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Summary

The recent world-wide surge in available data allows the investigation of many new and
sophisticated questions that were inconceivable just a few years ago. However, two types
of data sets often complicate the subsequent analysis: Data that is simple in structure but
large in size, and data that is small in size but complex in structure.

These two kinds of problems also apply to biological data. For example, data sets acquired
from family studies, where the data can be visualized as pedigrees, are small in size but,
because of the dependencies within families, they are complex in structure. By compari-
son, next-generation sequencing data, such as data from chromatin immunoprecipitation
followed by deep sequencing (ChIP-Seq), is simple in structure but large in size. Even
though the available computational power is increasing steadily, it often cannot keep up
with the massive amounts of new data that are being acquired. In these situations, or-
dinary methods are no longer applicable or scale badly with increasing sample size. The
challenge in today’s environment is then to adapt common algorithms for modern data
sets.

This dissertation considers the challenge of performing inference on modern data sets, and
approaches the problem in two parts: first using a problem in the field of genetics, and
then using one from molecular biology.

In the first part, we focus on data of a complex nature. Specifically, we analyze data from a
family study on colorectal cancer (CRC). To model familial clusters of increased cancer risk,
we assume inheritable but latent variables for a risk factor that increases the hazard rate
for the occurrence of CRC. During parameter estimation, the inheritability of this latent
variable necessitates a marginalization of the likelihood that is costly in time for large
families. We first approached this problem by implementing computational accelerations
that reduced the time for an optimization by the Nelder-Mead method to about 10% of
a naive implementation. In a next step, we developed an expectation-maximization (EM)
algorithm that works on data obtained from pedigrees. To achieve this, we used factor
graphs to factorize the likelihood into a product of “local” functions, which enabled us to
apply the sum-product algorithm in the E-step, reducing the computational complexity
from exponential to linear. Our algorithm thus enables parameter estimation for family
studies in a feasible amount of time.
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In the second part, we turn to ChIP-Seq data. Previously, practitioners were required to
assemble a set of tools based on different statistical assumptions and dedicated to specific
applications such as calling protein occupancy peaks or testing for differential occupancies
between experimental conditions. In order to remove these restrictions and create a unified
framework for ChIP-Seq analysis, we developed GenoGAM (Genome-wide Generalized
Additive Model), which extends generalized additive models to efficiently work on data
spread over a long x axis by reducing the scaling from cubic to linear and by employing
a data parallelism strategy. Our software makes the well-established and flexible GAM
framework available for a number of genomic applications. Furthermore, the statistical
framework allows for significance testing for differential occupancy.

In conclusion, I show how developing algorithms of lower complexity can open the door
for analyses that were previously intractable. On this basis, it is recommended to focus
subsequent research efforts on lowering the complexity of existing algorithms and design
new, lower-complexity algorithms.



Zusammenfassung

Der jüngste weltweite Anstieg an verfügbaren Daten ermöglicht die Untersuchung vieler
neuer und anspruchsvoller Fragen, die vor wenigen Jahren noch undenkbar waren. Allerd-
ings erschweren zwei Arten von Datensätzen oft die nachfolgende Analyse: Daten, die
einfach in der Struktur, aber groß sind, und Daten, die klein aber komplex in der Struktur
sind.

Diese beiden Arten von Problemen treten auch bei biologische Daten auf. Zum Beispiel
sind Datensätze aus Familienstudien, in denen die Daten als Stammbäume visualisiert
werden können, klein, aber – aufgrund der Abhängigkeiten innerhalb der Familien, kom-
plex in der Struktur. Im Vergleich dazu sind Next-Generation-Sequencing-Daten, wie z.B.
ChIP-Seq-Daten, strukturell simpel, aber sehr groß. Obwohl die verfügbare Rechenleistung
stetig zunimmt, kann sie oft nicht mit den massiven Mengen an neuen Daten Schritt halten.
In diesen Situationen sind herkömmliche Methoden nicht mehr anwendbar oder skalieren
schlecht mit zunehmender Stichprobengröße. Die Herausforderung in der heutigen Umge-
bung besteht darin, verbreitete Algorithmen an moderne Datensätze anzupassen.

Diese Dissertation betrachtet die Herausforderung, Inferenz auf modernen Datensätze zu
betreiben und nähert sich dem Problem in zwei Teilen: zunächst mit einem Problem auf
dem Gebiet der Genetik und dann mit einem aus der Molekularbiologie.

Im ersten Teil konzentrieren wir uns auf komplexe Daten. Wir analysieren Daten aus einer
Familienstudie über Darmkrebs (CRC). Um familiäre Cluster eines erhöhten Krebsrisikos
zu modellieren, nehmen wir vererbbare aber latente Variablen für einen Risikofaktor an,
der die Hazardrate für das Auftreten von CRC erhöht. In der Parameterschätzung er-
fordert die Vererbbarkeit dieser latenten Variablen eine Marginalisierung der Likelihood,
die zeitaufwändig für große Familien ist. Wir gingen dieses Problem zunächst an, indem
wir Rechenbeschleunigungen implementierten, die die Zeit für eine Optimierung durch die
Nelder-Mead-Methode auf etwa 10% einer naiven Implementierung reduzierten. In einem
nächsten Schritt entwickelten wir einen Expectation-Maximization (EM) Algorithmus, der
auf Stammbaumdaten arbeitet. Um dies zu erreichen, verwendeten wir Faktorgraphen, um
die Likelihood in ein Produkt von “lokalen” Funktionen zu zerlegen, was es uns ermöglichte,
den Sum-Product-Algorithmus im E-Schritt anzuwenden, wodurch die rechnerische Kom-
plexität von exponentiell auf linear reduziert wurde. Unser Algorithmus ermöglicht somit
eine Parameterschätzung für Familienstudien in einem durchführbaren Zeitraum.
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Im zweiten Teil wenden wir uns ChIP-Seq-Daten zu. Bisher waren Anwender gezwun-
gen, mehrere verschiedene Softwaretools zu verwenden, die auf verschiedenen statistischen
Annahmen basieren, und jeweils für spezifische Anwendungen geschaffen wurde, wie z.B.
das peak-calling, oder das Finden von Regionen mit differenzieller Bindung. Um diese
Einschränkungen zu beseitigen und einen einheitlichen Rahmen für die ChIP-Seq-Analyse
zu schaffen, entwickelten wir GenoGAM (genome-wide generalized additive models), das
klassische generalisierte additive Modelle erweitert, um effizient mit Daten auf einer langen
x-Achse arbeiten zu können. Dies erreichten wir, indem die Skalierung von kubisch zu lin-
ear verringert wurde, und durch das Verwenden eines parallelisierten Algorithmus. Unsere
Software stellt das bewährte und flexible GAM-Framework für eine Vielzahl von genomis-
chen Anwendungen zur Verfügung. Darüber hinaus ermöglicht das statistische Framework
Signifikanztests für differentielle Bindung.

Zusammenfassend zeige ich, wie man durch die Entwicklung von Algorithmen mit niedriger
Komplexität die Tür für Analysen öffnen kann, die bisher nicht machbar waren. Auf dieser
Grundlage empfiehlt es sich, nachfolgende Forschung auf die Senkung der Komplexität
bestehender Algorithmen und die Konstruktion neuer Algorithmen mit geringerer Kom-
plexität zu konzentrieren.
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Chapter 1

Introduction

The Digital Revolution that occurred between the 1950s and 1970s marked the beginning
of the Information Age [101]. Most people now use information technology on a daily basis,
knowingly or unknowingly. Naturally, this development has resulted in vast amounts of
data being generated and collected. According to IBM, 90% of all available data in the
world has been created in the last two years [50].

Modern data sets have grown both more complex and greatly increased in size. Complex
data sets include pedigrees, which have been analyzed in the field of genetics for decades
[65]. More recent developments allow the analysis of larger pedigrees and features such as
quantitative traits [54]. An adequate analysis of these complex data sets can prepare and
create new breakthroughs in science, government administration, and industry. However,
while it is possible to analyze this kind of data with standard methods, doing so disregards
a great deal of knowledge that could be extracted with more advanced methods [35].

Data sets that are simple in structure but large in size can in theory still be analyzed
with classical statistical methods, but would require an infeasibly long runtime of the
analysis. For example, the advent of next-generation sequencing (NGS) technology in
molecular biology allowed low-priced sequencing of whole genomes and thus opened the
door for studies of the relationship between DNA and complex phenotypes such as cancer
development [41]. The generated data in this case is rather simple in structure, but, in the
case of the human genome, for example, spans over an x-axis of 3 billion discrete points. In
these cases, it is necessary to revisit established methods and enhance their computational
efficiency so that they can efficiently deal with large data sets.

We see from these two examples that the complexity and size of modern data sets present a
major obstacle to their statistical analysis. In the last 20 years, there has been tremendous
progress in the development of new analysis methods, both in the areas of statistics and
computer science. A currently popular approach is to parallelize algorithms. As we will
see in Chapter 2, parallelization does deliver time savings, but it does not reduce the
complexity of algorithms. Instead, in this thesis we focus on developing efficient analysis
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methods by reducing the complexity of existing algorithms.

To that end, I explore two aspects of working with modern data sets: First, I focus on com-
plex, partially dependent data sets in the form of pedigrees, and develop an expectation-
maximization (EM) algorithm to efficiently estimate parameters on this data. Second, I
investigate large genomic data that is simple in structure, but because of its enormous size,
classical statistical models can not be directly applied to it.

The remainder of this thesis is structured as follows:

Chapter 2 explains and discusses some topics that are necessary to understand the rest of
the thesis. It discusses the time complexity of algorithms, the big O notation, and common
approaches used to speed up programs, including parallelization. Chapter 3 presents an EM
algorithm for pedigree data in which a straightforward Maximum-Likelihood estimation
would suffer from exponential runtime increase respective to the family sizes. In Chapter
4, I develop a parallelized algorithm for applying Generalized Additive Models (GAMs)
on genomic data by using a split-apply-combine approach [104] to fit separate models on
“chunks” of data and subsequently combine them into one big model. Chapter 5 is a short
conclusion of the thesis that summarizes its contributions. Finally, the appendix contains
some supplementary material on the methods described in Chapters 3 and 4.

Parts of this thesis have been submitted for publication as articles in peer-reviewed journals.
Specifically, the articles and the respective authors’ contributions are as follows:

• A. Engelhardt, A. Rieger, A. Tresch, U. Mansmann. Efficient Maximum Like-
lihood Estimation for Pedigree Data with the Sum-Product Algorithm.
Human Heredity, 2017 (in press). DOI: https://doi.org/10.1159/000475465

Alexander Engelhardt developed the software in R, carried out all analyses, and
wrote the manuscript. Anna Rieger provided the processed data and gave advice on
data processing. Achim Tresch gave advice on the sum-product algorithm. Ulrich
Mansmann conceived and supervised this study.

• G. Stricker∗, A. Engelhardt∗, D. Schulz, M. Schmid, A. Tresch, J. Gagneur. GenoGAM:
Genome-Wide Generalized Additive Models for ChIP-Seq Analysis. Bioin-
formatics, 2017. DOI: https://doi.org/10.1093/bioinformatics/btx150

∗ These authors contributed equally to this work.

Alexander Engelhardt and Georg Stricker developed the software in R and carried out
all analyses. The manuscript was mainly written by Alexander Engelhardt, Georg
Stricker and Julien Gagneur. Daniel Schulz carried out the ChIP-Seq experiments
for TFIIB on yeast. Matthias Schmid gave advice on statistics. Julien Gagneur and
Achim Tresch initiated and supervised this project.

This dissertation is of course much more elaborate than the sections submitted to the
journals, where brevity was important. I am pleased to have more room available here

https://doi.org/10.1159/000475465
https://doi.org/10.1093/bioinformatics/btx150
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to discuss the background more deeply and show a few more examples, annotations, and
figures.
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Chapter 2

Methodological Foundations

2.1 Chapter summary

Because the focus of this thesis is the reduction of the runtime of estimation algorithms,
this chapter lays the foundation for the remainder of the thesis by explaining the time
complexity of algorithms (Section 2.2) followed by an explanation of the big O notation
(Section 2.3), which is the standard way of quantifying the runtime of an algorithm. Next,
we review common approaches to improve the runtime. In Section 2.4 we turn to par-
allelization, currently the most popular method used to improve algorithm runtime, and
discuss its advantages and drawbacks. Finally, in Section 2.5, I argue that in time-critical
cases, instead of just parallelizing an existing algorithm, it is often more fruitful to lower
the time complexity of the algorithm itself. This conclusion then directly leads into the
two projects that comprise the main part of this thesis.

2.2 Time complexity of algorithms

Algorithms are developed to solve both simple and highly complex problems. For example,
the question of whether a number represented as n binary bits (such as 1100101) is even or
odd can be solved in a single step: Check whether the last digit is 1 or 0, and return “odd”
or “even”, respectively. This problem is independent of n because for longer numbers, one
still has to evaluate only the last binary digit.

The runtime of most algorithms is of course dependent on the input size. A simple example
problem is determining the maximum of an integer vector of length n. A solution should
take at least n steps, because it has to look at each number once and determine whether
it is greater than the currently stored maximum. If the input size n increases by one, the
runtime of this algorithm will also increase by one step.
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An example of an even more difficult problem is the breaking of a rotary combination lock
with n numbers (Figure 2.1). For example, to find a combination of length n = 4 with
10 possible digits in each place, one needs 104 tries at most. If the input size n (i.e., the
length of the combination) increases by one, the runtime increases by a factor of ten for
each additional digit.

Figure 2.1: A combination lock with 4 digits is an example of an algorithm
running in exponential time. Trying every combination would take 104

steps (i.e., exponential time). However, if the lock provides feedback after
each digit, it would take at most 4 · 10 steps (i.e., linear time) to find the
combination.

Mathematically speaking, the time complexity of a problem, or equivalently, of an algo-
rithm that solves this problem, is a function T (n) that returns the maximum number of
steps (CPU cycles, seconds, etc.) needed to solve an algorithm with an input of length n
[94, Chap. 7].

The exact time complexity is often too difficult to compute and is of little interest to the
practitioner. Therefore, an asymptotic notation called the big O notation was established
to classify time complexities into a few distinct classes, based on their asymptotic runtime
behavior as the input size grows larger.

2.3 Big O notation

In most cases, it is enough to describe the asymptotic runtime of an algorithm as the input
size grows larger. In these cases, it suffices to consider only the fastest-growing term in
the expression for the runtime and disregard both the coefficient of that term as well as
all lower-order terms [94].

For example, when the runtime of an algorithm with input size n is T (n) = 8n4+2n2+n+4,
we can shorten this expression and say that the runtime is T (n) = O(n4).
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More precisely, according to Sipser [94], we can asymptotically define the runtime T (n) of
an algorithm with input size n as T (n) = O(g(n)), if there exist positive integers c and n0

such that for every integer n > n0

T (n) ≤ c · g(n).

Then, the function g(n) is called an asymptotic upper bound for the runtime T (n).

Coming back to the three examples from Section 2.2, the runtime for determining whether
a number represented in n binary digits is a constant number of steps (possibly including
some sort of preparation). Since the big O notation ignores these constants, we can specify
the runtime as T (n) = O(1), that is, it is some constant time independent of the input size
n. Determining the maximum of a vector of length n would be of complexity T (n) = O(n),
and so breaking a n-digit combination lock with 10 possible digits per place is of complexity
T (n) = O(10n).

We can briefly denote the runtime of an algorithm of the complexity O(1) as constant
runtime. Equivalently, we call O(n) linear runtime, O(nd) polynomial runtime and O(dn)
exponential runtime. The distinction between nd and dn is crucial. If we set d = 2,
the runtime of an O(n2) algorithm grows quadratically, but an O(2n) algorithm grows
exponentially, meaning it increases much more rapidly as n grows.

The beauty and convenience of the big O notation is that it disregards lower-order terms of
the runtime. For example, if breaking a combination lock would take a constant 15 steps for
some sort of setup, finding the correct combination takes 10n steps, and writing down the
solution takes 2n steps, two per digit, the actual runtime would be T (n) = 15 + 10n + 2n,
but in big O notation, it would still be T (n) = O(10n).

2.4 Parallel computing

In 1965, Gordon Moore predicted that the number of transistors on a microprocessor, and
thus their performance, will double roughly every two years for the foreseeable future [80].
This has come to be known as Moore’s Law. Recently, this trend has begun to reach
saturation. Starting in the 1990s, the period for a doubled transistor count increased to
2.5 years [86]. Physical constraints prohibit the indefinite growth of transistor count, and
different strategies will have to be developed in the future [33].

To keep up with Moore’s Law, chip manufacturers started producing multi-core processors,
in which they put more than one processing core on a single chip. This way, multiple
processing units can work on different problems at the same time. More interestingly, it
is possible to can split up a single problem into independent subproblems and let each
core solve only these parts of the problem. To make full use of this parallelism strategy,
programmers have to develop their algorithms in a parallelizable manner, so that they can
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be run on a multi-core machine [105]. Existing algorithms must also be rewritten to make
use of a multi-core environment.

2.4.1 Advantages

The advantages of parallel computing are clear: By assigning, for example, 8 workers to a
problem, the task can be finished up to 8 times faster. Furthermore, with the advent of
cluster computing, it is now easy to parallelize algorithms across multiple machines, each
with its own (possibly multi-core) processors. Thus, the limits on the possible number of
cores in a parallel environment disappear.

