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1. Introduction 

1.1 Cancer and colorectal cancer 

1.1.1 The hallmark of cancer 

  Cancer is the second most common cause of death globally, and was responsible 

for 8.2 million deaths in 2012 1. Approximately 14 million new cases were diagnosed 

with cancer in the world in 2012 1. Cancer is a heterogeneous disease caused by 

mutations and epigenetic changes 2. Ten fundamental hallmark features common to 

most cancer cells were described by Hanahan and Weinberg 3, 4 (Figure 1.1):  

 

 

 

 

Figure 1.1 The hallmarks of cancer. Ten fundamental hallmark features acquired during 

tumor development. Figure from 
3
. 
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1.1.2 Colorectal cancer 

  Colorectal cancer (CRC) is the third most common cancer diagnosed and the fourth 

most common cancer cause of death globally 1. The progressive accumulation of 

genetic and epigenetic alterations results in the transformation from normal epithelial 

cells to colorectal adenocarcinomas 5. The molecular pathogenesis of colorectal 

cancer is heterogeneous. Three different mechanisms underlying CRC etiology, 

namely chromosomal instability (CIN), CpG island methylator phenotype (CIMP), and 

microsatellite instability (MSI), were described 6. A classification of the molecular 

mechanisms underlying the development of CRC may be useful for determining the 

treatment response of patients 7, 8. 

  Cancer develops in a stepwise manner and each step is associated with changes at 

the molecular level. A widely accepted model of colorectal cancer progression was 

proposed by Fearon and Vogelstein 9. Vogelstein and colleagues demonstrated that 

most colorectal cancers begin with mutations in the adenomatous polyposis coli (APC) 

gene. Subsequently, additional mutations of the RAS-pathway promote the transition 

from breakthrough phase to expansion phase (see also Figure 1.2). These two 

mutations lead to the abnormal proliferation and disordered cellular architecture that 

defines benign tumors 10. Subsequent mutations in SMAD4, TP53, PIK3CA, and 

FBXW7, enable colorectal cancer cells to invade normal tissues and grow in 

otherwise hostile environments; such cells are defined as malignant 10. However, so 

far no genetic alterations have been shown to be required to convert a malignant 

primary tumor into a metastatic lesion 10. Therefore, malignant tumor cells may 

already possess the capacity to metastasize 10.  
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Figure 1.2 Three Strikes to Cancer. Examples of the genetic alterations leading to four 

representative cancer types are shown. Each gene symbol denotes a pathway. For example, 

APC denotes the pathway regulated by APC. A “mutation” in a pathway can be achieved by 

genetic or epigenetic inactivation of both alleles of a tumor-suppressor gene or by genetic 

activation of an oncogene in that pathway. Pathogenic strains of human papillomavirus initiate 

the breakthrough phase by disabling both the TP53 and RB pathways. Legend and figure from 
10

. 

 

  Approximately 90% of all cancer-related deaths are caused by metastases 11. 

About one-fifth of CRC patients present with metastasis and after surgical treatment, 

30 to 50% develop metastasis 12, 13. In CRC, primary cancer cells spread via blood or 

lymph circulation to distant organs, such as the liver, peritoneum, lungs, bone and 

brain. The liver represents the most frequent site of CRC metastases. Approximately 

55% of CRC patients develop liver metastasis. 
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1.2 Epithelial-Mesenchymal Transition 

  Epithelial-Mesenchymal Transition (EMT) is a cellular program that is important for 

the formation of tissues and organs during embryonic development and during wound 

healing 14. During EMT, epithelial cells lose cell-cell adhesion and cell polarity and 

acquire properties of mesenchymal cells, such as enhanced migratory and invasive 

capacities.  

 

1.2.1 EMT in tumor progression 

  EMT not only occurs during embryonic development, but also is an essential 

element in tumor progression and metastasis 15. Cancer cells at the primary site 

acquire a mesenchymal phenotype, which allows them to invade surrounding tissues, 

intravasate into and extravasate from blood-vessels, and colonialize distant organs 

and tissues 15, 16 (Figure 1.3). After seeding, these cells switch back to an epithelial 

phenotype and proliferate to form metastases 15. The processes by which cells switch 

between epithelial and mesenchymal phenotypes are known as the 

epithelial-to-mesenchymal transition (EMT) and its counterpart, the 

mesenchymal-to-epithelial transition (MET) 17 (Figure 1.3). During metastasis 

formation, primary tumor cells accumulate genetic and epigenetic changes, which 

enable these to escape from the tumor mass and invade into surrounding tissue 18, 19. 

Alterations of gene expression in the tumor microenvironment may also contribute to 

this process 20, 21. In patient samples, EMT is observed in the invasive front of various 

tumor types, indicating that micro-environmental signals trigger and control EMT 22-24. 

EMT also contributes to tumor stemness, escape from senescence, evasion of the 

immune system, chemo-resistance as well as tumor relapse 19.  
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Figure 1.3 Role of EMT during cancer progression. In tumor cells, EMT transcription 

factors (EMT-TFs) may primarily redefine the epithelial status of the cell, potentially - but not 

necessarily - assigning stem cell (SC) characteristics to dedifferentiated tumor cells, or they 

may redefine resident genetically altered stem cells to be cancer stem cells (CSCs). The 

dissemination of tumor cells from the solid tumor and subsequent migration after breakdown of 

the basement membrane (BM) - the classical view of the role of EMT in cancer — can only be 

achieved when all component pathways of the network are activated and fully parallels the 

process that is seen in development: if the cancer cell has acquired the necessary genetic 

aberrations and receives the appropriate signals at the tumor-host interface, the cell is ready to 

move towards metastasis. At this point, the active contribution of the EMT-associated 

programme is probably to give survival signals and to maintain the mesenchymal status of the 

metastasizing cell. It is likely that EMT also has a role in parallel progression, in which tumor 

cells escape early and metastasis progresses in parallel to the primary tumor. EMT features 

may further promote resistance during tumor therapy, leading to recurrence and a poor 

prognosis. The degree of EMT during the different steps in cancer progression probably 

depends on the imbalance of several associated regulatory networks with activated oncogenic 

pathways. Legend and figure from 
25

. 

 

1.2.2 Regulation of EMT 

  Much effort has been devoted to understanding the regulatory mechanism of EMT. 

A number of distinct signaling pathways regulate EMT 14. The best studied regulatory 

network controlling EMT is the transcriptional control. EMT transcription factors 

(EMT-TFs) are up-regulated in many different tumors 15. EMT-TFs are central 

regulators of EMT 26, 27. The zinc-finger transcription factor SNAIL is the best studied 

TF that regulates EMT 28. The expression of SNAIL inversely correlates with the 
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expression of E-cadherin 26. Indeed, SNAIL directly binds to an E-box (CACCTG) in 

the promoter of CDH1 28. Peinado et al. also showed that the expression of SNAIL is 

associated with poor prognosis, tumor recurrence, and metastasis in breast 

carcinomas 26. The transfection factor ZEB (zinc finger E-box-binding homeobox 

protein) induces EMT and directly binds to an E-box of CDH1 29. The EMT 

transcription factor TWIST is also a key regulator of EMT 26. As described below in 

chapter 1.3.3, ZNF281 represents a new EMT-promoting transcription factor that 

participates in these regulatory networks 30. Moreover, the transfection factor STAT3 

that mediates EMT induced by the pro-inflammatory cytokine IL-6, and thereby 

promotes invasion and metastasis of CRC cell lines 31.  

  Some other epithelium-specific transcription factors, such as GRHL2, ELF3 and 

ELF5, are decreased during EMT and actively drive MET when overexpressed in 

mesenchymal cells. All these findings suggest the concept of a tightly controlled 

balance between the epithelial and the mesenchymal status 25. 

  Besides EMT-TFs, epigenetic changes also contribute to EMT 32. The epigenetic 

regulation of CDH1 promoter has been recognized as part of the program that results 

in EMT 33, 34. For example, it has been shown that the hyper-methylation of CDH1 

correlates with the expression of SNAIL 35 and that ZEB1 modifies chromatin at the 

CDH1 promoter via recruiting SIRT1 deacetylase 36.  

 

1.3 The p53/microRNA-34 axis in colorectal cancer 

1.3.1 The p53 tumor suppressor protein 

  TP53, which encodes the p53 protein, is one of the most frequently mutated genes 

in human cancers. It has been reported that more than 80% of CRCs show 

inactivation of TP53 by mutation 37. The p53 protein represents a transcription factor, 

that is activated by diverse cellular stresses, such as DNA damage, ribosomal stress, 

oncogene activation and lack of oxygen or other nutrients and exerts multiple tumor 

suppressive functions through regulating the expression of its target genes 38. For 

example, p53 promotes cell cycle arrest, senescence, and apoptosis 39, 40. Under 
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conditions of stress and damage, p53 suppresses tumorigenesis either by supporting 

the repair of cells or eliminating damaged cells that cannot be repaired 41.  

  Recently, microRNAs have been added to the list of p53 targets that mediate its 

tumor suppressive function 42. p53 regulates the expression of its target miRNAs by 

direct binding to their promoters, as shown for miR-34a/b/c, miR-200, miR-15a/16-1, 

miR-192/194/215, miR-145 and miR-107. Alternatively, p53 regulates the processing 

of miRNA precursors, which has been shown for miR-16-1, miR-145, and 

miR-199a-3p 43. p53 also directly controls the transcription of genes that are involved 

in canonical metastasis pathways 44. Therefore, loss the function of p53 promotes 

migratory and invasive properties 44, which allows tumor cells to invade into 

surrounding tissues, enter into circulation and extravasate into secondary sites 45. The 

suppression of metastasis by p53 is mediated via the inhibition of factors 46, 47, which 

initiate and maintain EMT programs 25
. Numerous EMT-TFs are repressed by 

p53-induced miRNAs. In colorectal cancer, p53 negatively regulates EMT by 

suppressing the expression of SNAIL and ZEB1 48, 49. In addition, our lab recently 

showed that the zinc finger 281 protein (ZNF281) and the STAT3 pathway are 

integrated into the p53 regulatory network via miR-34a 30, 31. Despite abundant 

evidence showing that metastatic processes are repressed by p53, TP53 knockout 

mice tumors do not metastasize frequently or display invasive physiologic 

characteristics 50, 51, suggesting that p53 loss alone is not sufficient to drive invasive 

cellular migration in vivo.  

 

1.3.2 microRNAs and miR-34 family 

  microRNAs (miRNAs), a subset of non-coding RNAs, are ~22 nucleotides long, 

single-stranded RNAs that exert biological functions by repressing the translation of 

target protein-encoding genes 52. miRNAs were first discovered as regulators of 

development in the nematode Caenorhabditis elegans 53, 54. Afterward, thousands of 

miRNA genes have been identified in animal and plant genomes 55. miRNAs are 

involved in many human diseases 56 and participate in the regulation of almost every 
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cellular process, such as proliferation, cell cycle control, apoptosis, differentiation, 

angiogenesis, migration, metabolism, autophagy, and stemness 57-61. Currently, 

miRNAs are being tested as targets and therapeutics to combat diseases and 

infections 62, 63. 

  Since the first demonstration of an involvement of miRNAs in lymphomas in 2002 64, 

the role of miRNAs has been investigated in various tumor entities 65. Deregulation of 

miRNAs expression has been shown in all types of human cancer 66, 67. Various roles 

of miRNAs were shown in cancer development and progression 59. About 50% of 

annotated human miRNAs are located within fragile regions of chromosomes, which 

are frequently lost in various human cancers 68.  

  The miR-34a and miR-34b/c genes are directly activated by p53 69, 70. miR-34a is 

transcribed from a unique gene located on chromosome 1p36.22, which is commonly 

deleted in neuroblastoma 71, whereas miR-34b and miR-34c are encoded by a 

common host-gene located on chromosome 11q23.1. Interestingly, miR-34a and 

miR-34c have identical seed sequences, whereas the miR-34b seed sequence is 

similar, but not identical, suggesting that miR-34a and miR-34c share similar mRNA 

targets, whereas miR-34b targets might be slightly different from these. Moreover, 

miR-449a/b/c belongs to the miR-34 family as well due to similarities in the seed 

sequence. It is located in a highly conserved region within the second intron of the 

CDC20B gene on chromosome 5 72. The expression of miR-34 is also induced by the 

ETS family transcription factors ELK1 and Foxo3a, which bind to the promoter regions 

of miR-34a and miR-34b/c, respectively 73, 74. Moreover, all members of the miR-34 

family are frequently down-regulated by epigenetic silencing in many tumor types 75, 76. 

The promoter of miR-34 harbors a CpG island, which represents a site of 

hyper-methylation causing transcriptional silencing either through affecting the 

binding of transcription factors or by influencing the chromatin status.  

  In addition, it has been shown that the EMT-TFs SNAIL and ZEB1 repress miR-34a 

and miR-34b/c by directly binding to E-boxes in the miR-34 promoters 48. This 

repression may be converted into permanent silencing by CpG-methylation. In mice, 
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miR-34a is ubiquitously expressed, with highest levels in the brain and testes, 

whereas miR-34b and miR-34c are expressed mainly in brain, lungs, and testes 77, 78. 

Thus, miR-34a is expressed at higher levels than miR-34b/c in most tissues, except in 

lungs, where miR-34b and miR-34c are predominant. 

  Recently, it was shown that miR-34a/b/c has an important role in the response to 

chemotherapeutic agents 79 and may act as a tumor suppressor 80. The miR-34 family 

suppresses tumor growth and metastasis through targeting multiple oncogenic target 

mRNAs 79.  

  The roles of the miR-34 family identified in cell culture based analyses suggested 

that it can also suppress tumor formation in vivo 79. Accordingly, re-expression of 

miR-34a caused 20% to 83% inhibition of tumor growth in xenograft mouse models of 

lymphoma, prostate, pancreatic or non-small cell lung cancer, as well as melanoma, 

81-83. In 2013, MRX34, a liposome-based miR-34 mimic, the first cancer-targeted 

miRNA-based drug, was used in phase I clinical trial in patients with advanced 

hepatocellular carcinoma 82, 84. Furthermore, co-treatment with miR-34 mimics may 

enhance the beneficial effects of conventional cancer therapies. It has been shown 

that in various cancer models, that ectopic expression of miR-34a precursors 

attenuates chemo-resistance to different chemotherapeutic drugs 82. Besides, 

hyper-methylation of the miR-34a/b/c promoters is frequently found in different 

primary tumors and various cancer cell lines and causes a significant reduction of 

endogenous miR-34a/b/c levels 85-87. Thus, de-methylating drugs may lead to 

re-expression of miR-34a/b/c and facilitate anti-cancer therapies in the future. Indeed, 

treatment of prostate cancer patients with BioResponse 3/3'-Diindolylmethane 

(BR-DIM) prior to radical prostatectomy in a phase II clinical trial led to the 

re-expression of miR-34a, which resulted in repression and nuclear exclusion of its 

target, the androgen receptor 88, 89. Moreover, natural compounds, such as 

Resveratrol, Rhamnetin, Genistein, and difluorinated Curcumin (CDF), cause 

re-expression of miR-34a in tumors, thus could be an important focus for future 

anti-cancer research studies 79. Therefore, development of efficient delivery system 
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for miR-34 into tumors or re-expression of miR-34 may be an efficient strategy for 

anticancer therapy. 

 

1.3.3 The p53/miR-34 axis in tumor development 

  As described above, p53 directly regulates miRNA expression or regulates the 

processing of miRNA precursors, but is also thought to be repressed by several 

miRNAs 43. This thesis focuses on the function of the p53/miR-34 axis in colorectal 

cancer. The miR-34 family encodes the first miRNAs found to be directly activated by 

p53 and suppress tumor growth and metastasis 79. The p53/miR-34 axis and its 

targets are often connected through positive or negative feedback loops that either 

reinforce the p53/miR-34 signaling or suppress it. For example, MDM4 binds to p53 

and inhibits its transcriptional activity, but MDM4 is also a target of miR-34a 90, 91 

(Figure 1.4A). Therefore, p53, miR-34a and MDM4 form a positive feed-back loop. 

Interestingly, the expression of miR-34 family can also be regulated by c-Myc via a 

miR-34a/c-Myc/ARF/HDM2/p53 negative feedback loop 92 (Figure 1.4A). 

Furthermore, SIRT1, which represses p53 activity by deacetylation of the p53 protein, 

is a direct target of miR-34a 93 (Figure 1.4B). miR-34a also directly targets 

nicotinamide phosphoribosyltransferase (NAMPT) 94. In addition, a positive feedback 

loop was found between SIRT1 and MYC 95, 96. Therefore, by repressing the 

c-Myc/SIRT1 axis, miR-34 may represent a central mediator of cell cycle suppression 

by p53. Moreover, the p53/miR-34 axis has also been implicated in the regulation of 

EMT, invasion and migration processes. miR-34a directly targets and suppresses the 

EMT-TF SNAIL 48, 49, whereas SNAIL represses all members of the miR-34 family by 

directly binding to their promoters in CRC cell lines, thereby forming a 

double-negative feedback loop 48 (Figure 1.4C). Furthermore, p53 induces members 

of the miR-200 family 97, which also represent EMT-regulating miRNAs that suppress 

EMT by a similar double-negative feedback loop involving the EMT-TFs ZEB1 and 

ZEB2 98, 99. These miRNAs form two double-negative feedback loops with their targets 

SNAIL, ZEB1, and ZEB2 that act as bimodal switches to stabilize either the epithelial 
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or the mesenchymal state 48. Moreover, ZEB1 was shown to repress miR-34a by 

binding to the same E-boxes in miR-34 promoters as SNAIL, thereby adding more 

complexity and further connecting the miR-34/SNAIL and miR-200/ZEB loops 48. 

Hahn et al. recently showed that the zinc finger 281 protein (ZNF281) is an important 

miR-34 target with respect to EMT 30. SNAIL and ZNF281 were directly targeted by 

miR-34a, which is repressed by SNAIL and ZNF281 30, 48, 100. Thereby, these factors 

form a negative feedback loop. 

  Recently, we found that exposure to pro-inflammatory cytokine interleukin-6 (IL-6) 

results in repression of miR-34a via direct binding of STAT3 to the promoter 

of miR-34a 31. Furthermore, miR-34 directly targets IL-6 receptor (IL-6R), which 

together forms an IL-6R/STAT3/miR-34a feedback loop (Figure 1.4D). The activation 

of this loop is required for EMT, invasion, and metastasis of CRC cell lines and is 

associated with nodal and distant metastasis in CRC patients. In addition, 

deregulation of this regulatory loop by deletion of miR-34a was shown to promote 

invasion in a mouse model of colitis-associated-colon cancer 31. 

  Among other direct miR-34a targets that promote cancer cell EMT, invasion and 

migration are c-kit 101, the RAS-oncogene homolog RRAS 102, Axl 103, Arhgap1 104, 

PDGFR-α/β 105, Fra-1 106, 107, and c-Met 108.  
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Figure 1.4 The role of p53/miR-34 axis in (A) p53 autoregulation, (B) cancer cell 

metabolism, (C) invasion and metastasis, (D) cancer-associated inflammatory signaling. 

Modified from 
43, 79

. 
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1.4 Hypoxia and cancer 

  The tumor microenvironment promotes cell proliferation, motility, and adhesion 109. 

