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“Don’t be pushed by your problems. Be led by your dreams.”
by Ralph Waldo Emerson





Zusammenfassung

Diese Dissertation konzentriert sich auf die Entwicklung und Anwendung
von bayesianischen Inferenzmethoden, um physikalisch relevante Informa-
tionen aus verrauschten Photonenbeobachtungen zu extrahieren. Des Weite-
ren wird eine Methode entwickelt, um Beobachtungen von komplexen Sys-
temen, welche sich stochastisch mit der Zeit entwickeln, anhand weniger
Trainingsbeispiele in verschiedene Klassen einzuordnen.

Zu letztem Zweck entwickeln wir den Dynamic System Classifier (DSC).
Dieser basiert auf der grundlegenden Annahme, dass viele komplexe Syste-
me in einem vereinfachten Rahmen durch stochastische Differentialgleichun-
gen (SDE) mit zeitabhängigen Koeffizienten beschrieben werden können.
Diese werden verwendet, um Informationen aus einer Klasse ähnlicher, aber
nicht identischer simulierter Systeme zu abstrahieren. Der DSC ist in zwei
Phasen unterteilt. In der ersten Lernphase werden die Koeffizienten der SDE
aus einem kleinen Trainingsdatensatz gelernt. Sobald diese gelernt wurden,
dienen sie für einen kostengünstigen Vergleich von Daten und abstrahierter
Information. Wir entwickeln, implementieren und testen beide Schritte in
dem Rahmen bayesianischer Logik für kontinuierliche Größen, nämlich der
Informationsfeldtheorie.

Der zweite Teil dieser Arbeit beschäftigt sich mit astronomischer Bild-
gebung basierend auf Zählraten von Photonen. Die Notwendigkeit hierfür
ergibt sich unter anderem aus der Verfügbarkeit von zahlreichen Satelliten,
welche die Röntgen- und γ−Strahlen im Weltraum beobachten. In diesem
Zusammenhang entwickeln wir den existierenden D3PO-Algorithmus wei-
ter, hin zu D4PO, um multidimensionale Photonenbeobachtungen zu ent-
rauschen, zu dekonvolvieren und in morphologisch unterschiedliche Kompo-
nenten aufzuteilen. Die Zerlegung wird durch ein hierarchisches bayesiani-
sches Parametermodell gesteuert. Dieses erlaubt es, Felder zu rekonstruie-
ren, die über den Produktraum von mehreren Mannigfaltigkeiten definiert
sind. D4PO zerlegt den beobachteten Fluss an Photonen in eine diffuse, eine
punktförmige und eine Hintergrundkomponente, während er gleichzeitig die
Korrelationsstruktur für jede einzelne Komponente in jeder ihrer Mannigfal-
tigkeiten lernt. Die Funktionsweise von D4PO wird anhand eines simulierten
Datensatzes hochenergetischer Photonen demonstriert.

Schließlich wenden wir D4PO auf Daten der Magnetar-Flares von SGR
1806-20 und SGR 1900+14 an, um nach deren charakteristischen Eigen-
schwingungen zu suchen. Der Algorithmus rekonstruierte erfolgreich den
logarithmischen Photonenfluss sowie dessen spektrale Leistungsdichte. Im
Gegensatz zu früheren Arbeiten anderer Autoren können wir quasi- peri-
odische Oszillationen (QPO) in den abklingenden Enden dieser Ereignisse
bei Frequenzen ν > 17 Hz nicht bestätigen. Deren Echtheit ist fraglich,
da diese in das von Rauschen dominierende Regime fallen. Dennoch finden



wir neue Kandidaten für Oszillationen bei ν ≈ 9.2 Hz (SGR 1806-20) und
ν ≈ 7.7 Hz (SGR 1900+14). Für den Fall, dass diese Oszillationen real sind,
bevorzugen moderne theoretische Modelle von Magnetaren relativ schwache
Magnetfelder im Bereich von B̄ ≈ 6× 1013 − 3× 1014 G.



Abstract

This thesis focuses on the development and application of Bayesian in-
ference methods to extract physical relevant information from noise con-
taminated photon observations and to classify the observations of complex
stochastically evolving systems into different classes based on a few training
samples of each class.

To this latter end we develop the dynamic system classifier (DSC). This
is based on the fundamental assumption that many complex systems may
be described in a simplified framework by stochastic differential equations
(SDE) with time dependent coefficients. These are used to abstract infor-
mation from a class of similar but not identical simulated systems. The DSC
is split into two phases. In the first learning phase the coefficients of the
SDE are learned from a small training data set. Once these are obtained,
they serve for an inexpensive data - class comparison. We develop, imple-
ment, and test both steps in a Bayesian inference framework for continuous
quantities, namely information field theory.
Astronomical imaging based on photon count data is a challenging task but
absolutely necessary due to todays availability of space based X-ray and γ-
ray telescopes. In this context we advance the existing D3PO algorithm into
D4PO to denoise, denconvolve, and decompose multidimensional photon ob-
servations into morphologically different components. The decomposition
is driven by a probabilistic hierarchical Bayesian parameter model, allowing
us to reconstruct fields, that are defined over the product space of multiple
manifolds. Thereby D4PO decomposes the photon count data into a diffuse,
point-like, and background component, while it simultaneously learns the
correlation structure over each of their manifolds individually. The capabil-
ities of the algorithm are demonstrated by applying it to a simulated high
energy photon count data set.
Finally we apply D4PO to analyse the giant magnetar flare data of SGR
1806-20 and SGR 1900+14. The algorithm successfully reconstructes the
logarithmic photon flux as well as its power spectrum. In contrast to pre-
vious findings we cannot confirm quasi periodic oscillations (QPO) in the
decaying tails of these events at frequencies ν > 17 Hz. They might not be
real as these fall into the noise dominated regime of the spectrum. Never-
theless we find new candidates for oscillations at ν ≈ 9.2 Hz (SGR 1806-20)
and ν ≈ 7.7 Hz (SGR 1900+14). In case these oscillations are real, state
of the art theoretical models of magnetars favour relatively weak magnetic
fields in the range of B̄ ≈ 6× 1013 − 3× 1014 G.
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1. Introduction

1.1. Life of a star in a tiny nutshell

After the birth of a protostar, the central regions of a star are being pulled
together by gravity, causing an increasingly smaller radius and thus higher
densities. The contraction is stopped when the star begins to fuse hydrogen
nuclei into helium nuclei, generating heat and pressure to halt the collapse.
A long time later, after the hydrogen in the core of the star has all been
consumed, gravity takes over again and compresses the core, heating it up
until helium burning sets in to form carbon. This produces enough heat to
balance the gravitational force and the stars outer atmosphere expands.
The processes following, after the helium burning phase, depend on the mass
of the star. Stars comparable to the mass of our sun begin their collapse
right after the helium burning and form a white dwarf. More massive stars
might explode. The remnant of such a supernova explosion can become
a neutron star or be further compressed to form a black hole. As a rule
of thumb, the more massive the star, the smaller its remnants eventually
become due to the never ending force of gravity.

Due to the complex structure and large dynamic range of the physical
processes to describe the life of a star we rely among others on numerical
simulations to gain a deeper understanding. As these simulations are com-
putationally very challenging and expensive it remains elusive to explore all
possible initial conditions which might have lead to observations. Conse-
quently we have to develop methods, which can abstract information from
a few of these simulations and then confront the abstracted information to
real observations. Thereby one may identify the initial conditions which
explains a specific observation. This type of inference problem becomes
especially apparent when analysing gravitational waves caused by a core
collapse at the end of a stars life. Hence I will briefly discuss the nature
and detection of gravitational waves in the next section.

Another channel to probe the nature of stars is their emission of photons
in different wavelengths. To handle the data of various space based tele-
scopes powerful data analysis techniques are needed. To this end we develop
D4PO, a generic algorithm to denoise, deconvolve, and decompose multidi-
mensional photon observations. This algorithm is applied to the analysis of
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the light curves of giant magnet flares. We will briefly review the physical
fundaments of magnetar (flares) in section 1.1.2.

1.1.1. Gravitational waves of a core collapse supernova

The field of gravitational wave astronomy has become reality and today we
can observe gravitational waves (GW) from different sources on an almost
regular basis [1–6]. One yet undetected but important source of these waves
are stellar gravitational collapses. This source class embraces the entire
spectrum of stellar masses, from the collapse of a white dwarf induced by the
accretion of low mass stars (Mstar < 10Msun) to the collapses of more massive
stars under their own weight (Mstar > 10Msun). All of these phenomena have
the potential of being detected by GW observations as they involve a rapid
change of dense matter distributions that should lead to the emission of
GW.

Gravitational wave emission

Most of the GW emission studies are based on a multipole expansion of the
perturbation hµν to a background spacetime metric tensor gbµν . This yields
[7]

hTT
jk =

[
2

d

G

c4

d2

dt2
Ijk (t− r) +

8

3d

G

c5
εpq(j

d2

dt2
Sk)p (t− r)nq

]TT

. (1.1)

Ijk and Sjk are the 3D-mass and quadruple moment of the source, d is the
distance between source and observer, εijk is the antisymmetric tensor and
nq is the unit vector pointing in propagation direction. Parentheses in the
subscripts indicate symmetrisation over the enclosed indices. Further one
has to sum over the indices p and q in the second term. The superscript
TT refers that one has to take the traceless traverse gauge; G is the gravi-
tational constant and c is the speed of light.
In case the bulk mass motion dominates the dynamics, the first term of
eq. (1.1) describes the radiation. This term causes the well known ’chirp’
signal of the binary in-spiral. The second term in eq. (1.1) describes radia-
tion caused by mass currents in the collapsing core. In case the background
spacetime is flat (or can at least be approximated as flat) the mass and
current moments have a particular simple form. In Cartesian coordinates
the mass quadrupole becomes

Ijk =

∫
d3xρ

(
xjxk −

1

3
r2δjk

)
, (1.2)

with ρ as the mass density and δjk = 1 for j = k and 0 otherwise. The
second term ensures that the integrand is trace free.
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However Ijk and Sjk are in general analytically not accessible due to the
complex dynamics of a core collapse. Therefore these have been subject to
multiple numerical studies in the past decades. A deeper understanding of
GW will provide us with unique information, complementary to the infor-
mation of electromagnetic and neutrino detections.

As shown in eq. (1.1) GW arise from the coherent movement of mass,
whereas electromagnetic waves are mostly produced by incoherent super-
position of radiation of electrons, atoms, and molecules. Thus GW encode
a different kind of information. Furthermore electromagnetic waves inter-
act strongly with their environment and can therefore provide us only with
information from the surface of last scattering. GW in contrast propagate
from their point of creation to the observer almost unperturbed due to their
small coupling constant.
Neutrinos, which are also produced in a core collapse, are extremely sen-
sitive to microphysics, while GW are only sensitive to large scale motions
of mass. Hence combining these three channels, electromagnetic radiation,
neutrinos and GW, can tell us much about the conditions of a collapsing
core.

Simulating gravitational wave emission

As GW encode unique and yet unexplored information about a stars interior,
constant interest of scientists has been drawn to this field astronomy in the
past decades [8–19]. During this period scientists have produced estimates of
GW strength through numerical simulations. The amplitude of the results
vary in order of magnitudes due to the complexity of the collapse, seen
through the GW channel as encoded by eq. (1.1). Some of the current and
past problems are [20]:

• accurate progenitor models, including realistic angular momentum
distributions,

• proper treatment of microphysics, including the use of realistic equa-
tions of state and neutrino transport,

• non-axisymmetric effects in three-dimensions,

• general-relativistic effects,

• magnetic-field effects, and

• effects of the envelope on core behavior.
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Laser Mirror

Mirror

Detector

Beamsplitter

Figure 1.1.: Topology of a Michelson interferometer

Presently feasible simulations cannot capture all of the above stated phys-
ical issues. For example, most studies that include microphysics are often
only considering Newtonian dynamics. Furthermore, most simulations have
not reached convergence in spatial resolution. Additionally it is computa-
tionally too expensive to explore the whole space of possible initial condi-
tions in order to match these simulations with observations. On top of the
fact that we cannot be completely certain how a GW signal from a core
collapse may look like, we face a very complex measurement process due to
the small coupling contstant of gravitational waves.

Observing gravitational waves

In the recent past the laser interferometric gravitational wave observatory
LIGO [21] became the most successful observatory for gravitational waves.

In a simplified picture LIGO can be considered to be an advanced Michel-
son interferometer (fig. 1.1). This laser interferometer can measure small
changes of the length of a optical path.
It produces a laser beam which is split into two orthogonal paths. After
some distance they are reflected back by a mirror. Changes in the inter-
ference pattern of the two reunited beams allow to identify changes in the
optical length. From these differential length changes it is possible to de-
duce the passage of a GW through the detector. The sensitivity of such a
laser interferometer can easily be estimated. Suppose the optical paths have
length l1 and l2. Consequently the change in the interference of the light
is proportional to ∆l = ∆l1 − ∆l2. GW would induce a strain h := ∆l/l
on the detector, where h is of the order of the GW perturbation. Hence
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Figure 1.2.: Sensitivity of LIGO, showing the most dominant noise sources.
Image credit LIGO scientific collaboration [21].

a measurable effect has to be at the order of the wavelength of the laser,
∆l ≈ λLaser. Assuming λLaser to be a µm then a metric perturbation of the
order of

h =
∆l

l
≈ λLaser

l
≈ 10−6m

103m
= 10−9 (1.3)

would be measurable by a kilometer sized interferometer. Unfortunately
this is insufficient to detect GW of a core collapse, whose signal is expected
to be h ≈ 10−22. Consequently a number of advanced techniques, such as
beam recycling are used in order to lower the sensitivity significantly. For
a detailed description see LIGO Scientific Collaboration et al. [21].

As outlined, the detection of a GW depends crucially on the length of
the arms of the Michelson interferometer. However, many distortions move
the mirrors and/or affect the laser light and therefore mimic or mask a
gravitational wave signal. These noise artefacts must be treated in great
detail. The sum of all these noise artefacts as a function of frequency are
shown in fig. 1.2.
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The most dominant sources of noise are [21],

• Seismic noise, due to the motion of the mirrors from seismic vibra-
tions.

• Gravity gradients, which arise from ground vibrations, wind, ocean
waves and human activities.

• Thermal noise, from microscopic fluctuations of the individual atoms
in the mirrors and their suspensions.

• Quantum noise, due to the discrete nature of light and statistical
uncertainty of the photodetectors (i.e. Poissonian shot noise).

As the full noise structure and the exact shape of GW from a core collapse
are unknown, the detection renders a challenging problem. Hence we must
rely on statistical methods which can abstract information from numerical
simulations of GW caused by a core collapse, classify their waveforms in
an abstract way and then indentify the abstract classes in noisy measure-
ment data. In principle this allows to infer the most plausible set of initial
conditions which have lead to the observation. However this is challenging
as complex systems such as supernovae cannot be forward simulated for all
possible initial conditions as it would be required for an identification of
the exact initial conditions. This problem is discussed in greater detail in
chapter 2.

1.1.2. Neutron stars

Neutron stars are after black holes the densest objects in our Universe.
They have masses between one and two solar masses and are almost perfect
spheres with radii of about 8 to 15 km. These stars are so compact that
general relativistic effects have to be considered to describe their properties.
The internal structure of neutron stars is widely unknown. Simple models
assume mainly pure baryonic matter with few leptons, i.e. mainly neutrons
with a small fraction of protons and electrons. Other models require sig-
nificant fractions of muons, pions and/or kaons. As the density in the core
of the neutron star is assumed to exceed nuclear densities by a factor of a
few, it is not guaranteed that the matter inside the core is purely hadronic.
Quantum chromodynamics (QCD) predicts the presence of a quark gluon
plasma. The aim of all different composition models of neutron stars is to
provide a relationship between density and pressure, the equation of state
(EoS). The EoS defines the structure of a neutron star and thus can be
consulted to compare theoretical models with observations. With a better
understanding of the EoS scientists can draw conclusions on the interaction
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Figure 1.3.: Mass-radius relation for neutron stars with different EoS. Green
lines indicate models with strange quark matter, magenta lines
models with exotic hadronic matter like kaons or pions, and
blue lines give models with ordinary hadronic matter. Horizon-
tal bands give the range of observed masses with error bars.
Illustration adapted from [22].

between fundamental particles at an energy scale which will never be acces-
sible on Earth.

In fig. 1.3 the influence of the EoS on the structure of a neutron star is
illustrated. The shown models are obtained by providing a central density
and integrating the Tolman-Oppenheimer-Volkoff equations [23, 24],

dP

dr
= −

G
(
P
c2

+ ρ
) (
m (r) + 4πr3

c2
P
)

r2
(

1− 2Gm(r)
c2r

) . (1.4)

This equation describes the pressure gradient that is needed to compensate
the change in gravity as one moves radially by dr in a spherically symmet-
ric static matter distribution described by m(r), its pressure P , and energy
density ρ. Its solution is completely defined by the central density, but
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different EoS lead to different mass-radius relations. Hence a simultaneous
measurement of the mass and the radius of a neutron star could distinguish
between different EoS and thus constrain the number of potential theoreti-
cally possible models significantly.

However the simultaneous determination of both, mass and radius of a
neutron star is a challenging task, and so far the observational uncertain-
ties are large. In consequence there are no strong constraints on the EoS
up to date. Via Keplers’ law one may obtain estimates about the mass of
the neutron star [25]. The Shapiro delay provides masses for neutron star
binaries [22]. This method is based on the relativistic time delay of an elec-
tromagnetic wave passing through a gravitational potential.
Methods to obtain the radius of a neutron star are based on estimates of
the surface of the photosphere of thermally emitting neutron stars or the
exterior of thermonuclear explosions of accreted matter on the surface [26–
28]. In fig. 1.3 some fundamental constraints on the mass-radius relation
are shown. The shaded regions in the upper left corner are forbidden due to
theoretical limits, such as causality or the appearance of infinite pressure.
The lower shaded areas are forbidden due to the mass shedding limit of the
fastest spinning pulsars. Horizontal bands are mass measurements includ-
ing their error bars. The highest measured mass of about two solar masses
excludes already a number of models for the EoS, in particular SQM1 and
SQM3, which include strange quark stars, and stars with exotic hadronic
matter, which include pions or kaons (GS1, GS3). For details see [22].

In chapter 4 we aim to follow another path to obtain information about
the structure of a neutron star and hence its EoS. In contrast to the recently
observed gravitational wave signal from a neutron star merger event [1],
which carries information about the interior of the star, we use information
which is encoded in its electromagnetic radiation. A giant flare of a so
called soft gamma-ray repeater (SGR) [29] is considered to carry information
about the magneto-elastic oscillations of a magnetar and thus may carry
information about the EoS.

Soft gamma-ray repeater

In todays state of knowledge SGRs are believed to be a subclass of mag-
netars. Magnetars emit an average energy of a few ×1035 erg/s. The hard
X-ray radiation carries a significant part of the total energy, whereas the
optical and infrared emission is faint, if detectable at all [30]. The char-
acteristic property of a SGR is the presence of recurring periods of active
bursting. Depending on various sources a few up to hundreds of bursts with
luminosities of around 1042 erg/s have been observed. The typical duration
of a burst is between 0.1 and 1 s. The quiescent period between these bursts
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may have approximatively a log-normal distribution. However, there also
exists SGR events that show much more energetic explosions with luminosi-
ties of ≈ 1045 erg/s. Up to date only three of these giant flares have been
observed. Giant flares can last for several hundreds of seconds and are so
luminous that most detectors have been over saturated by the burst signal.
The spectra of the decaying tails are in general softer, and show a complex
pulse profile, from which one might constrain the EoS.
We show in chapter 4 a detailed analysis of the observed data of two of such
events.

1.2. Information Theory

Information theory describes the transmission, processing, and extraction of
information. In a more abstract sense it can be thought of as resolution of
uncertainty. Information does not necessarily need to be consistent or reli-
able. For this reason it is natural to quantify the plausibility of information
and to this end information theory is mathematically based on probability
theory and statistics. I will shortly review a consistent probability theory
to quantify the plausibility of information, namely Bayes theorem.