A computing cluster is relatively easy to use but can be difficult to set up on the hardware
side. Recently, the development of cloud computing has provided a solution to this problem.
For example, Amazon offers the Elastic Compute Cloud (EC2), which allows users to rent
virtual computers and run their programs on them [56]. As of 2017, the price for these
computers is as low as a few cents per hour [6].

2.4.2 Limitations

Parallelization strategies suffer from two main drawbacks. First, the term parallel slowdown
describes an overhead due to setting up the parallel environment, distributing the data,
and communication between the processes (“housekeeping”). This parallel slowdown is
described by Amdahl’s Law [7], which implies that as the number of processors grows
towards infinity, the execution time of a parallelized program does not shrink to zero but
to some constant time.

Second, parallelizing a program does usually not reduce the order of the time complexity,
that is, the order O(g(n)) in big O notation. Instead, parallelizing an algorithm of com-
plexity O(2n) with 8 cores only divides its runtime by a constant of no more than 8, which
means that the complexity is still O(2n) (Figure 2.2).

2.5 Improving existing algorithms

In Section 2.4 we discussed that, while parallelization is a method to improve the speed of
a program, it does not lower its computational complexity. Instead, it only improves the
runtime by a constant factor.

It is often more beneficial to improve the implementation of an algorithm to lower its
complexity. Unfortunately, this is a more challenging task than a parallelization, but in
cases where it is possible, nonetheless it is often a recommendable approach.
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To come back to the example of breaking a combination lock: A parallelized solution could
be achieved if one had 10 replicates of the lock and 10 people trying different numbers at
the same time. The runtime would be divided by 10 but still be O(10n). On the other
hand, if the lock had some manufacturing defect and gave mechanical feedback after each
single digit that is correct, it would take at most 10 · 4 tries to break the lock (i.e., 10 per
digit). The runtime would thus be reduced to linear (i.e., O(n)), and would be much faster
than any feasible parallelization, especially for larger n.

A real-world example for an improved implementation of a common algorithm can be taken
from the field of sorting algorithms, where the task is to sort an array of n numbers in
ascending order. A naive algorithm is called selection sort, which iteratively walks through
the whole vector, finds the currently smallest number in the unsorted part of the array,
and exchanges it with the leftmost unsorted value. For an array of n numbers, this takes
(n−1)(n−2)

2
comparisons. The complexity of this algorithm is thus O(n2) [58]. A faster

algorithm called Quicksort [47] solves the same task with an average runtime of O(n log n).
This is achieved by using a divide and conquer approach, recursively dividing the array
into a “low” and a “high” subgroup and sorting within these subgroups.

Figure 2.2 shows the schematic runtimes of four different algorithms. It is worth noting
that the algorithms of lower complexity are not uniformly faster than a parallelized O(2n)
algorithm, but only asymptotically as n grows large. On the log-scale, the curve for the
runtime of the parallelized algorithm is just shifted down by a constant, whereas the curve
for the improved algorithm of complexity O(n log n) has a lower slope at all sufficiently
large n.

0 5 10 15 20 25 30

1e
+

00
1e

+
04

1e
+

08

Array length (n)

R
un

tim
e

O(2^n)
O(2^n) / 8
O(n^2)
O(n)

Figure 2.2: Schematic runtimes of algorithms of complexity O(2n) (solid
line), an 8-core parallelization of the same O(2n) algorithm (dashed line),
and an improved version of complexity O(n2) (dotted line), and an even
faster algorithm of complexity O(n) (dash-dotted line). The y-axis (log-
scale) shows the runtime versus the input size n on the x-axis.

To conclude this chapter, massively parallel computing with, say, 200 cores, can reduce the
runtime of an algorithm that takes a week (10,080 minutes) to approximately 50 minutes



10 2. Methodological Foundations

at best, which is mostly a question of convenience. On the other hand, reducing the
complexity of an algorithm from, say, O(2n) to O(n) can make problems solvable that
were previously intractable.



Chapter 3

Efficient Maximum Likelihood
Estimation for Pedigree Data with
the Sum-Product Algorithm

3.1 Chapter summary

In this chapter, we analyze data sets consisting of pedigrees where the response is the age
at onset of colorectal cancer (CRC). The occurrence of familial clusters of CRC suggests
the existence of a latent, inheritable risk factor. We aim to compute the probability of a
family possessing this risk factor, as well as the hazard rate increase for these risk factor
carriers. Due to the inheritability of this risk factor, the estimation necessitates a costly
marginalization of the likelihood.

We therefore develop an EM algorithm that works with dependent latent variables by
applying factor graphs and the sum-product algorithm in the E-step, reducing the compu-
tational complexity from exponential to linear in the number of family members.

Our algorithm is as precise as a direct likelihood maximization in a simulation study and
a real family study on CRC risk. For 250 simulated families of size 23 and 25, the runtime
of our algorithm is faster by a factor of 13 and 39, respectively. On the largest family (23
members) in the real data, our algorithm is 4 times faster.

We introduce a flexible and runtime-efficient tool for statistical inference in biomedical
event data that opens the door for advanced analyses of pedigree data.

All scripts developed for this chapter are available on GitHub at http://github.com/

AlexEngelhardt/sumproduct.

http://github.com/AlexEngelhardt/sumproduct
http://github.com/AlexEngelhardt/sumproduct
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3.2 Introduction

3.2.1 Familial CRC clusters and estimation of family risk

Colorectal cancer (CRC) is one of the most prevalent cancer diseases in Europe and the
United States [57], with men having a younger average age at diagnosis [59].

For a small proportion of CRC cases, genetic predispositions are known [44]. Interestingly,
an additional 15%–20% of CRC cases occur in familial clusters [76]. Within these clusters,
family members show a higher risk of contracting CRC [18]. The cause for these clusters
is unknown but assumed to be a risk factor which may be of genetic or environmental
origin.

Since cancer develops earlier in these high-risk families, it is of interest to identify them
in advance. Subsequently, health insurers can allow members of high-risk families to join
screening programs at an earlier age. We will therefore develop an efficient risk calculator
for CRC (i.e., a method clinicians can use to assess the familial risk for a specific family
based on their CRC history).

3.2.2 Efficient Maximum Likelihood estimation (MLE) for par-
tially dependent data

Here, we look at data consisting of a set of pedigrees, where each person has an inheritable
latent variable, which is the risk factor that influences its response variable, or the age
at CRC diagnosis. Assuming an inheritance model and a penetrance model, we aim to
estimate two parameters: the a priori probability p1 for a founder to carry the risk factor,
and the penetrance α, that is, the multiplicative increase of the hazard rate of an individual
who carries the risk factor.

3.2.3 Existing work

A closely related subject is complex segregation analysis (CSA). CSA is a method used to
evaluate whether pedigree data of affected and unaffected offspring agrees with a Mendelian
transmission mode and perform hypothesis tests for different models of inheritance [64]. As
opposed to segregation analysis, CSA can go one step further and work with pedigrees of
arbitrary structure instead of nuclear families and with both quantitative and qualitative
traits [54].

We perform a kind of segregation analysis but do not test for a specific genetic model. In
accordance with the argument in Houle et al. [49], we employ a phenotype-based approach
to study the inheritance mechanisms, because the details of genetic causation of CRC are
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still unknown and complex, and the assumptions of a genotype-based approach may not
hold true.

3.2.4 Marginalization is a problem

This problem has been approached in previous work done by our group [90]. Because the
latent variables are unknown, a straightforward estimation procedure has to marginalize
the likelihood respective to each one. The inheritability of this latent variable means that
observations within a family are dependent, and the marginalization cannot happen on the
level of a single person but over a whole family. Since each latent variable can assume one
of two values, the complexity of computing this sum is O(2D), where D is the number of
family members.

The runtime of this straightforward optimization over the marginalized likelihood is still
reasonable when no family has an excessive number of members. However, the number
of possible risk constellations within a family grows two-fold with each new family mem-
ber. As soon as even one family is sufficiently large, the marginalization quickly becomes
unfeasible.

In these situations, an alternative approach is needed.

3.2.5 Aim of this chapter

We will approach the problem described above in two ways:

First, we describe and implement heuristics to greatly reduce the computation time for
the straightforward optimization of the marginalized likelihood. To that end, we reduce
the number of iterations in the marginalizing sum as much as possible a priori, and then
use the optimization technique of memoization [79] within the iterations to evaluate costly
functions as few times as possible.

Second, we implement an EM algorithm for situations in which families are too large
for the marginalization procedure. The E-step is nontrivial because the latent variables
within a pedigree are dependent, and a straightforward calculation of the marginal pos-
teriors would again be of exponential runtime. For a linear dependency structure (e.g.,
in a Hidden Markov Model), the Baum-Welch algorithm [12] is an efficient method for
solving the E-step. In our problem, the data instead shows dependency in a tree structure.
This dependency structure necessitates using the sum-product algorithm [62] to obtain the
marginalized posterior probabilities in the E-step in linear time. A similar approach for
analyzing the marginalization over hidden variables has been proposed and implemented
in [34] in the completely different context of single-cell time lapse image analysis.
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We show that the runtime of our EM algorithm is linear instead of exponential in terms of
the pedigree size. We also execute a simulation study to show that our algorithm correctly
recovers the specified parameters.

Finally, we demonstrate the runtime improvement of our algorithm on a real data set: a
family study of CRC cases in Upper Bavaria.

Details of the biological relevance of this analysis are discussed elsewhere [90].

3.3 Methods

3.3.1 Nomenclature

The data set is composed of families that are represented as pedigrees (Figure 3.1). We
call individuals at the top of the pedigree (i.e., those with unspecified parents) founder
nodes, and all other persons are nonfounders. Individuals without any offspring (i.e., at
the bottom of the pedigree) are called final individuals.

We denote by ti the chronological age in years of onset of CRC for each person i = 1, . . . , n,
if the corresponding censoring indicator ci equals 1, and the age at censoring if ci = 0. The
gender of an observation is denoted by mi, which is 1 for males and 0 for females. The
observed data for one person is thus xi = (ti, ci,mi).

Each person also has a latent variable zi, which equals 1 if this person is a risk carrier,
and 0 if not. We use ♂i and ♀i to denote the position (i.e., the value of i) of the father
and mother of person i. For example, if we have a risk status zi for a nonfounder i, this
individual’s father’s risk status is z♂i

.

We denote the set of all i that are founder nodes by F .

The complete data vectors for all patients are called x and z, respectively.

3.3.2 Penetrance model

For persons where zi = 1, we assume an elevated relative risk of developing CRC, which
manifests itself through a hazard rate increased by a multiplicative factor α, the penetrance
[18]. This parameter is unknown and will be estimated.

We assume a Weibull distribution for ti. The Weibull hazard rate is given by h(t) =
kλktk−1, with the parameters k > 0 and λ > 0. In our relative risk model, we multiply
the hazard rate by α if zi = 1 and, additionally, by β if mi = 1. These factors model
the increased relative risk for risk carriers and males, respectively. Our hazard rate for an
event (i.e. diagnosis of CRC) is then
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Figure 3.1: A sample pedigree of a family with nine members. Squares
denote males, circles females. A couple (a connected circle and square in
the same row) gives rise to a set of children (the nodes connected to this
couple in the row below). Persons shaded in gray are risk carriers. The
four grandparents in the top row are the founder nodes in this family, the
other five persons are nonfounders.

h(ti) = kλktk−1i αziβmi

The survival function is defined as S(t) = exp(−
∫ t
0
h(u)du). With the additional relative

risk factors, this becomes

S(ti) = exp(−(tiλ)kαziβmi)

The density for one observation i is composed of the product of the survival function and
(for uncensored observations) the hazard rate:

f(ti|zi) = h(ti)
ci · S(ti)

The observations xi are conditionally independent given zi, and the density of the whole
data f(x|z, θ) can be split up into a product of individual densities: f(x|z, θ) =

∏
i f(xi|zi, θ).

3.3.3 Heritage model

The founder prevalence (i.e., the a-priori probability P(Zi = 1) for a founder node to carry
the risk factor) is called p1. This is the second parameter we will estimate.
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The probability for a nonfounder to be a risk carrier is dependent on its parents’ risk
statuses and the inheritance probability pH . Our model does not allow for spontaneous
mutations to risk carrier.

If either parent passes down a risk factor z♂i
= 1 or z♀i

= 1 with the probability pH , then
the probability for the offspring to be a risk carrier is

p̃i = P(Zi = 1|z♂i
, z♀i

) = pHz♂i
+ pHz♀i

− p2Hz♂i
z♀i

, (3.1)

We denote P(Zi = 1|z♂i
, z♀i

) for nonfounders by p̃i to emphasize the distinction from p1
for founders.

A sensitivity analysis found that varying the value of pH has a negligible effect on the final
parameter estimates [90], and thus we chose pH = 0.5 for all our analyses.

Given a pre-defined inheritance probability pH and a founder prevalence p1, the probability
for a risk vector Z for the entire dataset becomes

P(z) =
∏
i∈F

P(zi) ·
∏
i/∈F

P(zi|z♂i
, z♀i

)

=
∏
i∈F

pzi1 (1− p1)1−zi ·
∏
i/∈F

p̃zii (1− p̃i)1−zi

3.3.4 The complete likelihood

All Weibull parameters (k, λ) as well as the inheritance probability pH and the risk increase
for males (β) are assumed to be known. We set k = 4 and λ = 0.0058 according to previous
analyses done by our group [90], β = 2 according to [59], and pH = 0.5. The complete
likelihood where both x and z are observed, is then

L(θ;x, z) = f(x, z) = P(z) · f(x|z)

=
∏
i∈F

P(zi) ·
∏
i/∈F

P(zi|z♂i
, z♀i

) ·
n∏
i=1

f(xi|zi)

=
∏
i∈F

pzi1 (1− p1)1−zi ·
∏
i/∈F

p̃zii (1− p̃i)1−zi

·
n∏
i=1

[kλktk−1i αziβmi ]ci exp(−(tiλ)kαziβmi) (3.2)
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The two factors f(x|z) and P(z) were defined in the penetrance model and the inheritance
model, respectively. The parameter vector in our model is θ = (p1, α).

Note that the relevant part for α includes all persons, and the part for p1 only includes the
founders. The product over all i /∈ F is independent of θ and thus becomes irrelevant in
the estimation procedure.

The complete log-likelihood is then

l(θ;x, z) = (
∑
i∈F

zi) log p1 + (|F | −
∑
i∈F

zi) log(1− p1) +
∑
i/∈F

[zi log p̃i + (1− zi) log(1− p̃i)] +

+
n∑
i=1

ci · [log k + k log λ+ (k − 1) log ti + zi logα +mi log β]− (tiλ)kαziβmi

respective to α and p1, this reduces to

= const + (
∑
i∈F

zi) log p1 + (|F | −
∑
i∈F

zi) log(1− p1)

+
n∑
i=1

cizi logα− (tiλ)kαziβmi (3.3)

If the latent variables Z were actually known, the closed form solutions for p1 and α would
be

∂

∂p1
l(θ;X,Z) =

∑
i∈F zi

p1
−
|F | −

∑
i∈F zi

1− p1

p̂1 =

∑
i∈F zi

|F |
(3.4)

and

∂

∂α
l(θ;X,Z) =

∑n
i=1 cizi
α

−
n∑
i=1

I(zi = 1)(tiλ)kβmi

α̂ =

∑n
i=1 cizi∑n

i=1 I(zi = 1)(tiλ)kβmi
(3.5)
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3.3.5 The incomplete/marginalized likelihood

We marginalize the non-reduced form of the complete likelihood to obtain the incomplete
likelihood L(θ;x) [97, Eq. 1.5]:

L(θ;x) =
∑
z

L(θ;x, z) (3.6)

3.3.6 Optimizing the marginalized likelihood with Nelder-Mead

To estimate the parameters p1 and α, one can use a Nelder-Mead optimization [82] on the
marginalized likelihood L(θ;x).

Unfortunately, for a family of size D, the sum over all z has 2D elements. Even when
splitting the sum up across all families (see Appendix A.1), the number of summands grows
exponentially with increasing family size D. Thus, for larger families, the computation of
the marginalization within the likelihood evaluation quickly becomes unfeasible.

However, the Nelder-Mead optimization is sufficiently fast, even faster than the EM al-
gorithm, for small families. We therefore implemented two heuristics, grid purging and
memoization, to improve the speed of the evaluation of the marginalized likelihood (Equa-
tion 3.6) as much as possible.

3.3.6.1 Grid purging

First, we implemented a procedure we call grid purging. In it, we adapt methods that have
similarly been applied in multipoint linkage analysis [72, 61] that reduce the inheritance
space to greatly speed up the computation time.

The procedure described in this section is applied to each family separately and successively.
We therefore restrict the data and the respective notation x and z to one family.

For a family of size D, we call the 2D×D matrix of possible Z vectors the grid (Table 3.1).
During grid purging, we remove all rows of Z where P(Z) = 0, because these constellations
result in a summand of 0 in the marginalizing sum of the likelihood. These are invalid risk
vectors, where, for example, both parents have a risk status of Zi = 0, but one of their
children has Zi = 1. See Figure 3.2 and Table 3.1 for an example of a family with three
persons: a father, a mother, and one child.

