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Zusammenfassung

Die hier vorliegende Dissertation befasst sich mit dem Themengebiet der zweidimension-
alen konformen Feld Theorien (CFT). Der Schwerpunkt liegt auf der Betrachtung von
Defekten in konformen und insbesondere supersymmetrischen konformen Feldtheorien.
Im ersten Teil der Arbeit werden einige Konzepte der konformen Feldtheorien erörtert,
welche im weiteren Verlauf der Arbeit benötigt werden. Das dritte Kapitel führt danach
in das Themengebiet der Defekte in CFTs ein. Dabei werden deren Klassifikation und
Eigenschaften, wie z.B. Klebebedingungen, Fusion, Faltung sowie Transmissivität und Re-
flexivität, im Detail erläutert.
Seit geraumer Zeit findet die Verschränkungs-Entropie in der Physik zunehmend Beach-
tung, da diese ein gutes Maß darstellt um die “Stärke” der Verschänkung eines Quanten-
systems zu beschreiben. Im vierten Kapitel wird darauf eingegangen, wie diese Entropie
definiert ist und wie man sie prinzipiell für beliebige Systeme berechnen kann. Insbeson-
dere wird der sogenannte “relpica trick” erläutert, welcher die Verschränkungs-Entropie in
zweidimensionalen CFTs mittels Twist-Feldern zu berechnen erlaubt.
Im weiteren Verlauf werden die bereits bekannten Twist Felder auf den supersymmetrischen
Fall erweitert. Damit können supersymmetrische Verschränkungs- und Renyi Entropien
berechnet und mit den ursprünglichen nicht supersymmetrischen Ergebnissen in Relation
gebracht werden.
Da zu Beginn nicht unmittelbar klar ist, ob die supersymmetrischen Twist Felder wirklich
im Spektrum der Theorie enthalten sind, wird im darauffolgenden Kapitel eine genauere
Betrachtung des Spektrums in supersymmetrischen Zn getwisteten Theorien angestellt, um
die Konstruktion des supersymmetrischen Twist Feldes zu rechtfertigen.
Das siebte Kapitel dieser Arbeit wird sich mit der Berechnung der Verschänkungs-Entropie
in Gegenwart eines topologischen Defektes beschäftigen. Dies wird zeigen, dass die Entropie
S in zwei Teile zefällt

S =
c

3
logL+ Ssub,

wobei die gesamte Information des Defektes in dem Term Ssub enthalten ist und L die Länge
des Verschänkungs-Intervalls darstellt. Das Ergebnis wird an Beispielen dargestellt. Unter
anderem wird die Implikation für Coset Theorien untersucht, welche frei von Fixpunkten
unter Feldidentifikationen sind. Dabei wird anhand ausgewählter Beispiele ersichtlich, dass
die Verschänkungs-Entropie in die einzelnen Bestandteile des Cosets “zerfällt”.
Im darauffolgenden Teil wird eine ähnliche Verschränkungs-Entropie, die sogenannte links/
rechts Verschränkungs-Entropie, betrachtet. Die Idee hierbei ist einen Randzustand zu
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entfalten und diesen als Defekt zwischen ein und derselben chiralen CFT aufzufassen.
Erneut werden die gewonnenen Erkenntnisse an ausgewählten Beispielen erläutert.
Für d Bosonen, welche auf einem Torus kompaktifiziert sind, wurden die dazugehörigen
Defekte bereits konstruiert. Indem wir unsere Rechnung aus den vorherigen Kapiteln auf
diese Defekte anwenden, können wir einen cross-check mit bereits bekannten Ergebnissen
ziehen und unsere Herangehensweise untermauern.
Im letzten Kapitel werden Indizes in der Gegenwart von (topologischen) Defekten betra-
chtet. Es wird speziell der Witten Index zwischen zwei Randzuständen, in der Gegenwart
eines oder mehrerer topologischer Defekte, berechnet. Der resultierende Index lässt sich
geometrisch als die Schneidungszahl von D-Branen interpretieren. Anhand ausgewählter
Beispiele wird dieser Sachverhalt explizit präsentieren.
Zusätzlich wird das elliptische Geschlecht in Gegenwart topologischer B-Typ Defekte un-
tersucht. Durch die Betrachtung eines speziellen Grenzwertes für das Geschlecht, erhält
man einen Ausdruck für den Witten Index in der Gegenwart eben dieser Defekte. Durch
die Analyse der Struktur des Index, kann eine Verbindung zu bereits bekannten Resultaten
festgestellt werden.
Um die Arbeit thematische abzuschließen, wird zuletzt der Ausdruck für den Witten Index
auf die Berechnung der Verschränkungs-Entropie angewendet. Dabei werden wir fest-
stellen, dass nur Ssub zu der Entropie beiträgt, d.h. dass es sich wirklich um eine topolo-
gische (Intervall L unabhängige) Größe handelt.



Abstract

The following thesis covers the area of two dimensional conformal field theory (CFT).
Of particular interest will be special objects within these theories so called defects and
supersymmetric CFTs. After a short introduction we will review some important concepts
concerning CFTs.

In the third chapter we will introduce the notion of defects and discuss their classification
and properties such as their gluing conditions, transmissivity and reflectivity, unfolding
and their fusion.

The entropy of entanglement has gained importance in various areas of physics over the last
years. It has been shown that the entropy of entanglement, or short entanglement entropy,
gives a good measure for quantifying the amount of entanglement between two subsystems
of a quantum mechanical many-body system. In the fourth chapter we will discuss how
one can define entanglement entropy and how it can be calculated. In particular we will
consider the so called ‘replica trick’ which will allow us to calculate entanglement entropies
in two-dimensional CFTs via twist fields.

In the following chapter we will generalize the encountered twist fields to a supersymmetric
version. With this we can calculate supersymmetric generalizations of Renyi and entan-
glement entropies and connect the obtained results to the original non-supersymmetric
cases.

From the beginning it is not clear right away that the new supersymmetric twist fields
really are contained in the spectrum of our theory. Therefore, we will perform a detailed
discussion if and how these fields are contained in the spectrum of the Zn orbifolded theory.

In chapter seven of this thesis we will calculate the entanglement entropy through a topo-
logical defect. We will see that the entropy will decompose into two parts

S =
c

3
logL+ Ssub,

where all the information coming from the defect are contained in the subleading contri-
bution to the entanglement entropy Ssub, and L is the length of the entangling region. We
will apply our result to various examples, especially to chosen examples of fixed point free
coset models. For those we will see that the subleading contribution will decompose into
the individual coset parts.

In the following we will consider a related entropy the so called left/right entanglement
entropy. By unfolding a boundary state one can interpret it as a topological defect acting
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only on the chiral part of the Hilbert space. Performing a similar calculation, as in the
chapter before we will highlight our obtained result again with several examples.
For d free bosons compactified on tori the conformal defects have been constructed explic-
itly. In applying our calculation of the previous chapters to this case we can rederive the
entanglement entropy to leading order and compare to known results. In this way we also
give a cross-check to our previous calculations.
In the last chapter we will calculate indices in the presence of topological defects. We
will start by calculating indices with defects between boundary states. These indices can
geometrically be interpreted as the intersection number of D-branes. We will highlight the
concepts on explicit examples.
In addition we will calculate the elliptic genus in the presence of a topological B-type
defect. By taking a specific limit we can find an expression for the Witten index with a
defect insertion. By analysing the structure of the Witten index we can compare our result
to already known results which have been performed by calculating the spectrum between
permutation branes.
Thematically we will complement the thesis by applying the Witten index to calculate the
entanglement entropy in the Ramond sector. Thereby we will observe that there is only a
subleading contribution thus defining a topological quantity, i.e. independent of L.



Chapter 1

Introduction

Always there has been a deep interplay between mathematics and physics. Results known
for ages in one subject found in many cases applications in the other subject and vice versa.
For mathematicians the notion of conformal mappings, which are local angle preserving
transformations, have been a toolkit since the development of complex analysis. In the
19th century these conformal mappings first became relevant for physicists in the context
of electrodynamics. Especially two dimensional electrostatic problems could be solved by
performing a conformal map to a simpler geometry.

In 1918 a special class of conformal transformations, so called Weyl transformations [8],
found entrance in one of the most innovative theories of physics: general relativity. Ever
since people realized that it is worth studying conformal transformations in more detail.
Great progress was achieved when people combined QFT with conformal invariance in
the 1960’s resulting in conformal field theory (CFT). In this time very interesting and
useful theories were constructed e.g. the conformal bootstrap program [9] which is a non-
perturbative method to solve and constrain conformal field theories.

When in the 1970’s string theory was born conformal field theories once again gained
in importance. It’s been in that time that a systematic study and classification of ‘all’
possible CFTs started. By Julian Schwinger it was foreseen that statistical physics at
inverse temperature β = 1/T is equivalent to imaginary time in QFT. Indeed this relation
was proven, to be more precise it has been shown that a conformal field theory can realize
a quantum statistical system at criticality. This was the starting point for applications of
CFTs to (quantum) critical statistical systems.

With the AdS/CFT correspondence conjectured by Maldacena in 1997 [10] CFTs did
arise in another context. The conjecture links theories formulated on AdS-spacetime, in
particular quantum gravity theories, with conformal field theories. Thereby the CFTs are
assumed to live on the boundaries of the AdS-spacetime. The duality between these two
theories represents a major advantage in our understanding of quantum gravity or string
theory. Apart from that the correspondence provides a powerful tool for studying strongly
coupled quantum systems. This is mainly because the duality is basically a strong-weak-
duality, i.e. strongly coupled quantities in one theory are dual to weakly coupled quantities
in the other theory that can e.g. be calculated using perturbation theoretical methods.
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As mentioned before CFTs find applications in quantum statistical systems, for example
the Ising model at critical can be realized via a CFT description. In statistical pyhsics a
special interest lies within quantum impurities. These impurities can change the system in
a non-trivial way and have been subject of study for several years especially in condensed
matter physics [47, 48]. For the CFT side these quantum impurities lead to the notion of
conformal defects.
These defects describe critical impurities of low dimensional quantum systems. For two
dimensional CFTs defects can be thought of as lines separating two (possibly different)
CFTs on each side of the defect. Thereby the defect, or also called interface, acts as a map
from one CFT to the other and vice versa. Folding the CFTs along the defect line result
in a tensor theory of the two CFTs with the defect representing a boundary condition [39].
In this way the notion of defects can be related to the area of determining boundary
states in a CFT. As it turned out the defects generalize in a natural way the notion of
boundary conditions by setting local gluing conditions along the defect line. Interfaces and
their properties such as their transmissivity and reflectivity [49] or their implementation of
symmetries [54] have been studied in various contexts and many of their properties have
been discovered [50–54]. For example it has be shown that special defects can implement
symmetries or dualities [45,46] between the various CFTs.
The nature of quantum mechanics is sometimes in contradiction to our experience of the
world. In particular this is evident for entangled states for which there is no classical
analogue. These states are many-body states with a non-local correlation, i.e. measurement
of an observable of an entangled subsystem influences the outcome of the measurement for
another subsystem. This fact caused severe doubt on the consistency of the formulation
of quantum mechanics. Even A. Einstein was so curios about this non-local correlations
between entangled subsystems that it cause him to call them as ‘spooky action at a distance’
[61]. It was not before J. Bell in 1964 who showed that these correlations have to be
inconsistent with reasonable local theories or hidden variables. [62].
In modern physics the concept of entanglement finds many applications e.g. in computa-
tions [63, 64] (especially quantum computation), communications [65] and the simulation
of physics for strongly correlated systems [66]. Apart from these areas of physics the con-
cept of entanglement also has established in condensed matter physics [70], high energy
field theory such as CFT [78] and even in quantum gravity [72, 73] where the entropy of
entanglement can be calculated in the AdS/CFT correspondence as the minimal surface
in the bulk with the entangling region endpoints as its boundary.
There exist many concepts of how to quantify the information contained in an entangled
system [75](for a nice review see [76]). For us of special interest is the so called entropy
of entanglement or simply entanglement entropy. The entanglement entropy is basically
the von Neumann entropy of the reduced density matrix with respect to one subsystem.
Apart from the usual properties of an entropy the entanglement gives a good measure how
much entanglement is between two subsystems. Especially for a vanishing entanglement
entropy there is no entanglement, i.e. no correlation between the two systems.
Unfortunately the entanglement entropy is not accessible in experiment but another, re-
lated entropy called Renyi-entropy [36, 75] can be measured. The entanglement entropy



3

can be rederived from the Renyi entropy by taking a specific limit. This then connects
theoretical predictions with experimental results.
Quantum field theory has been a great success since its development in the 1950’s. The
theoretical predictions of QED and QCD have been tested with overwhelming precisions in
experiments. Nevertheless, there are several open questions that cannot be answered with
the standard model of particle physics, e.g. what is the origin of dark matter and energy?
Why do we observe a mass hierarchy? Why is the unification of gravity with weak and
strong interactions at short distances not possible?
String theory provides a good ansatz for solving these questions, especially the unification
of gravity and quantum theory is manifest in string theory. Apart from that supersym-
metry is thought to be a good candidate for answering the questions of dark energy and
matter. Supersymmetry (short SUSY) is an additional symmetry that transforms bosons
into fermions and vice versa [12,13]. Especially every particle in the standard model has a
corresponding superpartner.
The supersymmetry algebra predicts that at each excited energy level there is an equal
number of bosons and fermions while for the ground state there is no such correspondence,
i.e. the ground state breaks SUSY. This fact inspired E. Witten to his definition of the
Witten index [14] which is the trace over the entire Hilbert space with a (−1)F insertion,
where F is the fermion number operator. Clearly the Witten index exactly counts the
difference of bosonic and fermionic ground states.
In the context of a supersymmetric sigma model, such as the Landau-Ginzburg model,
living on a manifold M the Witten index can in some cases be related to the Euler char-
acteristic of the manifold, i.e.

trH(−1)F = χ(M).

In this way one can connect quantum theory to geometry. As has been shown [96,97] there
is a deep relation between Landau-Ginzburg models and N = 2 superconformal minimal
models. Especially it is known [?, 18] that the Witten index calculated between boundary
states of N = 2 minimal models at level k can be interpreted as the intersection number
for D-branes of a Landau-Ginzburg theory with superpotential W = Xk+2.
In this thesis we want to connect the concept of defects with entanglement entropy and
indices. Thereby we proceed as follows:

• In the second chapter we review the most important concepts of conformal fields
theories creating a setup for the entire work. Apart from general features such as
conformal transformations, the energy-momentum tensor and highest weight repre-
sentations of the Virasoro algebra we will in particular highlight the area of boundary
conformal field theories [34, 35, 94] and N = 2 superconformal field theories [28]. A
special emphasis thereby will lie on their properties such as the chiral ring, spectral
flow [15] and the realization via a coset construction.

• After this we will turn to a more detailed discussion on defects. We will learn that
defects in some sense generalize boundary conditions already known from the CFT
chapter. Highlighting the properties of two special classes of defects called topological
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and factorizable defects we will show how they can be rederived from a boundary
state formalism. In particular topological defects implement symmetries and dualities
between two CFTs [44–46, 54]. In this context we explicitly introduce the notion of
duality, elementary and group like defects.

The connection of defects to boundary states will be seen explicitly by reviewing the
so called folding trick that has been known to many-body physicist for a long time
and first has been applied in the context of conformal interfaces in [39]. By reviewing
the notion of transmission and reflection [49] for a defect we will gain a good intuition
for the notion of topological and factorizable defects.

General defects inhabit a new feature different from boundary states, namely they
can be fused together to yield a new defect. In general the fusion on the quantum
level is singular. Therefore, a renormalization procedure has to be applied [41, 55].
Apart from fusing two defects with each other to create a new one it is also possible
to fuse a defect onto a boundary state. This in particular has been shown for the
case of a topological defect in a rational CFT [44].

• In the fourth chapter we will introduce the concept of entanglement [75, 76] and
comment on how it can be quantified by calculating the von Neumann entropy. Also
the impact of entanglement on other areas of physics will be discussed. Using the so
called replica trick [78,81] the calculation of entanglement entropies can be simplified.
Thereby the so called Renyi entropy S(n) [36, 75] arises in a natural way which can
be analytically continued to yield the ordinary entanglement entropy S in the limit
n → 1. Since the Renyi entropy is the only one accessible in experiment we briefly
comment on a recent paper where they propose a setup for measuring the entropy [36].

In a two dimensional CFT the Renyi entropy can be calculated via so called twist fields
Tn living in the Zn orbifold of the n-times replicated theory CFTn. We will introduce
these twist fields and review how to calculate Renyi entropies for a single and for
several entangling intervals. Thereby we will also consider the cases of mapping to
other geometries, e.g. systems described at finite temperature or finite size [78].

• In the following two chapters we will generalize the notion of the twist field Tn to the
N = 2 supersymmetric case. The supersymmetric version of Tn has been constructed
in [86] under the condition that it should be a chiral primary field in both left- and
right-moving degrees of freedom. To be more precise the supersymmetric field Sn is
constructed from Tn by application of a specific spectral flow that is realized by a
vertex operator. After a brief review of their construction we generalize the super-
symmetric twist fields to general chiralities in both left- and right-moving degrees of
freedom. With these generalized fields we will calculate the supersymmetric version
of the Renyi entropy (SRE) for one and several intervals.

As an interesting result we will see that for a single interval the leading term in
the Renyi entropy is identical with the entanglement entropy. This is in contrast
to the pure ‘bosonic’ case where the insertion of twist fields Tn yield in a leading
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term depending on the number of sheets n and just giving the entanglement entropy
leading term in the limit n→ 1. As it is convenient we also will discuss the properties
of the SRE in other geometries and with systems restricted to the right half plane
setting boundary conditions along the imaginary axis.

From the beginning it is not clear if the new twist field Sn is really contained in the
spectrum of the orbifold theory Mn/Zn of a N = 2 superconformal field theory M.
In [84,85] they provide a construction method of these twist fields using the spectral
flow. We will generalize their results. In particular we will see that it is crucial how
often and in which theory we have to demand the existence and the possibility to
apply the spectral flow.

• In chapter 7 we then will calculate the entanglement entropy through a topological
defect aligned along the imaginary axis. We will review the method for calculating
the partition function on the K-sheeted Riemann surface as introduced in [82]. Our
main result for this chapter will be that the entanglement entropy takes the form

S =
c

3
logL+ Ssub,

where all the information coming from the defect are encoded in the sub-leading
term Ssub of the entropy. We will apply our result to several examples such as
duality defects, the Ising model and models based on a u(1)k and su(2)k Kac-Moody
algebra. Another set of examples is provided by coset models. In calculating the
subleading contribution to the entanglement entropy we will see in several examples
that for fixed-point free coset models with a Z2 field identification the subleading
term decomposes into the individual coset parts. Thus the entanglement entropy for
these coset examples is completely determined by the knowledge of the results for
the subleading terms of su(2)k and u(1)k theories.

• By Unfolding a boundary one can associate a defect to it acting only on the chiral
part of the algebra. In chapter 8 we will review these procedure for Cardy boundary
states and calculate the so called left/right entanglement entropy first introduced
in [87,88] associated to this defect. Again we will highlight our obtained results with
several examples, especially for coset theories.

• In chapter 9 we briefly will discuss the (left/right) entanglement entropy through
topological interfaces for d bosons compactified on a torus. Performing the same
steps as in the calculation for the (left/right) entanglement entropy we reproduce the
results obtained in [82, 87] via a direct calculation. In this way we also verify the
steps performed in the calculation of the last two chapters.

• In the last chapter we will include defects to calculate indices in N = 2 superconfor-
mal theories. In the first part we will review how an index between boundary states
in a N = 2 superconformal minimal model is defined. Afterwards we will include
topological defects and calculated the associated indices. Since it is known that these
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models are realized as the IR fixed point of the Landau-Ginzburg model with super-
potential Xk+2 we can give a geometric interpretation of the index in the presence of
one (or several) topological defects in terms of a intersection numbers of D-branes.
We will highlight the result with several explicit examples. Next we will show that
the same index can also be calculated from unfolding the boundary states. In this
way we can also view the index as a torus partition function of the chiral algebra. By
introducing the concept of boundary state overlaps with the Ramond ground states
we can give a generalization in how to calculate indices for non-topological defects.
In particular we will see that the defect induces a metric connecting the boundary
brane overlaps.

As another application we will calculate the elliptic genus E(τ, z,D) in the presence
of a topological B-type defect D. In the limit where z → 0 the elliptic genus exactly
reproduces the Witten index. We can compare our obtained result with [21] where
they calculated the spectrum between two permutation branes. Unfolding these
permutation branes exactly results in the B-type topological defects used in our
calculation of the elliptic genus.

Finally to conclude the thesis we apply the result obtained for the elliptic genus to
calculate the contribution from the Ramond sector to the entanglement entropy.



Chapter 2

Basics on Conformal Field Theories

In this chapter we review the basic ingredients of conformal field theories which we will
need in later chapters of this thesis. Many of the presented concepts can be found in the
literature, e.g. [1–4,6].

2.1 Conformal Transformations & Virasoro Algebra

A conformal field theory (CFT) is a quantum field theory which is invariant under con-
formal transformations of the coordinates. Thereby conformal transformations are defined
as transformations xµ → x′µ(x) that leave the metric invariant up to an overall function
depending on the coordinates, i.e.

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) = Ω(x)gαβ(x). (2.1)

Especially this means that under conformal transformations local angles are preserved.
Realizations of conformal transformations are given by translations, dilations, rotations and
special conformal transformations (SCT= composition of inversion-translation-inversion)
CFTs arise in various areas of physics such as condensed matter physics, string theory or
the AdS/CFT correspondence but also find applications in two dimensional electrostatics.
From now on we will restrict all our discussions to the two-dimensional case. In two
dimensions it can be shown that every (anti-)holomorphic transformation is a conformal
one (e.g. see figure 2.1). Thus one can complexify the spacetime coordinates according to

z = t+ ix (2.2)

z̄ = t− ix. (2.3)

An infinitesimal transformation is then given by

z → z′ = z + ε(z) = z +
∑
n∈Z

εn
(
−zn+1

)
, (2.4)

z̄ → z̄′ = z̄ + ε̄(z̄) = z̄ +
∑
n∈Z

ε̄n
(
−z̄n+1

)
, (2.5)
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where εn and ε̄n are infinitesimal constants. Given a particular n in the series the associated
generators for the transformation are given by:

ln = −zn+1∂z and l̄n = −z̄n+1∂z̄. (2.6)

Figure 2.1: Conformal transformation z → z2/2 in two dimensions.

The generators form an algebra, the so called Witt algebra

[ln, lm] = (n−m)ln+m

[l̄n, l̄m] = (n−m)l̄n+m (2.7)

[ln, l̄m] = 0

A general generator for conformal transformations then takes the form∑
n

(
εnln + ε̄nl̄n

)
. (2.8)

With this operator we can generate all conformal transformations of functions f(z, z̄). It is
important to note that the transformations are analytic near the point z = 0, nevertheless,
the transformations may introduce poles at z = 0.
The Witt algebra allows a central extension which is the quantum version of the conformal
generators. The generators Ln (just left movers) then fulfil the so called Virasoro algebra
V irc:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n. (2.9)

Initially the algebra was discovered in the context of string theory [11]. The constant c is
called central charge that is a specific quantity for each theory considered. In particular
the generators L−1, L0 and L1 form a closed subalgebra generating transformations of the
form

z → az + b

cz + d
, with a, b, c, d ∈ C, (2.10)

with the restriction ad − bc = 1 for the transformation to be invertible. The above
transformation is invariant under the exchange of variable according to (a, b, c, d) →
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(−a,−b,−c,−d). These transformations are globally defined on the Riemann sphere
S2 = C ∪ ∞ and are generated as before by L−1, L0 and L1.1 The transformations
can be identified with the group elements(

a b

c d

)
∈ SL(2,C)/Z2. (2.11)

Especially the generator L−1 generates translations of the form z → z + b, L0 generates
dilations and rotations z → az and L1 gives rise to special conformal transformations of
the form z → z

cz+1
.

2.2 The Energy Momentum Tensor

If a theory possesses a symmetry then there usually is a conserved current associated to
this symmetry. Considering a conformal symmetry transformation xµ → xµ + εµ(x), the
current associated to this transformation is given by

jµ(ε) = Tµνε
ν , (2.12)

where Tµν are the components of the energy-momentum tensor. For the current to be
conserved we need:

∂µjµ = (∂µTµν) ε
ν + Tµν∂

µεν = 0. (2.13)

The first term in the sum is zero since the energy-momentum tensor itself is conserved.
The second term in the sum can be rewritten as

Tµν∂
µεν =

1

2
Tµν (∂µεν + ∂νεµ) =

1

2
T µ
µ (∂ · ε). (2.14)

Since the expression should be identically zero for all possible transformations ε(x) we find
that the energy momentum tensor in a conformal field theory has to be traceless for the
current to be conserved, i.e.

T µ
µ = 0. (2.15)

Using complex coordinates it is straight forward to show that there are only two non-
vanishing components of the energy-momentum tensor given by

Tzz(z, z̄) =: T (z) and Tz̄z̄(z, z̄) =: T̄ (z̄), (2.16)

which represent a chiral and an anti-chiral field respectively. By performing a Laurent
expansion around z = 0 the energy-momentum tensor can be written in terms of Virasoro

1Note that L−1, L0 and L1 are well defined on the Riemann sphere, this is not true e.g. for Ln with
n ≤ −2.
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generators as

T (z) =
∑
n∈Z

Lnz
−n−2 (2.17)

T̄ (z̄) =
∑
n∈Z

L̄nz̄
−n−2. (2.18)

Since the modes of the energy-momentum tensor are the Virasoro generators one sees that
T (z) (respectively T̄ (z̄)) indeed is the generator of conformal transformations.

2.3 The Operator Product Expansion

In CFTs the notion of fields or also called local operators is slightly different from the
ordinary QFT point of view. In a conformal field theory the term ‘field’ simply refers
to any local operator that one is able to write down. This in particular includes fields Φ,
derivatives of fields ∂nΦ and also composite operators such as the vertex operator : exp(iΦ) :
(for properties of the vertex operator see appendix A), where : · : denotes normal ordering.
A general field Φ(z, z̄) may be expanded in a Laurent series around z = 0 as

Φ(z, z̄) =
∑
n,n̄

Φn,n̄z
−n−hz̄−n̄−h̄. (2.19)

The constants h and h̄ are called conformal weights and are specific for each field. They
can be related to the known scaling dimension ∆ of an operator and its spin s via

h =
1

2
(∆ + s) (2.20)

h̄ =
1

2
(∆− s) (2.21)

In a quantum theory the amplitudes Φn,n̄ are subjected to be operators as we have seen
e.g. in the example of the energy-momentum tensor.
One now can define the so called operator product expansion (short OPE), which is a
statement about what happens when one brings two local operators close together. The
main idea is that two operators that are inserted at close enough points near each other
can be represented as a set of new operators sitting at one of the insertion points. We
denote the fields by Φi, where the label i runs over the set of all possible fields. The OPE
is then given by

Φi(z, z̄)Φj(w, w̄) =
∑
k

Ck
ij(z − w)hk−hi−hj(z̄ − w̄)h̄k−h̄i−h̄jΦk(w, w̄). (2.22)

Here hi (respectively h̄i) is the conformal weight of the field Φi and Ck
ij are constants. In

general the limit z → w on the right hand side is singular, nevertheless, e.g. in N = 2
superconformal field theories there exist fields, so-called chiral primaries, with the property
that their OPE is always non-singular (see section 2.12.3).
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2.4 Primary Fields and Transformation Law

A special class of fields are the so called primary fields. These fields obey the following
transformation rule under a conformal transformation z → f(z):

Φ(z, z̄)→
(
∂f

∂z

)h(
∂f̄

∂z̄

)h̄
Φ(f(z), f̄(z̄)). (2.23)

For the OPE of primary fields with the energy-momentum tensor holds

T (z)Φ(w, w̄) =
h

(z − w)2
Φ(w, w̄) +

1

z − w
∂wΦ(w, w̄), (2.24)

T̄ (z̄)Φ(w, w̄) =
h̄

(z̄ − w̄)2
Φ(w, w̄) +

1

z̄ − w̄
∂w̄Φ(w, w̄). (2.25)

The energy-momentum tensor itself is not a primary field, this can be seen from its OPE
with itself

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w). (2.26)

Under a conformal transformation the energy-momentum tensor transforms as

T (z)→ T̃ (z) =

(
df

dz

)2

T (f(z)) +
c

12
S(f ; z), (2.27)

where the so called Schwarzian derivative has been introduce which is defined by

S(f ; z) =
(d3f/dz3)

(df/dz)
− 3

2

(
(d2f/dz2)

(df/dz)

)2

. (2.28)

Note that the term coming from the Schwarzian derivative does not depend on T itself
which means that when evaluated on states it will give the same result for all of them.
Thus it only affects the constant term, i.e. the zero mode, in the energy. This makes it
plausible to identify it with the Casimir energy of the system.
The transformation properties of the energy-momentum tensor are essential for performing
calculations in different geometries. Consider for example the important case that our CFT
is defined on a cylinder [6] parameterized by (in string language)

w = σ + iτ , σ ∈ [0, 2π). (2.29)

By the conformal mapping z = exp(−iw) we can map the cylinder geometry to the complex
plane (see figure 2.2). Thereby constant time slices on the cylinder (τ = const.) are mapped
to circles of constant radii in the z-plane where the infinite past τ = −∞ is mapped to the
origin z = 0. In this picture the quantization is taken place in the radial direction which
is referred to as radial quantization [1, 2, 6].
Under the transformation we find using (2.27)for the energy-momentum tensor of the
cylinder in terms of the energy-momentum tensor on the complex plane as



12 2. Basics on Conformal Field Theories

τ

σ

w

z = exp(−iw)

z

Figure 2.2: Mapping from the cylinder to the complex plane with time
evolution along the cylinder axis (red) and its image in the complex plane.

Tcylinder(w) = −z2Tplane(z) +
c

24
=

c

24
−

∞∑
n=−∞

Lplanen einw. (2.30)

On the cylinder the Hamiltonian generates time translations. We see that these time
translations correspond in the plane geometry to dilations generated by Lplane0 . Thus the
correct identification is

Lcyl0 = L0 −
c

24
. (2.31)

The Hamiltonian Hcyl on the cylinder thus can be expressed in terms of the generators on
the plane as

Hcyl = Lcyl0 + L̄cyl0 = L0 + L̄0 −
c

12
, (2.32)

and for the momentum operator Pcyl

Pcyl = Lcyl0 − L̄
cyl
0 = L0 − L̄0. (2.33)

2.5 Operator-State Correspondence

In a well defined QFT there exists a direct correspondence between fields and states in the
Hilbert space. Let us consider a primary field of conformal dimension (h, h̄) denoted by
Φ(z, z̄). We define an symptotic in-state by

|h, h̄〉 = lim
z,z̄→0

Φ(z, z̄) |0〉 = Φ−h,−h̄ |0〉 . (2.34)

This definition is clear since when mapped to the cylinder z = 0 corresponds to infinite
past. We see that we have a 1 : 1 correspondence2 between the fields and the associated
in-state. In a similar way one may define a asymptotic out-state corresponding in the
cylinder geometry to infinite future. This means we need to construct an analogous object
for z → ∞, i.e. the correct adjoint field. By the conformal map z = 1/w we map points

2Note that this 1:1 correspondence is special to CFTs
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at z =∞ to the origin. Using the transformation law for primary fields (2.23) we find for
the field in the new coordinates

Φ̃(w, w̄) = Φ(z(w), z̄(w̄))(∂wz)h(∂w̄z̄)h̄ = w−2hw̄−2h̄Φ(1/w, 1/w̄). (2.35)

An asymptotic out-state thus can be defined by

〈h, h̄| = lim
w,w̄→0

〈0| Φ̃(w, w̄) =

lim
z,z̄→∞

〈0| z2hz̄2h̄Φ(z, z̄). (2.36)

We see that the adjoint operator (field) is given by

[Φ(z, z̄)]† = z2hz̄2h̄Φ(1/z, 1/z̄). (2.37)

Note that the roles of holomorphic and anti-holomorphic variables are exchanged. To get
a better felling of the notion of an adjoint operator let us consider the case of the energy-
momentum tensor with conformal weights (h, h̄) = (2, 2). Applying the definition (2.37)
on just the holomorphic part we find

T †(z) = z̄−4T (1/z̄) =
∑
n

Ln(1/z̄)−n−2z̄−4 =
∑
n

Lnz̄
n−2. (2.38)

On the other hand we directly find

T †(z) =

(∑
n

Lnz
−n−2

)†
=
∑
n

L†nz̄
−n−2. (2.39)

Comparing the two results we find the correct identification for the Virasoro generators
and their hermitian conjugate

L†n = L−n. (2.40)

2.6 Highest Weight Representation

In this section we briefly discuss the representation theory arising from the Virasoro algebra
V irc (2.9). Let us begin by defining a highest weight state |h〉 by the following properties
(just the holomorphic part)

Ln |h〉 = 0 for n > 0 (2.41)

L0 |h〉 = h |h〉 . (2.42)

In this case the action of L−n for n > 0 creates new states with L0 eigenvalues

L0L−n |h〉 = (h+ n)L−n |h〉 . (2.43)
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level L0 eigenvalue states

0 h |h〉
1 h+ 1 L−1 |h〉
2 h+ 2 L2

−1 |h〉 , L−2 |h〉
3 h+ 3 L3

−1 |h〉, L−1L−2 |h〉, L3
−1 |h〉

...
...

...

N h+N P (N) states

Table 2.1: Possible states at a given level N that can be constructed out of
the highest weight state |h〉. The number at level N is given by P (N), the
number of partitions.

We then call |h〉 a highest weight state and the set of all states, that can be constructed
from the highest weight state by applying the negative Virasoro generators, Verma module
Vc,h, i.e.

