute to the specific transcriptional

signature of each subset of macrophages.

Tissue-Specific Super-Enhancers Emerge from
Common Enhancer Landscapes
Genome-wide analysis of features of active enhancers, including

the presence of Mediator and deposition of H3K27ac, indicates

marked variation in their local distribution patterns. In all cell

types evaluated thus far,�400–800 regions, representing a small

fraction of the genome, exhibit a disproportionately high density

of active regulative marks and transcription factor binding (Hnisz

et al., 2013; Lovén et al., 2013; Whyte et al., 2013). These re-

gions, recently termed super-enhancers (SEs), are selected in

a cell-specific manner and frequently occur near or encompass

genes that play essential roles in defining the identity and func-

tion of the corresponding cell type (Hnisz et al., 2013). Although

LDTFs are enriched in and likely determine cell-specific SE se-

lection, evidence also suggests that the extracellular environ-

ment can influence formation of SEs in endothelial cells (Brown

et al., 2014). To investigate this relationship in tissue macro-

phages, we defined SEs in each macrophage subset based on

H3K27ac ChIP-seq. In agreement with previous studies, we

observed common and subset-specific SEs, with �600 to 750

SEs being identified among the five cell types examined. Clus-

tering of these SEs results in the same relationships between

subsets as observed using RNA-seq, H3K4me2, or H3K27ac

data (Figure 3A). This analysis also revealed a high concordance

between the distribution of SEs genomewide and the expression

level of the nearest genes (Figure 3A). This strong relationship is

further illustrated for SEs and nearest gene expression inMGand

LPMs, in which the correlation coefficient was 0.62 (Figure 3B),

much higher than that observed for the individual enhancer ele-

ments not associated with SE regions in these subsets. This may

be due to a more accurate assignment of SEs to their target

genes than conventional enhancers.

Approximately 40% to 50% of the SEs in a particular macro-

phage subset are unique to that subset, illustrated by the Venn

diagram of LPM, MG, and TGEM in Figure 3C. In concert with

previous findings (Hnisz et al., 2013;Whyte et al., 2013), common

SEs are associated with numerous genes important to macro-

phage ontology and functions, including Spi1, Cebpa, members

of the Irf family,Csf1r, Fcgr2b,Ctsb, etc. (Figure 3D). This pattern

is exemplified by the region upstream of Spi1, which is scored as

a SE in all five subsets (Figure 2D). In contrast, many SEs are

macrophage subset specific and reside near or surround genes

that are highly differentially expressed (Figure 3E). Although

some SEs exhibit highly specific H3K4me2 and H3K27ac mark-

ings, such as the LPM-specific SE upstreamofGata6 (Figure 3E),

the majority of SEs are located at regions that are marked by

H3K4me2 in multiple macrophage subsets but only attain SE

status in one or a few subsets. For example, LPM-specific SEs

reside in the vicinity of Rarb (Figure 2D) and Alox15 (Figure 3E)

genes, which are selectively expressed in LPMs but that also

exhibit H3K4me2 in other macrophage subsets. Similar relation-

ships are observed for the MG-specific SEs surrounding Gpr56

and Cx3cr1 and the TGEM-specific SEs surrounding Fabp5

and Gpnmb (Figure 3E). These findings suggest that environ-

mental signals play roles in the transition of collections of primed

enhancers to genomic regions exhibiting features of SEs.

PU.1 Colocalizes with Distinct TF Motifs at Subset-
Specific Enhancers
The observation that PU.1 localization to macrophage- or B-cell-

specific enhancers is dependent on collaborative interactions

with alternate LDTFs (Heinz et al., 2010) led us to consider the

possibility that an assessment of PU.1 binding in different

macrophage subsets might yield insights into the TFs that

(D) UCSC browser images of selected genomic regions with corresponding RNA-seq data plotted as bar graphs. Bars labeled SE indicate super-enhancers, and

vertical highlights designate regions of interest for subset-common (Spi1) or subset-specific (Rarb and Sall3) loci. All data are normalized to input and library

dimension.

See also Tables S2, S3, and S4.
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drive the selection of subset-specific enhancers. We therefore

extended existing genome-wide binding profiles for PU.1 to

include MG, LPMs, and SPMs. These studies indicated that

PU.1 bound to both common and subset-specific genomic loca-

tions, exemplified for LPMs and MG in Figure 4A (all compari-

sons in Tables S2 and S3). The great majority of subset-specific

binding sites were observed at distal regions (>500 bp from an

mRNA TSS, Figure 4A), which is consistent with the patterns of

H3K4me2 (Figure 2A). Examples of LPM-specific and MG-spe-

cific binding sites for PU.1 in enhancer-like regions vicinal to

Msr1 (expressed exclusively in LPMs) and Nav2 (expressed

exclusively in MG) genes are illustrated in Figure 4B.

De novo motif enrichment analysis of 200 bp sequences

encompassing PU.1 peaks identified the identical PU.1 recogni-

tion motif in both LPMs and MG as the most enriched sequence.

However, completely different motifs were coenriched within the

two subsets (Figures 4C and 4D). Using GC content-matched

genomic sequence as background, enriched sequences specific

to LPMs corresponded to motifs known to bind C/EBP, AP-1,
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Figure 3. Variation in Super-Enhancer

Landscapes in Different Macrophage Sub-

sets

(A) Heatmaps of H3K27ac tag densities at super-

enhancers and RNA-seq tag densities at nearest

genes. Rows are ordered the same for both plots.

(B) Scatterplot of the relationship between ratio of

MG to LPMs H3K27ac tag density at super-en-

hancers (x axis) and the ratio of nearest gene

expression (y axis).

(C) Venn diagram indicating overlap and specificity

of super-enhancers in MG, LPMs, and TGEMs.

(D) Examples of genes associated with common

super-enhancers.

(E) UCSC genome browser images of selected

subset-specific super-enhancers and associated

genes with subset-specific regions of interest

highlighted.

IRF, KLF, and GATA transcription factor

family members (Figure 4C). Conversely,

MG-specific PU1-binding sequences

were coenriched for a PU.1-IRF compos-

ite sequence and motifs corresponding

to CTCFL, HIC2, MEF2, and SMAD TFs

(Figure 4D). In addition, by using alterna-

tive subset-specific PU.1-binding sites

as background, motifs recognized by ret-

inoic acid receptors (e.g., NR2F2) were

identified to be coenriched with PU.1-

binding sites in LPMs (Figure 4C).

Previous studies indicated that motifs

for collaborative binding partners of

PU.1 typically reside within �100 bp of

the PU.1 motif itself (Barozzi et al., 2014;

Heinz et al., 2010). We therefore analyzed

the genomic distance distribution of en-

riched motifs (from Figures 4C and 4D)

within a 400 bp window relative to the

bound PU.1 motif of LPM- and MG-specific PU.1 peak sets

(Figure 4E). This analysis indicated that C/EBP, AP1, and

GATA motifs frequently occurred near PU.1-bound motifs in

LPMs, but not in MG, indicating that genomic loci containing

PU.1 and closely spaced C/EBP, AP-1, or GATA motifs were

more likely to become LPM-specific enhancers. The GATA motif

was selectively enriched in LPMs relative to MG, suggesting a

fundamental difference for the LPM resident population

compared to elicited macrophages (Figure 4E). In contrast, the

SMAD motif showed MG specificity (Figure 4E), which is consis-

tent with TGFb signaling in the brain. These findings provide ev-

idence that selection of subset-specific enhancers is in part

driven by collaborative interactions between PU.1 and alterna-

tive sets of TFs in each subset.

Use of Natural Genetic Variation to Validate and
Discover Collaborative TFs
Although motif enrichment suggests the identities of TFs that

contribute to the function of subset-specific enhancers, this
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approach does not establish whether or not they are required

for collaborative binding. Loss-of-function strategies are chal-

lenging for this purpose because many of the identified motifs

are recognized by multiple members of corresponding TF fam-

ilies. An alternative means to test for collaborative binding is to

mutate motifs recognized by the TF family of interest and deter-

mine whether this results in loss of binding of a nearby factor. We

considered the possibility that this could be accomplished for

informative motifs on a genome-wide scale by leveraging the

vast degree of natural genetic variation provided by inbred labo-

ratory and wild strains of mice.

To explore the potential of this approach to validate and

discover TFs required for collaborative binding and function

of PU.1, we determined the genome-wide patterns of PU.1,

H3K4me2, and H3K27ac in LPMs and MG isolated from

NOD/ShiLtJ (NOD) and SPRET/EiJ (SPRET) mice (Table S5).
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Figure 4. PU.1 Binds to Subset-Specific

Enhancers

(A) Scatterplot of normalized tag counts for PU.1

peaks in MG versus LPMs. Points colored blue are

within 500 bp of the TSS.

(B) UCSC genome browser images of PU.1 bind-

ing in the vicinity of the Msr1 and Nav2 genes in

MG and LPMs cells and association with H3K27ac

highlighting specific regions.

(C) Motifs enriched in the vicinity of PU.1-binding

sites that are specific for LPMs versus MG using a

random GC-corrected genomic background (top)

or a background corresponding to MG-specific

PU.1 peaks (bottom).

(D) Motifs enriched in the vicinity of PU.1-binding

sites that are specific for MG using a random GC-

corrected genomic background.

(E) Distribution plots of motif frequencies (y axis)

for the indicated motifs within 400bp centered on

the PU.1 motif at genomic loci bound specifically

by PU.1 in LPMs (blue) or MG (red).

Compared to C57BL/6J (C57) mice,

NOD mice have about 5 million SNPs

and indels, whereas SPRET mice have

about 40 million (Keane et al., 2011).

This variation is associated with corre-

sponding levels of strain-specific binding

of PU.1, illustrated for LPMs derived

from C57 and SPRET mice (Figure 5A).

Similar observations are made with

respect to MG (Table S6). Approximately

8-fold fewer strain-specific PU.1-binding

sites were identified in LPMs and MG

derived from NOD mice compared to

C57, which is consistent with the lower

number of variants between these two

strains. Strain-specific binding of PU.1

was associated with corresponding

strain-specific H3K4me2 and H3K27ac

marks (Figure 5B), suggesting that many

strain-specific PU.1-binding sites localize

to functional enhancers.
To search for motifs mediating DNA binding by collaborative

TFs, we analyzed strain-specific binding of PU.1 that was not

associated with mutations in PU.1 recognition motifs. This was

accomplished by scanning a 200 bp window surrounding

PU.1-binding sites lacking PU.1motif mutations for the presence

of the DNA recognition motifs of the 100 most highly expressed

TFs in LPMs and MG in C57 or the alternate (NOD or SPRET)

genomic sequence. Mutated loci were then queried for a corre-

sponding decrease in PU.1 binding relative to the unmutated

strain. The significant result for ISRE motif mutations affecting

PU.1 binding in LPMs is exemplified in Figure 5C. The ISRE

was found to be mutated in the vicinity of PU.1-binding sites

93 times in LPMs isolated from C57 mice (indicated by red

hash lines in Figure 5C) and 106 times in LPMs isolated from

SPRET mice (indicated by blue hash lines in Figure 5C). PU.1

binding strength is rank ordered from most C57 specific at left
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to most SPRET specific at right. Many mutations are not associ-

ated with strain-specific binding, which is consistent with prior

studies indicating that the specific position of the variant (i.e.,

core versus periphery of motif), the distance of the motif from

the peak center, and presence of additional redundant motifs

affect the impact of individual mutations (Heinz et al., 2013).

Overall, however, C57 mutations in the ISRE were associated

with SPRET-specific binding of PU.1, whereas SPRETmutations

in the ISRE associated with C57-specific binding of PU.1 (p = 83

10�10). This strong genetic association implicates factors bind-

ing to the ISRE as collaborative partners of PU.1 in LPMs.

This analysis was repeated for each motif of interest in each

macrophage subset (LPMs and MG) for the comparisons of

C57 versus NOD and C57 versus SPRET. Vertical compression

of the plot shown in Figure 5C allows stacking of plots for multi-

ple motifs, indicated in Figure 5D. Overall, 37 motifs were found

to reach statistical significance in at least one macrophage sub-

set and strain (Figures 5E and S3). Many more motifs were found

to be significant in comparisons of macrophages derived from

C57 and SPRET mice than C57 and NOD mice, which is consis-

tent with the much larger number of informative mutations. The

most highly significant motifs corresponded to sequences

recognized by ETS factors that are similar to motifs recognized

by PU.1 itself. Most of thesemotifs are closely situated to regions

of PU.1 binding for which the PU.1 motif itself was considered to

be intact. It is therefore unclear at present the extent to which

thesemutations directly affect PU.1 binding or represent binding

sites for collaborative ETS factors.

Twelve non-ETS motifs were identified as being significantly

associated with PU.1 binding in both LPMs and MG, including

a C/EBPa motif, which is an established collaborative binding

partner of PU.1 (Figure 5E). In contrast, 14 motifs exhibited pref-

erential associations with strain-specific PU.1 binding in LPMs

(Figure 5E). This list includes recognition motifs for KLF4,

GATA factors, and AP-1 factors, independently identifyingmotifs

discovered through de novo motif analysis. Finally, motifs for

four factors were preferentially associated with PU.1 binding in

MG, including a recognition motif for SMAD3.

Tissue Environment Regulates Collaborative and
Signal-Dependent TF Expression
To investigate the importance of tissue environment in mainte-

nance of specific macrophage phenotypes, we placed LPMs

and MG into culture under the influence of IL-34 or M-CSF for

7 days. Whereas M-CSF is important to peritoneal macrophages

(Witmer-Pack et al., 1993), IL-34 is critical for proper MG
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Figure 5. Motif Mutations in Potential

PU.1 Collaborating Transcription Factors

Confirm Cooperative Binding for Sub-

set-Common and Subset-Specific Factor

Combinations

(A) PU.1 binding between SPRET and C57 is

shown for 200 bp regions where green signifies

differential binding (>4-fold, p < 1 3 10�4, n =

13,199), blue similar binding (<4-fold, p < 1 3

10�4, n = 11,022) and orange in between (n =

12,367).

(B) Heatmap of 2 kb differentially bound PU.1

genomic regions (rows) centered on PU.1 binding

for ChIP-seq tags of PU.1, H3K4me2, and

H3K27ac between C57 and SPRET (columns).

(C) An example of motif mutation analysis is shown

for the ISREmotif. 200 bp genomic sequence at all

PU.1 bound loci (in A) were queried for genetic

variants that mutated the ISRE motif matrix in

either C57 or SPRET. Mutations were colored

according to the genome mutated: red, C57; blue,

SPRET. ISRE mutations were plotted according to

the PU.1-binding strain ratio (y axis) as measured

in LPMs at that locus and rank-ordered on the x

axis. Boxplots of corresponding color indicate the

effect of ISRE motif mutations on PU.1 binding

where whiskers extend to data extremes and p

value are from two-sided t test.

(D) Results from analyses described in (C) are

vertically compressed and shown in rows for PU.1,

C/EBP, Unknown, AP-1, and ISRE motif mutation

events.

(E) Heatmap showing p values resulting from

analysis described in (C) and (D) for motif muta-

tions best matching transcription factors indicated

on x axis. Each motif was tested for affecting PU.1

binding between C57 and NOD and between C57

and SPRET both in MG and LPMs (y axis).

See also Figure S3 and Tables S5 and S6.
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ontology and/or survival in vivo (Greter et al., 2012; Wang et al.,

2012). This environmental transition resulted in vast changes

in gene expression (Table S7). Comparison of the gene expres-

sion program of LPMs freshly purified from the peritoneal cavity

with LPMs maintained in M-CSF for 7 days is illustrated in

Figure 6A. Data points colored in blue represent genes that

are expressed more than 16-fold higher in LPMs than MG, indi-

cating that the LPM-specific program of gene expression is

preferentially lost in culture. Comparison of the gene expression

program of MG freshly isolated from the brain or maintained in

culture in the presence of IL-34 for 7 days is illustrated in Fig-

ure 6B. Data points colored in red represent genes that are ex-

pressed more than 16-fold higher in MG than LPMs, indicating

that the MG-specific program of gene expression is preferen-

tially lost in culture. In both LPMs andMG,many genes exhibiting

low levels of expression in vivo are markedly upregulated in

culture.

In view of recent findings indicating important roles of TGFb

signaling in MG and RA signaling in peritoneal macrophages, we

examined the expression of the main receptors for these factors

A B D

C E

F

G

Figure 6. Environmental Influence on Gene

Expression in LPMs and Microglia

(A and B) Scatterplots illustrating relative gene

expression of RNA transcripts in freshly isolated

LPMs compared to LPMs maintained in culture for

7 days (A) and freshly isolated MG compared to

MG in culture for 7 days (B). Genes specific to

LPMs are colored blue in (A) and specific toMGare

red in (B).

(C) Normalized gene expression values for mem-

bers of the RAR and TGFb receptor family mem-

bers.

(D) Heatmap showing the fold-change of RNAs for

the indicated transcription factors upon removal

from the peritoneal cavity and culture with IL-34 or

M-CSF.

(E and F) Effects of chronic stimulation with RA in

M-CSF and/or IL34 (E) on LPM-specific or com-

mon mRNAs or TGFb in M-CSF or IL34 (F) on MG-

specific or common mRNAs.

(G) qPCR validation of maintained expression by

RA of key transcription factors in cultured LPMs

(error bars indicate SD).

See also Figure S4.

in each macrophage subset. The mRNAs

encoding all three RA receptors (Rara,

Rarb, and Rarg) are highly and selectively

expressed in LPMs and SPMs, whereas

mRNAs encoding the TGFb receptors

Tgfbr1 and Tgfbr2 are preferentially ex-

pressed in MG (Figure 6C). Interestingly,

expression of all three retinoic acid recep-

tors is markedly reduced when LPMs are

placed into culture in the presence of M-

CSF or IL-34, whereas the expression of

Tgfbr1 is markedly increased under these

conditions (Figure 6D). Thus, environment

controls the expression of genes responsible for responses to

environment-specific signals.

To investigate the extent to which RA and TGFb influence sub-

set-specific patterns of gene expression, we treated LPMs with

RA or TGFb for 7 days and performed RNA-seq analysis. RA

treatment induced expression of nearly half of the LPM-specific

genes bymore than 2-fold, while inducing about 8%of genes ex-

pressed at similar levels in LPMs and MG (Figure 6E).

Conversely, nearly 50% of the genes induced more than 2-fold

by TGFb in LPMs in culture are preferentially expressed by MG

in vivo, whereas only 4% of the genes expressed at similar levels

in LPMs and MG were induced by TGFb in LPMs (Figure 6F).

Thus, RA and TGFb disproportionately regulate genes that

specify LPM and MG-specific phenotypes, respectively.

We next evaluated the expression of TFs that recognize motifs

identified as putative binding sites for collaborative partners of

PU.1 in LPMs through analysis of strain-specific PU.1 binding.

Remarkably, expression of the majority of TFs best matched to

motifs identified by strains analysis was environment dependent

(Figure 6D). A similar pattern was observed when considering all
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members of each TF family capable of recognizing these motifs

(Figure S4A). RNA-seq analysis further suggested that several

of these factors were inducible by RA. This response was

confirmed under M-CSF treatment conditions for Gata6 and

Rarb, consistent with previous studies (Okabe and Medzhitov,

2014), as well as for Bhlhe40 and Nfe2 (Figures 6G and S4B).

However, expression ofRara,Rarg, andmost of the other factors

illustrated in Figure 6C was not RA inducible. Thus, the environ-

ment modulates in LPMs the expression of collaborative and

SDTFs through both RA-dependent and RA-independent

mechanisms.

Hierarchical Effects of Environment on Macrophage
Enhancer Landscapes
To gain insights into mechanisms underlying effects of environ-

ment on macrophage gene expression, we performed ChIP-

seq analysis for H3K4me2, H3K27ac, and PU.1 in LPMs main-

tained in M-CSF and the presence or absence of RA or TGFb

for 7 days. Transition of LPMs from the peritoneal cavity to a

tissue culture environment containing M-CSF led to a >2-fold

reduction in H3K4me2 and/or H3K27ac at approximately half of

A B

C D

E

Figure 7. Environmental Influence on En-

hancer Landscapes in LPMs and Microglia

(A) Effects of culture environment and RA chronic

stimulation on the enhancer landscape of LPMs.

(B) UCSC browser images displaying effects of

culture environment and RA chronic stimulation on

H3K4me2, H3K27ac, and PU.1 binding at the

Bhlhe40 locus in LPMs.

(C) Effects of culture environment and chronic

stimulation with TGFb on the enhancer landscape

of LPMs.

(D) UCSC browser images displaying effects of

culture environment and chronic stimulation with

TGF-b1 on H3K4me2, H3K27ac, and PU.1 binding

at the Ets1 locus in LPMs.

(E) Hierarchical model for mechanisms by which

the peritoneal environment induces the enhancer

landscape and gene expression signature of

LPMs. See Discussion for details.

See also Table S7.

the enhancer-like regions (Figure 7A).

One-third of these lost enhancer elements

were maintained by RA treatment (Fig-

ure 7A).Of the 302 LPM-specificSEs iden-

tified in Figure 3, 223 (74%) no longer met

SE criteria, indicating a disproportionate

sensitivity to loss of environmental signals.

This pattern is exemplified by the SE asso-

ciated with Bhlhe40, which, in addition to

substantial reduction in the histone signa-

ture of enhancers, also exhibits reduced

PU.1 binding (Figure 7B). Notably,

H3K4me2, H3K27ac, and PU.1 binding

are largely maintained by RA treatment.

Maintenance of LPMs in M-CSF plus

TGFb resulted in marked changes in the
LPM enhancer landscape in comparison to culture in M-CSF

alone, which is consistent with the preferential effects of TGFb

on aMG-specific program of gene expression (Figure 7C). Treat-

ment with TGFb increased the enhancer signature by more than

2-fold at �25% of pre-existing enhancers. Conversely, TGFb

reduced enhancer signatures at �25% enhancer-like elements

that were stable upon transfer to culture in M-CSF. Induced en-

hancers are exemplified by a genomic region in the vicinity of the

Ets1 gene (Figure 7D) that is preferentially expressed in MG and

is highly induced by TGFb. Culture of LPMs in M-CSF results in

appearance of PU.1 binding and H3K4me2 modification, with

TGFb treatment leading to substantial increases in H3K27ac

and a marked increase in gene expression.

DISCUSSION

Mechanisms Underlying Tissue-Specific Enhancer
Selection and Activation
The present studies provide evidence for a hierarchical model in

which the distinct environments of the brain and peritoneal cavity

differentially activate a common set of primed enhancers and
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their target genes that, in turn, promote the selection and activa-

tion of subset-specific enhancer repertoires. The combinatorial

activation of both common and subset-specific enhancers

enables context-dependent regulation of genes required for

specialized functions of MG and RPMs. Aspects of this model

as they pertain to the RA-dependent program of gene expres-

sion specific to peritoneal macrophages are illustrated in Fig-

ure 7E. Common to all macrophage subsets, stimulation of

signaling pathways downstream of the M-CSF receptor by M-

CSF and/or IL-34, which are present in the environment in a

largely tissue-non-specific manner, ensures survival and pro-

motes PU.1 expression (Sarrazin et al., 2009). PU.1 is a critical

LDTFs required for all macrophage subsets that functions to

select common and cell-specific enhancers through collabora-

tive interactions with other TFs. These regions of PU.1 binding

in turn serve as subset-specific sites of action for various types

of SDTFs.

Within the peritoneal cavity, environment-specific signals

control the expression and activities of TFs that act upon primed

enhancers that are common to multiple macrophage subsets

(Figure 7E). A particularly important signal is omentum-derived

RA, which has been shown to be essential for development

and function of LPMs through its activation of RARb and induc-

tion of Gata6 (Okabe and Medzhitov, 2014). We find that all

three high-affinity retinoic acid receptor genes (Rara, Rarb,

and Rarg) are preferentially expressed in the peritoneal cavity

and that this expression requires continual maintenance by

the peritoneal cavity environment. However, only Rarb expres-

sion is preserved by RA treatment in culture, indicating that

expression of Rara and Rarg is under the control of as-yet-un-

identified factors. We speculate that the expression of RARa

and RARg is necessary for full induction of RARb expression

in response to environmental RA and that this positive feedback

loop is important for amplification of the RA signal and activa-

tion of direct RA target genes. These findings imply that at least

two environmental signals are required for initiating the RA-

dependent peritoneal macrophage phenotype, one being RA it-

self and the second being a signal or signals required for RARa

and RARg expression.

Activated retinoic acid receptors primarily function as SDTFs

that act at a common set of primed enhancers established by

PU.1 and other LDTFs that are expressed across macrophage

subsets. Importantly, direct RA target genes include Gata6,

Bhlhe40, and Nfe2, which were identified as putative interacting

partners of PU.1 through analysis of effects of natural genetic

variation. We propose that RAR-dependent induction of these

factors results in collaborative interactions with PU.1 that

drive environment-specific selection of LPM-specific enhancers

(Figure 7E).

Of note, Gata6, Bhlhe40, and Nfe2, as well as all three retinoic

acid receptors, reside in or near peritoneal macrophage-specific

SEs that are lost when LPMs are removed from the peritoneal

cavity. Our findings suggest that an analogous hierarchy oper-

ates in MG, driven in part by TGFb signaling and SMAD TFs.

Although the present studies have focused on PU.1, we expect

that additional macrophage LDTFs function in an analogous

manner to set up macrophage-specific, PU.1-independent

enhancers.

Use of Natural Genetic Variation to Validate and
Discover Collaborative TFs
Here, we demonstrate the use of the natural genetic variation

provided by inbred strains of mice as a powerful means to vali-

date and discover collaborative TFs. By measuring strain-spe-

cific binding of PU.1 in macrophages derived from genetically

diverse strains of mice, we identified motifs for several different

classes of TFs in which strain-specific mutations were highly

correlated with the loss of binding of PU.1 to nonmutated PU.1

recognition motifs. Interestingly, the expression of a significant

fraction of the TFs recognizing these motifs is dependent on

environment.

Many of themotifs identified by analysis of strain-specific bind-

ingof PU.1are recognizedbyTFs that havewell-established roles

in macrophage biology. Some, such as C/EBPa and C/EBPb, are

documented to function as factors that enable collaborative bind-

ing of PU.1 in macrophages (Heinz et al., 2010), supporting the

validity of the approach. Although the biological role of Gata6 in

the development and function of LPMs is established (Okabe

andMedzhitov, 2014;Rosaset al., 2014), thepresent studies sug-

gest that a key molecular function of Gata6 is to collaborate with

PU.1, and likelyothermacrophageLDTFs, todrive theselectionof

LPM-specific enhancers. Bhlhe40 and Nfe2 represent examples

of putative collaborative partners of PU.1 that have not as yet

been linked to macrophage-specific functions. Bhlhe40, also

known as Dec1, Stra13, and Sharp2, has previously been shown

to be inducible by RA and to act as both as a repressor and

activator (Boudjelal et al., 1997; Ivanova et al., 2004), raising the

possibility that it could contribute to selection of LPM-specific en-

hancers, as well as suppress genes that become active when

LPMs are removed from the peritoneal cavity. Nfe2 is a bZip tran-

scription factor that is broadly expressed in the hematopoietic

system and has been established to play important roles in eryth-

ropoiesis and megakaryocyte development (Andrews, 1998).

The present findings provide a rationale for further investigation

of roles of Bhlhe40, Nfe2, and other TFs identified as putative

collaborative binding partners of PU.1.

The use of natural genetic variation as a strategy for identifica-

tion of TFs required for enhancer selection can in principle be

applied to any cell type in which ChIP-seq can be performed

for an index LDTF. In addition, although not a focus of the present

studies, the variation in enhancer selection and activity observed

inmacrophages derived fromdifferent inbred strains ofmicewas

associated with strain-specific differences in LPM and MG gene

expression. Such changes in gene expression are presumably

linked to both molecular phenotypes such as eQTLs and to the

marked phenotypic differences exhibited by these mice that

are influenced by tissue resident macrophage populations,

such as relative susceptibility or resistance to metabolic, cardio-

vascular, infectious, and neurodegenerative diseases (Civelek

and Lusis, 2014; Threadgill and Churchill, 2012). The principle

of collaborative binding, which serves as the basis for the motif

discovery method described here, is directly applicable to inves-

tigating mechanisms by which noncoding variants may exert

phenotypic effects in a cell-type-specific and/or context-depen-

dent manner. In concert, these approaches enable insights into

gene-by-environment interactions and the genetic architecture

of molecular and complex disease traits.
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Tuning Enhancer Landscapes and Gene Expression to
Context-Specific Functions
The present studies reveal that each macrophage subset

uniquely possesses a distinct set of active enhancers, including

subset-specific SEs, which are associated with strong preferen-

tial expression of nearby genes. In LPMs, for example, which

populate a very potent immunogenic environment, Gbp2b and

Alox15 are associated with SE activity, and we note that the pro-

tein products of these genes are critical regulators of immunity,

in particular inflammation and tolerance (Pilla et al., 2014; Uder-

hardt et al., 2012; Yamamoto et al., 2012). In contrast to LPMs,

MG reside in the immune-privileged environment of the brain.

As with LPMs, however, our observations suggest that MG

adopt a unique phenotype that is again strongly contributed by

distinct enhancers and SEs to accomplish tissue-specific func-

tions required for brain homeostasis. For example, SEs in MG

include genomic loci associated with the Cx3cr1 and Gpr56

genes, among others. Interestingly, both genes are highly rele-

vant to brain functions, regulating synaptic pruning and efficient

cortical patterning during brain development (Paolicelli et al.,

2011; Piao et al., 2004). Together, our studies reveal an intricate

relationship between the organization of the genome of tissue

macrophage and their surrounding environment.

Divergent Macrophage Gene Expression in a Common
Environment
Distinct macrophage populations can coexist in a similar envi-

ronment, as illustrated by the copresence of LPMs and SPMs

in the peritoneum. Although these cells are highly concordant

with respect to gene expression and organization of their

enhancer landscapes, consistent with exposure to common

tissue-derived signals, strong points of divergence can nonethe-

less discriminate the two. These observations raise the possibil-

ity that differences in origin and ontology play important roles

in determining these later-stage differences (Perdiguero et al.,

2014; Schulz et al., 2012). Thus, the impact of developmental

history on the regulation of enhancer repertoires and gene

expression of different tissue macrophages remains a funda-

mental open question to be addressed in future studies.

EXPERIMENTAL PROCEDURES

Mice

Seven-week-old C57BL/6J, NOD/ShiLtJ, and SPRET/EiJ male mice were pur-

chased from Jackson Labs and used at 8 to 9 weeks of age. All animal proce-

dures were in accordance with University of California, San Diego research

guidelines for the care and use of laboratory animals.

Microglia Isolation

Mice were anaesthetized with CO2 and quickly perfused intracardially with ice-

cold DPBS. Whole brains were removed and gently mechanically homoge-

nized on ice. Cells were fractionated by Percoll gradient centrifugation, and

microglia-enriched fractions were further purified by cell sorting according to

the scheme described in Figure S1A and Extended Experimental Procedures.

Peritoneal Macrophage Isolation

Following euthanization, peritoneal cells were collected by lavage of the peri-

toneum with ice-cold staining buffer. LPM and SPM subsets were purified

based on relative expression of MHCII and other markers described in Fig-

ure S1B and Extended Experimental Procedures.

Thioglycollate-Elicited and Bone-Marrow-Derived Macrophages

Cultures

TGEMs were harvested by peritoneal lavage with 20 ml ice-cold PBS 4 days

after peritoneal injection of 3ml Thioglycollate broth. Both TGEMs andBMDMs

were cultured as described in Heinz et al. (2010). See also Extended Experi-

mental Procedures.

ChIP-Seq

Macrophages were fixed at room temperature with 1% paraformaldehyde/

PBS containing 1 mM sodium butyrate for 10 min and quenched with glycine.

2.03 105 to 1.03 106 cells were used for ChIP, and samples were processed

as previously described (Heinz et al., 2010), with minor modifications noted in

the Extended Experimental Procedures. Sequencing libraries were prepared

as previously described (Heinz et al., 2010).

RNA Isolation

For RNA-seq, TRIzol (Life Technologies) isolated RNA was either PolyA-

selected (MicroPoly(A) Purist kit, Ambion) or subjected to RiboZero rRNA

removal (Epicenter).

Quantitative PCR, RNA-Seq Library Preparation, and Sequencing

Libraries for RNA sequencing were generated as previously described (Heinz

et al., 2013). See Extended Experimental Procedures for details and qRT-PCR

primer sequences.

Data Analysis

Fastq files from sequencing experiments were mapped to individual genomes

for the mouse strain of origin using default parameters for STAR (Dobin et al.,

2013) (RNA-seq) and Bowtie2 (Langmead and Salzberg, 2012) (ChIP-seq).

NOD/ShiLtJ and SPRET/EiJ custom genomes were generated from invariant

positions of the mm10 sequence with alleles replaced by those reported in

VCF files from the Mouse Genomes Project (Keane et al. 2011). Mapped

data were analyzed with HOMER (Heinz et al., 2010), custom R, and Perl

scripts.

ACCESSION NUMBERS

Raw and processed data are provided in the Gene Expression Omnibus (GEO)

under accession number GSE62826.
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Abstract Although macrophages can be polarized to distinct phenotypes in vitro with individual

ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis,

immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses

of mouse macrophages to complex tissue damage signals and wound repair. Rather than

reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that

are activated by TLR ligands, IL4, TGFb, and damage-associated molecular patterns (DAMPS).

Unexpectedly, a complex damage signal promotes co-localization of NF-kB, Smad3, and Nrf2 at

Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization

states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated

signaling pathways to promote a wound repair phenotype.

DOI: 10.7554/eLife.13024.001

Introduction
Macrophages reside in all tissues of the body and play key roles in homeostasis, immunity, and dis-

ease. As immune cells, macrophages serve as sentinels of infection and injury and are active partici-

pants in both innate and adaptive immune responses. Detection of pathogens and tissue damage is

mediated by a diverse array of pattern recognition receptors for pathogen associated molecular pat-

terns (PAMPs) and damage associated molecular patterns (DAMPs), exemplified by the toll-like

receptors (TLRs). Ligation of TLRs initiates profound changes in gene expression that include induc-

tion of chemokines, cytokines, anti-microbial peptides, and other factors that contribute to the

innate immune response and influence adaptive immunity (Ostuni et al., 2013; Lawrence and

Natoli, 2011). This response has been extensively characterized in vitro by treating cultured macro-

phages with specific TLR ligands such as bacterial lipopolysaccharide (LPS), a potent activator of

TLR4 (Kaikkonen et al., 2013; Escoubet-Lozach et al., 2011; Raetz et al., 2006). TLR4 ligation reg-

ulates gene expression through signal transduction pathways culminating in the activation of latent

signal-dependent transcription factors, which include members of the nuclear factor kappa-light-
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chain-enhancer of activated B cells (NF-kB), interferon regulatory factor (IRF), and activator protein 1

(AP-1) families (Medzhitov and Horng, 2009). In macrophages, these factors are primarily directed

to macrophage-specific enhancers that are selected by macrophage lineage determining transcrip-

tion factors, PU.1 and CCAAT-enhancer-binding proteins (C/EBPs) (Heinz et al., 2010). The macro-

phage activation phenotype resulting from selective treatment with LPS, or in some cases a

combination of LPS and interferon g (IFNg), is referred to as M(LPS) or M(LPS+IFNg) activation

(Murray et al., 2014), and is considered vital for the host response to bacterial or viral infection.

Macrophages also play important roles in regulating the resolution phase of inflammation as well

as the repair of tissue damage. These functions are controlled by complex microenvironmental path-

ways that include reductionist signals such as transforming growth factor b (TGFb) and interleukin 4

(IL4). TGFb is generally considered to be an inducer of a ’de-activated’ macrophage or M(TGFb) phe-

notype, although it also acts as a potent chemo-attractant for monocytes and can potentiate their

transition into activated cells (Li et al., 2006). Macrophages respond to TGFb in both an autocrine

and paracrine manner. For example, phagocytosis of apoptotic cells results in increased macro-

phage-mediated secretion of TGFb and subsequent inhibition of inflammatory cytokine production

(Li et al., 2006). In addition to dampening inflammatory responses, secreted TGFb plays key roles in

accelerating wound healing and fibrosis (Schuppan and Kim, 2013). At the transcriptional level,

TGFb signal transduction pathways function primarily in a Mothers against decapentaplegic homolog

(SMAD)-dependent manner through Smad2-, Smad3-, and Smad4-mediated activation, as well as

Smad7-mediated inhibition (Massagué, 2012). Like other signal-dependent transcription factors,

ligation of TGFb receptors causes the localization of Smad3 to genomic loci containing lineage-

determining transcription factors (Mullen et al., 2011).

Regulation of macrophage gene expression by IL4 plays roles in containment of parasitic infec-

tions and in homeostatic functions of adipose tissue. IL4 acts through the IL4 receptor to activate

signal transducer and activator of transcription 6 (Stat6) (Lefterova et al., 2010), which positively

regulates gene expression upon binding to recognition elements in promoters and enhancers of tar-

get genes (Li et al., 2006). IL4 signaling regulates genes that control tissue remodeling, phagocyto-

sis, scavenging, and the arginase pathway. The macrophage activation phenotype resulting from

selective treatment with IL4 is referred to as M(IL4) and is considered vital for the role of macro-

phages in wound repair (Van Dyken and Locksley, 2013).

While M(LPS) or M(LPS+IFNg ), M(TGFb), and M(IL4) macrophage phenotypes are clearly distinct in

vitro, they result from selective activation of specific signaling pathways by strongly polarizing ligands.

In vivo, macrophages encounter diverse combinations of signals that can change over time in

response to physiological or pathological processes such as tissue injury. Recent studies show that

these combinations of signals can influence the transcriptional landscape of macrophages in an input-

specific fashion (Lavin et al., 2014; Ginhoux et al., 2015; Gosselin et al., 2014). However, how com-

plex signals are integrated at the level of transcription and how reductionist stimuli (LPS, TGFb, and

IL4) can be used as a framework to predict how combinations of transcriptional regulators coordinate

immune and tissue repair activities in complex tissue microenvironments remain largely unknown.

The Rev-erb nuclear receptor family consists of two members, Rev-erba (also known as nuclear

receptor subfamily 1, group D, member 1, NR1D1) and Rev-erbb (also known as nuclear receptor

subfamily 1, group D, member 2, NR1D2) (Rev-erbs), that regulate the expression of genes involved

in the control of circadian rhythm (Preitner et al., 2002; Liu et al., 2008; Cho et al., 2012), metabo-

lism (Raspé et al., 2002; Le Martelot et al., 2009; Feng et al., 2011; Solt et al., 2012), and inflam-

mation (Fontaine et al., 2008; Gibbs et al., 2012). Rev-erbs mediate transcriptional repression

through recruitment of the nuclear co-repressor (NCoR) and histone de-acetylase 3 (HDAC3) com-

plex (Yin and Lazar, 2005). Rev-erbs lack the carboxy-terminal (AF2) transactivation domain, which

is required for recruitment of co-activators (Durand et al., 1994). Genome-wide location analysis of

Rev-erba and Rev-erbb in macrophages revealed thousands of binding sites, the vast majority of

which resided at macrophage-specific enhancer-like regions of the genome established by PU.1 and

other macrophage lineage determining factors (Lam et al., 2013). Gain and loss of function experi-

ments indicated that Rev-erbs function to suppress the activities of these enhancers by repressing

enhancer-directed transcription. While these studies provided insights into the functional signifi-

cance of enhancer transcription, the biological consequences of the actions of Rev-erbs at these dis-

tal regulatory elements were not explored.
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Figure 1. Overall impact of Rev-erb DKO on signal-dependent gene expression. (a) Schematic illustrating the experimental approach used in defining

the global transcriptional program in WT and Rev-erb DKO bone marrow derived macrophages (BMDMs). (b) Heatmap showing genes captured by

Figure 1 continued on next page
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Here, we provide evidence that Rev-erbs repress the transcription and function of signal-depen-

dent enhancers that are targets of TLR, IL4, TGFb, and DAMP signaling. Rather than exerting a pat-

tern of repression that reinforces a particular polarization phenotype, Rev-erbs regulate subsets of

signal responsive genes that span those associated with M(LPS) or M(LPS+IFNg ), M(TGFb), and M

(IL4) phenotypes, enriching for functions associated with wound repair. Consistent with these in vitro

observations, deletion of Rev-erbs from the hematopoietic lineage in vivo results in accelerated

wound repair. Unexpectedly, we found that a complex tissue injury signal directs genomic binding

patterns for NF-kB p65 (p65), FBJ murine osteosarcoma viral oncogene homolog (Fos – a member

of the activator protein 1, or AP-1, family), and Smad3 that differ substantially from those observed

following selective treatments with a TLR4 agonist or TGFb. In addition, by analyzing changes in

enhancer signatures, we identified Nrf2 as an additional mediator of the transcriptional response to

the tissue injury signal. While these transcription factors exhibit relatively little co-localization in

response to single polarizing ligands, we observe substantial co-localization and enhancer activation

in response to the complex tissue injury signal, resulting in transcriptional outcomes that are qualita-

tively different than the sum of single polarizing signals. These observations provide insights into

how combinations of signals are integrated at a transcriptional level to result in context-specific pat-

terns of gene expression.

Results

Rev-erb transcriptional activity varies according to polarizing signal
Our previous findings that Rev-erbs regulate transcription from signal-dependent enhancers

(Lam et al., 2013) led us to investigate possible biological roles of Rev-erbs in influencing macro-

phage phenotypes (Figure 1a). To study the phenotypic contribution of Rev-erbs to signal-depen-

dent gene expression in macrophages, we performed RNA-Sequencing (RNA-Seq) of poly(A) mRNA

isolated from wild-type macrophages and those deficient for both Rev-erba and Rev-erbb

(Figure 1a). Rev-erb double knockout (DKO) macrophages were generated from bone marrow dif-

ferentiation of Tie2-Cre Rev-erbaflox/flox Rev-erbbflox/flox (Rev-erb DKO) mice and compared to con-

trol macrophages derived from Cre-negative littermates (WT). Deletion of Rev-erbb exons to

generate a non-functional Rev-erbb mRNA results in marked de-repression of Rev-erba expression

and increased expression of a DNA binding domain deleted form of Rev-erba mRNA (Sud et al.,

2007) (Figure 1—figure supplement 1a–b). Similar effects can be seen following deletion of Rev-

erba exons (corresponding to the DNA-binding domain) with respect to Rev-erbb de-repression

Figure 1 continued

RNA-Seq associated with Rev-erb control after treatment with the indicated ligands compared to the basal state. Genes shown are those more than

1.5-fold differentially expressed in Rev-erb DKO macrophages compared to WT. Data is represented as log2 fold change between the basal state and

treatment (untreated for 6 hr was used for comparison to KLA, Pam3, Poly I:C, TGFb 9 hr, and tissue homogenate 6 hr; untreated for 24 hr was used for

comparison to KLA + IFNg , IL4, TGFb 29 hr, and tissue homogenate 24 hr). Genes were clustered using k-means clustering (k = 10). For untreated

samples, N = 4, for samples treated with Pam3, Poly I:C, KLA or KLA + IFNg , tissue homogenate or TGFb, N = 3, and for samples treated with IL4,

N = 2. The data for this heat map is accessible in Figure 1—source data 1. (c) Heatmap showing genes captured by RNA-Seq as differentially

expressed 1.5-fold in the Rev-erb DKO macrophage compared to WT as indicated. Data is represented as log2 fold change between DKO and WT.

Genes were clustered using k-means clustering (k = 10). For untreated samples, N = 4, for samples treated with Pam3, Poly I:C, KLA or KLA + IFNg ,

tissue homogenate or TGFb, N = 3, and for samples treated with IL4, N = 2. The data for this heat map is accessible in Figure 1—source data 2. (d)

Gene ontology analysis using David (Huang et al., 2009a, 2009b) of genes shown in panel b. (e) Gene ontology analysis using David (Huang et al.,

2009a, 2009b) of genes demonstrating de-repressed expression in Rev-erb DKO macrophages by more than 1.5-fold in all of the conditions combined

(w/o Tissue homog considers de-repressed genes in columns 1–8 of panel c (N = 2315), while w/ Tissue homog considers de-repressed genes in all

columns of panel c (N=2614)).

DOI: 10.7554/eLife.13024.002

The following source data and figure supplement are available for figure 1:

Source data 1. Source data for Figure 1b where each value represents the average normalized log2 fold change between the basal state and treat-

ment state per column.

DOI: 10.7554/eLife.13024.003

Figure supplement 1. .Rev-erb deletion efficiency.

DOI: 10.7554/eLife.13024.004
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Figure 2. Rev-erb DKO bone marrow transplanted animals display enhanced wound closure in a full thickness wound healing model. (a) Wound size

(cm2) as fitted from a linear mixed effects model. Boxes denote the interquartile range and the median, whiskers denote the minimum and maximum

Figure 2 continued on next page
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(Figure 1—figure supplement 1a–b). Reduction of targeted Rev-erb exonic mRNA averaged 90%

for Rev-erba and 80% for Rev-erbb (Figure 1—figure supplement 1c).

Activation of TLR3 with a synthetic double-stranded RNA analog, polyinosinic-polycytidylic acid

(Poly I:C), TLR4 with Kdo2-lipid A (KLA), TLR1/2 with a synthetic triacylated lipopeptide, Pam3CSK4

(Pam3), and co-activation with KLA and IFNg induced characteristic pro-inflammatory gene signa-

tures (Figure 1b and d) in WT macrophages. In contrast, IL4 or TGFb stimulation of macrophages

resulted in the expected alternatively activated and de-activated gene profiles, respectively

(Figure 1b and d).

Comparing the gene expression signature from WT and Rev-erb DKO macrophages, for the

majority of genes, the magnitude of differential expression between WT and Rev-erb DKO macro-

phages varied depending on the polarization state (Figure 1c), in some cases only being observed

under basal conditions, and in other cases only observed in response to a particular stimulus. These

results suggest that the magnitude of differential expression in WT compared to Rev-erb DKO mac-

rophages is highly dependent on polarization state.

Rev-erb deficient animals display enhanced wound healing
Gene ontology analysis of mRNAs exhibiting differential expression (>1.5-fold de-repressed in DKO

macrophages) in at least one of the single polarizing conditions revealed significant enrichment for

genes involved in the response to wounding (Figure 1e). Notably, genetic loss of Cx3cr1 and Arg1

has been shown to hinder efficient wound healing in mice (Campbell et al., 2013; Ishida et al.,

2008), suggesting that mice lacking Rev-erbs in cells of hematopoietic origin might exhibit more

rapid wound healing. To test this hypothesis, we utilized a full thickness wound healing model

(Figure 2a) in mice after bone marrow reconstitution with either WT or Rev-erb DKO bone marrow

(Figure 2—figure supplement 1a). Bone marrow reconstitution efficiency exceeded 94% (Figure 2—

figure supplement 1b). We found from three independent experiments that Rev-erb deficiency in

bone marrow derived hematopoietic cells resulted in accelerated wound closure (Figure 2a–b). This

was especially apparent on days 2–6 post-injury (Figure 2a), consistent with Rev-erb deficiency

resulting in a faster response during the immune phase of wound healing.

Wounds from the Rev-erb DKO chimeric mice displayed greater immune cell infiltration and faster

wound healing progression, characterized by enhanced re-epithelialization and increased granulation

tissue development (Figure 2c), characteristics correlated with an accelerated immune response dur-

ing wound healing. In addition, Rev-erb DKO bone marrow transplanted mice displayed more mac-

rophages at the wound site on day 4 post-injury (Figure 2d), while neutrophil persistence at the

wound site remained similar between WT and Rev-erb DKO transplanted mice (Figure 2e). More-

over, matrigel migration assays show increased extravasation of Rev-erb DKO macrophages when

compared to their WT counterparts (Figure 2f). Flow cytometry analysis of circulating blood leuko-

cytes from WT and Rev-erb DKO bone marrow transplanted animals (Figure 2—figure supplement

1c–d) showed no differences in the populations of Ly6Clow/Ly6Chigh circulating monocytes. These

experiments suggest that the increased migration of macrophages into wounds may be cell autono-

mous changes in transcriptional output.

Figure 2 continued

values excluding outliers, and dots outside of the whiskers denote outlier observations. Data are pooled from three independent experiments as

described in more detail in the Materials and methods. The p-values shown reflect comparisons with a p-value less than 0.05, as determined by the

linear mixed effects model. (b) Macroscopic digital photographs of wound closure in WT and Rev-erb DKO bone marrow transplanted animals. (c)

Histological images of wound healing in WT and Rev-erb DKO bone marrow transplanted animals taken at 2.5x magnification after 2, 4, and 6 days.

Arrowheads show differential re-epithelialization between WT and Rev-erb DKO bone marrow transplanted animals. Abbreviations: g=granulation

tissue, d=dermis. Images representative of two independent animals. (d) Day 4 hematoxylin and eosin (H&E), as well as F4/80 stained histological

images taken at 20x magnification. Images representative of two independent animals. (e) Day 4 hematoxylin and eosin (H&E), as well as Ly6B.2 stained

histological images taken at 20x magnification. Images representative of two independent animals. (f) Migration of WT and Rev-erb DKO macrophages

through matrigel extracellular matrix for 24 hr (**p-value <0.01 two-tailed test, Data represent mean + SD from one of three experiments using 8 wells

with cells pooled from 3 independent mice).

DOI: 10.7554/eLife.13024.005

The following figure supplement is available for figure 2:

Figure supplement 1. . Engraftment efficiency and quantification of circulating blood cells in WT and DKO chimeras.

DOI: 10.7554/eLife.13024.006
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Figure 3. Rev-erb DKO macrophages display increased inflammatory responses to damaged tissue. (a) Schematic illustrating the experimental

approach used comparing the transcriptional profile of in vivo wounds on days 1, 4, 8, or 14 post-wounding with macrophages treated in vitro with

tissue homogenate after 6 or 24 hr. (b) Heatmap showing genes differentially expressed both in the in vivo mouse wound and in macrophages after in

Figure 3 continued on next page
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Rev-erbs integrate macrophage responses to a complex wound signal
Classically, tissue injury of the skin, muscle, or organ systems induces an initial local inflammatory

response, which is followed by subsequent regenerative processes involving macrophages and other

immune cells, as well as mesenchymal stem cells (Novak and Koh, 2013). To devise an in vitro

model of the acute in vivo response to wounding, we prepared a supernatant from homogenized

skin (Figure 3a). This tissue homogenate provides a complex signal derived from components of dis-

rupted cells (damage associated molecular patterns; DAMPs), the skin microbiome (microbial associ-

ated molecular patterns; MAMPs), and factors residing in the extracellular matrix (e.g., TGFb). Tissue

homogenate was used to stimulate WT and Rev-erb DKO macrophages for 6 and 24 hr, followed by

RNA-Seq analysis. The gene expression signature of tissue homogenate-stimulated macrophages

showed both similarities and differences when compared to the responses observed after treatment

with TLR agonists, IL4, or TGFb (Figure 1b).

In parallel, we performed temporal transcriptomic analysis of biopsied wounds during wound

healing and compared them to unwounded skin (Figure 3a). Although myeloid cells represent only a

small fraction of the total cells analyzed in the wound biopsy, 5590 genes exhibited concordant

changes in expression with those observed following stimulation of macrophages with tissue homog-

enate (Figure 3b). Gene ontology analysis of this set of genes indicated significant enrichment for

biological process terms related to the response to wounding, immune response, and cell adhesion

(Figure 3c). Response to wounding was the most highly enriched gene ontology term associated

with genes de-repressed greater than two-fold in Rev-erb DKO tissue homogenate treated macro-

phages (282) followed by immune response and taxis (Figure 3d). De-repressed genes in Rev-erb

DKO macrophages with gene ontology annotations linked to response to wounding and immune

response are indicated in Figure 3e. These results indicate that tissue homogenate induces a Rev-

erb-sensitive program of macrophage gene expression that substantially overlaps with the pattern

of gene expression observed in response to wounding in vivo.

Genes characteristic of alternate polarization states are co-expressed
within individual cells
The approaches used thus far evaluated populations of cells. Genes associated with distinct polariza-

tion states resulting from activation with single ligands but exhibiting co-expression following treat-

ment with tissue homogenate could reflect co-expression at the single cell level or mutually

exclusive expression in subpopulations. To address this question, we performed RT-Q-PCR analysis

of mRNA isolated from single cells maintained under control conditions or treated with tissue

homogenate for 6 hr. We evaluated panels of mRNAs in triplicates corresponding to genes selec-

tively activated by LPS or LPS+IFNg, IL4, TGFb, or tissue homogenate signals, as well as informative

transcription factors and reference genes. After filtering for dead/duplicate cells and eliminating

probes with altered melting curves, data was obtained for 30 genes in 80 control cells and 70

homogenate-treated cells. The distributions of expression values of genes in individual cells under

Figure 3 continued

vitro stimulation with tissue homogenate. Mouse wound genes from Days 1, 4, 8, or 14 post-injury and macrophage tissue homogenate genes at 6 or

24 hr post-stimulation were compared to uninjured in vivo skin or unstimulated controls, respectively. Differentially expressed genes were those

induced or repressed more than 1.5-fold compared to baseline. Genes were clustered using k-means clustering (k = 10). For unstimulated macrophages

for 6 or 24 hr, N = 2, wound samples from Day 1, 8, or 14, N = 2, macrophages stimulated with tissue homogenate for 6 or 24 hr, N = 3, and wound

samples from Day 0, or 4, N = 4. (c) Summary of gene ontology analysis using DAVID (Huang et al., 2009a, 2009b) of overlapping wound healing and

homogenate genes shown in b (N = 5590). Figure 3—source data 1. (d) Summary of gene ontology analysis using DAVID (Huang et al., 2009a,

2009b) of genes de-repressed more than two-fold in Rev-erb DKO macrophages treated with tissue homogenate in comparison to WT macrophages

(maximum de-repression after tissue homogenate treatment for 6 or 24 hr, N = 282). (e) Bar graphs depicting representative genes de-repressed more

than two-fold (in log2 scale) in Rev-erb DKO macrophages after tissue injury (maximum de-repression after tissue homogenate treatment for 6 or 24 hr).

Genes correspond to those associated with response to wounding and immune response categories in panel d. N as described in 3b.

DOI: 10.7554/eLife.13024.007

The following source data is available for figure 3:

Source data 1. Source data for Figure 3b where each value represents the average normalized log2 fold change between the basal state and treat-

ment state per column.

DOI: 10.7554/eLife.13024.008
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Figure 4. Genes characteristic of alternate polarization states are co-expressed within individual cells. (a) Violin plots of expression values for genes in

the indicated categories as determined by single cell RT-Q-PCR from bone marrow derived macrophages treated for 6 hr with vehicle or tissue

Figure 4 continued on next page
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control or tissue homogenate treatment conditions are illustrated in Figure 4a. Cells treated with tis-

sue homogenate were clustered in a binary fashion, according to whether the gene was expressed

or not expressed. Notably, evaluating individual genes by column, a subset from each category of

polarization states is expressed in the majority of cells (e.g., Cxcl1, Dusp4, Cx3cr1, Pf4) (Figure 4b).

Conversely, evaluating the total set of genes across individual cells, genes from each polarization

state can be expressed at similar levels in the same cell (Figure 4c). Of interest, clustering revealed

two main groups that were distinguished by lack of detectable expression of Fos and Rela. Cells

lacking Fos and Rela expression also exhibit reduced expression of subsets of genes in the M(LPS) or

M(LPS+IFNg ), tissue homogenate, and transcription factor categories. Collectively, these findings

indicate that while there is substantial heterogeneity in gene expression at the single cell level,

genes characteristic of M(LPS) or M(LPS+IFNg), M(TGFb), and M(IL4) polarization states can be co-

expressed in individual cells.

Complex signals re-allocate transcription factors to novel genomic loci
To investigate mechanisms underlying effects of tissue homogenate on gene expression, we per-

formed chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) for his-

tone 3 lysine 27 acetylation (H3K27ac), a histone modification associated with active enhancers and

promoters (Creyghton et al., 2010), after 3 or 6 hr of control or tissue homogenate stimulation.

Treatment with tissue homogenate induced H3K27ac at ~2500 regions after 3 hr and ~5000 regions

after 6 hr (Figure 5a). De novo motif analysis revealed binding sites for Nrf2, AP-1, and NF-kB motifs

as among the most highly enriched sequences in these regions (Figure 5b).

Based on these motif findings, we initially performed ChIP-Seq analysis for p65 and Fos in macro-

phages treated with control or tissue homogenate. In addition, because SMAD motifs are difficult to

retrieve using de novo motif analysis and tissue homogenate stimulation resembled treatment with

TGFb (Figure 1b), we performed corresponding ChIP-Seq analysis of Smad3. In each case, we

observed that tissue homogenate induced a pattern of genomic binding sites that substantially dif-

fered from the pattern resulting from stimulation with the single ligands, KLA (p65 and Fos) or TGFb

(Smad3) (Figure 5c). These binding sites were also highly associated with tissue homogenate-induced

gain of H3K27ac, consistent with their contribution to these changes in active chromatin (Figure 5d).

Examples of the binding patterns of Fos, p65, Smad3, and PU.1 in the vicinity of highly regulated

genes are illustrated in Figure 6a, with responses of corresponding mRNAs to KLA, TGFb, and tissue

homogenate in WT and Rev-erb DKO macrophages shown in Figure 6b. Each genomic location con-

tains numerous binding sites for each factor. PU.1 and Fos exhibit a high degree of constitutive bind-

ing, consistent with roles as pioneering factors that collaborate with each other and other

macrophage lineage-determining factors, but also show quantitative changes in response to KLA

and tissue homogenate. Smad3 and p65 both exhibit strong signal-dependent increases in ChIP-Seq

signal at the majority of their binding sites. We note here that the starting conditions for KLA induc-

tion and tissue homogenate treatment differ, resulting in more constitutive binding of p65 in the

vehicle control for tissue homogenate experiments.

Overall, there is a strong co-occurrence of p65 and Smad3 with pre-existing binding of Fos and

PU.1, consistent with roles of these factors in establishing open regions of chromatin. Despite

exhaustive efforts, we were not successful in determining high-confidence cistromes for endogenous

Rev-erbs in BMDMs. We therefore considered the genomic locations of 7889 high-confidence bind-

ing sites occupied by both Rev-erba and Rev-erbb defined by ChIP-Seq of biotin-tagged proteins in

RAW264.7 macrophages (Lam et al., 2013). For the de-repressed genes in the Rev-erb DKO, such

as Cx3cr1, Mmp9, Arg1, and Socs3 (Figure 6a), strong Rev-erb peaks coincide with at least one

Figure 4 continued

homogenate. Y-axis shows RT-Q-PCR CTs. Higher values indicate lower expression (30: gene product could not be detected). Values are averaged over

3 PCR replicates per gene. (b) Hierarchical clustering with Euclidean distance of single bone marrow derived macrophages treated with tissue

homogenate based on expression (red) or lack of expression (blue) of the genes indicated at the top. Genes with alternating melting curves were

treated as undefined (grey). PCR replicates are shown sequentially (N = 3). (c) RT-Q-PCR expression values for genes indicated above for four

representative cells. Y-axis normalized to (30/CT) – 1. Higher values indicate higher expression (0: gene product could not be detected). Values are

averaged over 3 PCR replicates per gene.

DOI: 10.7554/eLife.13024.009
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Figure 5. Complex transcriptional signals re-allocate transcription factors to novel genomic loci. (a) H3K27ac regions differentially gained upon

treatment for 3 or 6 hr with tissue homogenate compared to treatment for 3 or 6 hr with the vehicle control. The heatmap shows a 6 kb window of
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nearby enhancer-like region occupied by PU.1 and/or Fos, as well as p65 and/or Smad3 (e.g.,

Figure 6a). Furthermore, the majority of Rev-erb binding sites identified in RAW264.7 macrophages

co-localize with binding sites for their obligate co-repressor NCoR in BMDMs, strongly suggesting

that Rev-erbs occupy a similar cistrome in these cells (Figure 6a).

