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Zusammenfassung

Der technologische Fortschritt ermöglicht es heutigen Wissenschaftlern verschiedener Bereiche,

zunehmend Daten zu erheben, die aus funktionalen Beobachtungen anstelle von einzelnen Daten-

punkten bestehen. Intensive Forschung im Bereich der funktionalen Datenanalyse zielte in den letzten

Jahren darauf ab, Methoden zu entwickeln, um das gesamte Potenzial dieser Art von Daten zu er-

schließen. Viele der vorgeschlagenen Methoden basieren auf der Annahme unabhängiger funktionaler

Beobachtungen. In der Praxis kann dies eine große Einschränkung darstellen, da die funktionalen

Beobachtungen häufig korreliert sind, beispielsweise aufgrund wiederholter Beobachtungen pro Sub-

jekt oder Gruppierung in den Daten.

Der Schwerpunkt dieser Dissertation liegt auf der Analyse von funktionalen Daten mit komplexen

Korrelationsstrukturen. Funktionale lineare gemischte Modelle, das funktionale Pendant zu skalaren

linearen gemischten Modellen, werden verwendet um korrelierte funktionale Daten zu analysieren.

Hierbei werden die zufälligen Effekte der skalaren linearen gemischten Modelle durch Funktionen er-

setzt, die über den Träger der beobachteten Daten variieren.

Zusätzlich zu der Annahme unabhängiger funktionaler Beobachtungen setzen die meisten bestehen-

den Methoden voraus, dass die funktionalen Beobachtungen an einer typischerweise großen Anzahl

an Beobachtungspunkten vorliegen, die über alle Kurven gleich sind. Diese starke Anforderung

wird in Anwendungen oft nicht erfüllt, da funktionale Beobachtungen häufig an kurvenspezifischen,

möglicherweise wenigen, irregulären Gitterpunkten vorliegen. Mit dem Ziel, diese Einschränkung

zu überwinden, liegt ein besonderer methodologischer Schwerpunkt dieser Dissertation auf der Er-

weiterung von funktionalen linearen gemischten Modellen und ihrer Schätzung auf Daten, die auf

ungleichen Gittern oder sogar spärlich beobachtet werden.

Diese Dissertation entwickelt ein neues Modellierungsframework, das sowohl komplexe Korrelations-

strukturen zwischen funktionalen Beobachtungen als auch Beobachtungen auf generellen Gittern be-

handelt. Bisherige Ansätze erlauben entweder weniger allgemeine Korrelationsstrukturen oder lassen

keine generellen Gitter und Spärlichkeit der Beobachtungen zu.

Dem funktionalen Charakter der Daten wird Rechnung getragen, indem die Modellterme des addi-

tiven Prädiktors in geeigneten Basen dargestellt werden. Zur Darstellung der funktionalen zufälligen

Effekte werden Basen aus funktionalen Hauptkomponenten gewählt. Diese können als natürliche

funktionale Erweiterungen multivariater Hauptkomponenten angesehen werden und repräsentieren

somit die Hauptrichtungen der Variation in den Daten. Durch Verwendung der bedeutendsten Rich-

tungen wird eine, für funktionale Daten besonders entscheidende, Dimensionsreduktion erreicht. In

Analogie zum multivariaten Fall entsprechen die funktionalen Hauptkomponenten der funktionalen

zufälligen Effekte den Eigenfunktionen der entsprechenden Kovarianzoperatoren. Die Schätzung der

Kovarianzen latenter Prozesse ist ein nicht triviales Problem und stellt daher ein zentrales Element

dieser Dissertation dar.

In den ersten beiden Teilen dieser Arbeit werden zwei neue Momentenschätzer für die Kovarianz

latenter Prozesse vorgeschlagen. Sie unterscheiden sich in der Allgemeinheit der angenommenen

Korrelationsstrukturen und der unterstützten Beobachtungsgitter. Beide Kovarianzschätzmethoden
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beinhalten bivariate Glättung von einer oder mehreren Kovarianzen. Im dritten Teil wird ein schneller,

symmetrischer bivariater Glättungsansatz vorgeschlagen, der besonders geeignet ist um glatte Kovari-

anzen zu schätzen, indem er sich deren Symmetrieeigenschaften zunutze macht. Seine Anwendung

reduziert sowohl Rechenzeit als auch Speicherbedarf erheblich.

Das vorgeschlagene Modellierungsframework wird in umfangreichen Simulationsstudien evaluiert. Die

Relevanz der vorgeschlagenen Methoden wird durch Analysen von Daten aus der Sprachproduktions-

forschung und aus medizinischen Studien hervorgehoben. Um die praktische Verwendung der Metho-

den zu ermöglichen, werden open-source Implementationen in den beiden R Paketen denseFLMM und

sparseFLMM zur Verfügung gestellt.



Abstract

Technological advances allow today’s scientists in various fields to collect an increasing amount of

data consisting of functional observations rather than single data points. Intense research in statis-

tical methodology for functional data during the last years has aimed at developing methods that

exploit the whole potential of this type of data. Many of the proposed approaches assume that the

functional observations are independent. This may be very restrictive in practice, where correlation

is frequently induced by, e.g., repeated observations per subject or grouping in the data.

The main focus of this thesis is on the analysis of functional data with complex correlation structures.

Functional linear mixed models that represent functional counterparts to scalar linear mixed models

are applied to analyze correlated functional data. The random effects of scalar linear mixed models

are replaced by functions that vary over the same domain as the observed data.

In addition to assuming independent functional observations, most existing methods are restricted to

functional observation that are available at a typically large number of observation points that are

the same across all curves. This strong requirement is often not met in applications, where functional

observations are frequently evaluated at curve-specific–possibly few–irregularly spaced points. To

overcome this restriction, special methodological emphasis of this thesis is placed on the extension of

functional linear mixed models and their estimation to data that are observed on unequal grids or

even sparsely.

This thesis develops a new estimation framework that addresses both complex correlation structures

between functional observations as well as observations on general sampling grids. Previous work

is either less general in the assumed correlation structure or does not allow for general grids and

sparseness. The functional nature of the data is accounted for by expanding all model terms in the

additive predictor in suitable bases. For the functional random effects, bases of functional principal

components are chosen. These can be seen as natural functional extensions of multivariate principal

components and thus represent the dominant modes of variation in the data. Using only the most im-

portant directions provides the dimension reduction critically important for functional data analysis.

In analogy to the multivariate case, the functional principal components of the functional random

effects correspond to the eigenfunctions of their respective covariance operators. How to estimate

covariances of latent processes is non-trivial and thus constitutes an essential element in this thesis.

In the first two parts of this work, two novel method of moments estimators for covariances of latent

processes are proposed. They differ in the generality of the assumed correlation structures and the

supported sampling grids. Both covariance estimation methods involve bivariate smoothing of one or

multiple covariances. In the third part, a fast symmetric bivariate smoothing approach is proposed

that is particularly suited to estimate smooth covariances by taking advantage of their symmetry. Its

application considerably reduces computation time and memory requirements.

The proposed modeling framework is evaluated in extensive simulation studies. The relevance of the

proposed methods is highlighted in applications to data from speech production research as well as

from medical studies. To allow the practical application of the methods, open-source implementations

are provided in the two R add-on packages denseFLMM and sparseFLMM.
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Chapter 1

Introduction

1.1 Introduction to functional data and their analysis

Steady technological progress in the last decades has made it increasingly affordable to collect and

store a growing amount of functional data. These data have a functional nature in the sense that

they can–at least theoretically–be observed in arbitrarily fine resolution. The desire to exploit the

whole potential of these data in combination with the resultant challenges has put forth a new branch

of statistics called functional data analysis (FDA; see, e.g., Ramsay and Silverman, 2005). As in

‘classical’ statistics, FDA is concerned with data description, exploration, and inference, where in this

case the data are functions living in a suitable infinite-dimensional function space. Most commonly,

these functions are real-valued one-dimensional curves, frequently observed over time. Yet, functional

data can also be collected on higher-dimensional domains yielding more complex objects such as

surfaces, images, or shapes. Although for ease of understanding, functional data are often introduced

as functions varying over time, much more general domains such as space, wavelength, or combinations

of those are possible. Examples of functional data are numerous and come from diverse fields. They

include acoustic recordings in speech sciences, spectroscopy data in chemistry or medicine, climate

and neuroimaging data, and data from wearable devices in health care, among many others (e.g.,

Pouplier et al., 2014; Reiss and Ogden, 2007; Besse et al., 2000; Zipunnikov et al., 2011; Goldsmith

et al., 2015).

As, in practice, the data at hand consist of–potentially high-dimensional–vectors of discrete

observations rather than continuous functions, a legitimate question is what differentiates functional

data from multivariate data, justifying the need to develop new statistical theory and tools. The key

difference is that functional observations can be seen as structured objects with a natural ordering

in their dimensions rather than a collection of single data points. It is typically assumed that an

underlying continuous stochastic process is giving rise to the data, often equipped with some kind of

additional smoothness assumption reflecting the similarity of adjacent values. Smoothness can, for

example, mean that the first and second derivatives exist (Ramsay and Silverman, 2005, Chapter

3). FDA accounts for the continuous nature by treating an entire function as one statistical object



2 1. Introduction

and thus the unit of observation is a function. A functional data set thus consists of a sample of

functions that can be regarded as realizations from a stochastic process. This allows to combine

both information within and between functional observations, sometimes referred to as regularity

and replication (Ramsay and Silverman, 2005, Chapter 22).

History of functional data analysis

Today’s concept of functional data analysis can be dated back at least to the work of Ramsay (1982)

and has gained increasing popularity since. Access to a growing amount of interesting functional

data sets as well as increasing ability to store, transfer, and manipulate high-dimensional data has led

to a great interest in the field. The close connection of FDA to the analysis of stochastic processes,

longitudinal data and time series analysis, non-parametric modeling and functional analysis along

with the broad range of applications has motivated scientists from different backgrounds to contribute

to the field. This has created a versatile framework consisting of theory, methodology, and practical

applications, including suitable statistical software.

The often-cited book by Ramsay and Silverman (2005), already published in its first edition

in 1997, can be considered a milestone in FDA. It made the field accessible to a wide range of

scientists by providing an overview with practical orientation and numerous illustrative examples.

More theoretical aspects of FDA are covered in the books by Ferraty and Vieu (2006) and Horváth

and Kokoszka (2012). The former concentrates on non-parametric functional data analysis and

in particular deals with semi-metrics for functions on one-dimensional domains. The latter covers

applicable inferential methods for functional data including statistical hypothesis tests. In contrast

to Ramsay and Silverman (2005), who assume independent and identically distributed (i. i. d.)

observations, both additionally cover the case of dependent functional observations, which is also a

main issue in this thesis. The recent book by Hsing and Eubank (2015) elaborates mathematical

concepts relevant for the (further) theoretical development of FDA. In addition to these monographs,

a number of collections of different topics in FDA reflect the ongoing interest and the thematic

diversity of the field (e.g., Ferraty, 2011; Ferraty and Romain, 2011; Bongiorno et al., 2014). Several

special issues in various statistical journals highlight different aspects of FDA, such as the special

issue on the connection to longitudinal data analysis from 2004 in Statistica Sinica (volume 14(3)).

For some recent review articles on the development of FDA, see Cuevas (2014), Goia and Vieu

(2016), and Wang et al. (2016). A systematic review on applications of FDA is given in Ullah

and Finch (2013). Some software for FDA is listed in, e.g., Febrero-Bande and Oviedo de la

Fuente (2012), Morris (2015), Wang et al. (2016), and Greven and Scheipl (2017), including add-

on packages for R (R Core Team, 2016), MATLAB (MATLAB, 2013), and WINBugs (Lunn et al., 2000).

Assumptions

As in every statistical field, assumptions have to be made in order to provide a framework to work in.

In FDA this includes the choice of a suitable function space, depending on the aspects of interest. For

curves–which are in the focus of this thesis–a common choice is the L2(T )-space of square integrable

functions defined on a bounded interval T of the real numbers. The requirement that the functions
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are square integrable ensures finite first and second moments, which are at the heart of many

statistical procedures and key elements in this thesis. Moreover, the L2(T )-space with the inner

product 〈f, g〉 =
∫
T f(t)g(t) d t is a separable Hilbert space (see, e.g., Horváth and Kokoszka, 2012).

The existence of an inner product and its induced norm are necessary for definitions of proximity,

magnitude, and for a concept of orthogonality. A separable Hilbert space allows the approximation

of any element by a finite linear combination of a certain set of orthonormal functions, which is

important for numerical treatment. Although the L2-space with the induced norm is suitable for

many methods in FDA, other choices exist and may be preferred for certain objectives (see, e.g.,

Ferraty and Vieu, 2006, Chapter 1). In this thesis, all random functions are assumed to live in the

L2-space.

In most practical applications, the trajectories are observed with additional random measurement

error, which is typically assumed to be uncorrelated within and across the functional observations.

A common assumption is that a random (homoscedastic) white noise measurement error with finite

variance contaminates the underlying process, leading to random fluctuations around the smooth

trajectories. As a consequence, denoising is often necessary in order to avoid over-fitting and to

recover the underlying true process. This usually involves some kind of smoothing (e.g., using splines).

Further assumptions concern the dependency structure of the functions in the sample. A

large number of approaches are based on the assumption of i. i. d. observations. As for scalar or

multivariate data, however, numerous examples exist in which dependence of the observations is

induced, e.g., by study design or spatial sampling. Therefore, an increasing number of approaches

aim to account for correlation structures of different generality and type (see, e.g., Kokoszka, 2012).

Another important issue is the choice of the sampling grids, i.e., the discrete points on which

the functions are observed. It affects the choice of a suitable estimation procedure as well as the

asymptotic theory (see, e.g., Zhang and Wang, 2016). Different aspects need to be considered as the

sampling grids may be assumed equal for the whole sample or observation-specific, and the grids can

consist of points of different number and regularity. The majority of approaches exclusively applies

to data sampled on a common grid, which facilitates notation and often speeds up computation as

information can be compressed. Although some approaches allow a certain amount of missing values,

this is still too restrictive for many practical applications such as medical observational studies, where

measurements are frequently recorded at patient- or observation-specific time points. It is commonly

distinguished between so-called ‘dense’ and ‘sparse’ sampling grids, describing the magnitude of the

number of measurement points relative to the sample size. Often, functional data are termed as

dense when the number of measurement points for all observations is larger than some order of the

sample size. A rigorous definition is, however, still lacking (Zhang and Wang, 2016). Extensions

of the concept of dense and sparse grids exist, in which grids may belong to neither category or

may even be ‘ultradense’ (Wang et al., 2016). Sparsely sampled data need careful handling as some

methods such as smoothing of single functions or numerical integration become very difficult or
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impossible. A central assumption in the sparse setting is that in total (across all observations) the

measurement points are well distributed over the whole domain. One can take advantage of this by

pooling the data in order to borrow strength across different observations (e.g., Yao et al., 2005).

When the functions are observed at sampling grids of different lengths, functions with a larger

number of points contribute more to the estimation. Depending on the objectives of the analysis,

this may be intended or not. Different propositions have been made to control the contribution; see

Zhang and Wang (2016) for a study on different weighting schemes in the context of local smoothers

for mean and covariance functions. To avoid confusion, it should be noted that at least three different

meanings of ‘sparsity’ exist in FDA. The first relates to the sparsity of the sampling grid as described

above and is the meaning referred to in this thesis. A second conception of sparsity is concerned

with the sparsity of the sampled functional data in their infinite-dimensional space, which is closely

related to the concept of the ‘curse of dimensionality’ (Bellman, 1961); a more detailed explanation

and discussion is given in Chapter 3 of Ferraty and Vieu (2006). A third meaning of sparsity exists

in the context of model selection for functional data. It generalizes the concept of parameter sparsity

in parametric models to the functional framework; for a thorough discussion, see Wang and Kai (2015).

Aims and extensions

The aims in FDA are the same as in any other statistical area. They include, among others, an

appropriate representation of the data and their graphical visualization, the study of similarities and

differences between statistical objects, the analysis of variability, and the recognition of (ir)regularities

in data. Moreover, one is often interested in relating a variable to one or a combination of multiple

other variables of interest used for explanation or prediction; all with the idea in mind to simplify

for better understanding and usually with a focus on interpretability and parsimony. Furthermore,

the quantification of all kinds of uncertainty plays a major role.

Dealing with functional data brings new opportunities but also poses additional challenges. While

on the one hand, new sources of information can be exploited by assuming ordered and related adjacent

values, on the other hand, new requirements have to be met when working with complex objects in

infinite-dimensional spaces. The resulting challenges are of both a theoretical and a practical nature.

Theoretical concepts such as definitions of the mean and variance of a random variable and notions

of quantiles or outliers need to be rethought or adapted, if at all possible (e.g., Cuevas, 2014). In

analogy to scalar or multivariate random variables, for which the mean is a scalar or rather a finite-

dimensional vector, the mean of a random function is a function living in the same function space.

Of major importance for this thesis is the extension of matrices to compact linear operators, that

can be seen as their infinite-dimensional analogues. Thus, scalar variances and multivariate variance-

covariance matrices are extended to (auto-)covariance operators. For one-dimensional functions they

can be represented as surfaces, with the variance function located on the diagonal. Different notions

of so-called ‘functional depth’ have been introduced that allow to order a sample of functions with

respect to their centrality. This is crucial for definitions of, e.g., quantiles and outliers (see, e.g.,

Cuevas et al., 2007; López-Pintado and Romo, 2009). For rigorous definitions and a comprehensive
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overview on extensions from a mathematical perspective, see, e.g., Horváth and Kokoszka (2012) and

Hsing and Eubank (2015).

Besides the theoretical concepts that need to be extended, also the practical methods in FDA need

to meet certain requirements. First, methods for functional data should make use of the assumed

smoothness of the underlying process, which is not accounted for by standard methods for scalar

or multivariate data. Second, the methods need to combine information both within and across

functional observations. Third, as functional data are intrinsically infinite-dimensional, dimension

reduction is an essential ingredient in FDA. Another reason for the importance of dimension reduction

is that, in practice, functional observations often involve a high number of points per curve compared

to the number of observed curves. From a standard multivariate point of view, this means that the

number of variables exceeds the number of observations and thus corresponds to a high-dimensional

data problem. Fourth, a frequently encountered challenge specific to the analysis of random functions

is that in addition to the amplitude variation, which is commonly of interest, also phase variation is

present, which might be of interest but can also be a source of confounding. A typical example is

the analysis of growth curves, where the timing of important features such as rapid growth during

puberty varies from subject to subject. To avoid confounding the two sources of variation, registration

or alignment of functions is an important issue in FDA (Ramsay and Silverman, 2005).

All this raises the need to extend existing methods in order to match the specific characteristics

of functional data and to exploit their whole potential. Functional analogues of various scalar and

multivariate practical methods have been proposed in the literature and are constantly extended and

combined. These include regression modeling, classification and clustering approaches, resampling

methods, and dimension reduction tools; see Morris (2015) and Greven and Scheipl (2017) for a

review on regression modeling (see also Section 1.2), Báıllo et al. (2011) for a review on functional

classification, Jacques and Preda (2014a) on functional clustering, McMurry and Politis (2011) on

resampling methods for functional data, and Hall (2011) and Shang (2014) on functional principal

component analysis (FPCA), which is a key tool for dimension reduction in FDA (see Section 1.3).

For a recent general overview on extensions to functional data, see Cuevas (2014) and Wang et al.

(2016). In addition to such extensions of well-studied approaches from scalar or multivariate to

functional data, different methods for registration and alignment have been proposed; see Ramsay

(2011) for an overview on curve registration. Moreover, derivatives of curves are often of interest

as they have practical interpretations such as velocity and acceleration and new methods have been

developed that make use of this additional available information; see, e.g., Ramsay and Silverman

(2005) for an introduction.

A key element in the analysis of functional data is smoothing. It plays a prominent role for a

number of reasons, which are in fact closely linked. First, it may be used for data representation.

As the data come to us as discrete measurements, the observed curves may be smoothed to account

for their functional nature. Commonly, a representation in basis functions is used, allowing for high

flexibility while representing the functions in a finite-dimensional framework (see, e.g., Ramsay and

Silverman, 2005). Thus, smoothing functional data is also closely related to dimension reduction.

Second, smoothing serves as an imputation method. Once the underlying process of functional
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observations is reconstructed, one can obtain values at any desired point on the domain, which is

of particular importance for sparsely sampled data. Third, smoothing can be seen as a tool for

regularization–a crucial issue for complex high-dimensional problems.

The next two sections (Section 1.2 and Section 1.3) introduce two of the mentioned methods

for functional data, functional regression and FPCA, in more detail, as the main focus of this thesis

is on a specific class of functional regression models and their estimation using dimension reduction

based on FPCA.

1.2 Functional regression

Regression analysis plays a central role in statistics as in many empirical problems, the interest lies in

the type and extent of the influence of one or more explanatory variables on a response variable. It

is one of the most frequently used methods in many fields of application. The extension of regression

analysis to the functional framework has received much attention in the literature. A wide range

of regression models has been proposed, which can be applied depending on the objective and data

situation. Moreover, for each type of regression model, numerous approaches to estimation exist. For

a comprehensive summary on different model types and estimation approaches, see Morris (2015)

and Greven and Scheipl (2017). In the following, a brief overview is given in order to put the regres-

sion models considered in this thesis into context; a more detailed description is provided in Chapter 2.

Functional regression models allow to capture the relationship among different kinds of data.

On the whole, one distinguishes between models in which the response and/or (some of) the explana-

tory variables are functions. Correspondingly, the three functional model types are commonly termed

as ‘function-on-scalar’, ‘scalar-on-function’, and ‘function-on-function’ regression (Reiss et al., 2010).

Further classifications of functional regression models can be made in analogy to scalar data. The

models differ in the generality of the assumed type of influence of the explanatory variables, that can,

e.g., be linear or smooth and may include interactions; see, e.g., McLean et al. (2014) for smooth

effects of functional covariates and Fuchs et al. (2015) for interactions of functional covariates.

Different distributional assumptions of the response variables are made, including distributions from

the exponential family as well as many more (e.g., James, 2002; Müller and Stadtmüller, 2005;

McLean et al., 2014; Scheipl et al., 2016a). As for scalar data, most models assume independent

responses, but extensions of different degree of generality exist and are also in the focus of this thesis

(e.g., Brumback and Rice, 1998; Morris et al., 2003; Di et al., 2009; Greven et al., 2010; Scheipl et al.,

2015). Most commonly, the focus is on the conditional mean of the response variable. However, a

number of approaches beyond mean regression have been developed in the last years (e.g., Chen and

Müller, 2012; Staicu et al., 2012; Brockhaus et al., 2015). Finally, models from both the frequentist

and the Bayesian perspective have been proposed.
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Function-on-scalar regression for independent data

This thesis deals with function-on-scalar regression models for a sample of n one-dimensional real-

valued functions Yi ∈ L2(T ), i = 1, . . . , n, observed at possibly curve-specific measurement points

tij ∈ T , j = 1, . . . , Di. The simplest model with functional response is given by the linear model

Yi(tij) = Xi(tij) + εi(tij)

= µ(tij) + Ei(tij) + εi(tij), (1.1)

in which the functional observations are assumed to be independent, noisy realizations from the un-

derlying smooth random functions Xi(tij) with mean µ(tij). More precisely, the underlying functions

Xi(tij) = µ(tij) + Ei(tij) are assumed to be i. i.d. copies of an L2-stochastic process {X(t) : t ∈ T }.
Note that whenever one assumes that the observed data are noisy realizations of a latent process, one

directly finds oneself in a basic regression framework with a model as the ‘signal plus noise’ model

(1.1) (see, e.g., Ramsay and Silverman, 2005, Chapter 3). The reconstruction of the underlying curves

allows to model their whole course and to impute values at any point t ∈ T . The relationship to

explanatory variables besides the function argument can be captured by extending Model (1.1) to

allow for different kinds of effects of scalar covariates which can be included by extending the mean

function. For linear effects of only factor covariates, the model can be seen as a model for functional

analysis of variance (FANOVA; see Zhang, 2013, for an overview).

Function-on-scalar regression models of this type are frequently applied in the analysis of

longitudinal data, which consist of repeated measurements of subjects over time. Whereas classical

models in longitudinal data analysis (LDA; see, e.g., Diggle et al., 2002) are strictly parametric,

the use of FDA allows to relax the assumptions both for fixed and random effects. The latent

process Ei(tij) in Model (1.1) extends the notion of a random effect for subject i by capturing the

within-subject correlation along t. For a comprehensive discussion on the connection between LDA

and FDA, see Rice (2004). Typically, longitudinal data are irregularly spaced and the number of

measurements per subject are often small. As many approaches in FDA are restricted to data

sampled on a common, fine grid, a number of extensions have been proposed that are specifically

designed for irregularly or sparsely sampled longitudinal data (e.g., Staniswalis and Lee, 1998; James

et al., 2000; Yao et al., 2005; Peng and Paul, 2009; Chen and Wang, 2011; Xiao et al., 2017).

Function-on-scalar regression for dependent data

Model (1.1) accounts for the within-curve correlation of the functional responses but different curves

are assumed to be independent. The assumption of independent curves is very restrictive and

unrealistic for many applications. Dependence may be introduced, for example, when multiple curves

per subjects are measured, e.g., over time (longitudinal functional data), or when subjects are nested

within groups. Moreover, experimental setups with crossed designs are frequently encountered, e.g.,

in the speech sciences, where curves are measured for subject-item combinations.

Scalar correlated data are commonly analyzed using linear mixed models (LMMs; see, e.g., Pin-

heiro and Bates, 2000). A natural extension to correlated functional data are functional linear mixed
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models (FLMMs; see, e.g., Morris, 2015, for a discussion and further references). The term ‘functional

mixed effects model’ was first introduced by Guo (2002). Their model, however, accounts only for

within-curve correlation and is thus suited for a non-parametric analysis of longitudinal data rather

than of correlated functional data. In contrast, in this thesis the term FLMM is used for models that

are able to capture both within- and between-curve correlation. As in the scalar case, FLMMs contain

both fixed and random effects, characterizing the population average and observation unit-specific

deviations, respectively. The key difference is that the random effects in the FLMM are random

functions varying over T , which accounts for the functional nature of the response variables. In con-

trast to usual scalar LMMs, in which random intercepts and slopes only allow linear deviations from

the population average, functional random effects are much more flexible. For curves observed on a

common grid, an FLMM can be thought of as an LMM at each observation point t ∈ T , where addi-

tionally smoothness is assured along the domain. An FLMM with one functional random intercept

Bi(tijk) for each subject i, i = 1, . . . , n, is given by

Yij(tijk) = µ(tijk) +Bi(tijk) + Eij(tijk) + εij(tijk), j = 1, . . . , Ji, k = 1, . . . , Dij , (1.2)

where Yij(tijk) denotes the value of the response curve j of subject i at the curve-specific point tijk.

The response Yij(tijk) is additively decomposed into a global mean function µ(tijk), the functional

random intercept for subject i, Bi(tijk), and a random curve-specific smooth deviation in the form of

a smooth residual curve Eij(tijk). The smooth residual curve can in fact be seen as a curve-specific

functional random intercept. Additional random measurement error εij(tijk) captures random

uncorrelated variation within each curve. Note that in case of equal grids, the notation can be

simplified. Various extensions of Model (1.2) (mainly for equal grids) have been proposed in the

literature. The models mainly differ in the generality of the assumed correlation structure in the

data and in the type of influence of the covariates on the response. For a review on FLMMs, see

Liu and Guo (2012), Morris (2015), and Greven and Scheipl (2017); see also the introductions of

Chapters 3, 4, and 5. Greven and Scheipl (2017) also show how FLMMs can be embedded in a

framework for general functional regression models.

In this thesis, a very general class of FLMMs is considered that includes Model (1.1) and

Model (1.2) as special cases. The FLMMs apply to data with a broad range of correlation structures

and accommodate functional random intercepts and slopes. Different linear and smooth effects of

scalar covariates and their interactions can be included. More details on the general class of FLMMs

are provided in Chapter 2 and in the subsequent chapters.

Estimation

A number of different estimation approaches for function-on-scalar regression models and for FLMMs

in particular have been proposed. Although the model formulation is essentially the same for data

that are observed on a common, dense grid and data that are irregularly sampled with possibly few

points per curve, the sampling grid plays an important role in the estimation. In particular, the
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sampling grid becomes crucial for the choice of an appropriate dimension reduction and smoothing

technique. A comprehensive overview on different approaches to represent and estimate models with

functional responses is presented in Greven and Scheipl (2017).

A common approach is to pre-smooth each vector of observations, often using a basis function

expansion. The data are then treated as continuous functions for further analysis (see, e.g., Besse and

Ramsay, 1986; Ramsay and Dalzell, 1991; Ramsay and Silverman, 2005). This may, however, become

very difficult or impossible for sparsely observed data. Moreover, pre-smoothing the data usually

implies that any variability discarded by the smoothing method, in particular the measurement error,

is not accounted for in the following estimation steps.

An alternative approach, which is pursued in this thesis, models the raw data directly and accounts

for the functional nature in the additive predictor by expanding the model terms in suitable basis

functions. This second approach is not only more suitable for sparsely sampled data and allows to

account for the measurement error in subsequent estimation steps, it is also more easily extendable

to generalized responses. Besides, this approach has the advantage that the model boils down to a

model for scalar data as the finite evaluations of the responses are modeled rather than the continuous

curves. This allows to take advantage of well-established methods and flexible algorithms for scalar

data (see, e.g., Scheipl et al., 2015; Greven and Scheipl, 2017). In particular, there is a close connection

to varying coefficient models (Hastie and Tibshirani, 1993). The type of basis in which the model

terms are expanded can be chosen according to the data. Commonly, splines, wavelets, and Fourier

bases are used to model smooth, spiky, and periodic data, respectively. These are usually combined

with regularization penalties that control the bias-variance trade-off. Another basis choice for smooth

data is an expansion in a small number of functional principal components (FPCs). The number of

FPCs then serves as discrete regularization parameter. The expansion in FPC basis functions has

several advantages and has become a popular choice in FDA. As the model terms are expanded in

FPC bases in this thesis, a short introduction to FPCA is given in the following.

1.3 Functional principal component analysis

Functional principal component analysis is a key tool in FDA. It can be seen as the natural functional

extension of multivariate principal component analysis (PCA; see Jolliffe, 2002), as described in

more detail in Chapter 2. In analogy to multivariate PCA, FPCA uses an orthogonal transformation

of the data to a (typically) lower-dimensional feature space while retaining as much as possible of

the variation in the data. Thus, FPCA is suitable for dimension reduction when a large amount of

variability in the data can be described by a small number of dominant modes of variation, which

here again are functions. These modes are termed functional principal components. FPCA finds its

application as explanatory tool for data representation and visualization and is frequently used prior

to the application of other statistical methods, such as classification or clustering. Moreover, the

expansion of model terms in FPC bases as an alternative to spline bases is particularly attractive,

which is mainly due to three favorable properties. First, the basis functions are estimated from

the data and not arbitrarily chosen. Second, the FPC expansion allows for an explicit variance
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decomposition of the variability in the data. Third, an FPC basis gives the best linear approximation

in a space with finite dimension N , in the sense that no other N -dimensional basis explains more of

the variation with respect to the L2-norm (see, e.g., Wang et al., 2016). This yields a particularly

parsimonious basis which is advantageous for interpretation, prediction, and computation.

The foundation for FPCA from a mathematical perspective was laid by Loève (1946) and

Karhunen (1947), who provide an optimal representation of a continuous stochastic process as

linear combination of orthogonal functions, which is known as the Karhunen-Loève (KL) or FPC(A)

expansion. The KL expansion is frequently used in many different disciplines such as signal detection

or atmospheric science; for an overview, see Chapter 12.3 of Jolliffe (2002). In the statistical context,

it was first applied to study inference for random functions by Grenander (1950), followed by an

application to growth curves by Rao (1958). Important theoretic results for FPCA were obtained

by Dauxois et al. (1982), Bosq (2000), Yao et al. (2005), and Hall and Hosseini-Nasab (2006),

among many others. Up to now, it has been an active field of research with many contributions

of both theoretical and practical nature. Extensions include different robust versions of FPCA

(e.g., Locantore et al., 1999; Gervini, 2008) and multivariate FPCA for studying the simultaneous

variation of multiple random functions based on a multivariate extension of the KL expansion;

see Ramsay and Silverman (2005) for an introduction and Happ and Greven (2017) for an ex-

tension to data observed on different (dimensional) domains. For a survey of FPCA, see Shang (2014).

In the multivariate case, PCA results in an eigen analysis of the variance-covariance matrix

of the data. The eigenvectors specify the main directions of variation and the corresponding

eigenvalues quantify the amount of variability explained by each direction. Likewise, the functional

analogue boils down to an eigen analysis of the covariance operator, based on the spectral theorem

for compact symmetric, bounded linear operators in separable Hilbert spaces (see, e.g., Horváth

and Kokoszka, 2012). The finite-dimensional eigenvectors in the multivariate case are replaced

by infinite-dimensional eigenfunctions. Again, the amount of explained variability by the FPCs is

quantified by the corresponding real-valued, non-negative eigenvalues, which are sorted in descending

order.

As the covariance operator is at the heart of FPCA, practical applications require an appro-

priate estimate of its covariance kernel, also termed covariance function. A number of different

approaches for the estimation of covariance functions that apply to different data situations have

been proposed in the literature (e.g., Staniswalis and Lee, 1998; Yao et al., 2003, 2005; Di et al.,

2009; Greven et al., 2010; Kauermann and Wegener, 2011; Shou et al., 2015; Xiao et al., 2017). They

differ in the generality of the assumed correlation structure in the data (if any) as well as in the

generality of the sampling grid. Moreover, some approaches explicitly take advantage of the specific

properties of covariance functions, e.g., their symmetry (Xiao et al., 2017).

Commonly, covariance functions are assumed to be smooth. Thus, smoothing becomes neces-
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sary when the data are either observed with error and/or not observed on a common, dense grid.

At least four approaches that differ in when and how to apply smoothing in FPCA exist. The

first pre-smoothes the observed curves before applying FPCA (see, e.g., Besse and Ramsay, 1986;

Ramsay and Dalzell, 1991). This has several disadvantages for the same reasons explained in the

regression context above (see Section 1.2). The second approach adds a roughness penalty term

to obtain smooth FPCs (see Silverman, 1996; Ramsay and Silverman, 2005; Huang et al., 2008).

The third directly estimates smooth FPCs under an orthonormality constraint (see James et al.,

2000; Peng and Paul, 2009; Goldsmith et al., 2015). The fourth uses bivariate smoothing of the

empirical covariance function, for which different smoothing techniques can be applied, including

local smoother (e.g., Yao et al., 2003, 2005) or penalized splines (e.g., Di et al., 2009; Greven et al.,

2010; Di et al., 2014). This last approach to FPC estimation is studied in this thesis.

The FPC scores are given by the projection of the data in the direction of the FPCs. Based

on the KL expansion, they can also be interpreted as the (random) weights of the contribution of the

FPCs to each curve. They give insight into the individual structure of each curve and can be used

for further analysis. In order to draw the parallel to basis expansions in general, the FPC scores are

termed FPC weights or simply basis weights throughout this thesis.

Traditionally, the random FPC weights are predicted using numerical integration (see Ramsay

and Silverman, 2005). This, however, only works (well) for uncorrelated functional data observed

without error on dense grids. In more general data settings, numerical integration may be inaccurate

and biased (see Yao et al., 2005). As a remedy, one can use that FPC expansions of random functions

yield a clear separation into a random part (the individual basis weights) and into a functional

deterministic part (the common FPCs); see, e.g., Panaretos and Tavakoli (2013). For the fourth

approach to FPC estimation, this separation allows to predict the FPC weights as random effects in

a mixed model framework for scalar data; see, e.g., Di et al. (2009), Greven et al. (2010), and for a

special case Yao et al. (2005).

In this thesis, the mixed model framework is used to obtain predictions of the random basis

weights to represent functional random effects in FLMMs with a very general correlation structure.

1.4 Scope of this work

This thesis proposes a computationally efficient estimation framework for a very general class of

functional linear mixed models. The estimation is based on dimension reduction using functional

principal component analysis combined with mixed model methodology. The proposed modeling

framework extends most existing approaches mainly in two ways. First, it allows to analyze functional

data with a broad range of complex correlation structures. And second, it applies to data observed on

very general sampling grids. The simultaneous extension to data with a complex correlation structure

sampled on curve-specific grids with possibly few observation points has so far been scarcely addressed.

By combining these two aspects, this thesis aims to provide a flexible and widely applicable framework

for the analysis of functional data.
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The considered models may include different kinds of functional fixed effects as well as functional

random effects, which are all expanded in basis functions. This accounts for the functional nature of

the data and linearizes the estimation problem. Most central to this thesis is the prediction of the

functional random effects that capture the between- and within-function correlation. The functional

random effects are expanded in bases of eigenfunctions of their respective covariance operators which

have to be estimated beforehand.

The estimation of the covariances is thus a crucial step in the analysis. It is, however, challenging

to estimate covariances of latent processes for correlated functions with complex correlation structures,

in particular when the data are observed on unequal grids or even sparsely. In this thesis, two method

of moments estimators are proposed to obtain smooth covariance estimates of latent processes in very

general models.

The first estimator applies to data sampled on a common grid. It makes use of the grid structure

to obtain point-wise raw covariance estimates and to increase computational efficiency. The raw

estimates can then be smoothed separately using any bivariate smoother (Chapter 3).

The second estimator applies to general sampling grids, where point-wise estimates may not be

feasible. The proposed method of moments approach is represented as an additive bivariate varying

coefficient model for the sample covariance of the centered data. It is particularly well-suited for

irregularly and sparsely sampled data as strength is borrowed across all curves (Chapter 4).

Both covariance estimation approaches involve bivariate smoothing of possibly multiple (in the

second approach even additive) covariances. Even for sparsely sampled data, this quickly becomes

a computationally challenging task as the number of elements that enter the estimation increase

quadratically with the number of grid points. To overcome this computational bottleneck, a fast

symmetric smoothing approach is proposed in this thesis (Chapter 5) that is particularly suited to

estimate smooth additive covariances as required in Chapter 4. It takes advantage of the symmetry

of covariances, leading to a considerably faster estimation and requiring less memory. The symmetric

smoother can be applied in very general bivariate symmetric smoothing problems, including the two

covariance estimation approaches proposed in Chapter 3 and Chapter 4 of this thesis.

Once the smooth estimated covariances are available, they are evaluated on an equidistant grid,

which reduces the eigen problem for the covariance operators to the corresponding matrix eigen

decompositions. Replacing the functional random effects by the truncated FPC expansions then

allows to approximate the functional linear mixed models by scalar linear mixed models with random

effects corresponding to the random FPC weights, which can be predicted as empirical best linear

unbiased predictors (Di et al., 2009; Greven et al., 2010).

In summary, Chapter 3 considers very general correlation structures while assuming a com-

mon sampling grid. In contrast, Chapter 4 allows for general sampling grids with a focus on less

general correlation structures. Finally, Chapter 5 draws the connection by extending the approach

in Chapter 4 to very general correlation structures. It thus covers both very general correlation

structures as well as general sampling grids while reducing computation time. The smoother can

also be used to smooth the raw covariance estimates in Chapter 3. Despite the close connection,
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each chapter is self-contained apart from some cross-references and can be read separately. In more

detail, the thesis is organized as follows:

Chapter 2 gives an introduction to scalar linear mixed models and multivariate principal

component analysis, followed by an outline of the extension of both methods to the functional

framework. In this context, the general class of functional linear mixed models is introduced, which

comprises all models considered in this thesis.

Chapter 3 considers the general class of functional linear mixed models and proposes a com-

putationally efficient estimation approach for data sampled on a common grid that explicitly takes

advantage of the grid structure. The approach is applied to study tissue spectroscopy data that

have a hierarchical structure inducing correlation. The correlation is accounted for by hierarchical

functional random intercepts that are allowed to have tissue type specific covariance operators.

The aim of the application is to train a classification algorithm that uses reflectance spectra to

reliably classify the tissue type during surgery. To achieve this, the proposed modeling framework is

combined with the functional classification approach of Zhu et al. (2012). A comparison with other

classification methods shows that class designations are improved using the proposed FPC-based

estimation approach which accounts for all different sources of variation in the data.

Chapter 4 proposes an approach to model correlated functional data that may be sampled

on curve-specific grids with possibly few observation points. General correlation structures are

allowed in the model. The focus in the presentation of the estimation approach is, however, on a

model with crossed functional random intercepts, which is relevant for the motivating application to

data from a speech production study. A new combination of the FPC estimation with the framework

of functional additive mixed models introduced by Scheipl et al. (2015) is proposed, which allows

for approximate statistical inference conditional on the FPCA. Extensive simulation studies are

performed to compare FPC bases and spline bases, which can also be considered in the framework

of Scheipl et al. (2015). They lead to the conclusion that FPC bases have a clear advantage both in

terms of computation times and estimation quality.

Chapter 5 proposes a fast symmetric bivariate smoothing approach that is widely applica-

ble, in particular to speed up the FPC-based estimation of functional linear mixed models with

very general correlation structures. The approach can handle possibly noisy data observed on

general grids. It extends the covariance estimation in Chapter 4 by accounting for the symmetry

of the covariances and by allowing for more general correlation structures. Covariance estimation

for longitudinal data as well as for functional data with general correlation structures is discussed.

Many existing covariance estimation approaches, including those proposed in Chapters 3 and 4,

involve a quadratic loss function which implies working assumptions, such as working independence,

that do not hold. For the estimation approach in Chapter 4, this chapter develops a remedy in

form of an iterative estimation algorithm that may find application in simple data settings with low
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computational burden. The practical relevance of the fast symmetric smoother is demonstrated in

applications to longitudinal data from a medical study and to the speech production data with a

crossed correlation structure, which are also considered in Chapter 4.

In addition to the development of the theoretical estimation framework, fully documented

open-source software is provided as part of this thesis in order to make the proposed methods readily

accessible to users. An implementation of the estimation approach for densely sampled functional

data proposed in Chapter 3 is made available in the R add-on package denseFLMM (R Core Team,

2016; Greven and Cederbaum, 2017). Implementations of the approaches described in Chapters 4

and 5 are provided in the R add-on package sparseFLMM (Cederbaum, 2016). A description and

examples for the usage of both R packages can be found in Appendix E.

This thesis closes with a concluding summary of the contained chapters and an outlook to fu-

ture research in Chapter 6.

Underlying assumptions

Regarding the different perspectives and the numerous assumptions that can be made in connection

with functional data as discussed in Section 1.1 and Section 1.2, it seems essential to set the scene.

Throughout this thesis, the focus is on a frequentist view on mean regression models with functional

responses which are one-dimensional functions living in the L2-space defined over a bounded interval

T ⊂ R with the inner product as defined in Section 1.1. It is implicitly assumed that the inherent

smoothness is a sensible choice for the observed data and that the degree of smoothness is roughly

the same over the whole domain. Moreover, the random number and location of measurement

points for curve-specific sampling grids and potential missings for equal grids are assumed to be

non-informative. All considered models have an additive (and in most parts linear) predictor and

contain additive random measurement error. Note that the linearity is with respect to the covariates

and not to the function argument. The additive predictor consists of functional fixed effects as well

as functional random effects. The latter are assumed to be independent copies of Gaussian processes

in most parts of this thesis. The Gaussian assumption can be relaxed at some points, while it is

assumed throughout that the mean and the covariance can be modeled separately. Their covariances

are assumed to be smooth. The measurement error is assumed to only capture random uncorrelated

variation. Hence, conditional on the additive predictor, the observed response values are uncorrelated

both within and between functions. In most parts, the error variance is assumed to be homoscedastic.

Language conventions

As in every other field, technical terms are used in FDA that often allow an efficient, precise manner

of expression. However, they can sometimes be misleading, such as for instance the term ‘vector’,

which is often used in FDA to differentiate from functions, although the considered functions are

obviously also vectors in their respective vector space. To avoid confusion, it should be noted that in
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this thesis the term is used to describe finite-dimensional vectors. Moreover, as is frequently the case

in FDA, the covariance operator and its kernel are not always clearly distinguished. For clarification,

Chapter 2 briefly introduces the two notions.

Also within the same area of research, some terms have different meanings. An important example

for this thesis is in FPCA, where the main modes of variation are sometimes also termed ‘weights’

or ‘weight functions’ (see, e.g., Ramsay and Silverman, 2005) as opposed to this thesis, in which the

term weights refers to the projections.

Following common mixed model terminology, in this thesis, the term ‘prediction’ is used rather

than ‘estimation’ when referring to a random parameter or function.

1.5 Contributing manuscripts

Parts of this thesis have already been published in peer reviewed journals, in conference proceedings,

or in manuals accompanying the R add-on packages denseFLMM and sparseFLMM. The remaining

parts are based on submitted or uncompleted manuscripts. All manuscripts were written in cooper-

ation with my supervisor Sonja Greven and with co-authors from statistics and other fields. Below,

all relevant manuscripts are listed chapter by chapter. Information on the individual contributions

of all authors is given at the beginning of each chapter.

Chapter 2 on the extension of linear mixed models and principal component analysis to

functional data was specifically prepared for this thesis but references at various points to the

contents of Cederbaum et al. (2016), Cederbaum et al. (2018), and Greven et al. (2016).

Chapter 3 on general functional linear mixed models for data sampled on equal sampling

grids is based on the working paper in preparation

Greven, S., Cederbaum, J., and Shou, H. (2016): Principal component-based functional

linear mixed models. Working paper.

Chapter 4 on functional linear mixed models for data sampled on unequal and sparse sampling grids

is based on

Cederbaum, J., Pouplier, M., Hoole, P., and Greven, S. (2016): Functional linear mixed

models for irregularly or sparsely sampled data. Statistical Modelling, 16(1):67–88.

Preliminary work on Chapter 4 can be found in the conference proceedings of IWSM 2014–29th

International Workshop on Statistical Modelling (Cederbaum et al., 2014) and in the conference

proceedings of ISSP 2014–10th International Seminar on Speech Production (Pouplier et al., 2014).
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Chapter 5 on fast symmetric bivariate smoothing is based on

Cederbaum, J., Scheipl, F., and Greven, S. (2018): Fast symmetric additive covariance

smoothing. Computational Statistics & Data Analysis, 120:25–41.

Chapter 6, which provides an overall summary and outlook, was specifically prepared for this thesis.

In a cooperation with project partners from phonetics, the approaches proposed in Chapters

4 and 5 were applied to different data types with the aim to answer current scientific questions in

phonetic research and to introduce the method to the phonetic society. The joint work can be found

in

Pouplier, M., Cederbaum, J., Hoole, P., Marin, S., and Greven, S. (2017): Mixed mod-

eling for irregularly sampled and correlated functional data: Speech science applications.

Journal of the Acoustical Society of America, 142(2):935–946.

The contributing manuscripts are cited at the beginning of each chapter. For better readability of

this thesis, they are not repeatedly referenced within each chapter despite the textual matches.

1.6 Software

All analyses in the context of this thesis were carried out in the R system of statistical comput-

ing (R Core Team, 2016) on two different platforms (x86 64-pc-linux-gnu (64-bit) and x86 64-w64-

mingw32/x64 (64-bit)).

Comprehensive implementations of all developed methods are made available. The implementa-

tions for Chapter 3 are provided in the R add-on package denseFLMM (Greven and Cederbaum, 2017).

The functions for Chapters 4 and 5 are provided in the R add-on package sparseFLMM (Cederbaum,

2016). All software employed in this thesis is open-source and therefore free to be used by anyone.

Estimation of the mean and covariance functions was performed using the R add-on package mcgv

(Wood, 2006, 2011), for which a new smoothing class is developed in Chapter 5. For the combination

of the proposed FPC estimations with the framework of functional additive mixed models (Scheipl

et al., 2015), the R add-on package refundDevel (Huang et al., 2016b) was used, which was also

employed for comparison with the competing spline-based approach in Chapter 4. For comparison

with a competing symmetric smoothing approach in Chapter 5, the R add-on package face was used.

To read the speech production data that were available in MATLAB format (MATLAB, 2013), the

one-directional interface provided in the R add-on package R.matlab (Bengtsson, 2016) was employed.

For the graphical visualizations, the R add-on packages ggplot2 (Wickham, 2009), nlme (Pinheiro

et al., 2016), and lattice (Sarkar, 2008) were used. Additional information on the software used,

including R and R package versions, is given at the beginning of the corresponding chapters.



Chapter 2

Extending Linear Mixed Models and

Principal Component Analysis to

Functional Data

This chapter provides an introduction to the two main topics this thesis is based on, linear mixed

models and principal component analysis. In the first part of this chapter (Section 2.1), linear mixed

models for scalar correlated data are briefly introduced, followed by an outline of the extension to

the functional framework. A very general class of functional linear mixed models is presented, in

which all models discussed in Chapter 3 to Chapter 5 can be embedded. In the second part of this

chapter (Section 2.2), multivariate principal component analysis is introduced and the transition to

its functional counterpart is described.

2.1 Linear mixed models

This section gives a motivation of linear mixed models and briefly summarizes different aspects

and views. The general scalar linear mixed model is introduced and model assumptions are briefly

explained. Given the importance of scalar linear mixed models in this thesis, this section provides an

outline of the estimation and prediction of the model parameters. The content of the first part of this

section (Section 2.1.1) is in a large part based on Chapter 7 in Fahrmeir et al. (2013) and Chapter 2

in Greven (2007). In the second part (Section 2.1.2), the extension of scalar linear mixed models to

their functional counterpart is described. A general functional linear mixed model is introduced that

is described in more detail in Chapter 3. It is outlined how all models considered in this thesis can be

embedded in this general framework. The model assumptions and identifiability issues are discussed

and the main estimation steps, which the approaches proposed in Chapter 3 to Chapter 5 have in

common, are briefly summarized.
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2.1.1 Scalar linear mixed models

Linear mixed models (LMMs; see, e.g., Pinheiro and Bates, 2000) are a powerful tool for the analysis

of data with multiple sources of variation, such as longitudinal or clustered data, or data with a

spatial structure. Unlike most regression models, which are based on the assumption that the data

are independent and identically distributed (i. i. d.), LMMs are a flexible approach to quantify and

account for the correlation induced by different sources of variation, which is important for valid

statistical inference. The name ‘mixed models’ derives from the fact that besides the usual fixed

effects (in frequentist models), also random effects are included. In fact, linear mixed models are

sometimes also called ‘random effects models’ (e.g., Laird and Ware, 1982). There are different

motivations to use random effects, leading to different perspectives of LMMs (for a good overview,

see Fahrmeir et al., 2013, Chapter 7). One idea is to view the random effects as surrogate effects for

omitted or insufficiently measured covariates that induce correlation. The random effects account for

the unobserved heterogeneity and capture the induced correlation by allowing deviations from the

population mean. From a different perspective, the random effects can also be regarded as additional

error terms. The fact that the effects are assumed to be random, i.e., to follow a (usually Gaussian)

distribution, is commonly considered to reflect that the grouping levels (e.g., individuals or clusters)

are a random sample from a larger population. The distributional assumption can, however, also be

seen as a regularization which stabilizes the estimation. This regularization property allows to take

advantage of the inferential methods for LMMs when choosing the smoothing parameter in penalized

spline regression with quadratic penalties (for more details, see, e.g., Brumback et al., 1999; Ruppert

et al., 2003; Fahrmeir et al., 2013).

The role of LMMs in this thesis is threefold. First, LMMs are the foundation of functional

LMMs, which are at the heart of this thesis and explained in more detail below (see Section 2.1.2).

Second, this thesis makes use of the fact that penalized splines can be represented as predictors in

LMMs, allowing to take advantage of LMM methodology for the smoothing parameter estimation

(see, e.g., Ruppert et al., 2003, Chapter 4). Third, the functional LMMs are approximated by LMMs

in order to predict the functional principal component weights as the random effects in the LMMs

(see also Di et al., 2009; Greven et al., 2010; Di et al., 2014). Due to the importance of LMMs for

this thesis, not only a general model formulation will be introduced, but the model estimation will

also be outlined in the following.

General linear mixed model

In its general form, a linear mixed model can be defined as

y = Xβ +Zu+ ε, (2.1)

where y = (y1, . . . , yn)> is a vector of n observable random response variables, X and Z are known

n× p and n× q design matrices, corresponding to the p× 1 and q × 1 vectors β and u of fixed and

random effects, respectively. The structure for the random effects can be quite general, including
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hierarchical, crossed, and potentially correlated random effects. The additive vector ε contains

unobservable random errors.

Model assumptions

It is assumed that u and ε are independent and both have zero mean as the population mean

is represented by the fixed effects. Instead of acting on the mean, the random effects induce a

correlation structure. A common assumption, which is useful for inference, is that u and ε follow

the multivariate Gaussian distribution(
u

ε

)
∼ N

[(
0

0

)
,

(
K 0

0 Σ

)]
, (2.2)

with positive semi-definite variance-covariance matrices K and Σ, respectively. The Gaussian as-

sumption is, however, not necessary for all inferential conclusions. Strictly speaking, the assumptions

in (2.2) need to be complemented by a covariate exogeneity assumption as in the linear model,

i.e., E(ε|Xu) = 0, and by the ‘random effects assumption’ E(u|X) = 0, which ensures that

E(y|X) = Xβ.

The randomness of u results in two different formulations of Model (2.1); a marginal formulation

and a formulation conditional on the random effects. With the assumptions in (2.2), the marginal

formulation yields the following response distribution

y ∼ N (Xβ,V ) ,

with V = ZKZ>+ Σ. From a conditional or ‘hierarchical’ perspective and with the assumptions in

(2.2), the conditional response distribution is given by

y|u ∼ N (Xβ +Zu,Σ) .

Although the marginal model formulation is implied by the conditional formulation, this does not

apply in reverse and thus the two formulations are not equivalent. In contrast to the marginal view

on LMMs, the conditional view additionally allows for individual predictions. The interpretation

of the fixed effects, however, is the same for both formulations. Note that this is generally not the

case for generalized linear mixed models, i.e., mixed models for more general response distributions;

for extensions to generalized linear mixed models, see, e.g., Molenberghs and Verbeke (2005) and

McCulloch et al. (2008).