Vc,h = {L−n1 · · ·L−nM |h〉 | ni ≥ 0 ∀M ∈ N}. (2.44)

States in the Verma module have L0 eigenvalues h + N , where N =
∑

i ni is called the
level. Note that a given level N can be realized by several states as shown in table 2.1.
One also calls the states in the Verma module the descendants of the highest weight state,
thus the Verma module yields a representation. In principle there can be more than one
highest weight state for a given CFT, we will come to this later.
It is important to note that every CFT at least has the vacuum representation build on
the highest weight state with h = 0. Depending on (h, c) there can also occur states of
vanishing or even negative norm. Those states have to be projected out by hands. We
won’t go into the detail of this procedure related to the so called Kac-determinant. For a
good discussion see e.g. [1, 2].
Theories of special interest the unitary theories. It can be shown that unitary theories,
i.e. theories where all states of descendants have positive norm, can only be realized if the
central charge and highest weight take the following specific values

c = 1− 6

m(m+ 1)
m = 3, 4, . . . (2.45)

hp,q =
[(m+ 1)p−mq]2 − 1

4m(m+ 1)
, (2.46)

with 1 ≤ p ≤ m− 1 and 1 ≤ q ≤ m.
We see that in unitary theories only a finite number of highest weight states |hp,q〉 can
occur. Further the central charge also only takes discrete rational values and is bounded
from above by c = 1 which can e.g. be realized by the free boson CFT. Because the central
charge only takes rational values those theories are also called rational CFT or unitary
minimal series.
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2.7 Correlation Functions

In ordinary QFT usually one is interested in calculating vacuum expectation values of fields.
These can in general be quite complicated. In CFTs the symmetry group SL(2,C)/Z2

∼=
SO(3, 1;R)/Z2 is so restrictive that it fixes the outcome of two- and three-point functions
completely up to a constant. In order to see this consider a set of primary fields {Φi(z, z̄)}
with corresponding conformal weights (hi, h̄i). For the N -point function we then have by
the transformation properties of the primaries (2.23)

〈Φ1(z1, z̄1) · · ·ΦN(zN , z̄N)〉 =
N∏
j=1

(∂f(zj))
hj(∂̄f̄(z̄j))

h̄j 〈Φ1(f(z1), f̄(z̄1)) · · ·ΦN(f(zN), f̄(z̄N))〉

(2.47)
By this equation the coordinate dependence of the one-,two- and three-point function are
fixed by the SL(2,C)/Z2 conformal symmetry to:

〈Φ(z, z̄)〉 = 0, (2.48)

〈Φ1(z1, z̄1)Φ2(z2, z̄2)〉 =
k12δh1,h2δh̄1,h̄2

(z1 − z2)2h1(z̄1 − z̄2)2h̄1
, (2.49)

〈Φ1(z1, z̄1)Φ2(z2, z̄2)Φ3(z3, z̄3)〉 =
k123

zh1+h2−h3
12 zh2+h3−h1

23 zh1+h3−h2
13 z̄h̄1+h̄2−h̄3

12 z̄h̄2+h̄3−h̄1
23 z̄h̄1+h̄3−h̄2

13

,

(2.50)

where zij := zi − zj and similar for the complex conjugated variables. The undetermined
constants k12 and k123 appearing in the equations can not be fixed by the conformal sym-
metry. It is interesting that in the two point function one has the additional restriction
that the fields need to have the same conformal weights in order for the correlator not to
be identically zero.
Up to now the correlation functions for N ≤ 3 fields is entirely determined by the conformal
symmetry group. For N > 3 fields this is no longer the case since by the conformal
symmetry we only can fix three coordinate to lie on specific point on the complex plane.
The other N − 3 coordinates cannot be fixed by the conformal symmetry group. The only
thing that one can say is that in general they begin to have a dependence on cross ratios of
the coordinates zi (i ∈ {1, . . . , N}). For example the four-point function (just holomorphic
part) takes the form [1,2, 6]

〈Φ1(z1)Φ2(z2)Φ3(z3)Φ4(z4)〉 = F
(
z12z34

z13z24

,
z12z34

z23z41

)∏
i<j

z
−(hi+hh)+h/3
ij . (2.51)

Here h =
∑

i hi and F is an arbitrary function of 4(4− 3)/2 = 2 independent cross ratios
and is depending on the full operator content of the theory. General N -point functions are
thus given by functions of N(N − 3)/2 cross ratios where N − 3 coordinates can be fixed
by the conformal group.
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2.8 Conformal Ward Identity

Ward identities play an important role in QFTs, especially they are manifestations of sym-
metries related to the theory considered, e.g. charge conjugation, parity or gauge transfor-
mations. In CFTs we obviously have conformal symmetry. Conformal transformations are
generated by the energy momentum tensor T (z) (just holomorphic part). For correlation
functions we know that these must be invariant under conformal transformations, which
means

1

2πi

∮
dzε(z)〈T (z)Φ1(z1, z̄1)Φ2(z2, z̄2)〉 = 0. (2.52)

By applying the OPEs for the individual primary fields {Φi} with the energy momentum
tensor we find

1

2πi

∮
dz ε(z) 〈T (z)Φ1(z1, z̄1) · · ·ΦN(zN , z̄N)〉 =

1

2πi

∮
dz ε(z)

N∑
j=1

(
hj

(z − zj)2
+

1

z − zj
∂zj

)
〈Φ1(z1, z̄1) · · ·ΦN(zN , z̄N)〉. (2.53)

Since this equation has to be valid for every transformation ε(z) we finally obtain the
expression for the conformal Ward identity

〈T (z)Φ1(z1, z̄1) · · ·ΦN(zN , z̄N)〉 =

N∑
j=1

(
hj

(z − zj)2
+

1

z − zj
∂zj

)
〈Φ1(z1, z̄1) · · ·ΦN(zN , z̄N)〉. (2.54)

The result tells us that if we know the OPE between the energy-momentum tensor and a
field, then we immediately know the transformation of the field under conformal symmetry.
Alternatively if we know how an field transforms under the conformal symmetry we can
deduce (at least) some parts of the OPE of the field with the energy-momentum tensor.

2.9 CFT on the Torus

So far we have just considered the case that our CFT is living on the complex plane
or cylinder. We now want to discuss the next complicated manifold, namely a genus 1
manifold, which has the topology of a torus T2. The torus can be thought of as a cylinder
whose ends are sewn together (see fig. 2.3)
It is convenient to describe the torus in terms of the complex plane modulo a lattice (see
fig. 2.4), i.e. T2 = C/(Z ⊕ τZ). The lattice is spanned by two vectors 1 and τ , where we
call τ = τ1 + iτ2 the modular parameter.
Note that since we are considering conformal theories which means especially scale invariant
theories, we may always pick one basis vector to be 1. The two real constants τ1 and τ2

can be seen as the two cycles of the torus where as in section 2.4 τ2 can be associated
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Figure 2.3: The torus as genus 1 surface.

with time translations and τ1 may be related to spatial rotation. The gray region in figure

Re

Im

1

τ

0

Figure 2.4: Torus in terms of a lattice with basis vectors 1 and τ .

2.4 is called the fundamental domain of the torus. Geometrically the torus is obtained
by identifying opposite edges of the fundamental domain. Obviously there are different
choices of τ leading to the same lattice and, therefore, to the same torus. Let us consider
the following two transformations of the basis vector τ that again lead to the same torus:

1. modular T -transformation: In this case the basis vector τ transforms as

T : τ → τ + 1. (2.55)

The transformation is illustrated in figure 2.5.

2. modular S-transformation: Under a modular S-transformation τ transforms accord-
ing to

S : τ → −1

τ
. (2.56)

This has the effect of rotating the lattice with a rescaling of the basis vector along the
real axis to 1. The transformation can be illustrated in the easiest way taking τ to
be purely imaginary (see fig. 2.6). Clearly the modular S-transformation exchanges
the role of the two cycles of the cylinder.
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Re

Im

1

τ τ + 1

0

Figure 2.5: Modular T -transformation.

τ

− 1
τ

Rescaled

Rotated

1

Figure 2.6: Modular S-transformation for τ purely imaginary.

The set of all transformations that leave the torus invariant forms a group and is called
modular group. It can be shown that the modular T - and S-transformations generate the
entire modular group. The most general transformation of the modular parameter thus
has the form

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z; ad− bc = 1. (2.57)

Obviously the group is isomorphic to SL2(Z)/Z2, where the group SL2(Z) can be dfined
by the set of 2× 2 matrices (

a b

c d

)
(2.58)

with determinant 1. The Z2 identification is important since the element −E cannot be
distinguished from E.
Given the modular transformations one may now ask what the fundamental values of τ
might be. From the modular T -transformation we know that the real part of τ can be cho-
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S(F )

T−1(F ) T (F )

τ1

τ2

−1 1−3
2

3
2

−1
2

1
2

fundamental
domain F

Figure 2.7: Fundamental domain for modular group in the complex upper
half plane. In addition we see how the action under modular T - and S-
transformations acfts on the fundamental domain.

sen to lie in the fundamental domain Re τ ∈ [−1
2
, 1

2
]. The modular S-transformation maps

points from outside the unit circle to points inside the unit circle. Thus the fundamental
domain for the modular parameter τ can be found in the following region (see figure 2.7).

All other possible values of τ can now be reconstructed by taking τ and successively
applying modular T - and S-transformations.

2.9.1 Torus Partition Function and Modular Matrices

We have seen that the modular parameter τ inhibits information about time and spatial
transformations, to be more explicit spatial transformations are generated by

exp(2πiτ1Pcyl), (2.59)

whereas time translations are given by

exp(−2πτ2Hcyl). (2.60)

On the torus we both have time and spatial transformation implying for the partition
function

Z(τ, τ̄) = trHe
2πiτ1Pcyle−2πτ2Hcyl = trH

(
qL0− c

24 q̄L̄0− c̄
24

)
, (2.61)
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where q = exp(2πiτ). For a general Hilbert space which is a direct sum of highest weight
representations H = ⊕i,̄iMi,̄iHi ⊗ H̄ī this partition function can be written as

Z(τ, τ̄) =
∑
i,̄i

Mi,̄iχi(τ)χ̄ī(τ̄). (2.62)

Mīi denotes the multiplicities of occurrences of representations Hi ⊗ H̄ī in H and the
characters χi(τ) are defined by

χi(τ) = trHiq
L0− c

24 , (2.63)

and equally for the anti-holomorphic part. Under modular transformations of the torus-
parameter the holomorphic characters transform according to

χi(τ + 1) =
∑
j

Tijχj(τ) (2.64)

χi(−1/τ) =
∑
j

Sijχj(τ), (2.65)

whereas the anti-holomorphic characters transform as

χ̄ī(τ̄ + 1) =
∑
j̄

T ∗īj̄χ̄j̄(τ̄) (2.66)

χ̄ī(−1/τ̄) =
∑
j̄

S∗īj̄χ̄j̄(τ̄). (2.67)

The matrices appearing in the transformations are called modular T -matrix Tij and mod-
ular S-matrix Sij (and the same for the anti-holomorhpic part where ∗ represents complex
conjugation). We know that under modular T - and S-transformation our torus doesn’t
change, therefore, the partition function (2.62) should also be invariant under modular
transformations.
This gives rise to the following two conditions

Z(τ, τ̄) = Z(τ + 1, τ̄ + 1) ↔
∑
i,̄i

Mi,̄iTijT
∗
īj̄ = Mj,j̄, (2.68)

and

Z(τ, τ̄) = Z(−1/τ,−1/τ̄) ↔
∑
i,̄i

Mi,̄iSijS
∗
īj̄ = Mj,j̄. (2.69)

We see that the conditions that arise from modular invariance highly restrict our possible
spectra, i.e. Mīi. This means that in contrast to a CFT living on the complex plane for
CFTs living on tori the appearing representations and multiplicities are restricted according
to the geometry.
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For diagonal theories with Mi,̄i = δi,̄i it is interesting that we find the ‘normalization’
condition for the modular S-matrices ∑

i

|Sij|2 = 1. (2.70)

The classification of all modular invariant partition functions, i.e. the possible Hilbert
spaces that give rise to modular invariant partition function, is, still, an active field of
research. In RCFT the classification can be broken down into solving an algebraic problem
which, nevertheless, might be quite complicated. In a few cases complete results are
known [22–24]. For several families of RCFT’s based on the sl(2) algebra a special feature,
the so called ADE classification, emerges [22, 23]. Apart from that there exist different
approaches to the classification of modular invariant theories e.g. [25, 26] based on Galois
theory.

2.10 Fusion Rules and the Verlinde Formula

2.10.1 Fusion Rules

Given two primary fields we can look at the OPE of these fields. The general form is (just
holomorphic part)

Φi(z)Φj(w) ∼
∑
k

Ck
ijΦk(w) (z − w)hk−hi−hj + · · · , (2.71)

where Ck
ij ∈ C. We now can define the so called fusion coefficients

Nk
ij =

{
0 for Ck

ij = 0

1 otherwise
(2.72)

These are some integer numbers counting how many independent possibilities exist to
obtain the field Φk when fusing the two fields Φi and Φj. In general CFTs the fusion
number can be any integer number, in the special cases of rational minimal models [1,2,6]
they just take values Nk

ij ∈ {0, 1}.
With the help of the fusion numbers we can define the associated fusion algebra

[Φi]× [Φj] =
∑
k

Nk
ij[Φk]. (2.73)

We introduced the notation where [.] labels the set of conformal family for a given field.
Thus the fusion algebra tells us which fields of a conformal family can appear when fusing
two fields of another family together. This, in fact, doesn’t give us the exact OPE but
rather an overview which fields might appear.
With the definition (2.73) we see right away that the fusion numbers fulfil the symmetry
Nk
ij = Nk

ji, i.e. the algebra is commutative. From the vacuum field Φ0, which is the identity
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element of the algebra, we find Nk
i0 = δik. Since the OPE of primary fields is associative

we find on the one hand

[Φi]× ([Φj]× [Φk]) = [Φi]×
∑
l

N l
jk[Φl] (2.74)

=
∑
l,m

N l
jkN

m
il [Φm] (2.75)

and on the other hand

([Φi]× [Φj])× [Φk] =
∑
l

N l
ij[Φl]× [Φk] (2.76)

=
∑
l,m

N l
ijN

m
lk [Φm]. (2.77)

From this follows the equality for the fusion numbers∑
l

N l
jkN

m
il =

∑
l

N l
ijN

m
lk (2.78)

2.10.2 Verlinde Formula

Considering rational conformal field theories which consist of a finite number of highest
weight representations there is a simple relationship between the fusion coefficients Nk

ij ∈
Z+

0 and the modular S-matrices:

Nk
ij =

∑
l

SilSjlS
∗
kl

S0l

, (2.79)

here as before S∗kl means complex conjugation of the modular S-matrix and the index 0
labels the vacuum representation of the theory. This formula is known as the Verlinde
formula which connects OPEs with modular transformation properties. It is interesting
that this specific combination of sum over modular matrices always gives an integer number.

2.11 Coset Construction

The coset construction is a method for obtaining new CFTs from two known CFTs named
G and H [27,28]. Especially when starting with theories of central charge bigger than one
it is possible to construct theories with central charge c < 1. In this section we want to
review the most important facts about coset constructions.
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2.11.1 Kac-Moody Algebras & Sugawara Construction

When dealing with CFT one can, in addition to the Virasoro algebra, have further genera-
tors that satisfy other symmetry algebras. Of special interest are the so called Kac-Moody
algebras ĝk which are affine Lie algebras g at level k. The Kac-Moody algebra is defined
by

[jan, j
b
m] = i

∑
c

fabcjcn+m + k n δabδn+m,0, (2.80)

where fabc are the structure constants of the Lie algebra and jan are the Laurent modes
of the chiral currents Ja(z), where a labels the currents . The level k denotes the central
extension of the algebra.
In terms of fields the Kac-Moody algebra translates in the OPE for the chiral currents

Ja(z)J b(w) =
kδab

(z − w)2
+

ifabc

z − w
J c(w) + · · · . (2.81)

When considering Kac-Moody algebras that are realized by currents of conformal dimension
h = 1, it is possible to construct generators that fulfil the Virasoro algebra. These Virasoro
generators then are bilinear in the current generators. The procedure of constructing these
Virasoro generators Ln is known as the Sugawara construction

Ln =
1

2(k + Cg)

dim g∑
a=1

(∑
l≤−1

jal j
a
n−l +

∑
l≥0

jan−lj
a
l

)
=

1

2(k + Cg)

dim g∑
a=1

∑
l

: jal j
a
n−l : . (2.82)

In terms of fields this can be written as

T (z) =
1

2(k + Cg)

dim g∑
a=1

N(JaJa)(z), (2.83)

where N(.) denotes normal ordering of the currents. In the formula Cg corresponds to
the dual Coxeter number of the Lie algebra g, for cases when g = su(N) it is given by
Csu(N) = N . Further dim g is the number of generators for the Lie algebra, again for the
special case of su(N) it is given by dim su(N) = N2 − 1.
Given the corresponding Virasoro generators Ln that are constructed via the Sugawara
construction from the Kac-Moody algebra current generators, one can determine the central
charges associated to these algebra. It is given by the following expression

c =
k dimg

k + Cg
. (2.84)

For later purpose we are interested in theories based on a u(1)k or su(2)k Lie-algebra. For
the central charges (2.84) we thus find

cu(1)k = 1 (2.85)

csu(2)k =
3k

k + 2
. (2.86)
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2.11.2 Coset Theories

We have seen that rational conformal field theories with central charge 0 < c < 1 are
of special interest since they can (in principle) be solved completely. It turns out that a
huge class of rational CFTs can be realized via so called coset theories. Therefore, we are
starting with a Kac-Moody algebra gk and a subalgebra hk. As before the index k labels the
levels of the Kac-Moody algebras. To both algebras one can associate the corresponding
currents Jag (z) in g and Jah in h. Obviously since h is a subgroup of g, we can rewrite the
currents in h in terms of those in g

Jah(z) =
∑
b

Ma
b J

b
g(z). (2.87)

For the OPE this implies

Jah(z)J bh(w) =
kMa

l M
b
q δ
lq

(z − w)2
+
iMa

l M
b
qf

lqm

z − w
Jmg (w). (2.88)

Choosing the subalgebra h such that it is in the horizontal algebra of g we can use the
identities:

Ma
l M

b
qf

lqm = fabcM c
m (2.89)

Ma
l M

b
q δ
lq = δab (2.90)

With that we find

Jah(z)J bh(w) =
kδab

(z − w)2
+

ifabc

z − w
J ch(w), (2.91)

which is the closed Kac-Moody algebra at level k for the currents of the horizontal sub-
algebra h. Given the generators one can construct the Sugawara energy-momentum tensors

Tg(z) =
1

2(kg + Cg)

dim g∑
a=1

N(Jag J
a
g )(z) (2.92)

Th(z) =
1

2(kh + Ch)

dim h∑
a=1

N(JahJ
a
h)(z) (2.93)

These can now be used to define the energy-momentum tensor in the coset theory g/h by

Tg/h(z) = Tg(z)− Th(z). (2.94)

Obviously the central charge in the coset theory is then given by the difference of central
charges of g and h, i.e.

cg/h = cg − ch =
k dimg

k + Cg
− k dimh

k + Ch
. (2.95)
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The definition of Tg/h shows that Tg decomposes in two mutually commuting Virasoro
subalgebras with [Tg/h, Th] = 0. From the difference of the central charges we see that we
really can construct theories with c < 1. Of course these theories can always be related to
the unitary minimal series (2.45).
Let us consider a simple example. Let the coset be given by

g

h
=
su(2)k ⊗ su(2)1

su(2)k+1

. (2.96)

The central charge and conformal weights of this coset model can be obtained by using
(2.86) and (2.94)

cg/h =
3k

k + 2
+ 1− 3(k + 1)

(k + 1) + 2
= 1− 6

(k + 2)(k + 3)
. (2.97)

hl,m,s =
l(l + 2)

4(k + 2)
+
s(s+ 2)

4 · 3
− m(m+ 2)

4(k + 3)
mod 1. (2.98)

The exact form of the highest weights can be found by considering so called branching rules
for the coset decomposition [1–3, 6]. We recognize that theses are precisely the values of
the c < 1 discrete series (2.45) with m = k + 2. The fields appearing in the coset can be
labelled by three integer numbers (l,m, s) where

l ∈ {0, 1, . . . , k}, (2.99)

m ∈ {0, 1, . . . , k + 1}, (2.100)

s ∈ {0, 1}. (2.101)

From this we see that the l labels correspond to su(2)k, the m labels to su(2)k+1 and the
s labels to su(2)1. The fields are subjected to a so called field identification (l,m, s) ∼
(k − l, k + 1 − l, 1 − s) and the additional restriction l + m + s = 0 mod 2 reflecting Z2

symmetry [29]. The concrete identification results from the relation between branching
functions and coset characters3 [1, 2].
The decomposition into commuting Virasoro generators in addition tells us, that the mod-
ular S-matrix of the coset theory should be given by

Sg/h = NSgS
∗
h, (2.102)

where N is a normalization constant. For our example this implies

Sl
′,m′,s′

l,m,s = NSl
′

l S
∗m′
m Ss

′

s . (2.103)

The normalization constant can be determined by∑
(l,m,s)

|Sl
′,m′,s′

l,m,s |
2 = 1, (2.104)

3The branching rules and associated branching-functions represent the relations of the highest weight
decomposition of gk into highest weight representations of the subalgebra and the coset hk ⊗ (gk/hk).
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where the sum runs over distinct labels satisfying the field identifications and the restriction
l +m, s = 0 mod 2.

In general coset theories it can occur that several fields are identified with themselves by
the field identifications. These so called fixed points have to be treated separately when
constructing the correct modular S-matrix of the coset [30]. These fixed points always
seem to define a new not necessary unitary CFT. This implies that the fixed points have
to be resolved in order to obtain the irreducible representations of the coset algebra.

As an example the coset realization of N = 1 minimal models is given by

su(2)k ⊕ su(2)2

su(2)k+2

. (2.105)

The fields in this model are again labelled by three integers with field identification
(l,m, s) ∼ (k − l, k + 2 − l, 2 − s). In the case k = 2 one obtains field identification
fixed points since e.g. the field with labels (1, 2, 1) is identified with itself.

2.12 N = 2 Superconformal Theories

In this section we review the most important concepts when dealing with N = 2 super-
conformal field theories (SCFT) [1,3,28,31–33]. We will make use of several concepts from
SCFT in later chapters.

2.12.1 N = 2 Superconformal Algebra

N = 2 superconformal field theories are quantum field theories that enjoy N = 2 su-
persymmetry and whose Hilbert spaces form representations of the associated N = 2
superconformal Virasoro algebra (SVA). The SVA can be thought as the ordinary N = 0
Virasoro algebra with an addition U(1) Kac-Moody algebra along with two supersymmetry
generators. This means that we have the generators Ln for the highest weights and Jm for
the U(1)-charges, as well as the two supersymmetry generators G±r that fulfil (G+

s )† = G−−s.
Here n, m ∈ Z, whereas r, s ∈ Z when we are considering the Ramond-sector (R-sector)
of the theory in contrast to r, s ∈ Z + 1

2
corresponding to the Neveau-Schwarz-sector (NS-
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sector). The associated N = 2 superconformal Virasoro algebra can be written as [1,3,31]:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[Lm, Jn] = −nJn+m

[Jm, Jn] =
c

3
mδm+n,0

[Ln, G
±
r ] =

(n
2
− r
)
G±n+r (2.106)

[Jn, G
±
r ] = ±G±n+r

{G+
r , G

−
s } = 2Lr+s + 2(r − s)Jr+s +

c

3

(
r2 − 1

4

)
δr+s,0

{G±r , G±s } = 0

2.12.2 Highest Weight Representation

Given the generators of the SVA one can build a representation [33] on a highest weight
state |h, q〉 which is labelled by the conformal weight h and U(1)-charge q and fulfils

Ln |h, q〉 = Jn |h, q〉 = G±r |h, q〉 = 0 ∀n, r > 0,

L0 |h, q〉 = h |h, q,〉 ,
J0 |h, q〉 = q |h, q〉 . (2.107)

Note that in the NS-sector there is a unique vacuum state |0, 0〉 whereas in the R-sector
there are several ground states | c

24
,± c

6
〉. Given a highest weight state with conformal

weight h and charge q one obtains the descendant states as

L−n1 · · ·L−nqJ−m1 · · · J−mpG+
−s1 · · ·G

+
−saG

−
−r1 · · ·G

−
−rb |h, q〉 , (2.108)

where ni,mi > 0 and si, ri ≥ 0. The descendant (2.108) has L0 and J0 eigenvalues given
by

h+

q∑
i=1

ni +

p∑
j=1

mj +
a∑
k=1

sk +
b∑
l=1

rl, (2.109)

q +
a∑
k=1

1−
b∑
l=1

1 = q + a− b. (2.110)

It can be shown using the SVA and considering the inequality∣∣∣G±−1/2 |h, q〉
∣∣∣2 ≥ 0, (2.111)

that any state in the representation satisfies

h ≥ 1

2
|q|. (2.112)
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2.12.3 (Anti-) Chiral Fields

Consider the NS-sector of a N = 2 superconformal theory. Let |h, q〉 be a state in this
Hilbert space. If the state fulfils

G+
−1/2 |h, q〉 = 0, (2.113)

it is said to be (left-)chiral. Especially these states fulfil

|h, q〉chiral = |h =
q

2
, q〉 . (2.114)

We see that for chiral states there is a relation between the conformal weight and U(1)
charge. Alternatively an anti-chiral state is defined by

G−−1/2 |h, q〉 = 0, (2.115)

from which follows the restriction on the conformal weight and charge

|h, q〉anti−chiral = |h = −q
2
, q〉 . (2.116)

We see that the (anti-) chiral states exactly saturate (2.112)4. This Apart from that all
other states in the representation that are neither chiral nor anti-chiral fulfil

h >
1

2
|q|. (2.117)

Note that for chiral states the conformal weight can be shown to be bounded by hchiral ≤
c/6. The same is true for anti-chiral states.
In the Ramond sector chiral states are defined by those annihilated by both G+

0 and G−0 .
Considering the expectation value

〈h, q| {G+
0 , G

−
0 } |h, q〉 , (2.118)

one finds using the SVA that chiral states in the Ramond are precisely the ones that satisfy

h =
c

24
. (2.119)

Note that chiral states in the NS sector correspond to vacua in the Ramond sector as we
will see in section 2.12.5.

2.12.4 Chiral Ring

In the last section we defined chiral and anti-chiral primary fields. It is now interesting to
study the OPE between two chiral primary fields Φa(z) and Φb(w). The general form of
the OPE is given by

Φi(z)Φj(w) =
∑
k

∑
n≥0

Ck
ij(z − w)hk+n−hi−hj∂nwΦk(w), (2.120)

4States that saturate the equation are also called BPS states.



2.12 N = 2 Superconformal Theories 29

where Ck
ij are some constants and hn are the conformal weights of the corresponding fields

i, j and k. Since the U(1) charge is a conserved quantity, i.e. qi + qj = qk and we are
considering chiral fields we deduce for the difference of the conformal weights using (2.112)

hk − hi − hj ≥
1

2
|qk| −

1

2
qi −

1

2
qj =

1

2
(|qk| − qk) ≥ 0. (2.121)

For the OPE (2.120) this implies that there are no singular terms. The absence of singular
terms in the OPE thus allows us to define a product among the chiral primaries as

(Φi · Φj)(w) = lim
z→w

Φi(z)Φj(w) =
∑
k

Ck
ijΦk(w). (2.122)

The defined limit is zero whenever Φk is a not a chiral primary state and thus a closed
operation action on the chiral primary states. One calls this then the chiral ring [15].
Similarly one can also perform the calculations for the anti-chiral primaries obtaining the
anti-chiral ring.

2.12.5 Spectral Flow

In N = 2 superconformal theories there is a continuous class of automorphisms that
translates the generators of the superconformal algebra to new generators again fulfilling
(2.106). These transformations are known as spectral flow [15] and are given as follows:

Ln → L′n = Ln + ηJn +
η2

6
c δn,0,

Jn → J ′n = Jn +
c

3
η δn,0, (2.123)

G±r → G
′±
r = G±r±η.

Here η is a continuous parameter, especially we recognise that for η ∈ Z + 1
2

we can
switch between the NS- and R-sector respectively. Under the spectral flow operation the
conformal weights and U(1)-charges change according to

hη = h− ηq +
η2

6
c,

qη = q − c

3
η. (2.124)

Applying the spectral flow with η = 1
2

to the NS-sector vacuum state |h, q〉 = |0, 0〉NS we
obtain a vacuum state in the R-sector to be | c

24
,− c

6
〉
R

.
The operator performing the spectral flow is realized as the vertex operator

Uη =: exp

(
iη

√
c

3
Φ

)
:, (2.125)

where Φ(z, z̄) is a free scalar field related to the U(1) current of the SVA as

J(z, z̄) = i

√
c

3
∂Φ. (2.126)
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2.12.6 N = 2 Superconformal Minimal Models

In this section we review some important results of N = 2 superconformal minimal models
that are given by a coset realization. The N = 2 superconformal minimal models [31] with
central charge

c =
3k

k + 2
, k ∈ {1, 2, 3, . . . }, (2.127)

can be realized via the coset [16]

su(2)k ⊕ u(1)2

u(1)k+2

, (2.128)

where k is the level of the associated Kac-Moody algebra. The fields are labelled by three
integer numbers (l,m, s). The ranges of these numbers are

l = 0, . . . , k m = 0, . . . , 2k + 3 (mod(2k + 4)) s = −1, 0, 1, 2 (mod 4). (2.129)

In addition one has a Z2 identification of fields, i.e.

(l,m, s) ∼ (k − l, k + 2 +m, 2− s), (2.130)

and the additional restriction
l +m+ s = 0 mod 2. (2.131)

In the literature sometimes the letter j, instead of l is used, where j is associated with a
spin number and is related to l according to j = l/2.
Considering the NS-sector we have to restrict to s = 0, 2 whereas for the R-sector one has
s = ±1. The conformal weights and U(1)-charges in this representations are given by

hl,m,s =
l(l + 2)−m2

4(k + 2)
+
s2

8
mod 1, (2.132)

ql,m,s =
s

2
− m

k + 2
mod 2. (2.133)

In particular the charges are fractional numbers. We see that the NS-vacuum corresponds
to the labels (0, 0, 0). The chiral primaries in the NS sector correspond to (l, l, 0). Since
l ∈ {0, . . . , k} there obviously exist k+1 chiral primary states. The Ramond ground states
can be obtain by spectral flow (2.125) from the NS-sector chiral primaries

R vacua: (l, l + 1, 1). (2.134)

We see that there are as many chiral primary states in the NS-sector as there are Ramond
vacua. The Hilbert space H decomposes into irreducible highest weight representations of
holomorphic and anti-holomorphic super Virasoro algebras

H[l,m] := H[l,m,s] ⊕H[l,m,s+2], (2.135)
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where by [l,m, s] are meant all fields that satisfy (2.130)-(2.131). Using this notation the
NS-sector can be represented as

HNSNS =
⊕

[l,m]∈Jk
l+m even

H[l,m] ⊗ H̄[l,m], (2.136)

and similar the Ramond sector

HRR =
⊕

[l,m]∈Jk
l+m odd

H[l,m] ⊗ H̄[l,m], (2.137)

where

Jk := {(l,m)| 0 ≤ l ≤ k, −k−1 ≤ m ≤ k+2, −1 ≤ s ≤ 2}/ ∼, [l,m] ∼ [k− l, k+2+m].
(2.138)

For later purpose we already state the corresponding modular S-matrices in the coset
representation. These can be determined from the decomposition of characters

χ
su(2)k
l (τ)χu(1)2

s (τ) =
k+2∑

m=−k−1

χu(1)k+2
m χl,m,s(τ), (2.139)

as

Sl,m,sL,M,S =
2

k + 2
sin(l, L)eiπ

mM
k+2 e−iπ

sS
2 , (2.140)

where we introduced the short hand notation

sin(l, L) := sin

(
π

(l + 1)(L+ 1)

k + 2

)
. (2.141)

Here the characters of the coset representation can be written in terms of generalized theta
functions Θa,b(τ) and string functions cba(τ) [1, 3] as

χl,m,s(τ) =
k∑
a=1

clm−4a−s(τ)Θ−2m+(4a+s)(k+2),2k(k+2)(τ). (2.142)

At last let us consider the fusion of two fields in the representation to determine the fusion
rules of the minimal models

[Φl1,m1,s1 ]× [Φl2,m2,s2 ] =
∑

l3,m3,s3

N l3
l1,l2

δ
(2k+4)
m1+m2,m3

δ
(4)
s1+s2,s3 [Φl3,m3,s3 ], (2.143)

where δ(n) is a delta function defined modulo n and N c
a,b are the su(2) level k fusion

numbers. We see that the N = 2 minimal model fusion numbers are simply given by

N l3,m3,s3
l1,m1,s1, l2,m2,s2

= N l3
l1l2
δ

(2k+4)
m1+m2,m3

δ
(4)
s1+s2,s3 . (2.144)
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2.13 Boundary Conformal Field Theory

In this section we will review the basic ingredients for CFTs living on a worldsheet with
boundaries. The main references for this section will be [1, 2, 34].

2.13.1 CFT with Boundary

We consider a CFT living on the complex upper half plane with a boundary aligned
along the real axis. As our system is fixed to this specific geometry the boundary should
not be changed under conformal transformations. Recall that on the full complex plane
(z = x+ it z̄ = x− it) the conformal mappings are given by

z → w(z) =
∑

εnz
n (2.145)

z̄ → w̄(z̄) =
∑
n

ε̄nz̄
n (2.146)

where ε(z) and ε̄(z̄) are the generators of conformal transformations. On the full complex
plane there is no restriction on the generators, on the upper half plane on the other hand
we want the boundary to be invariant under the given transformations which relates to

Im[w(z)]|z=x = 0 ↔ w(z)|z=x = w̄(z̄)|z̄=x ↔ εn = ε̄n. (2.147)

We see that the holomorphic and anti-holomorphic generators are identified along the
boundary. This gives rise to the interpretation of the anti-holomorphic part being the
analytic continuation of the holomorphic part.

2.13.2 Correlation Functions in Presence of a Boundary

In section 2.8 we have seen that correlation functions are solutions to differential equations.
Let us now consider the case where our fields live on the upper half plane bounded by some
boundary at z = x. Under conformal transformations our correlator transforms according
to

δ〈Φ1(z1, z̄1) · · ·ΦN(zN , z̄N)〉 = − 1

2πi

∮
C

dz ε(z) 〈T (z)Φ1(z1, z̄1) · · ·ΦN(zN , z̄N)〉+

1

2πi

∮
C

dz̄ ε̄(z̄) 〈T̄ (z̄)Φ1(z1, z̄1) · · ·ΦN(zN , z̄N)〉. (2.148)

Here the contour integration is performed along the semicircle enclosing the coordinates
(zj, z̄j) (see figure 2.8).
Along the boundary there is no energy exchange for which we conclude

T (z)− T̄ (z̄)|z=z̄=x = 0. (2.149)
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Re(z)

Im(z)

Φ(z1, z̄1)

Φ(z2, z̄2)

C

Figure 2.8: Contour for the integration along the semicircle in the upper
half plane enclosing the coordinate fields.

Using this equation we see that we can map the anti-holomorphic part of the fields in
the upper half plane to the holomorphic part in the lower half plane. With this the anti-
holomorphic part of the Ward identities is mapped to the holomorphic part in the lower
half plane (see figure 2.9).

Re(z)

Im(z)

Φ(z1, z̄1)

Φ(z2, z̄2)

Re(z)

Im(z)

Φ(z1)
Φ(z2)

Φ̄(z̄1)
Φ̄(z̄2)

Figure 2.9: Doubling trick for fields on the UHP in presence of a boundary
to fields on the complex plane.

The conformal Ward identity in presence of the given boundary thus takes the simpler
form

δ〈Φ1(z1, z̄1) · · ·ΦN(zN , z̄N)〉 = − 1

2πi

∮
C−C∗

dz ε(z) 〈T (z)Φ1(z1)Φ̄1(z̄1) · · ·ΦN(zN)Φ̄N(z̄N)〉.

(2.150)
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Here the fields are split into their holomorphic and anti-holomorphic parts according to

Φi(z, z̄) = Φi(z) + Φ̄i(z̄). (2.151)

If the fields in question carry some additional degree of freedom, e.g. charge, we have to
perform the mapping s.t. it is consistent with the boundary condition, for the charges
this would mean that in addition one has for example to perform a charge conjugation,
which is quite familiar to the method of mirror charges in ordinary electrostatics, where
one introduces charges of opposite signs at the mirrored coordinates in order to solve the
boundary conditions for the electric potential.
Considering (2.150) we see that the N -point correlator on the upper half plane fulfils the
same differential equation as the 2N -point correlator on the full complex plane. A nice
application of the result is that the one point function for a CFT on the upper half plane
(UHP) with some boundary at z = x = z̄ is now given by:

〈Φ(z, z̄)〉UHP = 〈Φ(z)Φ̄(z̄)〉C =
k12δh,h̄

(z − z̄)2h
(2.152)

This means in contrast to the one point function on the full complex plane, which is
identically zero due to conformal invariance, the one point function on the upper half
plane can give a non-zero contribution.

2.13.3 Boundary Conditions and Boundary States

Consider a rational conformal field theory with total Hilbert space

H =
⊕
i,̄i

Mi,̄iHi ⊗ H̄ī. (2.153)

Assume that the CFT has in addition to the Virasoro generators another set of generators
W i
n (W̄ i

n) generating an extended symmetry of our theory.