1.2.1. Bayesian logic

In Bayesian logic the probability P (A) describes a degree of rational belief
in an argument A in terms of a positive real number, from the interval [0, 1].
By P (B|A) we denote the conditional probability, such that it describes the
degree of rational belief in statement B given (or assuming) the truth of
statement A. Further one can show that the consistency of a probability
measure is implemented by the sum rule of probabilities

P (B|A) = P
(
B, C̄|A

)
+ P (B,C|A) , (1.5)

and the product rule of probabilities

P (A,B|C) = P (A|B,C)P (B|C) = P (B|A,C)P (A|C) , (1.6)

with a third statement C and its negotiation C̄. With these two rules we
can answer the question how likely is B given the statement A. Rewriting
the product rule and dropping the conditional C for compactness of the
notation yields Bayes theorem:

P (B|A) =
P (A|B)P (B)

P (A)
(1.7)
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This theorem describes a natural way of learning by updating rational states
of belief and is closely connected to the confrontation of physical theories to
physical experiments. We update our physical theories, encoded in P (B)
as we obtain new information. This update involves multiplication with
the probability of the data P (A|B) and division by a new normalisation
constant P (A).

In this context I briefly want to point out an analogy to classical dynam-
ics. In Newtonian dynamics the state of motion of a system is described by
the momentum, while a change from one state to another is explained by
an applied force. In Bayesian inference this is similar. A state of belief is
described in terms of probabilities and the change of rational beliefs is due
to information. Hence it follows naturally from the definition of a force,
which induces a change from one state to another state, that information is
the force which induces a change from one state of belief to another.
This correspondence suggests immediately that one has only obtained enough
information if additional information does not change the state of belief any
more. Unfortunately such a state is never achievable in any physical exper-
iment. Consequently this gives rise to the obvious question how one can
construct methods that allow to infer information from a noisy finite di-
mensional data set in a information theoretically consistent way.

1.2.2. Statistical inference

Up to now we have only treated states of belief. If we intend to infer
physical quantities, such as a photon flux and other statistical properties of
a phenomena, we must extend the classical Bayesian logic towards a field
theory. Lemm [31] showed that this can be done and Enßlin et al. [32]
named the resulting theory information field theory (IFT). Within IFT the
aim is to reconstruct a continuous signal s = s (x), which lives over some
manifold Ω with x ∈ Ω, given a finite dimensional noise contaminated data
set d. In this language Bayes theorem reads,

P (s|d) =
P (d|s)P (s)

P (d)
(1.8)

where P (d|s) describes the likelihood probability density function (PDF),
which states how likely a given signal s imprints itself in the observed data
d. Thereby the likelihood incorporates descriptions of all measurement pro-
cesses, such as a convolution of s with a point spread function, integration
over time and so on. Any a priori knowledge about s is phrased in the prior
P (s) that is not dependent on d. The evidence of d is described by P (d)
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and involves the marginalisation of s,

P (d) =

∫
DsP (d|s)P (s) . (1.9)

In general this infinite dimensional phase space integral is analytically not
accessible and makes the calculation of the posterior inaccessible in general.
To circumvent these limitations we rely on approximations of the posterior
PDF. Typical approaches try to evaluate some statistic of the posterior,
for instance its mean or its most likely configuration in the maximum a
posteriori approach.
In the following chapters we will show some of these approaches to obtain
estimates of s given observed data d and how these may be used to gather
reliable information about the physical phenomena outlined in section 1.1.2
and section 1.1.1.

1.3. Outline

In chapter 2 we introduce the DSC to classify complex dynamical systems.
Thereby we assume that many physical, biological and sociological systems
can be described by stochastic differential equations. We propose the us-
age of simple stochastic differential equations to characterize and classify
complex dynamical systems within a Bayesian framework. The DSC first
abstracts training data of a system in terms of time dependent coefficients of
the descriptive stochastic differential equation. Thereby the DSC identifies
unique correlation structures within the training data. For definiteness we
restrict the presentation of DSC to oscillation processes with a time depen-
dent frequency ω(t) and damping factor γ(t). Although real systems might
be more complex, this oscillator captures many characteristic features. The
ω and γ timelines represent the abstract system characterization and per-
mit the construction of efficient signal classifiers. A classifier is trained with
only a few samples, in comparison, the training of a neural network classifier
requires typically hundreds of samples. Numerical experiments show that
the DSC classifier performs well even in the low signal-to-noise regime.

In chapter 3 we develop the D4PO algorithm to denoise, deconvolve, and
decompose multidimensional photon observations. The primary objective
is to incorporate accurate and well motivated likelihood and prior models
in order to give reliable estimates about morphologically different but su-
perimposed photon flux components present in the data set. We denoise
and deconvolve photon count data, while simultaneously decomposing them
into diffuse, point-like and uninteresting background radiation fluxes. The
decomposition is based on a probabilistic hierarchical Bayesian parameter
model within the framework of IFT. D4PO can reconstruct several emission
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components of which each is defined over its own manifold. The mani-
fold over which an entire component is defined may be a direct product of
multiple manifolds, such as location, time and/or energys. Beyond that,
D4PO may reconstruct correlation structures over each of the components’
manifolds separately. A diffuse emission line is for example expected to
show rather smooth changes between neighbouring locations and rather
monochromatic emission in its energy manifold. In contrast to that are
the correlations of a point-flux component which does not show any spa-
tial correlations but rather smooth spectral distribubtions. The inferred
correlations can implicitly define the morphologically different source com-
ponents. The capabilities of the algorithm, to denoise, deconvolve, and
decompose multidimensional photon observations are demonstrated with a
mock photon count data set, that captures many of the properties and diffi-
culties of real world data sets. D4PO successfully denoises, deconvolves, and
decomposes a photon count image into diffuse, point-like and background
flux. The algorithm provides a posteriori uncertainty estimates of the re-
constructions and the correlation structure of the fields with respect to the
manifolds they reside on.

The D4PO algorithm and its predecessor D3PO are applied to study the
light curves of the giant flares SGR 1806-20 and SGR 1900+14 in chapter 4.
Using this fully noise-aware algorithm, we tried to confirm previously re-
ported frequency lines at ν & 17 Hz but cannot. Although they are in the
noise-dominated regime of the data, tests with injected signals suggest that
D4PO should detect them if as strong as reported in the literature. How-
ever, we find two new potential candidates for oscillations at 9.2 Hz (SGR
1806-20) and 7.7 Hz (SGR 1900+14). If these are real and the fundamen-
tal magneto-elastic oscillations of the magnetars, current theoretical models
would favour relatively weak magnetic fields B̄ ∼ 6×1013−3×1014 G (SGR
1806-20) and a relatively low shear velocity inside the crust compared to
previous findings B̄ ∼ 1.8× 1014 − 9× 1014 G (SGR 1806-20).

Finally, we conclude in chapter 6 and give a brief outlook about future
prospectives of this thesis.
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This chapter is used additionally as a journal publication in Physical Review
E (Pumpe et al., [33]).
I am the principal investigator of the research described in the following
chapter. My contributions include development of the novel idea, working
out the algorithm, implementing and testing it. Further I wrote the chapter.
Maksim Greiner helped to find errors in the algorithm and its implemen-
tation. Ewald Müller provided me with necessary background information
about gravitational wave signatures of core collapse super nova. Torsten
Enßlin also fulfilled the role of a principal investigator as he is my PhD su-
pervisor. All authors read, commented, and approved the final manuscript.

2.1. Introduction

2.1.1. Basic idea

A classification problem for complex dynamic systems might look as fol-
lows: For a number of different system classes a few training samples of
the evolution of some of the variables for each class are obtained, either by
observation or by numerical simulation. Now, different observed systems
should be classified with respect to the reference classes.

As many physical systems tend to be very complex, it is practically im-
possible to obtain a training data set which precisely resembles the observed
one. Therefore, a way to abstract the training samples appropriately, per-
mitting to recognize general characteristics and features of a system class, is
desirable. To this end we propose the usage of simplified stochastic dynam-
ical systems with time dependent coefficients to abstract the time evolution
of system classes. Once the time dependent coefficients are obtained, they
serve as a reference for an inexpensive data-system class comparison. We
develop both steps, the coefficient determination and the data classification
in a Bayesian inference setting for continuous quantities within information
field theory (IFT) [32].

As periodically evolving systems play a remarkable role in the description
of dynamical systems we use the stochastic oscillator equation

d2x(t)

dt2
+ γ (t)

dx(t)

dt
+ ω2(t)x(t) = ξ(t) . (2.1)
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Where the time dependent frequency ω(t) and damping factor γ(t) charac-
terize the system classes and the external force ξ(t) describes the variance
within the class. The non-stationarity of eq. (2.1), induced by the time
dependent parameters γ(t) and ω(t) allows us to also model anharmonic
system classes which do not show a clear oscillating behavior.

The strategy presented in this work is first to analyze system classes in
terms of time-wise varying frequency ω and damping factor γ. To do so,
we apply a hierarchical Bayesian ansatz within the framework of IFT as
this also allows us to simultaneously reconstruct the two point correlation
function of ω and γ. For each analyzed system class, ω and γ serve as
abstract classification signatures to which observational data can be con-
fronted. Consequently, we introduce a Bayesian model comparison approach
using these signatures to state the probability that a given observation is
explained by one of the learned system classes.

2.1.2. Previous work

In the last decades, extensive research has been made within the field of
estimating parameters of deterministic and stochastic systems, respectively
[34–41]. Most attention has been drawn to local and global nonlinear op-
timization methods. The use of stochastic processes within the global op-
timization approaches is called Bayesian global optimization or the random
function approach. In a more generic setting general parameter estimation
has been performed extensively by maximum likelihood estimations [42]. In
financial mathematics the parameter estimation for stochastic models has
been extensively studied in a frequentist maximum likelihood as well as in
a Bayesian framework [43].

In the past, model selection has primarily been performed by likelihood
ratio tests [44]. Due to the enormous increase of computational power,
Bayesian methods have been coming into use more and more [45].

The PCA, emerging from Pearson [46] has successfully been used to re-
duce data to be represented by a linear superposition of a few uncorrelated
principle components [47, 48]. As a PCA might perform poorly in case the
superposition principle is violated neural networks (NN) for pattern recog-
nition and model selection were used more extensively [49]. Despite the
success of NN in the domain of pattern recognition there is still an ongoing
discussion how to properly adjust NN to their desired task [50–53].

2.1.3. Structure of this work

This paper is structured as follows: In section 2.2 we introduce some basic
notation for signal inference in IFT. In section 2.3 we establish the training
algorithm to infer the time dependent fields ω and γ from training data.
In section 2.4 the inferred fields are used to construct our model selection
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algorithm. After deriving the whole DSC algorithm we apply it to a realistic
test scenario in section 2.5. We conclude in section 2.6.

2.2. Inference of fields

2.2.1. Basic notation

First of all, we have to establish some notations and basic assumptions. To
do so, we primarily follow the notation used in IFT. In this paper we will
suppose that we are analyzing a discrete set of data d = (d1, . . . , dr)

T ∈ Rr,
which may depend on the underlying signal s : S → R. By S we denote the
continuous space on which the signal is defined.

From the principal of minimal updating [54] and the principal of maximum
entropy [55] it follows that a Gaussian is the proper probability distribution
for a quantity which is only characterized by its first and second momentum,
as it often occurs in physical experiments. By

G (φ,Φ) =
1

|2πΦ|1/2 exp

(
−1

2
φ†Φ−1φ

)
. (2.2)

we denote a multivariate Gaussian probability distribution function of a
continuous field φ. |Φ| denotes the determinant and φ† the transposed and
complex conjugated φ. The covariance Φ = 〈φφ†〉G (φ,Φ) can be regarded as a
function of two argumentsΦ(x, y) = 〈φ(x)φ(y)†〉 or as a matrix-like operator
Φxy = 〈φxφ†y〉, where we introduced the index notations for functions ψx =
ψ(x). Under the assumptions of a statistical stationary or homogeneous
process over a u-dimensional space

Φxy = C(x− y) (2.3)

one can show that the covariance Φ becomes diagonal in Fourier space,

Φkq = (2π)uδ(k − q)Pφ(k) . (2.4)

We use k to denote frequencies in the Fourier convention fk =
∫
dt eiktft and

ft =
∫

dk
2π
fke
−ikt. In eq. (2.4) we have also introduced the power spectrum

P (k) which is identical to the Fourier transform of C(x − y). In order to
apply any operator to a field we have to specify the scalar product, which
we take as

φ†ψ =

∫

S
dxφ (x)ψ (x) ∀φ, ψ : S → R . (2.5)

Stationary Gaussian processes with zero mean are fully determined by their
power spectrum. Here we aim at characterizing non-stationary processes,
for which eq. (2.3) and eq. (2.4) do not hold. We construct a non-stationary
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process x(t) by eq. (2.1), in which a fixed time evolution of ω(t) and γ(t)
imprints non-stationary correlation structures onto x(t) for a set of noise
ξ(t) realizations. The noise realizations ξ(t) as well as the characteristics of
ω(t) and γ(t) of a model class are themselves assumed to be realizations of
stationary processes. Nevertheless, x(t) is non-stationary for fixed ω(t) and
γ(t).

2.2.2. Signal inference

Informative physical experiments provide data from which an unknown sig-
nal of interest can be inferred. Since there might be infinitely many possible
signal field configurations leading to the same data set, there is no exact so-
lution to this inference problem. Consequently, we have to use probabilistic
data analysis methods to obtain the most plausible signal field including its
uncertainty.

Given a set of data d, the posterior probability distribution P(s|d) de-
scribes how probable the signal s is given the observed data d. This posterior
can be calculated according to Bayes’ theorem,

P(s|d) =
P(d|s)P (s)

P (d)
, (2.6)

which is the quotient of the product of the likelihood P (d|s) and the signal
prior P(s) divided by the evidence P(d). The likelihood describes how
likely it is to measure the observed data set d given a signal field s. It
covers all processes that are relevant for the measurement of d. The prior
characterizes all a-priori knowledge and therefore does not depend on the
data itself. As we are interested to find the most plausible signal field
configuration given the observed d, we use the maximum a posteriori ansatz
(MAP). The outcome of the MAP- Ansatz states the most probable field
configuration

m = argmax
s
{P(s | d)} . (2.7)

In the following sections we will now discuss the likelihood and the prior of
the evolution of a stochastic system, which is described by eq. (2.1).

2.3. Model Training

2.3.1. The likelihood of a stochastic differential equation

As outlined, we use an oscillator model with evolving frequency ω and
damping factor γ to characterize a class of systems. To ensure strict pos-
itive definiteness of the time dependent frequency we parametrize it as
ω2(t) = ω2

0e
β(t) in eq. (2.1). Here we choose time units such that ω0 = 1.
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βt γt
s

R(s)

xt

Figure 2.1.: Hierarchical Bayes model for the key quantities. The two fields
βt and γt form together a signal s, defining the response R(s),
with which the system reacts to the driving white noise ξ. The
application of R(s) on white Gaussian noise solves eq. (2.1) and
consequently yields to its solution x = R(s) ξ. From sufficient
training data vectors x a plausible signal should be inferred in
the learning phase.

Consequently, the actual fluctuations of the frequency are characterized by
β (t).

Figure 2.1 shows a Bayesian network to infer the time dependent param-
eters βt and γt from the solution xt of a stochastic differential equation as
in eq. (2.1). The inferred vector s = (βt, γt) will serve as the characteris-
tic signature of a system class in section 2.4. To construct this Bayesian
inference network we note that the linearity of eq. (2.1) implies

x = Rξ , (2.8)

and in scalar product notation implying

xt =

∫
dt′Rtt′ξ

′
t , (2.9)

where we have introduced the response operator Rtt′ = R(t, t′). The force
ξt to the oscillator is assumed to be white Gaussian noise, i.e. P (ξ|Ξ) =
G (ξ,Ξ), with a given diagonal and constant covariance Ξtt′ = δtt′Ξ̃ and the
amplitude Ξ̃. Given that the response operator R and its inverse R−1 exist,
eq. (2.9) can be rewritten as

∫
dt′R−1

tt′ xt = ξt , (2.10)

which allows us to identify the functional form of the response operator Rtt′

by comparing eq. (2.10) with eq. (2.1). Hence Rtt′ is a reformulation of the



18 2. Dynamic System Classifier

differentials1 in eq. (2.1) and is defined as

(
R

(s)
tt’

)−1

:= δ
(2)
tt′ − γ(t)δ

(1)
tt′ + eβ(t)δtt′ . (2.11)

As already used in eq. (2.11) we will from now on refer to the response
operator as R(s) to indicate that it depends on the signal s, which is char-
acteristic for a system class. With eq. (2.9) the likelihood P(x|s) becomes

P(x|s) =

∫
Dξ δ(x−R(s) ξ) G (ξ,Ξ)

= G
(
x,R(s)†ΞR(s)

)
, (2.12)

where we have marginalized over all possible realizations of the driving force
ξt. We see that xt is modeled as a Gaussian random field with a temporarily

structured covarianceX = R(s)†ΞR(s). Thus,X is not of the from given by
eq. (2.3) and eq. (2.4), respectively and specified a non-stationary process,
which is characterized by s.

2.3.2. Prior assumptions

As the likelihood in eq. (2.12) only describes how βt and γt are transformed
into xt we need to model our prior knowledge about the time evolution of
these parameters. To do so we briefly outline a hierarchical Bayesian prior
ansatz, which leads to the so called critical filter [56, 57]. Figure 2.2 shows
this hierarchical parameter model, which will be introduced in the following.
We assume a priori that βt as well as the γt parameters obey multivariate
Gaussian distributions,

P(βt|Ω) = G (βt,Ω) , (2.13)

P(γt|Γ) = G (γt,Γ) . (2.14)

The covariances Ω and Γ describe the strength of the temporal correlations
of β and γ, respectively and thus the smoothness of their fluctuations. A
convenient parametrization of the covariances can be found, if our knowl-
edge of the parameters does a priori not single out any instance; i.e. cor-

1The defining property of a Dirac delta distribution δ(x) is

∫ ∞

−∞
f(t)δ(t− a)dt ≡

∫ ∞

−∞
f(t)δtadt = f(a) .

Its derivatives are given by

∫
f(t)δ(n)(t)dt ≡ −

∫
∂f(t)

∂t
δ(n−1)(t)dt .
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αβ, qβ σβ

τβ

βt

Figure 2.2.: The spectral parameters αβ and qβ define together with the
smoothness enforcing parameter σβ the prior for the shape of
the spectral parameters τβ(k). Hence the correlation structure
of βt is described by τk.

relations only depend on time intervals. This is equivalent to assume βt
and γt to be statistically stationary. Under this assumption, Γ and Ω are
diagonal in the Fourier space representation, see eq. (2.4).

To keep notations simple, we will only show the calculations for Ω in full
detail since the ones for Γ can be performed analogously. Later we will see
that the priors for βt and γt only differ by hyperprior-parameters.

Under the assumption of statistical stationarity, we choose the following
ansatz for the covariance:

Ω =
∑

k

eτβ(k)Ωk (2.15)

Here τ(k) are spectral parameters, determining the power spectrum Pβ(k)
and Ωk are projection operators onto spectral bands, with approximately
identical power spectrum values. Since the covariances Γ and Ω are un-
known, one has to introduce another prior for them, i.e. a prior for prop-
erly describing the spectral parameters τ(k), for each β and γ. As the
power spectrum’s shape might span over several orders of magnitude, this
requires a logarithmically uniform prior for each element of the power spec-
trum and a uniform prior Pun for each spectral parameter τk, respectively.
In accordance with [56, 58] we therefore initially assume inverse-Gamma
distributions for the individual elements

Pun (eτk |αk, qk) =
qαk−1
k

Γ (αk − 1)
e−(αkτk+qke

−τk) (2.16)



20 2. Dynamic System Classifier

and hence

Pun (τk|αk, qk) =
qαk−1
k

Γ (αk − 1)

× e−(αkτk+qke
−τk)

∣∣∣∣
deτk

dτk

∣∣∣∣ (2.17)

where αk and qk denote shape and scale parameters for the spectral hyper-
priors, and Γ the Gamma function. If αk → 1 and qk → 0 ∀k, the inverse
Gamma distribution becomes asymptotically flat on a logarithmic scale. In
practice, qk ≥ 0 provide lower limits for the power spectra, which lead to
a more stable inference algorithm. Note that the variations of αk and qk
with k can be used to model specific spectral prior knowledge. However,
in the absence of such knowledge, these will get the same values αk = α,
qk = q = const..

