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1. INTRODUCTION 
 

In 2012, approximately 8 million cancer-related deaths were recorded with males being more 

affected (5 millions) than females (3 millions) (Ferlay, Soerjomataram et al. 2015). The world 

age-standardized statistics reported over 100 deaths per 100,000 men and around 80 in 

100,000 women according to United Kingdom cancer research. Cancer causes are numerous 

and may vary in different areas of the world. They include unhealthy lifestyle, obesity, 

physical inactivity, infection with microorganisms such as Helicobacter pylori, tobacco and 

alcohol consumption, genetic factors or exposure to extreme environmental conditions, e.g. 

radiation or poisonous chemicals. There are around 200 different types of cancer based on 

reports of the National Institute of Health (http://www.cancer.gov/types/by-body-location), 

mostly named after organ location or the types of affected cells. Hence, the term cancer 

comprises a collection of diseases, all driven by aberrant regulations of cellular pathways. 

Throughout disease progression, normal somatic cells transform into malignant cells upon 

mutagenesis to generate a primary tumor. Subsequently, distinct tumor cells locally invade 

and spread into surrounding tissues, gain access to blood and lymph circulation and 

metastasize to distant organs. Eventually, overt metastases impair the function of major 

organs such as liver, lungs, and brain, and lead to multi-organ failures, which are the major 

reason of cancer deaths (Chaffer and Weinberg 2011). 

Cells are normally communicating with their neighbors in order to complete an orchestra of 

physiological tasks. A plethora of proteins like hormones and growth factors participate in 

this orchestration of cell homeostasis, including proliferation, differentiation, metabolism, 

apoptosis, and motility, amongst others. Activating or inactivating mutations of central 

proteins involved in the regulation of signaling pathways thus have disastrous consequences 
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and support tumor development. Hence, either overshooting or lack of signal affects proper 

homeostasis and can promote cancer. Alterations of genomic sequence, namely mutation, 

uncontrolled transcriptional programs, and non-physiological protein expression profiles are 

responsible for these changes. 

Two major types of mutations can be discriminated: Loss- and gain-of-function mutations. As 

the names state, mutation in genomic DNA can either result in the destruction or an up-

regulation of gene function. In most cases, mutations of genes cause loss-of function 

(Griffiths., Miller. et al. 2000). However, some mutations generate new functions and/or 

expression patterns of central genes. This type of mutation is named gain-of function mutation 

(Griffiths., Miller. et al. 2000). In the human body, the errors during the process of DNA 

replication is in the range of 10-7 to 10-8 per nucleotide (Schaaper 1993). Often, these 

mutations can be corrected through sophisticated repair mechanisms. For instance, DNA 

polymerase can recognize and replace 99% of mismatches during DNA duplication, a 

function that is termed proof-reading (Brutlag and Kornberg 1972). Additionally, the 

mismatches generated can be also repaired after DNA replication through a process called 

mismatch repair (Pierce 2005). When the unrepaired genomic mutation occurs on a set of 

genes that are termed proto-oncogenes, it may lead to cancerous transformation of normal 

cells. Activating mutations of proto-oncogenes, thus, generate oncogenes (Weinstein and Joe 

2006). Oncogenes encode protein products, including growth factors, growth factor receptors, 

transcription factors, signal transducers that are involved in proliferation or/and apoptosis 

(Croce 2008). In early studies of breast cancer, mutation of the BRCA1 gene was shown to be 

highly associated with breast cancer incidence (Easton, Ford et al. 1995). Later on, mutation 

of the BRCA2 gene was reported to be involved in breast carcinogenesis (Wooster, 

Neuhausen et al. 1994). Another gene first reported as an oncogene in an animal model of 

simian virus 40 (SV40)-induced tumors is p53. Antibodies against p53 were found in human 
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breast cancer patients (Mudenda, Green et al. 1994). Although a function of p53 in 

carcinogenesis was reported (Tan, Wallis et al. 1986), the tumor suppressive role of p53 

emerged as the essential function of p53 in hampering tumor formation. p53 mediates cell 

apoptosis in both, a transcription-dependent and -independent manner (Chi 2014). Another 

gene termed RB1 is involved in the formation of retinoblastoma and was first described by 

Knudson (Knudson 1971). The retinoblastoma protein (Rb) belongs to the group of genes, 

which repress cell proliferation and induce apoptosis, termed tumor suppression genes, is 

found dysfunctional in many cancers. Inactivation of both alleles of RB1 causes the formation 

of retinoblastoma during development of the retina (Knudson 1971). Later on, the role of pRb 

as tumor-suppressor was confirmed by Dunn and colleagues in other human cancers showing 

mutations and deletions of Rb gene (Dunn, Phillips et al. 1989). Beyond the selected 

examples described above, there are actually hundreds of genes shown to associate with 

cancer formation. In addition, infectious organisms have been recognized as a cause of cancer 

for long time. Viruses such as human papillomaviruses (HPV), Hepatis B, Hepatitis C, 

Epstein-Barr, and others could induce 20% of the world's cancer by affecting cell mitosis, 

mutating DNA, and inhibiting apoptosis (Aaron J. Smith, John Oertle et al. 2014). It has been 

well documented that HPV can promote malignancies including cervix and head and neck 

cancer (Adams, Wise-Draper et al. 2014). It has been studied in depth that the two HPV-

encoded oncogenes E6 and E7 can alter cell signaling mechanisms that play important roles in 

the control of cell proliferation (Chen 2015). E6 and p53 together with an ubiquitination 

enzyme E6-AP can form a trimeric complex to cause the degradation of tumor suppressor 

p53, hence, promoting the proliferation of tumor cells (Crook, Tidy et al. 1991). The E7 

oncoprotein is encoded by high-risk HPV subclones, such as HPV 16 and HPV 18. In HPV 

caused cancers, the E7 oncoprotein binds to the ‘pocket domain’ of pRb, which is a central 

domain of its tumor suppression function (Jones and Munger 1996). Moreover, the tumor 
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suppressor p53 can suppress the expression of Nanog, which leads to the differentiation and 

apotosis of normal cells. E6 protein of HPV can induce the degradation of p53 and, thus, leads 

to overexpression of Nanog and inhibition of differentiation and apotosis of cells (Lin, Chao 

et al. 2005). This differentiation inhibition and anti-apototic mechanism implies that HPV 

contributes to carcinogenesis of infected cells. 

1.1 Oncogenes and tumor suppressor genes 
 

One hallmark of cancer is the genetic instability of cells. Abnormal alterations of DNA 

through mutation on proto-oncogenes and tumor suppressor genes are crucial in cell growth 

and programmed cell death (Weinberg 1994). These two functionally defined groups of genes 

regulate fundamental activities of somatic cells including proliferation, apoptosis, and 

differentiation, amongst others. When balanced expression of oncogenes and tumor 

suppressor genes is disrupted by extracellular or intracellular detrimental impacts, normal 

cells undergo tumorigenic changes and become malignant (Bishop 1991). 

1.1.1 Proto-oncogenes and oncogenes 
 

The term proto-oncogenes refer to a family of genes that, when they become activated, can 

transform normal cells to cancerous progeny (Adamson 1987, Weinstein 2006). Mutated, 

activated proto-oncogenes are then termed oncogenes. Normally, proto-oncogenes are 

involved in central, physiological cellular activities including embryogenesis, wound healing, 

cell division. Proto-oncogenes are highly conserved and can be detected in diverse species, 

such as yeast, human and Drosophila (Anderson, Reynolds et al. 1992). The protein products 

they encode comprise growth factors, transcription factors, regulatory proteins in signal 

transduction, amongst others (Weinberg 1989, Cantley, Auger et al. 1991, Hunter 1991). 
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These proteins can play a role in the control of cell proliferation and programmed cell death. 

For instance, RAS proteins represent a group of small GTPases that control cellular activities 

including growth, adhesion, migration, survival and proliferation, cytoskeletal integrity 

(Rajalingam, Schreck et al. 2007). The mutation of ras proto-oncogene family members was 

reported in numerous tumor types. Activated ras proto-oncogenes have been found in 47% of 

colon carcinoma, 81% of pancreatic carcinoma, 32% of lung adenocarcinoma, 88% of 

cholangiocarcinoma, 47% of endometrical adenocarcinomas, 75% of mucinous 

adenocarcinomas of the ovary, 47% squamous-cell carcinomas (SCC) of sun-exposed skins, 

35% of oral carcinoma (Marshall W. Anderson 1992). Actually, ras gene mutations with 

gain-of-functions were the first reported 30 years ago (Der, Krontiris et al. 1982). H-ras, N-

ras, and K-ras oncogenes are the 3 members of Ras superfamily (Rajalingam, Schreck et al. 

2007). Mutations of either one of the Ras genes are frequent cellular events in cancer 

(Fernandez-Medarde and Santos 2011). One of the first ever described somatic mutation 

associated with cancer related to the HRAS gene, which was reported to associate with bladder 

cancer by Reddy et al. HRAS encodes a protein that is crucial in cell mitotic signaling (Reddy, 

Reynolds et al. 1982). Since then, more and more genes that are involved in tumor formation, 

namely, tumor-associated genes, have been described from the RAS gene family. RAS 

proteins transmit signals from the cell surface and couple with different intracellular cell 

signaling networks, ultimately delivering signals to the nucleus, leading to switches of 

different cellular processes such as DNA synthesis, mitosis and intracellular signaling 

pathway (Goodsell 1999). Permanent activation of signaling pathways of the K-ras is strongly 

associated with more than 90% of pancreatic cancer and around half of colon carcinoma 

(Goodsell 1999). Two hot spots of mutations have been reported for ras genes that localized 

to codons 12 and 61. For example, pancreatic adenocarcinomas harbour K-ras mutations with 

a frequency as high as 95% according to literature (Almoguera, Shibata et al. 1988). The 



INTRODUCTION 

	  

	  6 

mutations located on K-ras codon 12, mutating glycine to either aspartic acid, arginine, or 

valine, result in constitutively activated Ras protein variants (Forbes, Bindal et al. 2011). H-

ras is frequently mutated in bladder carcinoma and is especially found in low-gerade tumors 

(Castillo-Martin, Domingo-Domenech et al. 2010, Goebell and Knowles 2010). N-ras 

activating mutations occur in 20-30% of melanomas (Omholt, Karsberg et al. 2002, Hocker 

and Tsao 2007). One of the downstream effector of Ras is the BRAF oncogene, which was 

described in melanomagenesis together with N-ras, indicating that Ras and its downstream 

altered signaling pathway are an important trigger of melanoma formation (Brose, Volpe et al. 

2002, Davies, Bignell et al. 2002, Singer, Oldt et al. 2003). 

There is increasing evidence showing that oncogenes are generated from their precursors, 

proto-oncogenes, through three major pathways: (a) Point mutations of proto-oncogenes can 

lead to permanently active oncogenes, (b) chromosomal rearrangement, deletions, insertions 

and translocation of genes can cause abnormal expression of proto-oncogenes, (c) Extra 

chromosomal copies of a proto-oncogene is generated during gene replication events by 

mistake (Krishna, Singh et al. 2015). 

1.1.2 Tumor suppressor genes 
 

Tumor suppressor genes are genes that protect normal cells from transforming into cancer 

cells. Loss-of-function of these genes or/and gain-of-function of oncogenes due to mutation 

leads to cancer. The possible mechanism is the repression of tumor suppressor genes inducing 

tumor growth by inhibiting proteins that normally act to control cell proliferation (Hinds and 

Weinberg 1994). Among many identified tumor suppressor genes, p53 is the best and most 

intensely investigated. 
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The TP53/P53 (tumor protein) was described firstly as an oncogene in the year 1979, 

however, later a role as a tumor suppressor was determined too (Lane 1992). Understanding 

the role(s) and function(s) of p53 was a difficult task. The first evidence was reported by 

David Wolf and Varda Rotter in the year of 1984, demonstrating that p53 was suppressed in 

Abelson murine leukemia-transformed mouse cells (Wolf and Rotter 1984). Moreover, results 

originating from murine leukemias caused by the Friend erythroleukemia virus pointed to a 

similar direction. These assays lead to the same conclusion that sustained p53 expression in 

cells is crucial to prevent cancer. However, in that time the major knowledge of p53 was 

restrained to its cancer promotion function, and thus it was hard to imagine p53 being 

endorsed with an opposite role in cancer. 

In fact, wild type p53 is a tumor suppressor gene, which is crucial for cells when they 

encounter stress. Abnormal p53 expression is a very common event in human cancer, which 

can cause deregulation of cell division, instability of genome, resistance to stress, and 

eventually formation of cancer (Vogelstein, Lane et al. 2000, Petitjean, Mathe et al. 2007). 

The activation of p53 can be triggered by many types of stress, such as telomere attrition, 

hypoxia, oncogene activation, DNA damage, loss of normal survival and growth signals 

(Ryan, Phillips et al. 2001). Cells with these abnormalities are highly prone to malignant 

transformation. Loss of function of p53 fosters such malignant alterations and, therefore, p53 

is recognized as a guardian gene preventing development of cancer. The activation of p53 can 

lead to the differentiation of cell, senescence and DNA repair, and anti-angiogenesis. 

However, the best-studied function of p53 relates to the induction of cell cycle arrest and 

apoptosis (Bates and Vousden 1999). These functions of p53 can either prohibit the formation 

of oncogenic cells or/and lead to programmed death of abnormal cells. It was reported that 

p53 could regulate the expression of the cyclin-dependent kinase inhibitor p21 directly 

through two specific binding sites on the promoter of its gene (el-Deiry, Tokino et al. 1993, 
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el-Deiry, Tokino et al. 1995). Once p21 becomes activated, it binds to the cyclin-CDK 

complex and prohibits the kinase activity of this complex (el-Deiry 1998). Since CDK kinase 

is a key factor of cell cycle transition, p21 is a potent cell cycle suppressor. p21 could also 

inhibit the function of proliferating cell nuclear antigen PCNA, thereafter arresting DNA 

replication (el-Deiry 1998). 

Apoptosis refers to programmed cell death via intrinsic and extrinsic cues (Fridman and Lowe 

2003). p53 regulates the apoptotic program through both, intrinsic and extrinsic pathways 

(Fridman and Lowe 2003). The intrinsic pathway becomes initiated by DNA damage, 

hypoxia, loss of adhesion, inhibition of growth factors, cytoskeleton damage, endoplasmic 

reticulum stress, macromolecular synthesis inhibition and others (Chipuk, Bouchier-Hayes et 

al. 2006). The intrinsic pathway is controlled by Bcl-2 family members via mitochondrial 

outer-membrane permeabilization (MOMP), which governs the release of cytochrome c from 

mitochondrial intermembrane space into the cytosol (Haupt, Berger et al. 2003). The most 

direct link between p53 and the Bcl-2 family in the intrinsic apoptotic pathway relies in its 

role in the transcriptional regulation of Bcl-2 family members (Fridman and Lowe 2003). 

These include Bcl-2 antagonist/killer (Bak), Bcl-2-associated X protein (Bax) (Miyashita, 

Krajewski et al. 1994), ‘BH3-only’ members Puma (Nakano and Vousden 2001), Noxa (Oda, 

Ohki et al. 2000) and Bid (Sax, Fei et al. 2002). Once cells encounter stress such as DNA 

damage and other pressure as mentioned above, p53 proteins become stabilized upon 

phosphorylation and additional modifications (Vogelstein, Lane et al. 2000, Xu 2003). 

Stabilized p53 accumulates in nucleus and regulates the expression of Bax, Noxa, Puma, Bid 

(Miyashita, Krajewski et al. 1994, Oda, Ohki et al. 2000, Nakano and Vousden 2001, Sax, Fei 

et al. 2002). The extrinsic apoptosis pathway gets activated by p53 through the induction of 

several transmembrane proteins including the cell-surface receptor Fas (CD95/Apo-1), death-

domain-containing receptor DR5 and apoptotic gene PERP (Haupt, Berger et al. 2003). In 
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response to γ-irradiation, p53 can induce the expression of Fas transcriptionally via binding to 

its promoter and first intron of the Fas gene (Nagata and Golstein 1995). In line with this 

finding, DR5 can be also induced by p53 when cells undergo DNA damage (Wu, Burns et al. 

1997). 

Approximately 50% of tumors display p53 mutations (Béroud and Soussi 1998, Hollstein, 

Moeckel et al. 1998, Hainaut and Hollstein 2000), and p53 deregulation is crucial in many 

types of malignancies. In head and neck cancers the mutation rate is even higher with up to 

90% of cases of mutations (Kropveld, Rozemuller et al. 1999). Mutations of p53 predispose 

cells for malignant transformation not only through loss-of-function mechanism, but also via 

gain-of-function (van Oijen and Slootweg 2000). The main mutations occur in the core 

domain (120–292 bp) (van Oijen and Slootweg 2000), which is critical for its DNA-specific 

binding function. For instance, mutated p53 is not able to regulate the CDK inhibitor p21 and 

therefore p21 will not be activated when cells undergo DNA damage. Subsequently, cell cycle 

arrest will not occur. 