Two observations were unexpected and noteworthy. First, a subset of enhancer-like regions occu-

pied by Smad3 in cells treated with TGFb were occupied by p65 in cells treated with KLA. Under

conditions of stimulation with either KLA or TGFb alone, the expectation is that these regions would

be occupied by one factor, but not the other. However, in the context of tissue homogenate treat-

ment, both factors are simultaneously bound (Figure 6a, yellow boxes). Second, and consistent with

the results presented in Figure 5c, tissue homogenate treatment leads to binding sites for p65 and

Smad3 that are not observed following treatment with KLA or TGFb, respectively (Figure 6a, blue

boxes). Furthermore, many of the new binding sites for p65 co-localize with Smad3 and vice versa.

Consistent with these findings at individual genomic locations, motif analysis of tissue homogenate-

specific SMAD binding sites (from Figure 5c) using TGFb-specific SMAD sites as the background

returned an NF-kB recognition motif as the second most highly enriched motif (Figure 7a).

To investigate whether co-localization of p65 and Smad3 in tissue homogenate-treated cells was

a specific consequence of the complex signal, we performed ChIP-Seq analysis of p65 in macro-

phages selectively treated with TGFb. We observed ~7400 p65 peaks, 5465 of which overlapped

with the 39,825 peaks for Smad3 observed in TGFb-treated cells, representing an overlap with 6% of

the Smad3 peaks (Figure 7b). In contrast, we observed 20,858 p65 peaks and 13,975 Smad3 peaks

in homogenate-treated cells, with p65 co-localizing with 11,379 (82%) of the Smad3 binding sites.

Therefore, the complex tissue homogenate signal drives substantial co-localization of p65 with

Smad3 that is not observed following selective treatment with TGFb. These relationships are further

illustrated for two representative genes, Arg1 and Cxcl2, in Figure 7c, in which yellow shading indi-

cates regions where tissue homogenate induced p65 binding to regions occupied by Smad3 under

either TGFb or tissue homogenate treatment, whereas blue shading indicates regions in which both

p65 and Smad3 binding are selectively observed following treatment with tissue homogenate.

Nrf2 target genes and Nrf2 genomic binding are induced by tissue
damage signals
Unexpectedly, the top enriched motif in tissue homogenate-specific SMAD sites is a binding site for

NFE2L2, also known as Nrf2 (Figure 7a). This was also the top motif recovered from motif analysis

of genomic regions exhibiting a gain in H3K27ac 3 hr following stimulation with tissue homogenate

(Figure 5b). Nrf2 is a latent basic leucine zipper (bZIP) protein that is activated in response to cell

injury and inflammation, and regulates the expression of antioxidant proteins that protect against

oxidative damage (Chen et al., 2015). Evaluation of RNA-seq data from both the in vivo wound

model and tissue homogenate-treated macrophages revealed up regulation of numerous Nrf2 target

genes, including Txn1, Sod2, Hmox1, Prdx6, and Nqo1, suggesting that Nrf2 is activated in macro-

phages as part of the wound response (Figure 7d). We therefore performed ChIP-Seq analysis for

Nrf2 in macrophages before and after tissue homogenate treatment. These experiments demon-

strated that tissue homogenate increased the genome-wide binding of Nrf2 at thousands of geno-

mic locations, a substantial fraction of which were observed to overlap with the tissue homogenate-

induced binding sites for p65, Fos, and Smad3 (e.g., Figure 6a).

Figure 5 continued

normalized H3K27ac tag counts of the 2510 or 5005 homogenate gained regions at 3 or 6 hr, respectively, centered on the nucleosome free region

(nfr). Input shows genomic background at these regions. N = 1. (b) Motifs enriched in the vicinity of gained H3K27ac sites after treatment with tissue

homogenate for 3 or 6 hr using de novo motif enrichment analysis. (c) Comparison of Fos, p65, or Smad3 tag counts at genomic regions that contain

Fos, p65, or Smad3 binding after stimulation with KLA, TGFb, or tissue homogenate. Peaks found to be differentially gained (four-fold more tags) with

KLA or TGFb are colored red, while peaks found to be differentially gained (four-fold more tags) upon tissue homogenate treatment are colored blue.

N = 1. (d) Quantification of H3K27ac, Fos, p65, and Smad3 ChIP-Seq tag counts in the 6 hr vehicle or tissue homogenate treated states centered on

homogenate gained (using HOMER) Fos, p65, or Smad3 binding events. Dashed lines represent ChIP-Seq signal of the vehicle state and solid lines

represent the signal after 6 hr of tissue homogenate stimulation. Blue represents H3K27ac signal, orange represents signal of the respective

transcription factor. N = 1.
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Tissue damage signals drive co-localization of PU.1, p65, Fos, Smad3,
and Nrf2
To further explore the signal-dependent binding patterns of p65, Fos, Smad3, and Nrf2, we per-

formed unbiased hierarchical clustering using peaks gained after stimulation with tissue homogenate

or single stimuli. This analysis revealed that genomic occupancy of PU.1, Smad3, Nrf2, Fos, and p65

was most similar upon treatment of macrophages with the tissue homogenate signal, whereas pat-

terns of transcription factor binding were more varied upon treatment of macrophages with individ-

ual stimuli (Figure 7e). This co-binding of transcription factors is further emphasized when

comparing the overlap of the investigated transcription factors upon treatment of cells with tissue

homogenate or the vehicle control (Figure 7f and g). This approach demonstrated co-localization of

only 1.4% (893) of peaks in the vehicle state, which increased to 12.05% (7758) overlap when cells
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were treated with tissue homogenate. This eight-fold increase in co-localization suggests that the

combination of signals present in tissue homogenate induce co-binding of multiple transcription fac-

tors to enhancers that mediate the tissue injury response.

NFkB, Smad, Nrf2, and Rev-erb signaling pathways contribute to the
integrated tissue damage response
Tissue homogenate contains a combination of DAMPs, MAMPs and other factors that have the

potential to activate numerous signaling pathways. While ChIP-Seq experiments documented that

tissue homogenate induces genomic binding of p65, Smad3, and Nrf2, these studies do not estab-

lish functional roles of these factors in the integrated transcriptional response. To address this ques-

tion, we evaluated effects of chemical inhibitors of NF-kB, Smad3, and Nrf2 on gene expression in

tissue homogenate-treated macrophages, using the IKK inhibitor VII to inhibit NF-kB activity, SB-

43154 to inhibit TGFb signaling, and glutathione to block the activation of Nrf2 (Figure 8a–c). These

studies support the idea that each factor contributes to the integrated response to tissue homoge-

nate. For example, activation of Cx3cr1 by tissue homogenate was decreased upon targeting the

NF-kB, TGFb receptor, and Nrf2 pathways, supporting the involvement of all of these pathways in

the regulation of this gene. Conversely, tissue homogenate activation of other genes was more

dependent on specific signal-dependent pathways. For instance, Dusp5 activation was sensitive to

NF-kB inhibition (Figure 8a) while Nptx1 activation was unaffected by NF-kB inhibition (Figure 8a).

Surprisingly, Socs3 activation was sensitive to both inhibition of NF-kB and TGFb receptor signaling

(Figure 8a and b) and Ctla2b was selectively sensitive to inhibition of TGFb receptor signaling

(Figure 8b). Established Nrf2 target genes Txn1 and Hmox1, which were also induced by tissue

homogenate, were repressed by glutathione co-treatment (Figure 8c). Finally, we investigated the

ability of the Rev-erb agonist SR-9009 to influence the responses to tissue homogenate. This agonist

repressed a subset of genes in tissue homogenate-treated macrophages, exemplified by Cx3cr1,

Gpr84, and Pgd (Figure 8d). These results are consistent with these genes being de-repressed in

Rev-Erb DKO macrophages.

Discussion
Rev-erbs have been established to play general roles in the regulation of promoters of ubiquitously

expressed genes such as Bmal that control the circadian rhythm (Preitner et al., 2002; Liu et al.,

2008; Cho et al., 2012). However, the great majority of Rev-erb binding sites in macrophages are

located at cell-specific enhancers, which are selected by macrophage lineage-determining factors

such as PU.1 (Lam et al., 2013). These observations predicted that in addition to cell autonomous

regulation of the circadian rhythm, Rev-erbs would also regulate a macrophage-specific program of

gene expression. Here, using loss of function, transcriptomic, and epigenetic analyses, we demon-

strate that Rev-erbs function to repress a network of genes associated with the response to wound-

ing. Consistent with altered transcriptional responses observed in vitro, loss of Rev-erb expression in

cells derived from the bone marrow compartment resulted in accelerated wound healing in the skin.

As the Rev-erbs are deleted from all hematopoietic lineages in these experiments, further studies

will be required to establish the relative contributions of macrophages and other bone marrow-

derived cells to this phenotype. How this function of Rev-erbs might contribute to normal tissue

homeostasis is as yet unclear. In vivo, Rev-erb expression is circadian (Cho et al., 2012), implying

that the effects on macrophage gene expression observed in the present studies are likely to vary

over the course of the day. Rev-erbs may thus act in a circadian manner to regulate aspects of tissue

macrophage gene expression required for the normal turnover of extracellular matrix, tissue remod-

eling, and wound healing.

By evaluating the consequences of Rev-erb deficiency on macrophage gene expression in

response to distinct polarizing signals in vitro, we found that the consequences of loss of function of

Rev-erbs were dependent on the specific polarizing signal. Consistent with this, Rev-erbs co-localize

with NF-kB p65 and AP-1 family member Fos at enhancers activated by TLR ligands, and with

Smad3 at enhancers activated by TGFb. Although of interest from a mechanistic standpoint, these

findings are of uncertain relevance to functions of macrophages within tissue environments, which

contain a multitude of signaling molecules that are sensed simultaneously. To model the complex

environment associated with acute tissue damage, we treated macrophages with a supernatant of a
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skin homogenate. While the specific identities and concentrations of the DAMPs, MAMPs, and other

bioactive molecules in this homogenate are unknown, we provide evidence that the transcriptomic

response of the macrophage to this mixture overlaps significantly with the transcriptional response

observed in a skin wound, thereby validating its use. Through ChIP-Seq experiments, we demon-

strate that this complex signal coordinately induces binding of NF-kB, AP-1, and Smad transcription

factors. Furthermore, de novo motif analysis of activated enhancers led to the unexpected discovery

that the tissue damage signal also acutely activates Nrf2. This finding illustrates the utility of

enhancer analysis to identify transcriptional mediators of unknown environmental factors, providing

a basis for subsequent directed analysis of corresponding upstream signaling pathways. Accordingly,

the use of glutathione to neutralize reactive oxygen species, thus blocking the downstream disrup-

tion of the Kelch-like ECH-associated protein 1 (Keap1)-Cuilin 3 (Cul3) complex required for activa-

tion of Nrf2 (Gorrini et al., 2013; Shibata et al., 2013) provides evidence for its functional

importance in the transcriptional response to the tissue damage signal. Similarly, the use of inhibitors

of NF-kB and TGFb provided corresponding support for functionally important roles of these tran-

scription factors. Of course, there are likely to be many other signaling pathways and downstream

transcription factors involved in the tissue damage response. Furthermore, Rev-erb deficiency likely

modifies both basal and signal dependent transcriptional programs. To distinguish between ’prior’

versus ’post-activation’ roles of Rev-erbs in macrophages during wound healing may require the use

of inducible Cre-expression strategies, as well as measurements of target gene expression in situ in

macrophage infiltrated wounds.

Three additional observations are of particular interest. The first is that the complex signal pro-

vided by tissue homogenate induced co-expression of genes characteristic of distinct macrophage

polarization states within individual cells. Second, we found that the tissue homogenate signal

induced different genomic locations of p65, Fos, and Smad3 than were observed following KLA or

TGFb, respectively, resulting in co-binding at a large number of enhancer-like regions in the vicinity

of tissue homogenate-induced genes. An important implication of these findings is that transcription

factors binding maps are context-dependent and must be interpreted accordingly. We speculate

that the observed co-localization of factors in response to the complex signal enables the appropri-

ate integration of multiple relevant signaling components necessary for the initial acquisition of a

wound repair phenotype (Figure 8e). Third, the present findings may have practical applications

based on the development of small molecules that enhance or inhibit Rev-erb repressive activity

(Solt et al., 2012). Delayed wound healing is observed in a number of pathological contexts, includ-

ing in diabetics (Falanga, 2005; Sen et al., 2009) and in immunocompromised individuals

(Chen et al., 2013; Lin et al., 2011). In these settings, it is possible that Rev-erb antagonists could

be evaluated as a means of enhancing wound repair. Alternatively, a large number of devastating

and largely untreatable diseases are characterized by exaggerated tissue fibrosis, such as idiopathic

pulmonary fibrosis, interstitial renal fibrosis, and liver fibrosis (Schuppan and Kim, 2013). We dem-

onstrate that a Rev-erb agonist can suppress a subset of genes that are de-repressed in the Rev-erb

DKO and are regulated by the complex wound signal. Overall, our findings suggest that Rev-erbs

act to repress a specific combination of genes downstream of multiple signaling pathways that col-

lectively function in an integrated manner to promote the response to wounding (Figure 8e). It will

therefore be of interest to evaluate whether defects in Rev-erb signaling are associated with these

diseases and whether pharmacological modulation of Rev-erb might be of therapeutic benefit.

Figure 7 continued

fold) using de novo motif enrichment analysis. (b) Venn diagrams depicting overlap of Smad3 and p65 after treatment with TGFb (left) or tissue

homogenate (right). Peaks have a minimal normalized tag count of 16. N = 1. (c) UCSC genome browser images depicting the genomic regions

surrounding genes highly induced by tissue homogenate and not by TGFb. Yellow denotes gain of signal-dependent transcription factor peaks (p65 or

Smad3) after tissue homogenate stimulation that is not seen after treatment with one single polarizing signal. Blue denotes gain of signal-dependent

transcription factor peaks (p65 and Smad3) after tissue homogenate stimulation that is not seen after treatment with either single polarizing signal. (d)

Bar graphs depicting canonical Nrf2 genes induced during stimulation with tissue homogenate (green and blue) or during wound healing (purple and

red). N as described in 3b. (e) Heatmap showing the log2 fold change of transcription factor tag counts at all genomic regions (minimum of 64

normalized tag counts in at least one condition per row) that are differentially gained (four-fold more tags) after stimulation as indicated. N = 1. (f)

Chow-Ruskey Venn diagrams depicting the overlap of all p65, PU.1, Fos, Smad3, and Nrf2 peaks after treatment with vehicle. Peaks have a minimal

normalized tag count of 16. N = 1. (f) Same as (g) but depicting the overlap of all peaks gained after treatment with tissue homogenate. N = 1.
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Figure 8. Chemical inhibition of multiple signal-dependent pathways results in decreased response to complex tissue homogenate. (a) Box and whisker

plots of expression values for genes as determined by RT-Q-PCR from bone marrow derived macrophages treated with tissue homogenate for 6 hr,

Figure 8 continued on next page
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Materials and methods

Cell culture
Mouse bone marrow derived macrophages were obtained and cultured as previously described

(Heinz et al., 2010). For cytokine stimulation studies, macrophages were cultured in RPMI-1640

(Invitrogen, Waltham, MA) supplemented with 16.7 ng/ml CSF1 (Shenandoah

Biotechnology, Warwick, PA) and 0.5% heat-inactivated fetal bovine serum (FBS)

(Hyclone, Logan, UT) overnight and then stimulated with Pam3CSK4 (300 ng/ml, InvivoGen, San

Diego, CA), polyinosinic-polycytidylic acid (50 ng/ml, GE Healthcare Bioscience, Pittsburgh, PA),

KDO2-Lipid A (100 ng/ml, Avanti Polar Lipids, Alabaster, AL), recombinant interferon g (10 U/ml,

R&D Systems, Minneapolis, MN), interleukin 4 (20 ng/ml, R&D Systems), or tumor growth factor b (1

ng/ml, Cell Signaling, Danvers, MA) for the indicated time points. For ChIP-Seq experiments, cells

treated with TGFb or KLA were compared to untreated cells as a control.

For whole-skin tissue homogenate studies, skin from shaved wild type congenic mice was har-

vested and homogenized in RPMI-1640 supplemented with 0.5% heat-inactivated FBS using a Pre-

cellys 24 tissue homogenizer (6500 RPM, 4 � 20 s) and metal beads (2.8 mm beads, 2 mL tubes,

Cayman Chemical, Ann Arbor, MI) according to the manufacturer’s instructions. Skin homogenate

was then centrifuged at 4000 RPM for 30 min at 4˚C, and the supernatant filtered through a 0.2 mm

filter (Nalgene, ThermoScientific, Rochester, NY). Approximately 50 ml of tissue homogenate was

collected per mouse. To stimulate macrophages, macrophages were cultured in RPMI-1640 (Invitro-

gen) supplemented with 16.7 ng/ml CSF1 and 0.5% heat-inactivated FBS overnight. The following

morning, the media was switched to either tissue homogenate or vehicle. 16.7 ng/ml CSF1 was

added exogenously to both the homogenate and vehicle treatment conditions. For RNA-Seq repli-

cates using BMDMs (where applicable), bone marrow of several mice were pooled and then cultured

in different wells and processed independently.

For inhibitor experiments, macrophages were generated and cultured as described above, then

pre-treated with 1 mM IKK inhibitor VII (Calbiochem, Billerica, MA), 12.5 mM TGFb RI kinase inhibitor

SB-43154 (Calbiochem), or 5 mM Rev-erb agonist SR-9009 (Burris laboratory) (Lewis et al., 2013) for

1 hr before treatment with tissue homogenate. For anti-oxidant experiments, macrophages were co-

treated with tissue homogenate and 15 mM glutathione (Sigma, St. Louis, MO).

Rev-erb DKO mice and genotyping
Rev-erba and Rev-erbb double floxed mice were generated as previously described (Cho et al.,

2012) and crossed with Tie2-Cre (Lam et al., 2013). Breeding and genotyping were performed as

previously described (Lam et al., 2013). Only males were used for wound healing experiments while

both males and females were used for flow cytometry experiments to enumerate monocyte popula-

tions from peripheral blood. Littermates without the Tie2-Cre transgene were used as WT controls.

All animal procedures were performed in accordance with the University of California, San Diego

research guidelines for the care and use of laboratory animals (Permit Number: S01015).

RNA isolation and RT-Q-PCR
Total RNA was harvested from tissue and cells using the RNeasy Mini Kit (Qiagen, Hilden, Germany)

with in column DNase digestion performed according to the manufacturer’s instructions. DNase-

Figure 8 continued

and pre-treated for 1 hr with vehicle (gray) or 1 mM IKK inhibitor VII (pink). Y-axis shows RT-Q-PCR -(Delta CT), which is normalized to the housekeeping

gene 36B4. Lower values indicate lower expression. N = 8 mice. p-values are shown comparing vehicle versus inhibitor treatment as determined by

unpaired t-test. (b) Same as (a) but with pre-treatment for 1 hr with vehicle (gray) or 12.5 mM TGFb inhibitor SB-43154 (green). N = 8 mice. (c) Same as

(a) but samples were co-treated with tissue homogenate and vehicle (gray) or tissue homogenate and 15 mM glutathione (orange) for 6 hr. N = 6 mice.

(d) Same as (a) but with pre-treatment for 1 hr with vehicle (gray) or 15 mM Rev-erb agonist SR-9009 (blue). N = 6 mice. (e) Working model showing that

signal-specific stimuli (KLA/TGFb/oxidative stress) activate their respective signal-dependent transcription factors, NF-kB, Smads, and Nrf2, which bind

to distinct sets of enhancers and promoters. Tissue damage signal activates all three factors simultaneously, which can co-occupy enhancers and

promoters to generate a transcriptional response that is different than the sum of TGFb, KLA, and oxidative stress mediated signaling. A subset of

these sites that are co-bound and repressed by Rev-erbs are involved in regulating the macrophage response to wounding.
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treated RNA was used for cDNA synthesis using Superscript III (Invitrogen) according to the manufac-

turer’s instructions.

For the IKK inhibitor VII and TGFb inhibitor experiments, cDNA from biological replicates (N = 8)

were assessed by quantitative polymerase chain reaction using SYBR GreenER Master Mix (Invitro-

gen) or SYBR Fast qPCR Master Mix (Kapa Biosystems, Wilmington, MA) on an Applied Biosystems

7300 Real-time PCR system or Step One Plus. For the glutathione and Rev-erb agonist experiments,

cDNA from biological replicates (N = 6) were synthesized and assessed in technical triplicates by

quantitative PCR using a Fluidigm Biomark HD (Fluidigm, San Francisco, CA). For statistical analysis,

the delta CT was calculated for each biological replicate using 36b4 as the reference gene. Data

were compared statistically using the t-test command in R.

Single Cell RT-Q-PCR and analysis
BMDMs on petri plates were treated for 6 hr with vehicle or tissue homogenate in the presence of

recombinant CSF-1. Following treatment, cells were removed by scraping and captured on a Fluid-

igm 17–25 micrometer C1 Single-Cell Auto Prep Array IFC or a 10–17 micrometer C1 Single-Cell

Auto Prep Array IFC for homogenate or vehicle treated cells, respectively, according to the manufac-

turer’s instructions. IFC positions having a single viable cell were noted and gene specific priming

and pre-amplification was performed using the Fluidigm C1 instrument and the instrument protocol

number 100–4904 H1. After cDNA synthesis, samples were harvested and stored at �20˚C prior to

detection of cDNA using Fluidigm 96.96 Dynamic arrays using the instrument protocol number 100–

9792 A1. cDNA from individual cells was assessed in triplicate using the primers listed below.

For analysis of the data, melting curves of the triplicates were compared and samples with different

melting curves or melting curves with more than one product were defined as NA. Gene products that

could not be detected by Q-PCR were set to a CT of 30. A majority analysis was applied to the tripli-

cates to calculate the average CT per primer pair per single cell (for violin plots [Font-Vizcarra et al.,

2012]). Data was converted into binary data for gene expression heatmap, using 1 for expressed, 0 for

not expressed (CT equals 30) and NA for undetermined. For cases where one sample of the triplicates

had value 1, one had value 0 and one had value NA, NA was used as consensus. The heatmap for sin-

gle cell analysis was created using hierarchical clustering with Euclidian distance in R.

RT-Q-PCR Primers

Gene target Primer sequence

Arg1-Forward TTTTAGGGTTACGGCCGGTG

Arg1-Reverse CCTCGAGGCTGTCCTTTTGA

Cd14-Forward CAGAGAACACCACCGCTGTA

Cd14-Reverse CACGCTCCATGGTCGGTAGA

Cd86-Forward CAGCACGGACTTGAACAACC

Cd86-Reverse CTCCACGGAAACAGCATCTGA

Ctla2b-Forward CTCATGCACCACTAGCCTCC

Ctla2b-Reverse AGCAGGAAGACAGCACTGAA

Cx3cr1-Forward CCATCTGCTCAGGACCTCAC

Cx3cr1-Reverse CACCAGACCGAACGTGAAGA

Cxcl1-Forward ACCCAAACCGAAGTCATAGCC

Cxcl1-Reverse TTGTCAGAAGCCAGCGTTCA

Cxcl2-Forward TGAACAAAGGCAAGGCTAACTG

Cxcl2-Reverse CAGGTACGATCCAGGCTTCC

Cxcl3-Forward ACCCAGACAGAAGTCATAGCCA

Cxcl3-Reverse CTTCATCATGGTGAGGGGCT

Dusp4-Forward CATCGAGTACATCGACGCAG

Dusp4-Reverse ATGAAGCTGAAGTTGGGCGA
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Dusp5-Forward GCACCACCCACCTACACTAC

Dusp5-Reverse CCTTCTTCCCTGACACAGTCAAT

Fos-Forward TTTCAACGCCGACTACGAGG

Fos-Reverse TCTGCGCAAAAGTCCTGTGT

Gpc1-Forward GCCATGGAACTCCGGACC

Gpc1-Reverse GCAGGTGCTCACCCGAGAT

Gpr84-Forward AAACTGGGAACCTCAGTCTCCA

Gpr84-Reverse GCCCAACACAGACTCATGGTA

Hmox1-Forward GAGCAGAACCAGCCTGAACT

Hmox1-Reverse AAATCCTGGGGCATGCTGTC

Hprt-Forward GTTGGGCTTACCTCACTGCT

Hprt-Reverse TCATCGCTAATCACGACGCT

Igsf11-Forward GTGTCGCTGCTCGGTGT

Igsf11-Reverse AGAATGACCTGTTCGGGCTG

Il10-Forward GGTTGCCAAGCCTTATCGGA

Il10-Reverse GGGGAGAAATCGATGACAGC

Il1b-Forward TGCCACCTTTTGACAGTGATG

Il1b-Reverse TGATGTGCTGCTGCGAGATT

Il1r1-Forward GCTGACTTGAGGAGGCAGTT

Il1r1-Reverse CATACGTCAATCTCCAGCGAC

Nptx1-Forward TGGAGAACCTCGAGCAGTACA

Nptx1-Reverse GTCAAGGCGCTCTCGATCTT

Pf4-Forward CCCGAAGAAAGCGATGGAGAT

Pf4-Reverse TTCAGGGTGGCTATGAGCTGG

Pgd-Forward CTCCTCGACTCTGCTTCGTC

Pgd-Reverse GCACAGACCACAAATCCATGA

Polr3c-Forward TCTAAGAAGGGGCGATGGGA

Polr3c-Reverse AGCCTCAGAACTCAGGGTCG

Ptgs2-Forward AGCCAGGCAGCAAATCCTT

Ptgs2-Reverse GGGTGGGCTTCAGCAGTAAT

Rela-Forward CGGATTCCGGGCAGTGAC

Rela-Reverse GAGGGGAAACAGATCGTCCA

Smad3-Forward AAGAAGCTCAAGAAGACGGGG

Smad3-Reverse CAGTGACCTGGGGATGGTAAT

Socs3-Forward TAGACTTCACGGCTGCCAAC

Socs3-Reverse CGGGGAGCTAGTCCCGAA

Spi1-Forward AAGCAGGGGATCTGACCAAC

Spi1-Reverse AGTCATCCGATGGAGGGGC

Thbs1-Forward GACAATTTTCAGGGGGTGCT

Thbs1-Reverse AGAAGGACGTTGGTAGCTGAG

Tnf-Forward GATCGGTCCCCAAAGGGATG

Tnf-Reverse GTGGTTTGTGAGTGTGAGGGT

Tnfrsf12a-Forward CAATCATGGCTTCGGCTTGG

Tnfrsf12a-Reverse CTGCGGCGCCTGGTG

Traf3ip2-Forward CCTGCTCCACCACTTACCTG

Traf3ip2-Reverse TCTAGTTTCTAAGATCGCCACCG

Txn1-Forward AGCCCTTCTTCCATTCCCTC
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Txn1-Reverse GGAAGGTCGGCATGCATTTG

Ube2d2a-Forward AGCTGAGTGGGGCCTCG

Ube2d2a-Reverse TCAATTCCTTGTGGATTCTCTTCA

RNA-Seq
Detailed protocols for RNA-Seq experiments have been previously described (Kaikkonen et al.,

2013; Heinz et al., 2013). Briefly, total RNA was isolated using TRIzol LS (ThermoFisher Scientific)

and resuspended with UltraPure water (ThermoFisher Scientific) supplemented with 1 m/mL SUPER-

ase-In (Ambion) then treated with TURBO DNA-free kit (Ambion). Poly(A) selection was performed

using the MicroPoly(A)Purist kit (Invitrogen) according to the manufacturer’s instructions. Poly(A)

RNA was fragmented using RNA Fragmentation Reagents (Ambion) for 10 min at 70˚C and purified

by running through a Micro Bio-Spin P-30 column (Bio-Rad, Irvine, CA) according to the manufac-

turer’s instructions. 30 ng RNA was utilized for subsequent library preparation.

For the following RNA samples: two replicates of the four day 0 in vivo wound samples, day 1

wound samples, day 4 wound samples, and day 14 wound samples, RNA library preparation was

performed as previously described (Kaikkonen et al., 2013). Fragmented RNA was de-phosphory-

lated using 1 mL T4 polynucleotide kinase (New England Biolabs, Ipswich, MA) and 5 mL 5x PNK

buffer (0.5 M MES, 50 mM MgCl2, 50 mM mercaptoethanol, 1.5 M NaCl, pH 5.5–5.8) supplemented

with 1 m/mL SUPERase-In for 45 min at 37˚C, an additional 1 mL T4 polynucleotide kinase was added

to the reaction, followed by incubated for 45 min, and subsequent heat-inactivation for 5 min at

70˚C and ethanol precipitation overnight with glycogen. The pellet was resuspended in 5.5 mL nucle-

ase free water supplemented with 1 m/mL SUPERase-In and denatured for 5 min at 65˚C. Poly(A)-tail-
ing reaction was performed using 3.75 m E. coli poly(A)-polymerase (New England Biolabs) in 10x

poly(A)-polymerase buffer supplemented with ATP (50:1 molar ratio to RNA) and 1 m/mL SUPERase-

In for 30 min at 37˚C. Reverse transcription was performed using Superscript III (Invitrogen). 8 mL

RNA from the previous reaction, 1 mL 10 mM dNTP and 1 mL of the following oligo with custom

barcodes (underlined and bolded): 5’-Phos CA/TG/AC/GT-GATCGTCGGACTGTAGAACTCT/idSp/

CAAGCAGAAGACGGCATACGATTTTTTTTTTTTTTTTTTTTVN-3’ were incubated for 3 min at 75˚C
and then chilled on ice. 1.7 mL 10x RT buffer, 3 mL 25 mM MgCl2, 1.7 mL 0.1 M DTT, 0.5 mL SUPER-

ase-In, and 0.9 mL Superscript III reverse transcriptase was added to the reverse transcription reac-

tion and then incubated for 30 min at 48˚C. After cDNA synthesis, 2 mL exonuclease I (New England

Biolabs) was added to the reaction and incubated for 30 min at 37˚C. The enzyme was inactivated

and RNA hydrolyzed by adding 1 ml of 2 M NaOH and incubating for 20 min at 98˚C. The reaction

was then neutralized with 1 ml 2 M HCl. The cDNA was run on a 10% TBE-Urea gel (Invitrogen) and

the gel was stained using SYBR gold (ThermoFisher Scientific). cDNA sized ~120–350 nucleotides

were cut, gel purified, and precipitated overnight with ethanol and glycogen. Afterwards, cDNA was

circularized by resuspending precipitated DNA in 10 ml circularization mix (7.5 ml of water, 1 ml 10x

Reaction Buffer (Epicentre, Madison, WI), 0.5 ml of 1 mM ATP (final 0.05 mM), 0.5 ml of 50 mM

MnCl2 (final 2.5 mM), 0.5 ml CircLigase (100 m/ml), (Epicentre)). Circularization was performed for 1 hr

at 60˚C, and the reaction was heat-inactivated for 15 min at 85˚C. Circular single-stranded DNA was

re-linearized by adding 3.3 ml of re-linearization mix (4x mix containing 100 mM KCl and 2 mM DTT)

followed by 1 ml of APE 1 (15 m; New England Biolabs). The reaction was incubated for 45 min at

37˚C; an additional 1 ml APE 1 was added and the reaction was incubated for another 45 min. The

enzyme was inactivated by incubating for 20 min at 65˚C. The cDNA was amplified for 10–14 cycles

using 0.1 ml Phusion polymerase (New England Biolabs), 2 ml 5x HF buffer, 0.2 ml 10 mM dNTP, 1 ml

5 M betaine, 4.7 ml water, and 0.5 ml of the following 10 mM primers: 5’-CAA GCA GAA GAC GGC

ATA-3’ and 5’-AAT GAT ACG GCG ACC ACC GAC AGG TTC AGA GTT CTA CAG TCC GACG-3’.

The subsequent product was then gel purified from a 10% TBE gel (Invitrogen) using the ChIP DNA

Clean & Concentrator Kit (Zymo Research Corporation, Irvine, CA).

For the following RNA-Seq samples: one replicate of no treatment 6 hr, one replicate of no treat-

ment 24 hr, three replicates of polyinosinic-polycytidylic acid treatment 6 hr, two replicates of

Pam3CSK4 treatment 6 hr, one replicate of Kdo2-lipid A treatment 6 hr, one replicate of IL4 treat-

ment 24 hr, and one replicate of Kdo2-lipid A and interferon-g treatment 24 hr, strand-specific RNA
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sequencing libraries were prepared from poly(A) mRNA using a method similar to that previously

described (Wang, 2011) with modifications described herein. Briefly, poly(A) enriched mRNA was

fragmented, in 2x Superscript III first-strand buffer with 10 mM DTT (Invitrogen), by incubation at

94˚C for 9 min, then immediately chilled on ice before the next step. The 10 mL of fragmented

mRNA, 0.5 mL of random primer (Invitrogen), 0.5 mL of Oligo dT primer (Invitrogen), 0.5 mL of

SUPERase-In (Ambion), 1 mL of dNTPs (10 mM), and 1 mL of DTT (10 mM) were heated at 50˚C for

three minutes. At the end of incubation, 5.8 mL of water, 1 mL of DTT (100 mM), 0.1 mL Actinomycin

D (2 mg/mL), 0.2 mL of 1% Tween-20 (Sigma), and 0.2 mL of Superscript III (Invitrogen) were added

and incubated in a PCR machine using the following conditions: 25˚C for 10 min, 50˚C for 50 min,

and a 4˚C hold. The product was then purified with RNAClean XP beads according to manufacturer’s

instructions and eluted with 10 mL nuclease-free water. The RNA/cDNA double-stranded hybrid was

then added to 1.5 mL of Blue Buffer (Enzymatics, Beverly, MA), 1.1 mL of dUTP mix (10 mM dATP,

10 mM dCTP, 10 mM dGTP, and 20 mM dUTP), 0.2 mL of RNAse H (5 m/mL), 1.05 mL of water, 1 mL

of DNA polymerase I (Enzymatics), and 0.15 mL of 1% Tween-20. The mixture was incubated at 16˚C
for 1 hr. The resulting dUTP-marked dsDNA was purified using 28 mL of Sera-Mag Speedbeads

(Thermo Fisher Scientific), diluted with 20% PEG8000, 2.5 M NaCl to final of 13% PEG, eluted with

40 mL EB buffer (10 mM Tris-HCl, pH 8.5), and frozen at �80˚C. The purified dsDNA (40 mL) subse-

quently underwent end repair by blunting, poly(A)-tailing, and adapter ligation as described below.

All other RNA-Seq samples were prepared as described (Heinz et al., 2013). After RNA fragmen-

tation and re-buffering with the Micro Bio-Spin P-30 column (Bio-Rad) according to the manufac-

turer’s instructions, samples were resuspended with 16.5 ml of water. For de-capping using tobacco

acid pyrophosphatase (TAP) (Epicentre), the following was added to the reaction: 2 ml 10x TAP

buffer, 1 ml (20 m) SUPERase-In (Ambion), 0.5 ml TAP; the reaction was then incubated for 2 hr at

37˚C. Samples were then 3’ de-phosphorylated using T4 polynucleotide kinase (New England Biol-

abs); 0.5 ml 10x TAP buffer, 1.5 ml water, 0.5 ml 0.25 M MgCl2, 0.5 ml 10 mM ATP, and 1 mL PNK was

added to the reaction and incubated for 50 min at 37˚C. After de-phosphorylation, samples were

subsequently 5’ phosphorylated using T4 polynucleotide kinase in order to facilitate subsequent

adapter ligation processes; 10 mL 10x T4 DNA ligase buffer, 63 mL water, and 2 mL PNK was added

to the reaction and incubated for 60 min at 37˚C. TRIzol LS was used to quench the reaction and

extract phosphorylated RNA. RNA was resuspended in 4.5 mL water. For indexed library preparation,

the 3’ adapter (0.5 mL 9 mM of a 5’-adenylated sRNA 3’ MPX adapter /5Phos/AG ATC GGA AGA

GCA CAC GTC TGA /3AmMO/ (Integrated DNA Technologies, San Jose, CA)) was heat-denatured

together with the RNA for 2 min at 70˚C, placed on ice, and ligated with 100 m truncated T4 RNA

ligase 2 (K227Q, New England Biolabs) in 10 ml 1x T4 RNA ligase buffer without ATP, containing 20

m/mL SUPERase-In and 15% PEG8000 for 2 hr at 16˚C. Afterwards, 0.5 mL 10 mM MPX_RT primer 5’-

GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3’ (Integrated DNA Technologies,

desalted) was added and annealed to the ligation product by incubating at 75˚C for 2 min, then

37˚C for 30 min, then 25˚C for 15 min. To ligate the 5’ adapter, 0.5 ml 5 mM hybrid DNA/RNA sRNA

5’h adapter 5’-GTT CAG AGT TCT ACA rGrUrC rCrGrA rCrGrA rUrC-3’ (Integrated DNA Technolo-

gies) was ligated to the 5’ end by adding 2 ml T4 RNA ligase buffer, 6 ml 50% PEG8000, 1 ml 10 mM

ATP, 9.5 mL water, and 0.5 ml T4 RNA ligase 1 (New England Biolabs) for 90 min at 20˚C. The reac-

tion was then split in half (15 ml each) and 0.5 mL 10 mM MPX_RT primer was added to one 15 mL

reaction. The reactions were incubated at 70˚C for 1 min, then placed on ice. Reverse transcription

was performed by adding 3 mL 10x RT buffer, 4.5 mL water, 1.5 mL 10 mM dNTP, 3 mL 0.1 M DTT,

1.5 mL RNaseOUT, and 1 mL Superscript III reverse transcriptase, then incubating for 30 min at 50˚C.
The cDNA was amplified for 10–14 cycles using 0.5 mL Phusion polymerase, 10 mL 5x HF buffer, 1 mL

10 mM dNTP, 5 mL 5 M betaine, and 0.25 mL of the following 100 mM primers: 5’-AAT GAT ACG

GCG ACC ACC GAC AGG TTC AGA GTT CTA CAG TCC GAC G-3’ and TruSeq-compatible

indexed primers (e.g. 5’-CAA GCA GAA GAC GGC ATA CGA GAT iii iii GTG ACT GGA GTT CAG

ACG TGT GCT CTT-3’ (desalted, Integrated DNA Technologies, i signifies index nucleotides)). The

subsequent product was then size selected for 175–225 base pair product and gel purified from a

10% TBE gel (Invitrogen) using the ChIP DNA Clean & Concentrator Kit. Libraries were PCR-ampli-

fied for 9–14 cycles, size selected by gel extraction, and quantified using the Qubit dsDNA HS Assay

Kit (Thermo Fisher Scientific).
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ChIP-Seq
Previously published Rev-erba and Rev-erbb ChIP-Seq, and NCoR ChIP-Seq experiments, deposited

as GSE45914 (Lam et al., 2013) and GSE27060 (Barish et al., 2012), respectively, were utilized for

analyses. Detailed protocols for ChIP-Seq experiments have been previously described

(Kaikkonen et al., 2013; Heinz et al., 2010, Heinz et al., 2013; Li et al., 2013). Antibodies against

Fos (sc-7202), Nrf2 (sc-13032x), p65 (sc-372), and PU.1 (sc-352x) were purchased from Santa Cruz

Biotechnology (Dallas, TX), against Smad3 (ab28379) from Abcam (Cambridge, UK), and against

H3K27ac (39135) from Active Motif (Carlsbad, CA). Briefly, for Fos, Nrf2, p65, and Smad3 ChIPs,

macrophages were first cross-linked in 2 mM dissuccinimidyl glutarate (Pierce

20593, Thermo Fischer) in PBS for 30 min, followed by subsequent 1% formaldehyde (Sigma) cross-

linking in PBS for 10 min at room temperature. For H3K27ac and PU.1 ChIPs, cells were cross-linked

using 1% formaldehyde in PBS for 10 min at room temperature. After cross-linking, glycine (Sigma)

was added to a final concentration of 0.2625 M to quench the reaction. Subsequently, cross-linked

macrophages were centrifuged (5 min, 1,200 RPM, 4˚C), washed twice with PBS, and pellets were

snap frozen and stored at �80˚C. For ChIP of H3K27Ac, p65, PU.1, Nrf2 or Smad3, frozen cell pel-

lets were resuspended in cell lysis buffer (10 mM HEPES/KOH pH 7.9, 85 mM KCl, 1 mM EDTA,

1.0% IGEPAL CA-630 (Sigma), 1x protease inhibitor cocktail (Roche, Basel, Switzerland), 1 mM

PMSF). After 5 min lysis on ice, cells were centrifuged (5 min, 4000 RPM, 4˚C), and the supernatant

was removed. The pellet was then resuspended in nuclear lysis buffer (10 mM Tris-HCl, pH 8.0,

100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate, 0.5% N-lauroylsarcosine, 1x pro-

tease inhibitor cocktail, and 1 mM PMSF) and the chromatin was sheared by sonication on wet ice

with a Bioruptor Standard Sonicator (Diagenode, Denville, NJ) for three 15 min cycles each alternat-

ing 30 s on and 30 s off on the high setting. Additional Triton X-100 was added to the sonicated

chromatin to 10% of the final volume and the lysate was cleared by centrifugation (5 min,

14,000 RPM, 4˚C). Input was then saved for subsequent analysis.

For Fos ChIP, pellets were suspended in 50 mM Tris pH 8.0, 60 mM KCl, 0.5% IGEPAL, 1x prote-

ase inhibitor cocktail, and 1 mM PMSF, followed by 10 min of incubation on ice and centrifugation

at 2000 �g for 3 min at 4˚C. The pellet was then suspended in 0.5% SDS, 10 mM EDTA, 0.5 mM

EGTA, 50 mM Tris pH 8.0, 1x protease inhibitor cocktail, and 1 mM PMSF. The chromatin suspen-

sion was sheared by sonication on wet ice with a Bioruptor Standard Sonicator for three 15 min

cycles each alternating 30 s on and 30 s off on the high setting, followed by centrifugation for 10

min at 15,000 RPM at 4˚C. The chromatin was diluted 5x with 1% Triton X-100, 2 mM EDTA,

150 mM NaCl, 20 mM Tris pH 8.0, 1x protease inhibitor cocktail, and 1 mM PMSF. An input sample

was saved for subsequent analysis.

Protein A or G Dynabeads (Invitrogen) pre-bound with antibody was added to the diluted cell

lysate overnight at 4˚C. Immunoprecipitated complexes were washed three times with 20 mM Tris/

HCl pH 7.4150 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA, three times with 10 mM Tris/HCl

pH 7.4250 mM LiCl, 1% Triton X-100, 1% sodium deoxycholate, 1 mM EDTA, and two times with Tris-

EDTA plus 0.1% Tween-20 before eluting two times with 50 mL elution buffer (TE, 1% SDS, 30 and 10

min, room temperature). Elution buffer was also added to the input. After pooling the eluted samples,

the sodium concentration was adjusted to 300 mM and cross-links were reversed overnight at 65˚C.
Samples were treated with 0.5 mg/ml proteinase K for 1 hr at 55˚C and 0.25 mg/ml RNase A for 1 hr at

37˚C before DNA was isolated using the ChIP DNA Clean and Concentrator Kit according to the manu-

facturer’s instructions. For library preparation, NEXTflex DNA barcode adaptors (BioO

Scientific, Austin, TX) were ligated to the genomic DNA. Polymerase chain reaction mediated library

amplification was performed and final libraries were size selected on 10% TBE gels (Invitrogen).

High-throughput sequencing and data processing
RNA-Seq and ChIP-Seq libraries were sequenced for 50 cycles on an Illumina Hi-Seq 2000 (Illumina,

San Diego, CA), sequenced for 51 cycles on an Illumina Hi-Seq 4000, or sequenced for 51 cycles on

an Illumina NextSeq 2500 according to the manufacturer’s instructions. ChIP-Seq reads were

mapped to the mouse NCBI37/mm9 (Ferreyra Garrott et al., 2013) assembly using Bowtie

(Langmead et al., 2009), allowing up to two mismatches. RNA-Seq reads were mapped to the

mouse NCBI37/mm9 (Ferreyra Garrott et al., 2013) assembly using Tophat (Trapnell et al., 2009).

Mapped reads were visualized using the UCSC genome browser (Kent et al., 2002) and
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downstream data processing was performed using HOMER (Heinz et al., 2010), and R (Garcı́a-

Oltra et al., 2013).

Genome-wide gene expression analysis with RNA-Seq
RNA-Seq analysis of genome-wide gene expression was performed using HOMER (Heinz et al.,

2010). Differential expression was defined by a fold-change of at least 1.5-fold averaging over repli-

cated datasets. For heatmap analysis, genes were clustered using k-means clustering (k = 10) in R.

Gene ontology analysis was performed using DAVID Bioinformatics Resources 6.7 (Huang et al.,

2009a, 2009b).

ChIP-Seq analysis
Genomic histone acetylation regions and transcription factor peaks were determined with HOMER

using the findPeaks command default parameters of four-fold enrichment over the input, four-fold

enrichment over local background, and normalization to 10 million mapped reads. For transcription

factors, peaks were called using the ’–style factor’ parameter while histone acetylation regions were

called using the ’–style region’ parameter. Histone regions were centered on nucleosome free

regions using the ’–nfr’ parameter. For comparisons, called peaks from different data sets were

merged using the mergePeaks command. Merging of transcription factor peaks or histone regions

was done using the parameter ’–size given’. To obtain differentially bound peaks/regions, tags were

quantified from two data sets using the getDifferentialPeaks command. Peaks/regions were called

as differentially gained if they had a four-fold enrichment of tag counts over the untreated/vehicle

condition and a cumulative Poisson p-value less than 0.001. For heatmap analysis, peaks were clus-

tered using hierarchical clustering in R.

Bone marrow transplantation
Bone marrow harvested from WT and Rev-erb DKO mice was injected via the retro-orbital route into

lethally irradiated (10 Gy) B6.SJL-Ptprca Pepcb/BoyJ (CD45.1) (Jackson Lab, Sacramento, CA) or

C57BL/6J (Harlem (now Envigo), Indianapolis, IN) 8 week old wild type congenic mice. Approxi-

mately 6–7 million bone marrow cells were injected per mouse. Transplanted mice were housed in

autoclaved cages (changed every two days) and supplemented with antibiotics the day before irradi-

ation until two weeks post-transplantation.

Evaluating bone marrow transplant efficiency
To evaluate bone marrow transplant efficiency, whole blood from WT and Rev-erb DKO bone mar-

row transplanted mice was collected through cardiac puncture into EDTA tubes (Becton Dickinson,

Franklin Lakes, NJ). 100 mL whole blood was washed once with PBS and resuspended in 2% FBS in

PBS. Samples were blocked with 1 mL anti-mouse CD16/32 (eBioscience, San Diego, CA, 14-0161-

82) for 15 min at room temperature. The following antibodies were utilized for staining: CD45 (Biole-

gend, San Diego, CA, 103122) and CD45.2 (Biolegend, 109813). Samples were incubated with

directly labeled antibodies for 40 min (4˚C in the dark). Stained cells were washed with 0.1% BSA in

PBS, pelleted (1200 RPM, 5 min, 4˚C), and lysed with hemolysin (Beckman Coulter, Brea, CA) for 20

s. Samples were quenched with 10x PBS, diluted, and gently washed before analysis using a LSR II

flow cytometer (BD Bioscience, San Jose, CA). Unstained and single stains were used for setting up

compensations and gating. Events were first gated on forward and side scatter to determine single

events, before evaluation of other fluorescent markers.

Monocyte enumeration from peripheral blood
Blood was collected from 16 chimeric mice per genotype into 0.5 ml K3 EDTA coated tubes. The

volume of the blood was determined by pipetting and transferred to 5 ml round bottom tubes with

50 ml of Life Technologies (Carlsbad, CA) CountBright Absolute Counting Beads. Erythrocytes were

lysed by addition of 4 ml eBioscience RBC lysis buffer with incubation at 4C for 5 mins. Cells were

collected by centrifugation and the supernatant was carefully removed. Cells were washed once

more and resuspended in buffer containing anti-CD16/CD32 (clone 93, BioLegend) and Zombie

Aqua fixable viability dye (BioLegend). After 10 min, cells were stained with the following 2X anti-

body cocktail: anti-mouse CD11b BD Horizon BUV395 (clone M1/70, BD Biosciences), anti-mouse
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CD19 BD Horizon BUV737 (clone1D3, BD Biosciences), anti-mouse CD115 Brilliant Violet 421 (clone

AFS98, BioLegend), anti-mouse CD90.2 Brilliant Violet 785 (clone 30-H12, BioLegend), anti-mouse

Ly6G FITC (clone 1A8, BioLegend), anti-mouse CD45.2 PE (clone 104, BioLegend), anti-mouse

CD45.1 Alexa Fluor 647 (clone A20, BioLegend), and anti-mouse Ly6C APC/Cy7 (clone HK1.4, BioLe-

gend). After 20 min, cells were washed and counted on a Beckman Colter MoFlo Astrios EQ

equipped with 355 nm, 405 nm, 488 nm, 561 nm and 640 nm lasers. Cells per ml were determined

by following the manufacturer protocol for CountBright Absolute Counting Beads. Cells of interest

were identified by excluding Zombie Aqua that fell within consecutive singlet gates using SSC and

FSC. Donor derived monocytes were identified as CD45.2+, CD19-, CD90.2-, CD115+, Ly6G-, and

CD11b+. Monocytes were further segregated based on expression of Ly6C. To test the dependence

on hematopoietic derived expression of Rev-erb a/b on peripheral blood cell populations we used a

Welch two sample t-test using R.

Wound healing studies
Wound healing studies were conducted 6–10 weeks post-transplantation. Briefly, 15.5 mL tert-amyl

alcohol was added to 25 grams of 2,2,2 tribromoethanol (Sigma Aldrich Chemical) and dissolved

overnight in a dark bottle to generate a stock solution. The subsequent solution was diluted with

PBS, dissolved overnight, and filtered through a 0.2 mm filter to generate a working solution (20 mg/

ml). To achieve anesthesia, 0.4–0.75 mg/g was administered intra-peritoneally. A 3 mm punch biopsy

(Miltex, York, PA) was used to generate four wounds on the dorsal skin of each animal. Wounds

were systematically photographed from a fixed distance daily. For macroscopic analysis, genotypes

were blinded and the size of the wound was analyzed by Adobe Photoshop (San Jose, CA), and nor-

malized to its size on Day 0. Mice were housed singularly throughout the duration of the study.

To assess the contribution of Rev-erb to wound healing, data from three independent experi-

ments were combined and analyzed using a linear mixed effects model (Garcı́a-Gil et al., 2012)

using the R package ’nlme’ (R script: wound model <- lme(’wound size’ ~ ’genotype’ * ’time point’,

random=~1 | ’independent experiment’ /’independent mouse’ /’nested observation’, data=data.file,

na.action=’na.exclude’). Genotype, time point, and their interaction, were modeled as fixed effects,

whereas the observations at wound sites were treated as a random effect nested within the indepen-

dent mouse, which in turn was treated as a random effect nested within the independent experi-

ment, to account for the hierarchical nature of the study design. The numbers of biologically

independent mice per time point are summarized in the below table.

Day WT chimera Rev-erb DKO chimera

0 29 28

1 28 27

2 26 25

3 17 17

4 21 20

5 22 20

6 22 20

7 13 12

8 20 16

9 12 9

10 7 7

11 12 9

12 7 7

Histological analyses
At the indicated time points, mice were euthanized and wounds were harvested using a 6 mm punch

biopsy (Miltex). Harvested wounds were cut along the mid-sagittal plane and paraffin-embedded.
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Genotypes were blinded for subsequent histological analyses. The first section along the mid-sagittal

plane was utilized for hematoxylin and eosin staining. Subsequent sections were utilized for immuno-

histochemical analysis using the following primary antibodies: biotinylated anti-F4/80 (AbD

Serotec (now Bio-Rad), MCA4978, 1:50 dilution), IgG (Dako, Glostrup Municipality, Denmark), rat

anti-Ly6B.2 (AbD Serotec (now Bio-Rad), MCA771GA, 1:200), and the following secondary antibod-

ies: biotinylated anti-rat (1:500, BD ), as well as HRP-conjugated streptavidin (1:500, Jackson Labora-

tory), Briefly, slides were de-paraffinized and washed three times in 0.1% Tween-20 PBS. Blocking

was performed sequentially using 3% hydrogen peroxide (10 min), 1% BSA in 0.1% Tween-20 PBS

(10 min), 0.1% avidin (10 min), and 0.01% biotin (10 min). Three washes were performed between

each blocking step using 0.1% Tween-20 PBS. Antigen retrieval was performed using proteinase K

(Dako, S3020), followed by three washes and subsequent overnight incubation with the indicated

primary antibodies. After three washes, slides were incubated with the indicated secondary antibod-

ies for 30 min and developed using AEC Peroxidase Substrate Kit (Vector Labs, Burlingame, CA, SK-

4200) according to the manufacturer’s instructions. Counterstaining was performed using Mayer’s

Hematoxylin (Sigma, MHS16), after which samples were mounted in an aqueous gel mount (Vecta-

mount, Vector Labs, H-5501).

In vitro matrigel migration assays
In vitro matrigel migration assays were performed as previously described (Ogawa et al., 2004).

Briefly, macrophages were cultured in RPMI-1640 (Invitrogen) supplemented with 0.5% heat-inacti-

vated FBS (Hyclone) for 24 hr and resuspended at a density of 1 million cells per milliliter. 100 mL of

macrophages was added to the top chamber of a transwell (Corning, Corning, NY) while 650 mL of

media was added to the bottom chamber. Macrophages were allowed to migrate through basement

membrane extract (Corning, 3458) for 24 hr. Afterwards, the wells were briefly washed with PBS,

and migrated macrophages were dissociated from the membrane and incubated with Calcein AM.

Relative fluorescence was measured using a SpectraMax M3 plate reader (Molecular Devices, Sunny-

vale, CA) and the SoftMax Pro software (485 nm excitation, 520 nm emission). A standard curve was

used to convert relative fluorescence to cell numbers.

Sequencing data
All sequencing data used in this manuscript has been submitted to GEO under the accession

GSE72964. This data can be accessed by reviewers through the following link: http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?token=ejixaiswxlqnjiv&acc=GSE72964.
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Abstract 

Cell-specific patterns of gene expression are determined by combinatorial actions of 

sequence-specific transcription factors at cis-regulatory elements. Studies indicate that 

relatively simple combinations of lineage-determining transcription factors (LDTFs) play 

dominant roles in the selection of enhancers that establish cell identities and functions. 

LDTFs require collaborative interactions with additional transcription factors to mediate 

enhancer function, but the identities of these factors are often unknown. We have shown that 

natural genetic variation between individuals has great utility for discovering collaborative 

transcription factors. Here, we introduce MARGE (Mutation Analysis of Regulatory Genomic 

Elements), the first publicly available suite of software tools that integrates genome-wide 

genetic variation with epigenetic data to identify collaborative transcription factor pairs. 

MARGE is optimized to work with chromatin accessibility assays (such as ATAC-seq or 

DNase I hypersensitivity), as well as transcription factor binding data collected by ChIP-seq. 

Herein, we provide investigators with rationale for each step in the MARGE pipeline and key 

differences for analysis of datasets with different experimental designs. We demonstrate the 

utility of MARGE using mouse peritoneal macrophages, liver cells, and human lymphoblastoid 

cells. MARGE provides a powerful tool to identify combinations of cell type-specific 

transcription factors while simultaneously interpreting functional effects of non-coding genetic 

variation. 

 

 

Introduction 

Molecular mechanisms enabling cell-specific transcriptional responses to intra- and extra-

cellular signals remain poorly understood. Genome-wide studies of most lineage-determining 

(LDTF) and signal-dependent transcription factors (SDTF) indicate that the vast majority of 
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their binding sites are in distal intra- and intergenic locations that frequently exhibit 

epigenomic features associated with enhancers (1-6) and are evolutionary well conserved (7-

9). The complement of active cis-regulatory elements bound by LDTFs changes across cell 

types, whereas promoters stay the same. Therefore, these findings introduced the notion that 

enhancers are largely responsible for cell type-specific gene expression (10-12). The 

ENCODE consortium annotated epigenetic features associated with enhancers in several 

different cell lines, primary cells and tissues providing evidence for hundreds of thousands of 

such elements in the human genome (13), greatly exceeding the number of promoters. 

Previous studies of macrophages and B cells provided the basis for a collaborative and 

hierarchical model (14-16). In this model, collaborative binding of two or more LDTFs opens 

up chromatin to establish enhancers (1), enabling cell-specific actions of broadly expressed 

SDTFs (17) (reviewed in (18)). The collaborative nature of LDTFs was further demonstrated 

by analysis of effects of genetic variation in macrophages provided by two inbred strains of 

mice (19).  

Genome-wide association studies, or GWAS (20) have shown that most complex trait-

associated genetic variation is located in non-gene/protein regions of the genome. Such non-

coding variants have the potential to change conserved sequences recognized by LDTFs and 

thereby alter enhancer landscapes between different alleles. These differences could 

manifest between individuals (i.e., between individuals that are each homozygous for 

opposite alleles), or within an individual that is heterozygous for a functional enhancer variant. 

A straightforward mechanism by which enhancer function would be altered by genetic 

variation is where alleles alter the affinity of transcription factors to bind their motifs. 

Consistent with the enhancer model whereby transcription factors collaborate with each other 

to bind DNA motifs, reports have found that allelic variation that mutates DNA binding motifs 

reduces binding of the respective factor while at the same time reducing binding of 

collaborating factors within 100 base pairs (19,21,22). Since the DNA binding motif of the 

partner factor is not mutated, these examples demonstrate a coordinated action of 

transcription factors in accessing DNA. The implication for cell-specific gene regulation is that 

genetic variants altering collaborative factor binding at enhancers will only be functional in the 

appropriate cell type where the correct combinations of transcription factors are expressed. 

The practical implication of these observations is that the particular combinations of factors 

may be discovered with the general strategy in any cell type. In addition to the discovery of 

transcription factors, this method identifies the precise genomic loci where genetic variation 

has a functional role in factor binding that may influence higher order biological processes. 

 To facilitate discovery of novel collaborating transcription factors using the genetic 

variation approach, we developed MARGE (Mutation Analysis for Regulatory Genomic 

Elements). MARGE is a suite of software tools to analyze ChIP-seq, ATAC-seq, DNase I 

Hypersensitivity or other next generation sequencing (NGS) assays where genotyping or 

DNA sequence data is available.  
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MARGE requires two data types: 1) genetic variation, and 2) high-throughput sequencing 

data (ChIP-seq, ATAC-seq, DNaseI-seq). MARGE then integrates these data and provides 

visualization tools to interpret the results. Importantly, MARGE was built to test for functional 

effects of alternate alleles at single nucleotide polymorphisms (SNPs) as well as short 

insertion-deletions (InDels). MARGE performs traditional de-novo motif analysis on genomic 

sequence for each polymorphic allele to identify DNA binding motifs that potentially affect 

transcription factor binding based on sequence analysis alone. The next step is to test 

whether the set of potential variants that mutate a single DNA binding motif are enriched in a 

set of loci where differential binding/accessibility is observed. For this step, MARGE 

associates quantitative measures of binding or accessibility from the ChIP/ATAC/DNaseI-seq 

data with the list of potential mutations in motifs. It analyzes differences in two genotypes by 

comparing the transcription factor binding distribution in relation to motif mutations between 

both genotypes, and also takes advantages of a Linear Mixed Model (LMM) (23,24) to 

compare many different individuals at the same time 

In this report, we apply MARGE and demonstrate its ability to reliably identify known key 

regulators of macrophage lineage. We further apply MARGE to three different ChIP-seq 

datasets from mouse liver cells and also show that MARGE can identify important B cell 

factors in a human PU.1 ChIP-seq dataset from lymphoblastoid cell lines (25). In conclusion, 

MARGE is the first publicly available tool that is created to identify combinations of 

collaborating transcription factors. This approach is agnostic to cell type and can be applied in 

any dataset where genotypes and epigenetic signatures are measured.  