Boundary
Boundary

Figure 2.10: Transformation of the upper half plane to the unit disc. The
boundary along the real line becomes in the new geometry the boundary of
the disc.
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In (2.149) we have seen which relation the energy-momentum tensor along the boundary
has to fulfil. If we map the upper half plane to the unit disc, the boundary condition
becomes such a boundary state in standard radial quantisation (see figure 2.10)

Ln − L̄−n = 0 along boundary. (2.154)

Similar considerations apply for the additional symmetry generators. An associated bound-
ary state |B〉 then has to fulfil the following so called gluing conditions

(Ln − L̄−n) |B〉 = 0 conformal symmetry (2.155)

(W i
n − (−1)h

i

W̄ i
−n) |B〉 = 0 extended symmetry, (2.156)

where we also included the conditions on the boundary state coming from the additional
symmetries with hi = h(W i). For these additional symmetries it is possible to include
the action of an automorphism if desired. When dealing with rational theories there is a
important set of fundamental boundary states fulfilling (2.155) and (2.156), called Ishibashi
states (see [90, 92])

|i〉〉 =
∞∑
N=0

di(N)∑
m=1

|i, N ;m〉 ⊗ |h,N ;m〉 ∈ Hi ⊗ H̄i, (2.157)

where N is the level of the highest within the highest weight representation i and di(N) is
the dimension of the subspace at level N of i.
Here we assumed that Hi is the conjugated representation of H̄i. Ishibashi states can be
related (in closed string picture) to the character of a representation i by

〈〈i|q
1
2(L0+L̄0− c

12)|j〉〉 = 〈〈i|qL0− c
24 |j〉〉 = δijχi(q). (2.158)

In the second step we used the identification L0 = L̄0 at the boundary in order to obtain
an expression just depending on the chiral algebra. Since a general boundary state |B〉 has
to fulfil the gluing conditions (2.155)-(2.156) it must be a linear combination of Ishibashi
states

|Bi〉 =
∑
j

ψij√
S0j

|j〉〉, (2.159)

where we labeld the boundary state in a given representation i by |Bi〉. The ψij are
up to now some constants that characterize the boundary condition. It can be shown
that these constants are constrained by the so called Cardy condition [35] and so-called
sewing-relations that first were considered in [93,94]. We won’t discuss in detail the sewing-
relations, for a detailed and illustrative discussion see [92–94]. The Cardy condition on the
other hand is such a fundamental concept that we will review it for the special case of a
bulk state space corresponding to a charge-conjugate modular invariant partition function
in the next section.
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2.13.4 The Cardy Condition

The Cardy condition [35] basically ensures the tree-level loop-channel equivalence. Here
we will concentrate on the special case of standard gluing conditions and a bulk state space
corresponding to a charge-conjugate modular invariant partition function5, i.e. H̄ī = Hi+ .
For a more general discussion see [4, 35].
As setup we consider the (open string) partition function on the cylinder with circumference
β and length 1 (note that without loss of generality a cylinder of length L can always be
rescaled to the cylinder of length 1 in a CFT)

Zij(β) = trHije
−πβ(L0− c

24
). (2.160)

Here Hij is the space of string states compatible with the boundary conditions i and j at
the end of the cylinder6. By using that the the boundary conditions preserve the symmetry
algebra one finds

Hij =
⊕
k

Nk
ijHk, (2.161)

where Nk
ij are the associated fusion coefficients of the CFT considered. In particular the

fusion coefficients arise since we are considering diagonal modular invariant theories without
automorphisms. The open string partition function then becomes

Zij(β) =
∑
k

Nk
ijχk(e

−πβ). (2.162)

1

i j β i j

Figure 2.11: Open-closed string duality on the cylinder. The partition func-
tion of a closed string moving along the cylinder between its two boundaries
can equally be described as the partition function of an open string propa-
gating around the wrapped up dimension.

On the other hand the cylinder partition function may be viewed as a closed string prop-
agating from one boundary to the other, i.e.

5In chapter 10 we will consider A-type and B-type boundary conditions where some of these consider-
ations will not hold but satisfy the more general results [35].

6Here we assume that we are dealing with diagonal theories, i.e. Mīi = δīi
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Z̃ij(β) = 〈Bi| e−
2π
β

(L0+L̄0− c
12

) |Bj〉 =
∑
m

ψ∗imψjm
S0m

χm(e−4π/β). (2.163)

Performing a modular S-transformation the closed cylinder expression gets transformed to
the following expression in the open channel

Z̃ij(β) =
∑
m,k

ψ∗imψjmSmk
S0m

χk(e
−πβ). (2.164)

The two partition functions Zij(β) and Z̃ij(β) should yield the same result in order to
preserve the tree-channel loop channel duality (see figure 2.11). Thus they have to match.
From this one deduces the Cardy condition on the constants ψij∑

m

ψ∗imψjmSmk
S0m

= Nk
ij, (2.165)

which is solved in the RCFT case by ψij = Sij in which case we exactly obtain the Verlinde
formula (2.79). For the Cardy boundary state this then implies

|Bi〉 =
∑
j

Sij√
S0j

|j〉〉. (2.166)

We will see in section 3.1 that defects will also fulfil a consistency condition following
similar arguments as the boundary states considered here.
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Chapter 3

Generalities on Defects

3.1 Defects and their Classification

The study of one-dimensional interfaces1 between two-dimensional CFTs [60] has a long
history [39,41,42,48]. Locally, an interface sets gluing conditions for all pairs of local fields
separated by the interface. In that sense an interface defines a map between the algebras of
local fields on the two sides. Similar to a boundary condition, such an interface condition
admits local excitations and constitutes a one-dimensional subsector of the full quantum
field theory. At a conformal fixed point the interface preserves at least one half of the
bulk conformal charges. If the interface runs along the real axis of the complex plane and
separates CFT1 from CFT2, the condition reads

lim
y↘0

(T (1)(x+ iy)− T̄ (1)(x− iy) ) = lim
y↗0

(T (2)(x+ iy)− T̄ (2)(x− iy) ) , (3.1)

where T (n) and T̄ (n) are the holomorphic and anti-holomorphic components of the energy-
momentum tensor of CFTn. The requirement (3.1) is a necessary local condition. Similarly
as in the case of boundary conditions, further local conditions follow from sewing relations,
and global conditions arise from modular constraints on the torus which we will discuss
later.
If the time evolution is defined to run orthogonal to the interface or defect - in our setup
along the imaginary axis - then it can be realized as an operator I. The gluing conditions
(3.1) then tell us that I has to commute with all generators of the conformal transforma-
tions, i.e. the Virasoro generators, along the defect. For our setup in which the defect runs
along the real line [48] this means(

L(1)
n − L̄

(1)
−n

)
I = I

(
L(2)
n − L̄

(2)
−n

)
∀n ∈ Z. (3.2)

In some sense, conformal interfaces generalise the notion of conformal boundary conditions
(2.155), which are the special solutions where both sides of (3.1) are equal to zero, or occur

1Sometimes interfaces are also referred to as defects but in principle there is a difference between these
two objets. In general defects live at a given point in the moduli space, whereas interfaces are intertwiners
between different CFTs.
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if one side of the interface is trivial. In this case the defect is called purely reflecting or
alternatively factorizable. The notion of ‘reflective’ will become more clear in section 3.2
and 3.3. For the interface this implements(

L(1)
n − L̄

(1)
−n

)
I = 0 0 = I

(
L(2)
n − L̄

(2)
−n

)
. (3.3)

Another set of special solutions to (3.1) is obtained when the interface commutes with both
the left- and the right-moving Virasoro algebra, such that (3.1) is solved separately for the
holomorphic and the anti-holomorphic component of the energy-momentum tensor

L(1)
n I = IL(2)

n L̄(1)
n I = IL̄(2)

n . (3.4)

Evidently, this can only happen when the theories on the two sides have equal left- and
right-moving central charges. Note that equality of central charges not automatically
implies equality of the two CFTs. An interface corresponding to such a solution can be
freely deformed and moved on the Riemann surface, as long as it does not cross any operator
insertions O (see figure 3.1). These interfaces were dubbed topological in [40].

Interface

O

Interface

O

Figure 3.1: Possible deformation of a topological defect.

Initially introduced in [42], topological interfaces have been studied in particular in rational
CFTs [46, 54]. Topological defects have a broad range of applications. For example it has
been shown in [44] that topological defects map primary fields of CFT1 to primary fields
of CFT2 and also D-branes from CFT1 to branes in CFT2. Another interesting feature
(see [45]) is that all automorphisms of a CFT including mirror symmetry and T-duality
are implemented by a topological defect.
A topological interface [60] can be regarded as an operator on the space of states, acting as
a constant map between (left-right pairs of) isomorphic Virasoro representations2. In the
case where the conformal symmetry is enhanced to a larger chiral symmetry algebra, the

2Note that the notion of ‘map’ is not true for non-topological interfaces.
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topological interface condition may or may not respect the additional symmetry. Topologi-
cal interfaces between CFT1 and CFT2 thus naturally fall into classes corresponding to the
preserved common symmetry subalgebra. For a given topological interface, we consider
the decomposition of the space of states of CFTn (n = 1, 2) with respect to this common
subalgebra,

H(n) =
⊕
(īi)

M
(n)

īi
Hi ⊗Hı̄ . (3.5)

The indices i and ı̄ label (generally different) irreducible highest weight representations

of the two chiral parts of the common subalgebra. The non-negative integers M
(n)

īi
give

the multiplicities of the pair of representations (i, ı̄). We will assume that our theories are
unitary and have a discrete spectrum of highest weight states of the chiral subalgebra, and
that there is a unique vacuum state.
An operator corresponding to a general topological interface will then be denoted

IA =
∑
i

dAi ‖i‖ . (3.6)

We use bold-face indices i to refer to a pair of left-right products of irreducible represen-
tations in the two adjacent CFTs,

i ≡ (i, ı̄ ;α, β) . (3.7)

Here, (i, ı̄) labels the transmitted pair of representations. The indices α = 1, 2, . . . ,M
(1)
īı

and β = 1, 2, . . . ,M
(2)
īı are the multiplicity labels of this pair on the two sides of the in-

terface. The symbol ‖i‖ in (3.6) denotes the Ishibashi-type projector which acts as an
intertwiner between the two pairs of representations, i.e.

‖i‖ : Hi ⊗H(α)
ı̄ → Hi ⊗H(β)

ı̄ (3.8)

and
Jn‖i‖ = ‖i‖Jn , (3.9)

where Jn denotes any symmetry generator.
One important property of topological interfaces is that they admit a fusion product, i.e. a
composition of interfaces. The fusion product has the geometric interpretation of moving
the interface lines on top of each other, and interpreting the result as a topological interface
between the two remaining CFTs (see section 3.4). While fusion may also be defined for
the more general conformal interfaces, it is particularly straightforward in the topological
case, where it basically consists of map composition [42]. When writing the coefficients
dABi of the fusion product IAB = IAIB we will suppress the summation over multiplicity
labels,

dABi =
∑
γ

dA(īı;α,γ)dB(īı;γ,β) ≡ dAidBi . (3.10)
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The fusion product, which we will discuss in more detail in section 3.4, extends to fusion
of a topological interface with (non-topological) conformal interfaces, in particular with
boundary conditions.
For topological defects the coefficients dAi are subjected to a consistency condition [42].
To determine the coefficients let us consider the modular S-transformation of the torus
partition function with a pair of two closed defect lines. Due to the open-closed string
duality there are two possible viewpoints of this partition function. One possible way is to
consider time slices parallel to the defect line. This results in the expression

ZA,B = Tr
(
I†AIB q̃

L0− c
24 ¯̃qL̄0− c

24

)
=∑

i

d∗AidBiχi(q̃)χ̄ī(¯̃q) =

∑
(i,̄i;α,β)

dA∗(i,̄i;α,β)dB(i,̄i;α,β)χi(q̃)χ̄ī(¯̃q). (3.11)

Here A∗ labels the orientation reversed interface with corresponding defect operator DA∗ =
D†A. The other possible way is to consider time evolution along, i.e. parallel to the defect
line. Let N B

īiA ∈ N0 denote the multiplicity of Virasoro representations (i, ī) appearing in
the Hilbert space in the chosen time evolution, i.e.

HA,B = N B
īiAHi ⊗ H̄ī, (3.12)

then the partition function can be alternatively expressed as

ZA,B =
∑

(i,̄i;α,β)

N B
īiA χi(q)χ̄ī(q). (3.13)

Performing a modular S-transformation on (3.13) we can relate the result with (3.1) to
obtain a consistency relation on the coefficients

N B
īiA =

∑
j,j̄

SijSīj̄dA∗(i,̄i;α,β)dB(i,̄i;α,β). (3.14)

Here Sij is an element of the modular S-matrix. In particular we observe that the right-
hand side of the last equation should be a positive integer. The condition (3.14) restricts
the possible values of coefficients dAi, and it also requires that linear superpositions of
interfaces must have integer coefficients.
We refer to interfaces which cannot be decomposed into a superposition of other interfaces
with positive coefficients as elementary interfaces. The set of elementary interfaces forms
a basis for all topological interfaces of the same class. Obviously any interface for which
at least one of the N A

jj̄ A is equal to 1 is elementary. In fact, due to the operator-state

correspondence in the theory on the interface any elementary interface has at least N A
00A =

1, i.e. the vacuum in parallel time evolution occurs with multiplicity 1.
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Consider a set of topological interfaces IA for which dAi provides a unitary transformation
from projectors ‖i‖ to the IA. It can be shown [42] that the corresponding N B

īiA form a
representation of a tensor product of fusion algebras,∑

B

N B
īiA N

C
jj̄ B =

∑
k

N k
ijN

k̄
ı̄̄ N C

kk̄ A . (3.15)

In the last formula, the N k
ij are the fusion rules of the chiral algebra. It is easy to see that

a topological interface IA in such a set is elementary.
A particular instance where we know a set of dAi that provides a change of basis occurs in
rational CFT, i.e. in theories where the index set {i} in (3.5) is finite. The simplest case
are the diagonal theories — theories which are charge conjugation invariant (i = ı̄ ), and
where the multiplicities for all chiral algebra representations are 1. In such a theory there
are topological defects3 of the form

Da =
∑
i

Sai
S0i

‖i‖ . (3.16)

The projector on irreducible representations can also be written in terms of Ishibashi states4

||i|| = |i〉〉〈〈i|. (3.17)

These defects have N a
0a = N a

0a = 1 and are, therefore, elementary. They provide a basis
for the set of topological defects which respect the chiral symmetry. The fusion of such
defects can now be easily expressed as

DaDb =
∑
c

N c
abDc. (3.18)

We see that for topological defect the fusion amounts in an algebra for the defects.
In cases where the chiral algebra admits a global symmetry G, we find among the topolog-
ical interfaces the so-called symmetry defects. Each element g ∈ G can be associated to a
topological defect Dg. By definition, these interfaces glue any field to its image under the
symmetry operation. Hence, they implement an action of G through

D†g = Dg−1 , DgDh = Dgh ∀h, g ∈ G . (3.19)

A broader class of interfaces are the duality interfaces introduced in [46]. Their defining
property is that

I I† =
⊕
g∈G

Dg , (3.20)

3In this paper we usually refer to interfaces as defects if the CFTs on the two sides are identical.
4A general projector acting on representations (i, ī) can be written as

P (i,̄i) =
∑

N,N̄ (|i,N〉 ⊗ |̄i, N̄〉)(〈i,N | ⊗ 〈̄i, N̄ |), where N is the level of the descendant.
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where G is a finite symmetry group of the CFT. The fusion product of a duality interface
with its adjoint contains a superposition of group-like defects corresponding to a symmetry
(sub-)group. Duality defects were first introduced in the context of RCFT [46], where they
can be used to relate CFTs with the same chiral algebra but different modular invariants.
However, the definition can be extended also to the non-rational context. Prominent
examples for duality interfaces implement dualities such as T-duality in free field theories
[54], or the Kramers-Wannier duality in the Ising model [45].

3.2 The Folding Trick

Consider a defect along the imaginary axis separating CFT1 and CFT2, where the CFTs
in principle can differ from each other. Folding the theories along the defect line (see figure
3.2 ) we obtain a new theory which is the tensor theory of the two individual theories

CFT1 ⊗ CFT2. (3.21)

Here the folding exchanges left- and right -movering degrees of freedom of CFT2 denoted
by CFT2. This so called folding trick is well known in condensed matter physics and has
e.g. been applied in the context of conformal defects5 in [39]. After the folding the defect
corresponds to a boundary in the tensor theory of the two CFTs. The gluing conditions
(3.1) become in the folded picture

(L(1)
n + L(2)

n − L̄
(1)
−n − L̄

(2)
−n) |BD〉 = 0, (3.22)

where |BD〉 is the associated boundary corresponding to the defect.

CFT1 CFT2

Interface

CFT1

CFT 2

Boundary

Figure 3.2: Folding Trick: CFT2 is folded along the interface, in this way
the interface becomes a boundary of CFT1 ⊗ CFT2.

5A defect is denoted conformal if its gluing conditions are compatible with all possible conformal
transformations that leave the shape of the defect invariant.
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Alternatively when starting with a boundary state that obeys (3.22) one may ask for
solutions to this equation. A trivial solution is given by (see [39])

|B〉reflect = |B1〉 ⊗ |B2〉 , (3.23)

where the boundary state factorizes into individual boundary states for CFT1 and CFT2.
In this case Ln− L̄−n vanishes for each theory separately. This implies that the component
Txt of the energy momentum tensor is zero along the interface which means that there
is no energy transfer across the wall and the two theories are decoupled from each other.
Unfolding the boundary state we, therefore, obtain a totally reflective defect given by

Dfac = |B1〉 〈B̄2| , (3.24)

satisfying (3.3). The opposite case is when one considers purely transmitting solutions
that fulfil (

L(1)
n − L̄

(2)
−n

)
|B〉trans = 0 =

(
L(2)
n − L̄

(1)
−n

)
|B〉trans . (3.25)

by unfolding the boundary state we gain a topological defect Dtrans satisfying (3.4).

Let us consider an explicit example to emphasise the result. Consider a topological defect
Da in a RCFT which is given by

Da =
∑
(i,̄i)

Sai
S0i

P (i,̄i), (3.26)

where the projector P (i,̄i) is given by

P (i,̄i) =
∑
N,N̄

(|i, N〉1 ⊗ |̄i, N̄〉1)(〈i, N |2 ⊗ 〈̄i, N̄ |2). (3.27)

As before this topological defect satisfies the commutation relations

[Ln,Da] = [L̄n,Da] = 0 (3.28)

[Wn,Da] = [W̄n,Da] = 0. (3.29)

The folding procedure now tells us, that we first have to interchange left- and right-movers
for the second CFT, i.e. 〈i, N |2⊗ 〈̄i, N̄ |2 → 〈̄i, N̄ |2⊗〈i, N |2, and then hermitian conjugate
the obtained result, i.e. 〈̄i, N̄ |2 ⊗ 〈i, N |2 → |̄i, N̄〉2 ⊗ |i, N〉2.

Thus the corresponding boundary state that can be deduced from the topological defect
by following the folding procedure is given by

|a〉P =
∑
i

Sai
S0i

∑
N,M

(|i, N〉1 ⊗ U |i, N〉2)⊗ (|i,M〉2 ⊗ U |i,M〉1). (3.30)
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The state |a〉P is called permutation boundary state. The notion of permutation becomes
clear since under the folding the commutation relations for the defect become the following
(permuted) gluing conditions on the permutation state

L(1)
n − L̄

(2)
−n = 0, W (1)

n − (−1)hW W̄
(2)
−n = 0 (3.31)

L(2)
n − L̄

(1)
−n = 0, W (2)

n − (−1)hW W̄
(1)
−n = 0 (3.32)

The obtained permutation branes are special classes of more general permutation branes
discussed e.g. in [67–69].

3.3 Reflection and Transmission

In section 3.1 we have considered the properties of topological and factorizable (also called
purely reflective) defects. The notion of topological was somewhat clear from the fact
that one can continuously deform the defect line as long as one doesn’t cross any field
insertions. The notion of purely reflective, nevertheless, was somewhat arbitrary. It,
therefore, would be preferable to have a good criterion to distinguish the two cases appart
from their gluing conditions. In [49] they introduced the concept of transmission T and
reflection R coefficients related to a general conformal interface aligned along the real line.
The coefficients are defined by

R =
〈T (1)T̄ (1) + T (2)T̄ (2)〉1|2

〈(T (1) + T̄ (2))(T̄ (1) + T (2))〉1|2
, (3.33)

T =
〈T (1)T (2) + T̄ (1)T̄ (2)〉1|2

〈(T (1) + T̄ (2))(T̄ (1) + T (2))〉1|2
. (3.34)

T (1) and T̄ (1) are inserted at the point iy within the upper half plane, whereas T (2) and
T̄ (2) are inserted at −iy on the lower half plane. Obviously T +R = 1. From the definition
of the reflection and transmission one now can consider the special cases corresponding
to topological and factorizable defects (see [49]). For the case of topological defects the
transmission yields Ttop = 1 and, therefore, Rtop = 0. This means that a topological
defect is purely transmissive, i.e. there is no loss of energy or momentum when crossing
the defect line. In contrast the transmission of factorizable interfaces can be calculated
to give Tfac = 0 from which immediately follows Rfac = 1. This confirms the notion of
purely reflective since there is no energy or momentum transfer through the defect. General
interfaces interpolate between these two extremes, i.e. for a general defect the transmission
takes values T ∈ [0, 1].
Let us consider a simple example namely the free boson interfaces preserving u(1)2 Kac-
Moody symmetries. The interface operators between two free boson theories were con-
structed first in [39, 41]. As usual the interface operator I12 : H2 → H1 between the two
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Hilbert spaces commutes with the Virasoro algebra, i.e.

(L1
n − L̄1

−n)I12 = I12(L2
n − L̄2

−n). (3.35)

Here the superscript labels the Virasoro generators of the two individual theories. Since
tha Virasoro generators for the free boson are quadratic in the modes (see appendix B)
the gluing conditions for them have to fulfil [39,41,55](

a1
n

−ā2
−n

)
I12 = I12Λ

(
a2
n

−ā2
−n

)
for Λ ∈ O(1, 1) (3.36)

At this point we are not interested in the explicit form of the defect operators, we will
review them in more detail in section 9.1. The transmission of the defect in this case can
be related to the gluing matrix and is given by

T =
1

|Λ22|
. (3.37)

It has been shown [55] that for d-bosons living on tori the notion of transmission can be
generalized to

Ttori =
1

| det Λ22|
, (3.38)

where Λ22 is now a d× d matrix.

3.4 More on Fusion of Defects

In this section we want to discuss the fusion of interfaces in more detail. We already
encountered in section 3.1 that the fusion is basically the composition of two defects. Here
we now want to give a more profound definition of the fusion. Consider, therefore, three
possibly different CFTs (CFTn, n = 1, 2, 3) and interfaces I12 and I23, where Iij maps from
CFTj to CFTi. For the total system we consider the setup as shown in the one-dimensional
graphical representation [55] (see figure 3.3) where CFT2 of size δ lies within CFT1 and
CFT3.

CFT1 CFT2 CFT3

I12 I23

δ

Figure 3.3: Setup for three CFTs and interfaces between them.
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Fusion now amounts in taking the limit δ → 0 (figure 3.4), i.e. shrinking the middle region
such that CFT1 and CFT3 are now separated by a new interfaces denoted by I12 ◦ I23

(see [41, 55]).

CFT1 CFT3

I13 = I12 ◦ I23

Figure 3.4: Performing the limit δ → 0. In general this limit is divergent and
one has to apply a renormalization scheme, i.e. subtract divergent terms.

Classically the limit is well defined but since we are dealing with quantum theories a
regularization is required. This amounts in the ‘quantum’ definition of the fusion

I12 ◦ I23 := lim
δ→0
Rδ[I12e

−δH2I23], (3.39)

where Rδ denotes the renormalization procedure which can be achieved by local counter
terms [41, 55] and H2 is the Hamiltonian of CFT2. We already know that topological
interfaces ‘commute’ with Virasoro generators of the left and right moving algebra and,
therefore, also with the Hamiltonian (I topij Hj = HiI

top
ij ), i.e. in this case the fusion is simply

the composition of interfaces

I top12 ◦ I
top
23 := lim

δ→0
Rδ[I

top
12 e

−δH2I top23 ] = lim
δ→0
Rδ e

−δH1 [I top12 I
top
23 ] = I top12 I

top
23 . (3.40)

Note that the last equation is also true if only one of the two interfaces is topological.
Apart from fusion interfaces together with each other there is also the possibility to fuse
them with a boundary state. Especially in RCFTs it was shown in [44] that the action of
a topological defect Da (3.16) on Cardy boundary states |Bb〉 (2.166) is straight forward

Da |Bb〉 =
∑
i

Sai
S0i

||i||

(∑
j

Sbj√
S0j

|j〉〉

)
=
∑
c

N c
ab |Bc〉 , (3.41)

where the fusion coefficients arise from the Verlinde formula (2.79). In particular we see
that fusion in general results in a superposition of new boundary states.
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Entanglement Entropy

In quantum mechanics a general state is a superposition of eigenstates for an observable O.
Performing a measurement of O on such a superposition state will exhibit randomness in
the possible outcomes. For general many-body quantum systems the superposition between
various possible configurations often results in correlations between the outcomes of the
measurements for different parts of the system. The correlated subsystems are then said
to be entangled, i.e. the measurement on one system affects the outcome of a measurement
on the other system.

The appearing non-local correlations between entangled subsystems caused Einstein to
describe entanglement as ‘spooky action at a distance’ [61]. Bell showed in 1964 (see [62])
these correlations between entangled subsystems have to be inconsistent with reasonable
local theories of classical hidden variables.

Nowadays entanglement has far-reaching applications e.g. in computation [63,64], commu-
nication [65] and the simulation of physics for strongly correlated systems [66]. Also the
concept of entanglement finds applications in many other areas of physics e.g. condensed
matter physics [70, 71], high energy field theory [78] and even quantum gravity [72–74].

Often entanglement is quantified by the entropy of entanglement or for short entanglement
entropy. Thereby entanglement entropy is a measure of how quantum information is stored
in a quantum state.

We will now presume as follows: in the next section we will introduce the mathematical
formulation of entanglement and introduce the so called entanglement entropy which will
turn out to be a good measure for entanglement [75, 76]. We will discuss the concepts for
the specific example of two spin-1/2 systems. Afterwards we will introduce the so called
replica trick which is a mighty tool for calculating entanglement entropies before in the last
part we will consider the formulation of entanglement entropies in terms of twist fields.

4.1 Generalities on Entanglement Entropy

In this section we review the basic concepts regarding entanglement entropy and how it
can be calculated. Consider a Hilbert H space which is divided into two subsystems A
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and B such that H = HA ⊗ HB. See for example figure 4.1 as an illustrative example of
a one-dimensional chain divided into two subsystems or figure 4.2 for a two-dimensional
system.

B BA

Figure 4.1: One-dimensional quantum chain divided into two subsystems.

B

A

Figure 4.2: Two-dimensional quantum system divided into two subsystems
(areas) A and B.

For a given pure state |ψ〉 ∈ H one can define the associated density matrix ρ via

ρ = |ψ〉 〈ψ| . (4.1)

We are now interested in the information coming from the subsystem A (or B), thus we
integrate out the degrees of freedom coming from the system B (or A) by taking the partial
trace to obtain the reduced density matrix ρA (or ρB)

ρA = trHBρ (ρB = trHAρ). (4.2)

By tracing out one system we end up in a pure or mixed state for ρA depending on the
correlations present between the subsystem A and B. To be more precise if there is no
correlation between the two subsystems ρA corresponds to a pure state and to a mixed
state if A and B are correlated.
The entanglement entropy (from now on also denoted by EE) is defined as the von-
Neumann entropy

SEE = −trHAρA log ρA. (4.3)

This entropy gives a good measure for the entanglement between the two subsystems but
not for the entanglement of a subsystem with itself. We say that the state |ψ〉 is entangled
if the corresponding EE is bigger than zero, and unentangled if the entropy is zero. This
allows us to give an alternative definition of entanglement regarding the decomposition of
the state |ψ〉. Namely a state |ψ〉 ∈ H is called unentangled iff it can be written as

|ψ〉 = |ψ〉A ⊗ |ψ〉B , (4.4)
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where |ψ〉A ∈ HA and |ψ〉B ∈ HB. Clearly this is the case if there is no correlation between
the two different subsystems. Graphically this can be shown as follows where quantum
correlations are illustrated by arrows between different parts1.

B A

Figure 4.3: Example of a unentangled state |ψ〉 = |ψA〉 ⊗ |ψB〉 with corre-
lations only between the individual subsystems. There are no correlations
between states of subsystem A and B (no arrows that connect between A
and B). The reduced density matrix ρA = |ψA〉 〈ψA| then corresponds to a
pure state with vanishing entanglement entropy.

If the state |ψ〉 cannot be decomposed according to (4.4) it is called an entangled state.
Graphically for an entangled state there are correlations between the different subsystems
(see figure 4.4).

B A

Figure 4.4: Example of an entangled system. The correlations are now not
only restricted to the individual subsystems A and B but also range from
one subsystem to another.

Example: von-Neumann entropy for a two spin-1/2 system

Consider the following state in a two spin-1/2 system

|ψ〉 = cos θ |+〉A |−〉B + sin θ |−〉A |+〉B , (4.5)

where we already labelled the states corresponding to the subsystems A and B. We can
calculate the reduced density matrix with respect to the system B as

ρA = trHB |ψ〉 〈ψ| =

B〈+|ψ〉〈ψ|+〉B +B 〈−|ψ〉〈ψ|−〉B =

1Note that we are just interested in the correlations between A and B and not into the correlations
(entanglement) of A with itself (respectively B with itself)
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cos2 θ |+〉A 〈+|A + sin2 θ |−〉A 〈−|A . (4.6)

Written as a matrix this is represented as

ρA =

(
cos2 θ 0

0 sin2 θ

)
. (4.7)

With this it is now straight forward to calculate the entanglement entropy as

SA = −trHAρA log ρA =

−tr

(
cos2 θ 0

0 sin2 θ

)
log

[(
cos2 θ 0

0 sin2 θ

)]
=

−tr

(
cos2 θ 0

0 sin2 θ

)(
log cos2 θ 0

0 log sin2 θ

)
=

− cos2 θ log(cos2 θ)− sin2 θ log(sin2 θ). (4.8)

We see that for cos2 θ = 1
2

the two systems are maximally entangled with SA = log 2. On
the other hand if cos2 θ = 0 or 1 there is no entanglement SA = 0 and the state |ψ〉 really
takes the form |ψ〉 = |ψ〉A ⊗ |ψ〉B as required for a unentangled state.

B BA

z

Minimal Surface γA

AdSd+2

Boundary

Figure 4.5: Holographic calculation of the entanglement entropy via the
calculation of the minimal surface using the AdS/CFT correspondence.

In 2006 very important progress in our understanding of entanglement was made in [73]
which goes under the name of holographic entanglement entropy. Holographic entangle-
ment links in a beautiful way the study of entanglement to gravity and thermodynamics.
Explicitly it was shown using the AdS/CFT correspondence [10] that the entanglement
entropy is proportional to the minimal surface γA in the bulk of AdSd+2 [72](see figure 4.5)
where ∂A is the boundary of the region A in CFTd+1, i.e.

SA =
Area(γA)

4G
(d+2)
N

, (4.9)

where G
(d+2)
N is the Newton constant in d+ 2 dimensions.
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4.2 The Replica Trick

From now on we will consider a 2d CFT with complex coordinates z = x+ it, z̄ = x− it.
We want our entangling region A at initial time t = 0 to be aligned along the real axis
with endpoints u and v (see figure 4.6).

z

Au v

Figure 4.6: Entangling region at t = 0.

Often it is too difficult to calculate the von-Neumann entropy (4.3) directly. In order to
find an analytic expression for the EE one applies the so called replica trick [74,77–79,81].
By replicating the sheets and gluing along the cuts A one can calculate the quantity

trρnA =:
Zn
Zn

, n ∈ N. (4.10)

Here the trace is now taken over states in the n-sheeted Riemann surface RN,n, where N
is the number of intervals, Zn is the partition function on RN,n and Z is the partition
function on the original sheet. Again RN,n is the Riemann surface obtained by replicating

Figure 4.7: Replica trick for n = 3. The three sheets are replicated and
cyclically sewn together along the interval A.

the original surface n-times and gluing the sheets together along the N intervals. The
genus of the surface is g = (n− 1)(N − 1), i.e. for a single interval N = 1 the genus is zero
corresponding to the topology of C.
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In figure 4.7 we illustrate the procedure for calculating trρ3
A where the sheets are sewn

together along the interval A. It is now convenient to introduce the so called Renyi-entropy
which is defined by

SRenyi =
1

1− n
log trρnA. (4.11)

Experimentally the Renyi-entropy is the only accessible quantity to measure. For example
in [36] a setup was proposed for measuring the n-th Renyi entropy. Adopting the notation
of the paper n pairs of half chains are arranged in a cross geometry (see figure 4.8). A
quantum switch positioned at the centre of the cross controls the way of connection between
the two chains. Explicitly for n = 2 the two pairs of half chains are connected through the
switch by selectively forbidding tunnelling to one of the neighbours. It can be shown that
the overlap of the ground states of this configuration (see figure 4.8 left) corresponding to
different connections is directly proportional to the n-th Renyi entropy. By studying Rabi
oscillations of the quantum switch the Renyi entropy thus can be measured.

Quantum switch

Figure 4.8: Proposal for measuring the n-th Renyi entropy via a cross ge-
ometry connected by a quantum switch. The left graph is a proposal for
measuring n = 2 Renyi entropy. On the right graph is an example for
measuring n = 4 Renyi entropy.

Having found an expression for the n-th Renyi entropy (4.11) one can analytically continue
the expression to R+. The entanglement entropy is then found by taking the limit

SA = lim
n→1

1

1− n
log trρnA = (1− ∂n) log trρnA|n=1. (4.12)

This means that, instead of calculating the difficult expression (4.3) the problem reduces
to the calculation of Renyi entropies, especially in calculating trρnA. In the next section we
will discuss how this quantity can be calculated in the context of two-dimensional CFTs.
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4.3 How to Derive trρnA

In the last section we stated how the entanglement entropy can be derived from the Renyi
entropy which basically results in calculating trρnA using the replica trick. Here we now
want to show how to derive trρnA. In particular this will lead us to the notion of twist fields
that we will discuss in detail in the following section.

x
B BA

u v

t

0

∞

−∞

Φ−

Φ+

Figure 4.9: Path-integral representation for the reduced density matrix
[ρA]Φ+Φ− .

The easiest way to derive trρnA is using the path-integral formalism. We consider a two
dimensional system with Euclidean coordinates (x, t) ∈ R2 an assume that the entangling
region A is a single interval aligned along the real axis x ∈ [u, v] at t = 0. The ground
state wave function ψ of this system can be found by path-integrating from t = −∞ to
t = 0, i.e.

ψ(Φ(x, t = 0)) =

∫ Φ(x,t=0)

t=−∞
DΦ e−S(Φ), (4.13)

where we denoted by Φ(x, t) the field defining our CFT. The values of the field Φ(x, t) at
the boundary t = 0 depend on the spatial coordinate x. The entries of the total density
matrix for this system are then given by

[ρ]Φ0Φ′0
= ψ(Φ0)ψ∗(Φ′0). (4.14)

Here we introduced the shorthand notation Φ0(x) := Φ(x, t = 0). The complex conjugate
wave function ψ∗ can be obtained in the path-integral formalism by integrating from t =
+∞ to t = 0. In order to obtain the reduced density matrix ρA we need to integrate out
the degrees of freedom coming from the subsystem B, i.e. we need to integrate Φ0 on B
assuming Φ0(x) = Φ′0(x) when x ∈ B = R \ [u, v]. Performing the integration we have for
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the entries of the reduced density matrix

[ρA]Φ+Φ− =
1

Z

∫ t=∞

t=−∞
DΦ e−S(Φ)

∏
x∈A

δ(Φ(x,+0)− Φ+(x)) · δ(Φ(x,−0)− Φ−(x)). (4.15)

Here Z is the vacuum partition function added s.t. trHAρA = 1. Φ± are the fields that are
obtained by approaching 0 from t = ±∞ to zero (see figure 4.9).
In order to obtain an expression for trρnA we take n copies of [ρA]Φ+Φ− , i.e.

[ρA]Φ+
1 Φ−1

[ρA]Φ+
2 Φ−2
· · · [ρA]Φ+

nΦ−n
, (4.16)

and successively take the traces. In the path-integral formalism this is realized by gluing
the set of fields according to Φ+

i (x) = Φ−i+1(x) with i = 1, . . . , n − 1 and Φ+
n (x) = Φ−1 (x),

and integrating Φ+
i . In this way as said before the trace over the replicated reduced density

matrix is given in terms of a path-integral on a n-sheeted Riemann surface Rn via

trAρ
n
A =

1

Zn

∫
(x,t)∈Rn

DΦ e−S(Φ) ≡ Zn
Zn

. (4.17)

For a graphical representation again consider figure 4.7.

