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1 Introduction 

“Infertility is the inability of a sexually active, non-contracepting couple to achieve 

spontaneous pregnancy in one year” (World Health Organization, 2000) 

World Health Organization (WHO) 

Approximately 15 % of all couples are unable to achieve pregnancy, whereby in about 

half of the individual cases, the unfulfilled desire to have children is attributed to the 

male factor (Male Infertility Best Practice Policy Committee of the American Urological 

Association and Practice Committee of the American Society for Reproductive 

Medicine, 2006; Patel and Niederberger, 2011) 

Prerequisites for fertility in man are intact spermatogenesis, sperm transport and 

accessory sex gland function. In this context, male factor infertility is normally 

accompanied with reduced sperm counts, frequently combined with reduced semen 

quality parameters (Nieschlag et al., 2010). Diverse factors can cause male infertility, 

ranging from hormonal imbalances, congenital abnormalities, infections, genetic 

disorders, sexual dysfunction (Cates et al., 1985; O'Flynn O'Brien et al., 2010) to 

emerging influences through environmental factors, obesity and excessive stress (de 

Kretser, 1996; Feichtinger, 1991; Giwercman and Bonde, 1998; Shukla et al., 2014). 

For a diagnostic evaluation of male infertility, the semen analysis is a central assessment 

and should follow the WHO Laboratory Manual for the Examination and Processing of 

Human Semen (World Health Organization, 2010). The semen analysis provides 

information about the fluid volume, total sperm number, sperm vitality, motility and 

morphology. 

Complementary, hormonal determinations, genetic studies or a testicular biopsy can be 

indispensable (Jungwirth et al., 2015; World Health Organization, 2000). In case of 

azoospermia, i.e. the full absence of sperms in the ejaculate, a testicular biopsy can be 

used for sperm retrieval techniques (testicular sperm extraction, TESE) (Berookhim and 

Schlegel, 2014; Schwarzer et al., 2003). Thereby, a histological investigation can be a 
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predictive tool to discriminate between different degrees of spermatogenic disorder. 

Cases of non-obstructive azoospermia range from complete atrophy of seminiferous 

tubules, which are only lined by Sertoli cells (Sertoli cell-only syndrome) (Anniballo et 

al., 2011) through “mixed atrophy” with a simultaneous occurrence of both tubules 

containing germ cells and degenerated tubules (Sigg and Hedinger, 1981) to germ cell 

arrest, an interruption of spermatogenesis without further production of spermatozoa 

(Gat et al., 2010). 

Although recent advances in andrological diagnosis have been achieved, in around 40 % 

of men with disturbed sperm production, no defined etiological factor can be assigned 

(de Kretser, 1997). Thus, a greater understanding of the complex mechanisms of 

spermatogenesis remains necessary. 

The present work aims to explore the role of peritubular cells surrounding seminiferous 

tubules in controlling fundamental testicular functions. Peritubular cells have direct 

borders with spermatogonial stem cells (SSCs), which form the basis of lifelong 

spermatogenesis, and are considered to contribute to the SSC niche microenvironment 

via secreted factors. Therefore, a comprehensive proteomic characterization of the 

secretome of cultured human testicular peritubular cells (HTPCs) was performed. 

Nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS) combined 

with extensive data mining and bioinformatics was used to provide detailed insights into 

the secretome of HTPCs, and moreover into the SSC niche in man. 
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2 Literature review 

2.1 Spermatogenesis 

The process of spermatogenesis is continuous throughout the adult life and comprises 

all steps from the mitotic division of spermatogonial stem cells (SSCs) to the formation 

of mature spermatozoa. The initial phase of spermatogenesis takes place in the basal 

region of the seminiferous tubules of the testis and regulates the balance of self-renewal 

and differentiation (Figure 1).  

In humans, SSCs are divided into resting spermatogonia (Adark) and active 

spermatogonia (Apale) (Oatley and Brinster, 2012; Schlatt and Weinbauer, 1994). The 

active type A spermatogonia can either differentiate into type B spermatogonia or, in 

this steady-state spermatogenesis, perform a self-renewal process to maintain the SSC 

population (Ebata et al., 2011; Oatley and Brinster, 2012). The detailed mechanisms of 

SSC division in mammalian testes are poorly understood and remain a contentious issue 

(Oatley and Brinster, 2008).  

The type B spermatogonia divide mitotically into primary spermatocytes which undergo 

meiosis and produce secondary spermatids. In the second meiotic division, secondary 

spermatocytes divide into haploid spermatids. During spermiogenesis, the final stage of 

spermatogenesis, spermatids are transformed in a multi-step process to mature 

spermatozoa. Mature spermatozoa are finally released from the germinal epithelium 

(spermiation) and transported through the lumen of the seminiferous tubule to the rete 

testis and further to the epididymis. 

In man, the entire process of spermatogenesis takes approximately 10 weeks, followed 

by additional two weeks during post-testicular maturation of spermatozoa in the 

epididymis (Amann, 2008; Nieschlag et al., 2009). 
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Figure 1. Spermatogenesis in mammals. (A) Cross-section through seminiferous tubules from an adult 

mouse testis. (B) Schematic overview of the testicular compartments showing seminiferous epithelium 

and interstitial tissue. During the formation of elongate spermatids from undifferentiated spermatogonia, 

germ cells gradually move from a basal compartment to the adluminal compartment of the seminiferous 

epithelium. At all stages of maturation, they are accompanied by Sertoli cells. Peritubular myoid cells 

form the wall of the seminiferous tubules and lay on the outside of the basement membrane. Leydig cells 

are located in the interstitial tissue and are embedded in the vasculature network. Modified from Oatley 

and Brinster (2012). 

2.2 Spermatogonial stem cell niche 

In 1978, Schofield proposed a concept, where stem cells reside in specific anatomic 

locations, ‘niches’, which are essential for the regulation of stem cell behavior (Schofield, 

1978). Over the last decades, the niche theory has been extended to a variety of self-

renewing tissues, including bone marrow (Chen et al., 2016a; Kiel et al., 2005; Schofield, 

1978; Zhang et al., 2003), brain (Doetsch et al., 1999; Shen et al., 2004; Song et al., 2012), 

intestine (Barker et al., 2007; Farin et al., 2016; Sailaja et al., 2016), skeletal muscle 

(Sherwood et al., 2004; Yin et al., 2013), skin (Blanpain and Fuchs, 2006; Fuchs and 

Segre, 2000; Hsu et al., 2014) and testis (Chen et al., 2005; de Rooij, 2009; Kanatsu-

Shinohara et al., 2012; Oatley and Brinster, 2012; Yoshida et al., 2007). In various model 

organisms, it could be shown that niches are far more than the historically described 

anatomic stem cell location. Instead, they serve as a specialized microenvironment 

composed of surrounding cellular components and a complex milieu of signal 
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molecules emitted from support cells to regulate stem cell maintenance, differentiation, 

self-renewal and localization (Jones and Wagers, 2008; Li and Xie, 2005).  

For SSCs, the knowledge about their niche properties and molecular mechanisms 

controlling stem cell functions is limited. The location of SSCs along the periphery of 

seminiferous tubules adjacent to the basement membrane ((Chiarini-Garcia et al., 

2003), see Figure 1 B) suggests that surrounding somatic support cell populations can 

make a contribution to the SSC niche. It is not surprising that Sertoli cells, the somatic 

cells within the tubules, are regarded as the major contributor to the SSC niche in the 

mammalian testis (de Rooij, 2009; Oatley and Brinster, 2012). However, taking the 

observation of Yoshida et al., who revealed a preferred, non-random localization of 

undifferentiated spermatogonia close to the vascular network and interstitial cells 

(Yoshida et al., 2007), it raises questions about the extent of the contribution by other 

testicular somatic cells, including peritubular myoid cells, Leydig cells and the 

surrounding vasculature network.  

Several studies described age-related changes in male fertility and a decrease in 

reproductive functions, e.g. (Kuhnert and Nieschlag, 2004; Paul and Robaire, 2013; Plas 

et al., 2000; Wu et al., 2010b). Aging can cause alterations of the SSC niche which are 

manifested by a decline in the number of stem cells and stem cell activity. 

Transplantation studies imply an impaired capacity of the SSC niche environment of old 

males to support colonization of transplanted SSCs indicating a reduced potential to 

regenerate spermatogenesis (Zhang et al., 2006c). 

2.2.1 Growth factors enhancing SSC self-renewal 

Differentiation and self-renewal of the SSCs can be stimulated by local and systemic 

factors. Recent studies indicate a major influence of niche factors on these fundamental 

stem cell activities (Hofmann, 2008; Meng et al., 2000; Oatley et al., 2009; Oatley et al., 

2011; Yoshida et al., 2007). 

Significant scientific successes in unraveling the niche growth factor milieu could be 

achieved by in vitro and in vivo rodent studies and by developing strategies for the 
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cultivation of undifferentiated murine spermatogonia. Taking these approaches, 

multiple studies could demonstrate the essential role of the niche growth factors glial 

cell line-derived neurotrophic factor (GDNF), fibroblast growth factor (FGF2) and 

colony stimulating factor 1 (CSF-1) in the regulation of SSC self-renewal. It is a 

particularly conspicuous aspect, that these factors show similar functional 

characteristics in other self-renewing tissues. 

Throughout the years, GDNF emerged to be a key player in the maintenance of SSCs by 

regulating their self-renewal (Chen and Liu, 2015; Kanatsu-Shinohara et al., 2004; 

Kubota et al., 2003; Naughton et al., 2006; Oatley and Brinster, 2008). In 2000, Meng et 

al. made a striking observation, where GDNF-deficient mutant mice showed a severe 

decline of stem cell reserves and, contrarily, an accumulation of undifferentiated 

spermatogonia after a GDNF overexpression (Meng et al., 2000). In progeny-deficient 

mice testes, GDNF secretion by Sertoli cells was reported to be controlled by the 

stimulation of follicle-stimulating hormone (FSH) (Tadokoro et al., 2002). Moreover, it 

was shown that tumor necrosis factor-alpha (TNFα) also induced GDNF production by 

Sertoli cells (Simon et al., 2007). The presence of GDNF could be proven for multiple 

species, in testes of mice and rats (Buageaw et al., 2005; Kubota et al., 2004; Ryu et al., 

2005), bovine (Aponte et al., 2006; Oatley et al., 2004), hamster (Kanatsu-Shinohara et 

al., 2008a) and primates (Hermann et al., 2007; Maki et al., 2009). Further studies 

confirmed that SSCs in mice testis (Buageaw et al., 2005; Hofmann, 2008) as well as in 

primate (Maki et al., 2009) and human testes (Wu et al., 2009) express a membrane-

bound receptor for GDNF, the GDNF family receptor α1 (GFRα-1). 

While for a long time the general attention was paid solely on Sertoli cell produced 

GDNF, Spinnler et al. could demonstrate GDNF production also by human testicular 

peritubular cells (Spinnler et al., 2010). Most recently, it could be shown that expression 

of GDNF in mouse peritubular cells is controlled by testosterone stimulation and that 

transplantation of testosterone-treated peritubular cells to germ cell depleted mice could 

restore spermatogenesis (Chen et al., 2016b). These findings clearly support the 

conclusion that other testicular cells, beside Sertoli cells, may be a part of the stem cell 

niche. 
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Besides GDNF/GFRα-1 signaling, which has a leading role in controlling SSC activities, 

there are additional mechanisms involved in the regulation of SSC self-renewal and 

proliferation (Figure 2). Sertoli cell produced FGF2 and the epidermal growth factor 

(EGF) seem to be closely interlocked with GDNF-regulated self-renewal actions and 

promote, when co-supplemented with GDNF, the expansion of the SSC pool in long-

term culture studies (Kanatsu-Shinohara et al., 2005; Kanatsu-Shinohara et al., 2008a; 

Kubota et al., 2004). However, since FGF2 and EGF enhance - beside SSC proliferation - 

also growth of non-stem cell spermatogonia, they act in a non-specific manner with 

respect to self-renewal (Lee et al., 2007a; Oatley and Brinster, 2012).  

 

Figure 2. Signaling pathways of GDNF, FGF2 and EGF in self-renewal regulation of murine 

spermatogonial stem cells (SSCs). Known intrinsic molecular mechanisms and downstream activation 

processes are shown. Figure from Oatley and Brinster (2008). 

Gene expression profiling of mouse spermatogonia revealed an overexpression for 

Csfr1, the receptor gene of the colony stimulating factor 1 (CSF1), whereof a role for 

CSF1 as potential stimulator for SSC self-renewal has been concluded (Kokkinaki et al., 
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2009; Oatley et al., 2009). Remarkably, CSF1 was detected in interstitial Leydig cells as 

well as peritubular myoid cells, which expanded the pool of supporting cells that may be 

part of the SSC niche microenvironment (Oatley et al., 2009). Additional experiments 

using cultured mouse SSCs could show that insulin-like growth factor 1 (IGF1) 

supplemented medium increased the SSC pool (Kubota et al., 2004) and enhances SSC 

proliferation in a pathway different from the essential GDNF and FGF2 signaling 

(Wang et al., 2015). Interestingly, Kanatsu-Shinohara et al. recently showed the first 

negative regulator of SSC self-renewal, F-box/WD repeat-containing protein 7 

(FBXW7), that counteracts with positive self-renewal signals (Kanatsu-Shinohara et al., 

2014). 