MARGE is based on the ChIP-seq analysis tool HOMER (1) (http://homer.ucsd.edu/homer/) 

and it is an extension to the software used in (19,21). The source code and installation 

package are freely available on GitHub: 

https://github.com/vlink/marge/blob/master/MARGE_v1.0.tar.gz 

 

MATERIAL AND METHODS 

 

Overview 

A schematic outlining the major steps of MARGE is shown in Fig 1. First, MARGE offers a 

complete pipeline to process VCF (Variant Call Format) files (26) and generate individualized 

diploid genomes by extrapolating genetic variants from VCF files and swapping in alternate 

alleles into a reference genome (Fig. 1a-b). Importantly, MARGE is able to analyze 

sequencing data from homozygous (e.g., inbred mouse strains) and heterozygous (e.g., 

human) genomes and includes analysis for Single Nucleotide Polymorphisms (SNPs) as well 

as short Insertion-Deletions (InDels). Because MARGE generates genomes for each 

individual in the VCF file, the investigator can map their sequencing data to the genome with 

all genetic variations by using user-defined mapping software (e.g. bowtie2 (27) or STAR 

(28)) (Fig. 1c). MARGE shifts positions of individual sequence to their corresponding 

reference coordinates for motif analysis and visualization (Fig. 1 d-g). MARGE offers de-novo 
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motif analysis for individualized genomes (Fig. 1g), as well as a new algorithm to identify 

transcription factor binding motifs associated with allele-specific transcription factor binding or 

open chromatin (Fig. 1h). Each step of the MARGE pipeline is discussed below. 

 

Merge, filter, and pre-process VCF files 

The initial step of the MARGE pipeline is to generate a set of high-confidence sequence 

differences between the alleles of interest (Fig. 1a). MARGE allows some basic filtering of 

VCF files by quality scores, however VCFtools (26) provides more sophisticated tools for this 

purpose. For some sequencing projects like the mouse genome project (29), SNPs and 

InDels are annotated in separate files, whereas other projects like the 1000 Genome project 

(30) provides one large file with SNPs and InDels. When SNPs and InDels are provided 

separately, MARGE merges them as a first step. If a combined file is provided then the first 

processing step is skipped. In cases where SNPs overlap deletions or insertions within one 

genomic background the SNP is filtered out and the longer mutation is kept. MARGE also 

simplifies the annotation of the variants per genotype (Fig. 2a). In cases where more than one 

possible mutation occurs in a particular genomic location (e.g. two different genotypes have 

two different mutations in comparison to the reference genome), the mutation is not always 

annotated as the shortest mutation per genotype. As shown in Fig. 2a the genetic variant for 

genotype2 is annotated as GTT -> GTTGTT. MARGE processes each genotype separately 

and therefore calculates the shortest genetic variation for each genotype (in this case T -> 

TGTT). 

 

Generating individualized genomes 

MARGE produces individualized genomes by inserting the alleles from the VCF file into the 

reference genome and generating fasta files, which then can be used to make indices for 

mapping software. For homozygous data, only one genomic sequence is generated. 

Generation of individualized genomes and interpretation of allele-specific mapping for 

heterozygous data requires an additional step. Specifically, alleles at heterozygous sites need 

to be assigned on the same chromosome as neighboring heterozygous alleles. In genetics, 

this is called knowing the phase of the genotypes. Phase is especially important for MARGE 

when variants are in close proximity, because most sequencing reads are between 50-200 

base pairs in length. When multiple SNPs reside in the same read, the correct combination of 

alleles in the genomic index is essential for accurate mapping and downstream interpretation. 

MARGE inherently assumes that all heterozygous data is phased. There are good resources 

for phasing genotypes in human populations. For example, phasing can be achieved using 

BEAGLE (31) or SHAPEIT (32) in conjunction with known haplotype structure of large 

reference populations such as the 1000 Genomes Project. In cases were phasing is not 

easily possible (e.g. F2 generation of inbred mice) loci where mutations overlap within the 
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read length should be excluded from the analysis. 

  

Mapping data to individualized genomes 

Mapping of sequencing experiments to the individualized genome provides better results and 

decreases the possibility of incorrect mapping due to technical bias (Fig. 1c). This is 

especially true in datasets with a large number of differences to the reference. In these cases, 

mapping to the reference can introduce bias and in the case of datasets containing 

heterozygous genotypes can lead to overestimation of allele-specific expression or binding 

(33-35). To assess the effect of individualized genomes on mapping, we used a ChIP-seq 

dataset from inbred strains of mice. This provided a simplified situation since their genomes 

are entirely homozygous and all sequence tags originated from a genome of known 

sequence. Specifically, we used a PU.1 ChIP-seq dataset from three strains of mice 

(C57BL/6J, NOD/ShiLtJ, and SPRET/EiJ) (21). C57BL/6J (C57) is the commonly used 

reference genome and differs to NOD/ShiLtJ (NOD) in about 5 million genetic variants (89% 

SNPs, 11% InDels), whereas SPRET/EiJ (SPRET) provides about 43 million variants (89% 

SNPs, 11% InDels). Mapping of the ChIP-seq data to their respective genomes affected the 

overall mappability of the reads (Fig 2b) and the percentage of uniquely mapped reads (Fig 

2c). The difference in mapping is directly correlated to the number of differences between the 

genomes. After removing all reads that map to multiple locations, peaks were called on all 

datasets separately and compared. Peaks from the C57 ChIP-Seq mapped to C57 and NOD 

genomes show only small differences (Fig. 2d) (about 1% of peaks are unique to either 

genotype), but increasing the number of variation between the genotypes lead to many peaks 

uniquely called in one of the mapped datasets (up to 12%). Also when comparing a PU.1 

ChIP-seq dataset in human lymphoblastoid cell lines (25) mapped to the reference versus the 

individual genomes only about 90% of reads where mapped to the same loci (Supp. Fig. 1a). 

The number of differences between the hg19 reference genome and the individualized 

genomes is smaller than for the mouse data, but still up to 4% of peaks were uniquely called 

on either the dataset mapped to the reference or the individual genome (Supp. Fig. 1b). 

Therefore, mapping the data to the correct individualized genome increases the mapping 

accuracy substantially, leading to a more precise downstream analysis. 

Additional processing for heterozygous data 

Many studies in mice use hybrid mouse strains (F1) generating heterozygous mice from two 

homozygous parents (Fig 1d). Furthermore, all human genomes are heterozygous in many 

loci and due to the advantages in sequencing technology, have become more realistic to 

study genome-wide. To improve mapping for heterozygous data, statistical methods have 

been developed (e.g. WASP (36)). Unfortunately, these methods can only handle SNPs. In 

order to also analyze heterozygous data with InDels, we map our data to two reference 
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genomes corresponding to alternative parental alleles. To effectively analyze heterozygous 

data, allele-specific expression or binding needs to be calculated. For this step, MARGE 

filters all reads with perfect alignment followed by filtering of all reads spanning a variant 

between the two parental strains (Fig 2e). If the heterozygous data is not phased, all regions 

that contain more than one mutation within the length of one read should be excluded from 

the analysis. This procedure makes sure that it is possible to confidently identify the allele of 

origin. To assign allele-specific reads correctly all loci without any variation are annotated with 

half of the perfectly aligned reads, because half of the reads that are sequenced originate 

from allele 1 and the other half from allele 2. For loci with allele-specific sequences, the ratio 

of reads per allele is calculated based on the reads spanning variations. Then the loci are 

annotated with the corresponding ratio of all perfectly aligned reads mapped to this locus. 

 

Shifting to reference coordinates 

A major challenge of mapping data to individual genomes is that the experiments cannot be 

easily compared because of insertions and deletions (Fig. 1e). For example, the 

chromosomal locations between individuals (and across homologous chromosomes within 

heterozygous individuals) do not correspond to each other anymore. Therefore, to be able to 

use external analysis software and to visualize the data in the UCSC genome browser (37), 

we designed MARGE to shift mapped data back to reference coordinates (Fig. 2f). To 

accomplish this, MARGE generates shifting vectors for each genome (or haploid genome in 

the case of human/heterozygous data). Motifs can overlap insertions (M2) and deletions (M1) 

in the reference genome (Fig. 2f). The M2 motif consists of 6 bases, but after shifting the 

length is shrank to 3 bases due to the deletion. Therefore, positional shifting has the potent to 

introduce problems. For example, InDels can cause potential TF binding motifs to disappear 

or appear, which is of interest because these cases likely have functional consequence. 

Another complication of shifting coordinates occurs in the identification of ChIP-seq peaks 

from variable chromosomal sequences (i.e. shifting can cause a loss of peaks). This is 

because ChIP-seq peak calling tools often require a minimum length in order to identify peaks 

and this might not be reached after shifting. To check how frequently a peak was lost, each 

PU.1 ChIP-Seq dataset performed in human lymphoblastoid cell lines (25) was mapped to its 

individual genome and peaks were called with HOMER both before and after shifting. There 

are up to 2 million genetic differences between the reference genome (hg19) and the allele-

specific genomes per individuals, but only up to 11 peaks are lost after shifting (which 

corresponds to less than 0.1% of all peaks) (Fig. 2g, Sup. Table 1). Also when repeating this 

procedure for diverse mouse strains (with more than 40 million genetic differences) only 

about 0.2% of all peaks were lost (Sup. Table 2). Therefore, despite an opportunity for 

difference to emerge in peak calling, we conclude that this phenomenon is very rare and does 

not offset the advantages from more accurate mapping. 
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Data Visualization 

Tools like the Integrative Genomics Viewer (IGV) (38,39) allow visualization of individual 

genomes, but require the user to install the software locally, which is not preferable for data 

sharing. One of the most common software platforms to visualize next-generation sequencing 

data online is the UCSC genome browser (37). Although a powerful tool, it does not allow the 

usage of other genomes than the references. To account for this, after shifting the genomic 

coordinates from the individualized genomes to the reference genome, MARGE can generate 

UCSC genome browser files (e.g. bedGraphs and bigWig files) that take into account 

individual genomic features (Fig. 1f). In addition, MARGE can generate BED (Browser 

Extensible Data) (40) files with all alternate alleles relative to the reference coordinates for 

upload to the genome browser (Fig. 2h). We also provide basic tools to interact with the 

different individual genomes. For example, we make it possible to directly compare the 

number of polymorphisms between different datasets in a table format for either all variants 

(Table 1) or for all private variants (those which can only be found in a particular individual 

compared to all others) (Table 2). More importantly however, MARGE can align nucleotide 

sequences from different individuals or chromosome sequences such as nucleotides or 

protein sequences. This application integrates RefSeq (41) or common gene name 

information to provide alignment for genes of interest, but is also able to extract the sequence 

for every genomic location of interest. This provides a fast and easy way to check for 

differences in genes or non-coding regions for different genetic backgrounds. This also 

simplifies the design of primers or other constructs, because differences can be checked by 

simple alignments of VCF files. To enable some more user-specific analysis, MARGE 

annotates files containing genomic coordinates with all genetic variants and generates files 

with genotype-specific sequences. 

 

De novo motif analysis 

One of the first steps in analyzing ChIP-seq data is motif analysis. The de-novo motif analysis 

software from HOMER (1) was adapted to allow the integration of the individual genomes 

(Fig. 1g). We extended the de-novo motif finding algorithm (1) with a function to extract the 

sequences of the different genotypes as inputs to make sure that the motif finding algorithm is 

applied to the correct sequences and finds the motifs enriched in the sequence of the 

genotype not of the reference. It is possible to use different genotypes for the foreground 

sequences and the background sequences when unique peaks in two different genotypes are 

compared as foreground and background. These extensions make MARGE a powerful tool in 

comparing enriched motifs in two different genotypes.  

 

Motif mutation analysis 

MARGE was primarily developed to determine importance of various nearby transcription 

factor motifs on the binding of a given transcription factor (Fig. 1h). It can analyze 

transcription factor binding profiles for two genomes in a pairwise fashion, but is also able to 
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analyze the binding profiles of many different genomes together (Fig. 3). The first case is 

preferable when two datasets have many genetic differences (e.g. two diverse mouse 

strains), as it may be more cost effective experimentally (pairwise comparison). For the 

analysis of human samples, however, it may be preferable to have more individuals, as the 

number of differences between two human genomes is fewer. In this scenario, a larger 

sample size may be required to achieve statistical power (all-versus-all comparison). MARGE 

uses a list of hand-curated motifs from the JASPAR motif database (42) as default, but also 

allows user-defined input. 

Pairwise comparison 

For the pairwise comparisons, peak files of both genotype alignments are merged and 

annotated with read counts (Fig. 3a). To account for differences between the alleles, the 

individual genome sequence is extracted and scanned with the motif-scanning algorithm 

provided by HOMER. Each motif is analyzed separately. Peaks without the motif that is 

currently scanned for are excluded from the analysis of this particular motif, but are 

considered for other motifs. Therefore, the analysis of every transcription factor motif is done 

on a different number of peaks. The fold change of the normalized read counts between the 

two alleles is calculated. Finally, the distribution of the fold change is calculated for all peaks, 

all peaks with a mutation in the motif of interest in allele1 and all peaks with a mutation in the 

motif of interest in allele2. To ensure that a motif is not just considered allele-specific because 

its log-odd score was slightly below the arbitrarily defined threshold in one of the alleles, 

MARGE extracts the sequence of the potential motif from each allele and calculates the log 

odd score based on the provided position weight matrix (PWM). By default a motif is 

considered missing when the log odd score is smaller or equal to zero, but the user can 

change this value to whatever seems suitable. MARGE also provides the possibility to define 

a motif as missing when its log-odd score in one allele is less than n% of the log-odd score in 

the other allele. To determine the significance of every motif a Student’s t-test is performed 

between the general fold change distribution and the fold change distribution of allele1 and 

allele2, respectively. 

Furthermore, the p-value between the distributions of the two alleles is calculated. This 

procedure is repeated for all transcription factors of interest. All p-values are multiplied by the 

number of comparisons to correct for multiple testing. 

Allele-specific binding can be observed due to the loss of the binding site for the collaborative 

factors or the measured transcription factor itself. Additionally to analyzing every peak with 

the motif of interest, MARGE can analyze only peaks where all loci with differences in the 

motif of the measured TF between genotypes are filtered out. A Student’s t-test is performed 

on the remaining distributions and the p-values are multiplied by the number of comparisons. 

MARGE outputs a motif mutation plot showing the distribution of mutations in relation to the 

fold change for each transcription factor (bottom Fig. 3a, Sup. Fig. 2a). It further outputs a 

density distribution plot for the fold change distribution of all peaks with changes in the motif 

in allele1, allele2, and the background (Sup Fig. 2b). 
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All-versus-all comparison 

In order to perform an all-versus-all comparison on more than two genotypes, peaks are 

called for all genotypes individually (Fig. 3b) and annotated with read counts. In case of 

heterozygous genotypes, peaks should be called on alleles separately and also be annotated 

with allele-specific reads (Fig. 2e). Both alleles are then analyzed as if they were independent 

genotypes. Therefore, when comparing for example 3 heterozygous genotypes, MARGE 

actually analyzes 6 independent samples. All sequences of all genotypes are scanned for the 

motifs of interest. To model the impact of the motif on the binding of the measured factor a 

Linear Mixed Model (LMM) is used. The binding of the measured factor is modeled as the 

fixed effect motif existence or motif score (defined by the user) with random effects locus and 

genotype (Formula 1) with the lme4 package (43) in R (44). 
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To calculate significance for each motif, the drop1 command is used. It compares a model 

including motif score (motif existence, respectively) with a model without motif score (motif 

existence, respectively) and reports the Akaike information criterion (AIC) (45) for the 

difference. To keep the run time reasonable, MARGE implements threading for this 

procedure. 

 

Data mapping 

All data was mapped using bowtie2 (27) with default parameters. The data for the different 

inbred strain of mice and the human data were mapped to the individualized genomes. The 

individualized genomes were generated using bowtie2-build with default parameters. The 

data for C57BL/6J was mapped to the mm10 reference genome from the UCSC genome 

browser (37). The human reference genome was hg19. Uniquely mapped reads are all reads 

that were mapped to only one unique region of the genome.  

To analyze the impact of the genome on the accuracy of the mapping, all mouse ChIP-seq 

data sets in LPMs (21) were mapped to the three strain genomes C57, NOD, and SPRET. 

For the human data (25) all data was mapped against the individualized genome for allele 1, 

allele 2 and the hg19 reference genome. To assess the impact of the mapping on peak 

calling all reads that were mapped to more than one region of the genome were removed. 

 

ChIP-seq analysis 
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All ChIP-seq data sets were analyzed with HOMER after being shifted to reference 

coordinates. Peaks were called using findPeaks with default parameters and –style factor. 

For the LPM data set inputs were used for the peak calling. In case of the liver data and the 

human data no input was available and peaks were called without inputs. After running 

MARGE on the data, the list of significant motifs was reduced and summarized using 

HOMER’s compareMotifs.pl. 

 

Simulation of a data set 

MARGE is based on the model of collaborative binding for TFs and important collaborative TF 

binding motifs therefore should be identified as significant. According to this model a TF can 

only bind if the collaborative factor can bind, too. Applying this idea to two different genotypes 

means that if the motif is missing in genotype1 the binding of the measured factor should be 

lost in genotype1 and be not affected in genotype2 (genotype-specific binding). It further 

means if the motif is found in both genotypes binding should be similar between them 

(genotype-similar binding).  

For the synthetic dataset, ten motifs were randomly chosen and defined as important 

collaborative TF for PU.1 (Tead3, Ventx, and Zic1), somewhat collaborative (Rora, Znf354c, 

and Plag1) and not collaborative (Pax6, Nr4a2, Lin54, and Bhlha15) (Fig. 4a). The genomes 

from three mouse strains (C57BL/6J (C57), BALB/cJ (BALB), and SPRET/EiJ (SPRET)) were 

scanned for the occurrence of all motifs (including PU.1). Next a peak file was generated for 

all genomic locations where the motif of interest was within 200bp of the PU.1 motif. These 

files were merged between two strains (C57 and BALB, C57 and SPRET, BALB and SPRET). 

To model genotype-specific binding, the fold change was randomly chosen to be between 2 

and 10fold. For genotype-similar binding the fold change between the strains was within 1.5 

fold. In all cases the read counts were randomly chosen between 0 and 500. To include 

biological noise in this dataset 85% of peaks with genotype-specific TF binding motifs follow 

the genotype-specific binding for highly collaborative motifs. For somewhat collaborative 

motifs 50% follow this pattern, whereas in the case of not collaborative motifs only 10% of 

peaks with genotype-specific TF motifs also show genotype-specific binding. To model 

genotype-similar binding for all highly collaborative motifs 85% of all peaks with the same 

motif show genotype-similar binding, for somewhat collaborative motifs 50% of the peaks 

have genotype-similar binding, whereas for not collaborative motifs only 10% show genotype-

similar binding. The rest of the peaks show genotype-specific binding randomly assigned to 

one of the two strains. 

 

RESULTS 

MARGE recognizes collaborative motifs in synthetic dataset 

To test the accuracy of the method, a synthetic dataset was generated simulating a ChIP-seq 

experiment using an antibody against PU.1 (for more details see Material and Methods, Fig. 

4a). Ten motifs were randomly chosen and defined as important collaborative TF for PU.1 
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(Tead3, Ventx, and Zic1), somewhat collaborative (Rora, Znf354c, and Plag1) and not 

collaborative (Pax6, Nr4a2, Lin54, and Bhlha15) (Fig. 4a). Data was simulated for three 

different homozygous mouse strains (C57, BALB, and SPRET). Comparing one 

representative of the different motif categories shows that the algorithm is able to detect very 

high significance for Tead3 (defined as highly collaborative), medium significant for Plag1 

(defined as somewhat collaborative) and no significance for Nr4a2 (defined as not 

collaborative) (Fig 4b, Sup. Fig. 2a). In all three comparisons about 50% of all peaks had the 

motif of interest, so the significance is not dependent on the percentage of peaks having the 

motif. The algorithm is able to detect significance for all motifs that were collaborative and 

showed lower or no significance for all non-collaborative motifs (Fig. 4c). PU.1 was almost 

always recognized as a significant motif, which is expected as the peaks were modeled 

according to a PU.1 ChIP-seq experiment. 

 

MARGE analysis output 

In order to learn more about important position in the motif of the candidate transcription 

factor, MARGE offers a motif mutation position analysis (Fig. 4d, Sup. Fig. 3a). Fig. 4d shows 

an example for mutations within the PU.1 motif for the comparison C57 versus BALB on the 

simulated data set for Ventx. Mutations with significant effects on binding are marked by dots, 

whereas stars mark mutations with non-significant effects. Each base is colored differently, so 

it is not only possible to see which positions are mutated (significantly and non-significantly), 

but also to which other base. In the simulated dataset, even highly conserved residues in the 

motif can have mutations without an effect on binding (e.g. Fig. 4d, the highly conserved 

guanine at position 8 has 21 mutations from G->A that are significant but also 5 mutations 

from G->A with no effect). In the simulated data this was inherently part of it due to the 

modeling of biological noise (15% of genotype-specific peaks did show genotype-similar 

binding). It also should be noted that most differences that could be found were InDels (63 

significant versus 10 not significant) or multiple SNPs within one motif (27 significant versus 3 

not significant). MARGE also provides a plot that shows the distribution of the Ventx motif 

around the anchor transcription factor motif PU.1 (Fig. 4e, Sup. Fig. 2b) to see if the motif 

overlaps the anchor TF motif or if it is only randomly distributed within the peak. This plot 

allows the user to explore how the motifs of interest are distributed around the center of the 

peak to get a better understanding of the effect of this motif on the binding of the anchor TF. 

 

Pairwise analysis of mouse data 

To show that the method also works on real data we analyzed data previously published in 

(21) and (46). We assessed PU.1 (a macrophage LDTF) binding in large peritoneal 

macrophages (LPM) in three different inbred mouse strains C57BL/6J (C57), NOD/ShiLtJ 

(NOD), and SPRET/EiJ (SPRET). These strains differ substantially in mutations to each other 

(Table 1). To show the correctness of the method we generated a list of motifs that were 

previously discovered (21) to be involved in the establishment of PU.1 binding in macrophage 
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(PU.1, PU.1-IRF, ETS1, SpiB, CEBP, AP-1, Arid3a). Additionally, we chose some 

transcription factors not expressed in LPMs or with known binding patterns different from 

PU.1 in macrophages. We chose the motifs of Bcl6 (not expressed in LPM, with a known 

function in B cells (47)), NeuroD1 (not expressed in LPM, associated with neurons (48) and 

diabetes (49)), RORgt (not expressed in LPM and mainly associated with thymocytes 

(50,51)), and Gfi1b (not expressed in LPM and associated mainly with neutrophil 

differentiation (52)). 

MARGE could reliably detect motifs that are significantly associated with PU.1 binding, 

independent of the number of peaks containing the motif, or the number of mutations in these 

peaks. For example mutations in CEBP, an important LDTF in macrophages, were detected 

as significantly associated with PU.1 binding (Fig 5a). The plot showing the positions of 

mutations within the motif shows enrichment for mutations in the conserved bases T (bases 2 

and 3) and A (bases 8 and 9) in comparison to the rest of the bases in the motif (Fig. 5b). 

Most causal mutations are due to multiple SNPs or InDels, not merely one single SNP. The 

CEBP motif is distributed closely around the PU.1 motif (where PU.1 is bound) without any 

motifs overlapping the PU.1 binding site (Fig. 5c). Although the peaks are 200 base pairs with 

regard to the reference genome, the sequences analyzed can be longer due to long 

insertions in the different strains resulting in peaks with a size of 300 in this case. Figure 5d 

shows two examples of how SNPs can influence observed PU.1 binding. In the left panel 

PU.1 is only bound in SPRET. A SNP in SPRET in comparison to C57 and NOD adds a PU.1 

binding motif adjacent to an existent CEBP motif resulting in the observed genotype-specific 

binding. The right panel shows how loosing a CEBP binding motif in C57 and SPRET close to 

a PU.1 binding motif existing in all three strains can cause PU.1 binding to be lost. MARGE 

could not find any significant association between motif existence and binding for the motifs 

chosen to provide negative controls (Fig. 5e). Although the number of mutations between two 

genotypes correlates with the significance of the analysis result (due to a bigger sample size), 

even with a low number of genetic variations MARGE was able to detect almost all significant 

motifs. To further test MARGE, we applied it to ChIP-seq experiments in four different strains 

(C57BL/6J (C57), A/J (AJ), CAST/EiJ (CAST), and SPRET/EiJ (SPRET)) for three different 

factors (CEBPa, FOXA1, and HNF4A) in whole liver from (46). CEBPa is an important TF in 

hepatocytes (54,55) (which make up about 70% of all cells in the liver (56)) and 

macrophages. FOXA1 plays important roles for the development and maintenance of the 

liver, mainly in hepatocytes (15,57) and HNF4A is an important liver TF mainly associated 

with hepatocytes (reviewed in (58)). Figure 5f shows an example where the TF binding motifs 

for all three factors were found, but binding could only be observed in AJ, C57, and CAST. 

Binding in SPRET was lost due to the loss of an adjacent RORA motif. After applying MARGE 

to the data, all significant motifs were compared to each other and summarized (compare 

Materials & Methods). In almost all pairwise comparisons for the three different factors the 

measured factor and the two collaborative factors were found as highly significant (Fig. 5g). 
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Nuclear receptors, which play important roles in the liver (reviewed in (59)), were found as 

significant in all three comparisons.  

 

All-versus-all analysis of homozygous mouse data 

To show the correctness of the all-versus-all analysis, we reanalyzed the mouse ChIP-seq 

datasets for CEBPa, FOXA1, and HNF4A from whole liver (Fig. 6a). Almost all motifs that 

were found significant in at least one pairwise comparison were detected as significant in the 

all-versus-all comparisons (compare Fig. 5g and Fig. 6a). Applying the motif score or the 

motif existence in the LMM produced almost the same results, with some motifs differing. The 

motif existence approach should be used with caution since adjusting the threshold that 

defines a sequence as motif can have large impacts on the results. Therefore, the all-versus-

all comparison is able to confirm motifs significantly associated with binding of CEBP, 

FOXA1, or HNF4A in whole mouse liver previously identified by MARGE’s pairwise 

comparisons. To make sure that the all-versus-all comparison is sensitive, we shuffled the 

strain order and repeated the analysis (Fig. 6b). To assess how much the results are 

influenced when very similar strains are shuffled, AJ and C57 were switched, but CAST and 

SPRET were kept at the same position. The further assess robustness of the results, the 

more diverse strains were shuffled with the more similar strains. Furthermore, we used 

completely different mouse genomes (NOD, DBA, PWK, and WSB). The color bar in Figure 

6b shows the number of differences between the strains. When two very similar strains were 

changed (AJ with C57) the results are almost the same and the data sets are clustered 

together. However, as soon as more different strains are switched, the results changed 

dramatically. Motifs that are significant in all comparisons (e.g. NF1) should be counted as 

false positive results. This analysis shows that changing very similar data sets with each other 

does not affect the results, probably because most of the informative loci are found between 

these two strains and the two more diverse strains. 

 

All-versus-all analysis of heterozygous human data 

To show that MARGE is also able to analyze data from several human individuals with a low 

number of mutations, 34 PU.1 ChIP-seq datasets from Waszak at el (25) were analyzed with 

MARGE (listed in Sup. Table 1). The VCF files were downloaded from the 1000 Genomes 

Project (30) and the individual MARGE files and genomes were generated. A bowtie2 (27) 

index was created for each genome (two indices per genotype – one for the complete 

genome containing mutations on allele 1 and one for mutations on allele 2) and the ChIP-seq 

reads were mapped against both indices of the corresponding genotype. Only data sets with 

an overall mappability of 80% were considered in the downstream analysis (22 individuals) 

Peaks were called on all perfectly aligned reads and all peaks were merged and annotated 

allele-specific (320,146 peaks). To see how noise influences the MARGE results, MARGE 

was applied to an unfiltered peak file, as well as a peak file only containing reliable peaks with 

at least 8 reads in at least on individual (16, respectively). The dataset used in this analysis 
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was based on lymphoblastoid cell lines, human B cell lines infected with an Eppstein-Barr 

virus to immortalize them. 

Because the dataset is based on B cells it is not expected that any macrophage specific 

LDTFs are significant, instead B cell specific LDTFs (like PRDM1 also known as BLIMP-1, 

E2A etc.) would be expected to show a significant association with PU.1 binding (60). Figure 

6c shows a UCSC genome browser session for one locus in three different individuals where 

one SNP that causes a loss of a PRDM1 motif close to an ETS factor motif is associated with 

loss of binding of PU.1. Applying the mutation approach systematically to all loci in all 

individuals and then summarizing the motifs, MARGE identified the B cell LDTF PRDM1 as 

highly significant, as well as a motif belonging to the IRF family of transcription factors known 

to play a role in B cells (Fig 6d) and an ETS motif, important for PU.1 binding. DUX4 has 

been previously associated with acute lymphoblastic leukemia (ALL) (61) which is coherent 

with the cancer-like cell type used in this experiment. MARGE was able to identify many other 

important transcription factors for B cells including NUR77 and a KLF binding motif 

(associated with B cell development (62,63)). The more stringent the filtering, the less 

significant motifs could be found. Filtering by 8 reads, about half of the significant motifs could 

be found. But filtering by 16 reads only found PRDM1 as significant. This highlights the 

importance of a good quality data set, because a lot of difference is found in lower bound 

peaks rather than the top peaks. Overall, MARGE was able to find significant motifs 

associated with PU.1 binding in human lymphoblastoid cell lines taking advantage of allele-

specific binding in many individuals.  

 

Discussion 

We developed a powerful tool to efficiently analyze ChIP-seq and other NGS data to 

understand the impact of transcription factor motifs on collaborative binding of transcription 

factors. MARGE is the first publicly available suite of software tools to integrate natural 

genetic variation (including InDels) and NGS binding data and provides complementary 

algorithms to analyze data from different genetic backgrounds in a pairwise manner as well 

as by utilizing a linear mixed model. It further provides many useful tools to directly look at 

genetic differences between different genetic backgrounds. By simulating a dataset and also 

applying MARGE to real world data, we could show that the algorithm works correctly in 

identifying motifs significantly associated with the binding of a measured transcription factor.  

Here, we applied MARGE to ChIP-seq data, which requires a well-working antibody for the 

reference transcription factor. However, MARGE can also be applied to ATAC-seq data or 

DNase I hypersensitivity data, which does not require any previous knowledge. In this case, 

rather than collaborative binding partners for a reference transcription factor, analysis of open 

chromatin would be expected to recover the dominant collaborative factors needed to 

establish open chromatin regions. Therefore, MARGE can potentially be applied to identify 

key regulatory factors in any cell type as long as parallel datasets from genetically diverse 

strains or individuals are available.  
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The algorithm assumes that the binding of the measured factor is only affected by local 

mutations in transcription factor binding motifs. As a result, sequence changes that influence 

binding on a global or long-distance scale in trans will not be detected and introduce noise to 

this. Furthermore, MARGE only analyzes one motif at a time. More complex relationships 

between transcription factors (e.g. the requirement for binding of three factors simultaneously) 

are not considered in the analysis. As in every analysis based on statistical tests, the power 

of discovery is dependent on the number of observations. A greater number of genetic 

variations between two individuals provides a better analysis result and will detect more 

significant motifs. For comparisons with low numbers of genetic variations MARGE offers a 

linear mixed model to increase the power of detection by merging all genetic variation 

between all individuals. This, however, requires substantially more experiments. Furthermore, 

the software is dependent on a list of position-weight matrices for the detection of TF binding 

sites. It is known that TF can bind to very weak motifs that cannot be detected by a motif-

scanning algorithm but play important roles in regulating gene expression (64). However, 

MARGE is dependent on finding motifs based on scanning the DNA for the consensus 

sequence provided by the PWM. This limits the sensitivity of MARGE. Improvements in our 

understanding how to detect motifs in sequence will therefore improve the power of MARGE. 

Similar to de-novo motif finding, also MARGE only detects TF motifs. There are sometimes 

many similar transcription factors capable of binding the same consensus motif, which 

MARGE cannot discriminate. As more TFs and their motifs are characterized, these types of 

analysis will surely improve.  

Genome-wide association studies (GWAS) evaluating common sequence variants associated 

with diverse phenotypes consistently demonstrate that the majority of variants reside in non-

coding regions of the genome (20,65,66). These findings suggest that such variants impose 

risk by altering promoter and enhancer elements that regulate gene expression. Interpretation 

of such variants is currently limited because the genomic location of the regulatory elements 

at which they could potentially exert their effects varies according to cell type. By identifying 

important motif mutations, MARGE can provide a new and unique way to analyze 

transcription factor binding and detect the major collaborative factors involved in the 

establishment of cell-specific enhancer landscapes. With the advances in sequencing 

technology and availability of human samples, MARGE can facilitate the analysis of datasets 

that provide insights into the relationship between non-coding genetic variation and gene 

expression in humans.  

 

Availability 

The MARGE source code and installation package are freely available on GitHub: 

https://github.com/vlink/marge/blob/master/MARGE_v1.0.tar.gz.  

The mouse LPM dataset from (21) was downloaded from the GEO database under accession 

number GSE62826. The data is available at http://genome.ucsc.edu/cgi-

bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=vlink&hgS_otherUserSession
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Name=MARGE_LPM_data. The mouse liver data set from (46) was downloaded from 

ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-

1414. The data is available at http://genome.ucsc.edu/cgi-

bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=vlink&hgS_otherUserSession

Name=MARGE_Liver_data. The human data set from (25) was downloaded from the 

ArrayExpress Archive under accession number E-MTAB-3657. The data is accessible at 

http://genome.ucsc.edu/cgi-

bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=vlink&hgS_otherUserSession

Name=MARGE_human_data. 

MARGE is implemented in Perl and R (44). It has been tested on several UNIX systems, 

including CentOS and Debian with Perl version 5.20 and higher and R version 3.3 and higher. 

We provide a script that installs MARGE and allows download of pre-processed mutation data 

from the mouse genome project (29) and the genomes from the 1000 Genome Project used 

in this manuscript. MARGE requires the Perl core modules POSIX, Getopt::Long, Storable 

and threads, as well as the modules Set::IntervalTree (67), and Statistics-Basic (68). It further 

requires the R packages SeqLogo (69), gridBase (70), lme4 (71), and gplots (72). It also 

requires an installed version of gzip. For the motif mutation analysis MARGE requires 

HOMER (1) (http://homer.ucsd.edu/homer/) to be installed and executable. Without a working 

installation of HOMER, MARGE’s functionality is limited to only visualization and annotation of 

the data. 
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Tables and Figures Legends 

Figure 1: Overview of the MARGE pipeline. (A) MARGE merges VCF files for SNPs and 

InDels, offers some basic filtering and split the merged VCF file into separate genotype-

specific mutation files. (B) It then generates individual genomes by inserting the annotated 

mutations in the reference genome per genotype and (C) allows mapping of the experimental 

data sets to the individualized genomes. (D) The data mapped to the individualized genomes 

is then shifted back to the reference coordinates. (E) In case of heterozygous data additional 

processing is necessary. MARGE offers (F) scripts for data visualization including BED files 

for genetic variation per genotype. It further offers (G) de-novo motif analysis for the individual 

genomes to make sure the enrichment analysis is performed on the correct sequence instead 

of the reference. MARGE also offers a new algorithm (H) to associated TF binding motifs with 

genotype-specific binding for pairwise comparisons, as well as comparisons for many 

different individuals (all-versus-all comparison). Taken all of that together MARGE is able to 

identify TF binding motifs that are functionally associated with TF binding. 

 

Figure 2: Details of pipeline: (A) MARGE merges SNP and InDel VCF files and then splits 

the merged file. It finds the shortest annotation for each mutation, changing the original 

annotation from the VCF file. (B) Comparison of the overall mapping efficiency. There is a 

small decrease in overall mappability when data is mapped to the reference. (C) Comparison 

of mapping efficiency for uniquely mapped reads after mapping to different genomes. There is 

an increase in mapping performance when mapped to individualized genomes. (D) 

Percentage of peaks uniquely called to dataset mapped to one genotype versus another. Up 

to 12% of peaks are unique to one genotype. (E) Pipeline for processing heterozygous data: 

Data is mapped to both alleles and shifted back to the reference coordinates. Reads that do 

not uniquely align to the genome are filtered out. Perfectly aligned reads, as well as perfectly 

aligned reads overlapping mutations are filtered out and peaks are called on perfectly aligned 

reads. For each locus without any mutations, the peaks for both alleles are annotated with 

half the reads that mapped to this locus. For each locus with mutations a ratio is calculated 

based on the reads overlapping mutations and then the locus is annotated with the number of 

perfectly aligned reads multiplied by the corresponding to the ratio. (F) Schematic of the 

shifting process: Genomic coordinates of the individual genomes do not concur with the 

reference due to InDels. MARGE shifts the individual coordinates to the reference without 

changing the length of the sequence. (G) Shifting peak coordinates leads to minor loss of 

peaks. 34 PU.1 ChIP-seq data sets were mapped and peaks were called before and after 

shifting. Even with 2 million genetic variants between the reference and the individualized 
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genomes only up to 11 peaks are different. (H) UCSC genome browser shot showing PU.1 

ChIP-seq data in large peritoneal macrophages in 3 different inbred strains of mice (C57, 

NOD, and SPRET). Bed graphs generated by MARGE show genetic differences between the 

strains. The red rectangle shows a zoomed-in area of the UCSC genome browser. 

 

Figure 3: Schematic showing the algorithm for the motif mutation analysis for pairwise 

comparisons or comparisons of a big group of individuals. (A) Pairwise comparison: 

Data is mapped to individual genomes and shifted to reference coordinates. Peaks are called 

per genotype and are subsequentially merged and annotated with the tag counts from the tag 

directories with HOMER. The merged file is iteratively scanned for the TF binding motifs of 

interest. For all peaks containing the current TF motif of interest (marked in green) the binding 

difference between the two genotypes is calculated (fold change). For each TF the fold 

change distribution of all peaks is plotted (more information Sup. Fig. 1a) and a Student’s t-

test is performed on the fold change distribution of all peaks versus all peaks containing a 

mutation in genotype1 (red) (genotype2 (blue), respectively). Further a t-test is performed 

comparing the fold change distribution of all peaks missing the motif of interest in genotype1 

versus genotype2 (purple) and corrected for multiple testing. (B) Motif mutation analysis on 

more than two genotypes: Data is mapped to the individual genomes, shifted back to the 

reference coordinates and peaks are called on each genotype separately and subsequentially 

merged and annotated. Heterozygous data should be annotated with MARGE’s annotation 

function. The merged file is iteratively scanned for the TF motif of interest (marked in green). 

Per TF an output file is generated containing the locus, the binary existence of a motif, the 

motif score and the read counts. This output file is then inserted into a linear mixed model 

(LMM) implemented in R with the package lme4 modeling the binding as dependency of the 

motif score (or motif existence) with random factors Strain and Locus. A p-value is generated 

using the R command drop1 and corrected for multiple testing.  

 

Figure 4: Analysis of a simulated dataset (A) Motifs were defined as important 

collaborative binding (Tead3, Ventx, Zic1), somewhat collaborative (Rora, Znf354a, Plag1) 

and not collaborative (Pax6, Nr4a2, lin54, Bhlha15). Peak files were generated for all loci 

where PU.1 and one of the TF are within 200bp to each other for three mouse strains (C57, 

BALB, and SPRET) and consecutively merged between two strains. For highly collaborative 

TF 85% of the strain specific peaks show strain specific binding (somewhat collaborative: 

50%, not collaborative: 10%). Fold change was randomly chosen to be between 2 and 10 fold 

for differently and to be between 1 and 1.5 fold for similarly bound peaks. Read counts were 

randomly chosen to be between 0 and 500. (B) MARGE correctly identifies the association 

between motif and binding data. Motif mutation distribution plot (Sup. Fig. 2a) for one 

collaborative motif (Tead3) shows a highly significant association between motif mutation and 

binding data (medium significance for Plage1 (somewhat collaborative), no significant for 

Nr4a2 (not collaborative)). (C) Summary heatmap for all analysis on the simulated datasets. 
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MARGE showed high significance for the collaborative TF and less or no significance for non-

collaborative TF binding motifs. (D) Motif mutation position plot for Tead3, showing which 

positions are mutated and associated with different binding (more information Sup. Fig. 3a). It 

furthermore shows that in most cases InDels and multiple SNPs cause significant change in 

binding. (E) TF binding motif distribution of PU.1 and Ventx. Motifs for Ventx are closely 

distributed around the PU.1 binding site (more information Sup. Fig 3b). 

 

Figure 5: Analysis using MARGE’s pairwise-comparison (A) Motif mutation plot for PU.1 

data in LPMs analyzing the impact of mutations in the CEBP binding motif on PU.1 binding. 

Red ticks show mutations in the CEBP motif in C57 (blue for SPRET). Loss of the CEBP 

motifs is significantly associated with strain-specific PU.1 binding. (B) Motif position mutation 

plot for CEBP motif showing the position and effect of mutations in the CEBP motif in relation 

to PU.1 binding. The most conserved positions in the CEBP motif are associated with a loss 

of PU.1 binding. (C) The CEBP motif is distributed closely around the PU.1 motif with a 

depletion of the CEBP motif at the PU.1 binding site. (D) UCSC genome browser shot - Left 

panel: The gain of a PU.1 motif in SPRET adjacent to a CEBP motif results in PU.1 binding 

only in SPRET, but not in C57 or NOD. Right panel: The gain of a CEBP motif in NOD in 

close vicinity to a PU.1 motif results in PU.1 binding only in NOD. (E) Summary heat map of 

multiple testing corrected p-values for TF motifs associated with PU.1 binding. The heat map 

includes some negative control motifs that are not associated with macrophage biology which 

were not identified as significant. (F) UCSC genome browser shot - The loss of a RORA TF 

motif in SPRET causes loss of binding of CEBPa, FOXA1, and HNF4A in SPRET, but not in 

AJ, C57 and CAST. (G) Summary heat map of multiple testing corrected p-values of TF 

binding motifs associated with CEBPa, FOXA1, and HNF4A binding in whole liver. All factors 

reached significance in every pairwise comparison. Nuclear receptors were significantly 

associated with binding of the different factors.  

 

Figure 6: Results of all-versus-all analysis. (A) Summary heatmap of multiple testing 

corrected p-values of all-versus-all analysis of CEBP, FOXA1, and HNF4A ChIP-seq data 

sets from whole liver in AJ, C57, CAST, and SPRET. The analysis confirms the results from 

the pairwise analysis performed in Fig. 5g. The same motifs are highly significance with slight 

variations independent of considering motif score (MS) or motif existence (ME). (B) Summary 

heatmap of multiple testing corrected p-value of the all-versus-all analysis for CEBP, FOXA1, 

and HNF4A ChIP-seq data sets with the original order of the strains and shuffled order of the 

strains to assess sensitivity of MARGE. The color of the boxes correlates to the number of 

mutations (from 0 – white to 50 million – brown). When very similar strains are switched (AJ 

and C57) the MARGE results are clustered together. As soon as more diverse strains are 

switched or different strains are used, the results cluster as outliers to the original data and 

almost all motifs lose significance. (C) UCSC genome browser shot visualizing three human 

PU.1 datasets. The allele-specific loss of a PRDM1 motif close to an ETS motif causes allele-
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specific loss of PU.1 binding. (D) Summary heat map of multiple testing corrected p-values of 

transcription factor motifs significantly associated with PU.1 binding in human lymphoblastoid 

cell. Many TF motifs found to be significantly associated with PU.1 binding are either known 

to play important roles in B cell development and maintenance or cancer. By increasing the 

stringency of peaks included in the analysis (and decreasing the number of observations) the 

number of significant motifs decreases. Only PRDM1 is found as significant when using a 

filter of 16 reads.  

 

Supplemental Figure 1: Effect of mapping ChIP-seq data for human lymphoblastoid 

cell lines. (A) Percentage of reads mapped to the same locus after mapping to individualized 

genotype and reference. Only about 90% of reads mapped to the same locus when 

comparing mapping results for individualized genomes versus the reference. (B) Percentage 

of peaks unique to either the individualized genome of the reference genome hg19. Up to 4% 

of the peaks were called uniquely in either the PU.1 ChIP-Seq dataset mapped to hg19 or the 

individualized genome. 

 

Supplemental Figure 2: Detailed description of the output plots MARGE generates for 

the motif mutation analysis. (A) For each TF of interest MARGE generates this plot. The 

peaks are rank-ordered by most genotype-specific bound in genotype1 to most genotype-

specific bound in genotype2. Genotype1 is color-coded red, whereas genotype2 is color-

coded blue. The left upper corner shows how many mutations could be found in the motifs for 

genotype1 and genotype2. A red tick marks each peak without a TF binding motif of the TF of 

interest, if the motif is missing in genotype1 and a blue tick marks the motif is missing in 

genotype2. All data on the left bottom of the plot show peaks where the binding is very 

specific to genotype1. The right upper corner shows peaks where binding is very specific to 

genotype2. The box plot on the right summarizes the fold change distribution. Grey shows the 

fold change distribution for all peaks having the TF binding motif of interest. Red shows the 

fold change distribution for all peaks missing the TF binding motif of interest in genotype1, 

whereas blue shows the distribution for all peaks missing the TF binding motif in genotype2. 

A Student’s t-test is performed comparing these distributions. The p-value is shown below the 

box plots. Red shows the comparison of the background (grey box) versus the distribution for 

genotype1 (red box), blue shows the comparison of the background (grey box) versus the 

distribution for genotype2 (blue box) and purple shows the comparison between genotype1 

(red) and genotype2 (blue). (B) Kernel density plot for data shown in the motif mutation 

distribution plot. A Gaussian kernel is applied to the fold change distributions for all peaks 

with the motif of interest (black – background), all peaks with missing motifs in genotype1 

(red) and all peaks with missing motifs in genotype2 (blue) and plotted. The p-values are the 

corresponding p-values from the t-test explained above. 
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Supplemental Figure 3: Detailed description of additional output plots provided by 

MARGE. (A) Motif position mutation plot shows the consensus logo of the position-weighted 

matrix (PWM) from the motif. Mutations that affect the TF binding between both genotypes 

are marked by dots, whereas a star marks mutations with no effect. All mutations resulting in 

an adenosine are color-coded green (cysteine are color-coded blue, guanine are yellow and 

thymine are red). The number of InDels and multiple SNPs are reported separately for 

significant changes in binding and no changes. The y-axis shows the frequency for the 

mutations. (B) Motif distance distribution plot. All peaks are centered on their anchor TF 

binding motif and the distribution of the TF of interest is plotted around the TF. Further, a 

genome-wide background is plotted. The right y-axis shows the motif frequency in the 

genotypes, the left y-axis shows the frequency in the background. The distribution of the 

anchor TF is plotted for the background and the genotypes in the order of background (grey), 

genotype1 (dark green), and genotype2 (light green). They should overlap, so only the 

distribution of genotype2 should be visible. For the motif of interest the genome wide 

background is plotted in grey, whereas the distribution for genotype1 is blue and for 

genotype2 is red. The distribution should overlap and only the distribution of genotype2 

should be visible. The x-axis shows the distance of the motif to the center. 

 

Table 1: Overview of all natural genetic variation found in all strain-wise comparisons 

 

Table 2: Overview of all private genetic variation found in in this strain versus all other strains 

 

Supplemental Table 1: Summary of peak numbers before and after shifting for all 34 

individuals from a human PU1 ChIP-Seq dataset. Only up to 11 peaks are lost after shifting, 

which is less than 0.1% of all peaks. 

 

Supplemental Table 2: Summary of peak numbers before and after shifting for mouse data. 

The number of genetic variations is up to 40 million between two strains, and less than 0.1% 

of the peaks are lost after shifting. 
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Strain comparison #SNPs #InDels 

C57BL/6J vs. NOD/ShiLtJ 4,734,324 272,463 

C57BL/6J vs. SPRET/EiJ 40,757,582 2,206,269 

NOD/ShiLtJ vs. SPRET/EiJ 41,033,145 2,302,767 
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Private variation per strain #SNPs #InDels 

NOD/ShiLtJ  2,474,126 160,882 

SPRET/EiJ 38,490,407 2,101,665 

 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/268839doi: bioRxiv preprint first posted online Feb. 21, 2018; 



0

20

40

60

80

NA06985

NA06986

NA06994

NA07037

NA07048

NA07051

NA07056

NA07346

NA07357

NA10847

NA10851

NA11829

NA11830

NA11831

NA11832

NA11840

NA11881

NA11894

NA11918

NA11920

NA11931

NA11992

NA11994

NA12005

NA12043

NA12154

NA12156

NA12234

NA12249

NA12275

NA12282

NA12286

NA12287

NA12383

NA12489

NA12750

NA12760

NA12761

NA12762

NA12763

NA12776

percentage of all reads mapped to the same locus when mapped
to the individualized genomes versus the reference hg19

pe
rc

en
ta

ge
 o

f r
ea

ds
 o

ve
rla

pp
in

g
A

NA06985

NA06986

NA06994

NA07037

NA07048

NA07051

NA07056

NA07357

NA10847

NA11829

NA11830

NA11831

NA11832

NA11840

NA11881

NA11894

NA11918

NA11920

NA11931

NA11992

NA11994

NA12005

NA12043

NA12156

NA12234

NA12249

NA12275

NA12282

NA12286

NA12287

NA12383

NA12489

NA12750

NA12760

NA12761

NA12762

NA12763

NA12776

0

1

2

3

4

percentage of peaks unique to ChIP
mapped to individualzed genome versus reference hg19

pe
rc

en
ta

ge
 o

f p
ea

ks

B
hg19
ind. genome

100

Supplemental Figure 1

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/268839doi: bioRxiv preprint first posted online Feb. 21, 2018; 



Supplement Figure 2

Comparison of two genotypes

TF that was scanned for and
analyzed in this particular plot

color code for genotypes
and number of peaks with
mutations per genotype

y-axis shows 
FC between
two genotypes
in log2 scale

binding is more
specific to genotype1

binding is more
specific to genotype2

peaks are ordered by most specific to genotype1
versus most specific to genotype2
the “S-shape” of the curve is therefore artificially
created by this order
x-axis label show number of peaks

information about abundance of
peaks with TF motif of interest

Summary of fold change
distribution for all peaks (grey), 
peaks with mutations in genotype1 
(red), and peaks with mutations 
in genotype2 (blue)

p-value of t-test
comparing FC distribution of
genotype1 to background (red), 
genotype2 to background (blue),
and genotype1 to genotype2 (purple)

Each peak with a mutation in the motif
of interest in genotype1(genotype2, respectively) 
is marked by a red tick (blue, respectively)
Blue ticks are drawn 0.5 pixel higher than 
red ticks for a clearer visualization

A

0 10000 20000 30000 40000 50000

5
0

5
10

genotype1 vs. genotype2
TF of interest

rank ordered peaks

FC
 g

en
ot

yp
e1

 v
s.

 g
en

ot
yp

e2
 (l

og
2)

genotype1: i muts
genotype2: j muts

peaks: x with TF/y total (z%)

p values: 
genotype1 vs bg: p-value1
genotype2 vs bg: p-value2
genotype1 vs. genotype2: p-value3

5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

genotype1 vs genotype2
TF of interest

N = x   Bandwidth = y

D
en

si
ty

background
genotype1
genotype2

p values: 
genotype1 vs bg: p-value1
genotype2 vs bg: p-value2
genotype1 vs genotype2: p-value3

Comparison of two genotypes

TF that was scanned for and
analyzed in this particular plot

p-value of t-test
comparing FC distribution of
genotype1 to background (red), 
genotype2 to background (blue),
and genotype1 to genotype2 (purple)

color code for genotypes
and background 
distribution

B

Kernel density estimate by R
Red: all peaks with mutation
in motif of interest in genotype1
Blue: all peaks with mutation in 
motif of interest in genotype2
black: all peaks

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/268839doi: bioRxiv preprint first posted online Feb. 21, 2018; 



TF of interest

m
ut

_f
re

q_
si

g_
A

0
10

20
30

40
50

0
10

20
30

40
50 sig

unsig
A

C
G
T

InDels sig: #i
Indels not s: #j
Multiple SNPs sig: #m

Multiple SNPs not s: #n

Fr
eq

ue
nc

y

TF of interest that
is analyzed in this plot

Statistics about InDels
and multiple SNPs
that can not be shown
in this plot
sig: significant effect on
binding
non-s: non significant 
effect on binding

Frequence of 
mutation

legend for symbols
and color code 
for base mutation

LOGO sequence of consensus motif sequence used for scan

A

150 100 50 0 50 100 150

0
50

00
15

00
0

25
00

0

Distance plot for anchor TF and TF of interest

M
ot

if 
fre

qu
en

cy

0
50

10
0

15
0

anchor TF genotype1
TF of interest genotype1
anchor TF genotype2
TF of interest genotype2
anchor TF background
TF of interest background

Distance from peak center

legend for plot
the anchor TF should always overlap, 
so only the color for genotype2 is visable
the TF of interest distribution should 
also always overlap and only color for
genotype2 is visiable

Motif frequency
for background

motif frequency
for peaks from this
analysis

analysis for anchor TF
and TF of interest
for each TF a different background
distribution is used

B

Supplement Figure 3

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/268839doi: bioRxiv preprint first posted online Feb. 21, 2018; 



100 Chapter 3



Chapter 4
Transcription Factor Landscapes in
Macrophages from Genetically
Diverse Mice Reveal Connected
Regulatory Domains

Verena M. Link, Sascha H. Duttke, Hyun B. Chun, Inge R. Holtman, Emma Westin,
Marten A. Hoeksema, Yohei Abe, Dylan Skola, Casey E. Romanoski, Jenhan Tao, Gregory
J. Fonseca, Ty D. Troutman, Nathanael J. Spann, Tobias Strid, Mashito Sakai, Miao Yu,
Rong Hu, Rongxin Fang, Dirk Metzler, Bing Ren, and Christopher K. Glass

manuscript under review in Cell



102 Chapter 4



	 1	

Transcription	Factor	Landscapes	in	Macrophages	from	Genetically	Diverse	Mice	

Reveal	Extensive	Connected	Regulatory	Domains	

	

Verena	M.	Link	1,2,	Sascha	H.	Duttke1,*,	Hyun	B.	Chun1,*,	Inge	R.	Holtman1,3,	Emma	

Westin1,	Marten	A.	Hoeksema1,	Yohei	Abe1,	Dylan	Skola1,	Casey	E.	Romanoski4,	Jenhan	Tao1,	

Greg	Fonseca1,	Ty	D.	Troutman1,	Nathanael	Spann1,	Tobias	Strid1,	Mashito	Sakai1,	Miao	Yu5,	

Rong	Hu5,	Rongxin	Fang5,	Dirk	Metzler2,	Bing	Ren1,5,	and	Christopher	K.	Glass1,6,7	

	
1	Department	of	Cellular	and	Molecular	Medicine,	School	of	Medicine,	University	of	California,	

San	Diego,	La	Jolla,	CA,	USA	
2Faculty	of	Biology,	Division	of	Evolutionary	Biology,	Ludwig-Maximilian	University	of	Munich,	

Germany	
3	Department	of	Neuroscience,	Section	Medical	Physiology,	University	of	Groningen,	University	

Medical	Center	Groningen,	Netherlands	
4	Department	of	Cellular	and	Molecular	Medicine,	University	of	Arizona	College	of	Medicine,	

Tucson,	AZ,	USA	
5	Ludwig	Institute	for	Cancer	Research,	La	Jolla,	CA,	USA	
6	Department	of	Medicine,	University	of	California,	San	Diego,	La	Jolla,	CA,	USA	
7	Corresponding	author:	ckg@ucsd.edu	

*	Equivalent	second	co-author	contributions		

	 	

Manuscript



	 2	

Abstract	

Non-coding	genetic	variation	is	a	major	driver	of	phenotypic	diversity	and	allows	

investigation	of	mechanisms	that	control	gene	expression.	Here,	we	systematically	

investigate	effects	of	>50	million	variations	from	five	strains	of	mice	on	mRNA,	nascent	

transcription,	transcription	start	sites	and	transcription	factor	binding	in	resting	and	activated	

macrophages.	We	observe	substantial	differences	in	gene	expression	that	are	associated	with	

distinct	molecular	pathways.	Evaluation	of	genetic	variation	provides	evidence	for	roles	of	

~100	transcription	factors	in	shaping	the	binding	of	macrophage	lineage-determining	factors.	

Unexpectedly,	a	substantial	fraction	of	the	strain-specific	binding	of	these	factors	cannot	be	

explained	by	local	mutations.	Integration	of	genomic	features	with	assays	of	chromatin	

interactions	provides	evidence	for	hundreds	of	connected	cis-regulatory	domains	that	are	

associated	with	differences	in	transcription	factor	binding	and	gene	expression.	This	system	

and	the	>250	data	sets	establish	a	substantial	new	resource	for	investigation	of	how	genetic	

variation	affects	cellular	phenotypes.	

	

Introduction	

Mammalian	organisms	are	composed	of	several	hundred	cell	types	that	share	a	common	

genome.	The	development	and	function	of	each	cell	thus	requires	appropriate	selection	of	

promoter	and	enhancer	elements	that	regulate	their	specific	programs	of	gene	expression	

(Heinz	et	al.,	2015;	Levine,	2010;	Shlyueva	et	al.,	2014).	Genome-wide	assessment	of	chromatin	

features	specific	to	enhancers	and	promoters	across	many	cell	types	and	tissues	in	humans	and	

mice	revealed	hundreds	of	thousands	of	enhancer-like	regions,	with	any	particular	cell	type	

exhibiting	on	the	order	of	20,000-30,000	such	elements	(Andersson	et	al.,	2014;	Roadmap	

Epigenomics	et	al.,	2015).	The	general	question	of	how	each	cell	type	selects	its	particular	

repertoire	of	transcriptional	regulatory	elements	is	therefore	central	to	understanding	the	

corresponding	cell’s	development	and	functions.		

	

Investigation	of	mechanisms	underlying	the	selection	of	cell-specific	enhancers	indicate	key	

roles	of	so-called	pioneering	factors	that	have	the	potential	to	recognize	their	binding	motifs	in	
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the	context	of	closed	chromatin	(Soufi	et	al.,	2015)	and	can	therefore	function	as	lineage	

determining	transcription	factors	(Heinz	et	al.,	2015;	Iwafuchi-Doi	and	Zaret,	2014).	However,	

such	factors	only	bind	to	a	small	fraction	of	their	corresponding	recognition	motifs	that	are	

present	within	the	genome,	and	the	same	pioneering	factor	can	bind	to	different	genomic	

regions	in	different	cell	types	(Heinz	et	al.,	2010;	Jin	et	al.,	2011;	Roadmap	Epigenomics	et	al.,	

2015).	Therefore,	additional	mechanisms	are	required	to	specify	their	DNA	binding	patterns	in	

each	cell	type.		

	

Studies	in	macrophages	provided	evidence	for	a	collaborative/hierarchical	model	for	enhancer	

selection	driven	by	macrophage-restricted	combinations	of	lineage-determining	factors	that	

include	PU.1	and	C/EBPα/β	(Heinz	et	al.,	2010).	In	these	studies,	the	pioneering	functions	of	

PU.1	and	C/EBPs	were	suggested	to	be	dependent	on	collaborative	interactions	at	sites	in	the	

genome	containing	closely	spaced	(i.e.	<	~150	bp)	binding	motifs	for	each	factor.	Collaborative	

binding	of	PU.1	and	C/EBPs	was	supported	by	studies	investigating	effects	of	genetic	variation	

in	macrophages	derived	from	C57BL/6J	and	BALB/cJ	mice,	in	which	hundreds	of	strain-specific	

binding	sites	for	each	factor	were	observed	(Heinz	et	al.,	2013).	Strain-specific	mutations	in	the	

recognition	motif	for	PU.1	that	resulted	in	loss	of	PU.1	binding	in	that	strain	also	resulted	in	loss	

of	nearby	C/EBPβ	binding,	despite	intact	C/EBP	recognition	motifs,	and	vice	versa.	While	these	

studies	provided	support	for	a	collaborative	model	of	enhancer	selection,	they	also	indicated	

that	the	majority	of	strain-specific	binding	of	PU.1,	C/EBP	and	P65	could	not	be	explained	by	

mutations	in	their	respective	binding	motifs	(Heinz	et	al.,	2013).	This	discrepancy	raised	new	

questions	regarding	the	determinants	of	the	pioneering	functions	of	factors	such	as	PU.1	and	

C/EBP	and	the	extent	to	which	the	binding	of	these	factors	is	influenced	by	nearby	versus	

distant	genomic	elements.	