Estimation and prediction

Several approaches to estimating the fixed effects and to predicting the random effects result in the

same solutions. Let ϑ denote the vector of all variance parameters in the matrices K and Σ and

assume that it is known. One way to simultaneously estimate the fixed effects and to predict the
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random effects, is to maximize the joint log-likelihood of y and u with respect to β and u, which is

given by (up to an additive constant) (Henderson, 1950)

`(β,u) = −1

2
(y −Xβ −Zu)>Σ−1 (y −Xβ −Zu)− 1

2
u>K−1u. (2.3)

Maximizing the joint likelihood (2.3) is equivalent to minimizing the penalized least squares criterion

lspen(β,u) = (y −Xβ −Zu)>Σ−1 (y −Xβ −Zu) + u>K−1u, (2.4)

which is given by the sum of the weighted least squares criterion

(y −Xβ −Zu)>Σ−1 (y −Xβ −Zu) and the penalty term u>K−1u. The penalty term ac-

counts for the fact that the random effects u follow a distribution and shrinks the random effects

towards their mean, i.e., towards zero compared to when they were estimated as fixed effects. This

shrinkage effect becomes stronger when K approaches the zero matrix, with û = 0 in the extreme.

Conversely, when K−1 approaches the zero matrix, the random effects are estimated as fixed effects.

The optimization of (2.3) or rather (2.4) results in the following weighted least squares or Aitken’s

estimator (Aitken, 1936) for the fixed effects

β̂ =
(
X>V −1X

)−1
X>V −1y, (2.5)

which is the best linear unbiased estimator (BLUE) in the sense of the generalized Gauss-Markov

theorem and the best unbiased estimator under the Gaussian assumption (see Zyskind and Martin,

1969; Harville, 1976). The resulting best linear unbiased predictor (BLUP) for the random effects is

given by

û = KZ>V −1
(
y −Xβ̂

)
, (2.6)

which, under the Gaussian assumption is also the best unbiased predictor (BUP; Harville, 1976).

Note that the B(L)UP û is,

- linear with respect to y

- unbiased referring to E (û) = E(u) = 0

- the best in the sense that it minimizes the mean squared error E
[
(ũ− u)> (ũ− u)

]
among all

(linear) unbiased predictors ũ for u.

Commonly, the stacked vector
(
β̂>, û>

)>
is also referred to as BLUP.

As in practice the variance parameters ϑ and thus K, Σ, and V are unknown, they also

have to be estimated. This is commonly done using maximum likelihood (ML) or restricted

maximum likelihood (REML) estimation. Both ML and REML estimation are based on the marginal

model formulation. To emphasize the dependence on the (unknown) ϑ, the covariance matrices, the

estimators for the fixed effects, and the predictors for the random effects are in the following denoted
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as V (ϑ) and so forth. Let det [V (ϑ)] denote the determinant of V (ϑ). The log-likelihood derived

from the marginal model formulation is then given by (up to an additive constant)

`(β,ϑ) = −1

2

[
log {det [V (ϑ)]}+ (y −Xβ)> V (ϑ)−1 (y −Xβ)

]
. (2.7)

Under the Gaussian assumption, the ML estimate of ϑ is obtained by maximizing the profile log-

likelihood `P (ϑ) with respect to ϑ, which is given by substituting the ML estimate of the fixed effects

β̂ = β̂(ϑ) as defined in (2.5) in the log-likelihood (2.7) from the marginal model formulation. The

ML estimator for ϑ can be shown to be biased downwards as it does not account for the loss in the

degrees of freedom induced by substituting the fixed effects β by its estimate β̂(ϑ) in its estimation

(e.g., Patterson and Thompson, 1971). This is analogous to the bias of the ML estimator for the error

variance in the linear model.

As a remedy, Patterson and Thompson (1971) propose a ‘modified maximum likelihood method’

that was later termed ‘restricted’ maximum likelihood approach (Harville, 1977). Instead of maxi-

mizing the likelihood of all data, they divide the data into two statistically independent parts and

obtain separate likelihoods for the estimation of the fixed effects and of the variance parameters. The

likelihood of all data is given as the product of the two likelihoods. For the estimation of the variance

parameters, they derive the restricted log-likelihood `R(ϑ) as log-likelihood of a set of n− p linearly

independent error contrasts Ay of which the distribution is independent of the fixed effects. Harville

(1974) later shows that any contrast matrix A fulfilling A 6= 0 and E(Ay) = 0 can be used as the

resulting likelihoods are proportional. The restricted log-likelihood can be written as

`R(ϑ) = `P (ϑ)− 1

2
log
{

det
[
X>V (ϑ)−1X

]}
.

The log-likelihood `R(ϑ) can also be motivated from an empirical Bayesian perspective. Using the

likelihood of error contrasts yields an estimator for ϑ which is equivalent to the mode of the posterior

when using a flat prior for the fixed effects β and all the data (Harville, 1974). This allows the

alternative derivation of the REML estimator as maximum of the marginal log-likelihood for the

variance parameters ϑ, which is obtained by integrating out the fixed effects from the likelihood

L(β,ϑ), i.e.,

`R(ϑ) = log

[∫
L(β,ϑ) dβ

]
.

In linear models for uncorrelated data, the REML estimator for the error variance removes the bias of

the ML estimator. This generally does not apply to the REML estimator for the variance parameters

ϑ in linear mixed models, which reduces the bias compared to the ML estimator but generally does

not fully remove it (see, e.g., Fahrmeir et al., 2013, Chapter 7).

As in general, for both ML and REML estimation, no closed-form expression of the estimator ϑ̂

exists, the maximization of the log-likelihoods `P (ϑ) and `R(ϑ) is done numerically through iterative

algorithms, such as Newton-Raphson or Fisher scoring.
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Once the variance parameters ϑ are estimated either using ML or REML, they are plugged-in to

obtain covariance estimates K̂(ϑ̂), Σ̂(ϑ̂), and hence V̂ (ϑ̂). Replacing V in Equations (2.5) and (2.6)

by its estimate finally yields the estimators for the fixed effects β̂(ϑ̂) and predictors for the random

effects û(ϑ̂). To emphasize that variability is induced by the estimation of the variance parameters,

β̂(ϑ̂) and û(ϑ̂) are commonly referred to as empirical BLUE and empirical BLUP, respectively.

For more details on the inference in LMMs, including the construction of confidence bands,

testing on fixed and random effects, and model selection, it is referred to, e.g., Stram and Lee (1994),

Crainiceanu and Ruppert (2004), Greven (2007), Greven et al. (2008), and Greven and Kneib (2010).

2.1.2 From scalar to functional linear mixed models

Functional linear mixed models (FLMMs; for an overview, see, e.g., Morris, 2015) can be seen as

functional counterparts to scalar linear mixed models. Correspondingly, FLMMs are used to analyze

functional data with multiple sources of variation. As in the scalar case, correlation can be induced

by, e.g., repeated observations per subject (longitudinal functional data), grouping in the data, or

spatial sampling. These sources of correlation are additional to the correlation of adjacent values on

the domain of the functions.

As explained in Chapter 1, Section 1.2, it is commonly distinguished between three types of

functional regression models, namely function-on-scalar, scalar-on-function, and function-on-function

regression. The term FLMM commonly refers to function-on-scalar regression models that include

both fixed and random effects. In some models, additional effects of functional covariates are

included, yielding a function-on-function regression model (see, e.g., Scheipl et al., 2015), but they

are not in the main focus of this thesis. In FLMMs, the random effects are functions varying

over the same domain as the functional responses. To emphasize their functional nature, they are

commonly referred to as ‘functional random effects’ (fREs). fREs allow very flexible deviations from

the mean function that are represented as latent smooth functions. In analogy to LMMs, the fREs

can be thought of as surrogate effects that account for unobserved heterogeneity in the data. The

assumption in LMMs that the surrogate effects are random can be translated to the assumption that

the functional surrogate effects are random (or stochastic) processes. In the following, a very general

FLMM is introduced, which is proposed in Chapter 3. An explanation of how all other models

considered in this thesis fall into this model class is given at the end of this section.

General functional linear mixed model

A very general FLMM for one-dimensional, square integrable functional responses on a bounded

interval T ∈ R can be defined as

Yi(tij) = µ (tij ,xi) + z>i U(tij) + εi(tij), i = 1, . . . , n, tij ∈ T , (2.8)

where Yi(tij) denotes the response curve i at observation point tij . µ(tij ,xi) is a smooth mean function

depending on a vector of p known scalar covariates xi that replaces the population mean Xβ in the
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scalar LMM (2.1). The mean function can be written as µ(tij ,xi) = f0(tij)+
∑r

k=1 fk(tij , x̃ik), where

f0(tij) is a functional intercept and x̃ik is a subvector of the vector of covariates xi. The subvector x̃ik
may consist of a single scalar covariate but can also include several covariates allowing for interaction

effects. The deviations from the population mean in Model (2.1), Zu, are replaced by z>i U(tij),

where zi is a vector of q known scalar covariates and U(tij) is a q-dimensional vector of functional

random effects. Similar to the scalar LMM (2.1), a general structure for the fREs is allowed, including

hierarchical and crossed fREs, and the fREs may also be correlated. Commonly, the fREs include

a curve-specific deviation in form of a smooth error curve that captures deviations from the mean

function which are correlated along T . Often, the smooth error is written separately from the vector

of functional random effects U(tij) (compare Chapters 4, 5), but Model (2.8) is more general allowing

for group-specific smooth error terms that can be included in U(tij) (for more details, see Chapter

3). The additional random error εi(tij) accounts for uncorrelated variation within each curve i.

Possible structures for the mean function µ(tij ,xi) and examples for z>i U(tij) yielding FLMMs

with, e.g., hierarchical and crossed functional random effects will be given at the end of this section.

Note that when all functions are observed on a common grid, the notation can be simplified by

omitting the indices of tij and it is possible to formulate a discretized version of Model (2.8) using

matrix notation similar to Model (2.1) for all curves, i = 1, . . . , n, rather than on curve-level (see

Chapter 3).

Model assumptions

In analogy to the scalar random effects, U(·) is assumed to be a vector-valued square integrable

random process on T with zero mean. The common Gaussian assumption for scalar random effects

is replaced by a Gaussian process assumption, which is, however, not necessary for all inferential

conclusions. The random error εi(·) is commonly assumed to be i. i. d. white noise measurement

error with constant variance σ2. As in the scalar case, it is assumed that the fREs U(t) and the

measurement error εi(t
′) are uncorrelated for all i and for all t, t′ ∈ T . Again, the population mean

is represented by the fixed effects, which are part of the mean function µ(t,xi), and the fREs induce

a correlation structure. The vector-valued random process U(·) has a matrix-valued covariance, in

the following denoted by KU (t, t′) = Cov [U(t),U(t′)], with t, t′ ∈ T . Given the additive predictor

that commonly includes a smooth error curve capturing correlation along T , the observed response

values are assumed to be independent within and across functions.

To give a clearer idea of the vector-valued fRE and its covariance, a more detailed description is

provided in the following. Assume that the correlation in the FLMM (2.8) is induced by G different

grouping factors with LUg levels, g = 1, . . . , G. To give an example for two grouping factors (G = 2),

consider four students in two schools. Then, LU1 = 2 (number of schools) and LU2 = 4 (number

of students across schools). Further, denote the number of random effects associated with grouping

factor g by ρUg , g = 1, . . . , G. In the above example, setting ρU1 = 1 models a functional random

intercept (fRI) for each school and ρU2 = 2 models an fRI and a functional random slope (fRS) for

each student. Note that the fREs for the same level of a grouping factor are assumed to be correlated.

Uncorrelated functional random effects would be assumed by assigning different grouping factors, in
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the example by letting G = 3 with LU1 = 2, LU2 = LU3 = 4 and ρU1 = ρU2 = ρU3 = 1 for an

uncorrelated fRI and fRS for each student.

The vector of fREs U(tij) can be divided into G independent blocks, one for each grouping factor,

i.e., U(tij) =
[
U1(tij)

>, . . . ,UG(tij)
>
]>

. Each block Ug(tij) again consists of LUg independent copies

(in the sense of random processes) Ugl(tij), l = 1, . . . , LUg , corresponding to the levels of the respective

grouping factor. Finally, the independent copies are vector-valued random processes consisting of ρUg

fREs Ugls(tij), s = 1, . . . , ρUg . The total number of fREs is given by q =
∑G

g=1 L
UgρUg .

In summary, it is assumed that blocks of fREs of different grouping factors Ug(·), Uh(·), g 6= h, and

blocks of fREs of different levels of the same grouping factor Ugl(·), Ugk(·), l 6= k, are independent.

Blocks of different fREs of the same level of a grouping factor Ugls(·), Ugls′(·), s 6= s′, are assumed

to be correlated. Thus, in the above example of students within schools, the fREs of schools are

independent of the fREs of students. Moreover, the fREs of different schools are independent and

the fREs of different students are independent. The fREs of the same schools are assumed to be

correlated as are the fREs of the same students.

Consequently, the covariance of the vector-valued random process U(·) is a q × q diagonal block

matrix of the form

KU (t, t′) = diag

KU1(t, t′), . . . ,KU1(t, t′)︸ ︷︷ ︸
LU1 times

, . . . ,KUG(t, t′), . . . ,KUG(t, t′)︸ ︷︷ ︸
LUG times

 ,
where KUg(t, t′) = Cov [Ugl(t),Ugl(t

′)] is the matrix-valued covariance of Ugl(·), which is equal for

all levels, l = 1, . . . , LUg , as the Ugl(·) are copies of the same random process. Note that fREs with

group-specific covariances as in Chapter 3 can be included in the framework by considering a separate

grouping factor for each group rather than different levels of a single grouping factor. That is, if the

schools in the above example are, e.g., in different countries and one wants to model an fRI for each

school with a country-specific covariance, a separate grouping factor for each country is specified

rather than one single grouping factor for all schools.

KUg(t, t′) =
[
K
Ug
ss′ (t, t

′)
]
s,s′=1,...,ρUg

is a ρUg × ρUg matrix with auto-covariances

K
Ug
ss (t, t′) = Cov [Ugls(t), Ugls(t

′)], s = 1, . . . , ρUg , on the diagonal and cross-covariances

K
Ug
ss′ (t, t

′) = Cov
[
Ugls(t), Ugls′(t

′)
]
, s 6= s′, as off-diagonal elements. Whereas an auto-covariance

gives the covariance of the function with itself at pairs of points (t, t′), the cross-covariance gives the

covariance of a function at point t with another function at point t′. Returning to the example above,

the cross-covariance Cov [U2l1(t), U2l2(t′)] gives the covariance of the fRI at point t with the fRS at

point t′ for each student. Note that in general, KUg(t, t′) is not symmetric as the cross-covariances

K
Ug
ss′ (t, t

′) and K
Ug
ss′ (t

′, t) are generally not equal, but it clearly holds that K
Ug
ss′ (t, t

′) = K
Ug
s′s(t

′, t) and

thus KUg(t, t′) = KUg(t′, t)
>

. All auto- and cross-covariances are assumed to be smooth in t and t′.

As in the scalar case, the FLMM (2.8) can be viewed from a marginal as well as from a conditional

perspective, which are again not equivalent but yield the same interpretation for the fixed effects,



2.1 Linear mixed models 25

i.e., for µ(tij ,xi). The estimation of the model parameters is usually based on the marginal model

formulation.

Estimation and prediction

As briefly discussed in Chapter 1, different approaches to estimation in function-on-scalar regression

models and in particular in FLMMs have been proposed. In this thesis, the observed response values

are modeled directly while the functional nature of the data is accounted for in the additive predictor.

The smoothness assumption along t is accounted for by expanding all terms in the predictor in basis

functions. This has several advantages (see Chapter 1, Section 1.2) and in particular reduces the

functional models to models for scalar data. For the FLMM (2.8), this means that it can be reduced

to its scalar counterpart (2.1) and inference can be based on scalar LMMs as described in Section 2.1.1.

In this thesis, the fREs are expanded in functional principal component (FPC) bases; for a

recent overview on FPC-based approaches, see, e.g., Wang et al. (2016). The FPC-based estimation

approaches considered in this thesis have the following four main steps in common:

Step 1 The mean function including the fixed covariate effects µ(tij ,xi) is estimated under a working

independence assumption. This is done by representing the unknown functions in µ(tij ,xi) using

penalized splines. The response curves are subsequently centered by subtracting the estimated

smooth mean curves.

Step 2 Based on the centered responses, the covariances for the G grouping factors, KUg(t, t′),

g = 1, . . . , G, and the error variance σ2 are estimated using either a method of moments approach

and (if necessary) subsequent smoothing (Chapter 3) or a smooth method of moments approach

(Chapters 4, 5). The choice depends on the sampling grid. The fast bivariate smoothing

approach proposed in this thesis (Chapter 5) can be applied to both covariance estimation

approaches in order to reduce computation time. After smoothing, the estimated covariances

are evaluated on an equidistant grid.

Step 3 Eigen decompositions of the estimated covariance matrices yielding estimated eigenfunctions

and eigenvalues are used to represent the fREs in truncated bases of eigenfunctions of their

covariances.

Step 4 Replacing the fREs in the FLMM (2.8) by these truncated bases allows to approximate the

FLMM by the scalar LMM (2.1) with random effects corresponding to the random basis weights

(see also Di et al., 2009; Greven et al., 2010; Di et al., 2014). Thus, the FLMM reduces to an

LMM for scalar data. The basis weights can then be predicted as EBLUPs (see Section 2.1.1)

by plugging in the estimated eigenfunctions, eigenvalues and the estimated error variance.

Alternatively, for moderate sample sizes and when the interest is in statistical inference, e.g.,

confidence bands for covariate effects, the FPC estimation is combined with the functional

additive mixed model approach (FAMM) of Scheipl et al. (2015), in which the random basis
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weights are predicted together with a re-estimation of the mean function in a mixed model

framework. Also in this alternative approach, the FLMM (2.2) reduces to a mixed model for

scalar data.

More details on each estimation step for the different models and estimation approaches are given in

Chapter 3 to Chapter 5. Further explanation and details on FPCA and multivariate FPCA (required

for correlated fREs) are provided below in Section 2.2.2.

Fixed effects structures

Possible structures for the mean function µ(tij ,xi) in Model (2.8), include linear and smooth effects

of scalar covariates xi that can be constant or varying over T . Moreover, interactions between scalar

covariates are possible. A detailed overview on possible effects of scalar covariates is given in Table

2.1. Note that in the current implementations of the proposed modeling framework in R (R Core

Team, 2016), not all of these effects are allowed yet; see Appendix E and the manuals of the R add-on

packages denseFLMM (Greven and Cederbaum, 2017) and sparseFLMM (Cederbaum, 2016) for more

details.

Table 2.1: Overview of possible fixed effects of scalar covariates that can be included in the mean function
µ(tij ,xi) in the FLMM (2.8). This overview table is based on Scheipl et al. (2015).

x̃ik constant over T varying over T (functional (f.) effects)

scalar covariate xi linear effect: xiβ f. linear effect: xif(tij)

smooth effect: f(xi) f. smooth effect: f(tij , xi)

vector of scalar linear interaction effect: xi1xi2β f. linear interaction effect: xi1xi2f(tij)

covariates x̃ik varying coefficient: xi1f(xi2) f. varying coefficient: xi1f(tij , xi2)

smooth effect: f(x̃ik) f. smooth effect f(tij , x̃ik)

Strictly speaking, when non-linear effects (non-linear in the covariates) are included in the model,

the term ‘functional additive mixed model’ rather than ‘functional linear mixed model’ is more

appropriate. As non-linear effects are, however, not in the main focus, the term FLMM is used

throughout this thesis.

For all effects that contain the functional intercept f0(tij) as special case, centering constraints

need to be imposed in order to avoid that different parametrizations lead to the same fit. This is in

analogy to additive models for scalar data with an additive predictor of the form β0+
∑

k fk(xk), where

identifiability is commonly ensured by imposing sum-to-zero constraints of the form
∑n

i=1 fk(xik) = 0

for each function (Wood, 2006, Chapter 4). Similarly, sum-to-zero constraints are necessary to ensure

identifiability in Model (2.8), which need, however, hold for each tij ∈ T , i.e., the mean effect of each

covariate should be zero in each point tij . Such constraints need to be imposed for the fREs and for

non-linear effects f(tij , xi) and f(tij , x̃ik). This specific centering constraint has the advantage that
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all effects that vary over the index of the response can be interpreted as deviations from f0(tij) (see

Scheipl et al., 2015).

The combination of the modeling approach proposed in this thesis with the FAMM framework

allows to additionally include effects of functional covariates, turning the model into a function-on-

function regression model. The effects of functional covariates can again be linear or smooth and all

kinds of interactions are possible; for an overview, see Scheipl et al. (2015), where also identifiability

issues that arise when dealing with function-on-function regression are discussed; see also Scheipl

et al. (2016b) for a more detailed and extensive discussion on identifiability in function-on-function

regression.

Special cases

All models considered in this thesis are special cases of the general FLMM (2.8). In the following,

it is shown how z>i U(tij) is specified to obtain a model with a) only a curves-specific fRE, b)

hierarchical fREs, and c) crossed fREs. Motivations and examples for each of these special cases are

given in Chapters 3 to 5, respectively.

First of all, a closer inspection of the structure of the q-dimensional covariate vector zi is necessary.

In accordance with the vector-valued fRE U(tij), the covariate vector zi can be divided into G blocks,

z>i =
(
zU1
i

>
, . . . ,zUGi

>)
. Each block can then again be written as z

Ug
i

>
=

(
z
Ug
i1

>
. . . , z

Ug

iLUg

>
)

, with

z
Ug
il

>
=
(
z
Ug
il1 , . . . , z

Ug

ilρUg

)
, l = 1, . . . , LUg , g = 1, . . . , G. The scalars z

Ug
ils take the value of the respective

covariate, here denoted by ω
Ug
is times an indicator δ`g(i)l which specify whether observation i belongs

to level l of grouping factor g.

a) Model with a curve-specific fRI. The simplest model considered in this thesis (Chapter 5) is

given by

Yi(tij) = µ(tij ,xi) + Ei(tij) + εi(tij), i = 1, . . . , n, tij ∈ T , (2.9)

where the functional response of curve i at point tij is decomposed as in Model (2.8) with

z>i U(tij) reducing to Ei(tij). Ei(tij) is a curve-specific fRE for curve i and can also be seen as

a smooth error that captures correlation along T . As mentioned above, such a smooth error

curve is commonly contained in the vector of fREs U(tij) in order to meet the assumption

of conditionally independent response values within and across functions. Model (2.9) is not

an FLMM as it solely accounts for the within-function correlation but different functions are

assumed to be independent. The model can rather be seen as an extension of a scalar LMM for

longitudinal data that relaxes the parametric assumptions and allows for smooth effects along

t.

Nonetheless, it is possible to represent Model (2.9) as a special case of the general model (2.8)

by letting G = 1, LU1 = n and specifying zi as a block of indicators for each curve, i.e.,
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zi =
(
zU1
i11, . . . , z

U1
in1

)>
=
(
δ`1(i)1, . . . , δ`1(i)n

)>
. U(tij) correspondingly consists of a block of

curve-specific functional random effects, i.e.,

U(tij) = [U111(tij), . . . , U1n1(tij)]
> = [E1(tij), . . . , En(tij)]

> .

For simplicity, consider in the following again the case of two grouping factors (G = 2) with an
fRI for the first grouping factor and correlated fRI and fRS (in variable ω) for the second grouping
factor, i.e., ρU1 = 1, ρU2 = 2. Note that commonly also a smooth error as in Model (2.9) is included,
which is omitted here for ease of notation. Let ni denote the number of observations (curves) for
each level of the second grouping factor (e.g., for each student in the above example), i = 1, . . . , LU2 .
Further let ωi denote the value of variable ω for observation i. Then, z>i U(tij), i = 1, . . . , n, is given
by

z>i U(tij) =

δ`1(i)1, . . . , δ`1(i)LU1︸ ︷︷ ︸
fRI, g=1

, δ`2(i)1, δ`2(i)1ωi, . . . , δ`2(i)LU2 , δ`2(i)LU2ωi︸ ︷︷ ︸
fRI and fRS, g=2





U111(tij)
...

U1LU11(tij)

U211(tij)

U212(tij)
...

U2LU21(tij)

U2LU22(tij)



 g = 1

 g = 2

.

Hierarchical in contrast to crossed fREs are used when the levels of the second grouping factor are

different for each level of the first grouping factor. The above example of students in schools is a typical

example for a hierarchical fREs structure as the students are not the same for the different schools.

In contrast, crossed fREs are suitable, for example, in the speech production data analyzed in this

thesis (see Chapter 4 and Chapter 5), where acoustic signals of nine different speakers are recorded

while reading the same sixteen target words. As each speaker reads the same target words, crossed

fREs for speakers and target words are used to model speaker- and target word-specific deviations

from the mean.

The hierarchical and the crossed fREs thus differ in the form of zi. Assume for simplicity that

there are two and four levels of the two grouping factors (LU1 = 2, LU2 = 4). Then, in total

q =
∑G

g=1 ρ
UgLUg = 10 functional random effects are specified.
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b) FLMM with hierarchical fREs. In the case of hierarchical functional random effects (e.g., four
students in two schools), the n × q matrix Z consisting of the zi, i = 1, . . . , n, can be written
as

Z =

 z>1
...

z>n

 =



1 1 w1

...

1 wn1

1 wn1+1

...

1 1 wn1+n2

1 1 wn1+n2+1

...

1 wn1+n2+n3

1 wn1+n2+n3+1

...

1 1 wn



,

where, for ease of presentation, it is assumed that there are two students in each of the two

schools.
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c) FLMM with crossed fREs. For crossed functional random effects (e.g., two speakers and four
words), we assume for simplicity that half of the ni curves belongs to the first and the other to
the second level of the first grouping factor (e.g., speakers). Then, matrix Z is given by

Z =

 z>1
...

z>n

 =



1 1 w1

...

1 wn1
2

1 wn1
2 +1

...

1 wn1
2 +

n2
2

1 wn1
2 +

n2
2 +1

...

1 wn1
2 +

n2
2 +

n3
2

1 wn1
2 +

n2
2 +

n3
2 +1

...

1 1 wn
2

1 1 wn
2 +1

...

1 wn
2 +

n1
2

1 wn
2 +

n1
2 +1

...

1 wn
2 +

n1
2 +

n2
2

1 wn
2 +

n1
2 +

n2
2 +1

...

1 wn
2 +

n1
2 +

n2
2 +

n3
2

1 wn
2 +

n1
2 +

n2
2 +

n3
2 +1

...

1 1 wn



.

2.2 Principal component analysis

As the estimation of the FLMMs in this thesis is based on functional principal component analysis, this

section provides a brief introduction to principal component analysis for multivariate data (Section

2.2.1) and outlines the extension to its functional counterpart (Section 2.2.2). In this context, some

theoretical basics of Hilbert spaces and in particular of the L2-space are summarized that are necessary

in the scope of this thesis.
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2.2.1 Multivariate principal component analysis

Principal component analysis (PCA; Pearson, 1901; Hotelling, 1933) is a key tool for exploration

and dimension reduction in high-dimensional multivariate data sets. It can be used to structure and

display the data and is frequently applied preliminary to, or in combination with, other statistical

methods such as cluster analysis, factor analysis, or regression (see, e.g., Jolliffe, 2002, Chapters

7 to 9). The underlying idea of PCA is to replace a high number of possibly correlated variables

by a typically smaller number of pairwise uncorrelated variables, the principal component scores

(or weights), while retaining as much as possible of the variance present in the data. From a

mathematical perspective, PCA corresponds to an orthogonal transformation of the data to a new

vector space in which the basis is formed by the principal components (PCs). The PCs are ordered

such that the first PC accounts for most variability and each succeeding PC accounts for less. A

lossy compression of the data can thus be obtained by only using the first few PCs for the data

representation. In order to prevent a serious information loss, the number of PCs has to be chosen

carefully. In the following, the derivation of the PCs is outlined and important properties of PCA

are discussed, which is partly based on Jolliffe (2002), Ramsay and Silverman (2005), and Bishop

(2006).

Derivation of PCA

Let x ∈ Rp denote a random vector with mean µ and variance-covariance matrix Σ. In the

following, consider n independent samples of x summarized in the n × p data matrix X with rows

x>i ∈ R1×p, i = 1, . . . , n. Assume that the columns of X are centered and denote the p × p sample

variance-covariance matrix of X by S. Let 〈x,y〉 denote the canonical scalar product of vectors x

and y in the Euclidean space and let ‖x‖ denote the induced norm.

The aim is then to find normalized, orthogonal vectors φk ∈ Rp, k = 1, . . . , p, that map each row

of X to a new vector while retaining as much as possible of the variation in the data.

The linear projections can be found following a stepwise procedure:

1. Find a linear projection of the data ξi1 = 〈φ1,xi〉 = φ>1 xi with maximal sample variance subject

to the normalization constraint ‖φ1‖2 = 1. The first PC is defined by

φ1 = arg max
‖φ‖2=1

1

n− 1

n∑
i=1

(
φ>xi

)2
= arg max
‖φ‖2=1

1

n− 1
φ>X>Xφ,

which can be expressed in terms of the sample variance-covariance matrix S as

φ1 = arg max
‖φ‖2=1

φ>Sφ = arg max
‖φ‖2=1

〈Sφ,φ〉.
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Applying the Lagrangian method for constrained (quadratic) optimization (see, e.g., Fletcher,

2000, Chapter 9) shows that this is equivalent to finding the solution of the eigenvalue-

eigenvector problem

Sφ = νφ,

where ν denotes an eigenvalue of S and φ is the corresponding eigenvector. Let in the following

denote the ordered eigenvalues of S by ν1 ≥ ν2 ≥ . . . ≥ 0. As the sample variance of the

linear projects equals φ>Sφ = νφ>φ = ν, the first PC, which is defined to explain most of the

variability, is given by the eigenvector corresponding to the largest eigenvalue ν1. The number

of non-zero eigenvalues of S is given by the rank r of matrix X.

2. The subsequent PCs φ2, . . . ,φp are found analogously with the additional constraint(s) that

each PC is orthogonal to the previously obtained components. This guarantees that the new

component explains variability not already explained by the previously obtained components

and thus avoids the use of redundant information. Thus, the kth PC φk is given by the direction

that maximizes the sample variance of the projected data subject to the normalization constraint

‖φ‖2 = 1 and additional constraint(s) 〈φ,φm〉 = 0, m < k ≤ p. With the same justification as

for the first PC, the kth component, k ≤ p, is given by the eigenvector corresponding to νk, the

kth largest eigenvalue of S.

In other words, PCA of a data matrix corresponds to an eigen analysis of its sample variance-

covariance matrix. The new coordinate system, to which the data are mapped, is given by the

eigenvectors. The corresponding eigenvalues quantify the variance explained. The PCs, which give

the dominant modes of variation, are unique up to sign.

A computationally efficient way to obtain the eigenvectors and eigenvalues of S is to use a singular

value decomposition (SVD) of the data matrix X, which is given by

X = AGΦ>, (2.10)

where A is a matrix with orthonormal columns of dimension n × r, with r the rank of matrix X.

The columns of A contain the left singular vectors to non-zero singular values. The r × r diagonal

matrix G has diagonal entries corresponding to the non-zero singular values sk, which are sorted in

descending order. The columns of the p× r matrix Φ consist of the right singular vectors which are

equivalent to the eigenvectors of S corresponding to non-zero eigenvalues. The eigenvalues of S can

be obtained as νk = (n − 1)−1sk
2 (for a proof, see, e.g., Jolliffe, 2002). Note that this connection

only holds for a centered data matrix X. The columns of A contain scaled PC weights and AG

corresponds to the matrix of PC weights. Estimating the PCs using the SVD of the data matrix has

the advantage that the covariance matrix does not have to be built. Furthermore, the SVD of X

compared to the eigen analysis of S allows a different view on PCA as linear approximation of the

data.
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Dimension reduction

So far, the projection maps the data from the original space of p possibly correlated variables to

a new space of p uncorrelated variables, which–from a geometrical view–simply is a rotation (see,

e.g., Bishop, 2006, Chapter 12). Dimension reduction can be achieved by mapping the data onto a

lower-dimensional subspace of dimension N < p, which means that only the first N PCs are used

and thus only the most relevant information in terms of explained variance is kept. The truncation

of the PCs can be seen as regularization with a discrete regularization parameter, aiming to reveal

the structure in the data and to filter out the noise. To achieve a considerable dimension reduction,

N is chosen as small as possible while preventing a serious information loss. It is thus necessary to

specify what an acceptable loss means.

The choice of N thus plays an important role in PCA. Various rules for choosing the subset of

PCs have become standard, most of which are rather ad hoc. A common criterion that is relevant in

the scope of this thesis is to choose N by selecting the percentage of total variation that is desired to

be explained, in the following denoted by L, e.g., L = 90%. The PCs are then chosen in decreasing

order until the chosen percentage is exceeded. As the variance explained by the kth PC is given by

the corresponding eigenvalue, the criterion can be written as

Choose φk corresponding to νk in decreasing order, until
N∑
k=1

νk

/
p∑

k=1

νk ≥ L. (2.11)

For an extensive overview on rules for choosing a subset of PCs, it is referred to Jolliffe (2002),

Chapter 6.

Some properties of PCA

PCA has several interesting properties and motivations (see, e.g., Bishop, 2006). In fact, the PCs

are not only optimal directions with respect to the maximum retained variance, the expansion in PC

basis functions in Equation (2.10) also minimizes the mean squared approximation error for a given

dimension N of the subspace to which the data are mapped. That is, using only the first N < r PCs

in the SVD expansion provides the optimal reduced basis representation of the original data with

respect to the mean squared error (see, e.g., Jolliffe, 2002, Chapter 3).

PCA as derived above is based on the eigen decomposition of the sample variance-covariance

matrix S. Therefore, PCA is sensitive to the units of measurements used for the data which makes

comparisons difficult and can lead to domination of variables with large variances. As a remedy, an

eigen decomposition of the sample correlation matrix for standardized data can be used instead. When

the data are measured in the same units, however, using the covariance matrix has the advantage

that the data do not need to be standardized. Furthermore, PCA based on the covariance rather

than the correlation matrix facilitates statistical inference based on the sample PCs (for a discussion,

see Jolliffe, 2002, Chapter 2).
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Connection to other approaches

PCA is closely connected to a number of statistical methods, including canonical correlation analysis

(CCA; Hotelling, 1935), independent component analysis (ICA; see, e.g., Hastie et al., 2009), and

principal component regression (PCR; Hotelling, 1957; Kendall, 1957). CCA extends the idea of

PCA to two or more random variables and aims at finding a pair of linear subspaces that have a

high cross-correlation. ICA can be seen as a generalization of PCA by additionally requiring that

the new variables are statistically independent. In contrast to PCA, which is based on the first and

second order moments, ICA employs higher moments which may be better suited for non-Gaussian

data (see, e.g., Jolliffe, 2002, Chapter 14). To overcome the problem of multicollinearity in linear

regression models, PCR uses a PCA of the design matrix and replaces the original matrix by the

matrix consisting of the PC weights. PCR is closely related to partial least squares (PLS; see, e.g.,

Hastie et al., 2009) and to other shrinkage regression approaches such as Ridge Regression (Hoerl

and Kennard, 1970). In contrast to PCR, PLS uses a projection that has a high variance and also

has a high correlation with the response. Ridge regression utilizes an SVD of the data matrix and

shrinks the directions corresponding to the smallest singular values most, using a continuous rather

than a discrete regularization parameter. For further details and a discussion on the connection to

other statistical methods, see, e.g., Jolliffe (2002) and Hastie et al. (2009).

2.2.2 From multivariate to functional principal component analysis

Functional principal component analysis (FPCA; see, e.g., Ramsay and Silverman, 2005, Chapter

8) can be considered as the functional analogue to multivariate PCA. Like in the multivariate case,

FPCA uses an orthogonal transformation of the data to a lower-dimensional vector space while max-

imizing the retained variability in the data. As dimension reduction is of particular importance when

the data consist of (at least theoretically) infinite-dimensional functions, FPCA was the first method

to be considered in functional data analysis and is a key element since (Ramsay and Silverman,

2005, Chapter 8). FPCA is frequently applied for data representation and exploration and finds its

use in conjunction with numerous other statistical methods, such as functional regression. The basic

ideas and main properties of PCA carry over to the functional counterpart, which–in analogy to the

multivariate case–corresponds to an eigen analysis of the covariance. The differences between PCA

and FPCA come from the fact that in the functional case the data live in an infinite-dimensional

space requiring an adaptation of both theory and application. The covariance matrix in multivariate

PCA is replaced by a covariance operator, which turns the multivariate eigen problem into an eigen

problem for a special class of linear operators. As a consequence, the main directions of variation,

i.e., the principal components, are functions that vary over the same domain as the functional

observations. In the following it is assumed that the functions live in the L2(T )-space of square

integrable functions defined on a bounded interval T ⊂ R.

Transition to the functional case

The following outlines how the idea of PCA carries over to the functional framework. This
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involves the extension of the definitions of a multivariate random variable, its mean vector and

variance-covariance matrix, as well as the scalar product of vectors to their functional counterparts.

The following is in parts based on Jolliffe (2002), Ramsay and Silverman (2005), and Horváth and

Kokoszka (2012).

In the functional case, the random variable x ∈ Rp is replaced by a square integrable ran-

dom process X(t) ∈ L2(T ) with mean function µ(t) = E[X(t)] and auto-covariance function

K(t, t′) = Cov[X(t), X(t′)], t, t′ ∈ T . Thus, the mean in this context is a curve and the covari-

ance is a surface. Consider, as in the multivariate context, n independent samples of X(t), denoted

by x1(t), . . . , xn(t), where a common sampling grid is assumed to keep notation simple. Thus, the

discrete index j of the elements xij in the multivariate case is replaced by the continuous function

argument t, yielding xi(t), i = 1, . . . , n. In analogy to multivariate PCA, FPCA requires that the

data are centered, which in the functional case means that the sample mean function, given by

x̄(t) =
1

n

n∑
i=1

xi(t),

is zero for all t ∈ T . Similarly, the sample auto-covariance function that summarizes the dependence

of different function values can be defined as

k(t, t′) =
1

n− 1

n∑
i=1

[xi(t)− x̄(t)]
[
xi(t

′)− x̄(t′)
]
. (2.12)

The sample variance function thus results from the sample auto-covariance function (2.12) by setting

t′ = t. The p×p sample variance-covariance matrix S, on which the PCA is based in the multivariate

case, is replaced by a sample auto-covariance operator, which can be seen as its infinite-dimensional

counterpart. A brief introduction to covariance operators will be given below. Finally, the scalar

product for vectors x, y ∈ Rp, 〈x, y〉 = x>y =
∑p

k=1 xkyk, is replaced by the canonical inner product

for functions f , g ∈ L2(T ) given by

〈f, g〉 =

∫
T
f(t)g(t) d t, which induces the L2-norm ‖f‖ = 〈f, f〉

1
2 =

[∫
T
f2(t) d t

] 1
2

. (2.13)

Thus, summation over the p variables in the scalar product is replaced by integration over the

function domain T , which accounts for the functional nature of the data.

The covariance operator

The covariance operator generalizes the variance-covariance matrix and is thus at the heart of FPCA.

Assume for simplicity that X(t) is centered, i.e., µ(t) ≡ 0. The (auto-)covariance operator of X(t)

can then be defined as the mapping K : L2(T )→ L2(T ) of the form

[Ky](t) =

∫
T
K(t, t′)y(t′) d t′, y ∈ L2(T ), (2.14)
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where K(t, t′) ∈ L2(T × T ) is the covariance function K(t, t′) = E [X(t)X(t′)]. To illustrate the

parallel of the covariance operator (2.14) to its multivariate counterpart, the variance-covariance

matrix Σ can be written as linear mapping Σ : Rp → Rp. Then, applying Σ to a vector y ∈ Rp

yields

[Σy]t =

p∑
t′=1

Σtt′yt′ , y ∈ Rp,

where Σtt′ denotes the (t, t′) entry of Σ. Thus, the covariance operator (2.14) is defined in analogy to

the covariance matrix, where summation is replaced by integration. The sample covariance operator

K̃ is then given by replacing the auto-covariance function K(t, t′) by the sample auto-covariance

function k(t, t′).

The covariance operator (2.14) has several interesting properties that allow the direct exten-

sion of PCA to functional data. First of all, the covariance operator falls into the class of integral

operators and the covariance function K(t, t′) is commonly referred to as the covariance kernel

or kernel function. It can be shown that K is a Hilbert-Schmidt operator and thus continuous

and compact (see, e.g., Horváth and Kokoszka, 2012, Chapter 2). Compact linear operators are

closely related to operators with a finite-dimensional range, which facilitates the transition from

PCA to FPCA as many matrix properties carry over. Moreover, compact linear operators can be

approximated by a sequence of finite-dimensional operators (see, e.g., Atkinson and Han, 2009,

Chapter 2), allowing for numerical treatment. It can be easily shown that K inherits the symmetry

of the covariance function K(t, t′) and that it is positive semi-definite, i.e., 〈Kx, x〉 ≥ 0, x ∈ L2(T ).

As symmetric positive-definite Hilbert-Schmidt operator, K has an eigen decomposition of the form

Kx =

∞∑
k=1

νk〈x, φk〉φk, x ∈ L2(T ),

with orthonormal eigenfunctions φk and real-valued eigenvalues νk that can be ordered as

ν1 ≥ ν2 ≥ . . . ≥ 0 as they are non-negative and have zero as their only possible point of accu-

mulation (see, e.g., Naylor and Sell, 2000, Chapter 6). The eigen problem for covariance operator K

can be written as

Kφk = νkφk and thus

∫
T
K(t, t′)φk(t

′) d t′ = νkφk(t), k ∈ N. (2.15)

Furthermore, Mercer’s theorem (Mercer, 1909) for continuous kernel functions provides a series rep-

resentation of the covariance function, given by

K(t, t′) =

∞∑
k=1

νkφk(t)φk(t
′), t, t′ ∈ T , (2.16)
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and states that the series of (νk, φk) converges uniformly. For a detailed introduction to linear

operators from a functional data analysis perspective, see, e.g., Horváth and Kokoszka (2012). Proofs

can be found in, e.g., Bosq (2000).

Derivation of FPCA

As in the multivariate case, different motivations and derivations of FPCA exist. One is to search for

an orthogonal projection of the original data that maximizes the retained variance (see, e.g., Shang,

2014). When the data are functions, the PC vectors φ are replaced by PC functions φ(t), which are

called functional principal components.

Assume that x1(t), . . . , xn(t) are centered. One aims to find normalized, orthogonal functions

φk(t) ∈ L2(T ), k ∈ N, that project each xi(t) to a new vector space while retaining as much as

possible of the variation present in the data. The procedure to find the new basis can be carried out

analogously to the multivariate case:

1. Find a linear projection of the data ξi1 = 〈φ1, xi〉 =
∫
T φ1(t)xi(t) d t with maximal sample

variance subject to the normalization constraint ‖φ1‖2 =
∫
T φ

2
1(t) d t = 1. The first FPC is then

defined by

φ1(t) = arg max
‖φ‖2=1

1

n− 1

n∑
i=1

〈φ, xi〉2 = arg max
‖φ‖2=1

1

n− 1

n∑
i=1

(∫
T
φ(t)xi(t) d t

)2

,

which can–in analogy to multivariate PCA–be expressed in terms of the sample covariance

operator (see, e.g., Tran, 2008, Chapter 1)

φ1(t) = arg max
‖φ‖2=1

〈K̃φ, φ〉. (2.17)

Due to the nice properties of the covariance operator (see above), the maximization problem

(2.17) can be solved in analogy to the multivariate case by considering the eigen problem of the

sample covariance operator K̃. The first FPC is given by the eigenfunction corresponding to

the largest eigenvalue (see, e.g., Ramsay and Silverman, 2005, Chapter 8).

2. The kth FPC can be defined analogously to the maximization problem (2.17), subject to the

additional constraint 〈φ, φm〉 = 0 for m < k. The kth FPC is thus given by the eigenfunction

corresponding to the kth largest eigenvalue.

In summary, FPCA can be derived in analogy to multivariate PCA and results in an eigen analysis of

the sample covariance operator. The new basis is given by the eigenfunctions and the corresponding

eigenvalues quantify the amount of explained variance. The new variables, also called FPC scores or

FPC weights are defined as ξik = 〈φk, xi〉. As in the multivariate case, the FPCs are only unique up

to sign. Note that for simplicity, the same notation is used here for the eigenfunctions, eigenvalues,

and FPC weights no matter if they correspond to the covariance operator or to the sample covariance

operator.
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Another way to look at FPCA arises from the Karhunen-Loève (KL) expansion (Loève, 1946;

Karhunen, 1947) of a random process. Based on Mercer’s theorem (2.16), the KL expansion pro-

vides a series representation, which breaks up the random process into fixed orthogonal components

φk(t) and random uncorrelated basis weights ξk. For a zero mean random process X(t), the KL

expansion is given by

X(t) =

∞∑
k=1

ξkφk(t), (2.18)

where ξk = 〈φk, x〉, k ∈ N, are uncorrelated real zero mean random variables with variance νk.

The series (νk, φk) is defined as in Mercer’s theorem (2.16). That is, the KL expansion represents

the random process in a basis of eigenfunctions of its covariance operator and the variance of each

basis weight corresponds to the respective eigenvalue. The series in (2.18) converges uniformly

with respect to the L2-norm in (2.13) (see, e.g., Bosq, 2000, Chapter 1). Under a Gaussian process

assumption, the basis weights ξk are independent (Hall and Hosseini-Nasab, 2006). For a given

functional data set, the KL expansion allows to interpret the FPC weights ξik as individual weights

of the contribution of the kth FPC to curve i.

Dimension reduction

In particular in the functional case, dimension reduction plays an important role. With the same

justification as in the multivariate context, the dimension can be reduced by using only the first N

FPCs to represent the data. The original data are than approximated by truncated KL expansions.

Note that in practice, the data consist of vectors of discrete observations rather than continuous

functions. That is, the maximal number of FPCs that can be obtained in practice is limited by either

the number of observations or by the number of grid points on which the covariance is evaluated.

This may depend on both, the original sampling grid and potential pre-processing steps.

As in multivariate PCA, various rules for choosing the optimal number of FPCs have been

proposed in the literature; for an overview, see, e.g., Di et al. (2009), Greven et al. (2010), and

Shang (2014). In this thesis, the subset of FPCs is chosen based on the fraction of variability

explained. The definition of the criterion is a direct extension of the definition in (2.11) to the

infinite-dimensional case, i.e., the summation limit in the denominator in (2.11), p, is replaced by

infinity and in practice by the maximal number of eigenvalues. The truncation level controls the

amount of regularization and can thus be seen as discrete regularization parameter. This is in

analogy to other basis approaches, such as spline bases, where the number of basis functions controls

the bias-variance trade-off. Commonly, the FPCs decline in smoothness as dominant variation of

a smooth random process tends to be smooth (e.g., Peng and Paul, 2009). The rate of decay of

the eigenvalues thus gives insight into the smoothness of the covariance function (Rasmussen and

Williams, 2006). The number of FPCs that is needed to avoid a severe loss of information is an

indicator for the complexity of the data (Ramsay and Silverman, 2005, Chapter 8).
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Some properties of FPCA

Similar to the multivariate case, it can be shown that the truncated KL expansion yields the best

approximation of the data with respect to the L2-norm for a given truncation level (see, e.g., Ramsay

and Silverman, 2005, Chapter 8). In other words, the approximation of a random process X(t),

denoted as X̂(t), in a basis of eigenfunctions of its covariance operator as in Equation (2.18) yields a

smaller approximation error ∫
T

[
X̂(t)−X(t)

]2
d t

than in any other basis with the same number of basis functions. FPC bases therefore yield a

parsimonious representation of the data, which makes them a popular choice in dimension reduction

problems (see Chapter 4 for a simulation comparison of FPC bases with spline bases).

Besides the aspect of reducing high-dimensional data, the FPCs commonly allow for interesting

interpretations. The FPC weights provide insights into the individual structure of the curves and

can be used in further analysis, such as classification or clustering. For sparsely sampled data,

expansions in FPC bases can be used for interpolation (see, e.g., Wang et al., 2016).

The role of FPCA in this thesis

In this thesis, FPC bases are used to represent the fREs in FLMMs. As the data are available on

a discrete sampling grid and are observed with error, smoothing is applied in the estimation of the

mean function as well as in the estimation of the covariance function of each fRE. The challenge of

the covariance estimation lies in the fact that the fREs are latent underlying processes that cannot

be observed. Two new approaches for estimating the smooth covariances in FLMMs are proposed

for equal sampling grids and for unequal or sparse sampling grids in Chapters 3 and 4, respectively.

Once the smooth covariance estimates are available, they can be evaluated on a pre-specified dense

grid yielding estimated covariance matrices. Eigen decompositions of these matrices yield estimated

eigenvectors and eigenvalues. In this way, FPCA can be transferred to multivariate PCA for given

covariance estimates. Rescaling is necessary to ensure that the estimated eigenvectors, which serve

as estimates for the eigenfunctions of the covariance operators, are orthonormal with respect to the

inner product in L2. The eigenvalues are then adjusted accordingly (for details, see Appendix C).

Consider for simplicity Model (2.9) with one curve-specific fRI. The truncated KL expansion of

Ei(tij) is given by

Ei(tij) ≈
N∑
k=1

ξikφk(tij),

where ξik and φk(tij) are the FPC weights and FPCs of the fRI, respectively. The FPCs are obtained

as described above as the rescaled eigenvectors of the discretized estimated covariance. Recall that the

FPC weights are defined as ξik = 〈φk, Ei〉 =
∫
T φk(t)Ei(t) d t. Traditionally, numerical approximation

of the integral is used to predict the FPC weights in simpler situations (e.g., Ramsay and Silverman,
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2005). This is, however, not possible here as Ei(tij) is a latent, unknown process. Moreover, when the

data are sparsely sampled, numerical integration would not work (well). Instead, this thesis makes

use of the fact that replacing the fRE by its truncated KL expansion allows to approximate Model

(2.9) for discrete observation points by a scalar LMM of the form

Yi(tij) ≈ µ(tij) +
N∑
k=1

ξikφk(tij) + εi(tij),

in which the random effects correspond to the FPC weights, which can be predicted as EB(L)UPs

(see, e.g., Di et al., 2009; Greven et al., 2010). This way of predicting the FPC weights is extended to

the general FLMM (2.8), in which multiple fREs are approximated by their truncated KL expansions

(Chapter 3). In such models for functional data with multiple sources of variation, FPC bases have

the additional advantage that they allow for an explicit decomposition of the variability.

Multivariate FPCA

Above, FPCA has been described for univariate functional data, that is, for an univariate underlying

random process. For the general FLMM (2.8), in which the fREs for the same level of a grouping

factor are assumed to be correlated, an extension of FPCA to multivariate FPCA dealing with

vector-valued random processes is necessary, which will be briefly outlined in the following. For more

details on multivariate FPCA, it is referred to Ramsay and Silverman (2005), Jacques and Preda

(2014b), Chiou et al. (2014), as well as Happ and Greven (2017).

Consider the vector-valued random process Ug(tij), which is defined as in Section 2.1.2. In order

to study the joint variation of the ρUg functional random effects, not only the auto-covariance func-

tions Cov [Ugls(t), Ugls(t
′)], t, t′ ∈ T , s = 1 . . . , ρUg , but also the pairwise cross-covariance functions

Cov
[
Ugls(t), Ugls′(t

′)
]
, s 6= s′, are considered in the FPCA. The cross-covariance operator is defined

in analogy to the auto-covariance operator (2.14) as (e.g., Hsing and Eubank, 2015)[
K
Ug
ss′y
]

(t) =

∫
T
K
Ug
ss′ (t, t

′)y(t′) d t′, s 6= s′, y ∈ L2(T ),

with cross-covariance function K
Ug
ss′ (t, t

′) = Cov
[
Ugls(t), Ugls′(t

′)
]
, which is the same for all levels

l = 1, . . . , LUg .

When all ρUg components in the vector-valued random process are measured on the same one-

dimensional interval and have similar variation, a suitable inner product between the functions is

given by the additive inner product (see, e.g., Ramsay and Silverman, 2005, Chapter 8), which is

defined as

〈(
f1, . . . , fρUg

)
,
(
g1, . . . , gρUg

)〉
=

ρUg∑
s=1

∫
T
fs(t)gs(t) d t fs, gs ∈ L2(T ). (2.19)
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A multivariate extension of Mercer’s theorem for the complete covariance operator with covariance

kernel KUg(t, t′) is then given by (Balakrishnan, 1960; Kelly and Root, 1960)

KUg(t, t′) =
∞∑
k=1

ν
Ug
k φ

Ug
k (t)

[
φ
Ug
k (t′)

]>
, (2.20)

with eigenvalues ν
Ug
k and vector-valued eigenfunctions φ

Ug
k (t) =

[
φ
Ug
ks (t)

]
s=1,...,ρUg

, k ≥ 1. Based

on the additive inner product (2.19) and the vector-valued extension of Mercer’s theorem (2.20),

univariate FPCA can be extended to multivariate FPCA by concatenating the functions and applying

univariate FPCA to the composite function (see, e.g., Ramsay and Silverman, 2005, Chapter 8). An

extension of the KL expansion to vector-valued random processes is then given by (Balakrishnan,

1960; Kelly and Root, 1960)

Ugl(tij) =

∞∑
k=1

ξ
Ug
lk φ

Ug
k (tij), l = 1, . . . , LUg , (2.21)

with uncorrelated zero mean random basis weights ξ
Ug
lk with variance ν

Ug
k , k ≥ 1. In analogy to

univariate FPCA, the multivariate FPCs φ
Ug
k (t), k ≥ 1, represent the main modes of variation

and the corresponding eigenvalues represent the amount of variability explained. The multivariate

extension of the KL expansion (2.21) allows to interpret the random basis weights ξ
Ug
lk as the individual

weights of the contribution of the kth multivariate FPC. The FPC weights are uncorrelated by

construction. For vector-valued random processes, multivariate FPCA has at least two advantages

over applying separate univariate FPCA to each random function in the vector. First, multivariate

FPCA yields a more parsimonious representation of the data as each level of the grouping factor g

has a single basis weight per vector-valued FPC φ
Ug
k (tij). Second, the FPC weights in multivariate

FPCA explicitly model the correlation between the functional random effects contained in Ug(tij)

in contrast to univariate FPCA, where the correlation is captured only implicitly yielding correlated

FPC weights (Happ and Greven, 2017).