Thus, when P(Z) = 0, we save time by not computing the density f(x|z) there. By using
this procedure, we reduce the number of iterations in the marginalizing sum to a fraction
of around 1/7 for large families. In the simpler case of pH = 1 (i.e., a full inheritance
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model) the risk status Zi for all nonfounders is deterministic given the founders, and the
sum reduces to 2F iterations.

Figure 3.2: A pedigree of a family of three. The gray shading represents a
possible risk vector, in this case, Z1 = 1, Z2 = 0, and Z3 = 1.

Z1 Z2 Z3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 3.1: Possible risk vectors for a family of 3 (Figure 3.2). Each row
represents one possible constellation of the vector Z. The second, gray row
is an impossible constellation (our model does not allow for spontaneous
mutations) and will be removed in the grid purging procedure.

To create the grid of possible Z vectors, building a 2D × D grid and then deleting all
rows where P(Z) = 0 is costly memory-wise. For larger families, we instead started
with an empty “candidates” grid of possible Z vectors. We then expanded one 2|F | × |F |
grid over the founders, and one 2D−|F | × (D − |F |) grid over the non-founders (Table
3.2). Subsequently, we looped row-wise over the founders grid. For each row, we then
determined the possible vectors from the non-founder grid. These vectors were then added
to the candidates grid.

Note that this procedure should be done only once, at the beginning of the data processing.
The grids of possible Z should then be stored as an object.

3.3.6.2 Memoization

In a second step, we accelerated the computations within the marginalizing sum by im-
plementing a memoization procedure [79]. Memoization is the process of storing input
parameters and return values of a function. If the function is then called a second time
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Z1 Z2

0 0
0 1
1 0
1 1

Z3

0
1

Table 3.2: The two-step procedure used to create the grid of possible Z
vectors. We created a nested loop that iterates over the rows of the left
table, and then extracts all viable rows from the right table.

with the same arguments, it returns the stored value rather than compute it again. This
procedure works for all functions that do not contain stochastic elements (e.g., random
number generations).

Because the density and probability calculations within the sum are repeated many times
for the same arguments, we pre-compute and store as many values as possible. Specifically,
we precompute the grid of the probabilities P(Z) (see Table 3.1) column-wise. Analogously,
we precompute the 2D values of the densities f(xi|Zi = 0) and f(xi|Zi = 1), respectively.
In the loop that implements the marginalizing sum, we simply extract and multiply these
values.

With these modifications to the evaluation of the marginalized likelihood, we can then
finally estimate p1 and α with a Nelder-Mead optimization.

One evaluation of the marginalized likelihood with grid purging and memoization took
about 9.2% as long as the evaluation by a straightforward implementation of Equation
3.6. Nevertheless, for large families with more than 20 members, the computation of both
the grid purging at the beginning and the marginalization within the likelihood evaluation
quickly becomes unfeasible.

3.3.7 The EM algorithm

A common approach for finding MLEs in the presence of latent variables is to use the EM
algorithm. Resources on the EM algorithm are plentiful, including a short tutorial [27],
the seminal paper by Dempster, Laird and Rubin [28], and an entire book [75] devoted to
the subject.

In short, the EM algorithm proceeds in a loop over two steps. In the E-step, one calculates
the expected log-likelihood over the latent variables Z, given the observed data and the
current parameter estimates. This problem reduces to computing complete-data sufficient
statistics [28]. In the subsequent M-step, one then updates the estimates of the parameters,
given the new expected sufficient statistics from the E-step.
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As a convergence criterion, frequent choices include the size of the relative change of ei-
ther the log-likelihood or the parameter estimates [1]. If the emphasis lies on compliance
with a marginalized optimization, implementing and using the function B(θ; θ(t)) from
Dellaert [27] is the better choice, since this function converges to the true likelihood as
one approaches the MLE estimates and thus allows a direct comparison between the two
methods. However, evaluating B in each iteration is a costly step. Instead, we use the
size of the relative change of the parameter estimates for α and p1 as a stopping criterion.
This is more conservative than using the log-likelihood [1], and we are on the safe side by
letting the algorithm run a bit longer than it would have to.

In the remainder of this chapter, we set the stopping criterion to a relative tolerance of
0.0005, unless stated otherwise.

3.3.7.1 The expected log-likelihood Q(θ; θ(t))

To compute the expected log-likelihood Q(θ; θ(t)), we introduce the membership probabili-

ties [75, p. 43] T
(t)
i . This is the probability for one person’s risk status Zi, given the whole

observed data x:

T
(t)
i = EZ|x,θ(t)(Zi)

= EZi|x,θ(t)(Zi)

= P(Zi = 1|x, θ(t))

=
∑
z

ziP(z|x, θ(t))

(3.7)

The expected value EZ|x,θ(t)(Zi) is equal to the marginalized expected value EZi|x,θ(t)(Zi)
because of the following marginalization steps from Z to Zi:

T
(t)
i = EZ|x,θ(t)(Zi) =

∑
z

ziP(z|x, θ(t))

=
∑
z1

. . .
∑
zn

ziP(z1, z2, . . . , zn|x, θ(t))

=
∑
zi

zi
∑
z1

. . .
∑
zi−1

∑
zi+1

. . .
∑
zn

P(z1, z2, . . . , zn|x, θ(t))︸ ︷︷ ︸
=P(zi|x,θ(t))

= EZi|x,θ(t)(zi)

= P(Zi = 1|x, θ(t)) (3.8)
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Here, the summation is over all admissible combinations of zi; that is, P(z) > 0 and zi = 1,
because all other summands become zero. The condition on the entire observed data x
and the summation over all z will conveniently reduce to a condition on and summation of
only the respective family’s data x and z (Appendix A.1). The target function Q becomes
(cf. Equation 3.3)

Q(θ; θ(t)) = EZ|x,θ(t) [l(θ;x, Z)]

= const + log(p1)(
∑
i∈F

T
(t)
i ) + log(1− p1)(

∑
i∈F

(1− T (t)
i ))+

+
n∑
i=1

T
(t)
i ci logα− (tiλ)kβmi(T

(t)
i α + (1− T (t)

i ))

(3.9)

3.3.7.2 The M-step

For the M-step, we maximize Q(θ; θ(t)) respective to α and p1 to obtain the new parameter

estimates for iteration t+ 1. Once the values of all T
(t)
i are known, the maximization of Q

with respect to p1 and α is straightforward and has a closed form solution:

p
(t+1)
1 =

∑
i∈F T

(t)
i

|F |
(3.10)

α(t+1) =

∑n
i=1 ciT

(t)
i∑n

i=1 T
(t)
i (tiλ)kβmi

(3.11)

Note their similarity to Equations 3.4 and 3.5.

3.3.7.3 The E-step

It follows from Equations 3.9 and 3.10 that, as in the “standard” examples of the EM algo-
rithm, the E-step conveniently reduces to computing the complete-data sufficient statistics
T

(t)
i .

The reason for this simplification is that the log-likelihood is linear in the latent data Z.
Computing Q(θ; θ(t)) thus simplifies to replacing each occurring Zi with its conditional

expectation T
(t)
i . The M-step then uses these “imputed” values of the latent data Z for

the updated parameter estimates.
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3.3.7.4 Marginalization of the joint density

In our setting, the difficulty in computing T
(t)
i is that the probability for the risk status of

one family member Zi is conditioned on the observed data x of the entire family (Appendix
A.1). To compute these values, we would have to marginalize over all risk vectors z where

zi = 1, i.e. T
(t)
i =

∑
r P(Z = r|x, θ(t)), where r is a valid risk vector (i.e. with P(Z = r) > 0

and with zi = 1). We would end up with the same exponential runtime as in a Nelder-Mead
optimization.

Alternatively, a pedigree can be represented as a Bayesian network [85, 4], also known as
a causal probabilistic network (CPN), which in turn can be converted into a factor graph
[62]. This representation is advantageous because it allows the efficient computation of
marginals via the sum-product algorithm.

The sum-product algorithm [62], also known as the belief propagation algorithm, com-

putes marginalizations of the form of T
(t)
i in linear runtime [78, p. 290]. It does this by

representing a complex “global” function g(z) – here, f(x, z|θ(t)) – as a factor graph; that
is, a product of multiple “local” functions,

∏
j φj, each depending on only a subset of the

arguments in g(z).

The sum-product algorithm then exploits this structure to efficiently compute marginal-
izations of g(z). Here, we marginalize the joint density to obtain f(zi, x|θ(t)). By dividing
this joint density through f(x) = f(Zi = 1, x|θ(t)) + f(Zi = 0, x|θ(t)), we ultimately obtain

T
(t)
i = P(Zi = 1|x, θ(t)), which was our actual goal.

3.3.8 Factor graphs

Factor graphs were first introduced by Kschischang [62] to represent factorizations of mul-
tivariate functions. To avoid confusion between factors and density functions f , we deviate
from the notation of Kschischang and denote factor nodes with φ instead of f .

The factor graph in Figure 3.3 encodes the joint density g(z) = f(z, x) of the family from
Figure 3.1 as the product of 7 factors φj:

g(z) = φ1(z1) · φ2(z2) · φ3(z3) · φ4(z4)

· φ5(z1, z2, z5) · φ6(z3, z4, z6) · φ789(z5, z6, z7, z8, z9) (3.12)

As an example, the factors φj from Figure 3.3 describe the following functions:

φ1(z1) = f(x1|z1) P(z1)

φ2(z2) = f(x2|z2) P(z2)
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z8z7 z9

φ789

z5

φ5

z6

φ6

z1 z2

φ1 φ2

z3 z4

φ3 φ4

Figure 3.3: A factor graph visualizing the factorization of g(z) = f(x, z)
(Equation 3.2) for the family from Figure 3.1. Circles represent variable
nodes, and filled squares represent factor nodes, i.e. local functions. The
edges show which variables are arguments to which factors. For example,
the factor φ6 has three arguments: φ6(z3, z4, z6)

φ3(z3) = f(x3|z3) P(z3)

φ4(z4) = f(x4|z4) P(z4)

φ5(z1, z2, z5) = f(x5|z5) P(z5|z1, z2)

φ6(z3, z4, z6) = f(x6|z6) P(z6|z3, z4)

φ789(z5, z6, z7, z8, z9) = f(x7|z7) P(z7|z5, z6)·f(x8|z8) P(z8|z5, z6)·f(x9|z9) P(z9|z5, z6).

The factor φ789 cannot be split up into three factors because the graph edges would then
form a cycle, which is not allowed, or it would necessitate a costly loopy belief propagation
procedure [62, 52]. Instead, we implement a clustering procedure [62] and group the
respective densities into one factor per set of parents. As we will see later, marginalizing
this expression still runs in linear time.

In general, the factors are defined as

φJ(zJ , z♂J
, z♀J

) =
∏
j∈J

f(xj|zj)P(zj|z♂j
, z♀j

),

where J is the set of all children with the same parents, which are denoted by z♂J
and

z♀J
. If φJ is a factor for a founder node, then z♂J

and z♀J
are defined as an empty set

and the respective probability P(zj) is unconditioned.
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3.3.9 The sum-product algorithm

Having set up a factor graph for each family, we can then apply the sum-product algorithm
to compute marginalizations of f(z, x) at each variable node zi, i.e. f(zi, x).

In our setting, we restrict ourselves to family trees, that is, we do not allow for con-
sanguineous marriages, which would again lead to cycles in the corresponding factor
graph.

3.3.9.1 Description of the sum-product algorithm

Let µz→φ(z) denote the message sent from a variable node z to a factor node φ, and let
µφ→z(z) denote the message sent from a factor node φ to a variable node z. Furthermore,
let n(v) denote the set of neighboring nodes of a (factor or variable) node v.

We then define the messages from a variable node to a factor node, and from a factor node
to a variable node, as follows [62]:

µz→φ(z) =
∏

h∈n(z)\{φ}

µh→z(z)

µφ→z(z) =
∑
∼{z}

φ(Zφ)
∏

y∈n(φ)\{z}

µy→φ(y)



where Zφ is the set of arguments of the factor φ. If h ∈ n(z) \ {φ} = {∅}, for example, at
a variable node of a final individual (the grandchildren z7, z8, and z9 in Figure 3.3), the
product is defined as 1. The expression

∑
∼{z} is adapted from Kschischang et al. [62] and

denotes the not-sum, that is, the sum over all variables except z.

Finally, the marginalization, or termination step, computes the value of gi(zi) =
∑
∼{zi} g(z)

as the product of all incoming messages on a variable node zi. The marginalized gi(zi) are

equal to f(zi, x|θ(t)), that is, they are proportional to the desired outputs T
(t)
i from the

E-step in the EM algorithm.

3.3.9.2 Some example messages and marginalizations of the sum-product al-
gorithm

We illustrate the sum-product algorithm by calculating two example messages and one
example marginalization from the pedigree in Figure 3.3.
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First, the message µz6→φ789(z6) from the variable node z6 to the factor node φ789 equals

µz6→φ789(z6) = µφ6→z6(z6)

Second, the message µφ5→z2(z2) from the factor node φ5 to the variable node z2 equals

µφ5→z2(z2) =
∑
z1

∑
z5

(φ5(z1, z2, z5) · µz1→φ5(z1)µz5→φ5(z5))

Last, we compute the example marginalization at the variable node z5 as

g5(z5) = f(z5, x|θ(t)) = µφ5→z5(z5) · µφ789→z5(z5)

Then,

T
(t)
5 = P(Z5 = 1|x, θ(t))

=
f(z5 = 1, x|θ(t))

f(z5 = 0, x|θ(t)) + f(z5 = 1, x|θ(t))

=
µφ5→z5(1) · µφ789→z5(1)

µφ5→z5(0) · µφ789→z5(0) + µφ5→z5(1) · µφ789→z5(1)

This shows that the desired values T
(t)
i from the E-step are immediately obtained as soon

as all possible messages are computed.

Appendix A.2 and Figure A.1 show the detailed derivation of all remaining messages and
illustrate the stepwise procedure to obtain all messages.

3.3.10 Convergence of the EM algorithm

A common drawback among many estimation algorithms is the danger of converging into
a local maximum. This also applies to the EM algorithm. However, we will show that
the marginal likelihood function (Equation 3.6) is concave and thus the EM algorithm
will always converge to the global maximum of the marginal likelihood, irrespective of the
initial parameter choice.

A twice differentiable function is concave if its Hessian matrix is negative semidefinite.
We first show that the Hessian of the complete log-likelihood function (Equation 3.3) is
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negative semidefinite. Since the variables α and p1 are separated, ∂2

∂α∂p1
l(θ;x, z) = 0, and

consequently the Hessian is a diagonal matrix. It suffices to show that both its diagonal
entries are zero or negative. We obtain

∂2

∂p21
l(θ;x, z) = −

∑
i∈F zi

p21
−
|F | −

∑
i∈F zi

(1− p21)
(3.13)

∂2

∂α2
l(θ;x, z) = −

n∑
i=1

cizi
α2

(3.14)

Note that in Equation 3.13,
∑
zi ≤ |F |, hence both terms on the right hand side of this

equation are negative or zero.

This proves that the complete log-likelihood is concave. Since the exponential is strictly
monotonically increasing and l(θ;x, z) is strictly concave, it follows that L(θ;x, z) =
exp(l(θ;x, z)) has only one unique local and hence global maximum [20]. Finally, the
marginal log-likelihood, as the sum

∑
z l(θ;x, z) of concave functions, is also concave.

This means that simpler but faster optimization algorithms such as Nelder-Mead can be
used for our model, and there is no need for more complex algorithms such as stochastic
or constrained optimizers (e.g., L-BFGS-B [23] or simulated annealing [14]).

3.3.11 Application: Estimating the probability of being a risk
family

Applying the sum-product algorithm directly implies a straightforward method to compute
the probability of being a risk family.

After we have estimated p1 and α, we can estimate the probability that a family carries the
risk factor for a new pedigree (or a pedigree from the original study, i.e. the training data).
We define a risk family as a family in which at least one member is carrying the risk factor;
that is, zi = 1 for at least one i. This is exactly one minus the probability that no family
member carries the risk factor. If we restrict the data x and Z to the family in question,
and define the event R as “The family is a risk family”, we can then compute

P(R) = 1− P(Z = 0|x, θ̂) (3.15)

= 1−
∏
i∈F

P(Zi = 0|x, θ̂) (3.16)

= 1−
∏
i∈F

(1− T (t)
i ) (3.17)
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The step from Equation 3.15 to Equation 3.16 is possible because the probability that no
family member carries the risk factor equals the probability that no founder carries the
risk factor, because the former is true if and only if the latter is true. Then, we can split up
the joint probability that no founder carries the risk factor into the individual probabilities
P(Zi = 0|x, θ̂). This step is possible because we consider only founders, and their risk
probabilities are independent of any other zi.

Since P(Zi = 0|x, θ̂) equals 1 − T (t)
i by definition (Equation 3.7), we can simply run the

E-step of the EM algorithm once on the new family to obtain these values. We then
multiply over only those T

(t)
i where i ∈ F and obtain P(R), an estimator for the familial

CRC risk.

Therefore, the sum-product algorithm also conveniently simplifies the subsequent step after
the parameter estimation, that is, the estimation of being a risk family. Without it, the
conditioning on the whole family’s observed data x would again necessitate a marginaliza-
tion of exponential complexity.