Until now we have only addressed each individual element of the power
spectrum separately, but empirically we know that many power spectra do
not exhibit strong fluctuations on neighboring Fourier scales. It is therefore
natural for the spectrum to request some sort of smoothness. To enforce this
behavior, we further incorporate a spectral smoothness prior Psm [56, 57].
This spectral smoothness prior is based on the second logarithmic derivative
of the spectral parameters τ . Up to a normalization constant Psm can be
written as

Psm (τ |σ) ∝ exp

(
−1

2
τ †T τ

)
(2.18)

with

τ †T τ =

∫
d (log k)

1

σ2

(
∂2τk

∂ (log k)2

)2

, (2.19)

which is punishing deviations from any power-law behavior of the power
spectrum. The strength of the punishment is encoded by σ. In total, the
resulting prior for the spectral parameters τ is given by the product of the
priors discussed above

P (τ |α, q, σ) ∝ Psm (τ |σ)
∏

k

Pun (τk|αk, qk) , (2.20)

with its three given quantities αk, qk and σ.

With this hierarchical Bayesian model we are able to state the posterior:

P(s, τβ, τγ|x) =
P(x|s)
P(x)

×
∏

i∈{β,γ}
P(i|τi)P(τi|αi, qi, σi) (2.21)
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Now we are seeking for the most probable parameter configurations of βt
and γt given the training data xt. Due to the complexity of the posterior,
given by eq. (2.21), it is virtually impossible to solve this problem analyti-
cally. Consequently we use the numerical feasible MAP-ansatz. Rather than
maximizing the posterior it is convenient to define the negative logarithm
of the posterior P (s, τβ, τγ|x) as the information Hamiltonian

H (s, τβ, τγ|x) = − logP (s, τβ, τγ|x)

= log
(

det
[
R(s)

])

+
1

2
x†t

(
R(s)−1

)†
Ξ−1R(s)−1

xt

+
1

2
log (det [Ω]) +

1

2
β†Ω−1β

+
1

2
log (det [Γ]) +

1

2
γ†tΓ

−1γt

+
∑

i∈{β, γt}
(αi − 1)† τ + q†i e

−τi +
1

2
τ †i T τi ,

+H0 ,

(2.22)

where we have absorbed all terms constant in βt, γt, τβ, and τγ into H0.
By this reformulation the MAP solution is now seeking for the minimum
of eq. (2.22). This minimum may be found by taking the derivative of the
information Hamiltonian with respect to βt, γt, τγ, and τβ, respectively and
equating them with zero. This yields four implicit equations. The minimum
we are seeking for may be found by an iterative downhill algorithm such as
the steepest descent. To better understand the MAP solution we focus on
the resulting filtering formulas of this ansatz. The ones for the frequency
and damping factor evolution read

∂H

∂β

∣∣∣∣∣
β=βmin

= Tr

[
R(s)−1 ∂R(s)

∂β

]

+
1

2
x†t

(
∂R(s)−1

∂β

)†
Ξ−1R(s)−1

xt

+
1

2
x†
(
R(s)−1

)†
Ξ−1∂R

(s)−1

∂β
xt

+ Ω−1βt
!

= 0

(2.23)
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and

∂H

∂γt

∣∣∣∣∣
γt=γmin

= Tr

[
R(s)−1 ∂R(s)

∂γt

]

+
1

2
x†t

(
∂R(s)−1

∂γt

)†
Ξ−1R(s)−1

xt

+
1

2
x†
(
R(s)−1

)†
Ξ−1∂R

(s)−1

∂γt
xt

+ Γ−1γt
!

= 0 .

(2.24)

While the filter formula for the power spectra of βt is

∂H

∂τβ

!
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Tr
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βtβ

†
tΩ
−1
k

])
k
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(
Tr
[
ΩkΩ

−1
k

])
k

+ T τβ
(2.25)

and the one for γt is

∂H

∂τγ

!
= 0→ eτ =

qγ + 1
2

(
Tr
[
γtγ
†
tΓ
−1
k

])
k

(αγ − 1) + 1
2

(
Tr
[
ΓkΓ

−1
k

])
k

+ T τγ
. (2.26)

The filtering formulas in eq. (2.25) and eq. (2.26) have previously been
derived [57, 59]. Due to the construction of the hierarchical Bayesian pa-
rameter model the covariance structures of βt and γt get also inferred from
xt. The spectral shapes of Ω and Γ are only constrained by eq. (2.20).

In total, the model learning phase leads to a restriction of possible signals
to the set

S = {s1, s2, . . . sn} , (2.27)

which is finite in case of a finite number of considered system classes.

2.4. Model selection

So far we only faced the inverse problem to reconstruct time dependent
parameters, such as the frequency βt and the damping factor γt including
their their power spectra from an oscillator driven by a stochastic force.
From now on we will extend our model to a measurement scenario, involving
a measurement response Robs and additive Gaussian measurement noise
n←↩ G (n,N ), with related covariance N . Consequently the data model is
now given by

d = Robsx+ n = RobsR
(s) ξ + n . (2.28)
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where R(s), including s = (βt, γt), serves as an abstract operator to classify,
identify and distinguish between different physical systems s1, s2, . . . . Hence
each s acquires its R(s) from training data of s, according to the previously
described algorithm. To state the probability of a model si in the set of
possible signals S given the observed data we again use Bayes’ theorem

P (si|S ,d) =
P (d|S , si)P (si|S )

P (d)
. (2.29)

The involved likelihood turns out to be

P(d|si) =

∫
DxP(d|x)P(x|si)

=

∫
Dx G (d−Robsx,N)

× G (x,R(s)† ΞR(s))

∝ 1√
|D|

exp

(
1

2
j†Dj

)
(2.30)

with
j = R(s)†R†obsN

−1d (2.31)

and
D−1 = R(s)†R†obsN

−1RobsR
(s) +Ξ−1. (2.32)

With this equation one is able to calculate the model posterior, eq. (2.29),
and to state the most propable model si.

Figure 2.3 shows an overview of the suggested hierarchical Bayesian deci-
sion algorithm. Given the hyper parameters, the algorithm first learns the
frequency βt and damping factor γt evolution from each training data set.
The logarithmic power spectrum τ for βt as well as for γt can be regarded
as a set of nuisance parameters that get reconstructed from the data to
properly infer the parameters of interest βt and γt. After si = (βt, γt) was
learned for a class i, it serves as an abstract characteristic for this model.
With the knowledge of si the algorithm is able to state how probable the
previously learned model i would have caused the observed data d. This
then serves as a proxy probability for the system classification.

2.5. Dynamic system classifier algorithm

Inferring time dependent fields, such as a time-wise varying frequency βt
and damping factor γt, from a stochastically driven oscillator is a non-
trivial task. The reliability of the dynamic system classifier (DSC) algorithm
strongly depends on the successful and proper reconstruction of βt and γt
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Figure 2.3.: Complete Bayesian network and algorithm. The solid arrows
show graphical steps by the probabilistic dependencies. The top
four boxes indicate the hyper parameters αβ/γ, qβ/γ, and σβ/ω.
Below them follow the spectral parameters τβ/γ and the tuple of
the frequency βt and the damping factor γt, which form together
the signal s. Each system class i is thereby characterized by its
si. Beneath that comes the response operator R(s), the training
data xt, and finally the observed data, according to eq. (2.28).
The dashed lines on the left hand side of the figure display the
workflow of the algorithm to learn the time evolution of βt and
γt, including their power spectra from the training data set. On
the right hand side the dotted lines display the workflow of the
algorithm to state which of the previously learned training data
set explains the observed data d best.
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as they serve as classifiers. To show the principal capabilities of our sug-
gested algorithm we will first discuss the algorithm to infer time-dependent
parameters of a dynamic system driven by a stochastic force as described
in section 2.2. Subsequently, we use the inferred parameters to test the
performance of the model selection algorithm as described in section 2.4.

2.5.1. Model learning algorithm

Numerical application

The information Hamiltonian, eq. (2.22), is a scalar quantity defined over
the configuration space of possible model parameter evolutions. In addition
to the parameters βt and γt, the two spectral parameters τβ and τγ also
need to get inferred from a single system trajectory x(t).

Hence, the algorithm faces an underdetermined inverse problem, which
is also reflected in the possibility of local-minima of the non-convex Hamil-
tonian. Ultimately the complexity of this inverse problem goes back to the
generally highly non-linear entanglement between the two parameters βt
and γt. To overcome this problem we strongly advise to analyze as many
realizations (x = x1, x2, x3, . . . xl) of the same system as possible. In sec-
tion 2.5.1 we will discuss in more detail how many data realizations are
necessary for an appropriate reconstruction of the parameters. The train-
ing part of the DSC-algorithm is based on an iterative optimization scheme,
where certain parts of the problem get alternatively optimized instead of
the whole problem simultaneously. To some degree the optimization results
are sensitive to the starting values due to the non-convexity of the consid-
ered Hamiltonian. However, remaining degeneracies between βt and γt after
exploiting sufficient large training data sets are irrelevant, as these do not
strongly discriminate between the members of the training set of a given
system class.
Based on our experience with variations of the DSC-algorithm we propose
the following scheme:

1. Initialise the algorithm with naive values, such as βt = γt = 0 and
τk = const.∀k.

2. Infer βt and γt via an iterative downhill algorithm, such as steepest
descent using the information Hamiltonian eq. (2.22), as well as its
gradient eq. (2.23) and eq. (2.24). A more sophisticated minimization
scheme, such as non-linear conjugate gradient, is conceivable to speed
up the algorithm but it would require the full Hessian of eq. (2.22).
Multiple test runs have shown that it is sufficient to evaluate a sim-
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plified Hamiltonian
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log (det [Ω]) +

1

2
β†tΩ

−1βt

+
1

2
log (det [Γ]) +

1

2
γ†tΓ

−1γt ,

and its corresponding gradient. The simplified Hamiltonian neglects

in particular log
(

det
[
R(s)

])
as it appears in eq. (2.22). In contrast

to the diagonal covariance matrixes Ω and Γ the evaluation of the
determinant of R(s) is computationally time consuming due to its
complex structure. Numerical experiments with and without detR(s)

did not show a significant importance of this term.

3. Use eq. (2.25) and eq. (2.26), respectively, to update the priors Ω and
Γ.

4. Repeat step 2 and 3 until convergence. This iterative scheme will take
a few cycles until the algorithm has reached its desired convergence
level.

The spaces of possible parameter configurations of βt and γt are huge.
Consequently, it seems impossible to judge whether the algorithm has con-
verged into the desired global minimum or some local minimum. It might
also happen that the reconstructed fields display features which are origi-
nally caused by the exciting force ξ and not by the frequency and damping
factor itself. These problems can be reduced by the above demonstrated
joint analysis of multiple data realizations, as we see in the following, where
we discuss the numerical tests of the optimization scheme.

Numerical tests

To test the performance of the DSC algorithm we applied it to simulated
but realistic training data sets (see fig. 2.4). This data might represent
physical systems whose frequency and damping factor are changing over
time. For example, in astrophysics one could expect such a behavior from
a gravitational wave burst caused by a supernova [11, 60].

In the following tests we used a regular grid with 104 pixels and the sig-
nal inference library Nifty [61] to implement the algorithm. Figure 2.4
shows six realizations of the same simulated system class. This means that
the wave realizations, calculated according to eq. (2.9) with Ξ̃ = 5, share
the same βt and γt. Note that the waves displayed in fig. 2.4 are not just
rescaled versions of the same wave template. For the described MAP re-
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Figure 2.4.: Six wave realizations according to eq. (2.9) for the same model
class, i.e. all xt share the same γt and βt. The amplifying force
ξ was drawn from P (ξ|Ξ) = G (ξ,Ξ), with a given constant
covariance Ξ̃ = 5.

construction we used α = 1, q = 10−30, and σ = 2 for both γt and βt. In
fig. 2.5 the inferred parameters, βrec and γrec including their residuals, as
well as the original parameter evolution, βt and γt, are shown. Due to the
ahead mentioned degeneracy of the inverse problem we expected that a few
wave realizations are needed in order to get reliable reconstructions of the
parameters. This is clearly visible in the outcome shown in fig. 2.5, as the
residuals between original and reconstructed parameters are largest if one
only uses two timelines. Consequently, one needs multiple wave realizations
from a system class to get a proper reconstruction of the classe’s parameters
βt and γt. However, these two parameters are not intended to describe the
exact frequency and damping factor evolution of the system. They only
serve as an abstract fingerprint of a system class. In case the wave real-
izations x(t) of a system class do not provide sufficient information, i.e.
have only very small amplitudes, the inference problem becomes more and
more degenerated. In this case the reconstructed βrec and γrec do not repro-
duce precisely the original ones used in our test to generate the simulated
waves. Nonetheless this degeneracy does not destroy the performance of
the DSC-algorithm because what counts for the model decision algorithm
is the ability of the two parameters to represent the covariance structure
for a model class and not whether the parameters are as those generating
the timelines of the model classes. In fig. 2.6 the inferred power spectrum
of βt is shown together with the original one. The power spectrum at small
|k|, which corresponds to large-scale correlations, is well reconstructed. In
contrast, the power spectrum at large |k| is underestimated, which may
have various reasons. Small short term variations in γt are nearly indis-
tinguishable from random noise variations in ξ. To better reconstruct the
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Figure 2.5.: Panel (a) shows the original βt as well as its reconstruction
for different numbers of data realizations xt ranging from two
(x1,2) up to six (x1,2,3,4,5,6). The residuals between the original
βt and their reconstructions are also shown. Panel (b) shows
the same for γt and its reconstructions. One needs at least
three xt to get a proper reconstruction of the fields. Otherwise,
the reconstruction shows too many features imprinted by the
driving white noise.
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Figure 2.7.: In panel (a) the training data set of s2 with its reconstructed
parameters, ωrec and γrec is shown. Panel (b) shows the same
for s3.

small-scale correlation function many more realizations of the system class
would be needed.

In summary we conclude that the presented algorithm can reproduce time
dependent parameters from a stochastic differential equation. In the next
section we will use the inferred parameters, βrec and γrec to discriminate
between different models si.

2.5.2. Performance of model selection algorithm

To show that βt and γt can indeed serve as an abstract fingerprint of classes
we trained our algorithm with three different training sets, generated from
three different models, specified by the parameters s1, s2, and s3. Each
of them had different βt and γt, and for each model we used three wave
realizations using the si to train the classificator. By s1 we refer to the
training data set in fig. 2.4, by s2 and s3 we refer to the training data sets
shown in fig. 2.7. It is a trivial task to distinguish between the models s1,2,3,
if the means of βt and γt differ by several orders of magnitude. To avoid
such trivial situations, all βt’s and γt’s were drawn from the same power
spectrum

P (k) =
42

(1 + |k|)12 . (2.33)

In a second step we drew from each si a fourth realization, but now added
noise according to eq. (2.28). The additive noise n is white and Gaussian, i.e
n←↩ G (n, σnoise). σnoise was tuned to a specific signal-to-noise ratio (SNR)
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which we define as

SNR =
σ2
x(t)

σ2
noise

. (2.34)

Thereby σx(t) refers to the variance of the wave realizations over the dis-
played period. For the observational responseRobs, see eq. (2.28) we assume
the unity operator Robs(t, t

′) = δtt′ . fig. 2.8 shows two different SNR scenar-
ios for one our waves generated from s1. To demonstrate the performance
of the model selection algorithm we choose P (si|S ) = 1

3
for all si, i.e. we

did not prefer any model.
In Table 2.1 we give the differences of the log-likelihood

∆ij = surprise of model i− surprise of correct model j

= H (d|si)−H (d|sj)
= − logP(d|si) + logP(d|sj) (2.35)

with i, j ∈ {1, 2, 3}, for various SNR. Note that the information Hamilto-
nian, the negative log probability, can also be considered as the amount of
surprise. The larger the value ∆ij is, the less plausible an assumed class i
is compared to the correct class j. It would be as more surprising from the
perspective of the data that the assumed model i is correct compared to
the correct j. Up to a SNR= 0.01 all ∆ij ≥ 0 and all ∆ii = 0, which means
that all datasets are correctly classified. If the SNR is worse than 0.01 the
algorithm starts to give misleading classification results, however, only on
the 1σ level, and therefore not with convincing significance. As one intu-
itively expects the algorithm performs better in case of high SNR, because
the absolute differences between the likelihoods are the largest within this
regime.

2.6. Conclusion

We have established the dynamic system classifier (DSC) algorithm for
model selection between dynamic systems. The algorithm consists of two
steps. First, it analyzes training data from system classes to construct
abstract classifying information for each model class. For distinguishing os-
cillating systems, a natural basis is the systems’ time dependent frequency
and damping factor evolution. In the second step the algorithm confronts
data with the previously learned models and states the probability, which of
the learned models s explains the data best. With these capabilities, DSC is
a powerful tool to analyze stochastic and dynamically evolving systems. It
can abstract a set of sample timelines into characteristic coefficients which
encode a non-stationary correlation structure of the signals of the class.

The theoretical foundations of the first step of DSC is based on a hierar-
chical Bayesian parameter model within the framework of information field
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Figure 2.8.: Panel (a), (b), and (c) show data realizations, eq. (2.28) of s1.
The SNR was tuned to 10, 0.1 and 0.001, respectively.
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SNR=0.001 s1 assumed s2 assumed s3 assumed
s1 correct 0 5.10 -0.82
s2 correct 7.17 0 7.62
s3 correct 1.10 0.65 0
SNR=.01
s1 correct 0 45.6 5.14
s2 correct 39.4 0 39.6
s3 correct 6.02 36.5 0
SNR=0.1
s1 correct 0 374 66.4
s2 correct 395 0 353
s3 correct 60.4 209 0
SNR=10
s1 correct 0 36100 11200
s2 correct 10500 0 8720
s3 correct 311 631 0

Table 2.1.: The four tables above show the performance of the model se-
lection algorithm, for different the signal-to-noise ratio (SNR)
of the analyzed data. The printed values denote the relative
differences of the log-likelihood according to eq. (2.35).

theory. The model needs a priori very few assumptions that account for
the statistics and correlations of the two components, βt and γt. Both of
them are assumed to obey multivariate Gaussian statistics, whose temporal
covariance is described by a power spectrum. The power spectra of both
parameter fields are expected to be unknown a priori. Therefore, they are
also reconstructed from the data, by using the critical filter [56]. This ap-
proach is based on the introduction of hyper priors as well as a spectral
smoothness enforcing prior [57]. The strength of our proposed and tested
DSC algorithm is that it only depends on very few parameters, which can
all be motivated a priori, and all of them are equally important for the
inference.

The classification ability of the DSC-algorithm has successfully been demon-
strated in realistic numerical tests, which showed that one needs at least
three data realization of each system class in order to be able to sufficiently
characterize the frequency and the damping factor evolution. This is due
to the high degeneracy of our problem, as we are trying to reconstruct
two parameters and their correlation structures from a few timelines. After
learning a number of system classes in terms of their characteristic frequency
and damping factor evolvements, the algorithm properly classified realistic
measurement data. Down to a SNR = 0.01 the algorithm determined for all
three test models the correct underlying system class with high significance.
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The DSC-algorithm should be applicable to a wide range of inference
problems. Concrete examples may be found within in the field of gravita-
tional wave physics.