However, the normal cellular microenvironment by suppresses malignant cell growth 

109. Hypoxia, i.e. low oxygen concentration, is an essential aspect of tumor 

microenvironment. Hypoxia is a hallmark of tumors caused by their insufficient 

vascularization 110. Also human colorectal carcinomas (CRC) display hypoxic areas 111. 

Clinically, hypoxia is associated with tumor progression, resistance to chemotherapy 

and radiotherapy and poor clinical prognosis 112-114. 

  The definition of hypoxia depends on the type of tissue and tumor that is studied 115. 

However, it is generally accepted that hypoxic tumors exhibit median oxygen levels 

below 2% 115. The phenotypic variability of cancer cells is partially related to their 

oxygen requirement and tolerance towards hypoxia 115. Cancer cells undergo genetic 

and epigenetic changes that allow them to survive in the hypoxic microenvironment 116. 

Cancer cells exposed to hypoxia display an elevated mutation frequency 117. And 

hypoxia was shown to promote chromosomal rearrangements, gene amplification, 

and reintegration into chromosomal fragile sites 118, 119. This accelerated genetic 

instability may lead to an aggressive, invasive and metastatic phenotype 120. In 

addition, mutation of the tumor suppressor TP53 provides cancer cells with a selective 

advantage under conditions of hypoxia 121. Indeed, hypoxia may influence most the 

hallmarks of tumorigenesis 122 (Figure 1.4).   
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Figure 1.4 The effects of hypoxia on the hallmarks of human cancers. Modified from 
3, 123

.  

 

1.4.1 The role of HIF transcription factors in cancer 

  HIF (hypoxia inducible factor) transcription factors belong to the basic helix–loop–

helix-PER-ARNT-SIM (bHLH-PAS) family and represent important mediators of the 

transcriptional response to hypoxia 124-126. HIF1A, which was first identified in studies 

of the human EPO gene 127, is a heterodimer consisting of an O2-regulated HIF1A 

subunit and a constitutively expressed HIF1B subunit. HIF1 binds to the 

hypoxia-response element (HRE), a consensus sequence 5'-RCGTG-3' in the 

promoter region of its target genes. HIF1A protein levels increase dramatically when 

the cellular O2 concentration is reduced 128. HIF1A protein stability is negatively 

regulated by O2-dependent prolyl-hydroxylation, which enables binding of E3 ubiquitin 

ligase von-Hippel–Lindau (VHL), leading to ubiquitination and thereby proteasomal 

degradation of HIF1A. Elevated levels of HIF1A protein have been associated with 
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progression and poor clinical outcome for many different tumor entities 125, 129 

including CRC 130, 131. 

  HIF1A directly regulates genes that are related to the regulation of multiple adaptive 

responses to hypoxia 124, 132. HIF1A induces EMT through regulating EMT-TFs, 

activating EMT-associated signaling pathways, modulating EMT-associated 

inflammatory cytokines, as well as by influencing epigenetic regulators 133. Dependent 

on the cellular contexts, hypoxia induces a set of miRNAs, such as miR-21, 23, 24, 26, 

103/107, 210 and 373. miR-210 is directly induced by HIF1A and HIF1A is a direct 

target of miR-210 134. Therefore, these factors form a negative feed-back loop. 

Moreover, a large number of miRNAs are down-regulated under hypoxia 135. For 

example, miR-16-1, which is a prototypical tumor suppressor miRNA in leukemia and 

lymphoma, is down-regulated by HIF1A, and thereby contributes to the 

overexpression of VEGF in anaplastic large-cell lymphomas 136.  

  Initial work suggested that hypoxia has a minimal effect on the miRNA processing 

machinery 137, but more recent evidence suggests that hypoxia regulates miRNA 

processing. Several components of the microRNA processing machinery, such as 

Exportin 5 and AGO2, have been found to be regulated by hypoxia 138. In addition, 

hypoxia potentiates miRNA-mediated gene silencing through post-translational 

modification of AGO2 139. Very recently, EGFR was shown to suppress the maturation 

of specific tumor suppressive miRNAs in response to hypoxic stress through 

phosphorylation of AGO2. The association between EGFR and AGO2 was enhanced 

by hypoxia, leading to a reduction in the binding of Dicer to AGO2 and the inhibition of 

the processing from precursor to mature miRNAs 140. In breast cancer, Dicer was 

significantly reduced in a HIF-hydroxylase PHD2 dependent manner when exposed to 

hypoxia 141. In addition, hypoxia promotes stem cell phenotypes and poor prognosis 

through epigenetic regulation of DICER 142. Moreover, hypoxia-mediated 

down-regulation of the microRNA processing component Drosha is dependent on 

ETS1/ELK1 transcription factors 142. 
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1.4.2 Hypoxia and the p53 family 

  Hypoxia activates p53 via the activation of ATM (ataxia-telangiectasia mutated) or 

ataxia-telangiectasia mutated and Rad3-related kinases 143-145, PNUTS 146, 

mitochondrial generation of reactive oxygen species (ROS) 147 or enhancement of 

translation and mRNA half-life 148. Moreover, activation of p53 by hypoxia acts as a 

selective pressure during tumor growth, which results in the clonal expansion of cells 

with mutant or inactive p53 121. This mechanism may explain the more aggressive 

nature of hypoxic tumors and the frequent occurrence of p53 mutations in advanced 

stages of tumor development. However, the nature and function of p53 targets that 

are affected by loss of p53 function is largely unknown. Moreover, p53 represses the 

activation of HIF1-dependent signaling 149. The amplification of HIF1-dependent 

responses to hypoxia via loss of p53 contributes to the angiogenic switch, promoting 

cancer progression 150. Accordingly, p53-deficient tumors exhibit a poor response to 

combinations of anti-angiogenic treatments and chemotherapy 151.  

  Changes in HIFs and p53 activity allow cancer cells to survive through affecting 

angiogenesis, tumor microenvironment, metabolism, stemness, metastasis and 

recurrence 152. For example, the transcriptional reprogramming mediated by HIF1 

modulates the expression of genes involved in ECM degradation within the primary 

tissues and at distant sites of metastasis 152. Loss or mutant p53 affects the ability of 

invasion and metastasis 153. Remarkably, the interaction of mutant p53 with TAp63 

promotes the stability of HIF, resulting in enhanced metastatic potential 154, 155. 

Therefore, altered interactions within the p53 family affect the activation of HIF 

signaling, thus facilitates HIF-dependent pro-metastatic activities 152. 

  The p53-miRNA network has been extensively examined in the context of 

oncogenesis and tumor biology 156. Recent work indicates that p53 may also regulate 

specific miRNA transcription during hypoxia independent of HIF signaling. Under 

hypoxic conditions (0.5% O2), p53 accumulates in aryl hydrocarbon nuclear 

translocator (ARNT) knockout mouse embryonic fibroblasts (MEFs) that lack intact 

HIF signaling and directly induces miR-210 157. The p53-mediated expression of 
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miR-210 protects cardiomyocytes exposed to hypoxia 157. Notably, p53 also induces 

other miRNAs, such as miR-107 and miR-192, during tumorigenesis that have also 

been implicated as hypoxia-regulated miRNAs 156. However, direct experimental 

evidence demonstrating a functional link between p53 and induction of these miRNAs 

in the context of hypoxia is currently lacking 158.  

 

1.4.3 Hypoxia and STAT3 

Hypoxia activates the transcription factor STAT3 via phosphorylation of STAT3 at 

serine 727 (S727) and tyrosine 705 (Tyr705) residues 159. Phosphorylation at S727 is 

required for the maximal transcriptional activity of STAT3 160, and has been implicated 

in the promotion of tumor growth and invasion 161-163. Furthermore, the activation of 

STAT3 by S727 phosphorylation was observed in various human cancer stem cells 

and is associated with poor overall survival 164. Interestingly, protein phosphatase 

1/PP1, which negatively regulates STAT3 by de-phosphorylation of S727, is inhibited 

by hypoxia 165. Phosphorylation of STAT3 at S727 is sufficient to activate STAT3 and 

enhances prostate tumorigenesis independent of Y705 phosphorylation 163, 166.  

 

1.4.4 Hypoxia and chemo-resistance 

  Hypoxia induces chemo-resistance to Cisplatin, 5-fluoro-uracil, Doxorubicin, 

Etoposide, Gemcitabine, Melphalan, and Docetaxel in various types of tumors 167. 

Also in colorectal cancer hypoxia induces chemo-resistance to 5-fluoro-uracil 168. 

Notably, HIF1A represents the main mediator of hypoxia-induced chemo-resistance 

167. Accordingly, inhibition of HIF1A reverses multidrug resistance in colon cancer 169 

and tumor cells expressing HIF1A are more resistant to Cytostatics than 

HIF1A-defective cells 170. HIF1A may mediate chemo-resistance via affecting drug 

transporters, drug targets or via changing the response to drugs 167. However, there 

are also HIF1A-independent mechanisms of hypoxia-induced chemo-resistance, such 

as acidosis and nutrient starvation, which inhibit cell proliferation and increase 

interstitial fluid pressure 171-173. Recently, several studies suggested that EMT plays a 
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central role in chemo-resistance by enhancing cancer cell survival, cell fate transition, 

and the induction of drug resistance-mediating factors 174-176. Some studies showed 

that hypoxia-induced EMT and chemo-resistance are frequently associated in diverse 

types of cancer 177-179. 
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2. Aims of the study 

The present study had the following aims: 

 Characterization of the role of the p53/miR-34a pathway in hypoxia-mediated 

effects during CRC progression 

 Characterization of miR-34a targets relevant for hypoxia-induced EMT in CRC 

cells 

 Determination of the prognostic and therapeutic value of the identified regulations 

and components for CRC 
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3. Materials 

3.1 Chemicals and reagents 

Application Chemical compound Supplier 

Cell culture 

FCS Life Technologies  

Penicillin-Streptomycin (10,000 U/mL) Life Technologies 

DMEM medium Life Technologies  

Mc Coy’s medium Life Technologies 

HBSS, no calcium, no magnesium, no phenol red Life Technologies 

etopside Sigma-Aldrich 

5-FU Sigma-Aldrich 

DMSO Carl Roth 

qPCR 
Fast SYBR® Green Master Mix Applied Biosystems 

Fast SYBR Green Master Mix Universal RT Exiqon A/S 

WB 

 

Protein A-Sepharose® from Staphylococcus aureus Sigma-Aldrich 

Rotiphorese gel 30 (37,5:1) Carl Roth 

APS Carl Roth 

TEMED Carl Roth 

Nonidet®P40 substitute Sigma-Aldrich 

sodium deoxycholate  Carl Roth 

SDS Carl Roth 

β-mercaptoethanol Sigma-Aldrich 

glycerol Carl Roth 

bromophenol blue Carl Roth 

complete mini protease inhibitor cocktail Roche 

PhosSTOP Phosphatase Inhibitor Cocktail  Roche 

Bradford reagent Bio-Rad 

PageRuler™ Prestained Protein Ladder Fermentas 

Immobilon-P PVDF,0.45μm Membrane Merck Millipore 

skim milk powder Sigma-Aldrich 

Methanol Carl Roth 

ECL/HRP substrate Merck Millipore 

IF 

PFA Merck KgaA 

FCS Life Technologies  

DAPI  Carl Roth 

Triton X 100 Carl Roth 

Tween 20 Sigma-Aldrich 

ProLong Gold antifade  Invitrogen  

Modified 

Boyden-cha

mber assay 

DAPI  Carl Roth 

BD Matrigel™ Basement Membrane Matrix BD Bioscience 

Triton X 100 Carl Roth 
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Application Chemical compound Supplier 

ChIP 

Protein G Sepharose®, Fast Flow Sigma-Aldrich 

BSA fatty acid free Sigma-Aldrich 

Salmon Sperm DNA Promega 

37% formaldehyde Merck Millipore 

Luciferase 

reporter 

assays 

 

ampicillin Sigma-Aldrich 

water (molecular biological grade) Life Technologies  

LB-Agar (Lennox) Carl Roth 

LB-Medium (Luria/Miller) Carl Roth 

Hi-Di™ Formamide Applied Biosystems 

sea plaque® agarose Lonza 

O’Gene Ruler 1kb DNA ladder Fermentas 

ethidium bromide Carl Roth 

HiPerFect Transfection Reagent Qiagen 

Opti-MEM® Reduced Serum Medium Life Technologies 

Generation 

of vectors 

ampicillin Sigma-Aldrich 

water (molecular biological grade) Life Technologies 

LB-Agar (Lennox) Carl Roth 

LB-Medium (Luria/Miller) Carl Roth 

Hi-Di™ Formamide Applied Biosystems 

sea plaque® agarose Lonza 

O’Gene Ruler 1kb DNA ladder Fermentas 

ethidium bromide Carl Roth 

Lipofectamine® 2000 Transfection Reagent Invitrogen 

Chloroquine Sigma-Aldrich 

Opti-MEM® Reduced Serum Medium Life Technologies 

puromycin dihydrochloride Sigma-Aldrich 

doxycycline hyclate Sigma-Aldrich 

IHC 

H2O2 Carl Roth 

Hematoxylin vector laboratories  

xylol Carl Roth 

Goat Serum Invitrogen 

Rabbit Serum Invitrogen 

Colony 

formation 

assay 

Crystal violet Carl Roth 

Acetic acid Carl Roth 

Methanol Carl Roth 

Wound 

healing  
Mitomycin C  Sigma-Aldrich 

Xenograft 
D-luciferin Caliper Life 

Sciences 

Tumoroid BD Matrigel™ Basement Membrane Matrix BD Bioscience 
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3.2 Buffers and solutions 

2x Laemmli buffer:  

125 mM TrisHCl (pH 6.8); 4% SDS; 20% glycerol; 0.05% bromophenol blue (in H2O); 

10% β-mercaptoethanol (added right before use) 

 

10x ‘Vogelstein‘ PCR buffer:  

166 mM NH4SO4; 670 mM Tris (pH 8.8); 67 mM MgCl2; 100 mM β-mercaptoethanol  

 

RIPA buffer (for protein lysates):  

1% NP40; 0.5% sodium deoxycholate; 0.1% SDS; 250 mM NaCl; 50 mM TrisHCl (pH 

8.0)  

 

SDS buffer:  

50 mM Tris (pH 8.1); 100 mM NaCl; 0.5% SDS; 5 mM EDTA  

 

10x Tris-glycine-SDS running buffer (5l, for SDS-PAGE):  

720 g Glycin; 150 g Tris base; 50 g SDS; pH 8.3-8.7; ad 5 l ddH2O 

 

Towbin buffer (for Western blotting):  

200 mM glycine; 20% methanol; 25 mM Tris base (pH 8.6) 

 

10x TBS-T (5l):  

500 ml 1M Tris (pH 8.0); 438.3 g NaCl; 50 ml Tween20; ad 5 l ddH2O 

 

10x PBS (1l):  

80g NaCl; 1g KCl; 14.42g Na2HPO4*2H2O; 2g KH2PO4; ad 1 l ddH2O 
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3.3 Kits 

Application Kit Supplier 

qPCR 

High Pure RNA Isolation Kit Roche 

High Pure miRNA Isolation Kit Roche 

miRCURY LNATM Universal RT microRNA PCR – 

Universal cDNA Synthesis Kit II 
Exiqon A/S 

Verso cDNA Kit 
Thermo Fisher 

Scientific 

WB BCA Protein Assay Kit  
Thermo Fisher 

Scientific 

IHC 

Dakocytomation Target Retrieval Solution citrate 

(10×) 
Agilent 

DAB 
vector 

laboratories 

Generation of 

vectors 

QIAamp DNA Micro Kit QIAGEN 

High Pure RNA Isolation Kit Roche 

Verso cDNA Kit 
Thermo Fisher 

Scientific 

QIAquick Gel Extraction Kit QIAGEN 

QIAquick PCR Purification Kit QIAGEN 

Pure Yield™ Plasmid Midiprep System Promega 

QIAprep Spin Miniprep Kit QIAGEN 

BigDye® Terminator v3.1 Cycle Sequencing Kit  Life Technologies 

DyeEx® 2.0 Spin Kit QIAGEN 

QuikChange  II XL Site-Directed Mutagenesis Kit 
Agilent 

Technologies 

DNA isolation DNeasy Blood & Tissue Kit  Qiagen 

Luciferase reporter 

assays 
Dual-Luciferase® Reporter Assay System Promega 

 

3.4 Enzymes 

Application Enzyme Supplier 

Cell culture Trypsin-EDTA (0.5%, 10x, phenol-red free) Invitrogen 

qPCR DNase I (RNase-free) Sigma-Aldrich 

Generation 

of vectors 

restriction endonucleases New England Biolabs 

Platinum® Taq DNA polymerase Invitrogen 

Pfu polymerase Thermo Fisher Scientific 

FIREPol® DNA Polymerase Solis BioDyne 

T4 DNA ligase Thermo Fisher Scientific 
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3.5 Antibodies 

3.5.1 Primary antibodies 

epitope species  catalog no. company use dilution source 

Vimentin human # 2707-1 Epitomics WB 1:500 rabbit 

E-cadherin  
human # 334000 Invitrogen WB; IF 1:1000; 

1:50 

mouse 

β-actin human # A2066 Sigma-Aldrich WB 1:1000 rabbit 

p53 human # sc-126 Santa Cruz WB 1:1000 mouse 

α-tubulin human  # T-9026 Sigma-Aldrich WB 1:1000 mouse 

SNAIL  human # 3879S Cell Signaling WB 1:500 rabbit 

STAT3 human # sc-482 Santa Cruz WB 1:1000 rabbit 

STAT3
pS727

 human  # 9134 Cell Signaling WB 1:1000 rabbit 

STAT3
pY705

 human  # 9131 Cell Signaling WB 1:1000 rabbit 

VSV human # V4888 Sigma-Aldrich WB; co-IP 1:1000 rabbit 

GLUT1 human # sc-377228 Santa Cruz IHC 1:100 mouse 

Laminin 

5γ2 

human # MAB19562 Merck Millipore IHC 1:100 mouse 

HIF1A human # NB100-105 Novus Biologicals WB; CHIP 1: 1000 mouse 

INH3 
Human # sc-376034 Santa Cruz WB; IHC; co-IP 1: 1000; 

1:100 

mouse 

HIF1A mouse # LS-B12555 LSBio WB; IHC 1: 500 rabbit 

INH3 mouse # SAB4502938 Sigma-Aldrich WB; IHC 1:500 rabbit 

Cleaved 

caspase-3 

mouse # 9661 Cell Signaling IHC 1:400 rabbit 

 

3.5.2 Secondary antibodies 

Secondary antibodies or conjugates 

name ordering no. company use dilution source 

anti-mouse HRP # W4021 Promega WB 1:10.000 goat 

anti-rabbit HRP # A0545 Sigma WB 1:10.000 goat 

Anti-Rabbit-Cy3 
# 715-165-150 Jackson 

Immuno-Research  

IF 1:100 donkey 

Alexa Flour 555-conjugated 

anti-mouse 

# A21422 Invitrogen IF 1:500 goat 

Phalloidin-conjugated 

Alexa-647 

# A22287 Invitrogen IF 1:40  -- 

Alexa Flour 555-conjugated 

anti-rabbit 

# A-11034 Invitrogen IF 1:1000 goat 
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3.6 Oligonucleotides 

3.6.1 Oligonucleotides used for qPCR 

gene  forward (5’-3’) reverse (5’-3’) 

human: 