Taken together, cancer cells appear as a result of an imbalance of oncogenes and tumor 

suppressor genes, such as activation of ras or/and inactivating mutations of p53. In fact, 

cancer formation is often a much more complicated process comprising multiple aberrations 

in numerous different genes. In 1983, a single oncogene was introduced into normal cells by 

Land and colleagues, which resulted in a lack of transformation of normal cells into a 

transformed status. In fact, the activation of leastwise two oncogenes in a cooperative manner 

was required for full transformation of fibroblasts (Land, Parada et al. 1983). Actually, cancer 

is caused by accumulation of multiple gene mutations in aging process of human beings 

(w.Ruddon 2007), each mutation providing surviving advantage to transformed cells. 
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Overtime, the most aggressive phenotype becomes the major population of tumor entity. This 

complex process is referred to as multistep clonal evolutionary theory (Nowell 1976). 

1.2 Cancer clonal evolution 
 

Evolution is a process that involves successive genetic and phenotypic changes of creatures as 

an adaptation in response to natural selection (Hall 2008). This process was first postulated by 

Darwin in his book ‘On the Origin Of Species’. Heritable alteration of biological populations 

imply natural selection and are responsible for the emergence of new species (Murugaesu, 

Chew et al. 2013). Dobzhansky’s molecular definition of evolution as the alteration in an 

allele’s frequency within a population associated the evolution concept to population 

heterogeneity at the genotypic level (Dobzhansky 1937). Although this concept was initially 

used in biology to explain that evolution across generations occur over time, this notion was 

adapted to describe its role in cancer formation by several scientific groups (Cairns 1975, 

Nowell 1976, Merlo, Pepper et al. 2006). Of note, Nowell cited the Darwinian evolutionary 

concept, claiming that originally transformed somatic cells with high genetic instability could 

generate variability, become sequentially selected, resulting in extremely malignant subtypes 

of tumor cells with highly heterogeneous karyotypes and biology (Nowell 1976). According 

to this concept, it is not difficult to imagine that once mutations take place at the single cell 

level, they might provide proliferative advantage to the cell carrying them. As tumor 

progresses, a large population of uncontrolled, mutated cells are growing, and, due to their 

genomic instability, more and more tumor cells with additional mutations can be generated. 

Thus, over time, a huge tumor population with great genetic heterogeneity is formed. 

Additionally, subpopulations with invasive, metastatic, drug resistant potential among the 

heterogeneous tumor population can come up (Campbell and Polyak 2007). 



INTRODUCTION 

	  

	  11 

The cancer clonal evolution was not solely proposed by Nowell, as described previously, but 

was further supported by other observations in cancer. For instance, genotoxic agents such as 

chemicals can lead to the development of epithelial cancers, and are termed carcinogens. 

Carcinogens contribute two major forces to evolutionary change: increased genetic diversity 

in a population and alterations of selective pressures (Casas-Selves and Degregori 2011). One 

of the most toxic agents is Aflatoxin B1, which is a product of fungus Aspergillus flavus. 

Chronic exposure to this toxin has been demonstrated to bear high potential of hepatocellular 

carcinoma induction (Farazi and DePinho 2006). Aflatoxin B1 can be metabolized by 

cytochrome-P450 enzymes, the metabolite of this reaction is AFB1-8,9 epoxide (AFBO), 

which can intercalate into cellular DNA, generating DNA adducts primarily in cells of the 

liver. DNA adducts that interact with guanine bases can amongst others lead to mutation of 

p53 at codon 249 hotspot in exon 7, which may cause the formation of hepatocellular 

carcinoma (Hamid, Tesfamariam et al. 2013). Moreover, infectious organisms were reported 

to be involved also in cancer evolution. For example, infection of Helicobacter pylori is 

recognized as a cause of stomach cancer (Piazuelo, Epplein et al. 2010). The resulting 

inflammation may be causative of stomach cancer both by producing DNA damaging agents, 

as well as by establishing an abnormal tissue circumstance favoring cancer cells. Hence, extra 

selective pressure is provided for cancer cells during the cancer formation process over time 

(Casas-Selves and Degregori 2011). Another evidence supporting the cancer evolution theory 

is that many subclones of cancer cell populations are resistant to chemotherapeutics after 

treatment, such as temozolomide and the tyrosine kinase inhibitor imatinib (Swords, Quinn et 

al. 2005, Hunter, Smith et al. 2006). In other words, treatment removes cancer cells that are 

sensitive therapeutics, thus maintaining resistant subpopulations. Therefore, therapeutics play 

a role as an artificial selective pressure on cancer evolution over time. 
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To sum up, it is very important to understand cancer from an evolutionary perspective. As 

mentioned above, cancer progression follows the route of evolution; with acquisition of 

mutations cancer cells can proliferate faster, and once under pressure of lacking resources, 

more aggressive phenotypes, including invasive and metastatic cancer cells, can survive and 

become dominant populations. Subsequently, multiple organs are invaded and their functions 

largely devastated by metastatic cancer cells. 

1.3 Cancer stem cell 
 

Generally, the term “stem cell” refers to cells that retained unlimited potential to differentiate 

into diverse types of cells with characteristic phenotypes and are able to self-renew. In 

mammals, two types of stem cells are distinguished: adult stem cells and embryonic stem cell. 

Both types of stem cells can act as progenitors of differentiated cells. 

The cancer stem cell (CSC) theory postulates that only a small subpopulation of cancer cells 

within the primary tumor can initiate tumors. This small group of cancer cells are termed 

‘CSCs’ because they harbor traits resembling features of normal stem cells, including self-

renewal capacity, differentiation, but, additionally, tumorigenicity (Ffrench, Gasch et al. 

2014). Hence, CSCs are responsible for the maintenance of whole tumor cell populations (Tao 

Wang and Li 2015). In a strict CSC model, only cancer stem cells are capable of generating 

tumors, whereas non-CSCs originate from CSC through aberrant differentiation, but lack 

significant tumorigenic capacity (Tirino, Desiderio et al. 2013). Since CSCs are essential for 

the maintenance of a cancer cell population, they became a major therapeutic target in 

oncology. However, treatment opportunities are scarce due to the fact that CSCs display 

characteristics of resistance to chemo- and radio-therapy owing to their low cell division 

frequency (Kaiser 2015), elevated DNA repair activity with lower apoptotic ratio (Skvortsov, 
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Debbage et al. 2015), and efficient drug efflux mechanisms (Lou and Dean 2007, Chen, 

Huang et al. 2013). 

The CSCs concept has been studied for years, but additional insight in this perspective is 

necessary. As mentioned above, CSCs are considered as the precursors of tumors. Hence, 

numerous strategies are being developed to counteract these cells. Currently, methods to study 

CSCs include the analysis of cell surface proteins, sphere formation assays and in vivo tumor 

initiation upon xenotransplantations. The later assay, i.e. the xenotransplantation of selected, 

marker-positive cancer cells into immunodeficient mice to monitor tumor formation in serial 

dilutions remains the ‘gold standard’ of CSC analysis (Tsuyada and Wang 2013). 

CSC markers are generally cell surface proteins intimately linked with phenotypes and 

physiological activities of CSCs. Enrichment of marker-positive CSCs has demonstrated their 

greater tumorigenic potential over marker-negative cells in numerous entities including breast 

(Al-Hajj, Wicha et al. 2003) and colon cancer (O'Brien, Pollett et al. 2007, Ricci-Vitiani, 

Lombardi et al. 2007) amongst others (Visvader and Lindeman 2008). For example, CD44, 

CD133, CD24, EpCAM, CD166, Lgr5, CD47, and ALDH have been recognized as CSC 

markers that allow selective enrichment of CSCs (Gires 2011). Based on these findings, CSC 

markers might represent potential treatment targets. However, until today a fully CSC-specific 

marker could not be defined. All reported CSC markers are expressed not only on CSCs, but 

also in a varying extent on non-CSCs or even healthy somatic cells (Karsten and Goletz 2013, 

Liu, Nenutil et al. 2014). This implies that it is difficult to strictly distinguish CSCs from non-

CSCs using CSC markers only. When considering the high heterogeneity in different types of 

cancer, it is even harder to find universal markers for CSCs of all types of cancer. However, if 

one marker that is only expressed in tumor cell and is negative or at an extreme low level in 

healthy tissues, this marker might be applicable as a cancer therapy target (Karsten and Goletz 
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2013). The epithelial cell adhesion molecule EpCAM is a recurrent marker of numerous 

carcinoma entities (Visvader and Lindeman 2008, Gires, Klein et al. 2009). Furthermore, it 

was found by Went and colleagues that EpCAM overexpression was detected frequently in 

colon, pancreas and prostate adenocarcinomas (Went, Lugli et al. 2004). We will discuss 

EpCAM molecule in detail in next section. 

1.4 Epithelial cell adhesion molecule 
 

Epithelial cell adhesion molecule, in abbreviation EpCAM, was first reported as a tumor-

specific antigen in colon carcinoma cells (Herlyn, Steplewski et al. 1979). Later, the cell-cell 

adhesion function of EpCAM was demonstrated by the group of Litvinov (Litvinov, Velders 

et al. 1994). It was described by the same group that E-Cadherin-mediated cell 

interconnections were weakened following the expression of EpCAM (Litvinov, Balzar et al. 

1997). EpCAM was studied by different research groups and termed in numerous ways 

according to its function and primarily after the monoclonal antibodies used for its isolation. 

Ultimately, an agreement was reached to name the protein EpCAM (Baeuerle and Gires 

2007). 

In carcinoma patients’ cohorts, it was reported that the overexpression of EpCAM was 

strongly related with poor overall survival of breast cancer patients (Spizzo, Obrist et al. 2002, 

Brunner, Schaefer et al. 2008). In normal tissue, EpCAM is located at basolateral membranes 

of cells and weak expression of EpCAM in pseudo-stratified, simple and transitional epithelia 

can be detected (Balzar, Winter et al. 1999). Later on, it was reported by Munz et al. and Osta 

et al. that EpCAM contributed to cell proliferation in different cell lines (Munz, Kieu et al. 

2004, Osta, Chen et al. 2004). In 2009, the mode of action of EpCAM in the regulation of 

proliferation was disclosed as a ‘membrane-to-nucleus missile’ (Carpenter and Red Brewer 
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2009) that transmits proliferative signals via a regulated intramembrane proteolysis (RIP)-

dependent mechanism (Maetzel, Denzel et al. 2009). In this process, EpCAM becomes 

sequentially catalyzed by TACE and a presenilin-2-containing gamma-secretase complex, 

leading to the generation of an extracellular domain EpEx and an intracellular domain EpICD 

(Maetzel, Denzel et al. 2009, Hachmeister, Bobowski et al. 2013, Tsaktanis, Kremling et al. 

2015). EpICD can bind to FHL2, beta-catenin and Lef-1 to form a nuclear complex that can 

interact with DNA at Lef-1 consensus sites including the Cyclin D1 promoter, fostering the 

proliferation of tumor cells (Maetzel, Denzel et al. 2009, Chaves-Perez, Mack et al. 2013). 

Moreover, EpCAM expression was shown in progenitors of hepatocytes during 

developmental processes of the liver, whereas EpCAM expression is lacking in adult 

hepatocytes, except bile ducts (de Boer, van Krieken et al. 1999). Furthermore, it was reported 

that EpCAM is critical in the maintenance of pluripotency of mouse and human embryonic 

stem cells (ESCs) (González B 2009, Ng, Ang et al. 2010). In human embryonic stem cells 

(hESCs), it was reported that the EpCAM nuclear complex directly regulates several 

pluripotency genes including OCT4, NANOG, SOX2, and KLF4 (Lu, Lu et al. 2010). 

Recently, it was shown that EpCAM, together with its associated protein Cldn7, is essential in 

reprogramming of mouse embryonic fibroblasts (MEFs) (Huang, Chen et al. 2011). 

Reprogramming efficiency was enhanced when EpCAM was overexpressed, whereas down-

regulation of EpCAM reduced the reprogramming efficiency in MEFs (Huang, Chen et al. 

2011). 

To sum up, EpCAM was one of the first proteins recognized as a tumor proteins that induces 

immune responses (Herlyn, Steplewski et al. 1979). Thereafter, it was shown to function as a 

cell-cell adhesion molecule, before its role in promoting tumor growth was disclosed. The 

critical role of EpCAM in maintenance of pluripotency of stem cells was also reported. 
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However, the role of EpCAM in cancer is not fully understood. Given the consistent and 

strong expression of EpCAM in numerous carcinoma entities (van der Gun, Melchers et al. 

2010),	   knowledge on the precise function of this molecule in cancer generation and 

progression remains of greatest interest. 

1.4.1 EpCAM gene 
 

The human EPCAM gene is localized on chromosome 2 (2p21) and is approximately 14 kb in 

size (Szala, Kasai et al. 1990). The EPCAM gene encompasses 9 coding exons: exons 1 to 6 

encode the EpCAM extracellular domain, including the signal peptide and EGF-I and EGF-II 

like domains. The transmembrane domain is encoded by exon 7. The intracellular domain of 

EpCAM, also named EpCAM intracellular domain (EpICD), is encoded by exon 8 and 9 

(Szala, Froehlich et al. 1990, Szala, Kasai et al. 1990). 

In 2007, it was demonstrated that the EPCAM gene was a target of the Wnt-beta-catenin 

signaling pathway. In both, normal human hepatocyte and carcinoma cell lines, the 

accumulation of beta-catenin in the nucleus could induce the expression of EpCAM, whereas 

inhibition of formation of Tcf/beta-catenin complex or degradation of beta-catenin led to the 

repression of EpCAM expression (Yamashita, Budhu et al. 2007). Moreover, two Tcf binding 

DNA elements in the EpCAM promoter were found to be specifically bound by Tcf-4 

(Yamashita, Budhu et al. 2007). It was reported by our lab that tumor necrosis factor alpha 

(TNFalpha) inhibits the expression of EpCAM. The suppression of EpCAM is mediated by 

TNF receptor 1 via the TNF receptor-associated death domain protein (TRADD) and through 

the activation of nuclear factor kappaB (NF-kappaB). EpCAM expression might be 

suppressed by NF-kappaB via competing for the transcriptional coactivator p300/CREB 

binding protein (p300/CBP) (Gires, Kieu et al. 2001). Another repressor of the transcription 
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of the EPCAM gene is p53. It was found that p53 binds to DNA elements within the EPCAM 

promoter. A significant reduction of EpCAM expression could be detected when p53 was 

induced in a dose-dependent manner. Inversely, EpCAM expression increase was associated 

to ablation of p53 (Sankpal, Willman et al. 2009). 

Chromatin structure controls the accessibility of transcription factors to the specific binding 

sites within the EPCAM gene, which is affected by epigenetic regulation, including DNA 

methylation and histone modifications (Esteller 2008). DNA methylation takes place mainly 

on cytosines within cytosine-guanine dinucleotides (CpGs) (Bernardina T.F.van der Gun 

2010). CpGs tend to cluster in islands that are usually located in the 5´-regulatory region of 

many genes (Bernardina T.F.van der Gun 2010). Methylation of CpG islands in promoters 

results in transcriptional inactivation of genes. 

It was shown that inactivation of p53 led to demethylation of the EPCAM gene, therefore, 

resulting in increased expression of EpCAM (Nasr, Nutini et al. 2003). In line with this 

finding, upregulation of EpCAM can be induced by downregulation of p53 (Sankpal, 

Willman et al. 2009). Moreover, endogenous EpCAM could be permanently silenced via 

methylation of EpCAM promoter, whereas treatment of EpCAM-negative cells with 

demethylating agents could activate the expression of EpCAM, meanwhile, demethylation of 

the EPCAM gene led to upregulation of EpCAM expression in EpCAM-positive cells (van der 

Gun, Wasserkort et al. 2008). However, treatment with demethylating agent 5-aza in 

hypermethylated EpCAM-negative cell lines including K562 leukaemia and liver HepG2 

failed to induce de novo EpCAM expression. The reason behind this observation might be that 

the expression of EpCAM does not always depend on demethylation in different cells (Yu, 

Zhang et al. 2008). In addition, the discrepancy might be caused by different numbers and 
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localizations of CpGs detected in methylation measurements (Bernardina T.F.van der Gun 

2010). 

Compared to DNA methylation of EPCAM, the histone modification mechanisms at the 

EPCAM promoter are less clear. It was reported that in EpCAM-positive ovarian cancer cells, 

the EPCAM gene was related with acetylated histone 4 (acH4), acetylated histone 3 (acH3) 

and with trimethylation of lysine 4 of histone 3 (H3K4me3), whereas in EpCAM-negative 

cells, no histone modifications were detected in most cases (van der Gun, de Groote et al. 

2011). 