4.4 Entanglement Entropy via Twist Fields

The replica trick is a useful tool for the calculation of entanglement entropy, in particular
it has been shown in [78] that Zn/Z

n, for a single entangling interval transforms under
conformal transformations like a two point function of primary fields, so called twist fields
Tn of lowest conformal dimensions

hn = h̄n =
c

24

(
n− 1

n

)
, (4.18)

living in the orbifold theory C⊗n/Zn of n replicated sheets. For a single interval one can
map the Riemann surface via a uniformizing transformation to the complex plane since
the genus of Rn is one. The twist fields are then inserted at the end points of the gluing
interval (see figure 4.10). These fields can be considered a special kind of twist field, called
branch-point twist fields [37]. The notion of branch-point twist fields is natural since the
twist fields are related to the branch points in the n-sheeted Riemann surface. The twist
and adjoint twist field implement in a natural way the cyclic symmetry on the sheets

T : i→ i+ 1 mod n (4.19)

T̄ : i→ i− 1 mod n. (4.20)

The relation to the trace of the replicated density matrix is then given by

trρnA = cn〈Tn(u)T̄n(v)〉 = cn

(
v − u
ε

)− c
6(n− 1

n)
, (4.21)
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ATn(u) T̄n(v)

Figure 4.10: Insertion of twist fields at interval end points.

where cn is a normalization constant with the property c1 = 1 and ε is a UV cut-off2

regularising the limit v−u→ ε� 1 due to short range correlations between the entangling
regions A and B (see figure 4.11).

B

A ε

Figure 4.11: Zoomed out example for short range correlations with UV cut-
off ε.

For the entanglement entropy we then find using (4.12):

S = lim
n→1

1

1− n
log cn

(
v − u
ε

)− c
6(n− 1

n)
=
c

3
log

l

ε
− c′1. (4.22)

Here we defined the interval length to be l = v − u and

c′1 := lim
n→1

1

n− 1
log cn =

∂ log cn
∂n

|n=1. (4.23)

Similarly one obtains the n-sheeted partition function for N disjoint intervals with end
points (ui, vi) [78], i.e. A = [u1, v1] ∪ [u2, v2] ∪ · · · ∪ [uN , vN ], by inserting the twist and
adjoint-twist fields at the corresponding end points (see figure 4.12) and calculate the
vacuum expectation value

trρnA = cNn 〈Tn(u1)T̄n(v1) · · · Tn(uN)T̄n(vN)〉 =

cNn

∣∣∣∣∣
∏

j<i≤N(ui − uj)(vi − vj)∏
i,j≤N(vi − uj)

∣∣∣∣∣
c
6(n− 1

n)

Fn,N({x}), (4.24)

2Note that ε sets a natural length scale of the system, i.e. for lattice mocels ε simply would correspond
to the lattice spacing.
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where {x} is the set of all cross ratios that can be built out of the points ui, vj and F is
a function depending on the full operator content of the theory. Note that the 2N -point
function exactly takes the form as mentioned before in section 2.7. For the function F
there exists no general form, i.e. it must be calculated explicitly in each theory considered.
The entanglement entropy for the case of N disjoint intervals then takes the form

Tn(u1)

T̄n(v1)

Tn(u2)

T̄n(v2)

Tn(uN)

T̄n(vN)

Figure 4.12: Insertion of twist fields at interval end points for several inter-
vals.

SA =
c

3
log

∣∣∣∣∣
∏

j<i≤N(ui − uj)(vi − vj)∏
i,j≤N(vi − uj)

∣∣∣∣∣−Nc′1 − F ′1,N({x})
F1,N({x})

. (4.25)

Since the genus for more than one interval is bigger than zero we expected the partition
function not only to be a function containing the data of the insertion points, conformal
weights of the twist fields and the central charge but also on additional information e.g.
fusion coefficients or similar which are encoded in F [78, 80].

4.5 Mapping to other geometries

So far we have considered our system at zero temperature and infinite size. It would be
interesting to calculate the entanglement entropy for other setups. For a single interval
it is known [78] that trρnA transforms like a two point function of primary fields Tn under
general conformal transformations. This means that we can easily map to other geometries
obtained by a conformal map z → w(z) as

〈Tn(z1, z̄1)T̄n(z2, z̄2)〉 = |w′(z1)w′(z2)|2hn〈Tn(w1, w̄1)T̄n(w2, w̄2)〉. (4.26)

Of special interest is the transformation z → w = (β/2π) log z that maps each sheet in the
z-plane to the infinitely long cylinder of circumference β (see figure 4.13) where we have
periodic boundary conditions in z along the time axis. The sheets that before were sewn
together along the branch cut are now sewn together along a branch cut joining the two
images of the points u and v on the cylinder.

By mapping to the cylinder we obtain an expression for trρnA in a thermal mixed state at
finite temperature T = β−1 by arranging the branch cut to lie along the cylinder axis. For
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z

u v

w(z) = exp(2πz/β)

w

Figure 4.13: Transformation from the complex plane to the infinite cylinder
with periodic boundary conditions perpendicular to the cylinder axis.

the entanglement entropy one obtains in this new geometry after some simple algebraic
manipulations

Scyl =
c

3
log

(
β

πε
sinh

πl

β

)
− c′1, (4.27)

where again l = v− u. One can now consider two different limits namely the high temper-
ature limit where l� β and the zero temperature limit l� β:

S =

{
c
3

log l
ε
− c′1 l� β

πc
3β
l − c′1 l� β

(4.28)

We see that in the zero temperature limit l� β we exactly recover (4.22).
Orientating the branch cut perpendicularly to the cylinder axis corresponding to the re-
placement β → iL one obtains an expression for the entanglement entropy for a finite 1D
system of length L with periodic boundary conditions at zero temperature (see figure 4.14)

S =
c

3
log

(
πL

ε
sin

πl

L

)
. (4.29)

In order to obtain an expression for the entanglement entropy at finite temperature and
finite size one has to consider periodic boundary conditions both along and perpendicularly
to the cylinder axis. In this case one obtains the topology of a torus.

z

u v

w(z) = exp(−2πiz/L)

w

Figure 4.14: Transformation from the complex plane to the infinite cylinder
with periodic boundary conditions parallel to the cylinder axis.
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4.6 Boundary Entropy

We now review the concept of a boundary entropy first introduced by J. Cardy. In the
context of entanglement entropy in two-dimensional CFTs the notion of boundary entropy
was introduced [38]. Consider a cylinder of length L and circumference β. The partition
function on this cylinder can be thought of as a quantum statistical mechanics partition
function for a one-dimensional quantum field theory living on an interval of length L, at the
temperature 1/β [34]. In the thermodynamic limit where L/β is large only the ground state
contributes to the partition function since all excited states are exponentially suppressed,
i.e.

Zij(L, β) ∼ 〈i|0〉〈0|j〉eπcL/6β. (4.30)

It is important to realize that |0〉 is not the boundary state corresponding to the vacuum
representation but the ground state of the vacuum representation. Following the standard
procedures from statistical mechanics we can deduce that the free energy is

Fij = − 1

β
lnZij. (4.31)

From this one can derive the associated entropy in leading order

Sij = −β2∂βFij =
πc

3β
L+ si + sj. (4.32)

The first term is the usual contribution in the high temperature limit (4.28). The two extra
contributions si = ln〈i|0〉 and sj = ln〈j|0〉 can be identified with the boundary entropy
related to the two boundary states. Note that gi = 〈i|0〉 is nothing but the g-factor
associated to a boundary state [38].



Chapter 5

EE for SUSY Twist fields

In this chapter we want to generalize the idea of purely ‘bosonic’ twist fields Tn to the
supersymmetric case, i.e. we want to construct a supersymmetric version of a twist field, in
particular a twist field that saturates a chirality condition between its conformal weight and
U(1) charge. We consider the same setup as n the chapter before, i.e. we are considering
the twist field Tn coming from the permutation symmetry. In [86] such a supersymmetric
twist field has been constructed for the cases that it is both chiral in the left and right
moving sector. Here chiral means the explicit relation between conformal weight and U(1)
charge (2.114). We first review the construction of this twist field before we generalize it to
other chiralities and apply the supersymmetric twist fields to the calculating SUSY Renyi
entropies and the associated entanglement entropies.

5.1 Construction of SUSY Twist Field

5.1.1 Review of SUSY Twist Field Construction

The construction of supersymmetric twist fields is mainly based on [86]. Here we just review
the main steps of the construction. We start by considering a N = 2 superconformal field
theory with the ordinary ‘bosonic’ twist field Tn. As discussed before N = 2 SCFT has
some very special properties. In Particular, it contains a special class of operators, so
called chiral operators (see section 2.12.3) that have the defining equation between their
conformal weight h and R-charge R

h =
1

2
R. (5.1)

The chiral operators form the chiral ring (see section 2.12.4) which controls properties of
their correlation functions. As before there exists a second class of operators, so called
anti-chiral operators whose defining equation is

h = −1

2
R. (5.2)
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Obviously Tn is not a chiral operator since its conformal weight and R-charge are given by

h(Tn) = hn =
c

24

(
n− 1

n

)
, (5.3)

R(Tn) = 0. (5.4)

The idea is to construct a chiral operator Sn out of Tn which then represents a supersym-
metric extension. Therefore, consider a general N = (2, 2) SCFT M with central charge
c. As usual the Renyi entropy of this theory can be derived by studying the cyclic orbifold
Mn/Zn. The operator of lowest dimension in the Zn twisted theory is exactly given by Tn.
The U(1)R current on Mn is given by

J =
n∑
j=1

Jj, (5.5)

where Jj is the U(1)R current on each individual sheet M. It is straightforward to show
that Tn commutes with J . By defining a canonically normalized scalar field H(z, z̄) =:
HL(z) +HR(z̄) this can be related to the current via

J = i

√
cn

3
∂H. (5.6)

It is now interesting to study the properties of a new twist field defined by

Tn(α) = TneiαH . (5.7)

The conformal weight and R-charge of this new operator satisfy

h(Tn(α)) = h(Tn) +
α2

2
(5.8)

R(Tn(α)) = α
√
n. (5.9)

The idea is now to tune α in such a way that Tn(α) becomes a chiral operator in order to
easily calculate correlation functions using the properties of the chiral ring. This means
we want

h(Tn(α)) =
1

2
R(Tn(α)) ↔ α = αn =

n− 1

2

√
c

3n
. (5.10)

The supersymmetric (chiral) version of the twist field is, therefore, given by

Sn := Tn(αn) = TneiαnH . (5.11)

Note that the conformal weight of this operator takes the much simpler form

h(Sn) =
c

12
(n− 1). (5.12)
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It is natural to ask if this new twist field really is contained in the spectrum of the orbifolded
theory. In [84,85] they show that Sn really is contained in the theory. Thereby they make
use of the existence of the spectral flow in the original supersymmetric theory denotedM
and on the orbifolded theory Mn/Zn. We will discuss the arguments that show that Sn
really is contained in the spectrum of Mn/Zn in detail in chapter 6.
We will now turn back in calculating Renyi and entanglement entropies with this ew field.
Given this new operator Sn we can now also generalize the Renyi entropy for general N
intervals

S
(n)
A =

1

1− n
log(trρnA), (5.13)

with
trρnA = cn〈Tn(u1)T ∗n (v1) · · · Tn(uN)T ∗n (vN)〉, (5.14)

to its supersymmetric version, the so called supersymmetric Renyi entropy (SRE), by re-
placing the ‘bosonic’ twist fields Tn by their chiral analogous Sn and including an additional
normalization constant fn which in general depends on the chiral structure and is a function
of n, i.e.

S
(n)
A (susy) =

1

1− n
logOn, (5.15)

with
On = cnfn〈Sn(u1)S∗n(v1) · · ·Sn(uN)S∗n(vN)〉. (5.16)

From the SRE one can derive the supersymmetric version of the entanglement entropy
performing the usual limit

SA(susy) = lim
n→1

S
(n)
A (susy). (5.17)

It turns out that SA(susy) = SA − f ′1, i.e. the supersymmetric version of the Renyi
entropy gives the ordinary entanglement entropy in the limit n → 1 up to an additional
constant coming from the additional normalization constant. Nevertheless, the leading
order behaviour of SA(susy) is the same as SA.

5.1.2 Generalization to Other Chiralities

Following the same ideas as in the previous section it is now straightforward to construct
supersymmetric versions of twist fields with other chiralities, by making the ansatz

Tn(α, ε, ε̄) = Tneiα(εHL+ε̄HR), (5.18)

with ε, ε̄ ∈ {±1}. The conformal weight and R-charge of the left and right moving parts
satisfy

h(Tn(α, ε, ε̄)) = h̄(Tn(α, ε, ε̄)) = h(Tn) +
α2

2
(5.19)

RL(Tn(α, ε, ε̄)) = εα
√
n (5.20)

RR(Tn(α, ε, ε̄)) = ε̄α
√
n (5.21)
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The SUSY twist fields which are chiral/antichiral in the holomorphic and anti-holomorphic
parts are now given by

Sn(z, z̄, ε, ε̄) = Tn(z, z̄)eiαn(εHL(z)+ε̄HR(z̄)). (5.22)

Especially the chiral (c) and antichiral (a) fields are obtained by giving the variables (ε, ε̄)
the following values:

(c, c)⇔ (1, 1) (5.23)

(c, a)⇔ (1,−1) (5.24)

(a, c)⇔ (−1, 1) (5.25)

(a, a)⇔ (−1,−1). (5.26)

5.2 Renyi & Entanglement Entropy for Different Chi-

ralities

In this section we want to apply our supersymmetric twist fields of given chiralities to
calculate supersymmetric Renyi entropies and associated entanglement entropies. We pro-
ceed as follows: first we study the case of a single interval. We will calculate the SRE and
entanglement entropy for all possible chiralities. As it is convenient we also consider our
system in other geometries. As a next step we will consider the case of several disjoint
intervals of different chiralities before discussing in the end systems with boundaries.

5.2.1 Single Interval

Having defined the supersymmetric twist field (5.22) for general chiralities we can calculate
the SRE for a single interval. Within the interval the corresponding chirality structure for
the left- and right-movers has to be preserved in order not to break SUSY. This means
that we want to calculate the NS vacuum expectation value

〈Sn(ε, ε̄;u, ū)S∗n(ε, ε̄; v, v̄)〉 =

= 〈Tn(u)T ∗n (v)〉 · 〈: eiεαnH(u)+iε̄αnH∗(ū) :: e−iεαnH(v)−iε̄αnH∗(v̄) :〉 =

= |u− v|−
c
6(n− 1

n) · |u− v|−2α2
n = |u− v|−4h(Sn). (5.27)

In our calculation we used some facts on expectation values of vertex operators. For a
detailed discussion see appendix A.
We see that the result (5.27) is independent of the choice of ε, ε̄ and thus gives the same
result for all chiral/antichiral structures. For the trace then holds (including normalization
factors):

On = trρn = cnfn(ε, ε̄)|u− v|−4h(Sn), (5.28)
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where again cn is the usual ‘bosonic’ normalization corresponding to the twist field Tn and
fn(ε, ε̄) accounts for the additional ‘fermionic’ contribution realized by the vertex operator.

For the SRE we thus find

S
(n)
SUSY =

c

3
log |u− v| − log cn

n− 1
− log fn(ε, ε̄)

n− 1
. (5.29)

We see that the leading term contribution to the Renyi entropy is constant for any number
of sheets n in the Zn twisted theory. This is in contrast with the pure bosonic case where the
leading term also depends on the number of sheets (4.21) and the leading term approaches
c
3

log |v − u| just in the limit n → 1. The supersymmetric version of the entanglement
entropy then follows by taking the limit n→ 1 of the SRE, i.e.

S(susy) =
c

3
log |u− v| − c′1 − f ′1(ε, ε̄) (5.30)

where c′1 and f ′1(ε, ε̄) are the first derivatives with respect to n evaluated at n = 1.

Comparing this result to the usual case (just bosonic twist field (4.22)) we see that the
results agree up to an additional constant −f ′1(ε, ε̄) coming from the fermionic extension.

5.2.2 Single Interval SUSY Renyi Entropy and EE in Other Ge-
ometries

Since 〈Sn(ε, ε̄;u, ū)S∗n(ε, ε̄; v, v̄)〉 also transforms like a two point function of ‘bosonic’ and
‘fermionic’ twist fields separately we can easily map to other geometries. For example we
can map to the infinite cylinder with circumference β via w = exp(2πz/β), i.e. we are
considering the system at finite temperature T = 1/β. For the SRE we, therefore, obtain
in the cylinder geometry

S
(n)
cyl (susy) =

c

3
log

(
β

π
sinh

πl

β

)
− log cn
n− 1

− log fn(ε, ε̄)

n− 1
. (5.31)

The mapping is shown in figure 5.1.

z

u v
w(z) = exp(2πz/β)

w

Figure 5.1: Transformation from the complex plane to the infinite cylinder
with periodic boundary conditions perpendicular to the cylinder axis.
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As usual one can consider the low and high temperature limits where β � l or β � l, i.e.

S
(n)
cyl (susy) =

{
c
3

log l − log cn
n−1
− log fn

n−1
for β � l

c
3
πl
β
− log cn

n−1
− log fn,1

n−1
for β � l

(5.32)

For the SUSY EE we, therefore, obtain in the given limits

SSUSY,cyl = −c′1 − f ′1(ε, ε̄) +

{
c
3

log l for β � l
cπl
3β

for β � l
(5.33)

Analogously we can map to a finite size interval of length L with periodic boundary con-
ditions via w = exp(2πiz/L) (see figure 5.2). In this geometry the Renyi entropy is

S
(n)
finite(susy) =

c

3
log

(
L

π

∣∣∣∣sin πlL
∣∣∣∣)− log cn

n− 1
− log f1(ε, ε̄)

n− 1
. (5.34)

z

u v

w(z) = exp(−2πiz/L)

w

Figure 5.2: Transformation from the complex plane to the infinite cylinder
with periodic boundary conditions parallel to the cylinder axis.

Again performing the limit n→ 1 we find for the SUSY EE

Sfinite(susy) = −c′1 − f ′1(ε, ε̄) +

{
c
3

log l for L� l

log l + log
(

1
π

(
1− l

L

))
for L ≈ l

(5.35)

Note that in all cases we omitted the UV cut-off which we called ε in (4.22). Further we see
that leading order terms of the SREs are again constant and the results for the EE in the
different geometries match with the pure ‘bosonic’ case [78] up to an additional constant
−f ′1(ε, ε̄).

5.2.3 Several Intervals

In this section we now want to consider the case of several disjoint intervals

A = [u1, v1] ∪ · · · ∪ [uN , vN ], (5.36)
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where we assume the intervals to be ordered by ui < vi < uj < vj ∀i < j. Within each
interval the associated chiral/antichiral structure has to be preserved to preserve SUSY.
We are thus interested in the quantity

〈
N∏
j=1

Sn(uj, ūj, εj, ε̄j)S
∗
n(vj, v̄j, εj, ε̄j)〉, (5.37)

with εj, ε̄j ∈ {±1} the chiralities/antichiralities in each interval. Again it is possible to
decompose this expectation value into a part containing the ‘bosonic’ twist fields and
another containing the ‘fermionic’ twist fields.
The contribution associated to the ‘bosonic’ twist fields Tn is given by

〈Tn(u1)T ∗n (v1) · · · Tn(uN)T ∗n (vN)〉 =(∏
j<k(uk − uj)(vk − vj)∏

j,k(vk − uj)

)4h(Tn)

Fn,N({x}). (5.38)

Here Fn,N({x}) is a function of all cross ratios x and explicitly depends on the full operator
content of the theory. This in particular means that Fn,N({x}) has to be calculated for
each case separately (see [78]).
The contribution from the vertex operators reads

〈
N∏
j=1

: eiαn(εjHL(uj)+ε̄jHR(ūj)) :: e−iαn(εjHL(vj)+ε̄jHR(v̄j)) :〉 =

(∏
j<k [(uk − uj)(vk − vj)]εjεk+ε̄j ε̄k∏

j,k(uk − vj)εjεk+ε̄j ε̄k

) c
12

1−n
n

. (5.39)

Using the identity ∑
i,j

= 2
∑
i<j

+
∑
i,j

δi,j, (5.40)

we, therefore, obtain an expression for the SRE

S
(n)
A (susy) =

N log cn + log fn({ε, ε̄}) + logFn,N({x})
1− n

+

+
c

3

N∑
i=1

log |vi − ui|+
c

6

N∑
j>i=1

(
n+ 1

n
+
n− 1

2n
(εiεj + ε̄iε̄j)

)
log

|vj − ui|2

|uj − ui| · |vj − vi|
. (5.41)

In this form we learn that the SRE of several intervals decomposes into the sum of SREs
of single intervals

c

3

N∑
i=1

log |vi − ui|, (5.42)
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up to a part containing the information about the cross-entangling between the individual
intervals

c

6

N∑
j>i=1

(
n+ 1

n
+
n− 1

2n
(εiεj + ε̄iε̄j)

)
log

|vj − ui|2

|uj − ui| · |vj − vi|
. (5.43)

Explicitly we see that the sum over the single intervals is independent of the choice for the
chiralities (exactly as we discovered before). Note that for N intervals cn,N = cNn holds.
In contrast to the single interval case, the total SRE now explicitly depends on the choice
of the εi, ε̄i. In the single interval case the leading order term in the SRE is independent
of the number of sheets n. This is no longer the case for several intervals but again the
additional contributions coming from the ‘fermionic’ extension drop in the limit n → 1
reproducing the results found in [78] up to an additional constant, i.e.

SA(susy) = lim
n→1

S
(n)
A (susy) = −Nc′1 − f ′1({ε, ε̄})−

F ′1,N({x})
F1,N({x})

+

+
c

3

N∑
i=1

log |vi − ui|+
c

3

N∑
j>i=1

log
|vj − ui|2

|uj − ui| · |vj − vi|
. (5.44)

5.2.4 SUSY Renyi & EE for R Vacua

So far we have calculated the SRE as NS-sector vacuum expectation values of supersym-
metric twist fields. In this section we calculate the SUSY entropies via R-sector vacua
expectation values. Therefore, we start with the NS vacuum in the Zn twisted theory and
spectral flow to the Ramond ground states

|0, 0〉NS → |
nc

24
,±nc

6
〉
R

= lim
t→−∞

e±iβnH(x+it,x−it) |0, 0〉NS = lim
t→∞

e±iβnH(x−it,x+it) |0, 0〉NS ,
(5.45)

where βn =
√
nc/12. Note that in the limit t→ −∞ the insertion coordinate x is basically

irrelevant thus we can set it to zero x = 0 without loss of generality.

For the adjoint ground states one finds

R 〈
nc

24
,∓nc

6
| = lim

t→∞NS 〈0, 0| e∓iβnH(it,−it)|2t|2β2
n . (5.46)

Here the factor |2t|2β2
n comes from the fact that we normalize the R-sector ground states

to one, i.e.1

R〈
nc

24
,∓nc

6
|nc
24
,±nc

6
〉R = 1. (5.47)

1In N = 2 theories with moduli the correlation function R〈0|0〉R = exp(−K) is an interesting function
on the moduli space, where K is the Kähler potential. This means it is crucial that we choose the ground
states to be normalized.
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Alternatively one could define the normalized Ramond vacuum right away by

|nc
24
,±nc

6
〉
R

:= 2βn lim
t→−∞

e±iβnH(x+it,x−it) |0, 0〉NS (5.48)

We now proceed in calculating the associated Renyi entropy in the Ramond vacuum for a
single entangling interval. The result can easily be generalized to several intervals.
For the single interval in the R-sector we find for the expectation value

〈nc
12
,∓nc

6
|Sn(u)S∗n(v) |nc

12
,±nc

6
〉 =

= 〈Tn(u)T ∗n(v)〉·

· lim
t′→∞

|t′|2β2
n〈: e∓iβnH(it′,−it′) :: eiαnH(u+it,u−it) :: e−iαnH(v+it,v−it) :: e±iβnH(−it′,it′) :〉 =

= |u− v|−4h(Sn). (5.49)

We see that for both vacua we get the same result. Since both Ramond vacua contribute
equally to the entropy the right identification for the trace of the n-sheeted density matrix
in the Ramond sector reads

trρnA,R = cnfn(ε, ε)
∑
λ=±1

〈nc
12
,−λnc

6
|Sn(u)S∗n(v) |nc

12
, λ
nc

6
〉 =

2cnfn,1|v − u|−4h(Sn). (5.50)

For the SRE in Ramond vacua we thus find

S
(n)
SUSY,R =

4h(Sn)

n− 1
log |u− v| − log cn

n− 1
− log fn,1

n− 1
+ log 2 = S

(n)
SUSY,NS + log 2. (5.51)

We see that compared to the result for the NS-vacuum we have an additional term log 2.
This term can be identified with the logarithm of the number of Ramond ground states2.
Similar considerations can be made for the cases of different chiralities and several intervals
and the results will always take the form

S
(n)
SUSY,R({ε, ε̄}) = S

(n)
SUSY,NS({ε, ε̄}) + log 2. (5.52)

5.3 Systems with Boundaries

Let us now consider the case of a system bounded from one side by a boundary. On
the boundary we have consistency conditions in which fields may appear. In N = 2
superconformal field theories there exist two type of boundaries A- and B-type. For A-
type boundaries the charges of left- and right-movers have to fulfil q − q̄ = 0 whereas for

2Note that the number of Ramond ground states depends strongly on the theory under consideration,
i.e. usually it is not equal 2 (see e.g. N = 2 minimal models with k + 1 different Ramond ground states.
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B-type boundaries they satisfy q + q̄ = 0. In the case of our supersymmetric twist field
S(u, u, ε, ε̄) the charges of left- and right-movers are proportional to ε and ε̄ (5.20)-(5.21).
We take the boundary to run along the imaginary axis and our fields to live on the right half
plane (see figure 5.3). Thus for A-type boundaries only twist fields with S(l, l, ε, ε) ending
on the boundary are allowed whereas for B-type boundaries only S(l, l, ε,−ε) contributes.
Explicitly this means that (c, c) and (a, a) fields couple to A-type boundaries whereas
(a, c) and (c, a) fields couple to B-type boundaries. In the following we are interested
in calculating the SRE and EE for a single interval in the presence of such a boundary.
Thereby we will distinguish the cases of the interval ending on the boundary from that of
the interval being separated from the boundary by a distance x.

5.3.1 Entangling Region Ending on Boundary

In the first case we are interested in the entangling region ending on the boundary (figure
5.3). As said before depending on the boundary only the twist fields with the correct chiral
structure contribute.

Boundary region Re(z)

Im(z)

l

Figure 5.3: Entangling region ending on a boundary.

In order to calculate the upper diagram we have to insert a single twist field at z = z̄ = l.
For the case where one just considers Tn the calculation has been performed in [78]. Note
that we do not need a twist field insertion at z = 0 due to our choice of geometry. We thus
want to calculate

trρn = 〈Bn|Sn(l, l, ε, ε̄) |0〉 = 〈Bn|0〉 〈0|Sn(l, l, ε, ε̄) |0〉RHP =:

g
(n)
B c1/2

n f 1/2
n (ε, ε̄)(2l)−2h(Sn)δB,(ε,ε̄), (5.53)

where δB,(ε,ε̄) is understood to be non-zero iff the chiralities fulfil the boundary conditions.
Here Bn is the boundary state in the n-times replicated theory mapped by a uniformizing
transformation to C. In our calculation we applied Cardy’s doubling trick in order to
evaluate the one-point function on the right half-plane via a two point function of only
holomorphic operators on the whole complex plane. This leads to an total interval length
of 2l, instead of just l. The normalization constants are simply the square roots of the
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usual constants since we just have a single twist field insertion and g
(n)
B = 〈Bn|0〉 is the

g-factor of the replicated boundary state.
Assuming that our twist field is compatible with the boundary conditions we find for the
SRE

S
(n)
A =

c

6
log(2l)− 1

2

log cn
n− 1

− δB,(ε,ε̄)
1

2

fn(ε, ε̄)

n− 1
− g

(n)
B

n− 1
. (5.54)

Taking the limit n→ 1 we obtain the supersymmetric entanglement entropy as

SA =
c

6
log(2l)− c′1

2
− δB,(ε,ε̄)

f ′1(ε, ε̄)

2
+ log gB, (5.55)

where gB = |〈0|B〉| is the g-factor associated to the boundary in the unreplicated theory.
In particular the result shows us that the prefactor of the leading order term is one half of
the one we find in the case of no boundary. This reflects nothing but the area law. Further
we reproduce the results obtained in [78] up to an additional constant coming from the
‘fermionic’ normalization. Note that we have omitted the UV cut-off in the leading order
term.

5.3.2 Entangling Region Away From the Boundary

Next we want to calculate the SRE and supersymmetric EE for the case that we again
have a boundary aligned along the imaginary axis, where the entangling region of length l
is away from the boundary by some distance x (see figure 5.4)

Boundary region Re(z)

Im(z)

lx

Figure 5.4: Entangling region away from the boundary.

Since our entangling region is not ending on the boundary we need to insert a twist field
and an adjoint twist field at u = x and v = x + l. For the trace of the replicated theory
we thus find

trρn = cnfn(ε, ε̄) 〈Bn|Sn(x, x, ε, ε̄)S∗n(x+ l, x+ l, ε, ε̄) |0〉 =

cnfn(ε, ε̄) 〈Bn| ex(Hn−nc12
) |0〉 〈0|Sn(x, x, ε, ε̄)S∗n(x+ l, x+ l, ε, ε̄) |0〉RHP =

cnfn(ε, ε̄)〈Bn|0〉 〈0|Sn(x, x, ε, ε̄)S∗n(x+ l, x+ l, ε, ε̄) |0〉RHP . (5.56)
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For the vacuum expectation value on the right half plane we find using the Cardy doubling
trick

〈0|Sn(x, x, ε, ε̄)S∗n(x+ l, x+ l, ε, ε̄) |0〉RHP = δB,(ε,ε̄)

(
2xl2(2x+ 2l)

(2x+ l)2

)−2h(Sn)

F̃n,1(x, l).

(5.57)
Here as in the case with no boundary we obtain a function F̃ of all cross ratios which has
to be calculated for each individual case. The SRE is thus given by

S
(n)
A =

c

6
log

(
4xl2(x+ l)

(2x+ l)2

)
− log cn
n− 1

− δB,(ε,ε̄)
log fn(ε, ε̄)

n− 1
− log F̃n,1(x, l)

n− 1
− log g

(n)
B

n− 1
. (5.58)

The supersymmetric entanglement entropy can thus be found in the usual manner and
takes the form

SA(x, l) =
c

6
log

(
4xl2(x+ l)

(2x+ l)2

)
− c′1 − δB,(ε,ε̄)f ′1(ε, ε̄)−

F̃ ′1,1(x, l)

F̃1,1(x, l)
+ log gB. (5.59)

Considering the case x → ∞, i.e. when our entangling interval is far away from the
boundary we find

lim
x→∞

SA(x, l) =
c

3
log l − c1 − δB,(ε,ε̄)f ′1(ε, ε̄)− lim

x→∞

F̃ ′1,1(x, l)

F̃1,1(x, l)
+ log gB. (5.60)

We see that in this setup the leading order behaves like the one of a free theory, i.e. without
boundary (5.30). In this way one is able to match the expressions for the subleading
contributions i.e. in that limit we can relate the boundary entropy to the functions of cross
ratios as

log gB = lim
x→∞

F̃ ′1,1(x, l)

F̃1,1(x, l)
. (5.61)



Chapter 6

SUSY Twist Fields

In the last chapter we constructed the supersymmetric version of a twist field. Nevertheless,
as we know from section 4.4 these twist fields have to live in the orbifold theory Mn/Zn.
It is thus natural to ask if our new twist field Sn is really contained in the spectrum of
Mn/Zn. This is similar to the question if one can find a field in the the ‘mother’ theory
M that becomes Sn inMn/Zn. We will see that Sn really is contained in the spectrum of
Mn/Zn and can be constructed from the vacuum in M. Thereby one has to demand the
existence of spectral flow in both M and Mn/Zn.

6.1 State content of the SUSY twist operators

For this section we first review the results for the chiral spectrum of symmetric products
[84,85]. Starting with a supersymmetric (chiral) theoryM with fields of conformal weight
h and R-charge R, there is an operator in the Zn twisted sector Mn/Zn with weight and
R-charge given by

twist : hn =
h

n
+

c

24

n2 − 1

n
, Rn = R. (6.1)

Here we use the notation where we denote conformal weights and R-charges in the twisted
sector by hn and Rn. This has not to be confused with the n-th power of the conformal
weight and R-charge of a field in M.
From (6.1) we see that the conformal weight transforms in a non-trivial way whereas the
charge remains invariant under twisting.
In the paper [84] they provide a procedure for mapping a chiral state to the Zn twisted
sector using the spectral flow (2.124) via

hNS = RNS
2
, R = RNS

η= 1
2

��

hnNS = 1
2
RNS + c

12
(n− 1), Rn

NS = RNS + c
6
(n− 1)

hR = c
24
, RR = RNS − c

6 twist
// hnR = nc

24
, Rn

R = RNS − c
6

η=− 1
2

OO
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Here R and NS in the indices label the Ramond and Niveau-Schwarz sector and η corre-
sponds to the spectral flow (2.124). The left side of the diagram corresponds to a single
theoryM where we apply the spectral flow ofM. By ‘twist’ we exactly mean the operation
that transforms conformal weights and R-charges ofM to conformal weights and R-charges
in the twisted sector by (6.1). The right hand side of the diagram then is understood to
live in Mn/Zn. We will use this convention for all following diagrams.

A similar manipulation, following the same arguments, can also be done for anti-chiral
states, i.e.

hNS = −RNS
2
, R = RNS

η=− 1
2

��

hnNS = −1
2
RNS + c

12
(n− 1), Rn

NS = RNS − c
6
(n− 1)

hR = c
24
, RR = RNS + c

6 twist
// hnR = nc

24
, Rn

R = RNS + c
6

η= 1
2

OO

Note that in contrast to the chiral states the spectral flows run in opposite directions.

After this short review we turn back to the paper by Giveon and Kutasov [86]. There they
construct the SUSY twist operator in the Mn/Zn theory using the chirality condition for
the NS-sector. For the chiral case the weight and charge are given by

h(Sn) =
1

2
R(Sn) =

c

12
(n− 1) ↔ hnNS =

1

2
Rn
NS. (6.2)

Comparing to the first commutative diagram we can determine the conformal weight and
charge of the associated field in M

hNS = 0 = RNS, (6.3)

thus corresponding to a NS ground state (vacuum).

By similar considerations, using the second diagram, we can determine the weight and
charge for an anti-chiral twist with

h(S̄n) = −1

2
R(S̄n) =

c

12
(n− 1), (6.4)

leading to

hNS = 0 = RNS, (6.5)

which is identical to the chiral state.
The following diagram concludes the possible ways to construct a (anti-)chiral state from
the field with weight and R-charge (0, 0)
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( c
24
,− c

6
) twist // (nc

24
,− c

6
)

η=− 1
2

��
( c

12
(n− 1), c

6
(n− 1)) chiral

η=n−1
n

��

(0, 0)

η= 1
2

OO

η=− 1
2

��

( c
12

(n− 1),− c
6
(n− 1)) anti− chiral

( c
24
, c

6
) twist // (nc

24
, c

6
)

η= 1
2

OO

Note that for the construction to work we need the existence of the spectral flow both in
M and Mn/Zn.

Next we discuss an alternative way to obtain a chiral state in the twisted sector (starting
with a chiral state in M).

h = R/2, R

ηc=
1−n

2
��

h′, R′
twist// hn = Rn/2, Rn

where

h′ =
n

2
R +

c

24
(n− 1)2 (6.6)

R′ = R +
c

6
(n− 1) (6.7)

hn =
R

2
+

c

12
(n− 1) (6.8)

Rn = R +
c

6
(n− 1). (6.9)

From this statement we see that we first can perform a spectral flow with ηc = (1− n)/2
and then twist to obtain a chiral state in Mn/Zn. Note that performing a spectral flow
with η = (1−n)/2 is equivalent to applying (n−1)-times the spectral flow with η = −1/2,
thus for this construction to work we only need the existence of the spectral flow in the
mother theoryM in contrast to the construction discussed before. The same construction
also holds for antichiral states where ηac = −ηc.
In contrast to the construction before we now end up either in the NS- or R-sector depend-
ing on whether (n− 1) is even or odd. This can be seen by the following diagram
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NS

η=−1/2
��

RR

η=−1/2 ��
...