	

Additional	motivation	for	elucidating	mechanisms	underlying	general	and	cell-specific	gene	

expression	derives	from	the	importance	of	non-coding	genetic	variation	as	a	determinant	of	

phenotypic	diversity.	While	mutations	in	amino	acid	coding	sequences	that	result	in	altered	or	

loss	of	function	of	essential	proteins	are	well-established	causes	of	monogenic	diseases,	they	
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account	for	a	small	fraction	of	overall	genetic	variation	and	inherited	risk	of	disease.	Genome-

Wide	Association	Studies	(GWAS)	of	diverse	phenotypic	traits,	including	disease	risk,	

consistently	identify	between	80	to	90%	of	the	significant	variants	to	reside	in	non-coding	

regions	of	the	genome,	implying	regulatory	functions	(Farh	et	al.,	2015;	Genomes	Project	et	al.,	

2015;	Hindorff	et	al.,	2009;	Maurano	et	al.,	2012).	Consistent	with	this,	genetic	variation	has	

been	demonstrated	to	directly	affect	transcription	factor	binding	as	an	underlying	determinant	

of	altered	chromatin	states	and	gene	expression	(Farh	et	al.,	2015;	Heinz	et	al.,	2013;	Kasowski	

et	al.,	2010;	Kilpinen	et	al.,	2013;	McDaniell	et	al.,	2010;	McVicker	et	al.,	2013;	Reddy	et	al.,	

2012).	Despite	this	substantial	progress,	interpretation	of	non-coding	genetic	variation	remains	

challenging	for	most	loci	and	it	is	not	yet	possible	to	accurately	predict	gene	expression	from	

genotype.		

	

Here	we	exploit	genetic	variation	provided	by	five	diverse	inbred	strains	of	mice	to	query	

mechanisms	underlying	transcription	factor	binding	and	function.	To	eliminate	confounding	

effects	of	strain-specific	differences	in	tissue	environments	that	are	known	to	influence	

macrophage	phenotypes	in	vivo	(Gosselin	et	al.,	2014;	Lavin	et	al.,	2014),	we	performed	studies	

in	bone	marrow	derived	macrophages	(BMDMs),	in	which	each	strain-specific	population	of	

macrophages	was	established	using	an	identical	M-CSF-dependent	differentiation	protocol.	To	

assess	the	impact	of	genetic	variation	on	signal-dependent	transcription	factor	binding	and	

function,	BMDMs	were	activated	with	Kdo2	lipid	A	(KLA),	a	highly	specific	TLR4	agonist	(Raetz	et	

al.,	2006).	This	system	has	several	experimental	strengths.	BMDMs	are	derived	from	readily	

available	inbred	strains	of	mice	in	which	all	loci	are	homozygous	and	whole	genome	sequences	

are	available	(Keane	et	al.,	2011).	The	five	strains	selected	provide	genetic	variation	ranging	

between	~4.5	million	SNPs	+	InDels,	similar	to	differences	between	any	two	individuals,	to	~50	

million	SNPs	+	InDels,	on	the	order	of	all	such	common	variants	in	the	human	population	

(Genomes	Project	et	al.,	2015).	The	selected	strains	of	mice	have	been	extensively	phenotyped	

and	exhibit	marked	phenotypic	diversity	(Bogue	et	al.,	2017;	Lusis	et	al.,	2016).	Sufficient	cells	

can	be	obtained	for	a	broad	range	of	genomic,	proteomic,	lipidomic	and	functional	assays	and	

can	be	readily	derived	from	crosses	between	strains	and	genetically	modified	mice.	Using	this	
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experimental	system,	we	systematically	evaluate	the	effects	of	SNPs	and	InDels	on	gene	

expression,	nascent	transcription,	open	chromatin,	transcription	factor	binding	and	histone	

modifications	associated	with	primed	and/or	active	regulatory	elements	in	resting	and	

activated	primary	macrophages	(Figure	1A),	generating	more	than	250	genome-wide	data	sets.	

In	parallel,	we	develop	a	general	computational	pipeline	for	assessing	the	significance	of	motif	

mutations	on	transcription	factor	binding.	

	

Given	the	diverse	roles	of	macrophages	in	immunity,	tissue	homeostasis	and	disease	(Hirsch	et	

al.,	2012;	Malm	et	al.,	2015;	Moore	and	Tabas,	2011;	Nguyen	et	al.,	2006;	Williams	et	al.,	2016),	

the	experimental	system,	accompanying	data	and	analytical	pipeline	provide	a	significant	new	

resource	for	investigation	of	the	transcriptional	mechanisms	underlying	macrophage	gene	

expression	and	their	context-specific	functions.		We	observe	striking	effects	of	genetic	variation	

on	nascent	and	mature	mRNA	expression	that	predict	distinct	macrophage	phenotypes	in	each	

mouse	strain.	Differences	in	gene	expression	are	associated	with	order	of	magnitude	greater	

differences	in	transcription	factor	binding.	Leveraging	these	differences,	we	provide	evidence	

supporting	the	hypothesis	that	the	genomic	binding	patterns	of	macrophage	lineage	

determining	transcription	factors	are	influenced	by	a	large	fraction	of	other	transcription	

factors	expressed	in	these	cells.	Although	most	variation	in	nascent	transcription	and	

transcription	factor	binding	is	consistent	with	cis-regulation,	thousands	of	strain-specific	

differences	in	transcription	factor	binding	and	chromatin	features	cannot	be	explained	by	local	

mutations.	Integration	of	strain-specific	genomic	features	indicate	that	they	frequently	reside	in	

highly	interconnected	clusters	that	are	associated	with	strain-specific	gene	expression,	

suggesting	a	domain-wide	regulatory	environment	that	influences	transcription	factor	binding	

and	function.		
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Results	

Genetic	variation	and	mRNA	expression		

The	effect	of	genetic	variation	on	polyadenylated	(polyA)	RNA	expression	was	assessed	in	

BMDMs	derived	from	C57BL/6J	(C57),	BALB/cJ	(BALB),	NOD/ShiLtJ	(NOD),	PWK/PhJ	(PWK)	and	

SPRET/EiJ	(SPRET)	(Figure	S1A)	by	RNA-seq	under	basal	conditions	(notx)	and	following	

stimulation	with	KLA	for	1	hour.	A	minimum	of	two	biological	replicates	was	performed	for	each	

mouse	strain	and	condition,	with	replicates	being	highly	correlated	(Figure	S1B,	S1C).	Pairwise	

comparisons	of	BALB,	NOD,	PWK	and	SPRET	BMDMs	to	C57	BMDMs	indicate	a	progressive	

increase	in	differential	gene	expression	in	resting	cells	(Figure	1B).	Using	a	4-fold	cutoff	and	

false	discovery	rate	(FDR)	of	0.01,	divergent	gene	expression	ranged	from	112	RNA	transcripts	

in	the	BALB	x	C57	comparison	(4,158,340	SNPs	and	240,320	InDels)	to	1,438	RNA	transcripts	in	

the	SPRET	x	C57	comparison	(40,757,582	SNPs	and	2,206,269	InDels)	(Table	S1).	Shared	and	

private	differently	regulated	genes	are	shown	in	Figure	1C.	These	data	show	that	BMDMs,	

despite	being	maintained	in	identical	environments,	exhibit	a	remarkable	diversity	of	gene	

expression.	For	example,	~10%	of	the	expressed	transcriptomes	vary	at	least	4-fold	(FDR	<	0.01)	

without	perturbation	by	KLA.	Upon	KLA	treatment	a	total	of	129	genes	were	regulated	in	any	

strain	by	greater	than	4-fold	at	a	FDR	threshold	of	0.01	(Table	S1).	Although	differences	in	the	

expression	response	across	strains	increased	with	genetic	variation,	there	were	very	few	

qualitative	differences	in	the	response	to	KLA	at	1h.	This	suggests	strong	conservation	of	the	

initial	TLR4	response	between	BMDMs	of	all	strains	(Figure	1C,	D).	The	relationship	of	

transcriptional	variation	as	a	function	of	SNPs	+	InDels	for	all	ten	pairwise	comparisons	is	

indicated	in	Figure	1E.	Notably,	differential	gene	expression	exhibits	a	sharp	rise	for	pairwise	

comparisons	between	C57,	BALB	and	NOD	and	comparisons	of	these	strains	with	PWK.	Addition	

of	genes	differentially	regulated	in	SPRET	leads	to	a	further	but	non-linear	increase	in	divergent	

gene	expression.		

	

Clustering	the	RNA-seq	data	segregates	the	samples	by	strain,	with	KLA	treatment	being	a	

secondary	determinant	(Figure	S1C).	WGCNA	analysis	(Langfelder	and	Horvath,	2008)	identifies	

numerous	differentially	expressed	gene	modules,	many	of	which	are	significantly	enriched	for	
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genes	associated	with	specific	biological	functions	including	autophagy,	metabolism,	cell	cycle	

and	interferon	signaling	(Figure	1C,	Figure	S1D).	To	validate	one	such	module,	we	tested	the	

prediction	that	macrophages	derived	from	SPRET	mice	would	exhibit	defects	in	the	type	I	

interferon	response	following	TLR4	ligation	in	comparison	to	C57	macrophages.	C57	and	SPRET	

BMDMs	in	replicates	were	treated	with	KLA	for	6	hours,	at	which	time	a	robust	Type	I	

interferon	response	is	observed	in	C57	BMDMs	at	the	level	of	mRNAs.	This	is	shown	by	an	

expression	heat	map	of	46	known	interferon	stimulated	genes	(ISGs)	exhibiting	>4-fold	

induction	in	C57	BMDMs	(Figure	1F).	A	subset	of	these	genes,	exemplified	by	Mx1	and	Mx2,	are	

fully	induced	in	SPRET	BMDMs.	However,	37	of	the	46	ISGs	exhibit	>2-fold	less	expression	in	

SPRET	BMDMs	following	KLA	treatment,	exemplified	by	Ccl5	and	Ccl2,	and	40	of	these	ISGs	

exhibit	>	2-fold	less	expression	in	SPRET	BMDMs	under	basal	conditions.	These	findings	suggest	

that	differences	in	the	basal	level	of	activity	of	the	Type	I	IFN	pathway	in	these	macrophages	

determine	its	overall	responsiveness	to	stimulation.	

	

Effect	of	genetic	variation	on	nascent	transcription		

We	performed	whole	genome	run-on	analysis	coupled	to	deep	sequencing	(GRO-seq)	(Core	et	

al.,	2008)	to	more	directly	assess	the	effects	of	genetic	variation	on	nascent	transcription	in	

BMDMs	from	each	strain	under	control	conditions	and	1h	after	treatment	with	KLA.	A	minimum	

of	two	biological	replicates	was	performed	for	each	mouse	strain	and	condition	(Table	S2).	As	in	

the	case	of	polyA	RNA	transcripts,	pairwise	comparisons	of	nascent	gene	body	transcripts	

exhibited	increasing	but	non-linear	strain-specific	differences	with	increasing	degrees	of	genetic	

variation	(Figure	2A).	Strain-specific	GRO-seq	signal	is	exemplified	for	Igf1	in	Figure	2B.	KLA	

treatment	induced	GRO-seq	signal	at	939	genes	>4-fold	with	an	FDR	<0.01	in	BMDMs	from	at	

least	one	strain,	and	repressed	452	genes.	The	larger	effect	of	KLA	signaling	on	nascent	

transcripts	is	consistent	with	the	1	hour	time	point	being	relatively	early	in	the	overall	response	

to	TLR4	signaling,	such	that	many	induced	or	repressed	mRNAs	have	not	yet	reached	changes	

required	to	meet	the	stringent	cutoffs	for	selection.	Clustering	the	GRO-seq	data	sets	indicates	

that	the	KLA	treatment	response	is	the	dominant	variable,	in	contrast	to	strain	background	for	

polyA	transcripts	(Figure	S2A).	As	in	the	case	of	the	RNA	response,	very	few	genes	exhibited	
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divergent	responses	to	KLA	at	the	one	hour	time	point,	exemplified	for	comparisons	of	BALB	

and	SPRET	to	C57	in	Figure	2C.	

	

To	define	sites	of	transcription	initiation,	we	performed	5’GRO-seq,	which	selects	for	the	

capped	ends	of	nascent	transcripts	and	enables	base	pair	resolution	of	RNA	polymerase	(Pol)	II	

start	sites	(Lam	et	al.,	2013).	The	relationship	of	5’GRO-seq	to	GRO-seq	and	H3K27ac	at	the	Igf1	

locus	is	illustrated	in	Figure	2B.	In	addition	to	genic	start	sites,	GRO-seq	and	5’GRO-seq	also	

quantify	RNA	generated	at	enhancers	(eRNAs)	(Hah	et	al.,	2011;	Kaikkonen	et	al.,	2013;	Lam	et	

al.,	2013),	observed	upstream	of	the	Igf1	transcription	start	site	(TSS)	in	Figure	2B.	Because	

polyA	RNAs	can	be	initiated	from	different	promoters	in	a	cell-specific	manner	(Noguchi	et	al.,	

2017),	methods	such	as	5’GRO-seq	are	required	to	annotate	genic	start	sites	within	a	given	cell	

type.	Using	5’GRO-seq,	we	find	about	30%	of	mRNAs	to	be	initiated	further	than	50	bp	from	

RefSeq	annotated	start	sites,	suggesting	utilization	of	alternative	core	promoter	elements	in	

macrophages	and/or	technical	differences	with	respect	to	prior	methods	used	for	start	site	

annotation	(Figure	S2B,	S2C).	Using	5’GRO-seq	annotated	TSS,	we	investigated	the	extent	to	

which	differences	in	nascent	and	polyA	RNA	levels	could	be	explained	by	mutations	within	the	

core	promoter	(-30	to	+20	bp	from	the	TSS),	the	proximal	promoter	region	(-300	to	+50	bp	from	

the	TSS)	and	more	distal	elements.	Figure	2D	shows	the	percentage	of	core	promoter	regions	

containing	mutations	that	exhibit	>4-fold	differences	in	gene	expression	against	the	percentage	

of	core	promoter	regions	with	mutations	that	do	not	exhibit	strain-specific	gene	expression.	For	

comparisons	of	C57	versus	PWK	or	SPRET,	20	-	40%	of	core	promoters	contain	mutations	

regardless	of	variation	in	gene	expression.	For	comparisons	of	C57	versus	BALB	or	NOD,	the	

mutation	frequency	in	core	promoters	of	differentially	expressed	genes	is	10-15%,	in	

comparison	to	5-10%	in	core	promoters	of	similarly	expressed	genes.	Using	the	2-sample	test	

for	equality	of	proportions	with	continuity	correction,	these	values	are	significantly	similar	(p-

value	<1e-12	for	C57	vs.	BALB,	p-value	<1e-3	for	C57	vs.	NOD).		For	the	proximal	promoter,	~	

40%	of	differently	regulated	genes	in	C57,	BALB	and	NOD	BMDMs	contain	sequence	variants	in	

comparison	to	a	25-30%	mutation	frequency	in	the	proximal	promoters	of	similarly	expressed	

genes	(p-value	<	2.2e-16	for	C57	vs.	BALB	and	p-value	=	6.57e-07	for	C57	vs.	NOD,	2-sample	test	
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for	equality	of	proportions	with	continuity	correction)	(Figure	S2D).	Therefore,	the	majority	of	

differences	in	gene	expression	cannot	be	explained	through	variation	within	the	core	or	

proximal	promoter	sequences.		

	

We	next	established	the	relative	contributions	of	local	versus	distal	genetic	variation	on	

differential	expression	of	nascent	and	polyA	RNA	transcripts	by	analyzing	BMDMs	derived	from	

F1	crosses	of	C57,	PWK	and	SPRET	mice.	In	this	context,	differences	between	inbred	parental	

strains	are	likely	a	cis	effect	if	the	difference	between	the	parental	alleles	is	maintained	within	

the	F1	hybrid	(where	there	is	one	copy	of	each	parental	allele).	In	contrast,	if	alleles	that	are	

differentially	expressed	in	the	parental	strains	become	similarly	expressed	in	the	F1	animal,	we	

consider	differential	regulation	in	the	parental	strains	to	be	mainly	due	to	trans	effects.	A	plot	

of	fold	difference	in	allele-specific	reads	of	nascent	gene	body	transcripts	for	a	cross	of	C57	and	

SPRET	mice	versus	the	fold	difference	in	the	parental	strains	is	illustrated	in	Figure	2E.	A	

corresponding	plot	for	a	cross	of	C57	and	PWK	mice	is	shown	in	Figure	S2E.	These	comparisons	

indicate	that	about	80%	of	the	differences	in	nascent	transcripts	are	determined	in	cis	(Figure	

S2F).	When	relaxing	the	threshold	for	cis-regulation	to	a	difference	of	1.5-fold,	90%	of	genes	are	

considered	cis-regulated.	Examples	illustrating	primarily	cis-regulation	are	provided	for	Npy	and	

Plag2g7	for	C57	versus	SPRET	BMDMs	in	Figure	2F.	Collectively,	these	findings	indicate	that	

strain-specific	gene	expression	primarily	results	from	cis-variation	that	is	distal	from	core	and	

proximal	promoter	elements.		

	

Effect	of	genetic	variation	on	LDTF	binding	and	chromatin	signatures		

ChIP-seq	experiments	for	PU.1,	C/EBPβ,	CJUN	and	the	P65	component	of	NFκB	under	resting	

and	KLA-stimulated	conditions	were	performed	in	BMDMs	derived	from	each	mouse	strain.	

Regions	of	open	chromatin	were	assessed	using	the	Assay	for	Transposase-Accessible	

Chromatin,	or	ATAC-seq	(Buenrostro	et	al.,	2013),	and	ChIP-seq	of	dimethylation	of	lysine	4	on	

histone	3	(H3K4me2)	and	acetylation	of	lysine	27	on	histone	3	(H3K27ac)	were	used	as	

surrogates	of	primed/active	and	active	regulatory	regions,	respectively	(Creyghton	et	al.,	2010;	

He	et	al.,	2010).	The	Irreproducible	Discovery	Rate	(IDR)	method	(Li	et	al.,	2011)	was	used	to	
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define	highly	reproducible	peaks	across	replicates	for	the	ChIP-seq	experiments	evaluating	

binding	of	PU.1,	C/EBPβ,	CJUN,	P65	and	the	ATAC-seq	data.	Because	IDR	is	not	applicable	to	

histone	modification	ChIP-seq	experiments,	DESeq2	was	used	(Love	et	al.,	2014)	and	regions	

similar	between	replicates	(p-value	<	0.001)	were	kept.	Examples	of	biological	replicates	and	

correlation	heat	maps	are	provided	in	Figure	S3A	and	S3B.	The	numbers	of	features	identified	

for	each	of	these	assays	in	the	five	strains	of	BMDMs	under	control	and	KLA-treated	conditions	

are	provided	in	Table	S3.		

	

The	effect	of	genetic	variation	on	H3K27ac	ChIP-seq	regions	is	illustrated	for	comparisons	of	

BALB	and	SPRET	BMDMs	to	C57	BMDMs	in	Figure	3A	and	corresponding	comparisons	for	

H3K4me2	are	shown	in	Figure	S3C.	As	in	the	case	of	polyA	and	nascent	gene	body	RNA,	

variation	in	these	features	scale	with	genetic	diversity,	but	to	a	greater	degree.	Extension	of	

these	comparisons	for	ATAC-seq	defined	regions	is	illustrated	in	Figure	3B.	Strikingly,	variation	

in	IDR-defined	open	chromatin	regions	occurs	to	an	order	of	magnitude	greater	extent	than	

polyA	or	nascent	gene	body	RNA	expression.	Genomic	regions	exhibiting	at	least	4-fold	

differences	in	ATAC-seq	tag	counts	range	from	~1650	for	the	comparison	of	C57	and	BALB	to	

~19,700	for	the	comparison	of	C57	to	SPRET.	We	performed	de	novo	motif	analysis	of	distal	

ATAC-seq	peaks	(>3000	bp	from	a	TSS)	associated	with	H3K27ac,	corresponding	to	potential	

enhancer	elements,	in	resting	BMDMs	from	each	strain.	This	analysis	returned	a	consistent	

pattern	of	motifs	for	PU.1,	AP-1	and	C/EBP	as	the	most	highly	enriched	motifs,	followed	by	

motifs	for	USF,	RUNX	and	a	composite	PU.1-IRF	motif	(Figure	3C).	We	then	defined	the	

intersections	of	ChIP-seq	peaks	for	PU.1,	CJUN	and	C/EBPβ	with	distal	ATAC-seq	peaks	

associated	with	H3K27ac.	These	three	factors,	alone	or	in	combination,	were	found	to	occupy	

~85%	of	the	putative	distal	regulatory	regions	of	BMDMs	in	each	strain,	exemplified	for	C57	

BMDMs	in	Figure	3D.	H3K27ac	ChIP-seq	data	was	also	used	to	define	super	enhancers,	which	

are	genomic	regions	that	are	occupied	by	a	high	density	of	active	transcriptional	regulatory	

elements	and	are	associated	with	genes	required	for	cellular	identity	(Whyte	et	al.,	2013).	In	

comparison	to	H3K27ac	patterns	as	a	whole,	H3K27ac	signal	at	super	enhancers	was	generally	

concordant	across	strains	(Figure	3E).		
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The	impact	of	genetic	variation	on	transcription	factor	binding	is	illustrated	for	PU.1	in	Figure	3F.	

As	in	the	case	of	H3K27ac	regions	and	ATAC-seq	peaks,	we	observed	a	striking	graded	

progression	of	strain-specific	binding	as	a	function	of	extent	of	SNPs	and	InDels.	Strain-specific	

binding	of	PU.1	ranged	from	~3,800	peaks	comparing	BALB	and	C57	to	more	than	23,000	peaks	

comparing	SPRET	to	C57,	the	latter	number	representing	nearly	one	quarter	of	the	IDR-defined	

PU.1	binding	sites.	Similar	patterns	were	observed	for	C/EBPβ,	CJUN	and	P65	(Figure	S3D-S3F).	

Thus,	variation	in	transcription	factor	binding	greatly	exceeds	variation	in	gene	expression.	To	

quantify	the	extent	of	cis	versus	trans-regulation	of	binding	for	transcription	factors,	PU.1	ChIP-

seq	experiments	were	performed	in	two	F1	strains	(PWK	x	C57	and	SPRET	x	C57)	in	resting	

BMDMs	and	after	KLA	stimulation	for	1	hour.	Directly	comparing	fold	change	of	allele-specific	

reads	between	parents	and	their	corresponding	fold	change	in	the	F1	strains	indicates	that	

more	than	70%	of	the	peaks	follow	the	parental	pattern	and	are	therefore	considered	to	be	cis-

regulated	(Figure	3G,	Figure	S3G,	S3H),	consistent	with	findings	for	nascent	gene	body	RNA.		

	

We	next	assessed	the	extent	to	which	strain-similar	and	strain-specific	ATAC-seq	and	ChIP-seq	

peaks	exhibit	local	genetic	variation	(+/-	150	bp	of	the	peak	center).	We	considered	

homozygous	variants	that	passed	a	stringent	quality	filter	as	well	as	sequence	variants	meeting	

lower	stringency	criteria	(see	extended	methods	for	details).	For	comparisons	of	C57	to	BALB	

and	NOD	BMDMs,	20-22%	of	the	strain-similar	peaks	contain	SNPs	and/or	InDels	(Figure	3H)	(22%	

-	25%	for	the	more	lenient	definition,	respectively).	These	frequencies	increase	to	71-96%	in	

comparisons	involving	PWK	and	SPRET	BMDMs,	indicating	that	the	great	majority	of	local	

sequence	variants	are	silent.	For	strain-specific	peaks	defined	by	a	>4-fold	cut-off,	comparisons	

of	C57	to	BALB	and	NOD	BMDMs	indicated	that	only	52-59%	of	the	ATAC-seq	peaks	and	64-78%	

of	the	PU.1	ChIP-seq	peaks	contain	local	variants.	Extending	the	strain-specific	cut-off	to	>8	fold,	

76-77%	of	ATAC-seq	peaks	and	76-81%	of	PU.1	ChIP-seq	peaks	contain	local	SNPs	and/or	InDels	

(Figure	3H).	Similar	relationships	are	observed	for	C/EBPβ,	CJUN	and	P65,	although	the	fractions	

of	strain-specific	peaks	containing	mutations	are	somewhat	lower	(Figure	S3I).	While	these	

findings	are	consistent	with	the	expected	effects	of	genetic	variation	on	transcription	factor	
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binding	and	open	chromatin,	they	also	indicate	that	substantial	fractions	of	strain-specific	

differences	in	these	features	cannot	be	explained	by	local	SNPs	or	InDels.	Further	examination	

of	structural	variants	indicates	that	these	regions	frequently	explain	extreme	(i.e.,	all	or	none)	

strain-specific	differences	(Figure	S3J,	exemplified	for	C57	versus	SPRET)	for	regions	without	

mutations,	but	overall	account	for	only	about	2%	-	4%	of	the	features	with	mutations	

exhibiting	>4-fold	differences	between	strains	(Figure	S3K).	

	

Inference	of	an	extensive	network	of	collaborative	transcription	factors	

Prior	observations	that	mutations	in	PU.1	motifs	alter	the	binding	of	nearby	C/EBPβ	and	vice	

versa	(Heinz	et	al.,	2013)	provide	the	basis	for	a	general	approach	for	discovery	of	collaborative	

binding	partners	by	systematic	analysis	of	effects	of	local	motif	mutations.	Here,	we	

qualitatively	advance	this	strategy	by	leveraging	the	diversity	of	five	strains	of	mice,	

simultaneously	assessing	four	transcription	factors	under	basal	and	stimulated	conditions,	and	

developing	a	new	Mutational	Analysis	of	Regulatory	Genomic	Elements	(MARGE)	(Link	et	al.,	

2018)	software	pipeline	to	comprehensively	evaluate	the	relationship	of	motif	mutations	with	

transcription	factor	binding	(see	extended	methods	for	details).	Using	an	input	of	normalized	

ChIP-seq	or	ATAC-seq	data	from	genetically	diverse	samples,	a	library	of	motifs	to	query,	and	

corresponding	genomic	sequence	for	each	sample,	MARGE	utilizes	a	general	linear	mixed	

model	to	calculate	a	p-value	for	whether	mutations	in	a	particular	motif	are	significantly	

associated	with	differential	transcription	factor	binding,	chromatin	accessibility	or	transcription	

initiation.	Because	many	motifs	in	existing	databases	are	highly	redundant	and	are	recognized	

by	the	same	factor	or	family	of	factors,	we	also	generated	a	non-redundant	motif	library	by	

clustering	all	motifs	currently	resident	in	the	JASPER	2016	non-redundant	database	and	

combining	motifs	with	a	Pearson	correlation	coefficient	of	greater	than	0.9.	After	further	

manual	curation	this	exercise	yielded	230	motifs	that	were	used	for	analysis.	

		

We	applied	MARGE	to	systematically	identify	motifs	for	which	disruptions	due	to	mutations	

were	highly	correlated	with	strain-specific	binding	of	PU.1,	C/EBPβ,	CJUN	or	P65	under	control	

and	KLA	treatment	conditions.	A	heat	map	for	a	subset	of	the	most	highly	significant	motifs	is	
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illustrated	in	Figure	4A,	along	with	the	corresponding	motif	name.	The	complete	set	of	

significant	motifs	is	illustrated	in	Figure	S4A.	In	total,	mutations	in	80	motifs	were	found	to	be	

associated	with	strain-specific	binding	of	PU.1,	C/EBPβ,	CJUN	and/or	P65	at	a	p-value	of	less	

than	1e-10	(Table	S4).	These	motifs	could	in	turn	be	associated	with	more	than	100	transcription	

factors	expressed	>	1	transcript	per	million	(TPM)	(Table	S5),	providing	genetic	evidence	for	

functional	roles	of	a	large	fraction	of	the	TFs	expressed	in	BMDMs	as	collaborative	partners	that	

drive	the	selection	of	potential	regulatory	elements.		

	

In	addition	to	consensus	PU.1,	C/EBP,	and	AP-1	motifs,	motifs	for	related	factors	were	also	

amongst	the	most	highly	significant	motifs	identified.	These	included	motifs	for	several	ETS	

factors	(e.g.,	GABPA,	ELK,	ELF),	motifs	for	factors	related	to	C/EBP	(e.g.	DBP)	and	motifs	for	

factors	related	to	CJUN	(e.g.,	ATF,	MAF).	These	motifs	are	more	difficult	to	interpret	because	in	

addition	to	being	high	affinity	binding	sites	for	the	corresponding	factors,	they	are	also	lower	

affinity	binding	sites	for	PU.1,	C/EBPβ	and	CJUN,	respectively.	Analysis	of	PU.1	peaks	containing	

a	single	ETS	motif	that	is	not	a	consensus	PU.1	motif	indicated	that	mutations	within	these	

motifs	significantly	impact	PU.1	binding,	consistent	with	direct	interactions	with	low	affinity	

sites	(Heinz	et	al.,	2013).	However,	many	binding	sites	for	PU.1,	C/EBPβ	and	CJUN	contain	

multiple	iterations	of	ETS,	C/EBP	and	AP-1-like	motifs.	For	example,	about	40%	of	PU.1	peaks	

contain	multiple	iterations	of	related	ETS	motifs.	When	the	motif	with	the	highest	score	for	a	

PU.1	motif	is	masked,	mutations	in	the	remaining	ETS	motifs	remain	significant	as	determinants	

of	PU.1	binding.	Similar	relationships	are	observed	for	DBP	motifs	associated	with	C/EBPβ	peaks	

and	ATF/MAF	motifs	associated	with	CJUN	binding.	These	findings	are	consistent	with	both	

homotypic	and	heterotypic	interactions	and	underscore	the	potential	complexity	of	

combinatorial	interactions	between	members	of	transcription	factor	families	that	recognize	

related	binding	motifs.		

	

Single	factor	interaction	networks	for	PU.1	under	basal	conditions	and	P65	under	KLA-

treatment	conditions	are	illustrated	in	Figure	4B	and	Figure	4C,	respectively.	Corresponding	

networks	for	C/EBPβ	and	CJUN	are	illustrated	in	Figure	S4B	and	Figure	S4C.	In	these	networks,	
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the	node	sizes	represent	the	fraction	of	PU.1	or	P65	binding	sites	that	contain	the	

corresponding	motifs,	and	the	edge	thicknesses	corresponds	to	the	effect	size	of	motif	

mutations.	The	PU.1	network	illustrates	14	of	the	48	motifs	exhibiting	p-value	<1e-10	

significance	for	PU.1	binding	under	no	treatment	conditions,	while	the	P65	network	illustrates	

15	of	the	60	motifs	exhibiting	p-value	<1e-10	significance	for	P65	binding	following	KLA	

treatment.	For	highly	related	motifs	(e.g.,	ETS	factor	motifs),	the	motif	with	the	largest	effect	

size	is	illustrated.	In	panel	B,	the	PU.1	node	in	red	represents	the	fraction	of	all	PU.1	peaks	

(green)	that	contain	motifs	preferentially	matching	to	the	PU.1	motif	consensus	sequence.	As	

expected,	mutations	in	the	PU.1	motif	and	related	ETS	motifs	have	the	strongest	effect	sizes	on	

PU.1	binding.	Mutations	in	AP-1	motifs	and	C/EBP	motifs	have	the	next	strongest	effect	sizes,	

consistent	with	prior	studies	(Heinz	et	al.,	2013).	In	addition,	mutations	in	motifs	for	more	than	

a	dozen	different	classes	of	transcription	factors	were	significantly	associated	with	strain-

specific	binding	of	PU.1,	including	RUNX,	USF,	DR2,	DBP,	MAF,	MYB,	NRF,	and	E2A	motifs	

(Figure	4B	and	Table	S4).	Mutations	in	NFκB	motifs	have	the	strongest	effect	size	on	P65	

binding,	but	the	NFκB	node	size	indicates	that	the	majority	of	IDR-defined	P65	peaks	lack	

consensus	NFκB	motifs	(Figure	4C).	PU.1/ETS,	AP-1	and	C/EBP	motifs	exhibit	the	next	strongest	

effects	on	P65	binding,	but	mutations	in	motifs	for	many	other	factors	have	significant	effects,	

particularly	NRF2,	RUNX	and	DBP.	While	most	significant	motif	mutations	are	associated	with	

decreased	PU.1	and	P65	binding,	mutations	in	E2A	and	ZEB	motifs	have	the	opposite	effect	

(Figure	4B,	C).		

	

An	integrated	interaction	network	for	PU.1,	C/EBPβ	and	CJUN	under	no	treatment	conditions	is	

illustrated	in	Figure	4D.	In	this	network,	node	sizes	are	the	average	fractional	overlap	of	the	

indicated	motif	with	PU.1,	C/EBPβ	or	CJUN	peaks	and	edges	are	factor-specific	effect	sizes.	This	

network	illustrates	largely	dominant	effect	sizes	of	mutations	in	motifs	for	PU.1,	C/EBP	and	AP-

1	factors	on	each	other’s	binding.	In	most	cases,	motif	mutations	affecting	one	factor	affected	

all	factors,	although	often	with	different	effect	sizes,	exemplified	for	USF.	However,	some	

motifs	exhibited	specific	correlations,	such	as	the	unique	association	of	mutations	in	the	KLF	

motif	with	CJUN	binding	(Figure	4D).	Mutations	in	E2A	motifs	were	associated	with	increased	
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binding	of	PU.1,	C/EBPβ	and	CJUN,	whereas	mutations	in	ZEB	motifs	were	associated	with	

selective	increases	in	binding	of	PU.1	and	CJUN	(Figure	4D).	

	

From	these	analyses,	it	is	possible	to	estimate	the	fraction	of	strain-specific	binding	of	PU.1,	

C/EBPβ,	CJUN	and	P65	attributable	to	local	mutations.	Taking	the	binding	sites	exhibiting	>	4-

fold	differences	in	one	or	more	strains,	mutations	in	the	motifs	for	PU.1,	C/EBP,	AP-1	and	NFκB	

motifs	were	associated	with	22,	10,	8	and	9%,	of	strain-specific	variation,	respectively	(Figure	

4E).	Incorporating	the	additional	motifs	found	significant	by	the	MARGE	analysis	increases	the	

percentage	of	strain-specific	binding	explained	to	70,	50,	65	and	60%,	respectively.	The	fraction	

of	binding	sites	explained	by	MARGE	motifs	is	further	increased	considering	the	500	most	

differential	binding	sites	for	each	factor	(Figure	S4D).	However,	even	at	these	sites,	more	than	

20%	of	strain	specific	binding	of	each	factor	remains	unexplained.	

	

The	interaction	networks	inferred	from	motif	mutations	are	based	on	genomic	regions	in	which	

genetic	variation	results	in	strain-specific	differences	in	transcription	factor	binding.	To	

investigate	the	potential	of	RUNX,	USF	and	NRF	factors	(all	found	to	be	highly	significant	in	the	

MARGE	analysis)	to	function	as	collaborative	binding	factors	for	PU.1,	C/EBPβ	and	CJUN,	we	

performed	ChIP-seq	assays	for	RUNX1	and	USF2	in	C57	BMDMs.	In	addition,	we	analyzed	

previous	ChIP-seq	data	for	NRF2	in	C57	BMDMs	(Eichenfield	et	al.,	2016).	In	each	case	we	

observed	broad	overlap	with	the	genomic	binding	locations	of	PU.1,	C/EBPβ	and	CJUN,	

exemplified	for	overlaps	between	PU.1,	RUNX1	and	USF2	in	Figure	4F.	We	further	investigated	

the	potential	of	these	factors	to	play	roles	in	driving	the	selection	of	the	20%	of	open	regions	of	

chromatin	marked	by	H3K27ac	that	are	not	occupied	by	PU.1,	C/EBPβ,	or	CJUN	(Figure	3D).	

These	analyses	indicated	that	USF2	occupied	more	than	80%	of	these	locations,	primarily	in	

association	with	RUNX1	(Figure	4G).	Thus,	nearly	all	putative	enhancer	elements	in	

macrophages	are	marked	by	combinations	of	only	four	transcription	factors:	PU.1,	C/EBPβ,	

CJUN	and	RUNX1.	The	relationship	of	mutations	in	RUNX1	binding	motifs	to	binding	of	PU.1	and	

RUNX1	is	exemplified	in	Figure	4H	(See	Figure	S4E	and	S4F	for	NRF2	and	USF2),	supporting	a	

role	of	RUNX1	(as	well	as	NRF2	and	USF2)	as	a	collaborative	binding	partners	of	PU.1.		
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Regional	correlation	of	transcription	factor	binding		

The	observations	that	the	majority	of	strain-specific	differences	in	gene	expression	and	

transcription	factor	binding	are	in	cis	but	that	substantial	fractions	of	strain-specific	

transcription	factor	binding	sites	cannot	be	explained	by	local	mutations	led	us	to	investigate	

the	possibility	of	cooperativity	between	distinct	cis-regulatory	elements.	To	investigate	this,	we	

calculated	Pearson	correlation	coefficients	(PCC)	of	normalized	tag	counts	for	transcription	

factor	and	ATAC-seq	peaks	across	the	5	strains	under	basal	and	KLA	treatment	conditions.	Heat	

maps	of	these	values	for	ATAC-seq,	PU.1,	and	C/EBPβ	peaks	along	~6	MB	regions	of	

chromosome	18	are	illustrated	in	Figure	5A,	B	and	C.	In	these	plots,	the	axes	represent	

sequential	locations	associated	with	the	indicated	feature,	with	the	matrix	values	

corresponding	to	correlation	coefficients	defined	by	the	accompanying	scale.	Blocks	of	highly	

correlated	peaks	are	observed	to	diverge	from	the	diagonal.	An	example	of	a	genomic	region	in	

the	vicinity	of	the	Colec12	gene	exhibiting	strain-specific	correlation	of	ATAC-seq,	PU.1,	C/EBPβ,	

CJUN,	H3K27ac	and	GRO-seq	features	is	illustrated	in	Figure	5D.	Within	the	shaded	region	more	

than	a	dozen	high	confidence	PU.1	peaks	exhibit	concordant	changes	in	normalized	tag	counts	

across	the	five	strains.	Similar	concordant	changes	are	observed	for	ATAC-seq,	C/EBPβ,	CJUN,	

H3K27ac	and	GRO-seq	data.	For	reasons	described	further	below,	we	refer	to	these	correlated	

regions	as	connected	regulatory	domains	(CRDs).		

	

As	one	approach	to	define	CRDs,	we	considered	the	minimum	number	of	consecutive	features	

(e.g.,	ChIP-seq	peaks)	that	exceed	a	specific	PCC.	CRDs	for	different	minimal	feature	number	

and	correlation	coefficient	are	illustrated	in	Figure	5E.	No	sharp	inflections	are	observed	that	

provide	a	basis	for	optimization	of	parameters.	CRDs	defined	by	arbitrary	cutoffs	of	a	PCC	

of	>0.8	for	a	minimum	of	4	peaks	result	in	400	-	800	locally	correlated	regions	for	PU.1,	C/EBPβ,	

CJUN	and	P65	ChIP-seq	peaks	and	~4000	locally	correlated	ATAC-seq	regions,	which	contain	

various	combinations	of	CRDs	of	the	other	factors	(Table	S6).	For	CRDs	defined	by	an	n	of	>4	

peaks	and	correlation	coefficient	>0.8,	the	mean	number	of	peaks	within	a	correlated	cluster	

was	6	for	PU.1/	C/EBPβ,	cJUN	and	P65,	and	8	for	ATAC-seq	(Figure	S5A)	and	the	size	of	genomic	
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regions	containing	connected	peaks	ranged	from	1kb	to	5Mb	with	a	mean	length	of	70kb	–	

200kb	(Figure	S5B).	Based	on	the	analysis	of	F1	hybrids,	nearly	all	strain-specific	PU.1	peaks	

associated	with	CRDs	retain	their	parental	allelic	pattern	in	F1	BMDMs,	indicating	that	such	

sites	are	primarily	regulated	in	cis	(Figure	S5C).		

	

CRDs	capture	clusters	of	peaks	that	are	highly	similar	across	all	strain	comparisons,	as	well	as	

clusters	of	peaks	that	exhibit	coordinated	differences	between	strains,	such	as	the	example	

shown	for	Colec12.	Correlated	PU.1	peaks	that	exhibit	preferential	binding	in	C57	or	SPRET	

BMDMs	are	associated	with	corresponding	differences	in	expression	of	the	nearest	gene	in	

comparison	to	CRDs	that	are	strain-similar	(Figure	5F).	Similarly,	correlated	PU.1	peaks	that	

exhibit	significantly	different	binding	in	C57	or	SPRET	BMDMs	(p-value	<	2.2e-16)	are	associated	

with	corresponding	significant	differences	in	local	5’GRO-seq	signal	(p-value	=	2.7e-10	for	C57	

specific	set,	p-value	<	2.2e-16	for	SPRET	specific	set)	in	comparison	to	CRDs	that	are	strain-

similar	(p-value	=	0.72)	(Figure	5F	and	Figure	5G),	as	well	as	significantly	different	gene	

expression	of	the	nearest	expressed	gene	(p-value	=	3.9e-4	for	C57	specific	set,	p-value	=	4.1e-4	

for	SPRET	specific	set,	p-value	=	0.78	for	common	set).	The	same	was	observed	for	ATAC-seq	

peaks	(Figure	S5E).	Overall,	strain-specific	CRDs	were	highly	correlated	with	strain-specific	

patterns	of	5’GRO-seq	signal,	exemplified	for	PU.1	CRDs	in	Figure	5G.	In	contrast,	we	observed	

almost	no	overlap	between	strain-specific	CRDs	and	super	enhancers	(Figure	S5D).		

	

Identification	of	connected	regulatory	domains		

The	observation	of	regionally	correlated	transcription	factor	binding,	open	chromatin,	histone	

signatures	and	gene	expression	raised	the	question	of	the	relationships	of	these	regions	to	DNA	

methylation	and	chromatin	organization.	We	determined	the	patterns	of	DNA	cytosine	

methylation	in	BMDMs	from	C57	and	SPRET	mice	by	performing	bisulfite	sequencing	(Hajkova	

et	al.,	2002).	We	observed	differentially	methylated	regions	at	promoters	and	regulatory	

elements,	as	expected,	but	the	overall	patterns	of	DNA	methylation	were	very	similar	between	

the	two	strains	(Figure	S6A),	including	at	promoters	of	differentially	expressed	genes	(Figure	

S6B,	S6C)	such	as	Colec12,	Npy	and	Igf1	(Figure	S6D).	As	these	BMDMs	are	derived	from	the	
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most	divergent	strains,	differences	in	DNA	methylation	are	unlikely	to	be	major	drivers	or	

consequences	of	CRDs.	

	

We	next	performed	in	situ	Hi-C	assays	(Rao	et	al.,	2014)	in	C57	and	SPRET	BMDMs	to	define	

maps	of	DNA	interactions.	A	Hi-C	contact	matrix	depicting	normalized	contact	frequencies	for	

C57	and	SPRET	BMDMs	for	chromosome	18	is	indicated	in	Figure	6A	(left).	Overall	there	was	a	

high	degree	of	similarity,	with	the	Eigenvalue	of	first	principle	component	(PC1),	correlated	with	

active	or	inactive	regions	of	chromatin,	being	nearly	identical	between	strains.	Strain-similar	

contact	frequencies	and	Eigenvalues	are	illustrated	in	the	vicinity	of	the	Spi1	locus,	encoding	

PU.1	(Figure	6B,	left).	However,	genomic	regions	were	also	observed	exhibiting	markedly	

different	contact	frequencies	that	correlated	with	strain-specific	gene	expression,	exemplified	

by	the	Colec12	locus	(Figure	6B,	right).	The	overall	relationship	of	Eigenvalues	for	PC1	calculated	

for	100	kb	windows	(Figure	S6E)	indicates	a	few	hundred	regions	of	the	genome	in	which	the	

Eigenvalue	reverses	sign,	as	in	the	case	of	Colec12	(Figure	6B	right).	A	small	fraction	of	these	

regions	are	associated	with	strain-specific	differences	in	gene	expression	(Figure	S6F).	However,	

the	great	majority	of	differentially	expressed	genes	reside	in	compartments	associated	with	

similar	PC1	values	in	both	strains.		

	

To	further	investigate	the	relationship	between	correlated	chromatin	features	and	chromatin	

organization	we	identified	topological	associating	domains	(TADs)	from	these	Hi-C	data	sets	

(Dixon	et	al.,	2012).	In	brief,	TADs	are	chromatin	regions	that	are	typically	constrained	by	CTCF	

boundaries	such	that	elements	within	the	TADs	have	coordinated	cis-regulatory	activity.	TADs	

were	also	highly	similar	in	BMDMs	of	C57	and	SPRET	mice	(Figure	S6G),	although	there	were	

frequently	subtle	differences	in	how	adjacent	domains	were	parsed	(e.g.,	Figure	6A,	right).	

Comparison	with	ATAC-seq	and	ChIP-seq	data	indicated	that	nearly	all	locally	correlated	

chromatin	features	reside	within	TADs,	exemplified	by	the	grid	lines	in	Figures	5A,	B	and	C.		

	

To	further	investigate	spatial	relationships	of	locally	correlated	features,	we	performed	

proximity	ligation-assisted	ChIP-seq	(PLAC-seq)	in	C57,	BALB,	NOD,	and	SPRET-derived	BMDMs	
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using	H3K4me3	as	anchor	(Fang	et	al.,	2016).	From	these	data	sets	we	defined	all	significant	

interactions	observed	in	at	least	two	strains	as	a	consensus	set.	We	investigated	the	overlap	of	

significant	interactions	between	and	within	ATAC-seq	CRDs	(Figure	6C).	Almost	50%	of	all	

significant	PLAC-seq	consensus	interactions	are	either	within	or	between	these	features,	with	

an	additional	28%	of	interactions	connecting	correlated	ATAC-seq	peaks	with	other	regions	in	

the	genome.	One	example	of	a	highly	connected	region	of	CRDs	is	exemplified	in	Figure	6D.	

Only	about	20%	of	all	significant	PLAC-seq	interactions	are	not	connected	to	ATAC-seq	CRDs,	

even	though	these	features	only	cover	about	11%	of	the	whole	genome	(Figure	S6H).	Almost	40%	

of	the	correlated	ATAC-seq	peaks	have	11	or	more	significant	interactions	(Figure	S6I).	

Comparing	the	number	of	PLAC-seq	interactions	connected	to	ATAC-seq	CRDs	to	a	size-match	

background	showed	a	highly	significant	enrichment	of	interactions	associated	with	CRDs	(p-

value	<	2.2e-16)	(Figure	S6J).	

	

Discussion	

These	studies	report	systematic	analyses	of	the	effects	of	natural	genetic	variation	on	

transcription	factor	binding,	epigenetic	state	and	gene	expression	in	resting	and	activated	

macrophages.	We	observe	striking	levels	of	variation	across	BMDMs	isolated	from	different	

strains	at	each	level	of	analysis,	with	diversity	of	transcription	factor	binding	greatly	exceeding	

that	of	active	histone	modifications,	nascent	RNA	production	and	mature	transcript	levels.	In	

view	of	the	diverse	roles	of	macrophages	in	immunity,	tissue	homeostasis	and	diseases	

including	atherosclerosis,	diabetes,	cancer	and	neurodegeneration	(Hirsch	et	al.,	2012;	Malm	et	

al.,	2015;	Moore	and	Tabas,	2011;	Nguyen	et	al.,	2006;	Williams	et	al.,	2016)	the	data	sets	

provided	by	these	studies	will	be	substantial	resources	for	advancing	understanding	of	

transcriptional	mechanisms	and	effects	of	genetic	variation.	Differences	in	mRNA	gene	

expression	across	the	five	strains	are	substantial	and	segregate	into	distinct	biological	processes,	

suggesting	substantial	differences	with	respect	to	immune	and	tissue	homeostatic	functions.	

Consistent	with	this,	we	validated	the	prediction	that	SPRET	mice	would	exhibit	altered	Type	I	

interferon	responses	following	TLR4	stimulation.	It	will	be	of	interest	to	determine	whether	the	

degree	of	variation	in	gene	expression	observed	here	in	macrophages	is	a	common	feature	of	
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other	cell	types.	Host	responses	to	pathogens	are	powerful	drivers	of	evolution	of	the	immune	

system,	and	the	unique	histories	of	pathogen	exposure	in	the	five	mouse	strains	used	for	

analysis	may	have	resulted	in	more	substantial	differences	in	immune	cells	than	other	cell	types.	

As	the	general	approach	described	here	can	be	applied	to	any	cell	type,	it	will	be	of	interest	to	

apply	these	methods	to	parenchymal	and	other	cell	types	of	various	organs.	

	

The	measurement	of	nascent	RNA	by	GRO-seq	and	sites	of	transcription	initiation	by	5’GRO-seq	

enabled	estimates	of	the	locations	of	variation	underlying	differences	in	genic	transcription.	By	

using	5’GRO-seq	to	annotate	transcription	start	sites,	we	find	that	mutations	affecting	the	core	

promoter	element	and/or	adjacent	upstream	elements	account	for	less	than	20%	of	divergent	

nascent	gene	expression	among	the	most	closely	related	strains.	Mutations	in	core	promoter	

elements	are	expected	to	be	associated	with	large	effect	sizes	and	therefore	more	likely	to	be	

subject	to	negative	selection.	Conversely,	analysis	of	parental	alleles	in	F1	crosses	of	C57	to	

PWK	or	SPRET	mice	indicates	that	more	than	70%	of	divergent	gene	transcription	is	due	to	cis	

variation.	Thus,	differential	regulation	of	gene	expression	observed	in	these	studies	is	mostly	

due	to	effects	on	distal	regulatory	elements,	consistent	with	recent	studies	across	human	

tissues	(Consortium	et	al.,	2017).	The	availability	of	data	sets	for	mature	and	nascent	RNA	levels	

across	five	diverse	strains	of	mice	will	be	of	value	for	future	exploration	of	how	genetic	

variation	influences	diverse	aspects	of	RNA	processing,	such	as	splicing	and	polyadenylation.		

	

A	primary	motivation	of	the	proposed	studies	was	to	systematically	explore	functional	roles	of	

the	hundreds	of	transcription	factors	that	are	expressed	in	macrophages	in	establishing	the	cis-

regulatory	landscape	of	BMDMs	by	determining	the	consequences	of	mutations	in	their	

respective	DNA	recognition	motifs	on	the	binding	of	a	subset	of	macrophage	lineage	

determining	factors.	We	observed	that	while	mutations	in	the	motifs	for	PU.1,	C/EBP,	CJUN	and	

P65	are	significantly	associated	with	strain-specific	binding,	the	majority	of	these	differences	

are	explained	by	mutations	in	nearby	collaborative	factors.	As	previously	demonstrated,	motif	

mutations	in	PU.1	affect	nearby	binding	of	C/EBPβ	and	vice	versa.	The	present	analyses	of	motif	

mutations	now	extend	these	relationships	to	a	transcription	factor	interaction	network	
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dominated	by	collaborative	interactions	between	PU.1,	C/EBPs,	AP-1,	RUNX	and	USF.	

Altogether,	these	studies	provide	evidence	for	significant	roles	of	>80	motifs,	which	can	be	

assigned	to	106	of	the	248	transcription	factors	confidently	expressed	in	macrophages.	These	

findings	therefore	support	the	hypothesis	that	a	large	fraction	of	the	transcription	factors	

expressed	in	BMDMs	shape	the	DNA	binding	patterns	and	functions	of	macrophage	lineage	

determining	factors.	In	general,	motif	importance	is	correlated	with	expression	levels	of	the	

factor	or	factors	that	recognize	it,	although	there	are	notable	exceptions.	For	example,	E2F	

family	members	are	among	the	most	highly	expressed	transcription	factors	in	BMDMs,	but	

mutations	in	their	recognition	motifs	are	not	associated	with	strain-specific	binding	of	PU.1,	

C/EBPβ	or	CJUN.		

	

Beyond	the	understanding	of	mechanisms	that	account	for	the	genomic	binding	patterns	of	

sequence	specific	transcription	factors,	the	ability	to	predict	whether	such	binding	results	in	an	

increase,	decrease	or	no	change	in	the	activity	state	of	a	cis-regulatory	element	and	a	

corresponding	change	in	nearby	gene	expression	remains	an	elusive	goal.	The	data	sets	

generated	by	these	studies	provide	quantitative	estimates	of	strain-specific	enhancer	activities	

based	on	H3K27ac	and	nascent	RNA	levels.	It	will	therefore	be	of	interest	to	explore	the	

relationships	between	sequence	variants	and	enhancer	activity	states	to	better	understand	

mechanisms	underlying	functional	consequences	of	transcription	factor	binding.	

	

Notably,	substantial	fractions	of	strain-specific	DNA	binding	and	ATAC-seq	sites	are	not	

associated	with	or	cannot	otherwise	be	explained	by	local	DNA	variants.	This	discrepancy	led	to	

the	finding	of	regions	in	the	genome	in	which	transcription	factor	binding,	open	chromatin,	

histone	modifications	and	gene	expression	are	highly	correlated.	Further	investigation	of	these	

regions	using	Hi-C	and	PLAC-seq	analyses	indicated	that	they	primarily	reside	within	TADs	and	

are	highly	intra-	and	inter-connected.	These	studies	thereby	confirm	and	extend	prior	studies	in	

human	lymphoblastoid	cell	lines	demonstrating	both	local	and	distal	control	of	chromatin	state	

(Grubert	et	al.,	2015;	Waszak	et	al.,	2015)	In	particular,	several	independent	lines	of	evidence	

suggest	that	regional	interactions	between	connected	cis-regulatory	elements	influence	



	 22	

transcription	factor	binding	independently	of	local	DNA	variants.	An	important	future	goal	will	

be	to	determine	underlying	mechanisms.	Given	the	observation	that	many	connected	

regulatory	domains	are	associated	with	coding	or	non-coding	transcripts,	one	possible	model	is	

that	initiation	of	transcription	from	a	‘bootstrap’	enhancer	or	promoter	enables	RNA	

polymerase	II	to	function	as	a	chromatin	remodeling	factor	that	overcomes	local	barriers	to	

transcription	factor	binding.	In	this	model,	genetic	variants	that	disable	the	initiating	

transcriptional	start	site	would	compromise	transcription	factor	binding	to	the	entire	CRD.	

Importantly,	BMDMs	from	different	strains	of	mice	provide	a	highly	tractable	model	system	

determining	molecular	mechanisms	underlying	regional	control	of	transcription	factor	binding	

and	function.	

	

In	concert,	the	present	studies	reveal	complex	relationships	between	genetic	variation,	

transcription	factor	binding,	epigenetic	state	and	gene	expression,	only	some	of	which	can	be	

currently	explained.	Elucidation	of	the	underlying	mechanisms	will	be	necessary	for	a	better	

understanding	of	how	non-coding	genetic	variation	influences	cellular	phenotype.	Although	

macrophages	from	only	five	strains	of	mice	were	evaluated,	they	collectively	provided	more	

than	50	million	SNPs	and	InDels	for	analysis.	While	many	of	the	major	conclusions	derived	from	

these	studies	can	be	achieved	based	on	the	5-6	million	variants	provided	by	comparisons	of	C57,	

BALB	and	NOD	strains,	the	inclusion	of	PWK	and	SPRET	BMDMs	greatly	increased	statistical	

power	to	detect	both	local	and	regional	transcription	factor	interactions.	This	degree	of	genetic	

variation	and	the	number	of	complementary	genomic	assays	are	not	typically	achievable	in	

studies	of	primary	human	cells.	The	model	system	and	associated	data	sets	provided	by	these	

studies	thus	represent	a	powerful	new	resource	for	investigation	of	the	influence	of	genetic	

variation	on	gene	expression	and	cellular	phenotype.	While	the	positions	of	cis-regulatory	

elements	controlling	gene	expression	in	mice	and	humans	are	poorly	conserved,	the	

mechanisms	driving	cell	specific	gene	expression	are	very	similar	(Cheng	et	al.,	2014;	Stergachis	

et	al.,	2014).	For	example,	a	recent	direct	comparison	of	the	transcription	factor	networks	

driving	mouse	and	human	microglia-specific	gene	expression	indicated	that	they	were	nearly	

identical	(Gosselin	et	al.,	2017).	It	is	therefore	likely	that	general	principles	derived	from	studies	
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of	the	influence	of	genetic	variation	on	gene	expression	in	mice	will	substantially	advance	

efforts	to	understand	the	relationship	of	non-coding	genetic	variation	and	phenotype	in	

humans.		
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Figure	legends		

Figure	1.	Effect	of	genetic	variation	on	mRNA	expression.	A.	Overview	of	experimental	design	

and	main	data	sets.	(notx	=	no	treatment,	KLA	=	KLA	treatment	for	1	hour)	B.	Comparison	of	

RNA-seq	for	polyadenylated	(polyA)	transcripts	in	BMDMs	derived	from	the	indicated	mouse	

strains	under	no	treatment	(notx)	conditions.	Log2(TPM+1)	values	are	plotted	for	BALB,	NOD,	

PWK	and	SPRET	vs.	C57	(TPM	=	transcripts	per	kilobase	million).	The	number	of	SNPs	and	InDels	

for	each	comparison	is	shown	at	the	top.	Transcripts	exhibiting	>2-fold	or	>4-fold	changes	at	an	

FDR	<	0.01	are	color	coded	light	blue	and	dark	blue	respectively.	C.	Clustering	of	differentially	

expressed	genes	determined	by	WGCNA.	Differences	are	indicated	by	z-score.	The	top	

functional	annotations	for	each	cluster	are	determined	by	Metascape	(Tripathi	et	al.,	2015)	and	

are	illustrated	on	the	right	with	the	log	q-value.	(See	Figure	S1	for	modules).	D.	Ratio-ratio	plots	

of	the	fold	response	to	KLA	in	BALB	vs.	C57	BMDMs	(top)	and	in	SPRET	vs.	C57	BMDMs	

(bottom).	Each	point	represents	one	polyA	RNA	transcript.	Dark	blue	dots	show	genes	that	are	

4-fold	reciprocal	regulated,	whereas	green	dots	show	a	4-fold	stronger	response	to	the	KLA	

stimulus	in	one	strain	over	the	other.	E.	Relationship	of	differentially	expressed	genes	to	

number	of	genetic	variation	in	million.	F.	Comparison	of	expression	of	46	primary	interferon	

stimulated	genes	(ISGs)	in	C57	and	SPRET	BMDS	under	no	treatment	conditions	and	following	

KLA	stimulation	for	6h.	The	right	column	represents	the	ratio	of	SPRET/C57	gene	expression	

following	KLA	treatment.	

	

Figure	2.	Effect	of	genetic	variation	on	nascent	transcription.	A.	Comparison	of	GRO-seq	gene	

body	tag	counts	in	BMDMs	derived	from	the	indicated	mouse	strains	under	no	treatment	

conditions.	Log2(tag	counts+1)	values	are	plotted	for	BALB,	NOD,	PWK	and	SPRET	versus.	C57.	

Nascent	transcriptions	exhibiting	>2-fold	or	>4-old	changes	at	an	FDR	<0.01	are	color	coded	

light	blue	and	dark	blue	respectively.	B.	Comparison	of	GRO-seq,	5’GRO-seq	and	H3K27ac	signal	

at	the	Igf1	locus	in	BMDMs	derived	from	each	strain	under	no	treatment	conditions.	C.	Ratio-

ratio	plots	of	GRO-seq	tag	counts	for	KLA/no	treatment	conditions,	comparing	BALB	vs.	C57	in	

the	left	panel	and	SPRET	vs.	C57	in	the	right	panel.	Dark	blue	dots	show	genes	that	are	4-fold	

reciprocal	regulated,	whereas	green	dots	show	a	4-fold	stronger	response	to	the	KLA	stimulus	
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in	one	strain	over	the	other.	D.	Relationship	of	differential	RNA-seq	expression	as	a	function	of	

mutations	between	-30	and	+20	bp	of	the	TSS	defined	by	5’GRO-seq	signal.	E.	Ratio	ratio	plot	of	

gene	body	GRO-seq	tag	counts	in	BMDMs	derived	from	C57	and	SPRET	mice	versus	allele-

specific	tag	counts	in	BMDMs	derived	from	SPRET	x	C57	F1	mice.	F.	GRO-seq	expression	for	Npy	

and	Pla2g7	in	BMDMs	derived	from	C57	and	SPRET	mice	and	allele-specific	tag	counts	in	

BMDMs	derived	from	SPRET	x	C57	F1	mice.	

