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Summary

Despite continuous efforts in automating experimental structure determination and system-
atic target selection in structural genomics projects, the gap between the number of known
amino acid sequences and solved 3D structures for proteins is constantly widening. While
DNA sequencing technologies are advancing at an extraordinary pace, thereby constantly in-
creasing throughput while at the same time reducing costs, protein structure determination
is still labour intensive, time-consuming and expensive. This trend illustrates the essen-
tial importance of complementary computational approaches in order to bridge the so called
sequence-structure gap.

About half of the protein families lack structural annotation and therefore are not amenable
to techniques that infer protein structure from homologs. These protein families can be
addressed by de novo structure prediction approaches that in practice are often limited by
the immense computational costs required to search the conformational space for the lowest-
energy conformation. Improved predictions of contacts between amino acid residues have been
demonstrated to sufficiently constrain the overall protein fold and thereby extend the appli-
cability of de novo methods to larger proteins. Residue-residue contact prediction is based on
the idea that selection pressure on protein structure and function can lead to compensatory
mutations between spatially close residues. This leaves an echo of correlation signatures that
can be traced down from the evolutionary record. Despite the success of contact prediction
methods, there are several challenges. The most evident limitation lies in the requirement
of deep alignments, which excludes the majority of protein families without associated struc-
tural information that are the focus for contact guided de novo structure prediction. The
heuristics applied by current contact prediction methods pose another challenge, since they
omit available coevolutionary information.

This work presents two different approaches for addressing the limitations of contact prediction
methods. Instead of inferring evolutionary couplings by maximizing the pseudo-likelihood,
I maximize the full likelihood of the statistical model for protein sequence families. This
approach performed with comparable precision up to minor improvements over the pseudo-
likelihood methods for protein families with few homologous sequences. A Bayesian statistical
approach has been developed that provides posterior probability estimates for residue-residue
contacts and eradicates the use of heuristics. The full information of coevolutionary signatures
is exploited by explicitly modelling the distribution of statistical couplings that reflects the
nature of residue-residue interactions. Surprisingly, the posterior probabilities do not directly
translate into more precise predictions than obtained by pseudo-likelihood methods combined
with prior knowledge. However, the Bayesian framework offers a statistically clean and the-
oretically solid treatment for the contact prediction problem. This flexible and transparent
framework provides a convenient starting point for further developments, such as integrating
more complex prior knowledge. The model can also easily be extended towards the deriva-
tion of probability estimates for residue-residue distances to enhance precision of predicted
structures.
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1
Background

1.1 Biological Background

In 1972, Anfinsen and his colleges received the Nobel Prize for their research on protein
folding which lead to the postulation of one of the basic principles in molecular biology, which
is known as Anfinsen’s dogma: a protein’s native structure is uniquely determined by its
amino acid sequence [1]. With certain exceptions (e.g. intrinsically disordered proteins [2] or
prions[3]), this dogma has proven to hold true at least for globular proteins.

Ever since, it is regarded as the biggest challenge in structural bioinformatics to reliably predict
a protein’s structure given only its amino acid sequence [4,5]. De novo protein structure
prediction methods minimize physical or knowledge based energy functions to identify the
lowest-energy conformation that generally corresponds to the native protein conformation.
However, due to the high degree of conformational flexibility, the search space of possible
conformations cannot be explored exhaustively for a typical protein. Given a protein with 101
residues that has 100 peptide bonds with two torsion angles each and assuming three stable
conformations for each of the bond angles, there will be 3200 ≈ 1095 configurations. This
number of conformations cannot be sampled sequentially in a lifetime, even when sampling at
high rates. Yet, proteins fold almost instantaneously within milliseconds. This discrepancy is
known as Levinthal’s paradox [6] and limits purely de novo based protein structure prediction
to small proteins.

Far more successful are template-based modelling approaches. Given the observation that
structure is more conserved than sequence in a protein family [7], the structure of a target
protein can be inferred from a homologous protein [8], that is a protein of shared ancestry.
The degree of structural conservation is linked to the level of pairwise sequence identity [9].
Therefore, the accuracy of a model crucially depends on the sequence identity between target
and template and determines the applicability of the model [10]. By definition, homology
derived models are unable to capture new folds and their main limitation lies in the availability
and identification of suitable templates [11].

The number of solved protein structures increases steadily but only slowly, as experimental
methods are both time consuming and expensive [11]. The Protein Data Bank (PDB) is
the main repository for macromolecular structures and currently (October 2017) holds about
135,000 atomic models of proteins [12]. The primary technique for determining protein struc-
tures is X-ray crystallography, accounting for roughly 90% of entries in the PDB. About 9%
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Figure 1.1: Comparing the amount of primary and tertiary protein structures over time.
Left Yearly growth of protein structures in the PDB [12] by structure determination method.
Right Yearly growth of database entries in the UniprotKB/TrEMBL [13], containing auto-
matically annotated protein sequences, in the UniprotKB/SwissProt [13], containing manually
curated protein sequences and in the PDB containing solved protein structures.

of protein structures have been solved using nuclear magnetic resonance (NMR) spectroscopy
and less than 1% using electron microscopy (EM) (see left plot in Figure 1.1).

All three experimental techniques have advantages and limitations with respect to certain
modelling aspects. X-ray crystallography involves protein overexpression, purification and
crystallization and finding the the correct experimental conditions to arrive at a pure and
regular crystal is a challenging and sometimes impossible task. Especially membrane proteins
are difficult to study owing to their overall flexibility and hydrophobic surfaces which requires
suitable detergents to extract the proteins from their membrane environment which in turn
makes crystallization even more challenging [14,15]. Furthermore, the unnatural crystal en-
vironment can result in crystal-induced artifacts, like altered side chain conformations due to
crystal packing interactions [16]. In contrast, nuclear magnetic resonance (NMR) spectroscopy
studies the protein in solution under physiological conditions and enables the observation of
intramolecular dynamics, reaction kinetics or protein folding as ensembles of protein struc-
tures can be observed [17]. On the downside, validation of NMR-derived structure ensembles is
complicated and there is an upper size limit of about 25 kDa for efficient use of the technique
[18]. Recently, cryo-EM has undergone a “resolution revolution” and macromolecules have
been solved to near-atomic resolutions [19,20]. Technological developments, such as better
electron detectors as well as advanced image processing software has enabled high resolution
structure determination and led to an exponential growth in number of structures deposited
in the PDB. Cryo-EM is particularly suited to study large macromolecular complexes without
the need to make crystals and therefore complements the other two structure determination
techniques.

In contrast to the tedious task of determining the tertiary structure of a protein to atomic
resolution, it has become very easy to decipher the primary sequence of proteins. Since the
completion of the human genome in 2003, high-throughput sequencing technologies have been
developed at an extraordinary pace [21]. Not only has the amount of time decreased that is
needed to sequence whole genomes but also costs have been drastically reduced [22]. The
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price for sequencing a single genome has dropped from the US$3 billion spent by the Human
Genome Project to as little as US$1,000[23]. At the beginning of 2017, Illumina announced
the launch of their latest high-throughput sequencing technology, NovaSeq, which is capable of
sequencing ∼48 human genomes in parallel at 30x coverage within ∼45 hours [24]. Advances
in sequencing technologies have led to the emergence of new fields of studies, like metagenomics
and single-cell genomics, that enable sequencing of microorganisms that cannot be cultured
in the lab [25–27]. With these approaches the genomic coverage of the microbial world is
expanding which is directly reflected in a substantial increase in novel protein families [28–30].
More than 70 000 genomes have been completely sequenced and about 90 million sequences
(October 2017) have been translated into protein amino acid sequences and are stored in the
UniprotKB/TrEMBL database, the leading resource for protein sequences [13,31].

The resultant gap between the number of protein structures and protein sequences is con-
stantly widening (see right plot in Figure 1.1) despite tremendous efforts in automating ex-
perimental structure determination [5]. This trend illustrates the essential importance of
computational approaches that can complement experimental structural biology efforts in or-
der to bridge this gap. Over the last decades, template-based methods have matured to a
point where they are able to generate high-resolution structural models that are routinely
and conveniently used in life-science research and by the biological community [5,32]. De
novo methods aiming at predicting protein structures from sequence alone are required in
case no homologous template structure can be identified or the protein sequence represents a
novel fold. Albeit purely de novo approaches are hampered by the combinatorial explosion of
possible conformations for larger proteins, combining them with structural information from
different types of experiments can help to reduce the degrees of freedom in the conformational
search space [5]. Several sophisticated integrative approaches have been developed and proven
to be powerful [33–35]. For example, sparse low-resolution experimental data from chemical
cross-linking/mass spectroscopy or nuclear Overhauser enhancement (NOE) distance data
generated from NMR experiments, provide distance restraints to guide folding to a correct
structure [36–38].

Another complementary source of information is given by predicted protein residue-residue
contacts. The invention of direct coupling analysis (DCA) in 2009 was a breakthrough in
the development of computational methods to infer spatially close residue pairs from coevo-
lutionary signals in the evolutionary record of protein families [39]. Since then, the field of
contact prediction has experienced rapid progress and methods are continuously improving.
Modern contact prediction approaches produce predictions that are sufficiently accurate to
successfully assist the de novo prediction of protein structures [40]. The last years have seen
an enormous wealth of studies applying predicted residue-residue contacts not only as distance
constraints for de novo modelling of protein structures, but also in many different fields in
structural biology, such as domain prediction [41], studying alternative conformations [42] or
inferring evolutionary fitness landscapes and quantifying mutational effects [43].

It has long been known that native contacts can be used to reliably reconstruct native protein
3D structure [44]. This is because a contact map retains the full 3D structural information
of a protein, even though it provides only a 2D representation of the protein structure. For a
protein of length L, a contact map is a binary L×L matrix, where the binary element in the
matrix C(i, j) for two residues i and j is given by

C(i, j) =

{
1, if ∆Cβ < T

0, otherwise
(1.1)

where ∆Cβ is the euclidean distance between Cβ atoms (Cα for glycine) of residues i and j

and T is a distance threshold (typically 8 Å ). Figure 1.2 shows an example of a residue-
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Figure 1.2: 2D and 3D representations of protein triabin, a thombin inhibitor from triatoma
pallidipennis (PDB identifier 1avg chain I). Left The upper left matrix illustrates a contact
map using an 10Å Cβ cutoff. A black square is drawn at position (i, j) if the Cβ atoms of
residues i and j are closer than 10Å in the structure. The lower right matrix illustrates a
distance map. Color reflects Cβ distances between residue pairs with red colors representing
∆Cβ ≤ 10Å and blue colors representing ∆Cβ > 10Å . Right 3D Structure showing an
eight-stranded beta-barrel.

residue contact map generated from a small protein domain. While it has been shown that
only a small subset of native contacts is sufficient to allow accurate modelling of the protein
structure, the quality of predicted residue-residue contacts crucially controls the quality of
the final structural model [45,46]. Currently published DCA methods are very successful at
predicting contacts for large protein families. However they all apply the same heuristics
on top of the underlying statistical model thereby ignoring valuable information. It is a
reasonable assumption that by making full use of the available information, the predictive
performance of the models should improve and as a consequence extend the applicability of
DCA methods to smaller protein families. The aim of this thesis is therefore to improve
the models for residue-residue contact prediction by developing a flexible and transparent
Bayesian framework that dresses these issues.

The next chapter gives an introduction to state-of-the-art contact prediction approaches, how
the predicted residue-residue contacts are applied and which challenges the current methods
have to face.

1.2 Introduction to Contact Prediction

Contact prediction refers to the prediction of physical contacts between amino acid side chains
in the 3D protein structure, given the protein sequence as input.

Historically, contact prediction was motivated by the idea that compensatory mutations be-
tween spatially neighboring residues can be traced down from evolutionary records [47]. As
proteins evolve, they are under selective pressure to maintain their function and correspond-
ingly their structure. Consequently, residues and interactions between residues constraining
the fold, protein complex formation, or other aspects of function are under selective pressure.
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Figure 1.3: The evolutionary record of a protein family reveals evidence of compensatory
mutations between spatially neighboring residues that are under selective pressure with respect
to some physico-chemical constraints. Mining protein family sequence alignments for residue
pairs with strong coevolutionary signals using statistical methods allows inference of spatial
proximity for these residue pairs.

Highly constrained residues and interactions will be strongly conserved [48]. Another possi-
bility to maintain structural integrity is the mutual compensation of unbeneficial mutations.
For example, the unfavorable mutation of a small amino acid residue into a bulky residue in
the densely packed protein core might have been compensated in the course of evolution by
a particularly small side chain in a neighboring position. Other physico-chemical quantities
such as amino acid charge or hydrogen bonding capacity can also induce compensatory ef-
fects[49]. The MSA of a protein family comprises homologous sequences that have descended
from a common ancestor and are aligned relative to each other. According to the hypothesis,
compensatory mutations show up as correlations between the amino acid types of pairs of
MSA columns and can be used to infer spatial proximity of residue pairs (see Figure 1.3).

The following sections will give an overview over important methods and developments in the
field of contact prediction.

1.2.1 Local Statistical Models

Early contact prediction methods used local pairwise statistics to infer contacts that regard
pairs of amino acids in a sequence as statistically independent from another.

Several of these methods use correlation coefficient based measures, such as Pearson cor-
relation between amino acid counts, properties associated with amino acids or mutational
propensities at the sites of a MSA [47,49–52].

Many methods have been developed that are rooted in information theory and use MI mea-
sures to describe the dependencies between sites in the alignment [53–55]. Phylogenetic and
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Figure 1.4: Effects of chained covariation obscure signals from true physical interactions.
Consider residues A through E with physical interactions between the residue pairs A-B, B-
C and D-E. The thickness of blue lines between residues reflects the strength of statistical
dependencies between the corresponding alignment columns. Strong statistical dependencies
between residue pairs (A,B) and (B,C) can induce a strong dependency between the spatially
distant residues A and C. Covariation signals arising from transitive effects can become even
stronger than other direct covariation signals and lead to false positive predictions.

entropic biases have been identified as strong sources of noise that confound the true co-
evolution signal [55–57]. Different variants of MI based approaches address these effects and
improve on the signal-to-noise ratio [56,58,59]. The most prominent correction for background
noises is the so called average product correction (APC) that is still used by many modern
methods and is discussed in section 1.3.6 [60]. Another popular method is OMES that essen-
tially computes a chi-squared statistic to detect the differences between observed and expected
pairwise amino acid frequencies for a pair of columns [61,62].

The traditional covariance approaches suffered from high false positive rates because of their
inability to cope with transitive effects that arise from chains of correlations between multiple
residue pairs [39,63,64]. The concept of transitive effects is illustrated in Figure 1.4. Consid-
ering three residues A, B and C, where A physically interacts with B and B with C. Strong
statistical dependencies between pairs (A,B) and (B,C) can induce strong indirect signals for
residues A and C, even though they are not physically interacting. These indirect correlations
can become even larger than signals of other directly interacting pairs (D,E) and thus lead to
false predictions [64].

Local statistical methods consider residue pairs independent of one another which is why
they cannot distinguish between direct and indirect correlation signals. In contrast, global
statistical models presented in the next section learn a joint probability distribution over
all residues allowing to disentangle transitive effects [39,64]. Even though local statistical
methods cannot compete with modern predictors, OMES and MI based scores often serve as
a baseline in performance benchmarks for contact prediction [65,66].

1.2.2 Global Statistical Models

A huge leap forward was the development of sophisticated statistical models that make pre-
dictions for a single residue pair while considering all other pairs in the protein. These global
models allow for the distinction between transitive and causal interactions which has been
referred to in the literature as DCA [39,63].

In 1999 Lapedes et al. were the first to propose a global statistical approach for the prediction
of residue-residue contacts in order to disentangle transitive effects [63]. They consider a
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Potts model that can be derived under a maximum entropy assumption and use the model
specific coupling parameters to infer interactions. At that time the wider implications of this
advancement went unnoted, but meanwhile the Pott’s Model has become the most prominent
statistical model for contact prediction. Section 1.3 deals extensively with the derivation
and properties of the Pott’s model, its application to contact prediction and its numerous
realizations.

A global statistical model not motivated by the maximum entropy approach was proposed
by Burger and Nijmwegen in 2010 [64,67]. Their fast Bayesian network model incorporates
additional prior information and phylogenetic correction via APC but cannot compete with
the pseudo-likelihood approaches presented in section 1.3.5.

1.2.3 Machine Learning Methods and Meta-Predictors

With the steady increase in protein sequence data, machine learning based methods have
emerged that extract features from MSAs in order to learn associations between input features
and residue-residue contacts. Sequence features typically include predicted solvent accessibil-
ity, predicted secondary structure, contact potentials, conservation scores, global protein fea-
tures, pairwise coevolution statistics and averages of certain features over sequence windows.
Numerous sequence-based methods have been developed using machine learning algorithms,
such as support support vector machines (SVMCon [68], SVM-SEQ [69]), random forests
(ProC_S3 [70], TMhhcp [71], PhyCMap [72]), neural networks (NETCSS [73], SAM [74],
[75], SPINE-2D [76], NNCon [77]) deep neural networks (DNCon [78], CMAPpro [79]) and
ensembles of genetic algorithm classifiers (GaC [80]).

Different contact predictors, especially when rooted in distinct principles like sequence-based
and coevolution methods, provide orthogonal information on the likelihood that a pair of
residues makes a contact [68,81]. The next logical step in method development therefore
constitutes the combination of several base predictors and classical sequence-derived features
in the form of meta-predictors.

The first published meta-predictor was PconsC in 2013, combining sequence features and
predictions from the coevolution methods PSICOV and plmDCA [82]. In a follow-up version
PSICOV has been replaced with gaussianDCA and the sequence-based method PhyCMap
[83]. EPC-MAP was published in 2014 integrating GREMLIN as a coevolution feature with
physico-chemical information from predicted ab initio protein structures [84]. In 2015, MetaP-
SICOV was released combining predictions from PSICOV, mfDCA and CCMpred with other
sequence derived features [85]. RaptorX uses CCMpred as coevolution feature and other
standard contact prediction features within an ultra-deep neural network [86]. The newest
developments EPSILON-CP and NeBcon both comprise the most comprehensive usage of
contact prediction methods so far, combining five and eight state-of-the-art contact predic-
tors, respectively [87,88].

Another conceptual advancement besides the combination of sources of information is based on
the fact that contacts are not randomly or independently distributed. DiLena and colleagues
found that over 98% of long-range contacts (sequence separation > 24 positions) are in close
proximity of other contacts, compared to 30% for non-contacting pairs [79]. The distribution
of contacts is governed by local structural elements, like interactions between helices or β-
sheets, leading to characteristic patterns in the contact map that can be recognized [89]. Deep
learning provides the means to model higher level abstractions of data and several methods
apply multi-layered algorithms to refine predictions by learning patterns that reflect the local
neighborhood of a contact [79,85,86,90].

Even though a benchmark comparing the recently developed meta-predictors is yet to be
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made, it becomes clear from the recent CASP experiments, that meta-predictors outperform
pure coevolution methods [91]. As coevolution scores comprise the most informative features
among the set of input features, it is clear that meta-predictors will benefit from further
improvements of pure coevolution methods [86,87].

1.3 Modelling Protein Families with Potts Model

Global statistical models enable the distinction of direct statistical dependencies between
residues from indirect dependencies mediated through other residues. This is achieved by
inferring contacts from a joint probability distribution over all residues instead of treating
residues independently. The global statistical model that is commonly used to describe this
joint probability distribution is the Potts model. It is a well-established model in statistical
mechanics and can be derived from a maximum entropy assumption which is explained in the
following.

The principle of maximum entropy, proposed by Jaynes in 1957 [92,93], states that the proba-
bility distribution which makes minimal assumptions and best represents observed data is the
one that is in agreement with measured constraints (prior information) and has the largest
entropy. In other words, from all distributions that are consistent with measured data, the
distribution with maximal entropy should be chosen.

A protein family is represented by a MSA X = {x1, . . . ,xN} of N protein sequences. Every
protein sequence of the protein family represents a sample drawn from a target distribution
p(x), so that each protein sequence is associated with a probability. Each sequence xn =
(xn1, ...,xnL) is of length L and every position constitutes a categorical variable xi that can
take values from an alphabet indexed by {0, ..., 20}, where 0 stands for a gap and {1, ..., 20}
stand for the 20 types of amino acids. The measured constraints are given by the empirically
observed single and pairwise amino acid frequencies that can be calculated as

fi(a) = f(xi=a) =
1

N

N∑
n=1

I(xni=a)

fij(a, b) = f(xi=a, xj=b) =
1

N

N∑
n=1

I(xni=a, xnj=b) . (1.2)

According to the maximum entropy principle, the distribution p(x) should have maximal
entropy and reproduce the empirically observed amino acid frequencies, so that

f(xi=a) ≡ p(xi=a)

=

20∑
y1,...,yL=1

p(y)I(yi=a)

f(xi=a, xj=b) ≡ p(xi=a, xj=b)

=

20∑
y1,...,yL=1

p(y)I(yi=a, yj=b) . (1.3)

Solving for the distribution p(x) that maximizes the Shannon entropy S = −
∑

x p(x) log p(x)
while satisfying the constraints given by the empirical amino acid frequencies in eq. (1.3) by
introducing Lagrange multipliers wij and vi, results in the formulation of the Potts model,
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p(x|v,w) =
1

Z(v,w)
exp

 L∑
i=1

vi(xi)
∑

1≤i<j≤L

wij(xi, xj)

 . (1.4)

The Lagrange multipliers wij and vi remain as model parameters to be fitted to data. Z is
a normalization constant also known as partition function that ensures the total probability
adds up to one by summing over all possible assignments to x,

Z(v,w) =

20∑
y1,...,yL=1

exp

 L∑
i=1

vi(yi)
∑

1≤i<j≤L

wij(yi, yj)

 . (1.5)

1.3.1 Model Properties

The Potts model is specified by singlet terms via which describe the tendency for each amino
acid a to appear at position i, and pair terms wijab, also called couplings, which describe
the tendency of amino acid a at position i to co-occur with amino acid b at position j.
In contrast to mere correlations, the couplings explain the causative dependence structure
between positions by jointly modelling the distribution of all positions in a protein sequence
and thus account for transitive effects. By doing so, a major source of noise in contact
prediction methods is eliminated.

To get some intuition for the coupling coefficients, note that wijab = 1 corresponds to a 2.7-
fold higher probability for a and b to occur together than what is expected from the singlet
frequencies if a and b were independent. Pairs of residues that are not in contact tend to
have negligible couplings, wij ≈ 0, whereas pairs in contact tend to have vectors significantly
different from 0. For contacting residues i and j in real world MSAs typical coupling strengths
are on the order of ||wij || ≈ 0.1 (regularization dependent).

Maximum entropy models naturally give rise to exponential family distributions that express
useful properties for statistical modelling, such as the convexity of the likelihood function
which consequently has a unique, global minimum [94,95].

The Potts model is a discrete instance of what is referred to as a pairwise Markov Random
Field in the statistics community. MRFs belong to the class of undirected graphical mod-
els, that represent the probability distribution in terms of a graph with nodes and edges
characterizing the variables and the dependence structure between variables, respectively.

1.3.2 Gauge Invariance

As every variable xni can take q = 21 values, the model has L×q+L(L−1)/2×q2 parameters.
But the parameters are not uniquely determined and multiple parameterization yield identical
probability distributions.

For example, adding a constant to all elements in vi for any fixed position i or similarly adding
a constant to via for any fixed position i and amino acid a and subtracting the same constant
from the qL coefficients wijab with b ∈ {1, . . . , q} and j ∈ {1, . . . , L} leaves the probabilities
for all sequences under the model unchanged, since such a change will be compensated by a
change of Z(v,w) in eq. (1.5).

The over-parameterization is referred to as gauge invariance in statistical physics literature
and can be eliminated by removing parameters [39,96]. An appropriate choice of which
parameters to remove, referred to as gauge choice, reduces the number of parameters to
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L×(q−1)+L(L−1)/2×(q−1)2. Popular gauge choices are the zero-sum gauge or Ising-gauge
used by Weigt et al. [39] imposed by the restraints,

q∑
a=1

via =

q∑
a=1

wijab =

q∑
a=1

wijba = 0 (1.6)

for all i, j, b or the lattice-gas gauge used by Morcos et al [96] and Marks et al [40] imposed
by restraints

wij(q, a) = wij(a, q) = vi(q) = 0 (1.7)

for all i, j, a [97].

Alternatively, the indeterminacy can be fixed by including a regularization prior (see next
section). The regularizer selects for a unique solution among all parameterization of the
optimal distribution and therefore eliminates the need to choose a gauge [98–100].

1.3.3 Inferring Parameters of the Potts Model

Typically, parameter estimates are obtained by maximizing the log-likelihood function of the
parameters over observed data. For the Potts model, the log-likelihood function is computed
over sequences in the alignment X:

LL(v,w|X) =

N∑
n=1

log p(xn|v,w)

=
N∑

n=1

 L∑
i=1

vi(xni) +
∑

1≤i<j≤L

wij(xxn, xnj)− logZ(v,w)

 (1.8)

The number of parameters in a Potts model is typically larger than the number of observations,
i.e. the number of sequences in the MSA. Considering a protein of length L = 100, there are
approximately 2× 106 parameters in the model whereas the largest protein families comprise
only around 105 sequences (see Figure 1.12). An under determined problem like this renders
the use of regularizers necessary in order to prevent overfitting.

Typically, an L2-regularization is used that pushes the single and pairwise terms smoothly
towards zero and is equivalent to the logarithm of a zero-centered Gaussian prior,

R(v,w) = log
[
N (v|0, λ−1

v I)N (w|0, λ−1
w I)

]
= −λv

2
||v||22 −

λw

2
||w||22 + const. , (1.9)

where the strength of regularization is tuned via the regularization coefficients λv and λw

[101–103].

However, optimizing the log-likelihood requires computing the partition function Z given
in eq. (1.5) that sums qL terms. Computing this sum is intractable for realistic protein
domains with more than 100 residues. Consequently, evaluating the likelihood function at
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each iteration of an optimization procedure is infeasible due to the exponential complexity of
the partition function in protein length L.

Many approximate inference techniques have been developed to sidestep the infeasible compu-
tation of the partition function for the specific problem of predicting contacts that are briefly
explained in the next section.

1.3.4 Solving the Inverse Potts Problem

In 1999 Lapedes et al. were the first to propose maximum entropy models for the prediction
of residue-residue contacts in order to disentangle transitive effects [63]. In 2002 they applied
their idea to 11 small proteins using an iterative Monte Carlo procedure to obtain estimates
of the model parameters and achieved an increase in accuracy of 10-20% compared to the
local statistical models [104]. As the calculations involved were very time-consuming and at
that time required super computing resources, the wider implications were not noted yet.

Ten years later Weight et al proposed an iterative message-passing algorithm, here referred to
as mpDCA, to approximate the partition function [39]. Even though their approach is com-
putationally very expensive and in practice only applicable to small proteins, they obtained
remarkable results for the two-component signaling system in bacteria.

Balakrishnan et al were the first to apply pseudo-likelihood approximations to the full like-
lihood in 2011 [105]. The pseudo-likelihood optimizes a different objective and replaces the
global partition function Z with local estimates. Balakrishnan and colleagues applied their
method GREMLIN to learn sparse graphical models for 71 protein families. In a follow-up
study in 2013, the authors proposed an improved version of GREMLIN that uses additional
prior information [103].

Also in 2011, Morcos et al. introduced a naive mean-field inversion approximation to the
partition function, named mfDCA [96]. This method allows for drastically shorter running
times as the mean-field approach boils down to inverting the empirical covariance matrix
calculated from observed amino acid frequencies for each residue pair i and j of the alignment.
This study performed the first high-throughput analysis of intra-domain contacts for 131
protein families and facilitated the prediction of protein structures from accurately predicted
contacts in [40].

The initial work by Balakrishnan and colleagues went almost unnoted as it was not primarily
targeted to the problem of contact prediction. Ekeberg and colleagues independently devel-
oped the pseudo-likelihood method plmDCA in 2013 and showed its superior precision over
mfDCA [99].

A related approach to mean-field approximation is sparse inverse covariance estimation, named
PSICOV, developed by Jones et al. (2012) [66]. PSICOV uses an L1-regularization, known
as graphical Lasso, to invert the correlation matrix and learn a sparse graphical model [106].
Both procedures, mfDCA and PSICOV, assume the model distribution to be a multivariate
Gaussian. It has been shown by Banerjee et al. (2008)that this dual optimization solution
also applies to binary data, as is the case in this application, where each position is encoded
as a 20-dimensional binary vector [107].

Another related approach to mfDCA and PSICOV is gaussianDCA, proposed in 2014 by
Baldassi et al. [108]. Similar to the other both approaches, they model the data as multivariate
Gaussian but within a simple Bayesian formalism by using a suitable prior and estimating
parameters over the posterior distribution.

So far, pseudo-likelihood has proven to be the most successful approximation of the likelihood
with respect to contact prediction performance. Currently, there exist several implementations
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of pseudo-likelihood maximization that vary in slight details, perform similarly and thus are
equally popular in the community, such as CCMpred [101], plmDCA[102] and GREMLIN
[103].

1.3.5 Maximum Likelihood Inference for Pseudo-Likelihood

The pseudo-likelihood is a rather old estimation principle that was suggested by Besag al-
ready in 1975 [109]. It represents a different objective function than the full likelihood and
approximates the joint probability with the product over conditionals for each variable, i.e. the
conditional probability of observing one variable given all the others:

p(x|v,w) ≈
L∏
i=1

p(xi|x\xi,v,w)

=

L∏
i=1

1

Zi(v,w)
exp

vi(xi)
∑

1≤i<j≤L

wij(xi, xj)

 (1.10)

Here, the normalization term Zi sums only over all assignments to one position i in the
sequence:

Zi(v,w) =

q∑
a=1

exp

vi(a)
∑

1≤i<j≤L

wij(a, xj)

 (1.11)

Replacing the global partition function in the full likelihood with local estimates of lower
complexity in the pseudo-likelihood objective resolves the computational intractability of the
parameter optimization procedure. Hence, it is feasible to maximize the pseudo-log-likelihood
function,

pLL(v,w|X) =

N∑
n=1

L∑
i=1

log p(xi|x\xi,v,w)

=

N∑
n=1

L∑
i=1

vi(xni) + L∑
j=i+1

wij(xni, xnj)− logZni(v,w)

 , (1.12)

plus an additional regularization term in order to prevent overfitting and to fix the gauge to
arrive at a MAP estimate of the parameters,

v̂, ŵ = argmax
v,w

pLL(v,w|X) +R(v,w) . (1.13)

Even though the pseudo-likelihood optimizes a different objective than the full-likelihood,
it has been found to work well in practice for many problems, including contact prediction
[95,98–100]. The pseudo-likelihood function retains the concavity of the likelihood and it has
been proven to be a consistent estimator in the limit of infinite data for models of the expo-
nential family [98,109,110]. That is, as the number of sequences in the alignment increases,
pseudo-likelihood estimates converge towards the true full likelihood parameters.
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1.3.6 Computing Contact Maps

Model inference as described in the last section yields MAP estimates of the couplings ŵij .
In order to obtain a scalar measure for the coupling strength between two residues i and j, all
available methods presented in section 1.3.4 heuristically map the 21×21 dimensional coupling
matrix wij to a single scalar quantity.

mpDCA [39] and mfDCA [40,96] employ a score called DI, that essentially computes the MI for
two positions i and j using the couplings wij instead of pairwise amino acid frequencies. Most
pseudo-likelihood methods (plmDCA [99,102], CCMpred [101], GREMLIN [103]) compute the
Frobenius norm of the coupling matrix wij to obtain a scalar contact score Cij ,

Cij = ||wij ||2 =

√√√√ q∑
a,b=1

w2
ijab . (1.14)

The Frobenius norm improves prediction performance over DI and further improvements can
be obtained by computing the Frobenius norm only on the 20 × 20 submatrix thus ignoring
contributions from gaps [99,108,111]. PSICOV [66] uses an L1-norm on the 20×20 submatrix
instead of the Frobenius norm.

Furthermore it should be noted that the Frobenius norm is gauge dependent and is minimized
by the zero-sum gauge [39]. Therefore, the coupling matrices should be transformed to zero-
sum gauge before computing the Frobenius norm

w′
ij = wij −wij(·, b)−wij(a, ·) +wij(·, ·) , (1.15)

where · denotes average over the respective indices [99,101,102,108].

Another commonly applied heuristic, known as average product correction (APC) has been
introduced by Dunn et al. in order to reduce background noise arising from correlations
between positions with high entropy or phylogenetic couplings [60]. APC is a correction term
that is computed from the raw contact map as the product over average row and column
contact scores Ci divided by the average contact score over all pairs Cij . The corrected
contact score CAPC

ij is obtained by subtracting the APC term from the raw contact score Cij ,

CAPC
ij = Cij −

Ci Cj

Cij

. (1.16)

Visually, APC creates a smoothing effect on the contact maps that is illustrated in Figure 1.5
and it has been found to substantially boost contact prediction performance [60,103]. It was
first adopted by PSICOV [66] but is now used by most methods to adjust raw contact scores.

It was long under debate why APC works so well and how it can be interpreted. Zhang et
al. showed that APC essentially approximates the first principal component of the contact
matrix and therefore removes the highest variability in the matrix that is assumed to arise from
background biases [112]. Furthermore, they studied an advanced decomposition technique,
called LRS matrix decomposition, that decomposes the contact matrix into a low-rank and a
sparse component, representing background noise and true correlations, respectively.
Inferring contacts from the sparse component works astonishing well, improving precision
further over APC independent of the underlying statistical model.

Dr Stefan Seemayer could show that the main component of background noise can be at-
tributed to entropic effects and that a substantial part of APC amounts to correcting for
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Figure 1.5: Contact maps computed from pseudo-likelihood couplings. Subplot on top of the
contact maps illustrates the normalized Shannon entropy (pink line) and percentage of gaps
for every position in the alignment (brown line). Left: Contact map computed with Frobenius
norm as in eq. (1.14). Overall coupling values are dominated by entropic effects, i.e. the
amount of variation for a MSA position, leading to striped brightness patterns. Positions
with high column entropy have higher overall coupling values than positions with low column
entropy, for example position 33 (marked with red arrow). Right: previous contact map but
corrected for background noise with the APC, given in eq. (1.16).

these entropic biases (unpublished). In his doctoral thesis, he developed an entropy correc-
tion, computed as the geometric mean of per-column entropies, that correlates well with the
APC correction term and yields similar precision for predicted contacts. The entropy correc-
tion has the advantage that it is computed from input statistics and therefore is independent
of the statistical model used to infer the couplings. In contrast, APC and other denoising
techniques such as LRS [112] discussed above, estimate a background model from the final
contact matrix, thus depending on the statistical model used to infer the contact matrix.

1.4 Applications for Contact Prediction

The most popular and historically motivated application for contact prediction is contact-
guided de novo structure prediction.

It has long been known that the native protein 3D structure can be reconstructed from an
error-free contact map [44]. Also, protein fold reconstruction from sparse inter-residue proxim-
ity constraints obtained from experiments such as cross-linking/mass spectrometry, Foerster
resonance energy transfer (FRET) or sparse nuclear Overhauser enhancement (NOE) distance
data generated from NMR experiments has been demonstrated [36,113–117]. Predicted con-
tacts, however, have long been regarded as being of little use for structure prediction because
of their high false-positive rates [118,119]. Only with the emergence of global statistical mod-
els for contact prediction which drastically reduced false-positive rates there has been renewed
interest in de novo structure prediction aided by predicted contacts. In 2011, Marks et al.
showed that the top scoring contacts predicted with their mean-field approach mfDCA are

14



Figure 1.6: Generalized structure prediction pipeline integrating predicted contacts in form
of distance constraints that guide conformational sampling.

sufficiently accurate to successfully deduce the native fold of the protein [40]. In the following
years, methods to predict contacts have been improved and applied to model many more pro-
tein structures culminating in the high-throughput prediction of 614 protein structures out of
which more than 100 represent novel folds by Ovchinnikov and colleagues in 2017 [120–128].

Many contact-guided protocols have been established since, that typically integrate predicted
contacts in form of distance constraints into an energy function to guide the conformational
sampling process: Unicon3D [129], RASREC [130], RBOAleph [131], GDFuzz3D [132], Pcons-
Fold [133], C2S_Pipeline [134], FRAGFOLD + PSICOV [135], FILM3 [136], EVFold [40].
Figure 1.6 presents a generalized structure prediction pipeline using predicted contacts.