β-actin  TGACATTAAGGAGAAGCTGTGCTAC GAGTTGAAGGTAGTTTCGTGGATG 

VIM  TACAGGAAGCTGCTGGAAGG  ACCAGAGGGAGTGAATCCAG  

CDH1  CCCGGGACAACGTTTATTAC  GCTGGCTCAAGTCAAAGTCC  

pri-miR-34a  CGTCACCTCTTAGGCTTGGA  CATTGGTGTCGTTGTGCT  

SLUG  GGGGAGAAGCCTTTTTCTTG  TCCTCATGTTTGTGCAGGAG  

STAT3 GGGAAGAATCACGCCTTCTAC  ATCTGCTGCTTCTCCGTCAC  

SNAIL GCACATCCGAAGCCACAC  GGAGAAGGTCCGAGCACAC  

FN CTTTGGTGCAGCACAACTTC TCCTCCTCGAGTCTGAACCA 

Inh3 CTGTGTCTGTCTGGCCCTAA GGGTGGGTATTGGGAGGAAA 

ZEB1  TCAAAAGGAAGTCAATGGACAA  GTGCAGGAGGGACCTCTTTA  

murine: 

β-actin  CTAAGGCCAACCGTGAAAAG ACCAGAGGCATACAGGGACA 

VIM  ATCGACAAGGTGCGCTTCC TTGCCCTGGCCCTTGA 

CDH1  GATTTGAGCCAGCTGCACAG GGGTGGGAGCCACATCATT 

pri-miR-34a  CTGTGCCCTCTTGCAAAAGG GGACATTCAGGTGAGGGTCTTG 

SLUG  ATCCTCACCTCGGGAGCAT GGTAGAGGAGAGTGGAGTGGAGC 

SNAIL CACACGCTGCCTTGTGTCT GGTCAGCAAAAGCACGGTT 

FN AGTGCTTCATGCCGCTAGAT GGGTGAAAGGACCACTCAAA 

Inh3 ACAACCGAGCCAGAGAATCA AAGGCCCGAGGCTTCTCATA 

ZEB1  GCATGTGACCTGTGTGACAA GATAGGGCTTTTCCCCAGAG 

ZEB2 ATTGCACATCAGACTTTGAGGAA ATAATGGCCGTGTCGCTTCG 

Twist CCCACCCCACTTTTTGACGA GGGATGCCTTTCCTGTCAGT 
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3.6.2 Oligonucleotides used for cloning and mutagenesis of Inh3 3’-UTRs 

gene forward (5’-3’) reverse (5’-3’) 

human: 

Inh3 3‘-UTR TCCCTCTCTCCTCCAGCATT  CCGGATCCCAGTAAGGGGTA 

Inh3 3‘-UTR 

site1 mutant  

CCAGTGTCTTCCTTTTGTTCTCA

GTCGGAAACTGCCTGTCCTGGG 

CCCAGGACAGGCAGTTTCCGACT

GAGAACAAAAGGAAGACACTGG 

Inh3 3‘-UTR 

site2 mutant 

CAACAGTCCCAGCTTTCAGTCG

GAGGGTCCCAGTCAGATTCC 

GGAATCTGACTGGGACCCTCCGA

CTGAAAGCTGGGACTGTTG 

murine: 

Inh3 3‘-UTR TCACCATTCATGTGTCTGCCT AAGTGGTGCCATGGGTTTTG 

Inh3 3‘-UTR 

site1 mutant  

CTATCCCTTTTGTTCTCAGTCGG

AAACTACCTGTCCTGGGATCC 

GGATCCCAGGACAGGTAGTTTCC

GACTGAGAACAAAAGGGATAG 

Inh3 3‘-UTR 

site2 mutant 

CAACGGTCCCAGCTTTCAGTCG

GAGGGCTCCAATCAGATGCC 

GGCATCTGATTGGAGCCCTCCGA

CTGAAAGCTGGGACCGTTG 

 

3.6.3 Oligonucleotides used for qCHIP 

gene  
forward (5’-3’) reverse (5’-3’) 

16q22  
CTACTCACTTATCCATCCAGGCT

AC 

ATTTCACACACTCAGACATCAC

AG 

miR-34a HRE1 ATAATGGTTGGGGCAGGAGG TAAAGGTTCCCAGAGACGCA 

miR-34a HRE2 TCGCATCTTGTTGAATCCGG AGGGCCTCTCGCCTGGA  

miR-34a HRE3 CGGTGAAGGGGATGAGGACCAG GCGGCATCTCCTCCACCTGAAA 

Inh3 HRE1 AACCTACTTGTCGGCCTTCC ATTCGTTCTCTCTGGGGTGA 

Inh3 HRE2 TTACGCGCCTCCATCTTCAA AAGTGGGAGCAGTTGGAAAC 

Inh3 HRE3 GCTTGGTGCACACAACTCC AACAAATTTGGCGGAAGGGG 

Inh3 HRE4 CCCCTTCCGCCAAATTTGTT AGGCGTCGCTGGATTAGTT 

Inh3 HRE5 CTCCCTGTCCTGAGCCTTAG GCCTAGCTCCTCCAACAACT 

VEGF CCTTTGGGTTTTGCCAGA CCAAGTTTGTGGAGCTGA 
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3.6.4 Oligonucleotides used for cloning and mutagenesis of human miR-34a 

promoter 

gene forward (5’-3’) reverse (5’-3’) 

miR-34a 

promoter 

CTGAGAGTGGGTATGGGAT

TGCC  

GCAGGACTCCCGCAAAATCTC

CAAATG 

miR-34a HRE2 

mutant 

CACACCCGCGTCCAGGAAA

GGGGTTTCTTCCCTCTTC 

GAAGAGGGAAGAAACCCCTTT

CCTGGACGCGGGTGTG 

 

3.6.5 Oligonucleotides used for cloning of human Inh3 

gene  forward (5’-3’) reverse (5’-3’) 

Inh3 CGGGATCCTCCCTGTCCTGAGCC

TTAGC 

ACGCGTCGACGTGCTGCATTGGCCCT

GGAG 

 

3.6.6 microRNA mimics and antagomiRs 

The following pre-microRNA mimics and antagomiRs were purchased from Ambion: 

pre-miR miRNA Precursor Negative Control # 1 (# AM17110); pre-miR-34a (# 

PM11030); pre-miR-34c (# PM11039); anti-miR Negative Control # 1 (# AM17010); 

has-miR-34a-5p anti-miR miRNA Inhibitor(# AM11030) 

 

3.6.7 siRNAs 

The following siRNAs were purchased from Ambion: 

Negative control (ID # 4611), STAT3 (ID # 6880), INH3 (ID # s13943), and HIF1A (ID 

# s6539). 

 

3.7 Search Algorithms 

application internet Supplier 

miR-34 binding 

site prediction 

miRwalk http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/ 

miR-34 binding 

site prediction 

targetscan http://www.targetscan.org/vert_71/ 
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3.8 Vectors 

Name Insert Reference 

pRTR -- 
180

 

pRTR-p53-VSV  human TP53  
181

 

pCDNA3.1-p53-VSV human TP53  

pRTR-pri-miR-34a human miR-34a 
182

 

tTA-p53 human TP53 
183

 

pGL3-control-MCS -- 
71

 

pGL3-Inh3 wt human Inh3 3’UTR  

pGL3-Inh3 mut1 human Inh3 3’UTR  

pGL3-Inh3 mut2 human Inh3 3’UTR  

pGL3-Inh3 mut1 + 2 human Inh3 3’UTR  

pGL3-mInh3 wt mouse Inh3 3’UTR  

pGL3-mInh3 mut1 mouse Inh3 3’UTR  

pGL3-mInh3 mut2 mouse Inh3 3’UTR  

pGL3-mInh3 mut1 + 2 mouse Inh3 3’UTR  

pRL Renilla 
184

 

pBV -- 
185

 

pBV-miR-34a human miR-34a promoter  

HA-HIF1A human HIF1A with activating mutation 
186

 

 

3.9 Mice 

application Mice Supplier 

Xenograft NOD/SCID mice Jackson Laboratory 

IHC 
miR-34a

-/-
; miR-34bc

-/-
; Apc

Min/+
 and 

miR-34a
+/+

; miR-34bc
+/+

; Apc
Min/+

 mice 

Dr. Alexander Nikitin ;  

Dr. Marlon Schneider 

Tumoroid 
miR-34a

-/-
; miR-34bc

-/-
; Apc

Min/+
 and 

miR-34a
+/+

; miR-34bc
+/+

; Apc
Min/+

 mice 

Dr. Alexander Nikitin ;  

Dr. Marlon Schneider 
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3.10 Cell lines 

Species Cell lines Medium Supplier 

Human CRC cell 

lines 

SW480 DMEM Medium +  

10% FBS 

-- 

SW620 -- 

DLD-1 McCoy`s 5A Medium 

+ 10% FBS 

 

-- 

HT29 -- 

HCT15 -- 

HCT116 TP53
-/-

 Bert Vogelstein (Johns 

Hopkins University, 

Baltimore) 

HCT116 TP53
+/+

 

RKO TP53
-/-

 

RKO TP53
+/+

 

SW48 TP53
-/-

 

SW48 TP53
+/+

 

Murine CRC cell 

line 
CT26 

Gabriele Multhoff 

(Technical University, 

Munich) 

Human kidney cell 

line 
HEK293 

DMEM Medium +  

5% FBS 

-- 

 

3.11 Software 

application software Supplier 

Data analysis SPSS Statistics 23.0 IBM 

Data analysis and figure 

generation 

Prism5 program Graph Pad Software 

Inc. 

WB 
Varioskan Flash Multimode Reader Thermo Scientific 

KODAK MI SE software Carestream Health 

qPCR ND 1000 NanoDrop Spectrophotometer NanoDrop products 

Sequencing analysis 
DNA Sequencing Analysis Software v5 Applied Biosystems 

BioEdit BioEdit 

qPCR LightCycler 480  Roche 

IF ZEN 2009 Zeiss 

Wound healing assay Axiovision Zeiss 

Morphology  Axiovision Zeiss 

IHC Axiovision Zeiss 

Luciferase reporter 

assays 
SIMPLICITY software package DLR 

Modified Boyden-chamber Axiovision Zeiss 

Xenograft IVIS Illumina System Caliper Life Sciences 

Ectopic expression BD ACCURI C6 bdbiosciences 
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3.12 Laboratory equipment 

application Device Supplier 

qPCR 

ND 1000 NanoDrop Spectrophotometer NanoDrop 

LightCycler 480  Roche 

WB 

Mini-PROTEAN®-electrophoresis system Bio-Rad 

HTU SONI130 

G. Heinemann 

Ultraschall- und 

Labortechnik 

Varioskan Flash Multimode Reader Thermo Scientific 

PerfectBlue™ SEDEC ‘Semi-Dry’ blotting 

system 
Peqlab Biotechnologie 

Mini Trans-Blot® Electrophoretic Transfer 

Cell 
Bio-Rad 

Powerpac 300 Power Supply Bio-Rad 

biophotometer plus eppendorf 

EPS 600 power supply Pharmacia Biotech 

440CF imaging system Eastman Kodak 

Modified 

Boyden-chamber assay 

Boyden chamber transwell membranes 

(pore size 8.0 µm) 
Corning 

Axiovert 25 microscope Carl Zeiss 

Cell culture 
Herasafe KS class II safety cabinet 

Thermo Fisher 

Scientific 

Neubauer counting chamber Carl Roth 

Sequencing 
ABI 3130 genetic analyzer capillary 

sequencer 
Applied Biosystems 

IF Axiovert 25 microscope Carl Zeiss 

IHC Axiovert 25 microscope Carl Zeiss 

Ectopic expression 

Fisherbrand FT-20E/365 transilluminator Fisher Scientific 

GeneAmp® PCR System 9700 Applied Biosystems 

MultiImage Light Cabinet Alpha Innotech 

BD AccuriTM C6 Flow Cytometer 

Instrument 
BD Accuri 
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application Device Supplier 

Wound healing assay 

Culture-Insert 2 Well ibidi 

Axiovert 25 microscope Carl Zeiss 

Luciferase reporter 

assays 
Orion II luminometer Berthold Technologies 

Xenograft 
IVIS Illumina System Caliper Life Sciences 

Colony formation assay Varioskan Flash Multimode Reader Thermo Scientific 

Cell proliferation real-time cell analyzer (RTCA) Roche 

Common used 

Forma scientific CO2 water jacketed 

incubator 

Thermo Fisher 

Scientific 

Falcons, dishes and cell culture materials 
Schubert & Weiss 

OMNILAB 

5417C table-top centrifuge Eppendorf 

waterbath Memmert 

Biofuge pico table top centrifuge 
Thermo Fisher 

Scientific 

Megafuge 1.0R 
Thermo Fisher 

Scientific 

Biofuge fresco 
Thermo Fisher 

Scientific 
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4. Methods 

4.1 Bacterial culture 

4.1.1 Propagation and seeding 

  For replication of plasmids harboring an ampicillin or kanamycin resistance, 

bacterial E.coli XL1-blue strain was used. The bacterial cells were cultured either in 

liquid LB-medium by agitation (225 rpm) or on LB agar plates at 37°C overnight. 

LB-medium or LB agar plates were supplemented with 100 μg/ml ampicillin or 50 

μg/ml kanamycin. 

 

4.1.2 Transformation 

  In order to transform the plasmids harboring an ampicillin or kanamycin resistance, 

competent bacterial E.coli XL1-blue strain was used. In general, approximately 100 

ng of plasmid DNA was added to 200 µl aliquots of competent bacterial E.coli 

XL1-blue and incubated on ice for thirty minutes. The competent cells were subjected 

to a heat -shock at 42°C for ninety seconds and then placed on ice for additional two 

minutes. Subsequently, 1 ml of antibiotic-free LB-medium was added and 

pre-incubated at 37°C for one hour. Next, the cells were plated on LB-agar plates 

containing ampicillin or kanamycin and cultured at 37°C overnight. For further 

propagation of the plasmid a transformed single cell clone was used to inoculate the 

respective amount of LB-medium containing the corresponded antibiotics, and then 

was incubated at 37°C overnight and subjected to the procedure of plasmid DNA 

purification. 

 

4.1.3 Purification of plasmid DNA from E.coli 

  In order to prepare small amounts of plasmid DNA, bacterial, transformed with 

plasmids, were incubated in a volume of 5 ml of LB-medium supplemented with 

ampicillin or kanamycin. The plasmid DNA was isolated according to the 

manufacturer’s instructions of the QIAprep Spin Miniprep Kit (Qiagen). The method 
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was preferentially used due to the better yield and quality of DNA for high transfection 

efficiency.  

  In order to prepare large amounts of plasmid DNA, bacterial cells were incubated in 

a volume of 150 ml of LB-medium containing ampicillin or kanamycin. Pure Yield™ 

Plasmid Midiprep System (Promega) was used according to the protocol of the 

manufacturer for DNA purification. 

 

4.1.4 Sequence inserts DNA in plasmid  

  In order to verify DNA sequences introduced into plasmid, DNA sequencing was 

conducted according to the manufacturer’s instructions of BigDye Terminator v1.1 

Cycle Sequencing Kit (Life Technologies). Briefly, master mix was prepared 

containing Big Dye Terminator V1.1, 5×Sequencing buffer, primer (10 μM), plasmid (1 

μg/ml). And then the PCR program was conducted by 15 cycles of each ten seconds 

at 96°C and ninety seconds at 60°C. Subsequently, the DyeEx 2.0 Spin Kit (Qiagen) 

was used according to the manufacturer’s protocol in a 5417C centrifuge (Eppendorf). 

After that, purified DNA was mixed with Hi-Di Formamide (Applied Biosystems), and 

loaded into to ABI3130 genetic analyzer capillary sequencer (Applied Biosystems) for 

sequencing. Data was analyzed by applying the 3130 Data Collection Software v3.0 

and the sequencing analysis software 5.2 (Applied Biosystems).  

 

4.2 Polymerase Chain Reaction (PCR) methods 

4.2.1 Colony PCR 

  To verify the identity and orientation of DNA inserts colony PCR was conducted. 

For this, 20 µl PCR master mix containing vector and/or insert specific primers, 

dNTPs, 10x Vogelstein PCR buffer and FIREPol® DNA polymerase was prepared. 

Single colonies were picked from the LB-agar plate and transferred into correspond 

PCR tube. The PCR cycling conditions were the following: 95°C for five minutes, 

followed by 25 cycles of 95°C for twenty seconds, 55°C for thirty seconds and 72°C 
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for X minute/s (1 minute per 1 kb length of the expected PCR product), and then 

another 72°C for seven minutes. PCR fragment length was analyzed by 

supplementing the sample with loading dye and loading it into agarose gel 

(percentage of the gel adjusted to the fragment length) for electrophoresis.  

 

4.2.2 Cloning of the human miR-34a promoter 

  The promoter region 2 kbp upstream of the transcriptional start site of human 

miR-34a gene was PCR-amplified from genomic DNA of human diploid fibroblasts 

(HDFs). The PCR product was cloned into the shuttle vector pGEM-T-Easy 

(Promega), then transferred into the pBV-MCS vector and verified by sequencing. 

Mutagenesis of the promoter sequence was achieved using the QuikChange II XL 

Site-Directed Mutagenesis Kit (Stratagene) according to manufacturer’s instructions 

and verified by sequencing. The sequences of oligonucleotides used as cloning and 

mutagenesis of human miR-34a promoter primers are listed in Table 3.6.4. 

 

4.2.3 Cloning of 3 -́UTR sequences 

  The full-length 3’-UTRs of the human and mouse Inh3 mRNAs were PCR-amplified 

from cDNA of human diploid fibroblasts (HDFs) and mouse embryonic fibroblasts 

(MEFs), respectively. The PCR product was cloned into the shuttle vector 

pGEM-T-Easy (Promega), and then transferred into the pGL3-control-MCS vector 71 

and verified by sequencing. Mutagenesis of the miR-34a seed-matching sequences in 

human and mouse was achieved using the QuikChange II XL Site-Directed 

Mutagenesis Kit (Stratagene) according to manufacturer’s instructions and verified by 

sequencing. The sequences of oligonucleotides used as cloning and mutagenesis of 

human and mouse 3‘-UTR primers are listed in Table 3.6.2. 
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4.2.4 Episomal vectors for ectopic expression of proteins 

  The generation of the pRTR vector, which is an improved version of the pRTS 

vector is described in 180. To generate the episomal pRTR-Inh3-VSV vector, the Inh3 

ORF was isolated from cDNA of HDFs, and ligated into the modified pUC19-SfiI 

shuttle vector pUC19-SfiI-CVSV, in which a VSV-tag was inserted via XhoI and XbaI 

restriction sites (Figure 4.1), via BamHI and SalI restriction sites, released with SfiI, 

and the resulting fragment was ligated into pRTR. The insert orientation and the 

ORFs were verified by sequencing. The sequences of oligonucleotides used as 

cloning human Inh3 primers are listed in Table 3.6.5. More detailed information on the 

generation of p53 or the pri-miR-34a pRTR vectors is provided in 48, 182. Other 

expression plasmids are listed in Table 3.8.  