3. Denoising, Deconvolving and
Decomposing
multi-dimensional Photon
Observations

This chapter as well as appendix A are used as a publication submitted to
Astronomy & Astrophysics (Pumpe et al., [62]).
I am the principal investigator of the research described in the following
chapter. My contributions include the development of the novel idea, work-
ing out the algorithm, implementing and testing it. Further I wrote the
chapter. Martin Reinecke helped to improve the numerical stability and
scalability of the algorithm. Torsten Enßlin also fulfilled the role of a prin-
cipal investigator as he is my PhD supervisor. All authors read, commented,
and approved the final manuscript.

3.1. Introduction

In all data sets of physical experiments, different physical phenomena su-
perimpose each other. This is particularly true for astrophysical sky ob-
servations. Point sources, compact objects, diffuse emission, background
radiation and other sky structures imprint on the data. Furthermore multi-
ple instrumental distortions such as an imperfect instrument response and
noise complicate the data interpretation. In particular the data of high
energy photon and particle telescopes are subject to Poissonian shot noise
which turns any smooth emission region into a granular image in the de-
tector plane. This paper aims to give reliable estimates of the actual sky
components with the help of a rigorous mathematical and statistical treat-
ment.

Individual photon counts are subject to Poissonian shot noise, whose am-
plitude depends on the count rate itself. Thus, the signal-to-noise ratio
(SNR) drops for low count rates. This limits the detection and discrimina-
tion of faint sources and hence poses a challenging ill-posed inverse problem.
Besides, all telescopes are inexact in the sense that the exposure is inhomo-
geneous across their field of view. On top of that, the instrument response
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function may be non-linear and only known up to certain accuracy. Espe-
cially point sources on the sky are smeared out in the data plane by the
instrument’s point spread function, which might let them appear as ex-
tended objects in the data plane.

Supplementary to these artifacts present in the data, the observed pho-
ton flux is a superposition of multiple morphologically different emission
structures that are best decomposed into their original components to bet-
ter understand their causes. Typical morphologically different emitters in
astrophysics can be characterised as diffuse, compact, and point sources.
Diffuse objects illuminate the sky over extended areas and show distinct
spatial and spectrally extended structures. Point sources, on the other
hand, are local features that do not show any spatial structure by definition.
They typically have well structured broad band energy spectra. Interme-
diate sized objects, in between the extremes of point sources and diffuse
emission regions, will not be considered here as a separate morphological
class. They should either be regarded as part of the diffuse or the point like
flux. Furthermore, in addition to the observed photon counts coming from
the sky, the recorded counts might contain events due to background radia-
tion, such as cosmic rays and other unwanted sources. If its morphological
structure is significantly different from that caused by diffuse and/or point
sources, one may be able to distinguish it from sky emission. Overall, this
leads to the obvious question how to denoise, deconvolve and decompose
the observed data set into its original emission components. This is a hard,
ill-posed problem, as there are obviously multiple ways to split the observed
counts into the three components discussed here, diffuse, point-source and
background radiation flux.

The most popular tool to extract point sources from diffuse emission
regions is SExtractor [63], which provides a catalogue of point sources. Fur-
thermore, the CLEAN algorithm [64], widely used in radio interferometery,
assumes that the whole sky is composed of point sources, which leads to
inferior reconstructions of the diffuse and background emission. Extensions
of CLEAN to model the sky with Gaussian blobs to account for diffuse
emission structures have improved on this [65, 66].

To treat the outlined inference problem at its roots, we investigate the
relation between data and the signals. In this context the signals of interest
are the different source contributions. The chosen Bayesian approach allows
in a natural way to incorporate a valid data model and a priori knowledge
about the source structures to break the degeneracy between the different
source contributions. However, this comes at the price of higher computa-
tional costs and more complex algorithms.
First attempts in this direction have been pursued by a maximum likelihood
analysis [67], followed by maximum entropy analysis [68] and χ2-methods
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[69] which were applied to various astrophysical photon count data sets,
such as INTEGRAL/SPI [70], COMPTEL [71] etc.. These methods have in
common that they only reconstruct one single component. Within the field
of sparse regularisation multiple techniques exploiting various waveforms
have been proven to successfully denoise and deconvolve different types of
data [72–81].

Disregarding the Poissonian statistics of photon counts, a generic method
to denoise, deconvolve and decompose simulated radio data assuming Gaus-
sian noise statistics has been developed [82, 83]. Further in the regime of
Gaussian noise statistics, Giovannelli & Coulais [84] developed an algorithm
to decompose point and extended sources based on the minimisation of least
squares. The algorithm PowellSnakes I/II [85, 86] was successfully applied
on the Planck sky data [87]. It is capable of analysing multi-frequency data
and to detect point-like sources within diffuse emission regions.
A Bayesian approach close to ours has been developed to separate the back-
ground signal from the sky sources in the ROSAT data [88]. This method
is based on a two-component mixture model which infers background and
diffuse emission concurrently.

This work builds on the D3PO algorithm [89], which was successfully ap-
plied to the FERMI LAT data [90]. Here we extend D3PO towards more
generic data sets based on photon counts. D3PO denoises, deconvolves and
decomposes photon counts into two signals, a point-like and a diffuse one,
while it simultaneously reconstructs the spatial power spectrum of the lat-
ter. This is done through a hierarchical parameter model incorporating
prior knowledge. Here we present an advancement that aims to break the
previously assumed statistical isotropy of the reconstructed signal fields and
further has the capability to decompose the denoised and deconvolved data
set into more than two components, i.e. additional backgrounds. As in
D3PO, we derive the algorithm within the framework of information field
theory (IFT, [32]), which allows in a natural way the incorporation of priors
in the form of a hierarchical prior network. This prior knowledge is crucial
as it is used to discriminate between the morphologically different sources
via their individual statistical properties. While D3PO could reconstruct
the diffuse component depending purely on its location, we show how to
incorporate further information present in the data (such as the energy of
the photons) to get reconstructions that do not only depend on the location
of the reconstruction but also on its energy.

All fluxes, be they diffuse, point-like or background, are modelled indi-
vidually as signal fields. A field is a continuous quantity defined over a
continuous space. A space here is the domain of one or several manifolds or
sub-domains. For example the sky emissivity is regarded to be a field living
over the product of the two dimensional angular manifold of the celestial
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Figure 3.1.: Showcase for the D4PO algorithm to denoise, deconvolve, and
decompose multidimensional photon observations. This is a
simplified test scenario, which disregards a potential back-
ground flux and has only a unit response function (a perfect
PSF). Nevertheless it demonstrates the potential capabilities of
D4PO, as the reconstructed fluxes are in good agreement with
their original ones. All fields are living over a regular grid with
350× 350 pixels.

sphere times a one-dimensional spectral energy manifold. Diffuse contin-
uum emission is a smooth function of both sky position and photon energy.
Within each sub-manifold of a field space we assume statistical homogeneity
and isotropy separately for the field. This joint field correlation over the
composed space is assumed to be a direct product of the sub-domain cor-
relations. This provides the novel possibility to reconstruct fields which do
not only depend on one parameter (in this case, location), but on multiple
parameters, such as location and energy or energy and time.

Figure 3.1 illustrates exactly such a reconstruction scenario, the denois-
ing, deconvolving, and decomposition of an exemplary data set generated
by an emission that consists of diffuse and point-like fluxes, each living
over two different sub-domains. The correlation length of the diffuse flux in
the spatial sub-domain is significantly longer compared to the correlation
length of the point sources which only illuminate the sky at distinct loca-
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tions. In contrast are the correlations in the energy sub domain, where as
point sources shine over a broader energy range compared to diffuse emis-
sion.
The numerical implementation of the algorithm is done in NIFTy3 [61, 91].
This allows us to set up the algorithm in a rather abstract way by being inde-
pendent of a concrete data set, discretisation and number of fields. Thanks
to the abstractness and the flexibility of NIFTy3, reconstructions such as
those shown in fig. 3.1 can easily be extended to different domains (i.e. the
sphere) and to more source components, i.e. additional backgrounds.

The structure of this work is as follows: In section 3.2 we give a detailed
derivation of the outlined algorithm, with an in-depth discussion of the
incorporated models and priors. Section 3.3 describes different approaches
to calculate the derived posterior. In section 3.4 we discuss numerically
efficient implementations of the algorithm. Its performance is demonstrated
in section 3.5 by its application to a realistic simulated astrophysical data
set. Finally we conclude in section 3.6.

3.2. Inference from photon observation

3.2.1. Signal inference

Our goal is to image the high energy sky based on photon count data as it
is provided by the astroparticle physics instruments like Fermi [92], Integral
[70], Comptel [71], CTA [93], and others. The sky emissivity is not only a
function of the sky position, but also of photon energy, and it can be thought
of as being generated by a number of spectral and morphologically different
sources. This work develops the algorithm D4PO that is able to map out the
sky emissivity as a function of multiple dimensions, while it simultaneously
decomposes it into multiple morphologically different components, such as
point sources and diffuse emission. D4PO takes into account the Poisson
nature of photon counts as well as the instrument’s response function for
each individual component.

Due to experimental constraints and practical limitations (such as lim-
ited observation time, limited energy range, and limited spatial and spectral
resolution), the obtained data set of any photon count experiment cannot
capture all degrees of freedom of the underlying photon flux. As a physical
photon flux is a continuous scalar field that can vary with respect to various
parameters, such as time, location and energy, we let all signals of interest
live in a continuous space over some domain Ω. Hence we are facing an
underdetermined inference problem as there are infinitely many signal field
configurations leading to the same finite data set. Consequently we need
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to use probabilistic data analysis methods, which do not necessarily pro-
vide the physically correct underlying signal field configuration but provide
expectations and remaining uncertainties of the signal field.

In this context we are investigating the a posteriori probability distribu-
tion P (ϕ|d), which states how likely a potential signal ϕ is given the data
set d. This is provided by using Bayes’ theorem

P (ϕ|d) =
P (d|ϕ)P (ϕ)

P (d)
, (3.1)

which is the quotient of the product of the likelihood P (d|ϕ) and the signal
prior P (ϕ) divided by the evidence P (d). The likelihood describes how
likely it was to observe the measured data set d given a signal field ϕ. It
should cover all processes that are relevant for the measurement. The prior
describes all a priori knowledge on ϕ and must therefore not depend on d
itself. Usually we are trying to get the a posteriori mean estimate m of
the signal field given the data and its uncertainty covariance D, which are
defined as

m = 〈ϕ〉(ϕ|d) =

∫
DϕϕP (ϕ|d) , and (3.2)

D = 〈(m−ϕ)(m−ϕ)†〉(ϕ|d) , (3.3)

where † denotes adjunction and 〈·〉(ϕ|d) the expectation value with respect
to the posterior probability distribution P (ϕ|d).

In the following sections we will gradually derive the posterior of the
physical flux distribution of multiple superimposed photon fluxes given in a
data set. This will partly follow and build on the existing D3PO algorithm
by [89].

3.2.2. Poissonian likelihood

A typical photon count instrument provides us with a data vector d consist-
ing of integer photon counts that are spatially binned into NPIX pixels. The
photon flux ρ = ρ(x,E), which caused the photon counts, is defined for each
continuous sky position x and energy E. Since high energy astrophysical
spectra cover orders of magnitude in energy, it is convenient to introduce
the logarithmic energy coordinate y = log(E/E0) with some reference en-
ergy E0. The flux is a function of the combined coordinates z = (x, y), such
that ρ(z) = ρ(x, y) and lives over the combined domain Ω = S ⊗ K, the
product of spatial and spectral domains. S = S2 if the full sky is treated,
S = R2 if a patch of the sky is described as in the flat sky approximation,
or S = R as in the mock examples, K = R as logarithmic energies can be
positive and negative. The flux ρ is a superposition of two morphologically
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different signal fields, such as a diffuse and point-like flux. Hence

ρ (z) = ρ (z)diffuse + ρ (z)point-like

= ρ0

(
es(z) + eu(z)

)
(3.4)

where we introduced the dimensionless fields s(z) =: s and u(z) =: u, to
represent the logarithmic diffuse and point-source fluxes over the signal do-
main Ω. Further we introduced the convention that a scalar function is ap-
plied to a field value by values on its natural domain, (f (s)) (z) = f (s (z))
if z ∈ Ω. The constant ρ0 is absorbing the physical dimensions of the pho-
ton flux.

The imaging device observing the celestial photon flux ρ is expected to
measure a number of events λ, informing us about s and u, as well as other
event sources like cosmic ray hits or radioactivity, which we will refer to as
background. This dependence of λ on the sky emissivity ρ can be modelled
via a linear instrument response operator R0 acting on it:

λ = R0ρ+R′0ρ
′

= R (es + eu) +R′eb , (3.5)

with R = R0ρ0 and R′ = R′0ρ
′
0. The response operator R0 describes all

aspects of the measurement processes which relate the sky brightness to
the average photon count. To describe the background counts we further
introduce the background event emissivity ρ′ = ρ′0e

b, the background event
instrument response R′0, as well as the abbreviation R′ = R′0ρ

′
0. The back-

ground field is a function of the two coordinates exposure time t and the
log-energy y, such that z′ = (t, y) and its domain Ω′ = T⊗K with T ∈ R.
In case the sky is scanned once location by location, the observing time in-
terval and the sky may be identified with each other. In our mock examples,
we will assume this for better visualisation of the data. In reality, the sky
is often scanned multiple times, providing redundancies in the data, which
facilitates the separation of sky and background. The background response
R′ describes the instruments sensitivity to background processes, such as
cosmic ray events which produce counts but are not of interest and need to
be filtered out. For each pixel in the detector we get

λi =

∫

Ω

dz Ri(z)
(
es(z) + eu(z)

)
+

∫

Ω′
dz′R′i(z

′)eb(z
′) . (3.6)

The individual events are assumed to follow a Poisson distribution P(di|λi) =
λdii e

−λi/(di!) in each data bin. Hence the likelihood of the data vector
d = (d1, . . . , dNPIX

) given an expected number of photons λ is a product of
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statistically independent Poisson processes,

P (d|λ) =
∏

i

P(di, λi) =
∏

i

1

di!
λdii e

−λi . (3.7)

In total, the likelihood of photon count data given two superimposed mor-
phologically different photon fluxes and some background fluxes is con-
sequently described by eq. (3.6) and eq. (3.7). To simplify and clarify
the notations in the following, we introduce the three component vector
ϕ = (s†,u†, b†)† consisting of the diffuse, point-like and the background
flux. Further we introduce the combined response R = (R,R,R′). This
allows us to state the information Hamiltonian, defined as the negative log-
arithm of P (d|ϕ), compactly as

H(d|ϕ) = − logP (d|ϕ)

= H0 + 1†Reϕ − d† log (Reϕ) , (3.8)

where we absorbed all terms that are constant in ϕ into H0 and introduced
the scalar product of concatenated vectors

ϕ†ϕ =s†s+ u†u+ b†b

=

∫

Ω

dz
(
s (z)s′ (z) + u (z)u′ (z)

)
+

∫

Ω′
dz′ b (z)b′ (z) . (3.9)

1† is a constant data vector being 1 everywhere on the data space.

As an aside it may be noted that the likelihood, eq. (3.7), is also valid for
n signals in data space.

λ =
n∑

i=1

Rie
si(z) . (3.10)

This would only extend ϕ and R while eq. (3.8) stays untouched. For
this reason, D4PO is designed such that it can reconstruct n such fields,
each living over its own space, and all contributing to the expected counts
through an individual response function.

3.2.3. Prior assumptions

As we are seeking to decompose the photon counts into background flux
and two sky flux components we have to introduce priors. Otherwise the
inverse problem would be completely degenerate since it would be possible
to explain the full data set just by the diffuse, just by the point-like signal
alone or even purely by a background or any combination thereof. In order
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to break this degeneracy we introduce priors on the fields s,u, and b.

Hence we will discuss the priors which describe and implicitly define the
typical expected morphology of the three different expected types of fluxes,
the diffuse, point-like and background flux.

The diffuse component

The diffuse photon flux ρ(s) = ρ0e
s is a strictly positive quantity which

might vary over several orders of magnitude. Its morphology may be de-
scribed by cloud-like and smoothly varying patches on the sky. Hence the
diffuse flux shows spatial correlations. Furthermore, we concentrate here
on radiation processes due to cosmic ray interactions in the interstellar
medium like the inverse Compton scattering and π0 production and decay.
These have smooth, often power-law like spectra, which therefore also show
some considerable correlation in the log-energy dimension. According to
the principle of maximum entropy the log-normal model can be regarded
as a minimalistic description of our a priori knowledge on ρ(s) [57, 94]. The
log-normal model has shown to be suitable within various observational [90,
95, 96] and theoretical considerations [33, 89, 97–105]. Hence, we adopt a
multivariate Gaussian distribution as a prior for the logarithmic s:

G(s,S) =
1√

2π|S|
exp

(
−1

2
s†S−1s

)
(3.11)

with a covariance S = 〈ss†〉(s|S). The covariance S describes the strength
of spatial correlation in the energy y = logE/E0 and space domain x of s.
As these two correlations need to be modelled individually, we choose the
following ansatz

Szz′ = X (s)(|x− x′|)Y(s)(|y − y′|) , (3.12)

being a direct product of the two correlation functions, X (s)
x,x′ = X (s) (|x− x′|)

and Y(s)
yy′ = Y(s)(|y − y′|), which only depend on the relative differences in

position x and log-energy y. This is equivalent to the assumption that s
is statistically homogeneous and isotropic on the celestial sphere and sta-
tistically homogeneous in the log-energy space. Statistical homogeneity in
log-energy models the fact that typical high energy astrophysics spectra
exhibit similar features on a log-log perspective. Thanks to the assumed
statistical homogeneity we can find a diagonal representation of X and Y
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in their harmonic bases, such that

X =
∑

l

eτX (l)Pl , and (3.13)

Y =
∑

k

eτY (k)Pk . (3.14)

Here τX (l) and τY(k) are spectral parameters determining the logarithmic
power spectra in the spatial and spectral domain, respectively, with respect
to the chosen harmonic basis denoted by l and k for their corresponding
harmonic spaces. P is a projection operator onto spectral bands, and we
assume a similar level of variance for the fields within each of these bands
separately. The projection operator is given by:

Pk ≡
∑

k′∈bk

Fk′F
†
k′ (3.15)

where Fk′y = eik
′y is the Fourier basis (or spherical harmonic basis if the

subdomain is S2) and bk denotes the set of Fourier modes belonging to the
corresponding Fourier band k and l, respectively. The inverses of the two
covariances are

X−1 =
∑

l

e−τX (l)Pl , (3.16)

Y−1 =
∑

k

e−τY (k)Pk . (3.17)

As the spectral parameters τX and τY are in general unknown a priori
and therefore need to be reconstructed from the same data as the signal we
have to introduce another prior for their covariances.

In the following paragraphs we will introduce two constraints on the spec-
tral parameters τ . These hyperpriors on the prior itself lead to a hierarchi-
cal parameter model. To shorten and clarify notations we will only discuss
τX (l) in full detail; the expressions for τY(k) are analogous.

As a further aside it may be noted that smay not only depend on location
and energy but also on further parameters such as time etc. In this case
the covariance S would become

Szz′ =
∏

i

Xi (|xi − x′i|) with (3.18)

z = (x1, x2, . . . , xn)†

z′ = (x′1, x
′
2, . . . , x

′
n)
†
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leading in consequence to multiple spectral parameters that need to be
inferred from the data if not known a priori. D4PO is also prepared to
handle such cases.