η=−1/2

��
RR

η=−1/2
��

NS
twist

// NS

if (n− 1) is even or

NS

η=−1/2
��

RR

η=−1/2 ��
...

η=−1/2

��
NS

η=−1/2
��

RR
twist

// RR

if (n−1) is odd. This means starting with a chiral state we need (n−1) to be even in order
to obtain an chiral state in the NS-twisted theory or alternatively the second construction
is only valid for (n− 1) even.

In an alternative construction we just need the existence of the spectral flow in the Zn
twisted theory. We motivate the construction starting with an NS chiral vacuum state.
Twisting this field results in the usual twist field Tn. Performing now a spectral flow
with η = n−1

2n
results in the chiral twist field Sn as introduced in the paper by Giveon

and Kutasov. The construction described here illustrates that the SUSY twist field they
construct is nothing else than the chiral field obtained by spectral flowing from the bosonic
twist field Tn to Sn. Thus the additional contribution to the bosonic twist exp(iαnH) can
be interpreted as the spectral flow operator. Schematically this means
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(0, 0) twist // ( c
24
n2−1
n
, 0)

η= 1−n
2n

��
( c

12
(n− 1), c

6
(n− 1))

Or in terms of fields
vac. twist // Tn

η= 1−n
2n

��
Sn

Note that in the Zn twisted theory (central charge nc) the spectral flow operator is given
by

Uη =: exp

(
iη

√
nc

3
H

)
:, (6.10)

where the weights and R-charges in the twisted theory (ctotal = nc) transform according to

h→ h− ηR +
nc

6
η2 (6.11)

R→ R− nc

3
η. (6.12)

Obviously the construction is also valid for anti-chiral states with the spectral flow running
in opposite direction. Concluding we have the following commutative diagram for the states

(0, 0) twist //

η= 1−n
2

��

( c
24
n2−1
n
, 0)

ηt=
1−n
2n

= η
n

��
( c

24
(n− 1)2, c

6
(n− 1))

twist
// ( c

12
(n− 1), c

6
(n− 1))

and equally for the associated fields

vac.
twist //

η= 1−n
2
��

Tn
ηt=

1−n
2n

= η
n

��
field

twist
// Sn

From this perspective it is interesting to note that it doesn’t matter if we first twist and
then flow or vice versa. Especially ηt = 1−n

2n
= η

n
shows that the spectral flow in the twisted

sector is the same as acting on each individual component with the original flow. Further
the construction gives the same result if we apply it to more general chiral states (R/2, R)
or to anti-chiral states (−R/2, R) with the opposite flows η′ = −η and η′t = −ηt.

A last possible way to construct the twisted SUSY field is shown in the following diagram
by an interplay between non trivial spectral flowing on both sides of the theories (we just
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discuss the case for starting with the chiral vacuum state but the construction is also valid
for starting with other chiral states with R 6= 0):

(0, 0)

η(m)= 1−m
2
��

( c
24

(m− 1)2, c
6
(m− 1)) twist// ( c

24
(m−1)2

n
+ c

24
n2−1
n
, c

6
(m− 1))

ηt(m)=m−n
2n

��
( c

12
(n− 1), c

6
(n− 1))

Here m ∈ R. Especially we see that for m = 2Z our state remains in the NS-sector,
whereas when m = 2Z+ 1 we obtain a twisted state in the R-sector. Further we recognize
that for m = 0 we exactly reproduce the construction shown in [84] and in the beginning
of this section. This shows that their construction only gives states in the NS-sector and
omits the possibility to also find states in the R-sector of the twisted theory that obey a
chirality condition between the conformal weights and R-charges.

6.2 Concluding Remarks on the Spectrum

We summarize the results from the last section: to any field of conformal dimension and
charge (h,R) in an N = 2 superconformal theory there is a field in the Zn twisted sector
with

(hn, Rn) =

(
h

n
+

c

24

n2 − 1

n
,R

)
. (6.13)

For a chiral state (h = R/2, R) in M there is one corresponding chiral state in the Zn
twisted sector with

(hn, Rn) =

(
R

2
+

c

12
(n− 1), R +

c

6
(n− 1)

)
. (6.14)

For an anti-chiral state (h = −R/2, R) in M there is one corresponding anti-chiral state
in the Zn twisted sector with

(hn, Rn) =

(
−R

2
+

c

12
(n− 1), R− c

6
(n− 1)

)
. (6.15)

For the constructions to work it is crucial that the spectral flow onM (Mn/Zn respectively)
exist. This is always the case since we are considering space time supersymmetric theories.



Chapter 7

Entanglement Entropy through
Topological Interfaces

7.1 General Setup

We want to calculate the entanglement entropy through a topological interface separating
two identical CFTs of the same central charge. As we have seen in section 4.2 the entropy
was defined via a limit of a partition function Z(n) = Zn/Z

n on the n-sheeted Riemann
surfaces.
We will now first briefly review the construction of Z(n) (see also [82, 83]), which in prin-
ciple will allow us to derive the entanglement entropy through general, i.e. not necessarily
topological, interfaces that are connecting two (also possibly different) CFTs.

CFT2 CFT1

Re z

Im z

B A

Interface

Figure 7.1: Setup for the two CFTs with an interface aligned along the
imaginary axis.

Consider the complex plane and let the interface I be placed along the imaginary axis
where we have the two CFTs on each side with CFT1 on Re z > 0 and CFT2 on Re z < 0.
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In our setup time flows along the defect line and we divide our system, at initial time zero,
in the two subsystems A and B consisting of the positive and negative real axis (see figure
7.1).
We can now apply the replica trick in order to evaluate the partition function on the n-
sheeted surface which consists of n copies of the complex plane, glued together cyclically
along a branch cut on the positive real axis (see figure 7.2 left). As usual to be able
to calculate the partition function we have to introduce a UV cut-off ε = |z| and an IR
cut-off L = |z| and change the coordinates by a uniformizing transformation according to
w = log z. It is important to note that this coordinate transformation is compatible with
the gluing conditions (3.1) imposed by the interface along the imaginary axis. The new
geometry obtained is that of a cylinder (see figure 7.2 right).

Re(z)

Im(z)

Interface

branch cut w = log z

cut-offs ε, L

2πn

log ε logL
Re(w)

Im(w)

Figure 7.2: left : n-sheeted Riemann surface with branch cut along the real
axis. right : mapping to the cylinder geometry.

In [82] it is shown that one can regularize the partition function by imposing periodicity in
Re w and choosing ε = 1

L
. It is important to recognize that the periodicity condition can

be imposed since the UV and IR cut-offs are very small/large respectively. Having applied
all the transformations and identifications the partition function then becomes the torus
partition function

Z(n) = trH1

(
Ie−δH2I†e−δH1 · · · I†e−δH1

)
= trH1

(
Ie−δH2I†e−δH1

)n
, (7.1)

where H1 and H2 are the Hamilton operators of CFT1 and CFT2 respectively,

δ :=
2π2

logL/ε
=

π2

logL
, (7.2)

and the trace runs over all the states of the first Hilbert space in the replicated theory.
For general interfaces I the calculation and analytic continuation of the partition function
can be quite complicated. For free field examples, i.e. for a single free boson [82] or a
single free fermion [83], this partition function has been calculated for conformal defects.
From now on we only will consider the cases of topological interfaces. In this case the parti-
tion function simplifies considerably and we will be able to calculate it in a straightforward
manner as we will see in the next section.
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7.2 Calculation of the Entanglement Entropy

through Topological Interfaces

We have already seen in section 3.1 that topological defects commute with both chiral
and anti-chiral Virasoro algebras (if the two CFTs are identical). This means that when
assuming the defect I and the adjoint defect I† to be topological and the CFTs on both
sides to be the same we can rewrite the partition function as

Z(n) = trH1

[(
II†
)n
e−2δnH1

]
. (7.3)

As we already have discussed a general topological defect can be written as a sum of
weighted projectors on a given representation, i.e.

IA =
∑
i

dAi||i||, (7.4)

where again
i = (i, ī;α, β), (7.5)

with (i, ī) the labels of the representations, α = 1, 2, . . . ,M
(1)

īi
and β = 1, 2, . . . ,M

(2)

īi
are

the multiplicity labels of the representation pair on the two sides of the interface. For the
torus partition function this results in

Z(n) =
∑
(i,̄i)

Tr (dAidA∗i)
n trHi⊗Hīe

−2δn(L0+L̄0− c
12

) =

∑
(i,̄i)

Tr (dAidA∗i)
n χi

(
e−2δn

)
χ̄ī
(
e−2δn

)
. (7.6)

Here χi(q) are the characters of the chiral representations and similar for the anti-chiral
ones, further Tr denotes the trace over the multiplicity indices. We can now perform a
modular S-transformation

χi(q) =
∑
j

Sijχj(q̃), (7.7)

with q̃ = exp(2π2/δn) and similarly for the antichiral characters. The partition function
in the modular S-transformed channel then takes the form

Z(n) =
∑
(i,̄i)

∑
(j,j̄)

Tr (dAidA∗i)
n SijSīj̄χj

(
e−

2π2

δn

)
χ̄j̄

(
e−

2π2

δn

)
. (7.8)

In the large L limit, i.e. δ � 1, only the vacuum will contribute to the sums in the
characters, i.e.

χj

(
e−

2π2

δn

)
χ̄j̄

(
e−

2π2

δn

)
δ�1−→ δj,0e

π2c
12δn · δj̄,0e

π2c
12δn = δj,0δj̄,0e

π2c
6δn . (7.9)
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For the partition function this implies

Z(n) ≈
∑
(i,̄i)

Tr (dAidA∗i)
n Si0Sī0︸ ︷︷ ︸

=B(n)

e
π2c
6δn . (7.10)

One notices that the factor B(n) contains all the information about the topological inter-
face. Applying now the formula for the entanglement entropy (4.12) we find

S = (1− ∂n) logZ(n)|n=1 ≈ (1− ∂n)

(
π2c

6δn
+ logB(n)

) ∣∣∣∣
n=1

=

c

3
logL+

[
logB(1)− B′(1)

B(1)

]
. (7.11)

Here we used in the last line the definition of δ and a prime denotes the derivative with
respect to n. Note that time in the channel described in (7.8) runs parallel to the interface.
From (3.14) we, therefore, find that

B(1) = N A
0A (7.12)

is a non-negative integer. It is the multiplicity of the vacuum representation in the twisted
torus partition function in the channel where time evolves along the interface and its
conjugate. If the interface is elementary we have B(1) = 1. For the derivative of B(n) one
obtains

B′(1) =
∑
(i,̄ı)

Si0Sı̄0 Tr (dA∗i dAi) log (dA∗i dAi) . (7.13)

Inserting this into the formula for the entanglement entropy it becomes

S =
c

3
log L+

logN A
0A −

1

N A
0A

∑
(i,̄ı)

Si0Sı̄0 Tr (dA∗i dAi) log (dA∗i dAi)

 . (7.14)

Within CFT1 we now can define [60]

pA(īi,αα′) =
dA∗i dAi Si0Sī0̄
N A

0A

, (7.15)

where the multiplicity labels α and α′ both run from 1 to M
(1)

īi
. For every pair (i, ī), the

matrix pAi ≡ pA(īi,αα′) is a positive-semidefinite Hermitian matrix1, i.e. the eigenvalues of

the pAi are real and positive or zero. Moreover, by (3.14) we have∑
(i,̄ı)

Tr pAi = 1 . (7.16)

1Recall that in unitary theories Si0 > 0
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The set of all eigenvalues, therefore, forms a probability distribution. In a quantisation
where time runs orthogonally to the interface, the value of Tr pAi is the probability of finding
the system CFT1 in the Ishibashi-type state associated to the sector (i, ı̄), after tracing
out CFT2. Such a state is thermal within its sector, and the set of pAi should, therefore, be
understood as defining a reduced density matrix. Further we observe that the distribution
corresponding to the identity defect in CFT1 is given by

pidi = Si0Sı̄0 δαα′ (α, α′ = 1, 2, . . . ,M1
īi) . (7.17)

Equation (7.14) can now be written as

S =
c

3
logL −

∑
(i,̄ı)

Tr pAi log
pAi
pidi

. (7.18)

This is our main result of this section [60]. The quantity

s(IA) := −
∑
(i,̄i)

Tr pAi log
pAi
pidi

(7.19)

is the negative of the relative entropy — the Kullback-Leibler divergence [56] — of the
probability distribution associated to IA on the CFT1 side, measured with respect to the
probability distribution associated to the identity defect Did of CFT1. One interpretation
of this quantity is the amount of information lost when the probability distribution is
wrongly assumed to be given by Did, while it is in reality given by IA.
The relative entropy is always non-negative, and vanishes only if the compared probability
distributions agree.2 Therefore, we have s(IA) ≤ 0, which corresponds to the intuition
that an interface cannot enhance the transmissivity beyond the one of the identity defect
in CFT1.
We have s(IA) = 0 if and only if pA = pid. This is the case precisely if dA∗idAi is the identity
matrix for all pairs of representations (i, ī) which appear in CFT1. A necessary requirement
for the existence of an interface with this property is that the representation multiplicities
of CFT2 must not be smaller than those of CFT1. Since both CFTs are unitary and have a
single vacuum state, modular invariance, in fact, forces CFT1 and CFT2 to have identical
spectra. Since the necessary condition dA∗idAi = 1 then means that the fusion product of
the defect and its conjugate is the identity, we have

∃ I : s(I) = 0 ⇔ ZCFT1 = ZCFT2 and I†I = Did in CFT1 . (7.20)

For general CFT1 and CFT2 we may give a simple upper bound for s, based on the
restricted data we have been employing so far. Without loss of generality every interface I
between CFT1 and CFT2 can be associated with a set of diagonal matrices pi. Each of these
matrices pi has at most Tīi = min(M

(1)

īi
,M

(2)

īi
) eigenvalues different from 0. Varying the

2Continuous distributions have to agree almost everywhere.
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remaining eigenvalues we look for the maximal value of s under the linear constraint (7.16).
This is only one constraint out of the set (3.14), such that this calculation will obviously
lead to an upper bound. A maximal value of s would be achieved for the distribution

pi = diag(p(īi,1), . . . , p(īi,Tīi)
, 0, . . . , 0) with p(īi,α) =

Si0Sī0̄∑
(j,j̄) Tjj̄Sj0Sj̄0̄

. (7.21)

This distribution yields the upper bound

s ≤ log

∑
(i,̄i)

Tīi Si0Sī0̄

 . (7.22)

The bound is strictly smaller than zero if there is at least one (i, ı̄) with Tīi < M
(1)

īi
. As we

have seen above, this is equivalent to having at least one pair (i, ī) where M
(1)

īi
6= M

(2)

īi
. The

bound (7.22) is zero if and only if the theories CFT1 and CFT2 have the same spectrum. In
cases where the CFTs on the two sides are identical, the distribution (7.21) is in particular
obtained from the identity defect.
We emphasise [60] that different interfaces can lead to the same distribution (7.15), and
thus to the same entanglement entropy. In particular, fusing any interface on either side
with a symmetry defect of the respective theory will leave the distribution unaltered. The
reference distribution pid of (7.17) is, therefore, also obtained from any symmetry defect in
CFT1. On the other hand, every defect whose fusion product with a particular topological
interface leaves the probability distribution of the interface unaltered is a symmetry defect.
The distributions also do not change if we superpose the same interface multiple times. This
is obvious from the interpretation of the probability distribution mentioned above. Note
that an interface I formally has the same probability distribution as λI for any rescaling
λ ∈ C∗, and, therefore, in particular for superpositions of the same interface3. However,
the change in the entanglement entropy is difficult to compute for general superposition
and fusion. This is so because it is in general difficult to see how closely the probability
distribution of the resulting interface follows pidi .
For concreteness, let us now consider the defects (3.16) in a rational theory with diagonal
modular invariant. By (7.15), the interfaces (3.16) of diagonal RCFTs lead to a probability
distribution

pai = |Sia|2 . (7.23)

From our result (7.18) we, therefore, obtain the entanglement entropy

S =
c

3
logL−

∑
i

|Sia|2 log

∣∣∣∣SiaSi0
∣∣∣∣2 . (7.24)

For later purpose it is useful to define the subleading contribution to the entanglement

3This is in agreement with our remark from the beginning of the chapter
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entropy via

s(Da) := −
∑
i

|Sia|2 log

∣∣∣∣SiaSi0
∣∣∣∣2 , (7.25)

thus (7.24) can alternatively be written as

S(Da) =
c

3
logL+ s(Da). (7.26)

Remark: In this whole section we have considered topological interfaces. For non-
topological interfaces (see e.g. [82,83]) the leading term in the entanglement entropy takes
the form

S =
σ

3
logL, (7.27)

i.e. the prefactor is no longer constant but a continuous function σ. In the case of a free
boson or a free fermion [82, 83] it has been shown that σ is a function depending on the
transmissivity T of the interface. For general interfaces it is not clear if σ is a function
just depending on the transmissivity.

7.3 Examples for Entanglement Entropies

In the following section we will calculate the entanglement entropies for several non-trivial
examples.

7.3.1 Duality Inferfaces

As a class of examples we consider the duality interfaces (3.20). Here I, I† project the
theory onto a sector invariant under a symmetry group G. States that are invariant under
the action of I (respectively I†) pick up a factor |G| which is simply the order of the group.
On the level of equation (7.1) this means that

Z(n) = Tr
(
(II†)ne−2δHn

)
= Tr

(
(⊕g∈GDg)ne−2δHn

)
= |G|n Trinv

(
e−2δHn

)
, (7.28)

where in the last line the trace is taken only over the invariant subsector of the initial
Hilbert space. This partition function is a projection of an initial partition function, which
is in line with the fact that correlators of invariant fields in orbifold theories are obtained
by projection from the initial theory. In the calculation of the entanglement entropy the
prefactor |G|n will drop out (this is true for all factors of the form xn), so that effectively
we consider the entanglement of an initial system with a projected system.
However, if we consider the system with only the trivial defect inserted the projection only
contains a factor |G|−1. This single factor leads to a shift in the entanglement entropy for
duality interfaces, i.e.

S =
c

3
logL− log |G| . (7.29)
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This can alternatively be phrased in terms of the probability distributions introduced
earlier as

pdualityi = pidi |G| for i invariant, pdualityi = 0 otherwise . (7.30)

The shift in the entanglement entropy encodes the information loss under a projection.

7.3.2 Ising Model

The critical Ising model is described by three primaries id, ε, σ. For comparison of the
fields with the conventional description of the Ising model on the lattice see [6]. It is an
example of a diagonal rational theory. The S-matrix of the Ising model is given by

Sij =
1

2

 1 1
√

2

1 1 −
√

2
√

2 −
√

2 0

 , with i, j ∈ {id, ε, σ} . (7.31)

The three elementary topological defects of the Ising model are, therefore,

Did = ‖id‖+ ‖ε‖+ ‖σ‖ ,
Dε = ‖id‖+ ‖ε‖ − ‖σ‖ ,
Dσ =

√
2‖id‖ −

√
2‖ε‖ .

The defect corresponding to the vacuum id is the identity defect. The defect Dε is a
symmetry defect implementing the Z2 symmetry of the Ising model. The presence of these
two defects does not result in a shift of the entanglement entropy. The third defect Dσ
implements Kramers-Wannier duality [45]. It satisfies the fusion rule

DσDσ = Did +Dε . (7.32)

From our formula (7.24) we deduce that the entanglement entropy of Dσ is

S(σ) =
c

3
logL− log 2 , (7.33)

which also agrees with the result (7.29) for duality interfaces where the order of the group
is 2. The result also reproduces the constant shift in the entanglement entropy observed
in [83].

7.3.3 u(1)k Interfaces

Let us now consider a theory based on u(1)k which is realized via a free boson compactified
on a circle of radius R =

√
2k, for which the central charge is c = 1. The modular S-matrix

of such a theory is given by

Sm
′

m =
1√
2k

exp

(
−iπmm

′

k

)
, (7.34)
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where m,m′ ∈ {−k + 1, − k + 2, . . . , k}. Our topological defect is labelled by a number
m and takes the form

Dm =
k∑

m′=−k+1

Sm
′

m

Sm
′

0

||m′||. (7.35)

Using formula (7.25) for the subleading contribution to the entanglement entropy

s(Dm) = −
k∑

m′=−k+1

∣∣∣Sm′m ∣∣∣2 log

∣∣∣∣Sm′mSm′0

∣∣∣∣2 (7.36)

we see that it is identically zero for all possible defects with labels m, since |Sm′m /Sm
′

0 | = 1.
The entanglement entropy in this case is, therefore, simply given by

S(Dm) =
1

3
logL ∀m. (7.37)

In this sense the defects act as symmetry defects on the space of states.

7.3.4 su(2)k Interfaces and the Large k Limit

In this section we present an example also discussed in [60]. The diagonal WZW model
based on the chiral algebra su(2) at level k has irreducible representations labelled by
half-integer spins s. Using the index convention i = 2s, the integer label i runs from 0 to
k. The modular S matrix is given by

Sij =

√
2

k + 2
sin

(
π(i+ 1)(j + 1)

k + 2

)
. (7.38)

By (7.24), the entanglement entropy in the presence of an elementary defect Dl of the
form (3.16) reads

S(Dl) =
c

3
logL+ s(Dl) (7.39)

with

s(Dl) = − 2

k + 2

k∑
i=0

sin2
(
π(l+1)(i+1)

k+2

)
log

sin2(π(l+1)(i+1)
k+2 )

sin2(π(i+1)
k+2 )

(7.40)

Note that the defect Dk does not change the entanglement entropy, since this defect simply
implements the Z2-symmetry acting on the representation labels as l → k − l. For small
values of k some results for the subleading term to the entanglement entropy are given in
table 7.1.
At large k one obtains the WZW model based on su(2). In this limit the model can
be presented as three bosons of total central charge c = 3 on a target space S3 with
non-vanishing H-flux at large radius. The Z2-symmetry now corresponds to the reflection
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k ssu(2)k(Dl)

1 0 for l = 0, 1

2 0 for l = 0, 2

− log 2 for l = 1

3 0 for l = 0, 3

−4
(
a2 log a2

b2
+ b2 log b2

a2

)
for l = 1, 2

Table 7.1: Values of s(Dl) for small values of k, here a := 1√
5

sin(π/5) and

b := 1√
5

sin(2π/5)

symmetry of the three-sphere. At any k, the theory contains elementary defects Dl for non-
negative integers l ≤ k. To find their geometric interpretation, we recall a few facts about
the interpretation of symmetry preserving boundary states. Quite generally, symmetry
preserving D-branes on group manifolds wrap conjugacy classes [57, 58], which can be
automorphism-twisted. In particular, the symmetry preserving (Cardy-)states of a WZW
model wrap ordinary conjugacy classes of the underlying groupG. To give an interpretation
to defects, we first use the folding trick to map defects to permutation boundary conditions
[67] for the WZW model based on G × G. Geometrically, these branes wrap twisted
conjugacy classes where the automorphism is the permutation of the two factors, and the
conjugacy class of (g1, g2) ∈ G×G takes the form [59]

Cω(g1, g2) =
{

(h−1
1 g1h2, h

−1
2 g2h1) |h1 ∈ G1, h2 ∈ G2

}
. (7.41)

The multiplication map m : G × G → G maps these conjugacy classes to the conjugacy
classes in the diagonal G. Indeed, the twisted conjugacy classes of G × G correspond
precisely to the pre-images of the conjugacy classes of G under the multiplication map [59].
In the case of SU(2) they take the form S3×S2, as the regular untwisted conjugacy classes
of SU(2) are generically isomorphic to S2. The conjugacy classes of ±1 are special and
correspond to points. This gives a geometric interpretation to the fact that the defects Dl
carry the same labels as Cardy boundary states. Indeed, the label l corresponds to a polar
angle distinguishing the different 2-spheres S2 ⊂ S3 of a single SU(2).
We now compute the entanglement entropy in the large k limit while keeping the label l
fixed. In the limit k →∞ as said before the subleading contribution to the entanglement
entropy becomes an integral

s(Dl) = − lim
k→∞

2

k + 2

k∑
i=0

sin2
(
π(l+1)(i+1)

k+2

)
log

sin2(π(l+1)(i+1)
k+2 )

sin2(π(i+1)
k+2 )

= −2

∫ 1

0

dx sin2(π(l + 1)x) log( sin2(π(l+1)x)

sin2(πx)
) . (7.42)

In particular, we see that in the large k limit, the probability distribution of the interface
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is a continuous sine-square distribution

pl(x) = 2 sin2[π(l + 1)x], x ∈ [0, 1] . (7.43)

The integration can be performed by elementary methods. We first split the logarithmic
term. The first of the two resulting summands,∫ 1

0

dx sin2(π(l + 1)x) log(sin2(π(l + 1)x)) =
1

π

∫ π

0

dy sin2 y log(sin2 y) =
1

2
− log 2 (7.44)

is independent of l. In the other summand we use 2 sin2 x = 1− cos(2x) to obtain

−
∫ 1

0

dx sin2(π(l + 1)x) log(sin2(πx)) =

= − 1

2π

∫ π

0

dy log(sin2 y) +
1

2π

∫ π

0

dy cos(2(l + 1)y) log(sin2 y) . (7.45)

The first integral on the right-hand side of (7.45) yields −
∫ π

0
dy log sin2 y = 2π log 2. In

the second integral we use partial integration to obtain∫ π

0

dy cos(2(l + 1)y) log(sin2 y) =

= − 1

l + 1

∫ π

0

dy sin(2(l + 1)y) cot(y) = − π

l + 1
.

(7.46)

Using (7.44) – (7.46), (7.42) becomes

s(Dl) = − l

l + 1
, l� k . (7.47)

In particular, the contribution to the entanglement entropy from such an elementary defect
Dl is given by a rational number.
However, there is a second class of defects, for which the approximations made in the
calculation leading to the result (7.47) do not hold. This is in particular the case if we pick
l such that l + 1 divides k + 2 and take the limit keeping the ratio (l + 1)/(k + 2) fixed.
Let us for example consider the case l = k/2 (k even), geometrically corresponding to the
equatorial two-sphere, which is the fixed point under the involution l→ k− l. In this case
the probabilities pli vanish for i odd, and take the value 2/(k+ 2) for i even. Using similar
methods as above, the entanglement entropy in the limit k →∞ becomes

s(D k
2
) = − log 4 (k →∞) . (7.48)

Since log 4 > 1 one sees that −s(D k
2
) deviates substantially from the value (7.47). In fact,

plotting of −s(Dl) at finite even k one observes a peak in the entanglement at l = k/2.
Similar, less pronounced peaks are obtained at other values where l + 1 divides k + 2.
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For generic defects, l + 1 does not divide k + 2, but of course (l + 1)/(k + 2) is, still, a
rational number that we denote l′/n, where l′, n are coprime. It is natural to ask what
happens if, instead of l (as in the computation leading to (7.47)) we keep l′/n fixed when
taking the large k limit. In this case we find from (7.39) the expression

s(D l′(k+2)
n
−1

) = − log(2n)−H(n) (k →∞) , (7.49)

where H(n) is the entropy of a probability distribution pm = 2
n

sin2(πm
n

) for m = 1, 2, . . . , n,

H(n) =
n∑

m=1

2
n

sin2(πm
n

) log
(

2
n

sin(πm
n

)2
)
. (7.50)

Note that the values of s in (7.49) are multiply degenerate, as the right-hand side does not
depend on l′. The entropies (7.49) are bounded from below by s(D k

2
), showing again that

the defect corresponding to the equatorial two-sphere has minimum entanglement entropy.
On the other hand, for n � l′ they quickly approach the value −1 from below, such that
this asymptotic expression, in fact, comes rather close to the approximation (7.47).
We will not go much further into details, and, instead plot the entanglement entropy
correction −s(Dl) at a finite value of k together with the approximation (7.47) in figure 7.3.
The plot illustrates that the values of s(Dl) approach the asymptotic values (7.47) rather
well for generic values of l. It also illustrates the peaks of the values at the special points
where (7.49) deviates strongly from (7.47).
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Figure 7.3: Plots of −s(Dl) for large values of k, together with the asymp-
totic values (7.47). The peaks in the plots are captured by the asymptotic
expression (7.49).

A nice pattern arises when we consider the fusion product of elementary defects at fixed
labels l and l̃ for k →∞. For finite k, the product of topological defects Dl×l̃ = DlDl̃ has
the usual decomposition

Dl×l̃ =
∑
c

N c
ll̃
Dc (7.51)

in terms of elementary defects, where N c
ll̃

are the su(2)k fusion rules. We can use the fact
that the number of vacua contained in the fusion product at large k is

N l×l̃
0 l×l̃ = min(l, l̃) + 1 . (7.52)
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For the probability distribution of Dl×l̃ this implies

pl×l̃i =
2

min(l, l̃) + 1

sin2(π(l+1)(i+1)
k+2

) sin2(π(l̃+1)(i+1)
k+2

)

(k + 2) sin2(π(i+1)
k+2

)
. (7.53)

The expression for s(Dl×l̃) in the large-k limit can be written as two summands, by splitting

off the part involving the logarithm of the factor min(l, l̃) + 1 in (7.53). The subleading
part to the entanglement entropy in the large k-limit is then given by

− 2

∫ 1

0

sin2(π(l + 1)x) sin2(π(l̃ + 1)x)

min(l + 1, l̃ + 1) · sin2(πx)
log

(
sin2(π(l + 1)x) sin2(π(l̃ + 1)x)

sin4(πx)

)
dx. (7.54)

We want to prove that this is a rational number. In order to see this, the basic integral
that has to be evaluated is

− 1

π

∫ π

0

sin2((l + 1)x) sin2((l̃ + 1)x)

sin2(x)
log
(
sin2((l + 1)x)

)
dx . (7.55)

By the two representations of Clausen’s function Cl1 we can express the logarithmic factor
in terms of the sum

log(sin2(y)) = − log 4 −
∞∑
k=1

2 cos(2ky)

k
. (7.56)

We note that the log 2 terms cancel out in (7.54), so it is enough to keep only the sum over
cosines from the right-hand side of (7.56) for further calculations. One might be concerned
that while the individual terms in the summation over k give rational results, resummation
may yet yield something non-rational. In order to see that this is not the case we eliminate
the sine functions in the denominator of (7.55) by writing the remaining sine functions in
the numerator in terms of spread polynomials [98]

sin2(nx) =
n−1∑
p=0

n
n−p

(
2n−1−p

p

)
(−4)n−1−p sin2(n−p)(x) =:

∑
{p}

sin2p(x) . (7.57)

Since we are not interested in the precise value of the finite result, the only relevant property
for us is that the spread polynomials have rational coefficients and finite order. We define
the summation symbol on the right-hand side to indicate a finite sum of trigonometric
functions with rational coefficients. The right hand side can be deduced further using the
identity

sin2p(x) = 1
22p

(
2p
p

)
+ 2

22p

p−1∑
r=0

(−1)p−r
(

2p
r

)
cos(2(n− r)x) =:

∑
{r}

cos(2rx) . (7.58)
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The purpose of writing (7.57) and (7.58) is to demonstrate that (7.54) can indeed be written
in the form

1

π

∫ π

0

∑
{s}

cos(2sx)
∞∑
k=1

cos(2k(l + 1)x)
1

k
dx . (7.59)

By the integral identity
∫ π

0
cos(nx) cos(mx) dx = π

2
δn,m, the finite sum over s reduces

the infinite sum over k to a rational result. This concludes the argumentation that the
entanglement entropy in the large k-limit takes the form

s(Dl×l̃) = −p
q

+ log(min(l, l̃) + 1) , (7.60)

where p and q are natural numbers depending on the labels l and l̃. Note that the argument
in the logarithm is the number of elementary defects in the decomposition of the fusion
product. However, the fact that this logarithm directly reflects the number of elementary
defects in the decomposition is true only if each of these elementary defects appears with
multiplicity 1.

7.4 Entanglement Entropy for Coset Theories

We now want to discuss the entanglement entropy through topological interfaces where our
theory is given by a coset construction. Especially we are interested in coset theories with a
Z2 identification of fields. Further we only consider cosets that are free of field identification
fixed points such as the parafermionic coset su(2)k/u(1)k, the coset su(2)k⊗su(2)1/su(2)k+1

corresponding to the unitary minimal series or the coset representing the N = 2 minimal
models su(2)k ⊗ u(1)2/u(1)k+2.

7.4.1 Parafermionic Coset

Let us consider the simplest possible coset corresponding to a parafermionic theory. We
will first briefly review some general aspects of the parafermionic coset construction before
we come to the calculation of the subleading term to the entanglement entropy. The
parafermions are defined by the coset

su(2)k
u(1)k

, k ∈ N+. (7.61)

The associated central charge at given level k of these models is then given by

c = csu(2)k − cu(1)k =
3k

k + 2
− 1 =

2(k − 1)

k + 2
. (7.62)

The chiral algebra of the parafermionic theory has a set of irreducible highest weight
representations H(l,m) with labels (l,m) where 0 ≤ l ≤ k and m is an integer defined
modulo 2k, i.e. we may pick the range to be −k + 1 ≤ m ≤ k. The same is true for the
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anti-chiral algebra. The pairs (l,m) are subjected to the constraint l + m = 0 mod 2 and
a field identification equivalence relation (l,m) ∼ (k − l, k + m). We will label the set of
distinct irreducible representations by PF (k) = {(l,m)} adopting the notation used for
example in [91]. The characters χ(l,m) of the representation (l,m) can be determined by
the decomposition of su(2)k characters χl in terms of the parafermionic ones at the same
level k

χl(τ) =
k+1∑
m=−k

χl,m(τ)
Θm,k(τ)

η(τ)
, (7.63)

where

Θm,k(τ) :=
∑

n∈Z+m
2k

e2πiτkn2

, − k + 1 ≤ m ≤ k, (7.64)

are the generalized theta-functions. For a more detailed discussion see [1, 2, 91]. It is
important to note that the representations with labels (l,m) and (l,−m) are distinct,
whereas representations with labels (l,m) and (k − l, k +m) are the same.
The L0 eigenvalue of the highest weight state |l,m〉 of the representation (l,m) is given by

hl,m =

{
l(l+2)
4(k+2)

− m2

4k
for − l ≤ m ≤ l

l(l+2)
4(k+2)

− m2

4k
+ m−l

2
for l ≤ m ≤ k − l

(7.65)

Note that for k even the fundamental domain can always be chosen s.t.