 

 

Figure 4.1 Schematic map of pUC19(sfiI)-CVSV. 

 

4.3 Cell culture of human cells 

4.3.1 Propagation of human cell lines 

  The human colorectal cancer cell lines SW480 and SW620, as well as human 

diploid fibroblasts (HDFs) were maintained in high glucose Dulbecco`s modified 
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Eagles medium (DMEM, Invitrogen) containing 10% fetal bovine serum (FBS). 

Human breast cancer cell line HEK293T was cultured in high glucose Dulbecco`s 

modified Eagles medium (DMEM, Invitrogen) containing 5% FBS. The human 

colorectal cancer cell lines HCT-15, HT29, DLD-1, HCT116, RKO, SW48 and CT26 

and their derivatives were cultured in McCoys medium (Invitrogen) containing 10% 

FBS. TP53-/- and TP53+/+ HCT116, RKO and SW48 lines were kindly provided by Bert 

Vogelstein (Johns Hopkins University, Baltimore) and CT26 cells by Gabriele Multhoff 

(Technical University, Munich). All cells were cultivated in presence of 100 units/ml 

penicillin and 0.1 mg/ml streptomycin at 20% O2, 5% CO2 and 37°C. Cells used are 

listed in Table 3.10. Hypoxia was achieved using a CD210 incubator (Binder). In 

order to avoid any confluency of the cells, they were passaged every two to four days 

and seeded into fresh culturing flasks. Doxycycline (DOX; Sigma) was dissolved in 

water (100 µg/ml stock solution) and used at a final concentration of 100 ng/ml. CoCl2 

(Cobalt (II) chloride) was dissolved in water and used at a final concentration of 40 

ng/ml. Etoposide (Sigma) was used at a concentration of 20 µM and 5-FU (Sigma) at 

25 µg/ml.  SiRNAs (silencer siRNA (Ambion): negative control (ID # 4611), STAT3 

(ID # 6880), INH3 (ID # s13943), and HIF1A (ID # s6539)) were transfected at a final 

concentration of 10 nM using HiPerfect transfection reagent (Qiagen). 

 

4.3.2 Transfection of oligonucleotides and vector constructs 

  Transfections of oligonucleotides and vector constructs were carried out using 

freshly trypsinized and seeded cells in the medium and cell culturing format of choice, 

preferentially into a six- or twelve-well format.  

  In order to transfect oligonucleotides HiPerFect (Qiagen) was used. For six-well 

format, the transfection reagent mix contained 100 µl Opti-MEM (Invitrogen), 10 µl 

HiPerFect (Qiagen) and 10 µl of the respective oligonucleotide (10 µM) (Ambion – 

Applied Biosystems, final concentration (100 nM)).  
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  In order to transfect plasmid DNA, the transfection mix consisted of 150 µl 

Opti-MEM, 5 µl Lipofectamine® 2000 Transfection Reagent (Invitrogen) and 

incubated at room temperature for five minutes. In the meanwhile, prepare the mix 

consisted of 150 µl Opti-MEM, 4 µg DNA. Mix these two mixtures. Before adding the 

mix drop-wise to the cells, it was incubated at room temperature for fifteen to twenty 

minutes. After incubation, the respective assays were carried out. Selection of 

plasmid containing cells was started twenty four hours after transfection using 

appropriate antibiotics.  

 

4.3.3 Generation of cell pools stably expressing conditional alleles 

  Stable transfection cells were generated as described previously 48. Briefly, cells 

were transfected with pRTR plasmids using FuGene reagent (Roche). After 24 hours, 

cells were transferred into media containing 4 µg/ml puromycin for one week. 

Homogeneity of the derived cell pools was tested by addition of 100 ng/ml DOX for 48 

hours and evaluation of GFP expression by fluorescence microscopy.  

 

4.3.4 Cryo-Preservation of mammalian cells 

  Sub-confluent cells in the exponential growth phase were trypsinized, resuspended 

with medium and pelleted by centrifugation at 1200 rpm for five minutes. 

Resuspension of cells was done in 50% FCS, 40% growth medium and 10% (v/v) 

DMSO (Roth). Aliquots in cryo-vials were cooled down in a freezing device at -80°C 

and transferred into liquid nitrogen for long term storage.  

  For cell recovery, cryo-preserved cells were rapidly thawed in water bath at 37°C, 

resuspended in 10ml pre-warmed growth medium and pelleted by centrifugation at 

1200 rpm for five minutes. After that, the cells were resuspended in respective growth 

medium and transferred into T25 cell culture flask for further cultivation. 
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4.3.5 Analysis of the transfection efficiency by flow cytometry 

  In order to detect the transfection efficiency of the pRTR vectors harboring an eGFP 

gene into mammalian cells, the percentage of eGFP-positive cells was determined 

after seventy two hours with or without addition of DOX (100 ng/ml). A BD AccuriTM 

C6 Flow Cytometer instrument (Accuri) and the corresponding Cflow® software were 

used to read out the proportion of fluorescent cells. 

 

4.4 Isolation of genomic DNA from human diploid fibroblasts (HDFs) 

  Genomic DNA from HDFs was generated by seeding the cells on a 10 cm2 dish at a 

confluence of 90% at the maximum. The DNA was isolated according to 

manufacturer’s instructions using the Blood & Tissue Kit (Qiagen). The DNA 

concentration was measured using a Nanodrop spectrophotometer. 

 

4.5 RNA analysis 

4.5.1 Isolation of RNA and reverse transcription 

  Total RNA was isolated with the High Pure RNA Isolation Kit (Roche) according to 

the manufacturer’s instructions. A Nanodrop spectrophotometer was used to 

determine the amount and quality of the RNA. For mRNA and primary miRNA 

analysis 1 µg of total RNA per sample was used to generate cDNA using the Verso 

cDNA synthesis kit (Thermo scientific).  

  For the detection of mature miRNAs, a High Pure miRNA Isolation Kit (Roche) was 

used to isolate small RNAs according to the manufacturer’s instructions. After 

determining the amount and quality of the RNA by Nanodrop spectrophotometer, 

cDNA was synthesized from 500 ng of RNA per sample by applying the Exiqon 

Universal cDNA Synthesis Kit from the miRCURY LNA Universal RT microRNA PCR 

Kit (Exiqon, 203300) according to the manufacturer ś instructions. Primers specific for 

miR-34a (Exiqon: # 204486) and respective control primer SNORD48 (Exiqon: # 

203903) were used for miRNA LNA PCR. 
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4.5.2 Quantitative Real-Time PCR (qPCR) and Exiqon qPCR 

  Quantitative real-time PCR (qPCR) was performed with the Fast SYBR Green 

Master Mix (Applied Biosystems) on a LightCycler 480 (Roche). For mature miRNA 

analyses, qPCR was performed using the Exiqon Universal cDNA Synthesis Kit, 

SYBR Green Master Mix Universal RT (Exiqon, # 203450), and commercially 

available primers (Exiqon). Expression of mRNA and primary miRNA was normalized 

to β-actin, mature miRNA expression were normalized to SNORD48. The qPCR 

results were calculated using the ΔΔCt method as described before 187. Results are 

represented as fold induction of the treated/transfected condition compared with the 

control condition Experiments were performed in triplicates. Oligonucleotides used for 

qPCR are provided in Table 3.6.1. 

 

4.6 Protein analysis 

4.6.1 Protein Isolation, SDS-PAGE and Western blot 

  Protein isolation, SDS-PAGE and Western blot were performed as described 

previously 79. Briefly, cells were washed with ice-cold PBS and harvested on ice using 

a plastic cell scraper and ice-cold RIPA lysis buffer (50 mM Tris/HCl, pH 8.0, 250 mM 

NaCl, 1% NP40, 0.5% (w/v) sodium deoxycholate, 0.1% sodium dodecylsulfate, 

complete mini protease inhibitor tablets (Roche) and Phosphatase Inhibitor tablets 

(Roche)). Lysates were sonicated using a HTU SONI130 (G. Heinemann Ultraschall- 

und Labortechnik) for three consecutive five-second pulses with 75% intensity. In 

order to separate the protein containing supernatant from any cell debris, the 

sonicated Lysates were centrifuged at 16.060 g for fifteen minutes at 4°C. After 

centrifugation, the supernatant containing protein lysate was transferred into a new 

tube. Protein concentration was measured with BCA Protein Assay Kit (Thermo 

Fisher Scientific) in Varioskan Flash Multimode Reader using the SkanIt RE for 

Varioskan 2.4.3 software (Thermo Scientific).  
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  7.5 to 15% polyacrylamide protein gels were prepared depending on the size of 

analyzed proteins and overlaid with 4% stacking gel.  

  Subsequently, 30 to 60 µg of whole cell lysate per lane was supplemented with 

4×Laemmlie buffer, denatured at 95°C for five minutes, and loaded on 7.5 to 15% 

SDS-acrylamide gels according to protein sizes. A pre-stained protein ladder 

(Fermentas) served as size control. Separation of the proteins by electrophoresis was 

performed at 60-130 V in a Mini-PROTEAN®-electrophoresis system (Bio-Rad) with 

Tris-glycine-SDS running buffer. The separated proteins were transferred onto 

Immobilon PVDF membranes (Millipore) with Towbin buffer using the PerfectBlue™ 

SEDEC blotting system (Peqlab) and a EPS 600 power supply (Pharmacia Biotech) 

constantly at a 125 mA per gel and a maximum voltage of 10 V. 

  To block unspecific protein binding, membranes were incubated for one hour in 5% 

skim milk/TBS-Tween20 (TBS-T). Then membranes were incubated with the primary 

antibodies (diluted in TBS-T) at 4°C overnight. The membranes were washed three 

times in TBS-T for ten-minute each. Then membranes were incubated with 

horseradish-peroxidase (HRP)-conjugated secondary antibodies for one hour at room 

temperature. Three times washing was conducted as describe above. Enhanced 

Chemiluminescence (ECL, Millipore) signals were recorded with 440CF imaging 

system (Eastman Kodak Co.). Antibodies used here are listed in Table 3.5. 

 

4.6.2 Quantification of Western blot Signals 

  Intensities of protein band signals were quantified by densitometric analysis using 

KODAK MI SE software (Carestream Health). The resulting values were used for 

calculating the ratio of respective protein to loading control. The quotient of the 

respective experimental control was set equal to one. 
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4.6.3 Co-immunoprecipitation (Co-IP) analysis 

  For co-immunoprecipitation analysis, cell lysates were prepared in RIPA lysis buffer 

with Complete Mini Protease and Phosphatase Inhibitors (Roche) added, sonicated 

and centrifuged at 16.060 g for 15 min at 4°C. The immunoprecipitations were 

performed overnight at 4 °C with antibodies to VSV (V4888, Sigma-Aldrich) or INH3 

(sc-376034, Santa Cruz) or corresponding IgG (as a control). Subsequently the 

immunoprecipitates were incubated at 4°C for 2 hours with Protein A-Sepharose 

beads (P9424, Sigma-Aldrich) for VSV antibody/Protein G-Sepharose beads (P3296, 

Sigma-Aldrich) for Inh3 antibody. Immunoprecipitates were collected by centrifugation 

and followed by 3 times washing with RIPA lysis buffer. Samples were resuspended 

in 4X sample buffer and subjected to Western blot analysis. Antibodies used here are 

listed in Table 3.5. 

 

4.7 Chromatin immunoprecipitation (ChIP) assay 

  DLD-1 cells and their derivatives were cultured as described above. Cross-linking 

and harvesting of cells was performed as previously described 188. Briefly, 

cross-linking was conducted with formaldehyde (Merck) at 1% final concentration and 

terminated after 5 minutes by addition of glycine at a final concentration of 0.125 M. 

Cells were harvested in SDS buffer (50 mM Tris pH 8.1, 0.5% SDS, 100 mM NaCl, 5 

mM EDTA), pelleted and resuspended in IP buffer (2 parts of SDS buffer and 1 part 

Triton dilution buffer (100 mM Tris-HCl pH 8.6, 100 mM NaCl, 5 mM EDTA, pH 8.0, 

0.2%  NaN3, 5.0% Triton X-100)). Chromatin was sheered by 8 sonication cycles 

(HTU SONI 130, G. Heinemann) to generate DNA fragments with an average size of 

700 bp for qChIP. Preclearing and incubation with monoclonal HIF1A antibody 

(H1alpha67) (NB100-105, Novus Biologicals) or mouse IgG antibody control (M-7023, 

Sigma) for 16 hours was performed as previously described 189. Washing and reversal 

of crosslinking was performed as described 190. ChIP-DNA was analyzed by qPCR 

and the enrichment was expressed as fold enrichment compared to IgG. Binding to a 
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region on chromosome 16q22 served as negative control in all ChIP assays 

performed. Antibodies used here are listed in Table 3.5. The sequences of 

oligonucleotides used as qChIP primers are listed in Supplemental Table 3.6.3. 

 

4.8 Indirect immunofluorescence and confocal laser-scanning microscopy 

  Cells cultivated on glass cover-slides were fixed in 4% paraformaldehyde/PBS for 

10 minutes, permeabelized in 0.2% Triton X 100 for 20 minutes and blocked in 100% 

FBS for 30 minutes. F-Actin was detected with Phalloidin conjugated with Alexa Flour 

647 (Invitrogen). Chromatin was stained by DAPI (Roth). Slides were covered with 

ProLong Gold Antifade (Invitrogen). Antibodies used here are listed in Table 3.5. 

CLSM (confocal laser scanning microscopy) images were captured with a LSM700 

microscope using a Plan Apochromat 20x/0.8 M27 objective and ZEN 2009 software 

(Zeiss) with the following settings: image size: 2048x2048 and 16 bit; pixel/dwell of 

25.2 µs; pixel size 0.31 µm; laser power 2% and master gain 600-1000. After image 

capturing the original CLSM files were converted into TIFF files. 

 

4.9 Modified Boyden-chamber assay for analysis of migration and invasion 

  Migration and invasion analyses were conducted as described previously 48. In 

short, cells were serum-starved by cultivation in 0.1% serum for 24 hours. To analyze 

migration, 5x104 cells were seeded in the upper chamber (8.0 µm pore size 

membrane; Corning) in serum-free medium. To analyze invasion, chamber 

membranes were first coated with Matrigel (BD Bioscience) at a dilution of 3.3 ng/ml 

in medium without serum. Then 8x104 cells were seeded on the Matrigel in the upper 

chamber in serum free medium. 10% FBS was placed as a chemo-attractant in the 

lower chamber. After cells were cultured for 48 hours, non-motile cells at the top of the 

filter were removed and the cells in the bottom chamber were fixed with methanol, 

stained with DAPI and counted using immunofluorescence microscopy. Relative 

invasion/migration was normalized to the corresponding control.  
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4.10 Wound-healing assay 

  The wound healing assay was performed as described previously 31. In brief, 

Mitomycin C [10 ng/ml] was added two hours before generating a scratch using a 

Culture-Insert (IBIDI, 80241). After washing twice with HBSS to remove Mitomycin C 

and detached cells, medium was added. Cells were allowed to close the wound for 

the indicated periods. Images were captured on an Axiovert Observer Z.1 microscope 

connected to an AxioCam MRm camera using the Axiovision software (Zeiss). 

 

4.11 Luciferase reporter assay 

  H1299 cells were seeded in 12-well format dishes at 3×104 cells/well for 24 hours, 

transfected 100 ng of the respective firefly luciferase reporter plasmid, 20 ng of 

Renilla reporter plasmid as a normalization control and 25 nM of pre-miR-34a or 

pre-miR-34c (Ambion, PM11030, PM11039) or a negative control oligonucleotide 

(Ambion, neg. control #1) with HiPerFect Transfection Reagent (Qiagen). The 

analysis was performed with Dual Luciferase Reporter assay kit (Promega) according 

to manufacturer’s instructions. Luminescence intensities were measured by an Orion 

II luminometer (Berthold) in 96-well format and analyzed with the SIMPLICITY 

software package (DLR). 

 

4.12 Site directed mutagenesis 

  Putative seed matching sequences were mutated from CACTGCCA to 

CAGTCGGA in order to abolish the binding reaction. This was achieved with the 

QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) using the 

respective mutagenic primers and performing the mutagenic reaction according to the 

manufacturer’s instructions. Plasmid sequences were verified by sequencing. 

Oligonucleotides used for cloning and mutagenesis are provided in Table 3.6.2. 

  The HRE2 site was mutated from ACGTG to AAAGG with the the QuikChange II XL 

Site-Directed Mutagenesis Kit (Agilent Technologies) using the respective mutagenic 



Methods 

44 

 

primers and performing the mutagenic reaction according to the manufacturer’s 

instructions. Plasmid sequences were verified by sequencing. Oligonucleotides used 

for cloning and mutagenesis are provided in Table 3.6.4. 

 

4.13 RNA interference 

  For RNA interference, siRNAs (Ambion silencer siRNA negative control #1: 

ID#4611; STAT3-specific siRNAs: ID#6880; Inh3-specific siRNAs: ID#s13943; 

HIF1A-specific siRNAs: ID#s6539) were transfected at a final concentration of 10 nM 

for the indicated time-points using HiPerfect transfection reagent (Qiagen). 

 

4.14 Colony formation assay 

  For low-density, colony formation assays, 200-500 cells were seeded into a 6-well 

plate and cultivated for one day at 20% O2 and subsequently exposed to 0.5% O2 for 

two days, and subsequently treated with or without 5-FU for three days. Subsequently, 

cells were fixed and stained with crystal violet. Colonies were photographed and the 

staining was extracted by 33% Acetic acid and subsequently measured with a 

Varioskan Flash Multimode Reader using SkanIt RE for Varioskan 2.4.3 software 

(Thermo Scientific). The measured values of were normalized to the corresponding 

controls. 

 

4.15 Analysis of TCGA-COAD data  

  The expression profiles of 425 colon adenocarcinomas were obtained from the 

TCGA data portal 106 (https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp). Spearman 

correlation coefficient analysis was performed with the Prism5 program (Graph Pad 

Software Inc.). 
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4.16 Animal experiments 

4.16.1 Animal experiments 

  NOD/SCID mice were purchased from the Jackson Laboratory. The generation of 

miR-34a-/- mice with a C57BL6/SV129 back-ground has been described previously 79. 

miR-34b/c-/- mice were kindly provided by Dr. Alexander Nikitin (Cornell University) 191. 

miR-34a-/-; b/c-/- compound mice were generated by crossing miR-34a-/- and 

miR-34b/c-/-. ApcMin/+ mice were kindly provided by Dr. Marlon Schneider. miR-34a-/-; 

b/c-/- and miR-34a+/+; miR-34bc+/+ mice were crossed with ApcMin/+ mice to obtain 

miR-34a/b/c-/-; ApcMin/+, and miR-34a/b/c+/+ ApcMin/+ mice. Mice were housed in 

individually ventilated cages (IVC) cages using “Lingocel Select” bedding. All 

experiments involving mice were conducted with approval by the local Animal 

Experimentation Committee (Regierung of Oberbayern). All experiments were 

performed in accordance with the ARRIVE guidelines and regulations.  

 

4.16.2 Metastasis formation in NOD/SCID mice 

  DLD-1 cells stably expressing Luc2 were generated as described previously 30. 