3.3.12 A general sum-product algorithm for pedigrees in R

We implemented a sum-product algorithm for computing the marginals of an arbitrary
pedigree in R [88] and made it available on GitHub. The code creates one factor graph per
family, and therein one factor node per founder, which contains φi(zi) = f(xi|zi) · P(zi).
Furthermore, we create one factor per set of parents, which contains the product of the
densities of all children (but not the parents): φj(Zj) =

∏
i∈Kj

f(xi|zi) · P(zi|z♂i
, z♀i

),

where Zj represents all variables within the factor (parents and children), and Kj is the
set of children variables connected to φj.

Messages from a “large” factor containing parents and many children will be summed
over all neighboring variable nodes except the destination variable node. By iteratively
exploiting the distributive law, this sum can be efficiently broken down from exponential
to linear runtime. We illustrate the procedure based on an example:

Consider from Figure 3.3 the message

µφ789→z8(z8) =
1∑

z5=0

1∑
z6=0

1∑
z7=0

1∑
z9=0

φ789(z5, z6, z7, z8, z9)

· µz5→φ789(z5)µz6→φ789(z6)µz7→φ789(z7)µz9→φ789(z9)

Because we can decompose φ789(z5, z6, z7, z8, z9) into the product f(x7|z7)P(z7|z5, z6) ·
f(x8|z8)P(z8|z5, z6) · f(x9|z9)P(z9|z5, z6), the quadruple sum can be split up into
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µφ789→z8(z8) =
1∑

z5=0

1∑
z6=0

{
µz5→φ789(z5) · µz6→φ789(z6) · f(x8|z8) · P(z8|z5, z6)

·

[
1∑

z7=0

µz7→φ789(z7)f(x7|z7)P(z7|z5, z6)

][
1∑

z9=0

µz9→φ789(z9)f(x9|z9)P(z9|z5, z6)

]}

This representation of the marginalizing sum can now be evaluated in linear time respective
to the number of children.

3.4 Results

3.4.1 Simulation study

We performed an in silico experiment by simulating data sets with a given pH , p1 and α
and with a varying number of families (N) and pedigree size (D). The risk status zi for
each founder was randomly sampled with the probability P(zi = 1) = p1, the statuses for
all nonfounders were sampled according to Equation 3.1.

The age of onset of CRC was then simulated according to a Weibull distribution with the
best fitting parameters according to [90], λ = 0.0058 and k = 4, and a risk increase for
males of β = 2:

f(ti|zi) = h(ti) · S(ti) = [kλktk−1i αziβmi ] · exp(−(tiλ)kαziβmi)

We then simulated a censoring age ui from the following Gaussian distribution:

ui ∼ N (125, 100)

The rather optimistic mean censoring age of 125 years was chosen to keep the ratio of
censored subjects below 66%, since a higher censoring rate would just require a larger
simulated data set to reach the same stability.

Each subject’s censoring indicator ci was then set to 1 if ti < ui and 0 otherwise. A value
of 0 therefore indicates a censored observation. If a subject is censored, ti was replaced by
ui, the age at censoring.
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3.4.1.1 Runtime improvement

We simulated data sets with different pedigree sizes to investigate the threshold pedigree
size from which the EM algorithm is faster than a Nelder-Mead optimization. The pedigrees
used were the following:

• D = 15: Four generations (8 founders) with one final individual

• D = 17: The same pedigree as for D = 15, with one additional parent pair for the
first founder

• D = 19: One more parent pair in the same generation as for D = 17

• D = 21: One more parent pair in the same generation as for D = 19

• D = 23: One more parent pair in the same generation as for D = 21

• D = 25: One more parent pair in the same generation as for D = 23

• D = 31: Five generations with one final individual

Figure 3.4 and Table 3.3 show the runtime of the Nelder-Mead optimization versus the
EM algorithm for different data sizes and pedigree sizes. The results suggest that using
the EM algorithm is advantageous as soon as some families in the data set are large
(i.e., more than around 20 members). For D = 31, we extrapolated the runtime for the
Nelder-Mead optimization to about 50 days, according to a log-linear regression of runtime
against family size. This shows the dramatic improvement of using the EM algorithm as
family sizes grow larger. A more advanced EM algorithm can even split the data into
small and large pedigrees, and in the E-step use the sum-product algorithm for the larger
families, and a “brute force” marginalization for smaller families. We implemented this
possibility in our script. In the simulation studies, however, we did not use it to maintain
comparability.

N 15 17 19 21 23 25

50 0.10 0.18 0.51 1.62 6.54 25.99
100 0.09 0.16 0.47 1.55 5.44 24.84
150 0.12 0.13 0.38 1.23 6.13 22.86
200 0.10 0.14 0.46 1.79 6.96 38.11
250 0.14 0.22 0.70 4.32 12.81 39.14

Table 3.3: Runtime ratio (Nelder-Mead over EM algorithm) over different
family sizes D (columns) and different number of families N (rows). The
EM algorithm is faster for pedigrees of size 19 and above, regardless of the
number of families in the data set.
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Figure 3.4: Runtime comparison of Nelder-Mead optimization (left) and
the EM algorithm (right). Shown is the runtime in seconds on the y-
axis (log-scale) versus the number of families on the x-axis. The effect
of an increasing family size D is negligible with the EM algorithm, but
exponential with the Nelder-Mead optimization. For the largest families
of D=31, only the EM algorithm could be run in a feasible time. The
Nelder-Mead optimization would have taken around 50 days.
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3.4.1.2 Our algorithm recovers true parameters

We simulated 100 replicated data sets of 500 families of 9 persons as in Figure 3.1. In
each replication, we chose p1 = 0.2 and α = 4 as the parameters and let the Nelder-Mead
optimization and the EM algorithm estimate the parameters to investigate their level of
agreement. For this analysis, the stopping criterion (Section 3.3.7) was set to a relative
tolerance of 0.00005. Figure 3.5 shows scatterplots and Bland-Altman plots to compare
the two methods and finds a strong agreement between them. Table 3.4 shows summary
statistics on both methods’ parameter estimates in the 100 replications.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

p̂1, N-M 0.1478 0.1740 0.1913 0.1929 0.2078 0.2864
p̂1, EM 0.1476 0.1739 0.1912 0.1929 0.2078 0.2865
α̂, N-M 2.888 4.036 4.347 4.310 4.656 5.297
α̂, EM 2.890 4.037 4.345 4.310 4.660 5.287

Table 3.4: Five-point summary and mean values for the parameter es-
timates of the Nelder-Mead optimization (N-M) and the EM algorithm
(EM), based on 100 simulated data sets. The simulation parameters were
p1 = 0.2 and α = 4.

3.4.1.3 The imputation of noninformative parents works

In the real data set, pedigrees were not always recorded in a directly usable manner. For ob-
servations with only one available parent, we imputed the missing parent as noninformative
(ci = 0, ti = 0 and with the appropriate gender mi). In cases in which a family consisted
only of siblings, we imputed both parents as noninformative observations to indicate the
relatedness of the siblings.

To assess the feasibility of this procedure, we randomly removed 20% of the family members
from the data set after simulation. The simulation and estimation was otherwise performed
as in Figure 3.5, just with some family members removed beforehand. The preprocessing
then performed an imputation of missing members. The imputation procedure did not
affect the results noticeably. Figure 3.6 shows that after our imputing procedure, both
algorithms still recover the true parameters.

3.4.1.4 Application: Estimating the probability of being a risk family

We computed the posterior probability of being a CRC risk family for a simulated data
set of 1000 pedigrees with 9 persons each, according to Equation 3.17. The resulting ROC
curve is shown in Figure 3.7. The AUC of 0.76 shows that risk families can be identified
with a satisfyingly good rate.
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Figure 3.5: Convergence of 100 replications of simulating and estimating
data sets. Each replication used random uniform distributed starting val-
ues for θ = (p1, α). Figures (a) and (b) show the final parameter estimates
for the Nelder-Mead optimization (x-axis) and the EM algorithm (y-axis).
Figures (c) and (d) show Bland-Altman plots where the x-axis shows the
average of the parameter estimates of the two methods, and the y-axis
shows their difference. Horizontal dashed lines are drawn at ±2 standard
deviations of the difference. We see that both estimation methods agree
with each other and converge close to the correct result of p1 = 0.2 and
α = 4 regardless of starting values.
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Figure 3.6: Convergence of 100 iterations of imputed data sets. Simula-
tion and estimation was performed as in Figure 3.5, but 20% of the family
members were randomly removed beforehand. The preprocessing thus per-
formed an imputation of missing members. The figures show that after our
imputing procedure, both algorithms still recover the true parameters.
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Figure 3.7: An ROC curve for the probability of being a risk family, based
on 1000 simulated families with 9 persons (cf. Figure 3.1).

3.4.2 Real data

We applied our algorithm to a family study of CRC [71]. In this study, patients diagnosed
with CRC in the Munich region were recruited. Subsequently, each of these index patients
was given a questionnaire with a blank pedigree to fill out data about all known relatives.
With this obtained pedigree, the Munich Cancer Registry (MCR) [96] was consulted via an
anonymized record-linkage procedure for any CRC diagnoses of the index patient’s relatives
[81]. The result was a pedigree of family data and CRC diagnoses per index patient, where
missing parents were imputed as described in Section 3.4.1.3.

The study was active from September 2012 until June 2014 and resulted in a data set of
611 families, of which 181 were individuals (i.e., a “pedigree” with only one person).

3.4.2.1 Parameter estimates for the real data set

We estimated a prevalence of p1 = 0.901 and a risk factor increase of α = 5.723. This
rather high a priori probability may stem from a bias in the data set, since the collection
procedure preferably selected patients and families that are already exposed to risk. A
more detailed discussion on the results is given in [90].

We then performed a 100-fold bootstrapping of families to obtain bootstrap standard errors.
The values obtained were σ̂p1 = 0.0002 and σ̂α = 0.0229.
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3.4.2.2 Runtime

The data set contained three families with at least 20 members. For the largest family of 23
persons, using the EM algorithm with the sum-product algorithm instead of a Nelder-Mead
optimization showed a reduction of the runtime to 24%.

When using the sum-product algorithm for every family, the runtime was 15 times longer
than a Nelder-Mead optimization, due to the presence of many families with very few
members.

3.5 Discussion

Directly translating mathematical formulas into computer code often results in formally
correct but slow solutions. In our case, a Nelder-Mead optimization would need multiple
evaluations of the marginalized likelihood, which is unfeasible for larger families. An ap-
proach based on peeling [31, 24, 15], however, could have been used to reduce the time for
evaluating the likelihood. The disadvantage of using the Elston-Stewart peeling algorithm
is that as soon as the pedigree contains loops, its runtime increases exponentially with the
cutset (i.e., the number of members that have to be considered jointly) [97]. The EM algo-
rithm coupled with the sum-product algorithm can be extended to pedigrees with loops by
applying the “loopy belief propagation” procedure [62]. Furthermore, peeling algorithms
need to find an optimal peeling order for each pedigree, a problem that still has no gold
standard solution [15]. The sum-product algorithm, on the other hand, directly implies
an efficient order of computing the messages, and thus elegantly circumvents this problem.
Thompson et al. [98] showed that the EM algorithm is a viable alternative to the peeling
algorithm in polygenic models. Our approach differs from this in that we skip the detection
of responsible genes and instead focus on estimating a family’s probability of carrying an
(unspecified) CRC risk factor.

The EM algorithm with an approximating Monte Carlo implementation of the E-step
has previously been used on pedigrees for segregation analysis [43]. We saw that the
EM algorithm in our setting relied on a marginalization over all possible risk vectors for
each pedigree. This problem of calculating marginal densities in hierarchical data such as
pedigrees has usually been tackled by Markov Chain Monte Carlo (MCMC) simulations
and related sampling algorithms [36, 38]. Due to the random sampling, these methods
all yield only approximate solutions and may take a long time to reach stable results.
Instead, we use the sum-product algorithm [62] within the EM algorithm to solve the
necessary marginalization in the E-step in linear instead of exponential time. This provides
a fast and exact solution and allows maximum-likelihood estimation with pedigrees of
arbitrary size, that furthermore is not dependent on an arbitrarily chosen number of MCMC
simulations.
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In contrast to complex segregation analysis, our approach is less specific. In particular, we
model only an unspecific risk “component”, not necessarily a gene or multiple genes, that is
passed down to offspring with a certain predefined probability. We chose this phenotype-
based approach since the causes for familial occurrence of CRC are currently unknown
[49].

Our generic model is therefore not fully in line with Mendelian transmission models. Only
under the assumption of an autosomal dominant risk factor that is rare, so that an affected
individual can be assumed to have the genotype Aa instead of AA, is a constant inheritance
probability of pH = 0.5 justifiable in a Mendelian setting. As an advantage, our approach
can model environmental risk factors such as nutrition, lifestyle, or place of residence by
choosing pH = 1. If one wants to account for a small probability of changing the place
of residence or a probability for children to not adopt the parents’ lifestyle, inheritance
probabilities of less than 1 can be used as well. However, if a large enough data set were
available, it should also be possible to estimate pH robustly enough.

One limitation of the real data set in this study is the relatively small sample size. With
around 600 families, the data set was not large enough to obtain stable estimates. However,
because the focus of this study was methodological, the data set could still be used to show
the runtime improvement of our algorithm. The moderate gain in speed in the application
to the real data set can be explained by two facts: First, the multiplicative time constant for
the sum-product algorithm is larger than that for the calculation of the marginal likelihood,
since the message passing needs more elementary operations than simple summation over
all possible configurations of the family members (yet, as demonstrated in Figure 3.4, this
disadvantage is soon compensated by the exponential increase in runtime of the Nelder-
Mead method). Second, the families in the real data set are mostly small (median size:
6 members), with the exception of a few larger families (maximum size: 23). Thus, the
full power of the EM algorithm will unfold in applications where more larger families are
investigated. The size of the families in such studies is likely to grow in the future, with
the availability of more longitudinal data. Moreover, note that a single, large family of
more than, say, 25 members, will already prohibit the straightforward application of the
marginalization approach.

It should also be noted that for small families, the linear runtime of the sum-product algo-
rithm is slower than the exponential runtime of the marginalization, due to the overhead
in setting up the factor graph (Figure 3.4). In our analysis, the sum-product algorithm
had significant benefits only after a family consisted of more than 20 members.

It is possible to estimate further parameters in this model, such as the shape parameter k.
However, in our case these parameters were external epidemiological information, and thus
already available from more robust previous studies. Moreover, if additional parameters
are estimated, it should then be reevaluated whether the Hessian matrix is still negative
semi definite, i.e. whether the log-likelihood is still concave and unimodal.

Our algorithm can of course also be extended to other models. For example, other pen-
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etrance models can be used, such as a “time shift” model, where the hazard rate is not
multiplied by a factor α, but instead shifted horizontally, by adding a “risk advancement”
of a specific number of years [22]. It is also possible to use response distributions other than
a Weibull distribution. Furthermore, it is possible to extend our method to model true
Mendelian transmission, either by having Zi ∈ {0, 1, 2} model the number of affected alle-
les, or by specifying two latent variables, Z♂ ∈ {0, 1} and Z♀ ∈ {0, 1} per individual, that
is, one for each allele. One would then need a transmission matrix to specify the probabil-
ity of each possible outcome for offspring given the statuses of both parents. Ghahramani
[39] provides a tutorial on how to extend a Bayesian Network such as a pedigree to deal
with multiple latent variables.

When the number of possible genotypes (i.e., the number of possible values for Zi) increases,
both the EM algorithm and the Nelder-Mead optimization suffer from exponential runtime
increases. This is the case, for example, when one works with multilocus genotypes. The
runtime of the EM algorithm is only linear respective to the family size. However, since
the genetic mechanism in our case is unknown, a dichotomized latent variable served our
purpose well.

Faster algorithms such as the one presented in this chapter also open the door for new
analyses that were previously unfeasible. With the sum-product algorithm, we can now
conduct large-scale simulation studies for power and sample size determination, and extract
further information such as bootstrap confidence intervals from the data.

3.6 Conclusion

In this chapter, we developed an efficient algorithm for maximum likelihood estimation
where the observations in the data are partially dependent.

The rising size and complexity of modern data sets make it necessary to revisit popular
algorithms for data analysis and develop improvements in their efficiency. Here, we con-
sidered clinical data in the form of pedigrees, where the presence of latent and inheritable
genetic risk factors greatly complicated the analysis procedure.

First, we implemented two heuristics for accelerating a Nelder-Mead optimization of a
marginalized likelihood, grid purging and memoization, but the order of the runtime was
still exponential. A standard implementation of the EM algorithm results in a runtime
that is also still exponential regarding the family sizes, due to the inheritability of the
latent variables.

However, by considering the pedigree as a Bayesian network, and then factorizing it with
a factor graph and reformulating the E-step by employing a sum-product algorithm, the
runtime could be reduced to linear in terms of the family size.

Similar to the peeling algorithm [31], the sum-product algorithm in essence breaks down
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complex pedigrees into nuclear families, each consisting of father, mother, and all chil-
dren. The number of children does not cause exponential growth of runtime because the
summation is again broken down between each child.

In conclusion, the combination of an EM algorithm with the sum-product algorithm re-
moves the restrictions that exponential runtime imposes on the analysis due to large fam-
ilies, and opens the door for maximum likelihood estimation on large pedigrees.