PF (k) = {(l,m)|0 ≤ l ≤ k, 0 ≤ m ≤ k, l +m = 0 mod 2}, (7.66)

whereas for k odd one may always choose the fundamental domain to be

PF (k) = {(l,m)|0 ≤ l ≤ k − 1

2
, − k + 1 ≤ m ≤ k, l +m = 0 mod 2}. (7.67)

The modular S-matrix Sl
′,m′

l,m of this theory is given in terms of the su(2)k modular matrix

Sl
′

l =

√
2

k + 2
sin

(
π

(l + 1)(l′ + 1)

k + 2

)
, (7.68)

and the u(1)k modular matrix

Sm
′

m =
1√
2k
e−iπ

mm′
k , (7.69)

as

Sl
′,m′

l,m = NSl
′

l S
∗m′
m = N

1√
k(k + 2)

sin

(
π

(l + 1)(l′ + 1)

k + 2

)
eiπ

mm′
k , (7.70)
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with N an appropriate normalization constant which can be determined by the condition
(see section 2.9.1) ∑

(l′,m′)∈PF (k)

∣∣∣Sl′,m′l,m

∣∣∣2 = 1 ↔ N = 2. (7.71)

Applying the result for the parafermionic modular S-matrix to the expression for the fusion
coefficients we obtain the fusion rules of the theory to be

N
(l3,m3)
(l1,m1),(l2,m2) = N l3

l1l2
δ

(2k)
n1+n2−n3

+Nk−l3
l1l2

δ
(2k)
n1+n2−n3−k, (7.72)

where

N c
ab =


1 for |a− b| ≤ c ≤ min(a+ b, 2k − a− b)

a+ b+ c = 0 mod 2

0 otherwise

(7.73)

are the fusion coefficients of the su(2)k theory and δ(2k) is a delta function of period 2k.
We will now continue by calculating the subleading contribution to the entanglement en-
tropy in the presence of topological defects. By doing this we will distinguish the cases
where k is even or odd. In the end we will see that both cases lead to the same result. In
addition we will briefly apply the obtained result for the first two non trivial values of k
namely k = 2 which corresponds to the Ising model and k = 3 corresponding to the three
state Potts model.
For our representations of the parafermionic theory the subleading term to the entangle-
ment entropy is again given by

s(l,m) := −
∑

(l′,m′)∈PF (k)

∣∣∣Sl′,m′l,m

∣∣∣2 log

∣∣∣∣∣S
l′,m′

l,m

Sl
′,m′

0,0

∣∣∣∣∣
2

= −N
2

2k

∑
(l′,m′)∈PF (k)

∣∣∣Sl′l ∣∣∣2 log

∣∣∣∣Sl′lSl′0
∣∣∣∣2 . (7.74)

In the last step we inserted the expression for the modular S-matrix in the form (7.70)
and used that the absolute values of the exponential functions are one. We now want to
calculate this expression for the cases where k is even or odd. Starting with the case where
k is even we see, that we can write

∑
(l′,m′)∈PF (k)

=
k∑

l′=0

k−1∑
m′=0

l′+m′=0 mod 2

. (7.75)

Since all terms in (7.74) are independent of the summation over m′ and give equal contri-
bution k/2 for l even or odd we find

s(l,m) = −N
2

2k
· k

2

k∑
l′=0

∣∣∣Sl′l ∣∣∣2 log

∣∣∣∣Sl′lSl′0
∣∣∣∣2 = −

k∑
l=0

∣∣∣Sl′l ∣∣∣2 log

∣∣∣∣Sl′lSl′0
∣∣∣∣2 = ssu(2)k(l). (7.76)
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We see that the subleading term is totally determined by the subleading contribution
coming only from the su(2)k representations.
Considering now the case where k is odd we obtain

∑
(l′,m′)∈PF (k)

=

k−1
2∑

l′=0

k∑
m′=−k+1

l′+m′=0 mod 2

=
1

2

k∑
l=0

k∑
m=−k+1

l+m=0 mod 2

. (7.77)

In the last step we used the properties of the su(2)k modular S-matrices, i.e. under the
transformations Sl

′

l = Sl
′

k−l, in order to let the summation over l′ run from 0 to k including
a correction factor of 1/2. Plugging this into (7.74) we obtain the same result as in the k
even case namely

s(l,m) = ssu(2)k(l). (7.78)

Since for all k we obtain the same formula for the subleading term we can thus write down
the entanglement entropy for a parafermionic theory in the presence of topological defects

SPF (l,m; k) =
2(k − 1)

3(k + 2)
logL+ ssu(2)k(l). (7.79)

We will now briefly discuss the two simplest models contained in the parafermionic de-
scription.

Example 1: k = 2 as the Ising model
For k = 2 one recovers the Ising model at criticality. In the model there are the three
distinct fields with corresponding conformal weight

(l,m) hl,m

(0, 0) 0

(0, 2) 1/2

(1, 1) 1/16

The corresponding entanglement entropies are, therefore, given by

SEE =
1

6
logL−

{
0 for (1,1)

log 2 for (0, 0) & (0, 2)
(7.80)

This reproduces exactly our former result from section 7.3.2 for the entanglement entropies
of the Ising model where the correct correspondence to the fields is given by id =̂ (0, 0),
ε =̂ (0, 2) and σ =̂ (1, 1).
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Example 2: k = 3 as the three state Potts model
For k = 3 we reproduce the fractional spectrum of the three state Potts model with central
charge c = 4/5 and the right multiplicities of fields. The distinct representations are given
by the following table

(l,m) hl,m

(0, 0) 0

(0, 2) 2/3

(0,−2) 2/3

(1,−1) 1/15

(1, 1) 1/15

(1, 3) 2/5

The entanglement entropy can thus be calculated to give

SEE =
4

15
logL+

{
0 for (0, 0) & (0,−2) & (0, 2)

−8(b2 − a2) log b
a

for (1, 1) & (1,−1) & (1, 3)
(7.81)

where again a := 1√
5

sin π
5

and b := 1√
5

sin 2π
5

.

7.4.2 Unitary Minimal Series

In section 2.11.2 we already encountered the coset

su(2)k ⊗ su(2)1

su(2)k+1

, (7.82)

which can be identified with the unitary minimal series (2.45). The fields in the coset were
labelled by three integers (l,m, s), where l = 0, . . . , k, m = 0, . . . , k + 1 and s = 0, 1. The
fields are subjected to the field identification (l,m, s) ∼ (k − l, k + 1 −m, 1 − s) and the
restriction l +m+ s = 0 mod 2. We can choose the standard range for the representation
to be

Ik := {(l,m, s)|0 ≤ l ≤ k, 0 ≤ m ≤ k + 1, s = 0, l +m even}. (7.83)

With this we can determine the normalization constant N for the modular S-matrix of the
coset theory

Sl
′,m′,s′

l,m,s = NSl
′

l S
m′

m Ss
′

s . (7.84)

Here Sl
′

l is the modular S-matrix of su(2)k, S
m′
m of su(2)k+2 and Ss

′
s of su(2)1. We thus

want to determine N s.t. ∑
(l′,m′,s′)∈Ik

|Sl
′,m′,s′

l,m,s |
2 = 1. (7.85)
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This can be done using the identities (see appendix C for a prove of the formulas)

k∑
l′=0
l′ even

|Sl′l |2 =
k∑

l′=0
l′ even

2

k + 2
sin2

(
π

(l + 1)(l′ + 1)

k + 2

)
=

1

2

(
1 + δl,k/2

)
, (7.86)

k∑
l′=0
l′ odd

|Sl′l |2 =
k∑

l′=0
l′ odd

2

k + 2
sin2

(
π

(l + 1)(l′ + 1)

k + 2

)
=

1

2

(
1− δl,k/2

)
. (7.87)

With this the normalization can be determined as

∑
(l′,m′,s′)∈Ik

|Sl
′,m′,s′

l,m,s |
2 = 1 = N2

0∑
s′=0

 k∑
l′=0
even

k+1∑
m′=0
even

+
k∑

l′=0
odd

k+1∑
m′=0
odd

 |Sl′l |2|Sm′m |2|Ss′s |2
↔ N = 2. (7.88)

We can now calculate the entanglement entropy through topological interfaces in this coset
theory. The subleading term to the entanglement entropy is then given by

s(l,m, s) = −
∑

(l,m,s)∈Ik

|Sl
′,m′,s′

l,m,s |
2 log

∣∣∣∣∣S
l′,m′,s′

l,m,s

Sl
′,m′,s′

0,0,0

∣∣∣∣∣
2

=

−4
0∑

s′=0

 k∑
l′=0
even

k+1∑
m′=0
even

+
k∑

l′=0
odd

k+1∑
m′=0
odd

Sl
′

l |2|Sm
′

m |2|Ss
′

s |2
(

log

∣∣∣∣Sl′lSl′0
∣∣∣∣2 + log

∣∣∣∣Sm′mSm′0

∣∣∣∣2 + log

∣∣∣∣Ss′sSs′0
∣∣∣∣2
)

=

−2

( ∑
l′ even

1

2

(
1 + δm, k+1

2

)
+
∑
l′ odd

1

2

(
1− δm, k+1

2

))
|Sl′l |2 log

∣∣∣∣Sl′lSl′0
∣∣∣∣2−

−2

( ∑
m′ even

1

2

(
1 + δl, k

2

)
+
∑
m′ odd

1

2

(
1− δl, k

2

))
|Sm′m |2 log

∣∣∣∣Sm′mSm′0

∣∣∣∣2 =

ssu(2)k(l) + δm, k+1
2
s̄su(2)k(l) + ssu(2)k+1

(m) + δl, k
2
s̄su(2)k+1

(m), (7.89)

where we defined the projected subleading term as

s̄su(2)k(l) := −
k∑

l′=0

(−1)l
′|Sl′l |2 log

∣∣∣∣Sl′lSl′0
∣∣∣∣2 . (7.90)

For small values of k we summarize some values of s̄su(2)k(l) in table 7.2.
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k s̄su(2)k(l)

k odd 0 ∀ 0 ≤ l ≤ k

2 0 for l = 0, 2

− log 2 for l = 1

4 0 for l = 0, 4

−1
2

log 3 for l = 1, 3

−4
3

log 2 for l = 2

Table 7.2: List of values of s̄su(2)k(l) for small values of k

Since the projected terms always come with a delta function the combination is always
identically zero for all values of k, thus the entanglement entropy takes the final form

S(l,m, s) =

(
1

2
− 3

(k + 2)(k + 3)

)
logL+ ssu(2)k(l) + ssu(2)k+1

(m). (7.91)

As in the parafermionic case the subleading contribution again decouples into its individual
parts. Here we didn’t write the contribution coming from su(2)1 explicitly since it is
identically zero for all values of s. We now consider two examples to illustrate the result.

Example 1: k = 1 as Ising model

For k = 1 the coset describes the critical point of second order phase transition of the Ising
model. The fields and conformal weights are given by

(l,m, s) hl,m,s

(0, 0, 0) 0

(0, 2, 0) 1
2

(1, 1, 0) 1
16

The entanglement entropies for the given fields are then exactly the ones obtained in section
7.3.2.

Example 2: k = 2 as tri-critical Ising model

For k = 2 the coset theory is realized by the tri-critical Ising model with c = 7/10. The
fields and conformal weights of this model are given by
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(l,m, s) hl,m,s

(0, 0, 0) 0

(0, 2, 0) 3
5

(1, 1, 0) 3
80

(1, 3, 0) 7
16

(2, 0, 0) 3
2

(2, 2, 0) 1
10

For the corresponding entanglement entropies we find using the table 7.1

S(l,m, s) =
7

30
logL+


0 for (0, 0, 0) & (2, 0, 0)

−8(b2 − a2) log b
a

for (0, 2, 0) & (2, 2, 0)

− log 2 for (1, 3, 0)

− log 2− 8(b2 − a2) log b
a

for (1, 1, 0)

(7.92)

7.4.3 N = 2 Superconformal Minimal Models

The superconformal models with N = 2 SUSY can be realized via the coset

su(2)k ⊕ u(1)2

u(1)k+2

. (7.93)

The central charge and highest weights are given via

c =
3k

k + 2
, (7.94)

hl,m,s =
l(l + 2)−m2

4(k + 2)
+
s2

8
mod1. (7.95)

Here the fields are labeled by three integer numbers (l,m, s) with

l = 0, . . . , k m = 0, . . . , 2k + 3 (mod(2k + 4)) s = −1, 0, 1, 2 . (7.96)

The Z2 field identifications again are given by

(l,m, s) ∼ (k − l, k + 2 +m, 2 + s), (7.97)

with the restriction

l +m+ s = 0 mod 2. (7.98)

We will denote the set of all allowed labels that satisfy (7.96)-(7.98) as Jk. Thereby we
can choose a standard range for the labels as

Jk = {(l,m, s)|0 ≤ l ≤ k, 0 ≤ m ≤ 2k + 3, s = 0, 1 , l +m+ s = 0 mod 2}. (7.99)
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Generally s = −1, 1 correspond to the R-sector, whereas s = 0, 2 correspond to the NS-
sector respectively. Again in principle we have to distinguish the two cases where k is
even or odd. Remarkably it again turns out that both cases lead to the same results.
The modular S-matrix can be written in terms of the individual S-matrices including a
normalization constant N as

Sl
′,m′,s′

l,m,s = NSl
′

l S
m′

m Ss
′

s . (7.100)

As usual we demand for diagonal modular invariant theories∑
(l′,m′,s′)∈Jk

|Sl
′,m′,s′

l,m,s |
2 = 1. (7.101)

For the decomposition of the sum one finds

∑
(l′,m′,s′)∈Jk

=

(
k∑

l′=0 even

2k+3∑
m′=0 even

+
k∑

l′=1 odd

2k+3∑
m′=1 odd

)
0∑

s′=0︸ ︷︷ ︸
NS-sec contribution

+

(
k∑

l′=0 even

2k+3∑
m′=1 odd

+
k∑

l′=0 even

2k+3∑
m′=1 odd

)
1∑

s′=1︸ ︷︷ ︸
R-sec contribution

. (7.102)

This can now be used to determine the normalization constant following a straightforward
calculation with the result N = 2.

Using the same arguments as in the parafermionic case we find for the subleading term to
the entanglement entropy

s(l,m, s) = −
∑

(l′,m′,s′)∈Jk

|Sl
′,m′,s′

l,m,s |
2 log

∣∣∣∣∣S
l′,m′,s′

l,m,s

Sl
′,m′,s′

0,0,0

∣∣∣∣∣
2

=

−N
2

4

k∑
l′=0

|Sl′l |2 log

∣∣∣∣Sl′lSl′0
∣∣∣∣2 = ssu(2)k(l). (7.103)

For the entanglement entropy this then implies that it is just depending on the data coming
from the su(2)k part of the model and is given via

S(l,m, s; k) =
k

k + 2
logL+ ssu(2)k(l). (7.104)

As in the parafermionic case it just depends on the data coming from the su(2)k contribu-
tion since the u(1)k does not contribute to the entanglement entropy.
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Example: k = 1 as super-parafermion theory
The super-parafermionic theory is realized by twelve fields with one half corresponding to
NS-fields and the other half to R-fields. In terms of N = 2 minimal model labels these
fields are given as follows

NS R

(0, 0, 0) (0, 1, 1)

(0, 2, 0) (0, 3, 1)

(0, 4, 0) (0, 5, 1)

(1, 1, 0) (1, 0, 1)

(1, 3, 0) (1, 2, 1)

(1, 5, 0) (1, 4, 1)

The EE is identical for all twelve and given by

S(l,m, s; 1) =
1

3
logL. (7.105)

Note that in the case k = 1 we have the equality for the coset:

su(2)1 ⊕ u(1)2

u(1)3

= u(1)6, (7.106)

also leading to twelve distinguished fields with only a leading term contribution to the
entanglement entropy.
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Chapter 8

Left/Right Entanglement Entropy

8.1 Left/Right Entanglement Entropy

In this section we consider a system with a boundary [60]. As we have seen in section 4.6
the real-space entanglement entropy of a system with boundary receives a correction by the
boundary entropy s = log g, where g is the universal non-integer ground-state degeneracy
of [38]. The entanglement entropy we are interested in is the left/right entanglement
entropy (LREE) considered before in [87] for the free boson and in [88, 89] for generic
CFTs. The two subsystems consist of the left- and right-moving part of the Hilbert space.
As mentioned in chapter 3, a conformal boundary condition is the maximally reflective
solution to the interface conformality condition

lim
y↘0

(T (1)(x+ iy)− T̃ (1)(x− iy)) = lim
y↗0

(T (2)(x+ iy)− T̃ (2)(x− iy)). (8.1)

For a CFT in the upper half-plane, the components of the bulk energy-momentum tensor
satisfy

T = T̄ |R . (8.2)

As usual we can associate to each boundary condition a boundary state. Again as in
section 2.13.3 we map the upper half plane to the unit disc, see figure 2.10, the boundary
condition becomes such a boundary state in standard radial quantisation. The defining
property for a conformal boundary state |B〉 is the gluing condition

(Ln − L̄−n)|B〉 = 0 . (8.3)

This means that the boundary state breaks one half of the conformal charges. As before,
we decompose the Hilbert space as

H(n) =
⊕
(i,̄i)

M
(n)

īi
Hi ⊗Hī. (8.4)

As usual we can build a consistent boundary state out of Ishibashi states via

|B〉 =
∑
i

bBi|i〉〉. (8.5)
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In this section, bold-faced indices
i = (i, α, β) (8.6)

only contain one representation label since by the boundary left- and right-moving degrees
of freedom are identified. The sum in (8.5) and in the rest of this section only runs over
representations of the bulk space of states with i = ı̄. The multiplicity labels α and β
distinguish the different instances where the representation i appears in the holomorphic
and anti-holomorphic part of the space of states, respectively.
In our original setup, correlators and fields in the boundary CFT will depend on holomor-
phic and anti-holomorphic coordinates restricted to the upper half plane. Using the Cardy
doubling trick as discussed in section 2.13.2, we regard the dependence on anti-holomorphic
coordinates z̄ on the upper half plane as a dependence on a holomorphic coordinate z∗ = z̄
for mirror fields on the lower half plane. This means that we can consider a chiral construc-
tion on the full plane, where the stress tensor is continuous everywhere. The boundary
condition is then a topological interface in this chiral part of a CFT, located on the real
line.
Unfolding the Ishibashi states one obtains interface-like operators ‖i‖ that project onto a
specific pair of representations i. We, therefore, associate to the boundary state (8.5) an
interface operator

I(B) =
∑
i

bBi ‖i‖ . (8.7)

The computation of the (left/right) entanglement entropy now proceeds in analogy with
the previous sections. The characters in the expression

Z(n) =
∑
i

Tr (bB∗ibBi)
n trHi

(
e−2δH

)
=
∑
i

Tr (bB∗ibBi)
n χi

(
e−2δn

)
(8.8)

can be written by means of the modular S-matrix as

Z(n) =
∑
i

Tr (bB∗ibBi)
n Sijχj

(
e−

2π2

δn

)
≈
∑
i

Tr (bB∗ibBi)
n Si0e

2π2c
24δn . (8.9)

Again for the general boundary state with open string vacuum multiplicity N B
0B we write

the entanglement entropy again in terms of a probability distribution, which is defined by
the traces of the matrices [60]

pBi =
bB∗ibBi Si0
N B

0B

. (8.10)

In (8.10) we abuse the index notation in the same way as in the previous chapters — while
the indices i on the right-hand side contain one multiplicity label for holomorphic and one
for antiholomorphic representations (and we again suppress the summation over interior
labels), the index i on the left-hand side includes two multiplicity labels of the same kind.
In this way we can write the LREE for a system with a boundary condition B as

S̃ =
c

6
logL −

∑
i

Tr pBi log
pBi
Si0

. (8.11)
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In contrast to the ‘ordinary’ entanglement entropy the coefficient in front of the term logL
is one half the prefactor in the case of the full theory without boundary. This exactly
coincides with the area law mentioned in [78]. In order to distinguish the EE and LREE
later on we denote the LREE by S̃ and the entanglement entropy by S.
A natural question is whether it is again possible to interpret the result in terms of a
Kullback-Leibler divergence. However, for interfaces there is a generic “neutral” interface
(the identity defect) with respect to which one can compute the relative entropy. This
is no longer the case for boundaries, as there is no “neutral” boundary on the full plane
that could serve as a reference point. There will generically always be “information loss”
when left movers are scattered by the boundary into right movers. Exceptional cases occur
when the boundary condition is a permutation boundary condition obtained by folding
an identity or symmetry defect to a boundary condition for a tensor product of identical
CFTs.
Technically, one can try to interpret the denominator in the logarithm of (8.11) as a
distribution corresponding to the entries Si0 times appropriate identity matrices. However,
the sum over the traces of these matrices is in general not equal to 1, and, therefore, it
is not a probability distribution. In the cases where it is, we indeed obtain the relative
entropy with respect to a permutation boundary state, where each bi is a permutation
matrix. However, in general we conclude that the interpretation as a relative entropy fails
in the case of the LREE boundary states.
An immediate consequence of losing the interpretation of the LREE as a relative entropy
is that the contribution

s̃ = −
∑
i

Tr pBi log
pBi
Si0

(8.12)

is not necessarily negative anymore. Using the same technique that we applied in chapter
7 yields the upper bound

s̃ ≤ log

(∑
i

Si0

)
. (8.13)

It is clear that this bound does not need to be negative. To see this we can consider
boundary states in diagonal rational models. In these cases the boundary states are labelled
by a irreducible representation a of the symmetry algebra. The coefficients bai of the
elementary boundary states in this case are

bai =
Sai√
Si0

. (8.14)

Plugging this into (8.10) and (8.12) we obtain the LREE of diagonal rational models

S̃ =
c

6
logL−

∑
i

|Sai|2 log
|Sai|2

Si0
. (8.15)

This reproduces the result obtained in [88]. For later use we define the subleading contri-
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bution to the left/right entanglement entropy as

s̃ := −
∑
i

|Sai|2 log
|Sai|2

Si0
. (8.16)

It seems plausible that all symmetry-preserving boundary states in a diagonal model have
the LREE of the Cardy brane associated to the identity as an upper bound,

s̃ ≤ −
∑
i

S2
0i logS0i . (8.17)

In particular the right-hand side is stricter than the bound (8.13) since 0 ≤ S2
0i ≤ 1, and

it is always positive.

8.2 Examples for Left/Right Entanglement Entropies

In this section we consider some simple examples for the left/right entanglement entropy in
diagonal rational models. The first four examples 8.2.1, 8.2.3 and 8.2.4 can also be found
in [60].

8.2.1 Example: Ising model

The LREE for boundary states of the Ising model has already been discussed in [88]. Here
we quote the results for illustration. The Cardy states in the Ising model are explicitly
given in terms of Ishibashi states by

|id〉 = 1√
2

(
|id〉〉+ |ε〉〉+ 2

1
4 |σ〉〉

)
,

|ε〉 = 1√
2

(
|id〉〉+ |ε〉〉 − 2

1
4 |σ〉〉

)
, (8.18)

|σ〉 = |id〉〉 − |ε〉〉 .

The contributions to the LREE we obtain from (8.12) are

s̃ =
3 log 2

4
for |id〉 , |ε〉 , and s̃ = 0 for |σ〉 . (8.19)

With our formula (8.15) using the modular S-matrix for the Ising model (7.31) we exactly
reproduce the results.

8.2.2 Example: u(1)k boundary states

In this short example we calculate the LREE associated to a u(1)k boundary states. As a
reminder the modular S-matrix is given by

Sm
′

m =
1√
2k

exp

(
−iπm ·m

′

2k

)
. (8.20)
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Thus we find using (8.15)

S̃(k) =
1

6
logL+ s̃u(1)k =

1

6
logL+

1

2
log(2k). (8.21)

In particular this means that the subleading term s̃u(1)k = 1
2

log(2k) is independent of the
boundary label m and just depends on k. It is commonly known that the u(1)k theory
corresponds to a free boson compactified on a circle of radius R =

√
2k. Thus again we

can write the LREE in terms of the radius via

S̃ =
1

6
logL+ logR. (8.22)

8.2.3 Example: su(2)k boundary states and the k →∞ limit

Analogously to the example of su(2)k defects in section 7.3.4 we consider the LREE of
boundary states in the WZW models su(2)k in the limit k → ∞. For finite k, the theory
is diagonal and rational, and the formulae of [88] apply. The Cardy states (8.14) are again
labelled by spins s = b/2 for b = 0, 1, . . . , k. From (8.15), the universal contribution to the
LREE by the state Bb is

s̃(b) = −
k∑
i=0

2
k+2

sin2(π(b+ 1) (i+1)
k+2

) log
sin2(π(b+1) i+1

k+2
)

sin(π i+1
k+2

)
+ log

√
2

k+2
. (8.23)

Here we have split off a factor depending only on k from the argument of the logarithm,
and used that

∑
i |Sib|2 = 1. Note that the shift term − log(k + 2) in (8.23) has the right

form to be identified with (the logarithm of) the radius of the target space. The target
space of the su(2)k WZW model is the (fuzzy) sphere S3 at radius R =

√
k.

In the large k limit the sum in (8.23) becomes an integral. By the same methods as in
section 7.3.4 we obtain

s̃(b) = −2b+ 1

2b+ 2
+

1

2
log 2 + logR , k →∞ . (8.24)

The positive (and infinite) contribution from the radius is similar to the radius contribution
to the LREE of Dirichlet branes of the compactified boson [87], see (9.27).
For completeness we also state the subleading contribution to the LREE for small values
of k (see table 8.1). We will need them later when discussing coset model boundary states
involving su(2)k.

8.2.4 Example: Fusion of defect and boundary in the su(2)k WZW
model

As we have seen in section 3.4 a topological interface can be fused onto a boundary state.
Here we are now interested in how the LREE behaves under this fusion. Therefore, we
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k s̃su(2)k(l)

1 1
2

log 2 for l = 0, 1

2 3
4

log 2 for l = 0, 2

0 for l = 1

3 −1
2

log 2− 4[a2 log a+ b2 log b] for l = 0, 3

−1
2

log 2− 4[(2a2 − b2) log a+ (2b2 − a2) log b] for l = 1, 2

4 2
3

log 2 + 1
4

log 3 for l = 0, 4

log 2− 1
4

log 3 for l = 1, 3
1
2

log 3− 2 log 2 for l = 2

Table 8.1: Values of s̃su(2)k(Dl) for small values of k with a = 1√
5

sin(π/5)

and b = 1√
5

sin(2π/5).

consider the topological defect

Da =
∑
i

Sia
Si0
||i|| (8.25)

and the boundary state in a WZW su(2)k model given by

|Bb〉 =
∑
i

Sbi
S0i

|i〉〉. (8.26)

Fusion yields a new boundary state |B′〉

|B′〉 = Da |Bb〉 =
∑
i

SaiSbi

S
3/2
0i

|i〉〉. (8.27)

By unfolding we thus obtain the new defect operator with coefficients

bB′i =
SaiSbi

S
3/2
0i

. (8.28)

The number of open-string vacua in the self-spectrum of |B′〉 is

N B′
0B′ =

∑
|bB′i|2S0i =

∑
i

N i
aaN

i
bb = min(a, b) + 1 , (8.29)

where again N c
ab are the su(2)k fusion numbers. The number of open-string vacua is exactly

the same as in the case of the fusion products of two elementary defects (see section 7.3.4).
The subleading contribution to the LREE can thus be written as

s̃(a× b) = log(min(a, b) + 1)−
∑

i |bBi|2S0i log |bBi|2

min(a, b) + 1
. (8.30)
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Observe that min(a, b) + 1 is also again the number of elementary branes in the decompo-
sition

|B′〉 =
∑
c

N c
ab |c〉 (8.31)

of the fusion product.
In the large k limit of the su(2)k WZW model, the LREE of the fusion product differs from
the entropy of the original boundary state |Bb〉 again by a rational term and the logarithm
of the number of elementary branes in the decomposition. Indeed, in the limit of large k
the numerator in the second term of the right-hand side of (8.30) becomes∑

i

|bB′i|2S0i log |bB′i|2
k→∞−−−→ (8.32)

− log
√

2
k+2

+
2

π

∫ π

0

sin2((a+1)x) sin2((b+1)x)

sin2(x)
log
(

sin2((a+1)x) sin2((b+1)x)

sin3(x)

)
dx .

A similar calculation as in section 7.3.4 leads to

s̃(a× b) = log min(a+ 1, b+ 1) +
1

2
log 2 + logR− p

q
, k →∞, (8.33)

for some p, q ∈ N. The difference between the entanglement entropy of the boundary state
after fusion (8.33) and the original boundary state (8.24) for k =∞ is, therefore,

s̃(a× b)− s̃(b) = log(min(a, b) + 1)− p

q
. (8.34)

8.3 LREE in Coset Models

8.3.1 Parafermionic Coset

We can apply the result (8.15) to parafermionic boundary states with modular S-matrix

Sl
′m′

lm = 2Sl
′

l S
∗m′
m . (8.35)

Inserting the expression into the subleading term in (8.15) we find

s̃(l,m) = −
∑

(l′,m′)∈PF (k)

4|Sl′l |2|Sm
′

m |2 log
2|Sl′l |2|Sm

′
m |2

Sl
′

0 S
∗m′
0

=

−
∑

(l′,m′)∈PF (k)

4|Sl′l |2|Sm
′

m |2
(

log 2 + log
|Sl′l |2

Sl
′

0

+ log
|Sm′m |2

S∗m
′

0

)
=

−1

4

k∑
l′=0

k∑
m′=−k+1

4|Sl′l |2|Sm
′

m |2
(

log 2 + log
|Sl′l |2

Sl
′

0

+ log
|Sm′m |2

S∗m
′

0

)
=
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− log 2 + s̃su(2)k(l) + s̃u(1)k(m). (8.36)

Thus the total LREE for the parafermionic case reads

S̃(l,m) =
k − 1

3(k + 2)
+ s̃su(2)k(l) + s̃u(1)k(m)− log 2. (8.37)

From the formula we see that the subleading term to the LREE for this specific coset model
decomposes into a part coming from su(2)k, a part coming from u(1)k and an additional
term − log 2 that can be associated with the normalization constant. Let us again discuss
the two simplest models which can be obtained from this theory

Example 1: k = 2 as the Ising model
In section 8.2.1 we already calculated the LREE for the Ising model boundary states. For
k = 2 the parafermionic theory realizes the Ising model with the three fields of conformal
dimension

(l,m) hl,m

(0, 0) 0

(0, 2) 1/2

(1, 1) 1/16

For (8.37) we thus find

S̃LREE =
1

12
logL+

{
3
4

log 2 for (0, 0) & (0, 2)

0 for (1, 1)
(8.38)

which exactly reproduces the results from the boundary state case.

Example 2: k = 3 as the three state Potts model
Again for k = 2 one reproduces the fractional spectrum of the three state Potts model
with fields of conformal weight

(l,m) hl,m

(0, 0) 0

(0, 2) 2/3

(0,−2) 2/3

(1,−1) 1/15

(1, 1) 1/15

(1, 3) 2/5



8.3 LREE in Coset Models 111

For the LREE we thus obtain

S̃(l,m) =
2

15
logL+

+
1

2
log

3

4
+

{
−4[a2 log a+ b2 log b] for (0, 0) & (0, 2) & (0,−2)

−4[(2a2 − b2) log a+ (2b2 − a2) log b] for (1,−1 & (1, 1) & (1, 3)
(8.39)

where again a := 1√
5

sin π
5
, b := 1√

5
sin 2π

5
.

8.3.2 Unitary Minimal Series

As a second example for the left/right entanglement entropy in coset theories we again
consider the case of the unitary minimal series realized by the coset

su(2)k ⊗ su(2)1

su(2)k+1

. (8.40)

The calculation for the subleading term to the left/right entanglement entropy now pro-
ceeds in a similar fashion to the calculation of the entanglement entropy of section 7.4.2

s̃(l,m, s) = −4
∑

l′+m′ even
s′=0

|Sl′l |2|Sm
′

m |2|Ss
′

s |2 log

(
2
|Sl′l |2

Sl
′

0

|Sm′m |2

Sm
′

0

|Ss′s |2

Ss
′

0

)
=

− log 2− 2

( ∑
l′ even

∑
m′ even

+
∑
l′ odd

∑
m′ odd

)(
log
|Sl′l |2

Sl
′

0

+ log
|Sm′m |2

Sm
′

0

+ log
|S0
s |2

S0
0

)
=

− log 2 + s̃su(2)1(s)−

( ∑
l′ even

(1 + δm, k+1
2

) +
∑
l′ odd

(1− δm, k+1
2

)

)
log
|Sl′l |2

Sl
′

0

−

−

( ∑
m′ even

(1 + δl, k
2
) +

∑
m′ odd

(1− δl, k
2
)

)
log
|Sm′m |2

Sm
′

0

=

− log 2 + s̃su(2)k(l) + s̃su(2)k+1
+ s̃su(2)1(s) + δm, k+1

2

¯̃ssu(2)k(l) + δl, k
2

¯̃ssu(2)k+2
(m), (8.41)

where we defined

¯̃ssu(2)k(l) := −
k∑

l′=0

(−1)l
′ |Sl′l |2 log

|Sl′l |2

Sl
′

0

. (8.42)

Again the terms including the delta functions drop identically since either ¯̃s is zero or the
delta function. Thus we find for the left/right entanglement entropy of the unitary minimal
series

S̃(l,m, s) =

(
1

4
− 3

2(k + 2)(k + 3)

)
logL+ s̃su(2)k(l) + s̃su(2)k+1

+ s̃su(2)1(s)− log 2. (8.43)
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As in the parafermionic case we see that the subleading term decouples into its individual
parts. The additional term − log 2 can again be associated with the normalization constant
of the coset. As in section 7.4.2 let us consider the two simplest examples corresponding
to the Ising and tri-critical Ising model.

Example 1: k = 1 as Ising model
The three fields in this model are given by (0, 0, 0), (0, 2, 0) and (1, 1, 0). Their correspond-
ing left/right entanglement entropies read

S̃(l,m, s) =
1

12
logL+

{
3
4

log 2 for (0, 0, 0) & (0, 2, 0)

0 for (1, 1, 0)
(8.44)

Example 2: k = 2 as tri-critical Ising model
The tri-critical Ising model consists of the six fields (0, 0, 0), (0, 2, 0), (1, 1, 0), (1, 3, 0), (2, 0, 0)
and (2, 2, 0). For the left/right entanglement entropies we thus find using table 8.1

S̃(l,m, s) =
7

60
logL+


−1

4
log 2− 4(a2 log a+ b2 log b) for (0, 0, 0) & (2, 0, 0)

−1
4

log 2− 4[(2a2 − b2) log a+ (2b2 − a2) log b] for (0, 2, 0) & (2, 2, 0)

− log 2− 4[(2a2 − b2) log a+ (2b2 − a2) log b] for (1, 1, 0)

− log 2− 4(a2 log a+ b2 log b) for (1, 3, 0)

(8.45)

8.3.3 N = 2 Superconformal Minimal Models

For superconformal minimal models with N = 2 supersymmetry the LREE can also be
calculated in a similar manner as for the parafermionic case. Using the decomposition of
the sum as in (7.102) the subleading term to the LREE in this case is given by

s̃(l,m, s) = −
∑

(l′,m′,s′)∈Jk

|Sl
′,m′,s′

l,m,s |
2 log

|Sl
′,m′,s′

l,m,s |2

Sl
′,m′,s′

0,0,0

=

− N2

8(k + 2)

∑
(l′,m′,s′)∈Jk

|Sl′l |2 log

[
N√

8(k + 2)

|Sl′l |2

Sl
′

0

]
=

−N
2

4

k∑
l′=0

|Sl′l |2
[

log
N√

8(k + 2)
+ log

|Sl′l |2

Sl
′

0

]
=

− log
1√
4
− log

1√
2(k + 2)

− log 2−
k∑

l′=0

|Sl′l |2 log
|Sl′l |2

Sl
′

0

=
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s̃su(2)k(l) + s̃u(1)k+2
(m) + s̃u(1)2(s)− log 2. (8.46)

We see that as in the parafermionic case the subleading term decomposes into the individual
parts and an additional term − log 2 related to the normalization constant. For the LREE
we thus find

S̃(l,m, s; k) =
k

2(k + 2)
logL+ s̃su(2)k(l) + s̃u(1)k+2

(m) + s̃u(1)2(s)− log 2. (8.47)

Example: k = 1 as super-parafermionic theory
As discussed in section 7.4.3 the super-parafermionic theory consists of twelve individual
fields. Nevertheless, the LREE for all these fields is equal and given by

S̃(l,m, s; 1) =
1

6
logL+ s̃su(2)1(l) + s̃u(1)3(m) + s̃u(1)2(s)− log 2 =

1

6
logL+

1

2
log 2 +

1

2
log 6 +

1

2
log 4− log 2 =

1

6
logL+

1

2
log(2 · 6) =

1

6
logL+ s̃u(1)6 . (8.48)

Even more obvious as in the case of the entanglement entropy we observe in a nice way
the level rank duality

su(2)1 ⊗ u(1)2

u(1)3

= u(1)6. (8.49)
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Chapter 9

Results for Bosonic Tori

In this chapter we briefly want to discuss the entanglement entropy (left/right entanglement
entropy) through topological interfaces for the case of d free bosons compactified on a torus
which can also be found in [60]. For a brief discussion and conventions of the free boson
CFT description see appendix B.