4x106/0.2 ml HBSS DLD-1-luc2 cells were injected into the lateral tail vein of 

NOD/SCID mice using 25-gauge needles. Cells transfected with Inh3 and control 

siRNAs were injected into sibling littermates. Anesthetized mice were injected 

intraperitoneal with D-luciferin (150 mg/kg) and imaged half hour after injection using 

the IVIS Illumina System (Caliper Life Sciences). In weekly intervals anesthetized 

mice were injected intraperitoneal with D-luciferin (150 mg/kg) and imaged ten 

minutes after injection using the IVIS Illumina System (Caliper Life Sciences). The 

acquisition time was two minutes. Seven weeks after tail vein injection, mice were 

sacrificed and examined for lung metastases using H&E (hematoxylin and eosin) 

staining, lungs were fixed with 4% paraformaldehyde and 5 µm paraffin sections were 

stained with H&E. The number of metastases was determined microscopically. All 
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studies involving mice were conducted with approval by the local Animal 

Experimentation Committee (Regierung of Oberbayern). 

 

4.16.3 Immunohistochemical analysis of murine adenomas 

  The samples were collected from 18 weeks old mice. MiR-34a-/-; miR-34bc-/-; 

ApcMin/+ and miR-34a+/+; miR-34bc+/+; ApcMin/+ samples were fixed in formalin, and 

paraffin embedded. 3 μm thick sections were de-paraffinized in xylene and rehydrated 

in serial dilution of ethanol and water prior to antigen retrieval in Target Retrieval 

Solution (pH6.0, Dako Cytomation) in a microwave oven and TBST washing. After 

neutralization of endogenous peroxidase with 3% H2O2 for ten minutes, the sections 

were incubated with 20% goat serum in TBST for 1 hour. Afterwards, primary 

antibodies were applied at 4°C overnight (HIF1A (LS-B12555, LSBio LifeSpan 

BioSciences), INH3 (SAB4502938, Sigma-Aldrich)). Anti-rabbit conjugated to HPR 

were applied at room temperature for 1 hour. DAB (3, 3'-diaminobenzidine, Dako) was 

used as a substrate-chromogen. After counterstaining with hematoxylin, the sections 

were analyzed using Zeiss LSM 700 confocal microscopy. Antibodies used here are 

listed in Table 3.5. 

 

4.16.4 Western blot analysis of murine adenomas 

  The samples were collected from 18 weeks old mice. For protein lysates from 

MiR-34a-/-; miR-34bc-/-; ApcMin/+ and miR-34a+/+; miR-34bc+/+; ApcMin/+ samples were 

lysed in RIPA buffer. Lysates were sonicated using a HTU SONI130 (G. Heinemann 

Ultraschall- und Labortechnik) and centrifuged at 16.060 g for fifteen minutes at 4°C. 

Protein concentration was measured with BCA Protein Assay Kit (Thermo Fisher 

Scientific) according to manufacturer’s instructions. The protein concentration was 

measured with a Varioskan Flash Multimode Reader using the SkanIt RE for 

Varioskan 2.4.3 software (Thermo Scientific). Subsequently, 30 to 60 µg of whole cell 

lysate per lane were loaded. The separation of the proteins by electrophoresis was 
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performed and were transferred onto Immobilon PVDF membranes (Millipore) using 

standard protocols (Bio-Rad laboratories). Enhanced Chemiluminescence (ECL, 

Millipore) signals were recorded with 440CF imaging system (Eastman Kodak Co.). 

Antibodies used here are listed in Table 3.5. 

 

4.16.5 qPCR analysis of murine adenomas 

  The samples were collected from 18 weeks old mice. Total RNA was isolated from 

MiR-34a-/-; miR-34bc-/-; ApcMin/+ and miR-34a+/+; miR-34bc+/+; ApcMin/+ samples using 

the RNeasy Plus Mini Kit (Qiagen). Nanodrop spectrophotometer was used to 

determine the amount and quality of the RNA. cDNA was generated using anchored 

oligo(dT) primers (Verso cDNA synthesis Kit (Thermo scientific)) following the 

manufacturer’s instructions. qPCR was performed by using Fast SYBR Green Master 

Mix (Applied Biosystems) and a LightCycler 480 II (Roche Diagnostics). The 

expression of mRNA and primary miRNA was normalized by detection of β-actin as 

previously described in 192. The qPCR results are indicated the fold of change, which 

was analysed by the comparative Ct (ΔΔCt) method with the control set to 1 as 

described before 187. Oligonucleotides used for qPCR are provided in Table 3.6.1.  

 

4.17 Tumoroid analysis 

4.17.1 Tumoroid culture 

  Intestinal adenoma cells from 18 weeks old miR-34a-/-; miR-34bc-/-; ApcMin/+ and 

miR-34a+/+; miR-34bc+/+; ApcMin/+ mice were isolated and counted using a 

hemocytometer. Single cells were embedded in Matrigel and seeded in 24-well plates 

(15,000 single cells per 50 μl Matrigel per well). The tumor organoid culture medium 

was formulated as described before 193. 

 



Methods 

48 

 

4.17.2 Immunofluorescence staining of tumoroids 

  Tumoroids were fixed with 4% paraformaldehyde (PFA) for twenty minutes at room 

temperature, followed by permeabilization in 0.1% Triton X-100. Immunofluorescence 

was performed using antidodies specific for cleaved caspase-3 (9661, Cell Signaling 

Technology). The secondary antibody was Alexa Fluor 488 conjugated antibodies. 

DNA was stained with DAPI. The images of tumoroids were taken with a Zeiss LSM 

700 confocal microscope. Antibodies used here are listed in Table 3.5. 

 

4.18 Analysis of human CRC samples 

  INH3 expression was evaluated using formalin-fixed, paraffin-embedded (FFPE) 

colon cancer samples of 84 patients who underwent surgical tumor resection at the 

Ludwig-Maximilians University of Munich (LMU) between 1994 and 2005. Follow-up 

data were recorded by the tumor registry Munich. All tumors were located on the right 

side of the colon. Half of the patients had colon cancers with synchronous liver 

metastases diagnosed by clinical imaging or liver biopsy. Controls consisted of colon 

cancer patients without distant metastases at the time of diagnosis and with a 

disease-free survival of at least 5 years after primary surgical resection. The samples 

of cases and controls were matched by tumor grade (according to WHO 2000), 

T-classification (according to TNM Classification of Malignant Tumors 2009), and 

tumor localization, resulting in 42 matched pairs. Tissue microarrays (TMAs) were 

generated with 6 representative 1 mm cores of each case. 5 µm TMA sections were 

prepared, deparaffinized, and stained with INH3 antibody (sc-376034, Santa Cruz) or 

Laminin 5γ2 antibody (MAB19562, Merck Millipore) or GLUT1 antibody (sc-377228, 

Santa Cruz) on a Ventana Benchmark XT Autostainer with UltraView Universal DAB 

and alkaline phosphatase detection kits (Ventana Medical Systems). Frequencies 

were analyzed using the Chi-square test. Statistical procedures were performed using 

SPSS Statistics 23.0 (IBM). Samples and patient data were anonymized and the need 
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for consent was waived by the institutional ethics committee of the Medical Faculty of 

the LMU. Antibodies used here are listed in Table 3.5. 

 

4.19 Statistical analysis 

  Calculations of significant differences between two groups of samples were 

analyzed by a Student’s t-test (unpaired, two tailed) using Prism5 (Graph Pad 

Software Inc.). P-values ≤ 0.05 were considered as significant.  
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5. Results 

5.1 Hypoxia induces EMT via activation of HIF1A in CRC cells  

  In order to study the molecular regulation of hypoxia-induced EMT in CRC, the 

CRC cell lines DLD-1, HT29, and HCT15, which show epithelial characteristics, were 

exposed to low oxygen concentrations (0.5% O2) for 30 hours. DLD-1 and HCT15 

cells represent micro-satellite instable (MSI), whereas HT29 cells represent 

microsatellite stable (MSS) CRC lines (see also Table 5.1 for the main genetic 

features of the CRC lines used here).   

 

Table 5.1 TP53, APC, KRAS, BRAF, PIK3CA and microsatellite status of CRC cell lines. 

Origin Cell lines TP53 APC KRAS BRAF PIK3CA MSI status 

human 

DLD-1 MUT MUT MUT MUT MUT MSI 

HT29 MUT MUT WT MUT MUT MSS 

HCT15 MUT MUT MUT WT MUT MSI 

LoVo WT MUT MUT ? WT MSI 

SW480 MUT MUT MUT WT WT MSS 

SW620 MUT MUT MUT WT WT MSS 

HCT116 TP53
-/-

 KO WT MUT WT MUT MSI 

HCT116 TP53
+/+

 WT WT MUT WT MUT MSI 

RKO TP53
-/-

 KO WT WT MUT MUT MSI 

RKO TP53
+/+

 WT WT WT MUT MUT MSI 

SW48 TP53
-/-

 KO WT WT WT WT MSI 

SW48 TP53
+/+

 WT WT WT WT WT MSI 

murine CT26 WT WT MUT WT WT MSS 

 

  All lines displayed changes in morphology consistent with EMT, such as an 

increase in scattering, adoption of a spindle-like shape and decreased cell–cell 

contacts (Figure 5.1A). As expected, expression of HIF1A protein was induced by 

hypoxia (Figure 5.1B). In addition, hypoxia caused down-regulation of the epithelial 

marker E-Cadherin and up-regulation of mesenchymal markers, such as Vimentin 
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(VIM), SNAIL, FN and ZEB1 in DLD-1 cells (Figure 5.1B-C). As reported previously 

163, 194, STAT3 was activated by hypoxia, as evidenced by increased phosphorylation 

at residue S727. 

 

 

Figure 5.1 Hypoxia induces EMT. (A) Representative phase-contrast pictures, (B) Western 
blot and (C) qPCR analysis of DLD-1 cells exposed to 20% O2 or 0.5% O2 for 24 hours as 
indicated. Scale bar represents 25 µm. In panels C mean values ± SD (n = 3) are provided. (*) 
P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 

  Later, DLD-1 cells were treated with cobalt chloride (CoCl2), a chemical inducer of 

HIF1A. Similar results were obtained after addition of CoCl2 (Figure 5.2). CoCl2 

treatment caused down-regulation of the epithelial marker E-Cadherin and 

up-regulation of mesenchymal markers, such as Vimentin (VIM), SNAIL, FN and 

ZEB1 in DLD-1 cells (Figure 5.2A-B). STAT3 was also activated by CoCl2 treatment, 

as evidenced by increased phosphorylation at residue S727 (Figure 5.2C). 
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Figure 5.2 Cobalt Chloride induces EMT. (A) Western blot, (B) qPCR and (C) Western blot 
analysis of the indicated proteins in DLD-1 cells treated with CoCl2 for the indicated periods. In 
panels B mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 

  Hypoxia also resulted in the loss of E-cadherin from the outer membrane and the 

formation of F-actin stress-fibers in the cytoplasm (Figure 5.3). Both events represent 

hallmarks of EMT 195.  

 

Figure 5.3 Hypoxia induces EMT. Indirect immunofluorescence detections of the indicated 
proteins in DLD-1 cells exposed to 20% O2 or 0.5% O2 for 24 hours. Scale bar represents 25 
µm.  
 

  Hypoxia and CoCl2 treatment also enhanced invasion and migration of DLD-1 cells 

in a modified Boyden-chamber assay (Figure 5.4).  
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Figure 5.4 Hypoxia enhances invasion and migration. Relative invasion and migration of 
DLD-1 cells treated with cobalt chloride (40 ng/ml) (A) and hypoxia (B). mean values ± SD (n = 
3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 

  Hypoxia-induced EMT, as well as invasion and migration, were mediated by 

activation of HIF1A in CRC cells, since treatment with HIF1A-specific siRNAs 

suppressed these processes (Figure 5.5). Therefore, the subsequent analyses on 

HIF1A mediated effects were focused.  

 

 

Figure 5.5 Hypoxia induces HIF1A-dependent EMT. (A) Western blot and (B) relative 
invasion and migration analyses in DLD-1 and HT29 cells transfected with indicated siRNA for 
24 hours and then cultured at 20% O2 or 0.5% O2 for 30 hours. In panels B mean values ± SD 
(n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 
 

5.2 HIF1A directly represses miR-34a expression  

  I also noted that the expression of primary and mature miR-34a and primary 

miR-34b/c was repressed in a number of TP53-deficient, whereas they were induced 

in TP53-proficient CRC cell lines (Figure 5.6) indicating a role of p53 in this context 

which will be addressed later.  
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Figure 5.6 Differential expression of miR-34a and miR-34c in CRC cell lines in the 
response to hypoxia. (A) qPCR analysis of mature miR-34a expression in the indicated CRC 
cell lines at 0.5% O2 for 48 hours. (B) qPCR analysis of indicated mRNAs in DLD-1 cells 
treated with CoCl2 for the indicated periods. (C, D) qPCR analysis of indicated mRNAs and 
miRNAs in different cell lines kept at 20% O2 or 0.5% O2 for 48 hours. mean values ± SD (n = 3) 
are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 

 

  Notably, inactivation of HIF1A by RNA interference prevented the down-regulation 

of pri-miR-34a (Figure 5.7), suggesting that HIF1A is directly represses miR-34a, 

which encodes a p53-inducible microRNA with tumor suppressive features 79, 156.  
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Figure 5.7 Hypoxia represses miR-34a via HIF1A. qPCR analysis of DLD-1 (A) and HT29 
(B) cells transfected with indicated siRNAs for 24 hours and then cultured at 20% O2 or 0.5% 
O2 for 30 hours. mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 
0.001. 
 
 

  Indeed, three conserved HIF1A binding sites with the sequence 5'-[A/G]CGTG-3') 

700 bp upstream of the miR-34a TSS (transcriptional start site) indicated as HRE 

(hypoxia-response element) 1-3 in Figure 5.8A were identified.  

 

 
Figure 5.8 Direct repression of miR-34a by HIF1A. (A) Map of the human miR-34a genomic 
region indicating conserved HIF1A binding sites. (B) ChIP analysis of HIF1A occupancy at 
human miR-34a and VEGF (positive control) promoters. 16q22 locus served as neg. control. 
(C) Dual-reporter assay after transfection of H1299 cells with the indicated reporters and 
constitutively active HIF1A encoding plasmids. (E) Dual reporter assay after transfection of 
H1299 cells with the indicated reporter constructs and treatment with cobalt chloride (40 ng/ml) 
for 48 hours. In panels B, C and D mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 
0.01 and (***) P < 0.001.  
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  By chromatin immuno-precipitation (ChIP) HIF1A occupancy was detected at HRE2, 

but not at HRE1 and HRE3 in hypoxic DLD-1 cells (Figure 5.8B). HIF1A occupancy at 

the VEGF promoter served as a positive control. Furthermore, a reporter containing 

the miR-34a promoter region was repressed by ectopic expression of a constitutively 

active version of HIF1A and after treatment of cells with CoCl2 (Figure 5.8B-C). The 

repression by HIF1A was abolished by introduction of mutations into HRE2 (Figure 

5.8B).  

  As expected, the miR-34a reporter was induced by ectopic p53 expression (Figure 

5.9). Interestingly, increasing amounts of HIF1A encoding plasmids were sufficient to 

suppress activation of the reporter by p53. However, in the presence of equimolar 

amounts of p53 and HIF1A plasmids activation of miR-34a by p53 was dominant over 

its repression by HIF1A.  

 

 

Figure 5.9 Analysis of HIF1A/p53 antagonism. Dual reporter assay after transfection of 
H1299 cells with the indicated reporter constructs for 48 hours. 
 
 

  Interestingly, the induction of miR-34a in TP53-proficient CRC cell lines under 

hypoxia was not reversed by long-term exposure to low oxygen concentrations 

(Figure 5.10), indicating that increasing or sustained levels of hypoxia in 

TP53-proficient CRC cells are not sufficient to overcome the induction of miR-34a by 

p53. Taken together, these results show that miR-34a is directly repressed by HIF1A 

under hypoxic conditions in the absence of wild-type TP53.  

  Also miR-34b/c expression was down-regulated under hypoxic conditions in 

TP53-deficient and induced in TP53-proficient CRC cell lines (Figure 5.6D). Since the 

miR-34b/c promoter does not harbor a HRE (data not shown), miR-34b/c might be 

repressed by hypoxia via an indirect mechanism. As miR-34a is expressed at least 

hundred times higher than miR-34b/c in CRC lines and tumors 31, miR-34b/c was not 

analyzed further. 
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Figure 5.10 Effects of long-term hypoxia on pri-miR-34a expression. qPCR (upper panel) 
and Western blot (lower panel) analysis of human TP53-proficient CRC cell lines HCT116, 
RKO, LoVo and murine TP53-proficient CRC cell line CT26 exposed to 0.5% O2 for indicated 
time points. mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 
0.001. 

 

  Ectopic miR-34a expression suppressed the hypoxia-mediated induction of VIM, 

SNAIL, SLUG, and ZEB1, as well as the down-regulation of E-Cadherin in DLD-1 

cells (Figure 5.11A-B, upper panel). Moreover, ectopic miR-34a prevented 

hypoxia-induced invasion and migration of DLD-1 cells (Figure 5.11B, lower panel). 

 

 

Figure 5.11 Requirement of miR-34a down-regulation for EMT induced by hypoxia. (A) 
Flow cytometric determination of the frequency of DLD-1 cells by detection of eGFP 
expression. pRTR-pri-miR-34a expression was induced by addition of DOX for 48 hours. (B) 
qPCR (upper panel) and relative invasion and migration (lower panel) in 
DLD-1/pRTR-pri-miR-34a cells exposed to DOX for 2 days and/or then to 0.5% O2 for 30 hours. 
In panels B mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 
0.001.  
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  Similar results were obtained after treatment of DLD-1 cells with CoCl2 (Figure 

5.12). Therefore, down-regulation of miR-34a by HIF1A is required for 

hypoxia-induced EMT and invasion. 

 

 

Figure 5.12 Requirement of miR-34a down-regulation for EMT induced by CoCl2. qPCR 
analysis of the indicated mRNAs (A-B) and relative invasion and migration (C) in 
DLD-1/pRTR-pri-miR-34a cells after addition of DOX for 48 hours and subsequent treatment 
with CoCl2 for 24 hours. In panels B and C mean values ± SD (n = 3) are provided. (*) P < 0.05, 
(**) P < 0.01 and (***) P < 0.001. 
 