1.4.2 EpCAM protein 

1.4.2.1 EpEx domain 
 

The human EpCAM protein consists of 314 amino acid (aa), which can be separated in a long 

extracellular domain with 242 aa, a single-spanning 23 aa transmembrane domain, and an 

intracellular domain of 26 aa (Balzar, Winter et al. 1999). The EpCAM protein is composed 

of a signal peptide, which is recognized during synthesis process for proper ER (endoplasmic 

reticulum) recognition and becomes removed later (Fig.1.1 arrow 1) (Strnad, Hamilton et al. 

1989). In addition, the EpCAM extracellular domain (EpEX) can be cleaved between two 

arginine residues (Fig.1.1 arrow 2) (Thampoe, Ng et al. 1988, Szala, Kasai et al. 1990, Schon, 

Schon et al. 1993). 
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Figure 1.1: Amino acid sequence of EpCAM protein molecular (Schnell, Cirulli et al. 2013). 

Arrow 1: signal peptide cleavage site; arrow 2: N-terminal cleavage site between Arg-80/Arg-81. (Modified 

picture from U. Schnell) 

Different analyses were performed to identify the structure of EpCAM molecule. It was 

shown that EpCAM is composed of three motifs. The extracellular region of EpCAM consists 

of epidermal growth factor (EGF) like repeats that are located at amino acid position 27-59 

and 66-135 (Molina, Bouanani et al. 1996) and are followed by a cysteine-poor region. The 

epidermal growth factor-like domains can establish a globular structure, which was claimed to 

be necessary for the homophilic cell-cell contact of EpCAM (Balzar, Winter et al. 1999). In 

2014, Pavsic and colleagues reported the crystal structure of the heart-shaped homodimer, 

which is formed by EpEx. In addition, they also described that cleavage of EpCAM by 
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cathepsin L within EGF II domain at Gly79-Arg80 and Leu78-Gly79 leads to disruption of 

the cis-dimeration capacity of EpCAM (Pavsic, Guncar et al. 2014). 

1.4.2.2 EpICD interacts with the actin cytoskeleton 
 

The intracellular domain of EpCAM, namely EpICD, is composed of 26 aa. It has been 

described that two potential alpha-actinin binding sites at aa 289-296 and 304-314, facilitate 

the binding of EpICD and the actin cytoskeleton, therefore, supporting the hypothesis that 

EpCAM mediates cell-cell adhesion (M. Balzar and Litvinov 1998). 

1.4.3 EpCAM signaling 
 

In 2009, our group demonstrated that EpCAM becomes cleaved by TACE and a presenilin-2-

containing gamma-secretase complex through regulated intramembrane proteolysis (RIP) 

(Maetzel, Denzel et al. 2009). EpCAM cleavage releases the extracellular EpEx ectodomain 

and the intracellular EpICD domain. EpICD can form a complex together with FHL2 and ß-

catenin, shuttle into nucleus, and activate cell division through promoting the expression of c-

myc, cyclins and other genes associated with cell proliferation (Munz, Baeuerle et al. 2009, 

Chaves-Perez, Mack et al. 2013) (Fig.1. 2). 

It is also reported that in HCT116 cells, EpICD can activate reprogramming factors including 

c-Myc, Oct4, Nanog, and Sox2, by binding to their promoter regions (Lin, Liao et al. 2012). 

When EpCAM-positive cells were treated with the inhibitor of γ-secretase (DAPT), the 

expression of reprogramming transcription factors such as Nanog, Sox2, c-Myc and Oct was 

impaired as well as some EMT transcription factors. Moreover, elevated EpEx production led 

to enhanced EpICD release and subsequently increased expression of reprogramming factors 

(Lin, Liao et al. 2012). 
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Figure 1.2:Schematic of signaling pathways of EpCAM. Upon cleavage by TACE/PS-2, EpICD shuttles into 

the nucleus in a protein complex. Together with FHL2, β-catenin, and Lef-1, EpICD binds to DNA at Lef-1 

consensus sites. Owing to its capability to interrupt E-cadherin-mediated adhesion, EpCAM provides itself with 

β-catenin as an essential interacting protein. Modified picture from Munz et al (Munz, Baeuerle et al. 2009). 

1.5 EpCAM in Epithelial-to-mesenchymal transition (EMT) 
 

Most tumor cells within primary carcinomas display epithelial traits. In order to loosen from 

the primary tumor bulk and invade into surrounding tissue, disseminate to distant localization, 

and subsequently form metastases, subsets of primary tumor cells shift at least transiently 

from an epithelial into a more mesenchymal status. This change is conducted through a 

systematic cellular biological program named epithelial-to-mesenchymal transition (EMT). 

Since it is a transient alteration between epithelial and mesenchymal status, it is reported that 

the whole mechanism is regulated by epigenetic regulation rather than permanent genetic 
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mutations (Huangyang and Shang 2013). During the EMT process, epithelial neoplastic cells 

lose their typical traits, for instance, cell-cell adhesion, squamous-like shape, low migration 

capacity, and gain invasive features, motility, as well as a spindle-shaped phenotype (Polyak 

and Weinberg 2009, Thiery, Acloque et al. 2009). 

Metastasis formation is a multi-step process, that consists of several critical steps: primary 

tumor cells undergo a phenotypic shift via EMT, tumor cells penetrate into the blood or 

lymphatic stream (intravasation), circulating tumor cells (CTCs) survive in the circulation, 

under certain conditions exit from circulation (extravasation), colonize in distant organs and 

reverse their phenotype through the inversion of EMT: mesenchymal-to-epithelial transition 

(MET) (Kalluri and Weinberg 2009). 

Circulating tumor cells (CTCs), which were detectable in cancer patients´ blood stream, 

showed their potential prognostic significance for several carcinoma entities (Zhe, Cher et al. 

2011, Tsai, Chen et al. 2016). Therefore, these cells have prognostic and functional 

significance, and have gained great attention with respect to quantification and molecular 

characterization. Since EpCAM is ubiquitously overexpressed in carcinoma cells, which 

differs from normal tissue, it was rational to design a platform to capture cancer cells via the 

EpCAM antigen. In 2004, Cristofanilli and coworkers described the CellSearch system to 

isolate CTCs via capture of EpCAM-positive cells in the blood, which was later certified by 

the Food and Drug Administration (FDA) (Cristofanilli, Budd et al. 2004). Genetic and 

epigenetic events are taking place in CTCs in order to escape immune-surveillance and 

survive under harsh conditions in a low metabolic status and behaving like cancer stem cells, 

sticking together to avoid extra damage in the blood stream (Alix-Panabieres and Pantel 

2014). A potential dynamic change of CTCs from epithelial to a mesenchymal phenotype 

would impair the detection of CTCs that relies on the typical epithelial marker EpCAM, since 
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down-regulation of EpCAM was detected in the EMT program (Gorges, Tinhofer et al. 2012, 

Liu, Zhang et al. 2015). Indeed, the implication of dynamic changes between epithelial and 

mesenchymal statuses in CTCs and DTCs was discussed (Gires and Stoecklein 2014). 

Taken together, the expression of the typical epithelial marker EpCAM may be suppressed 

during EMT program during cancer metastatic cascade (Rao, Chianese et al. 2005, Gorges, 

Tinhofer et al. 2012), which might contribute to the aggressiveness and dormancy of CTCs, 

hence, provide better chances for CTCs to survive under harsh conditions. By studying these 

mechanisms, we aim at identifying the function of EpCAM in cancer progression. 

 

Figure 1.3: Schematic view of cancer progression. Due to the accumulation of mutations, primary tumor is 

formed. Some tumor cells are able to transit their phenotype from epithelial to mesenchymal (EMT), thereby 

facilitating them to invade into local tissue, intravasate into the circulation system.Thereafter, they become 
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circulating tumor cells (CTCs), extravasate from the circulating system and localize in distant organ to form 

micrometastases. They are termed disseminated tumor cells (DTCs), and can go through a reverse program 

namely mesenchymal-to-epithelial transition (MET), to propagate and establish macrometastases in secondary 

organ. Picture adapted from Gires O (Gires O 2014) 

1.6 Study aims of the project 
 

Metastasis is a leading cause of death of cancer patients (Gupta and Massague 2006). 

Although major advances have been made in the treatment of cancer, it is still urgent to 

disclose mechanisms of cancer cell mobilization from primary tumors to distant organs in 

order to generate new therapeutic strategies. Many research groups have pointed out that the 

epithelial-to-mesenchymal transition (EMT) is critical during the cancer metastatic cascade. 

Down-regulation of cell-cell adhesion proteins is a frequent event. Due to this reason, tumor 

cells lose contact to their neighboring cells and become motile. Furthermore, the proteins of 

the cytoskeleton, for example vimentin, might also be affected in parallel. EpCAM is 

illustrated by many studies as a typical epithelial marker, and is frequently overexpressed in 

most carcinomas. In vitro, down-regulation of EpCAM facilitates the migration of tumor 

cells. Since the intracellular portion EpICD accelerates proliferation of tumor cells, it is 

rational to imagine that EpCAM is dispensable for circulating tumor cells, but required again 

at later stages of the metastatic process. 

However, all the experiments reported to identify potential role(s) of EpCAM during the 

metastatic cascade were performed in differing systems so far. For instance, data stem from 

clinical studies, rodent animal models and in vitro assays with human cell lines, which have 

been implemented into a tentative model of a dynamic expression of EpCAM during the 

metastatic cascade.  Therefore, the aim of present study is to elucidate the EpCAM expression 

during tumor progression in an all-in-one mouse model that mimics the situation of the 
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metastatic cascade closely, to provide fundamental data for understanding mechanism of 

EpCAM expression pattern in cancer metastasis.  
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2 MATERIAL 

2.1 Chemicals 
	  

Table 2.1 List of chemicals in present project. 

Chemicals Company 

3-amino-9-ethylcarbazol Sigma-Aldrich GmbH, Taufkirchen 

ABC-Kit Vectastain® Elite® PK6100 Vector Laboratories, Burlingame (USA) 

Agarose Roche Mannheim 

Acrylamide 
Protogel ultra pure Schröder Diagnostics, 

Stuttgart 

Ammonium chloride lysing reagent PharM Lyse™, BD Biosciences, USA 

Anorganic salts acids and bases Merck KGaA, Darmstadt 

Antibody dilution buffer 
DCS Innovative Diagnostik-Systeme GmbH 

& Co. KG, Hamburg 

Ammonium persulfate (APS) BioRad, Hercules (USA) 

Aqua dest Braun, Melsungen 

β-Mercaptoethanol Sigma-Aldrich GmbH, Taufkirchen 

Bovine serum albumin (BSA) Sigma-Aldrich GmbH, Taufkirchen 

Dimethylsulfoxide (DMSO) Sigma-Aldrich GmbH, Taufkirchen 

DMEM (4,5g glucose/ with L-glutamine) Biochrom AG, Berlin 

EDTA(Ethylenediaminetetraacetic acid) Carl Roth GmbH & Co.KG, Karlsruhe 

Eosin solution 0,5% Pharmacy Klinikum Großhadern, Munich 

FACSFlow Becton Dickinson, Heidelberg 

FACSSafe Becton Dickinson, Heidelberg 
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Chemicals Company 

FACSRinse Becton Dickinson, Heidelberg 

Fetal calf serum (FCS) Biochrom AG, Berlin 

Glycerine Sigma-Aldrich GmbH, Taufkirchen 

Hematoxylin Gill`s Formula H- 3401 Vector Laboratories, Burlingame (USA) 

Hydrogen peroxide (H2O2) Merck KGaA, Darmstadt 

Mayers Hemalaun solution Merck KGaA, Darmstadt 

Oligonucleotides Metabion, International AG, Planegg 

Organic solvents Merck, KGaA, Darmstadt 

Paraformaldehyde Carl Roth GmbH & Co.KG, Karlsruhe 

PBS tablets Invitrogen, Karlsruhe 

PBS solution Pharmacy Klinikum Großhadern, Munich 

Penicillin Streptomycin (Pen Strep) Biochrom AG, Berlin 

Propidium iodid Sigma-Aldrich GmbH, Taufkirchen 

Protease Inhibitor Cocktail Complete Roche, Mannheim 

Sodiumdodecylsulfat (SDS) Sigma-Aldrich GmbH, Taufkirchen 

Temed BioRad Hercules (USA) 

TissueTek® O.C.T Compound Sakura Finetek, Staufen 

Tris-(hydroxymethyl)-aminomethan (TRIS)   Merck KGaA, Darmstadt 

Triton X-100 Sigma-Aldrich GmbH, Taufkirchen 

Trypan blue Biochrom AG, Berlin 

Trypsin/ EDTA Biochrom AG, Berlin 

Vectashield® with DAPI Biozol GmbH, Eching 
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2.2 Buffer 

2.2.1 Cell culture 
	  

PBS: 8.0g NaCl, 0.2g KCl, 1.15g Na2HPO4, 0.2g 

KH2PO4 to 1l H2O 

Cryopreservation medium: DMEM; 10% DMSO 

DMEM/10%FCS: DMEM; 10% FCS; 1% PenStrep 

2.2.2 Flow cytometry 
	  

Flow cytometry (FC) buffer: 3% FCS in PBS  

Antibody solutions: 1:50 in 50µl FC buffer  

Propidium iodide staining solution: 1µg/ml propidium iodide (PI) in FC buffer  

2.2.3 SDS-PAGE and western blot 
	  

Whole cell lysis buffer (2x): 2 complete protease inhibitor tablets, 1% 

triton-X100 in 50ml PBS 

Laemmli buffer (5x): 62.5mM Tris pH 6.8, 2% SDS; 10% 

glycerol, 5% β-mercaptoethanol, 0.001% 

bromophenol blue 

Stacking gel (4%): 13.3ml 30% acrylamide, 16.6ml 2M Tris pH 

6.8, 0.663ml 0.5M EDTA, 69.44ml dd. H2O  

 

Resolving gel (15%): 50ml 30% acrylamide, 16,6ml 2M Tris pH 

8.9, 0.663ml 0.5M EDTA, 32.74 ml dd. H2O  

Running buffer SDS-PAGE: 150g Tris, 720g glycine, 50g SDS to 5l dd. 
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H2O  

Blotting buffer (10x): 250mM Tris, 1.26M glycerine in dd. H2O 

Western blot washing buffer (PBST): 8 tablets PBS, 4ml Tween-20 to 4l dd. H2O  

 

2.3 Commercially available kits  
 

Table 2.2 List of kits in present project. 

Product Manufacturer 

BCA Protein Assay Pierce,Rockford (USA) 

Immobilon Western Chemiluminescent HRP 

substrate 

Millipore, Bedford (USA) 

 

LightCycler 480 SYBR Green I Master 

Roche, 

Mannheim 

 

MATra transfection reagent Iba GmbH, Göttingen 

Prestained protein marker V Peqlab,Erlangen 

QiaShredder Qiagen, Hilden 

QuantiTect Reverse Transcription Kit Qiagen, Hilden 

RNeasy Mini Kit Qiagen, Hilden 

 

2.4 Antibodies 
 

Table 2.3 List of primary antibodies in present project. 

Product Species Manufacturer 

α-EpCAM Rat IgG2a,κ Becton Dickinson, Heidelberg 
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cloneG8.8 

α-EpCAM Mouse IgG,clone4A7 Sigma-aldrich 

α-Vimentin Rabbit IgG1 Abcam, Cambridge (USA) 

α-hNGFR Mouse FITC labeled 

IgG1, κ 

BioLegend, San Diego (USA) 

α-Cytokeratin Rabbit polyclonal Invitrogen,	  Waltham (USA) 

α-E-Cadherin RabbitIgG,clone24E10 Cell Signaling Technology, Danvers (USA) 

α-CD45 Rat (LOU) IgG2b, κ BD Pharmingen, Heidelberg 

 

Table 2.4 List of secondary antibodies in present project. 

Product Manufacturer 

Fluorescein rabbit-α-rat IgG (H&L) Vector Laboratories, Burlingame (USA) 

Biotinylated goat-α-rabbit IgG (H&L) Vector Laboratories, Burlingame (USA) 

PO Goat-α-rabbit IgG (H&L) Jackson Immuno Research, Newmarket  

(UK) 

Isotype control α-rat IgG Santa Cruz Biotechnology, Heidelberg 

ABC-Kit Vectastain® Elite® PK6100 Vector Laboratories, Burlingame (USA) 

 

2.5 Oligonucleotids 

2.5.1 qRT-PCR primer 
 

Table 2.5 List of primers in present project. 