Normalized extensions that apply to multivariate FPCA with components of different nature,

e.g., different degrees of variability or units of measurement, have been proposed by Jacques and

Preda (2014b) and Chiou et al. (2014). Both approaches assume that the components are measured

on the same one-dimensional interval. Happ and Greven (2017) further extend multivariate FPCA

to components measured on different domains that may also differ in dimension. They derive a KL

expansion and establish the link to univariate KL expansions facilitating the calculation of multivariate

FPCs and basis weights based on their univariate counterparts.



42 2. Extending Linear Mixed Models and Principal Component Analysis to Functional Data



Chapter 3

Functional Linear Mixed Models for

Equal Sampling Grids

Contributing manuscript

This chapter is based on the following working paper in preparation:

Greven, S., Cederbaum, J., and Shou, H. (2016): Principal component-based functional

linear mixed models. Working paper.

This is joint work with Sonja Greven (Department of Statistics, LMU Munich, Germany) and

Haochang Shou (Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadel-

phia, United States). Sonja Greven had the idea of a general class of functional linear mixed models

and derived the modeling framework. She implemented the main part of the method in R (R Core

Team, 2016) and investigated the computational effort. Jona Cederbaum extended the implementa-

tion to allow for group-specific covariances of functional random effects, which is necessary for the

application to the tissue spectroscopy data that were kindly provided by Florian Stelzle (Depart-

ment of Oral and Maxillofacial Surgery, Erlangen University Hospital, Germany) and Werner Adler

(Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University

Erlangen-Nuremberg, Germany). Jona Cederbaum also made corrections in the implementation. She

conducted all data analyses, including the application of the functional linear mixed models to tissue

classification based on the idea of Sonja Greven to combine the approach with the work of Zhu et al.

(2012). She tried out alternative classification ideas based on functional linear mixed models not

included in the manuscript. She implemented different versions of the classification and compared

the classification rates with those of several competing approaches, some of which are shown in the

manuscript and in this chapter. Haochang Shou conducted simulation studies, which are not shown

as part of this thesis for reasons of incompleteness. She also pointed out a mistake in the implemen-

tation of group-specific covariances. Sonja Greven conducted the literature research on functional

linear mixed models and wrote the main part of the manuscript. Haochang Shou contributed to the
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manuscript by writing the simulation section, which was proofread by and discussed in close collabo-

ration with the other co-authors. Jona Cederbaum investigated the literature on classification, wrote

the application section, and added the discussion of this chapter which is lacking in the manuscript.

She also contributed in proofreading the manuscript. Jona Cederbaum made the implementation of

the approach available to users in the R add-on package denseFLMM (Greven and Cederbaum, 2017).

This chapter is a modified version of the working paper in preparation Greven et al. (2016).

Sections 3.1 to 3.4 are very similar to the corresponding sections of the manuscript. The main

modifications concern wording and illustrations. In addition, some references were added in this

chapter and small corrections were made in the formula for the choice of the truncation lags and

in the application section. Moreover, the notation was adapted to the notation of this thesis and

references to the recently released R add-on package denseFLMM implementing the approach are

added. The simulation section of the manuscript was omitted in this chapter. The discussion of this

chapter was prepared for this thesis.

Software

The analyses within this chapter were carried out using R version 3.2.2 (2015-12-10) (R Core Team,

2016) on the platform x86 64-pc-linux-gnu (64-bit). The add-on package Matrix (Bates and Mächler,

2017, version 1.2-8) was used for data preparation, for the construction of the design matrices in case

of group-specific covariances, and for matrix operations during covariance estimation. For smoothing

the covariance functions, the add-on package mgcv (Wood, 2006, 2011, version 1.8-17) was applied,

which depends on the add-on package nlme (Pinheiro et al., 2016, attached version 3.1-124). For

parallelization of the nested cross-validation, the add-on packages foreach (Analytics and Weston,

2015b, version 1.4.3) and doMC (Analytics and Weston, 2015a, version 1.3.4) were used, the latter of

which depends on the add-on package iterators (Analytics and Weston, 2015c, attached version 1.0.8).

For comparison with penalized discriminant analysis, the add-on packages mda (Hastie et al., 2016,

version 0.4-9) and class (Venables and Ripley, 2002, version 7.3-14) were additionally employed.

3.1 Introduction

Scientific studies now commonly collect functional or imaging data subject to an additional correlation

structure due, for example, to a longitudinal, crossed, nested or spatial study design. Our motivating

data set comes from a tissue spectroscopy study, where multiple reflectance spectra are collected

each at several spots on a number of pigs for four different tissue types. Interest lies in using these

spectra for classification into tissue groups, while also trying to understand the different sources of

variability in the data. As each observation consists of a spectrum, the data are functional. The

study design induces a hierarchical structure and correlation in these functional data, which is in part

also tissue-specific.

Correlated scalar data are commonly analyzed using mixed models (see, e.g., Pinheiro and Bates,

2000). For functional data (e.g., Ramsay and Silverman, 2005; Ferraty and Vieu, 2006), functional
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versions of linear mixed models have been proposed under varying degrees of generality and using

different bases to expand functions in the model; see Liu and Guo (2012), Morris (2015), and Greven

and Scheipl (2017) for recent reviews. Approaches typically either use splines (Guo, 2002, 2004;

Bigelow and Dunson, 2007; Baladandayuthapani et al., 2008; Scarpa and Dunson, 2009; Chen, 2012;

Scheipl et al., 2015), wavelets (Morris et al., 2003; Morris and Carroll, 2006; Abramovich and Angelini,

2006; Antoniadis and Sapatinas, 2007; Morris et al., 2011; Zhu et al., 2011) or functional principal

components (Di et al., 2009; Greven et al., 2010; Aston et al., 2010; Zhou et al., 2010; Staicu et al.,

2010; Di et al., 2014; Shou et al., 2015, and Chapters 4 and 5 of this thesis) to expand the functional

fixed and random effects.

A large part of previous work has been limited to particular special cases of functional linear

mixed models (FLMMs) often motivated by applications, such as the functional random intercept

model (Abramovich and Angelini, 2006; Di et al., 2009; Krafty et al., 2011), functional intercept and

slope model (Greven et al., 2010), a single level of random effects functions (Guo, 2002; Qin and

Guo, 2006; Antoniadis and Sapatinas, 2007), a two or three-level hierarchy with or without spatial

correlation on the last level (Brumback and Rice, 1998; Morris et al., 2003; Baladandayuthapani et al.,

2008; Bigelow and Dunson, 2007; Li et al., 2007; Scarpa and Dunson, 2009; Zhou et al., 2010; Staicu

et al., 2010), or nested or crossed random intercepts (Shou et al., 2015 and Chapter 4 of this thesis).

An extensive literature is also available on models with smooth residual process only (e.g., Wu and

Zhang, 2002; Yao et al., 2005; Chen and Wang, 2011).

Among the most general of previous works are the functional additive mixed models (FAMMs)

of Scheipl et al. (2015), who however assume independence across functional random effects, with

the P-spline-based approach incurring much higher computational cost than a functional principal

component (FPC)-based approach in the case of many random effects levels (see Chapter 4). How

to combine the FAMM approach and our FPC-based approach to best advantage is briefly outlined

in Section 3.3.1 (see also Greven and Scheipl, 2017 and Chapter 4 of this thesis). Aston et al. (2010)

assume the same FPC basis for all random processes in the model, which they estimate using a

working independence assumption between curves. The assumption of common FPC bases for all

latent processes may be a limitation in applications different from theirs and would be too restrictive

in our application to the tissue spectroscopy data. Moreover, it is unclear how the correlation between

curves in our application would affect the properties of the FPCs estimated from all the data. Morris

and Carroll (2006) (with extensions to robust regression and images given in Zhu et al., 2011; Morris

et al., 2011) consider a general FLMM and Bayesian estimation based on wavelet decompositions.

Whereas wavelets are well-suited to spiky data and require equidistant grids with length a power of

two, our approach can be seen as complementary in terms of assuming smooth underlying processes

and allowing for non-equidistant grids of arbitrary length and potential missings.

We consider very general FLMMs which can, for example, accommodate nested and/or crossed

designs, correlated functional random intercepts and/or slopes as well as group-specific covariances

of functional random effects, which is relevant for our application in Section 3.4. We base estimation

on process-specific FPCs, generalizing Di et al. (2009), Greven et al. (2010), Shou et al. (2015), and

Chapters 4 and 5 of this thesis to more general models while pursuing a similar approach to estimating
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the mean function and to predicting the basis weights. Our FPC-based approach, in contrast to

spline or wavelet-based approaches, provides an explicit variance decomposition with interpretable

main modes of variation. The approach increases computational efficiency by using a comparatively

small number of FPC basis functions, using the fact that for a given number of basis functions, FPCs

provide the best approximation to the data (see, e.g., Wang et al., 2016). How to estimate FPCs for

the latent processes in very general FLMMs is non-trivial and has not been described before other

than for certain special cases and for a general functional linear mixed model without group-specific

covariances of random effects in Chapter 5 of this thesis. Extensions of the approach to images and

to sparsely sampled functional observations seem feasible (compare Yao et al., 2005; Di et al., 2014;

Zipunnikov et al., 2014, and Chapters 4 and 5 of this thesis, for simpler models). We will here focus

on functions observed on a common one-dimensional grid, not necessarily equidistant, possibly with

some missings, as this structure corresponds to our application and we make use of the grid structure

to increase computational efficiency.

We provide fully documented open-source software implementing our estimation approach in the

R add-on package denseFLMM (R Core Team, 2016; Greven and Cederbaum, 2017). A description

and examples for the usage of the R package as well as code for the analysis of the tissue spectroscopy

data can be found in Appendix E.

The remainder of the chapter is organized as follows. Sections 3.2 and 3.3 describe the considered

FLMM and our FPC-based approach to estimation. We apply our method to the tissue spectroscopy

data in Section 3.4. The chapter closes with a discussion in Section 3.5.

3.2 The functional linear mixed model

We consider functional linear mixed models of the form

Yi(t) = µ(t,xi) + z>i U(t) + εi(t), i = 1, . . . , n, (3.1)

where the domain T for t is a bounded interval in R. Here, µ(t,xi) denotes a curve-specific smooth

mean function dependent on scalar and/or functional covariates xi. Possible structures for µ(t,xi) are

described in Section 3.3.1. zi is a covariate vector of length q and U(t) denotes a vector of functional

random effects with possibly group-specific covariances as in our application in Section 3.4. εi(t)

represents white noise measurement error. Usually, the functional random effects will additionally

include a smooth error term which is a functional random intercept with a special structure that

captures deviations from the mean which are correlated along T . In this case, the last block of zi
corresponds to an indicator vector of indicators for each curve and the last block in U(t) consists

of curve-specific functional random effects. In applications in which the curve-specific variability is

high and depends on a grouping variable, it may be desirable to replace the smooth error term by a

group-specific smooth error, i.e., with group-specific auto-covariance.
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We assume εi(t) to be i. i. d. mean zero random variables with variance σ2 for all i and t. We

further assume that U(t) is a vector-valued zero mean square integrable random process on T and

that U(t′) is independent of εi(t) for all i, t, t′.

The structure for the functional random effects can be quite general, including, e.g., hierarchical,

crossed and/or correlated functional random effects, and mimics the possible structures for scalar

random effects in popular linear mixed model implementations such as in the packages nlme (Pinheiro

et al., 2016) or lme4 (Bates et al., 2016) in R (R Core Team, 2016). For each t ∈ T , Model (3.1)

can in fact be seen as a scalar linear mixed model, while our covariance assumptions below ensure

smoothness over the additional dimension t. In the following, we aim to stay close in notation to

Bates et al. (2015) in order to exploit familiarity with the scalar case, where possible.

If we have G random effect terms in our model, i.e., G different grouping factors, we subdivide

U(t) =
[
U1(t)>, . . . ,UG(t)>

]>
into the G independent blocks of functional random effects, with

Ug(t) and Ug′(t) independent for g 6= g′. Each block Ug(t) further contains LUg independent copies

Ugl(t), l = 1, . . . , LUg , of a vector-valued stochastic process with ρUg vector components Ugls(t),

s = 1, . . . , ρUg , yielding Ug(t) =
[
Ug11(t), . . . , Ug1ρUg (t), . . . , UgLUg1(t), . . . , UgLUgρUg (t)

]
. The total

number of functional random effects then amounts to q =
∑G

g=1 L
UgρUg . The matrix-valued co-

variances KUg(t, t′) = Cov [Ugl(t),Ugl(t
′)], l = 1, . . . , LUg , consist of blocks Cov

[
Ugls(t), Ugls′(t

′)
]
,

s, s′ = 1, . . . , ρUg , which are assumed to be smooth in t and t′.

To give some intuition, consider the example of subjects nested within groups and a model includ-

ing for each group a functional random intercept and for each subject a correlated functional random

intercept and functional random slope. Then, we have G = 2 independent blocks of functional ran-

dom effects, with the number of independent levels LU1 and LU2 equal to the number of groups and of

subjects, respectively. For the corresponding vector-valued random processes, the lengths are ρU1 = 1

(only random intercept) and ρU2 = 2 (random intercept and slope), respectively. Uncorrelated func-

tional random intercept and slope on the subject level would be assumed by letting G = 3, LU3 = LU2 ,

and ρU2 = ρU3 = 1.

For estimation of Model (3.1), dimension reduction will be important. We choose to base esti-

mation on FPCs, which typically yield a small basis explaining most of the variation in the data,

and thus allow for efficient computations as well as interpretable results. Given our assumptions and

using an extension of Mercer’s theorem (Mercer, 1909) to vector-valued random processes (Balakrish-

nan, 1960; Kelly and Root, 1960) and an extension of the Karhunen-Loève expansion (Loève, 1946;

Karhunen, 1947) to vector-valued random processes (Balakrishnan, 1960; Kelly and Root, 1960), we

can write the random processes as

Ugl(t) =

∞∑
k=1

ξ
Ug
lk φ

Ug
k (t) (3.2)
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for all g, l, where the vector-valued eigenfunctions φ
Ug
k (·) =

[
φ
Ug
k1 (·), . . . , φUg

kρUg
(·)
]>

corresponding to

the eigenvalues ν
Ug
1 ≥ νUg2 ≥ . . . ≥ 0 in KUg(t, t′) =

∑∞
k=1 ν

Ug
k φ

Ug
k (t)

[
φ
Ug
k (t′)

]>
form an orthonormal

basis for the direct sum of ρUg L2(T )-spaces with respect to the additive inner product

〈(
f1, . . . , fρUg

)
,
(
g1, . . . , gρUg

)〉
=

ρUg∑
s=1

∫
T
fs(t)gs(t) d t (3.3)

and ξ
Ug
lk are uncorrelated zero mean random basis weights (also denoted as FPC scores) with variance

ν
Ug
k for all g, l, k. In practice, the infinite sums in Equation (3.2) will be truncated at suitably chosen

values NUg .

Now, assume that each curve is observed on the same D grid points D = {t1, . . . , tD}. Note that a

common grid for all observations facilitates notation and speeds up computation, but that our method

can also handle missing values; we will discuss this case in Section 3.3.5. Then, the discretized version

of Model (3.1) becomes

Y = µ+ZU + ε, (3.4)

where Y = [Yi(td)]i=1,...,n,d=1,...,D is an n×D matrix, µ and ε are analogously built n×D matrices,

the n× q matrix Z contains rows z>i , i = 1, . . . , n, and U is q×D with columns U(td), d = 1, . . . , D.

Let Z be divided as Z =
[
ZU1

∣∣. . .∣∣ZUG
]

with ZUg =
[
Z
Ug
11

∣∣∣. . .∣∣∣ZUg

1ρUg

∣∣∣. . .∣∣∣ZUg

LUg1

∣∣∣. . .∣∣∣ZUg

LUgρUg

]
,

where Z
Ug
ls is a vector containing the covariate values for the sth functional random effect for

grouping factor g for the lth level of that grouping factor, times an indicator for that level. Let

U be correspondingly divided as U =
[
U1
>∣∣. . .∣∣UG>]> with Ug =

[
Ug1

>
∣∣∣. . .∣∣∣UgLUg>]> and

Ugl =
[
Ugl1

>
∣∣∣. . .∣∣∣UglρUg>]>. Our above-described assumptions then mean that Ug and Ug′ are

uncorrelated for g 6= g′ (different grouping factors) and Ugl and Ugl′ are uncorrelated for l 6= l′

(independent copies), but that Ugls and Ugls′ are correlated in general for s 6= s′ (e.g., correlated

functional random intercept and slope).

For given truncation lags NUg and eigenfunctions
{
φ
Ug
k (·), k = 1, . . . , NUg

}
, g = 1, . . . G, we can

approximate Model (3.4) as

Y ≈ µ+
G∑
g=1

LUg∑
l=1

ρUg∑
s=1

Z
Ug
ls Ξ

Ug
l Φ

Ug
s + ε (3.5)

= µ+

G∑
g=1

ρUg∑
s=1

Z
Ug
·s ΞUgΦ

Ug
s + ε,
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where ΞUg =
[
ξ
Ug
lk

]
l=1,...,LUg ,k=1,...,NUg

with rows Ξ
Ug
l , Z

Ug
·s contains columns Z

Ug
ls , l = 1, . . . , LUg , and

Φ
Ug
s =

[
φ
Ug
ks (t)

]
k=1,...,NUg ,t∈D

, r = 1, . . . , ρUg and g = 1, . . . , G. Model (3.5) is a scalar linear mixed

model in which the random effects correspond to the random basis weights ξ
Ug
lk , as perhaps more

clearly seen using matrix vectorization (the vec operator) and the Kronecker product of matrices ⊗
(e.g., Harville, 1997, Chapter 16),

vec(Y ) ≈ vec(µ) +

G∑
g=1

[
ρUg∑
s=1

(
Φ
Ug
s
>
⊗ZUg

·s

)]
vec
(
ΞUg

)
+ vec(ε) (3.6)

= vec(µ) +ZΦξ + vec(ε),

where ZΦ =
[∑ρU1

s=1 ΦU1
s
> ⊗ZU1

·s

∣∣∣. . .∣∣∣∑ρUg

s=1 ΦUG
s
> ⊗ZUG·s

]
and ξ =

[
vec
(
ΞU1

)>∣∣∣. . .∣∣∣vec
(
ΞUG

)>]>
.

3.3 Estimation

Estimation is conducted in four steps. First, the mean is estimated under a working independence

assumption. Second, after demeaning the responses, the covariance structure is estimated. This is

used to, third, obtain the estimated eigenfunctions and eigenvalues, which are then used to, fourth,

predict the random basis weights.

3.3.1 Estimation of the mean structure

If the mean µ(t) does not depend on covariates or depends only on a discrete variable k, i.e., is a

group-specific mean function µk(t) as it is in our application, we can estimate it by simply averaging

curves Yi(t) point-wise or point-wise within each group k.

If the mean depends more generally on scalar and/or functional covariates, the FAMM framework

of Scheipl et al. (2015) can be used for estimation under a working independence assumption condi-

tional on the mean. This framework allows for linear or smooth effects of scalar covariates x that are

constant or varying over the interval T , i.e., effects of the form xβ, xβ(t), f(x) or f(t, x). In addition,

linear or smooth effects of functional covariates x(s) can be included of the form
∫
x(s)β(t, s) d s or∫

f (x(s), s, t) d s. Interactions between these terms for scalar and/or functional covariates are also

possible. FAMM uses a tensor product basis representation of all model terms with marginal bases for

the covariate effects and over T . Smoothness of coefficients is achieved by using spline bases with an

appropriate smoothness penalty, with the smoothing parameters estimated by restricted maximum

likelihood (REML; Patterson and Thompson (1971); cf. Ruppert et al. (2003), Section 4.9). For full

details, see Scheipl et al. (2015). The approach is implemented in the pffr function of the R add-on

package refund (Huang et al., 2016a).
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3.3.2 Estimation of the covariance structure

For estimation of the covariance structure, we use a method of moments-based approach. We rewrite

Model (3.4) as

Y − µ =

G∑
g=1

ρUg∑
s=1

Z
Ug
·s Ug·s,

where Ug·s =
(
Ug1s, . . . ,UgLUg s

)
and for ease of notation we absorbed ε into the last random effect,

assuming this to be a smooth error term Ei for each curve i = 1, . . . , n (or group-specific smooth

error).

Denote the covariance matrix for Ugls on the grid D by K
Ug
ss′ (D) =

[
Cov

[
Ugls(t), Ugls′(t

′)
]]
t,t′∈D.

Then, using E
(
Ug·s′ ⊗Ug·s

)
= vec

(
ILUg

)
vec
(
K

Ug
ss′

)>
for all g, s, s′ and rules for the Kronecker

product of matrices (Harville, 1997, Chapter 16), we obtain

E [(Y − µ)⊗ (Y − µ)] =
G∑
g=1

ρUg∑
s=1

ρUg∑
s′=1

vec

(
Z
Ug
·s Z

Ug
·s′
>
)

vec
(
K

Ug
ss′

)>
=: XZβK ,

with

XZ =
[
vec
(
ZU1
·1 Z

U1
·1
>)∣∣∣. . .∣∣∣vec

(
ZU1
·1 Z

U1

·ρU1

>)∣∣∣. . .∣∣∣vec
(
ZU1

·ρU1
ZU1

·ρU1

>)∣∣∣. . .∣∣∣vec
(
ZUG
·ρUgZ

UG
·ρUg

>)]
,

βK =
[
vec
(
KU1

11

)∣∣∣. . .∣∣∣vec
(
KU1

1ρU1

)∣∣∣. . .∣∣∣vec
(
KU1

ρU1ρU1

)∣∣∣. . .∣∣∣vec
(
KUG
ρUgρUg

)]>
.

We can then estimate the covariance matrices contained in βK based on least squares

β̂K =
(
XZ

>XZ

)−1
XZ

> [(Y − µ̂)⊗ (Y − µ̂)]

after replacing µ by the estimate µ̂ from Section 3.3.1. β̂K is a
[∑G

g=1

(
ρUg
)2] × D2 matrix, with

the columns corresponding to the covariance estimates for each (t, t′) combination, t, t′ ∈ D.

Using rules for Kronecker products and vec notation, we can write β̂K in a representation that

allows the computation of all covariance estimates with O
(
nD2

)
computational effort (see Appendix

B). This effort is due to the computation of the raw covariance of Y . If D is large, computation

of the D ×D covariance matrices needs to be avoided and an approach similar to Zipunnikov et al.

(2011, 2014), developed for special cases of our model, could likely be extended to our more general

setting, but is beyond the scope of this chapter.

After obtaining the raw covariance estimates, we can smooth eachK
Ug
ss′ separately using a bivariate

smoother in t and t′. Any bivariate smoother could be used for this step in principle. We use

penalized splines, with the smoothing parameter estimated using REML in a mixed model framework

(e.g., Ruppert et al., 2003). REML estimation has been found to be more stable than generalized
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cross-validation for the estimation of smoothing parameters (Reiss and Ogden, 2009) in the sense

of being less prone to multiple optima, and more robust under misspecification of the correlation

structure than mean squared error minimizers such as the Akaike information criterion (Krivobokova

and Kauermann, 2007).

For the covariance of the error terms, we can separate Cov [Ei(t) + εi(t), Ei(t
′) + εi(t

′)] into

Cov [Ei(t), Ei(t
′)] and Cov [εi(t), εi(t

′)] = σ2δtt′ , where δtt′ = 1 if t = t′ and δtt′ = 0 other-

wise. As Cov[εi(t), εi(t
′)] induces an offset term σ2 on the diagonal t = t′ of the bivariate surface

Cov [Ei(t) + εi(t), Ei(t
′) + εi(t

′)], we smooth this surface leaving out the diagonal to obtain an es-

timate of Cov [Ei(t), Ei(t
′)], then estimate σ2 from the average difference of the raw and smoothed

diagonal values (Staniswalis and Lee, 1998; Yao et al., 2005). For group-specific smooth errors,

smoothing without the diagonal of the error covariance can be done for each group separately.

Smooth covariance estimates are not guaranteed to be positive semi-definite. We impose positive

semi-definiteness by trimming eigenfunction-eigenvalue pairs corresponding to negative eigenvalues.

This method has been found to increase the L2-accuracy (Hall et al., 2008) and to work well in

practice (e.g., Yao et al., 2003; Greven et al., 2010).

Our implementation of the covariance smoothing is based on fast and robust available routines

in the mgcv package in R (Wood, 2006, 2011; R Core Team, 2016). If data sets are large, the bam

function instead of the gam function in the mgcv package can be used, which increases speed and

reduces memory need. Building on existing software allows us to benefit from established methods

and flexible implementations and to take advantage of future extensions and improvements.

3.3.3 Estimation of the eigenfunctions and eigenvalues

Estimates of the eigenfunctions and eigenvalues are obtained using spectral decompositions of the

covariances. We evaluate the estimated covariances on a fine equidistant grid D̃ =
{
t1, . . . , tD̃

}
in T .

We obtain estimates φ̂
Ug
k =

[
φ̂
Ug
ks (t)

]
s=1,...,ρUg ,t∈D̃

∈ RD̃ρUg and ν̂
Ug
k , k = 1, . . . , D̃ρUg , from a spectral

decomposition of

K̂Ug
(
D̃
)

=


K̂

Ug
11

(
D̃
)

. . . K̂
Ug

1ρUg

(
D̃
)

...
...

K̂
Ug

ρUg1

(
D̃
)

. . . K̂
Ug

ρUgρUg

(
D̃
)
 =

D̃ρUg∑
k=1

ν̂
Ug
k φ̂

Ug
k φ̂

Ug
k

>
,

where K̂
Ug
ss′

(
D̃
)

=
[
Ĉov

[
Ugls(t), Ugls′(t

′)
]]
t,t′∈D̃

for all g, l, s, s′. To ensure orthonormality with

respect to the additive inner product (3.3), the approximated eigenfunctions are rescaled (see, e.g.,

Chapter 4 of this thesis).

Suitable truncation lags NUg , g = 1, . . . , G, could be chosen using testing (Crainiceanu and

Ruppert, 2004; Greven et al., 2008) or model selection (Vaida and Blanchard, 2005; Greven and

Kneib, 2010) for random effects in the linear mixed model (3.6). We choose a simple approach based
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on variance explained (cf. Greven et al., 2010), ordering the ν̂
Ug
k , g = 1, . . . , G, by decreasing size and

selecting components until G∑
g=1

NUg∑
k=1

ν̂
Ug
k + σ̂2|T |

/ G∑
g=1

D̃ρUg∑
k=1

ν̂
Ug
k + σ̂2|T |

 ≥ L
for a pre-specified L, e.g., L = 0.95.

3.3.4 Prediction of the random basis weights

After choosing the truncation lags, we base prediction of the basis weights on the linear mixed model

(3.6), replacing the mean function, the error variance, the eigenfunctions and eigenvalues by their

estimates. We obtain predictions for the basis weights collected in ξ based on best linear unbiased

predictors (BLUPs)

ξ =
(
ZΦ
>ZΦ + σ2G−1

)−1
ZΦ
> vec(Y − µ).

Here, we use Cov [vec(ε)] = σ2InD and G denotes Cov [vec(ξ)], a diagonal matrix with blocks

diag
[(
ν
Ug
1 , . . . , ν

Ug

NUg

)
⊗ ILUg

]
, g = 1, . . . , G. Predictions ξ̂ are obtained as empirical BLUPs

(EBLUPs), replacing µ, σ2, ν
Ug
k and Φ

Ug
s , for all g, k, s, by their estimates.

Again, we can make use of the Kronecker product structure of our matrices and derive a rep-

resentation of ξ̂ (see Appendix B) that has computational effort of O
[
nD +

(∑G
g=1N

UgLUg
)3
]
, or

at most O
(
nD + n3

)
. The first component is linear in n and D, while the second component is

independent of the functional part of our model and equal to the effort of computing
∑G

g=1N
UgLUg

BLUPs in a scalar linear mixed model.

3.3.5 Extension to missing values

Now consider the case where some of the observations Yi(t), t ∈ D, are missing. Denote the subset of

t with some missing values by M⊂ D, and the corresponding values of i by Mt ⊂ {1, . . . , n}.
For t and/or t′ in M, we have

E
{[
Y −i(t)− µ−i(t)

]
⊗
[
Y −i(t′)− µ−i(t′)

]}
=

G∑
g=1

ρUg∑
s=1

ρUg∑
s′=1

vec

[
Z
Ug
·s
−i (

Z
Ug
·s′
−i)>]

vec
[
K

Ug
ss′ (t, t

′)
]>
,

where Y −i(t) denotes the column in Y corresponding to t, after deleting the rows corresponding to

i ∈ Mt, µ
−i(t) is constructed analogously, Z

Ug
·s
−i

results from Z
Ug
·s
−i

after deletion of the corre-

sponding rows, and K
Ug
ss′ (t, t

′) denotes the column in K
Ug
ss′ (D) corresponding to (t, t′). Estimation of

K
Ug
ss′ (t, t

′) can then proceed as before using reduced design matrices and responses.
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This approach works well for a relatively small proportion of missing values. If the proportion of

missings is large, computational effort increases, as the equality of design matrices vec

(
Z
Ug
·s Z

Ug
·s′
>
)

across D is lost and less calculations can be shared. Additionally, estimation may deteriorate if the

number of available observations per t decreases. In such cases, it would be more suitable to develop

approaches aimed at sparse data and to borrow strength across neighboring t (cf. Yao et al., 2005 for

the case of i. i. d. functions and Chapters 4 and 5 of this thesis for the case of correlated functional

data). This is, however, beyond the scope of this chapter, which uses the (near-)grid structure to

increase computational efficiency.

3.4 Application to tissue spectroscopy

3.4.1 Background and scientific questions

Oral and maxillofacial surgery has to deal with the complex anatomy in the head and neck region.

Therefore, lasers have become the preferred surgical technique as they provide several advantages

over traditional scalpels. They allow the surgeons to cut biological tissue with high precision and

minimal trauma (see, e.g., Engelhardt et al., 2014).

One drawback however is that during surgery the surgeons do not receive sufficient information

about the type of tissue being ablated at the bottom of the laser cut. Thus, the usage of laser scalpels

is accompanied by a high risk of iatrogenic damage due to a lack of haptic feedback. This is very

dangerous especially as the head and neck region include mayor sensory and motor nerves which

might be unintentionally damaged during surgery (see, e.g., Stelzle et al., 2011).

One idea to overcome this inherent risk of nerve damage in laser surgery is to use statistical

methods to train an algorithm that classifies the tissue type during surgery. Stelzle et al. (2011)

propose an algorithm that uses diffuse reflectance spectra measured with a backscattering probe.

The light applied is absorbed or scattered, depending on the optical properties of each tissue type.

Diffuse reflectance spectra provide a simple approach for intra-operative tissue differentiation. The

surgeon should either automatically get a warning before delicate tissue is damaged or the laser cut

should be automatically stopped in time.

The spectroscopy data analyzed in this chapter were provided by Stelzle et al. (2011). They

investigated diffuse reflectance spectra to reliably differentiate between the four tissue types cortical

bone, nerves, salivary glands, and cancellous bone. Special emphasis was placed on the identification

of nerve tissue in order to reduce the risk of iatrogenic nerve damage in laser surgery. The data

consist of 8640 diffuse reflectance spectra evaluated at 1150 wavelengths of 350-650 nm range (0.26

nm wavelength resolution). The tissue samples were taken from 12 bisected ex vivo domestic pig

heads. For each of the 12 pigs, 6 different spots were chosen per tissue with a distance of 0.5 cm

from each other. Per spot, 30 diffuse reflectance spectra were acquired. In total, 2160 spectra were

recorded per tissue type. The diffuse reflectance spectra for the four tissue types are shown in Figure

3.1.
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Figure 3.1: Non-standardized diffuse reflectance spectra for cortical bone (upper left), nerves (upper right),
salivary glands (bottom left), and cancellous bone (bottom right) colored by pig.

We can see in Figure 3.1 that the spectra of the four tissue types have a similar course. Nev-

ertheless, they differ in various aspects. Differences can be found in the degree of smoothness and

the intra-tissue variability is different for the four tissue types. For salivary glands (bottom left) for

instance, we mainly observe a vertical shift of the spectra whereas for cancellous bone (bottom right),

variation changes along wavelengths as well. Nerves spectra show the greatest variability leading to

difficult nerve detection. The spectra of nerves and salivary glands are very similar, which is why

they are difficult to reliably differentiate (see also Stelzle et al., 2011).

There are multiple sources of variability in the spectroscopy data. First, there is variability

between the different tissue types. Second, variation is also induced by measurements on different

pigs. Third, there is variability between the measurements at different spots within each pig. Note

that in our data, the spots differ between pigs. Fourth, the repeated observations at each spot induce

variability. And fifth, there may be additional measurement error.

In order to illustrate the variability between the tissue types, we depict the point-wise mean curves

per tissue as well as the overall mean curve in the left plot of Figure 3.2 and the point-wise variance

curves per tissue as well as the overall variance curve in the right plot of Figure 3.2. As can already

be expected from Figure 3.1, the form of the tissue-specific means is similar for all tissue types and

the mean curves mainly differ in their absolute values. The tissue-specific variances however are very

different.
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Figure 3.2: Left: Point-wise mean curves per tissue and overall mean curve. Right: Point-wise variance curves
per tissue and overall variance curve.

For tissue classification, the important source of variation in the data is the tissue type (shown

in Figure 3.2). Classification can, however, be improved by further breaking down the variability

into the variability induced by pigs, spots, and repetitions. We propose a method that allows us

to decompose the variability in our data and to take advantage of the information on all sources of

variability.

3.4.2 Application of the functional linear mixed model to the spectroscopy data

Stelzle et al. (2011) conduct a principal component analysis to reduce the dimensionality of the

data followed by a linear discriminant analysis based on (manually) selected principal components

for classification. All data are pooled and the principal components are computed from the overall

covariance of the spectra.

We propose to decompose the variability in the spectroscopy data by applying a FPC-based

FLMM. We obtain the main modes of variation for each source of variability separately. This allows

us to subsequently perform the classification described in Section 3.4.3.

The diffuse reflectance spectra are nearly equidistantly measured. For simplicity, we linearly

interpolate the spectra and obtain a fully equidistant grid of length D = 1150, which is also used as

evaluation grid D̃ for the covariances.

We then perform a nested leave-one-pig-out cross-validation yielding 12 training and testing data

sets which is described in detail in Appendix B. We fit the FLMM (3.7) introduced below to the

training data to train our classification algorithm described in Section 3.4.3. The remaining data

serve for testing. We repeat this for all 12 parts and thus obtain predictions of class membership for

all of our 8640 reflectance spectra.

Before applying our model to the training data, we center each spectrum by its mean and divide

it by its standard deviation to work out the main features of each tissue type. As the spectra are

referenced, the absolute value should not play a role and standardization removes the dependence on

the optical set-up (compare Fuchs et al., 2015).
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The FLMM, which we apply to our training data, is a hierarchical model taking into account

that observations are nested within spots, spots are nested within pigs and for each pig we have

measurements for each of the four tissue types. As we only consider four tissue types, we include a

fixed effect for tissue type in our model. The remaining hierarchy levels are accounted for by including

functional random intercepts. The model we apply is of the following form

Yτpso(t) = µτ (t) +Bτp(t) + Cτps(t) + Eτpso(t) + ετpso(t), (3.7)

with τ = 1, . . . , 4 (tissue types), p = 1, . . . , 12 (pigs), s = 1, . . . , 6 (spots), o = 1, . . . , 30 (observations),

t ∈ T = [350 nm; 650 nm]. Yτpso(t) represents the reflectance spectrum of tissue type τ , pig p, at

spot s, and observation o at wavelength t. µτ (t) is the fixed effect for tissue type. Bτp(t) is a tissue-

specific functional random intercept for pigs and Cτps(t) represents a tissue-specific functional random

intercept for spots. Eτpso(t) and ετpso(t) are a smooth error term and white noise measurement error,

respectively.

We assume that Bτp(t), Cτps(t), and Eτpso(t) are mutually uncorrelated random processes with

zero mean. We further assume that Bτp(t) and Cτps(t) have tissue-specific covariances KB
τ (t, t′) and

KC
τ (t, t′), t, t′ ∈ T , respectively. The covariance of the smooth error term is denoted by KE(t, t′)

and is not tissue-specific, as we found the observation-specific variability to be small and not to

depend on tissue in preliminary analyses. Model (3.7) is a very general model as we allow that the

covariances of the functional random intercepts are different for each tissue type. This assumption

can be motivated by Figures 3.1 and 3.2 where we can see that the intra-tissue variation differs

between tissue types. Note that we also compared with a model without tissue-specific covariances.

As expected, we obtained much worse classification results.

In our model, the number of covariances to be estimated is nine, as we have KB
1 (t, t′), . . . ,KB

4 (t, t′),

KC
1 (t, t′), . . . ,KC

4 (t, t′), and KE(t, t′). In each training set, the numbers of independent copies

per level equal LU1 = LU2 = LU3 = LU4 = 11, LU5 = LU6 = LU7 = LU8 = 11 · 6 = 66,

LU9 = 4 · 11 · 6 · 30 = 7920. Specifying one functional random effect for each level, ρUg = 1,

g = 1, . . . , G = 9, yields q =
∑G

g=1 L
UgρUg = 8228 functional random effects in total. As the re-

flectance spectra are relatively smooth, we do not smooth the covariance estimates obtained by the

method of moments approach to avoid smoothing out relevant features. Therefore, the error vari-

ance, Var [ετpso(t)] = σ2, solely captures the left out variability due to the truncation of the infinite

Karhunen-Loève expansions.

The fixed effect for tissue type µτ (t) is estimated by a method of moments estimator which is

equivalent to centering the spectra by tissue.

Our FPC-based approach allows for an explicit variance decomposition and gives us interpretable

measures of where in the spectrum variability occurs between pigs, spots, and repetitions. Moreover,

the FPC weights can be used for further analyses. Classification is only one possible application of

our approach. Rather than a black box classification, the model can also explain where the relevant

information in the spectra is contained. This may be helpful both for the medical experts working with

these spectra as well as for statisticians when investigating ways to even further improve classification.
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To illustrate this, we fit Model (3.7) again to all data (not divided into training and test data) after

standardization of the spectra as described above. For each tissue type, the estimated first principal

component of Bτp(t), the tissue-specific functional random intercept for pigs, is depicted in Figure

3.3. For ease of interpretation, we show the effect of adding and of subtracting the estimated principal

components multiplied by the square root of the respective eigenvalue to the tissue-specific mean.
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Figure 3.3: Tissue-specific means (solid black) plus (+) and minus (−) a suitable multiple of the first principal
component of Bτp(t) for cortical bone (upper left), nerves (upper right), salivary glands (bottom left), cancellous
bone (bottom right). The respective amount of explained variability is given in brackets.

The amount of variability explained by the pig effect differs between tissue types. The first

principal component of Bτp(t) explains most variability in the data for cortical bone (19.2%) followed

by cancellous bone (14%). Less variability is explained for nerves (9.9%) and salivary glands (8.6%).

For smaller wavelengths (350-450 nm), the effect is quite similar for cortical bone, nerves, and salivary

glands, where pigs with negative basis weights for this component have more extreme maxima and

minima. Further similarities between the effect for nerves and that for salivary glands can be found

around 530-570 nm. For cancellous bone, we see a vertical shift of the mean curve in the range of

around 450-550 nm. For higher wavelengths (> 600 nm), the effect becomes larger for all four tissue

types.

In order to obtain the full variance decomposition shown in Table 3.1, we fit a model similar

to Model (3.7) to all data with the difference that the fixed effect µτ (t) is replaced by a random

intercept for tissue type. Again, the spectra are standardized beforehand and we set L = 0.99999

as this value is chosen most frequently in our nested cross-validation. The variance decomposition
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highlights the importance of accounting for the different sources of variability as only 39.47% of the

overall variability are explained by tissue type but 52.75% are induced by pigs.

variability source tissue type pig spot observation error variance

variance explained [in%] 39.47 52.75 7.65 0.12 2.22 ×10−08

Table 3.1: Variance decomposition for an FLMM with a functional random intercept for tissue type with
pre-specified L = 0.99999. The model is fit to all reflectance spectra.

3.4.3 Classification of the tissue types

One application of our FPC-based FLMM is classification. In order to achieve intra-operative tissue

differentiation for the spectroscopy data, we use the estimates obtained from fitting the FLMM

(3.7) to the training data to compute estimates for the (tissue-specific) covariances reconstructed

from the truncated FPCs and the corresponding eigenvalues. Denote the covariance matrices by

KB
τ (D) =

[
KB
τ (t, t′)

]
t,t′∈D, KC

τ (D) =
[
KC
τ (t, t′)

]
t,t′∈D, and KE(D) =

[
KE(t, t′)

]
t,t′∈D, respectively.

The covariance matrix of each tissue type comprises the information of all sources of variability and

is of the following form

Kτ := KB
τ +KC

τ +KE + σ2ID, τ = 1, . . . , 4,

where we omitted the argument D for simplicity.

The algorithm we use for classification of the test data into one of the four tissue types adapts

the work of Zhu et al. (2012) who introduce a robust approach to functional classification for a

wavelet-based Bayesian FLMM. Using a wavelet transformation, their model is more suited for spiky

functional data or functional data with local features whereas our FPC-based FLMM is well-suited

when the data are rather smooth as is the case for the tissue spectroscopy data being considered.

Moreover, the explicit variance decomposition obtained by our FPC-based approach can help to

understand the different sources of variability in the data. In contrast to the approach of Zhu et al.

(2012), our approach does not require that the data are sampled on an equally spaced grid.

Let t denote the vector of observed wavelengths, y0(t) is a reflectance spectrum in the test set and

c0 its unknown tissue type. For each of the four tissue types, we can define the marginal log-likelihood

under a Gaussian assumption as

log
{
f
[
y0(t)

∣∣c0 = τ, µτ ,Kτ

]}
= const−1

2
log [det (Kτ )] (3.8)

− 1

2

[
y0(t)− µτ (t)

]>
Kτ
−1
[
y0(t)− µτ (t)

]
,

for τ = 1, . . . , 4, where const is a constant and det (Kτ ) denotes the determinant of the tissue-specific

covariance matrix Kτ . Note that the straightforward computation of the determinant as the product

of the eigenvalues of Kτ may be numerically unstable in case of small eigenvalues. We therefore use
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the properties of the logarithmic function and compute the sum of the logarithmized eigenvalues to

directly obtain log [det (Kτ )].

As the functional random effects for a future laser surgery are not available, we use the marginal

log-likelihood where the functional random effects are integrated out. In other applications where

new observations may be obtained from the same subjects, the conditional likelihood could be used

to improve predictions.

After standardization (in analogy to the standardization of the training data), we evaluate the

four marginal log-likelihoods for the test data. Each spectrum of the test data is then classified

with respect to the highest log-likelihood, i.e., the log-likelihood for the test data given that the

data originate from tissue type τ . We repeat this procedure for each test data set and obtain class

designations for all of our 8640 reflectance spectra.

When multiple repetitions per spot are available during surgery, it is possible to combine them

to possibly improve classification while accounting for their correlation. Then, the marginal log-

likelihood (3.8) is replaced by a joint log-likelihood. We additionally perform such a classification by

dividing each of the 30 replications per spot in the test data into 15 pairs of adjacent observations

and using the joint log-likelihood of the pair during classification. The tissue-specific covariances then

have the following form

[
Cov

[
Yτpso(t), Yτpso′(t

′)
]]
t,t′∈T =

{
KB
τ +KC

τ +KE + σ2ID, if o = o′,

KB
τ +KC

τ , otherwise.
(3.9)

The results for combined and non-combined classification are summarized in Table 3.2. For compar-

ison, we show the classification results of Stelzle et al. (2011). In addition, Engelhardt et al. (2014)

compare different classification algorithms for a similar data set and conclude that penalized discrim-

inant analysis (PDA) works best. The authors, however, average spectra within each pig over all

spots and observations per spot. As such averaged spectra will never be available for classification in

practice, we try to apply their method as closely as possible without averaging and for this use a PDA

on the original spectra. We select the smoothing parameter for the PDA via a nested cross-validation

of the same structure as for the selection of L to avoid over-fitting for both methods.

In almost all cases, class designations are highly improved by applying our FLMM compared to

the method of Stelzle et al. (2011). Especially for nerves, which is the tissue of main interest, only

two (for combined six) of the 2160 reflectance spectra are misclassified as salivary glands compared

to 620 misclassifications of nerves using the approach of Stelzle et al. (2011). Merely the detection

of cancellous bone slightly diminishes as more misclassifications in favor of cortical bone are made.

With the method of Stelzle et al. (2011), a total of 1870 (21.64%) spectra are misclassified whereas

a total of 465 (5.38%) misclassifications occur with the proposed method and only 436 (5.05%)

when two replications are combined for classification. The total misclassification rate also compares

favorably to the results using PDA with a total of 481 (5.57%) misclassified spectra.
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XXXXXXXXXXtrue
predicted

cortical bone nerves salivary glands cancellous bone

FLMM
cortical bone 1988 (92.04%) 0 (0.00%) 3 (0.14%) 169 (7.82%)
nerves 0 (0.00%) 2158 (99.91%) 2 (0.09%) 0 (0.00%)
salivary glands 35 (1.62%) 180 (8.33%) 1945 (90.05%) 0 (0.00%)
cancellous bone 76 (3.52%) 0 (0.00%) 0 (0.00%) 2084 (96.48%)
FLMM combined
cortical bone 1978 (91.57%) 0 (0.00%) 0 (0.00%) 182 (8.43%)
nerves 0 (0.00%) 2154 (99.72%) 6 (0.28%) 0 (0.00%)
salivary glands 16 (0.74%) 180 (8.33%) 1964 (90.93%) 0 (0.00%)
cancellous bone 52 (2.41%) 0 (0.00%) 0 (0.00%) 2108 (97.59%)
Stelzle
cortical bone 1430 (66.20%) 204 (9.44%) 337 (15.60%) 189 (9.17%)
nerves 270 (12.50) 1540 (71.30%) 142 (6.57%) 208 (9.63%)
salivary glands 256 (11.85%) 234 (10.83%) 1670 (77.31%) 0 (0.00%)
cancellous bone 30 (1.39%) 0 (0.00%) 0 (0.00%) 2130 (98.61%)
PDA
cortical bone 1960 (90.74%) 0 (0.00%) 2 (15.60%) 198 (8.75%)
nerves 2 (0.09%) 2158 (99.91%) 0 (0.00%) 0 (0.00%)
salivary glands 15 (0.69%) 180 (8.33%) 1965 (90.97%) 0 (0.00%)
cancellous bone 82 (3.80%) 0 (0.00%) 2 (0.09%) 2076 (96.11%)

Table 3.2: Classification results based on the FLMM (3.7) (block 1), with combined replications (block 2),
based on Stelzle et al. (2011) (block 3), and based on PDA as in Engelhardt et al. (2014) (block 4). Shown are
the numbers of classifications for each tissue type as well as the proportion of classifications per true class.

Overall, we conclude that accounting for the different sources of variation improves classification.

In our application, measurement error as captured by the observation-specific variation is relatively

small and classification thus does not improve dramatically when using more than one repetition.

However, in other settings with higher measurement error being able to use more than one spectrum for

classification is a nice feature that can help in further decreasing misclassification. When measurement

error variability is tissue-specific, we expect that having repeated observations would be particularly

useful in providing another source of information on tissue membership.

3.5 Discussion and outlook

In this chapter, we consider very general functional linear mixed models for correlated functional data.

In particular, the models accommodate hierarchical and/or crossed functional random effects, corre-

lated functional random effects such as correlated random intercepts and slopes, and group-specific

covariances of functional random effects that allow for different intra-group variations between groups.

The functional random effects are expanded in parsimonious functional principal component bases

that are estimated from the data, also yielding an explicit variance decomposition. The estimation

of the functional principal components had so far only been described for models with less general
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correlation structures than the ones we consider here. We propose a computationally efficient method

of moments approach for the estimation of the covariances of the functional random effects that makes

use of rules for the Kronecker product of matrices and the vec operator. The functional principal

component weights are predicted as empirical best linear unbiased predictors (EBLUPs) of the re-

sulting linear mixed model. We apply our method to a study on tissue spectroscopy data that aims

at improving intra-operative tissue differentiation. We show that our method can provide a better

understanding of the different components contributing to the variability in the data and that ac-

counting for the different sources of variation improves classification results. We make the proposed

method accessible to users by providing freely available software in the R add-on package denseFLMM

(Greven and Cederbaum, 2017).

This chapter opens up a number of interesting directions for future research. A first direction

concerns the extension of our approach to estimate the covariances of irregularly or sparsely sampled

functional data. In Section 3.3.5, we briefly discuss the extension of our method to a relatively small

proportion of missing values. To precisely state how small the proportion needs to be depending on

the complexity of the data would require further investigation. For curves that are sampled on curve-

specific or even sparse grids, the current approach to first estimate the raw covariances which are

then smoothed would not work (well) and borrowing strength across neighboring observation points

would be necessary (see, e.g., Yao et al., 2005). Extensions to correlated functional data that are

irregularly or sparsely sampled are discussed in the following two chapters. Besides the possibility to

accommodate irregularly and sparsely sampled data, direct smoothing without previously estimating

the raw covariances of the functional random effects as least squares estimates would prevent potential

undesirable effects caused by this two-step procedure. Whether and to what extend smoothing the

previously obtained covariance estimates affects the properties of the estimated covariances remains

to be explored.

So far, our method focuses on point estimates for all model components. A further direction of

future research thus concerns the consideration of uncertainty. One idea is to embed the estimated

FPCs in the framework of functional additive mixed models (FAMMs; Scheipl et al., 2015) who pur-

sue a mixed model approach to obtain valid inference (for more details on the combination with the

FAMM approach, see, e.g., Greven and Scheipl, 2017 and Chapter 4 of this thesis). The implemen-

tation of the FAMM approach in the R add-on package refund (Huang et al., 2016a), however, does

not support correlated functional random effects. Note that the inference resulting from the combi-

nation with the FAMM approach is conditional on the FPCA and the obtained confidence bands are

point-wise. For simpler models accommodating only crossed functional random intercepts, however,

simulations in Chapter 4 of this thesis show a good coverage of the confidence bands obtained from

the combination with FAMM for covariate effects in the mean function. Bootstrap-based confidence

bands represent a possible alternative. Future research could explore extensions of the approach of

Goldsmith et al. (2013) who propose a non-parametric bootstrap that accounts for the uncertainty in

the FPC decomposition. Their approach is, however, restricted to uncorrelated functional observa-

tions and it remains unclear how their non-parametric bootstrap could be extended to, e.g., crossed
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functional random effects. Moreover, further work is needed to investigate whether it is extendable

to the very general functional linear mixed models while keeping computation costs low.

Further potential developments include taking advantage of the symmetry of the covariances and

ensuring their positive semi-definiteness during estimation. The first could be addressed by building on

the fast symmetric additive bivariate smoother proposed in Chapter 5 of this thesis which also applies

to irregularly and sparsely sampled data. Finally, the extension of our method to higher-dimensional

grids and to high-dimensional functional data, e.g., by building on ideas from Zipunnikov et al. (2011,

2014) would widen the scope of potential applications.
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Except for minor changes, mainly concerning spelling, notation, and added references to the

recently released R add-on package sparseFLMM, this chapter and the paper Cederbaum et al. (2016)

match.

Software

The analyses within this chapter were carried out using R versions 3.1.0 (2014-04-10) to 3.1.2 (2014-

10-31) (R Core Team, 2016) on the two platforms x86 64-pc-linux-gnu (64-bit) and x86 64-w64-

mingw32/x64 (64-bit). The add-on packages orthopolynom (Novomestky, 2013, version 1.0-5), mvt-

norm (Genz et al., 2014, version 0.9-99992), and expm (Goulet et al., 2017, version 0.99-1.1) were

used for the generation of the simulated data. The add-on package data.table (Dowle and Srinivasan,

2015, versions 1.9.2 and 1.9.4) was used for fast and memory efficient data manipulation. For ma-

trix operations, the add-on packages Matrix (Bates and Mächler, 2017, versions 1.1-3 and 1.1-4) and

MASS (Venables and Ripley, 2002, versions 7.3-33 and 7.3-34) were used. For smoothing the mean

and covariance functions, the add-on package mgcv (Wood, 2006, 2011, versions 1.7-29 and 1.8-3) was

applied, which depends on the add-on package nlme (Pinheiro et al., 2016, attached versions 3.1-117

and 3.1-118). For the combination with the approach of functional additive mixed models of Scheipl

et al. (2015) and for comparisons with the spline-based alternative, the add-on package refundDevel

(Huang et al., 2016b, version 0.3-3) was employed. For parallelization of the simulation runs, the

add-on packages foreach (Analytics and Weston, 2015b, version 1.4.2) and doMC (Analytics and We-

ston, 2015a, version 1.3.3) were used, the latter of which depends on the add-on package iterators

(Analytics and Weston, 2015c, attached version 1.0.7).

4.1 Introduction

Advancements in technology allow today’s scientists to collect an increasing amount of data consisting

of functional observations rather than single data points. Most methods in functional data analysis

(FDA; see, e.g., Ramsay and Silverman, 2005) assume that observations are a) independent and/or

b) observed at a typically large number of the same (equidistant) observation points across curves.

Linguistic research is only one of numerous fields in which the data often do not meet these strong

requirements. Our motivating data come from a speech production study (Pouplier et al., 2014;

Pouplier and Hoole, 2016) on assimilation, the phenomenon that the articulation of two consonants

becomes more alike when they appear subsequently in spoken language. The data consist of audio

recordings of nine speakers repeating the same 16 target words, including the two consonants of

interest, each five times. The recorded acoustic signals during the duration of the two consonants

were summarized by the phoneticians in a functional index over time (shown in Figure 4.1) varying

between +1 and −1. Positive (negative) index values indicate proximity of the acoustic signal to a

reference signal for the first (second) consonant of the target word. Thus, without assimilation, curves

show a clear transition from strongly positive to strongly negative values. Assimilation can result

in an earlier onset of the second consonant and/or a weakening of the first consonant, i.e., smaller
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positive index values. In the extreme, curves become quite flat and only negative index values remain,

indicating that the first consonant is dominated completely, possibly even replaced by the second.