Unknown magnitude of the power spectrum

As the spectral parameters τX (l) might vary over several orders of magni-
tude, this demands for a logarithmically uniform prior for each element of
the power spectrum and in consequence for a uniform prior Pun for each
spectral parameter τX (l). In accordance with [56, 58] and [89] we initially
assume inverse-Gamma distributions for each individual element,

Pun(eτ |αl, ql) =
∏

l

qαl−1
l

Γ(αl − 1)
e−(αlτl+qle

−τl ) (3.19)

and hence,

Pun (τ |αl, ql) =
∏

l

qαl−1
l

Γ (αl − 1)

× e−(αlτl+qle−τl)
∣∣∣∣
deτk

dτl

∣∣∣∣ , (3.20)

where αl and ql denote shape and scale parameters for the spectral hyper-
priors, and Γ the Gamma function. The form of eq. (3.20) shows that for
αl → 1 and ql → 0,∀l > 0, the inverse gamma distribution becomes asymp-
totically flat on a logarithmic scale and therefore for these parameter values
do not provide any constraints on the magnitudes of τ .

Smoothness of power spectrum

Up to now we have only treated each element of the power spectrum sep-
arately, permitting the power to change strongly as a function of scale l
(and k). However, similar spatial (or energetic) scales should exhibit sim-
ilar amounts of variance for most astrophysical emission processes in the
interstellar medium. Thus we assume that the power spectrum is smooth
on a logarithmic scale of l and k, respectively. In accordance with [56] and
[57] this can be enforced by introducing a smoothness enforcing prior Psm

Psm(τ |σ) ∝ exp

(
− 1

2σ2

∫
d(log l)

(
∂2τl

∂ (log l)

)2
)

∝ exp

(
−1

2
τ †T τ

)
, (3.21)
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which is based on the second logarithmic derivative of the spectral parame-
ters τ . The parameter σ specifies the expected roughness of the spectrum.
In the limit σ → ∞ spectral roughness is not suppressed in contrast to
σ → 0 which enforces a smooth power-law power spectrum. For a more
detailed explanation and demonstration of the influence of σ on the recon-
struction of τ we refer to [96].

In total the resulting priors for the diffuse flux field are determined by the
spectral parameters τX (s) for spatial correlation and τY(s) for correlations in
the log-energy domain. These spectral parameters are constrained by the
product of the priors discussed above

P (τi|αi, qi, σi) =Psm (τi|σi)Pun (τi|αi, qi) , (3.22)

with i ∈ {X (s),Y(s)}.

The point-like component

Due to the large distances of many astrophysical sources to earth, they
appear as point-sources despite their actual extension. The photon flux
contributions of neighboring point sources can be assumed to be statisti-
cally independent of each other if we decide to ignore knowledge on source
clustering. Although two point sources might appear to be very close to
each other on the sky, their physical distance might be enormous. Conse-
quently, statistically independent priors for the photon flux contribution of
each point-source are introduced in the following.

As the point-like flux ρ(u) = ρ0e
u is also a strictly positive quantity,

we mainly follow the same arguments as for the diffuse flux to derive its
prior for correlations within in the log energy domain. Following the same
arguments as in section 3.2.3 we adopt for the spectral correlation in the
energy domain y of u a multivariate Gaussian distribution G(u,Y(u)), with
Y(u) = 〈uu†〉(u|d). As we may again assume statistical homogeneity, we can
find a diagonal representation of the yet unknown Y(u), such that

Y(u) =
∑

k

eτY(u) (k)Pk , (3.23)

with P being the projection operator according to eq. (3.15), τY(u)(k) be-
ing the spectral parameter determining the logarithmic power spectrum of
Y(u). Since τY(u)(k) is usually unknown we introduce again a hierarchical
parameter model as in sections 3.2.3 and 3.2.3. This gives us

P (τY(u)|αY(u) , qY(u) , σY(u)) =Psm(τY(u)|σY(u))

× Pun(τY(u))|αY(u) , qY(u)) , (3.24)
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with αY(u) and qY(u) being the scale and shape parameters of the inverse
gamma distribution and σY(u) the parameter to specify the expected rough-
ness of the spectrum.

To derive a suitable prior for the spatial dimension of u, one may look at
the following basic considerations. Let us assume that the universe hosts a
homogenous distribution of point sources. Therefore the number of point
sources would scale with the observable volume, i.e. with distance cubed.
But the apparent brightness of a source is reduced by the spreading of
the light rays, i.e. decreases with distances squared. Hence one may ex-
pect a power law behaviour between the number of point sources and their
brightness with a slope of β = 3/2. As such a power-law is not necessarily
normalisable, since it diverges at zero we further impose an exponential cut-
off slightly above 0. This yields an inverse Gamma distribution, which has
been shown to be a suitable prior for point-like photon fluxes [85, 86, 88–
90]. The spatial prior for u is therefore given by a product of independent
inverse-Gamma distributions

P (ux|β, η) =
∏

x

I (eux , β, η)

∣∣∣∣
deux

dux

∣∣∣∣ (3.25)

∝ exp
(
− (β − 1)† ux − η†eux

)
, (3.26)

where β = β, ∀x and η = η,∀x are the shape and scale parameters of the
inverse gamma distribution I.

In total the prior for the point-like flux becomes

P (u) =P (uy|τY(u))P (τY(u)|αY(u) , qY(u) , σY(u))P (ux|β, η) , (3.27)

Modeling the background

Since the background b is also a strictly positive but unknown field we
assume the prior P (b) to have the same structure as the one for s, except
for the fact that it might be defined over different spaces. Hence we may
again follow section 3.2.3 to build a hierarchical prior model for P (b).

Parameter model

Fig. 3.2 shows the complete hierarchical Bayesian network introduced in
section 3.2. The goal is to model the data d by our quantities s and u
and the background described by b. The three logarithmic power spectra
τ (s) = (τ †X (s) , τ

†
Y(s))

†, τ †Y(u) , and τ (b) = (τ †X (b) , τ
†
Y(b))

†, can be reconstructed
from the data. In case additional information sources are available to fur-
ther constraint these parameters one may certainly use those and adjust
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α, q, σ
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Y
α, q, σ
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α, q, σ

Y

β, η
X

τ (s)

s

τY(u)

u

τ (b)

b

ϕ = (s†,u†, b†)†

λ = Reϕ

d

Figure 3.2.: Graphical model of the hierarchical Bayesian network intro-
duced in section 3.2. Shown are the model parameters α, q, σ, η
and β, in rectangular boxes, as they have to be specified
by the user. The logarithmic spectral parameters τ (s) =
(τ †X (s) , τ

†
Y(s))

†, τ †Y(u) and τ (b) = (τ †X (b) , τ
†
Y(b))

†, the diffuse signal
field ϕ, and the expected number of photons λ, are inferred by
the algorithm and shown in black solid circles. The observed
photon count data d, is marked by a dashed circle at the bot-
tom.
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the known logarithmic power spectra accordingly. However, in total the
suggested algorithm is steered by the parameters α, q, and σ, for which we
can partly provide canonical values: αk,i = σk,i = 1 ∀ k = 0, β = 3/2, as
well as η, qi & 0 for i ∈ {X (s),Y(s),Y(u),X (b),Y(b)}.

3.3. The inference

The likelihood constructed in section 3.2 and the prior assumptions for the
diffuse, point-like, and background signal field contain together all informa-
tion available to tackle this inference problem. The resulting posterior is
given by

P (ϕ, τ |d) =
P (d|ϕ, τ )

P (d)

×
∏

i∈{s,u,b}
P (τY(i)|αY(i) , qY(i) , σY(i))

×
∏

i∈{s,b}
P (τX (i) |αX (i) , qX (i) , σX (i))

× P
(
ϕux|β, η

)
(3.28)

where we have introduced τ = (τX (s) , τY(s) , τY(u) , τX (b) , τY(b)).

In an ideal case with unlimited computational power, we would now cal-
culate the mean and its variances according to eq. (3.2) and (3.3) for ϕ,
by integrating over all possible combinations of ϕ and τ . This would also
provide us with all spectral parameters τ . But due to the complexity of the
posterior probability distribution this is not worth pursuing.

We are relying on numerical approaches. Phase space sampling techniques
like Markov chain Monte Carlo methods [106–110] are hardly applicable to
our inference problem due to the extremely large phase space to be sampled
over. Consequently we have to find suitable approximations to tackle the
problem.

3.3.1. Maximum a posteriori

In case the posterior distribution is single peaked and symmetric, its max-
imum and mean coincide. At least in first order approximation this holds
for eq. (3.28), which allows us to use the so called maximum a posteriori
approach. This method can be enforced by introducing either a δ−function
at the posterior’s mode,

〈ϕ〉(ϕ|d)

MAP-δ≈
∫
Dϕϕ δ(ϕ−ϕmode) (3.29)
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or by using a Laplace approximation, with its uncertainty covariance D,
estimated from the curvature around the maximum. A field expectation
value given by

〈f (ϕ)〉(ϕ|d)

MAP-G≈
∫
Dϕ f (ϕ) G (ϕ−ϕmode, D) . (3.30)

In either case we are required to find the mode which is the maximum of
the posterior distribution (3.28). Rather than maximizing the full posterior,
it is convenient to minimize the information Hamiltonian, defined by its
negative logarithm

H(ϕ, τ |d) =− logP (ϕ, τ |d)

=H0 + 1†Reϕ − d† log [Reϕ]

+
1

2

[
log(det Φ) +ϕ†Φ−1ϕ

]

+
∑

i∈I
(αi − 1)†τi + q†ie

−τi +
1

2
τ †i T iτi

+ (β − 1)†ϕux + η†e−ϕux (3.31)

with Φ = diag(S,U ,B)T and I ∈ {X (s),Y(s),Y(u),X (b),Y(b)}. We have
absorbed all terms that are constant in ϕ and τ into H0. The MAP ansatz
seeks for the minimum of eq. (3.31), which is equivalent to maximizing
the posterior eq. (3.28). This minimum can be found by taking the first
partial derivatives of eq. (3.31) with respect to all components of ϕ and τ ,
respectively and equalling them to zero. The resulting filtering formulas for
the diffuse and point-like flux read as

∂H

∂ϕ

∣∣∣∣
min

=

(
1− d

l

)†
R ∗ eϕ + Φ(∗)−1ϕ

!
= 0

∂H

∂ϕux

∣∣∣∣
min

=
∂H

∂ϕ

∣∣∣∣
min

+ (β − 1)− η ∗ e−ϕux
!

= 0 (3.32)
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with

l = Reϕ , (3.33)

Φ(∗) = diag
(
S(∗),U (∗),B(∗))T

(3.34)

S(∗) =
∑

k

e
τ
(∗)
Y(s)

(k)Pk
∑

l

e
τ
(∗)
X (s)

(l)Pl , (3.35)

U (∗) =
∑

k

e
τ
(∗)
Y(u)

(k)Pk , (3.36)

B(∗) =
∑

k

e
τ
(∗)
Y(b)

(k)Pk
∑

k

e
τ
(∗)
X (b)

(k)Pk . (3.37)

By ∗ and d
l

we refer to component wise multiplication and division, respec-
tively. The filtering formulas for the power spectra, which are also derived
by taking the first partial derivatives with respect to the components of τ
read as

eτY(i) =
qY(i) + 1

2

(
Tr
[
ii†P†X−1

])

αY(i) − 1 + 1
2

(Tr [PP†X ])k + T Y(i)τY(i)

, (3.38)

and

eτX (j) =
qX (j) + 1

2

(
Tr
[
jj†P†Y−1

])

αX (j) − 1 + 1
2

(Tr [PP†Y ])l + T X (j)τX (j)

, (3.39)

with i ∈ {s,u, b} and j ∈ {s, b}. These filtering formulas for the spectral
parameters τ are in accordance with [56, 57]. Unfortunately the eqs. (3.32),
(3.38) and (3.39) lead to eight implicit equations rather than one explicit.
Hence these equations need to be solved by an iterative minimization of
eq. (3.31) using a minimisation algorithm such as steepest descent. The
second derivative of the Hamiltonian, i.e. the Hessian around the minimum
may serve as a first order approximation of the uncertainty covariance,

∂2H

∂ϕ∂ϕ†

∣∣∣∣
min

≈ D(ϕ)−1 . (3.40)

A detailed derivation and closed form ofD(ϕ)−1 may be found in appendix A.1.

It has been shown that MAP-estimating of a field and its power spectrum
simultaneously is suboptimal [56]. The reason is that the joinet posterior is
far from being symmetric and exhibits long tails in directions correlated in
the field and in its spectrum. The resulting scheme can strongly underesti-
mate the field variance in low signal-to-noise situations. To overcome this
difficulty, a number of approaches have been pursued like renormalization
techniques. They lead to improved schemes which are closely related to
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each other. The most transparent of these approaches is the mean field ap-
proximation that involves the construction and minimization of an action,
the Gibbs free energy [58]. A detailed derivation this approach can be found
in appendix A.2.

The filtering formulas in a Gibbs free energy approach for ϕ only change
within the exponent, while the one for τ yields

eτY(i) =
qY(i) + 1

2

(
Tr
[(
ii† +D(j)

)
P†X−1

])

αY(i) − 1 + 1
2

(Tr [PP†X ])k + T Y(i)tY(i)

, (3.41)

and

eτX (j) =
qX (j) + 1

2

(
Tr
[(
jj† +D(j)

)
P†Y−1

])

αX (j) − 1 + 1
2

(Tr [PP†Y ])l + T X (j)tX (j)

, (3.42)

with i ∈ {s,u, b} and j ∈ {s, b}. These formulas are in close accordance
with the critical filtering technique [57]. Now they give a reconstruction
of the spectral parameters of a field which does not necessarily need to
be statistically isotropic and homogeneous over its combined domains. The
appearing correction termD in the trace term of the numerator of eqs. (3.41)
and (3.42) compared to the MAP-solutions eqs. (3.38) and (3.39) is positive
definite. Hence it introduces a positive contribution to the logarithmic
power spectrum and therefore lowers a potential perception threshold [56].

3.3.2. The physical solution

All previously described methods only recover logarithmic fluxes, but the
actual quantities of interest are the physical fluxes ρ. Furtunately it is
straight forward to calculate these given one selected approximate scheme,

〈ρ〉 MAP−δ≈ 〈ρ〉δ = ρ0e
mmode (3.43)

MAP-G≈ 〈ρ〉G = ρ0e
mmode+ 1

2
Dmode . (3.44)

The uncertainty of the reconstructed fields may be approximated by

σ2
G =

〈
ρ2
〉
G −

〈
ρ
〉2

G

MAP-G≈
〈
ρ
〉2

G

(
eD − 1

)
, (3.45)

with its square root being the relative uncertainty.
The full Gibbs approach described in appendix A.2 would require to know
D(ϕ) at all times during the minimisation of eq. (A.19), which is numerically
not feasible, we only consider the MAP-G approach here to infer the signal
fields. D3PO has shown that such an approach does produce accurate signal
field reconstructions. For the reconstruction of the spectral parameters τ ,
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we propose to use the full Gibbs approach as given by eqs. (3.41) and (3.42),
as these take higher order correction terms into account. These have proven
to lower a potential perception threshold, leading in total consequence to
more detailed signal field reconstructions.
It must be noted that the mode approximation only holds for strictly convex
problems and can perform poorly if this property does not hold. The precise
form of the posterior is neither analytically nor numerically fully accessible
due to the potentially extremely large phase space of the degrees of freedom.
However in first order approximation the posterior Hamiltonian may be
assumed to be convex close to its minimum.

3.4. The inference algorithm

To denoise, deconvolve, and decompose photon observations, while simul-
taneously learning the statistical properties of the fields, i.e. their power
spectra, is a highly relevant but non-trivial task.
The derived information Hamiltonian eq. (3.31) and Gibbs free energy
eq. (A.19) are scalar quantities defined over a potentially huge phase space
of ϕ and τ . Even within an ideal measurement scenario the inference has to
estimate three numbers plus the spectral parameters for each location and
energy of the field from just one data value. Hence the inference can be-
come highly degenerate if the data or priors do not sufficiently constrain the
reconstruction. Such a scenario would likely lead to multiple local minima
in a non-convex manifold of the landscape of the information Hamiltonian
and Gibbs free energy, respectively. In total the complexity of the inference
has its main roots at the non-linear coupling between the individual fields
and spectral parameters to be inferred.
After numerous numerical tests we can propose an iterative optimisation
scheme, which divides the global minimisation into multiple, more easily
solvable subsets. By now, the following guide has given the best results:

1. Initialise the algorithm with naive starting values, i.e. ϕ = 0 and
eτk ∝ k−4. If more profound knowledge is at hand you may certainly
use this to construct a suitable initial field prior in order to speed
up the inference and to overcome the outlined issues about the non-
convexity of the minimisation.

2. Optimise the diffuse signal field, by minimising the information Hamil-
tonian eq. (3.31) or the Gibbs free energy eq. (A.19), respectively, by
a method of your choice. As the gradients are always analytically ac-
cessible, we recommend using methods which make use of this, such
as steepest descent.

3. Optimise the point-like and background signal field, accordingly to
the diffuse signal field in the step before.
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4. Update both spectral parameters of the diffuse flux field by again
minimising eq. (3.31) and eq. (A.19), respectively, with respect to τ

(s)
X

and τ
(s)
Y . This optimisation step may be executed via a quasi Newton

method.

5. Optimise the diffuse flux field, analog to step two.

6. Optimise the spectral parameters and maps of the point-like and back-
ground signal field according to step four and five, analog to the diffuse
signal field.

7. Iterate between the steps four to six, until you have reached a global
optimum. This may take a couple cycles. In order to get rough
estimates of the signal in early cycles it is not necessary to let each
minimisation run until it has reached its global desired convergence
criteria. These may be retightened gradually as one gets closer to the
global minimum.

8. At the reached minimum, calculateD(ϕ) in order to obtain the physical
fluxes eq. (3.44).

It must be noted that the outlined iterative minimisation scheme has
proven in multiple numerical tests to lead to the global minimum. However
due to the extremely large phase space it is almost impossible to judge
whether the algorithm has truly converged to the global optimum in case
one works with real astrophysical data sets. Nevertheless this should not
matter too much, in case the local minimum and the global optimum are
close to each other and therefore do not differ substantially.

3.5. An inference example

In order to demonstrate the performance of the inference algorithm we apply
the D4P0 algorithm to a realistic but simulated astrophysical data set. In
this mock example the algorithm is required to reconstruct the diffuse flux,
the point flux, and the background flux. Additionally we request to infer
all statistical properties of the diffuse flux, i.e. τ

(s)
X and τ

(s)
Y , and τ

(u)
Y of

the point flux. The statistical properties of the background radiation are
assumed to be known, otherwise the inference problem would be completely
degenerate as no prior information would separate the background from the
diffuse flux. The mock data set originates from a hypothetical observation
with a field of view of 350×350 pixels and a resolution of 0.005×0.01 [a.u.].
All signal fields were drawn from Gaussian random fields with different
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Table 3.1.: Parameters to define correlation structure of s, u, and b

eτ
(s)
X eτ

(s)
Y eτ

(u)
Y eτ

(b)
X eτ

(b)
Y

θ 4.5 0.3 0.1 0.75 2.0
κ 2.5 0.2 2.5 0.005 0.014

correlation structures. The functional form of all correlation structures is

eτ (k) ∝ θ2κ
(

1 +
(

2πkκ
4

)2
)2 , (3.46)

but the correlation length κ and the variance θ differ for each field and their
sub-domains. The chosen parameters are given by table 3.1.

The assumed instrument’s response incorporates a convolution with a
Gaussian-like point spread function (PSF) with a FWHM of two times the
pixelation size in each direction and an inhomogeneous exposure. The log-
arithmic exposure, the logarithmic PSF, the logarithmic photon counts, as
well as the raw photon counts are shown in the top panel of fig. 3.3.

Further rows of fig. 3.3 show all signal fields in terms of logarithmic fluxes,
i.e. s,u, and b. For each field we show the ground truth, i.e. the drawn
Gaussian random field, its reconstruction, the error between reconstruc-
tion and truth flux, i.e.