Primer Sequence 

Fw m Vimentin 5'-CGG AAA GTG GAA TCC TTG CA-3' 
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Bw m Vimentin 5'-CAC ATC GAT CTG GAC ATG CTG T-

3' 

Fw m N-cadherin 5'-AGG GTG GAC GTC ATT GTA GC-3' 

Bw m N-cadherin 5'-CTG TTG GGG TCT GTC-3' 

Fw m E-cadherin 5'-CAG GTC TCC TCA TGG CTT TGC-3' 

Bw m E-cadherin 5'-CTT CCG AAA AGA AGG CTG TCC-3' 

Fw m Snail 5'-GCG GAA GAT CTT CAA CTG CAA 

ATA TTG TAA C-3' 

Bw m Snail 5'-GCA GTG GGA GCA GGA GAA TGG 

CTT CTC AC-3' 

Fw m Slug 5'-TCC CAT TAG TGA CGA AGA-3' 

Bw m Slug 5'-CCC AGG CTC ACA TAT TCC-3' 

Fw m Twist 5'-CGG GTC ATG GCT AAC GTG-3' 

Bw m Twist 5'-CAG CTT GCC ATC TTG GAG TC-3' 

Fw m Zeb1 5'-CCA TAC GAA TGC CCG AAC T-3' 

Bw m Zeb1 5'-ACA ACG GCT TGC ACC ACA-3' 

Fw m Zeb 2 5'-CCG TTG GAC CTG TCA TTA CC-3' 

Bw m Zeb2 5'-GAC GAT GAA GAA ACA CTG TTG 

TG-3' 

Fw m EpCAM 5'-CAG TGT ACT TCC TAT GGT ACA 

CAG AAT ACT-3' 

Bw m EpCAM 5'-CTA GGC ATT AAG CTC TCT GTG 

GAT CTC ACC-3' 
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2.6 Plasmid 
 

pMXs-Puro Retroviral Vector, SV40, puromycin resistance 

2.7 Cell lines 
 

Table 2.6 List of cell lines in present project. 

Cell line Description 

4T1 From Dr. Sebastian Kobold lab 

4T1CTC#1 CTC from blood of 4T1 injected Balb/c mice 

4T1DTC#1 DTC from bone marrow of 4T1 injected 

Balb/c mice 

4T1 ex vivo #4 Primary tumor from 4T1 injected Balb/c 

mice 

4T1 ex vivo #9 Primary tumor from 4T1 injected Balb/c 

mice 

4T1 ex vivo #10 Primary tumor from 4T1 injected Balb/c 

mice 

4T1human NGF-Rtrunc 4T1 transduced with pMXs puro retrovirus 

vector containing truncated human NGF-R 

 

2.8 Consumables  
 

Table 2.7 List of consumables in present project. 

Product Company 
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3 MM Whatman paper Bender & Hobein, Munich 

6-well cell culture plate, flat bottom Nunc, Wiesbaden 

96-well cell culture plate, flat bottom Nunc, Wiesbaden 

96-well cell culture plate, round bottom Nunc, Wiesbaden 

96 magnet bar plate Iba GmbH, Göttingen 

Cell culture flasks and dishes Nunc, Wiesbaden 

Centrifugation tube 15ml/ 50ml Becton Dickinson, Heidelberg 

Centrifugation tube 1,5ml (nuclease-free) Costar, New York (USA) 

Centrifugation tube 1,5ml/ 2ml Eppendorf AG, Hamburg  

Corning® Costar® stripettes Sigma-Aldrich GmbH, Taufkirchen 

Cryomold Tissue-Tek®, Biopsy 

(10x10x5mm) 

Sakura Finetek, Staufen 

 

Cryo tubes Becton Dickinson, Heidelberg 

FACS-tubes Becton Dickinson, Heidelberg 

Gauge needle Microlance™ 3 Millipore, Schwalbach 

Glass flasks Schott AG, Jena 

Glass pipettes Costar, New York (USA) 

Glass plates Amersham Bioscience, Glattbrugg 

(Switzerland) 

Gloves sempercare latex Sempermed, Vienna (Austria) 

Gloves sempercare nitril Sempermed, Vienna (Austria) 

Microlance 3 / 23G 1.25” Becton Dickinson, Heidelberg 

Microlance 3/ 24G 1” - Nr. 17, 0.55x25mm Becton Dickinson, Heidelberg 

Neubauer chamber Assistent, Sondheim/Rhön 

Object slides „Super Frost” Nunc, Wiesbaden 
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Parafilm American National Can, Menasha (USA) 

Pipette tips Starlab, Hamburg 

Quadriperm Sarstedt, Nümbrecht 

Reagent reservoir Costar, New York (USA) 

Safe Seal Tips Professional Biozym Scientific GmbH, Hessisch 

Oldendorf 

Scalpel Feather/ PFM, Cologne 

Syringe Braun, Melsungen 

Sterile filters Millipore, Wiesbaden 

 

2.9 Equipment 
 

Table 2.8 List of equipments in present project.  

Equipment Company 

Autoclave Systec 95 Systec GmbH, Wettenberg 

Blotting System Mini trans Blot BioRad, Hercules (USA) 

DSC-W290 camera SONY(Japan) 

Centifuge Mikro 20 Hettich Lab Technology, Tuttlingen 

Centifuge Mikro 22R Hettich Lab Technology, Tuttlingen 

Centrifuge Rotanta 46 R Hettich Lab Technology, Tuttlingen 

ChemiDoc XRS+ imaging system BioRad, Hercules (USA) 

Flow cytometer „FACS-Calibur“ Becton Dickinson, Heidelberg 

Fluorescence microscope „Axiovert 200“ Carl Zeiss AG, Jena 

Freezer (-20°C, -80°C) Liebherr, Ochsenhausen 
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Fridge (4°C) Liebherr, Ochsenhausen 

Light Cycler 480 System Roche, Mannheim 

Magnet stirrer with heat block Janke & Kunkel, Staufen 

Microliter pipettes Gilson Inc., Middleton (USA) 

Microwave Sharp Electronics GmbH, Hamburg 

Phase contrast microscope “Axiovert 25” Carl Zeiss AG, Jena 

pH-meter WTW, Weilheim 

Pipetboy® Comfort Integra Biosciences, Fernwald 

Power supply E835 Consort bvba, Turnhout (Belgium) 

Power supply E865 Consort bvba, Turnhout (Belgium) 

 

2.10 Software 
 

Table 2.9 List of softwares in present project. 

Precision scales Mettler, Gießen 

Safety cabinet HLB 2448 GS Heraeus Holding GmbH, Hanau 

Scales CP 4202 S Sartorius, Göttingen 

Scales Mettler PM 4600 Mettler, Gießen 

Spectrophotometer „GeneQuantPro“ GE Healthcare, Solingen 

Thermocycler Comfort Eppendorf AG, Hamburg 

Water bath Exotherm U3e1 Julabo, Seelbach 

Software Company 

ApE Wayne Davis (University of Utah), Salt Lake 

City (USA) 
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BD Cell Quest Pro Version 5.2.1 Becton Dickinson, Heidelberg 

Endnote Thomson Reuters Corporation, New York 

(USA) 

Image Lab BioRad, Hercules (USA) 

Image J Wayne Rasband (National Institutes of 

Health), Bethesda (USA) 

LightCycler® 480 SW 1.5 Roche, Mannheim 

MS Office 2010 Microsoft, Redmond (USA) 

Photoshop CS3 Adobe Systems Inc., San Jose (USA) 

Revelation 4.2.5 DYNEX Technologies Inc., Chantilly (USA) 
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3 METHODS 

3.1 Cell culture 

3.1.1 Passaging of cells 
 

Required reagents: 

§ Dulbecco`s Modified Eagle Medium (DMEM) 

§ PBS 

§ Trypsin 

All the cell lines applied in the current project were cultured in DMEM with 10% FCS and 

1% penicillin-streptomycin at 37°C at the atmosphere of 5% CO2. Selection of stably 

transfected cell lines was by the adding of 1µg/ml puromycin into the culture medium. Cells 

were passaged following their individual proliferation speed. For performance of cell lines 

passaging, cells in 80% confluence were rinsed with sterile PBS three times, 3ml each time, 

gently. Trypsin solution was innoculated into culture vessels to cover all the cells on culture 

surface and cells were incubated in 37°C subsequently. Until adherent cells were detached 

from culture surface, trypsin reaction was stopped by adding 3 fold more DMEM containing 

10% FBS and cell suspension was divided with a ratio of 1:6or 1:8, only one portion of cell 

suspension was inoculated and cultivated in flasks. 

3.1.2 Counting of cells 
 

Cell numbers were determined via a Neubauer chamber by using 20µl of the cell suspension 

mixed 1:1 with trypan blue. Dead cells incorporated with the dark blue dye and were excluded 

from counting. Cells concentration was calculated by using the equation demonstrated 

following: 
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Cells/ml = (cells counted/ number of counted large squares) * 104 

3.1.3 Freezing and thawing of cells 
 

Required reagents: 

§ DMEM 

§ PBS 

§ Trypsin 

§ Cryopreservation medium (DMEM containing 10% DMSO) 

For cryopreservation, adherent cells were rinsed gently with PBS three times and harvested 

from culture flasks using trypsin and centrifugation at 280g for 5 minutes. Supernatants were 

discarded, and cell pellets were resuspended in cryopreservation medium then kept in 

cryotubes stored at -80 °C for short-term and in liquid N2 for long-term. 

For thawing, cells in cryotubes were warmed up in a 37 °C water bath quickly and centrifuged 

at 280g for 5 minutes. Supernatants were discarded and cells were then resuspended in fresh 

DMEM with FBS and antibiotic kept in flasks for cultivation at 37 °C. 

3.1.4 Flow cytometry 
 

Flow cytometry is a biological method that characterizes cells via the fluorescence of the 

antibodies bind to cells. In present study, antigen specific primary and secondary antibodies 

were used for staining of living cells, fluorescence intensity was proportional to the 

expression level of tested antigens of cells. Besides, propidium iodide was applied as a dye to 

exclude dead cells from whole detected cell population. 

3.1.4.1 Flow cytometry analysis of membrane proteins 
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Required reagents: 

§ PBS 

§ FC buffer 

§ Specific primary and secondary antibodies 

§ Propidium iodide (PI) (1mg/ml) 

For flow cytometry analysis, cells were collected from culture flasks using trypsin solution as 

described above. Cells were pelleted by centrifuge force of 280g for 5 minutes. The 

supernatant was discarded and cells were washed with PBS gently, half million cells were 

then incubated with first antibody at a 1:50 dilution ratio in FC buffer at room temperature for 

15 minutes. Then, cells were centrifuged and washed, secondary antibody incubation was 

performed as same as first antibody. Afterwards, cells were collected and washed, 

resuspended into 500µl FC buffer with 0.5µl PI. Cells were detected with a BD FACS-

Calibur work station and analyzed with Cell Quest Pro (BD) software. 

3.1.5 Cytospin 
 

Cytospin is a biomedical method that is innovated for detection of cells in body fluids on 

glass slides. Cells were forced to attach on the glass slides surface by a special centrifuge 

platform and immunohistochemistry staining and later on analyses can be performed on the 

cells. 

Required reagents: 

§ PBS 

For cytospin preparation and staining, cells were harvested and washed once with PBS, then 

resuspended in 100µl PBS and transferred into a device containing a cytofunnel, filter paper, 
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and a glass slide. Cells were concentrated onto the glass slides surface upon centrifugation, 

while the PBS was drained through the filter paper. Cytofunnel and filter paper were carefully 

removed from glass slides, which were dried over night at room temperature. On the next day 

cells were fixed and stained according to standard IHC staining protocol. 

3.1.6 Scratch assay 
 

Scratch assay is applied to measure the migration velocity of cells on 2D surface. Cells were 

cultured on 2D surface until confluent before a scratch was generated on monolayer of 

adherent cells. The scratch area was documented and calculated throughout time, and 

migration velocity was determined. 

 

Figure 2.1: Calculation of scratch width. Average width was calculated with the area in the box formed by 

blue and red lines dividing the length of the green line.w=width, l=length. 

3.1.6.1 4T1 and 4T1CTC#1 scratch assay 
 

Reagents required: 

§ DMEM w/FCS 
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§ DMEM w/o FCS 

§ PBS 

Cells were cultured in flasks and pelleted, 2*105 cells of 4T1 and 4T1CTC#1 were plated and 

cultivated with 2 ml DMEM with 10% FCS, 1% pen/strep in 6-well plate. 0,5*105 cells per 

well were seeded in 6-well plate as a proliferation control. Cells were cultivated until 

approximately 90% confluent, medium was replaced with DMEM without FBS and cells were 

starved for 24 hours. Afterwards, a scratch was generated on cell monolayer through the 

center of well using a 200µl sterile tip, in parallel a photo was taken by using SONY DSC-

W290 under Axiovert 25 microscope (Zeiss Q5) at initiate time point. The position on 6-well 

plate of initiate time point photo was marked to ensure that at following photos at different 

time points were taken at same position. Later on, all the photos were  analyzed by Image J 

software. All the calculations were performed by using Microsoft Excel. 

Equation of calculations are following: 

W=Scratch area/L 

V=(Wt0-Wtx)/ Δt 

Pr=Nf/Ni 

Vabs=V/Pr 

W= width of the scratch 

L= length of the scratch 

V= migration velocity of tumor cells 

Wt0= width of the scratch at time point 0 
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Wtx= width of the scratch at time point x 

Δt= time difference between time point 0 and x 

Pr= proliferative ratio 

Ni= seeding cell number of proliferation control 

Nf= final cell number of proliferation control 

Vabs= absolute migration velocity of tumor cells 
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3.2 Molecular methods 

3.2.1 Isolation of mRNA 
 

For the extraction of mRNA from cells, the RNeasy Mini Kit (Qiagen) with QiaShredder 

columns (Qiagen) was applied following the manufacturer’s protocol. Extracted mRNA was 

stored at -80°C until further use. 

3.2.2 Reverse transcription polymerase chain reaction (RT-PCR) 
 

Isolated mRNA was reverse transcribed into cDNA and used as template for PCR or qRT-

PCR amplification assays. 

When mRNA was isolated from cells, the concentration was measured by „GeneQuantPro“ 

spectrophotometer (GE Healthcare). Then, 1µg of the mRNA was added to 2µl of gDNA 

wipeout buffer and the mixture was filled up to 14µl with RNAse-free H2O. The mixture was 

warmed up to 42°C for 2 minutes to eliminate genomic DNA in the probes and then promptly 

placed on ice. For cDNA generation, 1µl reverse transcriptase, 1µl primer mix and 4µl 

Quantiscript RT-buffer were added to the previous solution and the mixed solution was 

incubated for 30min at 42°C. Ultimately, the mixture was heated up to 95°C for 3 minutes to 

stop the reverse transcription reaction. 
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Standard reaction procedure: 

Mix 1: Mix 2: 

mRNA 1µg Quantiscript RT 1µl 

gDNA wipeout buffer 2µl Quantiscript RT-buffer (5x) 4µl 

RNAse free H2O add to 14µl Primer mix 1µl 

Mix well at the beginning Mix with Mix1 for reaction 

 

Standard temperature settings: 

Genomic DNA elimination 2 min 42°C 

Pause                                    1 min on ice then add mix 2 

RT-PCR reaction                  30 min 42°C 

RT reaction break down       3 min 95°C 

After reverse transcription, cDNA samples were stored at -20°C until further use. 

3.2.3 Quantitative Real-Time PCR (qRT-PCR) 
 

Quantitive RT-PCR is a method that can facilitate the comparison of the expression of a gene 

of interest transcriptionally across cell lines or within the same cell line with different 

treatments. 

In our qRT-PCR assays, the LightCycler 480 SYBR Green I Master kit (Qiagen) was applied. 

A master-mix was mixed beforehand according to the amount of templates and samples to be 

detected. Each probe was repeated in triplicates. 
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Standard master-mix (per reaction): 

cDNA template 1µl 

Primer mix 2µl 

SYBR Green master-mix (2x) 5µl 

ddH2O 2µl 

Total 10µl 

 

Primer mix: containing forward and backward primers (each 10µl of a 100µM stock), 1:10 

diluted with 180µl ddH2O. 

2x SYBR Green master-mix (Roche): encompasses DNA-polymerase, SYBR-Green and 

reaction buffer. 

Standard reaction setup: 

Initial denaturation 10 min,95°C 

denaturation 30 sec, 95°C 

Annealing and elongation 60 sec, 72°C back to denaturation step, 45 

repeats 

Cooling/Storage  ∞ 4°C 

 

Data was acquired using a Light Cycler 480 (Roche) and calculated with LightCycler 480 SW 

1.5 (Roche) and Microsoft Excel. 