Due to the repeated measurements for speakers and for target words, the data have a crossed design

structure. All recordings were taken with the same sampling rate, but the speaking durations differ.

As changes relative to the length of the time interval (i.e., the duration of the consonant combination)

are of interest, the index curves were standardized to a [0,1] time interval. This results in different

numbers and locations of the observation points between the observed curves.

We propose a model and an estimation approach that extend existing methods by accounting

for both a) correlation between functional data and for b) irregular spacing of–possibly very few–

observation points per curve. The model is a functional analogue of the linear mixed model (LMM),

which is frequently used to analyze scalar correlated data.

We use functional principal component analysis (FPCA; see, e.g., Ramsay and Silverman, 2005)

to extract the dominant modes of different sources of variation in the data. The functional random

effects are expanded in bases of eigenfunctions of their respective auto-covariances, which we estimate

beforehand using a novel smooth method of moments approach represented as an additive, bivariate

varying coefficient model. FPCA is a key tool in FDA as it yields a parsimonious representation

of the data. It is attractive as the eigenfunction bases are estimated from the data and have op-

timal approximation properties for a fixed number of basis functions. It also allows for an explicit

decomposition of the variability in the data.

We propose two ways of predicting the eigenfunction weights. We either compute them directly as

empirical best linear unbiased predictors (EBLUPs) of the resulting LMM or we alternatively embed

our previously estimated eigenfunctions and -values in the general framework of functional additive

mixed models (FAMMs) introduced by Scheipl et al. (2015). The first approach is straightforward

and computationally much more efficient; it does not require additional estimation steps as a plug-in

estimate is used, and is thus almost a by-product of the eigenfunction estimation. The latter has

the advantage that all model components are estimated/predicted in one framework, allowing for

approximate statistical inference conditional on the FPCA.

There is previous work on dependent functional data as well as on functional data that is irregularly

or sparsely observed, but with few exceptions noted below, existing work has not addressed both issues

simultaneously.

First, methods for dependent functional data differ in their generality and in their restrictions on

the sampling grid. Brumback and Rice (1998) consider a smoothing spline-based method for nested

or crossed curves, which are modeled as fixed effect curves. They allow for missing observations in

equal grids but do not consider any covariate effects. A Bayesian wavelet-based functional mixed

model approach is introduced by Morris et al. (2003) and extended by Morris and Carroll (2006),

Morris et al. (2006), and subsequent work by this group. While this approach is quite general in

the possible functional random effects structure, and fixed and random effects are estimated within

one framework allowing for full Bayesian inference, it assumes regular and equal grids with at most

a small proportion of missings and a reasonable number of completely observed curves. Di et al.

(2009), Greven et al. (2010), and Shou et al. (2015) consider functional linear mixed models with
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a functional random intercept, with a functional random intercept and slope, and with nested and

crossed functional random intercepts, respectively. While following a similar approach to estimation

for these models, all three are restricted to data sampled on a fine grid and fixed effects are estimated

under an independence assumption not allowing for the statistical inference we provide. Di et al.

(2014) extend the random intercept model of Di et al. (2009) to sparse functional data; the correlation

structure, however, remains less general than ours and the estimation approach cannot easily be

generalized to more complex structures. Also motivated by an application from linguistics, Aston et al.

(2010) perform an FPCA on all curves ignoring the correlation structure and then use the functional

principal component (FPC) weights as the response variables in an LMM with random effects for

speakers and words. Only linear effects of scalar covariates are considered, FPC bases are restricted

to be the same for all latent processes, and it is assumed that the data are sampled on a common

grid. Brockhaus et al. (2015) propose a unified class for functional regression models including

group-specific functional effects, which are represented as linear array models and estimated using

boosting. The array structure requires equal grids and boosting does not provide inference. Other

approaches concentrate specifically on spatially correlated functional data on equal grids, as, e.g.,

Staicu et al. (2010). Baayen et al. (2017) propose spline-based estimation of models that accommodate

factor smooths for random effect factors which do not assume equal grids. Rather than smooth

errors, their models, however, contain auto-correlated errors with a pre-specified auto-correlation

parameter assuming variance homogeneity along the function argument, which usually does not fit

the requirements of functional data. Scheipl et al. (2015) develop a flexible class of functional response

models, allowing for various functional random effects with flexible correlation structures. Both

spline-based and FPC-based representations are considered, and densely as well as sparsely sampled

data are allowed. In the case of the FPC-based representation, they assume that appropriate FPC

estimates are available. Yet, the estimation of the auto-covariances is challenging for correlated

functional data with complex correlation structures, especially when observed on unequal grids, and

no estimation approach is currently available. We combine our newly proposed FPC estimation with

this general framework to obtain estimates and approximate point-wise confidence bands for the

mean and covariate effects. In addition to providing an interpretable variance decomposition, our

FPC-based approach reduces computation time by orders of magnitude compared to the spline-based

estimates from Scheipl et al. (2015) (compare Section 4.5), allowing the analysis of realistically sized

data in practice. Estimation errors and confidence band coverage also compare favorably.

Second, a number of approaches allow for irregularly or sparsely sampled functional data but

assume that curves are independent. Guo (2002, 2004) first introduce the term functional mixed

effects models for their model. The model does not capture between-function correlation as only

curve-level random effect functions are included, which are modeled using smoothing splines. The

approach is not restricted to regularly sampled grid data. Chen and Wang (2011) propose a spline-

based approach that is suitable for sparsely sampled data, but similar to Guo (2002, 2004) they only

consider curve-level random effects. James et al. (2000), Yao et al. (2005), and Peng and Paul (2009)

among others propose FPCA approaches for sparsely observed functional data with uncorrelated
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curves. For functional data with independent curves, there is a direct relationship to the longitudinal

data literature as well, too extensive to cover here.

For an extensive overview and further references for functional regression approaches, including

functional response regression, see Morris (2015) and Greven and Scheipl (2017).

We provide fully documented open-source software implementing our approach in the R add-on

package sparseFLMM, where we also make the speech production data set available (R Core Team,

2016; Cederbaum, 2016). A description and examples for the usage of the R package can be found in

Appendix E.

The remainder of this chapter is organized as follows. Section 4.2 introduces the general functional

linear mixed model and presents an important special case which is used to analyze the motivating

linguistic data on assimilation. Section 4.3 develops our estimation framework. Our method is

evaluated in an application to the assimilation data and in simulations in Sections 4.4 and 4.5,

respectively. Section 4.6 closes with a discussion and outlook. Theoretical results, and supplementary

material including estimation details as well as additional results for application and simulations are

available in Appendix C.

4.2 Functional linear mixed models

4.2.1 The general model

The general functional linear mixed model (FLMM) is given by

Yi(t) = µ(t,xi) + z>i U(t) + Ei(t) + εi(t), i = 1, . . . , n, (4.1)

where Yi(t) is the square integrable functional response at observation point t in T , a bounded interval

in R, and n is the number of curves. µ(t,xi) is a fixed main effect surface dependent on a vector of

known covariates xi of length p. To account for the functional nature of the Yi(t), the random effects

of an LMM are replaced by a vector-valued random process U(t). zi is a known covariate vector of

length q. Ei(t) is a curve-specific deviation in form of a smooth residual curve. We assume that there

is white noise measurement error denoted by εi(t) with variance σ2 that captures random uncorrelated

variation within each curve. Note that if needed, the error variance may also vary across t, σ2(t).

We further assume that U(t), Ei(t), and εi(t), i = 1, . . . , n, are zero mean, mutually uncorrelated

random processes and that U(t) and Ei(t) are square integrable, which assures model identification.

Therefore, each of the q components of U(t) has an auto-covariance function KUj (t, t′), j = 1, . . . , q,

and cross-covariance functionsKUj,k(t, t′), j, k = 1, . . . , q, some of which might be zero for uncorrelated

functional random effects. Ei(t) has an auto-covariance function KE(t, t′) = Cov [Ei(t), Ei(t
′)]. In

the following, mean, auto-covariances, and thus also the eigenfunctions are assumed to be smooth in

t. For any given t, Model (4.1) with our assumptions corresponds to an LMM with general mean

µ(xi).

µ(t,xi) is an additive function of t and xi. For example, it can be constant in t, µ(t,xi) = µ(xi),

or additive in t and xi, µ(t,xi) = µ1(t) + µ2(xi). Another special case is when all xi1, . . . , xip in xi
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act as index-varying coefficients, µ(t,xi) = f0(t) + f1(t)xi1 + . . . + fp(t)xip, with unknown smooth

functions f0(·), . . . , fp(·).

4.2.2 Special case: the FLMM for a crossed design

For our application in speech production research (Section 4.4), we use an FLMM with a crossed

design structure to account for correlation between measurements of the same speaker and between

measurements of the same target word.

Yijh(t) = µ(t,xijh) +Bi(t) + Cj(t) + Eijh(t) + εijh(t), (4.2)

with i = 1, . . . , I (number of speakers), j = 1, . . . , J (number of target words), and h = 1, . . . ,Hij

(number of repetitions). Here, Yijh(t) is the hth index curve for speaker i and target word j at

time t. Bi(t) and Cj(t) are functional random intercepts (fRIs) for the speakers and target words,

respectively. Curve-specific deviations are accommodated by the smooth residual term Eijh(t), which

also captures interactions between speakers and words. Based on substantive considerations and

the limited sample size, we decided to not include an interaction effect separately. εijh(t) is addi-

tional white noise measurement error with variance σ2. We denote the auto-covariance functions by

KB(t, t′) = Cov [Bi(t), Bi(t
′)], KC(t, t′) = Cov [Cj(t), Cj(t

′)], and KE(t, t′) = Cov [Eijh(t), Eijh(t′)],

i =, 1, . . . , I, j = 1, . . . , J , h = 1, . . . ,Hij .

4.2.3 Irregularly and sparsely sampled functional data

Let us now assume that for our general model (4.1) we have observed n curves on observation points

{ti1, . . . , tiDi} ∈ T , i = 1, . . . , n. The number and the location of the observation points are allowed

to differ from curve to curve. In the extreme, only one point may be observed for a curve. Moreover,

the observation points of a curve do not have to be equally spaced. We denote realizations of the

functional response Yi(t) at point tij by yitij , j = 1, . . . , Di. Accordingly, we denote realizations of

the response in Model (4.2) by yijht with t ∈
{
tijh1, . . . , tijhDijh

}
.

4.3 Estimation

We base our estimation on FPCA, which provides the dimension reduction so important for functional

data and allows an explicit decomposition of the variability. Compared to other basis approaches,

e.g., using splines, FPCA has the advantage that the eigen bases are optimal in the sense of giving the

best approximation for a given number of basis functions and thus typically small numbers of basis

functions give good approximations. To pool information across observations, which is particularly

important in the case of irregularly or sparsely sampled functional data, we use smoothing of the auto-

covariances of U(t) and Ei(t), cf. Yao et al. (2005) for non-correlated sparse functional data. Previous

approaches for smoothing the auto-covariances are restricted to less complex correlation structures

or data sampled on an equal, fine grid. We apply eigen decompositions of the auto-covariances based
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on Mercer’s theorem (Mercer, 1909). The eigenfunctions, also known as FPCs, describe the main

modes of variation of processes U(t) and Ei(t) and the eigenvalues quantify the amount of variability

explained by the corresponding FPCs. The eigenfunction weights, or FPC weights, give insight into

the individual structure of each grouping level and can be used in further analyses, e.g., classification.

The four main steps of our estimation procedure are outlined in the following.

Step 1 We estimate the mean µ(t,xi) using penalized splines based on a working independence

assumption.

Step 2 We use a smooth method of moments estimator based on the centered curves to estimate the

auto-covariances of the functional random effects.

Step 3 We conduct an eigen decomposition of each estimated auto-covariance matrix evaluated on

a pre-specified, fine grid. Using the Karhunen-Loève (KL) expansion (Loève, 1946; Karhunen,

1947), we represent the functional random effects in truncated bases of eigenfunctions.

Step 4 We propose two ways of predicting the random basis weights.

Step 1, Step 3, and the first option for Step 4 are analogous to the estimation proposed in Di et al.

(2009), Greven et al. (2010), and Shou et al. (2015) for functional data sampled on an equal, fine grid

and in Di et al. (2014) for a simpler model. Step 2 is new and leads to a new combination with the

FAMM approach of Scheipl et al. (2015) in the second option for Step 4. For simplicity, we focus in

the remainder of this section, where we describe the four steps in detail, on Model (4.2).

4.3.1 Step 1: Estimation of the mean function

We estimate the mean µ(t,xijh) based on the working independence assumption

Yijh(t) = µ(t,xijh) + εijh(t), (4.3)

with i. i. d. Gaussian random variables εijh(t). Model (4.3) is an additive model with additive mean

µ(t,xijh) = f0(t) +
∑p

k=1 fk(t)xijhk. We represent the unknown, smooth functions fk(·) using B-

splines and control the trade-off between goodness of fit and smoothness by adding a difference

penalty (so called P-splines; Eilers and Marx, 1996). Using the penalized splines approximation of

Model (4.3) allows us to represent the model as a scalar LMM, which has the advantage that the

smoothing parameter can be estimated as a variance component ratio using restricted maximum

likelihood (REML; Patterson and Thompson, 1971; cf. Ruppert et al., 2003, Section 4.9). We center

the data using the estimated mean µ̂(t,xijh) and focus in the following on the centered functional

responses Ỹijh(t) := Yijh(t)− µ(t,xijh) and denote their realizations by ỹijht. For more general mean

models than varying coefficient models, see Wood et al. (2015).
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4.3.2 Step 2: Estimation of the auto-covariances

We estimate the auto-covariances using a smooth method of moments estimator. Whereas for data

sampled on an equal, fine grid, estimation can be done point-wise, this is not possible for irregularly

or sparsely sampled data, which makes the estimation of the auto-covariances more challenging and

requires a new approach. We exploit the fact that for centered data, the expectation of the products

Ỹijh(t)Ỹi′j′h′(t
′) corresponds to the auto-covariance, which can be decomposed as follows

E
[
Ỹijh(t)Ỹi′j′h′(t

′)
]

= Cov
[
Ỹijh(t), Ỹi′j′h′(t

′)
]

(4.4)

= KB(t, t′)δii′ +KC(t, t′)δjj′ +
[
KE(t, t′) + σ2δtt′

]
δii′δjj′δhh′ ,

with δxx′ equal to one if x = x′ and zero otherwise. We propose to see Model (4.4) as an additive,

bivariate varying coefficient model, in which the auto-covariances are the unknown smooth bivariate

functions to be estimated, while δii′ , δjj′ , δii′δjj′δhh′ , and δii′δjj′δhh′δtt′ represent the covariates. Under

a working assumption of independence and homoscedastic variance of the products, we can use each

empirical product ỹijhtỹi′j′h′t′ for which at least i = i′ or j = j′ to obtain smooth estimates of

KB(t, t′), KC(t, t′), and KE(t, t′) and an estimate of the error variance σ2. The total number of

products ỹijhtỹi′j′h′t′ used for the estimation of the auto-covariances is of order O
[
D2 (1/I + 1/J)

]
,

with D the total number of observation points.

We use bivariate tensor product P-splines (see, e.g., Wood, 2006, Section 4.1.8) for the estimation

of the auto-covariances, where low rank marginal bases for each t, t′ are combined in order to obtain

smooth functions of the two covariates. Let ⊗ denote the Kronecker product. Then, given the

appropriate ordering of the parameter vector, the part of the design matrix corresponding to KX(t, t′),

X ∈ {B,C,E}, is given by the respective indicator matrix multiplied entry-wise by
(
MX

t ⊗ 1FX>
)
·(

1FX
> ⊗MX

t′
)
, where MX

t and MX
t′ denote the corresponding marginal spline design matrices of

rank FX for covariate t and t′, and 1FX = (1, . . . , 1)> of length FX . A smoothness penalty is

introduced in order to avoid over-fitting. To account for the natural symmetry of the auto-covariances,

we choose an isotropic penalty with a penalty matrix of the form SX = SXt ⊗SXt′ , where SXt and SXt′

represent the respective marginal penalty matrices for t and t′. For reasons of model complexity and

computational feasibility, we use marginal B-spline bases combined with marginal difference penalties.

In principle, other bases or smoothing techniques are possible, which also applies to the estimation

of the mean in Step 1. We take advantage of the mixed model representation of Model (4.4) for the

estimation of the tensor product basis coefficients and the smoothing parameter using REML. During

the estimation, strength is borrowed across all curves. This can be extremely advantageous for sparse

functional data when some curves only have very few measurements and smoothing of curves would

be infeasible.

In practice, negative estimated values of σ2 are set to zero for the final estimate. Symmetry of

the auto-covariances is ensured through the model apart from numerical inaccuracies.

For the practical implementation of Step 1 and Step 2 in the R add-on package sparseFLMM,

we build on existing software and use R function bam, implemented in the R add-on package mgcv
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which is especially designed for large data sets (Wood, 2011). Avoiding the construction of the

complete design matrix leads to a low memory footprint and the possibility of parallelization gives a

considerable speed-up in computation time. For further details, see Wood et al. (2015).

4.3.3 Step 3: Eigen decompositions of estimated auto-covariances

Based on Mercer’s theorem, the eigen decompositions of the auto-covariances are

KX(t, t′) =
∞∑
k=1

νXk φ
X
k (t)φXk (t′), X ∈ {B,C,E} ,

where νX1 ≥ νX2 ≥ . . . ≥ 0 are the respective eigenvalues, k ∈ N. The corresponding eigenfunctions{
φXk , k ∈ N

}
, X ∈ {B,C,E}, form an orthonormal basis in the Hilbert space L2(T ) with respect to

the L2-inner product 〈f, g〉 =
∫
f(t)g(t) d t. In practice, the smooth auto-covariances are evaluated

on an equally spaced, dense grid
{
t1, . . . , tD̃

}
of pre-specified length D̃. The resulting matrices

are in the following denoted as K̂X =
[
K̂X(td, td′)

]
d,d′=1,...,D̃

, X ∈ {B,C,E}. We conduct an

eigen decomposition of each estimated auto-covariance matrix yielding estimated eigenvectors and

eigenvalues. Rescaling is necessary to ensure that the approximated eigenfunctions are orthonormal

with respect to the L2-inner product. Negative estimated eigenvalues are trimmed to zero to

guarantee positive semi-definiteness.

Truncation of the FPCs

While in theory there is an infinite number of eigenfunctions, dimension reduction achieved by the

selection of the number of FPCs for each random process is necessary in practice. This truncation

has a theoretical justification and can be seen as a form of penalization (see, e.g., Di et al., 2009;

Peng and Paul, 2009). Among the multiple proposals in the literature (for an overview, see Greven

et al., 2010), we base our choice on the proportion of variance explained. This allows us to quantify

the contribution of the random processes to the variation in the observed data. It is based on the

variance decomposition of the response∫
T

Var [Yijh(t)] d t =
∞∑
k=1

νBk +
∞∑
k=1

νCk +
∞∑
k=1

νEk + σ2|T |.

The sums
∑∞

k=1 ν
X
k , X ∈ {B,C,E}, quantify the relative importance of each of the three random

processes. We choose principal components of decreasing importance until a pre-specified level of

explained variation is reached.

Approximation of the functional random processes

Based on the truncation, we use KL expansions to obtain parsimonious basis representations for the

random processes



72 4. Functional Linear Mixed Models for Unequal and Sparse Sampling Grids

Bi(t) ≈
NB∑
k=1

ξBikφ
B
k (t), Cj(t) ≈

NC∑
k=1

ξCjkφ
C
k (t), Eijh(t) ≈

NE∑
k=1

ξEijhkφ
E
k (t).

Note that in the case of irregularly or sparsely sampled data, the observation points t also depend on

i, j, and h, which we omit throughout this chapter for better readability. For the same reason, we do

not emphasize that the truncation lags and eigenfunctions are estimated. By construction, the basis

weights ξBik, ξ
C
jk, and ξEijhk are uncorrelated random variables with zero mean and variance νXk , k ∈ N,

X ∈ {B,C,E}.
For prediction of the FPC weights, we first linearly interpolate the chosen eigenfunctions such that

they are available on the original observation points. Due to the smoothness of all model components,

this leads to a small error which could be further decreased, if desirable, by further increasing the

number of grid points D̃.

See Section C.2 in Appendix C for further details, including the rescaling of the FPCs, and Section

C.1 in Appendix C for the derivation of the variance decomposition.

4.3.4 Step 4: Prediction of the basis weights

The basis weights for a centered random process Xi(t) are often represented as the inner product of

Xi(t) and the respective FPC. Estimation is more complicated for dependent functional data contam-

inated with additional measurement error as the weights belonging to the different basis expansions

cannot be separated, and ignoring the measurement error leads to biased predictions. Moreover,

numerical integration would not work (well) for irregularly or sparsely sampled data.

These considerations motivate our two proposals for the prediction of the basis weights which

are both implemented in the R add-on package sparseFLMM. The first is straightforward and

computationally very efficient. It is almost a by-product of the FPC estimation, taking only a few

seconds for our large speech production data. It generalizes the conditional expectations introduced

by Yao et al. (2005). The second involves higher computational costs but has the advantage that the

mean is re-estimated in the same framework, allowing for approximate statistical inference, e.g., for

the construction of point-wise confidence bands (CBs) conditional on the FPCA. Depending on the

sample size of the data and the main question of interest, one or the other may be preferred. Further

details for both, such as concrete matrix forms, can be found in Section C.1 in Appendix C.

Prediction of the basis weights as EBLUPs

Using the truncated KL expansions of the random processes, we can approximate Model (4.2) by

Yijh(t) ≈ µ(t,xijh) +

NB∑
k=1

ξBikφ
B
k (t) +

NC∑
k=1

ξCjkφ
C
k (t) +

NE∑
k=1

ξEijhkφ
E
k (t) + εijh(t) (4.5)



4.3 Estimation 73

for the discrete observation points t ∈
{
tijh1, . . . , tijhDijh

}
. The resulting model (4.5) is a scalar

LMM in which the random effects correspond to the basis weights (Di et al., 2009). The basis weights

are directly predicted as EBLUPs without fitting Model (4.5), plugging in the previously estimated

components, as derived in the following. Note that under Gaussian assumption, the predictors are

empirical best unbiased predictors (EBUPs). When the assumption is relaxed they remain best linear

unbiased predictors (EBLUPs) (Harville, 1976).

Let Ỹ denote the stacked centered response vector of length D. Let LX ∈ {I, J, n} and

NX ∈
{
NB, NC , NE

}
denote the levels of the grouping factor and the truncation lag for process

X, X ∈ {B,C,E}, respectively. We define ξ =
(
ξB
>
, ξC

>
, ξE

>
)>

, with ξX =
(
ξX1
>
, . . . , ξX

LX
>
)>

the stacked vector of the basis weights of length LXNX . Thus, ξ is a vector of length

N := INB + JNC + nNE . Φ̂ is the joint D × N design matrix of the form Φ̂ =
[
Φ̂B
∣∣∣Φ̂C

∣∣∣Φ̂E
]
,

where Φ̂B, Φ̂C , and Φ̂E are the respective design matrices containing the rescaled FPC estimates

evaluated on the original observation points. Ĝ denotes the estimated covariance matrix of ξ. It is a

diagonal matrix with elements corresponding to the estimated eigenvalues of the random processes.

The EBLUP for the basis weights in Model (4.2) in the usual form (see Section C.1 in Appendix

C) requires the inversion of the estimated covariance matrix of Ỹ , which is of dimension D × D.

This can be computationally demanding for large numbers of observation points. Furthermore, when

σ̂2 ≈ 0, the covariance becomes singular. Transformations with the Woodbury formula yield the more

favorable form

ξ̂ =
(
σ̂2Ĝ−1 + Φ̂>Φ̂

)−1
Φ̂>Ỹ , (4.6)

for which the inversion is simplified to that of an N ×N matrix which has full rank when either σ̂2

is positive or when Φ̂>Φ̂ has full rank. In practice, when neither of these requirements is met, the

Moore-Penrose generalized inverse is used. Note that when σ̂2 = 0, the EBLUP simplifies to the least

squares estimator.

This computationally efficient way of predicting ξ can be used when the focus is not on inference

for covariate effects or when the data are large and the computational resources are limited. One

drawback is, however, that the mean is estimated using a working independence assumption. This

may not be statistically efficient and does not directly provide valid statistical inference. This

motivates our second proposal.

Prediction of the basis weights using FAMMs

The second option uses the fact that under Gaussian assumption, Model (4.5) together with the

distribution of the basis weights implied by the KL expansion falls into the general framework of

a FAMM (Scheipl et al., 2015) using suitable marginal bases and penalties. We combine our FPC

estimation with the FAMM idea and write Model (4.5) using estimated eigenfunctions and -values as
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Y =

p∑
k=0

(
Ψk
c ⊗ 1Fk>

)
·Ψk

t θ
k +

∑
X∈{B,C,E}

(
ΨX
g ⊗ 1NX

>
)
·
(
1LX

> ⊗ΨX
t

)
ξX + ε, (4.7)

with ε ∼ N
(
0, σ2ID

)
. Y is the stacked uncentered response vector of length D, and the mean is

re-estimated with Ψk
c denoting an inflated vector of length D of covariate values. Ψk

t of dimension

D × F k comprises the evaluations of F k spline basis functions on the D time points tijh. θk is a

coefficient vector of length F k. For the functional random effects, ΨX
g denotes an inflated D × LX

matrix of grouping indicators. The D × NX matrix ΨX
t comprises the evaluations of the NX re-

spective estimated eigenfunctions on the original observation points. Adding penalties of the form

ξX
> (
ILX ⊗ PX

t

)
ξX , with PX

t = diag
(
ν̂X1 , . . . , ν̂

X
NX

)−1
, corresponds to the distributional assump-

tion ξXl ∼ N
[
0,diag

(
ν̂X1 , . . . , ν̂

X
NX

)]
, l = 1, . . . LX , X ∈ {B,C,E}, implied by the KL expansions

under Gaussianity. This set-up using linear combinations of the above tensor product bases with

an appropriate penalty falls naturally into the framework of a FAMM and was in fact discussed in

Scheipl et al. (2015) without, however, providing an approach to estimation of the eigenfunctions

and -values needed in ΨX
t and PX

t . Model (4.7) is a scalar additive mixed model, which allows to

take advantage of established methods for estimation and for statistical inference (for more details,

see Scheipl et al., 2015). Re-estimation of the mean in one framework with the basis weights, par-

ticularly allows us to construct point-wise CBs for the mean and for covariate effects. Note that the

inference is conditional on the estimated FPCA, i.e., it accounts neither for the uncertainty in the

estimated eigenfunctions and -values nor for the truncation, which may lead to an underestimation

of the variability. (Compare, however, the good coverage in our simulations in 4.5.2). In practice, we

use function pffr that Scheipl et al. (2015) provide in the R add-on package refundDevel (Huang et al.,

2016b). A constraint on the functional random effects assures that they are centered. In addition

to the parsimonious basis of eigenfunctions, this approach has the advantage of not necessitating the

estimation of any smoothing parameters for the random processes, as the variances of the random

weights have already been estimated and the smoothing parameter can be set to one. These two

features lead to a drastic decrease in computational cost compared to spline-based prediction of the

random processes, as is shown in our simulations in Section 4.5.

The estimation quality can be further improved, if desirable, by applying the four estimation steps

iteratively. Several possibilities are described in Section C.2 in Appendix C, where also further details

on the estimation and implementation can be found.

4.4 Application to the speech production research data

4.4.1 Background and scientific questions

In linguistics, the term assimilation refers to the common phenomenon whereby a consonant becomes

phonetically more like an adjacent, usually following consonant. Assimilation commonly occurs in
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English phrases such as ‘Paris show’ in which the word-final /s/-sound is, in fluent speech, pronounced

very similar to the following, word-initial /sh/-sound (Pouplier et al., 2011). Assimilation patterns

are conditioned by a complex interaction of perceptual, articulatory and language-specific factors and

are therefore a central research topic in the speech sciences. In order to investigate assimilation in

German, Pouplier et al. (2014) obtained audio recordings of I = 9 speakers reading the same J = 16

target words, each five times. Due to recording errors, for some combinations only four repetitions

are included in the data, i.e., Hij ∈ {4, 5}. The authors concentrated on variation in assimilation

patterns for the consonants /s/, /sh/ as a function of their order (/s#sh/versus /sh#s/, where #

denotes a word boundary), syllable stress and vowel context. Target words consisted of bisyllabic

noun-noun compounds. In half of the target words consonant /s/ is followed by word-initial /sh/,

such as in the word ‘Callas-Schimmel’. The other half contains the sequence /sh#s/, e.g., ‘Gulasch-

Symbol’. In the following, we will refer to the syllables containing the consonants of interest as final

and initial target syllables (and correspondingly to final and initial target consonants). The time

interval in which the consonants of interest appear in the utterance was cut out manually from the

audio recording for each repetition and the resulting time-varying acoustic signal was summarized in

a functional index over time, varying between +1 and −1. Reference patterns for both consonants

were used to construct the index such that it ranges for both orders from +1 for sounds close to the

reference for the first consonant of the sequence to −1 for sounds close to the reference for the second

consonant of the sequence (for more details, see Pouplier et al., 2011 and Section C.3 in Appendix C

for data pre-processing). The resulting index curves are displayed in Figure 4.1.

A special focus lies on the asymmetry arising from the order of the consonants. We investigate un-

der which conditions (order, syllable stress, vowel context) the two consonants assimilate and whether

assimilation is symmetric with respect to the orders /s#sh/and /sh#s/. A common approach is to ex-

tract curve values at pre-defined points on the time axis (e.g., 25%, 50%, 75%) which are subsequently

used in multivariate methods (e.g., Pouplier et al., 2011). Such analyses fail to capture the continuous

dynamic change characteristic of speech signals. Applying our FDA-based method allows us to take

into consideration the temporal dynamics and to account for the complex correlation structure in the

data which arises from the repeated measurements of speakers and of target words. Moreover, we

can quantify the effect of covariates and interactions and obtain a variance decomposition.

All utterances were recorded with the same sampling rate (32768 Hz) and then standardized to

a [0,1] interval as the speaking rate, and hence the target consonant duration, differs across experi-

ments. After standardization, measurements are unequally spaced for different curves. In some data

settings, registration can be used to account for variation in time. For this application, however,

registration cannot replace the standardization of the time interval as different transition speeds be-

tween the two consonants are part of the research question of interest and thus a change relative to

the length of the time interval is of interest. Registration would remove a main source of information

on the assimilation process and flat curves, arising from (near) complete assimilation, would render

registration problematic.
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Figure 4.1: Index curves of the consonant assimilation data over time. Left [right]: Curves of order
/s#sh/[/sh#s/]. Positive values approaching +1 indicate a reference /s/ [/sh/] acoustic pattern, while negative
values approaching −1 indicate a reference /sh/ [/s/] acoustic pattern.

4.4.2 A model for the speech production research data

In order to account for the repeated measurements of speakers and target words, we fit an FLMM

with crossed fRIs, Model (4.2), to the consonant assimilation data. The number of measurements per

curve Dijh ranges from 22 to 57 with a median of 34. During estimation, we truncate the numbers

of FPCs using a pre-specified proportion of explained variance of L = 0.95. The equidistant grid on

which the auto-covariances are evaluated is of length D̃ = 100. We use cubic B-splines with third

order difference penalties for the estimation of the mean effects and as marginal basis functions

for the estimation of the auto-covariances. We predict the FPC weights using both options. As

confidence bands for the covariate and interaction effects are of interest here, the focus lies on the

second approach using the FAMM framework.

Covariate effects

We consider four dummy-coded covariates: consonant order (order), stress of the final (stress1) and

of the initial (stress2) target syllable, which can be strong or weak, and vowel context (vowel), which

refers to the vowels immediately adjacent to the target consonants and is either of the form ia or ai,

e.g., Callas-Schimmel. Moreover, we include the interactions of the consonant order with each of the

other three covariates. All covariates enter the mean as varying coefficients,

µ(t,xijh) = f0(t) + f1(t) · orderj + f2(t) · stress1j + f3(t) · stress2j (4.8)

+ f4(t) · vowelj + f5(t) · orderj · stress1j + f6(t) · orderj · stress2j
+ f7(t) · orderj · vowelj .

Thus, in total, eight covariates characterize the 16 target words.
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4.4.3 Application results

Our estimation yields two and three FPCs for the fRI for speakers and for the smooth error, re-

spectively. No FPC is chosen for the fRI for target words. It is likely that the eight covariate and

interaction effects describe the target words sufficiently, as confirmed by obtaining one FPC for the fRI

for target words in the model without covariate effects. Most variability (67.29%) is explained by the

three chosen FPCs for the curve-specific deviation which also captures interactions between speakers

and target words. The two chosen FPCs for speakers explain 20.45% of the estimated variability.

The left panel of Figure 4.2 shows the effect of covariate order (f1), which has the largest effect

on the index trajectories. Covariate order is dummy-coded with reference category /s#sh/. Thus,

the mean curves of target words with order /sh#s/are pulled towards the ideal reference /sh/ during

the first consonant and differ slightly from the ideal /s/ during the second consonant compared to

order /s#sh/. We conclude that there is an asymmetry of consonant assimilation with respect to

the consonant order and that /s/ is more affected by the assimilation than /sh/. These results are

consistent with results for English obtained by Pouplier et al. (2011).
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Figure 4.2: Left: Effect of covariate order (red solid line) with point-wise confidence bands (dashed lines).

Right: Mean function (solid line) and the effect of adding (+) and subtracting (−) a suitable multiple (2
√
ν̂B1 )

of the first FPC for speakers.

Moreover, we find that assimilation is stronger for target words with unstressed final syllables

(f2), especially for order /s#sh/(f5). Changing the stress of the initial syllable only has an effect for

order /sh#s/(f6). This means that in both final and initial position, stress effects are evident during

/s/ but not during /sh/. For both consonant orders, the vowel context mainly affects the transition

between the two consonants (f4 and f7). The first consonant is closer to the ideal reference value in

the ai compared to the ia condition, yet the second consonant is pulled away from its reference value.

These results show that the /i/ vowel perturbs an adjacent consonant away from its ideal reference

pattern.

In the right panel of Figure 4.2, we show the effect of adding (+) and subtracting (−) a suitable

multiple of the first FPC for speakers to the overall mean (solid line) obtained by setting all covariates

to 0.5. The interpretation is straightforward: speakers with a negative weight for the first FPC
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distinguish better between the two consonants. The estimates for the basis weights can be used

for further analysis. Further application results including plots for all mean effects can be found in

Section C.3 in Appendix C.

The data analysis is fully reproducible as the speech production data set is included in the R

add-on package sparseFLMM.

4.5 Simulations

4.5.1 Simulation designs

We conduct extensive simulation studies to investigate the performance of our method. The data

generating processes can be divided into two main groups: 1) data that mimics the irregularly

sampled consonant assimilation data and 2) sparsely sampled data with a higher number of obser-

vations per grouping level but fewer observations per curve. For all settings, we generate 200 data sets.

Application-based simulation scenarios

We consider two application-based scenarios, one with an fRI for speakers and covariate mean effects

(fRI scenario) and another with crossed fRIs for speakers and for target words, respectively, but

no covariate mean effects (crossed-fRIs scenario). We generate the data based on the estimates

of Model (4.2) for our consonant assimilation data with µ(t,xijh) corresponding to (4.8) and to a

simple smooth intercept µ(t), respectively. The data analysis yields two FPCs for the fRI for the

speakers and three FPCs for the smooth error term. For the crossed-fRIs scenario, we additionally

obtain one FPC for the fRI for the target words. The FPC weights and the measurement errors are

independently drawn from normal distributions with zero mean and with the respective estimated

variances. To assess the effect of model misspecification, we conduct additional simulations of the

crossed-fRI scenario, using FPC weights drawn from a mixture of two normals, with equal probability

from either N
(√

νk/2, νk/2
)

or N
(
−
√
νk/2, νk/2

)
as in Yao et al. (2005). We obtain very similar

results to corresponding results for normal weights and the curves can be reconstructed equally well.

More details on the data generation can be found in Sections 4.4.3, 4.5.2, and in Sections C.3 and

C.4 in Appendix C.

Sparse simulation scenario

In order to investigate the estimation performance in the sparse case, we additionally generate data

with crossed fRIs as in Model (4.2) consisting of observations that are sparsely sampled on [0,1]. The

number of observation points per curve is drawn from the discrete uniform distribution U [3, 10]. For

Bi(t) and Cj(t), we choose I = J = 40 replications each with each combination observed Hij = 3

times. We use two FPCs each to generate the underlying process. Eigenvalues are generated as

νXk = 2/k, k = 1, 2, X ∈ {B,C,E}. We choose normalized Legendre Polynomials adapted to the

interval [0, 1] as FPCs for Bi(t) and Cj(t). For the smooth error Eijh(t), we choose a basis of sine and

cosine functions. See Section C.4 in Appendix C for details. The FPC weights and the measurement
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errors are independently drawn from the normal distributions N (0, νk) and N (0, σ2), respectively.

No covariates are included in the mean function µ(t) = sin(t) + t. We set the error variance to

σ2 = 0.05.

For all scenarios, we center the FPC weights such that the weights of each grouping factor also

empirically have zero mean. Moreover, we decorrelate the basis weights belonging to one grouping

factor and assure that the empirical variance corresponds to the respective eigenvalue. This is done

to obtain data that meets the requirements of our model. It allows us to separate the effect of

unfavorably drawn weights and of the estimation performance. This adjustment gains importance for

small sample sizes I, J , and n and also when the true eigenvalues are high. Note that in practice,

we do not have centered and decorrelated FPC weights and thus estimates for small sample sizes will

reflect the distribution in the sample rather than that in the population. To assess the impact of this

procedure, we also compare our results to those of simulations using the original (non-centered and

non-decorrelated) FPC weights, which can be found in Section C.4 in Appendix C.

We fix the number of FPCs in order to separate the effect of the truncation from the estimation

quality. We use five marginal basis functions each for the estimation of the auto-covariances and

eight basis functions for the estimation of the mean. We predict the FPC weights as EBLUPs for

all scenarios and additionally compare with the computationally more expensive FAMM prediction

(FPC-FAMM) for the fRI scenario with covariates.

We compare our FPC-based approach to a spline basis representation of the functional random

effects (using eight basis functions) within the FAMM framework of Scheipl et al. (2015) (spline-

FAMM). To the best of our knowledge, the work of Scheipl et al. (2015) is the only competitor to

our approach as all other methods that meet the requirements of functional data are either restricted

to equal, fine grids or do not allow for a crossed structure. Due to the high computational costs

of Scheipl et al. (2015), we restrict our comparison to the fRI scenario, in which we can compare

estimation quality and CBs coverage for covariate effects.

4.5.2 Simulation results

We focus our discussion on the FPC-based results for the application-based scenario with crossed

fRIs and compare with the other settings and estimation approaches.

We use root relative mean squared errors (rrMSE) as measures of goodness of fit which are of

the general form
√

(true-estimated)2/true2. For the simulations of the fRI scenario with covariate effects,

we additionally evaluate the average point-wise and the simultaneous coverage of the point-wise

CBs. The complete results for all simulations as well as rrMSE definitions for scalars, vectors, and

functions are given in Section C.4 in Appendix C.

Simulation results for the crossed-fRIs scenario

Figure 4.3 shows the true and estimated FPCs of the two fRIs as well as of the smooth error term. As

expected, the FPCs are estimated better the more independent levels there are for the corresponding

grouping factor which can enter the estimation of the auto-covariance. The FPCs of the smooth
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Figure 4.3: True and estimated FPCs of the crossed fRIs Bi(t) and Cj(t) (top row), as well as of the smooth
error Eijh(t) (bottom row). Shown are the true functions (red solid line), the mean of the estimated functions
over 200 simulation runs (black dashed line), the point-wise 5th and 95th percentiles of the estimated functions
(blue dashed lines), and the estimated functions of all 200 simulation runs (grey).

error term (707 levels) are estimated best, followed by the FPC of the fRI for target words (16

levels). Most variability in the estimates is found for the FPCs of the fRI for speakers due to the

small number of speakers (I = 9), but the main features of the curves are still recovered relatively

well. We obtain similar results for the fRI scenario. The number and complexity of the FPCs also

plays an important role for the estimation quality, as can be seen from the results for the sparse

scenario, where the first FPC of Bi(t) (40 levels) is estimated better than the first FPC of Eijh(t)

(4800 levels). The latter has a more complex form, difficult to capture with five basis functions.

Table 4.1 lists the rrMSEs averaged over 200 simulation runs for all model components. It shows

that the mean function is reconstructed very well, which is also the case in the sparse scenario. The

covariate effects for the fRI scenario are discussed below.

Table 4.1: rrMSEs averaged over 200 simulation runs for all model components by random process. Rows
1-3: Number of grouping levels LX and average rrMSE for Bi(t), Cj(t), and Eijh(t) and their covariance
decompositions. Last row: Average rrMSEs for Yijh(t), µ(t,xijh), and σ2.

X LX KX φX1 φX2 φX3 νX1 νX2 νX3 ξX1 ξX2 ξX3 X µ σ2

B 9 0.26 0.15 0.18 0.15 0.34 0.18 0.35 0.22

C 16 0.32 0.05 0.31 0.12 0.13

E 707 0.06 0.02 0.03 0.02 0.04 0.08 0.03 0.17 0.19 0.26 0.19

Y 0.10 0.02 0.09

The auto-covariances and their eigenvalues have similar low average rrMSEs for both application-

based scenarios. For the sparse scenario, the eigenvalues are estimated even better with average
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rrMSEs between 0.02 and 0.05. For the auto-covariances for the sparse scenario, we obtain average

rrMSEs of 0.06 for each of the crossed fRIs and an average of 0.14 for the smooth error which is due

to the complex eigenfunctions mentioned above. The error variance has similar low average rrMSEs

for the two application-based scenarios. For the sparse scenario, the average rrMSE is higher, which

is due to the estimation inaccuracies in the auto-covariance of the smooth error.

The prediction quality of the basis weights clearly depends on the estimation quality of the FPCs

and of the eigenvalues, as well as of the error variance, as evident from Equation (4.6). Also important

for the prediction of the basis weights is the number of curves with the given weight entering the

prediction. Thus, the basis weights of Cj(t) are better predicted than those of Eijh(t). As expected,

basis weights of FPCs that explain more variability are predicted better. Similar results can be found

for the fRI and for the sparse scenario.

For all scenarios, we obtain good results for the functional random effects as well as for the

functional response. The rrMSEs for the functional response are lowest, which is due to the fact that

even if the FPC bases are not perfectly estimated, they can still serve as a good empirical basis.

Thus, the data can be reconstructed very well.

We found considerably more outliers of the relative errors for the sparse scenario than for the

other two scenarios, which is most probably due to an unfavorable distribution of the few observation

points across the curves in a few data sets.

Overall, we can conclude that all components are estimated well and especially for the functional

response we obtain very small rrMSEs across all simulations.

Comparison of the different estimation results for the fRI scenario

We find that the functional random processes and the functional response are estimated equally

well for the two options of the basis weights prediction. The functional response is again estimated

very well with an average rrMSE of 0.09 for both EBLUP and FPC-FAMM estimation. The

spline-FAMM results are considerably worse for the random processes (almost three (smooth error)

and almost seven (fRI) times higher average rrMSEs), which results from the fact that the constraint∑LX

l=1Xl(t) ≡ 0, X ∈ {B,E}, is not fulfilled and parts are shifted between terms. The functional

response is recovered reasonably well, but has a more than 1.5 times higher average rrMSE than the

EBLUP and FPC-FAMM estimates. Note that due to high computation times (see below), we only

consider 100 simulation runs for the spline-FAMM simulation.

For the covariate effects, the FPC-FAMM estimation gives better results than the estimation under

an independence assumption (between 1 and 1.28 times lower average rrMSEs) and considerably better

results than the spline-FAMM estimation (between 2.8 and six times lower average rrMSEs). In spite

of ignoring the variability of the estimated FPCA, the average point-wise coverage of the point-wise

CBs is very good for most effects for FPC-FAMM (between 91.18% and 95.54%) and the simultaneous

coverage is reasonable. Both are considerably better than for the spline-FAMM alternative (point-

wise coverage between 35.12% and 41.67%). The coverage for the latter would most probably improve

by increasing the number of spline basis functions which is, however, limited by the high computation

time.
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Computation times

Our simulations show that the FPC-based approach has clear advantages in terms of computational

complexity, despite the computational cost of the auto-covariance estimation. We compare times for

one simulation run of the fRI scenario for each estimation option obtained under the same conditions

(without parallelization in function bam that would speed up the estimation). The study was run

on a 64 Bit Linux platform with 660 Gb of RAM memory. The FPC-based approach with the basis

weights predicted as EBLUPs took 1.6 hours and predicting the basis weights using FPC-FAMM took

slightly more than six hours longer. The spline-FAMM took by far the longest with a duration of

ten days which is due to the two extra smoothing parameters each for the fRI and the smooth error

which have to be estimated. Moreover, using FPCs reduces the number of necessary basis functions.

To assess the feasibility to apply our approach in practice on a desktop PC, we also ran our real

data analysis on a 64 Bit Windows PC with 64 Gb of RAM. Without parallelization, the FPC-based

estimation and EBLUP computation took two hours and the FPC-FAMM an additional 20 hours.

4.6 Discussion and outlook

We propose an FPC-based estimation approach for functional linear mixed models that is particularly

suited to irregularly or sparsely sampled observations. To pool information, we smooth both the

mean and auto-covariance functions. We propose and compare two options for the prediction of the

FPC weights and obtain conditional point-wise confidence bands for the functional covariate effects.

Our simulations show that our method reliably recovers the features of interest. The parsimonious

representation of the functional random effects in bases of eigenfunctions outperforms the spline-based

alternative of Scheipl et al. (2015) with which we compare, both in terms of error rates and coverage

as well as in terms of computation time. To the best of our knowledge, there is no other competitor

to our approach as all other methods that are suitable for functional data are either restricted to

regular grid data or simpler correlation structures. In our application to speech production data, we

show that our method allows conclusions to be drawn about the asymmetry of consonant assimilation

to an extent which is not achievable using conventional methods with data reduction. To make the

proposed estimation method readily accessible to users, we provide documented open-source software

implementing our approach in the R add-on package sparseFLMM (Cederbaum, 2016).

Building on existing methods for our estimation approach allows us to take advantage of robust,

flexible algorithms with a high functionality. The computational efficiency, however, could potentially

be improved by exploiting the special structure of our model. An interesting direction is to improve

the estimation of the auto-covariances in order to better account for their symmetry and positive

semi-definiteness and for the fact that the products in Model (4.4) are not homoscedastic. Moreover,

it would be interesting to compare the different options for iterative estimation in detail. How the

first aspect–the symmetry of the auto-covariances–can be addressed is discussed in the next chapter.

The construction of point-wise and simultaneous confidence bands that account for the variability

of the estimated FPC decomposition is beyond the scope of this work, but would be of interest. For

uncorrelated functions, Goldsmith et al. (2013) propose bootstrap-based corrected confidence bands
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for densely and sparsely sampled functional data. However, it remains an open question how to

extend their non-parametric bootstrap to our correlated curves, and computational cost is another

issue.
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Chapter 5

Fast Symmetric Additive Covariance

Smoothing

“ Do the best you can until

you know better. Then when you

know better, do better.

Maya Angelou

Contributing manuscript

This chapter is based on the following paper:

Cederbaum, J., Scheipl, F., and Greven, S. (2018): Fast symmetric additive covariance

smoothing. Computational Statistics & Data Analysis, 120:25–41.

This is joint work with Fabian Scheipl (Department of Statistics, LMU Munich, Germany) and

Sonja Greven (Department of Statistics, LMU Munich, Germany). The idea to develop an efficient

covariance smoothing approach in the framework of functional linear mixed models was first initiated

by Sonja Greven and taken up after previous joint work (Cederbaum et al., 2016) confirmed the need

for a fast covariance estimation approach. Fabian Scheipl came up with the idea to only estimate the

upper triangle of the surface including the diagonal and Sonja Greven pointed out that smoothness

across the diagonal needs to be ensured. Jona Cederbaum pursued different approaches before Fabian

Scheipl finally proposed a way to incorporate the symmetry constraint into the modeling framework

in a special case. Jona Cederbaum developed the theoretic framework and extended the idea for

the special case to the general model under the supervision of Sonja Greven. In particular, Jona

Cederbaum derived the concrete forms of the constraint matrices and the covariance of the products



86 5. Fast Symmetric Additive Covariance Smoothing

of the centered functional responses used for the covariance estimation. She implemented the approach

in the R add-on package sparseFLMM (Cederbaum, 2016) with the assistance of Fabian Scheipl, who

advised on the implementation of the novel smoothing class. Jona Cederbaum planned and carried out

all simulations and the data analyses. She conducted the literature research on covariance estimation

approaches and wrote the manuscript assisted by input from the two other authors. All three authors

contributed in proofreading the manuscript.

Except for minor changes, mainly concerning notation and wording, this chapter and the paper

Cederbaum et al. (2018) match. For a better understanding, an additional example was added to the

appendix of this chapter, which can be found in Section D.2 in Appendix D. The examples for the

model specifications yielding functional linear mixed models with crossed and hierarchical functional

random effects were moved from the appendix of the manuscript to Chapter 2.

Software

The analyses within this chapter were carried out using R version 3.2.3 (2015-12-10) (R Core Team,

2016) on the two platforms x86 64-pc-linux-gnu (64-bit) and x86 64-w64-mingw32/x64 (64-bit). The

add-on packages orthopolynom (Novomestky, 2013, version 1.0-5), mvtnorm (Genz et al., 2014, version

0.9-99992), and expm (Goulet et al., 2017, version 0.99-1.1) were used for the generation of the

simulated data. The add-on package data.table (Dowle and Srinivasan, 2015, version 1.9.6) was used

for fast and memory efficient data manipulation. For matrix operations, the add-on packages Matrix

(Bates and Mächler, 2017, versions 1.2-3 and 1.2-4) and MASS (Venables and Ripley, 2002, versions

7.3-35 and 7.3-45) were used. For smoothing the mean and covariance functions, the add-on package

mgcv (Wood, 2006, 2011, versions 1.8-11 and 1.8-12) was applied, for which a novel smoothing class

for bivariate smooths estimated subject to a symmetry constraint is proposed in this chapter. The

package mgcv depends on the add-on package nlme (Pinheiro et al., 2016, attached versions 3.1-124

and 3.1-126). For parallelization of the simulation runs, the add-on packages foreach (Analytics and

Weston, 2015b, version 1.4.3) and doMC (Analytics and Weston, 2015a, version 1.3.4) were used,

the latter of which depends on the add-on package iterators (Analytics and Weston, 2015c, attached

version 1.0.8). For comparison with the symmetric smoothing approach of Xiao et al. (2017), the add-

on package face (Xiao et al., 2016a, version 0.1-1) was employed. The CD4 cell count data analyzed

in this chapter were taken from the add-on package refund (Huang et al., 2016a, version 0.1-14).

5.1 Introduction

Covariance functions play a central role in many areas of statistics. They summarize the dependency

between stochastic observations and encode smoothness assumptions about (observed or latent) ran-

dom processes. We propose a fast bivariate smoothing approach for symmetric surfaces which can

estimate covariance functions in a wide range of data situations. Our approach can handle dependent

processes based on an additive decomposition of the covariance function and is also applicable to

processes that are observed on irregular or sparse grids.
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In functional data analysis (FDA; see, e.g., Ramsay and Silverman, 2005), covariance functions are

at the heart of functional principal component analysis (FPCA), a key tool for dimension reduction

based on an eigen analysis of the covariance operator of a random process. FPCA is commonly used

to estimate the model parameters in functional predictor and functional response regression models

(for an overview, see Morris, 2015). Other examples that are based on covariance functions include

functional discriminant analysis (James and Hastie, 2001) and functional canonical correlation anal-

ysis (Leurgans et al., 1993). In longitudinal data analysis (LDA), where measurements are frequently

recorded at irregularly spaced time points, the correct specification of the covariance benefits the

estimation efficiency of the fixed effects and improves the individual predictions (cf. Fan et al., 2007).

The covariance is also a crucial ingredient in time series analysis, e.g., in risk models and portfolio

allocation (cf. Tai, 2009). The interest commonly lies in a single time series in contrast to FDA (and

LDA) where multiple curves are observed, e.g., over time. In principle, our symmetric smoothing

approach is also applicable to time series which is, however, not the focus in this chapter.

Covariance functions are commonly assumed to be smooth. Thus, when the observed curves

are not sufficiently smooth (i.e., observed with error) or not measured on a common dense grid,

smoothing becomes necessary at some point during covariance estimation. Directly smoothing the

observed curves (see, e.g., Besse and Ramsay, 1986), however, is very difficult or impossible for sparsely

observed data which are frequently recorded both in FDA and LDA (Yao et al., 2005). Moreover,

pre-smoothing the observed curves removes the measurement error, which is not accounted for in

subsequent estimation steps. We pursue an alternative approach and apply bivariate smoothing to

the sample covariance of the observed data points.

Most existing work on non-parametric covariance estimation is either restricted to independent

functional (or longitudinal) observations and/or only applies to data sampled on a common grid.

Furthermore, most bivariate smoothing approaches are not specifically designed for covariances. They

do not exploit the symmetry of the estimated surface and thus use redundant information in the

available data. To the best of our knowledge, previous approaches have never addressed these issues

simultaneously. They can be divided according to three main criteria: 1) the generality of the assumed

correlation structure in the data, 2) the generality of possible sampling grids, and 3) the estimation

procedure including the selection of the degree of smoothing.

A number of approaches address covariance smoothing in LDA. They are restricted to independent

curves but allow for general sampling grids. Smoothing is either accomplished by bivariate kernel

smoothing (e.g., Staniswalis and Lee, 1998; Yao et al., 2003, 2005) or by bivariate (penalized) spline

smoothing (e.g., Kauermann and Wegener, 2011). The degree of smoothing is either chosen by visual

inspection (Staniswalis and Lee, 1998), different leave-one-curve-out cross-validation algorithms (e.g.,

Yao et al., 2003, 2005) or based on a mixed model representation (e.g., Kauermann and Wegener,

2011). These approaches do not account for the symmetry of the estimated surface. James et al.