A useful next step would be to make this risk prediction algorithm available as a web
interface so that clinicians can conveniently enter a family’s pedigree. It will then aid in
assessing the familial CRC risk of individual patients.
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Chapter 4

Genome-wide Generalized Additive
Models

4.1 Chapter summary

Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used
method to study protein-DNA interactions. Despite being a relatively new technique, there
is currently a multitude of software available, but most of these packages are dedicated to
specific applications and are based on mutually incompatible statistical assumptions. To
analyze ChIP-Seq data, practitioners are currently required to use a combination of several
of these dedicated tools for tasks such as calling protein occupancy peaks or testing for
differential occupancies. We therefore aimed to develop a general framework for ChIP-Seq
analysis that can be applied to the entire analysis workflow, from signal extraction to the
analysis of factorial designs.

Here, we present Genome-wide Generalized Additive Models (GenoGAM), which brings the
well-established and flexible generalized additive models framework to genomic applications
using a data parallelism strategy. We model ChIP-Seq read count frequencies as products
of smooth functions along chromosomes. Smoothing parameters are estimated from the
data eliminating the ad hoc binning and windowing needed by current approaches. We
derived a peak caller based on GenoGAM with performance that matches state-of-the-art
methods. Moreover, GenoGAM provides significance testing for differential occupancy with
controlled type I error rate and increased sensitivity over existing methods. By analyzing
a set of DNA methylation data, we further demonstrate the potential of GenoGAM as a
generic analysis tool for genome-wide assays.

We provide an R package called GenoGAM on Bioconductor [37] at https://bioconductor.
org/packages/release/bioc/html/GenoGAM.html.

https://bioconductor.org/packages/release/bioc/html/GenoGAM.html
https://bioconductor.org/packages/release/bioc/html/GenoGAM.html
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4.2 Background

This section briefly covers the experimental and methodical background necessary for this
chapter. For a more detailed review of the material, the references cited herein cover these
topics more thoroughly.

4.2.1 Next-generation sequencing

DNA sequencing is a method used to determine the specific sequence of nucleotides in a
DNA molecule. DNA is comprised of a sequence of four nucleotides, adenine (A), cytosine
(C), guanine (G), and thymine (T). Sequencing the DNA of organisms and individuals
accurately and cheaply is of crucial interest to those working in fields such as synthetic
biology and personalized medicine [87].

In 2003, the Human Genome Project published the first complete human reference genome
[53]. Back then, the state-of-the-art technology was Sanger sequencing, which had al-
ready been in use for almost two decades [77]. It is a method that is slow and expensive
compared to today’s possibilities. The sequencing alone of this first human genome cost
more than 500 million US dollars. As a comparison, the long-desired goal of reaching
the “$1000 genome” (i.e., a fully sequenced human genome that costs no more than 1000
USD to produce) is very close to completion as of 2017. This enormous drop in cost was
made possible by the development of next-generation sequencing (NGS) technology. NGS
combines various techniques to speed up the preparation and sequencing so that massive
numbers of fragments can be sequenced cheaply, accurately, and quickly [77, 68]. NGS
also opens the door for large-scale comparative studies such as ChIP-Seq and RNA-Seq
experiments.

NGS comprises many different sequencing techniques. The most important characteristics,
however, are common to all NGS methods [13]. The DNA is split into millions of small
fragments, typically in the range of 50–500 base pairs (bp, Figure 4.1). These fragments
then have to be prepared by adding adapters to the DNA fragments and amplifying the
templates [77]. The prepared templates can then be sequenced, usually by synthesizing the
complementary DNA strand and imaging fluorescent signals that are emitted each time a
new base is added. The fluorescence noise increases the longer a read gets, so the resulting
reads are usually only between 30 and 50 base pairs (bp) long (Figure 4.1).

Two approaches are then available to sequence fragments. In paired-end sequencing, each
fragment is sequenced from both sides. During the subsequent mapping (Section 4.2.3), we
then align these reads to a reference genome, and find the positions of both reads and thus,
implicitly, also know the unsequenced gap (Figure 4.1). This has the advantage that, after
mapping, we have knowledge about the total insert length and thus the fragment mid-
point. In single-end sequencing, only Read 1 (Figure 4.1) is sequenced for each fragment.



4.2 Background 43

The (average) fragment length then has to be estimated by some other method (Section
4.4.1).

Figure 4.1: Schematic explanation of NGS fragments. In paired-end se-
quencing, the insert (green) is sequenced from both sides. In single-end
sequencing, only Read 1 is sequenced for each fragment.

4.2.2 ChIP-Seq

NGS can be applied to any library of DNA fragments. If one wants to sequence the
unknown genome of a new species de novo, it is sufficient to take random DNA fragments
from all over the genome [84]. However, it is often of interest to obtain only those fragments
to which a specific protein is bound. This way, one can obtain genome-wide occupancy
maps of where a chromatin-related protein binds and investigate how this occupancy map
differs between experimental conditions or phenotypes.

To explore these protein-DNA interactions, chromatin immunoprecipitation followed by
deep sequencing (ChIP-Seq) is the current reference method [91]. It is used to study a
wide range of fundamental genome biology processes covering transcription, replication,
and maintenance.

ChIP-Seq can be applied to study DNA-bound proteins of various functions and therefore
with various patterns of distribution along the genome. These include transcription fac-
tors that bind to DNA sites and regulate (either promote or inhibit) the transcription from
DNA to messenger RNA [55, 10], histone modifications [3, 10] which are found at nucle-
osomes, or the transcription [10] and replication machinery which are even more broadly
distributed.

In this chapter, we analyze several common chromatin-related proteins of interest. First,
DNA Polymerase II (PolII) is involved in DNA replication. Second, a histone modification,
namely the trimethylation of the K4-Lysine of histone 3 (H3K4me3), is commonly found at
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promoters of actively transcribed genes [83]. Third, the Transcription factor II B (TFIIB)
contributes to forming the pre-initiation complex (PIC) and initiating the transcription of
a gene [60].

The ChIP-Seq workflow is illustrated in Figure 4.2. Briefly, it proceeds as follows [25]:
First, proteins that are currently bound to DNA are cross-linked so that they are not
released in the subsequent steps. Then, during fragmentation, the DNA is sheared into
short fragments between 200 bp and 1 kilobase (kb), by means of, for example, sound
energy (a process called sonication). The immunoprecipitation step then uses protein-
specific antibodies to extract only those DNA fragments to which a protein of interest is
bound.

Figure 4.2: Schematic illustration of ChIP-Seq. In step 1, DNA-bound
proteins are immobilized by cross-linking. The DNA is then sheared into
short fragments between 200 and 1000 bp (step 2). Then, in step 3, an-
tibodies that target the protein of interest extract only those fragments
where one of these proteins is bound. Lastly, the DNA is purified (step 4)
and fragments are sequenced (step 5).

The DNA fragments are then released, amplified, and sequenced (Section 4.2.1). Often,
the quantities of interest are the occupancies relative to technical controls such as the
Input (i.e., a sample that was not subject to the immunoprecipitation step), or differential
occupancies between genetic backgrounds, treatments, or combinations thereof.

As an example, one could investigate the occupancy profile of PolII along a human genome.
For this, an experiment would consist of one or multiple replicates of Input and IP, each.
The Input sample is necessary to correct the IP sample for region-specific biases, for ex-
ample because the amplification step is not exactly random but favors certain fragments
based on their GC content [2]. An experiment should ideally consist of more than one
replicate for each experimental condition in order to assess the reproducibility [63]. The
number of fragments sequenced (the sequencing depth) is not equal across all replicates.
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Therefore, the subsequent analysis steps have to consider this imbalance, especially when
multiple replicates are available.

4.2.3 Bioinformatics

Bioinformatics is a relatively new, interdisciplinary field that combines knowledge from
molecular biology, statistics, mathematics, physics, and computer science [9]. It arose as
a response to the breakthroughs in sequencing technology, which made massive amounts
of new data available to molecular biologists. To work with these large data sets, new
methods and software had to be developed.

The analysis pipeline from a finished ChIP-Seq experiment to obtain an answer to a research
question is long and complex. Bioinformaticians provide the necessary tools to cover these
steps. For example, the first step is usually the mapping of the reads obtained from a
NGS experiment to find its originating position in the reference genome. The presence of
complicating factors such as sequencing errors and DNA differences between individuals
or cells (e.g. deletions or insertions) make this task nontrivial. A widely-used mapping
program is called Bowtie [66], which performs read alignment in a fast and memory-efficient
manner.

The result of the mapping is usually a coverage track, which piles up the sequenced reads
and thus shows the number of reads that overlapped a position as a function over the
genomic position. Figure 4.3 shows how the mapped fragments build a coverage track.

Figure 4.3: A coverage track is created by “piling up” the mapped frag-
ments to create a function of read counts per base-pair

After mapping, a common subsequent analysis of ChIP-Seq data is peak calling [110], where
practitioners aim to identify discrete points (peaks) in the genome where the coverage track
shows a significant maximum (possibly after correction by an Input track).

Of course, the field of bioinformatics spans a vast number of other topics. This discussion
should serve only as a brief explanation of the basics necessary for this chapter.
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4.3 Introduction

Although ChIP-Seq is a generic methodology used to study protein-DNA interactions,
statistical analysis methods have been so far dedicated to specific applications. Early work
has focused on transcription factors with discrete binding sites, typically DNA motifs at
promoters or transcriptional enhancers [55, 110]. ChIP-Seq read coverage then shows peaks
localized at the binding sites. The aim of these statistical methods is to identify these
peaks and their statistical significance, typically by controlling the false discovery rate.
For example, MACS [110] is a widely used [32, 108] peak caller that assumes a Poisson
distribution for the count data and computes peak significance based on a combination
of global and local rate. ZINBA [89] combines a negative binomial mixture model for
background and enriched regions with a zero-inflated component for regions with excessive
zero counts. The specific calling of narrow and wide peaks was made possible by JAMM
[51], which makes use of replicates, and is based on a mixture model of enriched and
non-enriched regions.

A more sophisticated problem is to find regions with differential overall occupancies across
conditions (i.e., a significant difference in the amount of DNA-bound protein in a region).
This is done by testing for differences in number of reads overlapping the region [8]. Com-
plementary to testing for overall occupancies, MMdiff [93] allows testing for differences in
shapes in given regions. Lun et al. [70] provide a framework to test differential occupancies
between conditions across windows in given regions while properly controlling for the false
discovery rate. This approach allows testing for differences in overall occupancies and in
shapes.

We have seen that practitioners rely on different statistical frameworks for peak calling
tasks and differential occupancies. Furthermore, flexible handling of replicates and addi-
tional control factors is not always possible. Moreover, current methods rely on binning
and/or sliding window techniques, whose choice of the window size is not data-driven but
subjective. Another limitation is that the more general task of statistical inference of a
genome-wide bias-corrected occupancy track is not addressed.

To resolve the aforementioned limitations, we developed Genome-wide Generalized Ad-
ditive Models (GenoGAM), which provides a statistical framework to address all these
issues. Our model describes the genome-wide occupancy of proteins by smooth functions,
which facilitates downstream applications such as peak calling or differential binding anal-
ysis. GenoGAM normalizes for sequencing depth and can handle factorial experimental
designs, including biological replicates and multiple controls. The amount of smoothing is
estimated in an automatic, data-driven manner and thus avoids introducing subjectivity
from the analyst. When analyzing differential binding in a factorial design, we obtain well-
calibrated per-base-pair p-values. Application to data sets from human and yeast shows
that GenoGAM is as performant as dedicated methods for peak calling and much more sen-
sitive than state-of-the-art differential occupancy methods. By providing an approximation
to a conventional generalized additive model (GAM [45]) that allows a data parallelism
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implementation, GenoGAM scales linearly with the number of data points, making whole-
genome applications computationally tractable. Our method provides a framework that is
applicable not only to ChIP-Seq data but also to other next-generation sequencing data
such as DNA methylation data (Figure 4.4a).

4.4 General methods

4.4.1 Preprocessing

Fragments were centered, reducing each fragment to a single data point. In case of single
end data, the fragment length d was estimated using the Bioconductor package chipseq

and its coverage method. It is defined as the optimal shift for which the number of bases
covered by any read is minimized. Then, the center was taken as the start of the read
shifted by d

2
downstream.

4.4.2 Sequencing depth variations

Variations in sequencing depth were controlled by using size factors computed by DESeq2
[69] (version 2 1.10.0 here and after). This method robustly estimates fold-changes in over-
all sequencing depth by comparing read counts of predefined regions. The selection criteria
for these regions were application-specific and are described in the respective sections.

For peak calling applications, the selected regions were the 1,000 tiles with the smallest
p-value according to DESeq2 test for enrichment of IP over Input performed on total read
counts per tile. This allowed to select tiles that were most likely containing peaks. For
differential binding analyses, all tiles were considered.

4.4.3 A generalized additive model for ChIP-Seq data

We consider an experiment consisting of a set of ChIP-Seq samples. A data point yi is
defined by the read coverage of a ChIP-Seq sample at a specific genomic position (Figure
4.3). We denote by xi the genomic position of the i-th data point, by ji its ChIP-Seq sample
and by yi ≥ 0 the number of fragment centers in sample ji centered at position xi. For
single-end libraries, the fragment center is estimated by shifting the read end position by
a constant (Section 4.4.1). When reducing ChIP-Seq data to fragment centers rather than
full base coverage, each fragment is counted only once. This reduces artificial correlation
between adjacent nucleotides and biases due to different fragment lengths. We model the
counts yi using the following generalized additive model:
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Figure 4.4: GenoGAM concept and applications. (a) GenoGAM
provides a general framework to analyze ChIP-Seq data for both absolute
(left arrow) and differential protein (center arrow) occupancy. It can also
be applied to infer DNA methylation rate from bisulfite sequencing data
(right arrow). (b) ChIP-Seq analysis with GenoGAM yields base-pair res-
olution occupancy profiles with confidence bands. Shown are Input (black)
and IP (blue) centered read counts (dots) and fitted smooths (solid line)
with 95% confidence intervals (ribbons) for the transcription factor TFIIB
for a section of the chromosome XIII of S. cerevisiae. Additionally, the
extracted fold change of IP over Input (green) and gene annotation at the
bottom. Simplified equations depict model constituents.
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yi ∼ NB(µi, θ) (4.1)

log(µi) = oi +
K∑
k=1

fk(xi) zji,k (4.2)

The counts yi are assumed to follow a negative binomial distribution with mean µi (Equa-
tion 4.1) and a dispersion parameter θ that relates the variance to the mean such that
Var(yi) = µi + µ2

i /θ. In this way, the model can account for over-dispersion [8]. The
logarithm of the mean µi is the sum of an offset oi and one or more smooth functions
fk (Equation 4.2). The offsets oi are predefined sample-specific constants that account
for sequencing depth variations (Section 4.4.2). The indicator variable zji,k equals 1 if
the smooth function fk contributes to the mean counts of sample ji and 0 otherwise. As
demonstrated in the following analyses, this flexible formulation allows modeling IP versus
Input experiments as well as factorial experimental designs.

We modeled IP versus Input experiments using GenoGAM with two smooth functions.
First, finput contributes to both Input and IP samples. More specifically, finput models local
ChIP-Seq biases common to Input and IP. Second, fprotein contributes only to IP samples
and models the protein log-occupancy up to one genome-wide scaling factor. Figure 4.4b
shows the application of this model to one ChIP-Seq library for the S. cerevisiae general
transcription factor TFIIB and its Input control (Section 4.5).

In GenoGAM, the smooth functions are represented by cubic splines, which are written
as linear combinations of a set of regularly spaced B-spline basis functions br, i.e. fk(x) =∑
r

βrbr(x). We chose second order B-splines as basis functions, which are bell-shaped cubic

polynomials over a finite support [26]. To avoid overfitting, we use P-splines (penalized
B-splines [30]), which carry out additional smoothing of the functions fk out by penalizing
the second order differences of the spline coefficients, which approximately penalizes second
order derivatives of fk. The optimization criterion for P-splines is the sum of the negative
binomial log-likelihood (depending on the response vector y and the vector β containing
the coefficients of all smooth functions) plus a penalty function that is weighted by the
smoothing parameter λ:

β̂ = argmax lNB(β; y, θ)− λβ>Sβ, (4.3)

where S is a symmetric positive matrix that encodes the squared second-order differences
of the coefficients β [30]. Large values of λ yield smoother functions. This regularization
allows dense placements of the basis functions (between 20 and 50 bp), while relying on
the smoothing parameter λ to protect against overfitting. A single smoothing parameter
common to all smooth functions proved to be sufficient for our applications. For given λ
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and θ, the model fitting was performed using penalized iteratively re-weighted least squares
[106].

The penalized likelihood can also be interpreted in a Bayesian fashion [106], where a multi-
variate Gaussian prior is placed on the coefficient vector β. Large-sample approximations
then yield a multivariate Gaussian posterior distribution for β, and, by the linearity of
fk(x) =

∑
r

βrbr(x), Gaussian posteriors for the point estimates fk(x). This allows for

the construction of pointwise confidence bands [106]. An example of the fitted smooth
functions and their confidence bands for the yeast transcription factor TFIIB is shown in
Figure 4.4b.