∣∣ρrec − ρtruth
∣∣, as well as the uncertainty σG of the

reconstruction provided by D4PO, according to eq. (3.45). For the recon-
struction we used the following parameter setup, αi = 1, qi = 10−12, σi =
1, i ∈ {X (s),Y(s),Y(u)}, β = 3

2
, and η = 10−4 in a MAP-G approach as this

has proven to give the best results within a reasonable amount of computing
time [89].
Looking more closely at the diffuse flux field, the original and its recon-
struction are in good agreement. The strongest deviation may be found
in regions with low amplitudes, which is not surprising as we are using an
exponential ansatz to enforce positivity for all our fields. Hence small errors
in s→ (1± ε) s factorise in the physical photon flux field, ρ(s) → ese±ε that
scales exponentially with the amplitude of the diffuse flux field. Further,
in almost all regions the absolute error shows that the reconstruction is in
very good agreement with the original one. Only in areas with a relatively
weak point flux and a rather strong diffuse flux the decomposition seems
to run into a fundamental problem, as the priors and the likelihood can no
longer break the degeneracies between the different sources.

From fig. 3.4 it becomes apparent that the reconstructed power spectra
of s track all large scale modes in good agreement up to ν . 20. At higher
harmonic modes the reconstructed power spectra start to deviate from the
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Exposure Gaussian kernel Photon counts Raw photon counts

Diffuse flux Reconstructed diffuse flux Error diffuse flux Uncertainty diffuse flux

Point flux Reconstructed point flux Error point flux Uncertainty point flux

Background flux Reconstructed background flux Error background flux Uncertainty background flux

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.3.: Demonstration of the full capabilities of D4PO based on a sim-
ulated but realistic data set gathered from a potential astro-
physical high energy telescope. The spatial dimension is ori-
ented vertically and the spectral/energy dimension horizontally.
Point sources appear therefore as the horizontal lines. All fields
are living over a regular grid of 350×350 pixels. The top panel
shows the assumed instrument’s exposure map, its Gaussian
convolution kernel and the obtained data set, once on logarith-
mic scale and once the raw photon counts. The panels below
display the diffuse, point-like, and background flux. For all
signal fields we show the ground truth on the left hand side,
followed by its reconstruction, the error and the uncertainty of
the reconstruction. For illustration purposes all fluxes are on
logarithmic scale and clipped between −0.6 and 3.1, except the
‘Raw photon counts’ which are shown on their native scale.
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Figure 3.4.: Illustration of the reconstructed power spectrum of s in its spa-
tial (fig. 3.4a) and spectral sub-domain (fig. 3.4b) and u in its
spectral domain (fig. 3.4c). The dashed black line indicates
the default spectrum from which the Gaussian random fields,
shown in Figure 3.3, were drawn, while the solid black lines
show its reconstruction. In case of τY(u) , both lines are in such
close agreement that they are visually indistinguishable.
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reference and fall more steeply. The drop off point at ν ≈ 20 roughly cor-
responds to the support of the PSF of the instrument’s response. As the
power spectrum still shows a smooth shape at ν & 20, the action of the
smoothness enforcing prior starts to set in. Were σ significantly smaller,
the spectra would start to scatter wildly, which we do not expect in astro-
physical spectra. Hence the smoothness enforcing prior allows some kind of
superresolution up to a certain threshold.

Having a closer look at the logarithmic point like flux field (fig. 3.3), we
observe a similar situation as for diffuse flux field. This is supported by
the reconstructed power spectrum, τY(u) and its original one which match
perfectly (fig. 3.4c). Up to where the reconstruction is mainly driven by
the data, may not be stated any more as the algorithm recovered all modes
correctly. This is of course due to an appropriate setup of the smoothness
enforcing prior.

Nevertheless it must be noted that σ has to be set accurately as it can have
significant influence on the reconstructed power spectrum. For a detailed
discussion about its influence we refer to [96].

The results for the spatial reconstruction performance of the point-like
sources are plotted in fig. 3.5. For all energies we show individually the
match between original and reconstructed flux at all locations. As a point-
source illuminates the sky over a broad range of energies at a fixed location
these serpentine pattern appear in fig. 3.5. In total they are in good agree-
ment within the 2σ confidence interval. This confidence interval corresponds
to a diffuse and background free data set, it only illustrates the expected
photon shot noise of point sources. The higher flux point sources tend to
be reconstructed more accurately as a better SNR allows a sharper decom-
position of the different sources. As a natural consequence the accuracies
of the reconstruction becomes worse for regions with low count rates as the
SNR becomes severe. The calculated absolute error supports these findings.

As the correlation length of the background flux is similar to the support
of the assumed PSF of the instrument’s response, not all of its small fea-
tures could be reconstructed even though its statistical properties, i.e. the
power spectrum, were provided and not inferred from the data. Hence the
reconstruction is smeared out as one would expect. Therefore the calculated
absolute error is more finely grained and its absolute magnitude is smaller
compared to the reconstruction.

The calculated uncertainty estimates of the reconstructions, s, u, and b
are as one would expect them to be, given the Poissonian shot noise and the
Gaussian convolution of the response operator. The absolute magnitudes
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Figure 3.5.: Reconstructed versus original physical point like flux in its spa-
tial domain for all energies. The grey contour indicates the 2σ
confidence interval of the Poissonian shot noise.
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Figure 3.6.: Illustrations show the differences between
∣∣ρerror − ρuncertainty

∣∣
on their native scale, by devision through the uncertainty esti-
mates. The image-mean of the normalised errors is ≈ 0.6 for
the diffuse flux, ≈ 0.85 for the point-like flux, and ≈ 1.5 for the
background flux. Hence they show, that some uncertainties are
overestimated and others underestimated, respectively, due to
the used Laplace approximation.

of the uncertainties are in all cases smaller than the amplitude of the re-
construction itself. Figure 3.6 shows that uncertainty estimates are useful,
however one has to keep in mind that approximation to the non-Gaussian
posterior were done. Consequently for heavy tails of the posterior PDF the
approximated uncertainty do not account for.

The inference algorithm is steered by the model parameters, shown in
rectangular boxes in Figure 3.2. In this mock data demonstration run we
set them all to physically motivated values. Changing these, especially σ of
the smoothness enforcing prior and β, the shape parameter of the spatial
prior for the point-like flux can have a significant influence on the recon-
struction. A detailed parameter study of α, q, β, and η can be found in [89].
It may be summarised that the advancements of D4PO to denoise, decon-
volve, and decompose multidimensional photon observations into multiple
morphologically different sources, such as diffuse, point-like and background
sources, while simultaneously learning their statistical properties in each of
the field domains independently, have shown to give reliable estimates about
the physical fluxes for data of sufficient qualtity.

3.6. Conclusion

We derived the D4PO algorithm, to denoise, deconvolve and decompose mul-
tidimensional photon observations, into multiple morphologically different
sources. In this context we focused on the decomposition of astrophysical
high energy photon count data into three different types of sources, diffuse,
point-like and background radiation. Each of these components lives over
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a continuous space over multiple domains, such as energy and location. In
addition to the simultaneous reconstruction of all components the algorithm
can infer the correlation structure of each field over each of its sub-domains.
Thereby D4PO takes accurate care of the instruments response function
and the induced photon shot noise. Finally the algorithm can provide a
posteriori uncertainty estimates of the reconstructed fields.

The introduced algorithm is based on D3PO [89], which was successfully
applied to the FERMI LAT data [90] and giant magnetar flare observations
[96]. Here we show an advancement towards multidimensional fields and
how to incorporate further components. The D4PO algorithm is based on
a hierarchical Bayesian parameter model within the framework of IFT [32].
The model incorporates multiple a priori assumptions for the signal fields of
interest. These assumptions account for the a priori known statistical prop-
erties of the fields in order to decompose the data set into their different
sources. As some of these statistical identities are often not known a prior,
the algorithm can learn them from the data set itself. Thereby we assume
that each field follows a log-normal distribution over each of its sub-domains,
except for the spatial correlations of point-sources. The correlations over
these sub-domains may then be encoded via a power spectrum, implicitly
assuming statistical homogeneity and isotropy over each sub-domain. As
the point-like flux is implicitly defined to be statistically independent in
its spatial sub-domain, we motivated an independent Inverse-Gamma prior,
which implies a power law behaviour of the amplitudes of the flux.

To denoise and deconvolve astrophysical counts we took detailed care of
an adequate likelihood modelling. The derived likelihood is a Poisson dis-
tribution to denoise the photon shot noise and incorporates all instruments
artefacts, which are imprinted in the data set.

In total the hierarchical Bayesian parameter model is steered by only five
parameters, for which we can provide well motivated a priori values. None
of these parameters drives the inference dominantly as they may all be set
to values where they provide minimal additional information to the infer-
ence problem.

In a simulated high energy photon count data set we demonstrated the
performance of D4PO. The algorithm successfully denoised, deconvolved,
and decomposed the raw photon counts into diffuse, point-like and back-
ground radiation. Simultaneously it recovered the power spectrum of the
diffuse flux in its spatial and spectral sub-domain. The correlation structure
in the spectral sub-domain of the point-like flux was also inferred from the
data. In total the analysis yielded detailed reconstructions and uncertainty
estimates which are in good agreement with the simulated input.
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The introduced algorithm is applicable to a wide range of inference prob-
lems. Its main advancement to reconstruct fields over multiple manifolds,
each with different statistical identities, should find use in various data in-
ference problems. Besides the most obvious applications in high energy
astrophysics, such as FERMI, XMM, Chandra, Comptel, etc. to recon-
struct the diffuse and point-like flux dependent on energy and location on
the sphere, one may also infer energy dependent light curves of gamma ray
bursts. Hence D4PO has a broad range of applications.



4. Search for quasi-periodic
signals in magnetar giant
flares

This chapter, as well as appendix B, are used additionally as a journal
publication in Astronomy & Astrophysics (Pumpe et al., [111]).
I am the principal investigator of the research described in the following
chapter. My contributions include the application of the developed algorithm
D4PO on the data set provided by Michael Gabler (MG). I wrote the main
parts of the chapter, while MG wrote approximately 20% of sections 4.1
and 4.4 about the detailed structure of magnetars. Theo Steininger played
a pivotal role by continuously debugging NIFTy, the software package on
which D4PO is primarily based on. Torsten Enßlin also fulfilled the role
of a principal investigator as he is my PhD supervisor. All authors read,
commented, and approved the final manuscript.

4.1. Introduction

The discovery of quasi-periodic oscillations (QPOs) in the giant flare of the
magnetar SGR 1806-20 by [29] may have been the first detection of neutron
star oscillations and triggered a wealth of theoretical work explaining the
reported frequencies. The giant flare was likely caused by a large-scale
reconnection or an interchange instability of the magnetic field [112]. Large
amounts of energy are released as an expanding e±-pair plasma, observable
as the initial spike of the giant flare. Parts of this plasma are trapped by the
ultra-strong magnetic field and form a so-called trapped fireball [112], which
then slowly evaporates on a timescale of up to a few 100 seconds. The QPOs
were detected in this decaying tail of the giant flare. Other groups have
not only confirmed this detection, they even found additional oscillation
frequencies in different magnetars: 18, 26, 29, 92, 150 , 625, and 1840 Hz
in the giant flare of SGR 1806-20, and 28, 53, 84, and 155 Hz in the giant
flare of SGR 1900+14 [113–116]. With different methods, more oscillation
frequencies were found in the giant flare of SGR 1806-20 by Hambaryan
et al. [117], 17, 21, 36, 59, and 116 Hz. The number of giant flares at
the time of writing is limited to three events. The more frequent but less
energetic bursts of several magnetars have therefore also been investigated



64 4. Search for quasi-periodic signals in magnetar giant flares

for frequencies, and some candidates were found: 57 Hz in SGR 1806-20
[118], and at 93, 127, and 260 Hz in SGR J1550-5418 [119].

It was soon realized that these frequencies are probably related to oscilla-
tions of the neutron star, and several groups tried to identify them as elastic
oscillations of the crust [113, 120–129], Alfvén oscillations [130–132], or cou-
pled magneto-elastic oscillations [133–140]. The theoretical models based
on the observed frequencies are very elaborate and may be able to constrain
properties of high-density matter as found in the interior of neutron stars.
Some of the models, for instance, require a superfluid component in the core
of the star [139–146]. Different models depend sensitively on the identifi-
cation of the fundamental oscillation frequency, and may not explain all of
the observed frequencies. Even when the fundamental frequency is identi-
fied, the interpretation and parameter estimation is not yet straightforward
because of degeneracies in the parameter space. However, keeping other
stellar parameters fixed, some general trends of the fundamental oscillation
frequency can be summarized as follows [see 145, 146, for a detailed discus-
sion]: i) The frequency scales linearly with the magnetic field strength. ii)
It decreases with increasing compactness [131]. The compactness is related
to the hardness of the equation of state (EOS): Material with a stiff equa-
tion of state is harder to compress, leading to larger radii and hence lower
compactnesses. iii) It can only reach the surface for significantly strong
magnetic fields B̄ & B̄outbreak(

√
cs), whose thresholds depend on the square

root of the shear velocity [146].

It is of great importance to understand which of the frequencies are in the
signal. In previous attempts at identifying possible frequencies in the light
curve, the statistical noise of the detectors was not modelled consistently.
To improve on this, we employ a Bayesian method that properly takes the
photon shot noise as the largest contributor into account.

In this work, we re-analyse the data for the two giant flares of SGR1806-20
and SGR1900+14, which were obtained with the proportional counter array
(PCA) of the Rossi X-ray Timing Explorer (RXTE). The data are available
online at the High Energy Astrophysics Science Archive Research Center
(HEASARC). In section 4.2 we briefly discuss our numerical approach to
estimating the influence of the noise and to reconstructing the likely signal
with a reduced contribution from the noise. The next section is devoted to
the reconstruction and investigation of the light curves of the two giant flares
of SGR 1806-20 and SGR 1900+14, which are then discussed in section 4.4.
We conclude our analysis in section 4.5.

4.2. Inference of photon observations

Our goal is to reconstruct the light curve and possible frequencies of QPOs
in giant X-ray flares for the neutron stars SGR 1806-20 and SGR 1900+14
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using the data taken by RXTE. Owing to experimental constraints such
as limited data storage, finite time resolution of each photon count, finite
detector size, and sensitivity, RXTE cannot record all physical relevant and
available information of a continuous photon flux. Most importantly, the
recorded photon counts contain significant photon shot noise. Hence, we
have to use probabilisitic data analysis methods to obtain an estimate of the
time-dependent, continuous photon flux φ (t) , including its uncertainties.
Since the flux varies on a logarithmic scale, we reconstructed the logarithm
of the flux s (t) = log (φ (t) /φ0) and its temporal power spectrum directly
from the data.

In this context, it is natural to build the inference upon the Bayes the-
orem, allowing us to investigate the a posteriori probability distribution
P (φ|d), stating how likely a given photon flux field φ is given the data set
d . For the two data sets of SGR 1806-20 and SGR 1900-14, we assumed
the data d to be the result of a Poisson process whose expectation value
λ is given by the photon flux φ (t) of the photon burst convolved with the
response operator R,

λ = Rφ (t) = Rφ0e
s(t) . (4.1)

The response operator encodes all instrument specifications and states how
φ imprints itself on λ. Here, we only considered the readout deadtime
periods of the instrument and neglected all other instrument responses.
In eq. (4.1) the constant φ0 absorbs numerical constants and the physical
units of the time dependent log- flux signal field s (t) = s. As the signal
describes the logarithmic flux, we naturally ensured the positive definite-
ness of the photon flux. Since we analysed QPOs, it is expected that φ
exhibits unknown but spatial correlations. Hence, we did not enforce any
concrete spatial correlations. We only assumed φ to follow a multivariate
log-normal statistic, with an a priori unknown covariance. Assuming sta-
tionary statistics, the underlying covariance is fully determined by a power
spectrum Ps (ν), described by Ps (ν) = P0e

τ (ν), to ensure positivity of the
power spectrum. We inferred this power spectrum as well as φ from the
data themselves by setting up a hierarchical prior model [33, 56, 90, 102,
147]. Hence the posterior of our Bayesian inference is given by

P (φ, τ |d) ∝ P (,d|φ, τ )P (τ |σsm)

P (d)
, (4.2)

where P (d|φ, τ ) is the likelihood describing how a potential photon flux φ
including a certain covariance structure described by τ imprints itself in a
potential data set. In addition to strong spectral peaks in the power spec-
trum induced by the almost discrete frequencies of QPOs, we enforce some
kind of spectral smoothness on the logarithmic scale, favouring power-law
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spectra. This behaviour is enforced and tuned by the prior term P (τ |σsm)
and its parameter σsm ([57]). If σsm → 0, infinite spectral smoothness is
enforced, while σsm →∞ does not enforce any spectral smoothness. As we
wish to be sensitive to spectral lines in the power spectrum, the influence
of σsm on the inference is discussed in greater detail in appendix B.1.

For the detailed mathematical rigorous derivation and discussion of the
used D3PO- algorithm, we refer to [89] and [147]. The D3PO- algorithm
was successfully applied on the Fermi LAT data [90]. In order to handle
high power spectrum resolutions as is needed to infer spectral lines in the
power spectrum, we reimplemented the algorithm in NIFTy 3 [148]. The
capabilities of the algorithm to analyse QPOs are demonstrated in the ap-
pendices B.1 to B.3.

4.3. Results

4.3.1. SGR 1806-20

We re-analysed the archival RXTE data of the giant flare of SGR 1806-20,
which occurred on 2004 December 27. Owing to the high photon flux, the
instrument telemetry was saturated, causing several data gaps in the first
seconds of the flare. We therefore neglected the very beginning of the flare
in the current analysis and started our investigation roughly 4.5 s after the
initial rise, immediately after the third deadtime interval. However, we ac-
counted for the only remaining operational down time of the instrument in
our data between 7.3865 s ≤ t ≤ 7.9975 s. For the analysis, we binned the
data into pixels with a volume of 1/800 s. To overcome the periodic bound-
ary conditions introduced by the fast-Fourier transformation, which we used
to switch between signal space and its harmonic space, we performed the
signal inference on a regular grid with 219 pixel, each also with a volume of
1/800 s, by adding sufficient buffer time.

In fig. 4.1 we plot the inferred φ for the entire duration of the giant flare
and for a selected period of time for a smoothness parameter σsm = 5×105.
Our algorithm is able to significantly reduce the scatter of the light curve
that is caused by the photon shot noise. The thus reconstructed light curves
can now be further analysed for potential periodic signals.

fig. 4.2 shows the reconstructed profiles of one pulse rotation period.
There, the mean pulse profile is given as a thick black line, and all indi-
vidual pulses are plotted in different colours. Dark blue are the first pulses
that have a significantly lower second maxima around 5.5 s than the mean
pulse. The major maximum (time ∼ 3 s) is very close to the mean maxi-
mum. At intermediate times (green lines), both maxima of the pulse take
their maximum values, roughly 40% and 130% more than at the beginning
for the first and second maximum, respectively. At late times (red lines)
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Figure 4.1.: Reconstructed light curve of the giant flare of SGR 1806-20
using a smoothness-enforcing prior, with σsm = 5×105 is shown
in fig. 4.1a. The grey narrow rectangle indicates the operational
down time of the instrument. For better visibility, we plot the
light curve between ≈ 164 s and ≈ 174 s in fig. 4.1b. In addition
to the raw photon counts (black dots), the black line indicates
the reconstruction of the expected photon counts, i.e. λ as well
as its one-σ confidence interval. Owing to the high resolution
of the photon flux, only every fourth point of the regular grid
is plotted. In both plots each pixel has a duration of 1/800 s .
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Figure 4.2.: Pulse profiles of different rotation periods overplotted as given
in fig. 4.1a. The temporal evolution of the pulse profile is visible
from blue to green to red. The mean pulse is shown as a thick
black line. All pulses are shifted such that their log-means are
zero.

the main peak declines by 40%, while the second maximum almost stays
constant and has an amplitude similar to the main peak. This behaviour
indicates a complex evolution of the fireball, or of the fireballs, if there are
more than one.