(2000) directly estimate the smooth eigenfunctions of the covariance function. They estimate a re-

duced rank mixed effects model via the EM algorithm and use B-spline basis functions to represent

the eigenfunctions of the covariance operator. Peng and Paul (2009) estimate the same reduced rank

model based on a more efficient Newton-Raphson procedure on the Stiefel manifold. The extension
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of these reduced rank methods to complex correlation structures is not straightforward. Xiao et al.

(2017) recently proposed a bivariate smoother designed for covariance smoothing which can be used

for sparsely observed, independent functions. They use bivariate penalized B-splines and enforce a

symmetry constraint on the spline coefficients which we take up in our extension to correlated curves.

Estimation is done by a three-step procedure which accounts for the covariance of the sample covari-

ance. Their leave-one-curve-out cross-validation procedure for selecting the smoothing parameter is

not applicable for correlated functional data, however.

Other covariance smoothing approaches can be applied to correlated functions but are restricted

to functions sampled on a common grid and considerably simpler correlation structures than ours.

Di et al. (2009) and Greven et al. (2010) use bivariate penalized splines and select the smoothing

parameter using restricted maximum likelihood (REML; Patterson and Thompson, 1971) estimation.

Shou et al. (2015) apply a method of moments approach based on symmetric sums represented in a

sandwich form. For smoothing, they propose to use an extension of the fast covariance estimation

algorithm of Xiao et al. (2016b) to correlated functions. Di et al. (2014) extend the functional random

intercept model of Di et al. (2009) to sparsely sampled functional data, but the correlation structure

remains less general than ours and an extension is not straightforward. More general correlation

structures are allowed in the approach in Chapter 4 of this thesis that is also suitable for sparsely

and irregularly sampled functional data. The focus in Chapter 4 lies, however, on a model with

crossed functional random effects and estimation is only discussed for this special case. Apart from

considering less general correlation structures, all these approaches neither avoid the use of redundant

information nor account for the symmetry of the smoothed surface.

We propose a fast symmetric bivariate smoothing approach that applies to data with a broad range

of possible correlation structures, much broader than existing methods. Furthermore, our approach

is well-suited for (possibly noisy) data sampled on a common, dense grid as well as for irregularly or

sparsely sampled data. Strength is borrowed by pooling information across different curves, which

is particularly important for curves observed on sparse, unequal grids. The smoothing approach we

present is widely applicable: In this chapter, we demonstrate how it can be applied to longitudinal

data as a special case of independent functional data as well as to correlated functional data with

very general and complex correlation structures. For the latter, we extend our bivariate smoothing

approach to smoothing additive covariance functions. To the best of our knowledge, all previous

proposals in this field have been restricted to estimating much less general dependency structures.

We estimate the covariance functions using a smooth method of moments approach represented as

a bivariate additive varying coefficient model. The estimation is based on bivariate penalized splines.

We choose the smoothing parameters using REML, which allows the direct extension to additive

bivariate smoothing of a superposition of multiple covariance functions. This allows our method to

be used for a broad range of complex real-word data settings. It also frees us from having to pre-specify

a discrete grid of candidate values for the smoothing parameters that is required for cross-validation-

based approaches like in Xiao et al. (2017). Smoothing the sample covariance quickly becomes a

high-dimensional problem as the number of elements in the sample covariance increases quadratically

with the number of grid points. We take advantage of the symmetry of the sample covariance and only
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estimate the upper triangle of the surface including the diagonal. The estimates are then reflected

across the diagonal to obtain the entire estimated covariance, which is continuous but not necessarily

smooth across the diagonal. To avoid boundary effects on the diagonal and to ensure identifiability

of our models, we enforce smoothness across the diagonal by imposing a symmetry constraint on the

spline coefficients, which for the simplest case of independent curves reduces to that of Xiao et al.

(2017). We show how the symmetry constraint can be applied separately to additive covariances

and can even be used for any bivariate symmetric smoothing problem beyond covariance functions.

Our approach modifies the covariance smoothing approach proposed in Chapter 4 of this thesis and

extends it to more general models. It reduces both the data entering the estimation and the number

of spline coefficients that have to be estimated, which leads to considerably faster estimation requiring

less memory.

We provide documented open-source software implementing our approach in the R add-on package

sparseFLMM (R Core Team, 2016; Cederbaum, 2016). The implementation is based on a novel

constructor function for the R add-on package mgcv, which provides a general framework for additive

models allowing for a very flexible model specification (Wood, 2006, 2011). A description and examples

for the usage of the R package sparseFLMM can be found in Appendix E.

We outline the application of our approach to FPCA and demonstrate its practical relevance by

an application to sparse longitudinal observations of CD4 cell count trajectories and to densely but

irregularly observed acoustic signals from a speech production study. This study requires crossed

functional random effects due to repeated measurements for both speakers and target words and thus

corresponds to a case of dependent functional data with an additive covariance structure. Both data

analyses are fully reproducible as the speech production data are included in the R add-on package

sparseFLMM and the CD4 cell count data are available in the R add-on package refund (Huang et al.,

2016a).

This chapter is organized as follows: Section 5.2 first develops our fast symmetric covariance

smoothing approach for a simple special case with only one smooth covariance function and additional

measurement error. In Section 5.3, the smoother is extended to complex dependency structures

involving the smoothing of multiple additive covariance functions. Section 5.4 outlines the application

of our covariance smoother in FPCA. In Section 5.5, details on the implementation are given. In

Section 5.6 and 5.7, we evaluate our approach in an application to speech production data and in

simulations, respectively (a longitudinal application to CD4 cell counts is given in Appendix D).

Section 5.8 closes with a discussion and outlook. Theoretical results and supplementary material are

available in Appendix D.

5.2 Fast symmetric covariance smoothing

For simplicity, we first explain our covariance smoothing approach for a simple special case with only

one smooth auto-covariance and additional measurement error. This will be extended to additive

covariance smoothing in Section 5.3.
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5.2.1 Model with independent curves

Consider the following model

Yi(tij) = µ(tij ,xi) + Ei(tij) + εi(tij), j = 1, . . . , Di, i = 1, . . . , n, (5.1)

where Yi(tij) is the value of response curve i at the jth observation point tij ∈ T , a bounded

interval in R. µ(tij ,xi) is a global mean function depending on a vector of known covariates xi.

Ei(tij) is a smooth curve-specific deviation from the global mean and εi(tij) is additional independent

and identically distributed white noise measurement error with constant variance σ2 that accounts

for random uncorrelated variation within curve i. The model can be seen as a function-on-scalar

regression model (e.g., Faraway, 1997; Ramsay and Silverman, 2005; Reiss et al., 2010) where all n

curves are assumed to be independent and it is a special case of the general functional linear mixed

model (FLMM; for a discussion and further references, see Morris, 2015) in Section 5.3 with only

curve-specific smooth residuals. Model (5.1) is often applied to longitudinal data with T denoting a

time interval. Note that all curves may either be observed on a common, fine grid or on curve-specific,

possibly sparse, Di evaluation points tij , j = 1, . . . , Di, i = 1, . . . , n.

In the following, we assume that Ei(·) and εi(·), i = 1, . . . , n, are zero mean, mutually uncorrelated

random processes and that Ei(·) is square integrable. We denote the auto-covariance function of Ei(·)
by KE(t, t′) = Cov [Ei(t), Ei(t

′)], t, t′ ∈ T . We further assume that the mean and the auto-covariance

are smooth in t and in arguments t, t′, respectively.

5.2.2 Estimation in the independent case

We apply the following smooth method of moments approach to estimate the auto-covariance

KE(t, t′). It modifies the approach presented in Chapter 4 by accounting for the symmetry of

covariances, which leads to a considerable reduction of computation times. In this simple case of

independent functional responses, our smoother is closely related to that of Xiao et al. (2017), who

approach the problem from a slightly different perspective. While their focus is mainly on the sym-

metry constraint for the spline coefficients and on the development of a fast smoothing parameter

estimation, our aim is to avoid redundant information in symmetric smoothing which in this simple

case leads us to the same symmetry constraint. Their approach, however, is not directly extendable

to correlated data as will be discussed at the end of this section.

We focus in the following on the centered functional responses Ỹi(tij) := Yi(tij) − µ(tij ,xi) with

expectation zero and denote their realizations by ỹitij . We exploit the fact that the expectation of

the centered products Ỹi(tij)Ỹi(tij′) corresponds to the covariance of the functional response which is

given as

E
[
Ỹi(tij)Ỹi(tij′)

]
= Cov

[
Yi(tij), Yi(tij′)

]
= KE(tij , tij′) + σ2δjj′ , (5.2)

j, j′ = 1, . . . , Di, i = 1, . . . , n,
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with δjj′ equal to one if j = j′ and zero otherwise. Equation (5.2) can be seen as a special case

of a bivariate additive varying coefficient model for the empirical covariances ỹitij ỹitij′ , in which

the auto-covariance and the error variance are the unknown components. We estimate the smooth

auto-covariance function KE(t, t′) and the error variance σ2 simultaneously using a bivariate spline

representation for KE(t, t′) under working assumptions of independence and homoscedasticity.

For this, let C denote the C ×1 stacked vector of all centered products, with C =
∑n

i=1D
2
i . Then,

Model (5.2) can be represented as

E (C) =
[
ME

∣∣δε] (θE>, σ2
)>

=: Mα, (5.3)

where ME denotes the C ×
(
FE
)2

bivariate spline design matrix, containing the evaluations of any

bivariate spline basis with
(
FE
)2

basis functions that are symmetric across the diagonal, i.e., across

tij = tij′ . We use bivariate tensor product B-splines, but other bases are possible. See Section 5.5

and Section D.2 in Appendix D for details. δε is an indicator vector of length C whose elements take

values δjj′ . θ
E is a spline coefficient vector of length

(
FE
)2

. To avoid over-fitting, we use an isotropic

quadratic smoothness penalty of the form

pen(λ) = λθE
>
SEθE , (5.4)

where λ denotes the smoothing parameter that controls the bias-variance tradeoff and SE is a suitable

penalty matrix of dimension
(
FE
)2 × (FE)2, see Section 5.5 for a discussion.

The development above uses all C centered products for the estimation of the covariance as is

commonly done in published smooth method of moments approaches for covariance estimation (Yao

et al., 2003; Yao et al., 2005; for correlated curves, e.g., Staniswalis and Lee, 1998; Di et al., 2009;

Greven et al., 2010). As it is quadratic in the number of function evaluations, C quickly becomes

extremely large in practice and often poses significant computational challenges. Since the products

ỹitij ỹitij′ and ỹitij′ ỹitij are identical, we, like Xiao et al. (2017), avoid the use of this redundant

information and only estimate the upper triangle of the auto-covariance surface including the diagonal.

Using the identical products only once also decreases the dependency among the products in C and

thus reduces the strongest violations of the implicit working assumption of independent observations

in our additive model (5.3). A detailed discussion of working assumptions and possible strategies for

handling violations is given in Section 5.3.4.

We assume in the following that C is sorted such that it can be partitioned as

C =
(
Ct<t′

>,Ct=t′
>,Ct>t′

>)>, whereCt<t′ , Ct=t′ , Ct>t′ comprise all products Ỹitij Ỹitij′ , i = 1, . . . , n,

with tij < tij′ , tij = tij′ , and tij > tij′ , respectively. Then, with suitable sorting within the three

partitions of C, the symmetry of the products implies that Ct<t′ = Ct>t′ . In order to speed up

estimation, we only use C∆ :=
(
Ct<t′

>,Ct=t′
>)> for the estimation in the bivariate model (5.3). The

total number of products thus amounts to C∆ :=
∑n

i=1Di(Di+1)/2. The design matrix of the bivari-

ate additive model can accordingly be partitioned as M =
(
Mt<t′

>,Mt=t′
>,Mt>t′

>)>. Let ME∆

and δε∆ denote the submatrix and subvector corresponding to C∆. Then, the bivariate additive
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model (5.3) reduces to E
(
C∆
)

=
[
ME∆

∣∣δε∆] (θE>, σ2
)>

. Reflecting the upper triangle across the

diagonal ensures that the obtained surface estimate is symmetric and continuous in both directions t

and t′, but it does not guarantee smoothness across the diagonal without additional constraint.

Wiggly estimates in the area of the diagonal can occur as coefficients for basis functions near the

diagonal have few observations available for estimation. This is because much of the support of the

basis functions is on the other side of the diagonal, i.e., in the lower triangle that does not contain

any data. An expected consequence is that the smooth auto-covariance surface and the error variance

on the diagonal can be less well-separated, which we indeed observe in our application in Section 5.6

and in our simulations in Section 5.7.

We enforce smoothness across the diagonal in order to avoid such boundary effects. The as-

sumption of smoothness across the diagonal guarantees identifiability of our model as the smooth

auto-covariance KE(tij , tij′) and the variance of the additional unsmooth error term εi(tij) can be

separated. A symmetric surface implies a symmetric spline coefficient matrix

ΘE =
[
θEbb′
]
b,b′=1,...,FE

= ΘE>,

where θE =
(
θEb<b′

>
,θEb=b′

>
,θEb>b′

>
)>

contains first the entries of ΘE below the diagonal (θEbb′ , b < b′),

then the diagonal entries (θEbb′ , b = b′) and lastly the entries above the diagonal (θEbb′ , b > b′). We

impose a symmetry constraint on ΘE . Thus, our approach differs in two crucial points from the

naive covariance estimation in (5.3) and from most previous covariance smoothing approaches. First,

we reduce the number of products that enter the estimation and second, imposing the symmetry

constraint almost halves the number of spline coefficients that have to be estimated. Both aspects

greatly speed up the computation as we show in Sections 5.6 and 5.7.

With suitable sorting within the partitions θEb<b′ and θEb>b′ , the above symmetry constraint on the

coefficient matrix corresponds to the following symmetry constraint on the coefficient vector

θEbb′ = θEb′b, b, b′ = 1, . . . , FE ⇔ θEb<b′ = θEb>b′ , (5.5)

which corresponds to the constraint used in Xiao et al. (2017). This allows us to consider the reduced

coefficient vector θEr =
(
θEb<b′

>
,θEb=b′

>
)>

of length FE
(
FE + 1

)
/2. For the implementation of the

above symmetry constraint, we use that under the constraint we have

ME∆θE =
(
ME∆

b<b′ +M
E∆
b>b′
)
θEb<b′ +M

E∆
b=b′θ

E
b=b′ ,

with ME∆
b<b′ , M

E∆
b=b′ , and ME∆

b>b′ containing the respective columns of ME∆. Thus, the constraint is

equivalent to adding up columns ME∆
b<b′ and ME∆

b>b′ of the design matrix. This can be achieved by

right multiplication of ME∆ with the
(
FE
)2 × FE (FE + 1

)
/2 constraint matrix
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WE =


IFE(FE−1)

2

0FE(FE−1)
2

×FE

0
FE×F

E(FE−1)
2

IFE

IFE(FE−1)
2

0FE(FE−1)
2

×FE

 ,
where Ix is an identity matrix of dimension x and 0x×y is a null matrix of dimension x × y.

We denote the reduced design matrix by ME∆r := ME∆WE . Under the symmetry constraint,

ME∆rθEr = ME∆θE . The penalty matrix in (5.4) also needs to be adjusted to the reduced coeffi-

cient vector θEr as SEr := WE>SEWE , corresponding to θEr
>
SErθEr = θE

>
SEθE .

Altogether, the bivariate additive model for the reduced response vector with symmetry constraint

(5.5) is given by

E
(
C∆
)

=
[
ME∆r

∣∣δε∆] (θEr>, σ2
)>

=: M∆rαr. (5.6)

Note that in Model (5.6), each product ỹitij ỹitij′ , tij ≤ tij′ , enters the estimation with the same weight.

This is not the case when all products ỹitij ỹitij′ , j, j
′ = 1, . . . , Di, are used as in Model (5.3), where

all products appear twice except for those on the diagonal (tij = tij′). Our implementation in the R

add-on package sparseFLMM allows to estimate Model (5.6) with the same weights as in Model (5.3)

by putting a weight of 0.5 on the products on the diagonal. There is room for debate on whether it is

desirable to down-weigh the data on the diagonal compared to the rest. In any case, our simulations

in Section 5.7 show that the difference is not very large.

In contrast to Xiao et al. (2017), who derive a leave-one-curve-out generalized cross-validation

(GCV) algorithm to choose the smoothing parameter for independent curves, we choose the smoothing

parameter as variance component ratio using REML. REML has been shown to be more stable than

GCV and to result in lower mean squared errors (Reiss and Ogden, 2009; Wood, 2011). Moreover,

Krivobokova and Kauermann (2007) have shown that REML-based smoothing parameter selection

is less sensitive towards misspecifications of the correlation structure than prediction error methods.

Even more importantly, using REML allows us to directly extend our symmetric smoothing approach

to additive smoothing needed for functional data with complex dependency structures as will be shown

in Section 5.3. In more general designs, where the responses cannot be decomposed into independent

subvectors, it is not clear how to perform smoothing parameter selection based on GCV and optimizing

multiple smoothing parameters would require a computationally costly multi-dimensional grid search.

Details on the implementation in the R add-on package sparseFLMM are given in Section 5.5 and

in Section D.2 in Appendix D.

5.3 Fast symmetric additive covariance smoothing

Simultaneous REML estimation of multiple smoothing parameters allows the direct extension of our

approach to more general models with complex correlation structures, for which we derive appropriate

symmetry constraint matrices.
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5.3.1 General functional linear mixed model

The general FLMM (see, e.g., Morris, 2015) can be seen as the functional analogue of the linear mixed

model (LMM; see, e.g., Pinheiro and Bates, 2000), which is often applied to scalar correlated data.

The random effects in the linear mixed model are replaced by functional random effects in order to

account for the functional nature of the response. A functional random intercept (fRI) for a subject,

for example, is a subject-specific deviation from the mean in the form of a function. The FLMM is

given by

Yi(tij) = µ(tij ,xi) + z>i U(tij) + Ei(tij) + εi(tij), j = 1, . . . , Di, i = 1, . . . , n, (5.7)

where Yi(tij) denotes the response of curve i at observation point tij , which can be additively decom-

posed as in Model (5.1). Model (5.7), however, additionally accounts for correlation between (groups

of) curves by the vector-valued random process U(tij) which is multiplied by zi, a known covari-

ate vector of length q. Examples for z>i U(tij) yielding FLMMs with, e.g., crossed and hierarchical

functional random effects are given in Section 5.3.3 and in Section 2.1.2 of Chapter 2.

We assume that U(·), Ei(·), and εi(·) are zero mean, mutually uncorrelated random processes

and that U(·) and Ei(·) are square integrable. As for Model (5.1), we denote the auto-covariance of

Ei(·) by KE(t, t′) = Cov [Ei(t), Ei(t
′)], t, t′ ∈ T . The q × q matrix-valued auto-covariance of U(·)

is denoted by KU (t, t′) = Cov [U(t),U(t′)]. The covariances are assumed to be smooth (for each

component in the case of U(t)).

Let G denote the number of grouping factors. Then, U(tij) can be divided into G inde-

pendent blocks Ug(tij), g = 1, . . . , G, which again contain blocks of LUg independent copies

Ugl(tij), l = 1, . . . , LUg , where LUg is the number of levels of the gth grouping factor.

Ugl(tij) =
[
Ugl1(tij), . . . , UglρUg (tij)

]>
, in turn, is a vector-valued random process of ρUg com-

ponents for each level of this grouping factor, for example ρUg = 2 if the gth grouping fac-

tor is associated with a fRI and a functional random slope. The total number of entries

in U(tij) is given by q =
∑G

g=1 L
UgρUg . The ρUg × ρUg matrix-valued covariance of Ugl(·),

KUg(t, t′) =
[
K
Ug
ss′ (t, t

′)
]
s,s′=1,...,ρUg

= Cov [Ugl(t),Ugl(t
′)], with K

Ug
ss′ (t, t

′) = K
Ug
s′s(t

′, t), is the same

for all levels, l = 1, . . . , LUg , of the gth grouping factor. We can thus write the block diagonal

auto-covariance of U(·) as

KU (t, t′) = diag

KU1(t, t′), . . . ,KU1(t, t′)︸ ︷︷ ︸
LU1 times

, . . . ,KUG(t, t′), . . . ,KUG(t, t′)︸ ︷︷ ︸
LUG times

 .
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5.3.2 Estimation in the general functional linear mixed model

Our fast symmetric covariance smoothing approach can be extended to the general model (5.7)

by generalizing it to a matrix of covariances as described above and applying it to each additive

component separately.

In analogy to Model (5.1), we base the covariance smoothing on the following decomposition of

the expectation of the products of the centered functional responses

E
[
Ỹi(tij)Ỹi′(ti′j′)

]
= Cov

[
Yi(tij), Yi′(ti′j′)

]
(5.8)

= z>i K
U (tij , ti′j′)zi′ +

[
KE(tij , ti′j′) + σ2δjj′

]
δii′ ,

where, in contrast to Model (5.1), products are now also computed across different curves i, i′.

Let `g(i) denote the level of grouping factor g for observation i. Then, similar toU(·), the covariate

vector zi can be divided into G blocks z>i =
(
zU1
i

>
, . . . ,zUGi

>)
, where the blocks z

Ug
i , g = 1, . . . , G,

can again be written as z
Ug
i

>
=

(
z
Ug
i1

>
, . . . ,z

Ug

iLUg

>
)

with z
Ug
il

>
=
(
z
Ug
il1 , . . . , z

Ug

ilρUg

)
, l = 1, . . . , LUg .

The scalars z
Ug
ils take the value of the respective covariate ω

Ug
is times an indicator δ`g(i)l, specifying

whether observation i belongs to level l of grouping factor g. Based on this partition, the expectation

in Model (5.8) can be rewritten as

E
[
Ỹi(tij)Ỹi′(ti′j′)

]
=

G∑
g=1

LUg∑
l=1

ρUg∑
s=1

ρUg∑
s′=1

z
Ug
ils z

Ug
i′ls′K

Ug
ss′ (tij , ti′j′) (5.9)

+
[
KE(tij , ti′j′) + σ2δjj′

]
δii′ .

For example in the case of an FLMM with only one fRI (G = 1, ρU1 = 1), the products z
Ug
ils z

Ug
i′ls′ yield

indicators for whether the two observations in the product Ỹi(tij)Ỹi′(ti′j′) belong to the same level of

grouping factor g.

We exploit the symmetry of covariances KUg(tij , ti′j′) = KUg(ti′j′ , tij)
>

, g = 1, . . . , G, and of

KE(tij , ti′j′) = KE(ti′j′ , tij) and only use the products Ỹitij Ỹi′ti′j′ with tij ≤ ti′j′ if i ≤ i′ and tij < ti′j′ ,

otherwise, suitably sorted in the long vector C∆. Let · denote the Hadamard (point-wise) product.

As in the case with independent curves, Model (5.9) can be represented as bivariate additive varying

coefficient model, here of the form

E
(
C∆
)

=
[
MU1∆

∣∣. . .∣∣MUG∆
∣∣ME∆

∣∣δε∆] (θU1
>
, . . . ,θUG

>
,θE

>
, σ2
)>

, (5.10)

where MUg∆, g = 1, . . . , G, contain the column-wise concatenated submatrices M
Ug∆
ss′ , corresponding

to the covariances K
Ug
ss′ (t, t

′), s, s′ = 1, . . . , ρUg . The submatrices M
Ug∆
ss′ are given by Q

Ug∆
ss′ ·B

Ug∆
ss′ ,

where Q
Ug∆
ss′ contain suitably sorted and repeated entries δ`g(i)`g(i′) · ω

Ug
is ω

Ug
i′s′ , where δ`g(i)`g(i′) take

value one if the two curves i and i′ are of the same level of grouping factor g and zero otherwise. B
Ug∆
ss′
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denote the bivariate spline design matrices. ME∆ is analogously given by QE∆ ·BE∆, with bivariate

spline design matrix BE∆ and QE∆ a new indicator matrix, which reduces to an all-ones matrix in

the model with independent curves, for which thus ME∆ = BE∆. The concrete form of Q
Ug∆
ss′ and

QE∆, an example for the case of one grouping factor with two levels, as well as the bivariate spline

design matrices for tensor product B-splines are provided in Section D.2 in Appendix D.

We assume that for each g = 1, . . . , G, the coefficient vector θUg is sorted with the order cor-

responding to the columns of MUg∆ =
[
M

Ug∆
11

∣∣∣. . .∣∣∣MUg∆

1ρUg

∣∣∣. . .∣∣∣MUg∆

ρUg1

∣∣∣. . .∣∣∣MUg∆

ρUgρUg

]
. Moreover, with

suitable sorting, each submatrix M
Ug∆
ss′ can be partitioned as in the case of independent curves,

M
Ug∆
ss′ =

[
M

Ug∆
ss′,b<b′

∣∣∣MUg∆
ss′,b=b′

∣∣∣MUg∆
ss′,b>b′

]
. Let Θ

Ug
ss′ denote the coefficient matrices, where the corre-

spondingly sorted coefficient vectors θ
Ug
ss′ =

(
θ
Ug
ss′,b<b′

>
,θ

Ug
ss′,b=b′

>
,θ

Ug
ss′,b>b′

>
)>

contain first the entries

of the spline coefficient matrix Θ
Ug
ss′ below the diagonal, then the diagonal entries and lastly the entries

above the diagonal. Assume further that within the three blocks of θ
Ug
ss′ , the entries θss′,bb′ are sorted

correspondingly for all s, s′ = 1, . . . , ρUg .

As a modular component, the symmetry constraint

Θ
Ug
ss′ = Θ

Ug
s′s

>
, s, s′ = 1, . . . , ρUg , (5.11)

can be applied to each, g = 1, . . . , G, due to the symmetry of covariances KUg(t, t′), yielding the

reduced coefficient vectors θ
Ugr
ss′ , s ≤ s′, and thus the reduced long coefficient vector θUgr. As in the

case of independent curves, the constraint (5.11) is equivalent to adding up the respective columns of

the large design matrix MUg∆. This can be achieved by right-multiplication of MUg∆ with a suitable

constraint matrix W Ug , yielding the reduced design matrix

MUg∆r =
[
M

Ug∆r
11

∣∣∣. . .∣∣∣MUg∆r

1ρUg

∣∣∣MUg∆r
22

∣∣∣. . .∣∣∣MUg∆r

ρUg−1ρUg−1

∣∣∣MUg∆r

ρUg−1ρUg

∣∣∣MUg∆r

ρUgρUg

]
.

Each M
Ug∆r
ss′ , s ≤ s′, consists of column-wise concatenated matrices

M
Ug∆r
ss′ =

[
M

Ug∆
ss′,b<b′ +M

Ug∆
s′s,b>b′

∣∣∣MUg∆
ss′,b=b′ +M

Ug∆
s′s,b=b′δs<s′

]
, s ≤ s′ = 1, . . . , ρUg .

The constraint matrix W Ug consists of
(
ρUg
)2× [(ρUg)2 + 1

]/
2 blocks, most of which are zero. The

block rows of W Ug correspond to the constraint on the spline coefficients of the covariances K
Ug
ss′ (t, t

′),

s, s′ = 1, . . . , ρUg , sorted as in MUg∆. The columns are sorted correspondingly to the reduced matrix

MUg∆r. For the auto-covariances (s = s′), the blocks are of the same form as the constraint matrix

WE for independent curves. For the cross-covariances (s < s′), the blocks either correspond to

diagonal block matrices or to anti-diagonal block matrices, depending on whether the respective rows

correspond to s < s′ or s > s′, respectively. The specific form of W Ug and examples for ρUg = 2, 3

are given in Section D.2 in Appendix D.
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A quadratic smoothness penalty associated with each smooth term controls the bias-variance

tradeoff. Each penalty matrix SUg , consisting of blocks for each K
Ug
ss′ (t, t

′), is accordingly reduced

by left-and right-multiplication with the constraint matrix W Ug . Smoothing the components in the

upper triangle of KUg(t, t′) separately allows to define different penalties for the auto-covariances and

the cross-covariances, respectively. In particular, it is possible to apply anisotropic penalties for the

cross-covariances.

Reflecting the estimated triangular covariance surfaces across the diagonal yields estimates for the

whole covariance surfaces KUg(t, t′) and KE(t, t′), with smoothness assured also across the diagonal.

Note that reducing computation time becomes even more important when multiple covariances are

smoothed simultaneously rather than a single one as in the case of independent functional data in

Section 5.2.

5.3.3 Functional linear mixed model with crossed random intercepts

Motivated by our application to the speech production data in Section 5.6.2, we now illustrate the

specification of the FLMM for the special case of an FLMM with crossed fRIs accounting for the

repeated measurements on two grouping factors (e.g., speakers and target words) in a crossed design.

In this model, we have G = 2 grouping factors with ρU1 = ρU2 = 1 associated random effects for each

grouping factor, i.e., one fRI each. LU1 , LU2 are the numbers of levels of the first (e.g., speakers)

and second (e.g., target words) grouping factor, respectively. The covariate vector zi only consists

of indicators taking value one or zero to code group membership for the two grouping factors. The

explicit specification of the covariate vector for crossed and hierarchical functional random effects is

given in Section D.2 in Appendix D. For better readability, we rename in the following the components

of the vector-valued random process as B := U1 and C := U2. The total number of components in

U(tij) is q = LB + LC . Note that this model corresponds to Model (4.2) in Chapter 4.

For this model, Equation (5.9) can be simplified as

E
[
Ỹi(tij)Ỹi′(ti′j′)

]
= KB(tij , ti′j′)δ`1(i)`1(i′) (5.12)

+ KC(tij , ti′j′)δ`2(i)`2(i′)

+
[
KE(tij , ti′j′) + σ2δjj′

]
δii′ ,

where δ`1(i)`1(i′) and δ`2(i)`2(i′) take value one when the two curves i and i′ belong to the same level of

the respective grouping factor and zero otherwise. As can be seen in Equation (5.12), the products

for which neither δ`1(i)`1(i′) nor δ`2(i)`2(i′) equals one do not have to be considered due to expectation

zero. Equation (5.10) then reduces to

E
(
C∆
)

=
[
MB∆

∣∣MC∆
∣∣ME∆

∣∣δε∆] (θB>,θC>,θE>, σ2
)>

(5.13)

and the symmetry constraint can be applied to each θB, θC , and θE .
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5.3.4 Covariance of the products of the centered functional responses

We estimate the auto-covariances as unknown, smooth functions in a bivariate additive varying coeffi-

cient model using a quadratic loss function. Since this is equivalent to a penalized likelihood criterion

for Gaussian data, we implicitly assume independence of the products of the centered functional re-

sponses with homoscedastic Gaussian measurement error. As already mentioned in Section 5.2.2 and

shortly discussed in Chapter 4, these are working assumptions which do not hold as the products

frequently involve two points on the same curve or on correlated curves. Nevertheless, these implicit

assumptions are made by many existing works (e.g., Yao et al., 2005; Di et al., 2009; Greven et al.,

2010). We now briefly discuss how the covariance of the products can be accounted for.

For the model with independent curves (5.1), Xiao et al. (2017) derive an expression for the

covariance of the products in terms of KE(t, t′) and the error variance σ2 under the assumption of

Gaussian responses. They apply a three-step algorithm in which they first estimate KE(t, t′) and σ2

under the working assumptions. Second, they estimate the covariance of the products by plugging

in the estimates for KE(t, t′) and σ2. In the third step, they re-estimate KE(t, t′) and σ2 using the

estimated covariance of the products as a working covariance.

We derive an expression for the covariance of the products for the general model (5.7) based on

results from Isserlis (1918) on fourth moment rules for multivariate Gaussian random variables. The

covariance of the products can be written as

Cov
[
Ỹi(tij)Ỹi′(ti′j′), Ỹm(tmo)Ỹm′(tm′o′)

]
(5.14)

=
{
z>i K

U (tij , tmo)zm +
[
KE(tij , tmo) + σ2δjo

]
δim

}
·
{
z>i′K

U (ti′j′ , tm′o′)zm′ +
[
KE(ti′j′ , tm′o′) + σ2δj′o′

]
δi′m′

}
+

{
z>i K

U (tij , tm′o′)zm′ +
[
KE(tij , tm′o′) + σ2δjo′

]
δim′

}
·
{
z>i′K

U (ti′j′ , tmo)zm +
[
KE(ti′j′ , tmo) + σ2δj′o

]
δi′m

}
.

The derivation and simplifications for the model with crossed fRIs are given in Section D.1 in Appendix

D. The covariance (5.14) is a function of the unknown covariances KU (t, t′), KE(t, t′) and σ2, giving

rise to the need for an iterative procedure as proposed in Xiao et al. (2017) for the simpler model (5.1).

Our implementation with the R add-on package mgcv allows to directly include the variance of the

products by a specification of the weights argument in function bam. Our simulations showed, however,

that accounting for only the heterogeneous variance does not lead to a substantial improvement in

estimation accuracy. The dependencies could also be accounted for by pre-multiplication with the

inverse square root of the covariance of the products, for which its construction and inversion would

become necessary. For our application to the speech production data, the covariance matrix of the

products would be a 52,156,566 × 52,156,566 dense and unstructured matrix whose construction is

not feasible with current technology (≈ 17,500 Terabytes storage space would be required) and we

thus do not focus on this extension in the following. However, Equation (5.14) allows the inclusion of
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the covariance of the products in less complex settings and for (much) smaller data sets and can then

result in more efficient estimates. Despite the violations of working assumptions, we achieve good

results with our approach in simulations (cp. Section 5.7). Note that a relevant improvement of the

covariance estimation can only be obtained if the working covariance is reasonably well-estimated and

thus more than one iteration of the algorithm might be necessary. Especially for multiple iterations,

our fast smoothing algorithm considerably speeds up the estimation compared to smoothing the entire

covariances.

5.4 Application in functional principal component analysis

An important application of our fast symmetric additive smoothing approach is functional principal

component analysis. FPCA is a key tool for dimension reduction in FDA that extracts the dominant

modes of variation in the data and provides an explicit variance decomposition. In the following, we

briefly outline the four main steps of FPCA for the general FLMM (5.7) using our newly proposed

covariance estimation approach. Applying FPCA to Model (5.7) yields parsimonious representations

of each random process Ug(t), g = 1, . . . , G, and Ei(t), in bases of eigenfunctions of the respective,

previously estimated smooth auto-covariances. In addition, we briefly describe how our covariance

smoothing approach can be combined with the general framework of functional additive mixed models

(FAMM; Scheipl et al., 2015) allowing for approximate statistical inference for the mean conditional

on the FPCA. For a more detailed description, see Chapter 4.

In the first step, the smooth mean function is commonly estimated based on a working indepen-

dence assumption (see, e.g., Yao et al., 2005; Di et al., 2009; Greven et al., 2010, and Chapter 4 of

this thesis). We use penalized splines implemented in the R add-on package mgcv, which can be used

to estimate a large variety of covariate and interaction effects in the mean function. Note that the

combination with the FAMM framework in the fourth step allows to re-estimate the mean function

under a more suitable covariance assumption. For the subsequent steps, the curves are then centered

by subtracting the estimated mean from the functional observations.

For the second step, we propose to simultaneously estimate the upper triangles of the covariances

KUg(t, t′), g = 1, . . . , G, and KE(t, t′) and the error variance using our novel covariance smoothing

approach. The triangular covariance surfaces are then reflected across the diagonal, yielding estimates

for the complete covariance surfaces KUg(t, t′) =
[
K
Ug
ss′ (t, t

′)
]
s,s′=1,...,ρUg

, g = 1, . . . , G, and KE(t, t′).

Negative estimated values of σ2 are set to zero.

In the third step, we use spectral decompositions of the estimated covariance surfaces based on

Mercer’s theorem (Mercer, 1909) and an extension of Mercer’s theorem to vector-valued random

processes (Balakrishnan, 1960; Kelly and Root, 1960)

KUg(t, t′) =

∞∑
k=1

ν
Ug
k φ

Ug
k (t)φ

Ug
k (t′)

>
, KE(t, t′) =

∞∑
k=1

νEk φ
E
k (t)φEk (t′),
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with eigenvalues ν
Ug
k , νEk and (vector-valued) eigenfunctions φ

Ug
k (t) =

[
φ
Ug
ks (t)

]
s=1,...,ρUg

, φEk (t), re-

spectively. In practice, the covariance surfaces are evaluated on a dense grid D̃ =
{
t1, . . . , tD̃

}
∈ T of

pre-specified length D̃. We obtain estimated eigenvalues ν̂
Ug
k , k = 1, . . . , D̃ρUg , and ν̂Ek , k = 1, . . . , D̃,

as well as orthonormal eigenfunctions evaluated on D̃, φ̂
Ug
k =

[
φ̂
Ug
ks (t)

]
s=1,...,ρUg ,t∈D̃

∈ RD̃ρUg and

φ̂Ek =
[
φ̂Ek (t)

]
t∈D̃
∈ RD̃, of each corresponding covariance operator. The multivariate eigenvectors

φ̂
Ug
k consist of blocks for the respective eigenfunction components. The eigenvectors φ̂

Ug
k , φ̂Ek (and

accordingly the eigenvalues) are rescaled to ensure orthonormality with respect to the additive inner

product
〈(

f1, . . . , fρUg
)
,
(
g1, . . . , gρUg

)〉
=
∑ρUg

s=1

∫
T fs(t)gs(t) d t, and with respect to the L2-inner

product 〈f, g〉 =
∫
T f(t)g(t) d t, respectively. For more details on multivariate FPCA, see, e.g., Ram-

say and Silverman (2005). To guarantee positive semi-definiteness of the covariances, which is not

ensured by our smoothing approach, negative eigenvalues can be set to zero, which has been shown

to improve accuracy in terms of the L2-norm (Hall et al., 2008) and to work well in practice (e.g.,

Yao et al., 2003). Dimension reduction is achieved by truncating the number of eigenfunctions. We

choose the truncation levels based on the proportion of variance explained (for an overview, see

Greven et al., 2010) and denote them by NUg , g = 1, . . . , G, and NE , respectively. The truncated

Karhunen-Loève (KL) expansion (Loève, 1946; Karhunen, 1947) and an extension to vector-valued

random processes (Balakrishnan, 1960; Kelly and Root, 1960) allows parsimonious representations of

the random processes in truncated bases of the corresponding eigenfunctions

Ugl(t) ≈
NUg∑
k=1

ξ
Ug
lk φ

Ug
k (t), Ei(t) ≈

NE∑
k=1

ξEikφ
E
k (t), (5.15)

with uncorrelated zero mean random basis weights ξ
Ug
lk , l = 1, . . . , LUg , k = 1, . . . , NUg , and ξEik,

i = 1, . . . , n, k = 1, . . . , NE , with variance ν
Ug
k and νEk , respectively.

In the fourth step, we predict the random basis weights, which give insight into the individual

structure of each grouping level. Replacing the random processes in Model (5.7) by their truncated

KL expansions in (5.15) allows to approximate the model by a scalar linear mixed model with random

effects corresponding to the random basis weights ξ
Ug
lk , ξEik (Di et al., 2009). The basis weights can

then be predicted as empirical best linear unbiased predictors by simply plugging in the estimated

eigenfunctions, eigenvalues, and the estimated error variance (Di et al., 2009; Greven et al., 2010, and

Chapter 4 of this thesis).

Alternatively, we can represent our model as a FAMM using our estimated eigenfunctions and

-values in basis expansions of the random processes as proposed by Scheipl et al. (2015). Under

the assumption of Gaussian responses, the random basis weights can be predicted together with

a re-estimation of the mean function in a mixed model framework. This allows for more efficient

mean estimation due to taking the covariance structure into account and for approximate statistical

inference conditional on the FPCA, such as point-wise confidence bands for the mean and for covariate
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effects. For more details on the combination with the FAMM approach and an extensive comparison

of the two ways to predict the basis weights, see Chapter 4.

5.5 Implementation

We provide freely available software implemented in the R add-on package sparseFLMM (Cederbaum,

2016). Our implementation is based on the R add-on package mgcv (Wood, 2006, 2011), which

allows to add user-defined spline bases and penalties. In this framework, we define a novel class for

bivariate smooths estimated subject to our symmetry constraint (5.5) called ’symm’ by providing a

new constructor method function smooth.construct.symm.smooth.spec and a corresponding predictor

method function for the estimation of smooth surfaces in additive models. The class can be applied to

any bivariate smooth term in a gam-formula. It is not restricted to symmetric data although we here

consider symmetric data in the form of products of the centered functional responses in the smoothing

of the covariance. It can be applied to (possibly noisy) data sampled on a regular grid as well as

to irregularly or sparsely sampled data. As a modular component, our constructor can be applied

separately to the auto-covariances of independent functional random effects in an FLMM. The case

of correlated functional random effects, such as correlated functional random intercepts and slopes,

is currently not covered in the implementation. In our application, we show how the constructor

can be applied to complex designs on the basis of the FLMM with crossed fRIs as in Equation

(5.13). One main advantage of using standard software is that it allows for flexible extensions. The

current implementation in the R add-on package sparseFLMM is based on tensor product B-splines

with difference penalties (Eilers and Marx, 2003), but extensions to other bivariate bases that are

symmetric across the diagonal and other penalties are possible.

The spline degree and the number of basis functions can be chosen. The user currently has the

choice between two different quadratic penalties. One can either use the Kronecker sum penalty

pen(λ) = λθ> [(St ⊗ IF ) + (IF ⊗ St′)]θ or alternatively a Kronecker product penalty of the form

pen(λ) = λθ> (St ⊗ St′)θ = λθ> [(St ⊗ IF ) · (IF ⊗ St′)]θ, where St = St′ denote the marginal

penalty matrices and θ is the coefficient vector. Note that both penalties are isotropic, reflecting the

symmetry of the surface. The main difference between the two penalty matrices is that the null space

of the latter is larger, more likely leading to wigglier estimates. Other possible penalties could be

added by the user.

To speed up estimation, function bam can compute the computationally expensive steps in parallel

on multiple cores.

In addition to the implementation of our constructor, the R add-on package sparseFLMM includes

an implementation for the FPCA based on our (additive) covariance smoothing approach for three

special cases of the FLMM (Model (5.1), a model with an fRI and a smooth error curve, and the

model with two crossed fRIs and a smooth error curve as in Section 5.3.3).
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5.6 Applications

We demonstrate the practical relevance of our approach in two distinct applications. We consider

a standard data set consisting of sparse longitudinal observations as well as functional data with a

complex correlation structure and different grids between curves.

5.6.1 CD4 cell count data

In order to compare our approach to that of Xiao et al. (2017) for the common special case of longi-

tudinal data, we apply FPCA to analyze the CD4 cell count trajectories in HIV positive individuals

which are available in the R add-on package refund (Huang et al., 2016a). As our focus here is on the

more complex case of correlated functional data, to which the approach of Xiao et al. (2017) does not

apply, the application to the CD4 cell count data is given in Section D.3 in Appendix D.

5.6.2 Speech production research data

We apply FPCA based on our covariance smoother to acoustic signal data with a crossed correlation

structure. We show the increase of the computational efficiency compared to the approach proposed

in Chapter 4, for a case where that approach is applicable. To the best of our knowledge, the smooth

method of moments approach presented in Chapter 4 is the only competitor for covariance smoothing

of irregularly observed correlated curves with a crossed design structure. No alternative approach is

available for general models (5.7), where our approach is the first available for additive covariance

smoothing.

In phonetic research, the term consonant assimilation refers to the phenomenon that the articu-

lation of two consonants becomes phonetically more alike when they appear subsequently in fluent

speech. Consonant assimilation is accompanied by a complex interaction of language-specific, per-

ceptual and articulatory factors which makes it an important topic in speech production research.

The data we consider are part of a large study which was conducted by Pouplier and Hoole (2016)

in order to investigate among others the assimilation of the consonants /s/ and /sh/ as a function

of their order (/s#sh/ versus /sh#s/, where # denotes a word boundary), syllable stress and vowel

context in the German language. The same data were previously described and analyzed in Chapter

4. In order to make each chapter self-contained, a short data description is provided in the following.

Pouplier and Hoole (2016) recorded the audio signals for nine native speakers which repeated the

same sixteen target words each five times. The target words consisted of (semantically nonsensical)

bisyllabic noun-noun compound words with abutting consonants /s/ and /sh/ in either order, e.g.,

‘Callas-Schimmel’ and ‘Gulasch-Simpel’, and with either stressed or unstressed syllables and varying

vowel combinations. The time interval during the duration of the two consonants of interest was cut

out manually by the phoneticians and standardized to a [0,1] interval in which the recorded acoustic

signals were summarized in a functional index over time. The n = 707 index curves (shown in Figure

5.1) take values between +1 and −1, with positive [negative] values indicating proximity of the signal

to a reference signal for the first [second] consonant of the target word, respectively. To illustrate the
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effect of consonant assimilation, two acoustic signals are highlighted in Figure 5.1. The curve without

or with little assimilation shows a clear transition from a strong positive to a strong negative value,

whereas the curve with strong assimilation is quite flat and mostly takes negative values. The curves

differ in the number and location of the observation points, ranging from 22–57 with a median of 34

points per curve. For a more detailed description of the data (including pre-processing steps), see

Pouplier and Hoole (2016) and Chapter 4.
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Figure 5.1: Acoustic signal curves of the speech production data over time (cf. Chapter 4). Left [right]: Signal
curves of consonant order /s#sh/ [sh#s] colored by target word. Example curves with no/little assimilation
and with strong assimilation highlighted (black).

We fit an FLMM with crossed fRIs as described in Section 5.3.3 and previously considered in

Chapter 4 to account for the repeated measurements of both speakers and target words. The mean

function µ(t,xi) includes effects and interaction effects of the dummy-coded covariates consonant

order, syllable stress, and vowel context, smoothly varying over time. As the focus here is on the

smooth auto-covariances of the functional random effects, KB(t, t′), KC(t, t′), and KE(t, t′), it is

referred to Chapter 4 for more details on and interpretations of the covariate effects. For each

auto-covariance, we use cubic marginal B-spline bases with marginal third order difference penalty

matrices and use the Kronecker sum penalty for bivariate smoothing (cp. Section 5.5). We compare

the results from our novel symmetric bivariate smoother (denoted by TRI-CONSTR and by TRI-

CONSTR-W with weights of 0.5 for the products on the diagonal, cp. Section 5.2.2) with the results

we obtain using the smoothing approach proposed in Chapter 4 (denoted by WHOLE). The latter

does not exploit the symmetry of the estimated surface and is equivalent to TRI-CONSTR-W except

for the estimation of the smoothing parameter and numerical differences. To highlight the need

for a symmetry constraint when only the upper triangle is considered, we further compare with

the results obtained by estimating the upper triangle without a symmetry constraint (denoted by

TRI) which does not guarantee smoothness across the diagonal (cp. Section 5.2.2). The estimated

auto-covariances are evaluated on a pre-specified grid of length D̃ = 100. During the FPCA, we
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choose the truncation levels based on a pre-specified proportion of explained variance of L = 0.95,

yielding two [four] eigenfunctions for the auto-covariance of the fRI for speakers, KB(t, t′), and three

[twelve] eigenfunctions for the auto-covariance of the smooth error, KE(t, t′), for our two approaches

and WHOLE [for TRI]. For all four smoothing methods, no eigenfunction is chosen for the fRI for

target words, which is due to the high number of covariates that describe the target words sufficiently

(cf. Chapter 4. Figure 5.2 shows the estimated surfaces and contours of the auto-covariance of the

fRI for speakers, reconstructed after truncation from the estimated eigenvalues and eigenfunctions,

which are shown in the bottom of the figure (black). As a sensitivity analysis, we additionally depict

jackknife estimates of the eigenfunctions with each of the nine speakers left out once (gray lines,

bottom row). The variability over jackknife samples is similar for all compared approaches. However,

while the same number of FPCs is chosen in all jackknife samples for TRI-CONSTR, TRI-CONSTR-

W, and WHOLE, jackknife results for TRI are more sensitive. In two out of nine jackknife samples,

TRI selects more FPCs than for the whole data set.

We can see from Figure 5.2 that the estimated covariance K̂B(t, t′) based on our symmetric

smoother (TRI-CONSTR-W) is very similar to the one obtained by using all products (WHOLE).

Moreover, it shows that for this application, the weights for the diagonal products do not make

a great difference. As expected, we observe wigglier estimates especially on the diagonal for TRI,

for which the error variance is estimated to be zero. This is also reflected in the wiggliness and

higher number of chosen eigenfunctions for TRI. Similar results can be found for KE(t, t′). These

are given in Section D.3 in Appendix D, where additional estimation details and results including

the complete variance decompositions are provided. For all four approaches, the first eigenfunction

in Figure 5.2 (solid line) corresponds to the discrimination of the speaker between the first and the

second consonant and the second eigenfunction (dashed line) mainly leads to a vertical shift of the

signal curves. Accounting for the symmetry of the covariances leads to a considerable reduction of

computation times. TRI-CONSTR and TRI-CONSTR-W have the shortest computation times for

smoothing the three auto-covariances, using five kernels in parallel, amounting to 24.51 and 25.82

minutes, respectively. Smoothing the auto-covariances using WHOLE takes more than twice as long

(55.76 minutes) and using TRI still amounts to 32.95 minutes, which partly results from the fact that

more spline coefficients have to be estimated. In addition, WHOLE and TRI require the estimation of

two (instead of one) smoothing parameters for each auto-covariance using the Kronecker sum penalty

implemented in the R add-on package mgcv of the form pen(λ) = λtθ
> (St ⊗ IF )θ+λt′θ

> (IF ⊗ St′)θ.
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Figure 5.2: Results for the fRI for speakers using the four smoothing methods. Top row: Estimated covariance
surfaces. Middle row: Contours of the estimated covariance surfaces. Bottom row: Estimated eigenfunctions
φ̂Bk (t) based on the entire data set (black) and jackknife estimates with one of the speakers left out in turn
(gray).
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5.7 Simulations

5.7.1 Simulation designs

To investigate the performance of our covariance smoothing approach, we conduct an extensive simu-

lation study based on two different data generating processes. For the first scenario (Scenario 1), we

simulate data consisting of n = 100 independent curves from Model (5.1) with µ(t) = sin(t) + t. The

data for the second scenario (Scenario 2) are generated from an FLMM with crossed fRIs as in Section

5.3.3, such that they mimic the irregularly observed speech production data. Note that no covariate

mean effects are included such that we additionally obtain one eigenfunction for the fRI for target

words and thus really have crossed fRIs. Additional generation details for this scenario are given in

Section D.4 in Appendix D. We compare the performance of our fast (additive) symmetric covariance

smoother (TRI-CONSTR, TRI-CONSTR-W with weights of 0.5 for the diagonal products) as basis

for FPCA with the performance of the smoothing approach proposed in Chapter 4 (WHOLE). To

evaluate the need of the symmetry constraint when only the upper triangle is estimated, we further

compare with the results obtained without posing a symmetry constraint (TRI). For Scenario 1, we

additionally provide a comparison with the smoothing approach of Xiao et al. (2017) (denoted by

FACE), implemented in function face.sparse in the R add-on package face (Xiao et al., 2016a). FACE

does, however, not apply to additive covariance smoothing needed for correlated curves. Note that

Xiao et al. (2017) compare their symmetric covariance smoother to a number of other approaches

that are all restricted to independent curves. They show that their approach is superior or compa-

rable in terms of median integrated squared errors and inter quartile ranges (IQR) to the approach

implemented in function fpca.sc (Di et al., 2009) in the R add-on package refund based on bivariate

B-splines with a difference penalty and to a self-coded variant based on thin plate regression splines

for covariance smoothing. Moreover, they demonstrate their supremacy over the geometric likelihood

approach of Peng and Paul (2009) and the local polynomial approach proposed in Yao et al. (2003).

We thus do not include these alternatives here.

Based on Scenario 1, we investigate the sensitivity of the estimates to varying model complexity

in terms of the complexity of the underlying eigenfunctions, signal to noise levels as functions of error

variances and eigenvalues, and degree of sparseness. We consider all possible combinations of

1. simple eigenfunctions:
{
φ1(t) = 1, φ2(t) =

√
3(2t− 1)

}
,

complex eigenfunctions {φ1(t) = sin(2πt), φ2(t) = cos(2πt)}
2. error variance: σ2 = 0.5, σ2 = 0.05

3. eigenvalues: {ν1 = 0.15, ν2 = 0.075}, {ν1 = 2, ν2 =}
4. number of observation points: drawn from uniform distributions U [40, 60].

For the simple eigenfunctions, we additionally consider a sparse setting, in which the number of

observation points is drawn from the uniform distribution U [3, 10]. For the complex eigenfunctions

and eigenvalues ν1 = 2, ν2 = 1, we additionally reduce the value of the error variance to σ2 = 0.01.

For all settings, we generate 200 data sets. The random basis weights are centered and decorrelated

such that the weights empirically have zero mean and a correlation of zero (see Chapter 4 for a

discussion).
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For the estimation in Scenario 1, we use ten cubic B-splines each for the estimation of the mean

function and as marginal bases for the auto-covariances. For the estimation in Scenario 2, we use

eight and five cubic B-splines for the estimation of the mean function and as marginal bases for the

auto-covariances, respectively. We use Kronecker sum penalties (cp. Section 5.5) of marginal third

order difference penalties for bivariate smoothing. Estimation of the smoothing parameter is based

on REML, except for FACE, which uses leave-one-curve-out cross-validation. We use equidistant

knots in function face.sparse instead of the default (quantile-based knots) which would require an

adapted penalty that is not implemented. The arguments that determine the smoothing parameter

search in function face.sparse are left at their defaults. As function face.sparse does not allow to

specify a fixed truncation level, we choose the number of eigenfunctions based on a pre-specified

proportion of explained variance of L = 0.95. Note that we use the proportion of explained variance

in the functional observations, whereas Xiao et al. (2016a) use that in Ei(t). In order to be able to

differentiate the error incurred by the truncation of the covariance surface to a few leading FPCs from

the pure covariance surface estimation error, we pre-specify the correct truncation lags for Scenario

2, for which no comparison with FACE is possible anyway.