2.2.2 Growth factors initiating differentiation of SSCs 

For a continuous spermatogenesis and fertility, a stable balance of self-renewal and 

differentiation has to be maintained. Studies on cultivated isolated mouse SSCs revealed 

that stimulation with Activin A and Bone morphogenetic protein 4 (BMP4) reduced the 

number of SSCs, indicating an influence on germ cell differentiation (Nagano et al., 

2003). Complementary studies also demonstrated an increased expression of c-Kit, an 

early marker for differentiating spermatogonia, after BMP4 addition to undifferentiated 

spermatogonia (Pellegrini et al., 2003). More recently, it was proposed that BMP4-

induced differentiation affects cell adhesion pathways (Carlomagno et al., 2010) and 

leads to an upregulation of Sohlh2, an assumed regulator of c-Kit expression (Li et al., 

2014). Finally, the Sertoli cell-produced stem cell factor (SCF) can initiate germ cell 

differentiation through the transmembrane receptor c-Kit (de Rooij et al., 1999; 

Filipponi et al., 2007; Schrans-Stassen et al., 1999). 

Besides rather established factors and pathways involved in SSC self-renewal and 

differentiation that are addressed above, there are upcoming targets and mechanisms 

including immunoglobulin kappa J region (RBPJ) (Garcia et al., 2014), FGF8-FGFR1 

signaling (Hasegawa and Saga, 2014) and Wnt/β-catenin signaling (Takase and Nusse, 

2016) that may contribute to the regulation of stem cell activity. 
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Taken together, the spermatogonial stem cell niche is constituted by a complex interplay 

of growth factors and provides structural support for the maintenance and regulation of 

stem cell activity. Over the years, considerable progress could be made in disclosing 

niche components contributed by support cells which provide a first insight into the 

mosaic of niche factors. However, also because of limited access to human SSCs, 

experiments were mainly conducted in rodent models. It is therefore necessary to 

examine the transferability of these scientific findings to the human reproduction 

system. Moreover, the production of known SSC key regulators (e.g. GDNF, CSF1) by 

Leydig cells and peritubular myoid cells supports the hypothesis that besides the 

established role of Sertoli cells, additional somatic cell populations have the potential to 

affect SSC fate. 

2.3 Peritubular cells of the testis 

Peritubular myoid cells are the primary cellular component of the wall of the 

seminiferous tubules in testes of all mammalian species. Their organization in the 

peritubular compartment is however strikingly different between species. In man, they 

are arranged in five to seven layers of very flat, elongated, spindle-shaped cells 

surrounding the seminiferous tubules, contrary to laboratory rodents where only a 

single cell layer is observed (Maekawa et al., 1996; Mayerhofer, 2013; Ross and Long, 

1966; Schell et al., 2008; Welsh et al., 2009).  

2.3.1 Phenotypic characteristics of testicular peritubular cells 

Using immunocytochemistry, different phenotypes between the inner and outer cellular 

layers in man could be determined. Inner cellular layers showed positive 

immunoreactivity for desmin, indicating a smooth muscle-like phenotype, whereas 

outermost layers were positive for vimentin, suggesting a connective tissue phenotype 

(Davidoff et al., 1990). The expression of smooth muscle cell-specific markers (e.g. α-

smooth muscle actin (α-SMA), desmin-type intermediate filaments, myosin heavy 

chain 11 (MYH11)) further underlines their smooth muscle-like character (Albrecht et 

al., 2006; Huang et al., 2012; Tung and Fritz, 1990; Virtanen et al., 1986). 



Literature review 

10 
 

Based on these phenotypic characteristics, these cells play a vital role in the transport of 

mature, yet immotile sperm towards the rete testis. It is assumed that cycles of 

contraction and relaxation of the peritubular cells circularly arranged around 

seminiferous tubules generate propulsive impulses important for the transport of 

immotile sperm and fluid (Ellis et al., 1981; Hargrove et al., 1977; Losinno et al., 2016; 

Romano et al., 2005; Ross and Long, 1966). The significance of peritubular myoid cell 

contractility for the regulation of spermatogenesis and male fertility could be 

highlighted in previous mouse studies (Welsh et al., 2009; Zhang et al., 2006a). More 

recently, in patients with mixed atrophy, a loss of contractile marker proteins, MYH11 

and calponin, and of cGMP-dependent protein kinase 1 (cGKI) – a molecular marker 

for relaxation – could be associated with male infertility (Welter et al., 2013). 

Peritubular cell function and their smooth muscle-like phenotype starts to take shape 

during puberty, whereby differentiation of peritubular cells appears to be critically 

regulated by androgens with an additive role of follicle stimulating hormone (FSH) 

(Schlatt et al., 1993). Starting in the same stage of sexual development, also the receptor 

for G protein-coupled oestrogen (GPER) is detectable in testicular peritubular cells of 

pubertal up to adult non-human primates. It is noteworthy in this context that a 

reduction up to a complete loss of GPER was observed in testes of men with impaired 

spermatogenesis (Sandner et al., 2014). 

A recent study proposed an additional steroidogenic phenotype of human testicular 

peritubular cells and could prove the expression of pluripotency markers, namely POU 

domain class 5 transcription factor 1 (POU5F1) and GATA-binding protein 4 (GATA4) 

as well as of various steroidogenic markers including nuclear receptor subfamily 5, 

group A, member 1 (NR5A1), steroidogenic acute regulatory protein (STAR), CYP11A1 

and CYP17A1 and 3 beta-hydroxysteroid dehydrogenase (HSD3B). In addition, the 

expression of markers for putative stem Leydig cells, leukemia inhibitory factor receptor 

(LIFR) and platelet-derived growth factor receptor-A (PDGFRA) suggest that the 

peritubular compartment of the testis may serve as a safe shelter for cells of the adult 

Leydig cell lineage (Landreh et al., 2014). 
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2.3.2 Studies on cultured human testicular peritubular cells (HTPCs) 

The development of a relevant culture model for peritubular cells from the adult human 

testis finally facilitated the investigation of this rather ill-explored cell type also in the 

human system (Albrecht et al., 2006). Peritubular cells were isolated from man 

undergoing reconstructive surgery resulting in obstructive azoospermia but normal 

spermatogenesis (HTPCs) and patients with impaired spermatogenesis, non-obstructive 

azoospermia, and testicular fibrosis (HTPC-Fs) (Mayerhofer, 2013). The cells were 

derived by an explant culture method and were characterized regarding their phenotype 

by expression of above mentioned smooth muscle specific markers (e.g. α-SMA, 

MYH11, calponin, cGKI) (Schell et al., 2008; Welter et al., 2013).  

In addition to its contractile nature (Schell et al., 2010), recent studies could also give a 

brief insight in the repertoire of secretory products. First, HTPCs show a predominant 

production of extracellular matrix (ECM) and basement membrane components, such 

as collagen type I, IV and XVIII, laminin, secreted protein acidic and rich in cystein 

(SPARC), fibronectin and the proteoglycan decorin (Adam et al., 2012a; Adam et al., 

2011; Albrecht et al., 2006). Interestingly, decorin secretion is significantly higher in 

HTPC-Fs, which show impaired testicular function and fibrosis (Adam et al., 2012b). 

The secretory character of HTPCs/-Fs is further mirrored by the secretion of various 

signaling molecules, such as nerve growth factor (NGF) and pro-inflammatory 

cytokines, e.g. monocyte chemotactic protein 1 (MCP1) and interleukin 6 (IL6) 

(Mayerhofer, 2013). The production of these paracrine factors can be regulated by the 

mast cell produced TNF-α (Schell et al., 2008). 

Finally, one key finding was that HTPCs/-Fs produce the neurotrophic factor GDNF, 

which holds, as discussed in chapter 2.2, a central position in the paracrine regulation of 

SSCs self-renewal (Spinnler et al., 2010). Most recent mice studies showed that GDNF 

secretion seems to be critically regulated by testosterone stimulation. It was reported 

that testosterone-dependent GDNF secretion by peritubular cells could significantly 

enhance the colonization of transplanted SSCs into germ-cell depleted mice and could 

restore spermatogenesis (Chen et al., 2014; Chen et al., 2016b). 
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Considering thereby the anatomical location of peritubular cells in close proximity to 

SSCs, spatially separated only by a thin basal lamina, paracrine communication between 

both neighboring cells seems very well conceivable. Moreover, the findings outlined 

above led to the hypothesis that peritubular cells are an essential contributor to the SSC 

niche microenvironment and therefore play an essential role in human male fertility. 

2.4 Quantitative proteomics for investigation of the cell 

secretome 

Secreted proteins play an integral role in the cell-to-cell communication in multicellular 

organisms. Among them are growth factors, hormones and cytokines that may act as 

autocrine/paracrine intercellular messengers as well as components of the extracellular 

matrix. This complex set of molecules is often referred to as ‘secretome’, describing the 

entirety of proteins secreted by cells, tissues and organisms at a certain time and 

condition (Blanco et al., 2012; Hathout, 2007; Uhlen et al., 2015). Thus, the secretome 

reflects the current status of a cell in a particular environment and exerts a strong 

influence on physiological and pathological processes (Finoulst et al., 2011; Makridakis 

and Vlahou, 2010). 

2.4.1 Mechanisms of protein secretion 

Protein secretion in eukaryotic cells follows, in most cases, a well-defined process 

referred to as the classical endoplasmatic reticulum (ER)/Golgi secretory pathway 

(Baines and Zhang, 2007; Lee et al., 2004; Nickel and Rabouille, 2009; Nickel and 

Wieland, 1998; Osborne et al., 2005; Park and Loh, 2008). Secretory proteins containing 

N-terminal or internal signal peptides are targeted to the ER and the newly synthesized 

proteins are further directed across specialized ER membrane domains. Packaged into 

vesicular carriers, the synthesized proteins are transported to the Golgi apparatus where 

they undergo post-translational modification and processing. The export to the 

extracellular space or cell surface requires a dock and fusion of membrane-bound 

secretory vesicles with plasma membrane structures (porosomes) and vesicle swelling 

for a regulated expulsion of intravesicular contents (Anderson, 2006; Kelly et al., 2004). 
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Furthermore, there is growing evidence that certain secretory proteins use 

unconventional, non-classical secretory pathways (Nickel and Rabouille, 2009; Nickel 

and Seedorf, 2008; Prudovsky et al., 2008). Several soluble cytoplasmic and nuclear 

proteins lacking a guiding signal peptide sequence have been described that are 

transported to the cell surface through ER- and Golgi-independent pathways. Among 

them are, e.g. interleukin 1β, galectin 1, fibroblast growth factor 2 (FGF2), thioredoxin, 

and high-mobility group box 1 (HMGB-1) (Nickel and Rabouille, 2009; Nickel and 

Seedorf, 2008). 

2.4.2 Secretome sample preparation and processing 

Recent advances in proteomics techniques, including quantitative mass spectrometry 

(MS) and bioinformatics, open up new opportunities for a comprehensive analysis of 

cell secreted proteins. Secretome analyses using MS-based proteomics thereby require 

appropriate sample processing steps (Brown et al., 2012; Chevallet et al., 2007; Hathout, 

2007; Kupcova Skalnikova, 2013; Makridakis and Vlahou, 2010; Rocha et al., 2014; 

Stastna and Van Eyk, 2012). A straightforward workflow starts with cell isolation and 

characterization, typically using immunoassays against cell-specific markers. Cells are 

further cultured in medium, complemented with ~10 % bovine serum. To avoid 

potential contamination and masking of cell secreted proteins by serum proteins present 

in high amounts in the culture medium, extensive washing of cells in either phosphate-

buffered saline (PBS) or serum-free medium is essential. After cultivation for additional 

12-48 h in serum-free medium, conditioned medium containing the secreted proteins is 

collected and centrifuged to remove detached cells and debris (Brown et al., 2012). 

Secretome proteins can then be concentrated using centrifugal filtration devices with 

molecular weight cutoff (3-10 kDa). 

One major challenge in secretome proteomics is the low concentration of secreted 

proteins groups, such as cytokines, in a complex background of other proteins present 

in huge excess (Chevallet et al., 2007; Meissner et al., 2013). To counteract this problem, 

commonly referred to as “undersampling”, pre-fractionation steps are used to facilitate 

identification of low abundant proteins and increase the overall proteome coverage by 
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reducing the sample complexity. Pre-fractionations can be carried out either on the 

protein level or on the peptide level after enzymatic digestion. While in the beginning of 

MS-based secretome analysis two-dimensional gel electrophoresis and protein 

identification by MS was frequently applied, many modern approaches commonly use a 

combination of a first-dimension separation and subsequent C18-based liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) (Kupcova Skalnikova, 2013). 

A recent study compared three pre-fractionation strategies carried out prior to nano-

LC-MS/MS analysis regarding their performance in secretome analyses (Piersma et al., 

2010). One-dimensional gel electrophoresis followed by LC-MS/MS was superior 

compared to strong cation exchange (SCX) chromatography at the peptide level and 

reversed phase chromatography using tC2 cartridges at the protein level, with regard to 

the number of identified proteins, reproducibility of protein identification and 

throughput. 

2.4.3 Mass spectrometry-based quantitative proteomics 

The development of comprehensive, unbiased and quantitative analysis strategies in 

recent years made MS-based proteomics the method of choice for large-scale 

investigation of protein secretion (Cox and Mann, 2011; Hathout, 2007; Mallick and 

Kuster, 2010; Meissner et al., 2013). There are two main strategies in quantitative MS-

based proteomics, either based on the incorporation of stable isotope labels or a label-

free approach using spectral counting or precursor ion intensity measurements (Gao et 

al., 2008; Ong and Mann, 2005; Walther and Mann, 2010). 