Calculation of different mRNA levels was based on crossing points (Cp)-values, which 

showed fluorescence signal of a probe emited above the threshold (Roche 2014). 
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Calculations were the following: 

1. Average of Cp-values: Cp = ∑Cp/3 

2. Standardisation to a housekeeping gene (HG): 

∆Cp= Cp (gene) - Cp (HG) 

 

3.3 Biochemical methods 

3.3.1 Preparation of whole cell lysates 
 

Required reagents: 

§ Whole cell lysis buffer (2x) 

§ PBS 

§ Laemmli buffer (5x) 

For generation of whole cell lysates, cells were harvested and washed gently with PBS. Lysis 

buffer (2 fold of pellet volume) 2x concentrated was added to cell pellets. The probes were 

maintained on a rotation wheel at 4°C and mixed thoroughly for 10 minutes. Afterwards, 

probes were centrifuged at 16000rpm for another 10 minutes to clean cell debris. Supernatants 

containing proteins were kept at -20°C or directly utilized for protein concentration 

measurement via BSA-assay. Ultimately, Laemmli buffer was added to the lysates and 

samples were denatured at 95°C for 5 minutes (Laemmli 1970). Then, protein probes were 

stored at -20°C until further use. 

3.3.2 Measurement of protein concentration (BCA-assay) 
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Required reagents: 

§ BCA-assay kit 

Protein concentrations were measured by using the BCA-assay kit following the 

manufacturer`s protocol. 1µl of the protein samples was mixed with 99µl BCA solution and 

absorbance at 595nm wavelength was measured with a spectrophotometer („GeneQuantPro“, 

GE Healthcare). All measurements were performed in triplicates. For calculation of protein 

concentrations, a probe containing bovine serum albumin (BSA) with standard concentration 

was used as a standard curve and background (BG) value of BCA was subtracted. 

Calculation was performed with Microsoft Excel via the equation below: 

C (probe) = ((Aλ(probe) - Aλ(BG) )/(Aλ(BSA) - Aλ(BG) )) * C (BSA) 

Cλ = protein concentration/ml 

Aλ = absorbance 

3.3.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
 

Required reagents: 

§ 10x SDS running buffer 

§ Resolving gel 

§ Stacking gel 

§ APS 

§ TEMED 

§ ddH2O 
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Resolving gel (15%) Stacking gel (4%) 

30% acrylamide 50ml 30% acrylamide 13.3ml 

2M tris pH 8.9 16.6ml 2M tris pH 6.8 16.6ml 

0.5µ EDTA 663µl 0.5µ EDTA 663µl 

ddH2O 32.74ml ddH2O 69.44ml 

 

SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) is commonly used 

to separate proteins based on their molecular weight. The migration capacity of proteins is 

proportional to molecular weight, given they do not differ substantially in charge. 

Accordingly, smaller proteins migrate faster than those with high molecular weight. 

Standard SDS-PAGE consists of two different types of matrix, i.e. a stacking gel, which 

collects all proteins at the boundary between the two gels, and the resolving gel, in which the 

proteins are actually separated. 10ml resolving gel (15%) was generated using a mixture of 

50µl APS and 30µl TEMED, transferred into the gel chamber and covered with ddH2O to 

form a level surface. After polymerization the water was removed and 2ml of stacking gel 

solution was generated with a mixture of 30µl APS and 15µl TEMED, inoculated and 

solidified on top of the running gel. Subsequently, same amounts of protein probes were 

loaded on gels. Gel electrophoresis was conducted for 15min at 15mA and 2h at 30mA per gel 

saturated with SDS running buffer. Thereafter, gels were used for immunoblotting. 

3.3.4 Immunoblotting (western blot) 
 

Required reagents: 

§ Methanol 

§ 1x blotting buffer 
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§ Blocking solution (5% milk in washing buffer) 

§ Washing buffer (PBST) 

§ Specific primary and secondary antibodies 

§ Primary antibody solution (3% BSA in washing buffer) 

§ Secondary antibody solution (5% milk in washing buffer) 

§ Chemiluminescent HRP substrate 

A wet blotting system (Blotting System Mini trans Blot, BioRad) was used for 

immunoblotting. With this system, proteins separated in a polyacrylamide gel can be blotted 

onto a polyvinylidene fluoride (PVDF) membrane. Firstly, membranes were first merged into 

methanol for one minute and then moved into blotting buffer. After assembling the blotting 

device, blotting was performed for 50 minutes at 100V at room temperature. 

After blotting, PVDF membranes were first merged in blocking solution for minimally 30 

minutes at room temperature to minimize unspecific antibody binding on membranes. Then 

membranes were washed in PBST for 15 minutes and incubated with first antibody (diluted in 

5ml primary antibody solution) for 1 hour at room temperature or overnight at 4°C. 

Subsequently, membranes were washed in PBST for 15 minutes and incubated with the 

appropriate secondary antibody for 45 minutes at room temperature (diluted in 5ml secondary 

antibody solution). After washing in PBST for 15 minutes, antigen-antibody signals were 

amplified upon chemiluminescent HRP substrate (Millipore). Protein bands were detected 

with a ChemiDoc XRS+ imaging system (Biorad) and analyzed using ImageLab (Biorad) and 

Photoshop (Adobe) software. 

3.4 Immunohistochemistry 
 

Required reagents: 



METHODS 

	  

	  50 

§ Methanol (-20°C) 

§ PBS 

§ Paraformaldehyde (PFA) 

§ Horse serum 

§ Tris buffer (0.05M, pH 7.4) 

§ Brij solution (50% Brij in PBS) 

§ Specific primary and secondary antibodies 

Tumor probes were preserved in cryomolds, embedded with Tissue Tek gel and snap frozen 

in liquid nitrogen. Frozen tumor samples were sectioned to serial slices with 4µm thickness 

by a Cryostat model CM 1900 (Leica) and fished with glass slides. 

In immunohistochemical staining assays, probes were fixed in acetone for 5 minutes at room 

temperature, afterwards fixation with 3.5% PFA for 10 minutes in dark at 4°C and 5 minutes 

in dark at room temperature. Endogenous peroxidase activity was diminished by incubating 

the samples in 0.03% H2O2 in PBS for 10min at room temperature. Probes were washed twice 

in PBS each time for 5 minutes at room temperature and blocked with horse serum (1:200 in 

200µl tris buffer) for 20 minutes at room temperature to prevent unspecific antibody reaction. 

First antibody (1:1000 in 200µl tris buffer) was incubated for 1 hour at room temperature or 

overnight at 4°C. After washing probes with PBS and Brij-solution, probes were incubated 

with a biotinylated anti-mouse antibody (1:200 in 200µl tris buffer) for 30 minutes at room 

temperature, and washed again using PBS and Brij-solution, then incubation with a 

peroxidase-labeled avidin–biotin complex was proceeded. Finally, tissues were stained with 

amino-ethylcarbazole (AEC) as a peroxidase substrate, generating a red signal of the 

antigen/antibody complexes. Counterstaining was generated by using hematoxylin (blue). 
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Probes were covered with Kaisers glycerine gelatine and photos were taken using a Olympus 

BX43F fluorescence microscope and CellEntry software (Olympus). 

3.5 Mouse experiments  
 

Required reagents: 

§ DMEM w/o FCS 

§ Growth Factor Reduced BD Matrigel Matrix 

§ TissueTek® O.C.T Compound 

§ Liquid nitrogen 

Note: All assays were conducted with the approval of the Ethics Commission of the Ludwig’s 

Maximilian University Munich (Az 55.2.1.54-2532-90/12). 

To study in vivo tumor formation ability of 4T1 and 4T1CTC#1, cells were prepared and 

harvested then transplanted in 6-8 week old, Balb/c mice. To do so, 1.25*105 cells in 100µl 

PBS were mixed with 100µl Growth Factor Reduced BD Matrigel Matrix and the mixture 

was injected intraperitoneally in the flanks of mice using a BD Microlance 3/24G 1”. After 

cells were injected, mice were continuously observed for signs of tumor growth. Objective 

quantitative endpoints for the experiment were a tumor size larger than 20mm, a tumor weight 

superior to 4g and an animal weight loss superior to 20% of the initial body weight. 

Following these endpoints but no later than 28 days after injection, mice were sacrificed. In 

vivo generated tumors were explanted, tumor weights were assessed using a precision scale, 

and tumor tissues were embedded in Tissue Tek and snap frozen and sectioned for 

immunohistochemical analyses. 
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3.5.1 Ex vivo cell culture 
 

Required reagents: 

§ DMEM 

§ Ammonium chloride lysing reagent (0.15 M NH4Cl, 1 mM KHCO3, 0.1 mM EDTA, 

or a commercial preparation e.g. PharM Lyse™, BD Biosciences #555899) 

§ 2% agarose 

§ Wash buffer (0.1% sodium azide, 0.1% BSA in PBS) 

§ Airway Epithelial Cell Growth medium supplemented with SupplementMix C39165 

3.5.1.1 Generation of ex vivo primary tumor cells 
 

4T1 has been generated several decades ago in a biomedical lab and applied as a common 

breast cancer research model. In our present study, 4T1 cells were transplanted into Balb/c 

mice and EpCAM expression level was determined before transplantation and 

immunohistochemically analyzed on tumor tissue samples after mice were taken down. 

However, in mice tumor explants a mixture of non-tumor and tumor cells existed.Ex vivo 

cultivation of primary tumor cells from mice were conducted. Cells were cultured and 

selected with DMEM containing 6-thioguanine with a concentration of 30µM. 

Primary tumor probes were excised from mice and cut into 1 mm3 cube-shaped pieces using 

sterile Feather disposable scalpels N°11. Several grooves were made using scalpels on top of 

the small tumor explants that were a 1 mm3 big. These small grooves generated by scalpels 

can loosen the structure of the tumor samples and facilitate the migration of tumor cells from 

tumor samples. In order to keep tumor tissue moisture, a drop of PBS was pipetted on top of 

the tissues. Small tumor tissue pieces were placed in 24-well plates. And the plates were 
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coated on one side with a crescent-like structure using 2% agarose. 250 µl of agarose solution 

was used for a crescent-like structure coverage each well in 24-well format plates. Tumor 

tissue samples were cultivated using Airway Epithelial Cell Growth medium supplemented 

with SupplementMix C39165 (Promocell, Heidelberg, Germany) for one to seven days 

(Mack, Eggert et al. 2013). Once sufficient amount of tumor cells adhered to the agarose free 

area, cells were harvested and transferred to bigger plastic culture flasks for expansion. Later 

DMEM containing 6-thioguanine with a concentration of 30µM was used to select the cells. 

When permanent cell lines were generated, cryopreservation was performed and further 

analyses were conducted in parallel. 

3.5.1.2 Generation of CTC and DTC cell from mice blood and bone marrow 
 

In our present study, in order to define the EpCAM status on CTCs and DTCs, we tried to 

isolate and culture those rare cells from mice whole blood and bone marrow. 

After tumor bearing mice were sacrificed, whole blood of animals was collected with heparin 

covered sterile tubes. For lysis of red blood cells in the samples, BD lysis buffer (#555899) 

was applied. The 10x lysis buffer was warmed up at room temperature before utilization, and 

diluted to 1x with destilled water. Per 100 µl fresh blood sample 1ml diluted lysis solution 

was added. The samples and solution were mixed gently and subsequently incubated at room 

temperature in the dark. All the living cells were collected at 280g centrifugal force for 5 

minutes. Then, the supernatant was carefully aspirated and 10 ml 1x PBS containing 1% heat-

inactivated fetal bovine serum (PBS-FBS) was added. The cells were again centrifuged using 

same program mentioned above, supernatant was carefully removed and the cells were 

inoculated with culture medium into flasks. 
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In order to isolate and cultivate DTCs, femur and tibia of mice were collected. The two ends 

of the bones were cut with sterile surgical scissors. The bone marrow was washed out with 

sterile PBS and red blood cell lysis and culture process was conducted in the same manner as 

described above. 

 

Figure 2.2: Workflow of CTCs isolation from blood samples of tumor bearing mice. 4T1 tumor cells were 

injected into Balb/c mouse at day 0, the blood of mice was sampled at different time points, such as day 4, day 

14, day 21 and all the blood was collected at the time of mice sacrifice. All the blood samples were processed 

with BD blood lysis buffer and then inoculate into 24-well plate to expand cells. Once the cells in 24-well is 

nearly confluent, they were transfer into T-75 flasks for passaging. 

3.6 Metaphase preparation 
 

Chromosome preparations were executed for Spectral karyotyping (SKY) (Bauer, Hieber et 

al. 2010). 2.5 × 105 cells were cultivated in 4 mL medium on top of a sterile glass slide placed 

in a slide tray chamber with addition of 0.05 µg/mL Colcemid overnight to arrest cells in 

metaphase. Thereafter, the medium was discarded and the slide was incubated with 4 mL 
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hypotonic KCl-solution (0.075 M) for 20 min at 37 °C. Then, 4 mL ice-cold fixation solution 

(methanol/glacial acetic acid, 3:1) was added and incubated for 20 min at 4 °C. After this 

incubation step, incubated solution was discarded and another new 4 mL ice-cold fixation 

solution was added and exact same incubation step was performed. Finally, the slide was air 

dried under a laminar flow. 

3.7 Spectral karyotyping (SKY) 
 

SKY was performed as published previously by Zitzelsberger et al (Zitzelsberger, Lehmann et 

al. 1999, Bauer, Hieber et al. 2010). Chromosome preparations were treated with RNase A 

(0.1 mg/mL in 2 × SSC) before hybridization. Chromosomes were denatured by positioning 

the slides in 70% formamide in 2 × SSC at 72 °C. Thereafter, the slides were dehydrated 

gradually with 70%, 90% and 100% ethanol and hybridized with a denatured SKY-probe 

mixture (SKYPaintTM DNA Kit, Applied Spectral Imaging, Edingen-Neckarhausen, 

Germany) for 1–2 min. After hybridization for 24 hours, slides were washed at room 

temperature following a rapid washing protocol: 0.5 × SSC for 5 min at 75 °C, 4 × SSC/0.1% 

Tween for 2 min and aqua dest for 2 min. Probe was detected using anti-digoxigenin (1:250; 

Roche, Penzberg, Germany), avidin-Cy-5 and avidin-Cy-5.5 antibodies (both 1:100; Biomol, 

Hamburg, Germany) following the manufacturers’ instructions. Prepared metaphase 

chromosomes were counterstained with 0.1% DAPI (4’,6-diamidino-2-phenylindole) in anti-

fade buffer (Vectashield mounting medium; Vector Laboratories, Burlingame, CA). Image 

was captured via a SpectraCube system and analyses were conducted using the SKY-View 

imaging software (both Applied Spectral Imaging, Edingen-Neckarhausen, Germany). 

3.8 Statistical analysis 
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Statisticatical analyses were performed with Microsoft Excel. The Student’s t-Test was 

performed to assess the statistical significancesbetween experimental groups. P-values smaller 

or equal to 0.05 were recognized with significance. Bars and error bars in charts represent 

mean values ± standard deviation (s.d.) of at least three independent experiments. 



RESULTS 

	  

	  57 

4 RESULTS 

4.1 EpCAM expression in 4T1 murine breast carcinoma cell 
 

4T1 is a Balb/c-derived breast carcinoma cell line that generates primary tumors and 

metastases upon syngeneic transplantation (Pulaski and Ostrand-Rosenberg 2001). In order to 

study expression pattern and function of EpCAM in the 4T1 murine breast carcinoma 

metastasis model, cell surface expression level of EpCAM was detected on 4T1 cells via flow 

cytometry. In parallel, the morphology of 4T1 cells was assessed in two-dimensional cell 

culture. For this, 4T1 cells were cultured at low and high density (Fig 3.1A). 4T1 cells display 

a degree of heterogeneity in cell morphology with the majority of cells are retaining typical 

epithelial traits with a cobblestone-like morphology and formation of cell-cell contacts 

(Figure 3.1A). However, at low confluence a minor fraction of cells with mesenchymal 

appearance, protrusions and spindle-shape with reduced cell-cell contact was observed 

(Figure 3.1Ac). Flow cytometry analysis revealed a strong and heterogeneous expression of 

EpCAM on the cell surface. A small fraction of cells did not express EpCAM, whereas the 

great majority strongly expressed EpCAM (mean fluorescence intensity=105±15) (Figure 

3.1B). Hence, 4T1 cells are heterogeneous with respect to morphology and EpCAM 

expression. However, the majority of cells are epithelial and EpCAM-positive. 

Expression status of EpCAM on 4T1 was further assessed via immunocytochemistry using 

cytospin preparations. 4T1 cells were cultured and harvested, then cell concentration was 

determined by counting in a Neubauer Chamber. One million cells in 100µL medium were 

spun down on a slide, fixed and permeabilized according to protocol.  
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Figure 3.1: Characterisation of EpCAM expression in the 4T1 murine breast carcinoma cell line. 

(A) Morphology of 4T1 cells at low (a) and high (b) density. 4T1 cells were cultured in T-75 cell culture flask 

and pictures were taken at different confluence. (c) Magnified picture visualizes a subpopulation of 4T1 cells 

retain a mesenchymal morphology (closed black arrow). (B) Representative histogram of flow cytometry 

analysis of EpCAM expression on 4T1 cells. 4T1 cells were stained with a primary antibody specific for murine 
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EpCAM (black line) or an isotype control-specific antibody (grey line). Propidium iodide was used to exclude 

dead cells during FACS analysis. Mean fluorescence intensities of each staining are given. (C) EpCAM 

expression on 4T1 cells was confirmed via cytospin immunocytochemistry staining. 4T1 cells in cytospins were 

stained with an isotype control antibody (a) or an EpCAM-specific antibody (b, red chromophore). 