5.7.2 Simulation results

We present and discuss the results of both simulation scenarios. For Scenario 1, we focus our presen-

tation of the results on the setting with complex eigenfunctions, an error variance of σ2 = 0.05 and

eigenvalues of size ν1 = 2, ν2 = 1 (denoted as Setting 1). As a measure of goodness of fit, we use

root relative mean squared errors (rrMSEs) of the form
√

(true− estimated)2/true2. The complete

results for all settings and the specific forms of the rrMSE for all model components, are given in

Section D.4 in Appendix D.

Figure 5.3 depicts boxplots of the rrMSEs for 200 simulation runs for Setting 1. For each model

component, it shows the boxplots for the compared smoothing methods and, in addition, for a modified

version of FACE (denoted by FACE-STEP-1), in which the covariance of the products is not accounted

for and thus only the first step of the three-step procedure is performed. FACE-STEP-1 is added to

evaluate the effect of accounting for the covariance of the products (cf. Section 5.14). It shows that all

components, except for the error variance, are estimated very well for our approach (TRI-CONSTR,

TRI-CONSTR-W). The weights for the diagonal products do not have a great influence. Moreover,

our approach yields similar rrMSEs as WHOLE. We also obtain similar results for TRI for most

components, except for the error variance for which TRI has a higher median rrMSE. FACE yields a

more than 2.7 times higher median rrMSE for the auto-covariance KE(t, t′) compared to our approach

and consequently also worse results for the eigenvalues νEk , k = 1, 2. It yields smaller median rrMSEs

for the eigenfunctions φEk , k = 1, 2, but the IQR is larger and more outliers occur than in all other

approaches. The estimation of the error variance profits most from accounting for the covariance of

the products, which is reflected in a much lower median rrMSE for FACE than for the other methods.

This also leads to lower median rrMSEs for the random basis weights, ξE1 and ξE2 , which depend

on the error variance and consequently also to lower median rrMSEs for the reconstructed processes
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Ei(t) and Yi(t). For all components, however, FACE yields a high number of outliers that range

above the maximal rrMSEs obtained for the other methods. It is noticeable that the estimation of

the auto-covariance is considerably better (in terms of rrMSE) for FACE when the covariance of the

products is not accounted for. Moreover, we see that FACE-STEP-1 yields roughly similar results to

our approach and WHOLE. For TRI-CONSTR, TRI-CONSTR-W and WHOLE, the truncation level

is correctly estimated to be two in all 200 simulation runs. A higher number of eigenfunctions (three

to four) is chosen for TRI in eight simulation runs of this setting, which is consistent with our results

in the application to the speech production data. FACE and FACE-STEP-1 choose more than two

(three to five) eigenfunctions in 190 and 198 simulation runs, respectively.

To sum up the results for the other ten settings of Scenario 1, we can say that over all settings and

components TRI-CONSTR, TRI-CONSTR-W and WHOLE yield similar rrMSEs with a tendency to

a supremacy of TRI-CONSTR, especially in the sparse settings. TRI yields similar to worse results

compared to our method and WHOLE. Especially for the error variance it yields up to 82% higher

median rrMSEs (in one of the sparse settings). The estimation quality of all methods differs between

the dense and the sparse settings. Our approach yields relatively similar results within the dense

settings and higher rrMSEs in the sparse settings. Moreover, TRI-CONSTR and TRI-CONSTR-W

tend to perform better in the settings with complex eigenfunctions and favor smaller error variances

(except for the estimation quality of the error variance itself). In contrast, FACE tends to perform

better in the settings with simple eigenfunctions and favors larger error variances. Our approach

and WHOLE always select the correct truncation level, except in the sparse settings, where for some

simulation runs more eigenfunctions are selected. TRI tends to select more eigenfunctions. For all

settings, FACE and FACE-STEP-1 have simulation runs in which more than two eigenfunctions are

selected.

In contrast to FACE and FACE-STEP-1, our approach is directly extendable to smoothing mul-

tiple auto-covariances simultaneously, which is required in Scenario 2. Figure 5.4 depicts the rrMSEs

for the auto-covariances, the error variance and curves Yi(t) for Scenario 2. It shows that the three

auto-covariances are estimated equally well for the four compared smoothing methods. For the error

variance, however, TRI performs worse with a 32.5% higher median rrMSE and a larger IQR, which

also results in slightly higher rrMSEs for the reconstructed curves. Over all, our methods perform

very well considering the small number of levels for the fRIs B (9 levels) and C (16 levels). For all

model components, TRI-CONSTR and TRI-CONSTR-W yield similar rrMSEs.
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Figure 5.3: Boxplots of the rrMSEs (log10 scale at y-axis) for the scenario with independent curves (Scenario
1) for the smoothing methods being compared. Top row: rrMSEs for auto-covariance KE(t, t′), error variance
σ2, and the first eigenfunction φE1 (t). Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues
νE1 , νE2 . Third row: rrMSEs for the random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for
curves Yi(t).
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Figure 5.4: Boxplots of the rrMSEs for the scenario with crossed fRIs (Scenario 2) for the smoothing methods
being compared. Shown are boxplots of the rrMSEs for the three auto-covariances KB(t, t′), KC(t, t′), and
KE(t, t′) as well as for the error variance σ2 and the curves Yi(t).

5.7.3 Computational efficiency

Figure 5.5 shows computation times on a 64 Bit Linux platform with 660 Gb of RAM memory for

the two settings discussed above. Our approach (with and without weights for the diagonal products)

greatly speeds up the computation compared to WHOLE and also to TRI, especially in the scenario

with crossed fRIs (right figure), where the computation times are longer and thus matter more. Note

that in addition to accounting for the symmetry of covariances, we reduce the number of smoothing

parameters to be estimated compared to WHOLE and TRI, for which two smoothing parameters are

estimated for each auto-covariance using the Kronecker sum penalty implemented in the R add-on

package mgcv. In the scenario with independent curves (left figure), FACE is considerably slower

than the other methods. This applies to all except the sparse settings, in which the computation

times are extremely short anyway (max. 15 sec.). Note that variation for FACE and FACE-STEP-1

is considerably smaller as the smoothing parameter is chosen based on a fixed grid.

5.7.4 Summary

Overall, one can conclude from our simulations that the proposed symmetric smoothing approach

performs well both in the simple scenario as well as in the scenario with crossed fRIs. In the regarded

12 simulation settings, the novel symmetric smoother yields similar results with and without weights

for the products on the diagonal. It shows that the results are also similar to those of the approach

proposed in Chapter 4 that, however, requires considerably longer computation times. As expected,

the proposed symmetric smoothing approach performs better than the estimation of the upper triangle

without a symmetry constraint, most notably for the estimation of the error variance. For the

scenario with independent curves, in which a comparison with the approach of Xiao et al. (2017)

is possible, neither is clearly preferable for all estimated components in all settings. In addition to

the computational advantages of the proposed symmetric smoother, it also has much fewer outliers
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Figure 5.5: Computation times (log10 scale at y-axis) for 200 simulation runs for all compared methods. Left:
Computation times for Setting 1 of the scenario with independent curves. Right: Computation times for the
scenario with crossed fRIs.

than FACE and more reliably selects the correct number of FPCs. Most importantly, the proposed

approach–in contrast to FACE–allows to smooth multiple auto-covariances simultaneously.

5.8 Discussion and outlook

We have introduced a fast bivariate smoothing approach for symmetric surfaces which applies to a

broad range of data situations. We focus on its application to estimate covariance functions in lon-

gitudinal data as well as multiple additive covariance functions in functional data with very general

correlation structures. Our smoother can handle (possibly noisy) data sampled on a common, dense

grid as well as irregularly or sparsely observed data, which are frequently encountered in practice.

It extends the smooth method of moments estimator proposed in Chapter 4 of this thesis to more

general correlation structures and additionally takes advantage of the symmetry of the sample covari-

ances, which leads to considerably faster estimation requiring less memory. The covariance functions

are estimated as unknown, smooth functions in a bivariate additive varying coefficient model for

the empirical covariances. A symmetry constraint additionally ensures smoothness of the estimated

covariance surfaces across the diagonal and further reduces computational costs. We show how our

smoother can be applied as basis for FPCA, a key tool for dimension reduction in FDA, and demon-

strate its practical relevance in a longitudinal data application and in an application to complexly

correlated functional speech production data. We provide fully documented open-source software

implementing our approach in the R add-on package sparseFLMM, which builds on the established R

add-on package mgcv allowing for flexible extensions (Cederbaum, 2016; Wood, 2006, 2011). Within

this framework, we provide a novel constructor function for the estimation of smooth surfaces in

additive models subject to the symmetry constraint. Our constructor can be applied as a modular

component to general bivariate symmetric smoothing problems. Simulation experiments (in Section
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5.7) show that the proposed method recovers the true functions very well and yields similar results

as the estimation approach proposed in Chapter 4 while considerably speeding up the estimation and

extending the range of possible model structures.

This work opens up a number of interesting directions for future research. A first direction con-

cerns the working assumptions of independent and homoscedastic products of the centered functional

responses that are implicitly made by using a quadratic loss function in the estimation of the covari-

ances in a bivariate additive varying coeffient model (cp. Section 5.3.4). It would be interesting to

investigate whether a suitable loss function for the products could be derived. Under the assumption

of Gaussian responses, the products follow a product normal distribution, for whose probability den-

sity function Nadarajah and Pogány (2016) recently derived a closed-form expression based on the

modified Bessel function. A second direction concerns the positive semi-definiteness of the covariance

operator, which is not ensured in our approach and in most existing covariance smoothing approaches

(e.g., Yao et al., 2003; Hall et al., 2008; Di et al., 2009; Greven et al., 2010). Although Hall et al. (2008)

show that setting negative eigenvalues to zero improves the estimation quality and Yao et al. (2003)

demonstrate that this works well in practice, it could be desirable to ensure positive semi-definiteness

in the estimation. Wu and Pourahmadi (2003) estimate a positive semi-definite covariance based

on an auto-regressive model with regression coefficients corresponding to the components of a mod-

ified Cholesky decomposition of the covariance. The approach of Peng and Paul (2009) also ensures

positive semi-definiteness. It remains an open question, however, how these approaches could be

extended to smoothing multiple additive covariances for functional data with complex correlation

structures. Another possible path for future investigation would be the extension of our models to

allow for more complex noise terms. This extension requires careful, extensive analyses in order to

ensure identifiability. For much simpler models, Descary and Panaretos (2016) develop identifiability

conditions for the separation of smooth and rough variation (corresponding to Ei(tij) and εi(tij) in

our notation). Whether and how these conditions can be extended to the very general functional

linear mixed models considered in this chapter remain an open question.
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Chapter 6

Concluding Summary and Outlook

“ The more I learn, the more

I realize how much I don’t know.

Albert Einstein

In this closing chapter, an overall concluding summary is given that highlights the main develop-

ments of this thesis and their importance for concrete applications (Section 6.1) based upon which

relevant starting points for future research directions are discussed (Section 6.2). A more specific dis-

cussion of the proposed modeling approaches including their strengths and limitations can be found

at the end of the respective chapters.

6.1 Concluding summary

The increasing collection of data that have a functional nature has motivated the development of

numerous functional counterparts to methods that were initially designed for scalar or multivariate

data. Regarding these data as functional observations allows to account for the inherent correlation

and to extract additional information that often remains ignored when standard tools are applied.

As regression analysis plays a central role in many statistical applications, the extension of various

types of regression models to the functional framework has received particular attention. In many

situations, one is interested in regressing a functional response on one or multiple scalar predictor

variables. A common assumption in this context is that the observations of the functional response

are a) independent and/or b) observed on a common, fine grid. Both assumptions are often not met

in practice, where one frequently encounters data that have complex correlation structures and/or

are available at–possibly few–curve-specific measurement points. In particular the co-occurrence of

both aspects increases the need for flexible modeling approaches that are computationally feasible

and yield interpretable results.
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In this thesis, a computationally efficient estimation framework was developed that allows to analyze

functional data with potentially complex correlation structures. The data may be observed on

general grids, including curve-specific grids with very few grid points. Linear mixed models (LMMs)

for scalar correlated data were extended to meet the requirements and to exploit the whole potential

of the functional nature of the data. In its simplest form, the modeling framework can be utilized

to enhance the analysis of longitudinal data, which frequently arise from, e.g., medical applications

such as clinical trials, but the framework goes far beyond. The considered general class of functional

linear mixed models (FLMMs) also applies to functional data with correlation induced by nested

and/or crossed study designs. It further accommodates correlated functional random effects and

allows the inclusion of effects of multiple scalar covariates.

The thesis is divided into three main parts that complement each other. In the first part

(Chapter 3), a modeling approach was proposed that allows for very general correlation structures

but is specifically designed for curves observed on a common grid. A closely related approach was

presented in the second part (Chapter 4). This approach is particularly designed for irregularly or

sparsely sampled data with the focus on a less general correlation structure. The third part (Chapter

5) introduced a fast symmetric bivariate smoothing approach that allows to considerably decrease

the computational costs of the two modeling approaches, but also finds its application in general

symmetric bivariate smoothing problems. Moreover, the bivariate smoother can be applied to extend

the approach in the second part to more general correlation structures.

Estimation in both modeling approaches is based on functional principal component analysis

(FPCA), yielding the dimension reduction crucially important when dealing with functional data.

The functional random effects in the models are approximated by truncated bases of eigenfunctions

of their respective covariance operators, which have to be estimated beforehand. Despite the

additional effort to obtain appropriate covariance estimates, expansions in functional principal

component (FPC) bases have several advantages over alternative basis approaches. Not only are

the basis functions estimated from the data, but they also yield a parsimonious basis as they can

be shown to optimally approximate the underlying process for a given number of basis functions.

This was confirmed in a comparison with a spline-based alternative in Chapter 4, which showed

a clear advantage of the use of FPC bases, both in terms of computation times and estimation

quality. Moreover, FPC bases allow to explicitly decompose the variance in the data, which provides

additional insight in the underlying structure. Furthermore, the FPCs often allow for interesting

interpretations and the individual basis weights can be used for further analyses.

A main contribution of this thesis is the development of such smooth covariance estimates of

the functional random effects on which the FPCA is based. The challenge lies in the fact that

the functional random effects are unobserved processes that underlie the correlated functional

observations. Their estimation is further complicated when the data are observed on curve-specific

grids. Whereas for data observed on a common grid the covariances can be estimated using
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a computationally efficient point-wise estimation approach and subsequent smoothing (Chapter

3), this approach fails when the measurement points are not the same among curves. In par-

ticular, when only few measurements per curve are available, direct smoothing becomes even

more important. The sampling grid thus plays a crucial role for the estimation methods of the

covariances. Once the smooth covariance estimates are available, the FPCA can be carried out in

the same way irrespective of the sampling grid. Therefore, the estimation approaches proposed

in Chapter 3 and Chapter 4 mainly differ in the estimation of the covariances. A remedy to the

computational burden of smoothing (multiple) covariance surfaces is the fast symmetric bivari-

ate smoother proposed in Chapter 5, which applies to complex correlated data as well as general grids.

Apart from the development of novel covariance estimation and smoothing approaches, exist-

ing FPC-based FLMMs were extended in this thesis to more general correlation structures, involving

possibly correlated functional random intercepts and functional random slopes (Chapter 3 and

Chapter 5). For correlated functional random effects, multivariate FPCA was applied in order to

account for their co-variation.

Furthermore, this thesis proposed two approaches to predict the random basis weights. The

first approach (Chapter 3, Chapter 4, and Chapter 5) predicts the basis weights as random effects in

the resulting scalar LMMs and extends existing approaches of Yao et al. (2005), Di et al. (2009), and

Greven et al. (2010) to allow for more general correlation structures. The second approach (Chapter

4) embeds the considered class of FLMMs in the framework of functional additive mixed models

(FAMMs) introduced by Scheipl et al. (2015) and benefits from the resulting statistical inference

conditional on the FPCA. This new combination of the FPC estimation with the FAMM framework

additionally allows to include functional covariates in the–to this point–function-on-scalar regression

model, taking care of identifiability issues arising in this context. A detailed explanation on how

the FLMMs fall into the FAMM framework was presented in Chapter 4 but the FAMM framework

can also be combined with the modeling approach proposed in Chapter 3. Note, however, that the

implementation of the FAMM approach does not support correlated functional random effects.

The practical use of the presented modeling framework and its benefits were highlighted in

three distinct applications, each requiring a different amount of complexity in the random effects

structure and applicability to different sampling grids.

In Chapter 3, a model with hierarchical functional random effects with group-specific covariance

structures was estimated, providing new insights into the structure of tissue spectroscopy data (Stelzle

et al., 2011) that are sampled on an equal, dense grid. The combination with the classification

approach of Zhu et al. (2012) yields a classifier that performs equally well to or even outperforms the

considered competitors.

In Chapter 4 and Chapter 5, acoustic signals from a speech production study (Pouplier and Hoole,

2016) were analyzed. The pre-processed signals are available on dense, but curve-specific grids. The

considered model includes crossed functional random intercepts that account for repeated recordings
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for subjects and items, respectively. It is found that the main modes of variation in this application

have meaningful interpretations. For the project partners from phonetics, the main interest lies

in the effects of several dummy-coded covariates and their interactions. Therefore, a great benefit

comes from the combination of the FPC estimation with the FAMM framework, which in particular

yields point-wise confidence bands for the covariate effects (conditional on the FPCA). During the

development of the estimation approach, five additional data sets stemming from the same experiment

were analyzed. As the data are very similar and also lead to similar conclusions, the presentation of

these additional results is not considered within this thesis. Moreover, in current joint research with

Marianne Pouplier, Phil Hoole (Department of Phonetics and Speech Processing, LMU Munich), and

Sonja Greven (Department of Statistics, LMU Munich), additional data sets are being analyzed. The

collaboration with the phoneticians shows that data of this kind with similar correlation structures

are frequently encountered in phonetics research which are commonly analyzed with tools that do

not sufficiently account for the functional character of the data and thus loose valuable information.

In a second application in Chapter 5, the proposed framework was used to analyze sparsely

sampled longitudinal CD4 cell count data as biomarkers of progression of HIV infection (Kaslow

et al., 1987). This application demonstrates that although the framework can handle complex

correlation between curves, it also applies to independent functional observations and in particular

to longitudinal data that are only available at few measurement points. Again, the FPCs have

interesting interpretations such as the speed with which the disease progresses.

As part of this thesis, open source software implementing parts of the proposed estimation

framework is provided in the R add-on packages sparseFLMM and denseFLMM (R Core Team,

2016; Cederbaum, 2016; Greven and Cederbaum, 2017). The former is being used by the project

partners from phonetics. The estimation of the smooth mean and covariance functions builds on

well-established, flexible algorithms implemented in the R add-on package mgcv (Wood, 2006, 2011).

For the combination with the FAMM framework, the R add-on package refund (Huang et al., 2016a)

is used, which again is based on the mgcv package. For the fast symmetric bivariate smoother in

Chapter 5, a new smoothing class in the mgcv framework is implemented that can be applied to any

bivariate smoothing problem. Building the implementation of the proposed modeling framework on

established software avoids ‘reinventing the wheel’, allows for flexible extensions, and benefits from

future improvements. For example, the new fitting approach for huge data sets proposed by Wood

et al. (2017), implemented in the package mgcv, can directly be applied in the estimation framework.

This allows to handle very large data sets and further reduces the computation times obtained in

this thesis.

6.2 Outlook

This thesis aimed at providing a flexible framework to model correlated functional data observed on

general grids. Referring to Einstein’s quote at the beginning of this chapter, obviously, not all aspects

can be addressed within this scope. Worthwhile avenues for future research include extensions of the
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considered class of FLMMs and further improvements in the estimation, in particular the estimation

of the covariance surfaces.

Model extensions

Several extensions of the considered model class may be relevant for the analyses of complex

data sets. A first extension would be to overcome the limitations in the predictor and to look at

general effects of both scalar and functional covariates. The inclusion of linear as well as smooth

non-parametric effects of both covariate types can be achieved by embedding the model class in the

FAMM framework of Scheipl et al. (2015) as described in Chapter 4.

Moreover, it would be interesting to consider spatial correlation to allow an adequate analysis

in a wider range of applications, including, for instance, climate and neuroimaging data. In the

proposed modeling framework, the FPC weights are assumed to be uncorrelated for different levels

of the grouping factors. This assumption could be relaxed in order to allow for spatial correlation.

Both approaches to prediction of the basis weights could be adapted, the prediction as random effects

in a scalar LMM as well as the prediction by embedding the model in the FAMM framework. The

latter extension seems to be straightforward as long as the spatial dependence structure is known.

For the former, it might be possible to build on existing FPC-based approaches. For example, Liu

et al. (2016) propose an extensions to the PACE approach of Yao et al. (2005) to spatially correlated

data. Their SPACE (spatial PACE) approach assumes a Matérn correlation for the FPC weights.

SPACE applies to irregular and sparse grids. It does, however, only account for correlation between

functions that is induced by the spatial sampling and does not apply to functional data with multiple

sources of correlation. A hierarchical FPC-based modeling approach with spatial correlation on the

deepest level is proposed by Staicu et al. (2010). Their fast modeling approach is, however, only

applicable to data with a hierarchical structure. For an overview on models for functional data with

spatial correlation, see Morris (2015).

Another direction for possible extensions concerns the response distribution. As in many em-

pirical problems, binary indicators or counts rather than continuous Gaussian data are observed, it

would be interesting to look at functional analogues of generalized (linear) mixed models for scalar

data (see, e.g., McCulloch et al., 2008; Molenberghs and Verbeke, 2005). Correlated non-Gaussian

responses need to be treated carefully, mainly for two reasons. First, in analogy to scalar generalized

linear mixed models, the interpretation of the fixed effects in the marginal and the conditional model

perspective do in general no longer fall together when the data are non-Gaussian. Second, even for

uncorrelated functional data, Gertheiss et al. (2017) argue that the direct extension of FPCA to

generalized responses incorrectly uses a marginal mean and covariance estimate for an inherently

conditional model (conditional with respect to the FPC weights), leading to biased estimates of

both functional fixed and random effects. Gertheiss et al. (2017) propose two FPC estimation

techniques to allow for an exclusively conditional perspective. The techniques are applicable to

irregularly and sparsely sampled curves but are so far restricted to uncorrelated functional responses
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and the extension to FLMMs would require further work. Once such an extension of FPCA to

correlated non-Gaussian data is available, the FPC estimates could be combined with recent work of

Scheipl et al. (2016a) who extend the FAMM approach to more general response distributions. This

would allow for statistical inference based on scalar generalized additive mixed models. In general,

interpretation of the fixed effects in these models needs to be done conditional on the functional

random effects. It would thus also be interesting to consider a functional analogue of marginal models

for scalar correlated data which could be applied in cases where population-specific interpretations

of the fixed effects are of interest.

A further current limitation of the presented model class is that it solely focuses on modeling

the conditional mean. In order to capture more complex relationships and to enable robust regres-

sion, it could be worth considering functional extensions of scalar regression approaches to modeling

general features of the conditional response distribution. Recent extensions to, in particular,

functional responses are proposed by Brockhaus et al. (2015), Brockhaus et al. (2017), and further

extended by Greven and Scheipl (2017). Whereas the first requires data sampled on a common grid,

the latter two allow for a more general grid structure. The underlying idea of their approaches is to

model the different properties of the conditional response distribution by minimizing a suitable loss

function. For the case of functional responses, which is of interest in this thesis, point-wise loss compu-

tation with subsequent integration is used that does not fully account for the functional nature of the

response and could be further adapted (for a brief discussion, see Brockhaus, 2016). Moreover, it re-

mains unclear if and how the general correlation structures considered in this thesis could be included

in their framework and how their resampling-based statistical inference could be adjusted accordingly.

A number of further directions appear interesting, such as modeling derivatives of, in particu-

lar, sparsely sampled correlated functional data or the extension of the model class to functional

data with higher-dimensional domains.

Estimation improvements

Apart from extensions of the model class, different potential improvements and extensions of the

estimation approaches could be considered. One avenue for future research could be to further

improve the estimation of the covariances. A first direction would be to work out how positive

semi-definiteness can be ensured in the estimation. Although it has been shown that setting negative

eigenvalues to zero improves the estimation quality (Hall et al., 2008) and works well in practice (e.g.,

Yao et al., 2003), it would be preferable to directly account for the specific properties of covariances.

Several very different approaches to obtain positive semi-definite estimates have been proposed in

the literature (e.g., Wu and Pourahmadi, 2003; Peng and Paul, 2009). A closer investigation of

whether and how these approaches can be extended to more complex correlation structures (and the

former also to more general grids) could be a first step.

Another step in the direction of enhancing the covariance estimation would be the development

of a fast symmetric bivariate smoothing approach that replaces the heuristic quadratic loss which
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implies working assumptions, such as working independence, that do not hold. A possible starting

point for deriving a suitable loss function is the distribution of the products of the centered functional

responses which are smoothed using a bivariate smoother. Under the assumption of Gaussian func-

tional responses, these products follow a product-normal distribution. A closed-form expression of

the corresponding probability density function has recently been derived by Nadarajah and Pogány

(2016). A different approach also assuming Gaussian responses is followed by Kauermann and We-

gener (2011) who jointly estimate the mean and covariance function using penalized splines. Their

approach applies to longitudinal data and it would be interesting to explore the possibility to extend

it to correlated functional responses.

Furthermore, a more detailed analysis of the two-step covariance estimation approach proposed

in Chapter 3 to further inspect the effect of smoothing the previously estimated covariances would

be desirable.

Another interesting point is the further consideration of uncertainty. As discussed in detail in

Chapter 4, embedding the considered models in the FAMM framework allows for valid approximate

statistical inference (conditional on the FPCA), including the construction of point-wise confidence

bands for mean and covariate effects of interest. Although the simulation studies performed in the

scope of this thesis show good coverage of the confidence bands, it would be desirable to take more

sources of uncertainty into account.

Sources of uncertainty, which are currently not accounted for, include the estimation of the smooth-

ing parameters. For a very general model class which includes (scalar) additive mixed models, Wood

et al. (2016) propose an approach that accounts for the estimation uncertainty of the smoothing

parameters. The authors provide an implementation in the R add-on package mgcv. This develop-

ment could be integrated into the FAMM framework. From a theoretical perspective, this extension

appears relatively straightforward as in the FAMM framework the functional estimation problem is

reduced to a scalar estimation problem which enables the use of statistical methods for scalar data.

In addition, the practical implementation of the FAMM estimation is already based on the package

mgcv facilitating the technical realization.

One advantage of FPC basis expansions is that the basis functions are estimated from the data.

However, this estimation also induces uncertainty which should be accounted for. When the random

basis weights are predicted as random effects in scalar LMMs, the usually known design matrix for

the random effects is unknown and has to be estimated. Not only the estimated eigenfunctions, but

also estimates for the eigenvalues, the error variance, and the truncation levels enter the prediction

of the basis weights both when they are predicted as random effects in a scalar LMM and when they

are predicted in the FAMM framework. If the estimated mean (under independence assumption) is

previously subtracted from the data in order to obtain estimates for the covariances, another source

of uncertainty comes into play. Thus, the resulting inference has to be considered conditional on

the FPCA. For the case of uncorrelated functional responses, Goldsmith et al. (2013) propose a

non-parametric bootstrap-based approach that accounts for the uncertainty in FPC decompositions.

The approach applies to data sampled on general grids, including sparsely sampled data, for which
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the added variability can be of particular importance (Goldsmith et al., 2013). The authors derive

both corrected point-wise and simultaneous confidence bands (or rather prediction bands) for the

predicted curves. It would be interesting to extend their approach to correlated functional data

with potentially complex correlation. This is, however, not straightforward and requires further

investigation for mainly two reasons. First, it is not clear how to extend the resampling method

to complexly correlated functions, with, e.g., crossed functional random effects. Second, for more

complex data, the computational costs may rapidly increase and require further careful consideration.

An alternative way to account for the estimation uncertainty is to pursue a fully Bayesian approach

(e.g., Goldsmith et al., 2015).

Furthermore, it would be preferable to obtain simultaneous rather than point-wise confidence

bands while keeping the computational costs low. Wiesenfarth et al. (2012) derive simultaneous

inference in additive models with penalized splines using a mixed model representation that does

not require resampling methods. Extensions of their approach to include random effects might allow

the construction of simultaneous confidence bands in the FAMM framework. A combination with

approaches that account for the different sources of uncertainty would be particularly attractive.

Further potential starting points to complete the modeling framework of this thesis are given

by relaxing the underlying assumptions (compare Chapter 1, Section 1.4). First, it is so far assumed

that the meaning at some point t ∈ T is the same for all curves, which may not always be true. It

would therefore be interesting to extend the modeling framework to jointly consider amplitude and

phase variation (e.g., Hadjipantelis et al., 2015).

Second, throughout this thesis, it is assumed that either the number and location of the sampling

grids or the missing values in case of equal grids are non-informative. This is very restrictive and

might not always hold in practice. It would thus be interesting to combine the modeling framework

with work on missing data (e.g., Little and Rubin, 2014)

Third, a rather implicit assumption made in this thesis is that one does not have to deal with

outliers in the observed data. As FPCA is not robust to outliers because it is based on covariances,

the detection and treatment of outliers might be important in order to enhance the applicability in a

wider range of empirical problems (for an overview, see Wang et al., 2016).

Fourth, to relax the assumption of a constant degree smoothness over the whole domain,

extensions using adaptive smoothing could be of interest (e.g., Krivobokova et al., 2012), in cases

where the data provide enough information. Adaptive smoothers are available in the R add-on

package mgcv (Wood, 2006, 2011) which underlies the implementation of the modeling framework

of this thesis. As the terms are, however, not suitable as components of tensor product smooths

and are computationally expensive, additional work would be required to make adaptive smooths

directly applicable (Wood, 2011).

Many other possible directions for further research exist. These include, for example, work

on hypothesis testing as well as variable and model selection for FLMMs, which have so far not

received much attention in the literature (see Liu and Guo, 2012). In particular, the selection of
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functional random effects is an important issue and would allow to ensure parsimony in the very

flexible class of FLMMs considered in this thesis. As the problem boils down to the selection

of random effects in scalar additive mixed models, the corrected conditional Akaike Information

Criterion proposed by Greven and Kneib (2010) could be applied for model selection under a

Gaussian assumption. In recent work, Wood et al. (2016) develop a more heuristic approach

that–similar to the AIC of Greven and Kneib (2010)–accounts for the uncertainty of the variance

parameters. Their approach is implemented in the R add-on package mgcv which allows its direct

application.

Moreover, it would be interesting to further consider how many levels for each grouping factor

are necessary for a meaningful analysis in FLMMs, which is of great importance in scientific fields in

which the sample sizes are limited, e.g., due to high experimental costs.

Finally, further extension of the implementations would ease applicability of the proposed

methods, in particular, extending the implementation for sparse and irregular grids provided in the

R add-on package sparseFLMM (Cederbaum, 2016) to allow for more general correlation structures.

Particularly convenient would be a common interface for the two estimation approaches in Chapters

3 and 4 that makes use of the fast symmetric smoothing approach (Chapter 5).

Overall, the analysis of correlated functional data is a broad field that entails numerous chal-

lenges, especially when the data are sampled on curve-specific, possibly sparse grids. I hope that this

thesis makes a contribution to the field.
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Appendix A

Notation

Numbers

R real numbers

N integers

Matrix algebra

A⊗B Kronecker product of matrices A and B

A ·B Hadamard (point-wise) product of matrices A

and B

vec(A) vec operator applied to matrix A

diag (a1, . . . , an) n × n diagonal matrix with diagonal elements

a1, . . . , an
blockdiag (A1, . . . ,An) block diagonal matrix with diagonal blocks

A1, . . . ,An

1F F × 1 vector of ones

0x×y x× y matrix of zeros

Ix identity matrix of size x

[aij ]i=1,...,n,j=1,...,m n×m matrix with elements aij

[ai(t)]i=1,...,n,t∈T matrix with elements ai(t)

[A|B] column-wise concatenated matrices A, B

A> transpose of matrix A

det(A) determinant of matrix A

tr(A) trace of matrix A

〈·, ·〉 Euclidean scalar product

‖·‖ Euclidean norm



126 A. Notation

Functional analysis

L2[a, b] space of square integrable functions on [a, b]

f ≡ g identical equality of functions f and g, i.e.,

f(x) = g(x) for all x

〈·, ·〉 L2-inner product

‖·‖ L2-norm

Geometry

sin(t) trigonometric function sine

cos(t) trigonometric function cosine

General symbols

x := y assign y to x

≈ approximately equal

const constant

|T | length of interval T
δxy Kronecker delta; equal to one if x = y and equal

to zero otherwise

O [f(n)] order of complexity of f in n

log(a) natural logarithm of a

log 10(a) common logarithm of a

Statistical symbols

∼ distributed as

i. i. d. independent and identically distributed

X|Y X conditioned on Y

E () mean

Var () variance

Cov () covariance

x̄ empirical mean of x

N (µ,Σ) (multivariate) normal distribution with mean µ

and variance-covariance matrix Σ

U [a, b] discrete uniform distribution on the interval [a, b]

b̂ estimate of b

L() Likelihood function

`() log-likelihood function

lspen() penalized least squares criterion
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Special symbols

/s/ voiceless alveolar sibilant [s]

/sh/ voiceless palato-alveolar sibilant [
∫

]

/s#sh/ phonetic sequence of first /s/ and then /sh/, with

#: word boundary

δε indicator vector whose elements take values δjj′

δX(i)X(m) indicator which takes value one if curves i and

m belong to the same level of grouping factor X

and zero otherwise

X∆ submatrix (subvector) ofX corresponding to the

reduced products of the centered functional re-

sponses used for the covariance estimation in

Chapter 5

Xt<t′ ,Xt=t′ ,Xt>t′ submatrices (subvectors) corresponding to the

products of the centered functional responses

ỹitij ỹitij′ with tij < tij′ , tij = tij′ , and tij > tij′ ,

respectively

Xr reduced matrix (vector)X resulting from enforc-

ing the symmetry constraint in Chapter 5

Xb<b′ ,Xb=b′ ,Xb>b′ submatrices (subvectors) corresponding to the

entries below, on, and above the diagonal, re-

spectively, in a bivariate smoothing problem with

a symmetric spline coefficient matrix

Xa·c, X.c matrices containing columns Xabc and Xbc, re-

spectively, for all values of b

Y −i(t) column in matrix Y corresponding to t, after

deleting the rows corresponding to i

Abbreviations

BLUE best linear unbiased estimator

B(L)UP best (linear) unbiased predictor

CCA canonical correlation analysis

CB confidence band

EB(L)UP empirical best (linear) unbiased predictor

FACE fast covariance estimation for sparse functional

data

FACE-STEP-1 first iteration of algorithm FACE
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FAMM functional additive mixed model

FDA functional data analysis

FLMM functional linear mixed model

FPC functional principal component

FPCA functional principal component analysis

FPC-FAMM functional additive mixed models with eigen

bases

fRE functional random effect

fRI functional random intercept

fRS functional random slope

GCV generalized cross-validation

ICA independent component analysis

IQR inter quartile range

KL expansion Karhunen-Loève expansion

LDA longitudinal data analysis

LMM linear mixed model

MACS Multicenter AIDS Cohort Study

ML maximum likelihood

PC principal component

PCA principal component analysis

PCR principal component regression

PDA penalized discriminant analysis

PLS partial least squares

REML restricted maximum likelihood

rMSE root mean squared error

rrMSE root relative mean squared error

SC seroconversion

spline-FAMM functional additive mixed models with spline

bases

SVD singular value decomposition

TRI bivariate smoothing of the upper triangle with-

out symmetry constraint

TRI-CONSTR bivariate smoothing of the upper triangle with

symmetry constraint

TRI-CONSTR-W bivariate smoothing of the upper triangle with

symmetry constraint and diagonal weights

WHOLE bivariate smoothing of the whole surface without

symmetry constraint
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Appendix of Chapter 3

Appendix B is based on the appendix of the following working paper in preparation:

Greven, S., Cederbaum, J., and Shou, H. (2016): Principal component-based functional

linear mixed models. Working paper.

This appendix is divided into two main parts. The first part shows the derivation of the representation

of the covariance matrices and of the basis weights and elaborates on the computational effort. The

second part provides supplementary details on the analysis of the tissue spectroscopy data analyzed

in Chapter 3.

B.1 Derivations

B.1.1 Representation of the covariance matrices and computational effort

Let in the following for ease of notation denote

A := ZU1
·1 B := ZU1

·ρU1
, and C := ZUG

·ρUG .

Thus, XZ can be written as

XZ =
[
vec
(
AA>

)∣∣∣. . .∣∣∣vec
(
AB>

)∣∣∣. . .∣∣∣vec
(
BB>

)∣∣∣. . .∣∣∣vec
(
CC>

)]
.

Using rules for the vec operator and Kronecker products of matrices

vec (X)> vec (Y ) = tr
(
X>Y

)
for m× n matrices X and Y with tr(X) the trace of matrix X and

vec (XY Z) =
(
Z> ⊗X

)
vec(Y )
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for m× n, n× p and p× q matrices X, Y and Z (Harville, 1997, Chapter 16), we obtain

XZ
>XZ =


tr
(
A>AA>A

)
· · · tr

(
A>BA>A

)
· · · tr

(
A>BB>A

)
· · · tr

(
A>CC>A

)
tr
(
B>AA>A

)
· · · tr

(
B>BA>A

)
· · · tr

(
B>BB>A

)
· · · tr

(
B>CC>A

)
tr
(
B>AA>B

)
· · · tr

(
B>BA>B

)
· · · tr

(
B>BB>B

)
· · · tr

(
B>CC>B

)
tr
(
C>AA>C

)
· · · tr

(
C>BA>C

)
· · · tr

(
C>BB>C

)
· · · tr

(
C>CC>C

)


and

XZ
> [(Y − µ)⊗ (Y − µ)] =



vec
[
(Y − µ)

>
AA>(Y − µ)

]>
...

vec
[
(Y − µ)

>
AB>(Y − µ)

]>
...

vec
[
(Y − µ)

>
BB>(Y − µ)

]>
...

vec
[
(Y − µ)

>
CC>(Y − µ)

]>



.

The matrices Z
Ug
·s are of dimension n × LUg and of block diagonal forms. Computational effort for

XZ
>[(Y − µ) ⊗ (Y − µ)] thus is O(nD + LUgD2) for each entry and O(nD2) for the last entry if

ZUG
·ρUG = In is used for a smooth error term. As LUg ≤ n for all g, the effort is dominated by the last

entry and is O(nD2) in total.

For the computation of XZ
>XZ , we use that tr

(
X>Y

)
=
∑

i

∑
j xijyij for X = (xij)i,j and

Y = (yij)i,j of the same dimensions. Computational effort thus includes computing all products

Z
Ug
·s
>
ZUh
·s′ , O(LUgLUhn) each or O(q2n) total, the computation of the entry-wise matrix products

and sums of all entries, O(LUgLUh) each or O(ρ2
maxq

2) total with ρmax = max(ρUg , g = 1, . . . , G).

The inversion of XZ
>XZ and the final multiplication of XZ

>XZ and XZ
>[(Y −µ)⊗ (Y −µ)]

are at most quadratic in D and thus the overall effort is dominated by the computation of the raw

covariance of Y , (Y − µ)>CC>(Y − µ) = (Y − µ)>(Y − µ), and is O(nD2) total.
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B.1.2 Representation of the random basis weights and computational effort

The BLUPs can be written as

ξ̂ =
(
ZΦ
>ZΦ + σ2G−1

)−1

ZΦ
> vec (Y − µ)

=



∑ρU1

s=1

∑ρU1

s′=1

(
ΦU1
s ΦU1

s′
>)⊗ (ZU1

·s
>
ZU1
·s′

)
. . .

∑ρU1

s=1

∑ρUG

s′=1

(
ΦU1
s ΦUG

s′
>)⊗ (ZUG

·s
>
ZUG
·s′

)
...

...∑ρUG

s=1

∑ρU1

s′=1

(
ΦUG
s ΦU1

s′
>)⊗ (ZUG

·s
>
ZU1
·s′

)
. . .

∑ρUG

s=1

∑ρUG

s′=1

(
ΦUG
s ΦUG

s′

)
⊗
(
ZUG
·s
>
ZUG
·s′

)
⊗ In



+ σ2 blockdiag

[
diag

(
1

ν
Ug

1

, . . . ,
1

ν
Ug

NUg

)
⊗ ILUg

]
−1 

vec
(∑ρU1

s=1 Z
U1
·s
>
(Y − µ)ΦU1

s
>
)

...

vec
(∑ρUG

s=1 Z
UG
·s
>
(Y − µ)ΦUG

s
>)

 .
Entries in the vector can be computed with computational effort O(nD). Computation of the

entries in the matrix have effort of smaller order, while inversion of the matrix and matrix-vector

multiplication are of order O
[(∑G

g=1N
UgLUg

)3
]

and O
[(∑G

g=1N
UgLUg

)2
]
, respectively. If the

last functional random effect represents a smooth error term with LUG = n, this would be cubic

in n3. The order can then be reduced to O
[(∑G−1

g=1 N
UgLUg

)3
]

using the Schur complement (see,

e.g., Harville, 1974, Chapter 8) with respect to the bottom right entry of the matrix, which is less

than O(n3) for reasonably small values G and NUg . The overall computational effort thus is at most

O(nD + n3).

B.2 Details on the application

We perform the following nested leave-one-pig-out cross-validation for the classification of the tissue

types in our application to the spectroscopy data:

Step 1 (outer) Split the spectroscopy data into 12 parts, each part consisting of all observations

of one single pig. In each outer iteration, use 11 out of the 12 parts as training data and the

remaining as test data.

Step 1 (inner) Split the training data again and leave out one additional pig. In each inner

iteration, use 10 out of the 11 parts as training data for fitting the functional linear

mixed model in (3.7) and the remaining data as test data. The following ten different

pre-specified levels of variance explained are used for fitting:

L ∈ {0.995, 0.999, 0.9995, 0.9999, 0.99995, 0.99999, 0.999995, 0.999999, 0.9999995, 0.9999999} .

Step 2 (inner) Choose the optimal level of variance explained as the level that yields the best

prediction on the test data.

Step 2 (outer) Estimate the functional linear mixed model in (3.7) using the corresponding optimal

level of variance explained and predict the tissue types in the test data.
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Appendix C

Appendix of Chapter 4

Appendix C is based on the appendix of the following paper:

Cederbaum, J., Pouplier, M., Hoole, P., Greven, S. (2016): Functional linear mixed models

for irregularly or sparsely sampled data. Statistical Modelling, 16(1):67–88.

This appendix is divided into four main parts. The first part shows the derivation of the variance

decomposition, defines the empirical best linear unbiased predictor in its usual form, and gives the

concrete forms of the matrices used in the estimation of the mean function and in the prediction of the

basis weights. The second part provides supplementary details on the estimation and implementation

of our approach. The third part gives additional results for our application to the speech production

data and a detailed description of the pre-processing. The last part gives the concrete forms of all

measures of goodness of fit used in our simulations, provides more details on the data generation,

and shows supplementary simulation results for all simulations including those with uncentered and

non-decorrelated basis weights.
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C.1 Derivations

Derivation of the variance decomposition of Model (4.2) in Chapter 4. Using iterated expectations

allows to decompose the variance of the response as follows∫
T

Var [Yijh(t)] d t =

∫
T

Var [Bi(t)] d t+

∫
T

Var [Cj(t)] d t+

∫
T

Var [Eijh(t)] d t

+

∫
T
εijh(t) d t

=
∞∑
k=1

νBk

∫
T
φBk (t)φBk (t) d t︸ ︷︷ ︸

=1

+
∞∑
k=1

νCk

∫
T
φCk (t)φCk (t) d t︸ ︷︷ ︸

=1

+
∞∑
k=1

νEk

∫
T
φEk (t)φEk (t) d t︸ ︷︷ ︸

=1

+

∫
T
σ2 d t

=
∞∑
k=1

νBk +
∞∑
k=1

νCk +
∞∑
k=1

νEk + σ2|T |.

C.1.1 Empirical best linear unbiased predictor (EBLUP)

Consider Model (4.2) in Chapter 4. The EBLUP in the usual form is given by

ξ̂ = ĜΦ̂>Ĉov
(
Ỹ
)−1

Ỹ = ĜΦ̂>
(
σ̂2ID + Φ̂ĜΦ̂>

)−1
Ỹ , (C.1)

where Ĝ denotes the estimate of the covariance matrix of the FPC weights and Φ̂ is the joint design

matrix of the form Φ̂ =
[
Φ̂B
∣∣∣Φ̂C

∣∣∣Φ̂E
]
, where Φ̂X , X ∈ {B,C,E}, are the respective design matrices

containing the rescaled FPC estimates evaluated on the original observation points. Ỹ denotes the

stacked centered response vector of length D, the total number of observation points and σ̂2 is the

estimated error variance.

C.1.2 Matrices in the prediction of the basis weights as EBLUPs

Φ̂B is a block diagonal matrix of dimension D× INB.

Φ̂B =



φ̂B1 (t1111) · · · φ̂BNB (t1111) · · · 0 · · · 0
...

...
...

...

φ̂B1 (t1JH1JT1JH1J
) · · · φ̂BNB (tt1JH1JT1JH1J

) · · · 0 · · · 0

...
...

...
...

0 · · · · · · 0 φ̂B1 (tI111) · · · φ̂B
NB (tI111)

...
...

...
...

0 · · · · · · 0 φ̂B1 (tIJHIJTIJHIJ
) · · · φ̂B

NB (tIJHIJTIJHIJ
)
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Φ̂C consists of I block diagonal matrices–one for each speaker–and is of dimension D× JNC .

Φ̂C =



φ̂C1 (t1111) · · · φ̂CNC (t1111)
...

...

φ̂C1 (t11H11T11H11
) · · · φ̂CNC (t11H11T11H11

)

. . .

φ̂C1 (t1J11) · · · φ̂CNC (t1J11)
...

...

φ̂C1 (t1JH1JT1JH1J
) · · · φ̂CNC (t1JH1JT1JH1J

)

...

φ̂C1 (tI111) · · · φ̂CNC (tI111)
...

...

φ̂C1 (tI1HI1TI1HI1
) · · · φ̂CNC (tI1HI1TI1HI1

)

. . .

φ̂C1 (tIJ11) · · · φ̂CNC (tIJ11)
...

...

φ̂C1 (tIJHIJTIJHIJ
) · · · φ̂CNC (tIJHIJTIJHIJ

)



Obviously, the role of speakers and target words is exchangeable. For present purposes, however,
we assume that all vectors and matrices are first ordered by speakers and within each speaker ordered

by target words. Φ̂E is a block diagonal matrix of dimension D× nNE with blocks
φ̂E1 (t1111) · · · φ̂ENE (t1111)

...
...

φ̂E1 (t111T111) · · · φ̂ENE (t111T111)

 , . . . ,


φ̂E1 (tIJHIJ1) · · · φ̂ENE (tIJHIJ1)
...

...

φ̂E1 (tIJHIJTIJHIJ
) · · · φ̂ENE (tIJHIJTIJHIJ

)

 .

Note that for irregularly spaced functional data, the FPCs evaluated on the original observation

points are curve-specific. The estimated covariance matrix of the ξ, Ĝ, is of the form

Ĝ =

 Ĉov(ξB)

Ĉov(ξC)

Ĉov(ξE)

 ,
where each covariance matrix Ĉov(ξX), X ∈ {B,C,E}, is a diagonal matrix with elements

ν̂X1 , . . . , ν̂
X
NX , . . . , ν̂

X
1 , . . . , ν̂

X
NX .
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C.1.3 Marginal bases for FPC-FAMM

The mean is re-estimated in the FAMM with Ψk
c , k = 1, . . . , p, an inflated vector of length D

containing the values of covariate xk = (x111k, . . . , xIJHIJk)
>. For each curve, the covariate values

are replicated for each observation point yielding

Ψk
c =



x111k

...

x111k

...

xIJHIJk

...

xIJHIJk


.

For the functional intercept f0(t), Ψ0
c = 1D. Ψk

t , k = 0, . . . , p, is a D × F k matrix comprising the
evaluations of the basis functions on the original observations points of the form

Ψk
t =



ψk1 (t1111) · · · ψkFk (t1111)
...

...

ψk1 (t111T111) · · · ψkFk (t111T111)
...

...

ψk1 (tIJHIJ1) · · · ψkFk (tIJHIJ1)
...

...

ψk1 (tIJHIJTIJHIJ
) · · · ψkFk (tIJHIJTIJHIJ

)


.

In the estimation of the FPC weights, ΨB
g is a D× I incidence matrix of which the entries in the

dth column are one wherever the row belongs to the dth speaker and zero otherwise. ΨC
g and ΨE

g

are analogously D× J and D× n matrices with entries in the dth column equal to one wherever the

row belongs to the dth target word or to the dth curve, respectively. In the following, the part of

the matrices ΨX
g , X ∈ {B,C,E}, that belongs to the ith speaker (denoted by ΨX,i

g ) is exemplarily

shown, assuming that the data are ordered by speakers, within each speaker ordered by target words,

within each target word ordered by repetition, then by curves, and finally by observation points.
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ΨB,i
g =

i

0 · · · 1 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 1 · · · 0



ΨC,i
g =



1 0 · · · 0
...

...
...

1 0 · · · 0
...

...
...

1 0 · · · 0
...

...
...

1 0 · · · 0
...

...
...

0 0 · · · 1
...

...
...

0 0 · · · 1
...

...
...

0 0 · · · 1
...

...
...

0 0 · · · 1



,ΨE,i
g =



1 0 · · · 0
...

...
...

1 0 · · · 0
...

...
...

0 0 · · · 0
...

...
...

0 0 · · · 0
...

...
...

0 0 · · · 0
...

...
...

0 0 · · · 0
...

...
...

0 0 · · · 1
...

...
...

0 0 · · · 1


ΨX
g then contains the stacked partial matrices for all speakers.

ΨX
t is a D×NX matrix containing the evaluations of the respective eigenfunctions on the original

observation points of the form

ΨX
t =



φX1 (t1111) · · · φXNX (t1111)
...

...

φX1 (t111T111) · · · φXNX (t111T111)
...

...

φX1 (tIJHIJ1) · · · φXNX (tIJHIJ1)
...

...

φX1 (tIJHIJTIJHIJ
) · · · φXNX (tIJHIJTIJHIJ

)


, X ∈ {B,C,E} .

C.2 Supplementary details on the estimation and implementation

C.2.1 Implementation of the auto-covariance estimation

Model (4.4) in Chapter 4 does not contain an intercept. The implementation for the fRI design,

however, requires that an intercept is included and added to the auto-covariance of the fRI due to

the centering constraint in function bam. This is not the case for the crossed-fRI design, where each

smooth is varied by an indicator variable and thus no constraint is applied. For more details, see the

description of the function gam and of gam.models in package mgcv (Wood, 2006, 2011).
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C.2.2 Rescaling of the eigenvectors and eigenvalues

Denote the estimated eigenvectors by
̂̃
φ
X

k =

[̂̃
φ
X

k (t1) , . . . ,
̂̃
φ
X

k

(
t
D̃

)]>
, and the estimated eigenvalues

by ̂̃νXk , k ∈ N, X ∈ {B,C,E}. In order to ensure that the approximated functions are orthonormal

with respect to the L2-scalar product 〈f, g〉 =
∫
f(t)g(t) d t, we rescale the eigenvectors by

φ̂Xk =
1√
a
̂̃
φ
X

k ,

with a denoting the constant interval width of the equidistant grid
{
t1, . . . , tD̃

}
. As a consequence,

the eigenvalues to the rescaled eigenvectors need to be adjusted as ν̂Xk = ẫνXk .

C.2.3 Truncation of the FPCs

Due to the additive structure in the variance decomposition, we can choose the truncation lags NB,

NC , and NE in the following way:

1. Specify the proportion of explained variance L, e.g., L = 0.95 as used in the application in

Section 4.4 of Chapter 4.

2. Select the FPCs corresponding to their eigenvalues in decreasing order, until∑NB

k=1 ν
B
k +

∑NC

k=1 ν
C
k +

∑NE

k=1 ν
E
k + σ2|T |∑∞

k=1 ν
B
k +

∑∞
k=1 ν

C
k +

∑∞
k=1 ν

E
k + σ2|T |

≥ L. (C.2)

Note that the three random processes are treated equally, i.e., in each step, the FPC with the highest

corresponding eigenvalue is chosen regardless of the associated process. In practice, all infinite sums

in Criterion (C.2) are approximated by the finite sums of all obtained eigenvalues. The eigenvalues

and the error variance are replaced by their estimates.

C.2.4 Implementation of FPC-FAMM

In practice, we base the FPC-FAMM estimation on the R function pffr that Scheipl et al. (2015) provide

in the R add-on package refundDevel (Huang et al., 2016b). Function pffr is a wrapper function for

function gam and for related functions in the package mgcv (Wood, 2006, 2011) and therefore builds

on existing flexible and robust software. We use the pffr-constructor pcre for FPC-based fRIs for the

prediction of the random processes. A constraint on the functional random effects assures that they

are centered. The resulting point-wise CBs are with a constraint correction (Marra and Wood, 2012).
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C.2.5 Fixing the smoothing parameter in FPC-FAMM

Technically, in order that a fixed smoothing parameter λ? (here λ? = 1) is used in the prediction of

the FPC-based fRIs, the smoothing parameter in function pffr has to be specified as

λfix = λ? S.scale σ̂2, (C.3)

where S.scale is a scaling factor used in the set-up of the design matrices in order to numerically

stabilize the prediction. It is given out as part of the smooth term in the output of function pffr and

can be obtained previously to the estimation by setting fit = FALSE in the call of function pffr. The

estimate of the error variance σ̂2 can be taken from Step 2 of our estimation procedure. Note that

Equation (C.3) makes clear that the point-wise confidence bands for the mean function are not only

conditional on the estimated FPCs and the truncation level, but also on the estimated error variance.

C.2.6 Iterative estimation

If desired, the estimation accuracy can be improved by applying the estimation steps iteratively. At

least two possibilities exist: One can either perform Steps 1 to 4 and then re-start with Step 1 with

the adjusted observations Y ∗ijh(t) := Yijh(t) − B̂i(t) − Ĉj(t) − Êijh(t) until a pre-defined criterion is

reached. Alternatively, one can replaced the mean with that obtained in the FAMM framework in

Step 4 and then restart with Step 2.