	

Figure	3.	Effect	of	genetic	variation	on	cis-regulatory	landscapes.	A.	Scatter	plots	of	log2	tag	

counts	for	H3K27ac	ChIP-seq	regions	comparing	BALB	and	C57	(left)	and	SPRET	and	C57	(right).	

Regions	exhibiting	>2-fold	or	>4-fold	different	binding	are	colored	light	blue	and	dark	blue	

respectively.	B.	Scatter	plots	of	log2	tag	counts	for	ATAC-seq	peaks	passing	IDR	comparing	BALB	

and	C57	(left)	and	SPRET	and	C57	(right).	Peaks	exhibiting	>2-fold	or	>4-fold	changes	are	

colored	light	blue	and	dark	blue	respectively.	C.	De	novo	motif	analysis	of	distal	(>3000	bp	from	

TSS)	ATAC-seq	peaks	associated	with	H3K27ac	signal	in	each	strain.	Boxes	display	negative	

log10	p-values	for	enrichment	of	the	corresponding	motif	and	its	rank	order	in	parentheses.	D.	

Pie	chart	indicating	fractions	of	distal	H3K27ac-positive	regions	of	open	chromatin	occupied	by	

PU.1,	C/EBPβ	and/or	CJUN.	E.	Heat	map	of	H3K27ac	tag	density	at	genomic	regions	defined	as	

super	enhancers.	F.	Comparison	of	log2	ChIP-seq	tag	counts	for	PU.1	in	BMDMs	derived	from	

the	indicated	mouse	strains	under	no	treatment	conditions.	Features	exhibiting	>2-fold	or	>4-

fold	changes	are	colored	light	blue	and	dark	blue	respectively	G.	Ratio	ratio	plot	of	PU.1	ChIP-

seq	tag	counts	in	BMDMs	derived	from	C57	and	SPRET	mice	versus	allele-specific	tag	counts	in	

BMDMs	derived	from	C57	x	SPRET	F1	mice.	H.	SNPs	and	InDels	frequencies	in	ATAC-seq	and	

PU.1	peaks	within	300bp	of	the	peak	center	for	the	indicated	strain	comparisons	for	stringent	

VCF	filter	criteria	and	more	relaxed	criteria.	

	

Figure	4.	Transcription	factor	interaction	networks	inferred	from	effects	of	motif	mutations.	A.	

Heat	map	of	a	subset	of	significant	motifs	after	application	of	MARGE	under	control	and	KLA	

treatment	conditions.	For	a	complete	listing,	see	Table	S4.	B.	Top	14	of	60	motifs	correlated	

with	binding	of	PU.1	under	no	treatment	conditions	as	determined	by	motif	mutation	analysis.	
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Node	size	is	fraction	of	PU.1	peaks	containing	the	indicated	motif	and	edge	thickness	is	

proportional	to	the	effect	size	of	motif	mutations.	Nodes	in	red	indicate	motifs	in	which	

mutations	result	in	reduced	PU.1	binding.	Nodes	in	blue	indicate	motifs	in	which	mutations	

result	in	increased	PU.1	binding.	C.	Top	motifs	correlated	with	binding	of	P65	under	KLA	

treatment	conditions	as	determined	by	motif	mutation	analysis.	Node	size	and	edge	thickness	

are	as	defined	in	Panel	B.	D.	Integrated	network	of	collaborative	transcription	factors.	The	top	

15	of	80	motifs	for	which	motif	mutations	affected	binding	of	at	least	one	of	the	three	factors	

are	shown.	Node	sizes	are	average	of	all	three	analyses	and	edge	thickness	is	as	defined	in	

Panel	B.	E.	Fraction	of	strain	specific	binding	of	PU.1,	C/EBPβ,	CJUN	and	P65	explained	by	

mutations	in	their	respective	recognition	motifs	and	by	all	mutations	considered	by	MARGE	

analysis.	Values	are	for	peaks	exhibiting	>4-fold	differences	in	at	least	one	comparison	in	

genomic	regions	containing	local	variants.	F.	Overlap	of	binding	of	PU.1,	RUNX1	and	USF2	under	

no	treatment	conditions	as	determined	by	ChIP-seq	for	each	factor.	G.	Fraction	of	open	

chromatin	marked	by	H3K27ac	and	not	bound	by	PU.1,	CJUN	or	C/EBP	occupied	by	RUNX1,	

USF2	and/or	NRF2.	H.	Relationship	of	mutations	in	RUNX	motifs	on	binding	of	RUNX1	and	PU.1	

in	C57	and	SPRET	BMDMs.	

	

Figure	5.	Regional	correlation	of	ATAC-seq	and	ChIP-seq	peaks.	A-C.	Heat	maps	of	Pearson	

correlation	coefficients	(PCC)	of	PU.1,	C/EBPβ	and	CJUN	peaks,	respectively,	across	the	five	

strains	under	control	conditions	in	a	5	mega	base	window	from	chromosome	18.	Vertical	and	

horizontal	lines	represent	TAD	boundaries	as	defined	by	C57	Hi-C	assays	presented	in	Figure	6.	

D.	Illustration	of	regional	correlation	of	GRO-seq,	ATAC-seq,	PU.1,	C/EBPβ,	CJUN,	and	H3K27ac	

signal	in	the	vicinity	of	the	Colec12	gene.	E.	Percentages	of	PU.1	connected	regulatory	domains	

(CRDs)	based	on	minimum	peak	number	and	minimum	Pearson	correlation	coefficient	(PCC).	F.	

Relationship	of	strain-specific	PU.1	CRDs	to	enhancer	activity	measured	by	5’GRO-seq	and	

expression	of	nearest	gene	measured	by	RNA-seq.	Significance	was	calculated	using	a	two-sided	

t-test.	G.	Heat	maps	for	relative	binding	and	5’GRO-seq	signal	at	PU.1	CRDs.	The	ordering	of	

PU.1	signal	and	corresponding	5’GRO-seq	signal	is	the	same	for	the	two	plots.	
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Figure	6.	Connected	regulatory	domains.	A.	Left:	Hi-C	contact	frequency	maps	for	chromosome	

18	in	BMDMs	derived	from	C57	(lower	left)	and	SPRET	(upper	right)	mice.	The	values	for	the	

PC1	eigenvector	are	shown	at	the	bottom.	Right:	Zoomed-in	view	of	Hi-C	contact	frequency	for	

chromosome	18	visualizing	TAD	boundaries	in	SPRET	and	C57.	B.	RNA-seq,	H3K27ac,	PC1,	and	

Hi-C	contact	loops	in	the	vicinity	of	the	Spi1	locus	(left)	and	the	Colec12	locus	(right).	C	Fraction	

of	significant	consensus	PLAC-seq	interactions	within	ATAC-seq	CRDs,	between	ATAC-seq	CRDs	

and	outside	of	CRDs.	D.	Example	of	ATAC-seq	notx	CRDs	highly	connected	by	PLAC-seq	

consensus	interactions.	
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Supplemental	Figures	

Figure	S1.	A.	(Left)	Bones	were	extracted	from	8	–	12	week	old	female	mice	and	20	million	cells	

were	plated	per	15	cm	dish	in	Media	with	M-CSF	for	7	days.	(Right)	Average	number	of	cells	

extracted	per	mouse	(C57:	14	harvest	(n=53),	BALB:	11	harvest	(n=54),	NOD:	10	harvest	(n=47),	

PWK:	12	harvest	(n=99),	SPRET:	9	harvest	(n=66)).	B.	Comparison	of	polyA	RNA-seq	replicates	

for	C57	in	no	treatment	(left)	and	after	KLA	treatment	for	1h	(right)	(TPM	=	transcripts	per	

kilobase	million).	C.	Clustered	spearman	correlation	matrix	for	different	RNA-seq	replicates	for	

no	treatment	and	KLA	1h.	D.	Gene	dendrogram	and	module	colors	from	WGCNA	analysis.	

	

Figure	S2.	A.	Clustered	spearman	correlation	matrix	for	GRO-seq	replicates	using	tag	counts	

along	gene	bodies	for	no	treatment	and	KLA	1h.	B.	Distance	of	RefSeq	annotated	transcription	

start	sites	(TSS)	and	TSS	defined	by	5’GRO-seq	data	for	C57.	C.	Bar	plot	showing	the	percentage	

of	overlap	between	RefSeq	annotated	TSS	and	TSS	defined	by	5’GRO-seq	signal	for	no	

treatment	and	KLA	1h.	D.	Relationship	of	differential	RNA-seq	expression	as	a	function	of	

mutations	between	-30	and	+20	bp	of	the	TSS	defined	by	5’GRO-seq	signal.	E.	Ratio	ratio	plot	of	

gene	body	GRO-seq	tag	counts	in	BMDMs	derived	from	C57	and	PWK	mice	versus	allele-specific	

tag	counts	in	BMDMs	derived	from	PWK	x	C57	F1	mice.	F.	Boxplot	showing	average	percentage	

of	cis-regulated	genes	between	parental	and	F1	alleles	(FPC	=	PWK	x	C57	F1,	FSC	=	SPRET	x	C57	

F1).	

	

Figure	S3.	A.	Comparison	of	replicates	for	PU.1	notx	ChIP-seq	for	C57	(left)	and	SPRET	(right).	

Grey	dots	are	peaks	called	in	either	replicate,	green	dots	are	peaks	passing	IDR.	B.	Clustered	

spearman	correlation	matrix	for	PU.1	ChIP-seq	replicates	(top	left),	C/EBPβ	ChIP-seq	replicates	

(top	right),	CJUN	ChIP-seq	replicates	(bottom	left),	and	P65	ChIP-seq	replicates	(bottom	right)	

for	all	strains	in	no	treatment	and	KLA	1h	conditions	(KLA	1h	condition	only	for	P65).	C-E.	

Scatter	plots	of	log2	tag	counts	for	H3K4me2	ChIP-seq	regions	(C),	C/EBPβ	ChIP-seq	peaks	(D),	

CJUN	ChIP-seq	peaks	(E)	and	P65	ChIP-seq	peaks	(F)	comparing	BALB	and	C57	(left)	and	SPRET	

and	C57	(right).	Regions	exhibiting	>2-fold	or	>4-fold	different	binding	are	colored	light	blue	and	

dark	blue	respectively.	G.	Ratio	ratio	plot	of	normalized	PU.1	ChIP-seq	tag	counts	in	BMDMs	
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derived	from	C57	and	PWK	mice	versus	allele-specific	tag	counts	in	BMDMs	derived	from	PWK	x	

C57	F1	mice.	H.	Boxplot	showing	average	percentage	of	cis-regulated	transcription	factor	

binding	sites	for	all	loci	with	fold	change	going	in	the	same	direction,	for	all	loci	with	2-fold	

change	(4-fold	change,	respectively)	in	parental	and	F1	alleles	a	I.	SNP+InDel	frequencies	in	

CEBPβ,	CJUN	and	P65	peaks	for	the	indicated	strain	comparisons.	J.	Average	minimum	and	

maximum	tag	counts	per	peak	for	ATAC-seq	(left)	and	PU.1	(right)	with	>4-fold	difference	in	

binding	between	C57	versus	SPRET	without	mutations	that	overlap	or	do	not	overlap	structural	

variances.	K.	Percentage	of	differently	bound	ATAC-seq	and	PU.1	peaks	without	mutations	

overlapping	structural	variances	(left	panel)	and	peaks	with	mutations	overlapping	structural	

variances	(right	panel).	

	

Figure	S4.	A.	Heat	map	of	all	significant	motifs	(p-value	<	1e-10)	after	application	of	MARGE	

under	control	and	KLA	treatment	conditions.	Dendrogram	on	right	shows	clustering	of	

consensus	motifs	by	similarity	based	on	Pearson	correlation	coefficient	(PCC).	On	the	left	

consensus	motif	logos	are	shown.	B.	Top	motifs	correlated	with	binding	of	C/EBPβ	under	no	

treatment	conditions	as	determined	by	MARGE’s	motif	mutation	analysis.	Node	size	is	fraction	

of	C/EBPβ	peaks	containing	the	indicated	motif	and	edge	thickness	is	proportional	to	the	effect	

size	of	motif	mutations.	Nodes	in	red	indicate	motifs	in	which	mutations	result	in	reduced	

C/EBPβ	binding.	Nodes	in	blue	indicate	motifs	in	which	mutations	result	in	increased	C/EBPβ	

binding.	C.	Top	motifs	correlated	with	binding	of	CJUN	under	no	treatment	conditions	as	

determined	by	MARGE’s	motif	mutation	analysis.	Node	size	and	edge	thickness	are	as	defined	

in	Panel	B.	D.	Fraction	of	strain	specific	binding	of	PU.1,	C/EBPβ,	CJUN	and	P65	explained	by	

mutations	in	their	respective	recognition	motifs	and	by	all	motifs	found	significant	by	MARGE	

analysis.	Values	are	for	the	500	most	differently	bound	peaks	containing	local	variants.	E.	

Relationship	of	mutations	in	NRF2	motifs	on	binding	of	NRF2	and	PU.1	in	C57	and	SPRET	

BMDMs	with	intact	PU.1,	C/EBP,	and	AP-1	binding	motifs.	F.	Relationship	of	mutations	in	USF	

motifs	on	binding	of	USF2	and	PU.1	in	C57	and	SPRET	BMDMs	with	intact	PU.1,	C/EBP	and	AP-1	

binding	motifs.	
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Figure	S5.	A.	Bar	plot	showing	the	average	number	of	peaks	within	CRDs	for	different	ChIP-seq	

data	sets	and	treatments	B.	Bar	plot	showing	the	average	length	of	CRDs	in	kilo	bases	(kb)	for	

different	ChIP-seq	data	sets	and	treatments.	C.	Ratio	ratio	plot	of	normalized	PU.1	ChIP-seq	tag	

counts	summed	for	all	peaks	within	CRDs	in	BMDM	derived	from	C57	and	SPRET	mice	versus	

allele-specific	tag	counts	in	BMDMs	derived	from	SPRET	x	C57	F1	mice.	D.	Overlap	of	CRDs	and	

super	enhancers	in	percentage.	CRDs	and	super	enhancers	were	merged	for	different	assays	

and	percentage	of	CRDs	only,	super	enhancers	only	and	overlap	of	both	was	calculated.	E.	

Relationship	of	strain-specific	ATAC-seq	notx	CRDs	to	enhancer	activity	measured	by	5’GRO-seq	

and	expression	of	nearest	gene	measured	by	RNA-seq.	Significance	was	calculated	using	a	two-

sided	t-test.	

	

Figure	S6.	A.	Percentage	of	CpGs	methylated	(mCpG)	at	promoters	(defined	by	RefSeq)	of	all	

genes	for	C57	(green)	and	SPRET	(purple).	B.	Percentage	of	CpGs	methylated	at	promoters	of	

genes	2-fold	differently	expressed	in	C57	vs.	SPRET.	C.	Percentage	of	CpGs	methylated	at	

promoters	of	genes	4-fold	differently	expressed	in	C57	vs.	SPRET.	D.	UCSC	genome	browser	

shot	showing	promoter	methylation	for	highly	differently	expressed	genes	Colce12	(left),	Npy	

(middle)	and	Igf1	(right).	E.	Scatter	plot	of	PC1	Eigenvector	values	comparing	C57	and	SPRET	

derived	from	the	respective	Hi-C	contact	maps.	F.	Expression	values	of	genes	associated	with	

Eigenvector	values	of	the	same	sign	(black)	in	C57	and	SPRET	BMDMs	and	genes	associated	

with	Eigenvector	values	of	opposite	sign	(red).	G.	General	conservation	of	TAD	boundaries	and	

contact	frequency	within	TADs	measured	by	inclusion	ratio	in	BMDMs	derived	from	C57	and	

SPRET	mice.	H.	Fraction	of	genome	covered	by	ATAC-seq	CRDs.	I.	Distribution	of	significant	

PLAC-seq	consensus	interactions	in	ATAC-seq	CRDs.	J.	Comparison	of	overlap	of	significant	

PLAC-seq	interactions	in	ATAC-seq	CRDs	in	comparison	to	size-matched	background	shows	

significant	enrichment	of	PLAC-seq	interactions	in	CRDs.	
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Supplemental	Tables	

Table	S1.	Summary	of	mRNA	expression	Gene	expression	measured	by	RNA-seq	normalized	to	

log2	transcripts	per	million	(TPM)	in	replicates	for	all	expressed	genes	(TPM	>	1)	for	BALB,	C57,	

NOD,	PWK,	and	SPRET	BMDMs	under	control	conditions	(notx)	and	after	KLA	1h	treatment.	

	

Table	S2.	Summary	of	nascent	transcription.	GRO-seq	tag	counts	along	gene	bodies	normalized	

to	10	million	sequenced	reads	in	replicates	for	BALB,	C57,	NOD,	PWK,	and	SPRET	BMDMs	under	

control	conditions	(notx)	and	after	KLA	1h	treatment.	

	

Table	S3.	Summary	of	sequencing	assays.	Number	of	features	(peaks	or	regions)	identified	for	

each	of	assay	(ATAC-seq,	PU.1	ChIP-seq,	CEBPb	ChIP-seq,	CJUN	ChIP-seq,	P65	ChIP-seq,	

H3K27ac	ChIP-seq	and	H3K4me2	ChIP-seq)	in	the	five	strains	of	BMDMs	under	control	(notx)	

and	KLA-treated	conditions	for	1	hour	after	IDR,	as	well	as	the	union	of	features	per	experiment.	

	

Table	S4.	MARGE	analysis	results.	List	of	all	transcription	factor	binding	motifs	found	significant	

in	MARGE	analysis	for	at	least	one	factor	and	treatment	condition.		

	

Table	S5.	Candidate	transcription	factors	for	MARGE	analysis	results.	List	of	all	expressed	

transcription	factors	(TPM	>	1)	which	can	bind	motifs	found	as	significant	by	MARGE	analysis	

including	the	transcription	factor,	its	transcription	factor	family,	as	well	as	RNA-seq	expression	

of	this	factor	in	all	five	strains	and	treatment	(in	TPM).	

	

Table	S6.	Summary	of	CRDs.	List	of	all	CRDs	for	all	assays	and	treatments,	as	well	as	number	of	

CRDs	that	are	strain-specific	and	strain-similar.		
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STAR	Methods	

	

Key	Resources	Table	

	

see	separate	file	(use	template)	

	

Contact	for	Reagents	and	Resource	Sharing	

Further	information	and	requests	for	resources	and	reagents	should	be	directed	and	will	be	

fulfilled	by	the	Lead	Contact,	Christopher	K.	Glass	(ckg@ucsd.edu)	

	

Experimental	Model	and	Subject	Details	

	

Mice	

Female	and	male	breeder	mice	for	C57BL/6J,	BALB/cJ,	NOD/ShiLtJ,	PWK/PhJ,	and	SPRET/EiJ	

mice	were	purchased	from	Jackson	Laboratory.	Mice	were	housed	at	the	UCSD	animal	facility	

on	a	12	h/12	h	light/dark	cycle	with	free	access	to	food	and	water.	All	animal	procedures	were	

in	accordance	with	University	of	California	San	Diego	research	guidelines	for	the	care	and	use	of	

laboratory	animals.	8	–	12	week	old	female	mice	were	used	for	experiments.	For	F1	crosses	

female	C57BL/6J	mice	were	crossed	with	male	PWK/PhJ	and	SPRET/EiJ	and	8	-12	week	old	

female	F1	mice	were	used	for	experiments.	

	

Bone	marrow-derived	macrophage	(BMDM)	culture	

Femur,	tibia	and	iliac	bones	from	the	different	mouse	strains	were	flushed	with	DMEM	high	

glucose	(Corning)	and	red	blood	cells	were	lysed	using	red	blood	cell	lysis	buffer	(eBioscience).	

After	counting,	20	million	bone	marrow	cells	were	seeded	per	15cm	non-tissue	culture	plates	in	

DMEM	high	glucose	(50%)	with	20%	FBS	(Omega	Biosciences),	30%	L929-cell	conditioned	media	

(as	source	of	M-CSF),	100	U/ml	penicillin/streptomycin+L-glutamine	(Gibco)	and	2.5µg/ml	

Amphotericin	B	(HyClone).	After	4	days	of	differentiation,	16.7	ng/ml	mouse	M-CSF	

(Shenandoah	Biotechnology)	was	added	to	the	media.	After	an	additional	2	days	of	culture,	
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non-adherent	cells	were	washed	off	with	room	temperature	DMEM	and	macrophages	were	

obtained	as	a	homogeneous	population	of	adherent	cells	which	were	scraped	and	subsequently	

seeded	onto	tissue	culture-treated	petri	dishes	overnight	in	DMEM	containing	10%	FBS,	100	

U/ml	penicillin/streptomycin+L-glutamine,	2.5µg/ml	Amphotericin	B	and	16.7	ng/ml	M-CSF.	For	

KLA	activation,	macrophages	were	treated	with	10	ng/mL	KLA	(Avanti	Polar	Lipids)	for	1	or	6	

hours.		

	

Method	Details	

	

RNA-seq	library	preparation	

Total	RNA	was	isolated	from	cells	and	purified	using	Quick	RNA	mini	prep	columns	and	RNase-

free	DNase	digestion	according	to	the	manufacturer’s	instructions	(Zymo	Research).	RNA-seq	

libraries	were	prepared	from	poly(A)-enriched	mRNA,	as	previously	described	(Oishi	et	al.,	

2017).	Libraries	were	sequenced	on	HiSeq	4000	or	NextSeq	500.	

	

Crosslinking	for	ChIP-seq	

For	PU.1,	C/EBPβ,	H3K4me2,	and	H3K27ac	ChIP-seq,	culture	media	was	removed	and	plates	

were	washed	once	with	PBS	and	then	fixed	for	10	minutes	with	1%	formaldehyde	(Fischer	

Scientific)	in	PBS	at	room	temperature	and	reaction	was	then	quenched	by	adding	glycine	

(Sigma)	to	0.125M.	

For	CJUN,	P65,	USF2	and	RUNX1	ChIP-seq,	cells	were	cross-linked	for	30	minutes	with	2mM	DSG	

(Pierce)	in	PBS	at	room	temperature.	Subsequently	cells	were	fixed	for	10	minutes	with	1%	

formaldehyde	at	room	temperature	and	the	reaction	was	quenched	with	0.125M	glycine.		

After	fixation,	cells	were	washed	once	with	cold	PBS	and	then	scraped	into	supernatant	using	a	

rubber	policeman,	pelleted	for	8	minutes	at	400xG	at	4°C.	Cells	were	transferred	to	DNA	lobind	

tubes	and	pelleted	at	700xG	for	5	minutes	at	4°C	and	snap-frozen	in	liquid	nitrogen	and	stored	

at	-80°C	until	ready	for	ChIP-seq	protocol	preparation.	

	

ChIP-seq	library	preparation	
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Chromatin	immunoprecipitation	(ChIP)	was	performed	as	described	previously	(Oishi	et	al.,	

2017).	In	brief,	cells	were	resuspended	in	swelling	buffer	(10mM	HEPES/KOH	(pH7.9),	85mM	

KCl,	1mM	EDTA,	0.5%	IGEPAL	CA-630)	with	protease	inhibitors	for	5min	and	then	spun	down	

and	resuspended	in	500µl	lysis	buffer	(50mM	Tris/HCl	(pH7.4),	1%	SDS,	0.5%	Empigen	BB,	

10mM	EDTA)	with	protease	inhibitors,	and	chromatin	was	sheared	using	the	Bioruptor	

(Diagenode).	Lysate	was	diluted	with	750µl	dilution	buffer	(20mM	Tris/HCl,	100mM	NaCl,	0.5%	

TritonX-100,	2mM	EDTA),	1%	was	taken	as	input	DNA,	and	immunoprecipitation	was	carried	

out	overnight	with	Dynabeads	protein	G	bound	to	specific	antibodies	for	PU.1	(Santa	Cruz,	sc-

352X),	C/EBPβ	(Santa	Cruz,	sc-150),	H3K4me2	(Millipore,	07-030),	H3K27ac	(Active	Motif,	

39135),	CJUN	(Santa	Cruz,	sc-1694),	P65	(Santa	Cruz,	sc-372X),	USF2	(Santa	Cruz,	sc-862X)	and	

RUNX1	(Santa	Cruz,	sc-365644).	Beads	were	washed	twice	each	with	wash	buffer	I	(20mM	

Tris/HCl,	150mM	NaCl,	0.1%	SDS,	1%	Triton	X-100,	2mM	EDTA),	wash	buffer	II	(10mM	Tris/HCl,	

250mM	LiCl,	1%	IGEPAL	CA-630,	0.7%	Na-deoxycholate,	1mM	EDTA),	TE	0.2%	Triton	X-100	and	

TE	50mM	NaCl	and	subsequently	eluted	with	elution	buffer	(TE,	2%	SDS).	DNA	was	reverse-

crosslinked	and	purified	using	ChIP	DNA	Clean	&	Concentrator	(Zymo	Research)	according	to	

the	manufacturer's	instructions.	Sequencing	libraries	were	prepared	from	eluted	DNA	by	

blunting,	A-tailing,	adaptor	ligation	as	previously	described	(Heinz	et	al.,	2010)	using	NextFlex	

barcodes	(Bioo	Scientific).	Libraries	were	PCR-amplified	for	12-15	cycles,	size	selected	using	

PAGE/TBE	gels	for	200-400bp	fragments	by	gel	extraction	and	single-end	sequenced	HiSeq	4000	

or	NextSeq	500.	

	

5’GRO-seq	and	GRO-seq		

Nascent	transcription	was	captured	by	global	nuclear	run-on	sequencing	(GRO-seq)	(Core	et	al.,	

2008)	and	nascent	transcription	start	sites	by	5’GRO-seq	(Lam	et	al.,	2013).	Nuclei	were	isolated	

from	BMDMs	using	hypotonic	lysis	[10	mM	Tris-HCl	(pH	7.5),	2	mM	MgCl2,	3	mM	CaCl2;	0.1%	

IGEPAL	CA-630]	and	flash	frozen	in	GRO-freezing	buffer	[50	mM	Tris-HCl	(pH	7.8),	5	mM	MgCl2,	

40%	Glycerol].	3-5	x	106	BMDM	nuclei	were	run-on	with	BrUTP-labelled	NTPs	as	described	

(Duttke	et	al.,	2015)	with	3x	NRO	buffer	[15mM	Tris-Cl	(pH	8.0),	7.5	mM	MgCl2,	1.5	mM	DTT,	

450	mM	KCl,	0.3	U/µL	of	SUPERase	In,	1.5%	Sarkosyl,	366	µM	ATP,	GTP	(Roche),	Br-UTP	(Sigma	



	 40	

Aldrich)	and	1.2	µM	CTP	(Roche,	to	limit	run-on	length	to	~40	nt)].	Reactions	were	stopped	

after	five	minutes	by	addition	of	500	µL	Trizol	LS	reagent	(Invitrogen),	vortexed	for	5	minutes	

and	RNA	extracted	and	precipitated	as	described	by	the	manufacturer.		

	

GRO-seq	library	preparation		

For	GRO-seq,	RNA	pellets	were	resuspended	in	18	µl	ddH2O	+	0.05%	Tween	(dH2O+T)	and	after	

addition	of	2	µl	fragmentation	mix	[100	mM	ZnCl2,	10	mM	Tris-HCl	(pH	7.5)],	incubated	at	70°C	

for	15	minutes.	Fragmentation	was	stopped	by	addition	of	2.5	µl	100	mM	EDTA.	BrdU	

enrichment	was	performed	using	BrdU	Antibody	(IIB5)	AC	beads	(Santa	Cruz,	sc-32323	AC,	lot	

#A0215	and	#C1716),	as	described	in	detail	by	Hetzel	et	al	(Hetzel	et	al.,	2016).	Beads	were	

washed	once	with	GRO	binding	buffer	[0.25×saline-sodium-phosphate-EDTA	buffer	(SSPE),	0.05%	

(vol/vol)	Tween,	37.5	mM	NaCl,	1	mM	EDTA]	+	300	mM	NaCl	followed	by	three	washes	in	GRO	

binding	buffer	and	resuspend	as	25%	(vol/vol)	slurry	with	0.1	U/μL	SUPERase-in.	To	fragmented	

RNA,	500	μL	cold	GRO	binding	buffer	and	40	μL	equilibrated	BrdU	antibody	beads	were	added	

and	samples	slowly	rotated	at	4°C	for	80	minutes.	Beads	were	subsequently	spun	down	at	

1000xG	for	15	seconds,	supernatant	removed	and	the	beads	transferred	to	a	Millipore	Ultrafree	

MC	column	(UFC30HVNB;	Millipore)	in	about	2x	200	μL	GRO	binding	buffer.	The	IP	reaction	was	

washed	twice	with	400	μL	GRO	binding	buffer	before	RNA	was	eluted	by	incubation	in	200	μL	

Trizol	LS	(Thermo	Fisher)	under	gentle	agitation	for	3	minutes.	The	elution	was	repeated	a	

second	time,	120	μL	of	dH2O+T	added	to	increase	the	supernatant	and	extracted	as	described	

by	the	manufacturer.	

For	end-repair	and	decapping,	RNA	pellets	were	dissolved	in	8	µl	TET	[10	mM	Tris-HCl	(pH	7.5),	

1	mM	EDTA,	0.05	%	Tween20]	by	vigorous	vortexing,	heated	to	70°C	for	2	minutes	and	placed	

on	ice.	After	a	quick	spin,	22	µl	Repair	MM	[3	µl	10x	PNK	buffer,	15.5	µl	dH2O+T,	0.5	µl	

SUPERase-In	RNase	Inhibitor	(10	U),	2	µl	PNK	(20U),	1	µl	RppH	(5U)]	was	added,	mixed	by	

flicking	and	incubated	at	37°C	for	1	hour.	To	phosphorylate	the	5’end,	0.5	µl	100	mM	ATP	was	

subsequently	added	and	the	reactions	were	incubated	for	another	45	minutes	at	37°C	(the	high	

ATP	concentration	quenches	RppH	activity).	Following	end	repair,	2.5	µl	50	mM	EDTA	was	

added,	reactions	mixed	and	then	heated	to	70°C	for	2	minutes	before	being	placed	on	ice.	A	
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second	BrdU	enrichment	was	performed	as	detailed	above.	For	library	preparation,	RNA	pellets	

were	dissolved	in	2.75	µl	TET	+	0.25	µl	Illumina	TruSeq	3’Adapter	(10	µM),	heated	to	70°C	for	2	

minutes	and	placed	on	ice.	7	µl	of	3’MM	[4.75	µl	50%	PEG8000,	1	µl	10x	T4	RNA	ligase	buffer,	

0.25	µl	SUPERase-In,	1	µl	T4	RNA	Ligase	2	truncated	(200U;	NEB)]	was	added,	mixed	well	by	

flicking	and	reactions	incubated	at	20°C	for	1	hour.	Reactions	were	diluted	by	addition	of	10	µl	

TET	+	2	µl	50	mM	EDTA,	heated	to	70°C	for	2	minutes,	placed	on	ice	and	a	third	round	of	

BrdUTP	enrichment	was	performed.	RNA	pellets	were	transferred	to	PCR	strips	during	the	75%	

ethanol	wash	and	dried.	Samples	were	dissolved	in	4	µl	TET	[10	mM	Tris-HCl	(pH	7.5),	0.1	mM	

EDTA,	0.05%	Tween	20]	+	1	µl	10	µM	reverse	transcription	(RT)	primer.	To	anneal	the	RT-

primer,	the	mixture	was	incubated	at	75°C	for	5	minutes,	37°C	for	15	minutes	and	25°C	for	10	

minutes.	To	ligate	the	5’	Illumina	TruSeq	adapter,	10	µl	5’MM	[1.5	µl	ddH2O	+	0.2%	Tween20,	

0.25	µl	denaturated	5’TruSeq	adapter	(10	µM),	1.5	µl	10x	T4	RNA	ligase	buffer,	0.25	µl	

SUPERase-In,	0.2	µl	10	mM	ATP,	5.8	µl	50%	PEG8000,	0.5	µl	T4	RNA	ligase	1	(5U;	NEB)]	was	

added	and	reactions	were	incubated	at	25°C	for	1	hour.	Reverse	transcription	was	performed	

using	Protoscript	II	(NEB)	[4	µl	5x	NEB	FirstStrand	buffer	(NEB;	E7421AA),	0.25	µl	SUPERase-In,	

0.75	µl	Protoscript	II	(150U;	NEB)]	at	50°C	for	1	hour.	After	addition	of	30	µl	PCR	MM	[25	µl	2X	

LongAmp	Taq	2X	Master	Mix	(NEB),	0.2	µl	100	µM	forward	primer,	2.8	µl	5M	Betaine	and	2	µl	

10	µM	individual	barcoding	primer],	mixtures	were	amplified	(95°C	for	3	minutes,	[95°C	for	60	

seconds,	62°C	for	30	seconds,	72°C	for	15	seconds]	x13,	72°C	for	3	minutes).	PCR	reactions	were	

cleaned	up	using	1.5	volumes	of	SpeedBeads™	(GE	Healthcare)	in	2.5M	NaCl/20%	PEG8000	and	

libraries	size	selected	on	a	PAGE/TBE	gels	to	160–225	base	pairs.	Gel	slices	were	shredded	by	

spinning	through	a	0.5	ml	perforated	PCR	tube	placed	on	top	of	a	1.5	ml	tube.	150	µl	Gel	EB	

[0.1%	LDS,	1M	LiCl,	10	mM	Tris-HCl	(pH	7.8)]	was	added	and	the	slurry	incubate	under	agitation	

overnight.	To	purify	the	eluted	DNA,	700	µl	Zymogen	ChIP	DNA	binding	buffer	was	added	into	

the	1.5	ml	tube	containing	the	shredded	gel	slice	and	the	Gel	EB,	mixed	by	pipetting	and	the	

slurry	transferred	to	a	ZymoMiniElute	column.	Samples	were	first	spun	at	1000xG	for	3	

minutes,	then	10,000xG	for	30	seconds.	Flow	through	was	removed,	and	samples	washed	with	

200	µl	Zymo	WashBuffer	(with	EtOH).	Gel	remainders	were	removed	by	flicking	and	columns	

washed	by	addition	of	another	200	µl	Zymo	WashBuffer	(with	EtOH).	Flow	through	was	
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removed,	columns	spun	dry	by	centrifugation	at	14,000xG	for	1	minute	and	DNA	eluted	by	

addition	of	20	µl	pre-warmed	Sequencing	TET	[10	mM	Tris-HCl	(pH	8.0),	0.1	mM	EDTA,	0.05%	

Tween	20].	Libraries	were	sequenced	on	an	Illumina	NextSeq	500.	

	

5’GRO-seq	library	preparation		

RNA	pellets	were	resuspended	in	10	µl	TET,	heated	to	70°C	for	2	minutes	and	place	on	ice.	10	µl	

of	dephosporylation	MM	[2	µl	10x	CutSmart,	6.75	µl	dH2O+T,	1	µl	Calf	Intestinal	alkaline	

Phosphatase	(10	U;	CIP,	NEB),	0.25	µl	SUPERase	In	(5U)]	was	added.	Following	incubation	at	

37°C	for	45	minutes,	2	µl	50	mM	EDTA	was	added,	reactions	mixed,	heated	to	70°C	for	2	

minutes	and	place	on	ice.	BrdU	enrichment	was	performed	as	described	for	GRO-seq.	RNA	

pellets	were	dissolved	in	10	µl	TET	and	a	second	round	of	dephosphorylation	and	BrdU	

enrichment	was	performed.	Libraries	were	prepared	as	described	in	(Hetzel	et	al.,	2016).	

Briefly,	libraries	were	done	as	described	for	GRO-seq	with	exception	of	the	3’Adapter	ligation	

step.	Here,	prior	to	3’Adapter	ligation,	samples	were	dissolved	in	3.75	µl	TET	heated	to	70°C	for	

2	minutes	and	placed	on	ice.	RNAs	were	decapped	by	addition	of	6.25	µl	RppH	MM	[1	µl	10x	T4	

RNA	ligase	buffer,	4	µl	50%	PEG8000,	0.25	µl	SUPERase-In,	1	µl	RNA	5'	Pyrophosphohydrolase	

(5U;	RppH,	NEB)]	and	incubated	at	37°C	for	1	hour.	Afterwards,	to	ligate	the	3’	Illumina	TruSeq	

adapter	10	µl	of	3’MM	was	added	[1	µl	10x	T4	RNA	ligase	buffer,	6	µl	50%	PEG8000,	1.5	µl	

ddH2O+T,	0.25	µl	heat-denaturated	Illumina	TruSeq	3’Adapter,	0.25	µl	SUPERase-In,	1	µl	T4	

RNA	Ligase	2	truncated	K227Q	(200U;	NEB)],	mixed	well	by	flicking	and	reactions	incubated	at	

20°C	for	1	hour.	Reactions	were	diluted	by	addition	of	10	µl	TET	+	2	µl	50	mM	EDTA,	heated	to	

70°C	for	2	minutes,	placed	on	ice	and	a	third	round	of	BrdUTP	enrichment	was	performed.	5’	

adapter	ligation,	reverse	transcription	and	library	size	selection	were	performed	as	described	

for	GRO-seq.	Samples	were	amplified	for	14	cycles,	size	selected	for	160–250	bp	and	sequenced	

on	an	Illumina	NextSeq	500.	

	

ATAC-seq	library	preparation		

To	approximately	150k	nuclei	in	22.5	µl	GRO	freezing	buffer,	isolated	as	described	for	GRO-seq	

above,	25	µl	DNA	Tagmentation	buffer	was	added,	reaction	mixed	and	2.5	µL	DNA	
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Tagmentation	Enzyme	mix	(Nextera	DNA	Library	Preparation	Kit,	Illumina)	added.	Mixture	was	

incubated	at	37°C	for	30	minutes	and	subsequently	purified	using	the	Zymogen	ChIP	DNA	

purification	kit	as	described	by	the	manufacturer.	DNA	was	amplified	using	the	Nextera	Primer	

Ad1	and	a	unique	Ad2.n	barcoding	primers	using	NEBNext	High-Fidelity	2X	PCR	MM	for	10	

cycles.	PCR	reactions	were	purified	using	1.5	volumes	of	SpeedBeads	in	2.5M	NaCl,	20%	

PEG8000,	size	selected	using	PAGE/TBE	gels	for	160	–	280	bp	and	DNA	eluted	as	described	for	

GRO-seq.	

	

PLAC-seq	library	preparation	

PLAC-seq	libraries	were	prepared	as	described	in	(Fang	et	al.,	2016).	In	brief,	cells	were	cross-

linked	for	15	minutes	at	room	temperature	with	1%	formaldehyde	and	quenched	for	5	minutes	

at	room	temperature	with	0.2M	glycine.	The	cross	linked	cells	were	centrifuged	at	2500xG	for	5	

minutes.	To	isolate	nuclei,	cross-linked	cells	were	resuspended	in	200	µl	lysis	buffer	(10mM	

Tris-HCl	(pH	8.0),	10mM	NaCl,	0.2%	IPEGAL	CA-630)	and	incubated	on	ice	for	15	minutes.	The	

suspension	was	then	centrifuged	at	2500xG	for	5	minutes	and	the	pellet	washed	by	

resuspending	in	300	µl	lysis	buffer	and	centrifuging	at	2500xG	for	5	minutes.	The	pellet	was	

resuspended	in	50	µl	0.5%	SDS	and	incubated	for	10	minutes	at	62°C.	170	µl	1.47%	TritonX-100	

was	added	to	the	suspension	and	incubated	for	15	minutes	at	37°C.	25	µl	of	10X	NEBuffer	2	and	

100U	MboI	was	added	to	digest	chromatin	for	2	hours	at	37°C	at	1000rpm	rotation.	Enzymes	

were	inactivated	by	heating	for	20	minutes	at	62°C.	Fragmented	ends	were	biotin	labeled	by	

adding	50	µl	of	a	mix	containing	0.3mM	biotin-14-dATP,	0.3mM	dATP,	0.3mM	dTTP,	0.3mM	

dGTP,	and	0.8U/µl	Klenow	and	incubated	for	60	minutes	at	23°C	with	rotation	(500rpm).	Ends	

were	subsequently	ligated	by	adding	a	900	µl	master	mix	containing	120	µl	10X	T4	DNA	ligase	

buffer	(NEB),	100	µl	10%	TritionX-100,	12	µl	10mg/mL	BSA,	10	µl	400U/µl	T4	DNA	Ligase	(NEB,	

high	concentration	formula)	and	658	µl	H2O	and	incubated	for	240	minutes	at	23°C	with	

300rpm	slow	rotation.	Nuclei	were	pelleted	for	5	minutes	at	room	temperature	at	2500XG.	For	

the	ChIP,	nuclei	were	resuspended	in	RIPA	Buffer	(10mM	Tris	(pH	8.0),	140mM	NaCl,	1mM	

EDTA,	1%	Triton	X-100,	0.1%	SDS,	0.1%	sodium	deoxycholate)	with	proteinase	inhibitors	and	

incubated	on	ice	for	10	minutes.	Sonication	was	performed	using	a	Covaris	M220	instrument	
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(Power	75W,	duty	factor	10%,	cycle	per	bust	200,	time	10	minutes,	temperature	7°C)	and	nuclei	

were	spun	for	20	minutes	at	14000rpm	at	4°C.	For	pre-cleaning,	protein	G	sepharose	beads	

were	added	to	the	supernatant	and	rotated	for	3	hours	at	4°C.	5%	of	supernatant	was	taken	as	

input	DNA,	and	to	the	remaining	volume	2.5µg	of	anti-H3K4me3	antibody	(04-745,	Millipore)	

was	added	and	rotated	at	4°C	overnight	for	immunoprecipitation.	0.5%	BSA-blocked	protein	G	

sepharose	beads	was	added	and	the	sample	was	rotated	for	3	hours	at	4°C.	The	sample	was	

centrifuged	at	2000rpm	for	1	minute	and	the	beads	were	washed	three	times	with	RIPA	buffer,	

two	times	with	high-salt	RIPA	buffer	(10mM	Tris	pH	8.0,	300mM	NaCl,	1mM	EDTA,	1%	Triton	X-

100,	0.1%	SDS,	0.1%	deoxycholate),	one	time	with	LiCl	buffer	(10mM	Tris	(pH	8.0),	250mM	LiCl,	

1mM	EDTA,	0.5%	IGEPAL	CA-630,	0.1%	sodium	deoxycholate)	and	finally	two	times	with	TE	

buffer	(10mM	Tris	(pH	8.0),	0.1mM	EDTA).	Washed	beads	were	treated	with	10µg	RNase	A	in	

extraction	buffer	(10mM	Tris	(pH	8.0),	350mM	NaCl,	0.1mM	EDTA,	1%SDS)	for	1	hour	at	37°C,	

and	subsequently	20µG	proteinase	K	was	added	at	65°C	overnight.	ChIP	DNA	was	purified	by	

Phenol/Chloroform/Isoamyl	Alcohol	(25:24:1)	extraction	and	then	ethanol	purification	with	

final	elution	volume.	For	Biotin	pull	down,	20	µL	of	10mg/mL	Dynabeads	My	One	T1	

Streptavidin	beads	washed	with	400	µl	of	1X	Tween	Wash	Buffer	(5mM	Tris-HCl	(pH	7.5),	

0.5mM	EDTA,	1M	NaCl,	0.05%	Tween)	supernatant	removed	after	separation	on	a	magnet.	

Beads	were	resuspended	with	2X	Binding	Buffer	(10mM	Tris-HCl	(pH	7.5),	1mM	EDTA,	2M	NaCl),	

added	to	the	sample	and	incubated	for	15	minutes	at	room	temperature.	Beads	were	

subsequently	washed	twice	with	1X	Tween	Wash	Buffer	and	in	between	heated	on	a	

thermomixer	for	2	minutes	at	55°C	with	mixing	and	once	washed	once	with	1X	NEB	T4	DNA	

ligase	buffer.	To	repair	fragmented	ends	and	remove	biotin	from	unligated	ends,	beads	were	

resuspended	in	88	µl	1X	NEB	T4	DNA	ligase	buffer,	2	µl	25mM	dNTP	mix,	5	µl	10U/µl	NEB	T4	

PNK,	4	µl	3U/µl	NEB	T4	DNA	Polymerase	and	1	µl	5U/µl	Klenow,	incubated	for	30	minutes	at	

room	temperate	and	supernatant	was	discarded	after	separation	on	magnet.	Beads	were	

washed	twice	with	1X	Tween	Wash	Buffer	with	2	minute	incubation	at	55°C	on	a	thermomixer	

with	mixing,	and	afterwards	resuspended	in	100µl	1X	NEB	Buffer	2.	For	dA-tailing,	beads	were	

resuspended	in	90	µl	1X	NEB	Buffer	2,	5	µl	10mM	dATP	and	5	µl5U/µl	Klenow	(exo-,	NEB	

M0212)	and	incubated	for	30	minutes	at	30°C.	Beads	were	then	washed	twice	as	before.	Beads	
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were	subsequentially	washed	in	1X	NEB	Quick	Ligation	Reaction	Buffer	(diluted	from	2X,	NEB	

B2200S).	To	ligate	adapters,	beads	were	suspended	in	50	µl	1X	NEB	DNA	Quick	Ligase	Buffer	

and	3	µl	Illumina	Indexed	adapters	and	2	µl	of	NEB	DNA	Quick	ligase	(M2200)	were	added	

mixed	and	incubated	for	15	minutes	at	room	temperature.	Beads	were	washed	twice	with	1X	

Tween	Wash	Buffer	with	2	minutes	at	55°C	on	a	thermomixer	as	before.	Beads	washed	with	1X	

Tris	Buffer	once	and	resuspended	in	50	µl	of	1x	Tris	Buffer.	KAPA	qPCR	assay	was	performed	to	

estimate	concentration	and	cycle	number	for	final	PCR.	Final	PCR	was	directly	amplified	off	the	

T1	beads	according	to	the	qPCR	results	and	DNA	was	cleaned	with	1X	AMPure	Cleanup	and	

eluted	in	1X	Tris	Buffer	and	sequenced	paired-end.	

	

Bisulfite	Sequencing	

Bisulfite	sequencing	was	performed	as	described	in	(Urich	et	al.,	2015).	DNA	from	C57Bl/6J	and	

SPRET/EiJ	BMDMs	was	isolated	using	the	PureLink	Genomic	DNA	Kit	(Thermo	Fisher	Scientific)	

as	described	by	the	manufacturer.	2	µg	of	gDNA	supplemented	with	0.5%	non-methylated	ʎ-

DNA	(Promega)	was	used	as	input.	DNA	was	fragmented	to	a	200	bp	peak	size	using	the	Covaris	

microTube	sonicator,	size	selected,	end-repaired,	adenylated	and	methylated	adapters	ligated	

exactly	as	detailed	in	Urich	et	al.	Cytosine	to	uracil	conversion	was	performed	with	the	EZ	DNA	

methylation-Gold	kit	(Zymo	Research)	with	450ng	of	adapter-ligated	gDNA	input	as	described	

within.	Following	bisulfite-treated	DNA	purification,	reactions	were	amplified	with	four	cycles,	

purified	using	one	volume	of	AMPure	XP	bead	solution	and	sequenced	on	an	Illumina	NextSeq	

500	for	25	million	and	31	million	reads	for	C57Bl/6J	and	SPRET/EiJ,	respectively.	Conversion	

rates	were	99.69%.	

	

Hi-C	sequencing	

In	situ	Hi-C	was	performed	using	the	Arima-HiC	kit	(Arima	Genomics	Inc)	as	described	by	the	

manufacturer.		

	

Quantification	and	Statistical	Analysis	
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Statistical	details	are	indicated	throughout	the	main	text,	in	the	Figure	legends	and	within	the	

supplemental	Tables	

	

Data	mapping	and	shifting	

Custom	genomes	were	generated	for	BALB/cJ,	NOD/ShiLtJ,	PWK/PhJ,	and	SPRET/EiJ	from	

invariant	positions	of	the	mm10	sequence	with	alleles	replaced	by	those	reported	in	the	VCF	

files	(version	v3)	from	the	Mouse	Genomes	Project	(Keane	et	al.,	2011).	For	C57BL/6J	the	mm10	

reference	genome	from	the	UCSC	genome	browser	was	used.	ChIP-seq,	ATAC-seq,	GRO-seq	and	

5’GRO-seq	data	was	mapped	to	custom	genomes	using	bowtie2	(Langmead	and	Salzberg,	2012)	

with	default	parameters.	RNA-seq	data	was	mapped	to	custom	genomes	using	STAR	(Dobin	et	

al.,	2013)	with	default	parameters.	DNA	methylation	data	was	mapped	to	custom	genomes	

using	Bismark	(Krueger	and	Andrews,	2011)	(bismark	-n	1	-l	40),	Hi-C	data	was	mapped	to	

custom	genomes	using	bowtie2	(Langmead	and	Salzberg,	2012)	with	default	parameters	and	

PLAC-seq	data	was	mapped	to	custom	genomes	using	BWA	(version	0.7.15-r1140)	(Li	and	

Durbin,	2009)	with	default	parameters.	For	visualization	and	data	analysis,	the	strain	genomes	

were	shifted	to	the	positions	of	the	reference	genome	(mm10)	using	MARGE	(Link	et	al.,	2018).	

Deletions	in	the	strains	compared	to	the	reference	were	not	assigned	with	any	reads.	Mapped	

reads	on	insertions	in	the	strain	were	shifted	to	the	last	overlapping	position	between	strain	

and	reference	and	summed	up	at	this	position.	To	overlap	peaks	with	structural	variances	(SV)	

the	SV	file	for	all	strain	comparisons	to	C57	was	downloaded	from	the	mouse	genome	project	

webpage.	

	

Generation	of	consensus	motif	file	

Position	Probability	Matrices	(PPMs)	of	all	pairs	of	DNA	sequence	motifs	were	generated	and	all	

pairwise	combinations	were	aligned	with	Smith-Waterman	algorithm	(Smith	and	Waterman,	

1981)	without	gaps.	For	each	position	in	the	alignment	a	Pearson	correlation	was	calculated.	

Sets	of	motifs	that	had	PPMs	with	a	Pearson	correlation	of	0.9	or	greater	were	merged	by	

iteratively	aligning	each	PPM	within	the	set	and	averaging	the	nucleotide	frequencies	at	each	

position,	similar	to	the	STAMP	approach	(Mahony	and	Benos,	2007).	The	threshold	for	motif	
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finding	was	set	to	have	a	false-positive	rate	lesser	than	0.001	using	the	Biopython	module	

motifs	(Cock	et	al.,	2009)	with	the	function	distribution.threshold_fpr.	

	

	

IDR	analysis	

Transcription	factor	ChIP-seq	experiments	were	performed	in	two	replicates	with	

corresponding	input	experiments.	HOMER	(Heinz	et	al.,	2010)	tag	directories	were	created	for	

both	replicates	and	both	inputs	and	peaks	were	called	with	HOMER	for	each	tag	directory	with	

relaxed	peak	finding	parameters	(-L	0	-C	0	-fdr	0.9)	and	the	corresponding	input	directory.	For	

ATAC-seq,	no	inputs	were	used,	but	the	size	was	set	to	200bp	(-L	0	-C	0	-fdr	0.9	-minDist	200	-

size	200).	IDR	(Li,	2011)	was	installed	using	Anaconda	3.	To	test	for	reproducibility	between	

replicates,	tag	directories	for	input	and	ChIP-seq	were	pooled	and	pseudo	replicates	were	

generated.	Peaks	were	called	and	IDR	was	run	on	both	replicates	and	considered	good	if	the	

replicate	with	more	peaks	had	less	than	twice	the	number	of	peaks	of	the	other	replicate.	To	

assess	reproducibility	within	one	experiment,	each	replicate	was	randomly	split	into	two	

replicates.	Peaks	were	called	and	IDR	was	run	on	each	pseudo	replicate.	Experiments	were	

considered	self-consistent	if	the	pseudo	replicate	with	more	peaks	had	less	than	twice	the	

number	of	peaks	of	the	other	pseudo	replicate.	After	passing	these	two	quality	control	steps,	

IDR	was	performed	on	replicates	and	all	optimal	peaks	defined	by	IDR	were	used	for	

downstream	analysis.	For	downstream	analysis,	the	pooled	input	and	experiment	tag	

directories	were	used.	

	

Histone	modification	ChIP-seq	quality	control	

IDR	is	not	applicable	for	histone	modification	data.	Therefore,	for	H3K4me2	and	H3K27ac	ChIP-

seq,	peaks	were	called	on	each	replicate	independently	with	HOMER’s	findPeaks	-style	histone,	

8-fold	enrichment	over	the	input	sample	and	normalization	to	10	million	mapped	reads	per	

experiment.	These	peaks	then	were	merged	using	HOMER’s	mergePeaks	–size	given	and	

subsequently	similar	peaks	between	both	replicates	were	identified	using	HOMER’s	
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getDifferentialPeaks	with	the	parameter	–same.	Peaks	that	were	significantly	similar	(p-value	<	

0.001)	were	kept.	

	

ATAC-seq	and	ChIP-seq	analysis	

To	quantify	the	number	of	differentially	bound	transcription	factor	binding	site	and	open	

chromatin,	the	optimal	peak	files	from	the	IDR	analysis	were	merged	between	two	strains	with	

HOMER’s	mergePeaks.	Subsequently	the	merged	file	was	annotated	with	HOMER’s	

annotatePeaks.pl	with	parameters	mm10	–noann	–nogene	and	the	pooled	tag	directories	were	

used.	Peaks	bound	more	than	2-fold	different	between	strains	were	colored	light	blue,	peaks	

bound	more	than	4-fold	different	were	colored	dark	blue.	All	tag	counts	reported	throughout	

the	manuscript	are	normalized	to	10	million	reads	per	sample.	

	

De	novo	Motif	analysis	

To	identify	motifs	enriched	in	peak	regions	over	random	background,	HOMER’s	de	novo	motif	

analysis	(findMotifsGenome.pl)	was	modified	to	account	for	differences	in	the	strain	genomes.	

The	hand-curated	motif	file	was	used	to	compare	enriched	consensus	sequences	with	known	

motifs.	

	

Super	enhancers	

Super	enhancers	were	identified	using	H3K27ac	ChIP-seq	data	in	HOMER	using	the	findPeaks	–

style	super	and	–i<input	sample>	parameters.	

	

	

Network	analysis	

To	calculate	the	effect	size	of	mutations	within	a	motif	on	binding,	the	r.squaredGLMM	function	

of	the	MuMIn	package	(Barton,	2017)	in	R	was	used.	The	marginal	R	value	(sqrt(R2))	was	

multiplied	by	100	and	reported	as	effect	size.	The	network	was	visualized	using	Cytoscape	3.5.1	

(Shannon	et	al.,	2003)	scaling	the	edges	by	effect	size	and	nodes	by	percentage	of	peaks	

containing	the	motif	of	interest	at	least	once.	



	 49	

	

RNA-seq	analysis	

To	compare	strain-specific	gene	expression,	first	HOMER’s	analyzeRepeats	with	the	option	rna	

and	the	parameters	–condenseGenes,	-noadj,	and	–count	exons	was	used	on	two	replicates	per	

strain.	Differential	gene	expression	was	assessed	with	DESeq2	using	HOMER’s	

getDiffExpression.pl	with	the	parameters	–fdr	0.01	and	–log2fold	1	(for	2-fold	differently	

expressed	genes)	or	–log2fold	2	(for	4-fold	differently	expressed	genes).	All	genes	shorted	than	

250bp	were	removed	and	for	the	remaining	genes	the	TPM	(transcript	per	kilobase	million)	

values	were	plotted	and	colored	according	to	fold	change	(2-fold	different:	light	blue,	4-fold	

different:	dark	blue).	For	ratio	ratio	plots	the	TPM	values	of	both	replicates	per	treatment	and	

strain	were	averaged	and	the	induction	of	gene	expression	was	calculated	avg(TPM	

KLA+1)/avg(TPM	notx	+	1)	on	a	log	2	scale.	To	assess	the	difference	in	interferon	response,	46	

genes	associated	with	interferon	response	were	manually	selected	and	the	average	TPM	values	

for	both	strains	and	both	treatments	were	shown	and	used	to	calculate	the	fold	difference	in	

KLA	response.		

	

WGCNA	analysis	

Raw	gene	counts	defined	by	HOMER’s	analyzeRepeats	was	imported	in	R,	processed	with	EdgeR	

version	3.16.5	(Robinson	et	al.,	2010).	Genes	smaller	than	250	bp,	with	less	than	1	count	per	

million	(CPM)	in	at	least	2	samples	were	discarded	and	WGCNA	analysis	(Version	1.61)	

(Langfelder	and	Horvath,	2008)	was	performed	on	the	remaining	genes.	The	coexpression	

network	was	created	using	a	softpower	value	of	20.	Tree	cutting	was	performed	with	PAM	

stage,	minimum	module	size	of	250	genes	and	a	cut	height	of	0.99	(Langfelder	et	al.,	2008).	The	

modules	were	ordered	according	to	number	of	genes,	and	were	assigned	colors	from	the	

‘Spectral’	palette	of	RcolorBrewer	(1.1-2)	(Neuwirt,	2014).	Module	trait	correlations	were	

calculated	using	‘treatment’,	‘strain	combinations’	and	‘treatment	and	strain	interaction’	as	

surrogate	trait	variables.	P-values	based	on	the	correlation	scores	were	FDR	multiple	testing	

corrected	with	the	Stats-package	(Version	4.3.3.2),	and	only	modules-trait	correlated	FDR	<	1E-
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3	were	considered	to	be	significant.	Modules	were	annotated	using	Metascape	(Tripathi	et	al.,	

2015).	

	

GRO-seq	analysis	

To	compare	strain-specific	nascent	transcription	the	level	of	nascent	transcripts	at	the	gene	

bodies	was	assessed	with	HOMER’s	analyzeRepeats	with	the	option	rna	and	the	parameters	–

condenseGenes	–noadj	and	–count	genes	on	two	replicates	per	strain.	Differential	nascent	

transcription	was	assessed	with	DESeq2	using	HOMER’s	getDiffExpression.pl	with	the	

parameters	–fdr	0.01	and	–log2fold	1	(for	2-fold	different	nascent	transcription)	or	–log2fold	2	

(for	4-fold	different	nascent	transcription).	All	genes	shorted	than	250bp	were	removed	and	for	

the	remaining	gene	bodies	the	TPM	values	for	the	pooled	tag	directories	were	used	for	

visualization.	For	ratio-ratio	plots	analyzeRepeats	was	used	with	option	rna	and	the	parameters	

–condenseGenes,	-tpm	and	–count	genes	using	the	pooled	tag	directories	per	strain	and	

treatment.	

	

5’GRO-seq	analysis	

Tag	directories	for	two	replicates	were	pooled	into	one	replicate	to	achieve	more	sequencing	

depth.	5’GRO-seq	signal	was	assessed	with	HOMER’s	findPeaks	–style	tss	using	the	pooled	GRO-

seq	signal	tag	directories	as	input.	5’GRO-seq	peaks	were	merged	between	strains	using	

mergePeaks	and	signal	was	quantified	with	annotatePeaks.pl	with	parameters	–fragLength	1	

and	–strand	+.	To	quantify	the	distance	between	the	5’GRO-seq	signals	and	the	annotated	

transcription	start	sites	(TSS),	the	distances	annotatePeaks.pl	reports	were	used.	