Chemical and metabolic isotopic labeling methods for relative quantification include 

isotope-coded affinity tags (ICAT) (Gygi et al., 1999), tandem mass tags (TMT) 

(Thompson et al., 2003), isobaric tags for relative and absolute quantitation (iTRAQ) 

(Ross et al., 2004)) and stable isotope labeling with amino acids in cell culture (SILAC) 

(Ong et al., 2002). SILAC is a metabolic labeling strategy that gained popularity in cell 

culture based comparative secretome analysis (Barderas et al., 2013; Chen et al., 2012; 

Marimuthu et al., 2013; Polacek et al., 2010; Rocha et al., 2014). The technique relies on 

the incorporation of non-radioactive, “heavy” isotope-labeled amino acids into all newly 
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synthesized proteins in cell culture systems. This allows a metabolic encoding of whole 

cell proteomes (“light” and “heavy” forms), which can be distinguished by MS. A direct 

sample mixing prior further processing steps minimizes sample-handling errors and 

increases the accuracy and robustness of quantification (Harsha et al., 2008; Ong and 

Mann, 2007). Notwithstanding the clear advantages, SILAC faces difficulties with 

cultures of primary cells that show limited division in cell culture, since comprehensive 

incorporation of the label requires a minimum of five cell divisions in the labeling 

medium (Blagoev and Mann, 2006; Stastna and Van Eyk, 2012). Moreover, the finite 

number of isotope labels that are available in label-based methods severely limits the 

multiplexing capacity indispensable for large-scale experiments (Dephoure and Gygi, 

2012). 

Their excellent scalability and the more simple and economical nature made label-free 

quantitation methods an attractive alternative for quantitative proteomics studies in 

recent years (Feltcher et al., 2015; Meissner et al., 2013; Soleilhavoup et al., 2016). This 

upswing is based on the empirical observations that chromatographic peak heights and 

peak areas (Andersen et al., 2003; Bondarenko et al., 2002; Chelius and Bondarenko, 

2002; Wang et al., 2003) or the number of spectra (Colinge et al., 2005; Liu et al., 2004) 

correlate linearly to the protein abundance in the sample. Relative quantification by 

precursor ion intensity measurement is done by comparing the peak intensity of each 

peptide of a protein in different LC-MS datasets originating from different samples (Zhu 

et al., 2010). The spectral counting approach uses the number of identified MS/MS 

spectra from peptides of the same protein as estimation of relative protein abundance 

between different samples (Lundgren et al., 2010; Zhu et al., 2010). Compared to label-

based methods, spectral counting is inferior in quantification accuracy but outstanding 

in proteome coverage and dynamic range (Arsova et al., 2012; Li et al., 2012; Mallick 

and Kuster, 2010; Merl et al., 2012). 
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2.4.4 Bioinformatics tools predicting subcellular localization and secretory 

pathways 

A key challenge in secretome studies remains the discrimination between truly secreted 

proteins and those released due to cell leakage and cell death. For the determination of 

the subcellular localization, several internet-accessible tools have been developed. 

Frequently used platforms are the Gene Ontology (GO) annotation database 

(Ashburner et al., 2000), UniProt (http://www.uniprot.org/), the DAVID platform 

(Huang da et al., 2009) and Ingenuity (http://www.ingenuity.com/). Most popular tools 

for the prediction of classical secretory pathways by proofing the presence of a signal 

peptide in the amino acid sequence are SignalP (Petersen et al., 2011), Phobius (Kall et 

al., 2004) and SPOCTOPUS (Viklund et al., 2008). Non-classically secreted proteins can 

be predicted using SecretomeP, based on queries of features providing information on 

various post-translational and localization aspects (Bendtsen et al., 2004). A 

combination of different tools and algorithms for the classification of potentially 

secreted proteins can be advantageous for large-scale experiments (Gao et al., 2008; Le 

Bihan et al., 2012; Uhlen et al., 2015). 

http://www.uniprot.org/
http://www.ingenuity.com/
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Abstract 

Spermatogonial stem cells (SSCs) are vital for lifelong spermatogenesis in man. In their 

niches, a special growth factor milieu and structural support by surrounding cells are 

thought to ensure their maintenance. In man, the cells of the wall of seminiferous 

tubules, human testicular peritubular cells (HTPCs), are considered to contribute to this 

microenvironment and the overall testicular microenvironment via secreted proteins. 

Therefore, the secretome of cultured HTPCs from five individual men was analyzed by 

LC-MS/MS. Quantification and comparison to the proteome of HTPC lysates revealed 

263 out of 660 identified secretome proteins to be at least 5-fold enriched in the culture 

media. To obtain additional evidence for secretion, signal peptide and gene ontology 

(GO) enrichment analyses were applied. The latter revealed—besides extracellular 

matrix (ECM) components—a significant over-representation of chemokines and 

growth factors acting in signaling pathways that appear critical for SSC maintenance. 

Immunohistochemistry, performed with human testicular sections, depicted expression 

of selected proteins in vivo. The significant enrichment of proteins related to cell 

adhesion and migration may indicate their involvement in SSC regulation. Our data 

strongly support the hypothesis of a crucial role of HTPCs in the composition of SSC 

niches in man. 

Keywords 

human testis; mass spectrometry; peritubular cells; secretome; spermatogenesis; stem 

cell niche 
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Introduction 

Seminiferous tubules of the testis represent a special compartment, in which 

spermatogenesis takes place. Once started at puberty, this process occurs throughout life 

and is fueled by the division and differentiation of stem cells, called spermatogonial 

stem cells (SSCs). This cell type resides within a niche that is thought to be built by 

Sertoli cells (1). Yet, other testicular cells are likely also involved physically and 

functionally in the formation of this niche. In this context, Yoshida et al. observed a 

nonrandom orientation of undifferentiated spermatogonia along the seminiferous 

tubules toward the vascular network and accompanying interstitial cells (2). The 

ordered location of SSCs adjacent to the interstitium suggests that cell types other than 

Sertoli cells make a valuable contribution to the composition of a SSC niche. 

The somatic cells of the tubular wall, peritubular cells, are such cells that also may have a 

say. They are separated from SSCs only by a basal lamina and thus certainly form a 

morphological part of the niche. These cells are poorly explored, especially in humans 

(3, 4). In man, several layers of very thin, spindle-shaped, peritubular cells together with 

extracellular matrix (ECM) proteins form this compartment, whereas only a single cell 

layer of such cells forms the tubular wall in rodents (4, 5). Peritubular cells in the adult 

express markers for smooth muscle-like cells (e.g., smooth muscle actin) and for 

connective tissue cells (e.g., vimentin) (6, 7), and thus they are regarded to be 

contractile, smooth muscle-like cells. They appear to be involved in the transport of 

immotile sperm and fluid in seminiferous tubules (8). 

Recently, a culture method for human testicular peritubular cells (HTPCs) was 

established, which allows a systematic characterization of this type of cell (7). It uses as a 

starting point very small testicular tissue samples from adult patients with obstructive 

azoospermia and normal spermatogenesis (7, 9-13). By showing typical markers for 

peritubular cells, including smooth muscle actin (7, 10), and by documenting the 

absence of markers for Leydig cells (LH-receptor) or Sertoli cells (FSH-receptor) (11), 

the purity of the explant cell cultures over several passages could be verified. As an 

important result stemming from the initial characterization, HTPCs were shown to be a 
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source of several neurotrophic factors, including glial cell line derived neurotrophic 

factor (GDNF) (11, 14). This factor is regarded to be crucial for the renewal of SSCs 

throughout species (1, 15). HTPCs produce GDNF in a constitutive fashion, as shown 

by ELISA measurements (11). Thus in man, GDNF is a product of peritubular cells as 

well as Sertoli cells. As a result of the proximity of peritubular cells to SSCs, peritubular 

cells via GDNF may regulate SSCs in a paracrine way. 

These results have led to the hypothesis that peritubular cells of the tubular wall 

contribute directly to the SSC niche in the human testis (11). In addition, peritubular 

cells may also be involved in the general regulation of testicular functions by producing 

factors which may regulate Sertoli cells and Leydig cells, for example. Recent mouse 

studies provide evidence for this notion (4, 16-18). 

To further explore these novel ideas and to expand the knowledge about the role of 

HTPCs for the human testis, we performed a proteomic analysis of the HTPC secretome 

using nano-LC-MS/MS technology. On the basis of five individual human donors, we 

present here the first comprehensive data set of proteins secreted by HTPCs. 
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Experimental procedures 

Human Testicular Samples, Isolation and Cultivation of HTPCs 

Isolation and culture of HTPCs from human testicular biopsies were performed, as 

described previously (7, 10, 12, 14, 19-21). The cells were isolated from five patients with 

azoospermia but normal spermatogenesis due to vasectomy. The local ethics committee 

approved the study and the use of these biopsies and cells (permission no. 3051/11). All 

cells were derived by explant culture, which allows us to monitor outgrowth of 

peritubular wall cells. They were initially screened for smooth muscle cell markers 

including smooth muscle cell actin (SMA) (7, 10) and for the absence of contamination 

by Sertoli cells and Leydig cells by examining expression of receptors for FSH and 

LH (11). The specific cells studied in this project stem from five men (age 29–53 years). 

They were passaged and propagated over 7–9 passages in Dulbecco’s modified Eagle’s 

medium (DMEM) high glucose with phenol red + 10% fetal calf serum (FCS; both from 

PAA GmbH, Cölbe, Germany). All cells used were verified to express SMA by RT-PCR, 

immunocytochemistry, or Western blot. 

Protein Sample Preparation 

For proteomic analysis, human testicular peritubular cells from five patients (passages 

7–9) were seeded to a cell culture dish (60 × 15 mm, 21 cm2; Sarstedt, Nümbrecht, 

Germany) and were allowed to grow under normal in vitro conditions (DMEM high 

glucose with phenol red + 10% FCS). When cells reached a confluence of 90%, the 

medium was removed. Cells were washed twice with 2 mL of medium without FCS and 

without phenol red, and fresh medium was added (without FCS and phenol red; 

2 mL/dish). After 24 h, the conditioned medium was collected, centrifuged for 3 min at 

1000g and stored at −80 °C, until processing for proteomic analysis. Cell pellets were 

harvested and likewise stored. 

Proteins contained in the conditioned medium were concentrated for 40 min at 3000g 

on an Amicon Ultra-4 centrifugal filter with a 3 kDa molecular weight cutoff (Millipore, 

Schwalbach, Germany). The remaining supernatant was dried in a vacuum centrifuge, 
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and the protein pellet was resuspended in 15 μL Laemmli sample buffer prior to 

electrophoresis. For cell lysate samples, the protein concentration was determined using 

the Pierce 660 nm Protein Assay (Pierce/Thermo Scientific, Rockford, IL) (22). 

SDS-PAGE 

SDS-PAGE was performed using a 4% stacking gel and a 12% separation gel (overall gel 

size 7 cm (L) × 8.5 cm (W) × 0.75 mm) on a mini-Protean II system (Bio-Rad, Hercules, 

CA). Samples were run for 15 min at a constant voltage of 80 V and for 70 min at 100 V. 

After electrophoresis, gels were stained overnight by Coomassie R-250 and destained in 

5% methanol with 7% acetic acid. 

Gel Slicing and In-Gel Digestion 

Gels were washed twice in water, and gel lanes were cut into 12 bands for trypsin 

digestion and subsequent LC-MS/MS analysis. Fractionated bands were further minced 

into small pieces and subjected to in-gel trypsin digestion. In brief, proteins were 

equilibrated twice with 50 mM ammonium bicarbonate (ABC), and cysteine residues 

were reduced during a 45 min incubation in 10 mM dithioerythritol/50 mM ABC at 

56 °C. Alkylation was carried out in 55 mM iodoacetamide/50 mM ABC for 30 min at 

room temperature in darkness. After they were washed in 50 mM ABC, gel pieces were 

dehydrated in 60% acetonitrile (ACN) and dried by vacuum centrifugation (vacuum 

concentrator, Bachofer, Reutlingen, Germany). Subsequent enzymatic digestion was 

performed overnight in 50 mM ABC with 100 ng sequencing-grade porcine trypsin 

(Promega, Madison, WI) per gel slice. The generated peptides were extracted twice with 

5% formic acid in 50% ACN and once with 100% ACN. The peptide-containing 

solution was dried using a vacuum concentrator and stored at −80 °C until LC-MS/MS 

analysis. 
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LC-MS/MS Analysis 

Prior to LC-MS/MS, peptide samples were dissolved in 40 μL of solvent A consisting of 

0.1% formic acid and centrifuged for 15 min at 18 000g. Peptides were separated by 

nano reversed-phase liquid chromatography on an Ettan MDLC system (GE Healthcare, 

Munich, Germany) with a 15 cm separation column (ReproSil-Pur 120 C18 AQ, 3 μm 

bead size, 75 μm i.d., Dr. Maisch, Ammerbuch-Entringen, Germany). Peptide mixtures 

were injected and trapped at 10 μL/min on a guard column packed with C18 PepMap 

100, 5 μm, 300 μm × 5 mm (LC Packings/Dionex, Idstein, Germany) and separated at a 

constant flow rate of 280 nL/min with a gradient from 0 to 30% B (0.1% formic acid and 

84% ACN) in 80 min followed by a second ramp to 60% B in 30 min. The LC system 

was coupled online to an Orbitrap XL instrument (Thermo Scientific, San Jose, CA) via 

a distal coated SilicaTip (FS-360-20-10-D-20, New Objective, Woburn, MA), and the 

electrospray ionization was operated at a needle voltage of 1.6 kV. Mass spectra were 

acquired in cycles of one MS scan from m/z 300–2000 and up to five data dependent 

MS/MS scans of the most intensive peptide signals with charge state ≥2 at a collision 

energy of 35%. Dynamic exclusion was activated for 30 s to minimize repeated 

precursor selection. 

Database Searching and Data Analysis 

MS RAW data were processed using MASCOT Daemon and MASCOT Server version 

2.4 (Matrix Science, London, U.K.) (23). Peak lists were searched against the 

IPI.HUMAN.v3.87 database augmented with the MaxQuant contaminant database 

(25 Jun 2012, http://maxquant.org/downloads.htm), resulting in 91 711 entries in the 

forward peptide sequence database including common contaminants. Applied search 

parameters are listed next. Fixed modifications: carbamidomethyl (C); variable 

modifications: oxidation (M); decoy database: checked; max missed cleavages: 1; peptide 

charge: 2+ and 3+; peptide tol. ± 2 Da; MS/MS tol. ± 0.8 Da. 