Comparably to flow cytometry measurements, EpCAM was strongly expressed in the great 

majority of 4T1 cells (Figure 3.1C, red color). Consistent with cell surface expression results, 

the expression of EpCAM was likewise heterogeneous with a majority of cells highly 

expressing the protein while a subset of cells revealed EpCAM-negative. Control staining 

with an isotype-matched primary antibody confirmed the specificity of the detection system 

(Figure 3.1C, left panel). 

4.2 4T1 cells generate primary tumors and metastases in the Balb/c mouse model 
 

4T1 cells generate transplantable tumors with high metastatic capacity in various organs. 

These traits make syngeneic transplantations of 4T1 cells a suitable animal model to study 

major aspects of breast cancer progression in the presence of an intact immune system. 

4T1 cells were cultured and harvested before syngeneic transplantation was performed 

subcutaneously into the flank of Balb/c mice. Expression of EpCAM in primary tumors was 

analyzed by immunohistochemistry staining (IHC) with specific antibodies. EpCAM 

expression in primary 4T1 tumor specimens was heterogeneous with areas of very strong to 

weak expression and even areas of cells lacking EpCAM expression completely (Figure 3.2a-

c), which is consistent with the expression of EpCAM in 4T1 cells cultured in vitro. In 

swollen lymph nodes, EpCAM positive tumor cell colonies were detected (Figure 3.2d), 

which represent metastatic growth. 4T1 cells displayed an aggressive growth pattern with 

spreading into numerous organs including spleen, liver, lung, brain, lymph nodes, amongst 

others. A nest of disseminated 4T1 in the spleen is depicted in Figure 3.2f. 
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Figure 3.2 EpCAM is expressed in 4T1 primary tumor and disseminated tumor cells (DTCs). 4T1 cells 

were transplanted subcutaneously into the flank of Balb/c mice. After 28 days, mice were sacrificed and primary 

tumors and organs were collected, cryopreserved, sectioned and immunohistochemically stained. In primary 

tumors (a), EpCAM expression was heterogeneous with most areas characterized by high expression of EpCAM 

(b). However, EpCAM low expression and negative areas were detected too (c). In swollen lymph nodes, 

macrometastasis with intense expression of EpCAM were visualised (d). In enlarged spleens, EpCAM-positive 

cells were detected that most probably represent DTCs. 

4.3 Circulating 4T1 tumor cells displayed a mesenchymal phenotype 
 

4T1 tumor cells were subcutaneously transplated into the flank of Balb/c mice. Blood of mice 

was drawn at different time points as illustrated in Fig.2.2. The whole blood of mice (n=5) 

that had been transplanted subcutaneously with 4T1 cells was collected and processed 

following a standard protocol to eliminate red blood cells (see materials and methods). Blood 

collection was performed four weeks after primary inoculation of tumor cells and in the 

presence of large primary tumors. The remaining cells after red blood cell depletion were 
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inoculated into 24-well plate and cultured in 1 ml medium. By doing so, one cell line was 

established and termed 4T1CTC#1. This newly established cell line from mice blood showed 

a strong fibroblast-like morphology with a pronounced spindle shape and long protrusions 

(Fig 3.3Ab). In addition, 4T1CTC#1 could not form cell-cell contact and propagated 

independently from neighbor cells even in a highly dense status, i.e. without forming cell 

colonies (Fig 3.8b). Measurement of EpCAM expression at the surface of 4T1CTC#1 upon 

flow cytometry revealed a complete lack of expression (Figure 3.3Ad), which was confirmed 

as a total lack of EpCAM protein via immunobloting of whole cell lysates in comparison to 

parental 4T1 cells (Figure 3.3B). 

 

Figure 3.3 4T1CTC#1 cells do not express EpCAM and have a mesenchymal phenotype. 4T1CTC#1 cells 

show a strong mesenchymal phenotype, do not form cell-cell contact, and display an elongated fibroblast-like 

shape (Ab), while 4T1 cells display epithelial morphology (Aa). In flow cytometry analysis, 4T1CTC#1 revealed 

negative for the cell surface expression of EpCAM (Ad).However, 4T1 intensively express EpCAM (Ac). 

Immunoblot analyses in whole cell lysates of 4T1CTC#1 confirmed the total lack of EpCAM protein (B). 
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4.4 4T1CTC#1 originates from parental 4T1 cells 

4.4.1 CD45 and p53 expression 
 

4T1CTC#1 cells were further characterized in order to substantiates their origin. To this end, 

cells were analyzed via flow cytometry for the expression of CD45, a marker for 

hematopoietic cells. As shown in Fig 3.4 right panel, 4T1CTC#1 did not express CD45, 

whereas control murine B lymphoma 291 cells expressed high amounts of CD45 at the 

membrane. Parental 4T1 cells served as a further control and revealed negative for CD45, too. 

4T1 cells are further characterized by a lack of p53 expression (Yerlikaya, Okur et al. 2012). 

Hence, the p53 status of 4T1CTC#1 was analyzed at the transcriptional level using 

quantitative real-time PCR. Both, parental 4T1 and 4t1CTC#1 cells did not express p53 

mRNA, whereas control E14 embryonic stem cells (day 0) did (Figure 3.5). Hence, 4T1 

parental cells and 4T1CTC#1 derivative cells do not express the hematopoietic marker CD45 

and show no expression of p53 mRNA. 

 

Figure 3.4 4T1CTC#1 is CD45 negative. CD45 expression was determined by flowcytometry analysis on 

4T1CTC#1 cells, 4T1 cells were used as a negative control and murine B lymphoma 291 cells as a positive 

control. CD45 is negative on 4T1CTC#1 cells. 
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Figure 3.5 4T1CTC#1 is p53 negative. Quantitative reverse transcription PCR results show that p53 is negative 

in 4T1 and 4T1CTC#1 cells. E14 cells served as a positive control. Total RNAs of 4T1, 4T1CTC#1 and 

E14TG2a embryonic stem cells (day 0) were extracted, thereafter, cDNA was produced upon reverse 

transcription. Expression levels of p53 were assessed via qPCR using the generated cDNAs as templates. The 

house-keeping gene Gusb was utilized as a reference. 

 

4.4.2 4T1CTC#1 cells could survive 6-thioguaine selection 
 

The mouse mammary carcinoma 4T1 cell line originated from a spontaneously arising 

mammary tumor in BALB/cfC3H mice (Dexter, Kowalski et al. 1978, Heppner, Dexter et al. 

1978). A great advantage of 4T1 cell relies on its resistant to 6-thioguanine. 6-Thioguanine is 

a purine analog of guanine that can be incorporated into the cellular DNA during replication 

process and, thereby, inhibits the small GTPase Rac1 and possibly hampers translation after 

incorporation into mRNA (Pulaski and Ostrand-Rosenberg 2001). In order to explore whether 

4T1CTC#1 cells originated from 4T1 cells, a 6-thioguanine cytotoxicity assay was performed. 

Both 4T1 and 4T1CTC#1 were plated in 6-well plate with an initiating cell number of 5000 

cells per well. NIH3T3 murine fibroblast cell were seeded under the same condition as a 

control. All cells were cultivated in 2 ml DMEM with or without 6-thioguanine at a 

concentration of 60 µM. Cell numbers were determined via counting in a Neubauer chamber 
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at day 3 and day 7. As displayed in Fig 3.6, 4T1CTC#1 and 4T1 proliferated in both media, 

with or without selection pressure of 6-thioguanine, while NIH3T3 could only grow in normal 

medium. 

 

Figure 3.6 4T1CTC#1 cells are resistant to 6-thioguanine. 5000 cells were plated in 6-well plate at day 0, then 

cultivated with 2 ml of DMEM medium with or without 60 µM 6-Thioguanine. Cell numbers were counted at 

day 3 and day 7. NIH3T3 cells served as negative control (A). Results show that 4T1(B) and 4T1CTC#1 (C) can 

both grow in medium with or without 6-thioguanine. 

 

4.4.3 Karyotyping of 4T1CTC#1 confirms their 4T1 origin 
 

In order to confirm the origin of 4T1CTC#1 as 4T1 cells, spectral karyotyping was performed 

on both 4T1 and 4T1CTC#1 cell lines. Both cell lines were cultured and blocked in 
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metaphase through the application of chemical inhibitors of mitotic spindle formation, thus 

facilitating the detection of individual condensed chromosomes. After fixation, chromosomes 

of both cell lines were stained with DAPI (4',6-diamidino-2-phenylindole), then black and 

white pictures of chromosomes with bands were taken (Fig.3.7). The chromosomes were 

categorized according to banding patterns. Thereafter, the same cells were stained with 

chromosome-specific DNA probes conjugated with fluorophores. The hybridization of the 

DNA probes with chromosomes resulted in staining of each chromosome with identifiable 

color. Based on this process, translocations of chromosomes were effectively detected. 

As shown in spectral karyotyping results of Fig.3.7, both 4T1 and 4T1CTC#1 demonstrated 

intense polyploidy, with a total of 86 and 74 chromosomes identified, respectively. The partial 

deletion of the X chromosome was identified in both cell lines. On chromosome 2 of both cell 

lines translocations from chromosome 6 to 2 were detected. Deletions on 2 of 5 copies of 

chromosome 6 of 4T1 were shown, similar deletion in 1 of 3 copies of chromosome 6 in 

4T1CTC#1 could be visualized. On chromosome 15 of 4T1CTC#1, 1 of 5 copy of 

chromosome showed translocation of chromosome 15. This was also confirmed in 4T1. On 

the same chromosome of 4T1 3 of 6 displayed partial deletion and 1 of 6 in 4T1CTC#1 

showed the same deletion pattern. In 4T1 cells translocation from chromosome 3 to 10 was 

found and 3 copies of chromosome 10 were partially deleted. On chromosome 16 of 4T1 

translocation from 2 was demonstrated. And in most cases, 4T1CTC#1 had similar extra 

copies of each single chromosome as 4T1 cells, indicating 4T1CTC#1 as a derivative cell line 

of 4T1. On chromosome 2 of both cell lines translocations from chromosome 6 were detected. 

Meanwhile, partial deletions of chromosome 6 of both cell lines could be identified. 

Moreover, in both cell lines similar pattern of translations and deletions of chromosome 15 

were demonstrated. Based on these observations, the tumor origin of 4T1CTC#1 was 

confirmed to 99%. Hence, this represents genetic evidence of the 4T1 origin of 4T1CTC#1 
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and confirms 4T1CTC#1 cells as circulating tumor cells isolated from mouse blood after the 

formation of 4T1 primary tumors. 

 

Figure 3.7 Karyogram results of 4T1 and 4T1CTC#1. A total of 86 chromosomes were detected in 4T1 cells 

(upper panel), in 4T1CTC#1 74 chromosomes were detected (lower panel). All the similar features were marked 

with white arrows. 

 

4.5 Repression of EpCAM expression and partial EMT in 4T1CTC#1 cells 
 

Breast cancer-associated CTC represent a potential source of metastatic cells and are therefore 

considered as intermediates between primary tumors and overt metastases. For the case of 

breast cancer, the actual presence of metastatic cells in a subpopulation of CTC was recently 

demonstrated for the first time. A EpCAM+-CD44+-cMet+-CD47+ subpopulation of CTC was 
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able to generate distant metastases after intrafemural injection into immunocompromised 

mice (Baccelli, Schneeweiss et al. 2013). Furthermore, CTC are a feature of systemic cancer 

that can easily be traced in patients´ blood and thus constitute a liquid biopsy for repetitive 

monitoring of disease progression (Alix-Panabières C 2013). As described above, one cell 

line, which was termed 4T1CTC#1, was isolated from mice blood and permanently cultured 

in vitro. In the following, the morphology and antigen expression profile of 4T1CTC#1 were 

analyzed. 

The morphology of both 4T1 and 4T1CTC#1 is shown in Fig 3.3A. 4T1 cells displayed 

epithelial morphology and formed cell-cell contact (Fig 3.3Aa). However, 4T1CTC#1 showed 

a fibroblast-like phenotype and no cell-cell contact (Fig.3.3Ab). In flow cytometry analyses, 

4T1CTC#1 did not express EpCAM on cell membrane while 4T1 cells expressed EpCAM 

intensively (Fig.3.3Ac,d). The lack of expression of EpCAM was also confirmed by 

immunoblotting (Fig.3.3B). In line with the observed loss of EpCAM expression at the 

plasma membrane and in whole cells lysates (Fig 3.3B), 4T1CTC#1 did not display any 

expression of EpCAM in immunohistochemistry staining of 2D-cultures (Fig 3.8b). This was 

true also at the transcriptional level as measured upon quantitative real-time PCR (Figure 3.9). 

In contrast, the majority of 4T1 cells consistently and strongly expressed EpCAM with only a 

minor fraction of cells lacking EpCAM (Figure 3.8a). Cytokeratin (CK) are intermediate 

filament proteins specifically expressed in epithelial cells. CK were highly expressed in both 

4T1 and 4T1CTC#1 cells (Figure 3.8c-d), supporting the epithelial origin of both cell lines.  
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Figure 3.8 Immunohistochemistry staining of 4T1 and 4T1CTC#1. Both 4T1 and 4T1CTC#1 cells were 

cultivated on glass slides in quadriperm chambers until 50% confluence was achieved. Thereafter, cells were 

fixed and permeabilized before different antibodies were applied to detect protein expression profiles. In 4T1 
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cells (a), EpCAM expression is positive (shown in red color), while 4T1CTC#1 cells lack EpCAM expression 

(b). Both, 4T1 and 4T1CTC#1 cells express cytokeratins (c) (d) (shown in red color). E-cadherin is slightly 

positive in 4T1 (e) (shown in light red color), while it was absent in 4T1CTC#1 (f). Vimentin is heterogeneously 

expressed in 4T1 cells (g), whereas vimentin is intensively and homogeneously expressed in 4T1CTC#1 (h) 

(shown in red color). Isotype controls were always included for all staining, nucleus stained in blue (i) (j). 

E-Cadherin is a classical marker and cell adhesion mediator on the plasma membrane of 

epithelial cells. Although the expression of E-Cadherin was not intensive compared to 

EpCAM, we observed a complete loss of E-cadherin in 4T1CTC#1 compared to parental 4T1 

cells (Figure 3.8e-f). 

 

Figure 3.9 Relative mRNA expression level of EMT markers in 4T1 and 4T1CTC#1 cells. EpCAM 

expression was suppressed in 4T1CTC#1 at the transcriptional level. The expression of vimentin in both cell 

lines is positive. The expression of Zeb2 in 4T1CTC#1 is higher than 4T1. E-cadherin was expressed in 4T1 but 

not in 4T1CTC#1. There are no significant differences between 4T1 and 4T1CTC#1 in the expression of Zeb1, 

Twist, Snail, N-cadherin. 

The similar pattern of E-cadherin was detected at the transcriptional level (Fig.3.9). 

Interestingly, mesenchymal marker vimentin was up-regulated in 4T1CTC#1 and expressed in 
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100% of cells as compared to 4T1 parental cells (60% positivity) (Figure 3.8g-h). The mRNA 

expression of	   vimentin in both 4T1 and 4T1CTC#1 cells were both intensive, however, 

4T1CTC#1 showed a slight elevation compared to parental cells (Fig.3.9). Additional EMT 

markers such as Twist, Zeb1, Zeb2, Snail, N-Cadherin did not show significant differences 

between 4T1 and CTC derivatives (Fig.3.9). 

4.6 4T1CTC#1 have enhanced migration capacity 
 

As described, 4T1CTC#1 cells displayed mesenchymal features with a loss of EpCAM and E-

cadherin expression, spindle shape and lack of cell-cell contact. Typically, EMT and the 

acquisition of a mesenchymal phenotype go along with increased migration. In order to study 

the migration capacity of 4T1 and 4T1CTC#1 cells, a wound-healing assay was performed in 

vitro. Both 4T1 and 4T1CTC#1 were cultivated in 6-well plates and a scratch was applied to 

confluent cultures following the protocol described in materials and methods. For this, 

similarly sized scratches were generated in 4T1 and 4T1CTC#1 cell monolayers as shown in 

Figure 3.10A. Over time, cells migrate into the open area, which represents a measure for 

their migration ability. After 48 hours, 4T1CTC#1 covered significantly more open area of the 

scratch, as visualized with black lines (Figure 3.10A). Calculation of migration velocity over 

time disclosed a two-fold increase in migration of 4T1CTC#1 as compared to parental 4T1 

cells with comparable proliferation rates of both cell lines (Figure 3.10B-C). 
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Figure 3.10 4T1CTC#1 cells migrate faster than parental 4T1 cells. A wound-healing assay was performed 

with 4T1 and 4T1CTC#1 cells. Cells were seeded in 6-well plate and cultured to achieve >80% confluence 

before starvation with serum free medium for 12-24 hours. Then, a single scratch was applied through the center 

of the well on the monolayer of cells using 200 µL sterile tips. Pictures were taken under phase contrast 

microscope at the indicated time points. The scratch areas were measured and calculated according to standard 

methods using Image J (A). Proliferation control was performed in parallel. No proliferation difference was seen 

between 4T1 and 4T1CTC#1 in the absence of FCS in the culture medium (B). 4T1CTC#1 is 2 fold more 

migratory compare to 4T1 cells (C).  