The optimal quality of inferred contacts and their effective utilization is still subject to dis-
cussion and further research. It has been demonstrated that only a small subset of native
contacts is sufficient to produce accurate structural models [44,45,134,137–139]. Sathyapriya
and colleagues developed a rational strategy to select important native contacts and success-
fully reconstructed the structure to near native resolution with only 8% of contacts [137].
Kim and colleagues formulated that only one correct contact for every 12 residues in the
protein is sufficient to allow accurate topology level modeling given that the contacts are non-
local and broadly distributed [45]. These studies emphasize that certain contacts are more
important than others. Long-range contacts are rare and most informative for protein struc-
ture prediction because they define the overall fold and packing of tertiary structure whereas
short-range contacts define local secondary structure [140]. It is a consistent finding that even
though long-range contacts are of higher relevance than short-range contacts for structure
reconstruction, their information alone is not sufficient [135,137,141]. Since a small number of
correct residue-residue contacts is sufficient to improve protein structure prediction and many
reconstruction protocols can tolerate missing contact information much better than erroneous
contact information, it has been stressed that methods development should focus on predict-
ing a small number of high confident contacts [45,46]. Marks and colleagues observed that
isolated false positives have a much stronger detrimental effect on structure prediction than
false positives close to true contacts [40]. Zhang et al. found that their tool Touchstone II
required an accuracy of long-range contact predictions of at least 22% to generate a positive
effect to structure prediction [142]. Frequently, folding protocols employ a filtering step to
eliminate unsatisfied or conflicting constraints possibly originating from false-positive con-
tacts [143,144]. Generally it is assumed that higher precision of predicted long-range contacts
results in improved structural models, albeit there is no strong correlation as model quality
depends on many other factors such as the secondary structure composition of the protein,
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Figure 1.7: Concatenating two multiple sequence alignments. In case multiple paralogs exist
for a gene in one species the correct interaction partner needs to be identified and matched
(marked with arrows). Sequences that cannot be paired with a unique interaction partner
need to be discarded (marked with x).

the domain size, the usage of additional sources of structural information, the type of distance
constraint function and the particular structure reconstruction protocol [40,135,140,142,145].

Coevolution has not only been studied for residues pairs within a protein but also for residue
pairs across protein–protein interfaces [121,122,127,146,147]. Even though the methodology
of detecting coevolving amino acid pairs from the MSA is the same, a new challenge arises
for the correct identification of orthologous interacting partners. Without the correct pairing
of interacting partners for every species the detection of coevolutionary signals would be
compromised. However, the generation of a MSA of paired sequences is complicated in the
presence of multiple paralogs of a gene in a single genome. The problem of paralog matching is
visualized in Figure 1.7. For prokaryotes, sequence paires are typically identified by exploiting
the bacterial gene organisation in form of operons, i.e. co-localized genes will be co-expressed
and are more likely to physically interact. Co-localisation of genes has also been applied to
match genes from eurkaryotes, assuming that Uniprot accession numbers can be used as a
proxy for genomic distances [147]. New strategies have been developed based on the idea that
an alignment with correctly matched paralogs will maximize the coevolution score [148,149].

A related objective is the study of the oligomerization status of proteins. The study of homo-
oligomers is simplified in the sense that the identical protein sequence of both interaction
partners renders the concatenation of two MSAs unnecessary and allows to work with one
MSA. A different challenge lies in the correct distinction between the physical contacts of
the monomeric structure and the inter-protein contacts. With the availability of monomeric
structural data the idea is to filter out those high scoring contacts that form contacts in the
monomeric structure or are located in the protein core. The remaining high scoring false
positive contacts at the surface of the protein are potential contacts at the interface that can
be incorporated into a docking protocol to drive complex formation [150,151] (see Figure 1.8).

Predicted contacts have also been applied in the analysis of potential alternative confor-
mations of proteins [42,152–156]. Coevolutionary analysis detects all direct residue–residue
correlations, regardless of whether the interaction is formed in a transient state of the pro-
tein or its stable form. Therefore, predicted contact maps might capture multiple states of
a protein, since they are of functional importance and thus under evolutionary pressure (see
Figure 1.8). Sfriso and colleagues developed an automated pipeline that introduces filtered
predicted contacts as ensemble restraints into a molecular dynamics simulations and is able
to detect alternative relevant conformational states [152].

Even though the coevolutionary methods have been developed for proteins, they have been
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Figure 1.8: Predicted residue-residue contacts facilitate the study of diverse problems in the
field of structural biology. Left Contacts can be used to define the interface of homo-oligomers.
Given a monomeric protein structure, false positive long-range predictions represent potential
contacts in the oligomeric protein interface. Right Predicted contacts can capture multiple
states of a protein. Given the structure of a protein in a distinct conformation, false positive
contacts might be satisfied in an alternative conformation of that protein.

successfully applied to analyse nucleotide coevolution and to predict RNA tertiary structures
with the help of predicted nucleotide-nucleotide contacts [157–159]. Much less RNA sequences
are required compared to protein sequences in order to extract statistically significant signals
because of the reduced number of model parameters when working with a four letter alphabet
(compared to a 20 letter alphabet with proteins). On the downside, alignment errors resulting
from the complicated determination of RNA multiple sequence alignments limits the accuracy
of coevolution analysis [159]. Despite the diminished accuracy, predicted nucleotide contacts
have been demonstrated to improve RNA structure prediction over conventional methods
[158].

Predicted residue-residue contacts have been used to tackle various other problems in the area
of structural biology. Sadowski used predicted contacts to parse domain boundaries based on
the simple idea that contacts are more abundant within domains than between domains [41].
Contact maps display patterns that reflect secondary structure elements, which can be parsed
to detect alpha helices and beta-sheets [89,160]. Quality assessment of structural models,
involving model selection and ranking, is a crucial task in structural biology. Predicted residue-
residue contacts can indicate the best protein structure among a set of properly folded and
misfolded structures by counting the number of satisfied contacts [119,161]. Besides ranking of
models, predicted contacts have been used as features for training machine learning methods
that predict the global quality of a structural model [162,163].

The mathematical framework of the coevolution models used to predict residue-residue pro-
teins has been found to be useful in other fields of biology beyond structure prediction. Skwark
and colleagues applied the popular coevolution statistical models to genomes and developed
a statistical method called genomeDCA [164,165]. They are able to identify coevolving poly-
morphic locus pairs based on the idea that the corresponding proteins form protein-protein
interactions that are under strong evolutionary pressure. In a case study on two large human
pathogen populations they found that three quarters of coevolving loci are located in genes
that determine beta-lactam (antibiotic) resistance.

The statistical models used for coevolution analysis provide information about which residue
pairs are important in evolution for folding or functional constraints. They can be used to
assign probabilities to sequences that reflect the overall compliance of a sequence with the
protein family under study and thereby provide quantitative predictions of mutational effects
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[43,166,167]. Computational screening of mutational effects can support and complement the
costly and time-consuming directed evolution or mutational screening experiments [43]. With
a similar idea in mind, the coevolution models have been applied to sequences of human
immune repertoires [168,169]. Antibody affinity maturation can be viewed as a Darwinian
process with the affinity to the target antigen being the main fitness criterion. Therefore,
given the model representing the antibody sequence family, the probability for a sequence
reflects the binding affinity to the target antigen. Quantifying the effect of mutations is also
helpful for protein design. Coevolving positions might be of particular interest as hotspots
for engineering protein stability or functional specificity because they determine positions
relevant to protein structure and function [170]. The interpretation of the model parameters
as energies has helped to analyse the sequence capacity of protein folds, that is how many
sequences can fold into a specific structure [171].

Fox and colleagues turn the idea of DCA upside down. They developed a benchmark for
testing the accuracy of large MSAs by evaluating the agreement between the predicted and
the native contacts [172]. Based on the assumption that better alignments provide more
accurate contact predictions, the alignment quality is inferred from the precision of predicted
contacts.

1.5 Evaluating Contact Prediction Methods

Choosing an appropriate benchmark for contact prediction is determined by the further uti-
lization of the predictions. Most prominently, predicted contacts are used to assist structure
prediction as outlined in the last section 1.4. Therefore, one could assess the quality of struc-
tural models computed with the help of predicted contacts. However, predicting structural
models adds not only another layer of computational complexity but also raises questions
about implementation details of the folding protocol.

It has been found that in general a small number of accurate contacts is sufficient to con-
strain the overall protein fold as already discussed. From these considerations emerged various
standard benchmarks that have been established by the CASP community over many years
[91,173,174]. CASP, the well-respected and independent competition for the structural bioin-
formatic’s community introduced the contact prediction category in 1996. Taking place every
two years, the progress in the field is assessed in a blind competition and the community
discusses the outcome in a subsequent meeting. According to the CASP regulations, a pair of
residues is defined to be in physical contact when the distance between their Cβ atoms (Cα

in case of glycine) is less than 8Å in the reference protein structure.

The overall performance of a contact predictor is evaluated by the mean precision over a test
set of proteins with known high quality 3D structures against the top scoring predictions from
every protein. The number of top scoring predictions per protein is typically normalized with
respect to protein length L and precision is defined as the number of true contacts among the
top scoring predicted contacts,

precision =
TP

TP + FP
, (1.17)

where TP is a true positive contact and FP is false positive contact. A popular variant of
this benchmark plot shows the mean precision of a certain fraction of top ranked predictions
(e.g. L/5 top ranked predictions) against specific properties of the test proteins such as protein
length or alignment depth [175]. Another informative metric is mean error defined as:
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Figure 1.9: Distribution of residue pair Cβ distances over 6741 proteins in the data set (see
Methods 2.6.1) at different minimal sequence separation thresholds.

mean error =
error

TP + FP

{
error = ∆Cβ − T if ∆Cβ > T

error = 0, otherwise
(1.18)

where ∆Cβ is the actual distance of a residue pair in the native structure, and T is the
distance threshold defining a true contact. The mean error helps to asses how wrong false
positive predictions are. During CASP11 further evaluation metrics have been introduced,
such as Matthews correlation coefficient, area under the precision-recall curve or F1 measure
but they are rarely used in studies [91].

Precision of residue-residue contact predictions correlates with the number of diverse sequences
in the multiple sequence alignment [66,91]. In the latest CASP12 competition, the best meth-
ods achieved average precisions of over 80% for the top L/2 ranked predictions for targets
with several thousand diverse sequence homologs [176]. For coevolution methods the precision
drops gradually as less sequence homologs are available. In contrast, methods trained on gen-
eral sequence features are generally more robust. Their performance is less dependent on the
number of available sequence homologs and therefore they can outperform pure coevolution
methods in low data ranges [72,177].

1.5.1 Sequence Separation

Local residue pairs separated by only some positions in sequence (e.g |i− j| < 6) are usually
filtered out for evaluating contact prediction methods. They are trivial to predict as they
typically correspond to contacts within secondary structure elements and reflect the local
geometrical constraints. Figure 1.9 shows the distribution of Cβ distances for various minimal
sequence separation thresholds. Without filtering local residue pairs (sequence separation 1),
there are several additional peaks in the distribution around 5.5Å , 7.4Å and 10.6Å that can
be attributed to local interactions in e.g. helices (see Figure 1.10).

Commonly, sequence separation bins are applied to distinguish short (6 < |i − j| ≤ 12),
medium (12 < |i − j| ≤ 24) and long range (|i − j| > 24) contacts [91,174]. Especially long
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Figure 1.10: Cβ distances between neighboring residues in α-helices. Left: Direct neighbors
in α-helices have Cβ distances around 5.4Å due to the geometrical constraints from α-helical
architecture. Right: Residues separated by two positions (|i− j| = 2) are less geometrically
restricted to Cβ distances between 7Å and 7.5Å .

range contacts are of importance for structure prediction as they are the most informative
and able to constrain the overall fold of a protein [173].

1.5.2 Interpretation of Evaluation Results

There are certain subtleties to be considered when interpreting contact prediction evaluation
results.

The rigid Cβ distance definition of a contact is a very rough measure of true physical inter-
actions between amino acid side chains. More importantly, interactions between side chains
depend on their physico-chemical properties, on their orientation and different environments
within proteins [178]. A simple Cβ distance threshold not only misses to reflect biological in-
teraction preferences of amino acids but also provides a questionable gold-standard for bench-
marking. Other distance thresholds and definitions for physical contacts (e.g minimal atomic
distances or distance between functional groups) have been studied as well. In fact, Duarte
and colleagues found that using a Cβ distance threshold between 9Å and 11Å yields opti-
mal results when predicting the 3D structure from the respective contacts [46]. Anishchenko
and colleagues analysed false positive predictions with respect to a minimal atom distance
threshold < 5Å , as they found that this cutoff optimally defines direct physical interactions
of residue pairs [179].

Another issue concerns structural variation within a protein family. Evolutionary couplings
are inferred from all family members in the MSA and therefore predicted contacts might be
physical contacts in one family member but not in another. Anishchenko et al. could show
that more than 80% of false positives at intermediate distances (minimal heavy atom distance
5-15Å ) are true contacts in at least one homologous structure [179]. Therefore, choosing the
right trade-off between sensitivity and specificity when generating alignments is a crucial step
as well as choosing the target protein structure for evaluation.

Finally, an important aspect not considered in the standard benchmarks is the spread of pre-
dicted contacts. It is perfectly possible to improve precision of predicted contacts without
translating this improvement to better structural models. The reason being that structurally
redundant contacts, that is contacts in the immediate sequence neighborhood of other con-
tacts, do not give additional information to constrain the fold [40,45,81]. For example, given
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Figure 1.11: The phylogenetic dependence of closely related sequences can produce covariation
signals. Here, two independent mutation events (highlighted in red) in two branches of the
tree result in a perfect covariation signal for two positions.

a contact between residues i and j, there is hardly an added value knowing that there is a
contact between residues i+1 and j+1 when it comes to predicting the overall topology.
This observation is highly relevant for deep learning methods due to their unique ability
to abstract higher order interactions and recognize contact patterns. Several measures of
the contact spread have been developed, like the mean euclidean distance between true and
predicted contacts, but are not commonly evaluated yet [40,145].

1.6 Challenges for Coevolution Methods

Coevolution methods face several challenges when interpreting the covariation signals obtained
from a MSA. Some of these challenges have been successfully met (e.g. disentangling transitive
effects with global statistical models), others are still open or open up new perspectives, such
as dissecting different sources of coevolution signals.

1.6.1 Phylogenetic Effects as a Source of Noise

Sequences in MSAs do not represent independent samples of a protein family. In fact, there
is selection bias from sequencing species of special interest (e.g human pathogens) or se-
quencing closely related species, e.g multiple strains. This uneven sampling of a protein
family’s sequence space leaves certain regions unexplored whereas others are statistically over-
represented [96,97,180]. Furthermore, due to their evolutionary relationship, sequences of a
protein family have a complicated dependence structure. Closely related sequences can cause
spurious correlations between positions, as there was not sufficient time for the sequences to
diverge from their common ancestor [59,63,64]. Figure 1.11 illustrates a simplified example,
where dependence of sequences due to phylogeny leads to a covariation signal.

To reduce the effects of over-represented sequences, typically a simple weighting strategy is
applied that assigns a weight to each sequence that is the inverse of the number of similar
sequences according to an identity threshold [100]. It has been found that reweighting im-
proves contact prediction performance [66,96,181] significantly but results are robust against
the choice of the identity threshold in a range between 0.7 and 0.9 [96].

1.6.2 Entropic Effects as a Source of Noise

Another source for noise is entropy bias that is closely linked to phylogenetic effects. By
nature, methods detecting signals from correlated mutations rely on a certain degree of co-
variation between sequence positions [64]. Highly conserved interactions pose a conceptual
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challenge, as changes from one amino acid to another cannot be detected if sequences do not
vary. This results in generally higher co-evolution signals from positions with high entropy
and underestimated signals for highly conserved interactions [57]. Several heuristics have been
proposed to reduce entropy effects, such as Row-Column-Weighting (RCW) [59] or Average
Product Correction (APC) [60] (see section 1.3.6).

1.6.3 Finite Sampling Effects

Spurious correlations can arise from random statistical noise and blur true co-evolution signals
especially in low data scenarios. Consequently, false positive predictions attributable to ran-
dom noise accumulate for protein families comprising low numbers of homologous sequences.
This relationship was confirmed in many studies and as a rule of thumb it has been argued
that proteins with L residues need at least 5L sequences in order to obtain confident predic-
tions that can bet used for protein structure prediction [103,180]. Recently it was shown that
precision of predicted contacts saturates for protein families with more than 103 diverse se-
quences and that precision is only dependent on protein length for families with small number
of sequences [179].

Interesting targets for contact prediction are protein families without any associated structural
information. As can be seen in Figure 1.12, those protein families generally comprise low
numbers of homologous sequences with a median of 185 sequences per family and are thus
susceptible to finite sampling effects.

With the rapidly increasing size of protein sequence databases (see section 1.1) the num-
ber of protein families with enough sequences for accurate contact predictions will increase
steadily [103,182]. Nevertheless, because of the already mentioned sequencing biases, better
and more sensitive statistical models are indispensable to extend the applicability domain of
coevolutionary methods.

1.6.4 Multiple Sequence Alignments

A correct MSA is the essential starting point for coevolution analysis as incorrectly aligned
residues will confound the true signal. Highly sensitive and accurate alignment tools such
as HHblits generate high quality alignments suitable for contact prediction [184]. However,
there are certain subtleties to be kept in mind when generating alignments.

For example, proteins with repeated stretches of amino acids or with regions of low complexity
are notoriously hard to align. Especially, repeat proteins have been found to produce many
false positive contact predictions [179]. Therefore, MSAs need to be generated with great care
and covariation methods need to be tailored to these specific types of proteins [185,186].

Furthermore, sensitivity of sequence search is critically dependent on the research question
at hand and on the protein family under study. Many diverse sequences in general increase
precision of predictions [175,187]. However, deep alignments can capture coevolutionary sig-
nals from different subfamilies [150]. If only a specific subfamily is of interest, many false
predictions might arise from strong coevolutionary signals specific to another subfamily that
constitutes a prominent subset in the alignment [170]. Therefore, a trade-off between speci-
ficity and diversity of the alignment is required to reach optimal results [120].

Another intrinsic characteristic of MSAs are repeated stretches of gaps that result from com-
monly utilized gap-penalty schemes assigning large penalties to insert a gap and lower penal-
ties to gap extensions. Most statistical coevolution models for contact prediction treat gaps as
the 21st amino acid. This introduces an imbalance as gaps and amino acids express different
behaviors which can result in gap-induced artefacts [111].
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Figure 1.12: Distribution of PFAM family sizes. Less than half of the families in PFAM
(7990 compared to 8489 families) do not have an annotated structure. The median family
size in number of sequences for families with and without annotated structures is 185 and
828, respectively. Data taken from PFAM 31.0 (March 2017, 16712 entries) [183].

1.6.5 Alternative Sources of Coevolution

Coevolutionary signals can not only arise from intra-domain contacts, but also from other
sources, like homo-oligomeric contacts, alternative conformations, ligand-mediated interac-
tions or even contacts over hetero-oligomeric interfaces (see Figure 1.13) [180]. With the
objective to predict physical contacts it is therefore necessary to identify and filter these
alternative sources of coevolutionary couplings.

Many proteins form homo-oligomers with evolutionary conserved interaction surfaces (Fig-
ure 1.13 b). Currently it is hard to reliably distinguish intra- and inter-molecular contacts
[150]. Anishchenko et al. found that approximately one third of strong co-evolutionary sig-
nals between residue pairs at long distances (minimal heavy atom distance >15Å ) can be
attributed to interactions across homo-oligomeric interfaces [179]. Several studies specifically
analysed co-evolution across homo-oligomeric interfaces for proteins of known structure by
filtering for residue pairs with strong couplings at long distances [120,126,150,153,154,188] or
used co-evolutionary signals to predict homo-dimeric complexes [151].

It has been proposed that co-evolutionary signals can also arise from ligand or atom medi-
ated interactions between residues or from critical interactions in intermediate folding states
(Figure 1.13 c) [181,189]. Confirming this hypothesis, a study showed that the cumulative
strength of couplings for a particular residue can be used to predict functional sites [120,180].

Another important aspect is conformational flexibility (Figure 1.13 c). PDB structures used to
evaluate coevolution methods represent only rigid snapshots taken in an unnatural crystalline
environment. Yet proteins possess huge conformational plasticity and can adopt distinct
alternative conformations or adapt shape when interacting with other proteins in an induced
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Figure 1.13: Possible sources of coevolutionary signals. a) Physical interactions between
intra-domain residues. b) Interactions across the interface of predominantly homo-oligomeric
complexes. c) Interactions mediated by ligands or metal atoms. d) Transient interactions
(dashed lines) due to conformational flexibility.

fit manner [190]. Several studies demonstrated successfully that coevolutionary signals can
capture interactions specific to different distinct conformations [96,120,152,154].

24



2
Interpretation of Coupling Matrices

Contact prediction methods learning a Potts model for the MSA of a protein familiy, map the
inferred 20 x 20 dimensional coupling matrices wij onto scalar values to obtain contact scores
for each residue pair as outlined in section 1.3.6. As a result, the full information contained
in coupling matrices is lost, such as the contribution of individual couplings wijab, whether
a coupling is positive or negative, higher order dependencies between couplings or possibly
biological meaningful signals. The following sections give some intuition for the information
contained in coupling matrices.

2.1 Single Coupling Values Carry Evidence of Contacts

Given the success of DCA methods, it is clear that the inferred couplings wij are good
indicators of spatial proximity for residue pairs. As described in section 1.3.6, a contact score
Ci,j for a residue pair (i, j) is commonly computed as the Frobenius norm over the coupling

matrix, Ci,j = ||wij ||2 =
√∑20

a,b=1wijab
2.

The plots in Figure 2.1 show the correlation of squared coupling values wijab
2 with binary

contact class (contact=1, non-contact=0) and the standard deviation of squared coupling
values wijab

2 for contacts computed on a dataset of 100.000 residue pairs per class (for details
see methods section 2.6.6). All couplings have a weak positive class correlation, meaning the
stronger the squared coupling value, the more likely a contact can be inferred. Correlation is
weak because most couplings wijab are close to zero since typically only few amino acid pairings
per residue pair carry evidence and produce a signal. Generally, couplings that involve an
aliphatic amino acid such as isoleucine (I), leucine (L), valine (V) or an alanine (A) express
the strongest class correlation. In contrast, cysteine pairs (C-C) or pairs involving only the
charged residus arginine (R), glutamic acid (E), lysine (K) or aspartic acid (D) correlate only
weakly with contact class. Interestingly, for residue pairs being in physical contact, C-C and
couplings involving charged residues have the highest standard-deviation among all couplings
as can be seen in the right plot in Figure 2.1. Standard deviation of squared coupling values
from non-contacts shows no relevant patterns and is on average one magnitude smaller than
for the contact class (see Appendix Figure D.1).

Different couplings are of varying importance for contact inference and have distinct charac-
teristics. When looking at the raw coupling values (without squaring), these charateristics
become even more pronounced. The plots in Figure 2.2 show the correlation of raw coupling
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Figure 2.1: Left Pearson correlation of squared coupling values (wijab)
2 with contact class

(contact=1, non-contact=0). Right Standard deviation of squared coupling values for residue
pairs in contact. Dataset contains 100.000 residue pairs per class (for details see methods
section 2.6.6). Amino acids are abbreviated with one-letter code and broadly grouped with
respect to physico-chemical properties listed in Appendix B.

values wijab with contact class and the standard deviation of coupling values for contacts.
Standard deviation of coupling values for non-contacts shows no relevant patterns and is on
average half as big as for the contact class (see Appendix Figure D.1). Interestingly, in con-
trast to the findings for squared coupling values, couplings for charged residue pairs, involving
arginine (R), glutamic acid (E), lysine (K) and aspartic acid (D), have the strongest class cor-
relation (positive and negative), whereas aliphatic coupling pairs correlate to a much lesser
extent. This implies that squared coupling value is a better indicator of a contact than the
raw signed coupling value for aliphatic couplings. On the contrary, the raw signed coupling
values for charged residue pairs are much more indicative of a contact than the magnitude
of their squared values. Raw couplings for cysteine (C-C) pairs, proline (P) and tryptophane
(W) correlate only weakly with contact class. For these pairs neither a squared coupling value
nor the raw coupling value seems to be a good indicator for a contact.

Looking only at correlations can be misleading if there are non-linear patterns in the data,
for example higher order dependencies between couplings. For this reason it is advisable to
take a more detailed view at coupling matrices and the distributions of their values.

2.2 Coupling Profiles Vary with Distance

Analyses in the previous section showed that certain coupling values correlate more or less
strong with contact class.

More insights can be obtained by looking at the distribution of distinct coupling values for
contacts, non-contacts and arbitrary populations of residue pairs. Figure 2.3 shows the dis-
tribution of selected couplings for filtered residue pairs with Cβ − Cβ distances < 5Å (see
methods section 2.6.7 for details). The distribution of R-E and E-E coupling values is shifted
and skewed towards positive and negative values respectively. This is in accordance with at-
tracting electrostatic interactions between the positively charged side chain of arginine and the
negatively charged side chain of gluatamic acid and also with repulsive interactions between
the two negatively charged glutamic acid side chains.

Coupling values for cysteine pairs (C-C) have a broad distribution that is skewed towards
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Figure 2.2: Left Pearson correlation of raw signed coupling values wijab with contact class
(contact=1, non-contact=0). Right Standard deviation of coupling values for residue pairs
in physical contact. Dataset contains 100.000 residue pairs per class (for details see section
2.6.6). Amino acids are abbreviated with one-letter code and they are broadly grouped with
respect to physico-chemical properties listed in Appendix B.

positive values, reflecting the strong signals obtained from covalent disulphide bonds. The
broad distribution for C-C, R-E and E-E agrees with the observation in section 2.1 that these
specific coupling values have large standard deviations and that for charged residue pairings
the signed coupling value is a strong indicator of a contact.

Hydrophobic pairs like V-I have an almost symmetric coupling distribution, confirming the
finding that the direction of coupling is not indicative of a true contact whereas the strength of
the coupling is. The hydrophobic effect that determines hydrophobic interactions is not spe-
cific or directed. Therefore, hydrophobic interaction partners can commonly be substituted by
other hydrophobic residues, which explains the not very pronounced positive coupling signal
compared to more specific interactions, e.g ionic interactions. It is not clear though, why hy-
drophobic pairs have an equally strong negative coupling signal at this distance range because
this speaks against the hypothesis that hydrophobic pairs are commonly interchangeable. A
vague explanation could be that a location in the tighly packed protein core calls for other
very specific constraints, e.g. sterical fit or contact number, besides hydrophobic properties
that are prohibitive for a particular hydrophobic residue at a certain position.

The distribution of aromatic coupling values like F-W is slightly skewed towards negative
values, accounting for steric hindrance of their large sidechains at small distances. The yet
very pronounced positive coupling signal for the bulky aromatic residues at this short distance
range is not clear. The bulky planar aromatic rings of two aromatic residues often point away
from each other when their Cβ-Cβ distances are small to avoid steric hindrance (see left plot
in Figure 2.4). A positive coupling signal might originate from other structural constraints
from the local environment affecting both sidechains, similar to the scenario hypothetically
explaining the negative coupling signal for hydrophobic residues.

In an intermediate Cβ distance range between 8Å and 12Å the distributions for all coupling
values are centered close to zero and are less broad. The distributions are still shifted and
skewed, but less pronounced compared to the distributions at Cβ − Cβ distances < 5Å . For
aromatic pairs like F-W, the distribution of coupling values has very long tails, suggesting
rare but strong couplings for aromatic side chains at this distance.

Figure 2.6 shows the distribution of selected couplings for residue pairs far apart in the protein
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Figure 2.3: Distribution of selected couplings for filtered residue pairs with Cβ −Cβ distances
< 5Å (see methods section 2.6.7 for details). Number of coupling values used to determine
the distribution is given in brackets in the legend. R-E = couplings for arginine and glutamic
acid pairs, C-C = coupling for cystein residue pairs, V-I = coupling for valine and isoleucine
pairs, F-W = coupling for phenylalanine and tryptophane pairs, E-E = coupling for glutamic
acid residue pairs.

Figure 2.4: Peculiarities of aromatic residues. Left The planar ring system of aromatic
sidechains at short Cβ-Cβ distances (e.g. ∆Cβ < 5Å ) often points away from each other
to avoid steric hindrance. Right Network-like structure of aromatic residues in the protein
core. 80% of aromatic residues are involved in such networks that are important for protein
stability [191].
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Figure 2.5: Distribution of selected couplings for filtered residue pairs with Cβ −Cβ distances
between 8Å and 12Å (see methods section 2.6.7 for details). Number of coupling values used
to determine the distribution is given in brackets in the legend. Couplings are the same as in
Figure 2.3.

structure (Cβ − Cβ distances > 20Å ).
The distribution for all couplings is centered at zero and has small variance. Only for C-C
coupling values, the distribution has a long tail for positve values, presumably arising from the
fact that the maximum entropy model cannot distuinguish highly conserved signals of multiple
disulphide bonds within a protein. This observation also agrees with the previous finding in
section 2.1 that C-C coupling values, albeit having large standard-deviations, correlate only
weakly with contact class. The same arguments apply to couplings of aromatic pairs that
have a comparably broad distribution and do not correlate strongly with the contact class.
The strong coevolution signals for aromatic pairs even at high distance ranges might result
from some kind of cooperative effects. Aromatic residues are known to form network-like
structures in the protein core that stabilize protein structure [191]. An example is given in
the right plot in Figure 2.4. A possible explanation might be that the Potts model is limited
to learning single positions and pairwise correlations. An extension to higher order couplings
might resolve these cooperative effects observed between residues in the protein core.

2.3 Physico-Chemical Fingerprints in Coupling Matrices

The previous analysis showed that individual couplings have characterstic distributions that
reflect the biophysical and steric interaction properties between amino acids. Individual cou-
pling matrices for a residue pair that is in physcial contact often display striking patterns that
agree with these findings. These patterns allow a biological interpretation of the coupling val-
ues that reveal details of the physico-chemical interdependency between both residues.

Figure 2.7 visualizes the inferred coupling matrix and single potentials vi and vj for a residue
pair (i, j) computed with the pseudo-likelihood method. The single potentials via and vja
describe the tendency for each amino acid a to appear at positions i and j, and the couplings
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Figure 2.6: Distribution of selected couplings for filtered residue pairs with Cβ −Cβ distances
between 20Å and 50Å (see methods section 2.6.7 for details). Number of coupling values
used to determine the distribution is given in brackets in the legend. Couplings are the same
as in Figure 2.3.

wijab describe the tendency of amino acid a at position i to co-occur with amino acid b at
position j. A cluster of strong coupling values can be observed for the couplings between the
charged residues glutamic acid (E), aspartic acid (D), lysine (K) and arginine (R) and the
polar residue glutamine (Q). Positive coupling values arise between positively charged residues
(K, R) and negatively charged residues (E, D), whereas couplings between equally charged
residues have negative values. These exemplary couplings (E-R, E-K, K-D) perfectly reflect
the interaction preference for residues forming salt bridges. Indeed, in the protein structure
the first residue (E) forms a salt bridge with the second residue (R) as can be seen in the left
plot in Figure 2.9.

Figure 2.8 visualizes the coupling matrix for a pair of hydrophobic residues. Hydrophobic
pairings, such as alanine (A) - isoleucine (I), or glycine (G) - isoleucine (I) have strong coupling
values but the couplings also reflect a sterical constraint. Alanine is a small hydrophobic
residue and it is favoured at both residue positions: it has strong positive single potentials
vi(A) and vj(A) and strong positive couplings with isoleucine (I), leucine (L) and methionine
(M). But alanine is disfavoured to appear at both positions at the same time since the A-A
coupling is negative. Figure 2.9 illustrates the location of the two residues in the protein core.
Here, hydrophobic residues are densely packed and the limited space allows for only small
hydrophobic residues.

Many more biological interpretable signals can be identified from coupling matrices, including
pi-cation interactions (see Figure 2.10), aromatic-proline interactions (see Figure 2.11), or
disulphide bonds (see Figure 2.12).
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Figure 2.7: Couplings wijab and single potentials via and vja computed with pseudo-likelihood
for residues 6 and 82 in the carbamoyl phosphate synthetase protein (PDB id 1a9x_A domain
5). The matrix shows the 20x20 couplings wijab with color representing coupling strength and
direction (red = positive coupling value, blue = negative coupling value) and diameter of
bubbles representing absolute coupling value |wijab|. Bars at the x-axis and y-axis correspond
to the Potts model single potentials vi and vj respectively. Color reflects the value of single
potentials. Amino acids are abbreviated with one-letter code and they are broadly grouped
with respect to physico-chemical properties listed in Appendix B.
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Figure 2.8: Couplings wijab and single potentials via and vja computed with pseudo-likelihood
for residues 29 and 39 in the lambda integrase protein (PDB id 1ae9_A). The matrix shows
the 20x20 couplings wijab. Bars at the x-axis and y-axis correspond to the Potts model single
potentials vi and vj respectively. Color coding is the same as in Figure 2.7

Figure 2.9: Interactions between protein side chains. Left: Glutamic acid (residue 6) forms
a salt bridge with lysine (residue 82) in the carbamoyl phosphate synthetase protein (PDB
id 1a9x_A domain 5). Right: Alanine (residue 29) and leucine (residue 39) within the
hydrophobic core of the lambda integrase protein (PDB id 1ae9_A).
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Figure 2.10: Tyrosine (residue 37) and Lysine (residue 48) forming a cation-π interaction in
the C-terminal WRKY domain of Arabidopsis thaliana (PDB id 2ayd_A). Left Coupling
matrix wij for residue i = 37 and residue j = 48. The matrix shows the 20x20 couplings
wijab. Bars at the x-axis and y-axis correspond to the Potts model single potentials vi and vj
respectively. Color coding is the same as in Figure 2.7 Right Cation-π interaction between
Tyrosine (residue 37) and Lysine (residue 48).

Figure 2.11: Proline and tryptophan (residues 17 and 34) forming a CH/π interaction in the
murine leukemia virus receptor-binding glycoprotein (PDB id 1aol_A). Left Coupling matrix
wij for residue i=17 and residue j=34. The matrix shows the 20x20 couplings wijab. Bars at
the x-axis and y-axis correspond to the Potts model single potentials vi and vj respectively.
Color coding is the same as in Figure 2.7 Right Proline (residues 17) and tryptophan (residues
34) stacked on top of each other engaging in a CH/π interaction.
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Figure 2.12: Two cystein residues (residues 54 and 64) forming a covalent disulfide bond
in human interleukin-6 (PDB id 1alu_A). Left Coupling matrix wij for residue i= 54 and
residue j = 64. The matrix shows the 20x20 couplings wijab. Bars at the x-axis and y-axis
correspond to the Potts model single potentials vi and vj respectively. Color coding is the
same as in Figure 2.7 Right Disulfide bond between the cystein residues 54 and 64 in the
structure.

2.4 Higher Order Dependencies Between Couplings

The analyses in the last section showed that the contact matrices for residue pairs in physi-
cal contact often contain informative patterns regarding the underlying structural constraint.
Therefore it can be expected that there are biological meaningful inderdependencies between
individual coupling values and further insights might be concealed in higher order relation-
ships. Unfortunately, it is not possible to reasonably visualize high dimensional coupling
matrices.

Exploring two dimensional coupling scatter plots strengthens the observation that couplings
matrices contain signals that reflect biological relevant amino acid interactions. The plots in
the top row in Figure 2.13 show the distribution of couplings for filtered residue pairs with
Cβ − Cβ distances < 8Å between the ionic pairings of E-R and R-E and between the ionic
pairing R-E and the equally charged residues E-E, respectively. Coupling values for R-E
and E-R are positively correlated with predominantly positive values. This means when the
amino acid pair R-E is frequently observed at two positions i and j, then it also likely that the
amino acid pair E-R can be frequently observed. This situation indicates an important ionic
interaction whereby the location of the positively and negatively charged residue at position
i or j is irrelevant.

On the contrary, coupling values for R-E and E-E are negatively correlated, with positive
values for R-E and negative values for E-E. This distribution can be interpreted with frequently
occuring amino acid pairs R-E at two positions i and j while at the same time the amino acid
pair E-E cannot be observed. Again, this situation coincides with amino acid pairings that
would be expected for an ionic interaction.