Scaffold version 3.6.5 was used to obtain a list of protein identifications with a false 

discovery rate (FDR) ≤ 0.9%, requiring at least two individual peptides per protein with 

a minimum peptide probability of 90% (24, 25). 
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Normalized spectral counts, in Scaffold denoted as “quantitative value”, were exported 

to Microsoft Excel and used for quantitative comparison between secretome and cell 

lysate data. A similar strategy has been applied by Piersma et al. (26). Prior to further 

data analysis, mapped contaminants were eliminated from the list of identified proteins. 

Comparison of the secretome and cell lysate data sets was performed in a proportional 

Venn diagram provided by Google Image Charts (https://developers.google.com/ 

chart/image/docs/chart_wizard). 

Subcellular Localization and Pathway Prediction 

The freely accessible SignalP 4.1 server (http://www.cbs.dtu.dk/services/SignalP/) was 

used to predict signal peptide cleavage sites in FASTA sequences of the identified 

secretome and cell lysate proteins, applying “sensitive” D-cutoff values >0.34 (27). 

Regarding the subcellular localization, we used annotation mapping incorporated in 

UniProt (http://www.uniprot.org/) with respect to the gene ontology (GO) term 

“cellular component” (28). 

To get a specific and detailed functional profile of the analyzed HTPC secretome, we 

first performed a DAVID functional annotation clustering 

(http://david.abcc.ncifcrf.gov/home.jsp) in order to cluster enriched annotation groups 

within the set of identified secretome proteins (29, 30). Groups comprising similar 

biological function terms were filtered for most significant terms above an enrichment 

score of 1.3 (p-value <0.05). Complementary, this functional profile was visualized in a 

grouped network using the Cytoscape 3.0.0 plug-in ClueGO v2.0.3 (31, 32). At a 

network specificity displaying GO terms from tree levels 2 to 6 and a minimum number 

of 10 genes per term, the right-sided hypergeometric test was used to calculate 

enrichment for terms and groups. Functional grouping was based on κ-score (>0.3). 

Additionally, GO term fusion was selected for redundancy reduction to aspire an 

insightful view on the functional profile of the HTPC secretome. 
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Immunohistochemistry 

Immunohistochemical staining was performed as published elsewhere (7, 33) using 

testicular samples of five men. For staining, specific mouse monoclonal antibodies 

against collagen I (1:100, c = 2 μg/mL; AF5610-1) and collagen IV (1:100, c = 1 μg/mL; 

AF5910; both ACRIS antibodies, Aachen, Germany) were used. A rabbit polyclonal 

antiserum against fibronectin (1:500, c = 1 μg/mL; cat. no. F3648; Sigma, Taufkirchen, 

Germany) and a rat monoclonal antibody against PTX3 (1:100, c = 1 μg/mL; cat. no. 

ab90806; Abcam, Cambridge, United Kingdom) were used. Corresponding negative 

controls consisted of mouse IgG (I5381; Sigma, Taufkirchen, Germany), rabbit IgG 

(PP64; Millipore, Schwalbach, Germany), rat IgG (MCA1123R; AbD SeroTec, 

Puchheim, Germany) instead of the specific antibodies/antiserum. Sections were 

counterstained with hematoxylin. 

Western Blot 

For immunoblotting, lysates of peritubular cells were used. Western blotting was 

performed as described before (20), using the same monoclonal antibody against PTX3, 

as for immunohistochemistry (1:100, c = 1 μg/mL; cat. no. ab90806; Abcam, Cambridge, 

United Kingdom). Secondary goat antirat antibody (1:10.000, c = 80 ng/mL; 112-035-

167; Dianova, Hamburg, Germany) conjugated with peroxidase was added to detect 

bands with chemiluminescent solutions (SuperSignal West Femto Maximum Sensitivity 

Substrate, Pierce, Thermo Scientific, Rockford, IL). 
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Results 

To characterize the secretome of human testicular peritubular cells, we analyzed cell 

culture supernatants of HTPCs isolated from five individual donors using nano-LC-

MS/MS. To reduce undersampling and to increase the number of identified proteins, 

the proteins were prefractionated using 1D SDS-PAGE (12 slices per donor; Figure 1), 

and fractions were analyzed individually by LC-MS/MS. To obtain a high-confidence 

data set, only identifications with at least two individual peptides were accepted, and 

using a decoy database approach (34), an FDR ≤ 0.9% was determined. The entire 

protein list can be viewed in Supplementary Table 1. In total, 813 proteins could be 

identified in the cell supernatants, from which 271 were found in samples of all five 

individual donors, 382 in at least four, 494 in at least three, and 619 in at least two 

donors. 

 

 

 

Figure 1. One-dimensional SDS gels (12% polyacrylamide) stained by Coomassie brilliant blue R-250. (A) 

HTPC proteins enriched by ultrafiltration from 2 mL serum-free cell culture supernatant and (B) 50 μg of 

corresponding cell lysate proteins. Boxes in A and B indicate fractions individually analyzed by LC-

MS/MS. (C) Molecular weight marker ranging from 10 to 250 kDa. 
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To check if the presence of proteins identified in the cell culture supernatant is due to 

secretory activity rather than cell degradation or cell lysis, we additionally analyzed two 

corresponding HTPC lysates, following the same analytical strategy as described above. 

From the cell lysates, a total of 1570 proteins were identified (Supplementary Table 2). 

Supernatant and cell lysate data sets show an overlap of 617 proteins, whereas 196 were 

exclusively detected in the cell culture supernatants, and 953 were exclusively detected 

in cell lysates (Figure 2). 

 

 

 

Figure 2. Proportional Venn diagram of identified HTPC proteins in cell culture supernatant and cell 

lysate data sets. 

Protein abundance between cell culture supernatants and cell lysate was quantitatively 

compared applying a spectral counting approach (35). Proteins detected in both cell 

culture supernatants and corresponding cell lysates were considered to be secreted by 

HTPCs if they fulfilled the following enrichment criteria: (i) normalized spectral counts 

need to be at least 5 times higher in cell culture supernatants compared to 

corresponding cell lysate data and (ii) at least 10 spectra per protein in at least one 

sample need to be acquired. One hundred ninety-six proteins were exclusively detected 

in the supernatant, thus exceeding by far the first secretion criterion. Sixty-seven 

proteins, detected in both supernatant and cell lysate, were enriched in cell 
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supernatants, and therefore, we consider a total of 263 proteins identified from the cell 

culture medium to be secreted by HTPCs. This data set is referred to as the HTPC 

secretome data set and was used for the following analyses. In Table 1, the 25 most 

prominent proteins of the HTPC secretomes are listed. All these proteins were detected 

in all individual donors and sorted in descending order with respect to their average 

spectral counts. The entire set of HTPC secretome proteins is available as 

Supplementary Table 5. The data set contained a noticeable number of proteins related 

to structural components of the ECM like fibronectin or collagens, as well as multiple 

cytokines and growth factors such as vascular endothelial growth factor (VEGF) and 

pigment epithelium derived factor (PEDF). 
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Table 1. Top 25 of 263 proteins of the HTPC Secretome Data Set with Corresponding Spectral Countsa 

  Average Spectral Counts   

Protein Name accession number 

cell 

supernatant cell lysate 

ratio cell 

supernatant/

cell lysateb,c 

signal 

peptided 

Isoform 1 of Fibronectin IPI00022418 (+1) 1312.0 23.9 54.8 YES 

Collagen alpha-2(I) chain IPI00304962 932.2 13.8 67.4 YES 

cDNA FLJ53292, highly similar to Homo 

sapiens fibronectin 1 (FN1), transcript 

variant 5, mRNA 

IPI00922213 622.8 0.0 n.d. in CL NO 

Collagen alpha-1(I) chain IPI00297646 602.7 36.6 16.5 YES 

Isoform 1 of Glia-derived nexin IPI00009890 429.2 28.8 14.9 YES 

72 kDa type IV collagenase IPI00027780 384.8 2.9 134.7 YES 

Plasminogen activator inhibitor 1 IPI00007118 306.8 3.6 85.6 YES 

Collagen alpha-1(VI) chain IPI00291136 291.9 17.5 16.6 YES 

Metalloproteinase inhibitor 1 IPI00032292 286.7 2.1 134.4 YES 

Isoform 1 of Collagen alpha-1(III) chain IPI00021033 244.7 1.2 204.7 YES 

Insulin-like growth factor-binding protein 7 IPI00016915 (+1) 244.5 5.4 45.4 YES 

cDNA FLJ54471, highly similar to 

Complement C1r subcomponent 
IPI00956148 236.3 0.6 403.3 YES 

Laminin subunit gamma-1 IPI00298281 235.0 2.6 91.2 YES 

Isoform A of Decorin IPI00012119 221.3 0.0 n.d. in CL YES 

Isoform 1 of EGF-containing fibulin-like 

extracellular matrix protein 1 
IPI00029658 (+3) 210.4 0.0 n.d. in CL YES 

Pentraxin-related protein PTX3 IPI00029568 194.4 2.7 72.8 YES 

Lumican IPI00020986 192.0 0.6 315.0 YES 

Thrombospondin-2 IPI00018769 177.4 0.3 631.2 YES 

Biglycan IPI00010790 (+1) 176.6 0.0 n.d. in CL YES 

Laminin subunit beta-1 IPI00013976 (+1) 169.2 0.3 602.3 YES 

Pigment epithelium-derived factor IPI00006114 168.9 0.0 n.d. in CL YES 

Isoform 1 of Sulfhydryl oxidase 1 IPI00003590 168.4 0.0 n.d. in CL YES 

Isoform 1 of Coiled-coil domain-containing 

protein 80 
IPI00260630 (+1) 160.4 0.0 n.d. in CL YES 

ABI family, member 3 (NESH) binding 

protein 
IPI00419966 (+1) 146.0 0.0 n.d. in CL YES 

Complement C1s subcomponent  IPI00017696 145.7 0.0 n.d. in CL YES 

aAll listed proteins are detected in five of five individual donors and sorted in descending order with   

respect to their average spectral counts. 
bRatio cell supernatant/cell lysate: ratio according to spectral counting. 
cn.d. in CL: the protein is only detected in cell supernatant and not in cell lysate. 
dSignal peptide?: signal peptide prediction status. 
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To strengthen evidence for secretion, two independent bioinformatics tools were used. 

We subjected both sets of secretome proteins and cell lysate proteins to a signal peptide 

prediction analysis, disclosing the proteins which enter the classical endoplasmatic 

reticulum–Golgi secretory pathway. For 81% of the secretome proteins, the presence of 

a signal peptide could be predicted using the SignalP 4.1 server (27). In contrast, a signal 

peptide was predicted for only 16% of the proteins from the cell lysate data set. For 

further validation, we performed a comparative GO analysis using the term “cellular 

component” to disclose the subcellular location of proteins in the secretome and cell 

lysate data set (Figure 3). As expected, the vast majority from the secretome data set 

(250 out of 263 identifiers) and from the cell lysate data set (1541 out of 1570 identifiers) 

could be mapped to the GO term “cellular component”. Strikingly, 31% of the secretome 

proteins were related to “extracellular space” (a location definitely requiring secretion), 

while only a small fraction of 3% of cell lysate proteins matched this subterm. 

 

 

 

Figure 3. GO analysis of secretome and cell lysate proteins according to the term “cellular component”. 
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Secretome proteins were functionally clustered using the DAVID platform (29, 30) and 

filtered for significant terms exceeding an enrichment score of 1.3 (p-value <0.05). The 

263 secretome proteins clustered into 24 terms of the GO “biological process” database 

(Table 2). Proteins related to GO terms “skeletal system development”, “vasculature 

development”, “cell motion”, “response to wounding”, “wound healing”, and 

“regulation of cell adhesion” were strongly over-represented in the secretome. Proteins 

mapped to the obtained functional clusters are listed in Supplementary Table 6. A 

ClueGO analysis was performed to visualize the most relevant biological processes 

related with the HTPC secretome proteins in a functionally grouped network (31, 32). 

Applying the tool “GO Term fusion” as a redundancy reduction feature, the network 

analysis revealed functionally grouped terms related to “skeletal system development”, 

“vasculature development”, “cell motility”, and “cell adhesion” (Figure 4). 
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Table 2. DAVID Analysis of HTPC Secretome Proteins According to the GO Term “Biological Process”a 

GO term enrichment 

score 

skeletal system development 8.47 

vasculature development 6.25 

cell motion 5.30 

response to wounding/defense response 5.06 

wound healing 4.88 

regulation of cell adhesion 3.38 

proteoglycan metabolic process 2.93 

enzyme linked receptor protein signaling pathway 2.90 

multicellular organismal metabolic process 2.88 

positive regulation of cell migration 2.49 

regulation of proteolysis 2.32 

cell morphogenesis/cell morphogenesis involved in differentiation 2.11 

skeletal system morphogenesis/face/head/body morphogenesis 2.03 

skeletal system morphogenesis/cartilage development 1.94 

response to organic substance/response to steroid hormone stimulus 1.92 

tube development/respiratory tube development 1.92 

lipid localization/vacuole organization 1.92 

tube development/tube morphogenesis 1.83 

regulation of inflammatory response/negative regulation of response to 

stimulus 
1.82 

aminoglycan metabolic process/polysaccharide metabolic process 1.63 

glycoprotein metabolic process 1.62 

regulation of blood coagulation 1.46 

lipid transport 1.38 

response to extracellular stimulus 1.32 

aThe 24 over-represented GO terms are shown. Lowest enrichment score corresponds to a p-value <0.05. 
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Figure 4. ClueGO network analysis of HTPC secretome proteins according to the GO term “biological 

process”. Associated GO terms are depicted as nodes, where the node size indicates the particular 

enrichment significance. Functional grouping is based on κ-score (>0.3). Ungrouped terms are displayed 

in gray. 