C.3 Supplementary application details and results

C.3.1 Pre-processing

The index calculation is based on the calculation of the power spectrum over a time window of

approximately 20 ms, shifted in 5 ms steps over the time interval of the consonants. In order to

be able to compare the index curves for the two consonant orders (/s#sh/, /sh#s/) directly, the

index curves of /sh#s/were mirrored along the time axis (mapping +1 to −1 and vice versa) such

that for both orders the index dynamic ranges from +1 for the first consonant to −1 for the second

consonant rather than from +1 for /s/ to −1 for /sh/. To achieve this, first smooth mean curves

of available reference curves of orders /sh#sh/ and /s#s/ per speaker and for each combination of

the covariates vowel, stress1, stress2 were estimated using penalized splines and evaluated on the

measurement points. The index curves of order /sh#s/were then mirrored at the speaker-condition

specific mean values, averaging over the mean curves for /sh#s/and /s#sh/.

C.3.2 Supplementary application results

In the following, we show additional application results, including the eigenvalues, the variance de-

composition, the effects of the covariates and interactions, the second FPC for speakers, and the
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Table C.1: Estimated eigenvalues and estimated error variance for the model with covariates in the following
order: Estimated eigenvalue corresponding to the first and second FPCs for speakers, estimated eigenvalue
corresponding to the first, second, and third FPCs for the smooth error, estimated error variance.

ν̂B1 ν̂B2 ν̂E1 ν̂E2 ν̂E3 σ̂2

5.84 ·10−3 3.23·10−3 19.53·10−3 7.59·10−3 2.73·10−3 3.94 ·10−3

Table C.2: Estimated variance explained in percent of the estimated total variance given in the following order:
Explained variance by the first and second FPCs for speakers, explained variance by the first, second, and third
FPCs for the smooth error, estimated error variance.

ν̂B1 ν̂B2 ν̂E1 ν̂E2 ν̂E3 σ̂2

13.16% 7.29% 44.02% 17.11% 6.16% 8.88%

variance decomposition of the model without covariates on which we base our crossed-fRI simulation

setting.

The estimated eigenvalues and the variance decomposition for the model with covariates included

are given in Table C.1 and Table C.2, respectively. Figure C.1 shows the estimated effects and point-

wise confidence bands of the covariates stress1 (0: Strong, 1: Weak), stress2 (0: Strong, 1: Weak),

and vowel (0: ia, 1:ai) as well as of the interactions between covariate order and the other three

covariates.

The second FPC for speakers is depicted in Figure C.2. The interpretation is as follows: The

index curves of speakers with positive FPC weights for the second FPC are pulled towards the ideal

reference value of the second consonant, whereas the index curves of speakers with negative FPC

weights are pulled towards the ideal reference value of the first consonant.

Table C.3 gives the variance decomposition of the model with no covariate included.

Table C.3: Estimated variance explained in percent of the estimated total variance given in the following order:
Explained variance by the first and second FPCs for speakers, explained variance by the first FPC for target
words, estimated variance by the first, second, and third FPCs for the smooth error, estimated error variance.

ν̂B1 ν̂B2 ν̂C1 ν̂E1 ν̂E2 ν̂E3 σ̂2

5.86 · 10−3 2.71 · 10−3 8.89 · 10−3 19.1 · 10−3 7.53 · 10−3 2.66 · 10−3 5.62 · 10−3

10.83% 5.00% 16.44% 35.23% 13.93% 4.92% 10.39%
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Figure C.1: Covariate mean effects (red solid lines) with conditional point-wise confidence bands (dashed lines).
Upper: Reference mean f0(t). Middle (from left to right): Covariate effects of covariates stress1, stress2, vowel.
Lower (from left to right): Interaction effects of order and stress1, order and stress2, order and vowel.
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Figure C.2: Second FPC for speakers. Shown is the mean function (solid line) and the effect of adding (+)

and subtracting (−) a suitable multiple (2
√
ν̂B2 ) of the first FPC for speakers.
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C.4 Supplementary simulation details and results

C.4.1 Measures of goodness of fit

We use the root relative mean squared error

rrMSE(θ, θ̂) =

√√√√√√
1

L

∑L
l=1

(
θl − θ̂l

)2

1

L

∑L
l=1 θl

2
, (C.4)

as a measure of goodness of fit for vector-valued estimates θ̂ of θ = (θ1, . . . , θL)> (FPC weights

ξXk =
(
ξX1k, . . . , ξ

X
LXk

)
, k = 1, . . . , NX , X ∈ {B,C,E}), and for scalar estimates (eigenvalues νXk ,

k = 1, . . . , NX , X ∈ {B,C,E}, and the error variance σ2) as a special case with L = 1. For the FPC

weights, the rrMSE (C.4) is approximately√
1/LX

∑LX

l=1(ξXlk−ξ̂
X
lk)

2
/νXk .

For all functions θ(t) (mean function without and with covariates µ(t), f0(t),. . . , f7(t) and eigenfunc-

tions φXk (t), k = 1, . . . , NX , X ∈ {B,C,E}), we approximate the integrals by sums yielding

rrMSE
[
θ(·), θ̂(·)

]
=

√√√√√√√
1

D̃

∑D̃
d=1

[
θ(td)− θ̂(td)

]2

1

D̃

∑D̃
d=1 θ(td)

2
. (C.5)

Note that for the eigenfunctions, the denominator simplifies to approximately one as∫
φk(t)

2 d t = 1.

As the eigenfunctions are only unique up to sign, we compare the rrMSE for the estimated eigen-

functions to that for the estimated eigenfunctions mirrored around the x-axis and choose the smaller

rrMSE. For the fRIs and for the response function, we additionally average over the respective levels.

As the fRIs are centered, the denominator simplifies to the average variance. The rrMSE for the bi-

variate functions (auto-covariances) are defined analogously (see Appendix D for a concrete definition

of the rrMSE for covariances).

C.4.2 Generation details for the sparse scenario

We use each two FPCs to generate the underlying process. Eigenvalues are generated as νXk = 2/k,

k = 1, 2, X ∈ {B,C,E}. We choose normalized Legendre Polynomials adapted to the interval [0, 1]
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as FPCs for Bi(t) and Cj(t). For the smooth error Eijh(t), we choose a basis of sine and cosine

functions. The first two elements of the orthonormal bases are:

φB1 (t) = 1 φC1 (t) =
√

3(2t− 1) φE1 (t) =
√

2 sin(2πt)

φB2 (t) =
√

5(6t2 − 6t+ 1) φC2 (t) =
√

7(20t3 − 30t2 + 12t− 1) φE2 (t) =
√

2 cos(2πt).

Note that the different bases need not be mutually orthogonal.

C.4.3 Results for simulations with centered and decorrelated basis weights

Simulation results for the crossed-fRIs scenario

In the following, additional simulation results for the application-based crossed-fRIs scenario with

centered and decorrelated basis weights are shown. Figure C.3 shows the true and estimated mean

functions. In Figure C.4, the boxplots of the estimated eigenvalues for each Bi(t), Cj(t), and Eijh(t)

are depicted. Figure C.5 shows the boxplot of the estimated error variances.

0.0 0.2 0.4 0.6 0.8 1.0−
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−
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2
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0
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µ(
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Figure C.3: True and estimated mean functions. Shown are the true function (red), the mean of the estimated
functions over 200 simulation runs (black dashed line), the point-wise 5th and 95th percentiles of the estimated
functions (blue dashed lines), and the estimated functions of all 200 simulation runs (grey).
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Figure C.4: Boxplots of the estimated eigenvalues of the auto-covariances of the crossed fRIs (top row), as well
as the eigenvalues of the auto-covariance of the smooth error (bottom row) for all 200 simulations runs.
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Figure C.5: Boxplot of the estimated error variances σ2 for all 200 simulation runs.

Simulation results for the fRI scenario

In the following, we show additional simulation results for the application-based fRI scenario with

centered and decorrelated basis weights. Figure C.6, Figure C.7, and Figure C.8 show the true and

estimated covariate and interaction effects based on the independence assumption (Figure C.6), on

FPC-FAMM estimation (Figure C.7), and on the spline-FAMM alternative (Figure C.8), respectively.

The performance of the point-wise CBs obtained by FPC-FAMM and spline-FAMM is evaluated by

looking at the point-wise coverage shown in Figures C.9 and C.10. Table C.4 gives the coverage

averaged over all time points and simulation runs for FPC-FAMM and spline-FAMM estimation.

In addition, the simultaneous coverage of the point-wise CBs in terms of percentage of completely

covered curves is compared in Table C.5.

Figure C.11 depicts the true and estimated FPCs of the fRI and of the smooth error and Figure

C.12 shows the boxplots of the estimated eigenvalues. The boxplot of the estimated error variances

is shown in Figure C.13. Table C.6 lists the average rrMSEs for all model components except for the

covariate effects and Table C.7 lists the rrMSEs for the covariate effects.

The average rrMSEs of the covariate and interaction effects lie between 0.06 (f0(t)) for both

estimation options and 1.43 or 1.34 (f3(t)) for the estimation using the independence assumption or

FPC-FAMM, respectively. Note that the high value for f3(t) is the result of the fact that the true

covariate effect is very close to zero along the whole time interval, and to avoid dividing by values near

zero it is more meaningful to look at the root mean squared error (rMSE) instead which is similar to

the rMSEs of other covariates.

Table C.4: Point-wise coverage of the point-wise CBs for FPC-FAMM and for spline-FAMM. Shown is the
coverage averaged over all time points for all covariate and interaction effects. For FPC-FAMM, the coverage
refers to 200 simulation runs, whereas for splines-FAMM, 100 simulation runs are taken into account.

f0(t) f1(t) f2(t) f3(t) f4(t) f5(t) f6(t) f7(t)
µ(t,xijh)FPC-FAMM 95.19% 94.44% 95.28% 93.71% 95.54% 94.11% 91.18% 93.55%
µ(t,xijh)spline-FAMM 36.24% 36.35% 41.67% 37.13% 35.12% 38.87% 38.36% 35.94%
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Figure C.6: True and estimated covariate and interaction effects estimated using the independence assumption.
Shown are the true function (red), the mean of the estimated functions over 200 simulation runs (black dashed
line), the point-wise 5th and 95th percentiles of the estimated functions (blue dashed lines), and the estimated
functions of all 200 simulation runs (grey).

Table C.5: Simultaneous coverage of the point-wise CBs for FPC-FAMM and for spline-FAMM. Shown is the
average proportion of completely covered curves for all covariate and interaction effects. For FPC-FAMM, the
coverage refers to 200 simulation runs, whereas for splines-FAMM, 100 simulation runs are taken into account.

f0(t) f1(t) f2(t) f3(t) f4(t) f5(t) f6(t) f7(t)
µ(t,xijh)FPC-FAMM 43.50% 71.50% 70.50% 64.50% 76.00% 70.00% 66.00% 78.50%
µ(t,xijh)spline-FAMM 1.00% 5.00% 1.00% 1.00% 2.00% 2.00% 2.00% 5.00%

Table C.6: rrMSEs averaged over 200 simulation runs for all model components by random process. Rows
1-3: Number of grouping levels LX and average rrMSEs for the fRI and the smooth error. Last row: Average
rrMSEs for the functional response, the mean, and the error variance.

X LX KX φX1 φX2 φX3 νX1 νX2 νX3 ξX1 ξX2 ξX3 X XFPC-FAMM Xspline-FAMM σ2

B 9 0.23 0.21 0.22 0.15 0.21 0.22 0.30 0.17 0.17 1.17
E 707 0.03 0.02 0.02 0.02 0.02 0.03 0.03 0.15 0.19 0.23 0.17 0.17 0.50
Y 0.09 0.09 0.15 0.10

Table C.7: Average rrMSEs for the estimated mean and covariate effects. Rows 1-2: rrMSEs for the estimation
based on the independence assumption and for the estimation using FPC-FAMM averaged over 200 simulation
runs. Last row: rrMSEs for the spline-based alternative averaged over 100 simulation runs.

f0(t) f1(t) f2(t) f3(t) f4(t) f5(t) f6(t) f7(t)
µ(t,xijh) 0.06 0.13 0.22 1.43 0.30 0.58 0.39 0.60
µ(t,xijh)FPC-FAMM 0.06 0.12 0.20 1.34 0.25 0.53 0.39 0.47
µ(t,xijh)spline-FAMM 0.36 0.38 0.58 3.83 0.84 1.54 1.10 1.85
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Figure C.7: True and estimated covariate and interaction effects estimated using FPC-FAMM. Shown are the
true function (red), the mean of the estimated functions over 200 simulation runs (black dashed line), the
point-wise 5th and 95th percentiles of the estimated functions (blue dashed lines), and the estimated functions
of all 200 simulation runs (grey).
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Figure C.8: True and estimated covariate and interaction effects estimated using spline-FAMM. Shown are
the true function (red), the mean of the estimated functions over 100 simulation runs (black dashed line), the
point-wise 5th and 95th percentiles of the estimated functions (blue dashed lines), and the estimated functions
of all 100 simulation runs (grey).
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Figure C.9: Average point-wise coverage of the point-wise CBs obtained by FPC-FAMM for all covariate and
interaction effects. For each effect, the point-wise coverage averaged over 200 simulation runs (black line) is
shown. The red line indicates the nominal value of 0.95.
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Figure C.10: Average point-wise coverage of the point-wise CBs obtained by spline-FAMM for all covariate
and interaction effects. For each effect, the point-wise coverage averaged over 100 simulation runs (black line)
is shown. The red line indicates the nominal value of 0.95.
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Figure C.11: True and estimated FPCs of the fRI (top row) and of the smooth error (bottom row). Shown are
the true functions (red), the mean of the estimated functions over 200 simulation runs (black dashed line), the
point-wise 5th and 95th percentiles of the estimated functions (blue dashed lines), and the estimated functions
of all 200 simulation runs (grey).
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Figure C.12: Boxplots of the estimated eigenvalues of the auto-covariances of the fRI (top row), and of the
smooth error (bottom row) for all 200 simulations runs.
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Figure C.13: Boxplot of the estimated error variances σ2 for all 200 simulation runs.

Simulation results for the sparse scenario

In the following, we show additional results for the sparse scenario with centered and decorrelated

basis weights. Figure C.14 shows the true and estimated mean functions, Figure C.15 shows the true

and estimated FPCs, and Figure C.16 depicts the boxplots of the estimated eigenvalues for the two

fRIs and for the smooth error. Figure C.17 shows the boxplot of the estimated error variances. In

Table C.8, the average relative errors for all model components are given.
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Figure C.14: True and estimated mean function µ(t,xijh). Shown are the true function (red), the mean of the
estimated functions over 200 simulation runs (black dashed line), the point-wise 5th and 95th percentiles of
the estimated functions (blue dashed lines), and the estimated functions of all 200 simulation runs (grey).

Table C.8: rrMSEs averaged over 200 simulation runs for all model components by random process. Rows 1-3:
Number of grouping levels LX and average relative errors for the functional random effects and their covariance
decompositions. Last row: Average rrMSE of the functional response, the mean, and the error variance.

X LX KX φX1 φX2 νX1 νX2 ξX1 ξX2 X µ σ2

B 40 0.06 0.05 0.07 0.02 0.04 0.04 0.11 0.06
C 40 0.06 0.07 0.11 0.03 0.05 0.23 0.25 0.21
E 4800 0.14 0.11 0.07 0.02 0.05 0.30 0.19 0.29
Y 0.09 0.03 1.81
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Figure C.15: True and estimated FPCs of the crossed fRIs Bi(t) (top row) and Cj(t) (middle row), as well
as the FPCs of the smooth error Eijh(t) (bottom row). Shown are the true functions (red), the mean of the
estimated functions over 200 simulation runs (black dashed line), the point-wise 5th and 95th percentiles of
the estimated functions (blue dashed lines), and the estimated functions of all 200 simulation runs (grey).
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Figure C.16: Boxplots of the estimated eigenvalues of the auto-covariances of the crossed fRIs Bi(t) (top row),
Cj(t) (middle row), as well as the eigenvalues of the auto-covariance of the smooth error Eijh(t) (bottom row)
for all 200 simulations runs.
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Figure C.17: Boxplot of the estimated error variances σ2 for all 200 simulation runs.
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C.4.4 Results for simulations with original basis weights

Previous to the presentation of the results for the simulation with the original (non-centered and non-

decorrelated) basis weights, a short summary and a comparison with the results for the simulations

with centered and decorrelated basis weights is given.

It shows that with the original basis weights, the estimated FPCs are often permuted within

one grouping factor, e.g., the first and second FPC of the speakers are interchanged or are linear

combinations of them, due to the correlation in the basis weights. As expected, this effect increases

the smaller the corresponding number of independent levels, as the empirical FPC weights then

have an empirical distribution far from the theoretical one. Moreover, a higher average rrMSEs for

the eigenvalues is obtained when using the original basis weights. Correspondingly, worse results

are obtained for the auto-covariances. For all three simulation settings, the rrMSEs for the basis

weights tend to be higher with the original basis weights. Using the original basis weights results

in higher rrMSEs for the functional random effects, especially for functional random effects with a

small number of grouping levels. The estimation of the mean function for non-centered basis weights

is much worse due to a shift of the mean by the respective FPC multiplied by the empirical mean

of the basis weights. Correspondingly, also the coverage of the point-wise CBs decreases for most

points. Yet, the functional response for the original basis weights is again estimated very well as

shifts between mean and non-centered random effects cancel out. The covariate effects and the

coverage of the CBs shows hardly any difference to the results for the simulations with centered

and decorrelated basis weights. Also for the error variance no considerable change in the rrMSEs is

found.

Simulation results for crossed-fRIs scenario

In the following, we show the results for the simulations of the application-based crossed-fRIs

scenario with non-centered and non-decorrelated basis weights. Figure C.18 shows the true and

estimated mean functions, Figure C.19 shows the true and estimated FPCs, and Figure C.20 depicts

the boxplots of the estimated eigenvalues for the two fRIs and for the smooth error. Figure C.21

shows the boxplot of the estimated error variances. In Table C.9, the average rrMSEs for all model

components are given.

Table C.9: rrMSEs averaged over 200 simulation runs for all model components by random process. Rows 1-3:
Number of grouping levels LX and average rrMSE for the functional random effects. Last row: Average rrMSE
for the functional response, the mean, and the error variance.

X LX KX φX1 φX2 φX3 νX1 νX2 νX3 ξX1 ξX2 ξX3 X µ σ2

B 9 0.55 0.37 0.46 0.38 0.53 0.41 0.70 0.38
C 16 0.32 0.05 0.31 0.24 0.25
E 707 0.09 0.04 0.05 0.04 0.06 0.09 0.05 0.19 0.21 0.27 0.20
Y 0.10 0.10 0.10
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Figure C.18: True and estimated mean function µ(t,xijh). Shown is the true function (red), the mean of the
estimated functions over 200 simulation runs (black dashed line), the point-wise 5th and 95th percentiles of
the estimated functions (blue dashed lines), and the estimated functions of all 200 simulation runs (grey).
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Figure C.19: True and estimated FPCs of the crossed fRIs Bi(t) and Cj(t) (top row), as well as the FPCs of the
smooth error Eijh(t) (bottom row). Shown are the true functions (red), the mean of the estimated functions
over 200 simulation runs (black dashed line), the point-wise 5th and 95th percentiles of the estimated functions
(blue dashed lines), and the estimated functions of all 200 simulation runs (grey).



C.4 Supplementary simulation details and results 155

B
●
●
●●

●

0.
00

0
0.

01
0

0.
02

0

ν 1B

●

●

0.
00

0
0.

01
0

0.
02

0

ν 2B

C
●

●

●

●

0.
00

0
0.

01
0

0.
02

0

ν 1C

E

●

●

0.
00

0
0.

01
0

0.
02

0

ν 1E

●●

●

●

0.
00

0
0.

01
0

0.
02

0

ν 2E

●

●

●

0.
00

0
0.

01
0

0.
02

0

ν 3E
Figure C.20: Boxplots of the estimated eigenvalues of the auto-covariances of the crossed fRIs Bi(t) and Cj(t)
(top row), as well as the eigenvalues of the auto-covariance of the smooth error Eijh(t) (bottom row) for all
200 simulations runs.
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Figure C.21: Boxplot of the estimated error variances σ2 for all 200 simulation runs.
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Simulation results for the fRI scenario

In the following, we show additional simulation results for the simulations of the application-based

fRI scenario with non-centered and non-decorrelated basis weights. Figure C.22 and Figure C.23

show the true and estimated covariate and interaction effects estimated based on the independence

assumption, and on FPC-FAMM, respectively. The performance of the point-wise CBs is evaluated

by looking at the point-wise coverage shown in Figure C.24. Table C.10 gives the coverage averaged

over all time points and simulation runs for FPC-FAMM and spline-FAMM estimation. In addition,

the simultaneous coverage of the point-wise CBs in terms of percentage of completely covered curves

is given in Table C.11.

Figure C.25 depicts the true and estimated FPCs of the fRI and of the smooth error and Figure

C.26 shows the boxplots of the estimated eigenvalues. The boxplot of the estimated error variances

is shown in Figure C.27. Table C.12 lists the average rrMSEs for all model components except for

the covariate effects and Table C.13 lists the rrMSEs for the covariate effects.
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Figure C.22: True and estimated covariate and interaction effects estimated based on the independence as-
sumption. Shown are the true function (red), the mean of the estimated functions over 200 simulation runs
(black dashed line), the point-wise 5th and 95th percentiles of the estimated functions (blue dashed lines), and
the estimated functions of all 200 simulation runs (grey).

Table C.10: Point-wise coverage of the point-wise CBs for FPC-FAMM. Shown is the coverage averaged over
all time points for all covariate and interaction effects. The coverage refers to 200 simulation runs.

f0(t) f1(t) f2(t) f3(t) f4(t) f5(t) f6(t) f7(t)
µ(t,xijh)FPC-FAMM 70.48% 94.45% 94.94% 93.86% 95.23% 93.88% 91.50% 93.62%
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Figure C.23: True and estimated covariate and interaction effects using FPC-FAMM. Shown are the true
function (red), the mean of the estimated functions over 200 simulation runs (black dashed line), the point-
wise 5th and 95th percentiles of the estimated functions (blue dashed lines), and the estimated functions of all
200 simulation runs (grey).
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Figure C.24: Average point-wise coverage of the point-wise CBs obtained by FPC-FAMM for all covariate and
interaction effects. For each effect, the point-wise coverage averaged over 200 simulation runs (black line) is
shown. The red line indicates the nominal value of 0.95.

Table C.11: Simultaneous coverage of the point-wise CBs obtained by FPC-FAMM. Shown is the proportion of
completely covered curves for all covariate and interaction effects. The coverage refers to 200 simulation runs.

f0(t) f1(t) f2(t) f3(t) f4(t) f5(t) f6(t) f7(t)
µ(t,xijh)FPC-FAMM 11.00% 71.00% 71.50% 65.50% 74.50% 69.00% 67.00% 78.00%
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Figure C.25: True and estimated FPCs of the fRI Bi(t) (top row) and of the smooth error (bottom row).
Shown are the true functions (red), the mean of the estimated functions over 200 simulation runs (black dashed
line), the point-wise 5th and 95th percentiles of the estimated functions (blue dashed lines), and the estimated
functions of all 200 simulation runs (grey).

Table C.12: rrMSEs averaged over 200 simulation runs for all model components by random process. Rows
1-3: Number of grouping levels LX and average rrMSEs for the fRI and the smooth error. Last row: Average
rrMSEs for the functional response, the mean, and the error variance.

X LX KX φX1 φX2 φX3 νX1 νX2 νX3 ξX1 ξX2 ξX3 X XFPC-FAMM σ2

B 9 0.51 0.49 0.51 0.31 0.44 0.50 0.74 0.35 0.35
E 707 0.07 0.04 0.05 0.04 0.05 0.05 0.05 0.16 0.20 0.25 0.18 0.17
Y 0.09 0.09 0.11

Table C.13: Average rrMSEs for the estimated mean and covariate effects for the estimation using the inde-
pendence assumption (first row) and using FPC-FAMM (second row) averaged over 200 simulation runs.

f0(t) f1(t) f2(t) f3(t) f4(t) f5(t) f6(t) f7(t)
µ(txijh) 0.13 0.13 0.22 1.43 0.30 0.58 0.39 0.59
µ(txijh)FPC-FAMM 0.12 0.12 0.21 1.34 0.25 0.53 0.38 0.47
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Figure C.26: Boxplots of the estimated eigenvalues of the auto-covariances of the fRI Bi(t) (top row), and of
the smooth error (bottom row) for all 200 simulations runs.
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Figure C.27: Boxplot of the estimated error variances σ2 for all 200 simulation runs.
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Simulation results for the sparse scenario

In the following, additional results for the simulations of the sparse scenario with non-centered and

non-decorrelated basis weights are shown. Figure C.28 shows the true and estimated mean functions,

Figure C.29 shows the true and estimated FPCs, and Figure C.30 depicts the boxplots of the estimated

eigenvalues for the two fRIs and for the smooth error. Figure C.31 shows the boxplot of the estimated

error variances. In Table C.14, the average rrMSEs for all model components are given.
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Figure C.28: True and estimated mean function µ(t,xijh). Shown are the true function (red), the mean of the
estimated functions over 200 simulation runs (black dashed line), the point-wise 5th and 95th percentiles of
the estimated functions (blue dashed lines), and the estimated functions of all 200 simulation runs (grey).

Table C.14: rrMSEs averaged over 200 simulation runs for all model components by random process. Rows
1-3: Number of grouping levels LX and average rrMSEs for the random processes. Last row: Average rrMSEs
for the functional response, the mean, and the error variance.

X LX KX φX1 φX2 νX1 νX2 ξX1 ξX2 X µ σ2

B 40 0.25 0.22 0.22 0.17 0.18 0.21 0.36 0.15
C 40 0.24 0.24 0.26 0.17 0.20 0.36 0.48 0.28
E 4800 0.14 0.11 0.07 0.03 0.05 0.30 0.20 0.30
Y 0.09 0.32 1.76
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Figure C.29: True and estimated FPCs of the crossed fRIs Bi(t) (top row) and Cj(t) (middle row), as well
as the FPCs of the smooth error Eijh(t) (bottom row). Shown are the true functions (red), the mean of the
estimated functions over 200 simulation runs (black dashed line), the point-wise 5th and 95th percentiles of
the estimated functions (blue dashed lines), and the estimated functions of all 200 simulation runs (grey).
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Figure C.30: Boxplots of the estimated eigenvalues of the auto-covariances of the crossed fRIs Bi(t) (top row),
Cj(t) (middle row), as well as the eigenvalues of the auto-covariance of the smooth error Eijh(t) (bottom row)
for all 200 simulations runs.
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Figure C.31: Boxplot of the estimated error variances σ2 for all 200 simulation runs.



Appendix D

Appendix of Chapter 5

Appendix D is based on the appendix of the following paper:

Cederbaum, J., Scheipl, F., and Greven, S. (2018): Fast symmetric additive covariance

smoothing. Computational Statistics & Data Analysis, 120:25–41.

This appendix is divided into four main parts. The first part provides the derivation of the covariance

of the products of the centered functional responses for the general FLMM and shows how it simplifies

for the FLMM with crossed fRIs. The second part provides supplementary details on the estimation

and the implementation in the R add-on package sparseFLMM. For both, the model with independent

curves and the general FLMM, the concrete forms of the (additive) varying coefficient model using

tensor product B-splines are shown. The third part shows the application of our approach to CD4

cell count data and gives additional results for the application to the speech production data. In the

last part, the concrete forms of the measures of goodness of fit are provided and additional simulation

results for both simulation scenarios are presented.

D.1 Derivations

D.1.1 Derivation for the covariance of the products of the centered functional

responses in the general FLMM

Let X = (X1, . . . , Xp)
> be a p-dimensional Gaussian random variable with zero mean and covariance

Σ. Then, given p ≥ 4, we can express the fourth moment of X based on Isserlis’ theorem (Isserlis,

1918) as

E (XiXjXkXl) = ΣijΣkl + ΣikΣjl + ΣilΣjk, (D.1)

where Σij is the covariance of Xi and Xj .
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Consider the covariance of the products of the centered functional responses in the general FLMM

Cov
[
Ỹi(tij)Ỹi′(ti′j′), Ỹm(tmo)Ỹm′(tm′o′)

]
(D.2)

= E
[
Ỹi(tij)Ỹi′(ti′j′)Ỹm(tmo)Ỹm′(tm′o′)

]
− E

[
Ỹi(tij)Ỹi′(ti′j′)

]
︸ ︷︷ ︸
Cov[Ỹi(tij),Ỹi′ (ti′j′ )]

E
[
Ỹm(tmo)Ỹm′(tm′o′)

]
︸ ︷︷ ︸

Cov[Ỹm(tmo),Ỹm′ (tm′o′ )]

(D.1)
= Cov

[
Ỹi(tij)Ỹi′(ti′j′)

]
Cov

[
Ỹm(tmo), Ỹm′(tm′o′)

]
+ Cov

[
Ỹi(tij)Ỹm(tmo)

]
Cov

[
Ỹi′(ti′j′), Ỹm′(tm′o′)

]
+ Cov

[
Ỹi(tij)Ỹm′(tm′o′)

]
Cov

[
Ỹi′(ti′j′), Ỹm(tmo)

]
− Cov

[
Ỹi(tij), Ỹi′(ti′j′)

]
Cov

[
Ỹm(tmo), Ỹm′(tm′o′)

]
= Cov

[
Ỹi(tij)Ỹm(tmo)

]
Cov

[
Ỹi′(ti′j′), Ỹm′(tm′o′)

]
+ Cov

[
Ỹi(tij)Ỹm′(tm′o′)

]
Cov

[
Ỹi′(ti′j′), Ỹm(tmo)

]
=

{
z>i K

U (tij , tmo)zm +
[
KE(tij , tmo) + σ2δjo

]
δim

}
·
{
z>i′K

U (ti′j′ , tm′o′)zm′ +
[
KE(ti′j′ , tm′o′) + σ2δj′o′

]
δi′m′

}
+

{
z>i K

U (tij , tm′o′)zm′ +
[
KE(tij , tm′o′) + σ2δjo′

]
δim′

}
·
{
z>i′K

U (ti′j′ , tmo)zm +
[
KE(ti′j′ , tmo) + σ2δj′o

]
δi′m

}
.

D.1.2 Simplification of the covariance of the products of the centered functional

responses for crossed fRIs

For the special case of an FLMM with two crossed fRIs as in Section 5.3 of Chapter 5, the covariance

of the products of the centered functional responses in Equation (D.2) simplifies to

Cov
[
Ỹi(tij)Ỹi′(ti′j′), Ỹm(tmo)Ỹm′(tm′o′)

]
=

{
KB(tij , tmo)δ`1(i)`1(m) +KC(tij , tmo)δ`2(i)`2(m) +

[
KE(tij , tmo) + σ2δjo

]
δim
}

·
{
KB(ti′j′ , tm′o′)δ`1(i′)`1(m′) +KC(ti′j′ , tm′o′)δ`2(i′)`2(m′) +

[
KE(ti′j′ , tm′o′) + σ2δj′o′

]
δi′m′

}
+

{
KB(tij , tm′o′)δ`1(i)`1(m′) +KC(tij , tm′o′)δ`2(i)`2(m′) +

[
KE(tij , tm′o′) + σ2δjo′

]
δim′

}
·
{
KB(ti′j′ , tmo)δ`1(i′)`1(m) +KC(ti′j′ , tmo)δ`2(i′)`2(m) +

[
KE(ti′j′ , tmo) + σ2δj′o

]
δi′m

}
,

where δ`1(i)`1(m) and δ`2(i)`2(m) take value one when the two curves i and m belong to the same level

of the respective grouping factor and zero otherwise.
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D.2 Supplementary details on the estimation and implementation

D.2.1 (Additive) varying coefficient model using tensor product B-splines

Let ⊗ and · denote the Kronecker product and the Hadamard (point-wise) product, respectively.

Model with independent curves

Using tensor product B-splines yields the following form of Model (5.3)

E [C] =
[(
BE
t ⊗ 1FE>

)
·
(
1FE

> ⊗BE
t′

)∣∣∣δε] (θE>, σ2
)>

=
[
ME

∣∣δε] (θE>, σ2
)>

= Mα,

where BE
t , BE

t′ are the C × FE marginal spline design matrices that contain the evaluated spline

basis functions for the directions t and t′, respectively. BE
t and BE

t′ contain identical but permuted

rows. 1FE = (1, . . . , 1)> is of length FE , the number of marginal basis functions in each direction.

The bivariate additive model for the reduced response vector is obtained by replacing the marginal

spline design matrices by the reduced C∆ × FE matrices BE∆
t , BE∆

t′ and the index vector by the

reduced index vector δε∆. Note that in the model with independent curves, the bivariate spline

design matrix BE∆ corresponds to the design matrix ME∆ as products are only computed on the

same curves and thus the indicator matrix QE∆ reduces to an all-ones matrix.

General FLMM

For each g = 1, . . . , G, and each s, s′ = 1, . . . ρUg , let B
Ug∆
ss′,t and B

Ug∆
ss′,t′ denote the marginal spline

design matrices of dimensions C∆ × FUgss′,t and C∆ × FUgss′,t′ , respectively. Due to the symmetry of the

covariances KUg(t, t′), we assumed F
Ug
ss′,t = F

Ug
s′s,t′ and F

Ug
ss′,t′ = F

Ug
s′s,t respectively. Then, the bivariate

spline design matrices B
Ug∆
ss′ are given by

B
Ug∆
ss′ =

(
B
Ug∆
ss′,t ⊗ 1FUg

ss′,t′

>
)
·
(
1
F
Ug

ss′,t

> ⊗BUg∆
ss′,t′

)
.

The submatrices M
Ug∆
ss′ corresponding to the covariances K

Ug
ss′ (t, t

′) are given as

M
Ug∆
ss′ = Q

Ug∆
ss′ ·B

Ug∆
ss′ , where Q

Ug∆
ss′ are C∆ × FUgss′,tF

Ug
ss′,t′ matrices with entries δ`g(i)`g(i′) · ω

Ug
is ω

Ug
i′s′ .

The indicators δ`g(i)`g(i′) take value one if the two curves i and i′ are of the same level of grouping

factor g and zero otherwise. An example for how these indicators result from Model (5.9) is given

below. The columns of Q
Ug∆
ss′ are all identical and contain the suitably sorted and repeated entries.

Suitably sorted and repeated in this context means that the sorting corresponds to the sorting in C∆

and that the entries δ`g(i)`g(i′) · ω
Ug
is ω

Ug
i′s′ are repeated for all considered combinations of observation

points tij ≤ ti′j′ if i ≤ i′ and tij < ti′j′ , otherwise.

In analogy, matrix QE∆ is a C∆ ×
(
FE
)2

matrix with identical columns consisting of suitably

sorted and repeated indicators, which take value one if the two points in the products of the centered
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functional responses belong to the same curve and zero otherwise.

Example for the indicators δ`g(i)`g(i′)

Consider for simplicity the case of one grouping factor (G = 1) for which two levels exist (LU1 = 2).

Further assume that for each level of this grouping factor, a functional random intercept and a

functional random slope in variable ω are fitted (ρU1 = 2). Then, Model (5.9) can be reformed to

E
[
Ỹi(tij)Ỹi′(ti′j′)

]
=

2∑
s=1

2∑
s′=1

[
zU1
i1sz

U1
i′1s′K

U1
ss′(tij , ti′j′) + zU1

i2sz
U1
i′2s′K

U1
ss′(tij , ti′j′)

]
+

[
KE(tij , ti′j′) + σ2δjj′

]
δii′

= zU1
i11z

U1
i′11K

U1
11 (tij , ti′j′) + zU1

i21z
U1
i′21K

U1
11 (tij , ti′j′)

+ zU1
i11z

U1
i′12K

U1
12 (tij , ti′j′) + zU1

i21z
U1
i′22K

U1
12 (tij , ti′j′)

+ zU1
i12z

U1
i′11K

U1
21 (tij , ti′j′) + zU1

i22z
U1
i′21K

U1
21 (tij , ti′j′)

+ zU1
i12z

U1
i′12K

U1
22 (tij , ti′j′) + zU1

i22z
U1
i′22K

U1
22 (tij , ti′j′)

+
[
KE(tij , ti′j′) + σ2δjj′

]
δii′ .

The zU1
ils are defined as in Chapter 5 as zU1

ils = ωU1
is δ`1(i)l, where δ`1(i)l is an indicator that takes

value one if curve i belongs to level l of the grouping factor and zero otherwise. With ωU1
i1 = ωU1

i′1 = 1

(functional random intercepts), we can write

E
[
Ỹi(tij)Ỹi′(ti′j′)

]
= δ`1(i)1δ`1(i′)1K

U1
11 (tij , ti′j′) + δ`1(i)2δ`1(i′)2K

U1
11 (tij , ti′j′)

+ δ`1(i)1ω
U1
i′2δ`1(i′)1K

U1
12 (tij , ti′j′) + δ`1(i)2ω

U1
i′2δ`1(i′)2K

U1
12 (tij , ti′j′)

+ ωU1
i2 δ`1(i)1δ`1(i′)1K

U1
21 (tij , ti′j′) + ωU1

i2 δ`1(i)2δ`1(i′)2K
U1
21 (tij , ti′j′)

+ ωU1
i2 δ`1(i)1ω

U1
i′2δ`1(i′)1K

U1
22 (tij , ti′j′) + ωU1

i2 δ`1(i)2ω
U1
i′2δ`1(i′)2K

U1
22 (tij , ti′j′)

+
[
KE(tij , ti′j′) + σ2δjj′

]
δii′ .

Thus, when

1. both curves in the product Ỹi(tij)Ỹi′(ti′j′) belong to the first level of the grouping factor (or

both to the second), Model (5.9) reduces to

KU1
11 (tij , ti′j′) + ωU1

i′2K
U1
12 (tij , ti′j′) + ωU1

i2 K
U1
21 (tij , ti′j′) + ωU1

i2 ω
U1
i′2K

U1
22 (tij , ti′j′)

+
[
KE(tij , ti′j′) + σ2δjj′

]
δii′ .

2. the first curve in the product Ỹi(tij)Ỹi′(ti′j′) belongs to the first level of the grouping factor and

the second curve in the product belongs to the second level or vice versa, Model (5.9) takes

value zero for this product.

This can be generalized to more grouping factors, meaning that the product Ỹi(tij)Ỹi′(ti′j′) only

plays a role in the covariance estimation if the two curves in the product are of the same level for at
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least one grouping factor. Thus, the entries of Q
Ug∆
ss′ in Model (5.10) are given as δ`g(i)`g(i′)ω

Ug
is ω

Ug
i′s′ .

Note that these entries do not equal the products z
Ug
ils z

Ug
i′ls′ = δ`g(i)lδ`g(i′)lω

Ug
is ω

Ug
i′s′ in Model (5.9), in

which the sum is taken over the levels of the grouping factors.

D.2.2 Form of the constraint matrix

For each g = 1, . . . , G, the constraint matrix W Ug is a block matrix consisting of(
ρUg
)2×[(ρUg)2 + 1

]/
2 blocks, most of which are zero. The rows and columns of W Ug are sorted as

in matrix MUg∆ and in the reduced matrix MUg∆r, respectively. The non-zero blocks can be divided

into two groups: blocks corresponding to the auto-covariances K
Ug
ss (t, t′), s = 1, . . . , ρUg , and blocks

corresponding to the cross-covariances K
Ug
ss′ (t, t

′), with s < s′.

Let
(
F
Ug
ss

)2
denote the number of spline basis functions used for smoothing the auto-covariance

K
Ug
ss (t, t′). The blocks for the auto-covariances are of the same form as WE and given by the(
F
Ug
ss

)2
× FUgss

(
F
Ug
ss + 1

)/
2 matrices


I
F
Ug
ss (F

Ug
ss −1)
2

0
F
Ug
ss (F

Ug
ss −1)
2

×FUgss
0
F
Ug
ss ×

F
Ug
ss (F

Ug
ss −1)
2

I
F
Ug
ss

I
F
Ug
ss (F

Ug
ss −1)
2

0
F
Ug
ss (F

Ug
ss −1)
2

×FUgss

 ,

where Ix is an identity matrix of dimension x and 0x×y is a null matrix of dimension x× y.

Consider for simplicity the case of bivariate tensor product spline bases, where F
Ug
ss′,t and F

Ug
ss′,t′

denote the number of marginal spline basis functions for smoothing the cross-covariance K
Ug
ss′ (t, t

′),

s < s′, in direction t and t′, respectively. Due to the symmetry, we have F
Ug
ss′,t = F

Ug
s′s,t′ and

F
Ug
ss′,t′ = F

Ug
s′s,t. Let F

Ug
ss′,b=b′ denote the number of coefficients on the diagonal in Θ

Ug
ss′ , which cor-

responds to the minimum of F
Ug
ss′,t and F

Ug
ss′,t′ and denote the number of coefficients below and above

the diagonal as F
Ug
ss′,b<b′ :=

∑F
Ug

ss′,b=b′
i=1

(
F
Ug
ss′,t′ − i

)
and F

Ug
ss′,b>b′ :=

∑F
Ug

ss′,b=b′
i=1

(
F
Ug
ss′,t − i

)
, respectively.

The blocks for the cross-covariances are then F
Ug
ss′,tF

Ug
ss′,t′ × F

Ug
ss′,tF

Ug
ss′,t′ diagonal block matrices of the

form 
I
F
Ug

ss′,b<b′
0
F
Ug

ss′,b<b′×F
Ug

ss′b=b′
0
F
Ug

ss′,b<b′×F
Ug

ss′,b>b′

0
F
Ug

ss′,b=b′×F
Ug

ss′,b<b′
I
F
Ug

ss′,b=b′
0
F
Ug

ss′,b=b′×F
Ug

ss′,b>b′

0
F
Ug

ss′,b>b′×F
Ug

ss′,b<b′
0
F
Ug

ss′,b>b′×F
Ug

ss′,b=b′
I
F
Ug

ss′,b>b′

 ,
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when the respective rows correspond to s < s′ and F
Ug
ss′,tF

Ug
ss′,t′×F

Ug
ss′,tF

Ug
ss′,t′ anti-diagonal block matrices

of the form 
0
F
Ug

ss′,b<b′×F
Ug

ss′,b<b′
0
F
Ug

ss′,b<b′×F
Ug

ss′,b=b′
I
F
Ug

ss′,b>b′

0
F
Ug

ss′,b=b′×F
Ug

ss′,b<b′
I
F
Ug

ss′,b=b′
0
F
Ug

ss′,b=b′×F
Ug

ss′,b>b′

I
F
Ug

ss′,b<b′
0
F
Ug

ss′,b<b′×F
Ug

ss′,b=b′
0
F
Ug

ss′,b<b′×F
Ug

ss′,b>b′

 ,
when the respective rows correspond to s > s′.

Example with two random effects
Consider a grouping factor g with ρUg = 2 components. Omitting the dimensions of the submatrices
for better readability, the constraint matrix W Ug is given by

WUg =

(1, 1)

(1, 2)

(2, 1)

(2, 2)



I 0

0 I

I 0

I 0 0

0 I 0

0 0 I

0 0 I

0 I 0

I 0 0

I 0

0 I

I 0



,

yielding the reduced design matrix MUg∆r

MUg∆

11,b<b′ +M
Ug∆

11,b>b′

∣∣∣MUg∆

11,b=b′︸ ︷︷ ︸
s=s′=1

∣∣∣∣∣∣∣∣M
Ug∆

12,b<b′ +M
Ug∆

21,b>b′

∣∣∣MUg∆

12,b=b′ +M
Ug∆

21,b=b′

∣∣∣MUg∆

12,b>b′ +M
Ug∆

21,b<b′︸ ︷︷ ︸
s<s′(s=1,s′=2)

∣∣∣∣∣∣∣∣M
Ug∆

22,b<b′ +M
Ug∆

22,b>b′

∣∣∣MUg∆

22,b=b′︸ ︷︷ ︸
s=s′=2

 .
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Example with three random effects
Analogously, for a grouping factor g with ρUg = 3 components the constraint matrix W Ug is given
by

WUg =

(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)



I 0

0 I

I 0

I 0 0

0 I 0

0 0 I

I 0 0

0 I 0

0 0 I

0 0 I

0 I 0

I 0 0

I 0

0 I

I 0

I 0 0

0 I 0

0 0 I

0 0 I

0 I 0

I 0 0

0 0 I

0 I 0

I 0 0

I 0

0 I

I 0



.

D.3 Supplementary application details and results

D.3.1 CD4 cell count data

In AIDS research, the CD4 cell counts as a function of time since seroconversion (SC)–the time at

which HIV becomes detectable–often serve as a longitudinally measured biomarker which provides

insight into the progression of the disease. As the virus destroys the CD4 cells, a decreasing number

of CD4 cells indicates a progress of the disease. The considered data set is part of the Multicenter

AIDS Cohort Study (MACS; Kaslow et al., 1987). It contains the CD4 cell count trajectories of 366

HIV infected subjects collected from month −18 to month 42 since SC. Measurements were taken

at roughly semi-annual visits yielding a total of 1888 CD4 cell counts per milliliter of blood, with

between 1 to 11 counts per subject and a median of 5. To reduce skewness, we base our analysis

on the square root of the CD4 cell counts, which are depicted in Figure D.1, with some trajectories

highlighted for better display and an estimated overall mean function. We can see that on average,

the CD4 cell counts are decreasing over time.
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Figure D.1: Square root of observed CD4 cell count trajectories plotted against the months since SC. Shown
are the trajectories of 366 HIV infected subjects. Some trajectories are highlighted for better display and an
estimated smooth mean function (dashed) is shown.

The data are available in the R add-on package refund (Huang et al., 2016a) and are further

described in Goldsmith et al. (2013). Similar data from this study were previously analyzed in, e.g.,

Diggle et al. (2002), Yao et al. (2005), and Peng and Paul (2009).

We fit Model (5.1) with only one fRI for each curve and an overall mean µ(t). In order to predict the

continuous subject-specific trajectories with only few observations per subject available, we perform

an FPCA based on our fast covariance smoothing approach (TRI-CONSTR and TRI-CONSTR-W

with weights on the diagonal products). We demonstrate the similarity to the computationally less

efficient approach proposed in Chapter 4 (WHOLE), in which all products of the centered functional

responses enter the estimation. Moreover, we show that boundary effects occur on the diagonal when

only the triangular surface is estimated without a symmetry constraint (TRI). We compare our results

to those obtained from applying the covariance smoothing approach proposed by Xiao et al. (2017)

(FACE) using R function face.sparse in the package face (Xiao et al., 2016a). Moreover, we compare

with FACE-STEP-1, a modification of FACE, in which the covariance of the products of the centered

functional responses is not accounted for and thus only the first step of the three-step procedure is

performed.

We use 13 cubic B-spline basis functions for the estimation of the mean function and as marginal

bases for the estimation of the auto-covariance surface using tensor products. To avoid over-fitting,

we add a second order difference penalty. For our approach, we use the Kronecker sum penalty

(cf. Chapter 5, Section 5.5). We use equidistant knots in function face.sparse instead of the default

(quantile-based knots) which would require an adapted penalty that is not implemented. The equidis-

tant grid, on which the mean and the auto-covariance are evaluated, is of length D̃ = 100, with values

between −18 and 42. Note that so far function face.sparse assumes that the function argument takes
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values in the unit interval. We thus transformed the function argument and re-transformed the results

to the original interval [−18,42] after the estimation. Note that in order to ensure orthonormality

with respect to the L2-inner product, we rescale the eigenfunctions and accordingly the eigenvalues

after re-transforming the function argument. We truncate the number of eigenfunctions using a pre-

specified proportion of explained variance of L = 0.99. Note that we use the proportion of explained

variance in the observed trajectories, whereas Xiao et al. (2016a) use that in the smooth error Ei(t).

Figure D.2 and Figure D.3 show the estimated covariance surfaces, reconstructed after trunca-

tion from the estimated eigenvalues and eigenfunctions, for our approach, WHOLE, and TRI and for

FACE and FACE-STEP-1, respectively. In the bottom of the two figures, we also depict the truncated

estimated eigenfunctions. Table D.1 additionally gives the truncated estimated eigenvalues and the

estimated error variance. As in the application to the speech production data in Section 5.6.2 of Chap-

ter 5, we obtain the same number of eigenfunctions (two) for our approach and WHOLE and a higher

number (eleven) of wigglier eigenfunctions for TRI. FACE-STEP-1 also yields two eigenfunctions and

FACE yields four eigenfunctions. We can see small differences in the resulting covariance surfaces of

our approaches TRI-CONSTR and TRI-CONSTR-W. As expected, the latter is slightly more similar

to that of WHOLE. The estimated surface of FACE-STEP-1 is also similar but a little smoother,

whereas the estimated surface of FACE is less smooth. As expected, the estimated surface of TRI

shows a clear difference to the others on the diagonal, where it is much wigglier. The interpretation

of the first and second eigenfunction is similar for all compared methods. The first eigenfunction is

almost a vertical shift and thus describes the level of the (square root) CD4 cell counts. HIV infected

individuals with negative basis weights for the first component tend to have a higher number of CD4

cells during the whole time interval [−18,42] than individuals with positive basis weights. The second

eigenfunction gives insight in how fast the disease progresses. Individuals with negative basis weights

for the second eigenfunction tend to have a faster decrease in CD4 cells than individuals with positive

basis weights.

Table D.1: Truncated estimated eigenvalues and estimated error variance for all compared methods.

ν̂1 ν̂2 ν̂3 ν̂4 ν̂5 ν̂6 ν̂7 ν̂8 ν̂9 ν̂10 ν̂11 σ̂2

TRI-CONSTR 1170.37 184.73 15.54
TRI-CONSTR-W 1173.96 178.71 15.63
WHOLE 1174.96 178.03 15.57
TRI 1191.80 205.31 61.88 26.95 17.21 9.47 6.57 4.45 3.55 2.75 2.30 12.13
FACE 1162.51 280.53 22.28 12.87 13.70
FACE-STEP-1 1161.84 191.53 15.45
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Figure D.2: Results for the curve-specific fRI for TRI-CONSTR, TRI-CONSTR-W, WHOLE, and TRI. Top
row: Estimated covariance surfaces. Middle row: Contours of the estimated covariance surfaces. Bottom row:
Estimated corresponding eigenfunctions.
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Figure D.3: Results for the curve-specific fRI for FACE and FACE-STEP-1. Top row: Estimated covariance
surfaces. Middle row: Contours of the estimated covariance surfaces. Bottom row: Estimated corresponding
eigenfunctions.
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D.3.2 Speech production research data

In the following, we show additional results for our application to the speech production data

(cf. Chapter 5, Section 5.6.2), including the estimated auto-covariances for the smooth error Ei(t),

the estimated eigenvalues for both random processes, and the estimated error variance.

Figure D.4 depicts the estimated surfaces and contours of the auto-covariance of the smooth error

Ei(t), reconstructed after truncation from the estimated eigenvalues and eigenfunctions which are

shown in the bottom of the figure. As for the auto-covariance of the fRI for speakers, we can see

from Figure D.4 that the two estimates based on our symmetric smoother (TRI-CONSTR, TRI-

CONSTR-W) are very similar to each other and to the one obtained by using all products of the

centered functional responses (WHOLE). Again, we obtain wigglier estimates for TRI–especially on

the diagonal of the estimated surface. This corresponds to the fact that for TRI, the error variance is

estimated to be zero. The first three eigenfunctions are very similar for all four compared methods.

For TRI, however, nine more (high-frequency) eigenfunctions are chosen, yielding a wigglier surface

estimate.

Table D.2 gives the complete variance decomposition for our model. The upper table shows the

truncated estimated eigenvalues of K̂B for the four compared methods. The lower table shows the

truncated estimated eigenvalues of the smooth error as well as the estimated error variance. For better

display, all values are multiplied with 103. It shows that the first two [three] estimated eigenvalues

for KB(t, t′) [KE(t, t′)] are very similar for all smoothing methods and that TRI-CONSTR-W and

WHOLE are most similar. The estimated error variance is slightly higher for TRI-CONSTR than for

the other approaches.

Table D.2: Truncated estimated eigenvalues of KB(t, t′), ν̂Bk · 103, and of KE(t, t′), ν̂Ek · 103, and estimated
error variance σ̂2 · 103 for all compared methods.