To	determine	the	percentage	of	genetic	variation	within	TSS	affection	gene	expression,	all	TSS	

were	merged	between	all	possible	strains	combinations	with	HOMER’s	mergePeaks	–d	given	-

strand.	These	sites	then	were	centered	and	extended	by	the	respective	distances.	For	TSS	on	

the	negative	strand	the	extension	was	reversed.	The	extended	regions	were	annotated	with	

mutations	from	the	strains.	Furthermore,	the	expression	of	each	gene	was	measured	by	RNA-

seq	read	counts	using	TPM.	Genes	on	chromosome	X	and	chromosome	Y	were	excluded.	All	

genes	with	less	than	4	TPM	were	filtered	out.	For	the	remaining	genes,	the	log2	fold	change	
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was	calculated.	Genes	were	split	into	similarly	expressed	between	strains	(log2	fold	change	

between	-0.5	and	0.5)	and	differently	expressed	(log2	fold	change	greater	than	1	or	less	than	-

1).	The	genes	were	associated	with	the	closest	5’GRO-seq	signal	and	promoter	regions	with	

natural	genetic	variation	were	defined	as	mutated,	whereas	regions	without	any	genetic	

variation	were	defined	as	equal	sequence.	

	

CRD	analysis	

The	optimal	peak	files	from	all	five	strains	were	merged	into	one	large	file	with	HOMER’s	

mergePeaks	and	annotated	with	the	tag	counts	from	the	pooled	IDR	tag	directories.	The	

Pearson	correlation	coefficient	(PCC)	between	all	pairs	of	peaks	was	calculated	with	the	perl	

module	Statistics::Basic	using	the	correlation	sub	function.	To	visualize	the	data,	a	sub	part	of	

the	matrix	was	selected	and	visualized	in	R	with	heatmap.2	from	the	gplots	package.		

To	define	CRDs	4	or	more	consecutive	peaks	with	a	PCC	of	0.8	or	greater	from	each	peak	to	the	

start	peak	was	selected	to	plot	length	and	average	numbers	of	peaks.	To	annotate	the	signal	at	

CRDs	PU.1	or	5’GRO-seq	signal	was	annotated	at	each	original	peak	with	annotatePeaks.	For	

5’GRO-seq	the	parameters	–fragLength	1	and	–strand	+	was	used.	The	signal	of	all	peaks	within	

one	CRD	was	summed	up	to	the	final	signal	at	the	CRDs.	In	order	to	differentiation	between	

highly	similar	and	highly	different	CRDs	between	strains,	the	minimal	and	maximal	binding	

strength	was	defined	by	locus	and	the	difference	between	minimum	and	maximum	was	

calculated	as	(max	–	min)/max.	Loci	with	a	score	greater	than	0.6	were	labeled	as	different,	

whereas	loci	with	a	score	smaller	than	0.5	were	labeled	as	similar.	

	

Hi-C	analysis	

Hi-C	fastq	files	were	mapped	separately	and	HOMER	tag	directories	were	created	with	

makeTagDirectory	<read1>,<read2>	-tbp	1.	Hi-C	interaction	matrices	were	visualized	as	

observed	interactions	versus	expected	with	Juicebox	(Durand	et	al.,	2016)	and	in	the	WashU	

(Zhou	and	Wang,	2012)	genome	browser	as	pairwise	interactions.	PC1	values	were	calculated	

using	HOMER’s	runHiCpca.pl	with	–res	50000	–superRes	100000.	TADs	were	called	with	

HOMER’s	findTADsAndCPs.pl	find	with	parameters	–res	3000	–superRes	15000	for	C57	and	
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SPRET	independently.	To	remove	false	positive	regions,	filterTADsAndCPs.pl	was	used.	To	

compare	TADs	between	strains	the	TADs	were	merged	using	merge2Dbed.pl	and	then	the	

inclusion	ratio	was	quantified	with	findTADsAndCPs.pl	score	with	parameters	TBA.	

The	inclusion	ratio	was	calculated	by	finding	the	average	interaction	counts	as	a	function	of	

distance	for	interactions	within	the	TAD	(intra-TAD)	and	for	interactions	between	the	TAD	and	

the	regions	of	upstream	and	downstream	of	the	TAD	of	the	same	size	(inter-TAD).	To	visualize	

TADs	in	the	matrices	for	the	CRDs	TADbit-analysis	(Serra	et	al.,	2017)	was	used	to	call	TADs	on	

raw	count	interactions	matrices	in	a	100kb	window	generated	by	HOMER.		

	

PLAC-seq	analysis	

PLAC-seq	data	was	preprocessed	with	PrepPlac.sh	script	 from	the	FithiChIP	package	version	1	

(https://github.com/ay-lab/FitHiChIP).	 After	 mapping,	 two	 separate	 alignments	 files	 were	

created	for	short	(<	1	kb)	and	long	(>	10	kb)	range	interactions.	Peak	calling	was	performed	on	

the	 short	 distance	 alignment	 file	 using	MACS2	 (Zhang	 et	 al.,	 2008)	 (version	 2.1.1.20160309).	

BAM	 and	 bed	 peak	 files	were	 used	 as	 input	 for	 FitHiChIP	 to	 calculate	 statistically	 significant	

interactions	between	bin	 size	of	5000	bp.	Significant	 interactions	were	calculated	 for	each	of	

the	strains	 individually.	A	consensus	PLAC-seq	 interaction	set	was	generated	considering	only	

interactions	that	were	identified	in	minimally	two	strains	(Q<0.01).	Overlap	between	CRDs	and	

the	PLAC-seq	consensus	 set	were	 calculated	and	 the	 fraction	of	 intra-CRD,	 inter-CRD,	CRD	 to	

none	 CRD	 region,	 and	 interactions	 without	 CRDs	 were	 calculated.	 A	 5-times	 bigger	 size-

matched	and	peak-matched	background	set	of	consecutive	ATAC-seq	peaks	with	a	PCC	smaller	

than	0.6	was	generated.	Consequentially,	the	number	of	consensus	PLAC-seq	interactions	with	

the	CRDs	and	 the	background	was	 counted	and	 compared	using	 the	Kruskall	Wallis	 between	

group	test.	

	

DNA-Methylation	analysis	

For	analysis	only	CpG	data	was	considered.	To	account	for	additional	CpG	residues	generated	in	

SPRET	due	to	mutations	all	CpGs	present	in	both	strains	were	considered	in	the	downstream	

analysis	and	counted	as	0	when	not	present.	HOMER	tag	directories	were	created	with	
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parameters	–format	bismark	–genome	mm10	–checkGC	–minCounts	0.	The	optimal	number	of	

minCounts	was	assessed	per	experiment	and	tag	directories	were	re-generated	with	

parameters	–format	bismark	–genome	mm10	–checkGC	–minCounts	5	for	C57	and	–minCounts	

7	for	SPRET.	To	assess	the	differences	between	both	strains	the	transcription	start	sites	of	all	

genes	were	annotated	with	the	percentage	of	methylated	CpGs	using	HOMER’s	annotatePeaks	

with	option	tss	and	parameters	–mC.	Subsequently	the	percentage	of	methylated	CpGs	was	

plotted	for	all	gene	promoters,	for	gene	promoters	of	genes	that	are	2-fold	differently	

expressed,	as	well	as	genes	that	are	4-fold	differently	expressed.		

	

MARGE	analysis	

Mutation	Analysis	for	Regulatory	Genomic	Elements	(MARGE)	(Link	et	al.,	2018)	was	used	to	

generate	custom	genomes	and	shift	the	mapped	data	back	to	reference	coordinates.		

To	model	the	impact	of	a	motif	on	the	binding	of	the	measured	TFs,	a	linear	mixed	model	(LMM)	

was	used.	The	binding	of	the	TF	is	modeled	as	the	fixed	effect	motif	existence	with	random	

effects	locus	and	genotype	with	the	lme4	package	(Douglas,	2015)	in	R	(R	Development	Core	

Team,	2016).	To	calculate	significance	for	each	motif,	the	drop1	command	was	used.	It	

compares	a	model	including	motif	score	with	a	model	without	motif	score	and	reports	the	

Akaike	information	criterion	(AIC)	(Akaike,	1973)	for	the	difference.	

	

F1	analysis	

F1	data	was	mapped	to	both	parental	genomes.	Only	reads	without	any	mismatch	were	

considered	for	downstream	analysis.	Tag	directories	were	generated	for	perfectly	aligned	reads	

per	parental	genome,	as	well	as	for	all	reads	that	overlap	loci	with	differences	in	the	parental	

alleles.	All	loci	without	differences	were	discarded.	To	assign	allele-specific	reads,	the	ratio	of	

reads	overlapping	mutations	was	calculated	and	subsequently	all	perfectly	aligned	reads	for	

this	locus	were	multiplied	by	this	ratio	*	10	and	assigned	to	the	parental	genomes.	Loci	

annotated	with	0	reads	in	one	of	the	F1	alleles	were	filtered	out.	For	GRO-seq	analysis,	gene	

bodies	with	less	than	4	tag	counts	in	either	one	of	the	parental	or	F1	alleles	were	filtered	out.	
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For	ChIP-seq	analysis,	loci	with	less	than	16	reads	were	discarded.	To	determine	cis-regulation,	

the	difference	of	fold	change	between	parental	alleles	and	F1	alleles	were	calculated.	

	

Data	visualization	

All	ChIP-seq,	RNA-seq,	GRO-seq,	5’GRO-seq	and	Bisulfite	data	was	visualized	in	the	UCSC	

genome	browser	(Kent	et	al.,	2002).	To	show	interactions	for	Hi-C	and	PLAC-seq,	data	was	

uploaded	to	the	WashU	browser	(Zhou	and	Wang,	2012).	

	

	

Data	and	Software	Availability	

All	raw	data	and	processed	data	files	were	deposited	to	GEO	under	accession	number	

GSE109965.		

	

	



 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
PU.1 Santa Cruz Cat#sc-352X 
CEBPb Santa Cruz Cat#sc-150 
H3K4me2 Millipore Cat#07-030 
H3K4me3 Millipore Cat#04-745 
H3K27ac Active Motif Cat#39135 
cJun Santa Cruz Cat#sc-1694 
p65  Santa Cruz Cat#sc-372X 
Usf2 Santa Cruz Cat#sc-862X 
Runx1 Santa Cruz Cat#sc365644 
   
Chemicals, Peptides, and Recombinant Proteins 
DMEM high glucose Corning Cat#10-013-CV 
FBS Omega Biosciences Cat#FB-12 
100X Penicillin/Streptomycin+L-glutamine Gibco Cat#10378-016 
Amphotericin B Hyclone Cat#SV30078.01 
RBC lysis buffer eBioscience Cat#00-4333-57 
mouse M-CSF Shenandoah Biotech Cat#200-08 
Kdo2 Lipid A (KLA) Avanti Polar Lipids Cat#699500P 
Dynabeads Protein G Thermo Fischer Cat#10004D 
Speedbeads GE Healthcare Cat#6515210505025

0 
BrdU Antibody (IIB5) AC beads Santa Cruz Cat#sc-32323 AC 
Millipore Ultrafree MC column Millipore Cat#UFC30HVNB 
Trizol LS Thermo Fischer Cat#10296010 
Dynabeads My One T1 Streptavidin beads Thermo Fischer Cat#65601 
   
Critical Commercial Assays 
ChIP DNA Clean & Concentrator Zymo Research Cat#D5205 
Quick RNA MiniPrep kit Zymo Research Cat#R1055 
PureLink Genomic DNA Kit Thermo Fischer Cat#K182001 
EZ DNA methylation-Gold kit Zymo Research Cat#D5005 
Nextera DNA Library Prep Kit Illumina Cat#FC-121-1030 
NEXTflex® DNA Barcodes Bioo Scientific Cat#NOVA-514104 
Arima HiC kit Arima Genomics Inc NA 
AMPure Cleanup Beckman Coulter CAT#A63880 
   
Deposited Data   
Raw and analyzed data  This paper GEO: 
   
   
Experimental Models: Organisms/Strains 
BALB/cJ Jackson Laboratory Stock No: 000651 
C57Bl/6J Jackson Laboratory Stock No: 000664 

Key Resource Table



 

NOD/ShiLtJ Jackson Laboratory Stock No: 001976 
PWK/PhJ Jackson Laboratory Stock No: 003715 
SPRET/EiJ Jackson Laboratory Stock No: 001146 
   
Software and Algorithms   
Bowtie2 Langmead and 

Salzberg, 2012 
http://bowtie-
bio.sourceforge.net/b
owtie2/index.shtml 

UCSC genome browser Kent et al., 2002 https://genome.ucsc.
edu/ 

STAR Dobin et al., 2013 https://github.com/al
exdobin/STAR 

Bismark Krueger and Andrews, 
2011 

https://www.bioinfor
matics.babraham.ac.
uk/projects/bismark/ 

MARGE In preparation https://github.com/vli
nk/marge 

Irreproducibility Discovery Rate (IDR) Li et al., 2011 https://www.encodep
roject.org/software/id
r/ 

HOMER Heinz et al., 2010 http://homer.ucsd.ed
u/homer/ 

Cytoscape 3.5.1 Shannon et al., 2013 http://www.cytoscap
e.org/ 

TADbit Serra et al. 2017 https://github.com/3
DGenomes/TADbit 

Juicebox Durand et al., 2016 http://www.aidenlab.
org/software.html 

WashU Browser Zhou and Wang, 2013 http://epigenomegate
way.wustl.edu/brows
er/ 

R package: MuMIn  Barton 2017 https://cran.r-
project.org/web/pack
ages/MuMIn/index.ht
ml 

R package: DESeq2 Love et al., 2014 https://bioconductor.
org/packages/releas
e/bioc/html/DESeq2.
html 

R pckage: EdgeR Robinson, McCarthy, 
and Smyth 2010 

http://bioconductor.or
g/packages/release/
bioc/html/edgeR.html 

R-package: WGCNA Langfelder and 
Horvath 2008 

https://labs.genetics.
ucla.edu/horvath/Co
expressionNetwork/
Rpackages/WGCNA/ 

R-package: Dynamic Tree cutting Langfelder, Zhang, and 
Horvath 2008  

https://labs.genetics.
ucla.edu/horvath/Co
expressionNetwork/
BranchCutting/ 

R-package: RcolorBrewer Neuwirt 2014 https://cran.r-
project.org/web/pack
ages/RColorBrewer/i
ndex.html 



 

R-package: gplots  https://cran.r-
project.org/web/pack
ages/gplots/index.ht
ml 

Metascape Tripathi et al. 2015 http://metascape.org 
Perl module: Statistics::Basic Miller 2014 http://search.cpan.or

g/~jettero/Statistics-
Basic-
1.6611/lib/Statistics/
Basic.pod 
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SUMMARY

Macrophages play pivotal roles in both the induction
and resolution phases of inflammatory processes.
Macrophages have been shown to synthesize anti-in-
flammatory fatty acids in an LXR-dependent manner,
but whether the production of these species contri-
butes to the resolution phase of inflammatory re-
sponses has not been established. Here, we identify
a biphasic program of gene expression that drives
production of anti-inflammatory fatty acids 12–24 hr
following TLR4 activation and contributes to downre-
gulation of mRNAs encoding pro-inflammatory medi-
ators. Unexpectedly, rather than requiring LXRs, this
late program of anti-inflammatory fatty acid biosyn-
thesis is dependent on SREBP1 and results in the un-
coupling of NFkB binding from gene activation. In
contrast to previously identified roles of SREBP1 in
promoting production of IL1b during the induction
phase of inflammation, these studies provide evi-
dence that SREBP1 also contributes to the resolution
phase of TLR4-induced gene activation by reprog-
ramming macrophage lipid metabolism.

INTRODUCTION

Failure to resolve endogenous or extrinsic inflammatory stimuli

can lead to a chronic state of low-grade inflammation that results

in cellular dysfunction and tissue damage (Tabas and Glass,

2013). Recent studies have shown that the immune and meta-

bolic systems are highly integrated with one another (Cildir

et al., 2013). For instance, increased infiltration of pro-inflamma-

tory macrophages in adipose tissue, liver, and skeletal muscle

and their release of cytokines that impair local insulin signaling

contribute to insulin resistance (Lumeng et al., 2008; Osborn

and Olefsky, 2012; Tencerova et al., 2015; Varma et al., 2009;

Wynn et al., 2013; Xu et al., 2003). In addition, immune cell func-

tion itself is coordinately regulated with cellular metabolism

(Spann and Glass, 2013). For example, upon inflammatory acti-

vation, macrophages rapidly induce glycolysis through HIF-1a

and NFkB, enabling them to trigger microbicidal activity even

in a hypoxic inflammatory tissue environment (Huang et al.,

2014a; Rodrı́guez-Prados et al., 2010; Tannahill et al., 2013). In

contrast, macrophages display a shift to oxidative metabolism

of glucose and fatty acids and acquire an anti-inflammatory

phenotype in the context of tissue repair and remodeling (Man-

tovani et al., 2013; Rodrı́guez-Prados et al., 2010).

Macrophage activation in response to ligation of TLR4 pro-

vides a paradigm for investigation of molecular mechanisms

that positively and negatively regulate inflammatory responses

(Iyer et al., 2010; Medzhitov and Horng, 2009). TLR4 signaling in-

duces immediate/early gene expression through activation of

latent transcription factors that include members of the NFkB,

IRF, and AP-1 families (Glass and Natoli, 2016; Medzhitov and

Horng, 2009). These factors in turn induce secondary response

genes via the production of type I interferons, TNFa, and other

signaling molecules. Collectively, the immediate/early and sec-

ondary responses drive expression of inflammatory response

genes that support innate immunity and set the stage for adap-

tive immunity. TLR4 signaling also results in downregulation of a

broad program of gene expression, although molecular mecha-

nisms are less well characterized.

Recent lipidomic analysis in macrophages revealed an imme-

diate reduction of fatty acid synthesis in response to TLR4 acti-

vation, followed by an increase in eicosanoid synthesis that was

412 Cell Metabolism 25, 412–427, February 7, 2017 ª 2016 Elsevier Inc.
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Figure 1. Activation of TLR4 Reprograms Macrophage Fatty Acid Metabolism

(A) Pathway maps illustrating omega-3 and omega-7 pathways. The enzymes catalyzing each step are highlighted in blue.

(B) Lipidomic analysis of saturated and unsaturated fatty acids (omega-3, omega-6, omega-7, and omega-9) in thioglycollate-elicited macrophages treated with

KLA for 0, 1, 6, 12, and 24 hr.

(C) Cellular content of omega-3 (DHA and EPA) and omega-7 (9Z-POA) fatty acids in thioglycollate-elicited macrophages treated with KLA for 0, 1, 6, 12, and

24 hr.

(D) RelativemRNA expression levels for Scd2 and Fads1 determined bymicroarray analysis of RNA from thioglycollate-elicitedmacrophages treated with KLA for

0, 1, 6, and 24 hr.

(E) Heatmap of mRNA expression levels determined by RNA-seq analysis of BMDMs with KLA for 0, 1, 6, and 24 hr (FDR <0.01 and RPKM >0.5).

(legend continued on next page)
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linked to the arachidonic acid pathway and delayed responses

characterized by sphingolipid and sterol biosynthesis (Dennis

et al., 2010). Lipid uptake is activated by chronic (�24 hr)

LPS treatment, leading triglycerides to accumulate in lipid drop-

lets within macrophages (Feingold et al., 2012; Huang et al.,

2014b). These changes in lipid metabolism may be linked to

changes in macrophage activity over the time course of the

response to LPS.

Macrophages can also synthesize anti-inflammatory fatty

acids under the control of liver X receptors (LXRs) a and b (Li

et al., 2013; Spann et al., 2012). The LXR pathway is derepressed

following genetic deletion of the nuclear receptor co-repressor

NCoR, leading to increased production of 9Z palmitoleic acid

and polyunsaturated omega-3 and omega-9 fatty acids (Li

et al., 2013). These fatty acids exert anti-inflammatory functions

in macrophages in part by binding to G protein coupled recep-

tors (Oh et al., 2010). NCoR deletion in macrophages conferred

protection of mice from high fat diet-induced inflammation and

insulin resistance (Li et al., 2013). Therefore, it is possible that

anti-inflammatory fatty acids produced by the macrophage act

in an autocrine/paracrine manner to regulate its function auton-

omously, as well as the functions of surrounding parenchymal

cells.

Cholesterol and fatty acid homeostasis are regulated at the

level of transcription by LXRs and SREBPs 1 and 2 (Goldstein

et al., 2006; Hong and Tontonoz, 2014; Horton et al., 2002). Their

roles in cholesterol homeostasis are largely antagonistic.

SREBPs (primarily SREBP2) drive transcriptional programs that

increase cellular cholesterol synthesis and import (Horton

et al., 2002), while LXRs induce expression of genes that mediate

cholesterol efflux and inhibit import (Hong and Tontonoz, 2014).

In contrast, LXRs and SREBPs (primarily SREBP1) function in a

coordinate manner to positively regulate fatty acid biosynthesis.

LXRs directly activate the expression of SREBP1c, and both

LXRs and SREBP1 bind to and activate numerous genes

involved in fatty acid biosynthesis (Repa et al., 2000a; Schultz

et al., 2000). Further, at co-bound genomic loci, SREBP func-

tions in a permissive manner, allowing signal-specific tailoring

of LXR-mediated activation of lipid metabolic gene expression

profiles (Spann et al., 2012), resulting in context-dependent syn-

thesis and output of select lipid species.

LXRs and SREBPs also play important roles in regulating

macrophage activation. LXRs primarily function to inhibit inflam-

matory responses by antagonizing pro-inflammatory transcrip-

tion factors, such as NFkB (Ghisletti et al., 2009; Hong and Ton-

tonoz, 2014), and by activating genes with anti-inflammatory

activities, such as Mer and Abca1 (A-Gonzalez et al., 2009; Ito

et al., 2015). In contrast, SREBP1 has been found to promote

the acute inflammatory response by regulating genes involve in

the production of active Il1b (Im et al., 2011; Reboldi et al.,

2014). Further, the LXR pathway is subject to negative regulation

by TLR4 (Castrillo et al., 2003). This suggests that macrophage

fatty acid synthesis is influenced by TLR signaling via temporal

modulation of LXR activities.

To address the question of whether TLR4 signaling regulates

the production of anti-inflammatory fatty acids, we analyzed

lipidomic data generated by the LIPID MAPs consortium evalu-

ating the temporal response of primary mouse macrophages

to the specific TLR4 agonist Kdo2 LIPID A (KLA) (http://www.

lipidmaps.org/) (Dennis et al., 2010). This analyses revealed

that the intracellular content of anti-inflammatory mono- and

poly- (u-3, u-7, and u-9) unsaturated fatty acids was rapidly

decreased at early time points of TLR4-mediated inflammation;

while the resolution phase was characterized by increased intra-

cellular unsaturated fatty acid levels. This temporal pattern of

changes in specific lipid species was correlated with changes

in mRNAs encoding corresponding biosynthetic enzymes. Un-

expectedly, we found that the late upregulation of unsaturated

fatty acid synthesis was independent of LXR, but was instead

driven by SREBP1. Anti-inflammatory fatty acid synthesis was

compromised in Srebf1�/� macrophages at late time points

compared to wild-type (WT) macrophages, concomitant with a

hyper-inflammatory state due to impaired resolution of NFkB

associated activity and gene expression. Supplementation with

exogenous mono- and polyunsaturated fatty acids rescues the

late hyper-inflammatory response in both Srebf1�/� macro-

phages and Srebf1�/� mice. Collectively, these findings provide

evidence that SREBP1 contributes to resolution of pro-inflam-

matory TLR4 signaling by reprogramming fatty acid metabolism.

RESULTS

TLR4 Signaling Reprograms Macrophage Fatty Acid
Metabolism
To investigate changes in macrophage fatty acid levels

throughout the course of an inflammatory response, we utilized

lipidomic data generated by the LIPID MAPS Consortium

(http://www.lipidmaps.org/) (Dennis et al., 2010). Metabolic

pathways responsible for generation of long chain omega-3 fatty

acids and 9Z palmitoleic acid (9Z-POA) are shown in Figure 1A.

Activation of TLR4 by KLA, a chemically defined substructure of

bacterial lipopolysaccharide (LPS) that is specifically recognized

by Toll-like receptor 4 (Raetz et al., 2006), rapidly and transiently

decreased the cellular content of most fatty acids analyzed (Fig-

ure 1B). Unexpectedly, in addition to the known upregulation

of omega-6 fatty acids, such as arachidonic acid, the cellular

content of anti-inflammatory omega-3, omega-7, and omega-9

fatty acids was also significantly increased during the late inflam-

matory response (12–24 hr after KLA treatment) (Figures 1B and

1C). Based on estimates of cell volume, maximum intracellular

concentrations of DHA are on the order of 10 mM and EPA and

9Z-POA are on the order of 2 mM.

Analysis of microarray data from the same KLA-treated mac-

rophages, generated by the LIPID MAPS Consortium (http://

www.lipidmaps.org/) (Dennis et al., 2010), demonstrated

biphasic expression of genes encoding enzymes involved in

mono-unsaturated and omega-3 polyunsaturated fatty acid

biosynthesis, exemplified by Scd2, Fads1, Acox3, and Elovl5

(F) Functional annotations associated with genes exhibiting KLA repressed-induced temporal expression patterns.

(G) Relative mRNA expression of Scd2 and Fads2 in human monocyte-derived macrophages treated with KLA for 0, 1, 6, and 24 hr.

Values are expressed as mean ± SEM. *p < 0.05 and **p < 0.01.

See also Figure S1.
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Ligation

(A) Venn diagram of overlap between LXR target genes (GW3965 induced genes >2-fold versus untreated) and KLA repressed-induced genes.

(B) Functional annotations associated with LXR target genes induced by GW3965 treatment.

(C) Scatterplot depicting the relationship between fold change of LXR target genes (GW3965 >1.5-fold versus untreated) comparing RNA-seq data from thio-

glycollate-elicited macrophages treated with GW3965 (18 hr), with or without KLA pretreatment (100 ng/mL for 2 hr).

(D) Functional annotations associated with LXR target genes repressed by KLA treatment.

(E) Scd2, Elovl5, and Fads1 mRNA expression in LXRa/b�/� and WT thioglycollate-elicited macrophages treated with KLA for 0, 1, 6, 12, and 24 hr.

(legend continued on next page)
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(Figures 1D and S1, available online). To independently confirm

these findings, we performed RNA sequencing (RNA-seq)

throughout a time course of KLA treatment. These experiments

also revealed a common biphasic expression pattern for many

of the genes involved in synthesis of unsaturated fatty acids,

exemplified by Scd1/2, Elovl5, Fads1, Acsl3, and Acox3 (Fig-

ure 1E). This temporal pattern is characterized by an initial tran-

sient reduction within 1–6 hr of TLR4 activation and subsequent

activation in the late phase of the TLR4 response (Figures 1D and

1E). The rapid decrease in lipid species observed at 30 min (Fig-

ure 1B) precedes the decrease in mRNA levels of biosynthetic

genes (Figures 1D and 1E), indicating that the initial phase of

reduced fatty acid levels is determined by post-transcriptional

mechanisms. However, the increase in levels of mono- and poly-

unsaturated fatty acids between 12 and 24 hr is correlated with

increases in mRNA levels of corresponding biosynthetic genes.

Whole transcriptome analysis revealed that among the 22,455

measurable transcripts, 2,993 genes with RefSeq annotations

were reduced >2.0-fold at 6 hr and subsequently increased

2.0-fold at 24 hr after KLA treatment. We define this subset of

KLA-regulated genes as KLA repressed-induced genes. Consis-

tent with temporal changes in macrophage fatty acid content,

the entire set of KLA repressed-induced genes was significantly

enriched for functional annotations linked to lipid metabolism

(Figure 1F). Experiments in KLA-treated human monocyte-

derived macrophages revealed a similar biphasic expression

pattern for genes involved in the synthesis of unsaturated fatty

acids, exemplified by Scd1 and Fads2 (Figure 1G). The temporal

pattern characterized by induction in the late phase of the TLR4

response suggests that the observed temporal dynamics of

specific fatty acid metabolic reprogramming is conserved in

humans. Collectively, these findings indicate that TLR4 signaling

induces a biphasic reprogramming of fatty acid metabolism in

macrophages through transcriptional and post-transcriptional

mechanisms.

Biphasic Expression of Fatty Acid Biosynthetic Genes Is
Independent of LXRs
Many enzymes involved in unsaturated fatty acid synthesis are

products of LXR-regulated target genes (Calkin and Tontonoz,

2012; Hong and Tontonoz, 2014). Because TLR4 activation

can repress LXR induction of gene expression (Castrillo et al.,

2003), it is possible that altered LXR activity could account for

the biphasic pattern of expression observed for genes involved

in mono- and polyunsaturated fatty acid biosynthesis. To

address this possibility, we performed RNA-seq analysis of

RNA recovered from macrophages treated with either vehicle

or the synthetic LXR agonist GW3965. Approximately one fifth

(19.3%) of LXR target genes (GW3965 > vehicle 2-fold) are rep-

resented as KLA repressed-induced genes (Figure 2A). In addi-

tion, gene ontology analysis revealed that both LXR-induced

and KLA repressed-induced genes are enriched for similar func-

tional annotations, including lipid metabolism and fatty acid

metabolic process (Figure 2B). To further examine the extent

to which TLR4-mediated inflammation repressed LXR-depen-

dent gene expression, macrophages were pretreated with

vehicle or KLA, followed by treatment with either vehicle or the

LXR agonist GW3965. RNA-seq revealed that LXR target gene

activation was markedly attenuated by KLA pretreatment

(�42%GW3965-induced genes; Figure 2C), consistent with pre-

vious findings (Joseph et al., 2003). These TLR4-compromised,

LXR target genes were significantly enriched for functional anno-

tations linked to lipid transport, lipid localization, and fatty acid

biosynthetic process (Figure 2D). These data suggest that the

macrophage LXR-regulatory program involved in synthesis of

unsaturated fatty acid is repressed in the early phase of TLR4

activation, which could be important for allowing appropriate in-

duction of the inflammatory response.

To assesswhether the repression of LXR activity is required for

the early reduction of unsaturated fatty acid related gene expres-

sion and production following KLA treatment, we took advantage

of LXR-deficient macrophages. The temporal dynamics of TLR4

activation was assessed by expression profiling of KLA treated

macrophages prepared from WT and LXRa/b�/� mice (Repa

et al., 2000b). Unexpectedly, qPCR analysis of the temporal

mRNA expression patterns of genes involved in unsaturated

fatty acid synthesis, exemplified by Scd2, Elovl5, and Fads1, re-

vealed similar patterns in LXRa/b�/� and WT macrophages (Fig-

ure 2E). We further evaluated effects of TLR4 activation on the

genome-wide location of endogenous LXRs by chromatin immu-

noprecipitation (ChIP)-seq. These studies revealed co-localiza-

tion of LXRs with macrophage lineage-determining factors

PU.1 and AP-1 based on motif co-enrichment (Figure 2F),

consistent with previous studies using tagged LXRs in

RAW264.7 macrophages (Heinz et al., 2010). Further, these

studies revealed an unexpected finding that LXR binding at

KLA repressed-induced loci significantly decreases in the late

phase of inflammation (Figures 2G and S2). Thus, temporal

changes in LXR binding are disassociated from late phase induc-

tion of KLA repressed-induced genes.

TLR4 Signaling Reprograms Enhancer Activities Near
Repressed-Induced Genes
The unexpected finding that LXR is dispensable for late activa-

tion of genes directing fatty acid metabolism prompted us to

analyze the local enhancer landscapes of these genes for

candidate regulators associated with the temporal profile of

repressed-induced genes. To identify enhancers exhibiting tem-

poral activities associated with KLA repressed-induced genes,

we performed ChIP-seq to analyze the dimethylation status of

lysine 4 of histone H3 (H3K4me2), acetylation status of lysine

27 of histone H3 (H3K27ac), and RNA polymerase II (RNA polII)

in naive and KLA-stimulated macrophages. Whereas H3K27ac

and RNA polII correlate positively with active transcriptional ac-

tivity (Creyghton et al., 2010; Kaikkonen et al., 2013), deposition

of H3K4me2 has been demonstrated as an indicator of both pre-

vious and current local transcription (He et al., 2010; Kaikkonen

et al., 2013; Ostuni et al., 2013).

(F) De novo motif analysis of LXR peaks in WT thioglycollate-elicited macrophages.

(G) Normalized distribution LXR ChIP-seq tag density, at enhancers vicinal to KLA repressed-induced genes, in thioglycollate-elicited macrophages treated with

KLA for 0, 1, 6, and 24 hr.

See also Figure S2.
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Consistent with their reduced mRNA levels (Figure 1D),

genomic loci of representative KLA repressed-induced genes,

exemplified by Scd2/3, Acsl3, and Fads1, are associated with

decreased H3K27ac and H3K4me2 during the early phase in-

flammatory response at 1 and 6 hr post-KLA, respectively (Fig-

ure 3A, asterisks). Prior studies revealed that the lineage

determining transcription factor (LDTF) PU.1 is necessary for es-

tablishing macrophage-specific cistromes for signal responsive

transcription factors (Heinz et al., 2010). Centering our analysis

on PU.1-bound regions, we analyzed the temporal pattern of

relevant features at enhancers associated with repressed-

induced genes. Chromatin features of active transcription,

defined by RNA polII and H3K27ac, were decreased during the

early inflammation phase (at 1 hr post-KLA), then subsequently

increased at 6 and 24 hr post-KLA stimulation (Figure 3B), pre-

ceding increased levels of nearby mRNA.

As a more direct analysis of active transcription, we analyzed

global run-on (GRO)-seq data (Kaikkonen et al., 2013) to
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Figure 3. Temporal Dynamics of cis-Regulatory Elements Associated with KLA Repressed-Induced Genes

(A) UCSC genome browser images illustrating normalized tag counts for H3K4Me2 and H3K27Ac at the LXR target genes in BMDMs treated with KLA for 0, 1, 6,

and 24 hr.

(B) Distribution of RNA polII and H3K27Ac tag densities in vicinity of KLA repressed-induced enhancers in BMDMs treated with KLA for 0, 1, 6, and 24 hr.

(C) Distribution of GRO-seq tags at KLA repressed-induced enhancers in thioglycollate-elicited macrophages treated with KLA for 0, 1, 6, and 24 hr.

(D) Relative distribution of GRO-seq tags at gene bodies of KLA repressed-induced genes in thioglycollate-elicitedmacrophages treated with KLA for 0, 1, 6, and

24 hr.

(E) Sequence motifs enriched at enhancers associated with KLA repressed-induced genes.
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measure nascent transcript levels at KLA repressed-induced

loci. Consistent with enhancer ChIP-seq data, GRO-seq re-

vealed that nascent RNA transcription at KLA repressed-

induced enhancers follows a similar temporal profile, exhibited

by early transcriptional repression and late response induction

(Figure 3C). Further, GRO-seq analysis revealed a conserved

temporal pattern of transcription at associated KLA repressed-

induced gene bodies (Figure 3D). Collectively, these results sug-

gest that KLA repressed-induced enhancer activity and gene

transcription is transiently inhibited following inflammatory acti-

vation, ensuring decreased unsaturated fatty acid synthesis in

macrophages. This is followed by subsequent late phase induc-

tion of relevant macrophage transcription and gene expression,

culminating in increased unsaturated fatty acid synthesis and

output by macrophages.

To define transcription factors potentially determining this

temporal regulation of KLA repressed-induced genes, we per-

formed motif analysis on enhancers exhibiting the repressed/

induced pattern of chromatin features. As expected, de novo

motif analysis identified motifs for the macrophage LDTFs,

PU.1, C/EBP, and AP-1, as the most highly enriched sequences.

Unexpectedly, an SREBP response element (SRE) was also

highly enriched in repressed-induced associated enhancers

(Figure 3E). Given its role in regulation of fatty acid metabolism

in various cell types, these findings suggested that SREBP1

might be a determinant of late inflammatory phase regulatory dy-

namics leading to induction of genes necessary for unsaturated

fatty acid biosynthesis.

SREBP1 Activity Is Induced during the Resolution Phase
of the Inflammatory Response
We previously demonstrated that LXR and SREBP1 not only co-

localize to representative genes involved in maintaining choles-

terol and fatty acid homeostasis, but their coordinate regulatory

actions can control context-specific expression profiles (Spann

et al., 2012). To investigate the potential relationships of LXR

and SREBP1 in controlling macrophage lipid metabolism

following TLR4 activation, we performed ChIP-seq of SREBP1

and LXR in mouse primary macrophages stimulated with ligands

for LXR and TLR4 for 24 hr. As expected, SREBP1 recruitment

was observed in the enhancers of lipid synthesis-related genes,

as exemplified by Scd2, Acsl3, and Srebf1 following GW3965,

but not desmosterol treatment, which is a potent suppressor

of SREBP processing (Figure 4A). Further, LXR and SREBP1 cis-

tromes exhibited significant overlap when comparing genome-

wide binding profiles (Figures 4A and S3A). The genes associ-

ated with LXR-SREBP1 co-bound sites were enriched for

functional annotations for fatty acid metabolism, fatty acid

biosynthesis, and elongation (Figure S3B). Further, temporal pat-

terns for direct measurement of enhancer activity levels, demon-

strated by H4K5ac and GRO-seq, revealed these LXR-SREBP1

co-bound regions exhibited a coordinate KLA repressed-

induced profile (Figure S3C).

Remarkably, KLA treatment also dramatically increased the

binding of SREBP1 at enhancer-like regions associated with

genes required for mono- and polyunsaturated fatty acid biosyn-

thesis (Figure 4A), consistent with the enrichment of the SREBP

recognition element in repressed-induced enhancers (Figure 3E).

Furthermore, rigorous peak analysis using HOMER defined

peaks along with irreproducible discovery rate (IDR) analysis

identified the top known motif in the KLA-induced SREBP1 cis-

trome as matching the consensus sterol response element (Fig-

ure 4B, top). The sterol response element was independently

identified by de novo motif analysis of IDR-defined SREBP1

binding sites (Figure 4B, bottom). Multiple independent experi-

ments indicated that the late phase KLA induction of SREBP1

binding activity was associated with parallel increased nuclear

levels of mature SREBP1 protein, as determined bywestern blot-

ting (Figure S3D). Intriguingly, the late phase increase in SREBP1

recruitment is specific to KLA repressed-induced associated

promoters and enhancers, as binding is not changed at regions

of solely KLA-repressed genes (Figure 4C).

SREBP1 Drives TLR-Responsive Late Activation of
Repressed-Induced Genes
The observation that SREBP1 was recruited to the genes

involved in unsaturated fatty acid synthesis in the late inflamma-

tory response led us to examine the consequences of Srebf1

deletion in the inflammatory response of macrophages on a

genome-wide scale. We performed RNA-seq analysis of KLA

treated bone marrow-derived macrophages (BMDMs) prepared

from WT and Srebf1�/� mice (Shimano et al., 1997) (Figures 5A

and 5B). We identified 2,995 significantly expressed transcripts

with RefSeq annotations exhibiting the KLA repressed-induced

phenotype; characterized by reduced levels of >2-fold at 6 hr

and subsequently increased >2-fold at 24 hr after KLA treatment.

The expression of 1,047 of these genes (�35%), in the KLA

repressed-induced group, were significantly reduced at 24 hr

post-KLA treatment in Srebf1�/� macrophages compared to

levels in WT cells (Figures 5A and 5B). Both RNA-seq and

qPCR analysis confirmed that Srebf1�/� macrophages demon-

strated significant reduction in the expression of genes medi-

ating mono- and polyunsaturated fatty acid biosynthesis, exem-

plified by Scd1/2, Acsl3, Fads1/2, and Acot2, during the

resolution phase of inflammation at 24 hr post-KLA treatment

(Figures 5C and S4A).

We independently confirmed the requirement of SREBP1

in the regulation of these genes by using small interfering

RNAs (siRNAs) specifically targeting Srebf1 or Scap. qPCR anal-

ysis indicated that the Srebf1 knockdownwas sufficient to inhibit

the late phase inflammation induction of unsaturated fatty acid

related gene expressions, exemplified by Scd2 (Figure 5D).

RNA-seq analysis further confirmed that siRNA-mediatedSrebf1

knockdown led to significantly compromised late phase induc-

tion of many genes controlling synthesis of mono- and polyun-

saturated fatty acids, including Acsl3 and Fads1/2, in macro-

phages at 24 hr post-KLA treatment (Figures S4B–S4D).

Further, knockdown of Scap, which is required for SREBP

processing and activation (Horton et al., 2002), resulted in a

similar compromise in late phase induction of gene expression

(Figure 5E).

To gain further insight into the mechanism by which

the repressed-induced gene expression is compromised in

Srebf1�/� macrophages, we performed ChIP-seq of H3K27ac

and RNA polII to evaluate local enhancer activity at

KLA repressed-induced loci. Both H3K27ac and RNA polII levels

were markedly decreased at post-KLA 24 hr, in Srebf1�/�

macrophages, at KLA repressed-induced gene bodies, as
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(A) UCSC genome browser images illustrating normalized tag counts for SREBP1, LXR, and H3K4Me2, at indicated loci, in thioglycollate-elicited macrophages

treated with vehicle, KLA, GW3965, or desmosterol for 24 hr.

(B) Known and de novomotifs identified in regions bound by SREBP1 in the late inflammatory response. For ChIP-seq peaks used in motif analysis, the peaks for

each SREBP ChIP were identified using Homer, and we calculated the IDR to measure the consistency between replicate experiments for the strength of binding
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(C) Distribution of SREBP1 tag densities, at enhancers associated with genes exhibiting either repressed-repressed or repressed-induced temporal expression

patterns, in thioglycollate-elicited macrophages treated with KLA for 24 hr.

See also Figure S3.
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exemplified by Scd2 (Figure 5F). Further, the normal temporal

dynamics, characterized by the late phase increase in both

H3K27ac and RNA polII levels, were globally compromised in

Srebf1�/� macrophages when looking at profiles for all KLA

repressed-induced associated enhancers (Figure 5G), consis-

tent with both the deficient late phase expression recovery, as

measured by RNA-seq, and increased late recruitment of

SREBP1 to these enhancers. These results suggest a significant

role for SREBP1 in the late phase induction of repressed-

induced genes that control fatty acid biosynthesis.

To investigate whether signaling through other TLRs would

exert similar effects on SREBP1 target genes, we assessed rele-

vant gene expression levels throughout a time course of

PAM3CSK4 (TLR2 agonist) and Poly(I:C) (TLR3 agonist) treat-

ment, comparing temporal responses in Srebf1�/� andWTmac-

rophages. Similar to the temporal dynamics of TLR4 activation,

TLR2 and TLR3 responses of unsaturated fatty acid biosynthetic

genes demonstrated a repressed-induced expression profile

(Figures S4E and S4F) dependent on SREBP1. However, the

induced phase was much more pronounced in the case of

TLR2 activation. This result suggests a predominant role of the

MyD88 pathway, which is used by both TLR4 and TLR2, but

not TLR3, which instead signals primarily through TRIF.

SREBP1 Is Necessary for Resolution of the
TLR-Mediated Inflammation
Previous studies demonstrated that unsaturated fatty acids such

as EPA, DHA, and 9Z-POA have potent anti-inflammatory effects

in macrophages by antagonizing inflammatory signaling through

GPCRs, nuclear receptors, and other mechanisms (Cao et al.,

2008; Li et al., 2013; Oh et al., 2010). To investigate whether

the late phase of expression of genes involved in mono- and

polyunsaturated fatty acid biosynthesis contributes to the reso-

lution phase of TLR4 signaling, we evaluated the temporal

expression profiles of genes that are induced following KLA

treatment in WT and Srebf1�/� macrophages. Indeed, RNA-

seq analysis revealed that Srebf1�/� macrophages demon-

strated delayed resolution and often exaggerated gene expres-

sion upon TLR4 activation, relative to their WT counterparts

(Figures 6A and 6B). In WT macrophages, 964 significantly ex-

pressed transcripts (with RefSeq annotations) were detected

that were increased >2.0-fold at 6 hr after KLA treatment and

subsequently decreased >2.0-fold at 24 hr post-KLA treatment

(defined herein as KLA induced-repressed genes). There were

247 of these induced-repressed genes that demonstrated signif-

icantly increased expression, at 24 hr post-KLA treatment, in

Srebf1�/� macrophages compared to WT (Figures 6A and 6B).

This set of KLA induced-repressed genes had significant enrich-

ment of functional annotations for immune response, regulation

of cytokine production, and inflammatory response (Figure 6C).

qPCR analysis confirmed that inflammatory gene expressions,

as exemplified by Nos2, Cxcl1, Cxcl9, and Il1a, are significantly

increased at 24 hr post-KLA treatment in Srebf1�/�macrophage

(Figure 6D). Further, siRNA-mediated knockdown experiments

confirmed the requirement of SREBP1 for appropriate resolution

of inflammatory gene expression, as exemplified byCxcl2,Nos2,

Cxcl1, Il1a, Il12b, and Il6 (Figure S5A).

We further assessed relevant pro-inflammatory gene expres-

sion levels throughout a time course of PAM3CSK4 (TLR2

agonist) and Poly(I:C) (TLR3 agonist) treatment, comparing

temporal responses in Srebf1�/� andWTmacrophages. Similar

to the temporal dynamics of TLR4 activation, TLR2 and TLR3

responses of pro-inflammatory genes demonstrated an

induced-repressed expression profile (Figures S5E and S5F).

Further, resolution of TLR2- and TLR3-mediated inflammatory

gene expression was drastically compromised in Srebf1�/�

macrophages, relative to their WT counterparts (Figures S5E

and S5F). Interestingly, Pam3 induced genes showed delayed

resolution, similar to TLR4 response, whereas PolyI:C induced

genes were hyper-responsive throughout the time course.

These results are consistent with a MyD88-dependent induc-

tion of SREBP1 mediating late resolution of TLR2 and TLR4 re-

sponses. The hyper-activation of Ifnb1 and Ifna4 in response to

TLR3 agonist in Srebf1�/� macrophages may reflect a different

mechanism.

To further define the SREBP-dependent temporal regulatory

pattern, we analyzed ChIP-seq data for RNA polII in KLA-

treated Srebf1�/� and WT macrophages. Normalized tag den-

sity plots at induced-repressed genes revealed increased levels

of RNA polII in Srebf1�/� versus WT macrophages (Figure 6E).

The average tag density levels, between Srebf1�/� and WT,

demonstrated the most significant differentials at 24 hr post-

KLA (Figure 6E). These distinct patterns are exemplified for

Cxcl2, Nos2, Cxcl1, and Il1a in Figure 6F. Consistent with

ChIP-seq and mRNA expression data, GRO-seq analysis re-

vealed a similarly conserved temporal pattern of transcription

at associated KLA induced-repressed gene bodies (Fig-

ure S5B). These results suggest that the temporal dynamics

of induced-repressed inflammatory genes are regulated via

local enhancer activities driven by KLA responsive transcription

factor complexes.

Given the role of NFkB as a primary driver of TLR4-mediated

responses, we further performed ChIP-seq of the p65 compo-

nent of NFkB to determine whether the increased inflammatory

gene expression, exhibited by Srebf1�/� macrophages, was

due to increased p65 recruitment to the induced-repressed

loci. Unexpectedly, the ChIP-seq analysis revealed a strikingly

similar pattern of p65 binding in KLA treated Srebf1�/� and WT

macrophages (Figures 6F, S5C, and S5D). Further, the similarity

of p65 binding, comparing Srebf1�/� and WT profiles, remains

consistent whether looking at all repressed-induced loci (corre-

lation co-efficient = 0.949817) or the subset of induced-

repressed loci demonstrating the most significant alterations

upon loss of Srebp1 (correlation co-efficient = 0.9438753) (Fig-

ures S5C and S5D). This finding is consistent with previous

studies, suggesting that the repressive actions of unsaturated

fatty acids on NFkB activity are independent of changes in factor

binding (Li et al., 2013).

The gene expression pattern observed in Srebf1�/� macro-

phages predicts that the late phase of mono- and polyunsatu-

rated fatty acid production would be compromised in these cells.

We therefore performed lipidomic analysis of KLA-treated

Srebf1�/� and WT macrophages to assess changes in fatty

acid levels. Consistent with the altered gene expression pat-

terns,Srebf1�/�macrophages demonstratedmarked decreases

in unsaturated fatty acid production, as exemplified by DHA,

EPA, and 9Z-POA; with most dramatic differentials, between

Srebf1�/� and WT macrophages, occurring at 24 hr post-KLA
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Figure 5. Srebf1–/– Macrophages Exhibit Reduced Fatty Acid Biosynthetic Gene Expression during the Resolution Phase of the TLR4

Response

(A) Scatterplot depicting the relationship between fold change of KLA repressed-induced genes, comparing RNA-seq fromWT versus Srebf1�/�BMDMs treated

with KLA for 24 hr. The gray dots show all expressed genes. The red dots represent all KLA repressed-induced genes.

(B) Hierarchical clustering and heatmap of the fold change in expression levels of KLA repressed-induced genes inWT andSrebf1�/�BMDMs treatedwith KLA for

the indicated times (FDR <0.01 and RPKM >0.5).

(legend continued on next page)
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treatment (Figures 7A and S6A). This late phase-specific

decrease is consistent with the possibility that these anti-inflam-

matory fatty acids contribute to the resolution phase of the TLR4

response.

To further test the link between late phase resolution of inflam-

mation and unsaturated fatty acid output, fatty acid rescue ex-

periments were performed in which exogenous unsaturated fatty

acids were added to KLA-treated Srebf1�/� and WT macro-

phages. In these experiments, mono- (9Z-POA) and polyunsatu-

rated (EPA/DHA) fatty acids were supplemented, either alone or

simultaneously, at 12 hr post-KLA treatment to mimic late phase

accumulation. Cells were then harvested at 24 hr post-KLA treat-

ment. Addition of exogenous unsaturated fatty acids led to sig-

nificant reduction of inflammatory gene expression in macro-

phages (Figure 7B). Further, this unsaturated fatty acid-specific

repressive effect was more pronounced in Srebf1�/� cells, rela-

tive to their WT counterparts (Figure 7B), consistent with intact

production of these fatty acid species in WT macrophages.

Similar results were observed in siRNA-mediated knockdown

cells (Figure S6B).

To investigate the role of SREBP1-mediated unsaturated fatty

acid output in modulating the inflammatory response in vivo,

Srebf1�/� mice were challenged with a sublethal dose of LPS.

Consistent with the increased late phase inflammatory gene

expression patterns observed in the Srebf1�/� macrophages

(Figures 6B–6F), circulating cytokine levels of IL-6 and IL-1a re-

mained significantly higher in Srebf1�/� mice at 24 hr post-LPS

injection (Figure 7C); thus suggesting a compromised resolution

of inflammation relative to their WT counterparts. In addition,

supplementation of exogenous EPA, prior to the LPS challenge,

protected Srebf1�/� mice from an exaggerated inflammatory

response, restoring circulating cytokine levels to those seen in

WT mice (Figure 7C).

DISCUSSION

Emerging evidence suggests that the immune system and

lipid metabolism are coordinately regulated at multiple levels

within the body. Here, we demonstrate a reciprocal relation-

ship between cellular levels of anti-inflammatory fatty acids

and the temporal induction and resolution of pro-inflammatory

gene expression following TLR4 activation (Figure 7D). Anti-in-

flammatory fatty acid levels rapidly fall following KLA treat-

ment, in advance of downregulation of mRNAs encoding cor-

responding biosynthetic enzymes. Given the ability of these

fatty acid species to suppress NFkB-dependent gene expres-

sion, their downregulation is likely to be necessary for a full

TLR4 response. At 12–24 hr following TLR4 ligation, anti-in-

flammatory fatty acid levels rise, concurrent with increased

expression of mRNAs encoding biosynthetic enzymes and

decreased expression of mRNAs encoding pro-inflammatory

mediators.

The mechanisms responsible for downregulation of lipid

biosynthetic genes remain to be established. Repression of

basal LXR-dependent gene expression does not account for

this effect because a similar pattern of gene expression was

observed in LXR double knockout macrophages. Thus, while

TLR signaling blunts the ability of LXR agonists to induce target

gene expression, alternative mechanisms must account for

the observed downregulation. During the initial phase of the

TLR4 response, the p65 component of NFkB is recruited to

many of the enhancer elements associated with the set of

repressed-induced genes. This TLR-induced p65 binding is

associated with loss of both co-activator recruitment and active

chromatin features at these loci, correlating with their loss of

transcriptional activity and expression. Our unpublished results

using an NFkB inhibitor, suggest a requirement for NFkB activ-

ity in mediating the early phase repression of these genes (data

not shown). However, a direct role of p65-containing NFkB

complexes in downregulation of these genes remains to be

established.

Unexpectedly, the late upregulation of mRNAs encoding en-

zymes required for synthesis of anti-inflammatory fatty acids

was independent of LXRs and instead required SREBP1.

Consistent with these findings, ChIP-seq experiments indicated

a reduction of LXR binding to enhancers associated with

repressed-induced genes, but a marked increase in the binding

of SREBP1. This KLA-induced binding of SREBP1 to cis regula-

tory elements at late time points was associated with increases

in the total nuclear content of processed SREBP1. Further,

the late increase in SREBP1 binding was associated with in-

creases in chromatin features associated with active enhancers.

SREBP1 KO macrophages, or macrophages in which siRNAs

were used to knock down SREBP1, displayed compromised

late induction of repressed-induced genes and reduced produc-

tion of anti-inflammatory fatty acids. While our data clearly pro-

vide evidence for a novel role of SREBP1 in transcriptionally

tailoring specific macrophage lipid metabolic output, driving

late phase synthesis of anti-inflammatory unsaturated fatty

acids, the mechanisms controlling both the late phase induction

of SREBP1 recruitment and the SREBP1-target activation

specificity are not entirely clear. An understanding of these

mechanisms could be important in identifying novel targets

for development of SREBP1-centric interventions of various

inflammatory disease states.

Recent studies provided evidence that SREBP-1a is required

for the formation of the inflammasome and secretion of IL-1b in

response to systemic inflammation (such as endotoxic shock)

(Im et al., 2011). Consistent with these findings, we observed

increased secretion of IL-1b protein following KLA treatment of

(C) Relative mRNA expression of Scd2 and Fads2 in WT and Srebf1�/� BMDMs treated with KLA for the indicated times.

(D) Relative mRNA expression of Scd2 mRNA KLA-treated thioglycollate-elicited macrophages, transfected with siRNA control or targeting Srebf1.

(E) Relative mRNA expression of Scd2 mRNA KLA-treated thioglycollate-elicited macrophages, transfected with siRNA control or targeting Scap.

(F) Distribution of RNA-seq, H3K27ac, and RNA polII tag densities at the Scd2 locus in WT and Srebf1�/� BMDMs treated with KLA for 24 hr.

(G) Distribution of H3K27Ac and RNA polII tag densities in the vicinity of enhancers associated with KLA repressed-induced genes in WT and Srebf1�/� BMDMs

treated with KLA for the indicated times.

Values are expressed as mean ± SEM. *p < 0.05 and **p < 0.01.

See also Figure S4.
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Figure 6. Srebf1–/– Macrophages Exhibit a Hyper-inflammatory Phenotype

(A) Scatterplot depicting the relationship between fold change of KLA induced-repressed genes, comparing RNA-seq fromWT versus Srebf1�/�BMDMs treated

with KLA for 24 hr. The gray dots show all uniquely expressed genes. The red dots represent all KLA induced-repressed genes.

(B) Hierarchical clustering and heatmap of the fold change in expression levels of KLA induced-repressed genes, comparing RNA-seq data from WT and

Srebf1�/� BMDMs treated with KLA for 24 hr (FDR <0.01 and RPKM >0.5).

(C) Functional annotations associated with KLA induced-repressed genes.

(D) Relative mRNA expression of inflammatory genes in WT and Srebf1�/� BMDMs treated with KLA for the indicated times.

(E) Distribution of RNA polII tag densities at loci of KLA induced-repressed genes WT and Srebf1�/� BMDMs treated with KLA for indicated times.

(legend continued on next page)
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Srebf1�/�� macrophages as compared to WT controls (data not

shown). However, our studies also demonstrated that a subset

of TLR4-responsive, pro-inflammatory genes was hyper-acti-

vated in Srebf1�/�macrophages at 12–24 hr following KLA treat-

ment. Similar late hyper-inflammatory trends were observed in

Srebf1�/� macrophages stimulated with ligands for TLR2 and

(F) UCSC genome browser image illustrating normalized tag counts for RNA-seq, RNA polII, and p65 ChIP-seq at loci of inflammatory genes inWT and Srebf1�/�

BMDMs treated with KLA for the indicated times.

Values are expressed as mean ± SEM. *p < 0.05 and **p < 0.01.

See also Figure S5.

TLR4
Signaling

D

A

C

B

pm
ol

/u
g 

D
N

A
pm

ol
/u

g 
D

N
A

*

**

** p ≤ 0.01

0

0.2

1000

800

600

ng
/m

l

pg
/m

l

400

200

0

200

150

100

50

0
0 6 12 18

LPS Treatment (h)LPS Treatment (h)

240 6 12 18 24

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 5 10 15 20 25
KLA Treatment (h)

EPA (WTvsKO24h p value-0.0107)

0

2

4

6

8

10

12

0 5 10 15 20 25
KLA Treatment (h)

DHA (WTvsKO24h p value-0.01045)

Induction phase Resolution phase

inflammatory genes

fatty acid
biosynthesis genes

fatty acid
biosynthesis genes

NFκB

LXR

SREBP1
activation

Scd2

EPA
DHA
9ZPOA

Elov
Fads
etc

SREBP1

inflammatory genes

NFκB

Serum IL-6 Serum IL-1a

** p ≤ 0.01

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

R
el

at
iv

e 
E

xp
re

ss
io

n
R

el
at

iv
e 

E
xp

re
ss

io
n

*
* *

*

*

Palmitate
KLA

EPA/DHA
9zPO

+ + ++ +
+- - - -

-
-

-+ +
+ +-

-
-

Palmitate
KLA

EPA/DHA
9zPO

+ + ++ +
+- - - -

-
-

-+ +
+ +-

-
-

Il1a

WT
Srebf1-/-

Cxcl9

* *
* *

* *

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
WT
Srebf1-/-

WT
Srebf1-/-

WT
Srebf1-/-

*

Srebf1-/- EPA (+)

WT EPA (+)
WT EPA (-)
Srebf1-/- EPA (-)

* *

Srebf1-/- EPA (+)

WT EPA (+)
WT EPA (-)
Srebf1-/- EPA (-)

Figure 7. SREBP1 Is Necessary for Resolu-

tion of Inflammation by Driving Appropriate

Macrophage Production of Anti-inflamma-

tory Unsaturated Fatty Acids in Late Inflam-

matory Response

(A) Lipidomics analysis of unsaturated fatty acid

(EPA and DHA 9Z-PO) levels in KLA treated WT

and Srebf1�/� BMDMs.

(B) Relative mRNA expression of inflammatory

genes in WT and Srebf1�/� BMDMs treated with

KLA for 24 hr, with or without supplementation

with the indicated exogenous fatty acids (20 mM)

at 12 hr post-KLA treatment.

(C) Serum levels of cytokines IL-6 and IL-1a, as

quantified by ELISA, in WT and Srebf1�/� mice

treated with 5 mg/kg LPS for 0, 1, 3, 6, and 24 hr,

with or without EPA supplementation as indicated.

(D) Model for integrated actions of NFkB, LXRs,

and SREBP1 during the induction and resolution

phases of the TLR4 response.

Values are expressed as mean ± SEM. *p < 0.05

and **p < 0.01.

See also Figure S6.

TLR3; thus indicating that SREBP1 is

genetically required for the normal reso-

lution phase of varied TLR responses in

macrophages. Our findings further sug-

gest that SREBP1-driven synthesis of

anti-inflammatory fatty acids contributes

to this resolution phase. The late TLR4-

mediated increase of these fatty acid

species is compromised in Srebf1�/�

macrophages, and supplementation of

exogenous anti-inflammatory, both in

cultured macrophages and in vivo, re-

verses hyper-induction of pro-inflamma-

tory gene expression caused by loss of

SREBP1. This is consistent with the pres-

ence of higher concentrations of these

species in WT macrophages. Although

our studies focused on 9Z-POA, DHA,

and EPA, it is possible that additional

anti-inflammatory metabolites of polyun-

saturated fatty acids, such as resolvins

protectins and fatty acid hydroxyl fatty

acids, are also generated by the late

SREBP1-dependent program of gene

expression. Interestingly, loss of SREBP1

results in increased recruitment of RNA polII to a subset of in-

flammatory response genes independent of changes in p65

binding activity. These results are consistent with prior studies

suggesting that DHA, EPA, and 9Z-POA uncouple NFkB binding

from its transcriptional output (Li et al., 2013). Because p65 bind-

ing itself is unchanged, the mechanism of inhibition is unlikely to
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be through alterations in the IkB kinase cascade required for

NFkB activation.