4.4.4 Genome-wide estimation of smoothing and dispersion pa-
rameters

To determine the optimal values for λ and θ, generalized cross-validation, the default ap-
proach for GAMs which is based on an analytical leave-one-out large-sample approximation
[106], yielded excessively fluctuating fits indicative of overfitting. We therefore developed
an empirical cross-validation scheme. To reduce computational time, cross-validation was
performed on a subset of all data. For this purpose, we selected a sufficiently large set of
distinct regions that are long enough to not suffer from border effects common to spline
fitting. Using 40 or more distinct regions containing at least 60 basis functions gave satis-
factory empirical results (Table 4.1). Also, it was important to select regions relevant for
the desired application. For peak calling purposes, regions were selected that had the most
significant fold change of IP versus Input read counts.

The global parameters λ and θ were then estimated once on this subset of all tiles. The
selection of relevant tiles for cross-validation was application-specific as outlined in the
respective sections below. In each region, a 10-fold cross-validation was performed, where
a tenth of the data points were randomly removed, the model was fitted on the remaining
data points, and the log-likelihood of the left-out data points was computed.

Short range auto-correlations are strong in ChIP-Seq data and are not fully controlled by
replicates or Input experiments. To avoid overfitting due to short range autocorrelation,
each cross-validation fold did not consist of randomly selected single base pairs but of
short intervals. When replicate samples were available (for all except the TFIIB data
set), intervals could be of greater length because the model can predict samples from the
respective replicates. We set it to twice the estimated fragment length. In the absence of
replicates (TFIIB data set), interval length was set to 20 bp (i.e., approximately a tenth
of the average fragment length.).

For a given pair of values for λ and θ, the score function was defined as the sum of out-
of-sample log-likelihood over all cross-validation folds and all tiles, restricted to the data
points within chunks to not depend on poor fitting in overhangs. Investigation on grid
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values of θ and λ showed that the out-of-sample log-likelihood was typically unimodal. We
therefore used a Nelder-Mead optimization [82] (R function optim) to jointly fit the two
parameters in a computationally faster way than a grid search.

4.4.5 Fitting a GAM genome-wide

Since the computation time of a GAM grows polynomially with the number of basis func-
tions, fitting one model to a whole chromosome is unfeasible. Instead, we propose to fit
separate GAMs on sequential, overlapping intervals (or tiles, Figure 4.5a). We partitioned
each chromosome into equally-sized intervals called chunks. Tiles were then defined as
chunks extended on both sides by equally-sized overhangs. The generalized additive model
was fitted on each tile separately using the gam function of the R package mgcv. Point es-
timates at each base pair of the smooth functions and their standard errors were extracted
with the predict function on the fitted object setting the type parameter to iterms. The
tile fits were then restricted to their chunk to compose the chromosome-wide fit.

As the length of the overlapping intervals increases, agreement of the fit at the midpoint of
the overlap increases. A genome-wide fit is obtained by joining together tile fits at chunk
ends (Figure 4.5a). This approximation yields computation times that are linear in the
number of basis functions at no practical cost in precision (Figure 4.5b). Furthermore, it
allows for parallelization, with speed-ups being linear in the number of cores (Figure 4.5c).
This approximation parallelizes the computation over the data, which will allow future
implementation of GenoGAM in map-reduce frameworks such as Spark [109].

4.4.6 Peak calling

4.4.6.1 GenoGAM-based peak calling and z-score

Because analytical derivatives of P-splines are available, identifying peaks of the protein
occupancy fprotein is straightforward by extracting local maxima where f ′protein(x) = 0 and
f ′′protein(x) < 0 (Figure 4.6).

Values of first and second derivatives of fitted smooth functions were obtained by mul-
tiplying the estimated coefficients with the corresponding derivatives of the B-splines as
obtained from the spline.des function of the R package splineDesign. Local extrema
(at base pair resolution) were identified as positions at which the sign of the first derivative
differed from the one of the preceding position.

To assess the statistical significance of peak heights, we introduced an empirical z-score
that contrasts the estimate of the log-occupancy µ at the peak to a robust estimate of
the background log-occupancy level µ0, taking both background level variance σ2

0 and
uncertainty of peak height σ2 into account:
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Figure 4.5: Per tile-parallelization allows map-reduce implementa-
tion of GAM. (a) Read count (black dots, capped at ≥ 7) and predicted
rates (orange, blue, green, and yellow transparent lines) for four succes-
sive tiles (lower track). Vertical dashed lines denote the junction points.
(b) Distribution of the relative error (difference over mean) at the junc-
tion point of two neighboring tiles, for an overhang of 8 basis functions.
(c) Computing time in seconds (y-axis in log scale) versus region length
in bp (x-axis) for a standard GAM (orange), GenoGAM on a single core
(blue), and GenoGAM on four cores (green). Tiles were 2,400 bp long and
contained 100 basis functions each.
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z =
µ− µ0√
σ2 + σ2

0

. (4.4)

For the z-score, we estimated µ0, the global background mean, and σ2
0, the global back-

ground variance of f(x) as follows: In order to account only for the background with-
out potential peaks, µ0 was estimated as the shorth (from the Bioconductor package
genefilter) of all fitted values f(xi), i = 1, . . . , n, which is defined as the midpoint of
the shortest interval containing half of the data. The fitted values smaller than the shorth
were mirrored on it, such that a symmetric density was created that excludes the values
larger than the shorth, in particular those high values representing peaks. The variance
of this newly created distribution was then estimated in a robust fashion by the median
absolute deviation (MAD) giving σ2

0 (Figure 4.6).

Figure 4.6: Peak calling. (a) Fit of protein log-occupancy fprotein(x)
(top), its first derivative f ′protein(x) (middle) and its second derivative
f ′′protein(x) (bottom). Shown is the same data as in Figure 4.4b, but ex-
tended a little further. (b) Illustration of the z-score computing procedure.

4.4.6.2 False discovery rate for peaks

A practical approach to model the null distribution of peak scores is to assume that false
positive peaks arise from symmetric fluctuations of the background and thus distribute
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similarly to local minima, or peaks found when inverting the role of Input and IP [110].
We therefore estimated the false discovery rate (FDR) using the z-score distributions of
the local minima.

We therefore performed a peak-calling on the negative estimated function, i.e. −fprotein.
Their z-scores were obtained by recomputing µ0 and σ0 and applying the same formula.
The FDR for a given minimum z-score z was estimated by |Vz |

|Pz |+|Vz | , where Pz and Vz are
the sets of peaks and valleys, respectively, with a z-score greater than or equal to z.

4.4.6.3 Parameters of the competitor methods, MACS, JAMM, and ZINBA

Version 2 of the MACS software, MACS2 [110], was run with the default parameters and
the additional flag call-summits. In case of TFIIB, the nomodel parameter was used to
avoid building the shifting model. This was necessary since the default values for mfold

were too high and resulted in worse performance if reduced, compared to absence of a
model.

JAMM [51] was run with default values and peak calling mode (-m) set to narrow assuming
a three component mixture model for background, enriched regions and tails of enriched
regions. Although JAMM computes a score to rank peaks it does not provide a method
to define a threshold for a given FDR or significance. Nevertheless, JAMM applies some
filtering on the complete list of peaks to output a filtered list. Instead of using this filtered
output directly, we used the complete, sorted (by score) peak list and took the top N results
where N is the number of peaks in the filtered output. This improved the performance
of JAMM in some cases (and left unchanged in others). For analysis, where a cutoff for
JAMM was still needed we used the same number of peaks that MACS reported.

For ZINBA [89], the mappability score was generated (generateAlignability) with the
mappability files for 36 bp reads, taken from the ZINBA website https://code.google.

com/p/zinba/. The average fragment length (extension) was specified at 190 bp, window
size (winSize) at 250 and offset (offset) at 125. The FDR threshold was set to 0.1 and
window gap to 0. Peaks were refined (default) and model selection was activated. The
complete model was used (selecttype = "complete"), Input was included as a covariate
(selectcovs = "input count") and interactions were allowed. The chromosome used
to build the model was selected randomly to be ”chrXVI” (selectchr). The parameter
method was set to method = "mixture".

4.5 Yeast TFIIB data set

This data set came from the yeast organism and was a ChIP-Seq experiment done on the
TFIIB transcription factor. This transcription factor often shows peaks around the well-
characterized DNA element TATA-box. The data set contained two samples, one Input

https://code.google.com/p/zinba/
https://code.google.com/p/zinba/
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and one IP sample, both without replicates. The experimental details are available in
Appendix B.1.

4.5.1 Methods

4.5.1.1 GenoGAM model

Because the data set contained no replicates, there was no need for an offset. We used the
following GenoGAM model:

yi ∼ NB(µi, θ)

log(µi) = finput(xi) + fprotein(xi)zji,protein,

where zji,protein = 1 whenever ji is the index of an IP sample and zji,protein = 0 whenever ji
is the index of an Input sample. Further parameter details are given in Table 4.1.

TFIIB ENCODE TFs Differential binding DNA methylation

Genome SacCer2 hg19 SacCer3 mouse build NCBI37
Single/paired end single end single end paired end paired end
Knot spacing (bp) 25 25 50 2000
Tile size (knots) 100 100 60 60
Overhang size (knots) 8 8 15 n/a
Tiles for size factors n/a 1000 all n/a
Tiles for CV 40 40 50 n/a
CV intervals 20 400 400 n/a

Table 4.1: Parameter settings. The table shows all parameter settings
that were used to perform the analyses. The data sets are indicated in bold
in the first row. As analysis on DNA methylation data was only performed
as a proof of concept on one tile, some options are not applicable.

4.5.1.2 TATA-box mapping

For about 20% of yeast promoters, recruitment of TFIIB is triggered by the TATA-box,
providing at these promoters a ground truth for a TFIIB occupancy peak [11]. We mapped
1,105 TATA-boxes genome-wide by regular expression of a consensus motif and considered
1 kb regions centered on TATA-boxes for benchmarking.

Promoter TATA-boxes where defined as instances of the motif TATAWAWR [11] at most
200 bp in 5’-direction and 50 bp in 3’-direction of one of the 7,272 transcript 5’-ends
reported by Xu et al. [107].
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4.5.2 GenoGAM provides a competitive peak caller

We first compared the peak-calling performance of GenoGAM, MACS [110], JAMM [51]
and ZINBA [89] in identifying binding sites of TFIIB.

In the regions defined above, significant peaks (FDR < 0.1) from GenoGAM were substan-
tially closer to TATA-boxes than those of alternative methods (median absolute distance
58 bp, third quartile 144 bp for GenoGAM versus 152 and 247 bp for MACS, 82 and 174
bp for JAMM, and 155 and 237 bp for ZINBA, respectively, Figure 4.7a).

Figure 4.7: GenoGAM identifies protein binding sites with similar
accuracy to state-of-the-art peak callers. (a) Boxplots of distances
between significant peaks and TATA-box (FDR < 0.1, Section 4.4.6.2) for
the yeast TFIIB data set (Section 4.5) for GenoGAM (orange), MACS
(green) and JAMM (blue) and ZINBA (yellow). (b) Proportion of TFIIB
peaks (y-axis) within 30 bp of a TATA-box for GenoGAM (orange), MACS
(green), JAMM (blue) and ZINBA (yellow) versus number of selected peaks
when ordered by decreasing score (x-axis). For each method, transparent
colors indicate peaks that the method considers not significant (FDR >
0.1). (c) Proportion of significant peaks called that are within 30 bp of
motif center and 95% bootstrap confidence interval (error bars) for all
six ENCODE transcription factors (CEBPB, CTCF, USF1, MAX, PAX5,
YY1) on chromosome 22 and for the yeast TFIIB data set.

Moreover, the proportion of peaks within 30 bp of a TATA-box center was twice as high as
for any other method independent of the number of reported peaks (Figure 4.7b), showing
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that the improvement was robust to the score threshold.

We next investigated the reason for the drastic differences observed in the yeast TFIIB
data set between GenoGAM and the other methods. The TATA-box region upstream of
the IDH2 gene illustrates the issue (Figure 4.8a). The peaks reported by GenoGAM are
positions with maximal a posteriori estimate of IP over Input fold-changes. In contrast,
MACS and JAMM report positions with maximal statistical significance [110, 51]. Sta-
tistical significance increases with both effect size and sample size, leading to peak calls
biased toward positions with high total counts in IP and Input (Figure 4.8a). Across all
644 TATA-box regions at which both GenoGAM and MACS identify a peak, total counts
within 50 bp of peak positions were higher for MACS, but count ratios were higher for
GenoGAM (Figure 4.8b), generalizing the observations made for IDH2. The yeast TFIIB
data set was sequenced at a much higher coverage than the ENCODE data set (0.9 unique
fragments per base in average versus less than 0.03 unique fragments per base in aver-
age), leading to stronger discrepancies between significance and robust fold-changes. As
sequencing depth is expected to increase in the near future, we anticipate that robust fold-
change estimates as provided by GenoGAM will be a more sustainable criterion than mere
significance for calling peak positions.

Figure 4.8: Peak position represent maximal fold change rather
than maximal significance. (a) Example region in yeast with Input
(black dots), IP (blue dots) and the smooth function IP over Input with
95% confidence interval (green line) showing a correctly identified peak
position by GenoGAM (orange vertical dashed line) and an incorrect posi-
tion by MACS (green vertical dashed line), due to enrichment in the Input
sample. (b) Scatterplot of the sum of counts (Input + IP) versus ratio of
counts (Input/IP) for GenoGAM divided by MACS on all mutually called
TATA-box positions. The red dot denotes the example region shown in (a)
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4.6 ENCODE transcription factors

Next, we performed a similar peak-calling benchmark than in Section 4.5.2 on the human
chromosome 22 for 6 transcription factors of the ENCODE project [32] selected to be
representative of accuracies in predicting ChIP-Seq peak positions from sequence motifs
[5] (CEBPB, CTCF, MAX, USF1, PAX5, and YY1).

4.6.1 Methods

4.6.1.1 Data processing

Alignment files (BAM files, aligned for the human genome assembly hg19) for ChIP-Seq
data for the transcription factors CEBPB, CTCF, MAX, USF1, PAX5, and YY1 were
obtained from the ENCODE website www.encodeproject.org. All these data sets con-
tained two biological replicates for the protein samples and at least one Input sample.
However, the library sizes of the Input samples were so small that including them resulted
in higher uncertainty about the peaks, for both our approach and alternative approaches.
We therefore conducted the analyses without correction for Input.

4.6.1.2 GenoGAM model

The data set was modeled separately for each transcription factor. Each data set consisted
of IPs with replicates. The following GenoGAM model was used:

yi ∼ NB(µi, θ)

log(µi) = log(sji) + fprotein(xi),

where the offsets log(sji) are log-size factors computed to control for sequencing depth
variation between the replicates (see Section 4.4.2). Further parameter details are given in
Table 4.1.

4.6.1.3 Transcription factor motif mapping

Motif occurrences in the genome were determined by FIMO [42] using the default thresh-
old 10−4 with position weight matrices (PWMs) from the JASPAR 2014 database [74]
with the following IDs: CEBPB: MA0466.1, CTCF: MA0139.1, MAX: MA0058.1, PAX5:
MA0014.2, USF1: MA0093.2, YY1: MA0095.2

www.encodeproject.org
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4.6.2 Results

On these data, GenoGAM performance was comparable to the other methods (95% boot-
strap confidence intervals, Figure 4.7c for significant peaks, Figure 4.9 for distance distribu-
tions, and Figure 4.10 for all cutoffs). Hence, although GenoGAM is a general framework
for ChIP-Seq analysis, it nonetheless provides a peak caller that is at least as performant
as dedicated tools.

Two problems arose when analyzing ChIP-Seq data on the human organism. First, genomes
with more than 231 base pairs (≈ 2.147 billion), e.g., the human genome, have to be
analyzed one chromosome at a time. Additionally, the running time for the human genome
was still rather long, taking between one and two days on a 60-core cluster, even when the
data is pre-filtered for enriched regions.

Figure 4.9: Distances to motif center for ENCODE data. As in
Figure 4.7a for the ENCODE transcription factors CEBPP (a), CTCF(b),
USF1 (c), MAX (d), PAX5 (e), and YY1 (f).

4.7 Differential binding

To assess the performance of GenoGAM for calling differential occupancies, we re-analyzed
the histone H3 Lysine 4 trimethylation (H3K4me3) ChIP-Seq data of a study [99] com-
paring wild type yeast versus a mutant with a truncated form of Set1, the H3 Lysine 4
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Figure 4.10: Proportion of peaks for ENCODE data. As in Figure
4.7b for the ENCODE transcription factors CEBPP (a), CTCF(b), USF1
(c), MAX (d), PAX5 (e), and YY1 (f).

methylase. H3K4me3 is a hallmark of promoters of actively transcribed genes. Thornton
et al. [99] have reported genome-wide redistribution of H3K4me3 in the truncated Set1
mutant, which is depleted at the promoter and enriched in the gene body. Details on the
data processing are available in Appendix B.2.

4.7.1 Methods

4.7.1.1 GenoGAM model

This data set consisted of four samples: two biological replicate IPs for the wild type strain,
and two biological replicate IPs for the mutant strain. We used the following GenoGAM
model:

yi ∼ NB(µi, θ)

log(µi) = log(sji) + fWT(xi) + fmutant/WT(xi)zji,mutant

where zji,mutant = 1 for the two mutant samples and 0 for the wild-type samples. The
offsets log(sji) are log-size factors computed to control for sequencing depth variation and



4.7 Differential binding 61

overall H3K4me3 across all four samples (Section 4.4.2). Further parameter details are
given in Table 4.1.