The bottom left plot in Figure 2.13 shows the distribution between couplings for the hy-
drophobic pairings I-L and V-I that is almost symmetric and broadly centered around zero.
Coupling distributions for residue pairs that are not physically interacting (Cβ ≫ 8Å ) re-
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semble the distribution for hydrophobic pairings in that there is no correlation, but at high
distance the distributions are much tighter centered around zero (bottom right plot in Figure
2.13).

2.5 Discussion

The analysis in this chapter proved that the 20x20 dimensional coupling matrices wij contain
a wealth of information that is irretrievably lost when computing the heuristic contact score
in form of the Frobenius norm of the coupling matrix. For several amino acid pairs (e.g. E-R,
E-E) the direction of the corresponding coupling value is a strong indicator for a contact.
More quantitatively, the distribution of individual couplings reflect physico-chemical interac-
tion preferences between amino acids. Furthermore, characteristic patterns in the coupling
matrices often point at the undelrying structural constraint that is subject to evolutionary
pressure. The patterns also illustrate that there are higher order dependencies between the
individual coupling values that also are in accordance with physico-chemical interaction pref-
erences between amino acids.

Coucke and collegues performed a thorough quantitative analysis of coupling matrices se-
lected from confidently predicted residue pairs [192]. They showed that eigenmodes obtained
from a spectral analysis of averaged coupling matrices are closely related to physico-chemical
properties of amino acid interactions, like electrostaticity, hydrophobicity, steric interactions
or disulphide bonds. By looking at specific populations of residues, like buried and exposed
residues or residues from specific protein classes (small, mainly α, etc), the eigenmodes of
corresponding coupling matrices are found to capture very characteristic interactions for each
class, e.g. rare disulfide contacts within small proteins and hydrophilic contacts between ex-
posed residues. Their study confirms the qualitative observations presented above that amino
acid interactions can leave characteristic physico-chemical fingerprints in coupling matrices.
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Figure 2.13: Two-dimensional distribution of approximately 10000 coupling values computed
with pseudo-likelihood. Top Left The 2-dimensional distribution of couplings E-R and R-E
for residue pairs with Cβ − Cβ distances < 8Å is almost symmetric and the coupling values
are positively correlated. Top Right The 2-dimensional distribution of couplings E-R and
E-E for residue pairs with Cβ − Cβ distances < 8Å is almost symmetric and the coupling
values are negatively correlated. Bottom Left The 2-dimensional distribution of couplings
I-L and V-I for residue pairs with Cβ − Cβ distances < 8Å is symmetrically distributed
around zero without visible correlation. Bottom Right The 2-dimensional distribution of
couplings I-L and V-I for residue pairs with Cβ − Cβ distances > 20Å is tighly distributed
around zero.
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2.6 Methods

2.6.1 Dataset

A protein dataset has been constructed from the CATH (v4.1) [193] database for classification
of protein domains. All CATH domains from classes 1(mainly α), 2(mainly β), 3(α+β) have
been selected and filtered for internal redundancy at the sequence level using the pdbfilter

script from the HH-suite[184] with an E-value cutoff=0.1. The dataset has been split into
ten subsets aiming at the best possible balance between CATH classes 1,2,3 in the subsets.
All domains from a given CATH topology (=fold) go into the same subsets, so that any two
subsets are non-redundant at the fold level. Some overrepresented folds (e.g. Rossman Fold)
have been subsampled ensuring that in every subset each class contains at max 50% domains
of the same fold. Consequently, a fold is not allowed to dominate a subset or even a class in
a subset. In total there are 6741 domains in the dataset.

Multiple sequence alignments were built from the CATH domain sequences (COMBS) using
HHblits [184] with parameters to maximize the detection of homologous sequences:

hhblits -maxfilt 100000 -realign_max 100000 -B 100000 -Z 100000 -n 5 -e 0.1

-all hhfilter -id 90 -neff 15 -qsc -30

The COMBS sequences are derived from the SEQRES records of the PDB file and sometimes
contain extra residues that are not resolved in the structure. Therefore, residues in PDB
files have been renumbered to match the COMBS sequences. The process of renumbering
residues in PDB files yielded ambigious solutions for 293 proteins, that were removed from
the dataset. Another filtering step was applied to remove 80 proteins that do not hold the
following properties:

• more than 10 sequences in the multiple sequence alignment (N > 10)
• protein length between 30 and 600 residues (30 ≤ L ≤ 600)
• less than 80% gaps in the multiple sequence alignment (percent gaps < 0.8)
• at least one residue-pair in contact at Cβ < 8Å and minimum sequence separation of 6

positions

The final dataset is comprised of 6368 proteins with almost evenly distributed CATH classes
over the ten subsets (Figure 2.14).

2.6.2 Computing Pseudo-Likelihood Couplings

Dr Stefan Seemayer has reimplementated the open-source software CCMpred [101] in Python.
CCMpred optimizes the regularized negative pseudo-log-likelihood using a conjugate gradients
optimizer. Based on a fork of his private github repository I continued development and
extended the software, which is now called CCMpredPy. It is available upon request at https:
//bitbucket.org/svorberg/ccmpred-new. All computations in this thesis are performed
with CCMpredPy unless stated otherwise.

CCMpredPy differs from CCMpred [101] which is available at https://github.com/

soedinglab/CCMpred in several details:

Initialization of potentials v and w: - CCMpred initializes single potentials vi(a) = log fi(a)−
log fi(a = ” − ”) with fi(a) being the frequency of amino acid a at position i and a = ” − ”
representing a gap. A single pseudo-count has been added before computing the frequencies.
Pair potentials w are intialized at 0. - CCMpredPy initializes single potentials v with the
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Figure 2.14: Distribution of CATH classes (1=mainly α, 2=mainly β, 3=α−β) in the dataset
and the ten subsets.

ML estimate of single potentials (see section 3.8.4) using amino acid frequencies computed as
described in section 2.6.4. Pair potentials w are initialized at 0.

Regularization:

• CCMpred uses a Gaussian regularization prior centered at zero for both single and pair
potentials. The regularization coefficient for single potentials λv = 0.01 and for pair
potentials λw = 0.2(L− 1) with L being protein length.

• CCMpredPy uses a Gaussian regularization prior centered at zero for the pair poten-
tials. For the single potentials the Gaussian regularization prior is centered at the ML
estimate of single potentials (see section 3.8.4) using amino acid frequencies computed
as described in section 2.6.4. The regularization coefficient for single potentials λv = 10
and for pair potentials λw = 0.2(L− 1) with L being protein length.

Default settings for CCMpredPy have been chosen to best reproduce CCMpred results. A
benchmark over a subset of approximately 3000 proteins confirms that performance measured
as PPV for both methods is almost identical (see Figure 2.15).

Pseudo-likelihood couplings used in this thesis have been computed with CCMPredPy using
the following flags:

--maxit 250 # Compute a maximum of MAXIT operations

--center-v # Use a Gaussian prior for single potentials

# centered at ML estimate v*

--reg-l2-lambda-single 10 # regularization coefficient for

# single potentials

--reg-l2-lambda-pair-factor 0.2 # regularization coefficient for

# pairwise potentials computed as

# reg-l2-lambda-pair-factor * (L-1)

--pc-uniform # use uniform pseudocounts
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Figure 2.15: Mean precision over 3124 proteins of top ranked contacts computed as APC
corrected Frobenius norm of couplings from pseudo-likelihood maximization. Couplings have
been computed with CCMpred [101] and CCMpredPy as specified in the legend. Specific
flags that have been used to run both methods are described in detail in the text (see section
2.6.2).

# (1/21 for 20 amino acids + 1 gap state)

--pc-count 1 # defining pseudo count admixture coefficient

# rho = pc-count/( pc-count+ Neff)

--epsilon 1e-5 # convergence criterion for minimum decrease

# in the last K iterations

--ofn-pll # using pseudo-likelihood as objective function

--alg-cg # using conjugate gradient to optimize

# objective function

For the comparison of CCMpred and CCMPredPy in Figure 2.15, CCMpred was run with
the following flags:

-n 250 # NUMITER: Compute a maximum of NUMITER operations

-l 0.2 # LFACTOR: Set pairwise regularization coefficients

# to LFACTOR * (L-1)

-w 0.8 # IDTHRES: Set sequence reweighting identity

# threshold to IDTHRES

-e 1e-5 # EPSILON: Set convergence criterion for minimum

# decrease in the last K iterations to EPSILON

2.6.3 Sequence Reweighting

As discussed in section 1.6.1, sequences in a MSA do not represent independent draws from
a probabilistic model. To reduce the effects of redundant sequences, a popular sequence
reweighting strategy has been found to improve contact prediction performance. Every se-
quence xn of length L in an alignment with N sequences has an associated weight wn = 1/mn,
where mn represents the number of similar sequences:
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wn =
1

mn
(2.1)

mn =

N∑
m=1

I (ID(xn, xm) ≥ 0.8) (2.2)

ID(xn, xm) =
1

L

L∑
i=1

I(xin = xim) (2.3)

An identity threshold of 0.8 has been used for all analyses in this thesis.
The number of effective sequences Neff of an alignment is then the number of sequence clusters
computed as:

Neff =

N∑
n=1

wn (2.4)

2.6.4 Computing Amino Acid Frequencies

Single and pairwise amino acid frequencies are computed from amino acid counts of weighted
sequences as described in the last section 2.6.3 and additional pseudocounts that are added
to improve numerical stability.

Let a, b ∈ {1, . . . , 20} be amino acids and q0(xi = a), q0(xi = a, xj = b) be the empirical single
and pair frequencies without pseudocounts. The empirical single and pair frequencies with
pseudocounts, q(xi = a), q(xi = a, xj = b), are defined

q(xi=a) :=(1− τ) q0(xi=a) + τ q̃(xi=a) (2.5)

q(xi=a, xj=b) :=(1− τ)2 [q0(xi=a, xj=b)− q0(xi=a)q0(xj=b)]+

q(xi=a) q(xj=b) (2.6)

with q̃(xi=a) := f(a) being background amino acid frequencies and τ ∈ [0, 1] is a pseudocount
admixture coefficient, which is a function of the diversity of the multiple sequence alignment:

τ =
Npc

(Neff +Npc)
(2.7)

where Npc > 0. The formula for q(xi=a, xj=b) in eq (2.6) was chosen such that for τ=0 we
obtain q(xi=a, xj=b) = q0(xi=a, xj=b), and furthermore q(xi=a, xj=b) = q(xi=a)q(xj=
b) exactly if q0(xi=a, xj=b) = q0(xi=a)q0(xj=b).

2.6.5 Regularization

CCMpredPy uses an L2-regularization per default that pushes the single and pairwise terms
smoothly towards zero and is equivalent to the logarithm of a zero-centered Gaussian prior,

R(v,w) = log
[
N (v|v∗, λ−1

v I)N (w|w∗, λ−1
w I)

]
= −λv

2
||v − v∗||22 −

λw

2
||w − w∗||22 + const. , (2.8)
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Figure 2.16: Number of contacts (Cβ < 8Å ) with respect to protein length and sequence
separation has a linear relationship.

where the regularization coefficients λv and λw determine the strength of regularization.

The regularization coefficient λw for couplings w is defined with respect to protein length L
owing to the fact that the number of possible contacts in a protein increases quadratically
with L whereas the number of observed contacts only increases linearly as can be seen in
Figure 2.16.

Most previous pseudo-likelihood approaches using L2-regularization for pseudo-likelihood op-
timization set v∗ =w∗ = 0 [101–103]. A different choice for v∗ is discussed in section 3.8.4
that is is used per default with CCMpredPy. The single potentials will not be optimized when
using contrastive divergence (CD) but will be fixed at v∗ given in eq. (3.27). Furthermore,
CCMpredPy uses regularization coefficients λv=10 and λw=0.2(L− 1) for pseudo-likelihood
optimization and the choice for λw used with CD is discussed in section 3.3.

2.6.6 Correlation of Couplings with Contact Class

Approximately 100000 residue pairs have been filtered for contacts and non-contacts respec-
tively according to the following criteria:

• sequence separation of residue pairs ≥ 10

• diversity (=
√
N
L ) of alignment ≥ 0.3

• number of non-gapped sequences ≥ 1000
• Cβ distance threshold for contact: < 8Å

• Cβ distance threshold for noncontact: > 25Å

2.6.7 Coupling Distribution Plots

For one-dimensional coupling distribution plots the residue pairs and respective pseudo-log-
likelihood coupling values wijab have been selected as follows:

• sequence separation of residue pairs ≥ 10

41



• percentage of gaps per column ≤ 30%
• evidence for a coupling wijab estimated from the alignment, Nij ·qi(a) ·qj(b) ≥ 100 with:

– Nij : number of sequences with no gaps at positions i or j
– qi(a), qj(b): frequencies of amino acids a and b at positions i and j, respectively

(computed as described in section 2.6.4)

These criteria ensure that uninformative couplings are neglected, e.g. sequence neighbors
albeit being contacts according to the Cβ contact definition cannot be assumed to express
biological meaningful coupling patterns, or couplings for amino acid pairings that do not have
enough statistical power due to insufficient counts in the alignment.

The same criteria have been applied for selecting couplings for the two-dimensional distribu-
tion plots with the difference that evidence for a single coupling term has to be Nij · qi(a) ·
qj(b) > 80.
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3
Optimizing the Full Likelihood

Section 1.3 introduced the Potts model for contact prediction that is able to distinguish
between directly and indirectly coupled residue pairs by jointly modelling the probability of
a protein sequence over all residues. Maximum-likelihood inference of the model parameters
is numerically challenging due to the exponential complexity of the partition function that
normalizes the probability distribution. Several approximate inference techniques for the full
likelihood have been developed trying to sidestep the exact computation of the partition
function. At this point in time, pseudo-likelihood is the most successful approximate solution
with regard to predicting residue-residue contacts (see section 1.3.5). It has been shown
that the pseudo-likelihood is a consistent estimator to the full likelihood in the limit of large
amounts of data. However, it is unclear whether it represents a good approximation when
there is only little data, in other words for small protein families that are the most interesting
targets for contact prediction (see Figure 1.12).

While the partition function of the full likelihood cannot be efficiently computed, it is possible
to approximate the gradient of the full likelihood with an approach called contrastive diver-
gence that makes use of MCMC sampling techniques [194]. This section elaborates on how
contrastive divergence (CD) can be used to optimize the full likelihood with gradient descent
techniques. Furthermore, two aspects of the underlying Potts model, namely gap treatment
and the choice of regularization, have been refined which is explained in detail in methods
section 3.8.1.

3.1 Approximating the Gradient of the Full Likelihood with
Contrastive Divergence

The gradient of the regularized full log likelihood with respect to the couplings wijab can be
written as

∂LLreg

∂wijab
= Nijq(xi=a, xj = b)−Nij p(xi=a, xj=b|v,w)− λwwijab , (3.1)

where Nijq(xi = a, xj = b) are the empirical pairwise amino acid counts, p(xi = a, xj =
b|v,w) corresponds to the marginal distribution of the Potts model and λwwijab is the partial
derivative of the L2-regularizer used to constrain the couplings w. The empirical amino acid
counts are constant and need to be computed only once from the alignment. The model
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probability term cannot be computed analytically as it involves the partition function that
has exponential complexity.

MCMC algorithms are predominantly used in Bayesian statistics to generate samples from
probability distributions that involve the computation of complex integrals and therefore can-
not be computed analytically [95,195]. Samples are generated from a probability distribution
as the current state of a running Markov chain. If the Markov chain is run long enough, the
equilibrium statistics of the samples will be identical to the true probability distribution statis-
tics. In 2002, Lapedes et al. applied MCMC sampling to approximate the probability terms in
the gradient of the full likelihood [104]. They obtained sequence samples from a Markov chain
that was run for 4,000,000 steps by keeping every tenth configuration of the chain. Optimiza-
tion converged after 10,000 - 15,000 epochs when the gradient had become zero. The expected
amino acid counts according to the model distribution, Nij p(xi = a, xj = b|v,w), were es-
timated from the generated samples. Their approach was successful but is computationally
feasible only for small proteins and points out the limits of applying MCMC algorithms. Typ-
ically, they require many sampling steps to obtain unbiased estimates from the stationary
distribution which comes at high computational costs.

In 2002, Hinton invented contrastive divergence (CD) as an approximation to MCMC meth-
ods [194]. It was originally developed for training products of experts models but it can
generally be applied to maximizing log likelihoods and has become popular for training re-
stricted Boltzmann machines [95,196,197]. The idea is simple: instead of starting a Markov
chain from a random point and running it until it has reached the stationary distribution,
it is initialized with a data sample and evolved for only a small number of steps. Obviously
the chain has not yet converged to its stationary distribution and the data sample obtained
from the current configuration of the chain presents a biased estimate. The intuition behind
CD is, that even though the gradient estimate is noisy and biased, it points roughly into a
similar direction as the true gradient of the full likelihood. Therefore the approximate CD
gradient should become zero approximately where the true gradient of the likelihood becomes
zero. Once the parameters are close to the optimum, starting a Gibbs chain from a data
sample should reproduce the empirical distribution and not lead away from it, because the
parameters already describe the empirical distribution correctly.

The approximation of the likelihood gradient with CD according to the Potts model for
modelling protein families is visualized in Figure 3.1. N Markov chains will be initialized
with the N sequences from the MSA and N new samples will be generated by a single step of
Gibbs sampling from each of the N sequences. One full step of Gibbs sampling updates every
sequence position i ∈ {1, . . . , L} subsequently by randomly selecting an amino acid based
on the conditional probabilities for observing an amino acid a at position i given the model
parameters and all other (already updated) sequence positions:

p(xi = a|(x1, . . . , xi−1, xi+1, . . . , xL),v,w) ∝ exp

vi(a) +

L∑
j=1
i ̸=j

wij(a, xj)

 (3.2)

The generated sample sequences are then used to compute the pairwise amino acid frequencies
that correspond to rough estimates of the marginal probabilities of the Potts model. Finally,
an approximate gradient of the full likelihood is obtained by subtracting the sampled amino
acid counts from the empirical amino acid counts as denoted in eq. (3.1).

The next sections elucidate the optimization of the Potts model full likelihood with CD to
obtain an approximation to the gradient.
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Figure 3.1: Approximating the full likelihood gradient of the Potts model with CD. Pairwise
amino acid counts are computed from the observed sequences of the input alignment shown
in red on the left. Expected amino acid frequencies according to the model distribution are
computed from a sampled alignment shown in blue on the right. The CD approximation
of the likelihood gradient is obtained by computing the difference in amino acid counts of
the observed and sampled alignment. A newly sampled sequence is obtained by evolving a
Markov chain, that is initialized with an observed sequence, for one full Gibbs step. The
Gibbs step involves updating every position in the sequence (unless it is a gap) according to
the conditional probabilities for the 20 amino acids at this position.

3.2 Optimizing the Full Likelihood

Given the likelihood gradient estimates obtained with contrastive divergence (CD), the full
negative log likelihood can now be minimized using a gradient descent optimization algorithm.
Gradient descent algorithms are used to find the minimum of an objective function with
respect to its parameterization by iteratively updating the parameters values in the opposite
direction of the gradient of the objective function with respect to these parameters. Stochastic
gradient descent (SGD) is a variant thereof that uses a stochastic estimate of the gradient
whose average over many updates approaches the true gradient. The stochasticity is commonly
obtained by evaluating a random subsample of the data at each iteration. For CD stochasticity
additionally arises from the Gibbs sampling process in order to obtain a gradient estimate in
the first place.

As a consequence of stochasticity, the gradient estimates are noisy, resulting in parameter up-
dates with high variance and strong fluctuations of the objective function. These fluctuations
enable stochastic gradient descent to escape local minima but also complicate finding the
exact minimum of the objective function. By slowly decreasing the step size of the parameter
updates at every iteration, stochastic gradient descent most likely will converge to the global
minimum for convex objective functions [198–200]. However, choosing an optimal step size
for parameter updates as well as finding the optimal annealing schedule offers a challenge and
needs manual tuning [201,202]. If the step size is chosen too small, progress will be unneces-
sarily slow, if it is chosen too large, the optimum will be overshot and can cause the system
to diverge (see Figure 3.2). Further complications arise from the fact that different parame-
ters often require different optimal step sizes, because the magnitude of gradients might vary
considerably for different parameters, e.g. because of sparse data.

Unfortunately, it is neither possible to use second order optimization algorithms nor sophis-
ticated first order algorithms like conjugate gradients to optimize the full likelihood of the
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Figure 3.2: Visualization of gradient descent optimization of an objective function L(w) for
different step sizes α. The blue dot marks the minimum of the objective function. The
direction of the gradient at the initial parameter estimate w0 is given as black arrow. The
updated parameter estimate w1 is obtained by taking a step of size α into the opposite
direction of the gradient. Left If the step size is too small the algorithm will require too many
iterations to converge. Right If the step size is too large, gradient descent will overshoot the
minimum and can cause the system to diverge.

Potts model. While the former class of algorithms requires (approximate) computation of
the second partial derivatives, the latter requires evaluating the objective function in order to
identify the optimal step size via linesearch, both being computationally too demanding.

The next subsections describe the hyperparameter tuning for stochastic gradient descent,
covering the choice of the convergence criterion and finding the optimal learning rate annealing
schedule.

3.2.1 Convergence Criterion for Stochastic Gradient Descent

In theory the gradient descent algorithm has converged and the optimum of the objective
function has been reached when the gradient becomes zero. In practice the gradients will
never be exactly zero, especially due to the stochasticity of the gradient estimates when using
stochastic gradient descent with sontrastive divergence (CD). For this reason, it is crucial to
define a suitable convergence criterion that can be tested during optimization and once the
criterion is met, convergence is assumed and the algorithm is stopped. Typically, the objective
function (or a related loss function) is periodically evaluated on a validation set and the
optimizer is halted whenever the function value saturates or starts to increase. This technique
is called early stopping and additionally prevents overfitting [203,204]. Unfortunately, we
cannot compute the full likelihood function due to its complexity and need to define a different
convergence criterion.

One possibility is to stop learning when the L2 norm of the gradient for the coupling pa-
rameters ||∇wLL(v

∗,w)||2 is close to zero [205]. However, when using a finite number of
sequences for sampling, the norm of the gradient does not converge to zero but towards a
certain offset as it is described in section 3.4.1. Convergence could also be monitored as the
relative change of the norm of gradients within a certain number of iterations. Optimization
will be stopped when the relative change becomes negligibly small, that is when the gradient
norm has reached a plateau. As gradient estimates are very noisy with stochastic gradient
descent, gradient fluctuations complicate the proper assessment of this criterion.

Instead of the gradient, it is also possible to observe the relative change of the norm of
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Figure 3.3: Percentage of parameters for which the derivative has changed its direction (i.e. the
sign) during the previous x iterations (x is specified in the legend). Optimization is performed
with SGD using the optimal hyperparameters defined in section 3.2.2 and using a regulariza-
tion coefficient λw=0.1L (see section 3.3) and using one step of Gibbs sampling. Optimization
is stopped when the relative change over the L2-norm of parameter estimates ||w||2 over the
last x iterations falls below the threshold of ϵ=1e− 8. Development has been monitored for
two different proteins, Left 1c75A00 (protein length = 71, number sequences = 28078, Neff
= 16808) Right 1ahoA00 (protein length = 64, number sequences = 378, Neff = 229).

parameter estimates ||w||2 over several iterations and stop learning when it falls below a
small threshold ϵ,

||wt−x||2 − ||wt||2
||wt−x||2

< ϵ . (3.3)

This measure is less noisy than subsequent gradient estimates because the magnitude of
parameter updates is bounded by the learning rate.

For stochastic gradient descent the optimum is a moving target and the gradient will start
oscillating when approaching the optimum. Therefore, another idea is to monitor the direction
of the partial derivatives. However, this theoretical assumption is complicated by the fact that
gradient oscillations are also typically observed when the parameter surface contains narrow
valleys or generally when the learning rate is too big, as it is visualized in the right plot
in Figure 3.2. When optimizing high-dimensional problems using the same learning rate
for all dimensions, it is likely that parameters converge at different speeds [198] leading to
oscillations that could either originate from convergence or yet too large learning rates. As can
be seen in Figure 3.3, the percentage of parameters for which the derivative changes direction
within the last x iterations is usually high and varies for different proteins. Therefore it
is not a good indicator of convergence. When using the adaptive learning rate optimizer
ADAM, the momentum term is an interfering factor for assessing the direction of partial
derivatives. Parameters will be updated into the direction of a smoothed historical gradient
and oscillations, regardless of which origin, will be dampened. It is therefore hard to define
a general convergence criteria based on the direction of derivatives that can distinguish these
different scenarios.

Of course, the simplest strategy to assume convergence is to specify a maximum number of
iterations for the optimization procedure, which also ensures that the algorithm will stop
eventually if none of the other convergence criteria is met.

47



Figure 3.4: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: couplings computed with pseudo-likelihood. CD alpha0 = X: couplings com-
puted with CD using stochastic gradient descent with different initial learning rates α0 (see
legend).

3.2.2 Tuning Hyperparameters of Stochastic Gradient Descent Optimizer

The coupling parameters w will be updated at each time step t by taking a step of size α along
the direction of the negative gradient of the regularized full log likelihood, −∇wLLreg(v

∗,w),
that has been approximated with CD,

wt+1 = wt − α · ∇wLLreg(v
∗,w) . (3.4)

In order to get a first intuition of the optimization problem, I tested initial learning rates
α0 ∈ {1e−4, 5e−4, 1e−3, 5e−3} with a standard learning rate annealing schedule, α = α0

1+γ·t
where t is the time step and γ is the decay rate that is set to 0.01[199].

Figure 3.4 shows the mean precision for top ranked contacts computed from pseudo-likelihood
couplings and from CD couplings optimized with stochastic gradient descent using the four
different learning rates. Overall, mean precision for CD contacts is lower than for pseudo-
likelihood contacts, especially when using the smallest (α0 =1e−4) and largest (α0 =5e−3)
learning rate.

By looking at individual proteins it becomes evident that the optimal learning rate depends
on alignment size. Figure 3.5 displays the development of the L2 norm of the coupling
parameters, ||w||2, during optimization using different learning rates for two proteins with
different alignment sizes. The left plot shows protein 1c75A00 that has a large alignment with
28078 sequences (Neff = 16808) while the right plot shows protein 1ahoA00 that has a small
alignment with 378 sequences (Neff = 229). For protein 1ahoA00 and using a small initial
learning rate α0=1e− 4, the optimization runs very slowly and does not converge within the
maximum number of 5000 iterations. Using a large initial learning rate α0=5e− 3 results in
slightly overshooting the optimum at the beginning of the optimization but with the learning
rate decaying over time the parameter estimates converge. In contrast, for protein 1c75A00,
the choice of learning rate has a more pronounced effect. With a small initial learning rate
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Figure 3.5: Convergence plots for two proteins during SGD optimization with different learn-
ing rates and convergence measured as L2-norm of the coupling parameters ||w||2. Linear
learning rate annealing schedule has been used with decay rate γ = 0.01 and initial learning
rates α0 have been set as specified in the legend. Left 1c75A00 (protein length = 71, number
sequences = 28078, Neff = 16808). Figure is cut at the yaxis at ||w||2 = 1000, but learning
rate of 5e−3 reaches ||w||2 ≈ 9000. Right 1ahoA00 (protein length = 64, number sequences
= 378, Neff = 229)

α0=1e− 4 the optimization runs slowly but almost converges within 5000 iterations. A large
initial learning rate α0=5e− 3 lets the parameters diverge quickly and the optimum cannot
be recovered. With learning rates α0=5e− 4 and α0=1e− 3, the optimum is well overshot
at the beginning of the optimization but the parameter estimates eventually converge as the
learning rate decreases over time.

These observations can be explained by the fact that the magnitude of the gradient scales with
the number of sequences in the alignment. The gradient is computed from amino acid counts
as explained before. Therefore, alignments with many sequences will generally produce larger
gradients than alignments with few sequences, especially at the beginning of the optimization
procedure when the difference in amino acid counts between sampled and observed sequences
is largest. Following these observations, I defined the initial learning rate α0 as a function of
Neff,

α0 =
5e−2√
Neff

. (3.5)

For small Neff, e.g. 5th percentile of the distribution in the data set ≈ 50, this definition of
the learning rate yields α0 ≈ 7e−3 and for large Neff, e.g. 95th percentile ≈ 15000, this yields
α0 ≈ 4e−4. These values for α0 lie in the optimal range that has been observed for the two
representative proteins in Figure 3.4. With the initial learning rate defined as a function of
Neff, precision slightly improves over the previous fixed learning rates (see Appendix Figure
E.1). All following analyses are conducted using the Neff-dependent initial learning rate.

In a next step, I evaluated the following learning rate annealing schedules and decay rates
using the Neff-dependent initial learning rate given in eq. (3.5):

• default linear learning rate schedule α = α0
1+γt with γ ∈ {1e−3, 1e−2, 1e−1, 1}

• square root learning rate schedule α = α0√
1+γt

with γ ∈ {1e−2, 1e−1, 1}
• sigmoidal learning rate schedule αt+1 =

αt
1+γt with γ ∈ {1e−6, 1e−5, 1e−4, 1e−3}

• exponential learning rate schedule αt+1 = α0 · exp(−γt) with γ ∈ {5e−4, 1e−4, 5e−3}
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Figure 3.6: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: couplings computed with pseudo-likelihood. CD: couplings computed with CD
using stochastic gradient descent with an initial learning rate defined with respect to Neff.
Learning rate annealing schedules and decay rates are specified in the legend.

The learning rate annealing schedules are visualized for different decay rates in Appendix
Figure E.2. Optimizing CD with SGD using any of the learning rate schedules listed above
yields on average lower precision for the top ranked contacts than the pseudo-likelihood contact
score. Several learning rate schedules perform almost equally and yield a mean precision that
is about one to two percentage below the mean precision for the pseudo-likelihood contact
score (see Figure 3.6): a linear learning rate schedule with decay rate γ=1e−2, a sigmoidal
learning rate schedule with decay rates γ = 1e−5 or γ = 1e−6 and an exponential learning
rate schedule with decay rates γ=1e−3 or γ=1e−5. The square root learning rate schedule
gives ovarall bad results and does not lead to convergence because the learning rate decays
slowly at later time steps. The benchmark plots for all learning rate schedules are shown in
Appendix Figures E.3, E.4, E.5, E.6.

In contrast to the findings regarding the initial learning rate earlier, an optimal decay rate
can be defined independent of the alignment size. Figure 3.7 shows the development of the L2
norm of the coupling parameters, ||w||2, during optimization for the same two representative
proteins with small and large alignments as before. Convergence for protein 1ahoA00, having
small Neff=229, is robust against the particular choice of learning rate schedule and decay
rate and the presumed optimum at ||w||2 ≈ 13.2 is reached regardless of the learning rate
annealing schedule (see right plot in Figure 3.7). For protein 1c75A00, with high Neff=16808,
the choice of the learning rate schedule has a notable impact on the rate of convergence.
Using a linear schedule, the learning rate decays quickly but then converges to a certain
offset, which effectively prevents further optimization progress and the presumed optimum at
||w||2 ≈ 90 is not reached within 5000 iterations. Learning rate schedules that decay slower
but decay continuously for 5000 iterations, such as an exponential schedule with γ = 1e−3
or a sigmoidal schedule with γ=1e−6, guide the parameter estimates close to the expected
optimum. Therefore, learning rate schedules with an exponential or sigmoidal decay can be
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Figure 3.7: L2-norm of the coupling parameters ||w||2 during stochastic gradient descent
optimization with different learning rates schedules. The initial learning rate α0 is defined
with respect to Neff as given in eq. (3.5). Learning rate schedules and decay rates are used
according to the legend. Left 1c75A00 (protein length = 71, number sequences = 28078, Neff
= 16808). Right 1ahoA00 (protein length = 64, number sequences = 378, Neff = 229)

used with proteins having low Neffs as well as high Neffs.

Another aspect worth considering is run time and it can be observed that the different learning
rate annealing schedules differ in convergence speed. Figure 3.8 shows the distribution over
the number of iterations until convergence for SGD optimizations with five different learning
rate schedules that yield similar performance. The optimization converges on average within
less than 2000 iterations only when using either a sigmoidal learning rate annealing schedule
with decay rate γ=1e−5 or an exponential learning rate annealing schedule with decay rate
γ = 5e−3, On the contrary, the distribution of iterations until convergence has a median of
5000 when using a linear learning rate annealing schedule with γ = 1e−2 or an exponential
schedule with decay rate γ=1e−3. Under these considerations, I chose a sigmoidal learning
rate schedule with γ=5e−6 for all further analysis.

Finally, I checked whether altering the convergence criteria has notable impact on perfor-
mance. Per default, optimization is stopped whenever the relative change of the L2 norm
over coupling parameters, ||w||2, over the last 5 iterations falls below a small value ϵ < 1e− 8
as denoted in eq. (3.3). Figure 3.9 shows that the mean precision over proteins is robust
to different settings of the number of iterations over which the relative change is computed.
The convergence rate is mildly affected by the different settings. Optimization converges on
average within 1697, 1782 and 1917 iterations, when computing the relative change of the
parameter norm over the previous 2,5 and 10 iterations, respectively (see Appendix Figure
E.11). For all following analysis, I chose 10 to be the number of iterations over which the
convergence criterion is computed.

3.3 Tuning the Regularizer of Coupling Parameters

For tuning the hyperparameters of the stochastic gradient descent optimizer in the last section
3.2.2, the coupling parameters w were constrained by a Gaussian prior N (w|0, λ−1

w I) using
the default pseudo-likelihood regularization coefficient λw = 1e−2L as described in meth-
ods section 2.6.5. It is conceivable that CD achieves optimal performance using stronger or
weaker regularization than used for pseudo-likelihood optimization. Therefore, I evaluated
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Figure 3.8: Distribution of the number of iterations until convergence for SGD optimizations
of CD for different learning rate schedules. Convergence is reached when the relative difference
of parameter norms, ||w||2, over the last five iterations falls below ϵ=1e− 8. Initial learning
rate α0 is defined with respect to Neff as given in eq. (3.5) and maximum number of iterations
is set to 5000. Learning rate schedules and decay rates are specified in the legend.

Figure 3.9: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: couplings computed with pseudo-likelihood. #previous iterations = X: cou-
plings computed with CD using stochastic gradient descent with an initial learning rate defined
with respect to Neff and the sigmoidal learning rate schedule with γ = 5e−6. The relative
change of the L2 norm over coupling parameters, ||w||2, is evaluated over the previous X
iterations (specified in the legend) and convergence is assumed when the relative change falls
below a small value ϵ=1e− 8.
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Figure 3.10: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: couplings computed with pseudo-likelihood. CD lambda_w = X: couplings
computed with CD using L2-regularization on the couplings w with regularization coefficient
λw specified in the legend and keeping the single potentials vi fixed at their MLE optimum
v∗i denoted in eq. (3.27).

performance for different regularization coefficients λw ∈ {5e−2L, 1e−1L, 1e−2L,L} using
the previously identified hyperparameters for SGD. The single potentials v are not subject
to optimization and are kept fixed at their maximum-likelihood estimate v∗ that is derived in
eq. (3.27).

As can be seen in Figure 3.10, using strong regularization for the couplings, with λw = L,
results in a drastic drop of mean precision. Using weaker regularization, with λw = 5e−2L,
improves precision for the top L/10 and L/5 predicted contacts but decreases precision when
including lower ranked predictions. As a matter of fact, a slightly weaker regularization
λw=1e−1L than the default λw=1e−2L improves mean precision especially for the top L/2
contacts in such a way, that it is comparable to the pseudo-likelihood performance.

As mentioned before, in contrast to pseudo-likelihood optimization the single potentials v are
not optimized with CD but rather set to their maximum-likelihood estimate as it is obtained
in a single position model that is discussed in methods section (3.27). When the single
potentials v are optimized with CD using the same regularization coefficient λv = 10 as for
pseudo-likelihood optimization, performance is almost indistinguishable compared to keeping
the single potentials v fixed (see Appendix Figure E.12).