 

Immunohistochemical staining of human testicular sections was used to demonstrate in 

vivo expression of four proteins identified in the secretome analysis in cultured HTPCs. 

The four proteins chosen were all clearly detected in the peritubular compartment and 

belong to different classes of secreted proteins: fibronectin is a noncollagenous member 

of ECM proteins, collagen I and IV are prototype ECM proteins, and PTX3 is a secreted 

factor related to immune function. All proteins were readily identified in the wall of 

seminiferous tubules, both in the cytoplasm of peritubular cells and in the ECM 

(Figure 5, arrows). Immunoreactivity of the examined ECM proteins, as expected, was 

also seen in the interstitial areas of the testis, where ECM proteins are found. All 

negative control sections (Figure 5, bottom row) lacked specific immunoreactivity. The 

PTX3 antibody, besides strongly staining the perinuclear areas of peritubular cells, also 

reacted with cells of the germinal epithelium. To further examine the specificity of the 

PTX3 antibody, Western blotting with lysates of HTPCs was performed (Figure 5B). 
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Results revealed one single PTX3 band of the correct size and therefore support the 

conclusion that HTPCs in vitro and in vivo are producers of PTX3. 

 

 

 

Figure 5. (A) Immunohistochemical detection of PTX3, fibronectin, collagen I and collagen IV, and 

corresponding controls, namely, rabbit IgG for fibronectin, mouse IgG for collagen I and collagen IV, and 

rat IgG for PTX3 is shown. Note that in all cases, peritubular cells and/or their immediate surrounding 

ECM (arrows) and the ECM of the interstitial areas (I) of the human testis are stained. The PTX3 

antibody, besides specifically staining the cytoplasm of peritubular cells, also stained cells in the 

seminiferous tubules (T). The latter was reduced in corresponding control (rat IgG), and hence staining of 

peritubular cells and cells of the germinal epithelium has to be regarded as a specific reaction. 

Haematoxylin staining was used to counterstain nuclei. Bars represent 50 μm. (B) Immunoreactive PTX3, 

with a molecular weight of 42 kDa (arrow) was detected in a HTPC cell lysate by Western blot analysis. 
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Discussion 

General Remarks 

We performed a comprehensive analysis of proteins secreted by isolated testicular 

peritubular cells (7) in an attempt to decipher their contribution to the testicular 

microenvironment—specifically to the molecular composition of the SSC niche. 

Culturing primary cells derived from five individual human donors, we generated five 

secretome samples in individual experiments. We chose 1D SDS-PAGE combined with 

LC-MS/MS and spectral counting for relative quantification, an approach successfully 

applied for the in-depth characterization of secretomes from various cell types (26, 36-

39). The presence of cellular proteins in cell culture supernatants can arise from 

secretory events or can be the result of cell lysis or degradation. To discriminate between 

these phenomena, we additionally analyzed cell lysates and performed a quantitative 

comparison of protein abundances using spectral counting. We categorized proteins as 

“secreted” when an abundance ratio of >5 (according to spectral counts) in cell culture 

supernatants versus cell lysates was fulfilled, and thereby received a data set of 263 

identified secretome proteins. To confirm the validity of this data set, two independent 

bioinformatics approaches were performed: (i) In a GO analysis based on “cellular 

component” database, 31% of these proteins match the GO term “extracellular space”, 

corresponding to a 10-fold enrichment compared to cell lysate proteins (3%). (ii) Using 

the signal peptide prediction algorithm “SignalP”, signal peptide sequences could be 

predicted from 81% of the secretome proteins but only 16% of proteins identified from 

cell lysates. Remaining proteins in our data set which lack a signal peptide might be 

released into the secretome through mechanisms frequently referred to as 

“unconventional protein secretion” (40). Taken together, the combination of 

quantitative LC-MS/MS results with gene ontology and signal peptide prediction 

analyses clearly emphasizes the high confidence of our secretome data set. 

DAVID annotation clustering and the Cytoscape visualization tool ClueGO were used 

to functionally cluster secretome proteins according to their GO “biological process” 

terms. Both tools characterized proteins related to the leading functional terms “skeletal 
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system development”, “vasculature development”, “cell motion”, and “cell adhesion”, as 

predominantly enriched in the secretome. In the following paragraphs, we focus our 

discussion on the potential function with respect to the SSC niche of individual 

members of these clusters, all of which were detected in secretome samples of at least 

three of five donors. 

Secreted Proteins Comprising Factors Playing a Major Role in the Skeletal System 

and Vasculature Development 

Previous studies described a predominant production of ECM components by testicular 

peritubular cells (5, 41). It was shown that they secrete individual ECM proteins like 

fibronectin, collagens, and proteoglycans (7, 12, 42-44). The results obtained by our 

study mirror these findings. Structural proteins primarily consisting of ECM as well as 

basement membrane components were strongly over-represented in the secretome. In 

detail, we found a distinct enrichment of ECM proteins such as fibronectin, collagens I, 

III, IV, V, VI, XI, XII, XIV, XV, XVI, XVII, SPARC, and fibrillin-1, partially involved in 

skeletal system and vasculature development. To confirm that secretion of these 

proteins by HTPC cultures reflects the situation in the human testis, we performed 

immunohistochemistry, which depicts fibronectin, collagen I, and collagen IV. 

Therefore, HTPCs contribute to the formation of the basement membrane (45) and the 

overall architecture of the tubular wall and thus the formation of SSC niches along the 

basement membrane. 

The enriched functional cluster “vasculature development” contains 21 secretome 

proteins, among them are connective tissue growth factor (CTGF) and vascular 

endothelial growth factor C (VEGFC). The latter is a member of the VEGF family, 

which resembles important signaling proteins for the regulation of neovascularization. 

VEGFC is mainly active in angiogenesis, lymphangiogenesis, and endothelial cell 

proliferation and induces the permeability of blood vessels (46). 

The significant enrichment of proteins related to GO term “vasculature development“ 

may reflect a notable contribution of HTPC-secreted proteins to the formation of a 

vasculature-oriented niche for undifferentiated spermatogonia (2). Furthermore, the 
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secretion of various growth factors like CTGF and VEGFC indicates a possible 

contribution of HTPCs to the niche growth factor milieu. 

HTPC Secretome Enriched for Proteins Associated with Cell Motion and Cell 

Adhesion 

GO analysis of secretome proteins revealed a significant enrichment of proteins taking 

part in the movement of cellular components. We observed an enrichment of proteins 

like versican, the multifunctional laminins LAMA1 and LAMC1, as well as C–C motif 

chemokine 2 (CCL2) and stromal cell-derived factor 1 (CXCL12), two chemokines 

associated with cellular component movement. Chemokines play a major role in stem 

cell mobilization, migration, and homing (47, 48), thus providing a further indication 

for the potential role of HTPCs contributing to the SSC niche. The detection of CXCL12 

in the HTPC secretome is consistent with a recent study of Yang et al., who found 

CXCL12 in Sertoli cells as well as clearly focused at the basement membrane of 

seminiferous tubules in adult mice testis (49). They further described a contribution of 

CXCL12 to the regulation of SSC self-renewal by signaling via the C-X-C chemokine 

receptor type 4 (CXCR4) expressed by undifferentiated spermatogonia, which pointed 

to a possible role in the regulation of SSC homing. In a testis cell culture system with 

reconstituted mouse SSC niches, CXCL12 was moreover demonstrated to take part in 

SSC chemotaxis into the niche microenvironment (50). In addition, the CXCL12-

CXCR4 signaling pathway seems to be important in retaining undifferentiated 

spermatogonia in their niche (51). These findings may imply chemotactic properties of 

HTPC-secreted proteins, which are possibly influencing SSC movement to the basal 

membrane niche. 

Furthermore, cell adhesion proteins were clearly enriched in the HTPC secretome, 

among them the ECM proteins cadherin-13 (CDH13), fibulin-2 (FLBN2), laminin 

alpha-1 (LAMA1), laminin alpha-2 (LAMA2), and laminin alpha-4 (LAMA4). Laminins 

are ligands of alpha-6- and beta-1-integrin, which are surface markers on SSCs (52). 

More recently, beta-1-integrin and its ability to bind laminin were reported to be crucial 

in SSC homing to their regular location at the basal membrane (53, 54). We hypothesize 
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that the secretion of the ECM laminins by HTPCs may support the attachment of SSCs 

to the basement membrane and retain them within the basal compartment of the 

seminiferous tubules. 

HTPCs Secrete Cell-Signaling Proteins Related to Inflammatory Response 

DAVID analysis of the secretome data set revealed an enrichment of cell signaling 

molecules such as interleukin 6 (IL6) and pentraxin 3 (PTX3). This is surprising, 

because the latter is known to be produced in response to inflammatory signals, e.g. toll-

like receptor (TLR) engagement, interleukin 1 beta (IL1B), and tumor necrosis factor 

alpha (TNF-α) (55). In human testis, TNF-α is released by macrophages and mast cells, 

which are located in the tubular wall close to the peritubular cells.(9) PTX3 further plays 

a role in the resistance against pathogens (55, 56) and the control of autoimmunity (57). 

Performing an additional immunohistochemical staining, the presence of PTX3 in the 

peritubular compartment could be proven (Figure 5). Interestingly, our results confirm 

the ones previously described in a study of Doni et al. (58), in which a different antibody 

was used to identify PTX3 in the human male genital tract. The authors focus their 

description of the testicular expression on germ cells of the testis. However, in Figure 1c 

of their manuscript, they show unequivocally the presence of immunoreactive PTX3 in 

peritubular cells, yet they do not comment on this site of expression. Most likely this is 

due to the inconspicuous nature of this testicular compartment (4), which may be 

related to the fact that little is known about the cells composing this compartment. 

These findings represent a further example for interaction between HTPCs and adjacent 

cell types and indicate an active participation of HTPC in the paracrine signaling 

network in human testis. 

Secreted Proteins from HTPCs in Multicellular Signaling Pathways Potentially 

Directing SSC Fate 

DAVID analysis addressing KEGG pathways revealed the transforming growth factor 

beta (TGF-β) signaling pathway to be significantly enriched for the secretome 

(Supplementary Table 7). This group included the secretome proteins thrombospondin 
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THBS1, THBS2, and THBS3, latent transforming growth factor beta binding protein 1 

(LTBP1), inhibin beta A (INHBA), and follistatin (FST), as well as decorin (DCN), as 

shown previously (12) (Figure 6). DCN is a secreted proteoglycan located in the 

peritubular wall of the testis (59). It possibly interacts with several growth factors 

(including TGF-β and EGF), and in this way it likely disrupts the balance between 

testicular paracrine signaling pathways (12). It has been shown recently that DCN 

production in the testis is stimulated by TNF-α and related with fibrotic changes 

emerging from a testicular dysfunction (13). 

 

 

Figure 6. TGF-β signaling pathway is enriched in HTPC secretome. Involvement of HTPC secretome 

proteins in TGF-β signaling pathway and interlocked pathways is marked with a red star. Encircled 

biological processes are other pathway maps. Pathway information was generated from KEGG. 

INHBA and FST are both part of the inhibin–activin–follistatin axis. Activin and 

inhibin are members of the TGF-β superfamily, whereas the autocrine glycoprotein FST 

is an antagonist of the TGF-β subfamily and counteracts the signaling of activing (60). 

In their interplay, INHBA and FST are involved in the regulation of follicle-stimulating 
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hormone (FSH) secretion (61). Besides testosterone, FSH is a major hormonal regulator 

of spermatogenesis and acts via FSH receptors expressed on Sertoli cells (62). 

Systemically, in hypogonadal rodents, FSH was shown to increase the number of 

spermatogonia during the initial stages of spermatogenesis and, indirectly, the number 

of Leydig cells (63). Furthermore, FSH is supposed to play a major role in the testicular 

development prior to puberty, which was observed in mice lacking receptors for FSH 

and androgen (64). In coculture experiments of Sertoli cells and type A spermatogonia, 

FSH led to secretion of glial cell line derived neurotrophic factor (GDNF) by Sertoli 

cells, which stimulated the proliferation of spermatogonia (65). GDNF is a well-

established niche factor mainly produced by Sertoli cells (1, 15, 66, 67). However, recent 

studies provide first evidence that HTPCs also produce and secrete GDNF (28-56 pg/mg 

cellular protein within 24 h) and thereby complement the Sertoli cells in the 

contribution to the human SSC niche (11). 

We hypothesize that HTPCs are involved in the development and maintenance of 

testicular functions by secreting several proteins that act through the multistage TGF-β 

signal transduction pathway in close interplay with surrounding Sertoli and Leydig cells. 

Conclusion 

Our analysis demonstrates the extensive secretory activity of a human cell type, which 

up to now has been regarded as a simple structural cell at the interface of the germinal 

epithelium and the interstitial cells of the testis. The secretome of HTPCs provides the 

most comprehensive information available to date of the assumed microenvironment of 

the human testis, especially the one prevailing in the wall of the seminiferous tubules. 