 

5.3 Inh3 is a direct miR-34a target  

  The hypoxia-mediated phosphorylation of STAT3 at S727 was blocked by 

HIF1A-specific siRNAs in DLD-1 and HT29 cells (Figure 5.13A). Moreover, 

down-regulation of STAT3 by siRNAs reversed the hypoxia-mediated repression of 

E-Cadherin and the up-regulation of SNAIL, as well as invasion and migration in 

DLD-1 and HT29 cells (Figure 5.13B-C). Therefore, HIF1A-mediated STAT3 

activation is required for the induction of EMT by hypoxia.  
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Figure 5.13 STAT3 mediates hypoxia-induced EMT. (A-B) Western blot and (C) relative 
invasion and migration analysis of DLD-1 and HT29 cells transfected with indicated siRNA for 
24 hours and then cultured at 20% O2 or 0.5% O2 for 30 hours. In panels C mean values ± SD 
(n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 

  Since increased phosphorylation of STAT3 at S727 and down-regulation of 

miR-34a in DLD-1 cells exposed to hypoxia were observed (Figure 5.2.1B, and 

Figure 5.6A), whether these events may be causally related was asked. Indeed, 

STAT3pS727 was decreased after ectopic expression of miR-34a in SW480 cells, which 

is known to induce MET in these cells 48, whereas total levels of STAT3 protein 

remained unchanged (Figure 5.14). Therefore, I hypothesized that the induction of an 

uncharacterized miR-34a target is presumably involved in the activation of STAT3 by 

hypoxia.  
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Figure 5.14 miR-34a decreases the level of STAT3
pS727

. Western blot analysis in 
SW480/pRTR-pri-miR-34a cells after addition of DOX for the indicated periods. 
 

  To identify direct or indirect activators of STAT3 that are directly regulated by 

miR-34a I used the miRNA target prediction software miRWalk, which combines the 

results of 10 different algorithms (Table 5.2). Thereby, I found that the Inh3/PPP1R11, 

PPP1R8, PPP1R9A and PPP1R9B mRNAs, which encode protein phosphatase 

1/PP1 inhibitors, contain miR-34a seed-matching sites and therefore represent 

putative miR-34a targets (data not shown).  

 

Table 5.2 Predicted miR-34a seed-matching sites in human and murine Inh3 3’-UTRs. 
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SW620 cells (Figure 5.15C and F). Also in the murine CRC cell line CT26 ectopic 

pre-miR-34a decreased Inh3 mRNA and INH3 protein expression (Figure 5.15G-H). 

 

Figure 5.15 Regulation of Inh3 expression by miR-34a. (A-B) qPCR and (C) Western blot 
analysis of indicated mRNAs in SW480 harboring pRTR-pri-miR-34a vectors after addition of 
DOX for the indicated periods. In (A) DOX was added for 48 hours. (D-E) qPCR and (F) 
Western blot analysis of indicated mRNAs in DLD-1 (D) and SW620 (E, F) harboring 
pRTR-pri-miR-34a vectors after addition of DOX for the indicated periods. In (A) DOX was 
added for 48 hours. (G) qPCR and (H) Western blot analysis of the indicated mRNAs in CT26 
cells transfected with pre-miR-34a for 48 hours. In panels A, B, D, E and G mean values ± SD 
(n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
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(Figure 5.16). Mutation of the human SMS-1 only partially abrogated this repression, 
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addition, the combined mutation of both SMS completely alleviated the repression by 

miR-34a. 

 

 

Figure 5.16 Human Inh3 is a direct target of miR-34a. (A) Schematic representation of Inh3 
3’-UTR indicating the miR-34 seed-matching sequences, phylogenetic conservation and 
mutagenesis. (B) Dual reporter assay after transfection of H1299 cells with the indicated 
miRNA oligonucleotides and human Inh3 3’-UTR reporter constructs. In panels B mean values 
± SD (n = 3) are provided. (*) P < 0.05; (**) P < 0.01 and (***) P < 0.001. 
 
 

  Similar results were obtained with murine Inh3 3’-UTR reporters (Figure 5.17). In 

detail, the murine Inh3 3’-UTR reporters were both repressed after ectopic expression 

of miR-34a (Figure 5.17). Mutation of the human SMS-1 only partially abrogated this 

repression, whereas mutation of the human SMS-2 largely blocked repression by 

miR-34a. In addition, the combined mutation of both SMS completely alleviated the 

repression by miR-34a.  
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Figure 5.17 Murine Inh3 is a direct target of miR-34a. (A) Schematic representation of the 
Inh3 3’-UTR indicating the miR-34 seed-matching sequences, their phylogenetic conservation 
and mutagenesis. (B) Dual reporter assay after co-transfection of H1299 cells with the 
indicated miRNA oligonucleotides and murine Inh3 3’-UTR reporter constructs. In panels B 
mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001.  
 
 

    Taken together, these results show that Inh3 is a direct and conserved target of 

miR-34.  

 

5.4 Direct induction of Inh3 by HIF1A  

  The degree of INH3 induction by hypoxia in different CRC cell lines (Figure 5.18) 

suggested that HIF1A might also directly induce Inh3 expression besides repressing 

its inhibitor miR-34a.  
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Figure 5.18 Hypoxia induces Inh3 expression. (A) Western blot analysis of the indicated 
proteins in DLD-1 cells cultured at 20% O2 or 0.5% O2 for the indicated periods. (B) qPCR 
analysis in DLD-1 cells cultured at 20% O2 or 0.5% O2 for 24 hours. (C, E, G) qPCR and 
Western blot (D and F) analysis in DLD-1 (C and D), HT29 (E and F) and SW480 (G) cells 
treated with CoCl2 for the indicated periods. In panels C, E and G mean values ± SD (n = 3) 
are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 

  Furthermore, the induction of INH3 by hypoxia was prevented by treatment with 

HIF1A-specific siRNAs (Figure 5.19).  

 

 

Figure 5.19 Hypoxia induces INH3 via HIF1A. Western blot analysis of the indicated proteins 
in DLD-1 (A) and HT29 (B) cells transfected with indicated siRNA for 24 hours and then 
cultured at 20% O2 or 0.5% O2 for 30 hours. 
 

  Indeed, inspection of the Inh3 promoter revealed five HIF1A binding sites (Figure 

5.20A). HIF1A occupancy was detected by qChIP at HRE4 and HRE5, but not at 

HRE1-3 in hypoxic DLD-1 cells (Figure 5.20B).  
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Figure 5.20 Inh3 is a direct target of HIF1A. (A) Map of the human Inh3 genomic region with 
conserved HIF1A binding sites. (B) ChIP analysis of HIF1A occupancy at the human miR-34a 
promoter in DLD-1 cells at 20% O2 or 0.5% O2. In panels B mean values ± SD (n = 3) are 
provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 

  In line with these results, Inh3 expression showed a signficant, inverse correlation 

with miR-34a expression in 628 primary CRC tumors represented within the TCGA 

database (Figure 5.21).  

 

 

Figure 5.21 Correlative analysis of Inh3 and miR-34a expression. Correlative analysis of 
Inh3 and miR-34a expression in the samples of the TCGA collection of colon (COAD; n = 462) 
and rectal adenocarcinomas (READ; n = 166). Correlations were calculated using the 
Spearman coefficient. Matjaz Rokavec performed the analysis and generated the figure. 
 
 

  Moreover, PP1 interacts with INH3 in CRC cells was confirmed by 

co-immuno-precipitation (Figure 5.22), indicating that PP1 could indeed mediate the 

activating effect of INH3 on STAT3.  
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Figure 5.22 Co-immuno-precipitation (IP) analysis of INH3 and PP1. 
Co-immuno-precipitation (IP) analysis of endogenous INH3 and PP1 in SW480 (A) and 
SW620 (B) cells. (C) Co-immuno-precipitation (IP) analysis with the indicated antibodies (AB) 
of ectopic INH3 and PP1 in HEK293 cells. 
 
 

  Taken together, these results show that a coherent feed-forward regulation of Inh3 

by HIF1A and miR-34a mediates induction of INH3 by hypoxia leading to increased 

activity of STAT3 (Figure 5.23). 

 

 

 

 

Figure 5.23 Model of the coherent feed-forward regulation of INH3 and downstream 
effects. 
   

 

 

 

5.5 Induction of INH3 is required for hypoxia-induced EMT 

  In line with the results described above, the induction of Inh3 mRNA and protein by 

hypoxia was prevented by ectopic miR-34a expression (Figure 5.24).  
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Figure 5.24 Repression of miR-34a is required for induction of Inh3 by hypoxia. (A) 
qPCR (upper panel) and Western blot (lower panel) analysis of DLD-1 cells harboring a 
pRTR-pri-miR-34a vector exposed to DOX for 2 days and/or then at 0.5% O2 for 30 hours. (B) 
qPCR analysis of Inh3 mRNA expression in DLD-1/pRTR-pri-miR-34a cells treated with DOX 
for 2 days and then with CoCl2 for 1 day. mean values ± SD (n = 3) are provided. (*) P < 0.05, 
(**) P < 0.01 and (***) P < 0.001. 
 
 

  Furthermore, ectopic expression of Inh3 mRNA lacking miR-34a seed-matching 

sequences largely prevented inhibition of invasion and migration by ectopic miR-34a 

(Figure 5.25). Therefore, down-regulation of INH3 is required for inhibition of invasion 

and migration by miR-34a. 

 

 

Figure 5.25 Down-regulation of INH3 is required for inhibition of invasion and migration 
by miR-34a. Relative invasion and migration of SW480/pRTR-Inh3-VSV cells transfected with 
pre-miR-34a oligonucleotides for 5-6 hours and then treated with for 2 days. mean values ± 
SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 

   

 

  In addition, down-regulation of INH3 by siRNAs prevented the induction of SNAIL 

and repression of E-cadherin by hypoxia (Figure 5.26A-C), as well as 

hypoxia-induced invasion and migration (Figure 5.26D-E) in DLD-1 and HT-29 cells. 

Thus, INH3 is a required mediator of hypoxia-induced EMT, migration and invasion in 

CRC cells.  
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Figure 5.26 INH3 is a required mediator of hypoxia-induced EMT, migration and 
invasion in CRC cells. (A-C) Western blot analysis of the indicated proteins in DLD-1 (A-B) 
and HT29 (C) cells transfected with indicated siRNA for 48 hours. (D-E) relative invasion and 
migration analysis of DLD-1 (D) and HT29 (E) cells transfected with indicated siRNAs for 24 
hours and then cultured at 20% O2 or 0.5% O2 for 30 hours. In panels D and E mean values ± 
SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 

  In the mesenchymal-like SW480 cells down-regulation of INH3 by siRNAs at 

standard cell culture conditions (20% O2) resulted in a decrease of VIM, SNAIL, 

STAT3pS727, and induction of E-cadherin (Figure 5.27A-B). Moreover, knockdown of 

Inh3 in SW480 cells decreased wound closure and attenuated cellular invasion and 

migration (Figure 5.27C-D). Similar results were obtained with mesenchymal-like 

SW620 (Figure 5.27A, B and D) and murine CT26 cells (Figure 5.27E-F). Therefore, 

elevated INH3 expression is also required for maintaining a mesenchymal-like state in 

human and murine CRC cell lines in the absence of hypoxia. 
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Figure 5.27 Elevated INH3 expression is required for maintaining a mesenchymal-like 
state. (A) Western blot, (B) qPCR and (D) relative invasion and migration analysis of SW480 
and SW620 cells transfected with indicated siRNA for 48 hours. (C) Wound healing assay of 
SW480 cells transfected with indicated siRNA for 48 hours. (E) Western blot and (F) qPCR 
analysis of CT26 cells transfected with indicated siRNA for 48 hours. In panels B, D and F 
mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 

5.6 Ectopic expression of INH3 induces EMT, migration and invasion  

  After ectopic INH3 expression epithelial DLD-1 cells adopted a mesenchymal 

morphology, while no changes were observed after ectopic eGFP expression (Figure 

5.28).  
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Figure 5.28 Effects of ectopic INH3 and eGFP expression on DLD-1 cells. (A, B) Flow 
cytometric determination of the frequency of cells with inducible expression of eGFP in DLD-1 
cell pools harboring a (A) pRTR-Inh3-VSV or (B) a control pRTR vector after addition of DOX 
for 72 hours. (E) Representative phase-contrast pictures of DLD-1/pRTR-Inh3-VSV cells 
treated with or without DOX. Scale bars represents 25 µm. 
 
 

  Moreover, ectopic INH3 induced changes in protein expression consistent with 

EMT (Figure 5.29A). Furthermore, phosphorylation of STAT3 at S727 was induced 

by INH3 expression, while the total amount of STAT3 and phosphorylation of STAT3 

at Y705 were not affected (Figure 5.29A). Notably, ectopic INH3 promoted wound 

closure (Figure 5.29B), and enhanced cellular invasion and migration (Figure 5.29C).  

 

 

 

Figure 5.29 Ectopic expression of INH3 is sufficient for induction EMT in DLD1 cells. (A) 
Western blot analysis of indicated mRNAs in DLD-1/pRTR-Inh3-VSV cells treated with DOX 
for the indicated periods. (B) Wound healing assay and (C) relative invasion and migration of 
DLD-1/pRTR-Inh3-VSV cells treated with DOX. Scale bar represents 200 µm (G). In panels B 
and C, mean values ± SD (n = 3) are provided. (*) P < 0.05; (**) P < 0.01 and (***) P < 0.001.  
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DLD-1 cells ectopically expressing GFP displayed none of these effects (Figure 

5.30).  

 

 

Figure 5.30 Effects of ectopic eGFP expression on DLD-1 cells. (A) qPCR and (B) 
Western blot analysis of the indicated mRNAs in DLD-1 cells harboring a pRTR vector treated 
with DOX for the indicated periods. 
 
 

  Similar results were obtained in HT29 cells (Figure 5.31). After ectopic INH3 

expression epithelial HT29 cells adopted a mesenchymal morphology (Figure 5.31A). 

Moreover, ectopic INH3 induced changes in protein expression consistent with EMT 

(Figure 5.31B). Furthermore, phosphorylation of STAT3 at S727 was induced by 

INH3 expression, while the total amount of STAT3 was not affected (Figure 5.31B). 

Notably, ectopic INH3 enhanced cellular invasion and migration (Figure 5.31C).  
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Figure 5.31 Ectopic expression of INH3 is sufficient for induction of EMT HT-29 cells. (A) 
Representative phase-contrast pictures of HT29/pRTR-Inh3-VSV cells treated with or without 
DOX. Scale bar represents 25 µm. (B) Western blot analysis of indicated mRNAs in 
HT29/pRTR-Inh3-VSV cells treated with DOX for the indicated periods. (C) Relative invasion 
and migration of HT29/pRTR-Inh3-VSV cells treated with DOX. In panel C mean values ± SD 
(n = 3) are provided, (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 

  Notably, siRNA-mediated down-regulation of STAT3 prevented the up-regulation of 

VIM and SNAIL and the down-regulation of E-cadherin (Figure 5.32A-B), as well as 

the enhancement of invasion and migration by ectopic INH3 in DLD-1 cells (Figure 

5.32C). 
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Figure 5.32 STAT3 is a mediator of INH3 function. (A) Western blot, (B) qPCR and (C) 
relative invasion and migration analysis of DLD-1/pRTR-Inh3-VSV cells transfected with 
indicated siRNAs for 24 hours. Subsequently DOX was added for 30 hours. In panels B and C 
mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
   

  Taken together, these results show that INH3 activation is sufficient to induce EMT, 

invasion and migration in a STAT3-dependent manner. 

 

5.7 INH3 mediates hypoxia-induced metastasis formation 
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formation as documented by non-invasive imaging of luciferase activity over a period 

of 7 weeks (Figure 5.33A-C). Moreover, siRNAs directed against Inh3 largely 

inhibited lung metastasis formation. Histological analysis of resected lungs confirmed 

that knockdown of INH3 resulted in a decreased number of metastatic tumor nodules 

(Figure 5.33D-F). Taken together, these results show that INH3 mediates 

hypoxia-induced metastases formation. 
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Figure 5.33 Analysis of INH3 function in a xenograft lung-metastasis assay. (A) Western 

blot analysis of DLD-1 cells kept at 0.5% O2 for 24 hours and then transfected with control and 

Inh3-specific siRNAs for 24 hours. (B-F) DLD-1 cells were kept at 0.5% O2 for 24 hours and 

then transfected with control and Inh3-specific siRNAs for 24 hours, subsequently injected into 

the tail veins of immune-compromised NOD/SCID mice (n = 6), and followed by noninvasive 

bioluminescence imaging for 7 weeks. (B) Quantification of non-invasive imaging at the 

indicated time points. Bioluminescence signals are presented as ‘total flux'. (C) representative 

examples of bioluminescence imaging at the indicated time points, (D, left panels) 

representative examples of bioluminescence imaging of lungs 7 weeks after tail vein injection; 

(D, right panels) representative images of lungs, arrows indicate metastatic nodules; (E) 

representative examples of H & E stained lung sections. Scale bars represent 1mm (left 

panels), and 200 μm (right panels). (F) Quantification of metastatic tumor nodules in the lung 

per mouse 7 weeks after tail-vein injection. In panels B and F mean values ± SD (n = 6), in H 

mean values ± SD (n = 3) are provided. (*) P < 0.05; (**) P < 0.01 and (***) P < 0.001. Huihui Li 

performed the analysis and generated the figure (A, F). Matjaz Rokavec performed the 

analysis and generated the figure (B-C). Longchang Jiang performed the analysis and 

generated the figure (D-E). 
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proficient and deficient miR-34a/b/c, consistent with the direct regulation of Inh3 

expression by HIF1A described above (Figure 5.34A). INH3, HIF1A, VIM and also 

STAT3pS727 levels were elevated in most of the 6 miR-34a/b/c-deficient adenomas 

analyzed here (Figure 5.34B).  

 

 

Figure 5.34 Analysis of INH3 expression in adenomas of miR-34-deficient Apc
Min/+

 mice. 
(A) Representative examples of immunohistochemical detections of INH3 and HIF1A protein 
expression in serial sections of adenomas from miR-34ab/c

+/+
; Apc

Min/+
 and miR-34a/b/c

-/-
; 

Apc
Min/+

 mice. Scale bars represent 200 µm (1. and 3. row) and 100 µm (2. and 4. row). (n = 6 
per genotype). (B) Western blot analysis of indicated proteins in lysates prepared from tumors 
of miR-34a/b/c

+/+
; Apc

Min/+
 and miR-34ab/c

-/-
; Apc

Min/+
 mice (1 tumor/mice, n = 6 per genotype). 

Relative densitometric quantifications of the indicated proteins normalized to β-actin are 
indicated. Longchang Jiang provided Apc

Min/+
 tumor samples and Huihui Li performed the 

analysis and generated the figure. 
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expression and induction of STAT3pS727 was consistently observed in 

miR-34a/b/c-deficient tumoroids exposed to hypoxia (Figure 5.35B).  

 

 

Figure 5.35 Analysis of INH3 expression in miR-34-deficient Apc
Min/+

 tumoroids. (A) 
qPCR and (B) Western blot analyses of tumoroids derived from adenomas of mice with the 
indicated genotypes exposed to 20% or 0.5% O2 for 48 hours as indicated. In panels A mean 
values ± SD (n = 6), in H mean values ± SD (n = 3) are provided. (*) P < 0.05; (**) P < 0.01 and 
(***) P < 0.001. Longchang Jiang provided Apc

Min/+
 tumor samples and Huihui Li performed the 

analysis and generated the figure. 
 