The power spectrum of the entire flare is plotted in fig. 4.3a. The rotation
period of the magnetar is recovered with the frequency of the first main peak
ν0 = 0.1323 Hz, which is very close to ν0 = 0.13249 Hz, as given in [149]. We
are able to find up to the 31st overtone of this frequency at ν = 4.245 Hz.
In fig. 4.3b we show the reconstructed power spectrum Prec from fig. 4.3a
in black together with the power spectrum obtained from the reconstructed
light curve (fig. 4.1a) Ps(t) (ν) in red. At low frequencies, that is, ν . 3 [Hz],
the two spectra are in good agreement, as the reconstruction is well con-
strained by the data on large scales. Between 3 [Hz] . ν . 20 [Hz], the
inference algorithm enters the regime of a lower signal-to-noise ratio (S/N),
which in principle leads to noisier Prec. However, this natural behaviour is
counteracted by the smoothness-enforcing prior. At higher ν & 20 Hz, the
shapes of both spectra start to deviate significantly. The reason for this
is that in the noise-dominated frequency regime, D3PO filters out the pho-
ton shot noise. From a naive perspective, small-scale features in the signal
therefore need to be significantly strong in order to be detectable after a
pure photon shot noise filtering operation on the data set. However, D3PO
accounts for the power loss of this filtering when it reconstructs the power
spectrum from the data themselves. Thus, fig. 4.3b indicates that above
20 Hz the data are noise dominated, and spectral features there have to
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(c)

Figure 4.3.: Reconstructed power spectra of the giant flare of SGR 1806-
20: For fig. 4.3a and fig. 4.3c we used smoothness-enforcing
priors with σsm = 5 × 105 and σsm = 105, respectively. The
uncertainty intervals are given as grey shaded areas. In fig. 4.3b
we show the reconstructed power spectrum again from the data
themselves as in fig. 4.3a, along with the power spectrum of the
logarithmic reconstructed light curve of fig. 4.1a. Because of the
high resolution of the reconstructed power spectra, only every
fourth point of the regular grid is plotted. Each pixel has a
volume of 1/655 Hz.
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Table 4.1.: All frequencies above 3.5 Hz with χ0 > 11 and their multiplicity
n of the rotation period ν0 = 0.13249 [Hz] for SGR 1806-20.

ν [Hz] χ0 n [ν0] ν [Hz] χ0 n [ν0]
3.86 11.071 29.134 11.171 11.762 84.316
4.602 11.141 34.735 15.768 11.999 119.013
4.95 13.592 37.361 16.272 12.772 122.817
6.81 11.212 51.4 19.034 12.632 143.664
9.187 18.293 69.341

be very strong to be recognisable. To test the dependence of our method
on the chosen smoothness prior σsm as discussed also in appendix B.1, we
additionally calculated the reconstructed light curve and its corresponding
power spectrum for σsm = 105. The latter is given in fig. 4.3c. Obviously,
a smaller σsm leads to a smoothing of the spectrum and the algorithm sup-
presses the detection of periodic signals at higher frequencies. We found
σsm = 5× 105 to be the optimal value to still observe power in the Fourier
transform at higher frequencies. For higher values of σsm , we qualitatively
obtain similar but more noisy results for the reconstructed light curve and
the corresponding power spectra.

In addition to the obvious peaks that are related to the rotation period
and the corresponding overtones, there are still other features in the recon-
structed power spectrum of fig. 4.3a that seem to have higher powers than
the noise. To estimate the significance of these spectral peaks, we calcu-
lated a residual χ between the inferred log-spectrum τ and its local median
τ̄ weighted with the local variance σ,

χ =
τ − τ̄
σ

. (4.3)

The local median and local variance were calculated over a window of 401
pixels, corresponding to a frequency window of approximately 1 Hz. In the
top panel of fig. 4.5 we plot the histogram of χ0, where the index 0 refers
to the fundamental frequency, that is, χ at the respective frequency. The
resulting distribution deviates significantly from a Gaussian, as there is a
significant excess for large χ0. These counts can easily be identified with
the highest spectral peaks in fig. 4.3a as integer multiples of the neutron
star rotation frequency of ν0 = 0.1323 Hz. The fat tails of the distribution
make it hard to identify whether a peak sticks out of the tail, in particular
for χ0 & 10. For χ0 & 15 all peaks can be identified and are related to the
neutron star rotation period, except for one at ν ∼ 9.187 Hz. In table 4.1
we show all frequencies that have χ0 > 11 to have a selection of possible
oscillation candidates. If there are two or more neighbouring frequencies
with χ0 > 11, we list the highest value. All other candidates in table 4.1
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Table 4.2.: Maximum χ0 at νmax in a 5% interval around previously observed
oscillation frequencies ν for SGR 1806-20. We also show the local
variance σχ of χ0 at this interval.

ν [Hz] νmax [Hz] in ±5% interval χ0,max σχ
16.9 16.27 12.772 6.623
18.0 18.265 10.789 5.229
21.4 20.609 9.191 4.194
26.0 26.686 8.709 3.917
29.0 28.87 7.121 3.234
36.8 36.412 8.565 2.82
59.0 56.592 5.146 2.258
61.3 63.162 5.027 2.114
92.5 90.364 4.699 1.859
116.3 118.346 4.363 1.817
150 152.252 4.316 1.675

have significantly lower χ than the oscillation at 9.187 Hz and are consistent
with being in the tail of the distribution that is shown in the top panel of
fig. 4.5. This indicates that these are artefacts of the Poisson noise.

We also checked the χ0 values of previously reported frequencies. None
of them reach more than χ0 & 5. We therefor extended our search in
a ±5% interval around the frequencies in table 4.2. The only frequency
higher than χ0 = 11 is at ν = 16.27 Hz. Thus all reported lines are consis-
tent with noise. However, we already see an interesting pattern emerging:
In table 4.2 we locally (within the ±5% interval) find the highest powers
at 18.265 and 36.412 Hz. These are almost twice and four times the only
significant frequency at ν = 9.187 Hz that our method detects beyond the
rotational frequency and its first 31 harmonics. In fig. 4.4 we plot the re-
constructed power spectrum around the ν = 9.187 Hz candidate oscillation
(black line) and its first overtone (red line). The amplitude at ν = 9.187
Hz is significantly larger (factor 2) than other amplitudes in the shown fre-
quency range, while the amplitude at ν = 18.265 Hz is comparable with
other spectral peaks. As discrete frequencies in a power spectrum are likely
to show spectral peaks at integer multiplies of a ground frequency, we also
display the two-dimensional histogram of the calculated weighted residual
χ0 at some ground frequency on the x-axis and its first harmonics χ1 on the
y-axis in the bottom panel of fig. 4.5. We marked all counts with χ1 ≥ 5
and χ0 ≥ 10 with their corresponding frequency in Hz. We find about ten
frequencies that satisfy this criterium. Obviously, all but the frequencies
around ν ∼ 9.186 Hz are integer multiples of the rotation frequency ν0.

This further increases our confidence that ν ∼ 9.186 Hz is a candidate for
an additional periodic signal in the data. We do not find any significant
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Figure 4.4.: Zoomed-in view of the reconstructed power spectra of giant
flare SGR 1806-20 around ν ∼ 9.186 Hz in black and its first
overtone around ν ∼ 18.265 Hz in red. The spectra correspond
to σsm = 5× 105 as in fig. 4.3a

features for frequencies higher than the corresponding overtones that the
algorithm recovered at ν ∼ 18.265 Hz and ν ∼ 36.412 Hz.

4.3.2. SGR 1900+14

Analogously to SGR 1806-20, we also re-analysed the archival RXTE data
of the giant flare of SGR 1900+14 that occurred on 1998 August 27. The
resolution of the signal field is again 1/800 s, but here we only used 218

pixels, as the giant flare did not last as long as that of SGR 1806-20. The
operational down times1 of RXTE during the observation were taken into
account for the inference.

As for SGR1806-20, we were able to recover the frequency corresponding
to the rotation as ν0 = 0.1938 Hz, which is consistent with the reported
ν0 = 0.1923 Hz [149]. For SGR 1900+14, the corresponding spectrum with
the same smoothness prior σsm = 5× 105 is more noisy because of the var-
ious operational down times of the instrument, which are marked grey in
fig. 4.6a. In fig. 4.6b, we show a snapshot of the entire reconstructed light
curve for a more detailed view. Even though no data were recorded between
88.245 s ≤ t ≤ 95.1375 s, the algorithm was able to infer a light curve by ex-
trapolating from the data-constrained regions. This extrapolation is mainly
driven by periodic features appearing in the data. As a further natural con-
sequence, the one-σ confidence interval increases drastically during down
times. In total, these multiple operational down times of the instrument

1At the following intervals in seconds, the instrument did not record any data:
1.89 ≤ t ≤ 15.12; 20.84625 ≤ t ≤ 31.1175; 37.54125 ≤ t ≤ 47.11875; 55.405 ≤ t ≤
63.12; 71.87875 ≤ t ≤ 79.12; 88.245 ≤ t ≤ 95.1375; 106.86 ≤ t ≤ 111.12; 124.285 ≤
t ≤ 127.1225; 141.935 ≤ t ≤ 143.1225
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Figure 4.5.: Top panel: Histogram of the residuals between the logarithmic
power spectrum of fig. 4.3a and its local median, weighted with
its local variance σ. Bottom panel: Two-dimensional histogram
of the same quantity at some frequency at the x-axis and its first
harmonic at the y-axis. In addition, we indicate for all counts
with χ1 ≥ 5 and χ0 ≥ 10 the corresponding frequency in Hertz
and its multiple of the neutron star frequency, ν0 = 0.1323 Hz.
To generate the histograms, we used the power spectrum shown
in fig. 4.3a, i.e. σ = 5× 105.
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(c)

(d)

Figure 4.6.: Figure 4.6a shows the reconstructed light curve φ for SGR
1900+14. The grey rectangles indicate the operational down
times of the instrument. fig. 4.6b shows a snapshot of the en-
tire reconstruction between ≈ 80 sec and ≈ 91 sec. For t & 88
the instrument had an operational down time, leading to zero
counts in this time interval. Figure 4.6c and fig. 4.6d shows
the reconstructed power spectra as well as their uncertainties,
using a smoothness-enforcing prior with σsm = 5 × 105 and
σsm = 105, respectively. The plots have the same volumes and
sampling rate as in fig. 4.1.
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Table 4.3.: All frequencies with χ0 > 11 and their multiplicity n of the
rotation period ν0 = 0.1938 [Hz] for SGR 1900+14.

ν [Hz] χ0 n [ν0] ν [Hz] χ0 n [ν0]
7.693 13.214 39.7 11.768 13.718 60.7

Table 4.4.: Maximum χ0 at νmax in a 5% interval around previously observed
oscillation frequencies ν for SGR 1900+14. We also list the local
variance σχ of χ0 at this interval.

ν [Hz] νmax [Hz] in ±5% interval χ0,max σχ
28.0 27.341 5.392 2.931
53.5 54.781 5.24 2.318
84 86.328 4.39 2.228

155.1 161.719 3.777 1.582

lead to fewer observed photons and in consequence to a weaker constrained
reconstruction of the light curve as well as its power spectrum. Since a
smoothness-enforcing prior σsm = 5 × 105 does not sufficiently denoise the
light curve, we used a slightly stronger prior, σsm = 105 (fig. 4.6d), for our
further analysis.

With the same detection threshold as before, χ0 > 11, we find two can-
didate frequencies at 7.693 and 11.768 Hz, see table 4.3. In table 4.4 we
give the maximum χ0 around previously observed frequencies. As for SGR
1806-20, we cannot confirm any of the previously detected frequencies, the
highest significance we see is χ0 > 5.4 for 28.0 Hz. We further investigated
our combined criterium, but now reduced to the giant flare of SGR 1900+14
compared to the flare of SGR 1806-20. Figure 4.9 shows only one additional
frequency at ν = 7.695 Hz, which strengthens our confidence in the previous
finding in table 4.3 at ν = 7.693 Hz. In fig. 4.7 we overplot the reconstructed
power spectra around ν = 7.693 Hz (black line) and its first overtone (red
line). These two peaks are the largest in the given frequency range.

We plot the time evolution of the different pulses of SGR 1900+14 in
fig. 4.8. As before, blue indicates the beginning of the flare, green the mid-
dle, and red the end. Here, the data are of inferior quality compared to
the SGR 1806-20 and the parts of the curves without significant short time-
variability are purely reconstructed by our algorithm. For SGR 1900+14
we observed four maxima, which also evolved differently compared to each
other. For example, the weakest maximum (time ∼ 1 s) declines almost
monotonically with time, while the others remain rather constant with far
less variability in time.

In order to facilitate secondary studies based on our reconstructions and
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Figure 4.7.: Zoomed-in view of the reconstructed power spectra of the giant
flare SGR 1900+14 around ν ∼ 7.693 Hz in black and its first
overtone around ν ∼ 15.386 Hz in red. The plot corresponds to
σsm = 1× 105 as in fig. 4.6d.
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Figure 4.8.: Pulse profiles of different rotation periods overplotted for SGR
1900+14. The temporal evolution of the pulse profile is visi-
ble from blue to green to red. Smooth curves without signifi-
cant short time-variability are reconstructed during instrument
deadtimes.
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Figure 4.9.: Same as in fig. 4.5 for the SGR 1900+14 event, with σ = 105.
We indicate for all counts with χ0 ≥ 5 and χ1 ≥ 5 the cor-
responding frequency in Hertz and its multiple of the neutron
star frequency ν0 = 0.1938 Hz.
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spectra, we provide these data online at http://cdsweb.u-strasbg.fr/

cgi-bin/qcat?J/A+A/. At www.mpa-garching.mpg.de/ift/data/QPO we
also provide interactive plots of figs. 4.1, 4.3 and 4.6 for more detailed views.

4.4. Discussion

We recovered the rotation period of the two magnetars ν1806 = 0.1323
Hz and ν1900 = 0.1938 Hz, and up to the 31th overtone for SGR 1806-20
(χ0 > 11) and to the 18th for SGR 1900+14 (χ0 > 7.5). In addition,
we only found potential periodic signals at 9.2 Hz (SGR1806-20) and 7.7 Hz
(SGR1900+14), which are significant in χ0 and in the combination of χ0 and
χ1 according to our respective criterium. For SGR 1900+14 and with the
single criterium on χ0, we found another candidate frequency at ν = 11.8 Hz,
with a similar χ0 as the signal at 7.7Hz, but without detected overtones.
Therefore we only consider ν = 7.7 Hz as a potential signal. The most
robust feature is at 9.2 Hz for SGR 1806-20, it has the highest χ0 , and
we detect some of its overtones as local maxima in χ0 at 18.3 and 36.4 Hz,
respectively. The two latter frequencies are similar to previously reported
frequencies at 17.9 [114] and 36.8 Hz [117].

Although the reimplemented Bayesian inference algorithm D3PO proved
(see appendices B.1 to B.3) its basic ability to reconstruct QPO in photon
bursts in many tests, even in the low S/N regime, we cannot confirm the
previously reported frequencies at 17, 21, 26, 29, 59, 92.5, 116, and 150 Hz for
SGR 1806-20 and 28, 53, 84, and 155 Hz for SGR 1900+14. In particular,
we show in appendix B.3 that our algorithm is able to recover sufficiently
strong quasi-periodic signals around 90 Hz with a width of ∼ 0.6 Hz.

Our analysis and therefore all reconstructed power spectra and recon-
structed photon fluxes depend on the particular chosen smoothness-enforcing
prior σsm . Selecting a smaller σsm allows the algorithm to denoise the power
spectrum even at low S/N. However, at high frequencies, the small σsm leads
to a lower sensitivity for spectral lines. Therefore, a trade-off needs to be
found for σsm between better denoising (small σsm) and better sensitivity
(large σsm). Owing to the sharply deteriorating S/N for frequency ranges
around 625 Hz and 1840 Hz, which would require a very small σsm, we are
currently not able to investigate these frequencies for QPOs.

We assume that our findings hold and determine the effect that the re-
sults have on the interpretation of the theoretical model of magnetar os-
cillations. First of all, the new candidate frequencies at 9.2 and 7.7 Hz
for SGR1806-20 and SGR1900+14, respectively, are much lower than the
frequencies reported so far. Here, our method has a clear advantage over
previous studies, as we can analyse the entire data set at once, meaning
that no parts of the data set are left out. In principle, this leads to a more
robust reconstruction and also counteracts statistical artefacts that may be

 http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/
 http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/
www.mpa-garching.mpg.de/ift/data/QPO


4.5 Conclusion 81

introduced by a windowed analysis. Our method is fully noise-aware and
has in principle no problems with observational dead times. If these two
frequencies are related to neutron star oscillations, the parameters of cur-
rent models change significantly. When we assume that the oscillations are
pure crustal shear modes, the identification of the low frequency with the
n = 0, l = 2 mode would favour models with rather low shear speeds and
therefore EoS with a fast increase of symmetry energy [125]. However, pure
shear models are not very likely because of the strong interaction with the
magnetic field in the interior of the star [133, 134, 136, 137]. If the mag-
netic field is not neglected, coupled magneto-elastic oscillations need to be
considered. In this case, the much lower fundamental oscillation frequency
indicates a magnetic field of the order of B̄ ∼ 6 × 1013 − 3 × 1014 G, lower
by a factor of ∼ 3 than our estimates in [143]. With such weak magnetic
fields, the oscillations would also remain confined to the core for models
with very strong shear modulus, and there would be no chance to observe
the oscillations exterior to the star. Therefore, similarly to the case of pure
crustal shear oscillations, the low frequencies of 9.2 or 7.7 Hz favour EoSs
that give a small shear modulus. However, the estimation of the magnetic
field strength has some serious problems : i) The spin-down estimate is only
accurate to a factor of a few. ii) The particular magnetic field configura-
tion inside a magnetar is unknown, meaning that even for dipolar-like fields
in the exterior, there are different possible realization in the interior. iii)
In addition to the degeneracies of the dipolar magnetic field strength and
the magnetic field configuration, which lead to comparable frequencies, the
compactness of the neutron star and the superfluid properties of the core
matter also influence the frequencies significantly [146]. In order to advance
and to lift some of these degeneracies, we need more observations of QPOs,
and if possible, observations for different sources.

In respect of the potential of improving our method by modelling the
spectra as an independent combination of a continuum and lines, we post-
pone a more thorough discussion of these consequences to future work. We
also plan to improve our algorithm by taking the deadtime after each photon
detection into account and include further instrument responses. However,
we expect these improvements to increase our detection limits only by about
a few per cent.

We have furthermore shown the capability of our code D3PO to denoise
and recover the shape of the light curve. This may have interesting appli-
cations in the field of modelling the pulses of X-ray bursters.

4.5. Conclusion

We have applied a new Bayesian method, D3PO to analyse time-series data
of the giant flares of SGR 1806-20 and SGR 1900+14. Thereby, we ensured
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that the photon shot noise, operational down times of the instrument, and
the a priori unknown power spectrum of the photon flux were taken into
account. In order to denoise and reconstruct the logarithmic photon flux
and its power spectrum simultaneously from the data, we had to assume
some kind of spectral smoothness on the power spectrum to counteract data
variance. Our analysis cannot confirm previous findings of QPOs in the
giant flare data, but we found new candidates for periodic signals at 9.2 Hz
for SGR 1806-20 and 7.7 Hz for SGR1900+14. If these are real and related
to the lowest frequency oscillation of the magnetar, our results favour high-
compactness, weaker magnetic fields than were assumed before, and low
shear moduli. The necessary application of a smoothness-enforcing prior
results in a reduced sensitivity to the spectral line in the power spectrum.
Hence, we propose for future work to decompose the power spectrum into
two components, one smooth background spectrum, and one consisting of
spectral lines. In this way, the previously reported lines may be confirmed or
refuted with higher confidence, or additional and as yet unknown frequencies
in QPOs might be discovered.



5. Further work

This chapter lists all further publications I have been part of. As my contri-
butions to those are marginal these publications are not shown in their full
extend, only their abstracts.