The structural nature of HTPCs is mirrored by the enrichment of ECM components 

involved in skeletal system and vasculature development. Yet the HTPC secretome 

contains chemokines and growth factors with the potential of influencing stem cell 

activity. Moreover, secreted proteins are involved in key signaling pathways. HTPCs are 

thus able to interact via secreted proteins with the surrounding testicular cell types, 

namely, Leydig cells and Sertoli cells, as well as germ cells, including SSCs. 
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While the study of any of these interactions may lead to a better understanding of the 

human testis, the results are of special relevance for the understanding of the 

microenvironment of the niches, in which human SSCs reside. The interest in human 

SSCs is due, in part, to their potential to treat male infertility, including infertility due to 

gonadotoxic cancer treatment of boys (68, 69). Adequate culture conditions and the 

ability to propagate human SSCs are prerequisites for possible therapies, which include 

transplantation back to the testis (69). The knowledge about the repertoire of factors 

secreted by HTPCs (i.e., structural and functional niche cells) offers now the 

unprecedented opportunity to test relevant factors for their ability to regulate human 

SSCs and thus to optimize culture conditions. 
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Abbreviations 
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ACN  acetonitrile 
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HTPC  human testicular peritubular cell 
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4 Discussion 

Seminiferous tubules in human testis are surrounded by several layers of spindle-

shaped, peritubular smooth muscle cells that are responsible for propelling immotile 

sperm through cycles of contraction and relaxation. Besides this established role in 

sperm transport, which is of undisputed importance for male fertility, astonishingly 

little is known about their role in the complex interplay of testicular cells regulating core 

functions of the testis. The anatomical proximity to Sertoli cells and SSCs, which reside 

on the inside of the seminiferous tubules, and Leydig cells in the interstitial 

compartment, depicts a strategic position in the paracrine signaling network of the 

testis. 

The recent establishment of a method for the isolation and cultivation of human 

peritubular cells in the lab of Artur Mayerhofer allowed for the first time a systematic 

characterization of this cell type in the human system (Albrecht et al., 2006). In follow-

up studies, they could give a first impression of the secretory potential of HTPCs (Adam 

et al., 2012a; Adam et al., 2011; Schell et al., 2008). Consequently, they made the 

significant finding that GDNF, a key factor in the regulation of SSC proliferation and 

renewal, is constitutively produced by HTPCs (Spinnler et al., 2010). These findings 

encouraged the speculation that peritubular cells via secreted factors are involved in the 

paracrine regulation of testicular functions, and in particular, in the regulation of the 

SSC niche in man.  

To pursue this hypothesis, this study was designed as cooperation project between our 

group and the group of Artur Mayerhofer from the Department for Cell Biology 

(Faculty of Medicine, LMU Munich). 

We used quantitative proteomics to comprehensively define the secretome of cultured 

HTPCs. Primary cells derived from five men were isolated and cultivated according to a 

standard procedure in the lab of Artur Mayerhofer (performed by Stefanie Windschüttl) 

as described (Albrecht et al., 2006). An extensive protein pre-fractionation using 1D 

SDS-PAGE along with nano-LC-MS/MS in combination with a label free quantification 
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by “spectral counting” was applied. Comprehensive proteomes of proteins in 

conditioned media and – as a control – in HTPC cell lysates were established. 

4.1 Defining the secretome: Methodical aspects of secretome 

analysis 

Among the major challenges faced in MS-based secretome studies are sample purity, 

complexity and the detection of low abundant proteins, such as immune-modulatory 

cytokines within a high protein dynamic range (Mallick and Kuster, 2010; Meissner et 

al., 2013). Our methodical approach was designed to address all these obstacles with the 

aim of achieving an extensive and reliable secretome profile of HTPCs.  

Sample purity in mammalian culture models is strongly influenced by the serum 

supplementation during cultivation. A commonly used strategy to circumvent 

contamination with bovine serum proteins and potential masking of cell secreted 

proteins is repeated washing with PBS and cultivation in serum-free medium prior to 

collection of conditioned medium (Barderas et al., 2013; Brown et al., 2012; Chaker et 

al., 2013; Chen et al., 2012). However, even extensive washing is often not sufficient to 

remove serum proteins from conditioned media to a concentration below the detection 

limit of the MS system applied. We therefore used an augmented database including 

possible bovine serum contaminants to minimize erroneous cross-species identifications 

(Bunkenborg et al., 2010). The contaminants list matched to 20 out of 1786 total 

identifications, which were excluded for further data processing. 

To reduce proteome complexity and coverage, we applied pre-fractionation at the 

protein level by 1D SDS-PAGE, which outperformed protein-LC separation techniques 

as a first-dimension separation strategy (Piersma et al., 2010). Combined with reversed 

phase LC and MS/MS-based spectral counting for relative quantification, this approach 

is highly attractive and has been implemented in various fields of secretome 

investigation (Gao et al., 2008; Piersma et al., 2010; Valimaki et al., 2013; Wu et al., 

2010a). The great potential of this orthogonal protein-peptide separation method in 

handling dynamic range issues could be demonstrated by the detection of various low 
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abundant cytokines and growth factors in the presence of highly concentrated 

components of the extracellular matrix (ECM) within the secretome of HTPCs. 

An additional potential risk of contamination of the secreted proteins in the 

conditioned media is constituted by intracellular proteins, which are released due to cell 

lysis and cell death. To exclude the latter from the final “secretome” dataset, we 

quantitatively compared protein abundance in conditioned media with corresponding 

cell lysates. A spectral count ratio > 5 in conditioned media compared to cell lysate was 

taken as prerequisite to be categorized as secreted. Taking into consideration that 

quantification accuracy is decreased for proteins with only few peptides identified (Gao 

et al., 2008; Mallick and Kuster, 2010), a minimum of 10 spectra per protein in one 

sample was required for relative quantification. Normalization between samples to 

compensate differences in the protein content was performed based on the total number 

of all observed spectra to furthermore increase the robustness and reliability of the 

quantification. In summary, stringent consecutive filtering for contaminants from 

remaining cell culture supplemented bovine serum proteins and intracellular proteins 

arisen from dead cells, yielded a total of 263 HTPC secreted proteins.  

The subcellular location among the secretome proteins is distributed to 31 % onto the 

category “extracellular space”, which represents 10 times more than in cell lysate data 

(3 %). A comparable enrichment of 28 % extracellular space annotations in the 

secretome vs. 2 % in the cell lysate could be observed in a secretome study of H460 non-

small cell lung cancer cells using similar experimental conditions and secretion criteria 

(Piersma et al., 2010). The remaining fraction of matches to other cellular component 

ontologies (“cytoplasm”, “plasma membrane” and “nucleus”) for the secretome can be 

partly explained by the possibility of multiple annotations to different categories in GO 

classifications. This phenomenon is very vividly illustrated in the recently published 

“Tissue-based map of the human proteome” (Uhlen et al., 2015). In a whole proteome 

scan, the authors found a large overlap between different location categories for the 

human secretome, which could be traced back to the observation that two thirds of all 

genes encoding human secreted proteins show multiple splice variants with alternative 

locations. A second computational approach using the SignalP algorithm for signal 
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peptide prediction was applied to the HTPC dataset. Among secretome proteins, 81 % 

were confirmed to follow the classical secretory pathway. Remaining proteins without a 

predicted signal peptide may be released by alternative, non-classically secretion 

pathways (Nickel and Rabouille, 2009).  

In conclusion, quantitative proteomics combined with computational prediction of 

subcellular locations and secretion mechanisms offers great potential for the 

establishment of a reliable and comprehensive secretome dataset derived from cell 

culture experiments. 

4.2 Contribution of HTPCs to the architecture of the tubular 

wall 

To investigate the functional nature of the HTPC secretome, we performed statistical 

enrichment analyses using the DAVID Bioinformatics Resources (Huang da et al., 2009) 

and the Cytoscape plug-in ClueGO, a tool for visualization of functionally grouped 

networks (Bindea et al., 2009). Dominant functional categories were indicated by both 

tools as enriched GO “biological process” terms as follows: “skeletal system 

development”, “vasculature development”, “cell motion”, and “cell adhesion”. These sets 

of enriched secretome proteins are discussed in the following chapters regarding their 

potential contribution to overall testicular functions and in particular to the SSC niche 

in men. 

The wall enclosing seminiferous tubules in human testes is comprised by several layers 

of peritubular myoid cells and extracellular matrix (ECM) proteins. In our study, we 

detected a massive secretion of various ECM components by HTPCs. The large clusters 

related to skeletal system and vasculature development contained various forms of 

collagens, fibronectin, fibrillin-1 and SPARC among others. This is in agreement with 

previous studies, which also reported an extensive production of ECM proteins 

including collagens, fibronectin and proteoglycans by testicular peritubular cells (Adam 

et al., 2012a; Mayerhofer, 2013; Schell et al., 2008; Skinner et al., 1985). The 

predominance of ECM components also mirrors the situation in secretomes of 
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phenotypically and functionally similar smooth muscle cells (SMCs). Thereby, a broad 

fraction of collagenous and non-collagenous ECM proteins was measured in 

conditioned media from SMCs derived from human adipose tissue (Justewicz et al., 

2012) as well as vascular SMCs isolated from Sprague-Dawley rat aorta (Gao et al., 

2008), resulting in secretome datasets comprised of 31 and 212 putatively secreted 

proteins, respectively. 

The observations in the human testis are particularly interesting in connection with 

cases of sub- or infertility with spermatogenesis disorders, which frequently show a 

strong fibrotic remodeling of the peritubular wall (Davidoff et al., 1990; Meineke et al., 

2000; Welter et al., 2013). Tubular fibrosis in the human testis is characterized by 

irregular deposits of ECM components between the individual layers of peritubular 

myoid cells and is a strong indicator for male infertility (Davidoff et al., 1990; Gulkesen 

et al., 2002; Mayerhofer, 2013). In this context, peritubular cells from fibrotically 

remodeled human testis (HTPC-F) show, beside morphological changes, an altered 

secretion behavior which may lead to an imbalance of paracrine signaling in the testis 

(Adam et al., 2011). Both these alterations together suggest changes in the cellular 

behavior concerning the contractile and secretory abilities of peritubular cells in the 

state of testicular fibrosis (Mayerhofer, 2013; Welter et al., 2013). This tends to agree 

with the conviction in classical SMCs, where a phenotypic switching towards a more 

secretory phenotype is accompanied with a decline of the contractile function (Owens et 

al., 2004; Rose and Babensee, 2007). 

To complement our MS-based secretome data, immunohistochemical analyses were 

carried out in the lab of Artur Mayerhofer and could confirm the in vivo expression of 

collagen I and IV and fibronectin in testis tissue slices of healthy men. It is worth 

mentioning that collagen is used as coating material or as gel matrix in artificial systems 

for the aspired in vitro cultivation of SSCs to stimulate their differentiation and 

colonization (De Chiara et al., 2014; Lee et al., 2007b; Shiva et al., 2016) 



Discussion 

55 
 

Collectively, peritubular cells secrete integral elements for the formation and potential 

remodeling of the basal membrane and the tubular wall and thus provide an 

architectural basis for ongoing spermatogenesis in fertile men. 

4.3 Role of the HTPC secretome in the testicular vascular 

network 

A substantial proportion of HTPC secretome proteins were significantly annotated to 

the term “vasculature development”, among them the connective tissue growth factor 

(CTGF), vascular endothelial growth factor C (VEGF-C) and angiopoietin-related 

protein 2 (ANGPTL2). CTGF belongs to the matricellular proteins of the CCN family, 

has associated functions in angiogenesis, and is a key mediator and marker in various 

fibrotic diseases (Brigstock, 2010; Dendooven et al., 2011; Hall-Glenn and Lyons, 2011; 

Phanish et al., 2010). VEGF family members play a crucial role in the regulation of 

angiogenesis in mammals. VEGF-C in particular is reported to be the key paracrine 

factor required for lymphatic development (Karkkainen et al., 2004; Makinen et al., 

2001). Furthermore, VEGF-C has been shown to be involved in proliferation and 

migration of endothelial cells and the regulation of vascular permeability (Ergun et al., 

1994; Karkkainen et al., 2004; Lohela et al., 2009; Makinen et al., 2001; Yamazaki and 

Morita, 2006). Prominent angiogenesis inhibitors among the HTPC secretome dataset 

are thrombospondin-2 and pigment epithelium-derived factor (PEDF). The former 

seems to be a potential inhibitor of endothelial cell proliferation, migration and capillary 

tube formation, and is discussed as anti-angiogenetic therapeutic agent (Bouis et al., 

2006; Vailhe and Feige, 2003). However, particularly PEDF has gained an established 

position as potent inhibitor of angiogenesis (Bouck, 2002; Chuderland et al., 2014; 

Dawson et al., 1999). There is emerging evidence that PEDF antagonizes VEGF in its 

driving force for neovascularization in tissues and thus it is important in the 

maintenance of an angiogenic balance (Chuderland et al., 2014; Pollina et al., 2008; 

Zhang et al., 2006b). The anti-angiogenic power of PEDF was impressively 

demonstrated in studies on diabetic retinopathy, where PEDF effectively suppressed 

both the expression as well as the receptor binding of pro-angiogenic VEGF (Zhang et 
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al., 2006b). This has given rise to the assumption that HTPCs via secreted proteins are 

involved in the maintenance of the avascular nature of the seminiferous epithelium. In 

the human testis, the vascular network is strictly limited to the peritubular compartment 

and the interstitium, whereas the tubular compartment is not penetrated by blood 

vessels and lymphatic channels (Ergun et al., 1994). Strikingly, the vascular formation in 

the interstitial space seems to affect the establishment of SSC niches in murine testis, 

which were observed to be preferentially located adjacent to the vascular network and 

interstitial cells (Yoshida et al., 2007). 