4.7 4T1CTC#1 showed reduced tumorigenic capacity in vivo 
 

In the following experiments, the tumorigenic potential of 4T1CTC#1 cells was assessed 

through syngeneic transplantation into Balb/c mice. Twenty-three days after subcutaneous 

inoculation of 4T1 and 4T1CTC#1 cells into the flank of mice, animals were sacrificed, 

tumors were removed and weighed. As showed in Fig.3.11, the mean value of tumor weight 
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in 4T1CTC#1 injected mice group was lower than in the 4T1-injected group. Of note, in 

4T1CTC#1 group 2 mice failed to form tumors. However, 4T1 cells could generate tumors in 

all mice with a median weight of 369,5 mg. 

 

Figure 3.11 4T1 possess stronger tumor formation potential compared to 4T1CTC#1. 4T1 and 4T1CTC#1 

cells were syngeneically transplanted into Balb/c in two independent experiments with 5 mice per group and 

experiment. Tumor cells were allowed to grow at least 23 days in vivo, then mice were sacrificed and primary 

tumors were excised and weighed. Shown is the tumor weight in box-plot-whiskers graphs from 4T1 and 

4T1CTC#1 group. The median tumor weight of 4T1 group was 369,5 mg, while the median value of 4T1CTC#1 

group was 42 mg. 

4.8 4T1DTC#1 expressed EpCAM comparably to 4T1 primary tumor cells 
 

In order to further investigate the expression of EpCAM in the course of the metastatic 

cascade, we isolated disseminated tumor cells of mice bone marrows after inoculation of 4T1 

subcutaneously in the flank. This way, one permanent cell line 4T1DTC#1 was established in 

our lab. 4T1DTC#1 displayed epithelial morphology with tight cell-cell contact in low and 

high density culture conditions (Fig. 3.12 g,h). 
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Figure 3.12 Ex vivo cultured tumor cells of 4T1 transplantation. 4T1 ex vivo #4, 4T1 ex vivo #9 and 4T1 ex 

vivo #10 were generated from primary tumors after syngeneic transplantations of 4T1 cells. 4T1 were injected 

subcutaneously on the flanks of Balb/c mice and tumor formed in vivo gradually. Primary tumors were excised 



RESULTS 

	  

	  74 

and ex vivo cell lines were established following the protocols described in materials and methods chapter. 

Pictures depicting the morphology of ex vivo cell lines at low (left panel a, c, e, g) and high density (right panel 

b,d f, h) in culture are shown. All cell lines including 4T1DTC#1 showed an epithelial phenotype and could form 

typical cobblestone-like monolayers in cell culture. 

 

 

Figure 3.13 Flow cytometry analysis of EpCAM on ex vivo cultured cell lines. After plating tumor cells ex 

vivo, 4 permanent cell lines were established. In order to investigate the EpCAM expression status, flow 

cytometry detection	  of cell surface expression of EpCAM was performed on these cell lines. All 4 cell lines 

expressed EpCAM comparably to parental 4T1 cells (solid black histogram line)(A-D). The major fraction of the 

cell population was EpCAM positive and only a small portion revealed negative. 4T1 ex vivo#4 showed two 

major peaks of EpCAM expression (A), the main peak demonstrated a moderate EpCAM expression. Negative 

control was always included in all assays (grey closed histogram). 
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In addition, the EpCAM expression of 4T1DTC#1 on cellular membrane was detected via 

flow cytometry. EpCAM was moderately expressed by 4T1DTC#1 (MFI=366,96/10,21). 

Moreover, 3 permanent ex vivo cell lines (4T1 ex vivo #4, 4T1 ex vivo #9, 4T1 ex vivo #10) 

of 4T1 primary tumors were established following Mack et al (Mack, Eggert et al. 2013). 

These 3 primary tumor cell lines displayed the same morphology as parental 4T1 cells (Fig 

3.12 a-f). The EpCAM expression of 3 primary tumor cell lines (MFI=459,99/9,62)(Fig.3.13) 

showed a similar pattern as 4T1DTC#1 (MFI=366,96/10,21). 

 

4.9  Truncated human NGF receptor as a surrogate marker to increase the efficiency 
of CTC capturing in murine blood 

 

In order to selectively enrich for 4T1 cells in the blood of transplanted mice, a truncated 

version of the human nerve growth factor NGF-R was stably transduced into parental 4T1 

cells. The intracellular domain of NGF-R was shortened from a.a.273 to 427, so that signaling 

is abbrogated. Syngeneically injected 4T1 tumor cells can be distinguished from 

haematopoietic and other normal cells using NGF-Rtrunc as a marker using MACS or FACS 

sorting techniques. After transduction, expression of human NGF-Rtrunc was detected via 

flow cytometry (Fig. 3.14B). Additionally, the EpCAM expression was also positive on 

4T1hNGF-Rtrunc cells (Fig.3.14A). 
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Figure 3.14 Truncated human NGFR as a surrogate marker was expressed in 4T1. The human NGF-Rtrunc 

was transduced into 4T1 cells. Cells stably expressing human NGF-Rtrunc were selected using puromycin in the 

culture medium. human NGF-Rtrunc protein expression on the cell surface was detected via flow cytometry. 

87.1% of cell population were expressing human NGF-Rtrunc (B),and their EpCAM expression was positive 

(A). 
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5 DISCUSSION 
 

Cancer originates from normal somatic cells in the human body and the majority cancer-

related deaths are caused by ungovernable metastatic spread of dissociated malignant cells 

from primary tumor into distant organs. Normally, metastatic cancer cells reach the target 

organs through the blood stream, in which the circulating tumor cells (CTCs) are best 

characterized with respect to numbers and phenotype (Allard, Matera et al. 2004). It is 

believed that in order to form metastases, cancer cells have to detach from the primary tumor, 

intravasate into the blood stream and possess the ability to survive in an anchorage-

independent manner in the circulation (Joosse, Gorges et al. 2015). Upon extravasation, CTCs 

get access to distant organs including lung lobes, adrenal glands, liver, brain, as well as bone 

marrow (Langley and Fidler 2011). Tumor cells present in distant organs, for instance in bone 

marrow, are not termed CTC anymore, but DTC for disseminating tumor cells (Masuda, 

Hayashi et al. 2016). Owing to their role in the colonization of distant organs, CTCs hold the 

key to better understand the cancer metastatic cascade. However, since CTCs are rare events 

in the blood (0 to 4 CTCs in 7,5ml blood) (Lalmahomed, Kraan et al. 2010), it is difficult to 

isolate them for further characterization. The amount of CTCs was demonstrated to be 

approximately one to few CTCs in 1 million blood cells of cancer patients (Krebs, Metcalf et 

al. 2014). In addition, the short half-life (for mammary cancer cells between 1 and 2.4 hour) 

of CTCs made their detection even more challenging (Meng, Tripathy et al. 2004). In order to 

enrich rare CTCs from cancer patient blood samples, many platforms based on physical 

properties, including size, density, electric charges, deformability, and biological properties, 

such as surface protein expression, mostly EpCAM expression, have been developed (Pecot, 

Bischoff et al. 2011, Issadore, Chung et al. 2012, Pantel and Alix-Panabieres 2012). Among 

these CTC isolation technologies, the CellSearch® system (Veridex LLC, Raritan, NJ, USA), 
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which is the only one cleared by US Food and Drug Administration (FDA), relies on EpCAM 

as anchor molecule for CTC enrichment, cytokeratins and 4',6-diamidino-2-phenylindole 

(DAPI) positivity and CD45 negativity. However, the presence of EpCAM-negative CTCs 

was reported as well (Punnoose, Atwal et al. 2010, Konigsberg, Obermayr et al. 2011, 

Gorges, Tinhofer et al. 2012). Hence, utilizing EpCAM-based techniques for capturing CTCs 

is not sufficient to enrich and cover the whole CTC population. Therefore, subsequent 

analyses may have biases. Since the expression pattern of EpCAM on CTCs is still under 

investigation, attention must be paid in the case of applying EpCAM-based platforms to 

isolate CTCs. 

The cell surface molecule EpCAM, which is frequently expressed in carcinomas, was 

previously proposed to be involved in homophilic cell adhesion (Litvinov, Velders et al. 

1994). Thereafter, the functions of EpCAM in regulation of proliferation were described by 

our group and others (Munz, Kieu et al. 2004). Its role in promoting proliferation might 

answer why frequent overexpression of EpCAM is observed in most carcinomas. Later on, it 

was demonstrated that EpCAM was downregulated during migration in vitro in esophagus 

carcinoma cell models. Additionally, EpCAM downregulation was observed in most of DTCs 

from cancer patients in the same study (Driemel, Kremling et al. 2014). This implies that 

EpCAM may not be persistently expressed on migrating malignant cells. In order to adapt to 

altered survival circumstances during cancer metastatic cascades, EpCAM downregulation 

might be necessary for metastatic cancer cells. Since EpCAM might not be persistently 

expressed during the cancer metastatic cascade, the whole picture of EpCAM expression 

pattern and function during cancer progression reveals rather unclear. Therefore, we have 

established cell lines from a murine breast carcinoma model, including 4T1CTC#1, 

4T1DTC#1, 4T1 ex vivo #4, 4T1 ex vivo #9, 4T1 ex vivo #10, and described the expression 

of EpCAM in these cell lines. 
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5.1 EpCAM on 4T1CTC#1 was suppressed 
 

We used the 4T1 murine carcinoma cell line to investigate expression patterns of EpCAM in a 

metastasizing breast cancer animal model. From the photographic visualization of cultivated 

4T1 cell monolayers, we could see that the major population of 4T1 cells displayed an 

epithelial phenotype with typical squamous-like morphology. A minority of single 

fibroblastic-like 4T1 cells could be observed as well. Moreover, EpCAM was 

heterogeneously expressed as was demonstrated upon flow cytometry measurements and 

immunohistochemical staining. A subset of 4T1 cells lacked expression of EpCAM or 

displayed very low levels, however, the main population expressed EpCAM strongly (Fig 

3.1). These results were confirming that EpCAM was heterogeneously expressed on the cell 

membrane of 4T1 cells in Fig 3.8a. Consistent with our results, another group demonstrated 

the same EpCAM expression profiles in 4T1 cells, with 95% of 4T1 cells being EpCAM 

positive (Guixin Shi 2013). In contradiction, it was demonstrated by Hiraga and colleagues 

that the major population of 4T1 cells were EpCAM negative (Hiraga, Ito et al. 2016). 

Moreover, they published that the EpCAM-positive 4T1 subpopulation, which was 

recognized as the cancer stem cell subgroup, could change into EpCAM-negative phenotype 

after 7 passages in culture. However, our colleague Anna found that the EpCAM-negative 

4T1 cells slowly switched into EpCAM-positive cells during 2 months cultivation (Data not 

shown). 4T1 cells were subsequently transplanted into immune-competent Balb/c mice. 

Expression of EpCAM in vivo was detected via IHC on primary tumors, metastases, as well as 

disseminated tumor cells in different organs (Fig 3.2). However, the expression pattern of 

EpCAM on CTCs, which are believed to be critical intermediates between primary tumor and 

metastasis, needs to be addressed. Therefore, CTCs from transplanted mice were isolated and 

grown permanently in vitro. These cells were termed 4T1CTC#1 and showed a strong 
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mesenchymal morphology (Fig 3.3Ab), with a loss of EpCAM expression (Fig 3.3Ad). 

Immuno-blotting of 4T1CTC#1 confirmed that EpCAM expression was suppressed (Fig 

3.3B). Based on the suppression of EpCAM and E-Cadherin, and the upregulation of vimentin 

in 4T1CTC#1, we could conclude that 4T1CTC#1 underwent an EMT program. In line with 

our finding, it was shown that CTCs captured in colon cancer patients blood displayed 

EpCAM and E-Cadherin negativity (Satelli, Mitra et al. 2015). Vimentin expression of 

4T1CTC#1 was more intensive and uniform compared to 4T1 cells (Fig 3.8h). In accordance 

with these findings, it was reported by others that CTCs from different types of cancers 

underwent EMT. For example, Yu and colleague reported that CTCs expressed TGF-ß 

pathway components and FOXC1 transcription factor, which were evidences of EMT in 

CTCs. Satelli and colleagues showed that cell-surface vimentin was detected in EMT CTCs 

with 84-1 monoclonal antibody, which was associated with progressive disease of colon 

cancer patients (Yu, Bardia et al. 2013, Satelli, Mitra et al. 2015). A similar result was 

reported with respect to TGFß induced EMT in esophagus carcinoma cells, with an up-

regulation of N-Cadherin and vimentin (Driemel, Kremling et al. 2014). Moreover, in the 

same study, downregulation of EpCAM via siRNA dependent techniques in esophagus 

carcinoma cells led to trancriptional upregulation of vimentin. In line with our findings, 

Zhang et al. reported on the generation of three CTC lines from breast cancer patients´ 

peripheral blood. Interestingly, all three cell lines were EpCAM negative at both translational 

and transcriptional level (Zhang, Ridgway et al. 2013). Moreover, they have also confirmed 

vimentin up-regulation at both, the translational and transcriptional level. Indeed, EpCAM 

negativity on CTCs was reported by other groups as well recently. EpCAM-negative CTCs, 

which were not enriched upon CellSearch system, could be identified by filtration and 

fluorescent labeling (de Wit, van Dalum et al. 2015). Moreover, it was found that the 

EpCAMlow subpopulation of squamous carcinoma cell (SCC) exhibited a mesenchymal 
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morphology and elevated expression of mesenchymal markers such as vimentin and Twist, 

and suppression of epithelial marker E-Cadherin (Biddle, Liang et al. 2011). Further reports 

confirming our results in a breast cancer model were published by Santisteban and colleagues 

(Santisteban, Reiman et al. 2009). They found that in breast cancer cell lines, in which EMT 

was induced, EpCAM and E-Cadherin were suppressed, whereas N-Cadherin and Snail 

expression were elevated. 

Techniques to differentiate CTCs from hematopoietic cells were based on EpCAM positivity 

of carcinoma cells. In 2010, a chip with herringbone structure and micro-posts coated with 

EpCAM antibody on the surface to capture CTCs in cancer patients’ blood was published for 

the first time (Stott, Hsu et al. 2010). However, EpCAM-negative CTCs were reported 

recently (de Wit, van Dalum et al. 2015). It is conceivable that EpCAM positive and EpCAM 

negative CTCs co-exist in the circulation system of cancer patients. The rationale behind this 

might be that not all CTCs undergo EMT before they start to metastasize and that CTCs with 

varying phenotypes might be generated within the blood through high plasticity of these cells. 

Another explanation according to Joosse is that there are two ways how CTCs could enter into 

blood or/ and lymph vessel system, namely, a passive way and an active way (Joosse, Gorges 

et al. 2015). Active intravasation of tumor cells of into the circulation system requires a 

‘preparation’ before shedding from primary tumor nest. For instance, tumor cells need to lose 

some features that are inhibitory to migration such as adhesion, and gain some other traits that 

are supportive of motility. One mechanism believed to facilitate phenotypical changes 

towards more migratory traits is EMT, which also occurs during embryonic development 

(Lee, Dedhar et al. 2006). The passive route of intravasation relies on a mechanical push of 

primary tumor cells into vessels, whereby tumor cells might be passively entering into the 

blood stream in form of microemboli, maintaining epithelial features of CTCs. At present, it is 

not possible to discriminate the mode of intravasation of 4T1 cells in the animal model used 
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herein. However, 4T1 cells retrieved from mouse blood displayed a high degree of EMT-

based phenotypic changes, supporting a central role of EMT in the metastatic cascade, along 

with a loss of EpCAM. 