4.7.1.2 Position-level significance testing

Null hypotheses of the form H0 : fk(x) = 0 for a smooth function fk at a given position
x of interest were tested assuming approximate normal distribution of the corresponding
z-score, i.e.:

Tk(x) ∼ N(0, 1)

Tk(x) =
f̂k(x)

σ̂2
fk(x)

where f̂k(x) and σ̂2
fk(x)

denote point estimate and standard error of the smoothed value

[106] as returned by the function predict(..., type="iterms", se.fit=TRUE) of the R
package mgcv.

4.7.1.3 False discovery rate for predefined regions

Let R1, ..., Rp be p regions of interest, where a region is defined as a set of genomic positions.
Regions are typically but not necessarily, intervals (e.g. genes or promoters). Alternatively,
non-contiguous positions, e.g. all exons of a gene, could also make up a single region.
Regions can be defined a priori or defined on the data using independent filtering [19].
It is crucial to choose a filtering method that is independent of the test statistic of the
subsequent test under the null hypothesis, since otherwise the false positive rate will be
larger than reported [19]. For instance, when testing for significant differences between
two conditions, regions can be selected for having a large total number of reads over the
two conditions [70].

For j ∈ 1, .., p, we then defined Hj
0 as the composite null hypothesis that the smooth

function fk values 0 at every position of the region Rj:

Hj
0 =

∧
xi∈Rj

(fk(xi) = 0)

We then obtained p-values for each region while controlling the false discovery rate with
the following procedure [70]:
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1. Position-level p-values at all region positions were computed using position-level sig-
nificant testing as described above.

2. Within each region Rj, position-level p-values were corrected for multiple testing
using the Hochberg family-wise error rate (FWER) correction [48]. The Hochberg
correction was applied because it has a higher power than Bonferroni’s or Holm’s
method, and the prerequisite that individual test statistics can not be negatively
dependent [17] is given because position-level p-values of one smooth function are
positively associated. The p-value for the null hypothesis Hj

0 was then computed as
the minimal Hochberg-corrected position-level p-value. This step gives one p-value
per region.

3. To then control the FDR across all regions, we used the Benjamini-Hochberg proce-
dure [16] applied to the region-level p-values from step 2.

4.7.1.4 Benchmarking

The R/Bioconductor packages DESeq2 [69], MMDiff [93], and csaw [70] were applied on
original count data and on the base-level permuted data set, for all genes. The log-size
factors were set to 0 for all methods when applied to the permuted data sets. DESeq2
was applied with default parameters. MMDiff was applied with a bin length of 50 bp,
the DESeq method for the normalization factor, and the Maximum Mean Discrepancy
(MMD) histogram distance. The csaw method was applied with a window size of 150 bp
and otherwise default parameters. The window size was determined by a grid search (see
Figure 4.11c), choosing the window size with the most significant genes. In particular, csaw
uses a different procedure to estimate normalization factors than DESeq and MMDiff. We
used the default one as it was in favor of csaw for returning more significant genes.

4.7.2 Higher sensitivity in testing for differential occupancy

We modeled the data with GenoGAM using one smooth function fWT for the wild type
reference occupancy, and a second smooth function fmutant/WT for the differential effect.
The offsets were computed to control for variations in sequencing depth between replicates
and overall genome-wide H3K4me3 level (Section 4.4.2). This yielded base-level log-ratio
estimates and their genome-wide 95% confidence bands (Section 4.7). Figure 4.11a shows
the data and the resulting fit at the gene YNL176C, consistent with the report of reduced
binding at promoter regions.

As mentioned above, the confidence bands are Bayesian credible intervals. Previous studies
based on simulated data showed that these confidence bands have close to nominal coverage
probabilities and can be used instead of frequentist confidence intervals [73]. We estimated
base-level p-values using the point-wise estimates and standard deviations (Section 4.7.1.2).
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Figure 4.11: Statistical testing for factorial designs. (a) Read counts
(dots) and fitted rates with 95% confidence bands for wild-type (black) and
mutant (blue) and the log-ratio of mutant over wild-type with confidence
band (bottom row, green) around YNL176C. (b) Empirical (y-axis) versus
theoretical (x-axis) p-values in base-level permuted count data (Section
4.7.1.3). Shown are p-values at every 200 bp. (c) Number of genes with
significant differential occupancies in mutant over wild type (FDR < 0.1)
reported by GenoGAM (orange) and by csaw (blue) as function of window
size (x-axis). (d) Fold-change of counts in mutant over wild-type in 150
bp windows for all 6607 yeast genes in the -1 to 5 kb region centered on
TSS (vertical black line). The genes are sorted into four groups (separated
by the black horizontal lines) according to which method reports them as
significant. From top to bottom: csaw only (2 genes), csaw and GenoGAM
(861 genes), GenoGAM only (3,548 genes) and none (2,196 genes). Within
each group, genes are ordered by p-values (lowest to highest from top to
bottom). The “csaw and GenoGAM” group is sorted by GenoGAM p-
values.
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To empirically verify that the p-values were at least conservative, we created a negative
control data set by per-base-pair independent permutation of the counts between the four
samples. The offsets were set to 0 and the smoothing and dispersion parameters were
estimated again. This non-parametric permutation scheme makes less assumptions than
previous simulation studies [73]. Nonetheless, per-base-pair p-values in this negative control
experiment were slightly overestimated (i.e., conservative; see Figure 4.11b). These results
show that GenoGAM can be used to identify individual positions of significant differential
occupancies with controlled type I error. Here, correction for multiple testing can be done
using either the Benjamini-Hochberg procedure [16] or more sophisticated procedures that
exploit dependencies between adjacent positions [103].

Complementary to de novo identification, predefined regions, such as genes, can be tested
for differential occupancies. To test for differences at any position in a region using
GenoGAM, we propose to apply Hochberg’s procedure to correct the point-wise p-values
for multiple testing, and to report the smallest of these corrected p-values (Section 4.7.1.3).
To validate this approach, we compared GenoGAM against the following three approaches:
csaw [70], which also tests for differences at any position in the regions, DESeq [8], which
tests for differences in the overall occupancies, and MMdiff [93], which tests for differ-
ences of distribution within the regions but not overall occupancy (Section 4.7.1.4). All
investigated methods empirically controlled the type I error on the permuted data set at
a 5% nominal level (Figure 4.12). On the original data set, the least number of significant
genes (FDR < 0.1) were identified by DEseq (735) and MMdiff (5). The csaw algorithm
gave up to 863 significant genes but the number of identified genes depended strongly on
the choice of the window size (Figure 4.11c). Of all methods, GenoGAM was the most
sensitive, reporting 4,409 significant genes. Of the 863 significant genes found by csaw,
861 genes were found by GenoGAM as well, indicating that GenoGAM captured the same
signal but with a higher sensitivity (Figure 4.11d). The genes reported only by GenoGAM
showed a differential occupancy pattern similar yet weaker to the genes common to csaw
and GenoGAM, with depletion in the promoter and enrichment in the gene body (Figure
4.11d), indicating that GenoGAM captured true biological signal.

4.8 Methylation data

Generalized additive models allow any distribution of the exponential family for the re-
sponse. Therefore, GenoGAM can also be used to model proportions using the binomial
distribution. For ChIP-Seq data, a log-linear predictor-response relationship of the form in
Equation 4.2 is justified by the fact that effects on the mean are typically multiplicative.
However, other monotonic link functions could also be used. Moreover, quasi-likelihood
approaches are supported, allowing for the specification of flexible mean-variance relation-
ships [102].

To test the flexibility of GenoGAM, we conducted a proof-of-principle study on modeling
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Figure 4.12: Significant genes on permuted data. Proportion number
of called genes on permuted data (false positives) at nominal p-value 0.05
(red dashed line).

bisulfite sequencing of bulk embryonic mouse stem cells grown in serum [95]. Bisulfite
sequencing quantifies the methylation rate by converting cytosine residues to uracil, but
leaving 5-methylcytosine residues unaffected. At each cytosine, the data consisted of the
total number ni of fragments overlapping the cytosine and the number yi of these frag-
ments with a methylated cytosine. The quantity of interest was the methylation rate, i.e.
the expectation of the ratio yi/ni. In the original publication, single nucleotide position
methylation rates were estimated using a sliding window approach with an ad-hoc choice
of window size of 3 kb computed in steps of 600 bp.

4.8.1 Methods

4.8.1.1 Data processing

We obtained the data in text table format from Smallwood et al. [95] from the Gene
Expression Omnibus (GEO) repository http://www.ncbi.nlm.nih.gov/gds. The data
provided, was one record per CpG site, with the number of methylated and unmethylated
fragments at the respective site. We used a Python script to process this data into bins of
3,000 bp width every 600 bp, as was done in the original paper.

http://www.ncbi.nlm.nih.gov/gds
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4.8.1.2 GenoGAM model

To model yi, the number of reads of methylated state, out of ni, the total number of reads,
we used the quasi-binomial model defined by:

E(yi/ni) = µi (4.5)

log(
µi

1− µi
) = fmethylation(xi) (4.6)

Var(yi/ni) = θ · µi(1− µi)
ni

, (4.7)

where the scale parameter θ > 0 models the overdispersion. The model was applied on only
one tile with a width of 120 kb, reproducing Figure 2a of Smallwood et al. [95]. Further
parameter details are given in Table 4.1.

4.8.2 Application to DNA methylation data

Figure 4.13 reproduces an original figure by Smallwood et al. [95], showing the fit in
a 120 kb section of chromosome 6. We modeled this 120 kb section with GenoGAM
using a quasi-binomial model, where the response was the number of successes yi out of ni
trials, the log-odd ratio was modeled as a smooth function of the genomic position, and the
variance was equal to a dispersion parameter times the variance of the binomial distribution
(Equation 4.7). Smoothing and dispersion parameters were determined by cross-validation
(Section 4.4.4). The GenoGAM fit was consistent with the original publication [95], but
did not rely on manually set window sizes and provided confidence bands (Figure 4.13).
As expected, wider confidence bands were obtained in regions of sparse data and tighter
bands in regions with more data (Figure 4.13).

4.9 Discussion and Conclusion

We have introduced a generic framework based on generalized additive models to model
ChIP-Seq data, made possible by providing a scalable algorithm that can fit GAMs to large
longitudinal data, in our case whole chromosomes at base-pair resolution. GAMs offer a
powerful method to smooth, correct, and analyze ChIP-Seq data, because of a very simple
way to analyze even complex factorial designs. Unfortunately, the runtime complexity of
a single GAM is polynomial in the length of the x-axis. Applying a GAM to a whole
chromosome is thus unfeasible.

Parallelizing a GAM, on the other hand, is a nontrivial task. Our approach is based on
splitting the genomic data up into consecutive but overlapping regions, and computing
separate models in each region. Strictly speaking, it is incorrect to split up a chromosome
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Figure 4.13: Application to DNA methylation data. Estimated DNA
methylation rates in a 120 kb region of chromosome 6 of the mouse genome
(cf. Smallwood et al. [95]). Shown are the data for bulk embryonic mouse
stem cells grown in serum; ratios of methylated counts for each CpG posi-
tion (black dots), with point size proportional to the number of reads. The
estimated rates are shown for the moving average approach [95] of 3,000
bp bins in 600 bp steps (blue line) and for GenoGAM (orange line) with
95% confidence band (ribbon).
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into multiple regions and fit one model per region, because the data points on the far left
and far right end of a chromosome are, mathematically, not independent. They are however
what we call “almost independent”, in that they do not influence the final estimators
notably. Our approach thus delivers an approximation of the “correct” model, with a
practically imperceptible amount of error [46].

Smoothing and dispersion parameters were obtained by cross-validation, that is, they were
fitted for the accuracy in predicting unseen data. This criterion turned out to provide
useful values of smoothing and dispersion for inference, since we obtain signal peaks close
to actual binding sites of transcription factors when these are known, at least as close
as other dedicated tools. Moreover, this criterion led to reasonable uncertainty estimates
because confidence bands of the fits were found to be only slightly conservative.

The possibility exists to estimate the smoothing and dispersion parameters separately for
each sample, which would result in more robust estimates at the cost of some flexibility.
However, in our analyses the samples within an experiment were all similar enough to
estimate the parameters globally.

Using genome-wide GAMs offers a number of advantages. First, we flexibly model factorial
designs, as well as replicates with different sequencing depths using size factors as offsets.
Second, applying GAMs yields confidence bands as a measure of local uncertainty for the
estimated rates. We showed how these can be the basis for computing point-wise and
region-wise p-values. Third, the output of GAMs are analytically differentiable smooth
functions, allowing flexible downstream analysis. We showed how peak calling can be ele-
gantly handled by using the first and second derivatives. Fourth, various link functions and
distributions can be used, providing the possibility of modelling a wide range of genomic
data beyond ChIP-Seq, as we illustrated with a first application on DNA methylation.

On the human genome, there are still two limitations, mentioned in Section 4.6.2: the
necessity to analyze the data one chromosome at a time and the rather long runtime of
more than 24 hours. Nonetheless, we here established and presented the framework and
its statistical properties. Our group currently works on extending GenoGAM to its full
potential by overcoming both these limitations.

In conclusion, we foresee GenoGAM as a generic method for the analysis of genome-wide
assays.



Chapter 5

Summary, Conclusion, and
Outlook

Leo Breiman [21] described the two cultures of statistical modeling, users of classical
stochastic data models, and users of algorithmic models (machine learning). Data models
assume that the data is being generated by a specific stochastic model, often parametrized
by a small number of parameters. Linear regression is a simple example of a data model.
On the other hand, algorithmic models treat the data generating process as a “black box”,
and focus solely on a good prediction of the response variable.

While algorithmic models (e.g., bagged classification trees) are often better in terms of pre-
dictive quality, most lack the diagnostic outputs that statistical models deliver. Breiman
also argues that as data becomes more intricate, the statistical models become more com-
plex as well, thereby losing their advantage of simplicity and interpretability. He further
argues for the adaptation of algorithmic models in statistical modeling, primarily because
of their superior prediction performance.

However, especially in medical applications, practitioners often need interpretable mod-
els. In these cases, algorithmic “black box” models are an undesirable solution. In this
thesis, I therefore examined two problems of complex data, and showed that with some
improvements, it is still possible to compute statistical data models on them.

In Chapter 3, we explored pedigree data, and developed an EM algorithm that reduces the
complexity of the Maximum-Likelihood estimation from exponential to linear regarding
the family sizes. We developed a tool that can be applied by physicians to quantify the
familial risk for CRC based on a pedigree with disease history.

In Chapter 4, we developed a method that allows computing a GAM on an x-axis of
arbitrary length, by reducing the complexity from polynomial to linear and implementing
a parallelized execution of sequential models. This approach delivers a statistically sound
error correction for NGS experiments such as ChIP-Seq, and provides a unified framework
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that also covers further downstream analyses.

The specific advantages of data models over algorithmic models in this thesis were (a) the
estimation of an interpretable parameter for risk increase in Chapter 3, and (b) allowing
the computation of confidence bands and region-wise significance tests in Chapter 4. The
key contributions from the statistical/methodical side are therefore in both chapters the
development of an efficient estimation algorithm that scales linearly. As for the contribu-
tions from the experimental/applied side, in Chapter 3 we built a calculator for estimating
familial CRC risk that can directly be applied by physicians. In Chapter 4 we created a
software tool for ChIP-Seq analysis that can be applied by bioinformaticians to unify their
analysis pipeline into one general framework.

This thesis presented two implementations of algorithms that can efficiently handle large,
modern data sets. This demonstrated that revisiting and improving established methods
(Section 2.5) is a fruitful approach toward working with data sets that, due to their size
and complexity, can not be analyzed with classical methods anymore.

Future research can continue in this direction, and develop new or improve existing algo-
rithms that enable us to extract as much information as possible from large or complex
data sets.

In conclusion, I agree with Thomas Heinis [46], who said that the time has come to abandon
the need for mathematically exact solutions and settle for approximations with tight enough
error bounds, if doing so helps reduce the complexity of a solution, ideally to linear time.
To paraphrase John Tukey, “an approximate answer to the right question is better than
an exact answer to the wrong question” [100].
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A.1 Efficient computation of likelihoods and marginal-

izations

Since we assume independence among families, the complete likelihood L(θ;x, z) can be
factorized into a product of N family likelihoods [97, Eq. 1.4]. If one denotes the families
in a data set by I = 1, . . . , N and their members by d = 1, . . . , DI , the index i becomes a
combined index I, d from the family index and the member index. We can further define
the sub-vectors xI and zI to be the observed and latent data for only family I. For example,
using this notation, z1 is now a vector of risk statuses for family 1, and not the risk status
of just the first observation. The risk status for the second member in family 1 would be
z1,2.