In concert, our findings provide evidence for a role of SREBP1

in promoting resolution of the transcriptional response of macro-

phages to TLR signaling by driving the synthesis of anti-inflam-

matory fatty acids. While we have shown that the SREBP1

pathway also influences resolution following activation of TLR2

and TLR3, the extent to which it is involved in resolution of re-

sponses to other pattern recognition receptors or cytokine-

dependent inflammatory responses remains to be determined.

It will therefore be of interest to investigate this pathway further

with respect to control of the resolution phase of inflammation

in response to infection and injury, as well as in disease contexts

in which inflammation plays a pathogenic role.

EXPERIMENTAL PROCEDURES

Cell Culture

LXRa/b�/� and Srebf1�/� were generated as described previously (Repa et al.,

2000b; Shimano et al., 1997). These mice were backcrossed to the C57BL/6J

strain formore than ten generations. Mouse thioglycollate-elicitedmacrophages

were isolated frommale 6- to 9-week-old C57BL/6J (Charles River laboratories),

LXRa/b�/�, and Srebf1�/� mice and cultured as previously described (Spann

etal., 2012).Peritonealmacrophageswereharvestedby lavage3daysafter intra-

peritoneal injection of 3 mL of 3% thioglycollate medium (http://www.lipidmaps.

org/protocols/), overnight culture, and adherence selection. Bone marrow from

micewere isolatedby perfusion of themedullary cavity of femurs, tibias, and iliac

bones and cultured in medium containing RPMI-1640, 10% FCS, and 20 mg/mL

M-CSF (R&D) for 6 days.RAW264.7 cells aremaintained in theRPMI-1640media

supplementedwith10%FCS (Hyclone) andusedbetweenpassage5–10. For the

fatty acid rescue experiments, cells were treatedwith fatty acids complexedwith

FA-free low-endotoxin BSA (Sigma, final FA:BSA molar ratio was 5:1).

Animal Study

All mice used in this study have C57BL/6 background. Male, 8- to 11-week-old

Srebf1�/� mice and age-matched littermate control were individually housed

in cages in a 12 hr/12 hr light/dark cycle with free access to food and water.

For supplemental EPA administration study, mice were fed with fish meal-

free diet (fish meal-free F1: 4.4% fat; Funabashi Farm) or fish meal-free diet

supplemented with 5% EPA ethyl ester (v/v) for 7 days before single intraper-

itoneal injection of 5mg/kg LPS (n = 5, each group). All animal procedures were

in accordance with research guidelines for care and use of laboratory animals

of Tokyo Medical and Dental University. Temporal changes of serum IL-6 and

IL-1a were quantified by ELISA (R&D).

ChIP-Seq

ChIP from thioglycollate-elicited peritoneal macrophages or BMDMs was per-

formed as described previously (Spann et al., 2012), with modifications as

described in Supplemental Experimental Procedures. ChIP-seq libraries

were prepared from ChIP DNA by blunting, A-tailing, adaptor ligation as previ-

ously described (Heinz et al., 2010) using barcoded adapters (NEXTflex, Bioo

Scientific). Libraries were PCR amplified for 12–15 cycles, size selected by gel

extraction, and sequenced on either a Illumina Genome Analyzer II or HiSeq

2000 for 51 cycles.

RNA-Seq

Total RNA was isolated from cells and purified using RNeasy columns and

RNase-free DNase digestion according to the manufacturer’s instructions

(QIAGEN). RNA-seq libraries were prepared from poly(A)-enriched mRNA,

either as previously described (Kaikkonen et al., 2013) or as detailed in Supple-

mental Experimental Procedures.

High-Throughput Sequencing and Data Analysis

All sequencing was conducted using either Illumina Genome Analyzer II or

HiSeq 2000 sequencers using single-end 50 bp reads. All data were aligned

to the mm9 assembly of the mouse genome, and all subsequent data analysis

was performed using HOMER, and detailed instructions for analysis can be

found at http://homer.salk.edu/homer/ (Heinz et al., 2010). Each sequencing

experiment was normalized to a total of 107 uniquelymapped tags by adjusting

the number of tags at each position in the genome to the correct fractional

amount given the total tags mapped. Sequence experiments were visualized

by preparing custom tracks for the UCSC genome browser. Differentially

expressed genes were identified using HOMER as described previously (Li

et al., 2013). For SREBP1 ChIP-seq analysis, ChIP-seq peaks for each SREBP

ChIP replicate were identified using Homer, and then the strength of binding at

each loci was quantified as the position adjusted reads from the start of the

peak region (Homer peak score). We calculated the IDR to measure the con-

sistency between replicate experiments for the strength of binding at each

loci and retained SREBP peaks with IDR < 0.05. For various ontology analyses,

either HOMER or DAVID Bioinformatics Resources 6.7 was used. The acces-

sion number for the data from previously published GRO-seq and ChIP-seq

experiments is GEO: GSE48759.

Statistical Analyses

Statistical analyses were performed using Graph Pad Prism 5 software. The

images were prepared using Adobe Illustrator CS5 or Photoshop CS5.1.

Data are presented as themean ± SEM. For experiments involving two factors,

data were analyzed by two-way ANOVA followed by Bonferroni post-tests. In-

dividual pairwise comparisons were performed using Student’s t test. p < 0.05

was considered significant.

ACCESSION NUMBERS

The accession number for the sequencing data reported in this paper is GEO:

GSE79423.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cmet.2016.11.009.
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Sympathetic innervation of adipose tissue promotes lipolysis and fat 
mass reduction via NE signaling1. In obesity, chronic local inflam-
mation underlies adipose tissue dysfunction, and macrophages have 
been shown to play a central role1,2. The mechanism that links mac-
rophages in white adipose tissue (WAT) to NE remains controversial. 
Some groups have reported that anti-inflammatory adipose tissue 
macrophages (ATMs) in the WAT produce NE to sustain thermogen-
esis and browning. In direct contradiction, other groups have reported 
that ATMs do not express a key enzyme required for NE production 
and that genetic deletion of this enzyme in mouse macrophages has 
no effect on thermogenesis and body weight3–6.

Here we identify a previously undescribed population of SAMs 
that import and degrade NE via specific proteins that are absent from 
ATMs. We found by transcriptional profiling of isolated SAMs that 
neural- and adrenergic-related genes are differentially expressed in 
these cells relative to other macrophage populations. SAMs accumu-
late intracellular NE despite lacking enzymes for NE biosynthesis. 
Using optogenetics, we demonstrate that SNS activity increases NE 
content and the proinflammatory state of SAMs. We functionally 
demonstrate that SAMs import and degrade NE via NE transporter  

(SLC6A2) and degradation enzyme (MAOA), respectively. We fur-
ther demonstrate that SAM-mediated clearance of extracellular NE 
contributes to obesity, as inhibiting NE import by SAMs ameliorates 
obesity, thermogenesis, and browning in mutant obese (ob/ob) mice 
and mice fed a high-fat diet (HFD). Finally, we demonstrate human 
relevance for this mechanism, as we found that SAMs are also present 
in human sympathetic ganglia and express similar molecular machin-
ery as that observed in mice. Thus, the identification of SAMs repre-
sents a new contribution to the ongoing controversy surrounding the 
role of macrophages in thermogenesis and obesity while identifying 
an unforeseen immunological player in noradrenergic homeostasis 
with therapeutic potential for obesity.

RESULTS
Specialized morphology and activation of SNS  
Cx3cr1-expressing cells
Our initial aim was to visualize the in vivo morphology of ATMs using 
two-photon and confocal microscopy in Cx3cr1GFP/+ mice, in which 
macrophages are labeled with GFP. ATMs in fat parenchyma had a 
regular circular shape (Fig. 1a), whereas those located on sympathetic  
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Sympathetic neuron–associated macrophages contribute 
to obesity by importing and metabolizing norepinephrine
Roksana M Pirzgalska1,11, Elsa Seixas1,11, Jason S Seidman2, Verena M Link2,3, Noelia Martínez Sánchez1,  
Inês Mahú1, Raquel Mendes1, Vitka Gres1, Nadiya Kubasova1, Imogen Morris1, Bernardo A Arús1,4,  
Chelsea M Larabee1, Miguel Vasques1,5, Francisco Tortosa6, Ana L Sousa7, Sathyavathy Anandan1,  
Erin Tranfield7, Maureen K Hahn8, Matteo Iannacone9  , Nathanael J Spann2, Christopher K Glass2 &  
Ana I Domingos1,10

The cellular mechanism(s) linking macrophages to norepinephrine (NE)-mediated regulation of thermogenesis have been a topic 
of debate. Here we identify sympathetic neuron–associated macrophages (SAMs) as a population of cells that mediate clearance 
of NE via expression of solute carrier family 6 member 2 (SLC6A2), an NE transporter, and monoamine oxidase A (MAOA), a 
degradation enzyme. Optogenetic activation of the sympathetic nervous system (SNS) upregulates NE uptake by SAMs and shifts 
the SAM profile to a more proinflammatory state. NE uptake by SAMs is prevented by genetic deletion of Slc6a2 or inhibition of 
the encoded transporter. We also observed an increased proportion of SAMs in the SNS of two mouse models of obesity. Genetic 
ablation of Slc6a2 in SAMs increases brown adipose tissue (BAT) content, causes browning of white fat, increases thermogenesis, 
and leads to substantial and sustained weight loss in obese mice. We further show that this pathway is conserved, as human 
sympathetic ganglia also contain SAMs expressing the analogous molecular machinery for NE clearance, which thus constitutes a 
potential target for obesity treatment.
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nerve bundles exhibited profuse pseudopodia that extended over 
a greater surface area (Fig. 1b and Supplementary Fig. 1a,b). 
Furthermore, we observed that sympathetic neuron–associated 
Cx3cr1-GFP+ cells displayed dynamic extensions and retractions 
of dendritiform processes over time (Fig. 1c and Supplementary  
Video 1). In contrast, ATMs surrounding adipocytes displayed mini-
mal temporal plasticity or displacement (Fig. 1c and Supplementary 
Video 2). Using correlative light–electron microscopy on WAT-
derived nerve bundles, we confirmed that Cx3cr1-GFP+ cells extended 
thin pseudopodial processes that enveloped nonmyelinated SNS axons 
(Fig. 1d,e and Supplementary Fig. 1c).

We then investigated whether sympathetic neuron–associated 
Cx3cr1-GFP+ cells were present in other SNS compartments, such as 
paravertebral sympathetic ganglia. Through imaging superior cervical 
ganglia (SCGs) and thoracic chains, we visualized Cx3cr1-GFP+ cells 
that were morphologically similar to those within WAT-derived SNS 
bundles (Supplementary Fig. 2). Owing to the established ex vivo 
explant potential of SCGs, we used them along with WAT-derived 
SNS nerve bundles as model systems for subsequent functional and 
molecular analyses.

SNS Cx3cr1-expressing SAMs exhibit hematopoietic 
characteristics
Because nearly all Cx3cr1-GFP+ cells isolated from sympathetic fibers 
expressed the immune marker CD45 (Supplementary Fig. 3) and 
macrophage marker F4/80 (Supplementary Fig. 4a), we designated 
these cells SAMs. Because of the specialized morphology and loca-
tion of SAMs, we next explored how these cells compared to other 
tissue macrophages and brain microglia. We sorted F4/80+CD45+ 
cells from the following tissues: sympathetic ganglia (SAM ganglia), 
sympathetic nerve fibers from inguinal fat (SAM fibers), neighboring 
subcutaneous fat (sATM), visceral fat (vATM), spleen (SpM), and 
brain (microglia) (Fig. 2a; gating details in Supplementary Fig. 3). 
The relative abundance of CD45highCx3cr1-GFP+ cells was nearly four 
times higher within nerve fibers (SAMs) than in subcutaneous WAT 
(sWAT) (sATMs; Supplementary Fig. 4b).

CD45 is highly expressed in hematopoietic cells but expressed at 
low levels in microglia. Flow cytometric analysis revealed that SAMs 
are CD45medium or CD45high (Supplementary Fig. 3), suggesting 
a hematopoietic origin for these cells. To test this hypothesis, we 
generated chimeras through transplantation of bone marrow from 

LipidTOX GFP

LipidTOX GFP
Tomato

LipidTOX GFP (SAM)
LipidTOX GFP (ATM)

LipidTOX
GFP

LipidTOX
Tomato

3 min

a d e

b

c

6 min 9 min
3 min 6 min 9 min 12 min

18 min
18 min
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21 min
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TH GFP GFP

Figure 1 Sympathetic neuron–associated Cx3cr1-GFP+ cells exhibit differentiated morphology for specific association with SNS neurons. (a) Confocal 
images of WAT isolated from a Cx3cr1GFP/+ mouse and stained using lipid stain LipidTOX (blue) and anti-GFP antibody (green). Images are representative 
of five similar experiments. (b) Confocal images of sympathetic nerve fibers in subcutaneous adipose tissue isolated from a cross of TH-cre; LSL-Tomato 
(red) and Cx3cr1GFP/+ (green) mice. Adipocytes were stained using lipid stain LipidTOX (blue). Images are representative of three similar experiments. 
Scale bars in a and b, 50 µm. The boxed regions in the main micrographs in a and b are shown at higher magnification; scale bars, 25 µm. (c) Intravital 
multiphoton visualization of a neural–adipose connection in the inguinal fat pad of a live Cx3cr1GFP/+ mouse; LipidTOX (blue) labels adipocytes. Images 
depict the morphological features and cell dynamics of Cx3cr1-GFP+ cells associated with sympathetic nerve fibers (left) and Cx3cr1-GFP+ cells in 
the parenchyma of subcutaneous fat (right). Images are representative of three similar experiments. Scale bars, 50 µm. Boxed regions in the main 
micrographs are shown at higher magnification at the indicated time points; scale bars, 10 µm. White arrows indicate dendritiform processes over time. 
(d) Confocal images of sympathetic nerve fibers isolated from the inguinal fat pad of a Cx3cr1GFP/+ mouse and stained using anti-TH (red) and anti-GFP 
(green) antibodies. Images are representative of five similar experiments. Scale bar, 50 µm. The boxed region in the main micrograph is shown at higher 
magnification below; scale bar, 25 µm. (e) Correlative confocal and transmission electron microscopy of nerve fibers isolated from the subcutaneous 
fat pad of a Cx3cr1GFP/+ mouse. Shown are an overlay of the GFP fluorescence (green) with the electron micrograph of the same section (upper left; 
the lower left image is a higher-magnification view of the boxed region), the electron micrograph alone (upper middle; the yellow boxed region is shown 
at higher magnification to the right), and the electron micrograph from the lower left with false coloring highlighting Cx3cr1-GFP+ cells (green) and 
sympathetic nerves (red) (lower right). Images are representative of two similar experiments. Scale bars, 2 µm.
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Figure 2 SAMs highly express macrophage-associated markers and possess the machinery for uptake and degradation of norepinephrine. (a) Top, schematic 
representation of tissue dissections and processing of macrophages isolated from the following tissues: brain, spleen, visceral fat, subcutaneous fat, 
sympathetic nerve fibers from subcutaneous fat, and superior cervical ganglia (SC ganglia). Bottom, representative flow cytometry dot plots indicating 
the CD45.2 status of macrophages from each tissue analyzed. (b) Heat map showing expression of genes associated with macrophage (green and cyan), 
microglial (blue and cyan), and glial (purple) profiles as determined by low-input RNA-seq. Values are in reads per kilobase of transcript per million mapped 
reads (RPKM). (c) Heat map showing expression of proinflammatory (orange) and anti-inflammatory (purple) genes as determined by low-input RNA-seq. 
Values are in RPKM. (d) PCA based on the top 500 genes with the most variable expression across SAM fibers (green), SAM ganglia (light green), vATM 
(orange), sATM (yellow), SpM (black), and microglia (blue). Each dot represents an independent experiment. (e) Heat map of transcript levels (RPKM values) 
based on the 5,000 genes most highly expressed by SAM fibers as determined by low-input RNA-seq. (f) Heat map showing expression of genes encoding 
neurotransmitter receptors, transporters, and catalytic enzymes. RPKM values were determined by low-input RNA-seq. Values in b–f represent three (SpM, 
microglia, and SAM ganglia) or two (vATM, sATM, and SAM fibers) independent experiments. (g) Expression of mRNA for Slc6a2 as determined by qRT–PCR 
presented with normalization to Gapdh expression. Each data point represents tissues pooled from ten mice. n = 5 experiments for SAM fibers and SAM 
ganglia and n = 4 experiments for SpM, vATM, sATM, and microglia (MG). (h) Expression of mRNA for Maoa as determined by qRT–PCR with normalization 
to Gapdh expression. Each data point represents tissues pooled from ten mice. n = 5 experiments for SAM fibers and SAM ganglia, n = 4 experiments for 
SpM, vATM, and sATM, and n = 3 experiments for microglia. (i) NE content in sorted CD45.2 (PE)+F4/80 (Alexa Fluor 647)+ cells measured by NE ELISA. 
The numbers of cells used in NE assays were as follows: 858 ± 258 for SAMs (n = 4 experiments) and 1,000 cells for sATMs, vATMs, and SpMs (n = 3 
experiments). (j,k) Confocal images of sympathetic nerve fibers (top) and SCG (bottom) isolated from Cx3cr1GFP/+ mice and stained using anti-GFP (green) 
and anti-TH (blue) antibodies together with anti-SLC6A2 (j) or anti-MAOA (k) antibody (red). Images are representative of two experiments. Scale bars, 10 µm.  
Data in g–i were analyzed by one-way ANOVA followed by Tukey’s multiple-comparisons test. Data are shown as average ± s.e.m. *P < 0.05, **P < 0.01.

©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



a r t i c l e s

1312  VOLUME 23 | NUMBER 11 | NOVEMBER 2017 nature medicine

CD45.2 Cx3cr1GFP/+ donors into irradiated CD45.1 recipient mice 
and observed complete repopulation of CD45+ cells derived from the 
CD45.2 Cx3cr1GFP/+ donors (Supplementary Fig. 4c). Eight weeks 
following transplantation, we established that CD45.2+Cx3cr1-GFP+ 
SAMs repopulated sympathetic nerve bundles in WAT, whereas 
microglial repopulation in the brain did not occur (Supplementary 
Fig. 4d). This suggests that SAMs in sympathetic fibers have an origin 
similar to that of other hematopoietic macrophages rather than being 
from a microglial lineage.

SAM expression profile is more macrophage- than glial-like
Considering the association of SAMs with neurons, we asked how 
the gene expression profile of SAMs compared to those of other tis-
sue-resident macrophages and microglia (Fig. 2). We sorted mac-
rophages from various tissues as described above (F4/80+CD45+ 
cells designated as SAM ganglia, SAM fibers, sATMs, vATMs, SpMs, 
and microglia; Fig. 2a and Supplementary Fig. 3) and profiled gene 
expression by low-input RNA-seq (Fig. 2b–f). As expected, SAMs 
highly expressed markers common to both microglia and macro-
phages, such as Adgre1, Csf1r, and Cx3cr1 (Fig. 2b). SAMs expressed 
macrophage-associated genes whose expression was excluded from 
microglia, such as Fn1 and Ciita (Fig. 2b)7. Flow cytometric analysis 
showed that additional macrophage-specific markers whose expres-
sion was excluded from microglia (CD68, Ly6C, major histocompat-
ibility complex II (MHCII), and CD11b) were also highly expressed 
in SAMs (Supplementary Fig. 5a,b). SAMs did not robustly express 
microglial- or glial-specific genes relative to macrophage-specific 
genes (Fig. 2b and Supplementary Fig. 5c)8–17. Expression of the 
Sall1 gene, encoding a key microglial lineage-determining transcrip-
tion factor, was strikingly absent from SAMs18 (Fig. 2b).

Principal-component analysis (PCA) of the RNA-seq data showed 
tight clustering across replicates, indicating low contamination and 
high reproducibility (Fig. 2d). The absence of tyrosine hydroxylase 
(Th) expression in SAMs (Supplementary Fig. 5d) further excluded 
the possibility of contaminating cargo from neighboring cells, as Th 
was highly expressed in adjacent SNS neurons (Fig. 1b,d). PCA indi-
cated that SAMs from fibers and ganglia were closely related, but both 
were distant from microglia and other macrophages (Fig. 2d). This 
was confirmed by phylogenetic analysis (Fig. 2e).

We hypothesized that the increased motility of SAMs (Fig. 1c) 
could indicate an activated, proinflammatory state. Therefore, we 
measured expression of a constellation of pro- and anti-inflamma-
tory markers in SAMs by RNA-seq (Fig. 2c). Relative to other mac-
rophage populations, SAMs highly expressed genes associated with 
macrophage activation, including Cxcl2, Tnf, Socs3, and Il1a (Fig. 2c), 
suggesting a constitutively proinflammatory steady state.

SAMs are phylogenetically distinct from other macrophages
Consistent with the PCA results (Fig. 2d), Pearson correlation anal-
yses of transcript levels indicated differential expression patterns 
across SAMs, sATMs, vATMs, SpMs, and microglia (Supplementary  
Fig. 6a,b). Adipose tissue macrophages (sATMs and vATMs) showed 
similar expression landscapes (R = 0.92) that were distant from those 
of SAMs in fibers (R = 0.63 for sATMs and R = 0.61 for vATMs; 
Supplementary Fig. 6b). The expression landscapes of microglia 
and spleen macrophages were least correlated with other groups 
(Supplementary Fig. 6b).

Gene ontology analyses identified several biological processes  
associated with genes whose expression was enriched in SAMs  
relative to surrounding sATMs (Supplementary Fig. 6c). SAMs 

preferentially expressed genes involved in synaptic signaling, cell–
cell adhesion, and neuron development (Supplementary Fig. 6c), 
suggesting that these cells fulfill an intrinsic role in local neuronal 
maintenance. Taken together, these data demonstrate divergent gene 
expression patterns in SAMs and ATMs, constituting within-tissue 
macrophage specialization.

SAMs import and degrade but do not synthesize NE
We next examined specific transcripts corresponding to the genes 
with divergent macrophage expression. The aforementioned popula-
tions of macrophages were sorted (Fig. 2a and Supplementary Fig. 3)  
for transcriptome analysis via low-input RNA-seq. Considering the 
gene ontology results (Supplementary Fig. 6c) and spatial proxim-
ity of SAMs to nerves (Fig. 1), we hypothesized that there would be 
differential expression of neurotransmitter receptors, transporters, 
or catalytic enzymes among these macrophage populations (Fig. 2f). 
In agreement with the Immunological Genome Project (ImmGen) 
database, we detected abundant expression of the Adrb2 gene encod-
ing β2 adrenergic receptor in all macrophage populations (Fig. 2f), 
which was confirmed by qRT–PCR (Supplementary Fig. 6d).

However, SAMs were the only population that expressed Slc6a2, 
the gene encoding the NE transporter (Fig. 2f). Similarly, Maoa was 
highly expressed in SAMs relative to the other macrophage types 
(Fig. 2f). Both results were validated by qRT–PCR (Fig. 2g,h and 
Supplementary Table 1). As SLC6A2 imports and MAOA degrades 
NE, we also tested for the presence of NE and detected it through 
enzyme-linked immunosorbent assay (ELISA) in sorted SAMs (Fig. 
2i and Supplementary Fig. 6e). In agreement with our results, nei-
ther Slc6a2 nor Maoa was substantially expressed in any macrophage 
population listed in the ImmGen database. Furthermore, we validated 
SLC6A2 and MAOA protein expression by immunofluorescence in 
SNS nerve fibers and SCG cryosections from Cx3cr1GFP/+ mice (Fig. 
2j,k). Representative photomicrographs show that GFP-expressing 
SAMs were double positive for membrane-bound SLC6A2 (Fig. 2j) 
and mitochondria-bound MAOA (Fig. 2k).

As SAMs, but not the other macrophage types assessed, possess 
the molecular machinery for import (Fig. 2f,g,j) and degradation  
(Fig. 2f,h,k) of NE, as well as considerably more NE than other macro-
phages (Fig. 2i and Supplementary Fig. 6e), we tested the possibility 
that SAMs synthesize NE. Through qRT–PCR of sorted SAMs, we 
did not detect expression of Th, which encodes an enzyme necessary 
for NE biosynthesis (Supplementary Fig. 5d). Taken together, these 
results indicate that SAMs have the molecular machinery for import-
ing and degrading NE but not for biosynthesis of it.

To explore the responsiveness of SAMs to NE, we optogenetically 
stimulated sympathetic neurons in SCG cultures from mice produced 
by crossing Th-cre mice with loxP-STOP-loxP (LSL)-ChR2-YFP mice1, 
which allowed us to visualize sympathetic neuron–macrophage 
interactions ex vivo (Fig. 3a,b). After optogenetic stimulation, we 
measured the NE content of sorted CD45+F4/80+ cells. SAMs from 
channelrhodopsin-2 (ChR2)+ cultures exhibited significantly higher 
NE levels (Fig. 3c) that were proportional to NE availability in the 
culture medium (Fig. 3d). NE release by ChR2+ neurons was sig-
nificantly higher than that from ChR2− neurons (Fig. 3d). Uptake of 
NE by SAMs was prevented by pharmacological blockade of SLC6A2 
using the pharmacological inhibitor nisoxetine, despite the significant 
increase of NE in the culture medium (Fig. 3c,d).

To validate our optogenetic findings with a physiologically relevant 
stimulus, we activated SNS explants with acetylcholine (ACh), which is 
presynaptically released from spinal cord neurons to innervate SCGs.  
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ACh-treated CD45+F4/80+ cells sorted from SCG explants con-
tained significantly higher levels of NE than vehicle-treated controls  
(Fig. 3e). We validated that blockade of the NE importer SLC6A2 by 
nisoxetine prevented NE accumulation in SAMs (Fig. 3e). Co-incubation  
with ACh and nisoxetine further abolished NE uptake (Fig. 3e), 
despite the substantial increase in extracellular NE levels in the  

culture medium (Fig. 3f). These results, along with the negligible 
expression levels of Chrna1 (AChR) in SAMs (Supplementary Fig. 7a; 
also validated by qRT–PCR in Supplementary Fig. 7b), exclude a role 
for acetylcholine receptors (AChRs) in mediating NE import.

Next, we assessed the effect of blocking MAOA on NE content in 
CD45+F4/80+ cells (Fig. 3e). Treatment with the MAOA inhibitor 
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Figure 3 SAMs import and metabolize norepinephrine via SLC6A2 and MAOA, respectively, to regulate extracellular norepinephrine availability.  
(a) Representative images of ex vivo SCG explant cultures. Top, the area of the sympathetic ganglia is represented using the reflected-light differential 
interference contrast (DIC) channel. Bottom, Cx3cr1-GFP+ cells in the same explant culture (GFP channel). Images are representative of 20 similar 
experiments. Scale bar, 100 µm. (b) Schematic representation of optogenetic activation of sympathetic SCG explant culture (left) followed by CD45.2 
(PE)+F4/80 (Alexa Fluor 647)+ cell sorting (right). FSC, forward scatter; SSC, side scatter. (c) NE content in CD45.2+F4/80+ cells isolated from SCG 
explant cultures from Th-cre; LSL-ChR2-YFP and LSL-ChR2-YFP mice after optogenetic activation. Each data point represents tissues pooled from six 
mice. n = 3–7 experiments. The following numbers of cells were used in NE assays (run in duplicate): 189 ± 30 from Th-cre; LSL-ChR2-YFP SCG (n 
= 7), 126 ± 21 from LSL-ChR2-YFP SCG (n = 6), and 159 ± 19 from Th-cre; LSL-ChR2-YFP SCG stimulated with SLC6A2 blocker (n = 3). (d) Ex vivo 
NE release upon optogenetic stimulation of SCG explants isolated from Th-cre; LSL-ChR2-YFP and LSL-ChR2-YFP mice. Each data point represents 
medium collected from one explant culture. n = 7 per group. (e) NE content in CD45.2+F4/80+ cells isolated from the SCG of either B6 or Slc6a2−/− 
mice and then incubated with ACh, ACh and SLC6A2 blocker, ACh and MAOA blocker, or culture medium. Each data point represents tissues pooled 
from six mice. n = 3–7 experiments. The following numbers of cells were used in NE assays (run in duplicate): 364 ± 128 from B6 SCG (n = 7), 238 
± 55 from Slc6a2−/− SCG (n = 3), 216 ± 58 from B6 SCG incubated with ACh (n = 7), 201 ± 63 from Slc6a2−/− SCG incubated with ACh (n = 3), 196 
± 18 from B6 SCG incubated with ACh and SLC6A2 blocker (n = 5), and 133 ± 11 from B6 SCG incubated with ACh and MAOA blocker (n = 7). (f) Ex 
vivo NE release from the SCG of either B6 or Slc6a2−/− mice after incubation with ACh, ACh and SLC6A2 blocker, ACh and MAOA blocker, or culture 
medium. Each data point represents medium collected from one explant culture. n = 7 per group. (g) Expression of mRNA as determined by qRT–PCR 
relative to Gapdh expression for proinflammatory genes (Tnfa and Il1) in CD45.2+F4/80+ cells isolated from SCG explant cultures from Th-cre; LSL-
ChR2-YFP (blue) and LSL-ChR2-YFP (black) mice. Prior to cell sorting, SCG explants were optogenetically stimulated. n = 3–4 experiments (for Tnfa, 
n = 4, P = 0.0467; for Il1, n = 3, P = 0.011). (h) Expression of mRNA as determined by qRT–PCR relative to Gapdh expression for anti-inflammatory 
genes (Il4ra and Arg1) in CD45.2+F4/80+ cells isolated from SCG explant cultures from Th-cre; LSL-ChR2-YFP (blue) and LSL-ChR2-YFP (black) mice.  
Prior to cell sorting, SCG explants were optogenetically stimulated. n = 3–4 experiments (for Il4ra, n = 3, P = 0.0257; for Arg1, n = 4, P = 0.0497). 
Data in c–h were analyzed by two-tailed unpaired Student’s t-test and are shown as average ± s.e.m. *P < 0.05, **P < 0.01, ****P < 0.0001.
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clorgyline was sufficient to nearly double intracellular NE levels in 
SAMs (Fig. 3e). In agreement with this finding, clorgyline increased 
NE levels in the medium (Fig. 3f), to which neuronal MAOA expres-
sion may also contribute. Genetic ablation of Slc6a2 (in SCG cul-
tures isolated from Slc6a2−/− mice) prevented NE uptake by SAMs 
regardless of NE availability in the culture medium (Fig. 3e,f). Finally, 
ATMs cultured in vitro with NE did not accumulate intracellular NE 
(Supplementary Fig. 7c), further demonstrating the specificity of 
NE uptake by SAMs. Altogether, our results indicate that Slc6a2 is 
required for NE accumulation in SAMs.

We further probed whether the availability of NE, which can 
be manipulated in vivo by optogenetic activation of SNS neurons, 
changes the inflammatory profile of SAMs. We found that optogenetic 
stimulation of SCG explants correlated with an increase in proinflam-
matory gene expression, as measured by changes in expression of 

Tnf (Tnfa) and Il1a (Il1) (Fig. 3g), and a decrease in the expression  
of anti-inflammatory genes, as measured by changes in expression  
of Il4r (Il4ra) and Arg1 (Fig. 3h).

SAMs are recruited and activated in obesity
We next used two mouse models to characterize the effect of obes-
ity on tissue-specific functions of SAMs. In total, we employed four 
experimental groups: HFD, Lep (Leptin)-deficient (ob/ob), normal 
diet (ND), and 24-h-fasted ND mice. Flow cytometric analysis dem-
onstrated that both obesity models (HFD and ob/ob) exhibited sig-
nificantly higher percentages of SAMs than lean mice (ND) (Fig. 4a  
and Supplementary Fig. 8a). Furthermore, the acute metabolic chal-
lenge of fasting did not result in upregulation of SAMs, suggesting an 
obesity-specific causation of elevated macrophage content in sympa-
thetic fibers (Fig. 4a and Supplementary Fig. 8a). Within the F4/80+ 
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Figure 4 Obesity-induced accumulation of SAMs. (a) Representative histograms showing percentages of F4/80 (Alexa Fluor 647)+ cells in sympathetic 
nerve fibers (left), subcutaneous adipose tissue (middle), and spleen (right) in mice that were genetically obese (ob/ob; black), obese due to HFD (red), 
ND fed (blue), or fasted for 24 h (green). CD45.2 (PE)+ cells were gated. Histograms are representative of four independent experiments. HFD no Ab, 
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Fluor 647)+CD11c (FITC)+ cells in sympathetic nerve fibers (left), subcutaneous adipose tissue (middle), and spleen (right) in mice that were genetically 
obese (ob/ob; black), obese due to HFD (red), ND fed (blue), or fasted for 24 h (green). CD45.2 (PE)+ cells were gated. n = 4 experiments per group. Each 
data point represents one experiment. (c) Expression of mRNA as determined by qRT–PCR relative to Gapdh expression for proinflammatory genes (Tnfa 
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and SpMs isolated from mice that were fed either ND (blue) or HFD (red). n = 4 experiments per group. Each data point represents tissues pooled from 
ten mice. (e) Heat map showing the expression of pro- and anti-inflammatory genes as determined by the qRT–PCR analyses in c and d. Data in b were 
analyzed by one-way ANOVA followed by Bonferroni multiple-comparisons test with ND as the control group. Data in c and d were analyzed by two-tailed 
unpaired Student’s t-test. Data are shown as average ± s.e.m. **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, not significant.
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SAM fraction from HFD and ob/ob mice, we noted a high frequency 
of CD11c+ cells (Fig. 4b), which are hallmarks of inflammation and 
insulin resistance in human obesity19. In contrast to SAM accumula-
tion in SNS nerve fibers dissected from WAT, SAMs did not accumu-
late in SCG, which innervates neck structures such as salivary glands 
(Supplementary Fig. 8b).

The differential distribution of macrophages under conditions 
of obesity suggests that cytokine levels are also sensitive to obes-
ity. Comparison of the anti- and proinflammatory gene profiles  
of SAMs, ATMs, and SpMs (Fig. 4c–e) revealed that obesity correlated 
with higher levels of proinflammatory genes (i.e., Tnfa or Il1; Fig. 4c,e) and 
lower levels of anti-inflammatory genes (i.e., Arg1 or Il10; Fig. 4d,e).

To determine whether local proliferation contributes to SAM accu-
mulation, we measured the proliferation marker Ki-67 in SAMs by flow 
cytometry (Supplementary Fig. 8c,d). We observed that obesity (in 
the HFD and ob/ob models) did not substantially increase Ki-67+ SAM 
percentage, whereas (in accordance with previous reports20) obesity 
increased Ki-67+ ATMs from sWAT (Supplementary Fig. 8d).

Slc6a2 deletion in SAMs rescues obesity
We probed how ablating Slc6a2 in SAMs affects obesity-associated 
pathology. We considered a Cre–loxP approach, but the established 

macrophage Cre lines (Cx3cr1-cre21,22 and LyzM-cre23) would not 
allow for specificity of ablation to SAMs. We thus took advantage of 
the cell-type specificity of Slc6a2 expression, which is high in SAMs 
but negligible in other macrophage and hematopoietic cell popula-
tions (Fig. 2b,g and ImmGen24). We validated that there was not 
another population of hematopoietic origin expressing Slc6a2 aside 
from SAMs; a rare population of CD45+F4/80− cells was present 
in SCG (Supplementary Fig. 9a) but did not express SLC6A2 
(Supplementary Fig. 9b). SAM-specific genetic ablation of Slc6a2 
was achieved through bone marrow transfer from Slc6a2−/− mice25 
into genetically obese ob/ob recipients (ob/ob-Slc6a2−/−; Fig. 5a). 
Control chimeras consisted of ob/ob mice (ob/obCtrl) that received 
a bone marrow transfer from B6 CD45.1 mice. Chimeras recovered 
for 9 weeks following transplant to allow irradiation-induced inflam-
mation to subside.

As cold temperature is a robust driver of SNS activity, we challenged 
mice for 2 h at 4 °C and observed that ob/ob-Slc6a2−/− chimeras displayed 
superior capacity for maintaining body temperature as compared to con-
trol ob/obCtrl chimeras (Fig. 5b). These thermogenic effects were accom-
panied by significant upregulation of NE levels in serum (Fig. 5c), rescue 
of BAT morphology (Fig. 5d), and browning of white fat, as measured by 
Ucp1 mRNA and uncoupling protein 1 (UCP1) levels (Fig. 5e–g).
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Figure 5 Loss of Slc6a2 function in SAMs rescues the thermogenic capacity of ob/ob mice. (a) Schematic representation of bone marrow transplant 
from either Slc6a2−/− or control B6 (CD45.1) mice into genetically obese ob/ob mice (ob/ob-Slc6a2−/− and ob/obCtrl chimeras, respectively). (b) Rectal 
temperature of ob/obCtrl (black) and ob/ob-Slc6a2−/− (green) chimeras was measured at room temperature (RT) and after 2 h of cold challenge (4 °C). 
Each data point represents one mouse. n = 4 ob/ob-Slc6a2−/− mice and n = 6 ob/obCtrl mice. *P = 0.025, ****P < 0.0001. (c) Serum levels of NE 
in ob/obCtrl (black) and ob/ob-Slc6a2−/− (green) chimeras were measured at room temperature and after 2 h of cold exposure (4 °C). Each data point 
represents one mouse. n = 4 mice per group for ob/ob-Slc6a2−/− mice and n = 5 mice per group for ob/obCtrl mice. *P = 0.022, **P = 0.0072.  
(d) Optical micrographs of BAT removed from ob/ob chimeras following 2 h of cold challenge (4 °C) and stained with H&E. Left, BAT from an ob/obCtrl 
chimera. Right, BAT from an ob/ob-Slc6a2−/− chimera. Images are representative of fat organs collected from four ob/obCtrl and six ob/ob-Slc6a2−/− 
mice. (e) Expression of mRNA for Ucp1 as determined by qRT–PCR relative to Gapdh expression in BAT (left) and sWAT (right) dissected after 2 h of 
cold challenge (4 °C). Each data point represents one mouse. n = 4 ob/ob-Slc6a2−/− mice (green) and n = 5 ob/obCtrl mice (black). *P = 0.0269,  
**P = 0.0015. (f) Optical micrographs of BAT dissected from ob/obCtrl (left) and ob/ob-Slc6a2−/− (right) chimeras following 2 h of cold challenge  
(4 °C) and stained with anti-UCP1 antibody. Images are representative of fat organs collected from four ob/obCtrl and six ob/ob-Slc6a2−/− mice.  
(g) Optical micrographs of sWAT dissected from ob/obCtrl (left) and ob/ob-Slc6a2–/– mice (right) following 2 h of cold challenge (4 °C) and stained with 
anti-UCP1 antibody. Images are representative of fat organs collected from four ob/obCtrl and six ob/ob-Slc6a2−/− mice. (h) Average adipocyte diameter 
quantified from optical micrographs of sWAT and BAT from ob/ob chimeras following 2 h of cold challenge (4 °C). Measurements  
are representative of four (ob/ob-Slc6a2−/−) and six (six ob/obCtrl) independent micrographs. 18–34 measurements were obtained per micrograph.  
n = 169 cells for ob/obCtrl sWAT, n = 120 cells for ob/ob-Slc6a2−/− sWAT, n = 180 cells for ob/obCtrl BAT, n = 120 cells for ob/ob-Slc6a2−/− BAT. ****P 
< 0.0001. (i) Body weight change (top) and daily food intake (bottom) of ob/obCtrl (n = 4 mice) and ob/ob-Slc6a2−/− (n = 6 mice) chimeras monitored 
for 7 weeks following 2 weeks of food intake normalization (0.06 g of food per 1 g of body weight per day; gray shading) that started 9 weeks after 
bone marrow transplant. The yellow triangle indicates when irradiation was performed. *P < 0.05. (j) Blood plasma nonesterified (free) fatty acid (FFA) 
concentration in ob/obCtrl and ob/ob-Slc6a2−/− chimeras measured 8 weeks after bone marrow transplant before and while mice were under a regimen 
of 0.06 g of food per 1 g of body weight per day. n = 5 mice per group. **P = 0.0022. Data in b, c, e, h, and j were analyzed by two-tailed unpaired 
Student’s t-test and in i by multiple t-tests (one Student’s t-test per row with correction for multiple comparisons using the Holm–Sidak method). Data 
are shown as average ± s.e.m. Scale bars in d, f, and g, 100 µm. 
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Transplant of bone marrow from Slc6a2−/− mice into ob/ob mice 
prevented obesity-induced hypertrophy of both BAT and WAT 
adipocytes (Fig. 5h) but did not affect total body weight (Fig. 5i). 
Because food-restriction challenge drives SNS activity and mobi-
lizes lipid stores from adipose tissue, we normalized the daily food 
intake of the ob/ob chimeras for 2 weeks (Fig. 5i,j). After a dieting 
challenge, ob/ob-Slc6a2−/− mice lost nearly 30% of their body weight 
relative to their original body weight, after which their body weight 
was stable for up to 16 weeks, even after they were given ad libitum 
access to food (Fig. 5i). We also found that ob/ob-Slc6a2−/− mice 
exhibited higher lipid mobilization during food restriction relative to  
controls (Fig. 5j).

We analyzed wild-type B6 chimeras reconstituted with bone mar-
row from Slc6a2−/− mice relative to CD45.1 controls (B6-Slc6a2−/− 
and B6Ctrl chimeras, respectively) (Supplementary Fig. 9c). SAMs 
from B6-Slc6a2−/− chimeras did not accumulate NE (Supplementary 
Fig. 9d). In accordance with the results from ob/ob chimeras (Fig. 5),  
B6-Slc6a2−/− chimeras also exhibited increased serum levels of NE, 
thermogenesis, and lipolysis, as well as marked weight loss, relative  
to control mice (Supplementary Fig. 9e–i). Upon challenge with 
HFD, we observed weight-gain prevention in B6-Slc6a2−/− but not 
B6Ctrl mice (Supplementary Fig. 9g). These results indicate a notable  
anti-obesity effect of SAM-specific Slc6a2 ablation.

SAMs are in BAT and act as a NE sink
In light of the enhanced thermogenic capacity of ob/ob-Slc6a2−/− 
chimeras, we questioned whether SAMs are present in BAT 
(Supplementary Fig. 10). BAT did contain Cx3cr1-GFP+ cells (in 
accordance with a previous report19) that exhibited a morphology 
intermediate to those of SAMs (multiple pseudopodia) and ATMs 
(round) (Supplementary Fig. 10a as compared to Fig. 1c). Some 
of these cells appeared to make close contacts with thin TH+ axons 
(Supplementary Fig. 10a). Because TH+ nerve fibers in BAT are too 
delicate for dissection, we sorted macrophages from whole BAT for 
qRT–PCR analysis. Slc6a2 and Maoa were expressed in BAT macro-
phages, although at lower levels than in SAMs isolated from dissected 
SNS nerve bundles in sWAT or SCG (Supplementary Fig. 10b,c). We 
also detected the presence of NE in BAT macrophages, although at 
lower levels than SAMs (Supplementary Fig. 10d). The lower levels 
of Slc6a2, Maoa, and NE content may reflect a dilution of BAT SAMs 
by BAT ATMs, as mixed (as opposed to isolated) populations were 
analyzed.

Finally, we used LyzM-cre; Csf1r-LSL-DTR mice with condi-
tional expression of diphtheria toxin receptor (DTR) on macro-
phages to test whether macrophages serve as a sink for NE. After 
validating ablation of macrophages (Supplementary Fig. 11a,b), we 
observed a significant increase of NE in sWAT of LyzM-cre; Csf1r-
LSL-DTR mice relative to Csf1r-LSL-DTR controls (Supplementary  
Fig. 11c). Note that, owing to constant hematopoietic input, it is prac-
tically impossible to completely deplete macrophages. This limitation 
notwithstanding, these results are consistent with a model in which 
macrophages act as a sink for NE.

Human sympathetic ganglia also contain NE-degrading SAMs
Finally, we asked whether SAMs exist in humans. We obtained nine 
human excisional biopsies of SNS or thoracolumbar ganglia that were 
collected during sympathectomy and/or gangliotomy. We stained tis-
sue sections with H&E (Fig. 6a,b) or an antibody against CD68, a 
human macrophage marker, and identified the presence of macro-
phages in SNS tissues (Fig. 6c,d and Supplementary Fig. 12).

We next determined whether SAMs in human sympathetic  
ganglia also contain the machinery for uptake and degradation 
of NE (Fig. 6e,f and Supplementary Fig. 12). The CD68 macro-
phage marker colocalized with staining for SLC6A2 (Fig. 6e and 
Supplementary Fig. 12a) and MAOA (Fig. 6f and Supplementary 
Fig. 12b). Both SLC6A2+ and MAOA+ neurons existed, but the  
background levels were low relative to control human gut-associated  
lymphoid tissue (GALT) samples that also contained CD68+  
macrophages (Supplementary Fig. 12c,d).

DISCUSSION
SAMs are a previously undescribed population of SNS-resident mac-
rophages that import and degrade NE. To fulfill their function, SAMs 
express a dedicated molecular machinery that is, as best we can tell, 
absent from neighboring macrophages and other known macrophage 
populations (shown by our data and the ImmGen database). In SAMs, 
NE is imported by SLC6A2 and degraded by MAOA. This is a specialized 

a b

dc

CD68 SLC6A2 CD68 MAOAfe

Figure 6 SAMs in the human sympathetic nervous system. (a,b) Optical 
micrograph of human ganglia from the thoracolumbar region stained 
with H&E (a) and a higher-magnification image (b). (c,d) Optical 
micrograph of human ganglia from the thoracolumbar region stained 
with an antibody against CD68 (c) and a higher-magnification image 
(d). (e) Optical micrograph of human ganglia from the thoracolumbar 
region stained with antibodies against CD68 and SLC6A2. Red arrows 
indicate CD68+SLC6A2+ regions. Pink arrows indicate SLC6A2+ regions. 
(f) Optical micrographs of human ganglia from the thoracolumbar region 
stained with antibodies against CD68 and MAOA. Red arrows indicate 
CD68+MAOA+ regions. Pink arrows indicate MAOA+ regions. Boxed regions 
in e and f represent higher-magnification images of the main micrographs. 
Scale bars: 1 mm (a,c), 100 µm (b,d), and 50 µm (e,f); for boxed regions, 
25 µm. Images in a–f are representative of nine different human samples.
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molecular mechanism for NE uptake with a role that is not fulfilled by the 
canonical phagocytic mechanisms generally present in macrophages26.

Unlike most other neurons, which exclusively release neuro-
transmitter at a terminal synapse, SNS neurons also release NE via  
varicosities distributed along axons that can extend for tens of cen-
timeters27. SAMs possibly serve to prevent NE spillover into the  
bloodstream or neighboring tissues when SNS activity is high. Indeed, 
we demonstrate that, when SNS neurons are optogenetically acti-
vated, SAMs import increased levels of NE and become more polar-
ized toward a proinflammatory phenotype. In this regard, NE can be 
considered a noxious stimulus that must be locally delivered in a con-
trolled manner to a target tissue. Chronic and excessive systemic NE 
in serum, such as the levels present under chronic stress conditions or 
in medullary adrenal tumors, leads to hypertension and cardiopathy 
due to direct action in cardiovascular tissues28.

The activated polarization state of SAMs is consistent with a model 
in which these cells play a tissue-protective role by acting as a sen-
tinel and scavenger of surplus levels of an endogenous neurotrans-
mitter (i.e., NE) that, if released in excess from varicosities, could 
potentially be harmful. Tissue-protective immune cells have been 
documented in the brain and other, non-neuronal systems29–34. For 
instance, muscularis-resident macrophages in the gut induce rapid 
tissue-protective responses to potentially pathogenic insults via β2 
adrenergic receptor signaling35. This mechanism and our study 
indicate specialization of macrophage populations for fulfillment of 
tissue-specific tasks in response to neuronal cues. Divergent gene 
expression landscapes across populations of resident macrophages  
isolated from different tissues support the idea of local macrophage 
adaptations22,36,37. In this study, we use transcriptional data to 
molecularly characterize SAMs alongside other macrophage popu-
lations. Our results suggest that macrophages associated with the 
SNS have specialized molecular programs, whose exploration might  
give further insight into mechanisms underlying SNS macrophage–
neuron communication.

Although SAMs express common microglial genes and reside in 
proximity to nerve cells, SAM pseudopodia are morphologically 
distinct from the finely branching ramifications of resting micro-
glia38,39. Moreover, SAMs are seemingly of hematopoietic origin, 
as suggested by our bone marrow chimera studies and their high 
expression of CD45 and macrophage markers. Future tracing studies 
are necessary to definitively determine SAM origin. To our knowl-
edge, no reports exist on NE uptake by microglia, and we verified that  
the machinery for NE uptake is not expressed in these cells. In this 
regard, only one study has reported that NE can trigger microglia to 
import and degrade amyloid but not NE itself40. Neurotransmitter 
uptake has primarily been studied in astroglia, which are  
CX3CR1− (ref. 41).

Chimeric models require irradiation that generates inflammation. 
However, if given adequate recovery time (8 weeks), recruited mac-
rophages dissipate from the brain, as represented in our chimeras by 
minimal residual Cx3cr1-GFP+ microglia (0.06%). SAMs persist at 
levels that greatly surpass background irradiation-induced macro-
phage recruitment, and regenerated SAMs are seemingly identical to 
those in non-irradiated mice.

We show low expression of several astroglial markers in SAMs, rais-
ing the possibility of a hybrid peripheral cell type that unites some of 
the features of macrophages and glia. Alternatively, genes expressed in 
common by glial cells and SAMs may be attributable to the proximity 
of SAMs to neuron-derived signals, analogous to the observation that 
microglia, astrocytes, and neurons share the expression of certain 

central nervous system–specific genes7,42. An alternative model is 
that SAMs share the lineage of satellite glial cells (SGCs), which are 
derived from embryonic neural crest11 and also express canonical 
astroglial markers43. However, SGC import or degradation of NE has 
not been reported44.

Our study may fill a gap in the literature by demonstrating a cellular 
and molecular mechanism alternative to the proposed existence of 
NE-producing macrophages in WAT3. In this regard, our findings are 
consistent with other reports4–6, as we did not detect the NE biosyn-
thetic machinery in SAMs nor in ATMs. The identification of SAMs 
sheds new light on this recent controversy by documenting how a 
particular population of macrophages can contain NE in the absence 
of its biosynthesis. We also document that BAT macrophages contain 
similar molecular machinery to that in SAMs for NE uptake, extend-
ing and validating the findings of our colleagues21. SAMs may play 
a tissue-protective role through regulation of regional NE levels by 
serving as a local sink that prevents the dangerous effects of chroni-
cally increased levels of systemic NE.

In sharp contrast to the anti-inflammatory state of intestinal nerve–
associated Cx3cr1-GFP+ macrophages35, SAMs exhibit a proinflamma-
tory profile at steady state. This could be due to the constitutive presence 
of a danger signal—namely, NE. Whether this polarization is caused 
by NE import or by adrenergic signaling remains to be established. In 
this regard, polarization of enteric-associated macrophages has been 
linked to activation of β2 adrenergic receptor, which is also expressed in 
SAMs35. Regardless, our core message is relevant: SAMs are proinflam-
matory and act as a NE sink, and blocking NE uptake has an antiobesity 
effect. Our results support a model whereby SAMs pathologically accu-
mulate in the SNS nerves of obese subjects in an organ-specific manner, 
thus explaining why we detect SAM accumulation in the WAT-associ-
ated SNS but not in SCG, which innervates salivary glands and other 
neck structures. The NE-scavenging role of SAMs may have become 
evolutionarily maladaptive, as in the past obesity was not a common 
physiological stress to which humans had to adapt. In modern times, the 
prevalence of overnutrition has created a need for increased lipolysis-
inducing NE signaling to maintain fat stores, which is obstructed by the 
‘original’ function of SAMs to limit NE levels.

Reduced NE availability in the adipose tissue is linked to blunted 
lipolysis and obesity. Very recently, our colleagues have shown that 
ATMs degrade NE during aging45. Whether this observation is also 
associated with the accumulation of SAMs in fat, as we observed in 
the two mouse models of obesity, remains to be established.

Our results demonstrate that SAM-specific Slc6a2 ablation rescues 
BAT and adaptive thermogenesis in obese ob/ob mice, which in turn 
leads to sustained weight loss and lipid mobilization. We determine  
that blocking NE import into SAMs mitigates the recidivism of obes-
ity that is typical after dieting. Overall, our results identify SAMs as a 
potential new molecular and cellular target for obesity therapy.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
General experimental approaches. No samples, mice, or data points were 
excluded from the reported analyses. Samples were not randomized to experi-
mental groups. Analyses were not performed in a blinded fashion. More 
detailed information can be found in the Life Sciences Reporting Summary.

Antibodies, stain reagents, and drugs. Antibodies were obtained from the fol-
lowing vendors: anti-F4/80–Alexa Fluor 647 (BioLegend, catalog no. 123122, 
clone BM8), anti–human CD68 (Dako, catalog no. M 0876, clone PG-M1), anti–
human NE transporter (NET) (MAb Technologies, catalog no. NET17-1, clone 
3-6C1 sc H10), anti-MAOA (Abcam, catalog no. ab126751, clone GR155892-5), 
anti-TH (Pel-Freez Biologicals, catalog no. P40101-150, lot 16736), anti-GFP 
(Abcam, catalog no. ab13970, lot GR279236-1), anti-TH (Aves Lab, catalog no. 
TYH, lot TH1205), anti-GFP (Invitrogen, catalog no. A11120, lot 1563696), 
anti-GFP (Abcam, catalog no. ab6556, lot GR292567-1), goat anti–chicken IgY 
(H+L) secondary antibody, Alexa Fluor 488 (Molecular Probes/Thermo Fisher 
Scientific, catalog no. A-11039, lot 1759025), goat anti–rabbit IgG (H+L) cross-
adsorbed secondary antibody, Alexa Fluor 594 (Molecular Probes/Thermo 
Fisher Scientific, catalog no. A-11012, lot 1704538), anti-Ly6c–eFluor 405 
(eBioscience, catalog no. 48-5932-82, clone HK1.4, lot 4306743), anti-CD11c-
PE (BD Pharmingen, catalog no. 553802, clone HL3, lot 47030), anti-CD45.2-
PE (BioLegend, catalog no. 109808, clone 104.2), anti-CD45.2-FITC (obtained 
from S. Kimura (Memorial Sloan Kettering Cancer Center); clone 104.2), anti-
CD11b-FITC (ATCC, catalog no. TIB-128, clone M1/70), anti-MHCII-Bio 
(clone M5/114, ATCC, catalog no. TIB-120), SAv-APC/Cy7 (BioLegend, catalog 
no. 405208, lot B215107), anti-Ki-67-Alexa488 (BD Biosciences, catalog no. 
558616, clone B56, lot 7138687), IgG-Alexa488, isotype control (BD Biosciences, 
catalog no. 557782, lot 7102576), anti-Siglec-F-BV421 (BD Biosciences, cata-
log no. 562681, lot 7047598), anti-CD68 (Bio-Rad, catalog no. MCA1957GA, 
clone FA-11), goat anti–rat IgG (H+L) cross-adsorbed secondary antibody, Alexa  
Fluor 594 (Invitrogen, catalog no. A-11007), goat anti–chicken IgY (H+L),  
Alexa Fluor 647 (Abcam, catalog no. ab150171), goat anti–rabbit IgG (H+L), Alexa 
Fluor 488, (Abcam, catalog no. ab150077), goat anti–mouse IgG (H+L), Alexa  
Fluor 488 (Sigma, catalog no. SAB4600387), anti–mouse IgG (whole molecule), Cy3  
(Sigma, catalog no. C0992), rabbit anti-UCP1 (Abcam, catalog no. ab10983, 
lot GR249119-8), mouse anti-NET (MAb Technologies, catalog no. NET05-2, 
clone 2-3 B2 sc D7). SYTOX Blue dead cell stain (Molecular Probes/Thermo 
Fisher Scientific, catalog no. S34857, lot 1851462) was used to exclude dead 
cells. HCS LipidTOX Deep Red Neutral Lipid Stain (Molecular Probes/Thermo 
Fisher Scientific, catalog no. H34477) and HCS LipidTOX Red Neutral Lipid 
Stain (Molecular Probes/Thermo Fisher Scientific, catalog no. H34476) were 
used to stain lipids.

Acetylcholine chloride, nisoxetine hydrochloride, clorgyline, and NE were 
purchased from Sigma-Aldrich.

Mice. Cx3cr1GFP/+ mice (Cx3cr1tm1Litt/LittJ; stock no. 008451), Th-cre mice 
(stock no. 008601), GFP-L10 mice (stock no. 024750), LysM-cre mice (stock no. 
004781), LSL-ChR2-YFP mice (stock no. 012-569), LSL-tdTomato mice (stock 
no. 007909), ob/ob mice (stock no. 000632), and Csf1r-LSL-DTR mice (stock no. 
024046) were purchased from the Jackson Laboratory (JAX). NETP/P (Slc6a2−/−) 
mice were kindly provided by M. Hahn (Vanderbilt University). B6 (C57BL/B6J) 
and B6-CD45.1 mice were purchased from Charles River and were bred and 
maintained at Instituto Gulbenkian de Ciência. Both males and females were 
used in this study. Mice were 4–10 weeks old (for details, see the Life Sciences 
Reporting Summary). Animal procedures were approved by the ethics com-
mittee of Instituto Gulbenkian de Ciência.

Immunofluorescence and confocal microscopy. Tissues were dissected and 
fixed in 4% paraformaldehyde for 2 h (at room temperature (RT), with agitation). 
For images in Figure 2j,k, we employed frozen sections and the fixation step was 
followed by cryoprotection in 30% sucrose (Alfa Aesar). 16-µm sections were 
obtained in a Leica Cryostat CM3050 S. Both frozen sections and whole-mount 
tissues were incubated in a blocking and permeabilization solution (3% BSA, 2% 
goat serum, 0.1% Tween, and 0.1% sodium azide in 1× PBS) for 1 h at RT with 
(whole mounts) or without (frozen sections) agitation. Incubations with primary 
antibodies were performed overnight at 4 °C with (whole mounts) or without 

(frozen sections) agitation. The following dilutions of primary antibodies were 
used: anti-GFP (1:500), anti-TH (1:1,000), anti-SLC6A2 (1:500), anti-MAOA 
(1:100). Incubation with secondary antibodies was performed for 1–2 h at RT, 
with or without (in the case of frozen sections) agitation. Z-series stacks were 
acquired on a Leica TCS SP5 confocal inverted microscope. Analysis and quan-
tification of images were performed in Fiji.

In vivo two-photon microscopy. Mice aged 2 months were kept anesthetized 
with 2% isoflurane. During surgery, body temperature was maintained at 37 °C 
with a warming pad. After application of local anesthetics (lidocaine), a sagittal 
incision of the skin was made above the suprapelvic flank to expose the subcu-
taneous inguinal fat pad. An imaging chamber was custom-built to minimize 
fat movement. Warm imaging solution (in mM: 130 NaCl, 3 KCl, 2.5 CaCl2,  
0.6 MgCl2.6H2O, 10 HEPES without sodium, 1.2 NaHCO3, 10 glucose, pH 
7.45 with NaOH) (37 °C) mixed with a fat dye (LipidTOX) was applied to 
label adipocytes, maintain tissue integrity, and allow the use of an immersion  
objective. Imaging experiments were performed under a two-photon laser- 
scanning microscope (Ultima, Prairie Instruments). Live images were acquired at 
8–12 frames per second at depths below the surface ranging from 100–250 mm,  
using an Olympus 20× 1.0 N.A. water-immersion objective with a laser  
tuned to a wavelength of 810–940 nm and emission filters at 525/50 nm and 
595/50 nm for green and red fluorescence, respectively. Laser power was adjusted 
to be 20–25 mW at the focal plane (maximally 35 mW), depending on the  
imaging depth and levels of GFP expression and LipidTOX spread. Analysis  
and quantification of images were performed in Fiji.