 

    Taken together, these results show that the regulations identified in human CRC 

lines also occur in vivo in a genetic mouse model of intestinal tumor formation and ex 

vivo in tumoroids derived from these adenomas.   
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hypoxia-induced EMT is suppressed by p53 was determined. Indeed, the 
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of p53 also inhibited cellular migration induced by CoCl2 as determined in a 

scratch-wound assay (Figure 5.36B). 
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Figure 5.36 p53 suppresses invasion and migration induced by CoCl2. (A) Relative 
invasion and migration and (B) wound healing assay of DLD-1/tTA-p53 cells treated with DOX 
for 2 days and/or subsequently with CoCl2 for 1 day. Scale bar represents 200 µm. mean 
values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 

  Ectopic expression of p53 in SW480 cells resulted in repression of Inh3 mRNA and 

protein expression (Figure 5.37A-B) and decreased phosphorylation of STAT3pS727 

(Figure 5.37B). Ectopic expression of INH3 largely prevented the suppression of 

invasion and migration by p53 (Figure 5.37C), indicating that Inh3 repression by p53 

is required for these effects of p53. The repression of INH3 by p53 was alleviated by 

transfection of miR-34a-specific antagomirs (Figure 5.37D-E). Therefore, miR-34a 

mediates the repression of Inh3 by p53. 
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Figure 5.37 MiR-34a mediates the repression of Inh3 by p53. (A) qPCR and (B) Western 
blot analysis of INH3 expression in SW480/pRTR-p53-VSV cells after addition of DOX for the 
indicated periods. (C) Relative invasion and migration of SW480/pRTR-p53-VSV cells 
transfected with pCDNA3.1-Inh3-VSV for 5-6 hours and then treated with DOX for 48 hours. (D) 
Western blot analysis of SW480/pRTR-p53-VSV cells transfected with antago-miR-34a or 
antago-miR-negative control oligonucleotide for 24 hours and/or subsequently treated with 
DOX for 48 hours. (C) qPCR analysis of the indicated mRNAs in SW480/pRTR-p53-VSV cells 
transfected with antago-miR-34a or antago-miR-negative control oligonucleotide for 24 hours 
and/or treated with DOX for 48 hours. Antago-miR does not influence pri-miR-34a expression 
level but inhibits the function of the mature miR-34a 

198-200
. In panels A, C and E mean values ± 

SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 
 

  Furthermore, treatment with the DNA damaging agent etoposide caused the 

down-regulation of INH3 protein expression in TP53+/+, but not in TP53-/- RKO cells 

(Figure 5.38A). Therefore, INH3 is also repressed after activation of endogenous p53 

by DNA damage. Furthermore, the repression of INH3 and also the decrease in 

STAT3pS727 mediated by p53 activation after DNA damage was prevented by 

miR-34a-specific antagomirs (Figure 5.38B).  
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Figure 5.38 MiR-34a mediates the repression of Inh3 by p53. (A) Western blot analysis of 
the indicated proteins in RKO TP53

+/+
 and RKO TP53

-/-
 cells after addition of etoposide (20 µM) 

for 48 hours. (B) Western blot analysis of the indicated proteins in RKO TP53
+/+

 cells 
transfected with antago-miR-34a or antago-miR-negative control oligonucleotide for 24 hours 
and/or subsequently treated with etoposide for 48 hours. 
 
 

  Moreover, the HIF1A-mediated induction of INH3 was prevented by ectopic p53 

expression (Figure 5.39).  

 

 

Figure 5.39 p53 suppresses Inh3 induced by CoCl2. qPCR analysis of the indicated mRNAs 
in DLD-1/tTA-p53 cells treated with DOX for 2 days and subsequently with CoCl2 for 1 day. 
mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 
 

  Taken together, these results show that activation of p53 suppresses 

hypoxia-induced EMT and associated processes, such as enhanced invasion and 

migration, via miR-34a-mediated suppression of INH3. 

 

5.10 The p53/miR-34a/INH3/Stat3 pathway as a determinant of the hypoxic 

response  

  Next, the hypothesis that the differential regulation of miR-34a and Inh3 may 

determine the distinct cellular responses to hypoxia observed in TP53-positive and 

TP53-negative cells was made. Therefore, the response of three isogenic CRC cell 

lines differing in their TP53 status to hypoxia was analyzed.  

A
RKO

B
RKO TP53+/+

- INH3

- p53

- β-actin

- +        - +     etoposide

TP53-/- TP53+/+
antago-miR-ctrl.
antago-miR-34a
etoposide

+   +   - -
- - + +
- +       - +   

- p53

- INH3

- STAT3pS727

- STAT3

- β-actin

1.00    0.39     1.30      1.25  STAT3pS727 / β-actin

1.00    1.18  0.92     0.96    STAT3 / β-actin

DLD-1/tTA-p53

3

2

1

0

Fo
ld

 c
h

an
ge

 [
In

h
3

]

off      off on     on p53 ect.
- +    - +      CoCl2

**** ****



  Results 

80 

 

  Under hypoxia, HCT116 TP53-/- cells adopted a mesenchymal morphology, while 

HCT116 TP53+/+ cells remained unchanged (Figure 5.40A). Furthermore, expression 

of miR-34a and pri-miR-34a was up-regulated and Inh3 was down-regulated under 

hypoxia in TP53+/+ cells, whereas TP53-/- cells showed the opposite regulations 

(Figure 5.40B). Moreover, SNAIL was repressed in TP53+/+ cells and induced in 

TP53-/- cells upon exposure to hypoxia (Figure 5.40C). 

 

 

Figure 5.40 TP53 status influences the differential expression of miR-34a/b/c and INH3 
after hypoxia in HCT116 cells. Representative phase-contrast pictures (A), qPCR (B) and 
Western blot (C) analysis of HCT116 TP53

-/-
 and TP53

+/+
 cells at 0.5% O2 for 48 hours. Scale 

bar represents 25 µm. In panels B mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 
0.01 and (***) P < 0.001.  
 
 

  Similar results were obtained in TP53+/+ and TP53-/- RKO (Figure 5.41). Under 

hypoxia, RKO TP53-/- cells adopted a mesenchymal morphology, while HCT116 

TP53+/+ cells remained unchanged (Figure 5.41A). Furthermore, expression of 

miR-34a and pri-miR-34a was up-regulated and Inh3 was down-regulated under 

hypoxia in TP53+/+ cells, whereas TP53-/- cells showed the opposite regulations 

(Figure 5.41B). 
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Figure 5.40 TP53 status influences the differential expression of miR-34a/b/c and INH3 
after hypoxia in RKO cells. (A) Representative phase-contrast pictures, (B) qPCR and (C) 
Western blot analysis of HCT116 TP53

-/-
 and TP53

+/+
 cells kept at 0.5% O2 for 48 hours. Scale 

bar represents 25 µm. In panels B mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 
0.01 and (***) P < 0.001. 
 
 

  Similar results were also obtained in SW48 CRC cell lines (Figure 5.42). The 

expression of miR-34a and pri-miR-34a was up-regulated and Inh3 was 

down-regulated under hypoxia in TP53+/+ cells, whereas TP53-/- cells showed the 

opposite regulations (Figure 5.42). Moreover, SNAIL and VIM was repressed in 

TP53+/+ cells and induced in TP53-/- cells upon exposure to hypoxia (Figure 5.42). 

Therefore, these p53-dependent regulations are not restricted to a specific CRC cell 

line. 
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Figure 5.40 TP53 status influences the differential expression of miR-34a/b/c and INH3 
after hypoxia in SW48 cells. qPCR analysis of SW48 TP53

-/-
 and TP53

+/+
 cells kept at 0.5% 

O2 for 48 hours. mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 
0.001. 

    In addition, the analysis of the TP53-proficient murine CRC cell line CT26 

showed that the regulations mediated by wild-type TP53 are conserved between 

species (Figure 5.43). 

 

 

Figure 5.43 Hypoxia represses mesenchymal markers in the TP53-proficient murine 
CRC cell line CT26. (A) Western blot and (B) qPCR analysis of the indicated mRNAs in CT26 
cultured at 0.5% O2 for the indicated periods. In panels B mean values ± SD (n = 3) are 
provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 

   

   The repression of INH3 and STAT3pS727 by hypoxia in HCT116 TP53+/+ cells was 

prevented by a miR-34a-specific antagomir (Figure 5.44A-B, left panel), 

demonstrating that miR-34a mediates the repression of INH3 and STAT3pS727 by 

hypoxia. Notably, hypoxia suppressed invasion and migration of TP53-proficient 

HCT116 cells (Figure 5.44B, right panel), which was prevented by miR-34a-specific 

antagomirs.  
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Figure 5.44 Inhibition of miR-34a prevents MET by hypoxia in TP53-proficient CRC 
HCT116 cell line. Western blot (A), qPCR (B, left panel) and relative invasion and migration 
(B, right panel) analysis of HCT116 TP53

+/+
 transfected with antago-miR-34a or 

antago-miR-negative control oligonucleotide for 48 hours and/or subsequently cultured at 20% 
O2 or 0.5% O2 for 30 hours. In panels B, C and E mean values ± SD (n = 3) are provided. (*) P 
< 0.05, (**) P < 0.01 and (***) P < 0.001. 

 

 

  Similar results were obtained in RKO TP53+/+ cells (Figure 5.45). Hypoxia 

repressed invasion and migration of TP53-proficient RKO cells, which was prevented 

by miR-34a-specific antagomirs.  

 

 

Figure 5.45 Inhibition of miR-34a prevents hypoxia-induced MET in the TP53-proficient 
RKO cells. qPCR ( left panel) and relative invasion and migration (right panel) analysis RKO 
TP53

+/+
 transfected with antago-miR-34a or antago-miR-negative control oligonucleotides for 

48 hours and subsequently cultured at 20% O2 or 0.5% O2 for 30 hours. mean values ± SD (n 
= 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 

 

Similar results were also obtained in murine CRC cell line CT26 (Figure 5.46).  
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Figure 5.46 Inhibition of miR-34a prevents hypoxia-induced MET in the TP53-proficient 
murine CT26 cells. (A) Western blot and (B) qPCR analysis of CT26 transfected with 
antago-miR-34a or antago-miR-negative control oligonucleotide for 6 hours and subsequently 
cultured at 20% O2 or 0.5% O2 for 48 hours. In panels B mean values ± SD (n = 3) are 
provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
 

 

  In contrast, exposure of TP53-deficient HCT116 cells to hypoxia resulted in an 

increase in invasion and migration and signs of EMT (Figure 5.47). The repression of 

CDH1 on the mRNA and protein levels by hypoxia was abolished by treatment with 

pre-miR-34a oligonucleotide in HCT116 TP53-/- cells (Figure 5.47, left panel and 

middle panel). Also the induction of VIM (Figure 5.47, middle panel) and invasion and 

migration by hypoxia was abrogated by ectopic miR-34a (Figure 5.47, right panel).  

 

 

Figure 5.47 Ectopic miR-34a prevents EMT induced by hypoxia in TP53-deficient 
HCT116 cells. Western blot (left panel), qPCR (middle panel) and relative invasion and 
migration (right panel) analysis of HCT116 TP53

-/-
 transfected with pre-miR-34a for 48 hours 

and/or subsequently cultured under 20% O2 or 0.5% O2 for 30 hours. mean values ± SD (n = 3) 
are provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 
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  Similar results were also obtained with RKO TP53-/- cells (Figure 5.48). The 

repression of CDH1 on the mRNA level by hypoxia was abolished by treatment with 

pre-miR-34a oligonucleotide in RKO TP53-/- cells (Figure 5.48, middle panel). Also 

the induction of VIM or SNAIL (Figure 5.48, left panel and middle panel) and invasion 

and migration by hypoxia was abrogated by ectopic miR-34a (Figure 5.48, right 

panel). Therefore, the repression of miR-34a by HIF1A is necessary for 

hypoxia-induced EMT and associated invasion and migration. 

 

 

Figure 5.48 Ectopic miR-34a prevents EMT induced by hypoxia in TP53-deficient RKO 
cells. Western blot (left panel) and qPCR (middle panel) and (right panel) relative invasion and 
migration analysis of RKO TP53

-/-
 cells transfected with pre-miR-34a for 48 hours and 

subsequently cultured at 20% O2 or 0.5% O2 for 30 hours. mean values ± SD (n = 3) are 
provided. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. 

   

 

  Taken together, the results show that the TP53 status and the resulting differential 

expression of miR-34a and INH3 control the response of CRC cells to hypoxia. 

 

5.11 Modulation of chemo-resistance by the p53/HIF1A/miR-34a/INH3/Stat3 

pathway  

  It has been reported that EMT confers chemo-resistance during tumor progression 

174. Therefore, whether the regulations identified here modulate the cellular response 

to 5-Fluoro-Uracil (5-FU), a chemotherapeutic agent commonly used for treating CRC 

201 was determined. For this TP53+/+ and TP53-/- HCT116 cells were compared in a 

colony-formation assay. Cells were cultured at 20% or 0.5% O2 for 48 hours and 

subsequently treated with either 5-FU or, as a control, DMSO for 3 days.  

  As previously shown 202, HCT116 TP53-/- cells were more resistant to 5-FU and 

therefore formed more colonies than TP53+/+ cells at 20% O2 (Figure 5.49A). In line 
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less inhibitory to the colony-formation of TP53-negative cells than treatment with 5-FU 

at 20% O2 (Figure 5.49A). Moreover, the relative resistance of HCT116 TP53-/- cells 

to 5-FU at 0.5% O2 was abolished by knockdown of INH3 (Figure 5.49B). 

 

 

Figure 5.49 Analysis of hypoxia-mediated resistance to 5-FU and apoptosis in HCT116 
cells. (A-B) 500 cells were seeded per well into a six well plate and cultivated for 24 hours at 
20% O2, then exposed to 0.5% O2 for 48 hours, and subsequently treated with or without 5-FU 
for 72 hours. Subsequently cells were fixed and stained with crystal violet. Quantification of 
crystal violet staining (G, H, upper panel) and representative examples of crystal violet staining 
(G, H, lower panel). mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and (***) 
P < 0.001. 
 
 
 

  Similar results were obtained with the TP53+/+ and TP53-/- pair of RKO CRC cells 

(Figure 5.50).  

 

 

Figure 5.50 Analysis of hypoxia-mediated resistance to 5-FU and apoptosis in RKO cells. 
500 indicated cells were seeded per well into a six well plate and cultivated for 24 hours at 20% 
O2 and subsequently exposed to 0.5% O2 for 48 hours, and subsequently treated with or 
without 5-FU for 72 hours. Subsequently cells were fixed and stained with crystal violet. (upper 
panel) Quantification of crystal violet staining and (lower panel) representative examples of 
crystal violet staining. mean values ± SD (n = 3) are provided. (*) P < 0.05, (**) P < 0.01 and 
(***) P < 0.001.  
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  In line with results obtained in CRC lines in cell culture, miR-34a-/-; miR-34bc-/- 

tumoriods derived from adenomas of ApcMin/+ mice showed less apoptosis in response 

to 5-FU at 0.5% O2 than miR-34a+/+; miR-34bc+/+ tumoroids (Figure 5.51).  

 

 

 

Figure 5.51 Analysis of hypoxia-mediated resistance to 5-FU and apoptosis in 
tumoriods derived from adenomas of Apc

Min/+
 mice. Quantification of cleaved-Caspase-3 

staining of tumoroids derived from adenomas of Apc
Min/+ 

mice proficient or deficient for 
miR-34a/b/c exposed to 20% O2 or 0.5% O2 for 48 hours and subsequently treated with or 
without 5-FU for 48 hours. For each condition n >= 11 tumoroids derived from 3 mice were 
analyzed per genotype. (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. Longchang Jiang 
performed the analysis and generated the figure. 

  Taken together, these results show that the p53/HIF1A/miR-34a/INH3/STAT3 

regulatory pathway mediates the differential response towards 5-FU and its 

modulation by hypoxia. 

 

 

5.12 INH3 expression in primary CRC samples 

  Next whether Inh3 expression is affected by the TP53 status in primary CRCs 

represented in the Cancer Genome Atlas (TCGA) database 106 was determined. 
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Figure 5.52 TP53 status influences Inh3 expression in primary CRCs. Associations of 
Inh3 expression with (A) the TP53 status in TCGA-COAD and TCGA-READ samples with 
known TP53 status (n = 419). Significance was calculated using Student’s t test.  (*) P < 0.05, 
(**) P < 0.01 and (***) P < 0.001. Matjaz Rokavec performed the analysis and generated the 
figure. 
 
 

  The 238 CRC samples with mutant TP53 displayed significantly elevated 

expression of Inh3 compared to 181 CRC samples expressing wild-type TP53 

(Figure 5.52 and Table 5.3). These findings were in line with the observations 

described above.  

 

Table 5.3 TP53 status of samples in the TCGA collection of human colon 
adenocarcinomas (n = 628).  

 
Number of cases Percentage 

TP53
wt

 181 43.19% 

TP53
mut

 238 56.81% 

TP53 status known 419 100.00% 

TP53 status unknown 209 N.A. 

Total 628 N.A. 

Matjaz Rokavec performed the analysis and generated the table. 

 

 

  In addition, primary CRCs with local metastasis to the lymph-nodes, showed 

significantly elevated expression of Inh3 compared to CRCs without local metastasis 

(Figure 5.53A). Moreover, primary tumors exhibiting distant metastases (M1) showed 

a trend towards increased expression of Inh3 (Figure 5.53B). 
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Figure 5.53 Association of Inh3 expression with local and distant metastases. 
Associations of Inh3 expression with (B) nodal and (C) distant metastasis in the combined 
TCGA-COAD and TCGA-READ database (n = 628). Significance was calculated using 
Student’s t test.  (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. Matjaz Rokavec performed the 
analysis and generated the figure. 
 
 

  In a matched case control cohort of primary colon cancers with (n = 42) and without 

(n =42) synchronous liver metastasis up-regulation of INH3 protein expression at the 

infiltrative tumor edge was significantly associated with liver metastasis (Figure 5.54A 

and Table 5.4).  

 

 
Table 5.4 INH3 expression and clinical variables. 

Characteristics Total 
Inh3 invasion front up 

P 
No Yes 

All patients 84 (100) 32 (38.1) 52 (61.9) 
 Age (y, Median 68) 

         < 68 40 (47.6) 15 (17.9) 25 (29.8) 0.91 

     ≥ 68 44 (52.4) 17 (20.2) 27 (32.1) 
 Gender 

         Male 40 (47.6) 16 (19.0) 24 (28.6) 0.73 

     Female 44 (52.4) 16 (19.0) 28 (33.3) 
 Tumor size (UICC) 

         T2 8 (9.5) 5 (6.0) 3 (3.6) 0.27 

     T3 62 (73.8) 21 (25.0) 41 (48.8) 
      T4 14 (16.7) 6 (7.1) 8 (9.5) 
 Nodal status 

         N0 37 (44.0) 18 (21.4) 19 (22.6) 0.08 

     N+ 47 (56.0) 14 (16.7) 33 (39.3) 
 Metastasis (Liver) 

         M0 42 (50.0) 23 (27.4) 19 (22.6) 0.002 

     M1 42 (50.0) 9 (10.7) 33 (39.3) 
 Tumor grade (WHO) 

         Low 28 (33.3) 8 (9.5) 20 (23.8) 0.2 

     High 56 (66.7) 24 (28.6) 32 (38.1) 
 Percent values are given in parentheses 

Human patient sample collection was stained by the diagnostics laboratory, Pathology Institute, 
LMU, Munich. David Horst performed the microscope evaluation and generated the table.  
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  Interestingly, HIF1A was shown to be up-regulated at the invasion front of CRCs 

indicating that these regions are hypoxic 203. Accordingly, elevated INH3 expression in  

infiltrative CRC cells that had undergone EMT, as evidenced by Laminin 5γ2 positivity, 

was associated with increased expression the hypoxia marker GLUT1 (Figure 

5.54B).  