3.4 Modifying the Gibbs Sampling Scheme for Contrastive Di-
vergence

The original CD-k algorithm described by Hinton in 2002 evolves the Markov chains by k=1
Gibbs steps [194]. As described earlier, CD-1 provides a biased estimate of the true gradient
because the Markov chains have not reached the stationary distribution [196]. Bengio and
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Delalleau show that the bias for CD-k can be understood as a residual term when expressing
the log likelihood gradient as an expansion that involves the k-th sample of the Gibbs chain
[197,206]. As the number of Gibbs steps, k, goes to infinity the residual term and hence the bias
converges to zero and the CD gradient estimate converges to a stochastic estimation of the true
likelihood gradient. Indeed, even though surprising results have been obtained by evolving the
Markov chains for only one Gibbs step, typically CD-k for k>>1 gives more precise results
[197]. Furthermore it has been shown, that bias also depends on the mixing rate (rate of
convergence) of the chains whereby the mixing rate decreases when model parameters increase
[207]. This can lead to divergence of the CD-k solution from optimal solution in a sense that
the model systematically gets worse as optimization progresses [208]. Regularization of the
parameters offers a solution to this problem, constraining the magnitude of the parameters.
A different solution suggested by Bengio and Delalleau is to dynamically increase k when the
model parameters increase [197]. These studies analyzing the convergence properties and the
expected approximation error for CD-k have mainly been conducted for Restricted Boltzmann
Machines. It is therefore not clear, whether and to what extent these findings apply to the
Potts model.

Several connections of CD to other well known approximation algorithms have been drawn.
For example, it can be shown that CD using one Gibbs update step on a randomly selected
variable is exactly equivalent to a stochastic maximum pseudo-likelihood estimation [209,210].
Asuncion and colleagues showed further that an arbitrary good approximation to the full
likelihood can be reached by applying blocked-Gibbs sampling [211]. CD based on sampling
an arbitrary number of variables, has an equivalent stochastic composite likelihood, which is
a higher-order generalization of the pseudo-likelihood.

Another variant of CD is PCD, such that the Markov chain is not reinitialized at a data
sample every time a new gradient is computed [207]. Instead, the Markov chains are kept
persistent that is, they are evolved between successive gradient computations. The funda-
mental idea behind PCD is that the model changes only slowly between parameter updates
given a sufficiently small learning rate. Consequently, the Markov chains will not be pushed
too far from equilibrium after each update but rather stay close to the stationary distribution
[95,196,207]. Tieleman and others observed that PCD performs better than CD in all practi-
cal cases tested, even though CD can be faster in the early stages of learning and thus should
be preferred when run time is the limiting factor [95,207,212].

The next sections discuss various modifications of the CD algorithm, such as increasing the
number of Gibbs sampling steps and varying the number of Markov chains used for sampling.
Persistent contrastive divergence is analysed for various combinations of the above mentioned
settings and eventually combined with CD-k. Unless noted otherwise, all optimizations will
be performed using stochastic gradient descent with the tuned hyperparameters described in
the last sections.

3.4.1 Varying the Sample Size

The default Gibbs sampling scheme outlined in method section 3.8.6 involves the random
selection of 10L sequences from the input alignment, with L being protein length, at every
iteration of the optimization procedure. These selected sequences are used to initialize the
same number of Markov chains. The particular choice of 10L sequences was motivated by
the fact that there is a relationship between the precision of contacts predicted from pseudo-
likelihood and protein length, at least for alignments with less than 103 diverse sequences
[179]. It has been argued that roughly 5L non redundant sequences are required to obtain
confident predictions that can bet used for protein structure prediction [103].
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Figure 3.11: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: couplings computed with pseudo-likelihood. CD sample size = X : contact
scores computed from CD with SGD. At every iteration, a particular number of sequences is
randomly selected from the input alignment to initialize the Markov chains for Gibbs sampling.
The number of randomly selected sequences is specified in the legend. It is defined either as
multiples of protein length L or as fraction of the effective number of sequences Neff.

I analysed whether varying the number of sequences used for the approximation of the gradient
via Gibbs sampling affects performance. Randomly selecting only a subset of sequences S from
the N sequences of the input alignment corresponds to the stochastic gradient descent idea
of a minibatch and introduces additional stochasticity over the CD Gibbs sampling process.
Using S < N sequences for Gibbs sampling has the further advantage of decreasing the run
time at each iteration. I evaluated different schemes for the random selection of sequences:

• sampling xL sequences with x ∈ {1, 5, 10, 50} without replacement enforcing S =
min(N,xL)

• sampling xNeff sequences with x ∈ {0.2, 0.3, 0.4} without replacement

Figure 3.11 illustrates performance for several of the choices. Randomly selecting L sequences
for sampling results in a visible drop in performance. There is no benefit in using more than
10L sequences, especially as sampling more sequences increases run time per iteration. Spec-
ifying the number of sequences for sampling as fractions of Neff generally improves precision
slightly over selecting 10L or 50L sequences for sampling. By sampling 0.3Neff sequences, CD
does slightly improve over pseudo-likelihood.

When evaluating performance with respect to the number of effective sequences Neff, it can
clearly be noted that the optimal number of randomly selected sequences should be defined
as a fraction of Neff. Selecting too many sequences, e.g. 50L for small alignments (left
plot in Figure 3.12), or selecting too few sequences, e.g 1L for large alignments (right plot in
Figure 3.12), results in a decrease in precision compared to defining the number of sequences as
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Figure 3.12: Mean precision for top ranked contact predictions over subsets of 75 proteins,
defined according to Neff quartiles. Contact scores are computed as the APC corrected
Frobenius norm of the couplings wij . pseudo-likelihood: contact scores computed from
pseudo-likelihood. CD sample size = X : contact scores computed from CD with SGD.
The number of randomly selected sequences for the Gibbs sampling process is specified in
the legend. It is defined either as multiples of protein length L or as fraction of the effective
number of sequences Neff. Left Subset of 75 proteins with Neff < Q1. Right Subset of 75
proteins with Q3 <= Neff < Q4.

fractions of Neff. Especially small alignments benefit from sample sizes defined as a fraction of
Neff with improvements of about three percentage points in precision over pseudo-likelihood.

To understand the effect of different choices of sample size it is necessary to look at single
proteins. The left plot in Figure 3.13 shows the development of the L2 norm of the gradient
for couplings, ||∇wLL(v

∗,w)||2, for protein chain 1c75A00 that is of length 71 and has Neff =
16808. The norm of the gradient decreases during optimization and for increasing choices of
the sample size it saturates at decreasing levels. For example, increasing the sample size by a
factor 100 (from L to 100L) leads to an approximately 10-fold reduction of the norm of the
gradient at convergence (1e+5 compared to 1e+4), which corresponds to a typical reduction
of statistical noise as the square root of the number of samples. It is not feasible to sample
the number of sequences at each iteration that would be necessary to reduce the norm of the
gradient to near zero!

The previous benchmark showed, that precision of the top ranked contacts does not improve
to the same amount as the norm of the gradient decreases when the sample size is increased.
Probably, the improved gradient when using a larger sample size helps to fine tune the pa-
rameters, which only has a negligible effect on the contact score computed as APC corrected
Frobenius norm of the couplings wij . For example, the difference between the parameter norm
at convergence for sampling 10L = 710 sequences or 50L = 3550 sequences is only marginal
(see right plot in Figure 3.13), despite a larger difference of the norm of gradients.

It is not clear why an improved gradient estimate due to sampling more sequences results
in weaker performance for proteins with small alignments as could be seen in the previous
benchmark in Figure 3.12. Protein 1ahoA00, that has length 64 and an alignment of 378
sequences (Neff=229), achieves a mean precision of 0.44 over the top 0.1L - L contacts when
using all N = 378 sequences for sampling. When only 0.3Neff = 69 sequences are used in
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Figure 3.13: Monitoring parameter norm and gradient norm for protein 1c75A00 during
SGD using different sample sizes. Protein 1c75A00 has length L=71 and 28078 sequences in
the alignment (Neff=16808). The number of sequences, that is used for Gibbs sampling to
approximate the gradient, is given in the legend with 1L = 71 sequences, 5L = 355 sequences,
10L = 710 sequences, 50L = 3550 sequences, 100L = 7100 sequences, 0.2Neff = 3362 sequences,
0.3Neff = 5042 sequences, 0.4Neff = 6723 sequences. Left L2-norm of the gradients for
coupling parameters, ||∇wLL(v

∗,w)||2 (without contribution of regularizer). Right L2-norm
of the coupling parameters ||w||2.

the sampling procedure, 1ahoA00 achieves a mean precision of 0.62. Appendix Figure E.13
shows the course of the norm of the gradient and the norm of coupling parameters during
optimization for this protein. Similarly as it has been observed for protein 1c75A00, the norm
of the gradient converges towards smaller values when more sequences are used in the Gibbs
sampling process and the improved gradient is supposed to lead to a better approximation of
the likelihood. One explanation for this obvious discrepancy could be some effect of overfitting.
Even though a regularizer is used for optimization and the norm of coupling parameters
actually is smaller when using a larger sample size (see the right plot in Appendix Figure
E.13).

3.4.2 Varying the number of Gibbs Steps

As discussed earlier, it has been pointed out in the literature that using k > 1 Gibbs steps
for sampling sequences gives more precise results at the cost of longer run times per gradient
evaluation [197,207]. I analysed the impact on performance when the number of Gibbs steps
is increased to 5 and 10. As can be seen in Figure 3.14, increasing the number of Gibbs steps
does result in a slight drop of performance. When evaluating precision with respect to Neff
it can be found that using more Gibbs sampling steps is especially disadvantageous for large
alignments (see Appendix Figure E.14).

When evaluating single proteins, it can be observed that for proteins with small alignments
the L2 norm of the parameters, ||w||2, converges towards a different offset when using more
than one Gibbs steps (see left plot in Figure 3.15). Naturally, the Markov chains can wander
further away from their initialization when they are evolved over a longer time which results
in a stronger gradient at the beginning of the optimization. Therefore and because the initial
learning rate has been optimized for sampling with one Gibbs step, the parameter norm
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Figure 3.14: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: contact scores computed from pseudo-likelihood. CD #Gibbs steps = X:
contact scores computed from CD optimized with SGD and evolving each Markov chain using
the number of Gibbs steps specified in the legend.

overshoots the optimum at the beginning. Even when lowering the initial learning rate from
α0 =

5e−2√
Neff

to α0 ∈
{

3e−2√
Neff

, 2e−2√
Neff

, 1e−2√
Neff

}
, the SGD optimizer evidently approaches a different

optimum. Surprisingly, the different optimum that is found for proteins with small alignments
has no substantial impact on precision, as becomes evident from Figure E.14. For proteins
with large alignments it can be observed that there is not one alternative solution to the
parameters, but depending on the number of Gibbs steps and on the initial learning rate,
α0, the L2 norm over parameters converges towards various different offsets (see right plot in
Figure 3.15). It is not clear how these observations can be interpreted, in particular given
the fact, that the L2 norm of gradients, ||∇wLL(v

∗,w)||2, converges to the identical offset
for all settings regardless of alignment size (see Appendix Figure E.15). Optimizing CD with
10 Gibbs steps and using a smaller initial learning rate, α0 = 2e−2√

Neff
, does not have an overall

impact on mean precision as can be seen in Figure 3.14.

3.4.3 Persistent Contrastive Divergence

Finally I analysed, whether evolving the Markov chains over successive iterations, which is
known as persistent contrastive divergence (PCD), does improve performance [207]. Several
empirical studies have shown that PCD performs superior compared to CD-1 and also to CD-
10 [207,212]. In the literature is has been pointed out that PCD needs to use small learning
rates because in order to sample from a distribution close to the stationary distribution,
the parameters cannot change too rapidly. However, using smaller learning rates not only
increases run time but also requires tuning of the learning rate and learning rate schedule
once again. Since it has been found, that CD is faster in learning at the beginning of the
optimization, I tested a compromise, that uses CD-1 at the beginning of the optimization and
when learning slows down, PCD is switched on. Concretely, PCD is switched on, when the
relative change of the norm of coupling parameters, ||w||2, falls below ϵ ∈ {1e−3, 1e−5} while
the convergence criterion is not altered and convergence is assumed when the relative change
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Figure 3.15: Monitoring parameter norm, ||w||2, for protein 1aho_A_00 and 1c75_A_00
during SGD optimization using different number of Gibbs steps and initial learning rates,
α0. Number of Gibbs steps is given in the legend, as well as particular choices for the initial
learning rate, when not using the default α0 = 5e−2√

Neff
. Left Protein 1aho_A_00 has length

L=64 and 378 sequences in the alignment (Neff=229) Right Protein 1c75_A_00 has length
L=71 and 28078 sequences in the alignment (Neff=16808).

falls below ϵ=1e−8. As a result, the model will already have approached the optimum when
PCD is switched on so that the coupling parameters w will mot change to quickly over many
updates.

Figure 3.16 shows the mean precision of top ranked contacts on the validation set computed
with several PCD variants that perform almost equally well. Evolving the Gibbs chains for
k=10 steps results in a slight drop in performance, just as it has been observed for CD.
Optimizing the full likelihood with CD and switching to PCD at a later stage of optimization
does also not have a notable impact on performance.

Again it is insightful to observe the optimization progress for single proteins. For protein
1ahoA00, with low Neff=229, the PCD model converges to the same coupling norm offset
(||w||2 ≈ 24) as the CD model using 5 and 10 Gibbs steps (see left plot in Figure 3.17
compared to left plot in 3.15). It can also be seen that when PCD is switched on at a later
stage of optimization the coupling norm jumps from the CD-1 level to the PCD level. The
different optimum that is found for proteins with small alignments does not seem to affect
predictive performance. Interestingly, convergence behaves differently for protein 1c75A00,
that has high Neff=16808 (see right plot in Figure 3.17). PCD using one Gibbs step converges
to a different coupling norm offset than CD-1 and PCD using ten Gibbs steps. However, when
PCD is switched on later during optimization the model either ends up in the CD-1 (switch
at ϵ=1e− 5 or ϵ=1e− 6) or in the PCD optimum (switch at ϵ=1e− 3). The cause for this
behavior is unclear, yet it has no noticeable impact on overall performance.

Against expectations from the findings in literature, neither CD-k with k>1 Gibbs steps nor
PCD does improve performance with respect to precision of the top ranked contact predictions.
Swersky and colleagues elaborated on various choices of hyperparameters (e.g momentum,
averaging, regularization, etc.) for training Restricted Boltzmann Machines as classifiers with
CD-k and PCD [212]. They found many subtleties that need to be explored and can play a
crucial role for successful training. In section 3.2.2 I manually tuned the learning rate and
annealing schedule for stochastic gradient descent to be used with CD-1. It is plausible, that
these settings are not optimal for CD-k with k>1 Gibbs steps and PCD and require tuning
once again. Because hyperparameter optimization with stochastic gradient descent is a time-
consuming task, in the following, I applied the popular ADAM stochastic gradient descent
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Figure 3.16: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: contact scores computed from pseudo-likelihood. pCD: contact scores computed
from PCD optimized with SGD using the hyperparameters that have been found to work
optimal with CD as described throughout the last sections. pCD #Gibbs steps = 10: same
as pCD, but evolving the Gibbs chain for 10 steps. pCD start = 1e-3: SGD optimization
starts by optimizing the full likelihood using the CD gradient estimate and switches to the
PCD gradient estimate once the relative change of L2 norm of parameters has fallen below
ϵ=1e−3 evaluated over the last 10 iterations. pCD start = 1e-5: same as ‘pCD start =
1e-3’, but with ϵ=1e−5.

Figure 3.17: Monitoring parameter norm, ||w||2, for protein 1ahoA00 and 1c75A00 during
SGD optimization of different objectives. Left Protein 1ahoA00 has length L=64 and 378
sequences in the alignment (Neff=229) Right Protein 1c75A00 has length L=71 and 28078
sequences in the alignment (Neff=16808). CD contrastive divergence using 1 Gibbs step.
pCD persistent contrastive divergence using 1 Gibbs step. pCD #Gibbs steps = 10
persistent contrastive divergence using 10 Gibbs steps. pCD start = 1e-3, pCD start =
1e-5: same as in Figure 3.16 pCD start = 1e-6: same as ‘pCD start = 1e-3’, but with
ϵ=1e−6.
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Figure 3.18: Mean precision for top ranked contact predictions over 300 proteins. Contact
score is computed as APC corrected Frobenius norm of the couplings. pseudo-likelihood:
couplings computed from pseudo-likelihood. CD ADAM: couplings computed from con-
trastive divergence using ADAM optimizer. CD ADAM #Gibbs steps = 10: couplings
computed from contrastive divergence using ADAM optimizer and 10 Gibbs steps for sam-
pling sequences. pCD ADAM: couplings computed from persistent contrastive divergence
using ADAM optimizer. pCD ADAM start = 1e-3: ADAM starts by optimizing the full
likelihood using the CD gradient estimate and switches to the PCD gradient estimate once
the relative change of L2 norm of parameters has fallen below ϵ=1e−3 evaluated over the last
10 iterations. pCD ADAM start = 1e-5: same as “pCD ADAM start = 1e-3” but PCD is
switched on for ϵ=1e−5

optimizer that does in theory not require tuning many hyperparameters [213].

3.5 Using the ADAM Optimizer with Contrastive Divergence

ADAM computes per-parameter adaptive learning rates including momentum. The default
values have been found to work well in practice so that little parameter tuning is required (see
methods section 3.8.5.1 for details) [198,213]. However, I tested ADAM with different learning
rates for the optimization with CD-1 for protein 1mkcA00 (number of sequences = 142) and
1c75A00 (number of sequences = 28078) and found that both proteins are sensitive to the
choice of learning rate. In contrast to plain stochastic gradient descent, with ADAM it is
possible to use larger learning rates for proteins having large alignments, because the learning
rate will be adapted to the magnitude of the gradient for every parameter individually. For
protein 1mkcA00, with Neff=96, a learning rate of 5e-3 quickly leads to convergence whereas
for protein 1c75A00, having Neff=16808, an even larger learning rate can be chosen to obtain
quick convergence (see Appendix Figure E.16). Therefore, I again specified the learning rate
as a function of Neff, α = 2e−3 log(Neff), such that for small Neff, e.g. 5th percentile of the
distribution in the data set ≈ 50, this definition of the learning rate yields α0 ≈ 8e−3 and for
large Neff, e.g. 95th percentile ≈ 15000, this yields α0 ≈ 2e−2.

It is interesting to note, that the norm of the coupling parameters, ||w||2, converges towards
different values depending on the choice of the learning rate (see Appendix Figure E.16. By
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default, ADAM uses a constant learning rate, because the algorithm performs a kind of step
size annealing by nature. However, popular implementations of ADAM in the Keras [214]
and Lasagne [215] packages allow the use of an annealing schedule. I therefore tested ADAM
with a sigmoidal learning rate annealing schedule which already gave good results for SGD
(see section 3.2.2). Indeed, as can be seen in Appendix Figure E.17, when ADAM is used
with a sigmoidal decay of the learning rate, the L2-norm of the coupling parameters ||w||2
converges roughly towards the same value. For the following analysis I used ADAM with a
learning rate defined as a function of Neff and a sigmoidal learning rate annealing schedule
with decay rate γ=5e− 6.

I evaluated CD-1, CD-10 and persistent contrastive divergence. As before, I will also evaluate
a combination of both, such that PCD is switched on, when the relative change of the norm of
coupling parameters, ||w||2, falls below a small threshold. Figure 3.18 shows the benchmark for
training the various modified CD models with the ADAM optimizer. Overall, the predictive
performance for CD and PCD did not improve by using the ADAM optimizer instead of the
manually tuned stochastic gradient descent optimizer. Therefore it can be concluded that
adaptive learning rates and momentum do not provide an essential advantage for inferring
Potts model parameters with CD and PCD.

The convergence analysis for the two example proteins 1ahoA00 and 1c75A00 reveals, that
optimization with ADAM converges towards similar offsets as optimization with plain SGD
with respect to the L2 norm of coupling parameters. For 1ahoA00, with low Neff=229, the
L2 norm of the parameters converges towards ||w||2 ≈ 21.6 when using CD-1 and towards
||w||2 ≈ 24 when using PCD or CD-k with k>1 (compare left plots in Figures 3.19 and 3.17).
For protein 1c75A00, with high Neff=16808, ADAM seems to find distinct optima that are
clearly separated in contrast to using plain SGD. When using ADAM with CD-1 the algorithm
converges towards ||w||2 ≈ 120, ADAM with CD-5 converges towards ||w||2 ≈ 130 and with
CD-10 towards ||w||2 ≈ 131. And using ADAM with PCD, regardless of whether the PCD
gradient estimate is used right from the start of optimization or only later, the algorithm
converges towards ||w||2 ≈ 134. Therefore, ADAM establishes the clear trend that longer
sampling, or sampling with persistent chains results in larger parameter estimates.

3.5.1 A Potts model specific convergence criterion

For the Potts model there exists a necessary but not sufficient condition that is satisfied
at the optimum when the gradient is zero (derived in method section 3.8.4) and that is
given by,

∑20
a,b=1wijab = 0. This condition is never violated, as long as parameters satisfy

this criterion at initialization and the same step size is used to update all parameters. To
understand why, note that the 400 partial derivatives ∂LL(v∗,w)

∂wijab
for a residue pair (i, j) and

for a, b ∈ {1, . . . , 20} are not independent. The sum over the 400 pairwise amino acid counts
at positions i and j is identical for the observed and the sampled alignment and amounts to,∑20

a,b=1Nijq(xi=a, qj=b) = Nij .

Considering a residue pair (i, j) and assuming amino acid pair (a, b) has higher counts in the
sampled alignment than in the observed input alignment, then this difference in counts must
be compensated by other amino acid pairs (c, d) having less counts in the sampled alignment
compared to the true alignment (see Figure 3.20). Therefore, it holds

∑20
a,b=1

∂LL(v∗,w)
∂wijab

= 0.
This symmetry is translated into parameter updates as long as the same step size is used to
update all parameters. However, when using adaptive learning rates, e.g. with the ADAM
optimizer, this symmetry is broken and the condition

∑20
a,b=1wijab = 0 can be violated during

the optimization process.

For proteins 1ahoA00 and 1c75A00, Figure 3.21 shows the number of residue pairs for which
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Figure 3.19: Monitoring the L2 norm of coupling parameters,||w||2, for protein 1ahoA00
and 1c75A00 during optimization of CD and PCD with the ADAM optimizer. Contrastive
Divergence (CD in legend) is optimized employing a different number of Gibbs steps that are
specified in the legend. Persistent contrastive divergence (pCD in legend) uses one Gibbs step.
“pCD start= X” indicates that optimization starts by using the CD gradient estimate and
switches to the PCD gradient estimate once the relative change of L2 norm of parameters has
fallen below a small threshold over the last 10 iterations. The threshold is given in the legend.
Left Protein 1ahoA00 has length L=64 and 378 sequences in the alignment (Neff=229) Right
Protein 1c75A00 has length L=71 and 28078 sequences in the alignment (Neff=16808).

this condition is violated according to |
∑20

a,b=1wijab| > 1e−2, during optimization with
ADAM. For about half out of the 2016 residue pairs in protein 1ahoA00 the condition is
violated at the end of optimization. For protein 1c75A00 it is about 2300 out of the 2485
residue pairs. Whereas this is not a problem when computing the contact score based on the
Frobenius norm of the coupling matrix, it is problematic when utilizing the couplings in the
Bayesian framework presented in section 5, which requires the condition

∑20
a,b=1wijab = 0 to

hold.

3.6 Comparing Contrastive Divergence Couplings with Pseudo
Likelihood Couplings

A final benchmark over a larger set of proteins (2000 proteins randomly selected from subsets
5 to 10 described in method section 2.6.1) reveals that contact predictions obtained by maxi-
mizing the pseudo-likelihood and by optimizing the full likelihood with contrastive divergence
perform similar (see Figure 3.22). At any rate it is interesting to not only compare pseudo-
likelihood and contrastive divergence based on overall performance, but to also have a look at
single predictions. In the following, I will examine and compare the predictions made by both
methods for two representative proteins, one with a small alignment and low corresponding
Neff value and one with a large alignment and high corresponding Neff value.

3.6.1 Protein 1c75A00

Protein 1c75A00 has length L=71 and 28078 sequences in the alignment and is among the
proteins with the highest number of effective sequences (Neff=16808 > 95th percentile). The
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Figure 3.20: The 400 partial derivatives ∂LLreg(v∗,w)
∂wijab

at position (i, j) for a, b ∈ {1, . . . , 20}
are not independent. Red bars represent pairwise amino acid counts at position (i, j) for
the empirical alignment. Blue bars represent pairwise amino acid counts at position (i, j)
for the sampled alignment. The sum over pairwise amino acid counts at position (i, j) for
both alignments is Nij , which is the number of ungapped sequences. The partial derivative
for wijab is computed as the difference of pairwise amino acid counts for amino acids a and
b at position (i, j). The sum over the partial derivatives ∂LLreg(v∗,w)

∂wijab
at position (i, j) for all

a, b ∈ {1, . . . , 20} is zero.

Figure 3.21: Monitoring the number of residue pairs for which |
∑20

a,b=1wijab| > 1e−2. Legend
is the same as in Figure 3.19. Left Protein 1ahoA00 has length L=64 and 378 sequences in
the alignment (Neff=229) Right Protein 1c75A00 has length L=71 and 28078 sequences in
the alignment (Neff=16808).
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Figure 3.22: Mean precision for top ranked contact predictions over 2000 proteins. pseudo-
likelihood (APC): contact score is computed as APC corrected Frobenius norm of the
couplings computed from pseudo-likelihood. pseudo-likelihood: same as “pseudo-likelihood
(APC)” but without APC. contrastive divergence (APC): contact score is computed
as APC corrected Frobenius norm of the couplings computed from contrastive-divergence.
contrastive divergence: same as “contrastive divergence (APC)” but without APC.
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Figure 3.23: Contact maps predicted for protein 1c75A00. Upper left shows predicted contact
map and lower right shows the native distance map. Contacts are defined according to a 8Å Cβ

distance cutoff and have been computed as APC corrected Frobenius norm of the couplings.
Left Couplings computed from pseudo-likelihood. Right Couplings computed from CD.

contact score (APC corrected Frobenius norm of the couplings wij) computed from pseudo-
likelihood and contrastive divergence couplings performs equally well (see Appendix Figure
E.18). The 14 (=L/5) highest scoring contacts predicted with CD are true positive contacts
according to an 8Å Cβ distance cutoff compared to 13 true positive contacts predicted with
pseudo-likelihood. Both methods predict very similar contact maps (see Figure 3.23). The
highest scoring predictions (top L/5 contacts marked with crosses) are identical except for
one contact, which is the false positive contact predicted by the pseudo-likelihood.

The contact maps suggest that both scores are very similar. Indeed, the correlation between
both scores is very high (Pearson’s correlation coefficient = 0.98) as can bee seen in the
right plot in Figure 3.24. Of course, by applying the average product correction (APC), the
scores are normalized with respect to the raw contact scores (=Frobenius norm of couplings
wij). The left plot in Figure 3.24 shows the contact scores before applying the average
product correction. The raw contact scores computed from contrastive divergence couplings
are systematically stronger than for pseudo-likelihood. Most likely this effect arises from the
weaker regularization that is used with contrastive divergence (λw = 0.1L) than compared to
pseudo-likelihood optimization (λw = 0.2L) (see section 3.3).

However, the contact scores have no meaning by themselves but merely reflect the confidence
of the prediction.
It is more meaningful to compare the ranking of the residue pairs imposed by the scores. The
left plot in Figure 3.25 compares the ordered scores of both methods that lie very close to the
diagonal which indicates that both distribution are very similar (Kolmogorov-Smirnov pvalue
= 0.0078, Spearman rho = 0.947536). A detailed view of the top ranked predictions is given
in the right plot in Figure 3.25. The three most confident predictions are identical for both
methods. Yet, the ranks of subsequent predictions are swapped by only a few positions which
was already evident from the contact maps.

3.6.2 Protein 1ss3A00 and 1c55A00

When analysing sample size it was shown that by randomly selecting 0.3Neff sequences for
Gibbs sampling improves performance especially for proteins with small Neff (see Figure 3.12)
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Figure 3.24: Contact scores computed from pseudo-likelihood and CD couplings for protein
1c75A00. Left Frobenius norm of couplings. Right Frobenius norm + APC of couplings.

Figure 3.25: Comparing the ranking of highest scoring contacts predicted with pseudo-
likelihood and contrastive divergence for protein 1c75A00. Contact scores are computed as
APC corrected Frobenius norm of the couplings. Left Q-Q plot. Right Contact scores for
the top 71 (=L) predictions from either method. Identical residue pairs are connected with a
line. Green indicates identical ranking of the residue pair for both methods. Blue indicates
higher ranking of the residue pair for contrastive divergence. Red indicates higher ranking of
the residue pair for pseudo-likelihood.
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on a small data set used for benchmarking (75 proteins per Neff quantile bin). This trend is
still visible on the larger test data set but to a lesser extent (see Figure E.19).

By looking at some of these proteins with small Neff for which the contact score computed
from CD couplings performs better than the score computed from pseudo-likelihood couplings,
it is striking that CD mainly predicts strongly conserved positions that have high entropy.

For example, for protein 1ss3A00 (protein length=50, Neff=36), CD makes strong predictions
for all pairings of the residues (8, 12, 16, 26, 30, 34) (see Figure 3.26). Five of the predicted
contacts are actually true contacts. Taking a look at the structure it is revealed that these po-
sitions are disulfide bonds which are strongly conserved. Another example is protein 1c55A00
(protein length=40, Neff=78) for which CD makes strong predictions for pairings between
residues (10, 16, 20, 31, 36, 38). Again, it turns out that the five true positive predictions are
disulfide bonds (see bottom plot in Figure 3.26).

Interestingly, pseudo-likelihood does not predict the strongly conserved residues pairs and
therefore misses some true contacts (see Appendix Figure E.20). However, when recapitulat-
ing the analysis from section 3.4.1 by increasing the sample size step-wise, the contact maps
predicted with CD start to resemble those predicted by pseudo-likelihood and the predicted
contacts between strongly conserved residues vanish (see Appendix Figure E.21). It was un-
clear from the analysis of the gradients for different samples sizes in section 3.4.1 why sampling
less sequences and consequently a worse gradient estimate results in improved performance for
proteins with small Neff. Now it can be hypothesized that the improved performance simply
originates from the fact that contacts are predicted between strongly conserved columns.

This observation stresses the importance to complement coevolutionary analysis in low data
scenarios by the use of other sequence derived information, like conservation. The most
successful contact predictors presented in section 1.2.3 integrate features extracted from the
MSA because it is known that sequence-based contact prediction is robust when only few
sequences are available [87,88].

3.7 Discussion

It is not feasible to evaluate the full likelihood of the Potts model for proteins of typical
length due to the complexity of the normalization constant. The most popular approach
for protein contact prediction to get around this problem is to optimize the pseudo-likelihood
instead. However, it is unknown how well the pseudo-likelihood solution approximates the full
likelihood solution in case protein families have only few members. In this chapter I tested
an alternative approach to infer the Potts model parameters, called contrastive divergence
(CD). It optimizes the full likelihood of the Potts model by approximating the gradient with
short Gibbs chains. However, a benchmark on a large test set showed that the predictive
performance of CD does not improve over pseudo-likelihood with respect to the precision of
top ranked contact predictions (see Figure 3.22). CD achieved minor improvements for small
protein families, however this improvement could be traced back to amplified signals between
strongly conserved residue pairs.

I elaborated in detail on the hyperparameter optimization for the stochastic gradient descent
optimizer and the CD model itself. Even though the adaptive learning rate optimizer ADAM
did not improve performance over plain stochastic gradient descent, it is still likely that appro-
priate modifications to the optimization procedure, e.g. averaging [206], might be beneficial
for particular variants of CD. As discussed in section 3.2.1, the convergence criterion is a
crucial aspect for optimization, not only affecting run time but it can also prevent overfitting.
It might be worth to assess the convergence properties with more sophisticated convergence
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Figure 3.26: Contact maps and structures for protein 1ss3A00 and 1c55A00. Contact scores
have been computed as APC corrected Frobenius norm of the CD couplings. Contacts are
defined according to a 8Å Cβ distance cutoff. Upper left: predicted contact map and native
distance map for protein 1ss3A00 (protein length=50, N=42, Neff=36). Upper Right: native
protein structure of 1ss3A00 with disulfide bonds between residues pairs (8, 34), (12, 30), (16,
26). Lower Left predicted contact map and native distance map for protein 1c55A00 (protein
length=40, N=115, Neff=78) Lower Right native protein structure of 1c55A00 with disulfide
bonds between residues pairs (10, 31), (16, 36), (20, 38).

69



metrics, like the EB-criterion proposed by Mahsereci et al. [204], instead of using the L2 norm
of the coupling parameters, ||w||2.

Against expectations, the best performance with respect to the precision of the top ranked
contacts was obtained by using the most simple variant of the contrastive divergence algorithm,
CD-1. With CD-1, sequence samples are generated according to the current state of the model
by evolving Gibbs chains, that have been initialized at data samples, for only one full step.
Interestingly, better gradient estimates were obtained by running more Gibbs chains in parallel
(see section 3.4.1), but did not carry over to better predictive performance. It is possible that
the improved gradient helps to fine tune the parameters. Fine tuning would only have a
negligible effect on the contact score, computed as the APC corrected Frobenius norm of the
couplings, and the overall ranking of residue pairs.

Cocco and colleagues argued that for the purpose of contact prediction, where predictions only
need to capture the topology of the network of coevolving positions, approximate methods such
as pseudo-likelihood maximization might be sufficient to provide accurate results [97]. They
showed that different approaches for Potts model parameter inference yield highly correlated
contact scores, using the APC corrected Frobenius norm. In contrast, more quantitative
applications, such as inferring mutation landscapes, where energies or probabilities have to
be accurate, require precise approaches to fit the model parameters that can reproduce the
fine statistics of the empirical data.

Therefore, it can be speculated that the heuristic contact score that has empirically been
found to work very well for pseudo-likelihood couplings, might not be an appropriate choice
for benchmarking the contrastive divergence approach. Perhaps the CD couplings need to be
evaluated in a more sophisticated framework or for other purposes than contact prediction.
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3.8 Methods

3.8.1 The Potts Model

The N sequences of the MSA X of a protein family are denoted as x1, ...,xN . Each sequence
xn = (xn1, ...,xnL) is a string of L letters from an alphabet indexed by {0, ..., 20}, where 0
stands for a gap and {1, ..., 20} stand for the 20 types of amino acids. The likelihood of the
sequences in the MSA of the protein family is modelled with a Potts Model, as described in
detail in section 1.3:

p(X|v,w) =

N∏
n=1

p(xn|v,w)

=
N∏

n=1

1

Z(v,w)
exp

 L∑
i=1

vi(xni)
∑

1≤i<j≤L

wij(xni, xnj)

 (3.6)

The coefficients via and wijab are referred to as single potentials and couplings, respectively
that describe the tendency of an amino acid a (and b) to (co-)occur at the respective positions
in the MSA. Z(v,w) is the partition function that normalizes the probability distribution
p(xn|v,w):

Z(v,w) =
20∑

y1,...,yL=1

exp

 L∑
i=1

vi(yi)
∑

1≤i<j≤L

wij(yi, yj)

 (3.7)

The log likelihood is

LL(v,w) = log p(X|v,w)

=

N∑
n=1

 L∑
i=1

vi(xni)
∑

1≤i<j≤L

wij(xni, xnj)

−N logZ(v,w). (3.8)

The gradient of the log likelihood has single components

∂LL(v,w)

∂via
=

N∑
n=1

I(xni=a)−N
∂

∂via
logZ(v,w)

=
N∑

n=1

I(xni=a)−N
20∑

y1,...,yL=1

exp
(∑L

i=1 vi(yi) +
∑

1≤i<j≤Lwij(yi, yj)
)

Z(v,w)
I(yi=a)

= Nq(xi=a)−Np(xi=a|v,w) (3.9)

and pair components
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∂LL(v,w)

∂wijab
=

N∑
n=1

I(xni = a, xnj = b)−N
∂

∂wijab
logZ(v,w)

=

N∑
n=1

I(xni=a, xnj=b)

−N

20∑
y1,...,yL=1

exp
(∑L

i=1 vi(yi) +
∑

1≤i<j≤Lwij(yi, yj)
)

Z(v,w)
I(yi=a, yj=b)

=Nq(xi=a, xj=b)−N

20∑
y1,...,yL=1

p(y1, . . . , yL|v,w) I(yi=a, yj=b)

=Nq(xi=a, xj=b)−Np(xi=a, xj=b|v,w) (3.10)

3.8.2 Treating Gaps as Missing Information

Treating gaps explicitly as 0’th letter of the alphabet will lead to couplings between columns
that are not in physical contact. To see why, imagine a hypothetical alignment consisting of
two sets of sequences as it is illustrated in Figure 3.27. The first set has sequences covering
only the left half of columns in the MSA, while the second set has sequences covering only the
right half of columns. The two blocks could correspond to protein domains that were aligned
to a single query sequence. Now consider couplings between a pair of columns i, j with i from
the left half and j from the right half. Since no sequence (except the single query sequence)
overlaps both domains, the empirical amino acid pair frequencies q(xi = a, xj = b) will vanish
for all a, b ∈ {1, ..., L}.