Electron microscopy. Fresh tissue was perfused with 2% paraformaldehyde 
(Electron Microscopy Services (EMS)) and 0.2% glutaraldehyde (EMS) in 0.1 M 
phosphate buffer (PB; pH 7.4). After perfusion, fibers were isolated and immer-
sion fixed for 2 h at RT in the same fixative. For quenching of autofluorescence 
from free aldehydes, nerves were washed with 0.15% glycine (VWR) in PB for 
10 min at RT.

Correlative light–electron microscopy. After fixation, fibers were stabilized 
with 0.1% tannic acid (EMS) and embedded in 2% agarose (Omnipur) before 
cryoprotection in 30% sucrose (Alfa Aesar) overnight at 4 °C. Embedded sam-
ples were placed in optimal cutting temperature (OCT) compound (Sakura) 
and plunge frozen in liquid nitrogen. 10-µm sections were obtained in a Leica 
Cryostat CM3050 S and placed on cover glasses coated with 2% (3-aminopropyl) 
triethoxysilane (Sigma-Aldrich) in acetone. Light microscopy imaging was 
performed in a Leica SP5 Live microscope after mounting the sections with 
PB. For electron microscopy processing, samples were washed ten times with 
PB and post-fixed in 1% osmium tetroxide (EMS) with 1% potassium hexacy-
anoferrate (Sigma-Aldrich) in PB for 30 min on ice. Dehydration was done in 
a graded ethanol series of 30%, 50%, 75%, 90%, and 100% ethanol for 10 min 
each. EPON resin (EMS) was used for embedding. 70-nm serial sections were 
obtained in a Leica EM UC7 and stained with 1% uranyl acetate and lead citrate 
for 5 min each. Electron microscopy images were acquired on a Hitachi H-7650 
operating at 100 kV.

Single-cell suspension. Tissues were dissected from ten mice. Spleen, brain, 
visceral fat, and subcutaneous fat were excised and digested for 30 min with col-
lagenase (Sigma) at 37 °C with shaking. Sympathetic nerve fibers were isolated 
from subcutaneous adipose tissues and digested for 30 min with hyaluronidase 
(Sigma) at 37 °C with shaking, washed, and further digested with collagenase 
for 15 min. SCGs were dissected and digested with collagenase for 10 min, 
washed, and further digested with trypsin (Biowest) for 30 min at 37 °C with 
shaking. Cell suspensions were filtered through a 70-µm sieve and centrifuged 
at 450g for 5 min.

Flow cytometry. Flow cytometry data were acquired on an LSR Fortessa X-20 
SORP (Becton-Dickinson), FACSCalibur (Becton-Dickinson), or CyAn ADP 
(Beckman Coulter) and analyzed using the FlowJo software package (Tree Star). 
Macrophages were sorted as live CD45 and F4/80 double-positive cells using a 
FACSAria IIu high-speed cell sorter (Becton Dickinson) or MoFlo High-Speed 
Cell Sorter produced by Dako Cytomation (now owned by Beckman Coulter).
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Bone marrow chimeras. B6-CD45.1 mice (aged 8–10 weeks), B6 (C57BL/6J) 
mice (aged 8–10 weeks), and ob/ob mice (aged 8–10 weeks) were lethally irradi-
ated (900 rad, 3.42 min, 137Cs source) (Gammacell 2000) and reconstituted with 
bone marrow cells from Cx3cr1GFP/+ mice (aged 6 weeks), Slc6a2−/− mice (aged 
6–8 weeks), B6 mice (aged 6–8 weeks), or B6-CD45.1 mice (aged 6–8 weeks). 
B6-CD45.1 mice and B6 mice were reconstituted with 5 × 106 total bone marrow 
cells, and ob/ob mice were reconstituted with 3 × 107 total bone marrow cells. 
Chimerism was assessed 8 weeks after reconstitution using flow cytometry.

Low-input RNA-seq library preparation. Sequencing libraries were prepared 
according to the Smart-seq2 method46 with some modifications. 1,715 ± 115 
cells from nerve fibers, 1,534 ± 85 cells from superior cervical ganglia, and 5,000 
cells from other tissues (visceral fat, subcutaneous fat, spleen, and brain) were 
isolated as live CD45+F4/80+ cells in TRIzol (Thermo Fisher) and were used as 
starting material. RNA was extracted with the Direct-zol MicroPrep kit (Zymo 
Research) with on-column DNase I treatment. 10 µl of purified RNA was mixed 
with 5.5 µl of SMARTScribe 5× First-Strand Buffer (Clontech), 1 µl of poly(T) 
primer for reverse transcription (2.5 µM; 5′-AAGCAGTGGTATCAACGCAGA
GTAC(T30)VN-3′), 0.5 µl of SUPERase IN (Ambion), 4 µl of dNTP mix (10 mM;  
Invitrogen), 0.5 µl of dithiothreitol (DTT) (20 mM; Clontech), and 2 µl of 
betaine solution (5 M; Sigma), and samples were incubated at 50 °C for 3 min.  
3.9 µl of first-strand mix, containing 0.2 µl of 1% Tween-20, 0.32 µl of MgCl2 
(500 mM), 0.88 µl of betaine solution (5 M; Sigma), 0.5 µl of SUPERase IN 
(Ambion), and 2 µl of SMARTScribe Reverse Transcriptase (100 U/µl; Clontech), 
was added, and samples were incubated with one step at 25 °C for 3 min  
and one step at 42 °C for 60 min. 1.62 µl of template-switch (TS) reaction mix 
containing 0.8 µl of biotin-TS oligonucleotide (10 µM; biotin-5′-AAGCAGT
GGTATCAACGCAGAGTACATrGrG+G-3′), 0.5 µl of SMARTScribe Reverse 
Transcriptase (100 U/µl; Clontech), and 0.32 µl of SMARTScribe 5× First-Strand 
Buffer (Clontech) was added, and samples were then incubated at 50 °C for 2 min,  
42 °C for 80 min, and 70 °C for 10 min. 14.8 µl of second-strand synthesis, 
preamplification mix containing 1 µl of preamplification oligonucleotide (10 µM;  
5′-AAGCAGTGGTATCAACGCAGAGT-3′), 8.8 µl of KAPA HiFi Fidelity Buffer 
(5×; KAPA Biosystems), 3.5 µl of dNTP mix (10 mM; Invitrogen), and 1.5 µl of 
KAPA HiFi HotStart DNA Polymerase (1U/µl; KAPA Biosystems) was added, and 
samples were amplified by PCR: 95 °C for 3 min, 8 cycles at 98 °C for 20 s, 67 °C for 
15 s, and 72 °C for 6 min, and a final extension step at 72 °C for 5 min. The synthe-
sized double-stranded DNA (dsDNA) was purified using Sera-Mag SpeedBeads 
(Thermo Fisher Scientific) with final concentrations of 8.4% PEG 8000 and 1.1 M  
NaCl and then was eluted with 13 µl of UltraPure water (Invitrogen). The prod-
uct was quantified by Qubit dsDNA High Sensitivity Assay Kit (Invitrogen), 
and libraries were prepared using the Nextera DNA Sample Preparation Kit 
(Illumina). Tagmentation mix containing 11 µl of 2× Tagment DNA Buffer and 
1 µl of Tagment DNA Enzyme was added to 10 µl of purified DNA, and samples 
were then incubated at 55 °C for 15 min. 6 µl of Nextera Resuspension Buffer 
(Illumina) was added, and samples were incubated at RT for 5 min. Tagmented 
DNA was purified using Sera-Mag SpeedBeads (Thermo Fisher Scientific) with 
final concentrations of 7.8% PEG 8000 and 0.98 M NaCl and then eluted with 25 µl  
of UltraPure water (Invitrogen). Final enrichment amplification was performed 
with Nextera primers, adding 1 µl of Index 1 primers (100 µM; N7xx), 1 µl of 
Index 2 primers (100 µM; N5xx) and 27 µl of NEBNext High-Fidelity 2× PCR 
Master Mix (New England BioLabs) and then amplifying samples by PCR: 72 °C 
for 5 min, 98 °C for 30 s, and 8–13 cycles of 98 °C for 10 s, 63 °C for 30 s, and 72 °C  
for 1 min. Libraries were size selected, quantified by Qubit dsDNA HS Assay 
Kit (Thermo Fisher Scientific), and pooled and sequenced on a NextSeq 500 
(Illumina) for 76 cycles at a depth of 25 to 30 million single-end reads per sample.  
To normalize for genomic DNA contamination, which occurred in some  
samples due to incomplete DNA removal during RNA isolation, the average 
intronic noise per base pair in all intronic regions per gene was calculated. The 
exonic reads were then normalized by subtracting the background noise per base 
pair for the complete length of the exonic regions. Genes without introns were not 
normalized, as these genes are the minority of genes and are typically short (code 
available at https://github.com/vlink/DNA_contamination/).

Fastq files from sequencing experiments were mapped to the mouse mm10 
genome using default parameters for STAR47. Mapped data were analyzed with 
HOMER48 and custom R and Perl scripts.

Superior cervical ganglion explant cultures. SCGs were removed from mice 
aged 4–6 weeks under a stereomicroscope and placed in DMEM (Invitrogen, 
Carlsbad, CA, USA). Ganglia were cleaned from the surrounding tissue capsule 
and transferred into eight-well tissue culture chambers (Sarstedt, Nümbrecht, 
Germany) that were previously coated with poly-d-lysine (Sigma-Aldrich, 
Steinheim, Germany) in accordance with the manufacturer’s instructions. 
Ganglia were then covered with 5 µl of Matrigel (BD Bioscience, San Jose, CA, 
USA) and incubated for 7 min at 37 °C. DMEM without phenol red (Invitrogen) 
supplemented with 10% FBS (Invitrogen), 2 mM l-glutamine (Biowest, 
Nuaillé, France), and nerve growth factor (Sigma-Aldrich) was subsequently  
added. 12 SCG explant cultures were prepared per condition. SCGs were cul-
tured for a minimum of 24 h before further manipulation. The stimulation 
protocol in Figure 3 was performed for 2 h with the following concentrations 
of drugs: 10 mM acetylcholine chloride, 100 nM nisoxetine hydrochloride, and 
100 µM clorgyline.

NE measurements after optogenetic stimulation ex vivo. Depolarization of 
sympathetic neurons in Th-cre; LSL-ChR2-YFP explant cultures was performed 
on a Yokogawa CSU-X Spinning Disk confocal microscope using the 488-nm 
laser line pointing at the region of interest (ROI) for 200 µs. Stimulation was 
repeated seven times using 40% laser intensity. NE content in the SCG explant 
culture medium and in sorted CD45+F4/80+ cells was determined by NE ELISA 
kit (Labor Diagnostika Nord, Nordhorn, Germany, catalog no. BA E-5200). The 
same procedure was performed for LSL-ChR2-YFP control mice.

NE measurements in macrophages from sWAT. CD45.2 (PE)+F4/80 (Alexa 
Fluor 647)+ cells from sWAT were sorted as live cells and incubated with 2 µM 
NE for 2 h using the same culture conditions as those used for SCG explant 
cultures. Afterwards, cells were washed twice with 1× PBS, and NE content was 
measured by NE ELISA kit (Labor Diagnostika Nord, Nordhorn, Germany, 
catalog no. BA E-5200).

qPCR. Total RNA from sorted cells was isolated using the RNeasy Plus Micro Kit 
(Qiagen, catalog no. 50974034). Total RNA from adipose tissues was isolated with the 
PureLink RNA Mini Kit (Ambion, Life Technologies, catalog no. 12183025). cDNA 
was reverse transcribed using SuperScript II (Invitrogen) and random primers  
(Invitrogen). qPCR was performed using SYBR Green (Applied Biosystems) in 
ABI QuantStudio 7 (Applied Biosystems). The Gapdh housekeeping gene was 
used to normalize samples. We used the following formula to calculate relative 
expression levels: RQ = 2−∆Ct × 100 = 2−(Ct gene of interest − Ct Gapdh) × 100.

The primers used were as follows: Lpl-forward, 5′-CAGCTGGGCCTAACTT 
TGAG-3′; Lpl-reverse, 5′-CCTCTCTGCAATCACACGAA-3′; Pnpla2-forward,  
5′-CACTTTAGCTCCAAGGATGA-3′; Pnpla2-reverse, 5′-TGGTTCAG TAG 
GCCATTCCT-3′; Gfap-forward, 5′-CCAGCTTCGAGCCAAGGA-3′; Gfap-
reverse, 5′-GAAGCTCCGCCTGGTAGACA-3′; Gap43-forward, 5′-AGCC 
AAGGAGGAGCCTAAAC-3′; Gap43-reverse, 5′-CTGTCGGGCA CTTTCC 
TTAG-3′; Ucp1-forward, 5′-GTGAAGGTCAGAATGCAAGC-3′; Ucp1-reverse,  
5′-AGGGCCCCCTTCATGAGGTC-3′; Slc6a2-forward, 5′-CAGGCACCT 
CCATTCTGTTT-3′; Slc6a2-reverse, 5′-GCGGCTTGAAGTTGATGATG 
CTG-3′; Maoa-forward, 5′-GCCCAGTA TCACAGGCCAC 3′; Maoa-reverse,  
5′-GTCCCACATAAGCTCCACCA-3′; Chrm1-forward, 5′-CA GTCCCAACAT 
CACCGTCTT-3′; Chrm1-reverse, 5′-GAGAACGAAGGAAACCAACCAC-3′;  
Chrm2-forward, 5′-TGTCTCCCAGTCTAGTGCAAGG-3′; Chrm2-reverse,  
5′-CATTCTGA CCTGACGATCCAAC-3′; Chrm4-forward, 5′-GCCTTCATCC 
TCACCTGGAC-3′; Chrm4-reverse, 5′-AGTGGCATTGCAGAGTGCAT-3′;  
Chrm5-forward, 5′-CCA TGGACTGTGGGAAGTCA-3′; Chrm5-reverse,  
5′-CAGCGTCC CATGAGGATGTA-3′; Chrna2-forward, 5′-CTCCCATCCT 
GCTTTCCAG-3′; Chrna2-reverse, 5′-GTTTGAACAGGCGGTCCTC-3′;  
Chrna3-forward, 5′-GCGAACAGGTCACAGTTTATG-3′; Chrna3-reverse,  
5′-GCATTTT TCTCTGGGTTTTCA-3′; Chrna5-forward, 5′-CGCTCTTCT 
TCCACACACAA-3′; Chrna5-reverse, 5′-TAGGTCCACCGTCTTTCTCG-3′;  
Chrna6-forward, 5′-CTTTGTCACGCTGTCCAT-3′; Chrna6-reverse, 5′-
GCCTCCT TTGTCTTGTCC-3′; Chrna7-forward, 5′-ACAGTACTTC 
GCCAGCACCA-3′; Chrna7-reverse, 5′-AAACCATGCACACCAATTCA-3′;  
Chrna9-forward, 5′-ACAAGGCCACCAACTCCA-3′; Chrna9-reverse,  
5′-ACCAACCCACTCCTCCTCTT-3′; Chrna10-forward, 5′-TCTGACCTCA 
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CAACCCACAA-3′; Chrna10-reverse, 5′-TCC TGTCTCAGCCTCCATGT-3′;  
Chrnb2-forward, 5′-GGGCAGGCA CACTATTCTTC-3′; Chrnb2-reverse,  
5′-TCCAATCCTCCCTCACACTC-3′; Chrnb3-forward, 5′-CTCCTCAGACATT 
GGTTCCAAGG-3′; Chrnb3-reverse, 5′-AATGAGG TCAACCATGGT-3′; 
Chrnb4-forward, 5′-TCTGGTTGCCTGACATCGTG-3′; Chrnb4-reverse, 5′-
GGGTTCACAAAGTACATGGA-3′;Adrb2-forward, 5′- GGTTATCGTCCTGG
CCATCGTGTTTG-3′; Adrb2-reverse, 5′-TGGTTCGTGAAGAAGTCACAGC
AAGTCTC-3′; Th-forward, 5′-GGTATACGCCACGCTGAAGG-3′; Th-reverse, 
5′- TAGCCACAGTACCGTTCCAGA-3′; Tnfa-forward, 5′- ATGAG CACAGA 
AAGCATGATC-3′; Tnfa-reverse, 5′-TACAGGCTTGTCACTCGAATT-3′; Il10-
forward, 5′-GCTCTTACTGACTGGCATGAG-3′; Il10-reverse, 5′-CGCAG 
CTCTAG GAGCATGTG-3′; Il1-forward, 5′- GAAGAAGAGCCCATCCT 
CTG-3′; Il1-reverse, 5′- TCATCTCGGAGCCTGTAGTG-3′; Il4ra-forward,  
5′-TGACCTCACAGGAACCCAGGC-3′; Il4ra-reverse, 5′-GAACAGGC 
AAAACAACGGGAT-3′; Gapdh-forward, 5′-AACTTTGGCATTGTGGA 
AGG-3′; Gapdh-reverse, 5′-ACACATTGGGGGTAGGAACA-3′.

Functional studies. We measured rectal temperature with an electronic ther-
mometer (Precision) when the mice were housed both at RT and at 4 °C with 
ND food and water ad libitum.

Free fatty acids were measured in blood plasma using the Free Fatty Acid 
Quantitation Kit (Sigma-Aldrich, catalog no. MAK044-1KT).

Serum levels of NE were determined by NE ELISA kit (Labor Diagnostika 
Nord, Nordhorn, Germany, catalog no. BA E-5200).

High-fat diet challenge. When B6 mice reached 8 weeks of age, we replaced ND 
with HFD (Ssniff, Spezialdiäten, Soest, Germany, catalog no. D12492). Analyses 
in Figure 4 were performed when mice achieved a 40% increase in body weight 
after 3 months of a HFD.

Intracellular staining for Ki-67. Cells were surface-stained for 30 min. 
Subsequently, cells were washed and fixed with fixation and permeabilization 
buffer (eBioscience) and then permeabilized with permeabilization buffer (eBio-
science). Following this process, cells were intracellularly stained with anti-Ki-67 
or isotype control.

Histopathological and immunohistochemical analyses. Human and mouse tis-
sues were fixed in buffered formalin, and inclusion in paraffin was done accord-
ing to standard technical procedures. Histochemical and immunohistochemical 
studies were performed on formalin-fixed and paraffin-embedded (FFPE) tissue 
sections. Sections were 2 µm (human ganglia) or 3–6 µm (mouse tissues) thick 
for H&E or were 4 µm thick for immunohistochemical studies. The following 
markers were used for immunohistochemistry: aminoethylcarbazole (AEC) and 
3,3′-diaminobenzidine (DAB) according to the usual technical procedure for 

the marker. For the immunohistochemical studies, sections underwent antigenic 
recovery before incubation with primary antibodies: anti-CD68 (Dako, clone 
PG-M1; dilution 1:150) anti–human SLC6A2 (MAb Technologies, clone 3-6C1 
sc H10; dilution 1:1,000), anti-MAOA (Abcam, clone GR155892-5; dilution 
1:50), and anti-UCP1 (Abcam; dilution 1:500). Human tissues were analyzed 
under an optical microscope (Nikon Eclipse 50i), and iconography microscopic 
images were captured using a coupled digital camera (DS Camera Control Unit 
DS-L2). Mouse tissues were analyzed using a Leica DM LB2 microscope, and 
images were captured with a Leica DFC 250 camera.

Diphtheria toxin–mediated macrophage depletion. We used LysM-cre; LSL-
Csf1r-DTR mice for this experiment and LSL-Csf1r-DTR mice as controls. 
Animals received injections of diphtheria toxin (DT) from Corynebacterium 
diphtheria (Calbiochem) once daily for four consecutive days. The first dose was 
500 ng of DT in PBS per 20 g of body weight followed by three doses of 250 ng 
of DT in PBS per 20 g of body weight. Depletion was assessed by flow cytometry 
12 h after the fourth injection. NE levels in adipose tissues were assayed by NE 
ELISA kit (Labor Diagnostika Nord, Nordhorn, Germany, catalog no. BA E-
5200). Protein concentration was determined by the Bradford method.

Statistics. Statistical analyses were performed with GraphPad Prism software 
(San Diego, CA) using unpaired Student’s t-test (two-tailed) when two groups 
were being compared or one-way ANOVA when several groups were being 
compared. One-way ANOVA was followed by Tukey’s multiple-comparisons 
test, except for the data in Figure 4b and Supplementary Figure 8a, where it 
was followed by Bonferroni multiple-comparisons test with one group indicated 
as a control group. P < 0.05 was considered statistically significant. Data are 
represented as mean ± s.e.m. Sample size was predetermined based on previous 
studies (for more information, see the Life Sciences Reporting Summary). Data 
displayed normal variance.

Data availability. The RNA-seq data sets are available at GSE103847.  
The data that support the findings herein presented are available from the corre-
sponding author upon reasonable request. A Life Sciences Reporting Summary 
is available.
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206 Chapter 5



Discussion

In this chapter, I will discuss the findings of chapters 1 to 5 and answer the overarching
question of my thesis how the enhancer landscape in macrophages get selected and reg-
ulated in order to control gene expression. To answer this general question, I addressed
three main points:

• What are the epigenetic mechanisms that are responsible for tissue–specific functions?

• How do complex stimuli change the epigenetic landscape of macrophages in compar-
ison to single stimuli?

• How does natural genetic variation influence the epigenetic landscape and gene ex-
pression in macrophages?

Furthermore, I will put the answer of these questions in the bigger context of current
scientific discoveries, as well as point out new challenges and questions based on these
findings. Finally, I will give a short overall conclusion.

Epigenetic mechanisms for tissue–specific functions

As discussed in the General Introduction, enhancers are bound by lineage–determining
transcription factors (LDTFs), as well as signal–dependent transcription factors (SDTFs),
and play an important role in the regulation of gene expression. It has been shown that
PU.1 in combination with C/EBP establishes macrophage–specific enhancers, whereas
PU.1 in combination with E2A and OCT–2 establishes enhancers specific to B cells (Heinz
et al. (2010)). This provides a model for how cell type–specific enhancers are established.
However, it does not account for the influence of tissue–specific environments on the en-
hancer landscape. We studied macrophages from different tissues to address this question
(Gosselin, D., Link, V. M., Romanoski, C. E. et al. (2014)) (Chapter 1). We found an
astonishing amount of gene expression differences in macrophages from very different en-
vironments of the body (i.e. the brain versus the peritoneal cavity). Different macrophage
populations from the same biological environment show more similar gene expression pro-
files, but still experience differences. By evaluating the signature of primed and active
enhancers in these different macrophage populations, we find a mostly shared histone
modification profile at promoters, but vastly different signatures at enhancers. The his-
tone modification signature at enhancers correlates well with the expression of the nearest
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gene, confirming that enhancers are the main drivers of cell type–specific gene expression.
Motif enrichment analysis of cell type–specific enhancers showed a general enrichment of
the macrophage–specific transcription factor (TF) PU.1. However, the collaborative fac-
tors in the cells from different environments varied substantially (e.g. an enrichment of
the GATA consensus binding motif in macrophages from the peritoneal cavity and an
enrichment for myocyte enhancer factor-2 (MEF2) and mothers against decapentaplegic
homolog (SMAD) consensus motifs for microglia – macrophages isolated from the brain).
These vastly different collaborative binding partners for PU.1 were conserved in different
mouse strains. To address the influence of the environment in more detail, cells were
taken out of the brain and the peritoneal cavity and cultured for 7 days. Interestingly, the
majority of cell type–specific genes were significantly downregulated after 7 days in cul-
ture, and many cell type–specific enhancers were lost. Culturing the cells for 7 days with
supplemental transforming growth factor beta (TGFβ) and retinoic acid to mimic an in
vivo environment more closely restored gene expression of about half of the environment–
dependent genes. This shows that the environment has a big influence on gene expression
of different macrophage subpopulations. Furthermore, the environment the cells are ex-
posed to is a complex combination of different signals and we have not yet managed to
appropriately mimic it in vitro.
This study was co–published with a complementary study by Lavin et al. (2014). The
authors independently confirmed the importance of MEF2 and SMAD for the enhancer
landscape of microglia, as well as the importance of GATA for macrophages from the
peritoneal cavity. Furthermore, the authors included monocytes and neutrophils in their
analysis and showed that even between different cell types, the histone modifications at
promoters are strikingly similar, but the patterns at enhancers are widely different. The
authors used a different approach to evaluate the importance of the tissue environment
on the enhancer landscape than we did. Instead of culturing the cells for 7 days, they
depleted all immune cells from CD45.2 host mice and injected CD45.1 donor cells that
allows tracking of the donor cells. After four months, the authors isolated macrophages
from the lung, brain, kidney and peritoneal cavity and assessed the enhancer landscape
of CD45.1 cells. They showed a striking similarity between the enhancer landscape of the
original macrophages and the enhancer landscape of the CD45.1 macrophages. To further
test the influence of the environment, the authors isolated macrophages from the peritoneal
cavity and transferred them into the lung of a host mouse. After 15 days of differentia-
tion the authors isolated the implanted macrophages and compared them to original lung
macrophages. Interestingly, they adapted an enhancer landscape resembling the landscape
of cells from this environment more closely than their original landscape. This shows that
macrophages are not only influenced by their environment during differentiation, but they
keep their plasticity and are able to adapt to their new host tissue.
These two papers showed the influence of the tissue–environment on the epigenetic land-
scape of macrophages independently. This work underlined the need for a deeper under-
standing of the influence of the tissue environment on cells.
Another study by Roberts et al. (2017) studied the influence of the tissue environment
on the ability of macrophages to clear apoptotic cells. They found several populations of
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macrophages including peritoneal macrophages and lung macrophages were able to engulf
apoptotic cells, but lose this ability after removal from the tissue environment and putting
them in culture. Cultured bone marrow–derived macrophages (BMDMs) that were im-
planted in either the peritoneal cavity or lung gained the ability to clear cells after several
weeks in the tissue environment. Furthermore, the authors showed that the TFs Krüppel-
like Factor (KLF) 2 and KLF 4 were involved in this process. We (Gosselin, D., Link, V.
M., Romanoski, C. E. et al. (2014)), as well as Lavin et al. (2014) found KLF to be a TF
important for macrophages from the peritoneal cavity.
The influence of the tissue envrionment was further shown by studying the transformation
of circulating monocytes into Kupffer cells after niche availability (Scott et al. (2016)).
After cell–specific depletion of Kupffer cells, the liver is repopulated by circulating mono-
cytes about 48 hours after depletion. After 15 days in the liver, the infiltrated monocytes
were not distinguishable from embryonic derived Kupffer cells by fluorescence activated cell
sorting (FACS) and the most Kupffer cell–specific genes were expressed in the infiltrating
monocytes. They also gained the capacity to self–renew, something that was believed to
require genetic engineering of monocytes. This work is another powerful example of the
influence of the tissue–environment on the gene expression profile of cells.
Interestingly, when we studied macrophages at sympathetic nerve bundles we found a
previously undescribed population of sympathetic neuron-associated macrophages (SAMs)
(Pirzgalska et al. (2017)). These macrophages populate a unique niche in the body and
possess the ability to uptake norepinephrine, as well as synthesize it by expression of solute
carrier family 6 member 2 (Slc6a2) and monoamine oxidase A (MAOa). The expression of
these two genes was shown by RNA–seq, as well as quantitative polymerase chain reaction
(qPCR), and neither Slc6a2 nor MAOa were substantially expressed in any macrophage
population listed in the ImmGen database (Heng et al. (2008)). It is not clear which en-
vironmental signals produce the expression of this machinery, but this small population of
macrophages is another impressive example of how the environment can influence pheno-
types of cells.
The origin of most tissue–resident macrophages is not completely clear. Studies showed
that most macrophages are derived from erythromyeloid progenitors (EMPs) directly from
the yok sac (Perdiguero et al. (2015)), but other studies showed evidence that tissue–
resident macrophages are derived from classical hematopoietic stem cells with the exception
of microglia and epidermal Langerhans cells (Sheng et al. (2015)). Although there is some
controversy about the origin of tissue–resident macrophages, Mass et al. (2016) reported
that EMPs are detected around embryonic day 8.5, start populating the liver at embryonic
day 9.5 and populate the rest of the embryo by embryonic day 10.25. During this time all
cells express a common macrophage–core program that is different from other cell types
populating the embryo. Genes upregulated during this phase include colony stimulating
factor 1 receptor (Csf1r), Maf, Basic leucine zipper transcriptional factor ATF–like (Batf)3,
and PPARγ. At the same time, macrophages populating different tissues in the embryo
start to lose expression of tissue–specific macrophage genes (e.g. T–cell immunoglobulin
and mucin domain containing 4 (Timd4) expression is lost in all sub–populations except
for Kupffer cells), as well as upregulate their respective signature genes (e.g. spalt like
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transcription factor (Sall)1 and Sall3 in microglia, nuclear receptor subfamily 1, group H,
member 3 (Nr1h3), DNA-binding protein inhibitor (Id)1, and Id3 in macrophages populat-
ing the liver and aryl hydrocarbon receptor (Ahr) in macrophages in the limb). This study
suggests that tissue–specificity is established early on in embryogenesis, but it is based on a
common macrophage core expression profile, explaining the high plasticity of macrophages
even after fully differentiating.
A great model to study the influence of the changing tissue–environment over different
developmental stages are microglia, because the brain–blood barrier is formed early in de-
velopment. From this point on, there is no infiltration of other monocytes into the brain
and the only immune cells are microglia. Matcovitch-Natan et al. (2016) studied the change
in microglia during development of the brain and how these cells adapt to changes in envi-
ronment. They showed that microglia undergo three main temporal developmental stages
with different TFs and genes expressed at every stage (e.g. genes associated with cell cycle
and differentiation were expressed in the first stage, whereas genes involved in neuronal de-
velopment were expressed in a later stage). The authors also showed that the dynamics of
the epigenetic landscape in microglia overlapped well with microglia gene expression across
developmental stages. Furthermore, they showed that disturbance of microglia develop-
ment due to viral infection shifts the cell toward a more advanced developmental stage,
potentially explaining the influence of viral infections on brain development. This work
suggested that not only the tissue–environment itself is influencing the enhancer landscape,
but also changes during development play important roles.
Adam et al. (2015) showed that super enhancers (SEs) in transitamplifying cells (TACs)
are different than SEs in hair follicle stem cells (HFSs), with TAC–specific genes exhibit-
ing TAC–specific SEs and vice versa. They also found an enrichment of TAC–specific and
HFS–specific TF binding motifs in their respective SEs. Furthermore, SEs specific to HFS
genes were lost in vitro, but were restored after engraftment of these cells into donor mice.
Interestingly, the authors also found new SEs in vitro that were close to genes implicated
in wound healing, pointing out the plasticity of cells.
Many studies have focused on the influence of the environment on the epigenetic landscape
in mice. However, to ultimately understand the influence of the tissue environment on hu-
man disease, it is necessary to study human cells directly. With the decrease of sequencing
cost and the lower requirement of cells for next–generation sequencing assays, theses stud-
ies became more feasible to do.
Much of the research focuses on the role of microglia in neurodegenerate diseases. One
of the first studies to evaluate the environment on the TF network in human microglia
was performed by Gosselin et al. (2017). The authors reported gene expression data from
healthy brain tissue of 19 individuals including different sexes, ages and disease diagnosis.
They identified a common mRNA profile in human microglia. Many of these genes have
been previously associated with neurodegenerative diseases. They identified consensus
binding motifs in microglia enhancers, confirming the previously reported roles of MEF2
and SMAD in mouse microglia biology. However, they also showed substantial differences
in the expression of many TFs between mouse and human, most notably the lack of ex-
pression of SALL2, SALL3, as well as SMAD1 in human microglia. By culturing human
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microglia for 7 days, they observed a similar effect on the epigenetic landscape, as well as
the transcriptome, than previously observed in mice (Gosselin, D., Link, V. M., Romanoski,
C. E. et al. (2014)). Interestingly, many genes downregulated in culture were upregulated
during microglia development. Furthermore, the expression of about half of the genes that
were highly expressed in microglia and also associated with neurodegenerative disease were
impacted by a transition of the cell from the in vivo environment into culture.
We published one of the first studies (Gosselin, D., Link, V. M., Romanoski, C. E. et al.
(2014)) demonstrating the importance of the tissue environment for the regulation of the
epigenetic landscape of cells and subsequentially the regulation of gene expression. This
study was an important first step to realize that studying cells in culture is not sufficient
in order to understand regulation in vivo. More studies have been published since that
(e.g. Roberts et al. (2017), Scott et al. (2016), Pirzgalska et al. (2017)), underlining the
importance of the tissue environment, as well as demonstrating the plasticity of cells and
their ability to adapt to new environments. These initial studies were performed in mice
and built an important first step in deciphering the influence of the tissue environment on
gene regulation. In recent years studies in human became more feasible and are now seen
as crucial tools in order to understand the interplay between tissue environment, regulation
of gene expression and disease.

The influence of complex stimuli on the epigenetic land-

scape in macrophages in comparison to single stimuli

Macrophages are innate immune cells and respond to diverse inflammatory signals, as
well as damage–associated molecular patterns (DAMP) or microbe–associated molecular
patterns (MAMP). In order to understand the regulation of macrophages after stimula-
tion, studies often utilize bone marrow–derived macrophages (BMDMs), or thioglycollate–
elicited peritoneal macrophages (TGEMs) and stimulate them with diverse inflammatory
signals (e.g. TLR4 agonists, IFNγ, TNF) or alternate activation signals like IL–4 or IL–13.
However, very little is known about in vivo responses to stimuli, where cells experience
more than one signal at a time. This is challenging to study, because of the low num-
bers of cells that experience the signal. To simulate a more closely assembling in vivo
environment, we (Eichenfield, D. Z., Troutman, D. T., Link, V. M. et al. (2016)) stimu-
lated BMDMs with homogenized skin (tissue homogenate) to mimic a wound environment
(Chapter 2). Comparing the transcriptome of BMDMs stimulated with tissue homogenate
showed marked differences from BMDMs stimulated with single stimuli like polyinosinic–
polycytidylic acid (Poly I:C) for activation of TLR3, Kdo2–lipid A (KLA) for activation
of TLR4, Pam3CSK4 - a synthetic triacylated lipopeptide (Pam3) for activation of TLR1
and TLR2, or a co–activation with KLA and IFNγ to induce pro–inflammatory gene sig-
natures, as well as IL–4 or TGFβ to achieve alternately activated and de–activated gene
profiles. Cells from in vivo wounds were extracted and RNA–seq was performed. The
transcriptome profile of cells from the wound overlapped mostly with the transcriptome
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profile of BMDMs stimulated with tissue homogenate, showing that tissue homogenate is a
good way to mimic a wound environment and present a cell with several different stimuli at
the same time (DAMP, MAMP, as well as factors residing in the extracellular matrix like
TGFβ). To better understand the regulation of gene expression after tissue homogenate
exposure, we performed ChIP–seq for the LDTFs PU.1 and FOS, for the KLA–induced
factor P65, the TGFβ–induced factor SMAD3, and the histone activation mark H3K27ac
under vehicle and tissue homogenate treated conditions. We found that binding of the
factors was highly associated with tissue homogenate induced active enhancers. We over-
all observed a strong co–occurrence of P65 and SMAD3 at sites already bound by FOS
and PU.1. Additionally, these sites overlapped with binding of REV-ERB, a factor in-
volved in wound healing. Interestingly, we found enhancers that were bound by SMAD3
after TGFβ treatment, bound by P65 after KLA treatment and bound simultaneously by
both factors after tissue homogenate stimulation. Tissue homogenate treatment estab-
lished binding sites for P65 and SMAD3 that were not observed following treatment with
KLA or TGFβ, respectively, and also showed binding of REV–ERB. Therefore, the com-
plex tissue homogenate signal drove substantial co–localization of P65 with SMAD3 that
was not observed following selective treatment with single stimuli. We furthermore found
nuclear factor (erythroid–derived 2)–like (NRF)2 as the most enriched TF binding motif
at SMAD binding sites after tissue homogenate treatment. ChIP–seq experiments demon-
strated that tissue homogenate increased the genome–wide binding of NRF2 at thousands
of genomic locations, a substantial fraction of which were observed to overlap with the
tissue homogenate induced binding sites for P65, FOS, and SMAD3. We found an eight–
fold increase in co–localization of these four factors at enhancers after tissue homogenate
treatment suggesting that the combination of signals present in tissue homogenate induce
co–binding of multiple TFs to enhancers that mediate the tissue injury response. This
study provides first insights into how more complex stimuli regulate gene expression that
cannot be observed under single stimuli. This stressed the importance of studying epi-
genetic regulation in cells that experience more complex signals. With the advances in
technology it will become more and more feasible to study cells from in vivo environments
directly under healthy and diseased states.
In cancer, mutations often cause dysregulation of gene expression programs in cells, lead-
ing to changing signals in the cell’s environment. Therefore, tumors provide a good model
to study how several different stimuli together influence the epigenetic landscape in cells.
Roe et al. (2017) developed an in vitro model that closely mimics the in vivo environment
of healthy cells and metastatic cancer cells. Comparing these, the authors found several
thousand enhancers gained in the cancer cells that were also mostly present in human
metastatic cells. The authors were able to show that the expression of the TF FOXA1
was increased in tumor cells and further elevated in metastatic tumor cells. FOXA1 is a
pioneer TF that was bound to the newly gained enhancers in metastatic cells in collabora-
tive binding with the upregulated TFs GATA binding factor–5 (GATA5), BATF2, paired
mesoderm homeobox protein 2 (PRRX2), and PAX9. The authors conclude that their
findings suggest that a FOXA1–dependent enhancer reprogramming promotes progression
of the cancer and metastasis in vivo.
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Yang et al. (2015) also studied the influence of a unique tumor–environment in squamous
cell carcinoma (SCC) on the epigenetic landscape of stem cells in vivo. By analyzing super
enhancers (SEs) in healthy cells in comparison to tumor cells, the authors found many
different SEs. They found an enrichment of SOX binding sites in tumor–related SEs, as
well as AP–1 binding sites. Surprisingly, they also found E-twenty-six (ETS) consensus
sites as enriched in tumor–associated SEs, although ETS proteins have not been previously
implicated in SCC. However, they also showed new SEs at the ETS domain–containing
protein 3 (ELK3) and ETS2 genes and provided evidence that these factors drive hyper
proliferation and SCC progression, as well as that ELK3 and ETS2 expression correlates
with poor prognosis in human SCCs.
Our previous study demonstrated in vitro the importance to study the regulation of com-
plex stimuli. Therefore, using the tumor environment to understand regulation of the
epigenetic landscape is a logical step forward. Cancer is not only one of the most deadly
diseases in the world, but it also provides a unique insight into how complex signals affect
the enhancer landscape of cells.
Much works has been put into understanding how immune cells get activated and respond
to different signals in the surrounding environment. However, to maintain a healthy tissue
homeostasis, cells need to go back to their unstimulated state after the signal is resolved.
Macrophages are good models to study this, because they respond to different signals, like
inflammation or tissue injury, but they also return to baseline after the signal is resolved.
It has been shown that macrophages synthesize anti–inflammatory fatty acids in an LXR–
dependent manner after TLR4 stimulation (Oh et al. (2010), Spann et al. (2012), Li et al.
(2013a)), but whether the production of these species contributes to the resolution phase
of inflammatory responses has not been established. We (Oishi et al. (2017)) demonstrated
a reciprocal relationship between levels of anti–inflammatory fatty acids and the expres-
sion of pro–inflammatory genes after TLR4 activation. Anti–inflammatory fatty acids that
have the ability to suppress NF–kB are rapidly downregulated following stimulation of
BMDMs with KLA and activation of the TLR4 response. However, 12 – 24 hours after
stimulation, fatty acid levels rise again, initiating the resolution phase. The upregulation
of anti–inflammatory fatty acids was independent of LXR, but instead sterol regulatory
element–binding protein 1 (SREBP1)–driven. SREBP1 binding in the resolution phase
is correlated with increased enhancer activity at its binding sites. Furthermore, SREBP1
knockout mice lack the ability to induce the production of fatty acids. Therefore, we show
that SREBP1 and the production of anti–inflammatory fatty acids play crucial roles in the
resolution of the inflammatory response of macrophages.
This important mechanism was recently confirmed by Körner et al. (2018) who showed
a decrease of inflammation in sepsis after treating mice with omega–3 lipid emulsions.
They observed a significant reduction in pro–inflammatory macrophages and an increase
in alternately activated macrophages. Although the authors did not study the underlying
transcriptional mechanisms for their observation, it seems plausible that the omega–3 fatty
acids activate the same pathways as SREBP1. Furthermore, the authors observe an in-
creased level of IL–10 and TGFβ. These cytokines are known to induce anti–inflammatory
gene expression programs in macrophages.
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In summary, complex in vivo stimuli might activate TF binding programs that cannot be
observed in tissue cultures using single stimuli. We provided substantial evidence for this
by using a signal mimicking an in vivo wound environment and observe combinations of
TFs binding at enhancers that cannot be observed following single stimuli. Especially in
the context of tissue–environment, it is important to analyze the response of tissue–resident
cells to signals rather than removing them from their natural environment and stimulate
them with single stimuli in vitro. However, this does not mean that tissue–culture studies
with single stimuli are obsolete. In order to understand the precise molecular mechanisms
at play, these studies can provide unprecedented insight into the effect of TF binding on
the expression of genes. Only in vitro studies allow a controlled environment to under-
stand signal processing. Using this controlled environment we were able to show that the
resolution phase in macrophages after stimulation is partly regulated by SREBP1, in an
LXR–independent manner. This new finding helps to understand how macrophages reach
baseline gene expression again, after exposure to an acute inflammatory signal. To more
precisely understand regulation of cells during disease, however, studying the cells in their
natural environment during health and diseases states is absolutely essential.

The influence of natural genetic variation on the epi-

genetic landscape and gene expression in macrophages

It has been a long–standing goal in biomedical research to understand the interplay be-
tween gene expression and disease. After sequencing the human genome (International
Human Genome Sequencing Consortium (2001), Venter et al. (2001)), genome–wide asso-
ciation studies (GWAS) became possible, which allow the association of single–nucleotide
polymorphisms (SNPs) to human traits or disease phenotypes. Most GWAS focused on
common diseases like cancer (e.g. Broderick et al. (2007), Hunter et al. (2007), Eeles
et al. (2008), Shiraishi et al. (2016)), type II diabetes mellitus (Diabetes Genetics Initia-
tive et al. (2007), Scott et al. (2007), Hara et al. (2014)), neurodegenerative disease (Fung
et al. (2006), Simon-Sanchez et al. (2007), Reiman et al. (2007), Vojinovic et al. (2015)),
heart disease (Larson et al. (2007), Wellcome Trust Case Control Consortium (2007), Wang
et al. (2016)), or auto–immune diseases (Yamazaki et al. (2005), Rioux et al. (2007), Raj
et al. (2016), Sulem et al. (2011)). However, it is becoming clear that most SNPs associ-
ated with traits can be found in non–coding regions of the genome, rather than in coding
sequences. This makes an interpretation of the results often times very hard. This also
means that most consequential genetic variation is within regulatory regions of the genome
rather than in coding regions that translate into proteins. To understand how these SNPs
affect the host, a detailed knowledge of the affected cell type, as well as the epigenetic
landscape within this cell type is necessary. Therefore, the research focus has shifted to
understanding the direct influence of genetic variation on gene expression by epigenetically
profiling different tissues and activation states.
One early study in humans investigated the relationship between common genetic polymor-
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phisms and differences in gene expression in endothelia cells at baseline and after exposure
to an oxidized phospholipid species to induce early atherosclerotic lesions (Romanoski
et al. (2010)). The authors found significant interactions between genotype and response
to phospholipids for about one–third of the most highly regulated genes. Much of this
regulation is dependent on distal regulatory elements. This study therefore showed that
genetic variation in non–coding regions of the genome can affect gene expression and alter
the response to stimuli.
At about the same time another study (Kasowski et al. (2010)) investigated the influence
of genetic variation on TF binding and gene expression in ten human samples at baseline.
The authors showed that 7.5% of NF–kB binding sites and 25% of RNA polymerase II
(Pol II) binding sites differed significantly between at least two individuals and that these
binding sites were enriched for SNPs affecting the underlying binding motif. About 30%
of differences in NF–kB binding could by explained by SNPs, however that also means
70% of differences in binding remained elusive. The authors observed a correlation be-
tween differences in binding and gene expression, but binding differences greatly exceeded
transcriptome differences, hinting to a potential buffering system in the cells. TF binding
itself, however, is often not sufficient for biological output. A better measurement is chro-
matin accessibility which can be measured by DNase I hypersensitivity sites sequencing
(DNase–seq) and usually correlates well with nearby gene expression. Degner et al. (2012)
performed DNase–seq in 70 Yoruba lymphoblastoid cell lines and showed that common
genetic variants affect chromatin accessibility at thousands of hypersensitive regions across
the human genome. They found that causal variants often lie within or very near to hy-
persensitivity regions, often affecting the binding affinity of TFs. Therefore, measuring
chromatin accessibility rather than TF binding might be a better way to study the impact
of genetic variation on gene expression.
An even more direct readout of chromatin activity is measuring histone modifications. As
discussed in the General Introduction, activity of enhancers and promoters can be directly
measured by histone marks. In 2013, Science published three back–to–back articles that
investigated the effect of natural genetic variation on histone modifications (Kilpinen et al.
(2013), McVicker et al. (2013), Kasowski. et al. (2013)). Kilpinen et al. (2013) investigated
differences in histone modifications, TF binding and gene expression in two parent–offspring
trios, as well as eight unrelated individuals. They found that allele–specific activity across
all regulatory layers is largely transmitted from parents to children. Their studies also
suggest that TF binding, histone modifications, and transcription operate within the same
allelic framework. Changes in TF binding showed correlation with gene expression, whereas
changes in histone modifications did not, suggesting that changes in TF binding are often
causal to changes in gene expression. This finding was supported by McVicker et al. (2013)
who found that histone modifications are directed by sequence–specific TFs and that ho-
mozygous high–expression genotypes are more enriched in DNase I hypersensitivity and
active histone marks, as well as depleted in repressive histone marks than heterozygous
sites or homozygous low–expression genotypes. Therefore, their study suggests that single
genetic variants can affect multiple aspects of chromatin states including histone activity
marks, DNase I hypersensitivity and chromatin accessibility. Interestingly, Kasowski. et al.
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(2013) showed that despite the strong relationship between genetic variation and histone
activity, there is not always an effect on gene expression. They suggest that variability in
several enhancers is necessary to affect gene expression. They also found many genes that
were equally expressed, but had one differentially activated enhancer, further supporting
their hypothesis that several enhancers together regulate gene expression.
The observation that regions of differentially bound TFs have more impact on gene ex-
pression than differences in histone modifications, as well as the fact that only about 30%
of the binding differences can be explained by direct mutations of the TF binding mo-
tif, raised the question how the majority of differently bound TFs are regulated. Heinz
et al. (2013) tried to answer this question by studying binding of LDTFs and SDTFs in
macrophages from two commonly used inbred mouse strains. They observed that only a
fraction of TF binding could be explained by mutations in the respective consensus motif,
however mutations in nearby TF motifs of collaborative factors increased the percentage
of explained binding differences to about 60%. This was especially notable for the SDTF
NF–kB, where only about 10% of differential binding could be explained by differences
in the NF–kB motif, which increased to 35% when considering the binding motifs of the
LDTFs PU.1 and C/EBP. Interestingly, the authors also showed that mutations in less
conserved nucleotides in the consensus binding motif have less impact on TF binding than
mutations in highly conserved residues. Furthermore, they showed that by swapping the
enhancer sequence from one strain into the other, they also swapped the binding profile at
this locus.
Although this study improved the number of loci that could be explained, a lot of differ-
ential binding remained unexplained. This led me to think that by only looking at three
TFs a big part of the collaborative factors and motifs were missed, accounting for the
gap in explaining the binding profiles. To address this question we developed Mutation
Analysis for Regulatory Genomic Elements (MARGE) (Link et al. (2018b)), a software
pipeline that allows the analysis of TF binding in several individuals at the same time by
leveraging a linear mixed effects model. To avoid biases due to mapping errors caused by
natural genetic variation, MARGE allows mapping of the data to custom made genomes,
as well as shifting the data to the respective reference coordinates for downstream analysis.
The software can analyze every kind of TF binding, open chromatin or enhancer activity
data. To investigate the effect of natural genetic variation, each locus is annotated with
all possible motifs. The binding of each factor is then modeled as the fixed effect motif
existence/score with random effects locus and genotype for each motif. Motifs that impact
binding of the factor will therefore show a significant association between the motif exis-
tence and the binding of a factor.
To investigate the scope of TFs that are involved in collaborative binding in macrophages,
we took advantage of the big number of natural genetic variation between commonly used
laboratory mouse strains and wild–derived mice (Link et al. (2018a)). We observed sub-
stantial strain–specific differences in gene expression in which increased genetic differences
between mouse strains led to a substantial but non–linear increase in divergent gene ex-
pression. This was observed on the level of mRNA, as well as on the level of nascent
transcription. The majority of the effects of genetic variation on nascent transcription
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map to distal cis–regulatory elements, which was shown by using filial 1 hybrid (F1) mice.
By applying MARGE to the TF binding data sets of four TFs in five different strains of
mice, we found evidence for roles of about 100 TFs, increasing the percentage of explained
differential binding sites to 70%. By only considering the 500 most differently bound loci,
this fraction increased further to up to 90%. However, a substantial fraction of the strain–
specific binding of these factors cannot be explained by local mutations. Investigation of
the basis for this discrepancy led to the identification of highly interconnected clusters of
TFs that reside within topologically associating domains (TADs). These connected reg-
ulatory domains (CRDs) are highly associated with strain–specific TF binding, enhancer
activity, as well as nearest gene expression. They additionally show significant enrichment
in three–dimensional interactions, further supporting the notion that CRDs present a new
and important layer of transcriptional regulation.
Recently, two studies made similar observations. Waszak et al. (2015) profiled histone mod-
ifications, binding of PU.1 and Pol II, as well as gene expression in lymphoblastoid cell lines
from 47 whole–genome sequenced individuals and observed coordinated chromatin varia-
tion across individuals, which they named variable chromatin modules (VCMs). VCMs
were enriched for TF bound regions and in the majority of cases causal for observed changes
in gene expression. Cheng et al. (2017) performed ATAC–seq, as well as gene expression
profiling of T–cells from 105 healthy donors at basal state and after in vitro stimulation.
They observed co–accessible ATAC–seq peaks across loci at kilobase and megabase scales,
consistent with three dimensional chromosome organization patterns. They furthermore
found enrichment for significant associations between gene expression and co–accessibility
of ATAC–seq peaks.
Cheng et al. (2017) found enrichment of co–accessible ATAC–seq peaks in super enhancers
(SEs), whereas we found CRDs to be distinct from SEs. This led to the conclusion that
CRDs and co–accessible ATAC–seq peaks are different biological phenomena. However,
the concept of chromatin accessibility that is concordantly regulated over several loci, as
well as within TADs seems to be a powerful biological regulatory mechanism to control
gene expression.
It is important to keep in mind that the effect of genetic variation on gene expression is
dependent on the cell type (Ackermann et al. (2013)). SNPs that are completely silent in
one specific cell type and do neither affect chromatin states nor gene expression can have
dramatic effects in another cell type. Furthermore, many SNPs are silent in basal state
and are associated with different responses to stimuli. Lee et al. (2014) showed that of
264 loci with genetic variants associated with changes in gene expression in human den-
dritic cells, 121 of them were only observed after one or more stimuli without any effect
at basal state. This study underscored the need to study genetic variation in different cell
types and under different stimuli in order to capture the whole impact of these variants on
gene expression. More efforts have been put into studying the relationship between genet-
ics and environment, in developing new computational methods (Knowles et al. (2017)),
as well as in discovering the impact of natural genetic variation on gene expression be-
tween different tissues and stimuli (Li et al. (2017), Chen et al. (2016)). However, many
questions remain unanswered and more effort is needed in order to understand the exact
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mechanisms that regulate gene expression. Our work provided evidence that about 100
TFs confidently expressed in macrophages are involved in establishing the epigenetic land-
scape. This work should be expanded to other cell types to decipher the regulation of
enhancers on a organism–wide scale. Furthermore, we provided evidence for an additional
layer of transcriptional regulation by discovering connected regulatory domains (CRDs).
This phenomenon has been undescribed so far and the underlying regulatory mechanisms
remain unclear. Uncovering these mechanisms will provide the next step in understanding
how enhancers regulate gene expression.

Conclusion and further directions

This thesis studied the regulation of the epigenetic landscape and subsequentially gene
expression in different macrophages from different tissues and after exposure to different
stimuli. Furthermore, we investigated the effect of natural genetic variation on mRNA
expression, nascent transcription, TF binding, as well as histone modifications. We and
others showed the influence of the tissue environment on the epigenetic landscape of the
cell. With these studies we showed that the impact of the environmental factors plays a
crucial role for cell identity and tissue culture systems are not sufficient to model these
complex interactions. Furthermore, a cell experiences different signals at the same time,
so studying regulation of gene expression in vitro using a single stimuli allows to study
basic mechanisms, but does not even closely cover the processes observed in vivo. We
showed that studying natural genetic variation is a powerful tool to learn more about
regulation of TF binding and the epigenetic landscape. By studying it we further discovered
a new layer of transcriptional regulation. In order to gain additional insight into the
selection of enhancers, we developed Mutation Analysis for Regulatory Genomic Elements
(MARGE), a new software that analyzes the effect of natural genetic variation on TF
binding. With this software, we found evidence for the involvement of 100 confidently
expressed TFs in macrophages in the selection of enhancers. However, this study was
performed in vitro in order to minimize differences in gene expression and the epigenetic
landscape due to different in vivo signals. This strategy proved to be useful in uncovering
the scope of TFs involved in collaborative binding, as well as the impact of genetic variation
on gene expression. However, this study allows only limited conclusion for the detailed
mechanisms observed in vivo. To really uncover the regulation of gene expression, these
strategies need to be combined. The next steps in advancing our current knowledge is
to study different populations of in vivo cells from different individuals at baseline and
after exposure to several different stimuli. Efforts are ongoing in the Glass laboratory and
many other laboratories to set up systems and study the gene environment interaction in
more detail. Cancer systems might provide a powerful resource, as the tumor environment
differs substantially from healthy tissue. With the decreasing demand for cells to run NGS
assays, as well as the better collaboration between surgeons and researchers, these studies
become more and more feasible. Recently, several groups, including us, have described
new layers of transcriptional regulation by showing correlated regions of open chromatin
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or TF binding. The underlying mechanisms for this phenomenon are completely unknown
yet. Several possible explanations are plausible. For example, it is possible that one SNP
causes the disruption of Pol II, which then in turn cannot remodel the chromatin anymore
and the binding sites remain inaccessible for the TFs. Another possible explanation is that
rearrangement of chromatin due to long non–coding RNAs can remodel the nucleosomes
and therefore make the binding site accessible. More research will be necessary in the
future to understand these large–scale differences that seem to have the biggest impact on
gene expression.
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Glossary

Ahr aryl hydrocarbon receptor.
AP–1 activator protein 1.
ATAC–seq assay for transposase–accessible chromatin us-

ing sequencing.

Batf Basic leucine zipper transcriptional factor
ATF–like.

BMDM bone marrow–derived macrophage.

C/EBP CCAAT-enhancer-binding protein.
CAGE cap analysis of gene expression.
cDNA complementary DNA.
ChIP–chip chromatin immunoprecipitation coupled with

microarrays.
ChIP–seq chromatin immunoprecipitation coupled to

massively parallel sequencing.
CRD connected regulatory domain.
Csf1r colony stimulating factor 1 receptor.
Cx3cr1 CX3C chemokine receptor 1.

DAMP damage–associated molecular patterns.
DNA deoxyribonucleic acid.
DNase I deoxyribonuclease I.
DNase–seq DNase I hypersensitivity sites sequencing.

EBF1 early B–cell factor 1.
ELK3 ETS domain–containing protein 3.
EMP erythromyeloid progenitor.
eRNA enhancer RNA.
EST expressed sequence tag.
ETS E-twenty-six.

F1 filial 1 hybrid.
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FACS fluorescence activated cell sorting.
FAIRE formaldehyde–assisted isolation of regulatory

elements.
FOXA1 forkhead box protein A1.

GATA5 GATA binding factor–5.
GRO–seq global run-on sequencing.
GWAS genome–wide association studies.

H3K27ac acetylation of histone H3 lysine 27.
H3K27me3 trimethylation of histone H3 on lysine 27.
H3K4me1 monomethylation of histone H3 lysine 4.
H3K4me2 dimethylation of histone H3 lysine 4.
H3K4me3 trimethylation of histone H3 lysine 4.
HDAC3 histone deacetylase 3.
HFS hair follicle stem cell.
HOMER Hypergeometric Optimization of Motif En-

Richment.

Id DNA-binding protein inhibitor.
IFNγ interferon gamma.
IL interleukin.
IRF interferon regulatory factor.

KLA Kdo2–lipid A.
KLF Krüppel-like Factor.

LDTF lineage–determining transcription factor.
LPS lipopolysaccharide.
LXR liver X receptor.

MACS2 Model–based Analysis of ChIP–Seq 2.
MAMP microbe–associated molecular patterns.
MAOa monoamine oxidase A.
MARGE Mutation Analysis for Regulatory Genomic

Elements.
MEF2 myocyte enhancer factor-2.
Mmp9 matrix metallopeptidase 9.
MPSS massively parallel signature sequencing.
mRNA messenger RNA.

NCoR nuclear receptor co-repressor 1.
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NF–kB nuclear factor kappa-light-chain-enhancer of
activated B cells.

NGS next–generation sequencing.
Nr1h3 nuclear receptor subfamily 1, group H, mem-

ber 3.
NRF nuclear factor (erythroid–derived 2)–like.

OCT octamer transcription factor.

Pam3 Pam3CSK4 - a synthetic triacylated lipopep-
tide.

PAX paired box protein.
Pol II RNA polymerase II.
Poly I:C polyinosinic–polycytidylic acid.
PPARγ peroxisome proliferator-activated receptor

gamma.
PRRX2 paired mesoderm homeobox protein 2.

qPCR quantitative polymerase chain reaction.

RNA ribonucleic acid.
RNA–seq RNA sequencing.
RNase H ribonuclease H.
rRNA ribosomal RNA.

SAGE serial analysis of gene expression.
Sall spalt like transcription factor.
SAM sympathetic neuron-associated macrophage.
SCC squamous cell carcinoma.
SDTF signal–dependent transcription factor.
SE super enhancer.
Slc6a2 solute carrier family 6 member 2.
SMAD mothers against decapentaplegic homolog.
SNP single–nucleotide polymorphism.
Sono–seq sonication of cross–linked chromatin sequenc-

ing.
SOX sex determining region Y–box.
SREBP1 sterol regulatory element–binding protein 1.
STAT signal transducer and activator of transcrip-

tion.

TAC transitamplifying cell.
TAD topologically associating domain.
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TF transcription factor.
TGEM thioglycollate–elicited peritoneal macrophage.
TGFβ transforming growth factor beta.
Timd4 T–cell immunoglobulin and mucin domain

containing 4.
TLR toll–like receptor.
TNF tumor necrosis factor.
TT—seq transient transcriptome sequencing.

VCM variable chromatin module.


	Acknowledgements
	Summary
	Introduction
	Chapter 1 Environment Drives Selection and Function of Enhancers Controlling Tissue–Specific Macrophage Identities
	Chapter 2 Tissue damage drives co–localization of NF–kB, Smad3, and Nrf2 to direct Rev–erb sensitive wound repair in mouse macrophages
	Chapter 3MARGE: Mutation Analysis of Regulatory Genomic Elements
	Chapter 4Transcription Factor Landscapes in Macrophages from Genetically Diverse Mice Reveal Connected Regulatory Domains
	Chapter 5Additional contributions
	Discussion
	Bibliography
	Glossary