5.1. NIFTy 3 - Numerical Information Field
Theory - A Python framework for
multicomponent signal inference on HPC
clusters

This section is used additionally as a publication submitted to PLOS one
(Steininger et al., [91]).

NIFTy, ”Numerical Information Field Theory”, is a software framework
designed to ease the development and implementation of field inference al-
gorithms. Field equations are formulated independently of the underlying
spatial geometry allowing the user to focus on the algorithmic design. Under
the hood, NIFTy ensures that the discretization of the implemented equa-
tions is consistent. This enables the user to prototype an algorithm rapidly
in 1D and then apply it to high-dimensional real-world problems. This pa-
per introduces NIFTy 3, a major upgrade to the original NIFTy framework.
NIFTy 3 allows the user to run inference algorithms on massively parallel
high performance computing clusters without changing the implementation
of the field equations. It supports n-dimensional Cartesian spaces, spherical
spaces, power spaces, and product spaces as well as transforms to their har-
monic counterparts. Furthermore, NIFTy 3 is able to treat non-scalar fields.
The functionality and performance of the software package is demonstrated
with example code, which implements a real inference algorithm from the
realm of information field theory. NIFTy 3 is open-source software available
under the GNU General Public License v3 (GPL-3).





6. Conclusion

6.1. Summary

This thesis aimes to bridge between astrophysical observations and theory.
To gain insights into complex dynamic system, we developed the dynamic
system classifier algorithm (DSC). It might be of particular interest for
analysing the detection of a gravitational wave caused by a stellar core
collapse. In order to advance the mathematical toolkit to infer informa-
tion from photon count observations, as needed to get reliable estimates
about different superimposed astrophysical photon fluxes, we generalised
the D3PO code towards more generic and multi-dimensional photon count
data sets. Finally we applied this D4PO code to analyse the giant magnetar
flares SGR 1806-20 and SGR 1900+14.

The first part of this thesis focuses on the development of the DSC, a tool
to analyse stochastic and dynamically evolving systems. DSC consists of
two steps. First it abstracts classifying information from just a few training
samples of a class of systems. The classifying information is encoded via
time dependent coefficients of stochastic differential equations. In the sec-
ond step the algorithm confronts real noise contaminated observations with
the previously learned model classes. Thereby it provides the probability
which class most likely explains the observation.
We introduced a hierarchical Bayesian inference model to minimize the in-
fluence of any a prior assumptions. In numerical tests we showed that one
needs at least three data realisations of each system class to sufficiently
characterise each of them. This is mainly due to the high degeneracy of
our problem, as we try to abstract each stochastically evolving class, simply
by its frequency and damping factor evolution. After learning a number of
system classes, the algorithm properly identified the correct classes in noise
dominated data sets up to an SNR of ≈ 0.01 per measurement.
The strength of the proposed and tested DSC approach is that it depends
on very few prior assumptions and that only a hand full of training data is
needed. Hence the algorithm should find use whenever one cannot afford to
forward simulate a complex dynamical system over its entire possible phys-
ical phase space due to high computational costs. This holds in particular
for gravitational wave signals from core collapse supernova as it is up to
date not possible to simulate such systems in their full extent, due to their
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computational complexity.

For the large variety of space based telescopes that observe the celes-
tial sphere, via the registration of individual photons we developed D4PO.
D4PO denoises, deconolves, and decomposes multidimensional photon ob-
servations into morphologically different sources. It aims to decompose
the high energy photon count data into three different components: dif-
fuse, point-like, and background radiation. Detailed care has been taken
to accurately built the likelihood model, which incorporates a Poissonian
distribution and many instrument artefacts. In contrast to its predecessor,
D4PO allows to reconstruct emission components which may live over the
product space of multiple manifolds, such as energy and time. This per-
mits to reconstruct fields, which do not necessarily need to be statistical
isotropic and homogeneous. In addition to the simultaneous reconstruction
of all components and the provision of their uncertainty estimates, the al-
gorithm infers the correlation structure for each component over all of its
sub-manifolds. The full capabilities of the algorithm have been shown in a
simulated high energy photon count data set.

Finally we applied the new D4PO algorithm1 to analyse the data of
SGR1806-20 and SGR 1900+14. Our analysis could not confirm previously
reported QPOs, despite exhibiting the required sensitivity in the signal in-
jection experiments. However we found new QPO candidates at ≈ 9.2 Hz
for SGR 1806-20 and ≈ 7.7 Hz for SGR 1900+14. As it is statistically not
straight forward to state which of these frequencies correspond to real phys-
ical signals of these magnetars or whether these are just noise artefacts, one
has to be careful with scientific conclusions.
However, if our findings hold, our data analysis would favour a magnetic
field of B̄ ≈ 6×1013−3×1014G. This is a factor of ≈ 3 smaller compared to
previous estimates [150]. With such weak magnetic fields, the oscillations
would remain to be confined to the core and there would be no chance to
observe these oscillations at the exterior of the star.

6.2. Outlook

As this thesis aims at advancing the mathematical toolkits to explore as-
trophysical data set in order to get reliable estimates about the underlying
physical phenomena all developed methods have a wide range of applica-
tions. How one may apply these methods and how they may be refined is
listed below:

1The D3PO algorithm would have the principle capabilities, but its implementation
could not handle the required high resolution in the spectral domain



6.2 Outlook 87

• Dynamic system classifier- Having shown the principle capabili-
ties of the DSC algorithm the next logical step is to apply it to real
data. As outlined the DSC would be ideal to classify a potential
gravitational wave signal caused by a core collapse supernova. This
implies that the DSC can not only classify observations into different
classes but also needs to search for them in very long timelines. Hence
one has to develop a technique to confront the abstracted information
from the small training data sets to real noise contaminated data sets,
where one does not know if and when the GW signal is present in the
data.

• D4PO- As the algorithm is implemented in a rather abstract way on
the basis of NIFTy3.5 [148] it is in principle applicable to any photon
count data observation. In the context of astrophysics the first and
most obvious application fields would be to analyse the space based
X-ray and γ-ray observatories, such as

– Rosat (0.042 keV - 2 keV),

– Chandra X-ray Observatory (0.09 keV - 10 keV),

– XMM-Newton (0.15 keV- 15keV),

– eRosita (0.3 keV - 10 keV, planned launch 2018),

– Integral (15 keV - 10 MeV),

– Compton gamma ray observatory (20 keV - 30 GeV),

– Fermi Gamma-ray Space Telescope (20 MeV - 300 GeV).

Each of these satellite mission provides spatial and spectral informa-
tion for each detected photon count and therefore can be used to
reconstruct the sky as a function of energy and location. As D4PO is
designed for exactly this task, one may even go one step further and
do a joint reconstruction of the sky in four dimensions, including time
as a further parameter. This involves to analyse the data simultane-
ously and would provide a reconstructed sky from ≈ 0.0042 keV up
to ≈ 300 GeV, if the full range of high energy telescopes would be
analysed jointly. Such an inference would allow to propagate spatial
and spectral information across the entire reconstruction through the
correlation structure of each manifold. The imprinted redundancies
of the physical signals in the joint data set would support further a
very efficient background estimation and therefore give more reliable
estimates about the diffuse and point-like photon flux. Higher ener-
gies than reached by the Fermi Gamma-ray Space Telescope may be
included into such an analysis by the usage of Cherenkov telescopes,
such as the Cherenkov telescope array (CTA).
In the context of the analysis of the events SGR 1806-20 and SGR
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1900+14 one may continue to analyse the observed γ-ray burst events
by the Fermi Gamma-ray Space telescope. This can potentially lead
to further constraints on the EoS of neutron stars.



A. Supplement to D4PO

A.1. Covariances and curvatures

The covariance D of a Gaussian G
(
φ− φ̄, D

)
describes the uncertainty as-

sociated with the mean of the distribution. It may be computed via the
inverse Hessian of the corresponding information Hamiltonian or Gibbs free
energy respectively,

∂2G
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The uncertainty covariances of the derived information Hamiltonian eq. (3.31)
are,
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with
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The corresponding covariances of the chosen Gibbs approach in eq. (A.19)
are,
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with

l = Rem+ 1
2
D̂(ϕ)

. (A.10)

Up to the term 1
2
D̂ in the exponential functions, these covariances are identi-

cal to the ones derived via the maximum a posteriori ansatz eq. (A.4). This
shows that these higher order corrections terms change the uncertainty co-
variances, however their influence is hard to judge as they introduce terms
that couple to all elements of D. It must be noted that the inverse Hessian
only describes the curvature of the potential, hence it may only be regarded
as the uncertainty of a reconstruction if the potential is quadratic. How-
ever, numerous numerical experiments showed that this assumption holds
in most cases.

A.2. Deriving the Gibbs free energy

Due to the complex structure of the information Hamiltonian in eq. (3.31),
we are seeking for an approximation to the true posterior eq. (3.28). To this
end we adapt a Gaussian distribution for our posterior approximation and
require it to be close in an information theoretical sense to the correct pos-
terior. The correct information distance is the Kullback-Leibler divergence,
which is equivalent, up to irrelevant constants, to the Gibbs free energy [58].
To do so, we directly adopt the final functional form of the posterior in the
construction of the Gibbs free energy. Here we use an approximate Gaussian
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ansatz for the posterior eq. (3.28) of our signal vector φ =
(
ϕ†, τ †

)†
:

P (φ|d) = G
(
φ− φ̄, D

)
with (A.11)

φ̄ =
(
m†, t†

)†
, (A.12)

the posterior mean, and

D =

(
D(ϕ) 0

0 D(τ )

)
(A.13)

the posterior uncertainty covariance. The posterior mean φ̄ consists of the
mean field m = 〈ϕ〉(φ|d), as well as the mean log power spectrum t =
〈τ 〉(φ|d). The signal covariance D = 〈(φ − φ̄)(φ − φ̄)†〉(φ|d) consists of 2 × 2
block matrices, where the off diagonal terms are set to zero to reduce the
complexity of the resulting algorithm. The non zero blocks are the signal
uncertainty

D(ϕ) =
〈

(ϕ−m) (ϕ−m)†
〉

(φ|d)
, (A.14)

and the log-spectrum uncertainty

D(τ ) =
〈

(τ − t) (τ − t)†
〉

(φ|d)
. (A.15)

In terms of these parameters the Gibbs free energy is given by

G(φ̄, D|d) = U(φ̄, D|d)− TS (φ̄, D|d) , (A.16)

with
U(φ̄, D|d) = 〈H (ϕ, τ |d)〉(φ|d) , (A.17)

being the internal energy, describing the full non-Gaussian Hamiltonian
eq. (3.31), averaged by the approximated posterior eq. (A.11). The entropy
of the approximated Gaussian posterior is

S (φ̄, D|d) = −
∫
DφP (φ|d) logP (φ|d) . (A.18)

Up to an irrelevant sign and an additive constant the Gibbs free energy
eq. (A.16) is equal to the Kullback-Leibler distance of the posterior ap-
proximation if T = 1. Unless stated differently, we therefore usually set
T = 1. If T = 0, the approximate posterior given by eq. (A.11) becomes
a delta function at the maximum of the correct posterior, eq. (3.28), which
might perform poorly in case nuisance parameters such as τ also need to
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be reconstructed. In total the Gibbs free energy becomes

G =G
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with Φ = diag (S,U ,B), G0 is absorbing all constants, and

l = Rem+ 1
2
D̂(ϕ)

. (A.20)

Comparing eq. (A.19) with the information Hamiltonian eq. (3.31), there are
a number of correction terms appearing which properly account for the un-
certainty of the inferred mapm. In particular l differs, comparing eq. (3.33)
with eq. (A.20), which in the framework of Gibbs free energy describes the
expectation value of λ over the approximate posterior eq. (A.11). Minimiz-
ing the Gibbs free energy with respect to m, t and D would optimize the
inference under the assumed Gaussian posterior.

In the following sections we will gradually derive the Gibbs free energy.

The Entropy

Due to the Gaussian ansatz eq. (A.11) the entropy eq. (A.18) is independent
of φ̄,

S (φ̄, D|d) =
1

2
Tr [1 + ln(2πD)] (A.21)

and therefore its gradients with respect to m and t vanish,

∂S

∂m
= 0 ,
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∂t
= 0 . (A.22)
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Internal energy of the hyperprior

The internal energy of the hierarchical Gaussian prior P (τ |σ, α, q) is

U (τ )
(
φ̄, D|d

)
= 〈H(τ )〉(φ,D|d) (A.23)
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2
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with T = (TY(s) , TX (s) , TY(u) , TY(b) , TI(b))
†. A hat on a tensor denotes the

diagonal vector in the position basis, D̂x = Dxx, while a hat on a vector
refers to a tensor with the vector as its diagonal, m̂xy = δxymx. Similarly
we define a tilde on a tensor as the diagonal vector in the band harmonic
basis, θ̃k = θkk, and a tilde on a vector denotes a tensor with the vector on
its diagonal in the band harmonic basis, t̃kl = δkltk.

The corresponding non-vanishing gradients of the hyperprior’s internal
energy eq. (A.24) are
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Internal energy of the prior for ϕ

The priors for ϕ provide the internal energy
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The corresponding gradients are
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and with the multiplicities ρP = TrP of the spectral bands k and l, which
are sharing the same harmonic eigenvalue.

Internal energy of the Inverse-Gamma prior

The internal energy of the inverse-gamma prior on ϕux is

U(ϕux)(φ̄, D|d) = (β − 1)†mux + η† exp

(
−mux +

1

2
D̂(ϕux )

)
, (A.36)

with its corresponding gradient
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Internal energy of the likelihood

The internal energy of the likelihood eq. (3.8) is

U(φ̄, D|d) = 〈H(d|ϕ, D)〉(φ,D|d)
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with
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where we absorbed all terms that are constant in ϕ into G0. The evolution
of the internal energy would require to know all entries of D(ϕ) explicitly.
As this is computationally infeasible and the term

〈(
λ
l
− 1
)ν〉 ≈ 0 at the

mode where λ ≈ l, this sum can be neglected. As a consequence all cross
correlations, such as D(su) are implicitly set to zero.
The gradient of eq. (A.38) can be derived by taking the first derivative of
U(φ̄, D|d) with respect to the approximate mean estimates,
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B. Supplement to QPO signals in
magnetar giant flares

B.1. Influence of the smoothness-enforcing
parameter σ

To demonstrate the performance of the Bayesian inference algorithm, we
challenged the new implementation of the algorithm with mock data. To
do so, we drew Poisson samples from λ = Res. For simplicity, we assumed
R to be the identity operator. The signal field s was drawn from a Gaussian
random field s←↩ G (s, S), with

Sνν′ =
27

(1 + ν/ν0)2 δνν′ , (B.1)

with ν0 = 1 absorbing the physical units. To test whether the algorithm can
reconstruct discrete frequencies as well, we further injected four δ-peaks into
Sνν′ at randomly chosen positions. The peak heights decrease at higher fre-
quencies to be as realistic as possible. For the test we used a one-dimensional
regular grid with with 216 pixels, each with a volume of 1/1000 seconds.
In fig. B.1 we tested the principle capabilities of the algorithm under the
above-mentioned setting while varying the strength of the smoothness en-
forcing parameter σsm. In the scenario of σsm = 104, shown in figs. B.1a
and B.1b, the algorithm was able to recover the signal as well as the power
spectrum well within the one-σ confidence interval. However, the two high-
est injected frequencies could not be recovered, as their injected strength
and therefore their effect on the data was too weak to be distinguished from
the Poisson shot noise.
In comparison to fig. B.1b, fig. B.1c shows the reconstructed power spec-
trum using a significantly weaker smoothness enforcing σsm = 105. As a
first obvious consequence, the local variance of the spectrum increases by
multiple orders of magnitude. However, the same two frequencies as with
the stronger σsm were clearly recovered. As a further consequence of the
smaller σsm , the power spectrum does not fully recover the shape of Sνν′ as
it picks up more noise features from the recovered map and data. For a de-
tailed discussion and mathematical derivation of this smoothness-enforcing
parameter, we refer to [57].
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B.2. Recovery of spectral lines at high
frequencies

Now we estimate how strong periodic oscillations must be in order to be
detectable in the reconstructed power spectrum. To be as close as possi-
ble to a realistic scenario, we manipulated the reconstructed photon flux of
event SGR 1806-20. We added a periodic signal with discrete frequencies
at 18.0, 26.0, 30.0, and 90.0 Hz to the reconstructed φ shown in fig. 4.1a.
The relative strength of this additional photon flux was varied, between
102 and 105 times stronger than the local power of the injected frequencies.
From these manipulated fluxes, we again drew Poisson samples and let the
algorithm recover the power spectrum and the flux.
fig. B.2 shows the reconstructed power spectra. In the setting of the top
panel, we were only able to recover the injected frequency at 18 Hz, the
other three could not be inferred as their strength of 102 compared to the
local power was too weak to be identified as part of the signal and not the
Poisson shot noise. However, as the one-σ confidence interval of the recon-
structed spectrum at 18 Hz . ν . 40 Hz increases, the algorithm is just at
the S/N threshold at which it is able to reconstruct discrete frequencies.
If the injected strength of the frequencies, that is, the amplitude of the
injected signal, becomes larger, as in fig. B.2b, the algorithm can infer all
frequencies.
Hence, we may conclude that if the data show periodic signals at high
frequencies with sufficient strength, they can be reconstructed by the algo-
rithm. The strength of the periodic signal must therefore be at least 102

times stronger than the local power of the signal in order to give a significant
imprint on the reconstructed power spectrum.

B.3. Recovery of quasi-periodic oscillations

Here, we estimate how strong QPOs have to be for our algorithm to still
find a significant signal in the reconstructed power spectrum. Similar to
appendix B.2, we used the reconstructed photon flux, fig. 4.1a of event SGR
1806-20, and added a quasi-periodic signal at around 20 Hz and 90 Hz. We
assumed that the power spectrum of a QPO has an approximately Gaussian
shape with variance σ ≈ 0.6. From this manipulated flux, we drew Poisson
samples and let the algorithm recover the power spectrum and the flux.
Figure B.3 shows the power spectrum of the Poissonian photon counts for a
pure QPO-like injected signal, smoothed with a Gaussian convolution kernel
whose variance is the same as that of the injected QPO. The reconstructed
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Figure B.1.: Reconstruction, i.e. map and power spectra from mock data,
created according to appendix B.1. For clarity, fig. B.1a only
shows a snapshot of the events between 32.8 sec . t . 33 sec.
In addition to the raw photon counts, the black line shows
the original signal s, as well as the reconstruction in red, in-
cluding its uncertainty. Figure B.1b shows the reconstructed
power spectra as well as its uncertainty, as in fig. B.1a, using a
smoothness-enforcing prior with σsm = 104. Figure B.1c shows
a reconstructed power spectrum with a weaker smoothness-
enforcing prior with σsm = 105.
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(a) (b)

Figure B.2.: Reconstructed power spectrum, according to the test scenario
described in appendix B.2. The strengths of the injected fre-
quencies are 102 (top) and 105 (bottom) times stronger than
the local power at these frequencies. The displayed uncertain-
ties indicate the one-σ confidence interval.
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Figure B.3.: Smoothed Leahy power of the injected pure QPO-like signal.
The two QPOs at 20 Hz and 90 Hz were reconstructed by
D3PO, fig. B.4.
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Figure B.4.: Reconstructed power spectrum according to the QPO injection
test described in appendix B.3. The displayed uncertainties
indicate the one-σ confidence interval.

power spectrum is shown in fig. B.4. The S/N around 20 Hz is much higher
than the S/N around 90 Hz. Therefore, the QPO at 20 Hz has a significantly
larger amplitude in the reconstructed power spectrum than that around 90
Hz. The strength of the injected QPO at 90 Hz is just at the threshold
to give a significant signal in the reconstructed power spectrum. Thus, we
may conclude that at this frequency, a QPO has to have a Leahy power of
the order of 3 in order be detectable by D3PO.
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