According to the gradient of the log likelihood for couplings wijab given in eq (3.10), the
empirical frequencies q(xi=a, xj=b) are equal to the model probabilities p(xi=a, xj=b|v,w)
at the maximum of the likelihood when the gradient vanishes. Therefore, p(xi=a, xj=b|v,w)
would have to be zero at the optimum when the empirical amino acid frequencies q(xi=a, xj=
b) vanish for pairs of columns as described above. However, p(xi = a, xj = b|v,w) can only
become zero, when the exponential term is zero, which would only be possible if wijab goes
to ∞. This is clearly undesirable, as physical contacts will be deduced from the size of the
couplings.

The solution is to treat gaps as missing information. This means that the normalization of
p(xn|v,w) should not run over all positions i ∈ {1, ..., L} but only over those i that are not
gaps in xn. Therefore, the set of sequences Sn used for normalization of p(xn|v,w) in the
partition function will be defined as:

Sn := {(y1, ..., yL) : 0 ≤ yi ≤ 20 ∧ (yi=0 iff xni=0)} (3.11)

and the partition function becomes:

Zn(v,w) =
∑
y∈Sn

exp

 L∑
i=1

vi(yi)
∑

1≤i<j≤L

wij(yi, yj)

 (3.12)

To ensure that the gaps in y ∈ Sn do not contribute anything to the sums, the parameters
associated with a gap will be fixed to 0

vi(0) = wij(0, b) = wij(a, 0) = 0 ,
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Figure 3.27: Hypothetical MSA consisting of two sets of sequences: the first set has sequences
covering only the left half of columns, while the second set has sequences covering only the
right half of columns. The two blocks could correspond to protein domains that were aligned
to a single query sequence. Empirical amino acid pair frequencies q(xi=a, xj=b) will vanish
for positions i from the left half and j from the right half of the alignment.

for all i, j ∈ {1, ..., L} and a, b ∈ {0, ..., 20}.

Furthermore, the empirical amino acid frequencies qia and qijab need to be redefined such that
they are normalized over {1, ..., 20},

Ni :=

N∑
n=1

wnI(xni ̸=0) qia = q(xi=a) :=
1

Ni

N∑
n=1

wnI(xni=a) (3.13)

Nij :=
N∑

n=1

wnI(xni ̸=0, xnj ̸=0) qijab = q(xi=a, xj=b) :=
1

Nij

N∑
n=1

wnI(xni=a, xnj=b)

(3.14)

with wn being sequence weights calculated as described in methods section 2.6.3. With this
definition, empirical amino acid frequencies are normalized without gaps, so that

20∑
a=1

qia = 1 ,

20∑
a,b=1

qijab = 1. (3.15)

3.8.3 The Regularized Full Log Likelihood and its Gradient With Gap
Treatment

In pseudo-likelihood based methods, a regularisation is commonly used that can be interpreted
to arise from a prior probability. The same treatment will be applied to the full likelihood.
Gaussian priors N (v|v∗, λ−1

v I) and N (w|0, λ−1
w I) will be used to constrain the parameters v

and w and to fix the gauge. The choice of v∗ is discussed in section 3.8.4. By including the
logarithm of this prior into the log likelihood the regularized log likelihood is obtained,

LLreg(v,w) = log
[
p(X|v,w) N (v|v∗, λ−1

v I) N (w|0, λ−1
w I)

]
(3.16)

or explicitly,
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LLreg(v,w) =

N∑
n=1

 L∑
i=1

vi(xni) +
∑

1≤i<j≤L

wij(xni, xnj)− logZn(v,w)


− λv

2

L∑
i=1

20∑
a=1

(via − v∗ia)
2 − λw

2

∑
1≤i<j≤L

20∑
a,b=1

w2
ijab. (3.17)

The gradient of the regularized log likelihood has single components

∂LLreg

∂via
=

N∑
n=1

I(xni = a)−
N∑

n=1

∂

∂via
logZn(v,w)− λv(via − v∗ia)

= Niq(xi=a)

−
N∑

n=1

∑
y∈Sn

exp
(∑L

i=1 vi(yi) +
∑L

1≤i<j≤Lwij(yi, yj)
)

Zn(v,w)
I(yi = a)

− λv(via − v∗ia) (3.18)

and pair components

∂LLreg

∂wijab
=

N∑
n=1

I(xni=a, xnj=b)−
N∑

n=1

∂

∂wijab
logZn(v,w)− λwwijab

= Nijq(xi=a, xj = b)

−
N∑

n=1

∑
y∈Sn

exp
(∑L

i=1 vi(yi) +
∑L

1≤i<j≤Lwij(yi, yj)
)

Zn(v,w)
I(yi=a, yj=b)

− λwwijab (3.19)

Note that (without regularization λv = λw = 0) the empirical frequencies q(xi = a) and
q(xi=a, xj = b) are equal to the model probabilities at the maximum of the likelihood when
the gradient becomes zero.

If the proportion of gap positions in X is small (e.g. < 5%, also compare percentage of gaps
in data set in Appendix Figure C.2), the sums over y ∈ Sn in eqs. (3.18) and (3.19) can be
approximated by p(xi = a|v,w)I(xni ̸= 0) and p(xi = a, xj = b|v,w)I(xni ̸= 0, xnj ̸= 0),
respectively, and the partial derivatives become

∂LLreg

∂via
= Niq(xi=a)−Ni p(xi=a|v,w)− λv(via − v∗ia) (3.20)

∂LLreg

∂wijab
= Nijq(xi=a, xj = b)−Nij p(xi=a, xj=b|v,w)− λwwijab (3.21)

Note that the couplings between columns i and j in the hypothetical MSA presented in the
last section 3.8.2 will now vanish since Nij=0 and the gradient with respect to wijab is equal
to −λwwijab.
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3.8.4 The prior on single potentials

Most previous approaches chose a prior around the origin, p(v) = N (v|0, λ−1
v I), i.e., v∗ia=0.

It can be shown that the choice v∗ia = 0 leads to undesirable results. Taking the sum over
b = 1, . . . , 20 at the optimum of the gradient of couplings in eq. (3.21), yields

0 = Nij q(xi=a, xj ̸= 0)−Nij p(xi=a|v,w)− λw

20∑
b=1

wijab , (3.22)

for all i, j ∈ {1, . . . , L} and all a ∈ {1, . . . , 20}.

Note, that by taking the sum over a = 1, . . . , 20 it follows that,

20∑
a,b=1

wijab = 0. (3.23)

At the optimum the gradient with respect to via vanishes and according to eq. (3.20), p(xi =
a|v,w) = q(xi = a) − λv(via − v∗ia)/Ni. This term can be substituted into equation (3.22),
yielding

0 = Nij q(xi=a, xj ̸= 0)−Nij q(xi = a) +
Nij

Ni
λv(via − v∗ia)− λw

20∑
b=1

wijab . (3.24)

Considering a MSA without gaps, the terms Nij q(xi=a, xj ̸= 0)−Nij q(xi = a) cancel out,
leaving

0 = λv(via − v∗ia)− λw

20∑
b=1

wijab. (3.25)

Now, consider a column i that is not coupled to any other and assume that amino acid a
was frequent in column i and therefore via would be large and positive. Then according to
eq. (3.25), for any other column j the 20 coefficients wijab for b ∈ {1, . . . , 20} would have to
take up the bill and deviate from zero! This unwanted behavior can be corrected by instead
choosing a Gaussian prior centered around v∗ obeying

exp(v∗ia)∑20
a′=1 exp(v

∗
ia′)

= q(xi = a). (3.26)

This choice ensures that if no columns are coupled, i.e. p(x|v,w) =
∏L

i=1 p(xi), v = v∗ and
w = 0 gives the correct probability model for the sequences in the MSA. Furthermore imposing
the restraint

∑20
a=1 via=0 to fix the gauge of the via (i.e. to remove the indeterminacy), yields

v∗ia = log q(xi=a)− 1

20

20∑
a′=1

log q(xi=a′). (3.27)

For this choice, via − v∗ia will be approximately zero and will certainly be much smaller than
via, hence the sum over coupling coefficients in eq. (3.25) will be close to zero, as it should
be.
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3.8.5 Stochastic Gradient Descent

The couplings wijab are initialized at 0 and single potentials vi will not be optimized but
rather kept fixed at their maximum-likelihood estimate v∗i as described in methods section
3.8.4. The optimization is stopped when a maximum number of 5000 iterations has been
reached or when the relative change over the L2-norm of parameter estimates, ||w||2, over the
last five iterations falls below the threshold of ϵ = 1e− 8. The gradient of the full likelihood
is approximated with CD which involves Gibbs sampling of protein sequences according to
the current model parameterization and is described in detail in methods section 3.8.6. Zero
centered L2-regularization is used to constrain the coupling parameters w using the regular-
ization coefficient λw = 0.2L which is the default setting for optimizing the pseudo-likelihood
with CCMpredPy. Performance will be evaluated by the mean precision of top ranked contact
predictions over a validation set of 300 proteins, that is a subset of the data set described
in methods section 2.6.1. Contact scores for couplings are computed as the APC corrected
Frobenius norm as explained in section 1.3.6. Pseudo-likelihood couplings are computed with
the tool CCMpredPy that is introduced in methods section 2.6.2 and the pseudo-likelihood
contact score will serve as general reference method for tuning the hyperparameters.

3.8.5.1 The Adaptive Moment Estimation Optimizer ADAM

ADAM [213] stores an exponentially decaying average of past gradients and squared gradients,

mt = β1mt1 + (1− β1)g (3.28)

vt = β2vt1 + (1− β2)g
2 , (3.29)

with g = ∇wLLreg(v
∗,w) and the rate of decay being determined by hyperparameters β1 and

β2. Both terms mt and vt represent estimates of the first and second moments of the gradient,
respectively. The following bias correction terms compensates for the fact that the vectors
mt and vt are both initialized at zero and therefore are biased towards zero especially at the
beginning of optimization,

m̂t =
mt

1− βt
1

(3.30)

v̂t =
vt

1− βt
2

. (3.31)

Parameters are then updated using step size α, a small noise term ϵ and the corrected moment
estimates m̂t, v̂t, according to

xt+1 = xt − α · m̂t√
v̂t + ϵ

(3.32)

Kingma et al. proposed the default values β1 = 0.9, β2 = 0.999 and ϵ = 1e8 and a constant
learning rate α = 1e− 3 [213].

3.8.6 Computing the Gradient with Contrastive Divergence

This section describes the implementation details for approximating the gradient of the full
likelihood with CD.
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The gradient of the full log likelihood with respect to the couplings w is computed as the
difference of pairwise amino acid counts between the input alignment and a sampled alignment
plus an additional regularization term as given in eq. (3.1). Pairwise amino acid counts are
computed from the input alignment accounting for sequence weights (described in methods
section 2.6.3) and including pseudo counts (described in methods section 2.6.4). Pairwise
amino acid counts for the sampled alignment are computed in the same way using the same
sequence weights that have been computed for the input alignment. A subset of sequences of
size S=min(10L,N), with L being the length of sequences and N the number of sequences
in the input alignment, is randomly selected from the input alignment and used to initialize
the Markov chains for the Gibbs sampling procedure. Consequently, the input MSA is bigger
than the sampled MSA whenever there are more than 10L sequences in the input alignment.
In that case, the weighted pairwise amino acid counts of the sampled alignment need to be
rescaled such that the total sample counts match the total counts from the input alignment.

During the Gibbs sampling process, every position in every sequence will be sampled K times
(default K =1), according to the conditional probabilities given in eq. (3.2). The sequence
positions will be sampled in a random order to prevent position bias. Gap positions will not be
sampled, because Dr. Stefan Seemayer showed that sampling gap positions leads to artefacts
in the contat maps (not published). For PCD a copy of the input alignment is generated
at the beginning of optimization that will keep the persistent Markov chains and that will
be updated after the Gibbs sampling procedure. The default Gibbs sampling procedure is
outlined in the following pseudo-code:

# Input: multiple sequence alignment X with N sequences of length L

# Input: model parameters v and w

N = dim(X)[0] # number of sequences in alignment

L = dim(X)[1] # length of sequences in alignment

S = min(10L, N) # number of sequences that will be sampled

K = 1 # number of Gibbs steps

# randomly select S sequences from the input alignment X without replacement

sequences = random.select.rows(X, size=S, replace=False)

for seq in sequences:

# perform K steps of Gibbs sampling

for step in range(K):

# iterate over permuted sequence positions i in {1, ..., L}

for i in shuffle(range(L)):

# ignore gap positions

if seq[i] == gap:

continue

# compute conditional probabilities for every

# amino acid a in {1, ..., 20}

for a in range(20):

p_cond[a] = p(seq[i]=a | seq/i, v, w)

# randomly select a new amino acid for position i

# according to conditional probabilities

seq[i] = random.integer({1, ...,20}, p_cond)

# sequences will now contain S newly sampled sequences

return sequences
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4
Random Forest Contact Prior

The wealth of successful meta-predictors presented in section 1.2.3 highlights the importance
to exploit other sources of information apart from coevolution statistics. Much information
about residue interactions is typically contained in single position features that can be pre-
dicted from local sequence profiles, such as secondary structure, solvent accessibility or contact
number, and in pairwise features such as the contact prediction scores for residue pairs (i, j)
from simple local statistical methods as presented in section 1.2.1.

For example, predictions of secondary structure elements and solvent accessibility are used
by almost all modern machine learning predictors, such as MetaPsicov [85], NeBCon [88],
EPSILON-CP [87], PconsC3 [83]. Other frequently used features include pairwise contact
potentials, sequence separation and conservation measures such as column entropy [85,88,216].

In the following sections I present a random forest classifier that uses sequence derived features
to distinguish contacts from non-contacts. Method section 4.6.1 lists all features used to train
the classifier including the aforementioned standard features as well as some novel features.
The probabilistic predictions of the random forest model can be introduced directly as prior
information into the Bayesian statistical model that will be presented in chapter 5 to improve
the overall prediction accuracy in terms of posterior probabilities. Furthermore, contact scores
from coevolution methods can be added as additional feature to the random forest model in
order to elucidate how much the combined information improves prediction accuracy over the
single methods.

4.1 Random Forest Classifiers

Random Forests are supervised machine learning methods that belong to the class of ensemble
methods [217–219]. They are easy to implement, fast to train and can handle large numbers
of features due to implicit feature selection [220]. Ensemble methods combine the predictions
of several independent base estimators with the goal to improve generalizability over a single
estimator. Random forests are ensembles of decision trees where randomness is introduced in
two ways:

1. every tree is build on a random sample that is drawn with replacement from the training
set and has the same size as the training set (i.e., a bootstrap sample)

2. every split of a node is evaluated on a random subset of features
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Figure 4.1: Classifying new data with random forests. A new data sample is run down
every tree in the forest until it ends up in a leaf node. Every leaf node has associated class
probabilities p(c) reflecting the fraction of training samples at this leaf node belonging to
every class c. The color of the leaf nodes reflects the class with highest probability. The
predictions from all trees in form of the class probabilities are averaged and yield the final
prediction.

A single decision tree, especially when it is grown very deep is highly susceptible to noise in
the training set and therefore prone to overfitting which results in poor generalization ability.
As a consequence of randomness and averaging over many decision trees, the variance of a
random forest predictor decreases and therefore the risk of overfitting [221]. It is still advisable
to restrict the depth of single trees in a random forest, not only to counteract overfitting but
also to reduce model complexity and to speedup the algorithm.

Random forests are capable of regression and classification tasks. For classification, predictions
for new data are obtained by running each data sample down every tree in the forest and
then either apply majority voting over single class votes or averaging the probabilistic class
predictions. Probabilistic class predictions of single trees are computed as the fraction of
training set samples of the same class in a leaf whereas the single class vote refers to the
majority class in a leaf. Figure 4.1 visualizes the procedure of classifying a new data sample.

Typically, Gini impurity, which is a computationally efficient approximation to the entropy,
is used as a split criterion to evaluate the quality of a split. It measures the degree of purity
in a data set regarding class labels as GI = (1−

∑K
k=1 p

2
k), where pk is the proportion of class

k in the data set. For every feature f in the random subset that is considered for splitting a
particular node N , the decrease in Gini impurity ∆GIf will be computed as,

∆GIf (Nparent) = GIf (Nparent)− pleftGIf (Nleft)− prightGIf (Nleft)

where pleft and pright refers to the fraction of samples ending up in the left and right child
node respectively [220]. The feature f with highest ∆GIf over the two resulting child node
subsets will be used to split the data set at the given node N .

Summing the decrease in Gini impurity for a feature f over all trees whenever f was used
for a split yields the Gini importance measure, which can be used as an estimate of general
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feature relevance. Random forests therefore are popular methods for feature selection and
it is common practice to remove the least important features from a data set to reduce
the complexity of the model. However, feature importance measured with respect to Gini
importance needs to be interpreted with care. The random forest model cannot distinguish
between correlated features and it will choose any of the correlated features for a split, thereby
reducing the importance of the other features and introducing bias. Furthermore, it has been
found that feature selection based on Gini importance is biased towards selecting features
with more categories as they will be chosen more often for splits and therefore tend to obtain
higher scores [222].

4.2 Hyperparameter Optimization for Random Forest

There are several hyperparameters in a random forest model that need to be tuned to achieve
best balance between predictive power and run time. While more trees in the random forest
generally improve performance of the model, they will slow down training and prediction.
A crucial hyperparameter is the number of features that is randomly selected for a split at
each node in a tree [223]. Stochasticity introduced by the random selection of features is a
key characteristic of random forests as it reduces correlation between the trees and thus the
variance of the predictor. Selecting many features typically increases performance as more
options can be considered for each split, but at the same time increases risk of overfitting and
decreases speed of the algorithm. In general, random forests are robust to overfitting, as long
as there are enough trees in the ensemble and the selection of features for splitting a node
introduces sufficient stochasticity. Over-fitting can furthermore be prevented by restricting
the depth of the trees, which is known as pruning or by enforcing a minimal leaf node size
regarding the minimal number of data samples ending in a leaf node. Again, a positive side-
effect of pruning and requiring minimal leaf node size is a speedup of the algorithm. [221]

In the following, I use 5-fold cross-validation to identify the optimal architecture of the random
forest. Details about the training set and he cross-validation procedure can be found in method
section 4.6.3. First I assessed performance of models for combinations of the parameter
n_estimators, defining the number of trees in the forest and the parameter max_depth defining
the maximum depth of the trees:

• n_estimators ∈ {100, 500, 1000}
• max_depth ∈ {10, 100, 1000, None}

Figure 4.2 shows that the top five parameter combinations perform nearly identical. Random
forests with 1000 trees perform slightly better than models constituting 500 trees, irrespective
of the depth of the trees. In order to keep model complexity small, I chose n_estimators=1000
and max_depth=100 for further analysis.

Next, I optimized the parameters min_samples_leaf, defining the minimum number of sam-
ples required at a leaf node and max_features, defining the number of randomly selected
features considered for each split using the following settings:

• min_samples_leaf ∈ {1, 10, 100}
• max_features ∈ {8, 16, 38, 75} representing

√
N , log 2N , 0.15N and 0.3N respectively

with N = 250 being the number of features listed in method section 4.6.1.

Randomly selecting 30% of features (=75 features) and requiring at least 10 samples per leaf
gives highest mean precision as can be seen in Figure 4.3. I chose max_features=0.30 and
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Figure 4.2: Mean precision over 200 proteins against highest scoring contact predictions from
random forest models for different settings of n_estimators and max_depth. Dashed lines
show the performance of models that have been learned on the five different subsets of train-
ing data. Solid lines give the mean precision over the five models. Only those models are
shown that yielded the five highest mean precision values (given in parentheses in the legend).
Random forest models with 1000 trees and maximum depth of trees of either 100, 1000 or
unrestricted tree depth perform nearly identical (lines overlap). Random forest models with
500 trees and max_depth=10 or max_depth=100 perform slightly worse.
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Figure 4.3: Mean precision over 200 proteins against highest scoring contact predictions from
random forest models with different settings of min_samples_leaf and max_features. Dashed
lines show the performance of models that have been learned on the five different subsets of
training data. Solid lines give the mean precision over the five models. Only those models are
shown that yielded the five best mean precision values (given in parentheses in the legend).

min_samples_leaf=10 for further analysis. Tuning the hyperparameters in a different order
or on a larger data set gives similar results.

In a next step I assessed data set specific settings, such as the window size over which
single positions features will be computed, the distance threshold to define non-contacts
and the optimal proportions of contacts and non-contacts in the training set. I used the
previously identified settings of random forest hyperparameters (n_estimators=1000,
min_samples_leaf=10, max_depth=100, max_features=0.30).

• proportion of contacts/non-contacts ∈ {1 : 2, 1 : 5, 1 : 10, 1 : 20} while keeping total data
set size fixed at 300,000 residue pairs

• window size: ∈ {5, 7, 9, 11}
• non-contact threshold ∈ {8, 15, 20}

As can be seen in appendix Figures F.6 and F.7, the default choice of using a window size of five
positions and the non-contact threshold of 8Å proves to be the optimal setting. Furthermore,
using five-times as many non-contacts as contacts in the training set results in highest mean
precision as can be seen in appendix Figure F.8. These estimates might be biased in a way
since the random forest hyperparameters have been optimized on a data set using exactly
these optimal settings.
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Figure 4.4: Top ten features ranked according to Gini importance. OMES+APC: APC cor-
rected OMES score according to Fodor&Aldrich [224]. mean pair potential (Miyasawa
& Jernigan): average quasi-chemical energy of transfer of amino acids from water to the
protein environment [225]. MI+APC: APC corrected mutual information between amino
acid counts (using pseudo-counts). mean pair potential (Li&Fang): average general con-
tact potential by Li & Fang [70]. rel. solvent accessibilty i(j): RSA score computed with
Netsurfp (v1.0) [226] for position i(j). pairwise gap%: percentage of gapped sequences at
either position i and j. correlation mean isoelectric feature: Pearson correlation between
the mean isoelectric point feature (according to Zimmermann et al., 1968) for positions i and
j. sequence separation: |j-i|. beta sheet propensity window(i): beta-sheet propensity
according to Psipred [227] computed within a window of five positions around i. Features are
described in detail in methods section 4.6.1.

4.3 Evaluating Random Forest Model as Contact Predictor

I trained a random forest classifier on the feature set described in methods section 4.6.1 and
using the optimal hyperparameters identified with 5-fold cross-validation as described in the
last section.

Figure 4.4 shows the ranking of the ten most important features according to Gini importance.
Both local statistical contact scores, OMES [224] and MI (mutual information between amino
acid counts), constitute the most important features besides the mean pair potentials cording
to Miyazawa & Jernigan [225] and Li&Fang[70]. Further important features include the
relative solvent accessibility at both pair positions, the total percentage of gaps at both
positions, the correlation between mean isoelectric point property at both positions, sequence
separation and the beta-sheet propensity in a window of size five around position i.

Many features have low Gini importance scores which means they are rarely considered for
splitting a node and can most likely be removed from the data set. Removing irrelevant
features from the data set is a convenient procedure to reduce model complexity. It has been
found, that prediction performance might even increase after removing the most irrelevant
features [220]. For example, during the development of EPSILON-CP, a deep neural network
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Figure 4.5: Mean precision for top ranked contacts on a test set of 1000 proteins. pseudo-
likelihood = APC corrected Frobenius norm of couplings computed with pseudo-likelihood.
random forest = random forest model trained on 75 sequence derived features. OMES =
APC corrected OMES contact score according to Fodor&Aldrich [224]. mutual information
= APC corrected mutual information between amino acid counts (using pseudo-counts).

method for contact prediction, the authors performed feature selection using boosted trees.
By removing 75% of the most non-informative features (mostly features related to amino acid
composition), the performance of their predictor increased slightly [87]. Other studies have
also emphasized the importance of feature selection to improve performance and reduce model
complexity [68,70].

As described in methods section 4.6.4, I performed feature selection by evaluating model
performance on subsets of features of decreasing importance. Most models trained on subsets
of the total feature space perform nearly identical compared to the model trained on all
features (see appendix Figure F.9). Performance of the random forest models drops noticeably
when using only the 25 most important features. For the further analysis I am using the
random forest model trained on the 75 most important features as this model constitutes the
smallest set of features while performing nearly identical compared to the model trained on
the complete feature set.

Figure 4.5 shows the mean precision for the random forest model trained on the 75 most
important features. The random forest model has a mean precision of 0.33 for the top 0.5 ·L
contacts compared to a precision of 0.47 for pseudo-likelihood. Furthermore, the random
forest model improves approximately ten percentage points in precision over the local statis-
tical contact scores, OMES and mutual information (MI). Both methods comprise important
features of the random forest model as can be seen in Figure 4.4.

When analysing performance with respect to alignment size it can be found that the random
forest model outperforms the pseudo-likelihood score for small alignments (see Appendix
Figure F.2).
Both, local statistical models OMES and MI also perform weak on small alignments, leading
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Figure 4.6: Mean precision for top ranked contacts on a test set of 1000 proteins. ran-
dom forest (pLL, CD) random forest model trained on sequence features and the pseudo-
likelihood and contrastive divergence contact scores. random forest (pLL) random forest
model trained on sequence features and the pseudo-likelihood contact score. random forest
(CD) random forest model trained on sequence features and the contrastive divergence con-
tact score. contrastive divergence APC corrected Frobenius norm of couplings computed
with contrastive divergence. pseudo-likelihood = APC corrected Frobenius norm of cou-
plings computed with pseudo-likelihood. random forest = random forest model trained on
75 sequence derived features.

to the conclusion that the remaining sequence derived features are highly relevant when the
alignment contains only few sequences. This finding is expected, as it is well known that
models trained on simple sequence features perform almost independent of alignment size
[83,87].

4.4 Using Contact Scores as Additional Features

Figure F.2 shows that the random forest predictor improves over the pseudo-likelihood co-
evolution method when the alignment consists of only few sequences. In order to assess this
improvement in a more direct manner, it is possible to build a combined random forest predic-
tor that is not only trained on the sequence derived features but also on the pseudo-likelihood
contact score as an additional feature. As expected, the pseudo-likelihood score comprises
the most important feature in the model (see Appendix Figure F.3) followed by the same
sequence features that were found in the previous analysis in Figure 4.4. The model trained
on the 76 most relevant features performs as well as the model trained on the full feature set
and was used in the benchmark shown in Figure 4.6. The combination of simple sequence fea-
tures with the coevolution pseudo-likelihood contact score indeed improves predictive power
for the random forest model over both single approaches. Especially for small alignments, the
improvement is substantial (about 12%) as can be seen in in the left plot in Figure 4.7. In
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Figure 4.7: Mean precision for top ranked contacts on a test set of 1000 proteins splitted into
four equally sized subsets with respect to Neff. Subsets are defined according to quantiles of
Neff values. Left: Subset of proteins with Neff < Q1. Right: Subset of proteins with Q3
<= Neff < Q4. Methods are the same as in Figure 4.6

contrast, the improvement on large alignments (right plot in Figure 4.7) is smaller (about 5%),
as the gain from simple sequence features compared to the much more powerful coevolution
signals is neglectable.

Similarly, the contact scores derived from couplings computed with CD in chapter 3 can be
added as a feature instead of the pseudo-likelihood score or besides the pseudo-likelihood con-
tact score. Again, the contrastive-divergence and the pseudo-likelihood contact score comprise
the most important features in the respective models (see Appendix Figures F.4 and F.5). The
three models trained on additional coevolution features perform comparably (see Figure 4.6)
and apparently, there is minor information gain by adding both coevolution contact scores.
Since it has been shown in section 3.6 that pseudo-likelihood and contrastive divergence con-
tact scores are highly correlated, resulting in very similar rankings for residue pairs, it is not
surprising that the random forest model including both coevolution scores does not improve
over the random forest model including only one of both scores.

4.5 Discussion

Much information about interacting protein residues is typically contained in simple protein
sequence features. All popular machine learning and meta-predictors for contact predic-
tion employ sequence derived features as additional source of information besides coevolution
scores. In line with this knowledge I developed a random forest classifier for contact prediction
that is trained on simple sequence features.

Random forests are a convenient choice for many machine learning applications as they re-
quire no input preparation, such as feature scaling, they perform implicit feature selection
and provide a robust indicator of feature importance and can handle huge feature space. Fur-
thermore they are quick and straight forward to train and have been shown to perform well
for protein contact prediction.

As expected, the random forest model yielded a robust estimator that outperformed coevolu-
tion methods for small protein families where they suffer from the low signal-to-noise ratio.
Furthermore, I integrated the predictions of the pseudo-likelihood and the constrastive diver-
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gence method as additional features for training. Again as expected, the individual methods
greatly contribute and improve the predictive performance of the random forest classifier.
Even for protein families with many sequences, where coevolutionary methods perform best,
the combined random forest model improves over the individual coevolution approaches. Yet,
including both coevolution scores as additional features into the random forest model does not
help to boost performance further. Apparently, they do not seem to represent complementary
information which was on the other hand already expected from the analysis in chapter 3.
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4.6 Methods

4.6.1 Features used to train Random Forest Model

Given a multiple sequence alignment of a protein family, various sequence features can be
derived that have been found to be informative of a residue-residue contact.

In total there are 250 features that can be divided into global, single position and pairwise
features and are described in the following sections. If not stated otherwise, weighted features
have been computed using amino acid counts or amino acid frequencies based on weighted
sequences as described in section 2.6.3.

4.6.1.1 Global Features

These features describe alignment characteristics. Every pair of residues (i, j) from the same
protein will be attributed the same feature.

Table 4.1: Features characterizing the total alignment

Feature Description

Features
per

residue
pair

L log of protein length 1
N number of sequences 1

Neff number of effective sequences computed as the
sum over sequence weights (see section 2.6.3)

1

gaps average percentage of gaps over all positions 1
diversity

√
N
L , N=number of sequences, L=protein length 1

amino acid composition weighted amino acid frequencies in alignment 20
Psipred secondary structure prediction by PSIPRED

(v4.0)[227] given as average three state
propensities

3

NetsurfP secondary structure prediction by Netsurfp
(v1.0)[226] given as average three state
propensities

3

contact prior protein
length

simple contact predictor based on expected
number of contacts per protein with respect to
protein length (see description below)

1

There are in total 32 global alignment features per reside pair.

4.6.1.2 Single Position Features

These features describe characteristics of a single alignment column. Every residue pair (i, j)
will be described by two features, once for each position.
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Table 4.2: Single Position Sequence Features

Feature Description

Features
per

residue
pair

shannon entropy
(excluding gaps)

−
∑20

a=1 pa log pa 2

shannon entropy
(including gaps)

−
∑21

a=1 pa log pa 2

kullback leibler divergence between weighted observed and background
amino acid frequencies [228]

2

jennson shannon
divergence

between weighted observed and background
amino acid frequencies [228]

2

PSSM log odds ratio of weighted observed and
background amino acid frequencies [228]

40

secondary structure
prediction

three state propensities PSIPRED (v4.0) [227] 6

secondary structure
prediction

three state propensities Netsurfp (v1.0) [226] 6

solvent accessibility
prediction

RSA and RSA Z-score Netsurfp (v1.0) [226] 4

relative position in
sequence

i
L for a protein of length L 2

number of ungapped
sequences

∑
nwnI(xni ̸= 20) for sequences xn and

sequence weights wn

2

percentage of gaps
∑

n wnI(xni=20)
Neff

for sequences xn and sequence
weights wn

2

Average Atchley Factor Atchley Factors 1-5 [229] 10
Average polarity

(Grantham)
Polarity according to Grantham [230]. Data
taken from AAindex Database [231].

2

Average polarity
(Zimmermann)

Polarity according to Zimmermann et al. [232].
Data taken from AAindex Database [231].

2

Average isoelectricity Isoelectric point according to Zimmermann et
al. [232]. Data taken from AAindex Database
[231].

2

Average hydrophobicity
(Wimley&White)

Hydrophobicity scale according to Wimley &
White [233]. Data taken from UCSF Chimera
[233].

2

Average hydrophobicity
(Kyte&Dolittle)

Hydrophobicity index according to Kyte &
Doolittle [234]. Data taken from AAindex
Database [231].

2

Average hydrophobicity
(Cornette)

Hydrophobicity according to Cornette [235]. 2

Average bulkiness Bulkiness according to Zimmerman et al. [232].
Data taken from AAindex Database [231].

2

Average volume Average volumes of residues according to
Pontius et al. [236]. Data taken from AAindex
Database [231].

2
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There are 48 single sequence features per residue and consequently 96 single sequence features
per residue pair.

Additionally, all single features will be computed within a window of size 5. The window
feature for center residue i will be computed as the mean feature over residues [i−2, . . . , i, . . . , i+
2]. Whenever the window extends the range of the sequence (for i < 2 and i > (L − 2)), the
window feature will be computed only for valid sequence positions. This results in additional
96 window features per residue pair.

4.6.1.3 Pairwise Features

These features are computed for every pair of columns (i, j) in the alignment with i < j.

Table 4.3: Pairwise Sequence Features

Feature Description

Features
per

residue
pair

sequence separation j − i 1
gaps pairwise percentage of gaps using weighted

sequences
1

number of ungapped
sequences

∑
nwnI(xni ̸=20, xnj ̸=20) for sequences xn and

sequence weights wn

1

correlation
physico-chemical features

pairwise correlation of all physico-chemical
properties listed in table 4.2

13

pairwise potential (buried) Average quasi-chemical energy of interactions in
an average buried environment according to
Miyazawa&Jernigan [225]. Data taken from
AAindex Database [231].

1

pairwise potential (water) Average quasi-chemical energy of transfer of
amino acids from water to the protein
environment according to Miyazawa&Jernigan
[225]. Data taken from AAindex Database [231].

1

pairwise potential
(Li&Fang)

Average general contact potential by Li&Fang
[70]

1

pairwise potential
(Zhu&Braun)

Average statistical potential from residue pairs
in beta-sheets by Zhu&Braun [237]

1

joint shannon entropy
(excluding gaps)

−
∑20

a=1

∑20
b=1 p(a, b) log p(a, b) 1

joint shannon entropy
(including gaps)

−
∑21

a=1

∑21
b=1 p(a, b) log p(a, b) 1

normalized MI normalized mutual information of amino acid
counts at two positions

1

MI (+pseudo-counts) mutual information of amino acid counts at two
positions, including uniform pseudo-counts

1

MI (+pseudo-counts +
APC)

mutual information of amino acid counts at two
positions; including pseudo-counts and average
product correction

1

OMES coevolution score according to Fodor&Aldrich [224] with and
without APC

2
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Figure 4.8: Observed number of contacts per residue has a non-linear relationship with protein
length. Distribution is shown for several thresholds of sequence separation |j-i|.

There are in total 26 pairwise sequence features.

4.6.2 Simple Contact Prior with Respect to Protein Length

The last feature listed in table 4.1 (“contact prior protein length”) stands for a simple contact
predictor based on expected number of contacts per protein with respect to protein length.
The average number of contacts per residue, computed as the observed number of contacts
divided by protein length L, has a non-linear relationship with protein length L as can be
seen in Figure 4.8.

In log space, the average number of contacts per residue can be fitted with a linear regression
and yields the following functions:

• f(L) = 1.556 + 0.596 log(L) for sequence separation of 0 positions
• f(L) = −1.273 + 0.59 log(L) for sequence separation of 8 positions
• f(L) = −1.567 + 0.615 log(L) for sequence separation of 12 positions
• f(L) = −2.0 + 0.624 log(L) for sequence separation of 24 positions

A simple contact predictor can be formulated as the ratio of the expected number of contacts
per residue, given by f(L), and the possible number of contacts per residue which is L− 1,

p(rij = 1|L) = f(L)

L− 1
,

with rij = 1 representing a contact between residue i and j.
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Figure 4.9: Fraction of contacts among all possible contacts in a protein against protein length
L. The distribution has a non-linear relationship. At a sequence separation >8 positions the
fraction of contacts for intermediate size proteins with length >100 is approximately 2%.
Data set contains 6368 proteins and is explained in methods section @ref(data set).