9.1 EE through topological defects

For the case of d free bosons compactified on a torus the interface operators are explicitly
known [55]. The ground states of the theory form an even, self dual lattice Γ ⊂ Rd,d, where
the lattice vectors are of the form γ = (p, p̄). The d-dimensional vectors p and p̄ denote
left- and right-moving momenta respectively.
We consider topological interfaces that also preserve the full u(1)d symmetry, i.e. these
interfaces are specified by a gluing matrix Λ ∈ O(d|R) × O(d|R), which implies on the
modes of the d bosons (

a1
n

−ā1
−n

)
I1,2 = I1,2Λ

(
a2
n

−ā2
−n

)
, (9.1)

where the modes of the left and right u(1)d currents are considered to be d-dimensional
vectors. Especially n = 0 corresponds to the modes for the charges mentioned above.
Similarly to the rational case discussed earlier, the interface operators can be written as
linear combinations of operators between u(1)d highest weight representations:

I12(Λ) =
∑
γ∈ΓΛ

12

dΛγ||γ|| . (9.2)

The projector ||γ|| is an intertwiner of the representation space specified by the lattice vec-
tor γ, and dΛγ are prefactors constrained by consistency under modular S-transformation.
The range of the summation is restricted to a sublattice, given in terms of a gluing condition
Λ for the lattices Γ1 and Γ2 on the two sides of the interface,

ΓΛ
12 = {γ ∈ Γ1 |Λγ ∈ Γ2} = Γ1 ∩ Λ−1Γ2 ⊂ Γ1. (9.3)
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For admissible gluing conditions Λ, the sublattice ΓΛ
12 has full rank. Consistency under

modular S transformation then demands that dΛγ = gΛ
12 exp(2πiϕ(γ)), where ϕ ∈ (ΓΛ

12)?

and
(gΛ

12)2 = |Γ1/Γ
Λ
12| (9.4)

is the index of the sublattice ΓΛ
12 inside the lattice Γ1. Since the modes of the lattice and

oscillating part decouple one may split the interface operator according to

I12 = I0
12(Λ)

∏
n>0

In12(Λ) , (9.5)

where
I0

12 = gΛ
12

∑
γ∈ΓΛ

12

e2πiϕ(γ) |Λγ〉 〈γ| (9.6)

gives the map for the zero modes and the

In12 = exp

(
− 1

n

(
a2
−nΛ11a

1
n + ã2

−nΛ22ã
1
n

))
(9.7)

for n > 0 give the contribution of the higher oscillating modes. As the interface operator
acts as a map it is implicitly understood that modes of CFT1 act from the right and modes
of CFT2 from the left of I0

12.
We are now in the position to determine the entanglement entropy through this topological
defects. In order to do this we proceed as before. The partition function of the n-sheeted
Riemann surface1 for the topological defect (7.1) is

Z(n) = Tr
((
II†
)n
e−2δKH

)
= (gΛ

12)2n
∑

(p,p̄)=γ∈ΓΛ
12

χp(i
δ

π
n)χ̄p̄(i

δ

π
n) , (9.8)

where the χp are the u(1) characters. As usual we perform a modular S-transformation
and express Z(n) in terms of characters depending on the S-transformed variable iπ/nδ.
This leads to a summation over lattice vectors in the dual lattice Γ∨12. In the limit δ � 1
we approximate the lattice sum by the dominant contribution of the vacuum p = p̄ = 0,

Z(n) = (gΛ
12)2n

∑
(q,q̄)∈Γ∨12

a(q,q̄)χq(i
π

nδ
)χ̄q̄(−i

π

nδ
)

≈ (gΛ
12)2na(0,0)e

π2 d
6δn .

(9.9)

Using that the interfaces with the normalization (9.4) are elementary, we obtain for n = 1
the ordinary defect partition function, where the multiplicity of the vacuum propagating
in the S-dual channel is 1. From this we can conclude that a(0,0) = 1/(gΛ

12)2.

1Do not confuse that here n now stands for the number of sheets and not for the index of the modes
for the free boson
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Using δ = π2/ log(L), c = d for the central charge of d bosons, and (9.4), the entanglement
entropy is given by

S = (1− ∂n) log(Z(n))
∣∣
n=1

=
c

3
log(L)− log |Γ1/Γ

Λ
12| . (9.10)

Considering the special case d = 1, i.e. for a free boson compactified on a circle, conformal
interfaces between CFT1 and CFT2 are classified by two winding numbers k1 and k2. For
generic compactification radii of the two CFTs these interfaces are not topological, but
they become so by choosing radii to satisfy the relation R1/R2 = k2/k1 [41], where R1 is
the compactification radius in CFT1 and R2 is the compactification radius in CFT2.

In this case the index of the sublattice has been calculated [41,55] to be

|Γ1/Γ
Λ
12| = |k1k2| , (9.11)

such that the entanglement entropy through the topological interface is given by

S =
1

3
log(L)− log |k1k2| . (9.12)

The result is in agreement with the one obtained in [82].

All topological toroidal interfaces are duality interfaces according to the definition pre-
sented in section 3.1. A subclass of them are symmetry interfaces and describe automor-
phisms of the toroidal CFT. It can be shown that they are associated to gluing matrices
Λ in the T-duality group O(d, d,Z). In particular, for those matrices we get ΓΛ

12 = Γ1,
which means that the defect couples to the full momentum lattice and no ground states
are projected out. If this is the case, there is no contribution coming from the subleading
term to the entanglement entropy from the interface.

The broader class of duality interfaces is specified by matrices in O(d, d,Q). In particular
these interfaces can be related to orbifold constructions. In the case of a single circle, where
R1/R2 = k2/k1 [41, 55], the theory with radius R1 can be obtained from the theory with
radius R2 by orbifolding with respect to the shift symmetry

X 7→ X + 2πR1 . (9.13)

The group that is generated by this shift symmetry is Z|k1k2| and thus obviously has order
|k1k2|. The operator II† now projects the theory with R2 onto the sector invariant under
the orbifold group Z|k1k2|. We see that for circle theories the contribution to the sub-leading
term of the entanglement entropy is set by the order of this orbifold group,

S =
1

3
log(L)− log |G| , (9.14)

in agreement with the general result (7.29).
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9.2 LREE of bosonic tori

In this section we consider the LREE for d free bosons compactified on a torus. The gluing
conditions can be written as [3, 55]

(an +Oã−n) |B〉 = 0 , (9.15)

where O ∈ O(d|R). The ground states solving the zero mode condition are given by

ΓO =

{(
−Ox
x

)
∩ Γ | x ∈ Rd

}
, (9.16)

where Γ is the charge lattice of the torus model. As usual the boundary state is a super-
position of Ishibashi states |p, p̄〉〉 built on ground states (p, p̄) ∈ ΓO,

|B〉 = g
∑

(p,p̄)∈ΓO

eiϕ(p,p̄)|p, p̄〉〉 , (9.17)

where the function ϕ ∈ (ΓO)∗ specifies the D-brane moduli and the g-factor is fixed by the
condition that the open-string vacuum appears with multiplicity 1. Again by unfolding
the boundary state we can associated a defect to it acting on the chiral part of the Hilbert
space. For this, we introduce the projections π(ΓO) and π̄(ΓO) of the lattice ΓO to the left-
and right-moving parts respectively. On the level of ground states, the interface, therefore,
maps π(ΓO) 3 p → −Op ∈ π̄(ΓO). The g-factor can be related to the volume of the unit
cell of the projected lattice as

g = vol(π(ΓO)). (9.18)

The computation of the entanglement entropy now proceeds in analogy to the case of
topological interfaces. The partition functions on the n-sheeted torus can be approximated
by

Z(n) = g2n
∑

(p,p̄)∈ΓO

χp(i
δ

π
n)

S trsf, δ�1−−−−−−−→ g2n−2e
π2

12δn , (9.19)

where we used again that the vacuum in the open string channel has multiplicity 1 for
n = 1. Since the central charge of d bosons is simply c = d and δ = π2/ log(L) we obtain
from this the LREE

S =
c

6
log(L)− log vol(π(ΓO)). (9.20)

Note that the the subleading part of the LREE is determined by the g factor of the
boundary state. We want to relate this quantity to the torus geometry, let us, therefore,
recall that Γ is a Narain lattice given by

Γ =

{(
1
2
E−1M + ET (1 +B)N

−1
2
E−1M + ET (1−B)N

)
|M,N ∈ Zd

}
, (9.21)
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where G = EET is the metric and B the Kalb-Ramond field on the target space, and M and
N are the momentum and winding quantum numbers, respectively. Here we use capital
letters for the momenta and winding numbers to indicate that these are d-dimensional
vectors. Let us consider a D1 brane in d = 2 dimensions for the geometric case where B is
zero. If the D1 brane were located in infinite flat space, we would specify the direction of
the brane by specifying the momenta perpendicular to it; a localisation of the brane to its
world-volume direction would then be achieved by integration over these momenta. On a
torus, the momenta are part of a lattice. We can fix our brane by choosing the elementary
generator of transverse momenta that couple to the brane to be given by

N0 =

(
M0

1

M0
2

)
, (9.22)

with two integers M0
i that we assume to be relatively prime. This choice determines

the winding modes our D1 brane can couple to. The elementary winding generator
N0 = (N0

1 , N
0
2 ) is again specified by two coprime integers N0

1 , N
0
2 , and have to satisfy

the orthogonality constraint
M0

1N
0
1 +M0

2N
0
2 = 0 . (9.23)

The equation is solved by N0
1 = −M0

2 , N
0
2 = M0

1 . By this we have fixed a D1 brane for
which the lattice ΓO is precisely spanned by the two generators M0 and N0 for M and N
in (9.21), respectively. It can be checked explicitly that these lattice vectors solve (9.15)
with

O =

(
cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

)
∈ O(2,R) , (9.24)

where θ = arctan
(
− (E−1M0)1/(E

−1M0)2

)
[41]. To compute the g-factor we now have to

compute the volume of (the unit cell of) this lattice, projected to the left-movers. After
some algebra one obtains

g2 =
1

2 detE

(
(M0

2 )2G11 + (M0
1 )2G22 − 2G12M

0
2M

0
1

)
. (9.25)

Mapping M0
i to the winding numbers of the brane M0

1 = k2,M
0
2 = −k1, we see that

g2 =
length2

2vol
, (9.26)

where length refers to the length of the brane and vol to the volume of the torus. This
is in agreement with geometrical expectations. Note also, that in the special case of a
rectangular torus with diagonal metric where the radii are related by a rational number
the above result agrees with the one for topological interfaces of the previous section.
As states before the left/right entanglement entropy for a single boson compactified on a
circle of radius R has been computed in [87]. To compare the results, note that in one
dimension the left-moving momenta are given by a0 = m/2R + nR and the right-moving
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momenta by ā0 = m/2R − nR (see appendix B) with n the winding number. The matrix
O in the gluing condition reduces to a choice of sign. For Dirichlet branes we have O = 1,
and only ground states without winding contribute to the boundary state. We, therefore,
have ΓO = {(m/2R,m/2R)}, and the volume of the projected unit cell is 1/2R. Similar
considerations also hold for Neumann branes. Our result (9.20) for the LREE of a single
boson compactified on a circle thus gives

S =
1

6
logL−

{
logR for O = −1 (Neumann b.c.)

log 1
2R

for O = 1 (Dirichlet b.c.)
. (9.27)

which in particular reproduces the results of [87].



Chapter 10

Indices with Defects

10.1 Indices from Boundary States

In this section we want to calculated indices in the presence of topological defects for
boundary states in N = 2 minimal models. These minimal models can be realized via
a coset theory as discussed in section 2.12.6. We consider the model equipped with a
vector-like GSO projection [18,19,92], where the Hilbert space takes the form

H =
⊕

(l,m,s)

Hl,m,s ⊗Hl,m,s. (10.1)

We now first review some general aspects on the construction of Cardy-boundary states in
N = 2 minimal models [19] before calculating indices with topological defects.
In N = 2 minimal models there exist both A-branes and B-branes that preserve half
of the (2, 2) superconformal symmetry. The notion of A- and B-type is related to type
IIA and type IIB string theory where those branes naturally arise from the theory. The
corresponding boundary states satisfy

(Ln − L̄−n) |BA〉 = 0, (Jn − J̄−n) |BA〉 = 0, (10.2)

(Ḡ+
n − ieiαG−−n) |BA〉 = 0, (Ḡ−n − ie−iαG+

−n) |BA〉 = 0 (10.3)

for A-type with eiα = 1 if s = ±1 and eiα = 1 if s = 0, 2 and

(Ln − L̄−n) |BB〉 = 0, (Jn + J̄−n) |BB〉 = 0, (10.4)

(Ḡ+
n − ieiβG+

−n) |BB〉 = 0, (Ḡ−n − ie−iβG−−n) |BB〉 = 0 (10.5)

for B-type with eiβ = −1 for s = 0 and +1 for s = 1.
In the rational case for each kind of boundary condition there exist an associated Ishibashi
state given by

|Al,m,s〉〉 =
∑
N

|l,m, s;N〉 ⊗ ΩMU |l,m, s;N〉 , (10.6)

|Bl,m,s〉〉 =
∑
N

|l,m, s;N〉 ⊗ U |l,m, s;N〉 . (10.7)
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As always the states |l,m, s;N〉 form a orthonormal basis of Hl,m,s, U is the usual anti-
linear operator U : Hl,m,s → Hl,−m,−s and ΩM is the mirror automorphism1 of the N = 2
superconformal algebra.
The states |Al,m,s〉〉 survive the GSO projection for all (l,m, s) while for B-type only the
Ishibashi states |Bl,0,0〉 , |Bl,0,2〉 and |B k

2
, k+2

2
,±1〉 survive where the last one is possible for

k even only.
Out of the Ishibashi states one can construct the corresponding boundaries states. For the
A-branes these are given by

|Al,m,s〉 =
∑

(l′,m′,s′)∈Jk

Sl
′,m′,s′

l,m,s√
Sl
′,m′,s′

0,0,0

|Al′,m′,s′〉〉, (10.8)

while the B-branes are given as

|Bl,s〉 =
√

2(k + 2)
∑

l′∈2Z, s′=0,2

Sl
′,0,s′

l,−l−s,s√
Sl
′,0,s′

0,0,0

|Bl′,0,s′〉〉. (10.9)

Again Jk labels the set of all distinct fields in the coset. The modular S-matrices in this
case are given by

Sl,m,sL,M,S =
1

k + 2
sin

(
π

(L+ 1)(l + 1)

k + 2

)
eiπ

mM
k+2 e−iπ

sS
2 . (10.10)

For the case that k is even the B-branes with l = k/2 further split into two separate
boundary states

|Bs〉 =
1

2
|B k

2
,s〉+

√
k + 2

2
e−iπ

s2

2

∑
s′=−1,1

e−iπ
ss′
2 |B k

2
, k+2

2
,s′〉〉, s = −1, 0, 1, 2. (10.11)

As usual the labels l,m, s are subjected to the field identification (l,m, s) ∼ (k− l, k+ 2 +
m, 2 + s) and the restriction l +m+ 2 = 0 mod 2 (see 2.12.6).
Having defined all the possible boundary states we are now in the position to calculate
indices, especially Witten indices associated to the boundary states. Therefore, we consider
an open string in the (a, b) sector where a and b now can correspond to any of the above
boundary states. In the open string language the topological intersection index [95] is
defined by

I(a, b) = trHab(−1)F e−βH . (10.12)

In the closed string picture (obtained by modular S-transformation) the index corresponds
to an overlap of the Ramond sector boundary states with an additional spectral flow
operator insertion, i.e.

I(a, b) = 2RR 〈a| e−iπJ0e−
2π2

β
(L0+L̄0− c

12
) |b〉RR . (10.13)

1ΩM : Jn → −Jn and ΩM : G±
r → G∓

r
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The factor 2 gives rise to the right identification related to the GSO projection. In the
overlap only the Ramond sector ground states (l,m, s) = (l, l+1, 1) for which L0+L̄0− c

12
=

0 contribute so we may alternatively write

I(a, b) = 2RRG 〈a| e−iπJ0 |b〉RRG , (10.14)

where |a〉RRG is the projection on the RR-ground states.
Since we are only interested in the Ramond sector contribution we can restrict the A-branes
and B-branes to this sector by

|Al,m,s〉RR =
∑

(l′,m′,s′)
s′=±1

Sl
′,m′,s′

l,m,s√
Sl
′,m′,s′

0,0,0

|Al′,m′,s′〉〉, (10.15)

and for the case that k is even

|Bs〉RR =

√
k + 2

2
e−iπ

s2

2

∑
s′=±1

e−iπ
ss′
2 |B k

2
, k+2

2
,s′〉〉, s = −1, 0, 1, 2. (10.16)

The overlap between B-B-branes and A-B-branes is a straight forward calculation (see
[18–20]) resulting in

I(B±1, Al,m,s) = ∓eiπ
m−s

2 sin

(
π
l + 1

2

)
∈ {−1, 0, 1}, (10.17)

I(B±1, B1) = ±k + 2

2
. (10.18)

The calculation for the A-A-overlap is a bit more involved thus we review it here in a
detailed calculation

I(Al1,m1,s1 , Al2,m2,s2) = 2RR 〈Al1,m1,s1| e−iπJ0qH |Al2,m2,s2〉RR

= 2
∑

(l,m,s)
s odd

S∗l,m,sl1,m1,s1
Sl,m,sl2,m2,s2

Sl,m,s0,0,0

e−iπ( s
2
− m
k+2

)χl,m,s(q)

=
2

k + 2

∑
(l,m) odd

sin
(
π (l1+1)(l+1)

k+2

)
sin
(
π (l2+1)(l+1)

k+2

)
sin
(
π l+1
k+2

) eiπ
m(m2−m1+1)

k+2 e−iπ
s2−s1+1

2 (χl,m,1 − χl,m,−1)

= eiπ
s2−s1

2

∑
l

Sll1S
l
l2
Slm2−m1

Sl0

= (−1)
s1−s2

2 Nn2−n1
l1,l2

, (10.19)
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where

Sji =

√
2

k + 2
sin

(
π

(i+ 1)(j + 1)

k + 2

)
, (10.20)

are the su(2)k modular S-matrices and N l
i,j the su(2)k fusion coefficients with

N l
i,j =


1 for |i− j| ≤ l ≤ min(i+ j, 2k − i− j)

i+ j + l = 0 mod 2

0 otherwise

(10.21)

Note that in the calculation we used∑
(l,m) odd

=
1

2

∑
l+m odd

. (10.22)

Further we demanded that s1, s2 are both odd in order to preserve the same supersymmetry
(s on the other hand can take all possible values). Further it is understood that N l

i,j is zero

for all l = −1 mod (2k + 4) and for general l < 0 holds the identification N l
i,j = −N2−l

i,j

and equally with a period of k + 2.

10.2 Indices from Boundary States with Topological

Defects

Having defined the index between Ramond sector boundary states of N = 2 minimal
models we are now in the position to generalize the index by adding a topological defect
which is also defined in the Ramond sector

DL,M,S =
∑

(l,m,s)
s odd

Sl,m,sL,M,S

Sl,m,s0,0,0

P (l,m,s). (10.23)

Here P (l,m,s) are projectors on the representations (l,m, s) as usual. We are interested in
calculating the enhanced index

I(a, b,DL,M,S) = 2RR 〈a| e−iπJ0DL,M,S |b〉RR . (10.24)

Graphically this setup is shown in figure 10.1.
From section 3.4 we know that a topological defect can be fused onto the Cardy state. In
our case this results in

DL,M,S |Al,m,s〉RR =
∑
l′

N l′

L,l |Al′,M+m,S+s〉RR , (10.25)

DL,M,S |Bs〉RR =

√
k + 2

2
e−iπ

s2

2

∑
s′=±1

S
k
2
, k+2

2
,s′

L,M,S+s

S
k
2
, k+2

2
,s′

0,0,0

|B k
2
, k+2

2
,s′〉〉. (10.26)
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RR 〈a|

DL,M,S

|b〉RR

Figure 10.1: Topological defect placed along the cylinder with boundaries.

Again N l
i,j are the su(2)k fusion coefficients, further we see that the action of the defect on

the boundary states generates a superposition of boundary states.
It is now straight forward to calculate the indices in presence of the defect by using the
results from (10.17)-(10.19). In appendix D we perform the calculation explicitly, i.e.
without using the fusion of the defect with the boundary but simply by performing the
calculation straight away. The results then are given by

I(B±1, Al,m,s, DL,M,S) = ∓ sin

(
π
l + 1

2

)
sin

(
π
L+ 1

2

)
eiπ

M+m−S−s
2 , M + S = 0 mod 2,

(10.27)

I(B±1, B1, DL,M,S) = ±k + 2

2
sin

(
π
L+ 1

2

)
eiπ

M−S
2 , M + S = 0 mod 2, (10.28)

I(Al1,m1,s1 , Al2,m2,s2 , DL,M,S) = (−1)
s1+S−s2

2

k∑
l′=0

N l′

l1,l2
N l′

L,M+m2−m1
, S = 0 mod 2. (10.29)

The restrictions on the labels M and S naturally arise since we want to recover (10.17)-
(10.19) for the special case of the identity defect D0,0,0. Further the restriction S = 0 mod 2
for the index between A-type boundaries with defect tells us that the defect preserves the
corresponding spin structure of the boundaries.
It is quite simple to generalize to the insertion of several, let’s say n defects. By using their
fusion with each other and restricting the final result to the Ramond sector

DL1,M1,S1DL2,M2,S2 =
∑

(l,m,s)
s odd

N l
L1,L2

δ
(4)
s,S1+S2

δ
(2k+4)
m,M1+M2

P (l,m,s). (10.30)

For the index between two A-branes this then results in

I(Al1,m1,s1 , Al2,m2,s2 , DL1,M1,S1 , . . . , DLn,Mn,Sn) =

eiπ
s2−s1

2

n∏
j=1

e−iπ
Sj
2

∑
l̃1,...,l̃n

N l̃1
l1,l2

N l̃2
L1,l̃1
· · ·N l̃n

Ln−1,l̃n−1
N l̃n
Ln,∆M

, (10.31)

where ∆M := m2 −m1 +
∑

jMj and again with the restriction

n∑
j=1

Sj = 0 mod 2, s1, s2 odd. (10.32)
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For the index between A- and B- branes and B- and B-branes similar generalization hold
(see appendix D).
It is commonly known that the N = 2 minimal models arise as the infrared fixed point [97]
of the Landau-Ginzburg model consisting of a single chiral superfield X with superpotential
W given by

W = Xk+2, (10.33)

where k is the level of the minimal model. It can be shown [18, 19] that there is a nice
geometric interpretation of the index between two boundary states in terms of intersection
numbers of the associated branes in the Landau-Ginzburg description. We will review
the geometric interpretation in the next section and then apply the results to the index
obtained with the insertion of a single defect (for several defect insertions the same logic
will hold). In this way we can give our formula (10.29) a physical meaning.

10.3 Geometric Interpretation

As stated before N = 2 minimal models can be realized as the IR fixed point of Landau-
Ginzburg models [17]. The action for a Landau-Ginzburg model (in superspace formalism
[5]) for a single chiral superfield X is given by

SLG =

∫
d2x

[
d4θK(X, X̄) +

1

2

(∫
d2θW (X) +

∫
d2θ̄W̄ (X̄)

)]
. (10.34)

Here K(X, X̄) is the Kähler potential which defines the associated Kähler metric

gij̄ = ∂i∂j̄K(X, X̄). (10.35)

Usually gij̄ is taken to be the flat metric. The k-th minimal model can now be described
by the superpotential of the form

W (X) = Xk+2. (10.36)

In the Landau-Ginzburg description A-type D-branes are preimages of straight lines on
the W -plane starting from critical values which in the cases of the above superpotential
are given by the critical points X = 0 with a multiplicity k + 1 and critical value w∗ = 0.
By performing a deformation of the superpotential with lower powers of X one can obtain
k + 1 non-degenerate critical points with distinct values wi. Each of these critical points
belongs to a D-brane with the image being a straight half-line starting from wi and going
to +∞ in the positive real direction. The preimage approaches for large X (where the
deformation is negligible) the lines

Ln =

{
r exp

(
2πin

k + 2

)
| n = 0, . . . , k + 1 , r ∈ [0,∞)

}
. (10.37)

Hence, on the X-plane the D-branes of the deformed theory is a curve that asymptotes to
a pair of such lines Ln1 and Ln2 with n1 6= n2. The precise combinations of D-branes of this
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type depend on the way of deformation of W away from criticality. However, generally the
k+1 D-branes obtained this way will not intersect on the X-plane because by construction
they do not intersect in the W -plane too.
Associating to the pair of numbers a state |n1, n2〉 one may define an intersection index
between two branes as

〈n1, n2|r1, r2〉 =

{
1 ni = ri for some i

0 else
. (10.38)

At a critical point all the D-branes from the non-critical theories arbitrarily close to it are
present. Since all pairs (n1, n2) are realized in some deformation of W , all of them exist in
the critical theory, which gives us a total of (k + 2)(k + 1) D-branes. Their preimages in
the X-plane are two of the former lines, Ln1 ∪ Ln2 with arbitrary (n2, n2), n1 6= n2.
Following the ideas from [18] we can now make the correspondence to the boundary state
description in N = 2 minimal models. The labels of the A-type boundary state |Al,m,s〉
can be identified with the two integer numbers (n1, n2) specifying the D-brane as

|n2 − n1| = l + 1, (10.39)

n1 + n2 = m, (10.40)

s = sign(n2 − n1). (10.41)

Since we are considering Ramond-boundary states s = ±1. Geometrically negative values
of s correspond to opposite orientations of the D-branes. The intersection index 10.38 can
now be identified (up to a phase regarding the orientation of the branes) with the Witten
index of two associated A-type boundary states (10.19) with

|n2 − n1| = l1 + 1, |r2 − r1| = l2 (10.42)

n1 + n2 = m1, r1 + r2 = m2 + 1 (10.43)

s1 = sign(n2 − n1), s2 = sign(r2 − r1). (10.44)

We now want to discuss the action of a topological defect on the boundary state and its
geometric interpretation. The action of a topological defect on a boundary is given by

DL,M,S |l,m, s〉 =
∑
l′

N l′

L,l |l′,M +m,S + s〉 . (10.45)

For the new numbers representing the asymptotics of the D-brane this means

n2 =
M +m+ l′ + 1

2
, n1 =

M +m− l′ − 1

2
. (10.46)

In comparison to the original orientation of the D-brane associated to the boundary state
|l,m, s〉 we recognize, that M rotates the original brane by an angle πM/(k + 2) and l′ is
responsible for the angle that the brane encloses. Especially the enclosed angle is given by
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(0, 1, 1) M = 2 ∆l = 2

(2, 3, 1)

Figure 10.2: Graphical representation for k = 4 of one possible transfor-
mation of a brane (0, 1, 1) by action of a defect D2,2,0, where ∆l = l′ − l.

(1, 2, 1) D[2,2,0] (3, 4, 1)

(1, 4, 1)

Figure 10.3: left: boundary state with labels (1, 2, 1) in the D-brane picture
right: action of D2,2,0 on the original boundary state generates two new
boundary states in the D-brane picture.

2π(l′+ 1)/(k+ 2). The S label of the defect simply exchanges the orientation of the brane
for S = 2 and preserves the orientation of the transformed brane compared to the original
one for S = 0. The dependence of the defect labels is shown as an example in figure 10.2.
Note that the D-branes, in fact, lie upon the lines X, nevertheless, here we draw the branes
slightly apart thus we get a better graphical representation for the intersections of several
branes later on.
The index that we calculated in the presence of one topological defect now exactly counts
the number of intersections of the branes generated by the defect and the additional one.
Let us consider an illustrative example to get more familiar with the geometric interpreta-
tion. We start with an A-type boundary state |A1,2,1〉 where the level is fixed to be k = 4.
Geometrically |A1,2,1〉 then corresponds to a D-brane coming from X = r and approaching
X = r · exp

(
2πi
3

)
(see figure 10.3 left). Let us now assume that we act with the topological

defect D2,2,0 on the boundary. In this case we obtain a superposition of boundary states
given by
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D2,2,0 |A1,2,1〉 = |A1,4,1〉+ |A3,4,1〉 . (10.47)

Graphically the action of the defect on the boundary is illustrated in figure 10.3 right.
The index (10.29) now geometrically corresponds to the number of intersections of D-
branes corresponding to the new created boundary states |A1,4,1〉 and |A3,4,1〉 with another
D-brane associated to the boundary state |Al1,m2,s2〉. Since our defect produced two new
boundaries the maximal number of intersections for the corresponding D-branes with a
third brane can be two.
As an example consider the case |Al2,m2,s2〉 = |A0,5,1〉. Equation (10.29) then tells us that
the intersection number is one. Geometrically the three branes in case can be represented
as in figure 10.4.

(3, 4, 1)

(1, 4, 1)

(0, 5, 1)

Figure 10.4: Graphical representation for index with one intersection.

We see that the branes with labels (0, 5, 1) and (1, 4, 1) indeed intersect at −∞ and that
they both have the same orientation for which the index is positive.
As a second example consider the case where |Al1,m2,s2〉 = |A2,7,1〉. Equation (10.29) in this
case tells us that the brane corresponding to the boundary state intersects with both the
other two branes, i.e. that the index is 2. Graphically this can be verified as illustrated
in figure 10.5. Indeed the blue brane intersects with both red branes i.e. its intersection
number is two.

10.4 Index from Unfolded Boundary States

In section 10.2 we calculated the index corresponding to two boundary states in the presence
of a topological defect as the overlap amplitude between the associated boundary states.
In this section we will follow a different approach. From section 3.2 we already know that
every boundary state can (in principle) be unfolded. We want to apply this procedure to
our A- and B-type boundary states. In this way we obtain a corresponding A- or B-type
defect acting just on the chiral part of the Hilbert space, i.e.

Hc =
⊕

(l,m,s)

Hl,m,s. (10.48)



130 10. Indices with Defects

(3, 4, 1)

(1, 4, 1)(2, 7, 1)

Figure 10.5: Graphical representation for index with two intersections.

We start our discussion with A-type boundary states (again only in the Ramond-sector)

|Al,m,s〉RR =
∑

(l′,m′) odd
s′ odd

Sl
′,m′,s′

l,m,s√
Sl
′,m′,s′

0,0,0

|Al′,m′,s′〉〉. (10.49)

Following the unfolding procedure we find for the defect

|Al,m,s〉RR → D
(ARR)
l,m,s =

∑
(l′,m′) odd
s′ odd

Sl
′,m′,s′

l,m,s√
Sl
′,m′,s′

0,0,0

P (l,m,s), (10.50)

where the projector P (l,m,s) is given by

P (l,m,s) =
∑
N

|l,m, s;N〉 〈l,m, s;N | . (10.51)

As in the boundary case we now can calculate an index associated to the defect. In the
boundary case the index was given by the overlap between two possible different boundary
states with the insertion of an operator exp(−iπJ0). This implies that in order to get
a similar result we also should consider two possibly different defects together with the
insertion of the right charge operator. Since in the boundary case exp(−iπJ0) is just
acting on the chiral part of the Hilbert space and our unfolded defect also only acts on the
chiral part we can again take the same operator. Our index can then be defined by

I(D†l1,m1,s1
, Dl2,m2,s2) = 2 · trHc D

(ARR)†
l1,m1,s1

e−iπJ0D
(ARR)
l2,m2,s2

qL0− c
24 . (10.52)

Note that the position of the charge operator exp(−iπJ0) is for the A-type defect irrelevant
but it will be essential for the B-type so we already place it at the right position, further we
took for the second defect the adjoint version and further we included a factor of 2, again
corresponding to the vector-like GSO projection, in order to get the right correspondence
in the open string channel. All steps have to be done in order to get the right boundary
state description as in section 10.2.
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The calculation of the index is now straight forward

I(D†l1,m1,s1
, Dl2,m2,s2) =

2 · trHc
∑

(l′,m′),(l′′,m′′) odd
s′,s′′ odd

S∗l
′,m′,s′

l1,m1,s1√
Sl
′,m′,s′

0,0,0

Sl
′′,m′′,s′′

l2,m2,s2√
Sl
′′,m′′,s′′

0,0,0

·

·|l′,m′, s′〉〉 〈〈l′,m′, s′|e−iπJ0|l′′,m′′, s′′〉〉︸ ︷︷ ︸
δl′,l′′δm′,m′′δs′,s′′ exp(−iπ( s

′
2
− m′
k+2

))

〈〈l′′,m′′, s′′|qL0− c
24 =

2 · trHc
∑

(l′,m′) odd
s′ odd

S∗l
′,m′,s′

l1,m1,s1
Sl
′,m′,s′

l2,m2,s2

Sl
′,m′,s′

0,0,0

|l′,m′, s′〉〉〈〈l′,m′, s′|e−iπ( s
′

2
− m′
k+2

)qL0− c
24 =

2
∑

(l′,m′) odd
s′ odd

S∗l
′,m′,s′

l1,m1,s1
Sl
′,m′,s′

l2,m2,s2

Sl
′,m′,s′

0,0,0

e−iπ( s
′

2
− m′
k+2

)χl′,m′,s′(τ) =

2

k + 2

∑
(l′,m′) odd
s′ odd

sin(l′, l1) sin(l′, l2)

sin(l′, 0)
eiπ

m′(m2−m1+1)
k+2 eiπ

s′(s2−s1+1)
2 χl′,m′,s′(τ). (10.53)

Here we again used the abbreviation

sin(i, j) = sin

(
π

(i+ 1)(j + 1)

k + 2

)
. (10.54)

As in the boundary case we demand s1, s2 to be odd to preserve the same kind of super-
symmetry. This then implies for our partition function

I(D†l1,m1,s1
, Dl2,m2,s2) =

−i(−1)
s2−s1

2
2

k + 2

∑
(l′,m′) odd

sin(l′, l1) sin(l′, l2)

sin(l′, 0)
eiπ

m′(m2−m1+1)
k+2 (χl′,m′,1 − χl′,m′,−1) =

(−1)
s2−s1

2
2

k + 2

k∑
l′=0

sin(l′, l1) sin(l′, l2) sin(l′,m2 −m1)

sin(l′, 0)
=

(−1)
s1−s2

2

∑
l′

Sl
′

l1
Sl
′

l2
S∗l

′
m2−m1

Sl
′

0

=

(−1)
s2−s1

2 Nm2−m1
l1,l2

. (10.55)
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RR〈Al1,m1,s1| |Al2,m2,s2〉RRe−iπJ0

unfold

D
(ARR)†
l1,m1,s1

D
(ARR)
l2,m2,s2

e−iπJ0

Figure 10.6: Performing the unfolding of the boundary states one equiva-
lently can calculate the index in terms of a torus partition function on the
chiral Hilbert space.

Here we used from the second to the third line the well know identity for the characters
χl,m,1(τ)− χl,m,−1(τ) = δm,l+1 − δm,−l−1 (see also appendix D).
We see that we obtain the same result as in the boundary case without a defect insertion
(10.19). This is exactly what we expected from the unfolding. For a graphical representa-
tion see figure 10.6.
The index for the insertion of topological defects can now equally be calculated. The results
then exactly match with (10.31).
Let us now focus on the B-type boundary in the Ramond sector (10.16). Unfolding this
boundary yields the associated B-type defect acting on the chiral part of the Hilbert space

|Bs〉RR → D(BRR)
s =

√
k + 2

2
e−iπ

s2

2

∑
s′=±1

e−iπ
ss′
2 P̂ ( k

2
, k+2

2
,s′), (10.56)

with the projector

P̂ ( k
2
, k+2

2
,s′) =

∑
N

|k
2
,
k + 2

2
, s′;N〉 〈k

2
,−k + 2

2
,−s′;N | (10.57)
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Note that in contrast to the A-type unfolding we have to perform an additional charge
conjugation which amounts in replacing m→ −m and s→ −s.
The index can now be calculated in a similar manner as for the A-type

I(D
(BRR)†
±1 , D

(BRR)
1 ) = 2 · trHc D

(BRR)†
±1 e−iπJ0D

(BRR)
1 qL0− c

24 , (10.58)

reproducing the result (10.18). Note that in this case the position of the spectral flow
operator is essential, i.e. it has to be placed within the two defects.