Building on the results of our secretome study, Windschüttl and coworkers examined 

the role of HTPC secreted PEDF in the establishment and maintenance of the 

avascularity of seminiferous tubules (Windschuttl et al., 2015). In co-culture 

experiments using individual cell tracking, they observed a repulsion of human 

umbilical vein endothelial cells (HUVECs) by HTPCs, which could be blocked by the 

addition of a PEDF antiserum. This indicates a predominant anti-angiogenetic influence 

of HTPC-derived PEDF on preventing the vascularization of seminiferous tubules in 

men. They furthermore revealed an enhanced expression of PEDF in HTPCs after 

dihydrotestosterone treatment, with a simultaneous decrease of the pro-angiogenic 

proteins VEGF-C and ANGPTL2 (Windschuttl et al., 2015). Hence it is assumed that 

locally controlled PEDF secretion, in coordination with angiogenic stimulators, shapes 

the complex vascular network of the seminiferous tubules and in consequence 

contributes to the human SSC niche. 

4.4 Participation of HTPC secretome proteins in the molecular 

control of SSC homeostasis 

For a substantial number of proteins of the HTPC secretome, roles in processes 

underlying cell migration have been reported. Examples include versican, the laminins 

alpha-1 (LAMA1) and gamma-1 (LAMC1), as well as the chemotactic factors C-C motif 

chemokine 2 (CCL2) and stromal cell-derived factor 1 (CXCL12). The successful 

detection of these low-abundant chemokines illustrates again the high sensitivity of the 

applied MS-based strategy. Chemokines are awarded a central role in the mobilization 
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and homing of stem cells, as reviewed for hematopoietic and mesenchymal stem cells 

(Lapidot and Petit, 2002; Wu and Zhao, 2012).  

In particular CXCL12 is reported to be a key factor in stem cell migration and moreover 

to be essential for stem cell maintenance (Ding and Morrison, 2013; Greenbaum et al., 

2013; Khurana et al., 2014; Ratajczak et al., 2013; Sugiyama et al., 2006). In accordance 

with our secretome data, CXCL12 could be detected in testes from adult mice, 

concentrated at the basement membrane of seminiferous tubules (Yang et al., 2013). Its 

receptor, C-X-C chemokine receptor type 4 (CXCR4), is expressed on undifferentiated 

spermatogonia and is triggered for SSC migration and expansion upon transplantation 

(Ara et al., 2003; Kanatsu-Shinohara et al., 2012; Niu et al., 2016; Yang et al., 2013). In 

this context, CXCL12-CXCR4 signaling is of crucial relevance for SSC homing to 

cognate niches and consequently for the re-establishment of spermatogenesis. 

Inhibition of the CXCL12-CXCR4 axis in studies on cultured undifferentiated mouse 

spermatogonia leads to a loss of SSCs, and in adult mice to an impaired SSC 

maintenance, ending with a complete loss of the germline (Yang et al., 2013). To 

summarize, CXCL12-CXCR4 signaling may influence SSC activities in a variety of ways 

and CXCL12 therefore constitutes a valuable contribution to the niche growth factor 

milieu in mammalian testes. 

Many of the secreted proteins were linked to cell adhesion regulation processes. This 

enriched cluster included multifunctional ECM components of the basement 

membrane, such as laminin alpha-1 (LAMA1), alpha-2 (LAMA2), alpha-4 (LAMA4) 

and fibulin-2 (FLBN2) and other well-studied adhesion molecules, e.g. cadherin-13 

(CDH13). Cell-to-cell adhesion is an intensely discussed topic in SSC homing, which is 

defined as the migration and retention of stem cells in cognate niches (Oatley and 

Brinster, 2012). In the male reproductive system, SSC homing to the basement 

membrane niche is a crucial prerequisite for ongoing spermatogenesis. SSCs express the 

transmembrane proteins alpha-6- and beta-1-integrin, known adhesion receptors for 

laminin molecules and thus may enable an interaction with the nearby basement 

membrane (Shinohara et al., 1999). Impaired beta-1-integrin expression on mouse SSCs 

inhibited the attachment to basement membrane associated laminin and prevented the 
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reestablishment of spermatogenesis after transplantation (Kanatsu-Shinohara et al., 

2008b). Thus, HTPC secreted laminins likely play an important role for retaining SSCs 

in their dedicated locations at the basement membrane and thereby ensure physical 

stem cell maintenance inside their niches. 

DAVID computational enrichment analysis disclosed cell signaling molecules related to 

inflammatory response to be significantly enriched in the HTPC secretome. 

Interleukin–6 (IL-6) and pentraxin 3 (PTX3) represent prominent examples for this 

functional cluster. The latter was among the most abundant proteins in the secretome 

dataset according to spectral counting. This is all the more unexpected, since very 

limited knowledge exists so far about its role within the testis. Nevertheless, expression 

of PTX3 in the testis has already been demonstrated (Doni et al., 2009) and could be 

confirmed by the group of Artur Mayerhofer within the framework of the HTPC 

secretome studies. Using immunohistochemical staining of human testicular biopsies, 

the expression in the peritubular compartment could be verified. PTX3 belongs to the 

group of soluble pattern recognition receptors and is part of the innate immune system. 

It is primarily known to be involved in resistance against selected pathogens and 

microorganisms, and in protection against autoimmunity (Baruah et al., 2006; Garlanda 

et al., 2005; Garlanda et al., 2002). Production of PTX3 is stimulated by toll-like receptor 

engagement and primary proinflammatory signals, as for example interleukin-1 (IL-1) 

and tumor necrosis factor alpha (TNF-α) (Garlanda et al., 2005). Sources of TNF-α in 

the human testis are mast cells and macrophages, which can be found within the 

interstitial, but also within the peritubular compartment (DeFalco et al., 2015). 

Interestingly, it was also shown that TNF-α increased the production of inflammatory 

markers by HTPCs, including the cytokines monocyte chemoattractant protein-1 

(MCP-1) and IL-6, suggesting a local regulation of peritubular cells by adjacent immune 

cells (Schell et al., 2008). Similarly, with regard to PTX3, a rapid and local activation 

under inflammatory conditions was proposed (Garlanda et al., 2005). Whether and to 

what degree this knowledge is transferable to the prevailing situation in human testis 

and in particular to HTPCs remains to be elucidated. Collectively, the secretion of 

multiple signaling molecules, including locally regulated inflammatory markers, 
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reinforces the impression that numerous paracrine interactions between HTPCs and 

their surrounding testicular cells may occur. 

A key finding of the secretome study could be obtained from a KEGG pathway 

screening based on DAVID Bioinformatics Resources, which indicated a significant 

enrichment of the transforming growth factor beta (TGF-β) signaling pathway for the 

HTPC secretome. This is particularly interesting since TGF-β signaling plays a pivotal 

role in the regulation of core functions during testis development and in the 

maintenance of adult spermatogenesis (Fan et al., 2012; Loveland and Hime, 2005; Miles 

et al., 2013; Moreno et al., 2010; Young et al., 2015). Among secretome proteins involved 

in this signaling pathway were decorin (DCN), latent-transforming growth factor beta-

binding protein 1 (LTBP-1), thrombospondins (TSP-1, TSP-2, and TSP-3), inhibin beta 

A (INHBA), and follistatin (FST).  

DCN is a family member of small leucine-rich proteoglycans and has already been 

described in the peritubular wall of the human testis some time ago (Ungefroren et al., 

1995). More recent studies revealed an enhanced secretion of DCN by HTPCs in 

response to TNF-α and tryptase stimuli, both known products of macrophages and mast 

cells in the testis (Adam et al., 2011; Adam et al., 2012b). In conformity with this, an 

increase in DCN levels could also be observed in testes of men with impaired 

spermatogenesis along with tubular fibrosis, which is well known to be accompanied by 

an increased number of immune cells in the peritubular compartment (Adam et al., 

2011; Adam et al., 2012b). DCN interacts with a variety of growth factors, as described 

for TGF-β (Hildebrand et al., 1994) and platelet-derived growth factor (PDGF) (Nili et 

al., 2003). Additionally, it can itself bind to several growth factor receptors, some of 

which are expressed by multiple testicular cell types, including peritubular cells, Leydig 

cells, Sertoli cells and SSCs (Basciani et al., 2010; Foresta et al., 1991; Mayerhofer, 2013; 

Wang et al., 2015). Well documented DCN receptors represent the epidermal growth 

factor receptor (EGFR) (Schaefer and Iozzo, 2008), insulin-like growth factor 1 receptor 

(IGF-1R) (Schonherr et al., 2005) and vascular endothelial growth factor receptor 

(VEGFR) (Iacob et al., 2008). Thus, altered DCN levels in male infertility are likely to 



Discussion 

60 
 

lead to an imbalance in growth factor signaling in the testis and may affect the SSC 

niche in a direct and indirect manner. 

Other HTPC secretome proteins involved in TGF-β signaling were INHBA and FST, 

which are both negative regulators of activin A activity. Activin A and inhibin belong to 

the TGF-β superfamily and were first discovered for their negative regulation of follicle-

stimulating hormone (FSH) secretion by pituitary gonadotropes (Ling et al., 1986; 

Robertson et al., 1986). FSH directly influences Sertoli cell function and induces local 

growth factor signaling (i.e., GDNF), and thus indirectly influences SSC fate (reviewed 

in (Barakat et al., 2012; de Kretser et al., 2001; Hedger and Winnall, 2012)). Later studies 

suggest more and more local actions of inhibin, activin and follistatin on fundamental 

testicular processes, during onset of spermatogenesis in the developing testis (Barakat et 

al., 2008; Fan et al., 2012; Miles et al., 2013; Mithraprabhu et al., 2010; Moreno et al., 

2010) and in the adult testis in spermatogenesis and immunoregulation (reviewed in 

(Hedger and Winnall, 2012)). A recently published study showed in an impressive way, 

that TGF-β inhibits proliferation of tubule-associated stem Leydig cells and has 

inhibitory effects on differentiation, whereas activin stimulated Leydig cell 

differentiation (Li et al., 2016). The superior role of peritubular cells in the regeneration 

of Leydig cells (Landreh et al., 2014; Li et al., 2016; O'Shaughnessy et al., 2008) may 

thereby hint at a participation of HTPC-released factors in the local control of Leydig 

cell maintenance, thus ensuring essential testosterone supply in males. 

The critical role of TGF-β signaling for the development and regulation of testicular 

functions is well-known. Due to the striking accumulation of secretome proteins 

involved in the complexity of TGF-β signaling, HTPCs may likely contribute to the 

molecular control of SSC homeostasis, in a direct dialogue with adjacent Sertoli and 

Leydig cells. 

4.5 Possible impact of HTPCs on aging of the SSC niche 

A hallmark of virtually all living organisms is the gradual decline of structural and 

functional integrity with increasing age. Aging in all imaginable variations has 
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fascinated and preoccupied people for millennia. Reproductive aging has become an 

emerging issue with the trend towards delayed childbearing in advanced countries. 

While age-associated alterations of the human ovary ultimately lead to a complete 

omission of oocyte function, testicular aging is much less pronounced. Nevertheless, a 

decline in male reproductive functions has become evident in man with advancing age 

(reviewed in (Johnson et al., 2015; Kuhnert and Nieschlag, 2004; Plas et al., 2000; 

Zitzmann, 2013)). Advanced paternal age often results in a reduced reproductive 

potential, which is characterized by a decline in semen quality. In this context, various 

studies report a decline in semen volume, sperm motility and normal morphology, and 

a higher DNA fragmentation with increasing male age (reviewed in (Johnson et al., 

2015)). Other investigations highlight the association between paternal age and 

offspring health, with an accumulation of birth defects and diseases in the children of 

older fathers (Kovac et al., 2013; Sartorius and Nieschlag, 2010). Testicular aging also 

includes a lower testosterone production in older men. Lower testosterone levels can be 

traced back to reduced Leydig cell functions with advancing age and are often 

accompanied by an altered body composition, reduced energy level, muscle strength 

and sexual function, decreased cognitive functions and depressed mood (Matsumoto, 

2002; Zirkin and Tenover, 2012). Lower testosterone levels may, however, also lead to 

testicular alterations with advancing paternal age, including germ cell loss and an 

increased rate of Sertoli cell-only syndrome in older men (Paul and Robaire, 2013). 

Therefore, it appears probable that aging affects spermatogenesis and underlying SSC 

functions. However, the diverse causes and mechanisms of SSC aging are still poorly 

understood.  

Initial transplantation experiments of aged SSCs in rodent testes imply that both SSCs 

and their testicular environment including supporting niche cells are affected by aging 

(Zhang et al., 2006c). Further SSC transplantation studies suggest that particularly the 

age-dependent decline of niche components may cause a deterioration of the SSC niche 

and therefore has a main responsibility for infertility in old men (Ryu et al., 2006).  

In this context, the question arises whether HTPCs are affected by aging, and whether 

and how HTPCs could contribute to aging of the SSC niche in man. As a test for this 
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hypothesis, a follow-up project funded by the Deutsche Forschungsgemeinschaft (DFG) 

could be initiated, building on the illuminating insights obtained from functional in-

vitro experiments and proteomics studies on cultured HTPCs, which are discussed in 

this work.  

To date, descriptive studies on testicular tissue samples of aged men could already show 

age-related alterations of the tubular wall, such as thickening of the basement 

membrane. Stereological analyses indicated a decline of peritubular cells in testes of 

older men (Xia et al., 2012). Additionally, in animal studies on aged hamsters (Morales 

et al., 2004), aged horses (Fukuda et al., 2001) and brown Norway rats (Wang et al., 

2002) distinct fibrotic changes of the wall of seminiferous tubules could be observed and 

indicated important functional alterations of testicular peritubular cells with aging. 

Notwithstanding their stereotyped and tissue-specific behavior, almost all cells, 

including stem and progenitor cells, can undergo phenotypic changes both in vivo and 

in vitro that are closely associated with aging. This phenomenon, cellular senescence, is 

manifested by a permanent cell-cycle arrest upon a limited number of divisions and is 

regarded as a critical hallmark of aging (Campisi and d'Adda di Fagagna, 2007; Lopez-

Otin et al., 2013). In vitro, a basic distinction can be drawn between telomere-dependent 

replicative senescence and a stress-induced premature senescence (Sikora et al., 2014). 