5.2 Loss of EpCAM in 4T1CTC#1 led to enhanced migration ability in vitro 
 

In a wound-healing assay, we observed that 4T1CTC#1 migrated faster compared to parental 

4T1 cells (Fig. 3.10C). In line with this result, former members of our research group found 

that down-regulation of EpCAM in esophagus carcinoma cells led to enhanced tumor cell 

migration activity (Driemel, Kremling et al. 2014). In the same study, one esophagus 

carcinoma cell population was sorted via FACS for differing EpCAM expression levels into 

two subpopulation, namely, EpCAMhigh and EpCAMlow. Again, the EpCAMlow subgroup 

demonstrated enhanced migration ability with reduced proliferation. More recently, our group 

reported on the enhanced vimentin expression and loss of EpCAM at the migration front in 

scratch assays (Tsaktanis, Kremling et al. 2015). Indeed, it was shown by Biddle and 

colleagues that EpCAMlow cancer stem cells in head and neck squamous carcinomas 

displayed elevated migratory capacity compared to EpCAMhigh subgroup (Biddle, Liang et al. 

2011). Similarly, in human cancer cell lines, when EMT endows the cells with mesenchymal 

features to locomote, transient EpCAM downregulation enables migration of cancer cells 

(Jojovic, Adam et al. 1998). One explanation for this observation, including our own data, 

would be that EpCAM is suppressed via EMT programs, which is hypothesized to endow 

cancer cells with migratory and invasive properties (Thiery, Acloque et al. 2009). It is 

imaginable that when tumor cells gradually lose EpCAM on the cell membrane, cell-cell 

contact between neighbor cells may be disrupted due to this alternation. Indeed, in Figure 3.8 

we could see 4T1CTC#1 showing the fibroblastic like morphology with E-Cadherin 
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repression. Hence, mesenchymal tumor cells could leave from the main tumor population 

taking advantage of this feature. 

Oppositely, it was found that transient down-regulation of EpCAM via siRNA techniques 

resulted in reduced migration and invasion capacities of breast cancer cells in vitro (Osta, 

Chen et al. 2004). It was reported that EpCAM could weaken the expression of one of the 

major adhesion molecule E-cadherin (Litvinov, Balzar et al. 1997). Therefore, it was 

proposed that EpCAM overexpression may actually promote cancer metastasis through this 

mechanism (Trzpis, McLaughlin et al. 2007). The cancer metastasis-promoting role of 

EpCAM was also confirmed by animal experiment by Wuerfel and colleagues. They 

demonstrated that overexpression of EpCAM in fibrosarcoma led to formation of metastasis 

in the lung (Wurfel, Rosel et al. 1999). Moreover, down-regulation of EpCAM via siRNA in 

renal and breast carcinoma cells impeded the migration of tumor cells. (Seligson, Pantuck et 

al. 2004). The somewhat contradicting finding that EpCAM overexpression promotes tumor 

cell migration in vitro could be explained by its growth-promoting function. The intracellular 

domain of EpCAM, EpICD stimulates tumor cells to divide (Maetzel, Denzel et al. 2009), 

leading to a quick expansion of tumor cells. The proliferation advantage of EpCAM-positive 

tumor cells might simulate increased migration via cells occupying spare spaces of cell 

culture surfaces through division. In order to preclude such misleading results, migration 

assays should preferably be performed in the absence of growth factors and should include 

growth control curves. By doing so, we did not see differences in growth capacities of 4T1 

and 4T1CTC#1 after serum deprivation. Thus, we believe that loss of EpCAM expression 

rather induces migration. 

5.3 Loss of EpCAM in 4T1CTC#1 associates with impaired tumorigenesis in vivo 
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Next, 4T1 and 4T1CTC#1 cells were transplanted into immune-competent Balb/c mice to test 

the tumor formation capacity in vivo. 4T1 generated bigger tumors in vivo compared to 

4T1CTC#1 (Fig 3.11). Probably 4T1 tumor cells were benefit from the possible generation of 

EpICD, the intracellular domain of EpCAM, through regulated intramembrane proteolysis of 

EpCAM, which initiates an active growing signal (Maetzel, Denzel et al. 2009). Comparably, 

suppression of EpCAM expression by shRNA in esophageal carcinoma cell lines led to 

reduced tumor growth in vivo compared to EpCAM-positive cells (Driemel, Kremling et al. 

2014). 

In line with these findings, EpCAM-positive hepatocellular carcinoma stem cells efficiently 

formed tumours in immune-compromised mice compared to EpCAM-negative cells 

(Yamashita, Ji et al. 2009). Several studies have shown similar results related to the over-

expression of EpCAM that associates with cell proliferation (Munz, Kieu et al. 2004, Maetzel, 

Denzel et al. 2009, Wenqi, Li et al. 2009, Chaves-Perez, Mack et al. 2013). Induction of 

EpCAM activates oncogenic transcription factor c-myc, subsequently up-regulates cell cycle 

related genes such as Cyclin A and E, as well as epidermal fatty acid binding protein (Munz, 

Kieu et al. 2004, Munz, Zeidler et al. 2005). According to our previous lab data, the EpICD 

was the key mediator of inducing c-myc upregulation. EpCAM has been also demonstrated its 

direct effect on cyclin D1 (Chaves-Perez, Mack et al. 2013). 

In contrast to our observations, down-regulation of EpCAM via siRNA in ovarian cancer cells 

did not show an inhibitory effect on cell growth (van der Gun, Huisman et al. 2013). In this 

cell line probably EpCAM was not a major driver of proliferation, and the inhibition effect of 

proliferation mediated by EpCAM down-regulation could be rescued by other proliferative 

signaling pathways. Moreover, it was found that overexpression of EpCAM in CT-26 murine 

colorectal carcinoma cells induced inhibitory effects on tumor cells proliferation in vivo 
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(Basak, Speicher et al. 1998). Actually, demonstration of a growth-inhibitory role of EpCAM 

remains rare and potential molecular mechanisms underlying this inhibition are unclear. 

5.4 EpCAM was expressed in DTCs 
 

Disseminated tumor cells (DTCs) are released from primary tumors, which can travel through 

circulation system and localize in bone marrow and other organs. Bone marrow is a frequent 

homing destination for breast, prostate and lung cancer metastatic cancer cells (Pantel and 

Alix-Panabieres 2014). Interestingly, it was also reported that patients with small primary 

tumor already had bone marrow-resident DTCs, which indicated the possibility of a parallel 

growth of primary tumor and cells of the metastatic cascade (Klein 2009). In some cases, 

people claimed that DTCs are sources of new micro-metastasis (Massard, Loriot et al. 2011). 

Recently, it was described that DTCs in bone marrow could be used as a liquid biopsy 

resource that can guide cancer therapy and provide helpful information of prognosis for 

cancer patients (Pantel and Alix-Panabieres 2014). Clinical analysis of a large cohort of 4703 

breast cancer patients demonstrated that presence of DTCs in bone marrow was associated 

with poor prognosis (Braun, Vogl et al. 2005). Therefore, DTCs in bone marrow may be 

another important study target for cancer biologists and oncologists. 

In our investigation, we established a permanent DTC cell line from bone marrow of 4T1-

injected mice that was termed 4T1DTC#1, which showed an epithelial phenotype and 

EpCAM positivity in FACS analysis. EpCAM positive DTCs in both lymph nodes and spleen 

of mice were detected via IHC staining (Fig.3.2). In these findings, the similarities between 

primary tumor and 4T1DTC#1 were observed, including EpCAM expression and cell 

morphology as opposed to 4T1CTC#1. In line with our results, it was found that EpCAM-

positive DTCs in lymph nodes were detected in 8 (18.2%) of the 44 cancer patients, which 
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was significantly associated with tumor recurrence (Dhayat, Sorescu et al. 2012). A subset of 

DTCs with EpCAM expression in bone marrow were found in breast cancer patients 

(Woelfle, Breit et al. 2005). The presence of EpCAM on DTCs might contribute to their 

survival, cell-cell communication, and proliferation. Indeed, this point is supported by the fact 

that EpCAMhigh DTCs in bone marrow of esophageal carcinoma patients is strongly 

associated with the presence of locoregional of lymph node metastases and poor overall 

survival of patients (Driemel, Kremling et al. 2014). 
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6 CONCLUSION 
 

In the present thesis, we have used an animal model to explore the expression pattern of 

EpCAM throughout 4T1 breast cancer progression. Primary tumors and metastatic niche 

could be established in 3 to 4 weeks, which allowed us to perform animal studies in a relative 

time saving manner. Another advantage relies in the presence of an intact immune system, 

which allowed us to mimic processes of breast cancer metastatasis formation in patients most 

closely. Thus, the animal model in use provides valuable data supporting cancer investigation 

in a relevant system. Using this animal model, we established several cell lines, which 

originated from the parental 4T1 line, including one circulating tumor cell line (CTC). 

4T1CTC#1 cells were lacking the common leucocyte marker CD45, and did not express p53 

to relevant levels. Karyotyping of this cell line confirmed 4T1CTC#1 as descendants of 4T1 

cells. 

Epithelial cell adhesion molecule is a carcinoma-associated tumor marker with a functional 

role in cell-cell adhesion and mitogenic signaling. EpCAM was strongly expressed in the 

majority of 4T1 cells, whereas EpCAM expression was persistently suppressed in 4T1CTC#1. 

Interestingly, 4T1 parental cells displayed an epithelial phenotype with the expression of E-

Cadherin. Oppositely, 4T1CTC#1 did not express E-Cadherin, but elevated levels of vimentin 

along with a mesenchymal morphology. In vitro wound healing analysis showed that 

4T1CTC#1 migrate faster compared to parental 4T1 cells. After re-transplantation of 

4T1CTC#1 into Balb/c mice, 4T1CTC#1 generated tumors with lower efficiency and 

decreased tumor weight compared with parental 4T1 cells. Moreover, one disseminated tumor 

cell line (DTC) was isolated from the bone marrow of 4T1 mice. This cell line termed 

4T1DTC#1 demonstrated an epithelial phenotype and EpCAM positivity. This finding 
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indicated a dynamic expression pattern of EpCAM during cancer progression. Final 

experiments of my thesis have set the basis for a standardized isolation of CTCs and DTCs in 

the 4T1 mouse model. To this aim, a truncated version of human NGF-R (neuro-growth factor 

receptor) was cloned into the PMXs-puro retrovirus vector, which later was transduced into 

4T1 cells. The signaling defective NGF-R receptor is expressed at the cell surface of 

transgenic 4T1 cells and can be used for subsequent enrichment strategies. 

Taken together, parental 4T1 and ex vivo 4T1 cell lines expressed the tumor antigen EpCAM 

to high levels. However, EpCAM expression was repressed in circulating tumor cells, which 

were isolated from the blood of 4T1-injected mice and had undergone a partial EMT program. 

Disseminated 4T1 tumor cells from the bone marrow of transplanted cells mice displayed a 

restored expression of EpCAM along with an epithelial phenotype. Hence, EpCAM 

expression is dynamic in the 4T1 mouse model of breast cancer progression, which might 

relate to the function of EpCAM throughout the various phases of the metastatic cascade. 
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ZUSAMMENFASSUNG (German summary) 

 

Tumormetastasen sind die Haupttodesursache bei Patienten mit einer Krebsdiagnose. Dank 

stetig fortschreitender Technologien gibt es inzwischen eine Vielzahl von 

Therapiemöglichkeiten, angefangen bei der chirurgischen Resektion von Tumoren, über 

Chemotherapie und Strahlentherapie bis hin zur antikörperbasierten Immuntherapie. 

Trotzdem haben viele Tumoren noch immer eine schlechte Prognose und geringe 

Überlebensraten aufgrund von Metastasen, die häufig inoperable und therapieresistent sind. 

Um neue Therapiemöglichkeiten zu finden bemühen sich viele Wissenschaftler um ein 

besseres Verständnis der Pathophysiologie von Tumoren, das heißt zu verstehen, wie sich 

Tumorzellen aus dem Zellverband lösen, durch den Blutstrom an andere Körperstellen 

gelangen, die Blutgefäße wieder verlassen und Metastasen bilden. 

EpCAM ist ein Typ I Transmembranglykoprotein mit einem Molekulargewicht von ca 40kD. 

Anfangs wurde EpCAM die Funktion eines Adhäsionsmoleküls zugeschrieben. Dann wurde 

in verschiedenen Tumoren eine EpCAM-Überexpression beschrieben. Dort konnte es als 

diagnostischer Marker und therapeutisches Zielmolekül verwendet werden. Da EpCAM ein 

homophiles Zelladhäsionsmolekül ist, könnte man schlussfolgern, dass eine hohe EpCAM 

Expression eine Metastasierung verhindert. Das Gegenteil zeigte sich aber bei Patienten mit 

Tumorerkrankungen. EpCAM-Überexpression in Primärtumoren korrelierte mit einer 

ungünstiger Prognose. Eine mögliche Erklärung für diesen Widerspruch wäre, dass EpCAM 

die Expression von E-Cadherin reprimiert, das dadurch als wichtiges Adhäsionsmolekül fehlt 

und somit die Metastasierungskaskade angestoßen werden kann. Zudem wurde gezeigt, dass 

EpCAM proteolytisch gespalten wird und daraufhin die intrazelluläre Domäne EpICD in den 

Kern transloziert wird, wo es Onkogene wie c-myc, Zyklin D1 und A reguliert. Außerdem 
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wird inzwischen die Funktion der Zell-Zell Adhäsion von EpCAM in Tumorzellen 

angezweifelt. 

Zur Isolierung zirkulierender Tumorzellen (CTC) aus dem Blut wurde die Cellsearch 

Methode verwendet. Diese Methode macht sich Eisen-Nanopartikel zunutze, die von Biotin-

Analoga ummantelt sind und mit Anti-EpCAM Antikörpern konjugiert sind. In letzter Zeit 

häufen sich kritische Stimmen, die beanstanden, dass diese Methode es nicht ermögliche 

EpCAM-negative CTCs zu isolieren, die malignes Potential innehaben könnten. Deshalb ist 

es wichtig das Expressionsmuster von EpCAM in der gesamten Metatstasierungskasakde, 

CTC und DTCs eingeschlossen zu untersuchen und dadurch Leitlinien für die Thearpie und 

Diagnostik von Tumoren zu formulieren. 

In dieser Arbeit wurde anhand eines murinen Mamma-Karzinommodells gezeigt, dass der 

Primärtumor EpCAM positiv, die im Blut zirkulierenden Tumorzellen dagegen EpCAM 

negativ waren. Die aus dem Blut isolierte Tumorzelllinie 4T1CTC#1 zeigte einen eindeutigen 

mesenchymalen Phänotyp und einen Verlust der EpCAM Expression. Im Vergleich zu 

parentalen 4T1 Zellen, weisen 4T1CTC#1 Zellen eine erhöhte Migrationsfähigkeit auf. Aus 

dem Knochenmark isolierten wir eine weitere permanente Tumorzelllinie (4T1DTC#1), die 

EpCAM exprimiert und, ähnlich den parentalen 4T1 Zellen, einen epithelialen Phänotyp 

aufweist. Zusammenfassend bestätigen meine Daten eine dynamische Expression von 

EpCAM im Verlauf der Tumorprogression, insbesondere in zirkulierenden Tumorzellen im 

Blut, welche als Quelle metastasierender Zellen gelten. 
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APPENDIX 
 

ABBREVATIONS 

°C Celsius degree 
A adenine 
aa amino acids 
APS ammoniumpersulfate 
bp base pairs 
BSA bovine serum albumin 
C cytosine 
cDNA complementary DNA 
CK cytokeratin 
CTCs circulating tumor cells 
ddH2O double distilled water 
DMEM Dulbecco`s Modified Eagle Medium 
DMSO dimethylsulfoxid 
DNA desoxyribonucleic acid 
dNTP desoxyribonucleotidtriphosphate 
DTCs disseminated tumor cells 
ECL enhanced chemiluminescence 
EDTA ethylene diamine tetraacetic acid 
EMT epithelial to mesenchymal transition 
EpCAM epithelial cell adhesion molecule 
EpICD intracellular domain of EpCAM 
FACS fluorescence activated cell sorting 
FCS fetal calf serum 
g acceleration of gravity 
G guanine 
h hour 
H2O water 
IHC immunohistochemistry 
KH2PO4 potassium dihydrogen phosphate 
KCl potassium chloride 
kDa kilo Dalton 
l litre 
M molar 
mA milli ampere 
max maximal 
mg milligram 
µg microgram 
MET mesenchymal to epithelial transition 
min minute 
ml millilitre 
µl microlitre 
mM millimolar 
µM micromolar 
mRNA messenger RNA 
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NaCl sodium chloride 
Na2HPO4 disodium hydrogen phosphate 
OD optical density 
PAGE polyacrylamide gelelectrophoresis 
PBS phosphate buffered saline 
PCR polymerase chain reaction 
PI propidium iodide 
PFA paraformaldehyde 
qRT-PCR quantitative Real Time PCR 
RNA ribonucleic acid 
rpm revolutions per minute 
RT reverse transcriptase 
RT-PCR reverse transcription PCR 
SDS sodium dodecyl sulfate 
siRNA small interfering RNA 
T thymidine 
TEMED N,N,N`,N`-Tetramethylendiamin 
V volt 
WB western blot 
∆ delta 
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