ν̂B1 ν̂B2 ν̂B3 ν̂B4
TRI-CONSTR 5.84 3.23
TRI-CONSTR-W 5.83 3.23
WHOLE 5.84 3.23
TRI 5.85 3.27 0.42 0.23

ν̂E1 ν̂E2 ν̂E3 ν̂E4 ν̂E5 ν̂E6 ν̂E7 ν̂E8 ν̂E9 ν̂E10 ν̂E11 ν̂E12 σ̂2

TRI-CONSTR 19.54 7.57 2.73 4.21
TRI-CONSTR-W 19.53 7.59 2.71 4.02
WHOLE 19.53 7.59 2.73 3.95
TRI 19.68 7.78 2.96 1.39 0.94 0.64 0.50 0.36 0.30 0.23 0.20 0.16 0.00



D.3 Supplementary application details and results 175

TRI-CONSTR TRI-CONSTR-W WHOLE TRI

0.0
0.2

0.4
0.6

0.8
1.00.0

0.2
0.4
0.6
0.8
1.0

0.00
0.01

0.02

0.03

0.04

0.0
0.2

0.4
0.6

0.8
1.00.0

0.2
0.4
0.6
0.8
1.0

0.00
0.01

0.02

0.03

0.04

0.0
0.2

0.4
0.6

0.8
1.00.0

0.2
0.4
0.6
0.8
1.0

0.00
0.01

0.02

0.03

0.04

0.0
0.2

0.4
0.6

0.8
1.00.0

0.2
0.4
0.6
0.8
1.0

0.00
0.01

0.02
0.03

0.04

0.05

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 0 

 0 

 0.005 

 0.01 

 0.015 

 0.015 

 0.02 

 0.025 

 0.03 

 0.035 

 0.04 

 0.045 

normalized time (t)

no
rm

al
iz

ed
 ti

m
e 

(t
)

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 0 

 0 

 0.005 

 0.01 

 0.015 

 0.015 

 0.02 

 0.025 

 0.03 

 0.035 

 0.04 

 0.045 

normalized time (t)

no
rm

al
iz

ed
 ti

m
e 

(t
)

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 0 

 0 

 0.005 
 0.005 

 0
.0

05
 

 0.01 

 0.015 

 0.015 

 0.02 

 0.025 

 0.03 

 0.035 

 0.04 

 0.045 

normalized time (t)

no
rm

al
iz

ed
 ti

m
e 

(t
)

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 0 

 0 

 0.005 

 0
.0

05
 

 0.01 

 0.015 

 0.02 
 0.025 

 0.03 

 0.035 

 0.04 

 0.045 

 0.05 

normalized time (t)

no
rm

al
iz

ed
 ti

m
e 

(t
)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

1.
5

φ kE
(t

)

normalized time (t)

k=1
k=2
k=3

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

1.
5

φ kE
(t

)

normalized time (t)

k=1
k=2
k=3

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

1.
5

φ kE
(t

)

normalized time (t)

k=1
k=2
k=3

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

1.
5

φ kE
(t

)

normalized time (t)

Figure D.4: Results for the smooth error curve Ei(t) using the four smoothing methods. Top row: Estimated
covariance surfaces. Middle row: Contours of the estimated covariance surfaces. Bottom row: Estimated
eigenfunctions φEk (t) based on the entire data set (black) and jackknife estimates with one of the speakers left
out in turn (gray).
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D.4 Supplementary simulation details and results

D.4.1 Generation details

For the scenario with crossed fRIs, we use two, one, and three eigenfunctions, estimated from the

speech production data, for the generation of the auto-covariances of processes Bi(t), Ci(t), and Ei(t),

respectively. The resulting auto-covariance surfaces are shown in Figure D.5. The eigenfunctions used

for data generation are shown in the bottom of the Figure. The corresponding eigenvalues used for

data generation are shown in Table D.3, where also the error variance is given. The values are

multiplied with 103 for better display. The underlying mean function is depicted in Figure D.6.
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Figure D.5: Auto-covariances KB(t, t′), KC(t, t′), and KE(t, t′) and their eigenfunctions used for the data
generation for the scenario with crossed fRIs. Top row: Covariance surfaces. Middle row: Contours of the
covariance surfaces. Bottom row: Corresponding eigenfunctions φBk (t), φCk (t), and φEk (t).
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Table D.3: Eigenvalues νXk · 103, X ∈ {B,C,E}, and error variance σ2 · 103 used for data generation for the
scenario with crossed fRIs.

νB1 νB2 νC1 νE1 νE2 νE3 σ2

5.86 2.71 8.89 19.05 7.53 2.66 5.62
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Figure D.6: Mean function used for the data generation for the scenario with crossed fRIs.

D.4.2 Measures of goodness of fit

We use root relative mean squared errors (rrMSEs) as measures of goodness of fit for all model

components (cp. Appendix C.)

For vector-valued estimates θ̂ of θ = (θ1, . . . , θL)>, we define the rrMSE as

rrMSE(θ, θ̂) =

√√√√√√
1

L

∑L
l=1

(
θl − θ̂l

)2

1

L

∑L
l=1 θl

2
. (D.3)

We use that for the random basis weights ξXlk , (D.3) is approximately

√
1/LX

∑LX

l=1(ξXlk−ξ̂
X
lk)

2
/νXk ,

X ∈ {B,C,E}. The form of the rrMSE for scalar estimates results as special case of D.3 with

L = 1.

For all functions θ(t), we approximate the integrals by sums and obtain

rrMSE
[
θ(·), θ̂(·)

]
=

√√√√√√√
1

D̃

∑D̃
d=1

[
θ(td)− θ̂(td)

]2

1

D̃

∑D̃
d=1 θ(td)

2
. (D.4)

As the eigenfunctions are only unique up to sign, we also compute the rrMSEs of the estimated

eigenfunctions mirrored around the x-axis and choose the smaller rrMSE. For the random processes,

we additionally average over the respective levels. For centered processes, we use that the denominator

simplifies to the average variance.
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For bivariate functions, such as the auto-covariances, we define

rrMSE
[
θ(·, ·), θ̂(·, ·)

]
=

√√√√√√√
1

D̃2

∑D̃
td,td′=1

[
θ(td, td′)− θ̂(td, td′)

]2

1

D̃2

∑D̃
td,td′=1 θ(td, td′)

2
. (D.5)

D.4.3 Results for the scenario with independent curves

In the following, we show the complete results for the remaining ten settings (Setting 2–Setting 11)

for the scenario with independent curves. Table D.4 lists the different settings we consider for this

scenario. In Figure D.7 to Figure D.16, we depict boxplots of the rrMSEs based on the 200 simulation

runs for all model components.

Table D.4: Specification of the eleven considered settings for the scenario with independent curves. The
simple eigenfunctions are given as

{
φ1(t) = 1, φ2(t) =

√
3 (2t− 1)

}
, the complex eigenfunctions are given as

{φ1(t) = sin(2πt), φ2(t) = cos(2πt)}. The results for Setting 1 are shown in Section 5.7.2 of Chapter 5.

Setting grid eigenfunctions eigenvalues error variance

Setting 1 dense complex ν1 = 2, ν2 = 1 σ2 = 0.05

Setting 2 dense complex ν1 = 2, ν2 = 1, σ2 = 0.5
Setting 3 dense simple ν1 = 2, ν2 = 1 σ2 = 0.05
Setting 4 dense simple ν1 = 2, ν2 = 1 σ2 = 0.5
Setting 5 sparse simple ν1 = 2, ν2 = 1 σ2 = 0.05
Setting 6 sparse simple ν1 = 2, ν2 = 1 σ2 = 0.5
Setting 7 dense complex ν1 = 0.15, ν2 = 0.075 σ2 = 0.05
Setting 8 dense complex ν1 = 0.15, ν2 = 0.075 σ2 = 0.5
Setting 9 dense simple ν1 = 0.15, ν2 = 0.075 σ2 = 0.05
Setting 10 dense simple ν1 = 0.15, ν2 = 0.075 σ2 = 0.5
Setting 11 dense complex ν1 = 2, ν2 = 1 σ2 = 0.01
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Figure D.7: Boxplots of the rrMSEs (log10 scale at y-axis) for Setting 2 of the scenario with independent
curves. Top row: rrMSEs for auto-covariance KE(t, t′), error variance σ2, and the first eigenfunction φE1 (t).
Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues νE1 , νE2 . Third row: rrMSEs for the
random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for curves Yi(t).
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Figure D.8: Boxplots of the rrMSEs (log10 scale at y-axis) for Setting 3 of the scenario with independent
curves. Top row: rrMSEs for auto-covariance KE(t, t′), error variance σ2, and the first eigenfunction φE1 (t).
Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues νE1 , νE2 . Third row: rrMSEs for the
random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for curves Yi(t).
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Figure D.9: Boxplots of the rrMSEs (log10 scale at y-axis) for Setting 4 of the scenario with independent
curves. Top row: rrMSEs for auto-covariance KE(t, t′), error variance σ2, and the first eigenfunction φE1 (t).
Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues νE1 , νE2 . Third row: rrMSEs for the
random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for curves Yi(t).
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Figure D.10: Boxplots of the rrMSEs (log10 scale at y-axis) for Setting 5 of the scenario with independent
curves. Top row: rrMSEs for auto-covariance KE(t, t′), error variance σ2, and the first eigenfunction φE1 (t).
Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues νE1 , νE2 . Third row: rrMSEs for the
random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for curves Yi(t).
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Figure D.11: Boxplots of the rrMSEs (log10 scale at y-axis) for Setting 6 of the scenario with independent
curves. Top row: rrMSEs for auto-covariance KE(t, t′), error variance σ2, and the first eigenfunction φE1 (t).
Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues νE1 , νE2 . Third row: rrMSEs for the
random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for curves Yi(t).
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Figure D.12: Boxplots of the rrMSEs (log10 scale at y-axis) for Setting 7 of the scenario with independent
curves. Top row: rrMSEs for auto-covariance KE(t, t′), error variance σ2, and the first eigenfunction φE1 (t).
Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues νE1 , νE2 . Third row: rrMSEs for the
random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for curves Yi(t).
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Figure D.13: Boxplots of the rrMSEs (log10 scale at y-axis) for Setting 8 of the scenario with independent
curves. Top row: rrMSEs for auto-covariance KE(t, t′), error variance σ2, and the first eigenfunction φE1 (t).
Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues νE1 , νE2 . Third row: rrMSEs for the
random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for curves Yi(t).
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Figure D.14: Boxplots of the rrMSEs (log10 scale at y-axis) for Setting 9 of the scenario with independent
curves. Top row: rrMSEs for auto-covariance KE(t, t′), error variance σ2, and the first eigenfunction φE1 (t).
Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues νE1 , νE2 . Third row: rrMSEs for the
random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for curves Yi(t).
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Figure D.15: Boxplots of the rrMSEs (log10 scale at y-axis) for Setting 10 of the scenario with independent
curves. Top row: rrMSEs for auto-covariance KE(t, t′), error variance σ2, and the first eigenfunction φE1 (t).
Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues νE1 , νE2 . Third row: rrMSEs for the
random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for curves Yi(t).
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Figure D.16: Boxplots of the rrMSEs (log10 scale at y-axis) for Setting 11 of the scenario with independent
curves. Top row: rrMSEs for auto-covariance KE(t, t′), error variance σ2, and the first eigenfunction φE1 (t).
Second row: rrMSEs for the second eigenfunction φE2 (t) and eigenvalues νE1 , νE2 . Third row: rrMSEs for the
random basis weights ξE1 , ξE2 and process Ei(t). Bottom row: rrMSEs for curves Yi(t).
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D.4.4 Results for the scenario with crossed fRIs

In the following, we show the remaining results for the scenario with crossed fRIs. Figure D.17, shows

boxplots of the rrMSEs for the estimated eigenfunctions and eigenvalues, as well as for the random

basis weights for the three random processes Bi(t), Ci(t), and Ei(t). All boxplots are based on 200

simulation runs.
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Figure D.17: Boxplots of the rrMSEs for the crossed fRIs setting. Shown are boxplots for all remaining
model components, which are not shown in Section 5.7.2 of Chapter 5: The rrMSEs for the eigenfunctions
and eigenvalues of the three auto-covariances KB(t, t′), KC(t, t′), and KE(t, t′), as well as the rrMSEs for the
corresponding random basis weights.



Appendix E

Details on the Implementations

This appendix is divided into two main parts. The first part provides further details on the imple-

mentation of the estimation approach for functional linear mixed models for equal sampling grids as

proposed in Chapter B. The implementation is included in the R add-on package denseFLMM (R Core

Team, 2016; Greven and Cederbaum, 2017). The second part gives additional details on the R add-

on package sparseFLMM (Cederbaum, 2016) that implements the estimation approach for functional

linear mixed models for unequal and sparse sampling grids (Chapter 4) as well as the fast additive

covariance smoothing approach (Chapter 5).

E.1 R add-on package denseFLMM

This section provides a slightly amended version of the manual of function denseFLMM in the package

of the same name, including example code. In addition, code for the analysis of the tissue spectroscopy

data analyzed in Chapter 3 is shown.

E.1.1 Manual of R function denseFLMM

Functional linear mixed models for densely sampled data

Description

Estimation of functional linear mixed models (FLMMs) for functional data sampled on equal grids

based on functional principal component analysis (FPCA). The implemented models are special cases

of the general FLMM

Yi(td) = µ(td,xi) + z>i U(td) + εi(td), i = 1, . . . , n, d = 1, . . . , D,

with Yi(td) the value of the response of curve i at observation point td, µ(td,xi) is a mean function,

which may depend on covariates xi and needs to be estimated beforehand. zi is a covariate vector,
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which is multiplied with the vector of functional random effects U(td). εi(td) is independent and

identically distributed white noise measurement error with homoscedastic, constant variance. For

more details, see Chapter 3.

The code implements the general functional linear mixed model for n curves observed at D grid

points. Grid points are assumed to be equidistant and so far no missings are assumed. The curves are

assumed to be centered. The functional random effects for each grouping factor are assumed to be

correlated (e.g., random intercept and slope curves). The code can handle group-specific functional

random effects including group-specific smooth errors. Covariates are assumed to be standardized.

Note that for consistency with the code, G here denotes the number of grouping factors not used

for the estimation of the error variance, i.e., all except the smooth error term(s). This is in contrast

to the model formulation in in Chapter 3, where G denotes the total number of grouping factors. The

total number of grouping factors is here denoted by H.

Usage

denseFLMM(Y, gridpoints = 1:ncol(Y), Zlist = NA, G = NA, Lvec = NA,

groups = matrix(1, nrow(Y),1), Zvars, L = NA, NPC = NA,

smooth = FALSE, bf = 10, smoothalg = "gamm")

Arguments

Y n ×D matrix of n curves observed on D grid points. Y is assumed to be centered by

its mean function.

gridpoints vector of grid points along curves, corresponding to columns of Y. Defaults to

matrix(1, nrow(Y), 1).

Zlist list of length H of ρUh design matrices ZUh·s , s = 1, . . . , ρUh , h = 1, . . . ,H. Needed

instead of Zvars and groups if group-specific functional random effects are present.

Defaults to NA, then Zvars and groups needed.

G number of grouping factors not used for estimation of error variance. Needed if Zlist

is used instead of Zvars and groups. Defaults to NA.

Lvec vector of length H containing the number of levels for each grouping factor. Needed if

Zlist is used instead of Zvars and groups. Defaults to NA.

groups n×G matrix with G grouping factors for the rows of Y, where G denotes the number of

grouping factors not used for the estimation of the error variance. Defaults to groups

= matrix(1, nrow(Y), 1). Set to NA when Zlist is used to specify group-specific

functional random effects.
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Zvars list of length G with n× ρUg matrices of random variables for grouping factor g, where

G denotes the number of grouping factors not used for the estimation of the error

variance. Random curves for each grouping factor are assumed to be correlated (e.g.,

random intercept and slope). Set to NA when Zlist is used to specify group-specific

functional random effects.

L pre-specified level of variance explained (between 0 and 1), determines number of func-

tional principal components.

NPC vector of length H with number of functional principal components to keep for each

functional random effect. Overrides argument L if not NA. Defaults to NA.

smooth TRUE to add smoothing of the covariance matrices, otherwise covariance matrices are

estimated using least squares. Defaults to FALSE.

bf number of marginal basis functions used for all smooths. Defaults to bf = 10.

smoothalg smoothing algorithm used for covariance smoothing. Available options are "gamm",

"gamGCV", "gamREML", "bamGCV", "bamREML", and "bamfREML". "gamm" uses restricted

maximum likelihood (REML) estimation based on function gamm in R add-on package

mgcv. "gamGCV" and "gamREML" use generalized cross-validation (GCV) and REML

estimation based on function gam in package mgcv, respectively. "bamGCV", "bamREML",

and "bamfREML" use GCV, REML, and a fast REML estimation based on function bam

in package mgcv, respectively. Defaults to "gamm".

Details

The model fit for centered curves Yi(·) is

Y − µ = ZU + ε,

with Y = [Yi(td)]i=1,...,n,d=1,...,D, Z consisting of H blocks ZUh for H grouping factors,

Z =
[
ZU1 | . . . |ZUH

]
, and each ZUh =

[
ZUh

11 | . . . |Z
Uh
1ρUh
| . . . |ZUh

LUh1
| . . . |ZUh

LUhρUh

]
. U is row-wise

divided into blocks U1, . . . ,UH , corresponding to Z. Let further ZUh·s denote the n × LUh matrix

containing columns ZUh
ls , l = 1, . . . , LUh .

In case no group-specific functional random effects are specified, column l in Z
Ug
·s , s = 1, . . . , ρUg ,

is assumed to be equal to the sth variable (column) in Zvars[[g]] times an indicator for the lth level

of grouping factor g, g = 1, . . . , G.

The covariances are evaluated on an equidistant grid D̃ of length D̃. The estimated eigenvectors

and eigenvalues are rescaled to ensure that the approximated eigenfunctions are orthonormal with

respect to the L2-inner product.

The estimation of the error variance takes place in two steps. In case of smoothing

(smooth = TRUE), the error variance is first estimated as the average difference of the raw and the

smoothed diagonal values as described in Chapter 3. In case no smoothing is applied, the estimated
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error variance is zero. Subsequent to the eigen decomposition and selection of the eigenfunctions to

keep for each grouping factor, the estimated error variance is recalculated in order to capture the left

out variability due to the truncation of the infinite Karhunen-Loève expansions.

Value

The function returns a list containing the input arguments Y, gridpoints, groups, Zvars, L, smooth,

bf, and smoothalg. It additionally contains:

Zlist either the input argument Zlist or if set to NA, the computed list of design matrices ZUh·s ,

s = 1, . . . , ρUh , h = 1, . . . ,H.

G either the input argument G or if set to NA, the computed number of grouping factors G not

used for the estimation of the error variance.

Lvec either the input argument Lvec or if set to NA, the computed vector of length H containing

the number of levels for each grouping factor (including the smooth error(s)).

NPC either the input argument NPC or if set to NA, the number of functional principal components

kept for each functional random effect (including the smooth error(s)).

rhovec vector of length H of number of random effects for each grouping factor (including the

smooth error(s)).

phi list of length H of D̃ ×NUh matrices containing the NUh functional principal components

kept per grouping factor (including the smooth error(s)), h = 1, . . . ,H, where D̃ denotes

the length of the equidistant evaluation grid.

sigma2 estimated measurement error variance σ2.

nu list of length H of NUh × 1 vectors of estimated eigenvalues νUhk , h = 1, . . . ,H.

xi list of length H of LUh × NUh matrices containing the predicted random basis weights,

h = 1, . . . ,H. Within matrices, basis weights are ordered corresponding to the ordered

levels of the grouping factors, e.g., a grouping factor with levels 4, 2, 3, 1 (LUh = 4) will

result in rows in xi[[g]] corresponding to levels 1, 2, 3, 4.

totvar total average variance of the curves.

exvar level of variance explained by the selected functional principal components (+ error vari-

ance).

Author(s)

Sonja Greven, Jona Cederbaum
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See Also

For the estimation of functional linear mixed models for irregularly or sparsely sampled data based

on functional principal component analysis, see function sparseFLMM in the package sparseFLMM.

Examples

################

# load libraries

################

require(mvtnorm)

require(Matrix)

set.seed(123)

#########################

# specify data generation

#########################

nus <- list(c(0.5, 0.3), c(1, 0.4), c(2)) # eigenvalues

sigmasq <- 2.5e-05 # error variance

NPCs <- c(rep(2, 2), 1) # number of eigenfunctions

Lvec <- c(rep(2, 2), 480) # number of levels

H <- 3 # total number of functional random effects

G <- 2 # number of functional random effects not used for

# the estimation of the error variance

gridpoints <- seq(from = 0, to = 1, length = 100) # grid points

class_nr <- 2 # number of groups

# define eigenfunctions

#######################

funB1 <- function(k,t){

if(k == 1)

out <- sqrt(2) * sin(2 * pi * t)

if(k == 2)

out <- sqrt(2) * cos(2 * pi * t)

out

}

funB2 <- function(k,t){

if(k == 1)

out <- sqrt(7) * (20 * t^3 - 30 * t^2 + 12 * t - 1)

if(k == 2)

out <- sqrt(3) * (2 * t - 1)

out

}
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funE <- function(k,t){

if(k == 1)

out <- 1 + t - t

if(k == 2)

out <- sqrt(5) * (6 * t^2 - 6 * t + 1)

out

}

###############

# generate data

###############

D <- length(gridpoints) # number of grid points

n <- Lvec[3] # number of curves in total

class <- rep(1:class_nr, each = n / class_nr)

group1 <- rep(rep(1:Lvec[1], each = n / (Lvec[1] * class_nr)), class_nr)

group2 <- 1:n

data <- data.frame(class = class, group1 = group1, group2 = group2)

# get eigenfunction evaluations

###############################

phis <- list(sapply(1:NPCs[1], FUN = funB1, t = gridpoints),

sapply(1:NPCs[2], FUN = funB2, t = gridpoints),

sapply(1:NPCs[3], FUN = funE, t = gridpoints))

# draw basis weights

####################

xis <- vector("list", H)

for(i in 1:H){

if(NPCs[i] > 0){

xis[[i]] <- rmvnorm(Lvec[i], mean = rep(0, NPCs[i]),

sigma = diag(NPCs[i]) * nus[[i]])

}

}

# construct functional random effects

#####################################

B1 <- xis[[1]] %*% t(phis[[1]])

B2 <- xis[[2]] %*% t(phis[[2]])

E <- xis[[3]] %*% t(phis[[3]])

B1_mat <- B2_mat <- E_mat <- matrix(0, nrow = n, ncol = D)

B1_mat[group1 == 1 & class == 1, ] <-

t(replicate(n = n / (Lvec[1] * class_nr), B1[1, ], simplify = "matrix"))

B1_mat[group1 == 2 & class == 1, ] <-

t(replicate(n = n / (Lvec[1] * class_nr), B1[2, ], simplify = "matrix"))
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B2_mat[group1 == 1 & class == 2, ] <-

t(replicate(n = n / (Lvec[1] * class_nr), B2[1, ], simplify = "matrix"))

B2_mat[group1 == 2 & class == 2, ] <-

t(replicate(n = n / (Lvec[1] * class_nr), B2[2, ], simplify = "matrix"))

E_mat <- E

# draw white noise measurement error

####################################

eps <- matrix(rnorm(n * D, mean = 0, sd = sqrt(sigmasq)),

nrow = n, ncol = D)

# construct curves

##################

Y <- B1_mat + B2_mat + E_mat + eps

#################

# construct Zlist

#################

Zlist <- list()

Zlist[[1]] <- Zlist[[2]] <- Zlist[[3]] <- list()

d1 <- data.frame(a = as.factor(data$group1[data$class == 1]))

Zlist[[1]][[1]] <- rBind(sparse.model.matrix(~ -1 + a, d1),

matrix(0, nrow = (1 / class_nr * n), ncol = (Lvec[1])))

d2 <- data.frame(a = as.factor(data$group1[data$class == 2]))

Zlist[[2]][[1]] <- rBind(matrix(0, nrow = (1 / class_nr * n),

ncol = (Lvec[2])), sparse.model.matrix(~ -1 + a, d2))

d3 <- data.frame(a = as.factor(data$group2))

Zlist[[3]][[1]] <- sparse.model.matrix(~ -1 + a, d3)

################

# run estimation

################

results <- denseFLMM(Y = Y, gridpoints = gridpoints, Zlist = Zlist,

G = G, Lvec = Lvec, groups = NA, Zvars = NA, L = 0.99999,

NPC = NA, smooth = FALSE)

###############################

# plot true versus estimated

# eigenfunctions of B1

###############################
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require(ggplot2)

eigenfun_df <- data.frame(phiB1_1 = phis[[1]][, 1], phiB1_2 = phis[[1]][, 2],

phiB1_1_hat = (-1) * results$phi[[1]][, 1],

phiB1_2_hat = (-1) * results$phi[[1]][, 2],

grid = gridpoints)

ggplot() + theme_bw() +

geom_line(data = eigenfun_df, aes(gridpoints, phiB1_1), size = 2, color = "#009E73") +

geom_line(data = eigenfun_df, aes(gridpoints, phiB1_2), size = 2, color = "#56B4E9") +

geom_line(data = eigenfun_df, aes(gridpoints, phiB1_1_hat), size = 2, lty = 2,

color = "#009E73") +

geom_line(data = eigenfun_df, aes(gridpoints, phiB1_2_hat), size = 2, color = "#56B4E9",

lty = 2) + ylab("eigenfunctions") + theme(axis.text = element_text(size = 25),

axis.title = element_text(size = 25)) +

annotate("text", x = 0.48, y = 1, label = "FPC 1", color = "#009E73", size = 10) +

annotate("text", x = 0.27, y = -1, label = "FPC 2", color = "#56B4E9", size = 10)
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E.1.2 R code for the application to the spectroscopy data

The following example R code using function denseFLMM demonstrates parts of the analysis of the

tissue spectroscopy data considered in Chapter 3 after pre-processing. Note that the spectroscopy

data cannot be made publicly available.

The pre-processing steps include interpolation of the curves on an equidistant grid and standard-

ization of the curves as described in Chapter 3.

After pre-processing, the object curves is a matrix of dimension n×D = 8640×1150, wavelengths

is a vector of length 1150 containing the wavelengths at which each curve is available. The vectors

Tissue, Pig, and Spot of length 8640 specify for each observation to which tissue type, pig, and spot

the observation belongs. Correspondingly, Obs is a vector of length 8640 with observation numbers

from 1 to n = 8640.
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The code shows the estimation of the model components of Model (3.7) in Chapter 3. For

purpose of demonstration, the function is applied to the complete spectroscopy data rather than to

the training data as in Chapter 3. The model includes a fixed effect for tissue type, tissue-specific

functional random intercepts for pigs and spots, and a smooth error that is not tissue-specific.

Due to the tissue-specific functional random effects, the function argument Zlist rather than

arguments groups and Zvars has to be specified. The construction of the Zlist-argument for this

specific example is given below.

################

# load libraries

################

require(denseFLMM)

require(mgcv)

require(Matrix)

##########################

# specify input parameters

##########################

nplevs <- 12 # number of pigs

ntlevs <- 4 # number of tissue types

nslevs <- 6 # number of spots

nolevs <- 30 # number of observations per spot

# number of levels for each grouping factor

Lvec <- c(rep((nplevs), ntlevs), rep((nplevs) * nslevs, ntlevs),

(ntlevs * (nplevs) * nslevs * nolevs))

# number of grouping factors not used for the estimation

# of the error variance, i.e., without smooth error

G <- length(Lvec) - 1

# construct Zlist

#################

Zlist <- list()

Zlist[[1]] <- Zlist[[2]] <- Zlist[[3]] <- Zlist[[4]] <- Zlist[[5]] <- Zlist[[6]] <-

Zlist[[7]] <- Zlist[[8]] <- Zlist[[9]] <- list()

# functional random intercept for pigs for tissue 1

b1 <- data.frame(a = as.factor(Pig[Tissue == 1]))

Zlist[[1]][[1]] <- rBind(sparse.model.matrix(~ -1 + a, b1),

matrix(0, nrow = (3 / 4 * n), ncol = (nplevs)))

# functional random intercept for pigs for tissue 2

b2 <- data.frame(a = as.factor(Pig[Tissue == 2]))

Zlist[[2]][[1]] <- rBind(matrix(0, nrow=(1 / 4 * n),
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ncol = (nplevs)), sparse.model.matrix(~ -1 + a, b2),

matrix(0, nrow = (2 / 4 * n), ncol = (nplevs)))

# functional random intercept for pigs for tissue 3

b3 <- data.frame(a = as.factor(Pig[Tissue == 3]))

Zlist[[3]][[1]] <- rBind(matrix(0, nrow = (2 / 4 * n),

ncol = (nplevs)), sparse.model.matrix(~ -1 + a, b3),

matrix(0, nrow = (1 / 4 * n), ncol = (nplevs)))

# functional random intercept for pigs for tissue 4

b4 <- data.frame(a = as.factor(Pig[Tissue == 4]))

Zlist[[4]][[1]] <- rBind(matrix(0, nrow = (3 / 4 * n),

ncol = (nplevs)), sparse.model.matrix(~ -1 + a, b4))

# functional random intercept for spots for tissue 1

b5 <- data.frame(a = as.factor(Spot[Tissue == 1]))

Zlist[[5]][[1]] <- rBind(sparse.model.matrix(~ -1 + a, b5),

matrix(0, nrow = (3 / 4 * n), ncol = ((nplevs) * nslevs)))

# functional random intercept for spots for tissue 2

b6 <- data.frame(a = as.factor(Spot[Tissue == 2]))

Zlist[[6]][[1]] <- rBind(matrix(0, nrow = (1 / 4 * n),

ncol = (nplevs) * nslevs), sparse.model.matrix(~ -1 + a, b6),

matrix(0, nrow = (2 / 4 * n), ncol = (nplevs) * nslevs))

# functional random intercept for spots for tissue 3

b7 <- data.frame(a = as.factor(Spot[Tissue == 3]))

Zlist[[7]][[1]] <- rBind(matrix(0, nrow = (2 / 4 * n),

ncol = (nplevs) * nslevs), sparse.model.matrix(~ -1 + a, b7),

matrix(0, nrow = (1 / 4 * n), ncol = (nplevs) * nslevs))

# functional random intercept for spots for tissue 4

b8 <- data.frame(a = as.factor(Spot[Tissue == 4]))

Zlist[[8]][[1]] <- rBind(matrix(0, nrow = (3 / 4 * n),

ncol = (nplevs) * nslevs), sparse.model.matrix(~ -1 + a, b8))

# smooth error E

b9 <- data.frame(a = as.factor(Obs))

Zlist[[9]][[1]] <- sparse.model.matrix(~ -1 + a, b9)

################

# run estimation

################

FLMM_spectra <- denseFLMM(Y = curves, gridpoints = wavelengths, Zlist = Zlist, G = G,

Lvec = Lvec, groups = NA, Zvars = NA, L = 0.99999, NPC = NA, smooth = FALSE)
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E.2 R add-on package sparseFLMM

This section provides a slightly modified version of the manual of the main functions of the R add-on

package sparseFLMM, including example code.

E.2.1 Manual of R function sparseFLMM

Functional linear mixed models for irregularly or sparsely sampled
data

Description

Estimation of functional linear mixed models (FLMMs) for irregularly or sparsely sampled data based

on functional principal component analysis (FPCA). The implemented models are special cases of

the general FLMM

Yi(tij) = µ(tij ,xi) + zTi U(tij) + εi(tij), i = 1, . . . , n, j = 1, . . . , Di,

with Yi(tij) the value of the response of curve i at observation point tij , µ(tij ,xi) is a mean

function, which may depend on covariates xi. zi is a covariate vector, which is multiplied with the

vector of functional random effects U(tij). εi(tij) is independent and identically distributed white

noise measurement error with homoscedastic, constant variance. For more details, see Chapters 2 to 5.

The current implementation can be used to fit three special cases of the above general FLMM:

• a model for independent functional data (e.g., longitudinal data), for which zTi U(tij) only

consists of a smooth curve-specific deviation (smooth error curve)

• a model for correlated functional data with one functional random intercept (fRI) for one group-

ing factor in addition to a smooth curve-specific error

• a model for correlated functional data with two crossed fRIs for two grouping factors in addition

to a smooth curve-specific error.

Usage

sparseFLMM(curve_info, use_RI = FALSE, use_simple = FALSE, method = "fREML",

use_bam = TRUE, bs = "ps", d_grid = 100, min_grid = 0, max_grid = 1,

my_grid = NULL, bf_mean = 8, bf_covariates = 8, m_mean = c(2, 3),

covariate = FALSE, num_covariates, covariate_form, interaction,

which_interaction = matrix(NA), save_model_mean = FALSE, para_estim_mean = FALSE,

para_estim_mean_nc = 0, bf_covs, m_covs, use_whole = FALSE, use_tri = FALSE,

use_tri_constr = TRUE, use_tri_constr_weights = FALSE, np = TRUE, mp = TRUE,

use_discrete_cov = FALSE, para_estim_cov = FALSE, para_estim_cov_nc = 0,
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var_level = 0.95, N_B = NA, N_C = NA, N_E = NA, use_famm = FALSE,

use_bam_famm = TRUE, bs_int_famm = list(bs = "ps", k = 8, m = c(2, 3)),

bs_y_famm = list(bs = "ps", k = 8, m = c(2, 3)), save_model_famm = FALSE,

use_discrete_famm = FALSE, para_estim_famm = FALSE, para_estim_famm_nc = 0)

Arguments

curve info data table in which each row represents a single observation point.

curve info needs to contain the following columns:

y vec (numeric): the response values for each observation point.

t (numeric): the observations point locations, i.e., tij .

n long (integer): unique identification number for each curve.

subject long (integer): unique identification number for each level of

the first grouping factor (e.g., speakers for the speech production data in

the example below). In the case of independent functions subject long

should be set equal to n long.

For models with two crossed functional random intercepts, the data table

additionally needs to have columns:

word long (integer): unique identification number for each level of the

second grouping factor (e.g., words for the speech production data in the

example below).

combi long (integer): number of the repetition of the combination of the

corresponding level of the first and of the second grouping factor.

For models with covariates as part of the mean function µ(tij ,xi), the

covariate values (numeric) need to be in separate columns with names:

covariate.1, covariate.2, etc.

use RI TRUE to specify a model with one functional random intercept for the

first grouping factor (subject long) and a smooth random error curve.

Defaults to FALSE, which specifies a model with crossed functional random

intercepts for the first and second grouping factor and a smooth error

curve.

use simple TRUE to specify a model with only a smooth random error function, ar-

gument use RI should then also be set to TRUE. Defaults to FALSE.

method estimation method for gam or bam, see package mgcv for more details.

Defaults to "fREML".

use bam TRUE to use function bam in the package mgcv instead of function gam

(syntax is the same, bam is faster for large data sets). Function bam is

recommended and set as default.
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bs spline basis function type for the estimation of the mean function and

the auto-covariance, see functions s and te in the package mgcv for more

details. Defaults to penalized B-splines, i.e., bs = "ps". This choice is

recommended as others have not been tested yet.

d grid pre-specified grid length for equidistant grid on which the mean, the auto-

covariance surfaces, the eigenfunctions and the functional random effects

are evaluated. NOTE: the length of the grid can be important for com-

putation time (approx. quadratic influence). Defaults to d grid = 100.

min grid minimum value of equidistant grid (should approx. correspond to mini-

mum value of time interval). Defaults to min grid = 0.

max grid maximum value of equidistant grid (should approx. correspond to maxi-

mum value of time interval). Defaults to max grid = 1.

my grid optional evaluation grid, which can be specified and used instead of

d grid, min grid, max grid. NOTE: the grid should be equidistant.

bf mean basis dimension (number of basis functions) used for the functional in-

tercept f0(tij) in the mean estimation via function bam or gam in the

package mgcv. Defaults to bf mean = 8.

bf covariates basis dimension (number of basis functions) used for the functional ef-

fects of covariates in the mean estimation via bam/gam. Defaults to

bf covariates = 8. NOTE: in the current implementation, the same

basis dimension for all covariates is used.

m mean order of the penalty for this term in bam/gam of mean estimation, for

bs = "ps" spline and penalty order, defaults to m mean = c(2, 3), i.e.,

cubic B-splines with third order difference penalty, see function s in the

package mgcv for details.

covariate TRUE to estimate covariate effects (as part of the mean function).

num covariates number of covariates that are included in the model. NOTE: not number

of effects in case interactions of covariates are specified.

covariate form vector with entries for each covariate that specify the form in which the

respective covariate enters the mean function. Possible forms are "by" for

varying coefficient (f(tij) · covariate), which is possible for dummy coded

covariates and metric covariates and "smooth" for smooth effect in the

function argument and in the covariate (f(tij , covariate)), which is only

possible for metric covariates! NOTE: metric covariates should be cen-

tered such that the global functional intercept f0(tij) can be interpreted

as global mean function and the effect can be interpreted as difference

from the global mean.
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interaction TRUE to estimate interaction effects of covariates, which interactions,

see argument which interaction (below). Interactions are possible for

dummy-coded covariates that act as varying coefficients.

which interaction symmetric matrix that specifies which interactions should be con-

sidered in case covariate = TRUE and interaction = TRUE. En-

try which interaction[k, l] specifies that the interaction between

covariate.k and covariate.l is modeled (example below). NOTE: en-

tries are redundant, which interaction[l, k] should be set to the same as

which interaction[k, l] (symmetric). Defaults to which interaction =

matrix(NA), which should be used when interaction = FALSE.

save model mean TRUE to give out the gam/bam object (attention: can be large!), defaults

to FALSE.

para estim mean TRUE to parallelize mean estimation (only possible using bam), defaults

to FALSE.

para estim mean nc number of cores for parallelization of mean estimation (only possible using

bam, only active if para estim mean = TRUE). Defaults to 0.

bf covs vector of marginal basis dimensions (number of basis functions) used for

covariance estimation via bam/gam for each functional random effect (in-

cluding the smooth error curve). In the case of multiple grouping factors,

the first entry corresponds to the first grouping factor, the second vector

entry corresponds to the second grouping factor, and the third to the

smooth error curve.

m covs list of marginal orders of the penalty for bam/gam for covariance estima-

tion, for bs = "ps" marginal spline and penalty order. As only symmetric

surfaces are considered: same for both directions. For crossed fRIs: list

of three vectors, e.g., m covs = list(c(2, 3), c(2, 3), c(2, 3)),

where the first and second entry correspond to first and second grouping

factor, respectively and the third entry corresponds to the smooth er-

ror. For one fRI: list of two vectors, e.g., m covs = list(c(2, 3), c(2,

3)), where first entry corresponds to (first) grouping factor and second

entry corresponds to smooth error. For independent curves: list of one

vector, e.g., m covs = list(c(2,3)) corresponding to smooth error.

use whole TRUE to estimate the whole auto-covariance surfaces without symmetry

constraint. Defaults to FALSE as is much slower than use tri constr

and use tri constr weights. For more details, see Chapter 5.
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use tri TRUE to estimate only the upper triangle of the auto-covariance surfaces

without symmetry constraint. Defaults to FALSE and it is not recom-

mended. Note that use tri should only be used for research purposes.

For more details, see Chapter 5.

use tri constr TRUE to estimate only the upper triangle of the auto-covariance surfaces

with symmetry constraint using the smooth class symms.mooth. Defaults

to TRUE. For more details, see Chapter 5.

use tri constr weights TRUE to estimate only the upper triangle of the auto-covariances with

symmetry constraint, using the smooth class symm.smooth and weights

of 0.5 on the diagonal to use the same weights as for estimating the whole

auto-covariance surfaces using use whole = 1. Defaults to FALSE. For

more details, see Chapter 5.

np TRUE to use ‘normal parameterization’ for a tensor product smooth, see

function te in the package mgcv for more details. Defaults to TRUE.

mp FALSE to use Kronecker product penalty instead of Kronecker sum

penalty with only one smoothing parameter (for use whole = TRUE and

use tri = TRUE), for details, see function te in the package mgcv. For

use tri constr = TRUE and use tri constr weights = TRUE, only one

smoothing parameter is estimated anyway. Defaults to TRUE.

use discrete cov TRUE to further speed up the auto-covariance computation by discretiza-

tion of the covariate values for storage and efficiency reasons. It includes

parallelization controlled by argument para estim cov nc (below), see

function bam in the package mgcv for more details. Defaults to FALSE.

para estim cov TRUE to parallelize auto-covariance estimation (only possible using bam),

defaults to FALSE.

para estim cov nc number of cores (if use discrete cov = FALSE) or number of

threads (if use discrete cov = TRUE) for parallelization of auto-

covariance estimation (only possible using bam, only active if

para estim cov = TRUE). Defaults to 0.

var level pre-specified level of explained variance used for the choice of the number

of the functional principal components (FPCs). Alternatively, a specific

number of FPCs can be specified (see below). Defaults to var level =

0.95.

N B number of components to keep for the fRI for the first grouping factor,

overrides var level if not NA.

N C number of components to keep for the fRI for the second grouping factor,

overrides var level if not NA.
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N E number of components to keep for the smooth error, overrides var level

if not NA.

use famm TRUE to embed the model into the framework of functional additive mixed

models using re-estimation of the mean function together with the pre-

diction of the FPC weights (scores). This allows for point-wise confidence

bands for the covariate effects. Defaults to FALSE.

use bam famm TRUE to use function bam instead of function gam in the FAMM estima-

tion (reduces computation time for large data sets), highly recommended.

Defaults to TRUE.

bs int famm specification of the estimation of the functional intercept f0(tij)

(as part of the mean function), see function pffr in the pack-

age refund (Huang et al., 2016a) for details. Defaults to

bs int = list(bs = "ps", k = 8, m = c(2, 3)), where bs: type of

basis functions, k: number of basis functions, m: order of the spline and

order of the penalty.

bs y famm specification of the estimation of the covariates effects (as part

of the mean function), see function pffr in the package re-

fund for details. Defaults to bs y famm = list(bs = "ps", k = 8,

m = c(2, 3)), where bs: type of basis functions, k: number of basis

functions, m: order of the spline and order of the penalty.

save model famm TRUE to give out the FAMM model object (attention: can be very large!).

Defaults to FALSE.

use discrete famm TRUE to further speed up the FPC-FAMM computation by discretization

of the covariate values for storage and efficiency reasons. It includes

parallelization controlled by argument para estim famm nc (below), see

function bam in the package mgcv for more details. Defaults to FALSE.

para estim famm TRUE to parallelize the FAMM estimation. Defaults to FALSE.

para estim famm nc number of cores (if use discrete famm = FALSE) or number of threads

(if use discrete famm = TRUE) for parallelization of FAMM estimation

(only possible using bam, only active if para estim famm = TRUE). De-

faults to 0.

Details

The code can handle irregularly and possibly sparsely sampled data. Of course, it can also be used

to analyze regular grid data, but as it is especially designed for the irregular case and there may be

a more efficient way to analyze regular grid data.
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The mean function is of the form

µ(tij ,xi) = f0(tij) +

r∑
k=1

fk(tij , x̃ik),

where f0(tij) is a functional intercept and x̃ik is a subvector of the vector of covariates xik. Currently

implemented are effects of dummy-coded and metric covariates xi which act as varying coefficients of

the form fk(tij)·xi and smooth effects of metric covariates (smooth in tij and in the covariate xi) of the

form f(tij , xi). NOTE: metric covariates should be centered such that the global functional intercept

can be interpreted as global mean function and the effect can be interpreted as difference from the

global mean. Interaction effects of dummy-coded covariates acting as varying coefficients are possible.

The estimation consists of four main steps:

1. Estimation of the smooth mean function (including covariate effects) under independence

assumption using splines.

2. Estimation of the smooth auto-covariances of the functional random effects. A fast bivariate

symmetric smoother implemented in the smooth class symm.smooth can be used to speed up

estimation (see below).

3. Eigen decomposition of the estimated auto-covariances, which are evaluated on a pre-specified

equidistant grid. This yields estimated eigenvalues and eigenfunctions, which are rescaled to

ensure orthonormality with respect to the L2-inner product.

4. Prediction of the functional principal component weights (scores) yielding predictions for the

functional random effects.

The estimation of the mean function and auto-covariance functions is based on the package

mgcv (Wood, 2006, 2011). The functional principal component weights (scores) are predicted as

best (linear) unbiased predictors. In addition, this implementation allows to embed the model in

the general framework of functional additive mixed models (FAMM; Scheipl et al., 2016a) based on

the package refund, which allows for the construction of point-wise confidence bands for covariate

effects (in the mean function) conditional on the FPCA. Note that the estimation as FAMM may be

computationally expensive as the model is re-estimated in a mixed model framework.

The three special cases of the general FLMM (two crossed fRIs, one fRI, independent curves) are

implemented as follows:

• In the special case with two crossed fRIs, three random processes named B, C, and E are

considered, where B is the fRI for the first grouping factor (e.g., speakers in the speech pro-

duction example below), C denotes the fRI for the second grouping factor (e.g., target words in

the speech production example below) and E denotes the smooth error. For this special case,

arguments use RI and use simple are both set to FALSE.
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• In the special case with only one fRI, only B and E are considered and the number of levels for

the second grouping factor is to zero. For this special case, argument use RI is set to TRUE and

argument use simple is set to FALSE.

• The special case with independent curves is internally seen as a special case of the model

with one fRI for the first grouping factor, with the number of levels for this grouping factor

corresponding to the number of curves. Thus, for each level of the first grouping factor there

is one curve. Therefore, for the special case of independent curves, the estimation returns an

estimate for the auto-covariance of B (instead of E) and all corresponding results are indicated

with ‘ B’, although they correspond to the smooth error. For this special case, arguments

use RI and use simple are both set to TRUE.

Value

The function returns a list of two elements: time all and results. time all contains the total

system.time() for calling function sparseFLMM. results is a list, including:

my grid pre-specified evaluation grid.

mean hat including the components of the estimated mean function:

mean pred: contains effects of dummy covariates or metric covariates with a linear effect

(varying coefficients).

mean pred smooth: contains effects of metric covariates with a smooth effect.

intercept: is the estimated intercept, which is part of f0(tij).

For each auto-covariance smoothing alternative X in {use whole, use tri, use tri constr,

use tri constr weights} the list results additionally contains:

cov hat <X> including:

sigmasq: the estimated error variance.

sigmasq int: the integral of the estimated error variance over the domain.

grid mat <B/C/E>: the estimated auto-covariance(s) evaluated on the pre-specified

grid.

sp: the smoothing parameter(s) for smoothing the auto-covariance(s).

time cov estim: the time for the smoothing the auto-covariance(s) only.

time cov pred grid: the time for evaluating the estimated auto-covariance(s) on the

pre-specified grid.

time cov <X>: the total time for the auto-covariance estimation.
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fpc hat <X> including:

phi <B/C/E> hat grid: the estimated rescaled eigenfunctions evaluated on the pre-

specified grid.

nu <B/C/E> hat: the estimated rescaled eigenvalues.

N <B/C/E>: the estimated truncation numbers, i.e., number of FPCs which are kept.

total var: the estimated total variance.

var explained: the estimated explained variance.

xi <B/C/E> hat: the predicted FPC weights (scores).

time fpc <X>: the total time for the eigen decompositions and prediction on the FPC

weights (scores).

If use famm = TRUE, the list results additionally contains:

fpc famm hat <X> including:

intercept: the estimated intercept, which is part of f0(tij).

residuals: the residuals of the FAMM estimation.

xi <B/C/E> hat famm: the predicted basis weights.

famm predict <B/C/E>: the predicted functional processes evaluated on the pre-

specified grid.

famm cb mean: the re-estimated functional intercept f0(tij).

famm cb covariate.1, famm cb covariate.2, etc: possible re-estimated covari-

ate effects.

famm cb inter 1 2: famm cb inter 1 3, etc: possible interaction effects.

time fpc famm <X>: the total system.time() for the FAMM estimation.

The unique identification numbers for the levels of the grouping factors and curves are renumbered

for convenience during estimation from 1 in ascending order. The original identification numbers are

returned in the list results:

n orig curve levels as they entered the estimation.

subject orig levels of the first grouping factor as they entered the estimation.

word orig levels of the second grouping factor (if existent) as they entered the estimation.

Author(s)

Jona Cederbaum
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See Also

Note that function sparseFLMM calls function bam or gam in the package mgcv directly.

For functional linear mixed models with complex correlation structures for data sampled on

equal grids based on functional principal component analysis, see function denseFLMM in the package

denseFLMM.

Examples

# subset of speech production acoustic data (very small subset, no meaningful results

# can be expected and FAMM estimation does not work for this subset example.

# For FAMM estimation, see below.)

data("acoustic_subset")

acoustic_results <- sparseFLMM(curve_info = acoustic_subset, use_RI = FALSE,

use_simple = FALSE, method = "fREML", use_bam = TRUE, bs = "ps", d_grid = 100,

min_grid = 0, max_grid = 1, my_grid = NULL, bf_mean = 8, bf_covariates = 8,

m_mean = c(2,3), covariate = TRUE, num_covariates = 4, covariate_form = rep("by", 4),

interaction = TRUE, which_interaction = matrix(c(FALSE, TRUE, TRUE, TRUE, TRUE, FALSE,

FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,

FALSE, FALSE, FALSE, FALSE, FALSE), byrow = TRUE, nrow = 4, ncol = 4),

save_model_mean = FALSE, para_estim_mean = FALSE, para_estim_mean_nc = 0,

bf_covs = c(5, 5, 5), m_covs = list(c(2, 3), c(2, 3), c(2, 3)), use_whole = FALSE,

use_tri = FALSE, use_tri_constr = TRUE, use_tri_constr_weights = FALSE, np = TRUE,

mp = TRUE, use_discrete_cov = FALSE, para_estim_cov = FALSE, para_estim_cov_nc = 5,

var_level = 0.95, N_B = NA, N_C = NA, N_E = NA, use_famm = FALSE, use_bam_famm = TRUE,

bs_int_famm = list(bs = "ps", k = 8, m = c(2, 3)), bs_y_famm = list(bs = "ps", k = 8,

m = c(2, 3)), save_model_famm = FALSE, use_discrete_famm = FALSE, para_estim_famm = FALSE,

para_estim_famm_nc = 0)
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E.2.2 Manual of R function make summation matrix

Construct symmetry constraint matrix for bivariate symmetric
smoothing

Description

This function can be used to construct a symmetry constraint matrix that imposes a symmetry

constraint on spline coefficients in symmetric bivariate smoothing problems and is especially designed

for constructing objects of the class symm.smooth, see function smooth.construct.symm.smooth.spec.

Usage

make_summation_matrix(F)

Arguments

F number of marginal basis functions.

Details

Imposing a symmetry constraint to the spline coefficients in order to obtain a reduced coefficient vector

is equivalent to right multiplication of the bivariate design matrix with the symmetry constraint matrix

obtained with function make summation matrix. The penalty matrix of the bivariate smooth needs to

be adjusted to the reduced coefficient vector by left and right multiplication with the symmetry con-

straint matrix. This function is used in the constructor function smooth.construct.symm.smooth.spec.

Value

A symmetry constraint matrix of dimension F 2 × F (F + 1)/2.

References

Cederbaum, J., Scheipl, F., and Greven, S. (2018): Fast symmetric additive covariance smoothing.

Computational Statistics & Data Analysis, 120:25–41.

See Also

See functions smooth.construct and smoothCon in the package mgcv for details on constructors.
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Examples

make_summation_matrix(F = 2)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 1 0

[4,] 0 0 1

make_summation_matrix(F = 3)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 0 0 0

[2,] 0 1 0 0 0 0

[3,] 0 0 1 0 0 0

[4,] 0 1 0 0 0 0

[5,] 0 0 0 1 0 0

[6,] 0 0 0 0 1 0

[7,] 0 0 1 0 0 0

[8,] 0 0 0 0 1 0

[9,] 0 0 0 0 0 1

E.2.3 Manual of R function smooth.construct.symm.smooth.spec

Symmetric bivariate smooths constructor

Description

The symm.smooth class is a new smooth class that is appropriate for symmetric bivariate smooths,

e.g., of covariance functions, using tensor-product smooths in a gam formula using the package mgcv.

A symmetry constraint matrix is constructed (see function make summation matrix) to impose a sym-

metry constraint on the spline coefficients, which considerably reduces the number of coefficients that

have to be estimated.

Usage

## S3 method for class ‘symm.smooth.spec’

smooth.construct(object, data, knots)
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Arguments

object smooth specification object or a smooth object.

data data frame, model frame or list containing the values of the (named) covariates at which

the smooth term is to be evaluated.

knots optional data frame supplying any knot locations to be supplied for basis construction.

Details

The underlying procedure is the following:

1. The marginal spline design matrices and the corresponding marginal penalties are built.

2. The tensor product of the marginal design matrices and the bivariate penalty matrix are built.

3. The constraint matrix is applied to the tensor product design matrix and to the penalty matrix.

Value

An object of class symm.smooth. See function smooth.construct in the package mgcv for the elements

it will contain.

References

Cederbaum, J., Scheipl, F., and Greven, S. (2018): Fast symmetric additive covariance smoothing.

Computational Statistics & Data Analysis, 120:25–41.

See Also

See functions smooth.construct and smoothCon in the package mgcv for details on constructors.

E.2.4 Manual of R function Predict.matrix.symm.smooth

Predict matrix method for symmetric bivariate smooths

Description

Predict matrix method for symmetric bivariate smooths.

Usage

## S3 method for class ‘symm.smooth’

Predict.matrix(object, data)
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Arguments

object symm.smooth object created by function smooth.construct.symm.smooth.spec, see function

smooth.construct in the package mgcv.

data see function smooth.construct in the package mgcv.

See Also

Predict.matrix and smoothCon in the package mgcv for details on constructors.
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Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications, volume 200

of Springer Series in Statistics. Springer, New York.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal

of Educational Psychology, 24(6):417–441.

Hotelling, H. (1935). The most predictable criterion. Journal of Educational Psychology, 26(2):139–

142.

Hotelling, H. (1957). The relations of the newer multivariate statistical methods to factor analysis.

British Journal of Statistical Psychology, 10(2):69–79.

Hsing, T. and Eubank, R. (2015). Theoretical Foundations of Functional Data Analysis, with an

Introduction to Linear Operators. Wiley Series in Probability and Statistics. John Wiley & Sons,

Sussex.

Huang, J. Z., Shen, H., and Buja, A. (2008). Functional principal components analysis via penalized

rank one approximation. Electronic Journal of Statistics, 2:678–695.

Huang, L., Scheipl, F., Goldsmith, J., Gellar, J., Harezlak, J., McLean, M. W., Swihart, B., Xiao,

L., Crainiceanu, C., and Reiss, P. (2016a). refund: Regression with Functional Data. R package

version 0.1-14. Available at https://CRAN.R-project.org/package=refund.

https://CRAN.R-project.org/package=mda
https://CRAN.R-project.org/package=mda
https://CRAN.R-project.org/package=refund


230 REFERENCES

Huang, L., Scheipl, F., Goldsmith, J., Gellar, J., Harezlak, J., McLean, M. W., Swihart, B., Xiao, L.,

Crainiceanu, C., and Reiss, P. (2016b). refundDevel: Regression with Functional Data (Developer

Version).

Isserlis, L. (1918). On a formula for the product-moment coefficient of any order of a normal frequency

distribution in any number of variables. Biometrika, 12(1–2):134–139.

Jacques, J. and Preda, C. (2014a). Functional data clustering: A survey. Advances in Data Analysis

and Classification, 8(3):231–255.

Jacques, J. and Preda, C. (2014b). Model-based clustering for multivariate functional data. Compu-

tational Statistics & Data Analysis, 71:92–106.

James, G. M. (2002). Generalized linear models with functional predictors. Journal of the Royal

Statistical Society: Series B (Statistical methodology), 64(3):411–432.

James, G. M. and Hastie, T. J. (2001). Functional linear discriminant analysis for irregularly sampled

curves. Journal of the Royal Statistical Society: Series B (Statistical methodology), 63(3):533–550.

James, G. M., Hastie, T. J., and Sugar, C. A. (2000). Principal component models for sparse functional

data. Biometrika, 87(3):587–602.

Jolliffe, I. (2002). Principal Component Analysis. Springer, New York, second edition.
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Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig,
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