Equation 3.2 then becomes
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L(θ;x, z) =
N∏
I=1

f(xI , zI) =
N∏
I=1

P(zI) · f(xI |zI)

=
N∏
I=1

{ ∏
d∈FI

P(zI,d) ·
∏
d/∈FI

P(zI,d|z♂I,d
, z♀I,d

) ·
DI∏
d=1

f(xI,d|zI,d)
}

=
N∏
I=1

{ ∏
d∈FI

p
zI,d
1 (1− p1)1−zI,d ·

∏
d/∈FI

p̃
zI,d
I,d (1− p̃I,d)1−zI,d

·
DI∏
d=1

[kλktk−1I,d α
zI,dβmI,d ]cI,d exp(−(tI,dλ)kαzI,dβmI,d)

}

This notation now allows for computationally elegant marginalizations:

Summation in the marginalized likelihood in Equation 3.6

Keeping the notation for families and family members, we can rewrite Equation 3.6 into a
more efficient marginalization:

L(θ;x) =
∑
z

L(θ;x, z)

=
∑
z

N∏
I=1

L(θ;xI , zI)

=
∑
z1

. . .
∑
zN

L(θ;x1, z1) · . . . · L(θ;xN , zN)

=
∑
z1

L(θ;x1, z1) · . . . ·
∑
zN

L(θ;xN , zN)

=
N∏
I=1

∑
zI

L(θ;xI , zI)

=
N∏
I=1

∑
zI

f(xI |zI , θ) P(zI)

This way, we do not sum over 2n possible values for z, but instead
∏N

I=1 2DI values, where
DI is the number of family members in family I.
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Marginalizing the risk carrier probability T
(t)
i from Equation 3.7

The marginalization when computing T
(t)
i ≡ T

(t)
I,d can happen more efficiently, summing

only over one specific family. Since a ZI,d is independent of all x outside of its respective
family’s xI , we can replace the condition on x by xI :

T
(t)
I,d = EZ|x,θ(t)(ZI,d)

= EZI,d|x,θ(t)(ZI,d) (Equation 3.8)

= EZI,d|xI ,θ(t)(ZI,d)

= P(ZI,d = 1|xI , θ(t))

=
∑
zI

zI,dP(zI |xI , θ(t))

Therefore, the marginalizations of the factor graph can be efficiently computed for each
family separately and combined at the end.

A.2 All messages of the sum-product algorithm in

Figure 3.3

Here we show a detailed derivation of all messages for the sum-product algorithm in Figure
3.3. The messages are computed iteratively in 8 steps. Figure A.1 illustrates the messages
computed in each step.

Step 1 In step 1, only the “outermost” messages can be computed, since only they are
not depending on any other messages. In particular, the following messages are
computed:

• µφ1→z1(z1) = φ1(z1)

• µφ2→z2(z2) = φ2(z2)

• µφ3→z3(z3) = φ3(z3)

• µφ4→z4(z4) = φ4(z4)

• µz7→φ789(z7) = 1

• µz8→φ789(z8) = 1

• µz9→φ789(z9) = 1
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The definitions of each factor, e.g. φ1(z1) are available in Supplementary Material
3.3.8

Step 2 In step 2 (see Figure A.1b), we have all information necessary to compute the fol-
lowing four messages:

• µz1→φ5(z1) = µφ1→z1(z1)

• µz2→φ5(z2) = µφ2→z2(z2)

• µz3→φ6(z3) = µφ3→z3(z3)

• µz4→φ6(z4) = µφ4→z4(z4)

Step 3 Now we can compute the messages to the parents z5 and z6:

• µφ5→z5(z5) =
∑

z1

∑
z2

(φ5(z1, z2, z5) · µz1→φ5(z1)µz2→φ5(z2))

• µφ6→z6(z6) =
∑

z3

∑
z4

(φ6(z3, z4, z6) · µz3→φ6(z3)µz4→φ6(z4))

Step 4 In step 4, we can only obtain two new messages:

• µz5→φ789(z5) = µφ5→z5(z5)

• µz6→φ789(z6) = µφ6→z6(z6)

Step 5 In step 5, we now have all incoming messages to φ789 available, which means we can
compute all outgoing messages from φ789:

• µφ789→z5(z5) =
∑

z6

∑
z7

∑
z8

∑
z9

(
φ789(z5, z6, z7, z8, z9)

·µz6→φ789(z6)µz7→φ789(z7)µz8→φ789(z8)µz9→φ789(z9)
)

• µφ789→z6(z6) =
∑

z5

∑
z7

∑
z8

∑
z9

(
φ789(z5, z6, z7, z8, z9)

·µz5→φ789(z5)µz7→φ789(z7)µz8→φ789(z8)µz9→φ789(z9)
)

• µφ789→z7(z7) =
∑

z5

∑
z6

∑
z8

∑
z9

(
φ789(z5, z6, z7, z8, z9)

·µz5→φ789(z5)µz6→φ789(z6)µz8→φ789(z8)µz9→φ789(z9)
)

• µφ789→z8(z8) =
∑

z5

∑
z6

∑
z7

∑
z9

(
φ789(z5, z6, z7, z8, z9)

·µz5→φ789(z5)µz6→φ789(z6)µz7→φ789(z7)µz9→φ789(z9)
)

• µφ789→z9(z9) =
∑

z5

∑
z6

∑
z7

∑
z8

(
φ789(z5, z6, z7, z8, z9)

·µz5→φ789(z5)µz6→φ789(z6)µz7→φ789(z7)µz8→φ789(z8)
)

Step 6 We can now start computing the upward messages from φ789:

• µz5→φ5(z5) = µφ789→z5(z5)
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• µz6→φ6(z6) = µφ789→z6(z6)

Step 7 Here, we compute the upward messages from the factors φ5 and φ6:

• µφ5→z1(z1) =
∑

z2

∑
z5

(φ5(z1, z2, z5) · µz2→φ5(z2)µz5→φ5(z5))

• µφ5→z2(z2) =
∑

z1

∑
z5

(φ5(z1, z2, z5) · µz1→φ5(z1)µz5→φ5(z5))

• µφ6→z3(z3) =
∑

z4

∑
z6

(φ6(z3, z4, z6) · µz4→φ6(z4)µz6→φ6(z6))

• µφ6→z4(z4) =
∑

z3

∑
z6

(φ6(z3, z4, z6) · µz3→φ6(z3)µz6→φ6(z6))

Step 8 In the last step, we can compute the messages from the founder variables to their
respective factors. For the marginalization step in the end, we do not need these
messages, strictly speaking. For the sake of completeness, however, we show their
computation nonetheless:

• µz1→φ1(z1) = µφ5→z1(z1)

• µz2→φ2(z2) = µφ5→z2(z2)

• µz3→φ3(z3) = µφ6→z3(z3)

• µz4→φ4(z4) = µφ6→z4(z4)
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(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

(g) Step 7 (h) Step 8

Figure A.1: Message passing during the sum-product algorithm. The mes-
sages are computed iteratively. Once all but one incoming message are
calculated for a given node, a message is calculated and sent across the
remaining edge. Note that by Kschischang et al. [62], the actual order in
which the messages are calculated is irrelevant for the result.
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B.1 ChIP-Seq library preparation, sequencing and read

alignment of the yeast TFIIB data set

ChIP-Seq for TFIIB was performed essentially as described previously [92] with a few
modifications. Briefly, 600 ml BY 4741 S. cerevisiae culture with C-terminally TAP-tagged
TFIIB (Open Biosystems) was used. Immunoprecipitation was performed with 75 µl of IgG
SepharoseTM 6 Fast Flow beads (GE Healthcare) for 3 hours at 4◦C on a turning wheel.
30 µl of Input sample was taken before immunoprecipitation and stored at 4◦C. IP and
Input samples underwent reverse cross-linking for 2 hours with Proteinase K at 65◦C and
purified using Quiagen MinElute Kit. Samples were digested with 2.5 µl RNase A/T1 Mix
(2 mg/ml RNase A, 5000 U/ml RNase T1; Fermentas) at 37◦C for 1 h, purified and eluted
in 50 µl H2O. ChIP-Seq libraries were prepared using a NEB Next library preparation
kit following manufacturer’s instructions using the complete 50 µl as input. 2 µl of 1.7
µM adapters containing a GGAT barcode and 2 µl of a 0.25 µM adapter containing a
CACT barcode were used for ligation with Input and IP samples, respectively. The final
library was amplified for 22 cycles using Phusion Polymerase and purified using Agencourt
Magnetic beads. Next, 36 bp single end sequencing was performed on an Illumina GAIIX
sequencer at the LAFUGA core facility of the Gene Center, Munich. Single-end 36 base
reads and 4 base reads of barcodes were obtained and processed using the Galaxy platform
[40]. The reads were then demultiplexed, quality-trimmed (Fastq Quality Filter), and
mapped with Bowtie 0.12.7 [66] to the SacCer2 genome assembly (Bowtie options: -q -p

4 -S --sam-nohead -phred33-quals).
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B.2 Data processing of the H3K4me3 data set

Raw sequencing files (H3K4ME3 Full length Set1 Rep 1.fastq,
H3K4ME3 Full length Set1 Rep 2.fastq, H3K4ME3 aa762-1080 Set1 Rep 1.fastq,
and H3K4ME3 aa762-1080 Set1 Rep 2.fastq) were obtained from the Sequence Read Archive
(SRA) repository (http://www.ncbi.nlm.nih.gov/sra). These were paired-end reads.
Reads were aligned to the SacCer3 build of the S. cerevisiae genome with the STAR aligner
[29] (version 2.4.0, default parameters). Reads with ambiguous mapping were removed us-
ing samtools [67] (version 1.2, option -q 255). Gene boundaries were obtained from the
S. cerevisiae genome annotation R64.1.1, restricting gff file entries to type ”gene”.

http://www.ncbi.nlm.nih.gov/sra
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zur Inzidenz von Risikoclustern und zur Möglichkeit ihrer Detektion. Der Gastroen-
terologe, 7:271–272, 2012.

[72] K. Markianos, M. J. Daly, and L. Kruglyak. Efficient multipoint linkage analysis
through reduction of inheritance space. The American Journal of Human Genetics,
68(4):963–977, 2001.

[73] G. Marra and S. N. Wood. Coverage properties of confidence intervals for generalized
additive model components. Scandinavian Journal of Statistics, 39(1):53–74, 2012.

[74] A. Mathelier, X. Zhao, A. W. Zhang, F. Parcy, R. Worsley-Hunt, D. J. Arenillas,
S. Buchman, C.-y. Chen, A. Chou, H. Ienasescu, J. Lim, C. Shyr, G. Tan, M. Zhou,
B. Lenhard, A. Sandelin, and W. W. Wasserman. JASPAR 2014: an extensively
expanded and updated open-access database of transcription factor binding profiles.
Nucleic acids research, 42(Database issue):D142–7, 2014.

[75] G. McLachlan and T. Krishnan. The EM algorithm and extensions. John Wiley &
Sons, 2007.

[76] R. B. Mendelsohn and A. J. Markowitz. Hereditary colon cancer. European Gas-
troenterology and Hepatology Review, 7:251–256, 2011.

[77] M. L. Metzker. Sequencing technologies—the next generation. Nature reviews ge-
netics, 11(1):31–46, 2010.

[78] M. Mezard and A. Montanari. Information, physics, and computation. Oxford Uni-
versity Press, 2009.



BIBLIOGRAPHY 85

[79] D. Michie. Memo functions and machine learning. Nature, 218(5136):19–22, 1968.

[80] G. E. Moore. Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp. 114 ff. IEEE Solid-State Circuits
Newsletter, 3(20):33–35, 2006.

[81] D. Nasseh, J. Engel, U. Mansmann, W. Tretter, and J. Stausberg. Matching study to
registry data: maintaining data privacy in a study on family based colorectal cancer.
Studies in health technology and informatics, 205:808–812, 2014.

[82] J. A. Nelder and R. Mead. A simplex method for function minimization. The
computer journal, 7(4):308–313, 1965.

[83] H. H. Ng, F. Robert, R. A. Young, and K. Struhl. Targeted recruitment of Set1
histone methylase by elongating Pol II provides a localized mark and memory of
recent transcriptional activity. Molecular cell, 11(3):709–719, 2003.

[84] P. C. Ng and E. F. Kirkness. Whole genome sequencing. In Genetic variation, pages
215–226. Springer, 2010.

[85] T. D. Nielsen and F. V. Jensen. Bayesian networks and decision graphs. Springer
Science & Business Media, 2009.

[86] W. P. Petersen and P. Arbenz. Introduction to parallel computing. Oxford University
Press, 2004.

[87] E. Pettersson, J. Lundeberg, and A. Ahmadian. Generations of sequencing technolo-
gies. Genomics, 93(2):105–111, 2009.

[88] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2016.

[89] N. U. Rashid, P. G. Giresi, J. G. Ibrahim, W. Sun, and J. D. Lieb. ZINBA in-
tegrates local covariates with DNA-seq data to identify broad and narrow regions
of enrichment, even within amplified genomic regions. Genome Biology, 12(7):R67,
2011.

[90] A. Rieger and U. R. Mansmann. Bayesian prediction of being a colorectal cancer
risk family. Manuscript in preparation.

[91] G. Robertson, M. Hirst, M. Bainbridge, M. Bilenky, Y. Zhao, T. Zeng, G. Euskirchen,
B. Bernier, R. Varhol, A. Delaney, et al. Genome-wide profiles of STAT1 DNA
association using chromatin immunoprecipitation and massively parallel sequencing.
Nature methods, 4(8):651–657, 2007.

[92] D. Schulz, B. Schwalb, A. Kiesel, C. Baejen, P. Torkler, J. Gagneur, J. Soeding, and
P. Cramer. Transcriptome Surveillance by Selective Termination of Noncoding RNA
Synthesis. Cell, 155(5):1075–1087, 2013.



86 BIBLIOGRAPHY

[93] G. Schweikert, B. Cseke, T. Clouaire, A. Bird, and G. Sanguinetti. MMDiff: quan-
titative testing for shape changes in ChIP-Seq data sets. BMC genomics, 14(1):826,
2013.

[94] M. Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course
Technology Boston, 2006.

[95] S. A. Smallwood, H. J. Lee, C. Angermueller, F. Krueger, H. Saadeh, J. Peat, S. R.
Andrews, O. Stegle, W. Reik, and G. Kelsey. Single-cell genome-wide bisulfite se-
quencing for assessing epigenetic heterogeneity. Nature methods, 11(8):817–820, 2014.

[96] The Munich Cancer Registry. http://www.tumorregister-muenchen.de/en/

index.php, 2016. [Online; accessed 11-October-2016].

[97] E. A. Thompson. Statistical inference from genetic data on pedigrees. In NSF-CBMS
regional conference series in probability and statistics. JSTOR, 2000.

[98] E. A. Thompson and R. Shaw. Pedigree analysis for quantitative traits: variance
components without matrix inversion. Biometrics, pages 399–413, 1990.

[99] J. Thornton, G. Westfield, Y. Takahashi, M. Cook, X. Gao, W. A.R., L. J., A. Mor-
gan, J. Jackson, E. Smith, J. Couture, G. Skiniotis, and A. Shilatifard. Context
dependency of Set1/ COMPASS-mediated histone H3 Lys4 trimethylation. Genes &
Development, 28(2):115–120, 2014.

[100] J. W. Tukey. The future of data analysis. The Annals of Mathematical Statistics,
33(1):1–67, 1962.

[101] J. Waldo, H. Lin, and L. I. Millett. Engaging privacy and information technology in
a digital age. National Academies Press Washington, DC, USA, 2007.

[102] R. W. Wedderburn. Quasi-likelihood functions, generalized linear models, and the
Gauss—Newton method. Biometrika, 61(3):439–447, 1974.

[103] Z. Wei, W. Sun, K. Wang, and H. Hakonarson. Multiple testing in genome-wide
association studies via hidden Markov models. Bioinformatics (Oxford, England),
25(21):2802–2808, 2009.

[104] H. Wickham. The split-apply-combine strategy for data analysis. Journal of Statis-
tical Software, 40:1–29, 2011.

[105] H. Wickham. Advanced R. CRC Press, 2014.

[106] S. Wood. Generalized additive models: an introduction with R. CRC press, 2006.

[107] Z. Xu, W. Wei, J. Gagneur, F. Perocchi, S. Clauder-Münster, J. Camblong, E. Guf-
fanti, F. C. O. Stutz, W. Huber, and L. Steinmetz. Bidirectional promoters generate
pervasive transcription in yeast. Nature, 2009.

http://www.tumorregister-muenchen.de/en/index.php
http://www.tumorregister-muenchen.de/en/index.php


BIBLIOGRAPHY 87

[108] H. Yan, J. Evans, M. Kalmbach, R. Moore, S. Middha, S. Luban, L. Wang, A. Bhag-
wate, Y. Li, Z. Sun, et al. HiChIP: a high-throughput pipeline for integrative analysis
of ChIP-Seq data. BMC bioinformatics, 15(1):280, 2014.

[109] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster
computing with working sets. In Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing, volume 10, page 10, 2010.

[110] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein,
C. Nusbaum, R. M. Myers, M. Brown, W. Li, et al. Model-based analysis of ChIP-
Seq (MACS). Genome Biology, 9(9):R137, 2008.



88



Acknowledgments

I am very thankful to Prof. Dr. Ulrich Mansmann, Prof. Dr. Achim Tresch and Prof. Dr.
Julien Gagneur for giving me the opportunity to work on these projects as well as for their
support and supervision during this period.

I am also grateful to the remaining members of my thesis committee, Prof. Dr. Heike
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