4.6.3 Cross-validation for Random Forest Training

Proteins constitute highly imbalanced data sets with respect to the number of residue pairs
that form and do not form physical contacts. As can be seen in Figure 4.9, depending on
the enforced sequence separation threshold and protein length the percentage of contacts per
protein varies between 25% and 0%. Most studies applying machine learning algorithms for
predicting residue-residue contacts rebalanced the data set by undersampling of the majority
class. Table 4.4 lists choices for the proportion of contacts to non-contacts used to train some
machine learning contact predictors. I followed the same strategy and undersampled residue
pairs that are not physical contacts with a proportion of contacts to non-contacts of 1:5.

Table 4.4: Important machine learning contact prediction ap-
proaches and their choices for rebalancing the data set.

Study

Machine
Learning
Algorithm

Proportion of Contacts :
Non-contacts

Wu et al. (2008) [69] SVM 1:4
Li et al. (2011) [70] Random Forest 1:1, 1:2

Wang et al. (2011) [71] Random Forest 1:4
DiLena et al. (2012) [79] deep neural

network
1:≈4 (sampling 20% of

non-contacts)
Wang et al. (2013) [72] Random Forest 1:≈ 4 (sampling 20% of

non-contacts)

The total training set is comprised of 50,000 residue pairs < 8Å (“contacts”) and 250,000
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residue pairs > 8Å (“non-contacts”). I filtered residue pairs using a sequence separation of 12
positions and selected at maximum 100 contacts and 500 non-contacts per protein. The data
is collected in equal parts from data subsets 1-5 (see methods section 2.6), so that the training
set consists of five subsets that are non-redundant at the fold level. Each of the five models
for cross-validation will be trained on 40,000 contacts and 200,000 non-contacts originating
from four of the five subsets. As the training set has been undersampled for non-contacts, it
is not representative of real world proteins and the models need to be validated on a more
realistic validation set. Therefore, each of the five trained models is not validated on the hold-
out set but on separate validation sets containing 40 proteins at a time. The proteins of the
validation sets are randomly selected from the respective fifth data subset and consequently
are non-redundant at the fold level with training data. Performance is assessed by means of
the standard contact prediction benchmark (mean precision against top ranked contacts).

I used the module RandomForestClassifier in the Python package sklearn (v. 0.19) [238]
and trained the models on features extracted from MSAs which are listed in methods section
4.6.1.

4.6.4 Feature Selection

A random forest model is trained on the total set of features. Given the distribution of
Gini importance values of features from the model, subsets of features are defined by features
having Gini importance values larger than the {10, 30, 50, 70, 90}-percentile of the distribution.
Performance of the models trained on these subsets of features is evaluated on the same
validation set.
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5
A Bayesian Statistical Model for Residue-Residue

Contact Prediction

All methods so far predict contacts by finding the one solution of parameters via and wijab

that maximizes a regularized version of the log likelihood of the MSA and in a second step
transforming the MAP estimates of the couplings w∗ into heuristic contact scores (see Intro-
duction 1.3.5). Apart from the heuristic transformation that omits meaningful information
comprised in the coupling matrices wij as discussed in section 2, using the MAP estimate of
the parameters instead of the true distribution has the decisive disadvantage of concealing
the uncertainty of the estimates.

The next sections present the derivation of a principled Bayesian statistical approach for
contact prediction eradicating these deficiencies. The model provides estimates of the posterior
probability distributions of contact states cij for all residues pairs i and j, given the MSA
X. A true contact (contact state cij = 1) is defined as two residues whose Cβ-Cβ distance
≤ 8Å , whereas a residue pair with Cβ-Cβ distance > 8Å is considered not to be in physical
contact (contact state cij = 0). The parameters (v,w) of the MRF model describing the
probability distribution of the sequences in the MSA are treated as hidden parameters that
can be integrated out using an approximation to the posterior distribution of couplings w.
This approach also allows to explicitly model the dependence of coupling coefficients wij on
contacts/non-contacts as a mixture of Gaussians with contact state dependent mixture weights
and thus can even learn correlations between couplings. Furthermore, it provides probability
estimates for the predicted contacts that could simplify the selection of constraints for de novo
structure prediction by establishing suitable probability cutoffs.

5.1 Computing the Posterior Probabilty of a Contact

The joint probability of contact states c and MRF model parameters (v,w) given the MSA
X and a set of sequence derived features ϕ (such as listed in method section 4.6.1), can be
written as a hierarchical Bayesian model of the form:

p(c,v,w|X, ϕ) ∝ p(X|v,w)p(v,w|c) p(c|ϕ) . (5.1)
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The ultimate goal is to compute the posterior probability of the contact states, p(c|X, ϕ),
that can be obtained by treating the parameters (v,w) as hidden variables and marginalizing
over these parameters,

p(c|X, ϕ) ∝ p(X|c)p(c|ϕ) (5.2)

p(X|c) =
∫ ∫

p(X|v,w) p(v,w|c) dv dw . (5.3)

The single potentials v will be fixed at their best estimate v∗ (see method section 3.8.4) by
using a very tight prior p(v) = N (v|v∗, λ−1

v I) → δ(v − v∗) for λv → ∞ that acts as a delta
function. This allows the replacement of the integral over v with the value of the integrand
at its mode v∗.

Computing the integral over w can be achieved by factorizing the integrand into factors over
(i, j) and performing each integration over the coupling coefficients wij for (i, j) separately.

For that account, the prior over w will be modelled as a product over independent contribu-
tions over wij with wij depending only on the contact state cij , which is described in detail
in the next section 5.2. The prior over the Potts model parameters then yields,

p(v,w|c) = N (v|v∗, λ−1
v I)

∏
1≤i<j≤L

p(wij |cij) . (5.4)

Furthermore, method section 5.7.2 proposes an approximation to the regularized likelihood,
p(X|v,w) p(v,w), with a Gaussian distribution that facilitates the analytical solution of the
integral in eq. (5.3). The detailed derivation of the solution to the integral is covered in
method section 5.7.3.

Finally, the marginals p(cij |X, ϕ) =
∫
p(c|X, ϕ)dc\ij , where c\ij is the vector containing all

coordinates of c except cij can be computed to obtain the posterior probability distribution
of the contact states (see method section 5.4).

5.2 Modelling the Prior Over Couplings Depending on Contact
States

The prior over couplings p(wij |cij) will be modelled as a mixture of K+1 400-dimensional
Gaussians, with means µk ∈ R400, precision matrices Λk ∈ R400×400, and normalized weights
gk(cij) that depend on the contact state cij ,

p(wij |cij) =
K∑
k=0

gk(cij)N (wij |µk,Λ
−1
k ) . (5.5)

The assumption that the contact-state dependent coupling prior can be modelled as a multi-
variate Gaussian is justified by the analysis of single and 2-dimensional coupling distributions
presented in section 2.2 and in section 2.4. The couplings wijab for the analysis presented
in those sections have been filtered, such that there is sufficient evidence for a and b in
the alignment (see method section 2.6.6 for details). Therefore, the presented distributions
should resemble the posterior distribution of couplings, p(w|X,v∗) ∝ N (w|w∗,H−1), in the
case that the diagonal elements (H)ijab,ijab have non-negligible values. The analysis showed
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that the univariate distributions of single couplings wijab are characteristic for the physico-
chemical properties of the corresponding amino acid pairing (a, b) and vary with inter-residue
distance. More than that, the 2-dimensional distributions suggest that there are higher order
dependencies between the 400 couplings wijab that reflect amino acid specific preferences of
the interaction between the corresponding residues i and j. By explicitly modelling the prior
over couplings, p(wij |cij), as a 400-dimensional Gaussian mixture, is is possible to capture
these characteristic interdependencies between the couplings.

The K 400-dimensional Gaussian mixture components are defined by means µk ∈ R400, preci-
sion matrices Λk ∈ R400×400, and normalized weights gk(cij) that depend on the contact state
cij∈{0, 1}. The zeroth component is expected to capture the majority of coupling parameters
without a strong covariation signal, wijab≈0. Generally, the couplings are expected to vanish
for non-contacts (cij =0) but couplings will also be close to zero for contacts (cij =1) when
there is no covariation between residues i and j or when there is no evidence in the alignment
originating from amino acid pairings a and b. Therefore, µ0=0 will be kept fixed. Further-
more, the precision matrices Λk will be modelled as diagonal matrices, thereby drastically
reducing the computational complexity of the optimization problem. In order to ensure that
interdependencies between couplings can be modelled with diagonal precision matrices, the
number of components K is a crucial parameter.

5.3 Training the Hyperparameters in the Likelihood Function
of Contact States

Solving the integral in eq. (5.3) as described in in detail in method section 5.7.3, yields the
likelihood function of contact states, p(X|c). It contains the hyperparameters of the prior
over couplings, p(wij |cij), which is modelled as a mixture of K 400-dimensional Gaussians
with component weights that depend on the contact state.

The hyperparameters are trained by minimizing the negative logarithm of the likelihood over
a set of training MSAs as described in detail in method section 5.7.5. The MAP estimates
of the coupling parameters w∗

ij are needed to compute the Hessian of the regularized Potts
model likelihood, which again is needed for the Gaussian approximation to the regularized
likelihood (see method section 5.7.2). For that purpose, I trained the hyperparameters by
utilizing couplings w∗

ij obtained from pseudo-likelihood maximization as well as couplings
w∗

ij obtained by maximizing the full likelihood with contrastive divergence (CD).

In the following I present the results of learning the hyperparameters for the coupling prior
modelled as a Gaussian mixture with K ∈ {3, 5, 10} Gaussian components with diagonal
precision matrices Λk and a zero-component that is fixed at µ0 = 0 on data sets of different
sizes (see method section 5.7.5.1 for details).

5.3.1 Training Hyperparameters for a Gaussian Mixture with Three Com-
ponents

Training of the hyperparameters for three component Gaussian mixtures based on pseudo-
likelihood and contrastive divergence couplings converged after several hundreds of iterations.
The inferred hyperparameters obtained by several independent optimization runs and on the
data sets of different size (10000, 100000, 3000000, 500000 residue pairs per contact class) are
consistent. The following analysis is conducted for the training on the data set with 300,000
residue pairs per contact class and by using pseudo-likelihood couplings for estimation of the
Hessian.
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Figure 5.1: Statistics for the hyperparameters, γk(cij), µk and Λk of a three component
Gaussian mixture obtained after 331 iterations. Trained on 300,000 residue pairs per contact
class and using pseudo-likelihood couplings to estimate the Hessian. Left Component weights
γk(cij) for residue pairs not in physical contact (cij =0) and true contacts (cij =1). Center
Distribution of the 400 elements in the mean vectors µk. Right Distribution of the 400
standard deviations corresponding to the square root of the diagonal of Λ−1

k .

Figure 5.1 shows the statistics of the inferred hyperparameters. The zeroth component, with
µ0 = 0 has a weight of 0.88 for the non-contact class, whereas it has only weight 0.51 for the
contact class. This is expected given that the couplings wijab for non-contacts have a much
tighter distribution around zero than contacts. Component 2 has on average the highest
standard deviations and for several dimensions this component is located far off from zero,
e.g. dimension EE has µ2(EE)=−0.57 or ER has µ2(ER)=0.43. Therefore, it is not surprising
that component 2 has a low weight for non-contacts (g2(0)=0.0026) but a higher weight for
contacts (g2(1) = 0.13). Statistics of the Gaussian mixture hyperparameters learned on the
other data sets is shown in Appendix Figures G.2 and G.3. The inferred hyperparameters
for the Gaussian mixture model based on couplings optimized with contrastive divergence are
consistent with the estimates obtained by using pseudo-likelihood couplings as can be seen in
Appendix Figures G.5 ans G.4.

Figure 5.2 shows several one-dimensional projections of the 400 dimensionl Gaussian mixture
with three components. Generally, the Gaussian mixture learned for residue pairs that are not
in contact is much narrower and almost symmetrically centered around zero. The Gaussian
mixture for contacts, by contrast is much broader and often skewed. For the aliphatic amino
acid pair (V,I), the Gaussian mixture for both contacts and non-contacts is very symmetrical
and much narrower compared for example to the Gaussian mixtures for the aromatic amino
acid pair (F,W), which also has symmetrical distributions. In contrast, the distribution of
couplings for amino acid pairs (E,R) and (E,E) has strong tails for positive and negative values
respectively. The one-dimensional projections of the Gaussian mixture model greatly resemble
the empirical distributions of couplings illustrated in Figure 2.3 and in Figure 2.6 in chapter
2. The Gaussian mixtures learned on larger data sets produce very similar distributions
(see Appendix Figures G.6 and G.7). Likewise, the distributions from the Gaussian mixture
models that have been learned based on contrastive divergence couplings are also very similar
and shown in Appendix Figure G.8.

Distributions from the two-dimensional projection of the Gaussian mixture model are shown
in Figure 5.3 for several pairs of couplings. The type of paired couplings has been chosen to
allow a direct comparison to the empirical distributions in Figure 2.13 in chapter 2. The top
left plot shows the distribution of sampled coupling values according to the Gaussian mixture
model for contacts for amino acid pairs (E,R) and (R,E). Component 2 has a weight of 0.13
for contacts and is mainly responsible for the positive coupling between (E,R) and (R,E). The
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Figure 5.2: Visualization of one-dimensional projections of the three-component Gaussian
mixture model for the contact-dependent coupling prior. Hyperparameters, γk(cij), µk and
Λk, have been trained on 300,000 residue pairs per contact class and using pseudo-likelihood
couplings to estimate the Hessian. Green solid line: Gaussian mixture for contacts. Blue solid
line: Gaussian mixture for non-contacts. Black solid line: regularization prior with λ1=0.2L
with L being protein length and assumed L = 150. Dashed lines: unweighted probability
densities of Gaussian components with color code specified in the legend. Top Left One
dimensional projection for pair (V,I). Top Right One dimensional projection for pair (F,W).
Bottom Left One dimensional projection for pair (E,R). Bottom Right One dimensional
projection for pair (E,E).
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amino acid pairs (E,E) and (R,E) are negatively coupled and again component 2 generates
the strongest couplings far off zero as can be seen in the top right plot. The plots at the
bottom of Figure 5.3 show the distribution of sampled couplings for amino acid pairs (I,L)
and (V,I) according to the Gaussian mixture model for contacts (component weight gk(1))
as well as for non-contacts (component weight gk(0)). The coupling distribution for contacts
is symmetrically centered around zero just as the distribution for non-contacts. Because
of the higher weight of component 2, the distribution for contacts is much broader than
the distribution for non-contacts. The two-dimensional distributions of sampled couplings
obtained from the set of Gaussian mixture hyperparameters that have been learned based on
contrastive divergence couplings, are very similar and shown in Appendix Figure G.9

5.3.2 Training Hyperparameters for a Gaussian Mixture with Five and
Ten Components

The increased complexity of training five or even ten instead of three component Gaussian
mixtures does not only result in longer runtimes until convergence but also slows down runtime
per iteration. The optimization runs for five and ten component Gaussian mixtures did not
converge within 2000 iterations. Nevertheless, the obtained hyperparameters and resulting
Gaussian mixture are consistent, as will be shown in the following.

Figure 5.4 and 5.5 show the statistics of the inferred hyperparameters for a five and ten
component Gaussian mixture, respectively. Similarly to three component Gaussian mixtures,
the zeroth component receives a high weight for couplings from residue pairs that are not in
physical contact (g0(0)=0.93 for five component mixture and g0(0)=0.87 for ten component
mixture). There is a second component with a noteworthy contribution to the Gaussian mix-
ture for non-contact couplings (component 3 with g3(0)=0.07 for five component mixture and
component 9 with g9(0)=0.13 for ten component mixture). These two components are also
the strongest components for the Gaussian mixture representing couplings from contacting
residue pairs. The inferred hyperparameters for Gaussian mixture models based on couplings
optimized with contrastive divergence are consistent with the estimates obtained by using
pseudo-likelihood couplings as can be seen in Appendix Figures G.10 and G.11.

Figure 5.6 compares the one-dimensional projections of the 400 dimensionl Gaussian mix-
tures with five and ten components for the amino acid pairs (V,I) and (E,R). The general
observations regarding the shape of the Gaussian mixture for couplings from contacts and non-
contacts that have been found for the three component mixture also apply here. Generally, the
Gaussian mixture for couplings from non-contacts is narrower in the five and ten component
mixtures than in the three component Gaussian mixture model. Thereby, the differentiation
between contacts and non-contacts is enhanced because the ratio between the Gaussian mix-
ture probability distribution for contacts and non-contacts increases. Furthermore, whereas
in the three component model only two components would contribute to defining the tails of
the distribution for couplings from contacts, now there are more components that can refine
the tails. For example, in the case of amino acid pair (E,R) all but the zeroth component,
which is fixed at zero, are shifted towards positive values. In the case of amino acid pair (V,I)
the components are shifted towards both positive and negative values. Overall, the Gaussian
mixtures with five and ten components seem to refine the modelling of the coupling distribu-
tions compared to the simpler three component model. The same observations apply to the
one-dimensional projections of the Gaussian mixtures inferred based on contrastive divergence
couplings only that the resultant mixtures are even narrower (see Appendix Figure G.12).

Two-dimensional projections of the Gaussian mixture with five and ten components are shown
in Figure 5.7 for different pairs of couplings. The distributions resemble the ones learned for
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Figure 5.3: Visualization of two-dimensional projections of the three-component Gaussian
mixture model for the contact-dependent coupling prior. Hyperparameters, γk(cij), µk and
Λk, have been trained on 300,000 residue pairs per contact class and using pseudo-likelihood
couplings to estimate the Hessian. 10,000 paired couplings have been sampled from the
Gaussian mixture model. The different colors represent the generating component and color
code is specified in the legend. Top Left Two-dimensional projection for pairs (E,R) and
(R-E) for contacts (using component weight gk(1)). Top Right Two- dimensional projection
for pairs (E,E) and (R,E) for contacts (using component weight gk(1)). Bottom Left Two-
dimensional projection for pairs (I,L) and (V,I) for contacts (using component weight gk(1)).
Bottom Right Two-dimensional projection for pair (I,L) and (V,I) for non-contacts (using
component weight gk(0)).
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Figure 5.4: Statistics for the hyperparameters, γk(cij), µk and Λk of a five component Gaus-
sian mixture obtained after 1134 iterations. Trained on 300,000 residue pairs per contact
class and using pseudo-likelihood couplings to estimate the Hessian. Left Component weights
γk(cij) for residue pairs not in physical contact (cij = 0) and true contacts (cij = 1). Cen-
ter Distribution of the 400 elements in the mean vectors µk. Right Distribution of the 400
standard deviations corresponding to the square root of the diagonal of Λ−1

k .

the Gaussian mixture with three components. However, it is visible that the zeroth compo-
nent is narrower for the five and ten component Gaussian mixture and that the additional
components model particular parts of the distribution. For example, component 9 in the ten
component Gaussian mixture model produces couplings for amino acid pairs (E-R) and (R-E)
that are close to zero in both dimensions or even slightly negative. The Gaussian mixture
of the coupling prior that has been learned based on couplings computed with contrastive
divergence in general produces distributions that are narrower which is expected given the
hyperparameter statistics and the observations from the univariate distributions.

In conclusion it can be found that training of the hyperparameters for the Gaussian mix-
tures of the contact-dependent coupling prior seems to be robust. Training consistently yields
comparable hyperparameter settings and the Gaussian mixtures produce similar distributions
regardless of the data set size and repeated independent runs. The Gaussian mixture re-
peatedly reproduce the empirical distribution of couplings shown in Figure 2.13 in chapter
2 very well. Of course it must be noted that the empirical distributions do not take the
uncertainty of the inferred couplings into account. They are computed for high evidence cou-
plings as explained in method section 2.6.7 and therefore do not provide a completely correct
reference. Besides, looking at two dimensional projections of the 400 dimensional Gaussian
mixture model can only provide a limited view of the high-dimensional interdependencies.
Another restricting issue is run time. The more components define the Gaussian mixture,
the longer it takes to train the model per iteration and the more iterations it takes to reach
convergence. However, without reaching convergence it cannot be assured that the identified
hyperparameters for five and ten component Gaussian mixtures represent optimal estimates.

5.4 Evaluating the Bayesian Models for Contact Prediction

The posterior distribution for cij can be computed by marginalizing over all other contact
states, which are summarized in the vector c\ij :
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Figure 5.5: Statistics for the hyperparameters, γk(cij), µk and Λk of a ten component Gaussian
mixture obtained after 700 iterations. Trained on 300,000 residue pairs per contact class
and using pseudo-likelihood couplings to estimate the Hessian. X-axis represents the ten
components numbered from 0 to 9. Top Component weights γk(cij) for residue pairs not in
physical contact (cij=0) and true contacts (cij=1). Middle Distribution of the 400 elements
in the mean vectors µk. Bottom Distribution of the 400 standard deviations corresponding
to the square root of the diagonal of Λ−1

k .
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Figure 5.6: Visualization of one-dimensional projections of the five and ten component Gaus-
sian mixture model for the contact-dependent coupling prior. Hyperparameters, γk(cij), µk

and Λk, have been trained on 300,000 residue pairs per contact class and using pseudo-
likelihood couplings to estimate the Hessian. Green solid line: Gaussian mixture for contacts.
Blue solid line: Gaussian mixture for non-contacts. Black solid line: regularization prior with
λ1 = 0.2L with L being protein length and assumed L = 150. Dashed lines represent the
unweighted Gaussian mixture components. Top Left One dimensional projection for pair
(V,I) from the five component model. Top Right One dimensional projection for pair (V,I)
from the ten component model. Bottom Left One dimensional projection for pair (E,R)
from the five component model. Bottom Right One dimensional projection for pair (E,R)
from the ten component model.
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Figure 5.7: Visualization of two-dimensional projections of the five and ten component Gaus-
sian mixture model for the contact-dependent coupling prior. Hyperparameters, γk(cij), µk

and Λk, have been trained on 300,000 residue pairs per contact class and using pseudo-
likelihood couplings to estimate the Hessian. 10,000 paired couplings have been sampled from
the Gaussian mixture model. The color of a sampled coupling pair represents the Gaussian
mixture component that has generated this sample point. Color code is specified in the leg-
end. Top Left Two-dimensional projection for pairs (E,R) and (R-E) for contacts (using
component weight gk(1)) from the five component Gaussian mixture model. Top Right
Two-dimensional projection for pairs (E,R) and (R-E) for contacts (using component weight
gk(1)) from the ten component Gaussian mixture model. Bottom Left Two-dimensional
projection for pair (I,L) and (V,I) for non-contacts (using component weight gk(0)) from the
five component Gaussian mixture model. Bottom Right Two-dimensional projection for
pair (I,L) and (V,I) for non-contacts (using component weight gk(0)) from the ten component
Gaussian mixture model.
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p(cij |X, ϕ) =

∫
dc\ij p(c|X, ϕ)

∝
∫

dc\ij p(X|c) p(c|ϕ)

∝
∫

dc\ij
∏
i′<j′

K∑
k=0

gk(ci′j′)
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

∏
i′<j′

p(ci′j′ |ϕi′j′) , (5.6)

where p(c|ϕ) represents a prior on contacts that is implemented by the random forest classifier
trained on sequence derived features, ϕ, as described in chapter 4. By pulling the term
depending only on the contact state cij out of the integral over c\ij , one obtains the posterior
distribution for cij ,

p(cij |X, ϕ) ∝ p(cij |ϕij)
K∑
k=0

gk(cij)
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

×
∏

i′<j′,(i′,j′)̸=(i,j)

∫
dci′j′ p(ci′j′ |ϕi′j′)

K∑
k=0

gk(ci′j′)
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

. (5.7)

Since the second factor involving the integrals over ci′j′ is a constant with respect to cij , it
can be written,

p(cij |X, ϕ) ∝ p(cij |ϕij)
K∑
k=0

gk(cij)
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

. (5.8)

A predicted contact map is obtained by using the posterior probability estimate for a contact,
p(cij=1|X, ϕ), as an entry in the matrix for residue pair (i, j).

In the following I am going to assess the performance of the Bayesian models with hyper-
parameters learned using couplings from pseudo-likelihood maximization. The performance
will be evaluated with respect to the precision of the top ranked contact predictions, whereby
ranking of predictions now follows the posterior probability estimates for contacts.

Figure 5.8 shows a benchmark for the Bayesian models using a three component Gaussian
mixture model for the coupling prior and with hyperparameters trained on different data
set sizes (100,000, 300,000 and 500,000 residue pairs per contact class). The analysis of the
Gaussian mixture models in the last sections has revealed that the statistics and resultant
distributions are coherent regardless of data set size. And indeed, the precision over top ranked
predictions is almost indistinguishable for the models learned on different data set sizes. The
Gaussian mixture model with three components has 2004 parameters (see methods section
5.7.5.2) and it is reasonable to learn this many parameters given a data set of 2x 100,000
residue pairs even considering the unknown uncertainty of the couplings to be modelled.

Because the posterior probability of a contact utilizes additional information from the contact
prior in form of the random forest classifier (see chapter 4), it is not fair to compare the
posterior probabilities directly to the pseudo-likelihood derived contact scores. Instead, the
predictions from the Bayesian model can be compared to the random forest model that has
additionally been trained on the pseudo-likelihood derived contact scores (see section 4.4).
As can be seen in Figure 5.8, the Bayesian model predicts contacts more accurately than the
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Figure 5.8: Mean precision for top ranked contact predictions over 500 proteins. The “Bayesian
Posterior” methods compute the posterior probability of contacts with the Bayesian framework
employing a three component Gaussian mixture coupling prior. Hyperparameters for the
coupling prior have been trained on different data set sizes as specified in the legend. random
forest (pLL) random forest model trained on sequence features and and additional pseudo-
likelihood contact score feature. Bayesian Posterior 100k: Trained on 100,000 residue
pairs per contact class. Bayesian Posterior 300k: Trained on 300,000 residue pairs per
contact class. Bayesian Posterior 500k: Trained on 500,000 residue pairs per contact
class. pseudo-likelihood: contact score is computed as APC corrected Frobenius norm of
the couplings computed from pseudo-likelihood.
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Figure 5.9: Mean precision for top ranked contact predictions over 500 proteins. The “Bayesian
Posterior” methods compute the posterior probability of contacts with the Bayesian framework
employing a Gaussian mixture coupling prior based on couplings computed with pseudo-
likelihood. Hyperparameters for the coupling prior have been trained on 100,000 residue pairs
per contact class. The number of Gaussian components in the Gaussian mixture model is
specified in the legend. random forest (pLL) random forest model trained on sequence
features and and additional pseudo-likelihood contact score feature. Bayesian Posterior
3: Bayesian model utilizing a three component Gaussian mixture. Bayesian Posterior
5: Bayesian model utilizing a five component Gaussian mixture. Bayesian Posterior 10:
Bayesian model utilizing a ten component Gaussian mixture. pseudo-likelihood: contact
score is computed as APC corrected Frobenius norm of the couplings computed from pseudo-
likelihood.

heuristic contact score obtained from pseudo-likelihood couplings, but less accurately than the
random forest model trained on sequence features and the pseudo-likelihood contact scores.

The likelihood function of contacts has been optimized with respect to the coupling prior
hyperparameters using an equal number of residue pairs that are in physical contact and that
are not in physical contact. The residue pairs that are not in physical contact have been
defined on basis of a 25Å Cβ distance threshold. Choosing a different non-contact threshold,
Cβ distance > 8Å , has a negligible impact on performance with the 25Å Cβ cutoff giving
slightly better results (see Appendix Figure G.14). Furthermore, I checked whether a different
ratio of contacts and non-contacts has an impact on performance. Appendix Figure G.14 also
shows that choosing five times as many non-contacts as contacts gives slightly worse precision
and has the disadvantage of longer run times.

Figure 5.9 compares the performance of Bayesian models with Gaussian mixtures having
different number of components and trained on 100,000 residue pairs per contact class. The
Bayesian model with a Gaussian mixture having five components shows minor improvements
over the model with a three-component Gaussian mixture. Surprisingly, the Bayesian model
with the ten component Gaussian mixture performs slightly worse than the other two models.
This is unexpected, because the analysis in the last section indicated that both the five
and the ten component Gaussian mixture models are able to precisely model the empirical
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Figure 5.10: Mean precision for top ranked contact predictions over 500 proteins. The
“Bayesian Posterior” methods compute the posterior probability of contacts with the Bayesian
framework employing a three component Gaussian mixture coupling prior. Hyperparameters
for the coupling prior have been trained on 100,000 residue pairs per contact class. ran-
dom forest (pLL) random forest model trained on sequence features and and additional
pseudo-likelihood contact score feature. Bayesian Posterior pLL: Bayesian model based
on pseudo-likelihood couplings. Bayesian Posterior CD: Bayesian model based on con-
trastive divergence couplings. pseudo-likelihood: contact score is computed as APC cor-
rected Frobenius norm of the couplings computed from pseudo-likelihood.

coupling distributions. However, it has also been pointed out before that training of the
hyperparameters did not converge within several thousands of iterations and further training
might be necessary for the five and ten component Gaussian mixture models.

The trends described for the Bayesian models based on pseudo-likelihood couplings also apply
for the Bayesian models based on contrastive divergence couplings. In detail, the Bayesian
models based on contrastive divergence couplings perform equally well, regardless of the size
of the training set (see Appendix Figure G.15), the choice of the non-contact threshold or
the number of Gaussian components (see Appendix Figure G.16). Rather surprising is the
finding the Bayesian models based on contrastive divergence couplings perform worse than
the ones based on pseudo-likelihood couplings (see Figure 5.10). In fact, they even have
worse predictive power than the heuristic pseudo-likelihood contact score, though they in-
volve prior information. This finding is unexpected given that a crucial approximation within
the Bayesian framework employs the Hessian of the full likelihood (see method section 5.7.2)
and not of the pseudo-likelihood. Therefore it is assumed that the approximation is more
accurate when utilizing the couplings that have been obtained by maximizing the full like-
lihood with contrastive divergence. But apparently, the approximation works very well for
pseudo-likelihood couplings.

It is interesting to note that the Bayesian models are mainly performing worse for proteins
in the second Neff quartile which constitutes Neff values in the range 680 ≤ Neff < 2350
(see Appendix Figure G.17). This finding applies to all Bayesian models, regardless of the
method that was used to obtain the MAP estimate of couplings or the the number of Gaussian
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Figure 5.11: Mean precision for top ranked contact predictions over 500 proteins. random
forest (pLL) random forest model trained on sequence features and and additional pseudo-
likelihood contact score feature. Bayesian Posterior: Bayesian model computing the pos-
terior probability of contacts with a three component Gaussian mixture coupling prior based
on pseudo-likelihood couplings. Hyperparameters for the coupling prior have been trained on
300,000 residue pairs per contact class. Bayesian Likelihood: Log Likelihood of observing a
contact as given in eq. (5.31). Coupling prior is modelled as three component Gaussian mix-
ture based on pseudo-likelihood couplings. Hyperparameters for the coupling prior have been
trained on 300,000 residue pairs per contact class. pseudo-likelihood: contact score is com-
puted as APC corrected Frobenius norm of the couplings computed from pseudo-likelihood.

components used to model the coupling prior. A thorough inspection of proteins with Neff
values within this particular range did not reveal any further insights.

5.5 Analysing Contact Maps Predicted With the Bayesian
Model

In the following I will analyse the predictions from the Bayesian model utilizing a three compo-
nent Gaussian mixture for the coupling prior and pseudo-likelihood couplings to approximate
the regularized likelihood of sequences. While the posterior probabilities for contacts are used
as predictions it is also worth having a look at the likelihood of contacts, given by eq. (5.31),
to dissect the effect of likelihood and prior on the posterior. Figure 5.11 compares the preci-
sion of predictions given by the posterior probabilities and the log likelihoods for a contact. It
can be found, that the log likelihood has decreased predictive performance compared to the
heuristic contact score computed from pseudo-likelihood couplings.

Protein 1c75A00 has length L=71 and 28078 sequences in the alignment and is among the
proteins with the highest number of effective sequences (Neff=16808 > 95th percentile). The
performance of the different methods for this protein reflects the ranking of methods in the
overall benchmark. The Bayesian posterior probabilities achieve comparable performance
as the heuristic pseudo-likelihood contact score computed as the APC corrected Frobenius
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Figure 5.12: Contact maps predicted for protein 1c75A00. Upper left matrices show predicted
contact maps and lower right matrices show the native distance maps. Top Left Contact map
computed from probabilities of contacts as given by random forest model that has been trained
on sequence features and pseudo-likelihood contact scores Top Right Contact map computed
from posterior probability estimates given by Bayesian model utilizing a three component
Gaussian mixture model and is based on pseudo-likelihood couplings. Bottom Left Contact
map computed from log likelihood of contacts according to the Bayesian model utilizing a three
component Gaussian mixture model and is based on pseudo-likelihood couplings. Bottom
Right Contact map computed from probabilities of contacts as given by random forest model
that has been trained on sequence features only.
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Figure 5.13: Comparing the predicted contact probabilities from the Bayesian model and
the random forest model trained on sequence features and pseudo-likelihood couplings. Left:
Probabilities for protein 1c75A00 predicted with Bayesian model using the posterior proba-
bility estimates for contacts and the random forest model trained on sequence features and
pseudo-likelihood contact scores computed as APC corrected Frobenius norm of the couplings.
Right: Comparing the ranking of top ranked contact predictions obtained from the Bayesian
model and the random forest model trained on sequence features and pseudo-likelihood contact
scores computed as APC corrected Frobenius norm of the couplings. Plot shows predictions
for the top 71 (=L) predictions from either method. Identical residue pairs are connected with
a line. Green indicates identical ranking of the residue pair for both methods. Blue indicates
higher ranking of the residue pair for random forest model. Red indicates higher ranking of
the residue pair for Bayesian model.

norm of the pseudo-likelihood couplings (see Appendix Figure G.18). The random forest
model trained on both sequence features and the pseudo-likelihood contact score achieves the
highest precision for the top L=71 contacts. It is remarkable to see that top 25 (=0.35L)
predictions are correct. The predictions offered by the log likelihood of contacts give slightly
worse results than the prediction given by the Bayesian posterior probabilities.

Figure 5.12 shows contact maps predicted from the posterior probabilities of contacts, the
log likelihood of contacts and the random forest models trained only on sequence features
and trained on both sequence features and the pseudo-likelihood contact score. The latter
model predicts the 14 (=L/5) highest scoring contacts correctly which was already revealed
in the benchmark plot for protein 1c75A00. The simple random forest model trained only on
sequence features predicts many contacts in common with the other methods but also makes
three false positive predictions. One of the incorrect predictions (i=27, j=7) also receives a
high log likelihood and is consequently also wrongly predicted by the full Bayesian model.
It can be observed that the Bayesian posterior probabilities for contacts are generally higher
than the probabilities made by the random forest models. A more quantitative comparison of
the probabilities for contacts obtained from the random forest model and from the Bayesian
model is given in Figure 5.13.

The ranking of predicted contacts according to the probabilities is rather different for the
random forest and the Bayesian model (see Figure 5.13). A straightforward possibility to
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improve overall contact prediction accuracy is to train another random forest model based
on sequence features as well as the heuristic contact scores and the Bayesian posterior prob-
abilities. However, the random forest model using several types of coevolution methods does
not improve over the random forest model trained only on one of the scores (see Appendix
Figure G.19). The same observation has been made for the random forest model involving
both heuristic scores from pseudo-likelihood couplings and contrastive divergence couplings
as described in section 4.4.

5.6 Discussion

The predicted contacts provided by the posterior contact probabilities of the Bayesian models
proved to be less precise than those provided by the random forest trained on sequence features
and pseudo-likelihood couplings. Even though the coupling prior modelled as a Gaussian
mixture seems to reproduce the empirical distributions of high evident couplings very well,
the current approach might comprise several weaknesses.