 

 

 

Figure 5.54 INH3 expression at the invasion front of primary CRCs. (A) INH3 expression 
in primary colon cancer samples of 84 patients who underwent surgical tumor resection at the 
Ludwig-Maximilians-University, Munich between 1994 and 2005. Percentage values are given 
in parentheses. Data were analyzed using the χ

2
 test. (B) Examples of representative 

immunohistochemical detections. Scale bar represents 100 µm. Human patient sample 
collection was stained by the diagnostics laboratory, Pathology Institute, LMU, Munich (A-B). 
David Horst performed the microscope evaluation (A). Huihui Li generated the figure (A). 
David Horst took pictures and generated the figure (B).  
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  Moreover, the expression of INH3 protein at the infiltrative tumor edge showed a 

significantly negative correlation with the expression of miR-34a (Figure 5.55) which 

is consistent with the above mentioned analysis of the TCGA database (Figure 5.21). 

 

 

 

Figure 5.55 Correlative analysis of miR-34a and INH3 in primary CRCs. Correlative 

analysis of Inh3 and pri-miR-34a expression in primary colon cancer samples of 67 patients as 

in D. pri-miR-34a expression was determined previously 
204

. Significance was calculated using 

Student’s t test.  (*) P < 0.05, (**) P < 0.01 and (***) P < 0.001. Human patient sample 

collection was stained by the diagnostics laboratory, Pathology Institute, LMU, Munich. David 

Horst performed the microscope evaluation. Huihui Li generated the figure. 

 
 

The negative correlation between miR-34a and Inh3 was more pronounced in 

ascending colon, hepatic flexure, and rectum than in other regions of the large 

intestine (Figure 5.56).  
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Figure 5.56 Analysis of Inh3 and miR-34a expression in CRC samples within the TCGA 
collection. Analysis of Inh3 and miR-34a expression in (A) colon adenocarcinomas (COAD) 
of the indicated location and (B) rectal adenocarcinomas (READ) from the TCGA database. 
Correlations were calculated using the Spearman coefficient. Matjaz Rokavec performed the 
analysis and generated the figure. 
 

  Next, the levels of INH3, Laminin 5γ2, and Glut1 in paired primary and metastatic 

lesions from 17 patients was determined (Figure 5.57A). The elevated expression of 

INH3, Glut1, and Laminin 5γ2 at the infiltrative tumor edge of primary tumors was also 

found at the edge of matched metastases in the majority of patient samples (Figure 

5.57B).  
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Figure 5.57 INH3, Glut1 and Laminin 5γ2 protein expression in primary CRCs and 
metastases. (A) Examples of representative immunohistochemical detections of INH3, Glut1, 
and Laminin 5γ2 expression at the invasion front of primary colon tumors and matched 
metastases. Scale bar represents 100 µm. (B) Summary of INH3, Glut1, and Laminin 5γ2 
expression at the invasion front of primary colon tumors (P) and matched metastases (M) in 
individual patients. Human patient sample collection was stained by the diagnostics laboratory, 
Pathology Institute, LMU, Munich (A-B). David Horst performed the microscope evaluation 
(A-B). Huihui Li took the pictures (A), and Matjaz Rokavec performed the calculation and 
generated the figure (B). 
 

  Moreover, elevated expression of INH3 was significantly associated with elevated 

expression of Glut1 and Laminin 5γ2 at the edge of primary tumors and metastases 

(Figure 5.58). 

 

 

Figure 5.58 Correlative analysis of INH3 and Glut1 or Laminin 5γ2 protein expression in 
primary CRCs and metastases. (A) Association between expression of Inh3 and Glut1 at the 
invasion front of primary tumors and metastases. (B) Association between expression of INH3 
and Laminin 5γ2 at the invasion front of primary tumors and metastases. significance was 
calculated using the χ

2
 test. Not elev., not elevated; elev., elevated. Human patient sample 

collection was stained by the diagnostics laboratory, Pathology Institute, LMU, Munich. David 
Horst performed the microscope evaluation, and Matjaz Rokavec performed the calculation 
and generated the figure. 
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    In addition, expression of INH3, Glut1 and Laminin 5γ2 was similar in the bulk 

areas of primary tumors and matched metastases (Figure 5.59). 

  

 
 
Figure 5.59 Analysis of INH3, Glut1 and Laminin 5γ2 protein expression in the bulk 
areas of primary CRCs and metastases. Summary of INH3, Glut1, and Laminin 5γ2 
expression in the bulk of primary colon tumors (P) and matched metastases (M) in individual 
patients. Human patient sample collection was stained by the diagnostics laboratory, 
Pathology Institute, LMU, Munich. David Horst performed the microscope evaluation, and 
Matjaz Rokavec performed the calculation and generated the figure. 
 
 

  Taken together, the expression pattern of INH3 detected in patient derived tumor 

samples indicates that the regulatory circuit characterized in this study is also 

manifest at the invasion front of primary CRCs and metastases. 
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6. Discussion 

  The results presented in this thesis demonstrate that the decision between EMT or 

MET in response to hypoxia is mediated by a regulatory network involving HIF1A, p53, 

miR-34a, INH3, PP1 and STAT3 (Figure 6.1). Since we could detect these 

regulations in both MSS and MSI CRC cell lines and also found an inverse correlation 

between Inh3 and miR-34a in tumors derived from different sites of the large intestine, 

the identified pathway seems to apply to CRCs in general. In the absence of 

functional p53, HIF1A mediates repression of miR-34a, whereas in the presence of 

wild-type TP53 expression of miR-34a is induced under hypoxia. HIF1A, miR-34a and 

Inh3 form a coherent, feed-forward regulatory loop, wherein HIF1A represses 

miR-34a, which encodes a repressor of INH3 and also directly activates Inh3 

transcription. This type of dual regulation has been described for other transcription 

factor and miRNA pairs, and confers increased robustness to regulatory systems 205. 

The resulting induction of INH3 was necessary for hypoxia-induced EMT, invasion 

and migration, as well as hypoxia-mediated resistance towards 5-FU. Since 

inactivation of INH3 prevented hypoxia-induced formation of lung-metastases of 

xenografted CRC lines in mice, these regulations may ultimately affect metastases 

formation in human patients. In line with these results, INH3 was not only required for 

hypoxia-induced EMT but also sufficient for the induction of EMT. However, in 

TP53-proficient cells, hypoxia resulted in p53 activation, miR-34a induction and a 

miR-34a-mediated induction of MET and down-regulation of INH3. This response may 

contribute to the strong selection for loss of TP53 and miR-34a during tumor 

progression. In support of this conjecture, we determined a significant association 

between TP53 mutation and INH3 up-regulation in primary CRC. Furthermore, 

increased INH3 expression at the invasion front of primary CRCs was associated with 

metastasis. Interestingly, also the invasion fronts of metastasis showed elevated 

expression of INH3 suggesting that it may contribute to secondary metastasis 

formation.  
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Figure 6.1 Model of the antagonistic regulation of the miR-34a/INH3/STAT3 pathway by 

p53 and HIF1A. 
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which confers resistance to apoptosis and enhances migration and invasion. Certain 

factors provided by the tumor micro-environment are able to induce EMT in cells 

expressing wild-type TP53 (e.g. e.g. IL-6 and TGF-B 206-210). This is, at least in part, 

facilitated by the down-regulation of genes encoding MET-mediating miRNAs, which 

are inducible by p53 (such as the miR-34 and miR-200 family members). Here we 

show that hypoxia leads to repression of miR-34a by HIF1A selectively in 

TP53-negative cells. However, it is conceivable that also CRCs expressing wild-type 

TP53 may undergo EMT when exposed to hypoxia in combination with EMT-inducing 

ligands.   

  Here we studied the effect of 5-FU on CRC cell lines and murine, intestinal 

tumoroids. We observed a desensitization upon loss of TP53 or miR-34a/b/c that was 

enhanced under hypoxic conditions. In addition, the increased resistance was 

dependent on the up-regulation of INH3. Since 5-FU is commonly used to treat CRC 

these results may be clinically relevant. Others have shown that isogenic CRC cell 

lines with either wild-type or deleted TP53 do not respond uniformly to different 

chemotherapeutic drugs 202: e.g. in the case of etoposide CRC cells with wild-type 

TP53 were less sensitive than TP53-deficient CRC cells. Therefore, further analyses 

are necessary to evaluate the role of the mechanisms identified here in the cellular 

response to other chemotherapeutic agents.  

  Besides, we also analyzed the expression pattern of INH3, the hypoxia marker 

Glut1 and the EMT-marker Laminin 5γ2 from 17 paired primary and metastatic lesions. 

However, no significant increase or decrease of these three proteins in the main 

areas of the metastases was observed when compared with matched primary CRCs. 

Furthermore, at the invasion front of both primary and metastatic cases, we did again 

observe a consistent increase in the expression of these proteins when compared to 

the bulk areas of the tumors or metastases in approximately half of cases. This may 

because tumor cells are heterogeneous with mixed epithelial and mesenchymal traits 

in the primary and metastatic lesions. The online data, which analyzed the expression 
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profiles of 18 matched primary colorectal cancers and associated liver metastases 211, 

also showed no significant difference in the expression of Laminin 5y2, Inh3, GLUT1, 

and HIF1A mRNAs in the bulk tumor mass when compared to the matched 

metastasis as well. Moreover, there was also no difference in expression of 

EMT-associated mRNAs VIM, CDH1, SNAI, and SLUG between primary tumors and 

metastases 211.  

  Interestingly, elevated expression of INH3 was significantly associated with 

elevated expression of Glut1 and Laminin 5γ2 at the edge of primary tumors and 

metastases, indicating INH3 is associated with hypoxia-induced EMT in primary CRC 

and metastases. Moreover, the similar expression was observed in 17 paired primary 

and metastatic lesions, suggesting that INH3 may contribute to secondary metastasis 

formation. Therefore, the regulations, we initially detected in CRC cell lines, are also 

manifest at the invasion front of primary colorectal cancers and derived metastatic 

lesions. Elevated expression of EMT-TFs SNAIL, SLUG, ZEB1, ZEB2, and TWIST 

was found at the invasion front in different cancers 203, 212-216. Moreover, the 

expression of the EMT marker Vimentin at invasion front was also upregulated 217. 

Also downregulation of E-cadherin at invasion front was reported previously 218. Thus, 

the upregulation of INH3 at the invasion front indicates that INH3 may also be an 

important EMT regulator in vivo. Interestingly, it was previously shown that HIF1A is 

significantly up-regulated at the invasion front of CRCs indicating that these regions 

are hypoxic 203. Moreover, endogenous marker of hypoxia carbonic anhydrase 9 (CA9) 

was also found with high abundance at the invasion front of gastric cancers 219. We 

found that expression of another hypoxia marker GLTU1 was also elevated at 

invasion front. Altogether, elevated expression of INH3 at the invasion front was 

associated with markers of EMT and hypoxia, indicating that INH3 may be a new 

marker for hypoxia-induced EMT. 

  Here, we showed that p53/miR-34a regulates hypoxia-induced EMT via INH3. 

Indeed, the TCGA data showed that Inh3 expression was increased in mutant TP53 
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CRC samples and significantly inversely correlated with miR-34a expression in 

primary CRCs. Besides, In 67 of the cases analyzed by TMA for INH3 expression, we 

had previously determined the expression of mature miR-34a 204. The results showed 

that increased expression of INH3 protein at the infiltrative tumor edge with a 

significantly decreased expression of miR-34a and vice versa. Thus, the expression 

of INH3 protein and miR-34a negatively correlate in clinical samples. 

  We have shown that epigenetic silencing of miR-34a in primary tumors is 

associated with increased lymph node infiltration and metastasis in colon cancer 

patients 204. It is conceivable that the transient repression of miR-34a by hypoxia 

observed here is fixated over time by DNA hyper-methylation in its promoter region. 

The loss of miR-34a expression by epigenetic silencing subsequent to 

hypoxia-mediated repression might facilitate cancer cell survival and local invasion or 

migration. In addition, the silencing of miR-34a may itself contribute to the adaptation 

of tumor cells to the hypoxic tumor microenvironment, since miR-34a has many 

targets that would favor a survival under such circumstances, such as LDH-A and 

Survivin 182. 

  Tumor suppressor miRNAs represent an essential direction for new therapeutic 

investigation for their function during cancer progression. The repression of INH3 by 

miR-34 may be an essential component in the regulation of EMT under hypoxia. Our 

results suggest that inhibiting HIF1A, INH3 and/or STAT3 in combination with 

restoring miR-34a function may have therapeutic potential for the treatment of 

invasive colorectal cancers that display hypoxia. Targeting hypoxic tumor cells is one 

of the most attractive therapies for cancer treatment. Several approaches, including 

hypoxia-activated prodrugs, gene therapy, recombinant anaerobic bacteria, specific 

targeting of HIF, or targeting pathways important for hypoxic cells, such as the mTOR 

and UPR pathways have been designed 220. Moreover, many pharmacological 

inhibitors that target STAT3 were reported 221. Re-expression of miR-34a caused to 

20% to 83% repression of tumor growth 82 without severe toxicity or unwanted 
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immune response 81-83. Intriguingly, in April 2013, MRX34, a liposome-based miR-34 

mimic, became the first cancer-targeted miRNA-based drug in phase I clinical trial in 

patients with advanced hepatocellular carcinoma 82, 84. Interestingly, a miR-34a 

restoration may also harness the patients’ immune system against tumors, since the T 

lymphocyte inhibitory molecule PD-L1, which is expressed at elevated levels on 

certain tumors, represents a miR-34a target 222, 223. As suggested by our results this 

may be especially relevant in tumors that are driven by hypoxia. Since the HIF1A 

pathway has been targeted by multiple approaches 110, a combination of HIF1A 

inactivation and miR-34a restoration may be feasible in order to prevent or inhibit 

hypoxia-driven formation of metastases.  
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7. Summary 

  In colorectal cancer (CRC), hypoxia causes resistance to therapy and promotes 

metastasis. Mutation of the tumor suppressor TP53 provides a selective advantage to 

cancer cells under conditions of hypoxia, but little is known about the mediators of this 

effect. 

  In this thesis I could show that the hypoxia inducible factor 1 alpha subunit (HIF1A) 

directly represses the MIR34A gene in TP53-defective CRC cells, whereas 

expression of MIR34A was induced in TP53-proficient CRC cells exposed to hypoxia. 

Down-regulation of MIR34A was required for hypoxia-induced epithelial to 

mesenchymal transition (EMT), invasion and migration, and activation of STAT3 in 

CRC cells. In this study the PPP1R11 (protein phosphatase 1 regulatory inhibitor 

subunit 11; INH3; HCGV; IPP3; HCG-V; TCTE5; TCTEX5; CFAP255), was identified 

and characterized as a target of MIR34A. PPP1R11 mediates phosphorylation 

(activation) of STAT3 by inhibiting protein phosphatase (PP1), so expression of 

MIR34A inhibited STAT3 activity in TP53-negative CRC cells. Ectopic expression of 

INH3 in CRC cells induced EMT, invasion, and migration, which all required STAT3. 

Increased expression of INH3 in TP53-negative CRC cells was required for 

hypoxia-induced EMT, invasion, migration, and chemo-resistance to 5-fluorouracil, as 

well as metastases of xenograft tumors to lungs of mice. Adenomas and derived 

tumoroids of ApcMin/+ mice with disruption miR34a, miR34b and miR34c expressed 

increased levels of INH3. Colorectal tumors from patients dispalyed increased levels 

of INH3 at areas of invasion, compared with other areas of the tumor. Increased INH3 

levels associated with TP53 mutations and metastasis to liver.  

  HIF1A represses, whereas p53 increases, expression of MIR34A in CRC cells. 

MIR34A reduces expression of INH3 to prevent activation of STAT3 and inhibit the 

EMT and metastasis. In the future strategies to target this pathway might be 

developed to inhibit CRC metastasis and overcome resistance to therapy associated 

with hypoxia.
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8. Zusammenfassung  

  Hypoxie verursacht Therapieresistenz und fördert die Metastasierung von 

kolorektalen Karzinomen (KRK). Unter hypoxischen Bedingungen verleiht die 

Mutation des Tumorsuppressorgens TP53 den Krebszellen einen selektiven Vorteil. 

Die Mediatoren dieses Effektes sind jedoch weitgehend unbekannt. 

  In der vorliegenden Arbeit konnte ich zeigen, dass unter Hypoxie der 

Hypoxie-induzierbare Faktor-1a (HIF1A) das MIR34A-Gen in TP53-defekten 

KRK-Zellen unterdrückt, während in TP53-kompetenten KRK-Zellen die Expression 

von MIR34A induziert wird. Die Herabregulierung von MIR34A in KRK-Zellen war für 

die Hypoxie-induzierte Epithelial-Mesenchymale-Transition (EMT), Invasion und 

Migration, sowie Aktivierung von STAT3 verantwortlich. In dieser Arbeit wurde die  

Protein Phosphatase 1 regulatorische Inhibitor Untereinheit 11 (PPP1R11; INH3; 

HCGV; IPP3; HCG-V; TCTE5; TCTEX5; CFAP255), welche einen Inhibitor der 

Protein Phosphatase 1 (PP1) kodiert, als eine durch MIR34A-regulierte mRNA  

identifiziert und charakterisiert. INH3 vermittelt die Phosphorylierung und damit 

Aktivierung des STAT3 Proteins durch Inhibition von PP1. Die Expression von 

MIR34A in TP53-negativen KRK-Zellen reduzierte daher die Aktivität von STAT3. Die 

ektopische Expression von INH3 in KRK-Zellen induzierte STAT3-abhängige EMT, 

Invasion und Migration. Die erhöhte Expression der INH3 in TP53-negativen 

CRC-Zellen war erforderlich für Hypoxie-induzierte EMT, Invasion, Migration und 

Chemo-Resistenz gegenüber 5-Fluorouracil, sowie für die Metastasierung von 

Xeno-transplantierten KRK-Zellen in Lungen von Mäusen. Adenome und abgeleitete 

Tumoroide von ApcMin/+ Mäusen mit Deletion von miR34a, miR34b und miR34c 

zeigten eine erhöhte INH3 Proteinexpression. Primäre KRKs von Patienten wiesen 

erhöhte INH3 Proteinexpression an der Invasionsfront im Vergleich zu anderen 

Bereichen des Tumors auf. Erhöhte INH3-Levels waren mit TP53-Mutationen und 

Lebermetastasen assoziiert. 
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  Insgesamt konnte gezeigt werden, dass die Expression von MIR34A in KRK-Zellen 

durch HIF1A inhibiert und durch p53 hingegen erhöht wird. MIR34A unterdrückt die 

Expression von INH3 und verhindert so die Aktivierung von STAT3 und hemmt EMT 

und Metastasierung. In der Zukunft könnten Strategien zur gezielten Beeinflussung 

dieses Signalwegs genutzt werden, um die Metastasierung von KRKs zu hemmen 

und die Hypoxie-induzierte Therapieresistenz beim KRK zu überwinden. 
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