Common biomarkers of senescent cells in vitro and in vivo are the increase in 

senescence-associated β-galactosidase (SA-β-GAL) activity (Debacq-Chainiaux et al., 

2009; Dimri et al., 1995) and a senescence-associated secretory phenotype (SASP) 

(Kuilman et al., 2010; Rodier and Campisi, 2011). The SASP is characterized by an 

altered secretome of senescent cells, which is particularly distinguished by an 

enrichment of inflammatory molecules (e.g. pro-inflammatory cytokines) (Freund et al., 

2010), as well as growth factors (Coppe et al., 2006; Rodier and Campisi, 2011). An 

increased knowledge about senescent cells and the SASP is suggested to open up new 

therapeutic opportunities for the delay and prevention of age-related diseases (Tchkonia 

et al., 2013). This idea could presumably be applicable to the testis, as well. 

The investigation of testicular aging is as yet challenged by the lack of reliable markers 

for senescence (Kuilman et al., 2010) and relevant cellular models for the human testis, 
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which could be beneficial for decoding mechanisms of senescence (Campisi, 2005). 

These limitations may be a reason, why to the best of my knowledge no studies on 

cellular senescence were conducted in any specific cell type of the human testis and to 

my knowledge, only peritubular cells would be available for that purpose.  

Peritubular cells in culture can be passaged over a rather long period of time until they 

show initial indications of senescence, namely a reduced proliferation rate, an increased 

cell size, and expression of β-galactosidase. Pilot studies serving as preliminary work for 

this project could already prove significant and expected senescence-related alterations 

of in-vitro propagated HTPCs, including reduced proliferation ability and conversely, 

an increase in mean cell size with advancing passage number. In addition, β-

galactosidase expression could be clearly detected in obviously senescent HTPCs 

(Mayerhofer lab, data not shown). To evaluate global age-associated changes in the 

cellular proteome and the secretome, reflecting the SASP of HTPCs, a comprehensive 

proteomics analysis was performed on young and old HTPCs. Samples were compared 

from old (senescent, high passages) and young (pre-senescent, low passages) HTPCs, 

stemming from identical donors. First evaluations already indicate extensive alterations 

in the cellular proteome and the SASP of senescent HTPCs (Flenkenthaler et al., 

unpublished). Both the cellular proteome as well as the SASP dataset contain promising 

candidate proteins that are considerably altered in abundance in older passages. Aging-

related changes outlined by the SASP are reported to induce paracrine senescence in 

healthy cells (Acosta et al., 2013) and may lead to an altered intercellular 

communication, an established hallmark of aging (Lopez-Otin et al., 2013). These 

changes of secreted factors therefore imply a realignment of the paracrine signaling 

network of the testis and may affect the communication with surrounding testicular cell 

types, including SSCs. The SASP may lead to defects in SSC and niche function by 

systemic factors, resulting in an age-related decline of SSC activity. A detailed analysis of 

aging-related alterations in the SASP dataset can lead to further information, whether 

this age-related secretory repertoire of HTPCs may modulate SSC activity and thus 

contribute to aging of the SSC niche in man. 
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The comprehensive proteomics data obtained from ongoing studies are supposed to 

make substantial contributions to the understanding of the senescence of HTPCs, and 

will likely shed more light on aging of the human SSC niche and altogether on age-

related infertility in man. 
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5 Conclusion 

In summary, modern MS-based proteomics in combination with extensive 

bioinformatics data analysis could provide unprecedented insights in the repertoire of 

secretion products from cultured HTPCs. This study clearly underlines the important 

role of peritubular cells for human testis function and the SSC niche in particular. 

The medical significance of human SSCs is founded in their great potential to treat 

testis-induced infertility, including the restoration of spermatogenesis in cancer 

survivors. However, there are still some obstacles on the way towards a clinical 

implementation of a regenerative SSC therapy. Appropriate culture conditions are 

thereby an indispensable requirement for a stable in vitro SSC propagation and 

subsequent SSC transplantation (Struijk et al., 2013). 

These data provide now a comprehensive platform for further functional studies of 

HTPC secreted proteins investigating the regulation of testicular functions, and 

particularly the molecular regulation of the human SSC niche in context of testicular 

health and disease. Moreover, this knowledge may lead to further advances in the 

establishment of a reliable culture system for the long-term propagation of isolated 

human SSCs and might help in future treatment of male infertility. 
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6 Summary 

The continuity of spermatogenesis throughout the adult life relies on a strictly regulated 

balance between self-renewal and differentiation of spermatogonial stem cells (SSCs). 

Their activities are strongly influenced by a complex interplay of extrinsic features 

provided by a specialized niche microenvironment within the seminiferous tubules of 

the testis. However, the composition and structure of SSC niches is still poorly 

understood. In mammals, surrounding testis somatic cell populations are supposed to 

direct the niche functions. Among them are peritubular myoid cells, which in men are 

organized in several layers around the seminiferous tubules, were recently indicated to 

influence the SSC niche and overall testicular function in men via secreted factors. 

Peritubular myoid cells are smooth muscle-like cells that build the wall of the 

seminiferous tubules encasing the tubular compartment with underlying Sertoli cells 

and SSCs. Beside their unique role in the transport of immotile sperm by peristaltic 

contractions, their overall importance for regulation of testicular function and especially 

for the SSC niche remains unclear.  

Addressing this issue, the present work describes a comprehensive proteomic 

characterization of the secretome derived from cultured human testicular peritubular 

cells (HTPCs). Using modern nano-liquid chromatography tandem mass spectrometry 

in combination with rigorous data analysis and bioinformatics, this approach allowed 

previously unrivaled insights into the large secretory activity of peritubular cells in the 

human testis. Computational Gene Ontology enrichment analyses enabled a systematic 

dissection of the obtained rich secretome catalog and could clearly broaden the horizon 

of the formerly inconspicuous peritubular cells within the orchestration of testicular 

functions in male reproductive health and disease. The significant enrichment of 

extracellular matrix components related to skeletal system and vasculature development 

is thereby representative for the primary structural nature of HTPCs and moreover 

highlights the integral role of HTPCs in providing an architectural basis for the 

establishment of SSC niches in men. HTPCs seem capable to interact with nearly all 

testicular cell types and show a lively participation in the paracrine signaling network 
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controlling testicular functions by the secretion of numerous signaling molecules. It 

could be illustrated that HTPC secretory products act in key signaling pathways that 

contribute to the progression of spermatogenesis, and may thereby participate either 

directly or indirectly in the molecular control of SSC maintenance.  

In summary, the presented work emphasizes the undervalued potential of peritubular 

cells as a decisive player for human male fertility and will advance the understanding of 

the human spermatogonial stem cell niche in reproductive health and disease. 
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7 Zusammenfassung 

Sekretomanalyse von testikulären peritubulären Zellen als Ansatz, um die Funktion 

der humanen spermatogonialen Stammzellnische zu klären 

Die kontinuierliche Aufrechterhaltung der Spermatogenese während des 

Erwachsenenlebens basiert auf einer präzise geregelten Balance zwischen 

Selbsterneuerung und Differenzierung von spermatogonialen Stammzellen (SSCs). 

Deren Aktivitäten werden stark von einem komplexen Zusammenspiel von 

extrinsischen Faktoren bestimmt, die von ihrer speziellen Mikroumgebung (Nische) 

innerhalb der Samenkanälchen des Hodens bereitgestellt werden. Die 

Zusammensetzung und Struktur dieser SSC Nischen ist noch weitestgehend unbekannt. 

Bei Säugetieren wird vermutet, dass die umliegenden somatischen Zellpopulationen die 

Funktionen der Nischen maßgeblich steuern. Dazu zählen die peritubulären myoiden 

Zellen, die beim Mann in mehreren Lagen um die Samenkanälchen angeordnet sind. 

Aktuelle Studien weisen bereits auf einen Einfluss dieser Zellen auf die SSC Nische und 

die Regulation der Spermatogenese hin. Peritubuläre Zellen besitzen einen 

Glattmuskelzell-ähnlichen Phänotyp und sind ein Hauptbestandteil der Wand der 

Samenkanälchen, die das tubuläre Kompartiment, das auch die Sertoli-Zellen und SSCs 

beherbergt, umschließt. Neben ihrer erwiesenen Rolle beim Transport von noch 

unbeweglichen Spermien durch peristaltische Kontraktionen, ist ihre Gesamtbedeutung 

für die Regulation von testikulären Funktionen und insbesondere für die SSC Nische 

noch unklar. 

Zu dieser Thematik wurde in der vorliegenden Arbeit eine umfassende proteomische 

Charakterisierung des Sekretoms von kultivierten humanen testikulären 

Peritubulärzellen (HTPCs) durchgeführt und beschrieben. Durch die Kombination von 

moderner nano-Flüssigkeitschromatographie mit Tandem-Massenspektrometrie, 

gefolgt von einer statistischen Datenanalyse und bioinformatischen Auswertungen, 

ermöglichte dieser Ansatz einen bisher unerreichten Einblick in die enorme 

Sekretionsaktivität von peritubulären Zellen im Hoden. Mittels computergestützten 

„Gene Ontology enrichment“ Analysen konnte eine systematische funktionelle Analyse 
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des umfassenden Sekretomprofils durchgeführt werden. Dabei konnte das Potential der 

bisher wenig beachteten peritubulären Zellen für die Steuerung von testikulären 

Funktionen in Fertilität und Infertilität deutlich aufgezeigt und erweitert werden. Die 

signifikante Anreicherung von extrazellulären Matrixproteinen im Sekretom reflektiert 

die grundlegende strukturelle Natur von HTPCs und unterstreicht ihre wesentliche 

Rolle als Strukturgeber von SSC Nischen. HTPCs scheinen in der Lage zu sein, mit 

beinahe allen testikulären Zelltypen zu kommunizieren und zeigen durch die Sekretion 

von zahlreichen Signalmolekülen eine sehr aktive Teilnahme am parakrinen 

Signalnetzwerk, das für die Steuerung von wichtigen testikulären Funktionen 

verantwortlich ist. Es konnte gezeigt werden, dass von HTPC sezernierte Proteine in 

Signalwegen involviert sind, die zum Fortgang der Spermatogenese von entscheidender 

Bedeutung sind. Es besteht daher eine hohe Wahrscheinlichkeit, dass diese Proteine 

entweder direkt oder indirekt zur Erhaltung von SSCs beitragen. 

Zusammengefasst zeigt die vorliegende Arbeit die wichtige und bisher oft unterschätzte 

Rolle von peritubulären Zellen für die männliche Fertilität. Sie verbessert das 

Verständnis über die Funktion der Stammzellennische im menschlichen Hoden und ist 

daher von hoher Relevanz für die Reproduktionsmedizin. 
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9 Appendix 

9.1 Supporting information 

Supplementary tables from (Flenkenthaler et al., 2014): 

Supplementary table 1:  Proteins identified in HTPC cell supernatant and cell lysate 

samples including mapped contaminants. 

Supplementary table 2:  Proteins identified in HTPC cell lysate samples and normalized 

spectral counts. 

Supplementary table 3:  Proteins identified in HTPC cell supernatant samples and 

normalized spectral counts. 

Supplementary table 4:  HTPC cell supernatant vs. cell lysate normalized spectral count 

ratio and SignalP analysis. 

Supplementary table 5:  HTPC secretome proteins and SignalP analysis. 

Supplementary table 6:  DAVID Functional Annotation Clustering of HTPC secretome 

proteins. 

Supplementary table 7:  DAVID Functional Annotation Chart of HTPC secretome 

proteins regarding KEGG pathways. 

 

This material is available at http://pubs.acs.org/doi/suppl/10.1021/pr400769z 

  

http://pubs.acs.org/doi/suppl/10.1021/pr400769z
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Walter, M. C.; Wanke, R.; Wolf, E.; Arnold, G. J. Progressive muscle proteome changes 

in a clinically relevant pig model of Duchenne muscular dystrophy. Sci. Rep. 2016, 6, 

33362. 

Windschuttl, S.; Kampfer, C.; Mayer, C.; Flenkenthaler, F.; Frohlich, T.; Schwarzer, J. U.; 

Kohn, F. M.; Urbanski, H.; Arnold, G. J.; Mayerhofer, A. Human testicular peritubular 

cells secrete pigment epithelium-derived factor (PEDF), which may be responsible for 

the avascularity of the seminiferous tubules. Sci. Rep. 2015, 5, 12820. 

Flenkenthaler, F.; Windschuttl, S.; Frohlich, T.; Schwarzer, J. U.; Mayerhofer, A.; 
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9.2.2 Oral presentations 
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an impact on the spermatogonial stem cell niche. ReproZentrum München 2015, 

Munich, Germany 

Flenkenthaler, F., and Windschuttl, S. Secretome analysis of testicular peritubular cells: 

A window into the human testicular microenvironment and the spermatogonial stem 

cell niche in man. 3rd Workshop of the Research Unit 'Germ Cell Potential' 2013, 

Münster, Germany 
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Research Unit 'Germ Cell Potential' 2012, Münster, Germany 
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Flenkenthaler, F.; Windschuttl, S.; Frohlich, T.; Schwarzer, J. U.; Mayerhofer, A.; 

Arnold, G. J. Secretome analysis of human testicular peritubular cells (HTPCs) indicates 

an impact on the spermatogonial stem cell niche. 48th Annual Conference Physiology and 

Pathology of Reproduction 2015, Zurich, Switzerland 

Flenkenthaler, F.; Windschuttl, S.; Frohlich, T.; Schwarzer, J. U.; Mayerhofer, A.; 
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