10.5 Generalizations to Non-Topological Defects

In sections 10.1 and 10.2 we have calculated the indices between boundary states without
and with topological defect insertions. We now want to generalize the calculation to non-
topological defects. Thereby we recognize that in the calculation for the indices only the
Ramond-ground states with labels (l, l + 1, 1) contributed.
We now proceed as follows: first we introduce the concept of a boundary state charge in
N = 2 superconformal minimal models. Having defined the charges, which can be seen as
forming a charge lattice, we consider the index calculation without defects in terms of the
brane-charges before in the end we generalize to (possible) non-topological defects.
This is somewhat clear since we are dealing with a superconformal theory and are consid-
ering the insertion of a (−1)F operator which in our case is given by

(−1)F = exp(−iπJ0). (10.59)

For supersymmetric theories the number of bosons and the number of fermions for excited
states are equal thus these states cancel out when inserting the (−1)F operator. Only the
number of ground states of bosons and fermions don’t coincide (for a graphical represen-
tation see figure 10.7). These ground states then are exactly the states that contribute to
the index. Let us denote the Ramond ground states by |l, l + 1, 1〉 where l ∈ {0, . . . , k}.

We are interested in the overlap of branes with these ground states. We will just consider
the A-type branes since these give rise to non-trivial indices (see section 10.1). We thus
define, adopting the notation presented in [19]

Π̃l1,m1,s1
l,l+1,1 := 〈l, l + 1, 1|Al1,m1,s1〉RR (10.60)

Πl1,m1,s1
l,l+1,1 := RR 〈Al1,m1,s1| e−iπJ0 |l, l + 1, 1〉 . (10.61)

These overlaps encode the information about the D-brane charge, namely in the super-
symmetric closed string ground states generate space-time gauge potentials. These gauge
potentials are called Ramond-Ramond potentials. The overlaps of the boundary states
with the Ramond ground states thus measure the charge of the D-brane with respect to
the gauge potentials [19]. This results in talking about the D-brane charge and the asso-
ciated charge lattice ΛD of the branes. Explicitly for the A-type branes the overlaps are
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Bosons Fermions

Excited states

Ground states

Figure 10.7: Number of fermionic and bosonic states. For a supersymmetry
theory the number of bosons and fermions for excited states coincide while
for the ground states the equality doesn’t have to hold.

given by

Π̃l1,m1,s1
l,l+1,1 =

1√
k + 2

sin
(
π (l1+1)(l+1)

k+2

)
√

sin
(
π l+1
k+2

) eiπ
m1(l+1)
k+2 e−iπ

s1
2 (10.62)

Πl,l+1,1
l1,m1,s1

=
1√
k + 2

sin
(
π (l1+1)(l+1)

k+2

)
√

sin
(
π l+1
k+2

) e−iπ
(m1−1)(l+1)

k+2 eiπ
s1−1

2 (10.63)

The Witten index (10.29) can thus be expressed in terms of these overlaps as

I(Al1,m1,s1 , Al2,m2,s2) =

2
∑
l,l′

RR〈Al1,m1,s1|e−iπJ0 |l, l + 1, 1〉〈l, l + 1, 1|l′, l′ + 1, 1〉〈l′, l′ + 1, 1|Al2,m2,s2〉RR =

2
∑
l,l′

Πl1,m1,s1
l,l+1,1 gll′Π̃

l2,m2,s2
l,l+1,1 . (10.64)

In the formula we introduced the associated metric gll′ := 〈l, l + 1, 1|l′, l′ + 1, 1〉. We see
that the index is totally determined by the charges of the branes, i.e. the Witten index
defines an integral bilinear form on the charge lattice ΛD. This concept can now easily be
generalized to the inclusion of a (not necessarily topological) defect. Since only Ramond
ground states contribute to the index this also has to be true for the case when we include
a defect which on the level of the Ramond ground states may be interpreted as a map2.

2Note that in general non-topological defets can not be associated with a map from one CFT to another.
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Thereby only those ground states survive that again are ‘mapped’ onto ground states by
the defect. In terms of overlaps this can be written as

I(Al1,m1,s1 , Al2,m2,s2 , DL,M,S) = 2
∑
l,l′

Πl1,m1,s1
l,l+1,1 gll′(DL,M,S)Π̃l2,m2,s2

l,l+1,1 , (10.65)

where we introduced the defect induced metric

gll′(DL,M,S) = 〈l, l + 1, 1|DL,M,S |l′, l′ + 1, 1〉 . (10.66)

We see that the induced metric encodes exactly the information which ground states are
mapped by the defect onto other ground states. For the case of a topological defect
the induced metric is diagonal with elements gll = Sl,l+1,1

L,M,S /S
l,l+1,1
0,0,0 . For topological twisted

theories similar considerations as for the topological case should apply. For non-topological
defects in general we also will obtain off diagonal terms. Concluding we see that the index
with the insertion of general defects can be computed in terms of the overlaps encoding
the charges of the D-branes and the defect induced metric3.

10.6 Elliptic Genera with Defects

The elliptic genus provides a connection between CFTs with N = 2 supersymmetry and
geometric quantities such as the Euler characteristics. E. Witten suggested in his paper [97]
that the elliptic genus is a good quantity to understand the relations between Landau-
Ginzburg and N = 2 minimal models.
The conformal field theoretic elliptic genus is defined by [7,96,97]

E(τ, z) = trRR(−1)F qL0− c
24 q̄L̄0− c

24yJ0 , (10.67)

where q = exp(2πiτ) and y = e2πiz with z ∈ C. The fermion number operator can be
realized as F = J0 − J̄0. Setting z = 0 one reproduces the ordinary Witten index

E(τ, 0) = trRR (−1)F . (10.68)

If the theory admits a sigma model interpretation it is known [14] that the Witten index
gives the Euler characteristic of the target manifold of the sigma model.
It can be shown that the elliptic genus transforms in the following way under generalized
modular transformations

E(τ + 1, z) = E(τ, z), (10.69)

E(−1

τ
,
z

τ
) = e2πi c

6
· z

2

τ E(τ, z). (10.70)

3Alternatively one could fold the defect and calculate the Witten index as an boundary state expectation
value.
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As in the last section we are interested in calculating an (Witten) index with a topological
defect insertion. In order to do this we first perform the slightly more complicated calcu-
lation where we consider the elliptic genus with variable z in the presence of such a defect.
After we have calculated the associated new genus we set z = 0 in order to find the right
expression for the index.
Thus the new quantity of interest is given by

E(τ, z,D[L,M,S,S̄]) = trRR(−1)FD[L,M,S,S̄]q
L0− c

24 q̄L̄0− c
24yJ0 . (10.71)

The topological B-type defect that we insert can be represented via

D[L,M,S,S̄] =
∑

[l,m,s],s̄
s−s̄ even

D
[l,m,s,s̄]

[L,M,S,S̄]
P[l,m,s,s̄], (10.72)

where P[l,m,s,s̄] is a projector on the space of states with labels [l,m, s, s̄]. Here [l,m, s, s̄]
labels the following set

[l,m, s, s̄] = {(l,m, si)|0 ≤ l ≤ k, m ∈ Z2k+4, si ∈ Z4, l +m+ si = 0 mod 2}/ ∼,
(10.73)

where (l,m, si) ∼ (k − l, k + 2 + m, 2 + si) with si ∈ {s, s̄}. The standard solution for
the defect coefficients, which can be obtained by folding and applying the permutation
boundary conditions [21], is

D
[l,m,s,s̄]

[L,M,S,S̄]
= e−iπ

S̄(s+s̄)
2

S
[l,m,s]

[L,M,S−S̄]

S
[l,m,s]
[0,0,0]

, (10.74)

where the different defects are labelled by representation classes [L,M, S, S̄]. Further the
modular S-matrix is given by

S
[l,m,s]
[L,M,S] =

1

k + 2
e−iπ

Ss
2 eiπ

Mm
k+2 sin

(
π

(L+ 1)(l + 1)

k + 2

)
. (10.75)

The defect acts as a map D : H → H preserving the B-type gluing conditions leading to
the associated commutation relations

[Ln, D] = 0 = [L̄n, D] (10.76)

G±r D − ηDG±r = 0 = Ḡ±r D − η̄DḠ±r , (10.77)

with η, η̄ ∈ {±1}. The possible choices of S and S̄ are, therefore, related to the spin
structures for left and right movers as

(−1)S = η (−1)S̄ = η̄, (10.78)
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where it is understood

D[l,m,s+2,s̄] = ηD[l,m,s,s̄] and D[l,m,s,s̄+2] = η̄D[l,m,s,s̄]. (10.79)

The fusion of two topological defects is now straight forward [21]

D[L1,M1,S1,S̄1]D[L2,M2,S2,S̄2] =
∑
L

NL
L1L2

D[L,M1+M2,S1+S2,S̄1+S̄2], (10.80)

where N l
ij are the su(2)k fusion coefficients. The calculation of the elliptic genus with

defect insertion now proceeds as follows

E(τ, z,D[L,M,S,S̄]) =
∑

(l,m,s)
s,s̄ odd

S
[l,m,s,s̄]

[L,M,S,S̄]

S
[l,m,s,s̄]
[0,0,0,0]

trH[l,m,s,s̄]
(−1)J0−J̄0qL0− c

24 q̄L̄0− c
24yJ0 . (10.81)

The Hilbert space is given by

H[l,m,s,s̄] = (Hl,m,s ⊕Hl,m,s+2)⊗ (H̄l,m,s̄ ⊕ H̄l,m,s̄+2). (10.82)

Adopting the notation presented in [96] for the difference of characters

I lm(τ, z) = χl,m,1(τ, z)− χl,m,−1(τ, z), (10.83)

we find

E(τ, z,D[L,M,S,S̄]) =

∑
(l,m) odd

(
D

[l,m,1,1]

[L,M,S,S̄]
χl,m,1(τ, z)−D[l,m,−1,1]

[L,M,S,S̄]
χl,m,−1(τ, z)

)
χ̄l,m,1(τ̄ , 0)−

−
(
D

[l,m,1,−1]

[L,M,S,S̄]
χl,m,1(τ, z)−D[l,m,−1,−1]

[L,M,S,S̄]
χl,m,−1(τ, z)

)
χ̄l,m,−1(τ̄ , 0). (10.84)

We now demand S, S̄ to be even in order to preserve the corresponding spin structure. We
thus find for the genus with defect insertion

1

2
(−1)

S+S̄
2

k∑
l=0

k+2∑
m=−k−1

sin(l, L)

sin(l, 0)
eiπ

mM
k+2 I lm(τ, z)Ī lm(τ̄ , 0). (10.85)

Here we used in the last step that

∑
(l,m) odd

=
1

2

k∑
l=0

k+2∑
m=−k−1

, (10.86)
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which is true since Ī lm(τ̄ , 0) automatically makes l + m odd (see (E.9)). Some aspects of
the functions I lm(τ, z) and characters χl,m,s(τ, z) are summarized in appendix E and can
also be found in [96].
We are now interested in performing a generalized modular S-transformation via

I lm(−1/τ, z/τ) = (−i)e
cπi
3
z2

τ

k∑
l′=0

k+2∑
m′=k−1

Sl
′

l S
∗m′
m I l

′

m′(τ, z), (10.87)

Ī lm(−1/τ̄ , 0) = i ·
k∑

l′=0

k+2∑
m′=k−1

Sl
′

l S
m′

m Ī l
′

m′(τ, 0), (10.88)

with

Sl
′

l =

√
2

k + 2
sin

(
π

(l + 1)(l′ + 1)

k + 2

)
(10.89)

Sm
′

m =
1√

2(k + 2)
e−iπ

mm′
k+2 . (10.90)

Plugging this into (10.85) one obtains

E(τ, z,D[L,M,S,S̄]) =
1

2
(−1)

S+S̄
2 e−

cπi
3
z2

τ

∑
l1,l2

∑
m1

NL
l1,l2

(
δ

(2k+4)
m1,l2+M+1 − δ

(2k+4)
m1+M−l2−1

)
I l1m1

(−1/τ, z/τ).

(10.91)
We are now in the position to specialize to the specific value z = 0 in which case

E(τ, 0, D[L,M,S,S̄]) =
1

2
(−1)

S+S̄
2

k∑
l1,l2

NL
l1,l2

(
δ

(2k+4)
l1,l2+M + δ

(2k+4)
l1,l2−M − δ

(2k+4)
l1,M−l2−2 − δ

(2k+4)
l1,−M−l2−2

)
.

(10.92)
This gives us the Witten index (10.68) in the presence of a single defect. The equation is
of the form

(number of bosons) − (number of fermions)

where topological bosons appear if

l1 = l2 ±M mod (2k + 4), (10.93)

and the topological fermions arrise for

l1 = −l2 − 2±M mod (2k + 4). (10.94)

If we consider the case of the insertion of two defects D[L1,M1,S1,S̄1] and D†
[L2,M2,S2,S̄2]

one

obtains for the Witten index using the fusion for the topological defects (10.80)

E(τ, 0, D[L1,M1,S1,S̄1], D
†
[L2,M2,S2,S̄2]

) =
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1

2
(−1)

S1+S̄1−S2−S̄2
2

∑
l,l1,l2

N l
L1,L2

N l
l1,l2

(
δ

(2k+4)
l1,l2+∆M + δ

(2k+4)
l1,l2−∆M − δ

(2k+4)
l1,∆M−l2−2 − δ

(2k+4)
l1,−∆M−l2−2

)
,

(10.95)
where ∆M := M1 −M2. In this case we see that the topological ‘bosons’ are determined
by l1 = l2 ± ∆M mod (2k + 4), whereas the topological ‘fermions’ are given by l1 =
−l2 − 2±∆M mod (2k + 4).
This is in exact agreement with the result obtained in [21] (up to a factor 1/2 coming
from a different normalization) where they considered the spectrum between permutation
branes4 and identified the topological ‘bosons’ and ‘fermions’ which can be related (in
matrix factorisation language) to the Landau-Ginzburg model.
The result can now easily be generalized to the insertion of n defects by repeatedly per-
forming the fusion (10.80), i.e.

n∏
i=1

D[Li,Mi,Si.S̄i] =
∑

L̃1,...,L̃n−1

N L̃1
Ln−1Ln

N L̃2

Ln−2L̃1
· · ·N L̃n−1

L1L̃n−2
D[L̃n−1,

∑
iMi,

∑
i Si,

∑
i S̄i]

. (10.96)

As a remark we want to note that if we consider the case, where the defect labels S, S̄ are
both odd we don’t need the operator (−1)F in the partition function to get the same result
for the elliptic genus. This is clear since (−1)F acts as a spectral flow operator acting on
the defect as D[L,M,S,S̄] → D[L,M,S+1,S̄+1].
Note that the Witten index can also be calculated for non-topological defects whereas it is
not clear if this can be done easily also for the elliptic genus.

10.7 EE in the Ramond Sector with (−1)F Insertion

Here we want to briefly comment on the entanglement entropy through Ramond-sector
topological interfaces in the presence of (−1)F . Again we consider B-type defects given
by (10.72). Following the usual arguments for obtaining the partition function on the
n-sheeted Riemann surfaces we want to calculate

Z(n) = trRR

(
D[L,M,S,S̄]D

†
[L,M,S,S̄]

)n
(−1)F e−2nδH . (10.97)

Using the fusion (10.80) we find(
D[L,M,S,S̄]D

†
[L,M,S,S̄]

)n
=

∑
l1,...,l2n−1

N l1
L,LN

l2
L,l1
· · ·N l2n−1

L,l2n−2
D[l2n−1,0,0,0]. (10.98)

We now can make use of the result for the elliptic genus with z = 0 (10.92) to find

Z(n) =
∑

l1,...,l2n

N l1
L,LN

l2
L,l1
· · ·N l2n−1

L,l2n−2
N
l2n−1

l2n,l2n
=

k∑
l=0

(
sin(L, l)

sin(0, l)

)2n

∈ N. (10.99)

4As we have seen before permutation branes are the folded versions of the B-type defects considered in
the calculation
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It is interesting to see directly from (10.92) that only the ‘bosons’ contribute to the partition
function. For the Ramond sector contribution to the entanglement entropy then follows

SR(L, k) = (1−∂n) logZ(n)|n=1 = log[(L+1)(k+1−L)]−
∑

l
sin2(L,l)

sin2(0,l)
log sin2(L,l)

sin2(0,l)

(L+ 1)(k + 1− L)
, (10.100)

where we used

k∑
l=0

sin2(L, l)

sin2(0, l)
=
∑
l1,l2

N l1
L,LN

l1
l2,l2

= (L+ 1)(k + 1− L). (10.101)

It is interesting that the Ramond-sector contribution to the EE is independent of M,S and
S̄ and is just a function of L. Further the result shows in a nice way the field identification
since SR(L, k) is invariant under L→ k − L.



Chapter 11

Conclusion and Future Directions

Here we summarize the results of the thesis. First we have generalized the supersymmetric
twist fields introduced in [86] to general chiralities and calculated with their help the
supersymmetric versions of the Renyi and entanglement entropies. In particular we have
seen that for a single interval the leading term of the SRE is simply the entanglement
entropy independent of the choices for the chiralities. We highlighted the construction for
SUSY twist fields and generalized the construction procedure in obtaining the twist fields.
Thereby we recognized that it is important in which way one applies the spectral flow, in
particular we learned that depending on the number of applications of the spectral flow
we end up in the NS- or R-sector respectively.
Next we have considered entanglement through topological interfaces. After a short in-
troduction how to derive the partition function on the n-sheeted Riemann surface we
calculated the entanglement entropy an showed that it takes the form

S =
c

3
logL+ Ssub, (11.1)

where all the information coming from the topological defect are encoded in the subleading
term Ssub. Discussing several examples we highlighted the obtained formula. Especially
we considered RCFT, e.g. models based on su(2)k and also specific coset models that are
free of field identification fixed points. For the later ones we showed in several examples
that the subleading contribution decomposes into the individual coset parts.
Afterwards we considered the left/right entanglement entropy which we derived by unfold-
ing a Cardy boundary state and performed the same calculational steps as in the chapter
before for just the chiral part of the algebra corresponding to the unfolded boundary. We
motivated our results with a class of examples.
As a last big topic we discussed indices in the presence of defects. Thereby we calculated the
indices between boundary states and gave a detailed geometric interpretation in terms of
an intersection number of D-branes living in a Landau-Ginzburg model with superpotential
W = Xk+2. By calculating the elliptic genus in the presence of a single defect we managed
to obtain an expression for the Witten index with a defect insertion and showed that we
reproduce the results obtained in [21].
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For future directions it would be interesting to see how coset models with fixed point field
identification behave in the subleading term of the entanglement entropy. It is possible that
there is the same decomposition as for the fixed-point free models but with an additional
contribution reflecting the fixed point. Quite generally it would be interesting to see the
decomposition for general coset models.
Also it would be interesting to see if the action of a defect could be phrased in terms of
extended twist fields carrying additional structure.
Further let us comment on N = 2 supersymmetric theories. It is known that these theories
can be topologically twisted with the gluing conditions of boundaries and defects compati-
ble under the topological twist. On this level a topological twisted defect can be calculated
in the same manner as we did for the ‘purely’ topological defects. In the case of topological
twisted defects the entanglement entropy should have a topological interpretation.
Finally we proposed a method for calculating indices in terms of a defect induced metric.
It would be interesting to work this out for specific non-topological defects an also give a
geometric interpretation. Apart from that we also calculated the elliptic genus in presence
of a topological defect. It would be interesting to find some applications of the obtained
quantity and also to find some geometric interpretation. In addition it would be interesting
to know if a generalization to non-topological interfaces is possible.



Appendix A

Properties of Vertex Operators

From theories with a free scalar field H(z, z̄) = HL(z) +HR(z̄) one can construct another
primary field called the vertex operators. The scalar field is no good conformal field because
on the one hand it is no primary field and on the other hand because of its logarithmic
behaviour of the two point function

〈H(z, z̄)H(w, w̄)〉 = − log |z − w|2. (A.1)

There are two possible ways of getting rid of the logarithm either by considering derivatives
of the scalar field, e.g. the current J ∼ ∂H, or by taking the exponential of this field
combined with a normal ordering description. It turns out that exponentiating results in
a primary field. This so called vertex operator is then defined by

Vα(z, z̄) = : exp(iαH(z, z̄)) : . (A.2)

The OPE with the energy-momentum tensor of the theory is given by

T (z)Vα(w, w̄) =
α2

2
· 1

(z − w)2
Vα(w, w̄) +

1

(z − w)
∂wVα(w, w̄) + reg. (A.3)

Comparing this to the general OPE for primary fields (2.24) (and similar for the anti-
holomorphic part) one see that the conformal weight of the vertex operator is (h, h̄) =
(α2/2, α2/2). For theories compactified on a circle of radius R the highest weight of left- and
right-mover can be related to the the zero modes of the free boson (α2/2, α2/2) = (pL, pR),
in particular this means that the weights depend on the momentum and winding number
(see section B).
Consider next the slightly different vertex operator defined by

Vα(z, z̄; ε, ε̄) = exp(iα(εHL + ε̄HR)), (A.4)

where ε, ε̄ ∈ {±1}. The conformal weights of the vertex operator is unchanged under the
redefinition. Of special interest are n-point functions of these vertex operators which can
all be compute using Wick’s theorem [1,2]. As a result one finds
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〈
n∏
i=1

Vα(zi, z̄i; εi, ε̄i)〉 =
n∏
j>i

(zj − zi)εiεjα
2

(z̄j − z̄i)ε̄iε̄jα
2

δ0,
∑
i εi
δ0,

∑
i ε̄i
, (A.5)

where we assumed that the insertion points are ordered according to |zi| < |zj| for i < j.
The Kronecker-delta appearing in the equation ensure that the n-point function is zero
unless the balance of the ‘charges’

∑
i εi = 0 (and same for the right-movers) is kept.



Appendix B

CFT Description of the Free Boson

In this chapter we summarize some conventions for the free massless chiral boson in the
CFT description. In complex coordinates the equation of motion for a free complex scalar
field Φ(z, z̄) with central charge is given by

∂z∂z̄Φ(z, z̄) = 0. (B.1)

The solution to the equation of motion results in the mode expansion for the free boson

Φ(z, z̄) = qL + qR − i(pL log z + pR log z̄) + i
∑
n6=0

1

n

(
anz

−n + ānz̄
−n) . (B.2)

Here qL and qR are the left- and right-moving space operators whereas pL and pR are the
momentum operators respectively. In string language q = qL + qR determines the center
of mass coordinate of the string. The non-trivial commutation relations between these
operators are given by

[qL, pL] = i, (B.3)

[qR, pR] = i, (B.4)

[an, am] = nδn+m,0, (B.5)

[ān, ām] = nδn+m,0 (B.6)

One can split the field into left and right chiral components Φ(z, z̄) = ΦL(z) + ΦR(z̄), with

ΦL(z) = qL − ipL log z + i
∑
n6=0

1

n
anz

−n, (B.7)

ΦR(z̄) = qR − ipR log z̄ + i
∑
n6=0

1

n
ānz̄

−n. (B.8)

The holomorphic part of energy-momentum tensor associated with the free boson can be
written as

T (z) = −1

2
: ∂zΦz∂LΦL : (B.9)



146 B. CFT Description of the Free Boson

For the Virasoro generators this implies

Ln =
p2
L

2
+
∑
m>0

aman−m, (B.10)

and similar for the anti-holomorphic part. One also calls pL and pR the zero modes for the
holomorphic and anti-holomorphic Virasoro generator, i.e. a0 = pL/

√
2.

We now want to consider the case when the boson is compactified on a circle of radius R.
In this case we identify

X ≡ X + 2πR. (B.11)

The identification has two consequences: first the momenta are quantized. This can be
seen from the fact that the operator exp(2πiRp) that translates states around the circle has
to be trivial. Here p = pL + pR is the total momentum operator of left- and right-movers.
The momentum eigenvalue thus has to take the form m/R, where on calls m ∈ Z the
momentum number. The second consequence is that there are new ‘winding’ states that
can wrap around the circle since the boundary conditions

Φ(e2πiz, e−2πiz̄) = Φ(z, z̄) + 2πRn, n ∈ Z (B.12)

are allowed by the identification (B.11). One calls n the winding number. The eigenvalues
of the zero modes (pL, pR) are thus quantized and given by

(pL, pR) =

(
m

R
+
nR

2
,
m

R
− nR

2

)
. (B.13)

The non-zero modes an, ān are unaffected by the identification (B.11) and thus remain
unchanged. Obviously the zero-modes, or also called charges, form a charge lattice Λ(R).
A highest weight state is now label by the winding and momentum numbers |m,n〉 and for
the partition function holds

Zcirc(τ, τ̄) =
1

|η(τ)|2
∑
m,n

q
1
2(mR+nR

2 )
2

q̄
1
2(mR−

nR
2 )

2

, (B.14)

with

η(τ) = q
1
24

∞∏
n=1

(1− qn). (B.15)



Appendix C

Prove of Specific Formulas

In this chapter we prove some specific formulas that appear in the context of coset models.
We consider a su(2)k theory with modular S-matrix

Sl
′

l =

√
2

k + 2
sin

(
π

(l + 1)(l′ + 1)

k + 2

)
. (C.1)

Here l, l′ ∈ {0, 1, . . . , k}. We are now interested in calculating the sum over even (odd)
labels of the modular S-matrix absolute value squared. We consider the case k even first.
The calculation proceeds as follows:

k∑
l′=0
l′ even

|Sl′l |2 = − 1

2(k + 2)

k∑
l′=0
l′ even

(
e2πi

(l+1)(l′+1)
k+2 − 2 + e−2πi

(l+1)(l′+1)
k+2

)
(C.2)

Substituting l = 2(n− 1) one obtains

k∑
l′=0
l′ even

|Sl′l |2 = − 1

2(k + 2)

k
2

+1∑
n=1

(
e−2πi l+1

k+2 e
2πi n

k
2 +1 − 2 + e2πi l+1

k+2 e
−2πi n

k
2 +1

)
=

1

2
− 1

2(k + 2)

k
2

+1∑
n=1

(
e−2πi l+1

k+2 e
2πi m

k
2 +1 + e2πi l+1

k+2 e
−2πi m

k
2 +1

)
. (C.3)

Using the identity
N∑
n=1

e2πinm/N = Nδ
(N)
m,0 , (C.4)

we finally obtain for the even summation assuming also k to be even:

k∑
l′=0
l′ even

|Sl′l |2 =
1

2

(
1 + δl′, k

2

)
. (C.5)
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In a similar fashion the case for the summation over the odd labels can be worked out.
Using

1 =
k∑

l′=0

|Sl′l |2 =
k∑

l′=0
l′ even

|Sl′l |2 +
k∑

l′=0
l′ odd

|Sl′l |2, (C.6)

the result or the odd summation is using (C.5):

k∑
l′=0
l′ odd

|Sl′l |2 =
1

2

(
1− δl′, k

2

)
. (C.7)

For the cases where k is odd one can use the symmetry |Sl′l |2 = |Sk−l′l |2 to show

k∑
l′=0
l′ even

|Sl′l |2 =
k∑

l′=0
l′ odd

|Sl′l |2 =
1

2
. (C.8)

Since l is an integer the formulas (C.5) and (C.7) apply for all possible k.



Appendix D

Explicit Calculation of the Boundary
Index

In this chapter we explicitly calculate the overlap between two branes in the Ramond
sector [18–20] with the insertion of exp(−iπJ0) (spectral flow1) and a topological defect
DL,M,S.

For the index between A-branes we find with qH = exp(−2π2

β
(L0 + L̄0 − c

12
))

I(Al1,m1,s1 , Al2,m2,s2 , DL,M,S) = 2RR 〈Al1,m1,s1 | e−iπJ0qHDL,M,S |Al2,m2,s2〉RR =

2
∑

(l,m,s)
s odd

∑
(l′,m′,s′)
s′ odd

Sl,m,sl1,m1,s1
S∗ l

′,m′,s′

l2,m2,s2√
Sl,m,s0,0,0 S

l′,m′,s′

0,0,0

·
Sl,m,sL,M,S

Sl,m,s0,0,0

e−iπ(
s
2
− m
k+2)〈〈Al,m,s|qH |Al′,m′,s′〉〉 (D.1)

Using

〈〈Al,m,s|qHcc |Al′,m′,s′〉〉 = δll′δmm′δss′χl,m,s(2τ), (D.2)

with τ = iπ/β we can write our expression in a more compact form as

I(Al1,m1,s1 , Al2,m2,s2 , DL,M,S) = 2
∑

(l,m,s)
s=±1

Sl,m,sl1,m1,s1
S∗ l,m,sl2,m2,s2

Sl,m,s0,0,0

·
Sl,m,sL,M,S

Sl,m,s0,0,0

e−iπ(
s
2
− m
k+2)χl,m,s =

=
2

k + 2

∑
(l,m) odd

sin(l, l1) sin(l, l2) sin(l, L)

sin2(l, 0)
eiπ

m(M+m2−m1+1)
k+2 ×

(
e−iπ

s1+S+1−s2
2 χl,m,1 + eiπ

s1+S+1−s2
2 χl,m,−1

)
. (D.3)

1On the level of boundary states exp(−iπJ0) acts on the s-label as s→ s− 1. In this sense we change
from the NS-sector to the R-sector and vice versa. In this sense exp(−iπJ0) resembles a spectral flow
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Here again we used the short hand notation

sin(i, j) := sin

(
π

(i+ 1)(j + 1)

k + 2

)
. (D.4)

If we now demand

S + s1 − s2 = 0 mod 2 (D.5)

we find for the overlap

I(Al1,m1,s1 , Al2,m2,s2 , DL,M,S) =

− 2i

k + 2
e−iπ

S+s1−s2
2

∑
(l,m) odd

sin(l, l1) sin(l, l2) sin(l, L)

sin2(l, 0)
eiπ

m(M+m2−m1+1)
k+2 (χl,m,1 − χl,m,−1) .

(D.6)
Note that we assume s1, s2 to bee odd in order to obtain old result (10.19) for the identity
defect. Equation (D.5) then tells us that S = 0 mod 2 which means that only bound-
ary condition preserving defects are allowed, i.e. we cannot switch an A-type boundary
condition into a B-type condition.
It is now commonly known that χl,m,1 − χl,m,−1 = δm,l+1 − δm,−l−1. Plugging this into the
equation above and noting

∑
(l,m) odd

=
1

2

k∑
l=0

k+2∑
m=−k−1

l+m=1 mod 2

, (D.7)

we find

I(Al1,m1,s1 , Al2,m2,s2 , DL,M,S) =

2

k + 2
e−iπ

S+s1−s2
2

k∑
l=0

sin(l, l1) sin(l, l2) sin(l, L) sin(M +m2 −m1, l)

sin2(l, 0)
. (D.8)

This can be rewritten in terms of su(2)k modular S-matrices as

I(Al1,m1,s1 , Al2,m2,s2 , DL,M,S) = e−iπ
S+s1−s2

2

k∑
l=0

Sll1S
l
l2
SlLS

l
M+m2−m1

Sl0S
l
0

. (D.9)

Using the identity

δa,b =
k∑
c=0

ScaS
c
b , (D.10)

as well as the definition of the fusion coefficients for su(2)k in terms of modular S-matrices
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N c
a,b =

k∑
l=0

SlaS
l
bS

l
c

Sl0
, (D.11)

we finally obtain

I(Al1,m1,s1 , Al2,m2,s2 , DL,M,S) = eiπ
s2−S−s1

2

k∑
l=0

N l
l1,l2

N l
L,M+m2−m1

. (D.12)

Here it is understood that

N l
L ∆m =



N l
L,−∆m−2k−6 for ∆m ∈ {−2k − 3, . . . ,−k − 4}
−N l

L,−∆m−2 for ∆m ∈ {−k − 2, . . . ,−2}
N l
L ∆m for ∆m ∈ {0, . . . , k}
−N l

L,2k+2−∆m for ∆m ∈ {k + 2, . . . , 2k + 2}
N l
L,4k+6−∆m for ∆m ∈ {2k + 4, . . . , 3k + 4}
−N l

L,6k+10−∆m for ∆m ∈ {3k + 6, . . . , 4k + 6}
0 for ∆m = −1 mod (k + 2)

(D.13)

where ∆m = M + m2 − m1. Since we want to reproduce (10.19) for the identity defect
(L,M, S) = (0, 0, 0) we have s1, s2 odd for which follows from (D.5)

S = 0 mod 2. (D.14)

Let us now consider the overlap between B-type boundaries. The calculation now follows
similar steps as before

IB(Bs, Bs̃, DL,M,S) = 2RR 〈Bs|DL,M,S q
H |Bs̃〉RR =

k + 2

2

∑
l′,m′,s′ odd

Sl
′m′s′
LMS

Sl
′m′s′

000

eiπ
s2−s̃2

2 eiπ
s′(s−s̃)

2 〈〈B k
2
, k+2

2
,s′ |e

−iπJ0qH |B k
2
, k+2

2
,s′〉〉. (D.15)

The labels for the B-type boundaries are restricted to s, s̃ ∈ {±1}. For the expectation
value holds

〈〈B k
2
, k+2

2
,s′ |e

−iπJ0qHcc |B k
2
, k+2

2
,s′〉〉 = e−iπ( 1

2
− k+2)

2(k+2)
)δs′,1δm′, k+2

2
δl′, k

2
, (D.16)

Thus is follows

IB(Bs, Bs̃, DL,M,S) =
k + 2

2
sin
(π

2
(L+ 1)

)
eiπ

s2+s−s̃2−s̃
2 eiπ

M−S
2 ∈ {0,±k + 2

2
}. (D.17)

In order to reproduce (10.18) for the identity defect we have to restrict to values satisfying
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M − S = 0 mod 2. (D.18)

The last possible case is to consider a defect between an A-type and a B-type boundary,
i.e.

IAB(Bs̃, Al,m,s, DL,M,S) = 2RR 〈Bs̃|DL,M,S q
Hc
c |Al,m,s〉RR =

√
k + 2

∑
l′,m′,s′ odd

Sl
′m′s′

lms√
Sl
′m′s′

000

Sl
′m′s′
LMS

Sl
′m′s′

000

e−iπ
s̃2+s̃s′

2 〈〈B k
2
, k+2

2
,s′ |e

−iπJ0qHcc |Al′,m′,s′〉〉. (D.19)

Using the same ideas as in the previous case we find for the final case under the assumption
s̃ ∈ {±1}

IAB(Bs̃, Al,m,s, DL,M,S) = e−iπ
s̃2+s̃

2 sin

(
π
l + 1

2

)
sin

(
π
L+ 1

2

)
eiπ

M−S
2 , (D.20)

with the restriction M − S = 0 mod 2. Again the result can be simply generalized to
several defects

IAB(Bs̃, Al,m,s, DL1,M1,S1 , . . . , DLK ,MK ,SK ) =

e−iπ
s̃2+s̃

2 sin

(
π
l + 1

2

) K∏
n=1

sin

(
π
Ln + 1

2

)
eiπ

Mn−Sn
2 ∈ {±1, 0}, (D.21)

with the restriction

K∑
n=1

Mn − Sn = 0 mod 2. (D.22)



Appendix E

Properties of I lm(τ, z)

Here we summarize some properties of the functions I lm(τ, z) which can also be found
in [96]. By definition I lm(τ, z) is given by

I lm(τ, z) = (χl,m,1 − χl,m,−1)(τ, z) , (E.1)

where

χl,m,s(τ, z) =
∑
j∈Z

clm−s+4j(τ)q
k+2
2k [ m

k+2
− s

2
+2j]

2

e2πiz( m
k+2
− s

2
+2j). (E.2)

Alternatively the characters can be written in terms of generalized theta functions

χl,m,s(τ, z) =
k∑
j=1

clm−s−4j(τ)Θ−2m+(4j+s)(k+2),2k(k+2)(τ, z), (E.3)

where
Θa,b(τ, z) =

∑
n∈Z

qb(n+ a
2b

)2

yb(n+ a
2b

). (E.4)

The functions cba(τ) are so called sting functions [1, 3]. We see that for the case z = 0 the
characters are exactly given by the the characters of the N = 2 unitary minimal models
(2.142).
Here we used the short notation q = exp(2πiτ) and y = exp(2πiz). The following identifi-
cations hold

I lm(τ + 1, z) = exp[πi(hl,m,1 −
c

24
)]I lm(τ, z), (E.5)

I lm(−1/τ, z/τ) = (−i) exp[2πi
c

6
· z

2

τ
]I lm(τ, z), (E.6)

I lm(τ, z) = −I l−m(τ, z) = Ik−lk+2−m(τ, z), (E.7)

I lm(τ, z) = I lm+2(k+2)Z(τ, z) (E.8)

I lm(τ, 0) = δm,l+1 − δm,−l−1. (E.9)
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