First of all, the Gaussian components are modelled with diagonal covariance matrices. Much
more information can be learned by using full covariance matrices which would in turn require
learning less components. However, using full covariance matrices would also increase compu-
tational complexity because the inverse of these matrices has to be computed. Furthermore,
it is possible that the correlations between couplings are too sparse to exhibit a strong signal
that can be efficiently learned. In that case it might be worth considering training on a data
set that is more strictly filtered for evident couplings or on a reduced representation of the
400-dimensional coupling space. It is unlikely that overfitting is an issue during training. Not
only has the neg log likelihood been monitored on a validation set during optimization, but
also the consistent hyperparameter estimates regardless of the training set size speak against
overfitting.

The assumption that the off-diagonal block matrices in the Hessian contain negligible infor-
mation and therefore can be set to zero makes the Bayesian approach computational feasible
(see method section 5.7.4). This assumption might represent an issue but currently we are not
aware of how to quantitatively verify this assumption. These off-diagonal block matrices de-
scribe the interdependency between specific couplings in different pairs of columns. However,
in our view the entries in these off-diagonal matrices should be negligible.

Another important point is that the quality of the Gaussian approximation to the posterior
distribution of couplings p(w|X,v∗) depends on two points,

1. how well is the posterior distribution of couplings approximated by a Gaussian
2. how closely does the mode of the posterior distribution of couplings lie near the mode

of the integrand in equation (5.17).

The second point can be addressed quite effectively by learning a simple isotropic Gaussian
prior with the same methodology that is used to infer the hyperparameters for the Gaussian
mixture of the coupling prior. Since the new regularization prior will be very close to the
mode of the integrand in the marginal likelihood, the Gaussian approximation to the regular-
ized likelihood for the second iteration has improved in comparison to the first iteration. This
procedure requires the generation of new coupling estimates by pseudo-likelihood maximiza-
tion of by optimizing the full likelihood with contrastive divergence and thereby employing
the new regularization prior.

A proof of concept that the full information in the coupling matrices can be used to im-
prove the precision of contact predictions was given in the work of Golkov and colleagues
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[239]. The developed a convolutional neural network for the prediction of protein residue-
residue contacts that uses only coupling matrices as input features. In their benchmark the
convolutional network predictor improved over Meta-PSICOV [85], which is a meta predic-
tor combining several coevolution methods and sequence features. However, since their deep
learning network resembles a black box machine learning approach further insights into the
nature of interdependencies between couplings are barred. In contrast, the Bayesian statisti-
cal modeled presented here provides a principled approach that explicitly tries to model the
underlying concepts and offers new realizations.
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5.7 Methods

5.7.1 Modelling the Prior Over Couplings Depending on Contact States

The mixture weights gk(cij) in eq. (5.5) are modelled as softmax:

gk(cij) =
exp γk(cij)∑K

k′=0 exp γk′(cij)
(5.9)

The functions gk(cij) remain invariant when adding an offset to all γk(cij). This degeneracy
can be removed by setting γ0(cij) = 1.

5.7.2 Gaussian Approximation to the Posterior of Couplings

From sampling experiments done by Markus Gruber we know that the regularized pseudo-
log-likelihood for realistic examples of protein MSAs obeys the equipartition theorem. The
equipartition theorem states that in a harmonic potential (where third and higher order deriva-
tives around the energy minimum vanish) the mean potential energy per degree of freedom
(i.e. per eigendirection of the Hessian of the potential) is equal to kBT/2, which is of course
equal to the mean kinetic energy per degree of freedom. Hence we have a strong indica-
tion that in realistic examples the pseudo log likelihood is well approximated by a harmonic
potential. We assume here that this will also be true for the regularized log likelihood.

The posterior distribution of couplings w is given by

p(w|X,v∗) = p(X|v∗,w)N (w|0, λ−1
w I) (5.10)

where the single potentials v are set to the target vector v∗ as discussed in section 5.1. The
posterior distribution can be approximated with a so called “Laplace Approximation”[95]: by
performing a second order Taylor expansion around the mode w∗ of the log posterior it can
be written as

log p(w|X,v∗)
!≈ log p(w∗|X,v∗)

+∇w log p(w|X,v∗)|w∗(w −w∗)

− 1

2
(w −w∗)TH(w −w∗) . (5.11)

where H signifies the negative Hessian matrix with respect to the components of w,

(H)klcd,ijab = − ∂2 log p(w|X,v∗)

∂wklcd ∂wijab

∣∣∣∣
(w∗)

. (5.12)

The mode w∗ will be determined with the CD approach described in detail in section 3. Since
the gradient vanishes at the mode maximum, ∇w log p(w|X,v∗)|w∗ = 0, the second order
approximation can be written as

log p(w|X,v∗)≈ log p(w∗|X,v∗)− 1

2
(w −w∗)TH (w −w∗) . (5.13)

Hence, the posterior of couplings can be approximated with a Gaussian
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p(w|X,v∗) ≈ p(w∗|X,v∗) exp

(
−1

2
(w −w∗)TH(w −w∗)

)
= p(w∗|X,v∗)

(2π)
D
2

|H|
D
2

×N (w|w∗,H−1)

∝ N (w|w∗,H−1) , (5.14)

with proportionality constant that depends only on the data and with a precision matrix
equal to the negative Hessian matrix. The surprisingly easy computation of the Hessian can
be found in Methods section 5.7.6.

5.7.3 Integrating out the Hidden Variables to Obtain the Likelihood Func-
tion of the Contact States

In order to compute the likelihood function of the contact states, one needs to solve the
integral over (v,w),

p(X|c) =
∫ ∫

p(X|v,w) p(v,w|c) dv dw . (5.15)

Inserting the prior over parameters p(v,w|c) from eq. (5.4) into the previous equation and
performing the integral over v, as discussed earlier in section 5.1, yields

p(X|c) =

∫ (∫
p(X|v,w)N (v|v∗, λ−1

v I) dv

) ∏
1≤i<j≤L

p(wij |cij) dw (5.16)

p(X|c) =

∫
p(X|v∗,w)

∏
1≤i<j≤L

p(wij |cij) dw (5.17)

Next, the likelihood of sequences, p(X|v∗,w), will be multiplied with the regularization prior
N (w|0, λ−1

w I) and at the same time the coupling prior, which depends on the contact states,
will be divided by the regularization prior again:

p(X|c) =

∫
p(X|v∗,w)N (w|0, λ−1

w I)
∏

1≤i<j≤L

p(wij |cij)
N (wij |0, λ−1

w I)
dw . (5.18)

Now the crucial advantage of the likelihood regularization is borne out: the strength of the
regularization prior, λw, can be chosen such that the mode w∗ of the regularized likelihood is
near to the mode of the integrand in the last integral. The regularization prior N (wij |0, λ−1

w I)
is then a simpler, approximate version of the real coupling prior

∏
1≤i<j≤L p(wij |cij) that

depends on the contact state. This allows to approximate the regularized likelihood with a
Gaussian distribution (eq. (5.14)), because this approximation will be fairly accurate in the
region around its mode, which is near the region around the mode of the integrand and this
again is in the region that contributes most to the integral:

p(X|c) ∝
∫

N (w|w∗,H−1)
∏

1≤i<j≤L

p(wij |cij)
N (wij |0, λ−1

w I)
dw . (5.19)
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The matrix H has dimensions (L2 × 202)× (L2 × 202). Computing it is obviously infeasible,
even if there was a way to compute p(xi=a, xj=b|v∗,w∗) efficiently. In Methods section 5.7.4
is shown that in practice, the off-diagonal block matrices with (i, j) ̸= (k, l) are negligible in
comparison to the diagonal block matrices. For the purpose of computing the integral in eq.
(5.19), it is therefore a good approximation to simply set the off-diagonal block matrices (case
3 in eq. (5.43)) to zero! The first term in the integrand of eq. (5.19) now factorizes over (i, j),

N (w|w∗,H−1) ≈
∏

1≤i<j≤L

N (wij |w∗
ij ,H

−1
ij ), (5.20)

with the diagonal block matrices (Hij)ab,cd := (H)ijab,ijcd. Now the product over all residue
indices can be moved in front of the integral and each integral can be performed over wij

separately,

p(X|c) ∝
∫ ∏

1≤i<j≤L

N (wij |w∗
ij ,H

−1
ij )

∏
1≤i<j≤L

p(wij |cij)
N (wij |0, λ−1

w I)
dw (5.21)

p(X|c) ∝
∫ ∏

1≤i<j≤L

(
N (wij |w∗

ij ,H
−1
ij )

p(wij |cij)
N (wij |0, λ−1

w I)

)
dw (5.22)

p(X|c) ∝
∏

1≤i<j≤L

∫
N (wij |w∗

ij ,H
−1
ij )

p(wij |cij)
N (wij |0, λ−1

w I)
dwij (5.23)

Inserting the coupling prior defined in eq. (5.5) yields

p(X|c) ∝
∏

1≤i<j≤L

∫
N (wij |w∗

ij ,H
−1
ij )

∑K
k=0 gk(cij)N (wij |µk,Λ

−1
k )

N (wij |0, λ−1
w I)

dwij (5.24)

p(X|c) ∝
∏

1≤i<j≤L

K∑
k=0

gk(cij)

∫ N (wij |w∗
ij ,H

−1
ij )

N (wij |0, λ−1
w I)

N (wij |µk,Λ
−1
k )dwij . (5.25)

The integral can be carried out using the following formula:

∫
dx

N (x|µ1,Λ
−1
1 )

N (x|0,Λ3−1)
N (x|µ2,Λ

−1
2 ) =

N (0|µ1,Λ
−1
1 )N (0|µ2,Λ

−1
2 )

N (0|0,Λ−1
3 )N (0|µ12,Λ

−1
123)

(5.26)

with

Λ123 := Λ1 −Λ3 +Λ2 (5.27)
µ12 := Λ−1

123(Λ1µ1 +Λ2µ2). (5.28)

We define

Λij,k := Hij − λwI+Λk (5.29)

µij,k := Λ−1
ij,k(Hijw

∗
ij +Λkµk) . (5.30)
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and obtain

p(X|c) ∝
∏

1≤i<j≤L

K∑
k=0

gk(cij)
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

. (5.31)

N (0|0, λ−1
w I) and N (0|w∗

ij ,H
−1
ij ) are constants that depend only on X and λw and can be

omitted.

5.7.4 The Hessian off-diagonal Elements Carry a Negligible Signal

Assume that λw = 0, i.e., no regularization is applied. Suppose in columns i and j a set of
sequences in the MSA contain amino acids a and b and the same sequences contain c and
d in columns k and l. Furthermore, assume that (a, b) occur nowhere else in columns i and
j and the same holds for (c, d) in columns k and l. This means that the coupling between
a at position i and b at position j can be perfectly compensated by the coupling between
c at position k and d at position l. Adding 106 to wijab and subtracting 106 from wklcd

leaves p(X|v,w) unchanged. This means that wijab and wklcd are almost perfectly negatively
correlated in N (w|w∗, (H)−1). Another way to see this is to evaluate (H)ijab,klcd with eq.
(5.43), which gives (H)klcd,ijab = Nij p(xi = a, xj = b|v∗,w∗) (1 − p(xi = a, xj = b|v∗,w∗) for
this case. Under the assumption λw = 0, this precision matrix element is the same as the
diagonal elements (H)ijab,ijab and (H)klcd,klcd (see case 2 in eq. (5.43)).

But when a realistic regularization constant is assumed, e.g. λw = 0.2L ≈ 20, wijab and
wklcd will be pushed to near zero, because the matrix element that couples wijab with wklcd,
Nij p(xi=a, xj = b|v∗,w∗) (1 − p(xi=a, xj = b|v∗,w∗) is the number of sequences that share
amino acids a and b at position (i, j) and c and d at position (k, l), and this number is usually
much smaller than λw.

It is therefore a good approximation to set the off-diagonal block matrices (H)klcd,ijab (case 3
in eq. (5.43)) to zero. This corresponds to replacing the violet distribution in Figure 5.14 by
the pink one. To see why, first note that the functions gk(cij) and the component distributions
N (wij |µk,Λ

−1
k ) will be learned in such a way as to maximize the likelihood for predicting

the correct contact state cm from the respective alignments Xm for many MSAs of protein
families m. Therefore, these model parameters will adjust to the fact that the off-diagonal
blocks in H are neglected. Second, note that the integral over the product of N (w|w∗,H−1)
and

∏
i<j p(wij |cij)/N (wij |0, λ−1

w I) in eq. (5.19) evaluates the overlap of these two Gaussians.
Third, the components of p(wij |cij) will be very much concentrated within a radius of less
than 1 from the origin, because even residues with short Cβ-Cβ distance will rarely have
coupling coefficients above 1. Fourth, the Gaussian components have no couplings between
elements of wij and wkl, which is why they are axis-aligned (green in Figure 5.14). For these
reasons, the relative strengths of the overlaps with different mixture components labeled by
k in eq. (5.5) should be little affected by setting the off-diagonal block matrix couplings to
zero.

5.7.5 Training the Hyperparameters in the Likelihood Function of Contact
States

The model parameters µ = (µ1, . . . , µK), Λ = (Λ1, . . . ,ΛK) and γ = (γ1, . . . , γK) will
be trained by maximizing the logarithm of the full likelihood over a set of training MSAs
X1, . . . ,XN and associated structures with c1, . . . , cM plus a regularizer R(µ,Λ):
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Figure 5.14: Setting the off-diagonal block matrices to zero in H corresponds to replac-
ing the violet Gaussian distribution by the pink one. The ratios between the overlaps of
N
(
w
∣∣w∗,H−1

)
with the distributions N (wij |µk,Λ

−1
k ) for various choices of k is only weakly

affected by this replacement.

LL(µ,Λ, γ) +R(µ,Λ) =

M∑
n=1

log p(Xm|cm, µ,Λ, γ) +R(µ,Λ) → max . (5.32)

The regularize penalizes values of µk and Λk that deviate too far from zero:

R(µ,Λ) = − 1

2σ2
µ

K∑
k=1

400∑
ab=1

µ2
k,ab −

1

2σ2
diag

K∑
k=1

400∑
ab=1

Λ2
k,ab,ab (5.33)

Reasonable values are σµ = 0.1, σdiag = 100.
These values have been chosen empirically, so that regularization does not substantially im-
pact the strength of hyperparameters but does prevent components with small weights from
wandering off zero too far or from becoming too narrow. It has been found that this is
necessary especially for mixtures with many components.

The log likelihood can be optimized using L-BFGS-B [240], which requires the computation
of the gradient of the log likelihood. For simplicity of notation, the following calculations
consider the contribution of the log likelihood for just one protein, which allows to drop the
index m in cmij , (w

m
ij )

∗ and Hm
ij . From eq. (5.31) the log likelihood for a single protein is

LL(µ,Λ, γk) =
∑

1≤i<j≤L

log
K∑
k=0

gk(cij)
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

+R(µ,Λ) + const. . (5.34)

For the optimization, I used the module optimize.minimize from the Python package
SciPy (v 0.19.1) and the flag method="L-BFGS-B". According to the default setting,
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optimization will converge when (fˆk - fˆ{k+1})/max{|fˆk|,|fˆ{k+1}|,1} <= ftol with
ftol=2.220446049250313e-09.

The negative log likelihood will be monitored during optimization. Every ten iterations it
will be evaluated on a validation set of 1000 residue pairs per contact class to ensure that the
model is not overfitting the training data.

5.7.5.1 Dataset Specifications

An equal number of residue pairs that are in physical contact and are not in contact is selected
according to the following criteria:

• contact: ∆Cβ < 8Å

• non-contact: ∆Cβ > 25Å (also evaluated: ∆Cβ > 8Å )
• diversity (

√
N
L ) > 0.3

• percentage of gaps per column ≤ 0.5
• number of non-gapped sequences at position i and j, Nij > 1
• maximum number of contacts selected per protein = 500
• maximum number of non-contacts selected per protein = 1000
• number residue pairs for contacts (cij=1) and

non-contacts (cij=0) ∈ {10000, 100000, 30000, 500000}

Proteins from subsets 1-5 of the data set described in method section 2.6.1 have been used
for training. Proteins are randomly selected and before residue pairs are selected from a
protein, they are shuffled to avoid position bias. For validation of the models, 500 proteins
are randomly selected from subsets 6-8 of the data set described in method section 2.6.1. The
validation set used to monitor the value of the log likelihood function is generated according
to the same criteria and constitutes 1000 residue pairs per contact class.

The MAP estimates of the coupling parameters w∗
ij that are needed to compute the Hessian

Hij as described in method section 5.7.6 are computed by maximizing the pseudo-likelihood
and by maximizing the full likelihood with contrastive divergence. Stochastic gradient descent
using the tuned hyperparameters presented in chapter 3 will be used to optimize the full
likelihood with contrastive divergence. The ADAM optimizer is not used because its adaptive
learning rates violate the condition

∑20
a,bwijab = 0 which is described in section 3.5.1.

5.7.5.2 Model Specifications

The mixture weights gk(cij) are randomly sampled from a uniform distribution over the half-
open interval [0, 1) and normalized so that

∑K
k gk(cij) = 1 for cij = 0 and cij = 1, respec-

tively. Subsequently, the gk(cij) are reparameterized as softmax functions as given in eq.
(5.9) and fixing γ0(cij) = 0 to avoid overparametrization. The 400 dimensional µk vectors
for k ∈ {1, . . . ,K} are initialized from 400 random draws from a normal distribution with
zero mean and standard deviation σ = 0.05. The zeroth component is kept fixed at zero
(µ0=0) and will not be optimized. The precision matrices Λk will be modelled as diagonal
matrices, setting all off-diagonal elements to zero. The 400 diagonal elements (Λk)ab,ab for
k ∈ {1, . . . ,K} are initialized from 400 random draws from a normal distribution with zero
mean and standard deviation σ=0.005. The 400 diagonal elements of the precision matrix for
the zeroth component Λ0 are initialized as 400 random draws from a normal distribution with
zero mean and standard deviation σ = 0.0005. Therefore, the zeroth component is sharply
centered at zero. Furthermore, the diagonals of the precision matrices are reparameterized as
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(Λk)ab,ab = exp((Λk)
′
ab,ab) in order to ensure that the values stay positive. Gradients for Λk

derived in next sections have been adapted according to this reparameterization.

The number of model parameters assembles as follows:

• (K − 1)× 400 parameters for µk with k ∈ {1, . . . ,K} (µ0 = 0)
• K × 400 parameters for the diagonal (Λk)ab,ab with k ∈ {0, . . . ,K}
• 2× (K−1) parameters for γk(cij) for k ∈ {1, 2} and cij ∈ {0, 1} (γ0(cij)=1).

This yields 2004 parameters for K=3 Gaussian components, 3608 parameters for K=5 and
7618 parameters for K=10 components.

5.7.6 Efficiently Computing the negative Hessian of the regularized log-
likelihood

Surprisingly, the elements of the Hessian at the mode w∗ are easy to compute. Let i, j, k, l ∈
{1, . . . , L} be columns in the MSA and let a, b, c, d ∈ {1, . . . , 20} represent amino acids. The
partial derivative ∂/∂wklcd of the second term in the gradient of the couplings in eq. (3.19) is

∂2LLreg(v
∗,w)

∂wklcd ∂wijab
= −

N∑
n=1

∑
y∈Sn

∂

(
exp(

∑L
i=1 vi(yi)+

∑L
1≤i<j≤L wij(yi,yj))

Zn(v,w)

)
∂wklcd

I(yi=a, yj=b)

−λwδijab,klcd , (5.35)

where δijab,klcd = I(ijab = klcd) is the Kronecker delta. Applying the product rule, it is found

∂2LLreg(v
∗,w)

∂wklcd ∂wijab
= −

N∑
n=1

∑
y∈Sn

exp
(∑L

i=1 vi(yi) +
∑L

1≤i<j≤Lwij(yi, yj)
)

Zn(v,w)
I(yi=a, yj=b)

×

 ∂

∂wklcd

 L∑
i=1

vi(yi) +
∑

1≤i<j≤L

wij(yi, yj)

− 1

Zn(v,w)

∂Zn(v,w)

∂wklcd


−λwδijab,klcd (5.36)

∂2LLreg(v
∗,w)

∂wklcd ∂wijab
= −

N∑
n=1

∑
y∈Sn

exp
(∑L

i=1 vi(yi) +
∑L

1≤i<j≤Lwij(yi, yj)
)

Zn(v,w)
I(yi=a, yj=b)

×
[
I(yk=c, yl=d)− ∂

∂wklcd
logZn(v,w)

]
−λwδijab,klcd . (5.37)

This expression can be simplified using

p(y|v,w) =
exp

(∑L
i=1 vi(yi) +

∑
1≤i<j≤Lwij(yi, yj)

)
Zn(v,w)

, (5.38)

yielding
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∂2LLreg(v
∗,w)

∂wklcd ∂wijab
= −

N∑
n=1

∑
y∈Sn

p(y|v,w) I(yi=a, yj=b, yk=c, yl=d)

+

N∑
n=1

∑
y∈Sn

p(y|v,w) I(yi=a, yj=b)
∑
y∈Sn

p(y|v,w)I(yk=c, yl=d)

−λwδijab,klcd . (5.39)

If X does not contain too many gaps, this expression can be approximated by

∂2LLreg(v
∗,w)

∂wklcd ∂wijab
= −Nijkl p(xi=a, xj=b, xk=c, xl=d|v,w)

+Nijkl p(xi=a, xj=b|v,w) p(xk=c, xl=d|v,w)− λwδijab,klcd ,(5.40)

where Nijkl is the number of sequences that have a residue in i, j, k and l. Looking at three
cases separately:

• case 1: (k, l) = (i, j) and (c, d) = (a, b)
• case 2: (k, l) = (i, j) and (c, d) ̸= (a, b)
• case 3: (k, l) ̸= (i, j) and (c, d) ̸= (a, b),

the elements of H, which are the negative second partial derivatives of LLreg(v
∗,w) with

respect to the components of w, are

case 1 :(H)ijab,ijab = Nij p(xi=a, xj=b|v∗,w∗) (1− p(xi=a, xj=b|v∗,w∗) )

+λw (5.41)
case 2 :(H)ijcd,ijab = −Nij p(xi=a, xj=b|v∗,w∗) p(xi=c, xj=d|v∗,w∗) (5.42)
case 3 :(H)klcd,ijab = Nijkl p(xi=a, xj=b, xk=c, xl=d|v∗,w∗)

−Nijkl p(xi=a, xj=b|v∗,w∗) p(xk=c, xl=d|v∗,w∗) . (5.43)

We know from eq. (3.21) that at the mode w∗ the model probabilities match the empirical
frequencies up to a small regularization term,

p(xi=a, xj=b|v∗,w∗) = q(xi=a, xj=b)− λw

Nij
w∗
ijab , (5.44)

and therefore the negative Hessian elements in cases 1 and 2 can be expressed as

(H)ijab,ijab = Nij

(
q(xi=a, xj=b)− λw

Nij
w∗
ijab

)(
1− q(xi=a, xj=b) +

λw

Nij
w∗
ijab

)
+λw (5.45)

(H)ijcd,ijab = −Nij

(
q(xi=a, xj=b)− λw

Nij
w∗
ijab

)(
q(xi=c, xj=d)− λw

Nij
w∗
ijcd

)
.(5.46)

In order to write the previous eq. (5.46) in matrix form, the regularised empirical frequencies
q′ij will be defined as
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(q′ij)ab = q′ijab := q(xi=a, xj=b)− λww
∗
ijab/Nij , (5.47)

and the 400× 400 diagonal matrix Qij will be defined as

Qij := diag(q′ij) . (5.48)

Now eq. (5.46) can be written in matrix form

Hij = Nij

(
Qij − q′ijq′Tij

)
+ λwI . (5.49)

5.7.7 Efficiently Computing the Inverse of Matrix Λij,k

It is possible to efficiently invert the matrix Λij,k = Hij − λwI + Λk, that is introduced in
section 5.7.3 where Hij is the 400 × 400 diagonal block submatrix (Hij)ab,cd := (H)ijab,ijcd
and Λk is an invertible diagonal precision matrix. Equation (5.49) can be used to write Λij,k

in matrix form as

Λij,k = Hij − λwI+Λk = NijQij −Nijq′ijq′Tij +Λk . (5.50)

Owing to eqs. (3.15) and (3.23),
∑20

a,b=1 q
′
ijab = 1. The previous equation (5.50) facilitates

the calculation of the inverse of this matrix using the Woodbury identity for matrices

(A+BD−1C)−1 = A−1 −A−1B(D+CA−1B)−1CA−1 . (5.51)

by setting

A = NijQij +Λk

B = q′ij
C = q′Tij
D = −N−1

ij

Now, the inverse of Λij,k can be computed as

(Hij − λwI+Λk)
−1 = A−1 −A−1q′ij

(
−N−1

ij + q′TijA−1q′ij
)−1

q′TijA−1

= A−1 +
(A−1q′ij)(A−1q′ij)T

N−1
ij − q′TijA−1q′ij

. (5.52)

Note that A is diagonal as Qij and Λk are diagonal matrices: A = diag(Nijq
′
ijab+(Λk)ab,ab).

Moreover, A has only positive diagonal elements, because Λk is invertible and has only positive
diagonal elements and because q′ijab = p(xi=a, xj= b|v∗,w∗) ≥ 0. Therefore A is invertible:
A−1 = diag(Nijq

′
ijab + (Λk)ab,ab)

−1. Because
∑20

a,b=1 q
′
ijab = 1, the denominator of the second

term is
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N−1
ij −

20∑
a,b=1

q′2ijab
Nijq′ijab + (Λk)ab,ab

> N−1
ij −

20∑
a,b=1

q′2ijab
Nijq′ijab

= 0 (5.53)

and therefore the inverse of Λij,k in eq. (5.52) is well defined. The log determinant of Λij,k is
necessary to compute the ratio of Gaussians (see equation (5.31)) and can be computed using
the matrix determinant lemma:

det(A+ uvT) = (1 + vTA−1u) det(A) (5.54)

Setting A = NijQij +Λk and v = q′ij and u = −Nijq′ij yields

det(Λij,k) = det(Hij − λwI+Λk) = (1−Nijq′TijA−1q′ij) det(A) . (5.55)

A is diagonal and has only positive diagonal elements so that log(det(A)) =
∑

log (diag(A)).

5.7.8 The gradient of the log likelihood with respect to µk

By applying the formula df(x)/dx = f(x) d log f(x)/dx to compute the gradient of eq. (5.34)
(neglecting the regularization term) with respect to µk,ab, one obtains

∂

∂µk,ab
LL(µ,Λ, γk) =

∑
1≤i<j≤L

gk(cij)
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

∂
∂µk,ab

log

(
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

)
∑K

k′=0 gk′(cij)
N (0|µ′

k,Λ
′−1
k )

N (0|µij,k,Λ
−1
ij,k)

. (5.56)

To simplify this expression, we define the responsibility of component k for the posterior
distribution of wij , the probability that wij has been generated by component k:

p(k|ij) =
gk(cij)

N (0|µk,Λ
−1
k )

N (0|µij,k,Λ
−1
ij,k)∑K

k′=0 gk′(cij)
N (0|µ′

k,Λ
′−1
k )

N (0|µ′
ij,k,Λ

′−1
ij,k)

. (5.57)

By substituting the definition for responsibility, (5.56) simplifies

∂

∂µk,ab
LL(µ,Λ, γk) =

∑
1≤i<j≤L

p(k|ij) ∂

∂µk,ab
log

(
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

)
, (5.58)

and analogously for partial derivatives with respect to Λk,ab,cd. The partial derivative inside
the sum can be written

∂

∂µk,ab
log

(
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

)
=

1

2

∂

∂µk,ab

(
log |Λk| − µT

kΛkµk − log |Λij,k|+ µT
ij,kΛij,kµij,k

)
.

(5.59)

Using the following formula for a matrix A, a real variable x and a vector y that depends on
x,
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∂

∂x

(
yTAy

)
=

∂yT

∂x
Ay + yTA

∂y

∂x
= yT(A+AT)

∂y

∂x
(5.60)

the partial derivative therefore becomes

∂

∂µk,ab
log

(
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

)
=
(
−µT

kΛkeab + µT
ij,kΛij,kΛ

−1
ij,kΛkeab

)
= eTabΛk(µij,k − µk) . (5.61)

Finally, the gradient of the log likelihood with respect to µ becomes

∇µk
LL(µ,Λ, γk) =

∑
1≤i<j≤L

p(k|ij)Λk (µij,k − µk) . (5.62)

The correct computation of the gradient ∇µk
LL(µ,Λ, γk) has been verified using finite differ-

ences.

5.7.9 The gradient of the log likelihood with respect to Λk

Analogously to eq. (5.58) one first needs to solve

∂

∂Λk,ab,cd
log

N (0|µk,Λ
−1
k )

N (0|µij,k,Λ
−1
ij,k)

=
1

2

∂

∂Λk,ab,cd

(
log |Λk| − µT

kΛkµk − log |Λij,k|+ µT
ij,kΛij,kµij,k

)
, (5.63)

by applying eq. (5.60) as before as well as the formulas

∂

∂x
log |A| = Tr

(
A−1∂A

∂x

)
,

∂A−1

∂x
= −A−1∂A

∂x
A−1 . (5.64)

This yields
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∂

∂Λk,ab,cd
log |Λk| = Tr

(
Λ−1

k

∂Λk

∂Λk,ab,cd

)
= Tr

(
Λ−1

k eabe
T
cd

)
= Λ−1

k,cd,ab (5.65)

∂

∂Λk,ab,cd
log |Λij,k| = Tr

(
Λ−1

ij,k

∂(Hij − λwI+Λk)

∂Λk,ab,cd

)
= Λ−1

ij,k,cd,ab (5.66)

∂(µT
kΛkµk)

∂Λk,ab,cd
= µT

k eabe
T
cdµk = eTabµkµ

T
k ecd = (µkµ

T
k )ab,cd (5.67)

∂(µT
ij,kΛij,kµij,k)

∂Λk,ab,cd
=µT

ij,k

∂Λij,k

∂Λk,ab,cd
µij,k + 2µT

ij,kΛij,k

∂Λ−1
ij,k

∂Λk,ab,cd
(Hijw

∗
ij +Λkµk)

+ 2µT
ij,k

∂Λk

∂Λk,ab,cd
µk

=(µij,kµ
T
ij,k + 2µij,kµ

T
k )ab,cd

− 2µT
ij,kΛij,kΛ

−1
ij,k

∂Λij,k

∂Λk,ab,cd
Λ−1

ij,k(Hijw
∗
ij +Λkµk)

=(µij,kµ
T
ij,k + 2µij,kµ

T
k )ab,cd − 2µT

ij,k

∂Λij,k

∂Λk,ab,cd
µij,k

=(−µij,kµ
T
ij,k + 2µij,kµ

T
k )ab,cd . (5.68)

Inserting these results into eq. (5.63) yields

∂

∂Λk,ab,cd
log

N (0|µk,Λ
−1
k )

N (0|µij,k,Λ
−1
ij,k)

=
1

2

(
Λ−1

k −Λ−1
ij,k − (µij,k − µk)(µij,k − µk)

T
)
ab,cd

. (5.69)

Substituting this expression into the equation (5.58) analogous to the derivation of gradient
for µk,ab yields the equation

∇Λk
LL(µ,Λ, γk) =

1

2

∑
1≤i<j≤L

p(k|ij)
(
Λ−1

k −Λ−1
ij,k − (µij,k − µk)(µij,k − µk)

T
)
. (5.70)

The correct computation of the gradient ∇Λk
LL(µ,Λ, γk) has been verified using finite differ-

ences.

5.7.10 The gradient of the log likelihood with respect to γk

With cij ∈ {0, 1} defining a residue pair in physical contact or not in contact, the mixing
weights can be modelled as a softmax function according to eq. (5.9). The derivative of the
mixing weights gk(cij) is:

∂gk′(cij)

∂γk
=

{
gk(cij)(1− gk(cij)) : k′ = k
gk′(cij)− gk(cij) : k′ ̸= k

(5.71)

The partial derivative of the likelihood function with respect to γk is:
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∂

∂γk
LL(µ,Λ, γk) =

∑
1≤i<j≤L

∑K
k′=0

∂
∂γk

gk′(cij)
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)∑K

k′=0 gk′(cij)
N (0|µk,Λ

−1
k )

N (0|µij,k,Λ
−1
ij,k)

=
∑

1≤i<j≤L

∑K
k′=0 gk′(cij)

N (0|µk,Λ
−1
k )

N (0|µij,k,Λ
−1
ij,k)

·

{
1− gk(cij) if k′ = k

−gk(cij) if k′ ̸= k∑K
k′=0 gk′(cij)

N (0|µk,Λ
−1
k )

N (0|µij,k,Λ
−1
ij,k)

=
∑

1≤i<j≤L

K∑
k′=0

p(k′|ij)

{
1− gk(cij) if k′ = k

−gk(cij) if k′ ̸= k

=
∑

1≤i<j≤L

p(k|ij)− gk(cij)

K∑
k′=0

p(k′|ij)

=
∑

1≤i<j≤L

p(k|ij)− gk(cij) (5.72)

5.7.11 Extending the Bayesian Statistical Model for the Prediction of Pro-
tein Residue-Residue Distances

It is straightforward to extend the Bayesian model for contact prediction presented in section
5.1 for distances. The prior over couplings will modelled using distance dependent mixture
weights gk(cij). Therefore eq. (5.5) is modified such that mixture weights gk(cij) are modelled
as softmax over linear functions γk(cij) (see Figure 5.15:

gk(cij) =
exp γk(cij)∑K

k′=0 exp γk′(cij)
, (5.73)

γk(cij) = −
k∑

k′=0

αk′(cij − ρk′). (5.74)

The functions gk(cij) remain invariant when adding an offset to all γk(cij). This degeneracy
can be removed by setting γ0(cij) = 0 (i.e., α0 = 0 and ρ0 = 0). Further, the components
are ordered, ρ1 > . . . > ρK and it is demanded that αk > 0 for all k. This ensures that for
cij → ∞ we will obtain g0(cij) → 1 and hence p(w|X) → N (0, σ2

0I).

The parameters ρk mark the transition points between the two Gaussian mixture components
k − 1 and k, i.e., the points at which the two components obtain equal weights. This follows
from γk(cij)−γk−1(r)=αt(cij −ρt) and hence γk−1(ρk)== γk(ρk). A change in ρk or αk only
changes the behavior of gk−1(cij) and gk(cij) in the transition region around ρk. Therefore,
this particular definition of γk(cij) makes the parameters αk and ρk as independent of each
other as possible, rendering the optimization of these parameters more efficient.

5.7.11.1 The derivative of the log likelihood with respect to ρk

Analogous to the derivations of µk in section 5.7.8 and Λk in section 5.7.9, the partial deriva-
tive with respect to ρk is
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Figure 5.15: The Gaussian mixture coefficients gk(cij) of p(wij |cij) are modelled as softmax
over linear functions γk(cij). ρk sets the transition point between neighbouring components
gk−1(cij) and gk(cij), while αk quantifies the abruptness of the transition between gk−1(cij)
and gk(cij).

∂

∂ρk
LL(µ,Λ, ρ, α) =

∑
1≤i<j≤L

K∑
k′=0

p(k′|ij) ∂

∂ρk
log gk′(cij) . (5.75)

Using the definition of gk(cij) in eq. (5.74), we find (remember that α0 =0 as noted in the
last section) that

∂

∂ρk
log gl(cij) =

∂

∂ρk
log

exp
(
−
∑k′

k′′=1 αk′′(cij − ρk′′)
)

∑K
k′=0 exp

(
−
∑k′

k′′=1 αk′′(cij − ρk′′)
)

= − ∂

∂ρk

l∑
k′′=1

αk′′(cij − ρk′′)−
∂

∂ρk
log

K∑
k′=0

exp

(
−

k′∑
k′′=1

αk′′(cij − ρk′′)

)

= αk I(l ≥ k)−
∑K

k′=0
∂

∂ρk
exp(−

∑k′

k′′=1 αk′′(cij − ρk′′))∑K
k′=0 exp(−

∑k′

k′′=1 αk′′(cij − ρk′′))

= αk I(l ≥ k)−
∑K

k′=0 exp(−
∑k′

k′′=1 αk′′(cij − ρk′′))αk I(k
′ ≥ k)∑K

k′=0 exp(−
∑k′

k′′=1 αk′′(cij − ρk′′))

= αk I(l ≥ k)−
∑K

k′=0 exp(γk′(cij))αk I(k
′ ≥ k)∑K

k′=0 exp(γk′(cij))

= αk I(l ≥ k)−
K∑

k′=0

gk′(cij)αk I(k
′ ≥ k)

= αk

(
I(l ≥ k)−

K∑
k′=k

gk′(cij)

)
. (5.76)

Inserting this into eq. (5.75) yields
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∂

∂ρk
LL(µ,Λ, ρ, α) =

∑
1≤i<j≤L

K∑
k′=0

p(k′|ij)αk

(
I(k′ ≥ k)−

K∑
k′′=k

gk′′(cij)

)

= αk

∑
1≤i<j≤L

(
K∑

k′=k

p(k′|ij)−
K∑

k′=0

p(k′|ij)
K∑

k′′=k

gk′′(cij)

)
, (5.77)

and finally

∂

∂ρk
LL(µ,Λ, ρ, α) = αk

∑
1≤i<j≤L

K∑
k′=k

(p(k′|ij)− gk′(cij)) . (5.78)

This equation has an intuitive meaning: The gradient is the difference between the summed
probability mass predicted to be due to components k′ ≥ k, p(k′ ≥ k|ij), and the sum of the
prior probabilities gk(cij) for components k′ ≥ k, where the sum runs over all training points
indexed by i, j.

5.7.11.2 The derivative of the log likelihood with respect to αk

The partial derivative with respect to αk is obtained similarly to the previous derivation,

∂

∂αk
LL(µ,Λ, ρ, α) =

∑
1≤i<j≤L

K∑
k′=0

p(k′|ij) ∂

∂αk
log gk′(cij) . (5.79)

Similarly as before,

∂

∂αk
log gl(cij) =

∂

∂αk
log

exp(−
∑l

k′′=1 αk′′(cij − ρk′′)∑K
k′=0 exp(−

∑k′

k′′=1 αk′′(cij − ρk′′))

= − ∂

∂αk

l∑
k′′=1

αk′′(cij − ρk′′)−
∂

∂αk
log

K∑
k′=0

exp

(
−

k′∑
k′′=1

αk′′(cij − ρk′′)

)

= −(cij − ρk) I(l ≥ k)−
∑K

k′=0
∂

∂αk
exp(−

∑k′

k′′=1 αk′′(cij − ρk′′))∑K
k′=0 exp(−

∑k′

k′′=1 αk′′(cij − ρk′′))

= −(cij − ρk)

(
I(l ≥ k)−

K∑
k′′=k

gk′′(cij))

)
. (5.80)

Inserting this into eq. (5.79) yields

∂

∂αk
LL(µ,Λ, ρ, α) = −

∑
1≤i<j≤L

K∑
k′=0

p(k′|ij) (cij − ρk)

(
I(k′ ≥ k)−

K∑
k′′=k

gk′′(cij))

)

= −
∑

1≤i<j≤L

(cij − ρk)

(
K∑

k′=k

p(k′|ij)−
K∑

k′=0

p(k′|ij)
K∑

k′′=k

gk′′(cij))

)
,

(5.81)
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and finally

∂

∂αk
LL(µ,Λ, ρ, α) =

∑
1≤i<j≤L

(ρk − cij)
K∑

k′=k

(p(k′|ij)− gk′(cij)) . (5.82)
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6
Conclusion and Outlook

With the work presented here, I was the first to formulate DCA as a principled statisti-
cal approach, providing true probability estimates and promoting biological insights. The
transparency of the modelling process and the flexibility of the Bayesian framework lay the
foundation to further improvements of DCA for small protein families in a mechanistic way.

In chapter 2, I presented a thorough analysis of coupling matrices that are inferred from a
multiple sequence alignment (MSA) and reflect the tendencies of amino acids to co-occur at
paired positions in the MSA. I showed that coupling matrices contain valuable information
with a meaningful biological interpretation. For example, the distributions of coupling values
reflect biophysical interaction preferences between amino acids and the signal weakens with
increasing residue-residue distances. Furthermore, interdependencies between different cou-
plings are coherent and induce characteristic patterns in coupling matrices, often indicating
the structural constraint for the residue pair. The majority of this information is lost by the
the way current methods apply heuristics to compute a prediction for a residue-residue con-
tact. However, in my Bayesian framework presented in chapter 5, this information is explicitly
modelled.

Chapter 3 presented an alternative approach to infer the Potts model parameters. Due to
the complexity of the normalization constant it is infeasible to maximize the full likelihood
to derive the model parameters. The most popular DCA approaches optimize the pseudo-
likelihood instead but it is unknown how well the pseudo-likelihood solution approximates
the full likelihood solution in case protein families have only few members. In my work,
I optimized the full likelihood by using an approximate gradient provided by an algorithm
called contrastive divergence, which is a novel method in contact prediction. I systematically
tuned the stochastic gradient descent algorithm for the use with contrastive divergence and
also examined various modifications to the estimation of the gradient. My approach achieved
comparable precision as pseudo-likelihood methods with minor improvements for small protein
families, which could be traced back to amplified signals between strongly conserved residue
pairs.

A random forest classifier for contact prediction which was trained on sequence features is
discussed in chapter 4. This model yields a robust estimator that outperforms coevolution
methods for small protein families where they suffer from the low signal-to-noise ratio. In line
with the most successful contact predictors, which exploit information from various sources
and multiple DCA methods, I integrated the predictions of the pseudo-likelihood and the
constrastive divergence method as additional features for training. The individual methods
greatly contribute and improve the predictive performance of the random forest classifier.

131



The Bayesian framework proposed in chapter 5 represents a principled statistical approach
that eradicates the use of heuristics by explicitly modelling the full information contained in
the coupling signatures while at the same time accounting for the uncertainty of the data.
Based on the observations and biological interpretations of coupling signals in chapter 2, the
prior on couplings was modelled as a Gaussian mixture. The hyperparameters were trained
on inferred couplings and structures from many proteins and the Gaussian mixture model
convincingly reproduced empirical coupling distributions. Posterior probability estimates of
residue-residue contacts are obtained by combining the likelihood of contacts with prior infor-
mation in form of the random forest contact class probabilities. They posterior probabilities
are less precise than the heuristic predictions obtained from the pseudo-likelihood approach
combined with prior information. A possible explanation is that the Gaussian mixture model
of the coupling prior does not yet capture enough information in order to efficiently dis-
criminate between contacts and non-contacts. Even though reproducing the one- and two-
dimensional empirical distributions, it is plausible that the precise interdependencies between
couplings require a more complex model, e.g. by using more Gaussian components or full
instead of diagonal covariance matrices. Furthermore, the approximation to the regularized
likelihood of the sequences with a multivariate Gaussian can and perhaps must be iteratively
improved by another round of training employing an improved regularization prior. Finally,
the reason could be that certain inherent modelling assumptions are not met or are too inac-
curate but work to verify these assumptions is still ongoing.

Especially with the limited knowledge and uncertainty in the data, the Bayesian statistical
approach developed here provides a solid theoretical and statistically sound formulation for
DCA with enhanced explanatory power compared to the uninformative heuristics. Through
the formulation in the language of Bayesian statistics, the framework naturally allows the
integration of additional prior knowledge and it facilitates its further usage in even more
complex Bayesian hierarchies. It is also straightforward to extend the model towards the
estimation of posterior probabilities of residue-residue distances (see section 5.7.11). The
analysis in chapter 2 has demonstrated that the coupling signal weakens with increasing
inter-residue distances which represents additional information that awaits full utilization.
The information gain of residue-residue distance estimates over binary contact prediction is
substantial and is a promising way to greatly improve de novo structure prediction [241].
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A
Abbreviations

APC avarage product correction

CASP critical assessment of protein structure prediction

CD contrastive divergence

DCA direct coupling analysis

DI direct information

EM electron microscopy

MAP Maximum a posteriori

MCMC Markov Chain Monte Carlo

MI mutual information

ML Maximum-Likelihood

MLE Maximum-Likelihood Estimate

MRF Markov-Random Field

MSA Multiple Sequence Alignment

Neff number of effective sequences

PCD persistent contrastive divergence

PDB protein data bank

SGD stochastic gradient descent
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B
Amino Acid Alphabet

Table B.1: Amino acid abbreviations and physico-chemical
properties according to Livingstone et al., 1993 [242]

One letter
Code

Three letter
Code

Amino Acid Physico-chemical Properties

A Ala Alanine tiny, hydrophobic
C Cys Cysteine small, hydrophobic, polar (CS−H)
D Asp Aspartic AciD small, negatively charged, polar
E Glu Glutamic Acid negatively charged, polar
F Phe Phenylalanine aromatic, hydrophobic
G Gly Glycine tiny, hydrophobic
H His Histidine hydrophobic, aromatic, polar, (positively charged)
I Ile Isoleucine aliphatic, hydrophobic

K Lys Lysine positively charged, polar
L Leu Leucine aliphatic, hydrophobic
M Met Methionine hydrophobic
N Asn AsparagiNe small, polar
P Pro Proline small
Q Gln Glutamine tiny, hydrophobic
R Arg ARginine positively charged, polar
S Ser Serine tiny, polar
T Thr Threonine hydrophobic, polar
V Val Valine small, aliphatic
W Trp Tryptophan aromatic, hydrophobic, polar
Y Tyr TYrosine aromatic, hydrophobic, polar
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C
Dataset Properties

Figure C.1: Distribution of alignment diversity (=
√

(NL )) in the dataset and its ten subsets.
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Figure C.2: Distribution of gap percentage of alignments in the dataset and its ten subsets.

Figure C.3: Distribution of alignment size (number of sequences N) in the dataset and its ten
subsets.
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Figure C.4: Distribution of protein length L in the dataset and its ten subsets.
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D
Interpretation of Coupling Matrices

Figure D.1: Standard deviation of squared coupling values wijab
2 and of coupling values wijab

for residue pairs not in physical contact (∆Cβ > 25Å ). Dataset contains 100.000 residue
pairs per class (for details see methods section 2.6.6). Amino acids are abbreviated with one-
letter code and they are broadly grouped with respect to physico-chemical properties listed
in Appendix B Left Standard deviation of squared coupling values wijab

2 . Right Standard
deviation of coupling values wijab.
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E
Optimizing Full Likelihood with Gradient Descent

Figure E.1: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: couplings computed with pseudo-likelihood. CD alpha0 = 5e-4: couplings
computed with CD using stochastic gradient descent with initial learning rate, α0 =5e − 4.
CD alpha0 = 1e-3: couplings computed with CD using stochastic gradient descent with
initial learning rate, α0=1e − 3. CD alpha0 = 5e-2Neffˆ-0.5: couplings computed with
CD using stochastic gradient descent with initial learning rate defined as a function of Neff,
α0=

5e−2√
Neff

.
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Figure E.2: Value of learning rate against the number of iterations for different learning
rate schedules. Red legend group represents the exponential learning rate schedule αt+1 =
α0 ·exp(−γt). Blue legend group represents the linear learning rate schedule α = α0/(1+γ ·t).
Green legend group represents the sigmoidal learning rate schedule αt+1 = αt/(1 + γ · t).
Purple legend group represents the square root learning rate schedule α = α0/

√
1 + γ · t.

The initial learning rate α0 is set to 1e-4, the iteration number is given by t and γ is the decay
rate and its value is given in brackets in the legend.

Figure E.3: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: contact scores computed from pseudo-likelihood. The other methods derive contact
scores from couplings computed from CD using stochastic gradient descent with an initial
learning rate defined with respect to Neff and a linear learning rate annealing schedule α =
α0

1+γt with decay rate γ as specified in the legend.
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Figure E.4: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: contact scores computed from pseudo-likelihood. The other methods derive contact
scores from couplings computed from CD using stochastic gradient descent with an initial
learning rate defined with respect to Neff and a sigmoidal learning rate annealing schedule
αt+1 =

αt
1+γt with t being the iteration number and decay rate γ as specified in the legend.

Figure E.5: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: contact scores computed from pseudo-likelihood. The other methods derive contact
scores from couplings computed from CD using stochastic gradient descent with an initial
learning rate defined with respect to Neff and a square root learning rate annealing schedule
α = α0√

1+γt
with t being the iteration number and decay rate γ as specified in the legend.
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Figure E.6: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-
likelihood: contact scores computed from pseudo-likelihood. The other methods derive contact
scores from couplings computed from CD using stochastic gradient descent with an initial
learning rate defined with respect to Neff and a exponential learning rate annealing schedule
α = α0 · exp(−γt) with t being the iteration number and decay rate γ as specified in the
legend.

Figure E.7: Distribution of the number of iterations until convergence for stochastic gradient
descent optimizations of the full likelihood using different decay rates with a linear learning
rate schedule α = α0/(1 + γt) with t being the iteration number and the decay rate γ is
specified in the legend. Initial learning rate α0 defined with respect to Neff and maximum
number of iterations is set to 5000.
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Figure E.8: Distribution of the number of iterations until convergence for stochastic gradient
descent optimizations of the full likelihood using different decay rates with a sigmoidal
learning rate schedule αt+1 = αt/(1 + γt) with t being the iteration number and the decay
rate γ is specified in the legend. Initial learning rate α0 defined with respect to Neff and
maximum number of iterations is set to 5000.

Figure E.9: Distribution of the number of iterations until convergence for stochastic gradient
descent optimizations of the full likelihood using different decay rates with a square root
learning rate schedule α = α0/

√
1 + γt with t being the iteration number and the decay rate

γ is specified in the legend. Initial learning rate α0 defined with respect to Neff and maximum
number of iterations is set to 5000.

147



Figure E.10: Distribution of the number of iterations until convergence for stochastic gradient
descent optimizations of the full likelihood using different decay rates with an exponential
learning rate schedule α = α0 ·exp(−γt) with t being the iteration number and the decay rate
γ is specified in the legend. Initial learning rate α0 defined with respect to Neff and maximum
number of iterations is set to 5000.

Figure E.11: Distribution of the number of iterations until convergence for gradient descent
optimizations of the full likelihood. The relative change of the L2 norm over coupling param-
eters, ||w||2, is evaluated over a defined number of previous iterations and is specified in the
legend. Convergence is assumed when the relative change falls below a small value ϵ=1e− 8.
The optimal hyperparameters settings for SGD as described in section 3.2.2 have been used.
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Figure E.12: Mean precision for top ranked contact predictions over 300 proteins. Contact
scores are computed as the APC corrected Frobenius norm of the couplings wij . SGD settings
for CD optimization are as follows: sigmoidal learning rate schedule with decay rate γ = 5e− 6
and initial learning rate α0=5e− 2/Neff. pseudo-likelihood: contact scores computed from
pseudo-likelihood. CD fixed v at v* : contact scores computed from CD with SGD and
single potentials v are not optimized but fixed at v∗ as given in eq. (3.27). CD lambda_v
= 10: contact scores computed from CD with SGD and single potentials v are subject to
optimization using L2-reglarization with λv=10.

Figure E.13: Monitoring parameter norm and gradient norm for protein 1ahoA00 during SGD
optimization of CD using different sample sizes. Protein 1ahoA00 has length L=64 and 378
sequences in the alignment (Neff=229). The number of sequences, that is used for Gibbs
sampling to approximate the gradient, is given in the legend with 1L = 64 sequences, 5L
= 320 sequences, 10L = min(10L, N) = 378 sequences, 0.2Neff = 46 sequences, 0.3Neff =
69 sequences, 0.4Neff = 92 sequences. Left L2-norm of the gradients for coupling parame-
ters, ||∇wLL(v

∗,w)||2 (without contribution of regularizer). Right L2-norm of the coupling
parameters ||w||2.

149



Figure E.14: Mean precision for top ranked contact predictions over 300 proteins splitted into
four equally sized subsets with respect to Neff. Contact scores are computed as the APC
corrected Frobenius norm of the couplings wij . Subsets are defined according to quantiles
of Neff values. Upper left: Subset of proteins with Neff < Q1. Upper right: Subset of
proteins with Q1 <= Neff < Q2. Lower left: Subset of proteins with Q2 <= Neff < Q3.
Lower right: Subset of proteins with Q3 <= Neff < Q4. pseudo-likelihood: contact scores
computed from pseudo-likelihood. CD #Gibbs steps = X: contact scores computed from
CD optimized with SGD and evolving each Markov chain using the number of Gibbs steps
specified in the legend.

Figure E.15: Monitoring L2 norm of the gradient, ||∇wLL(v
∗,w)||2, for protein 1aho_A_00

and 1c75_A_00 during SGD optimization using different number of Gibbs steps and initial
learning rates, α0. Number of Gibbs steps is given in the legend, as well as particular choices
for the initial learning rate, when not using the default α0 =

5e−2√
Neff

. Left Protein 1aho_A_00
has length L=64 and 378 sequences in the alignment (Neff=229) Right Protein 1c75_A_00
has length L=71 and 28078 sequences in the alignment (Neff=16808).

150



Figure E.16: L2-norm of the coupling parameters, ||w||2, during CD optimization with ADAM
with different fixed learning rates (no decay). The learning rate α0 is specified in the legend.
Left Protein 1c75A00 has length L=71 and 28078 sequences in the alignment (Neff=16808)
Right Protein 1mkcA00 has length L=43 and 142 sequences in the alignment (Neff=96).

Figure E.17: L2-norm of the coupling parameters, ||w||2, during CD optimization with ADAM
and different learning rate annealing schedules. The learning rate α is specified with respect
to Neff as α = 2e−3 log(Neff). The learning rate annealing schedule is specified in the legend.
Left Convergence plot for protein 1mkc_A_00 having protein length L=43 and 142 sequences
in the alignment (Neff=96). Left Protein 1c75A00 has length L=71 and 28078 sequences in
the alignment (Neff=16808) Right Protein 1mkcA00 has length L=43 and 142 sequences in
the alignment (Neff=96).
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Figure E.18: Precision of top ranked contact predictions for protein 1c75A00. Contact scores
are computed as the APC corrected Frobenius norm of the couplings wij . pseudo-likelihood:
contact scores computed from pseudo-likelihood. contrastive divergence: contact scores
computed from CD optimized with SGD.

Figure E.19: Rolling mean over the mean precision of the L/10 to L top ranked predictions per
protein for testset with 2300 proteins. Contact scores computed as APC corrected Frobenius
norm over pseudo-likelihood and contrastive divergence couplings. The rolling mean has been
computed for the central protein within a window of 20 proteins. Window is shrunk for the
proteins at the borders of Neff distribution.
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Figure E.20: Contact maps for protein 1ss3A00 and 1c55A00 computed as APC corrected
Frobenius norm of the pseudo-likelihood couplings. Contacts are defined according to a 8Å Cβ

distance cutoff. Left: predicted contact map and native distance map for protein 1ss3A00
(protein length=50, N=42, Neff=36). Right predicted contact map and native distance map
for protein 1c55A00 (protein length = 40, N=115, Neff = 78).
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Figure E.21: Contact maps for protein 1c55A00 (protein length = 40, N=115, Neff = 88)
computed as APC corrected Frobenius norm of the contrastive-divergence couplings com-
puted with different sample size choices. Contacts are defined according to a 8Å Cβ distance
cutoff. Top Left: sample size=0.3neff ≈ 23 sequences. Top Right sample size=0.5neff ≈
39 sequences. Bottom Left: sample size=0.8neff ≈ 62 sequences. Bottom Right sample
size=max(10L,N)=>115 sequences.
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F
Training of the Random Forest Contact Prior

Figure F.1: Mean precision for top ranked contacts over 200 proteins for variaous random
forest models trained on subsets of features. Subsets of features have been selected as described
in section 4.6.4.
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Figure F.2: Mean precision for top ranked contacts predicted with random forest on a test
set of 1000 proteins splitted into four equally sized subsets with respect to Neff. Subsets are
defined according to quantiles of Neff values. Upper left: Subset of proteins with Neff <
Q1. Upper right: Subset of proteins with Q1 <= Neff < Q2. Lower left: Subset of proteins
with Q2 <= Neff < Q3. Lower right: Subset of proteins with Q3 <= Neff < Q4. pseudo-
likelihood = APC corrected Frobenius norm of couplings computed with pseudo-likelihood.
random forest = random forest model trained on 75 sequence derived features. OMES =
APC corrected OMES contact score according to Fodor&Aldrich [224]. mutual information
= APC corrected mutual information between amino acid counts (using pseudo-counts).
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Figure F.3: Top ten features for Random Forest trained with additional pseudo-likelihood
contact score feature. Features ranked according to Gini importance. pseudo-likelihood:
APC corrected Frobenius norm of couplings computed with pseudo-likelihood. mean pair
potential (Miyasawa & Jernigan): average quasi-chemical energy of transfer of amino
acids from water to the protein environment [225]. OMES+APC: APC corrected OMES
score according to Fodor&Aldrich [224]. mean pair potential (Li&Fang): average general
contact potential by Li & Fang [70]. rel. solvent accessibilty i(j): RSA score computed
with Netsurfp (v1.0) [226] for position i(j). MI+APC: APC corrected mutual information
between amino acid counts (using pseudo-counts). contact prior wrt L: simple contact
prior based on expected number of contacts wrt protein length (see methods section 4.6.2).
log protein length: logarithm of protein length. beta sheet propensity window(i):
beta-sheet propensity according to Psipred [227] computed within a window of five positions
around i. Features are described in detail in methods section 4.6.1.
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Figure F.4: Top ten features for Random Forest trained with additional contrastive divergence
contact score feature. Features ranked according to Gini importance. Features are the same as
in Figure F.3 plus the following additional features: contrastive divergence: APC corrected
Frobenius norm of couplings computed with contrastive divergence. Features are described
in detail in methods section 4.6.1.
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Figure F.5: Top ten features for Random Forest trained with additional pseudo-likleihood and
contrastive divergence contact score feature. Features ranked according to Gini importance.
Features are the same as in Figure F.3 plus the following additional features: contrastive
divergence: APC corrected Frobenius norm of couplings computed with contrastive diver-
gence. Diversity (sqrt(N)/L): diversity of the alignment. Features are described in detail
in methods section 4.6.1.

Figure F.6: Mean precision over validation set of 200 proteins for top ranked contact predic-
tions for different choices of window size for single position features. Dashed lines represent
the models trained on four subsets of the training data according to the 5-fold cross-validation
scheme. Solid lines represent the mean over the five cross-validation models.
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Figure F.7: Mean precision over validation set of 200 proteins for top ranked contact pre-
dictions for different choices of the non-contact threshold to define non-contacts. Dashed
lines represent the models trained on four subsets of the training data according to the 5-fold
cross-validation scheme. Solid lines represent the mean over the five cross-validation models.

Figure F.8: Mean precision over validation set of 200 proteins for top ranked contact pre-
dictions for different choices of dataset composition with respect to the ratio of contacts and
non-contacts. Dashed lines represent the models trained on four subsets of the training data
according to the 5-fold cross-validation scheme. Solid lines represent the mean over the five
cross-validation models.
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Figure F.9: Mean precision of top ranked predictions over 200 proteins for random forest
models trained on subsets of features of decreasing importance. Subsets of features have been
selected as described in methods section 4.6.4.
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G
Bayesian statistical model for contact prediction

Figure G.1: Monitoring the negative log likelihood during optimization of three component
Gaussian mixture using pseudo-likelihood couplings to estimate the Hessian. Top Left: Train-
ing set contains 10,000 residue pairs per contact class. Converged after 388 iterations. Top
Right: Training set contains 100,000 residue pairs per contact class. Converged after 371 iter-
ations. Bottom Left: Training set contains 300,000 residue pairs per contact class. Bottom
Right: Training set contains 500,000 residue pairs per contact class.
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Figure G.2: Statistics for the hyperparameters, γk(cij), µk and Λk obtained after 388 iter-
ations. Trained on 10,000 residue pairs per contact class for a three component Gaussian
mixture and using pseudo-likelihood couplings to estimate the Hessian. Left Component
weights γk(cij) for residue pairs not in physical contact (cij =0) and true contacts (cij =1).
Center Distribution of the 400 elements in the mean vectors µk. Right Distribution of the
400 standard deviations corresponding to the square root of the diagonal of Λ−1

k .

Figure G.3: Statistics for the hyperparameters, γk(cij), µk and Λk obtained after 371 iter-
ations. Trained on 100,000 residue pairs per contact class for a three component Gaussian
mixture and using pseudo-likelihood couplings to estimate the Hessian. Left Component
weights γk(cij) for residue pairs not in physical contact (cij =0) and true contacts (cij =1).
Center Distribution of the 400 elements in the mean vectors µk. Right Distribution of the
400 standard deviations corresponding to the square root of the diagonal of Λ−1

k .
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Figure G.4: Statistics for the hyperparameters, γk(cij), µk and Λk obtained after optimization
of the likelihood function of contact states for 336 iterations. Trained on 10,000 residue pairs
per contact class for a three component Gaussian mixture and using contrastive divergence
couplings to estimate the Hessian. Left Component weights γk(cij) for residue pairs not in
physical contact (cij=0) and true contacts (cij=1). Center Distribution of the 400 elements
in the mean vectors µk. Right Distribution of the 400 standard deviations corresponding to
the square root of the diagonal of Λ−1

k .

Figure G.5: Statistics for the hyperparameters, γk(cij), µk and Λk obtained after optimization
of the likelihood function of contact states for 377 iterations. Trained on 100,000 residue pairs
per contact class for a three component Gaussian mixture and using contrastive divergence
couplings to estimate the Hessian. Left Component weights γk(cij) for residue pairs not in
physical contact (cij=0) and true contacts (cij=1). Center Distribution of the 400 elements
in the mean vectors µk. Right Distribution of the 400 standard deviations corresponding to
the square root of the diagonal of Λ−1

k .
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Figure G.6: Visualisation of one-dimensional projections of the three-component Gaussian
mixture model for the contact-dependent coupling prior. Hyperparameters, γk(cij), µk and
Λk, have been trained on 100,000 residue pairs per contact class and using pseudo-likelihood
couplings to estimate the Hessian. Green solid line: Gaussian mixture for contacts. Blue
solid line: Gaussian mixture for non-contacts. Black solid line: regularization prior with
λ1=0.2L with L being protein length and assumed L=150. Light blue dashed line: Gaussian
component 0. Dark blue dashed line: Gaussian component 1. Light green dashed line:
Gaussian component 2. Top Left One dimensional projection for pair (V,I). Top Right
One dimensional projection for pair (F,W). Bottom Left One dimensional projection for
pair (E,R). Bottom Right One dimensional projection for pair (E,E).
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Figure G.7: Visualisation of one-dimensional projections of the three-component Gaussian
mixture model for the contact-dependent coupling prior. Hyperparameters, γk(cij), µk and
Λk, have been trained on 500,000 residue pairs per contact class and using pseudo-likelihood
couplings to estimate the Hessian. Green solid line: Gaussian mixture for contacts. Blue
solid line: Gaussian mixture for non-contacts. Black solid line: regularization prior with
λ1=0.2L with L being protein length and assumed L=150. Light blue dashed line: Gaussian
component 0. Dark blue dashed line: Gaussian component 1. Light Green dashed line:
Gaussian component 2. Top Left One dimensional projection for pair (V,I). Top Right
One dimensional projection for pair (F,W). Bottom Left One dimensional projection for
pair (E,R). Bottom Right One dimensional projection for pair (E,E).
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Figure G.8: Visualisation of one-dimensional projections of the three-component Gaussian
mixture model for the contact-dependent coupling prior. Hyperparameters, γk(cij), µk and
Λk, have been trained on 100,000 residue pairs per contact class and using contrastive di-
vergence couplings to estimate the Hessian. Green solid line: Gaussian mixture for contacts.
Blue solid line: Gaussian mixture for non-contacts. Black solid line: regularization prior with
λ1 =0.2L with L being protein length and assumed L=150. Light blue dashed line: Gaus-
sian component 0. Dark blue dashed line: Gaussian component 1. Light green dashed line:
Gaussian component 2. Top Left One dimensional projection for pair (V,I). Top Right
One dimensional projection for pair (F,W). Bottom Left One dimensional projection for
pair (E,R). Bottom Right One dimensional projection for pair (E,E).
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Figure G.9: Visualisation of two-dimensional projections of the three-component Gaussian
mixture model for the contact-dependent coupling prior.Hyperparameters, γk(cij), µk and Λk,
have been trained on 300,000 residue pairs per contact class and using contrastive divergence
couplings to estimate the Hessian. 10,000 paired couplings have been sampled from the
Gaussian mixture model. The different colors represent the generating component and color
code is specified in the legend. Top Left Two-dimensional projection for pairs (E,R) and
(R-E) for contacts (using component weight gk(1)). Top Right Two- dimensional projection
for pairs (E,E) and (R,E) for contacts (using component weight gk(1)). Bottom Left Two-
dimensional projection for pairs (I,L) and (V,I) for contacts (using component weight gk(1)).
Bottom Right Two-dimensional projection for pair (I,L) and (V,I) for non-contacts (using
component weight gk(0)).
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Figure G.10: Statistics for the hyperparameters, γk(cij), µk and Λk obtained after 2605
iterations. Trained on 100,000 residue pairs per contact class for a five component Gaussian
mixture and using contrastive divergence couplings to estimate the Hessian. Left Component
weights γk(cij) for residue pairs not in physical contact (cij =0) and true contacts (cij =1).
Center Distribution of the 400 elements in the mean vectors µk. Right Distribution of the
400 standard deviations corresponding to the square root of the diagonal of Λ−1

k .

Figure G.11: Statistics for the hyperparameters, γk(cij), µk and Λk obtained after 1229
iterations. Trained on 300,000 residue pairs per contact class for a five component Gaussian
mixture and using contrastive divergence couplings to estimate the Hessian. Left Component
weights γk(cij) for residue pairs not in physical contact (cij =0) and true contacts (cij =1).
Center Distribution of the 400 elements in the mean vectors µk. Right Distribution of the
400 standard deviations corresponding to the square root of the diagonal of Λ−1

k .
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Figure G.12: Visualisation of one-dimensional projections of the five-component Gaussian
mixture model for the contact-dependent coupling prior. Hyperparameters, γk(cij), µk and
Λk, have been trained on 300,000 residue pairs per contact class and using contrastive di-
vergence couplings to estimate the Hessian. Green solid line: Gaussian mixture for contacts.
Blue solid line: Gaussian mixture for non-contacts. Black solid line: regularization prior with
λ1=0.2L with L being protein length and assumed L=150. Light blue dashed line: Gaussian
component 0. Dark blue dashed line: Gaussian component 1. Light green dashed line: Gaus-
sian component 2. Dark green dashed line: Gaussian component 3. Light pink dashed line:
Gaussian component 4. Top Left One dimensional projection for pair (V,I). Top Right
One dimensional projection for pair (F,W). Bottom Left One dimensional projection for
pair (E,R). Bottom Right One dimensional projection for pair (E,E).
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Figure G.13: Visualisation of two-dimensional projections of the five-component Gaussian
mixture model for the contact-dependent coupling prior. Hyperparameters, γk(cij), µk and
Λk, have been trained on 300,000 residue pairs per contact class and using contrastive diver-
gence couplings to estimate the Hessian. 10,000 values have been samples from the Gaussian
mixture model. Light blue: values that have been generated by zero component. Dark blue:
values that have been generated by Gaussian component 1. Light green: values that have
been generated by Gaussian component 3. Dark green: values that have been generated by
Gaussian component 4. Light pink: values that have been generated by Gaussian component
4. Top Left Two-dimensional projection for pairs (E,R) and (R-E) for contacts (using com-
ponent weight gk(1)). Top Right Two- dimensional projection for pairs (E,E) and (R,E) for
contacts (using component weight gk(1)). Bottom Left Two-dimensional projection for pairs
(I,L) and (V,I) for contacts (using component weight gk(1)). Bottom Right Two-dimensional
projection for pair (I,L) and (V,I) for non-contacts (using component weight gk(0)).

172



Figure G.14: Mean precision for top ranked contact predictions over 500 proteins. The
“Bayesian Posterior” methods compute the posterior probability of contacts with the Bayesian
framework employing a three component Gaussian mixture coupling prior based on couplings
computed with pseudo-likelihood. Hyperparameters for the coupling prior have been trained
on different dataset sizes as specified in the legend. Furthermore residue pairs not in physical
contact are defined either by 25Å or a 8Å Cβ distance cutoff that is also specified in the
legend. Bayesian Posterior 100k, non-contacts 5 : Bayesian model trained on 100,000
contacts and 500,000 non-contacts with non-contacts defined by an 25Å Cβ distance threshold.
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Figure G.15: Mean precision for top ranked contact predictions over 500 proteins. The
“Bayesian Posterior” methods compute the posterior probability of contacts with the Bayesian
framework employing a three component Gaussian mixture coupling prior based on couplings
computed with contrastive divergence. Hyperparameters for the coupling prior have been
trained on different dataset sizes as specified in the legend. random forest (pLL) random
forest model trained on sequence features and and additional pseudo-likelihood contact score
feature. Bayesian Posterior 100k: Bayesian model trained on 100,000 residue pairs per
contact class. Bayesian Posterior 300k: Bayesian model trained on 300,000 residue pairs
per contact class. Bayesian Posterior 500k: Bayesian model trained on 500,000 residue
pairs per contact class. pseudo-likelihood: contact score is computed as APC corrected
Frobenius norm of the couplings computed from pseudo-likelihood.
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Figure G.16: Mean precision for top ranked contact predictions over 500 proteins. The
“Bayesian Posterior” methods compute the posterior probability of contacts with the Bayesian
framework employing a Gaussian mixture coupling prior based on couplings computed with
contrastive divergence. Hyperparameters for the coupling prior have been trained on 100,000
residue pairs per contact class. The number of Gaussian components in the Gaussian mix-
ture model is specified in the legend. random forest (pLL) random forest model trained
on sequence features and and additional pseudo-likelihood contact score feature. Bayesian
Posterior 3: Bayesian model utilizing a three component Gaussian mixture. Bayesian Pos-
terior 5: Bayesian model utilizing a five component Gaussian mixture. Bayesian Posterior
10: Bayesian model utilizing a ten component Gaussian mixture. pseudo-likelihood: con-
tact score is computed as APC corrected Frobenius norm of the couplings computed from
pseudo-likelihood.
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Figure G.17: Mean precision for top ranked contact predictions over 500 proteins splitted into
four equally sized subsets with respect to Neff. Upper left: Subset of proteins with Neff <
Q1. Upper right: Subset of proteins with Q1 <= Neff < Q2. Lower left: Subset of proteins
with Q2 <= Neff < Q3. Lower right: Subset of proteins with Q3 <= Neff < Q4. random
forest (pLL) random forest model trained on sequence features and and additional pseudo-
likelihood contact score feature. Bayesian Posterior pLL: Bayesian model computing the
posterior probability of contacts with a three component Gaussian mixture coupling prior
based on pseudo-likelihood couplings. Hyperparameters for the coupling prior have been
trained on 300,000 residue pairs per contact class. Bayesian Posterior CD: Bayesian model
computing the posterior probability of contacts with a three component Gaussian mixture
coupling prior based on contrastive divergence couplings. Hyperparameters for the coupling
prior have been trained on 300,000 residue pairs per contact class. pseudo-likelihood:
contact score is computed as APC corrected Frobenius norm of the couplings computed from
pseudo-likelihood.
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Figure G.18: Precision of top ranked contact predictions for protein 1c75A00. random
forest (pLL): random forest model trained on sequence features and and additional pseudo-
likelihood contact score feature. Bayesian Posterior: Posterior probabilities computed with
a three component Gaussian mixture coupling prior based on pseudo-likelihood couplings.
pseudo-likelihood: Contact scores are computed as the APC corrected Frobenius norm of
the pseudo-likelihood couplings. Log Likelihood: Log Likelihood of observing a contact as
given in eq. (5.31). Coupling prior is modelled as three component Gaussian mixture coupling
prior based on pseudo-likelihood couplings.
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Figure G.19: Mean precision for top ranked contact predictions over 500 proteins. random
forest (pLL) random forest model trained on sequence features and and additional pseudo-
likelihood contact score feature. random forest (pLL, CD, BayPost): random forest
model trained on sequence features and and additional contact score features computed from
pseudo-likelihood, contrastive divergence and posterior contact probabilities from Bayesian
model. random forest (pLL, CD ): random forest model trained on sequence features
and and additional contact score features computed from pseudo-likelihood and contrastive
divergence. pseudo-likelihood: contact score is computed as APC corrected Frobenius
norm of the couplings computed from pseudo-likelihood. random forest: random forest
model trained on sequence features.
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