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Summary

Fueled by rapid progress in high-throughput sequencing, the size of public protein sequence
databases doubles every two years. The widely used collection of protein sequences UniProt
Knowledge Base (UniProtKB) contains 80M sequences by now and has an even faster
growth lately. It can be expected that this trend will continue since the next generation
sequencing methods are becoming cheaper and faster every year.
The ever larger and more redundant databases lead to longer search times and bloated

results lists that become tedious to analyse manually. A more subtle but important problem
is that sequence space is sampled very unevenly by sequences in the database, which leads
to biased results and at times limited sensitivity of iterative profile sequence searches.
Clustering sequence databases can help to organize sequences into homologous (i.e. evo-

lutionarily related) and functionally similar groups. Searching through clustered databases
can therefore improve the speed, sensitivity, and readability of sequence similarity searches.
Clustered databases also provide a basis for very sensitive HMM-HMM search with HMMer
or HHblits.
To cluster a set of sequences, all pairwise similarities are required, leading to quadratic

time complexity with respect to the number of sequences. To cluster UniProtKB with 80 M
sequences, 6.4 × 1015 pairwise comparisons are needed! In addition, the Smith-Waterman
algorithm, which is the standard tool to compute sequence alignments, takes a time that
scales linearly with the product of both sequence lengths. To speed up searches, many
tools contain very fast alignment-free prefiltering heuristics. Even these fast methods are
impracticably slow for databases beyond a million sequences even on large computing clus-
ters. For instance, NCBI BLAST would need about 58 years for the clustering of a recent
UniProtKB version (54 M sequences) on a computer with 32 cores. Therefore, fast, sensitive,
and accurate clustering algorithms are urgently needed.
Several clustering methods have been developed in recent years. They all contain a fast

prefiltering heuristic that rejects most of the non-homologous sequences before comparing
the remaining sequences using a slow Smith-Waterman alignment algorithm. The prefilter
of all fast clustering methods is based on the assumption that similar sequences share several
short subsequence (k-mer) matches.
The most widely used clustering method is CD-HIT, developed in 2002. CD-HIT is able

to cluster a protein database down to 50% sequence identity (i.e. 50% of aligned residues are
identical). However, with lower sequence identity its prefitlering step becomes increasingly
inefficient and the program gets slow. Even at low sensitivity settings, CD-HIT is too slow
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for large databases containing tens of millions of sequences, needing weeks of computation
time.
Another sequence clustering method developed recently is USEARCH. Usearch is very

fast and needs only days to cluster the UniProtKB down to 50% pairwise sequence identity.
However, it is not parallelized and therefore can not make use of the growing number of
compute cores in modern CPUs. Moreover, USEARCH was not designed to detect sequences
at similarities lower than 50% sequence identity.
Here I present MMseqs, a very fast and sensitive clustering and sequence search method.

It implements a prefiltering that sums up the scores of similar k-mer matches between two
sequences. The second step after the prefiltering is a fast implementation of the Smith-
Waterman alignment algorithm. We use single-instruction-multiple-data (SIMD) instruc-
tions that parallelizes computations on arithmetic vector processors contained in all mod-
ern CPUs. As the final step, a clustering is calculated based on the sequence similarities
resulting from the alignment step.
In addition, MMseqs offers a cascaded clustering workflow that is faster and more sensitive

than our simple, single-step clustering. This workflow clusters a database incrementally, in
three steps, starting with a very fast but low-sensitivity clustering step and ending with
a slower but high-sensitivity step. It is therefore both faster and more sensitive than the
simple clustering.
Finally, MMseqs offers the possibility to update the database clustering by adding new

and removing deleted sequences without the need to recalculate all pairwise similarities
and keeping the cluster identifiers stable. Clustering the UniProtKB from scratch takes
hundreds of CPU hours and is impractical to keep up even using MMseqs. But since
hundreds of thousands of new sequences are added to the UniProtKB database each week,
frequent updating of the clustered database is important. The MMseqs updating workflow
can compute an updated clustering of UniProtKB within hours instead of many days.
MMseqs is able to cluster a database down to 20-30% sequence identity, two to three

orders of magnitude faster than BLAST-based clustering. Clustering the UniProtKB with
54 M sequences took 8 days and produced 6.3M clusters. In our clustering benchmark on a
dataset containing sequences with 30-80% sequence identity, MMseqs at a high-sensitivity
setting produced only 2% more clusters than BLAST while being 96 times faster. At lower
sensitivity setting, MMseqs produced twice as many clusters as BLAST while being 140
times faster.
MMseqs can also be used as a stand-alone batch sequence search tool for searching se-

quences down to 20-30% sequence similarity in large sequence databases. In our tests,
MMseqs had the best speed-to-sensitivity tradeoff, being orders of magnitude faster than
the more sensitive tools SWIPE (SIMD-accelerated Smith-Waterman) and BLAST, while
maintaining comparable sensitivity. On short sequence such as those obtained from next-
generation sequencing, the MMseqs’ sensitivity approached that of BLAST.
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1. Introduction to homology searching and
clustering

Proteins are biological molecules with a vast amount of functions. Proteins participate in
virtually every process within the cell. Many proteins are enzymes and catalyze biochemical
reactions. Others have structural or mechanical functions, for example in maintaining cell
shape. Other proteins are important in cell signaling, immune responses or the cell cycle.
Proteins are polypeptides, i. e. each protein consists of a chain of amino acids. The

sequence of amino acid residues in a protein is defined by the sequence of a gene, which is
encoded in the genetic code. In general, the genetic code specifies 20 standard amino acids,
although there are some non standard amino acids. The amino acid chain folds in space
into a three dimensional structure which determines the function of the protein.
There is a very large amount of possible protein sequences. A protein of an observed

average length 350 can have 20350 possible sequences. However, only a very small fraction
of them can fold into a stable structure (Söding and Lupas, 2003). Therefore, the emergence
of a protein with a certain function de novo is very unlikely. Proteins evolve, emerging from
ancestor proteins through deletions, insertions and mutations in the protein sequence. Two
proteins with a common ancestor are said to be homologous. Homologous proteins in most
cases have very similar three dimensional structure and function due to the common ancestry,
even when their sequence diverged considerably. Information from homologous proteins
is used to assign functional annotation to proteins with unknown function, to determine
their three dimensional structure and to study mechanisms of evolution (Loewenstein et al.,
2009). Protein regions that are highly conserved are likely to be crucial for its function, like
catalytic sites.
Homology detection is a basic procedure in computational biology. Using homology

inference, it is possible to predict e. g. metabolic pathways, secondary structure (Rost and
Sander, 1993), protein folding into 3-dimensional structure (Söding et al., 2005) or effects
of single point mutations (Bromberg and Rost, 2007). The easiest way to identify homologs
is pairwise comparison of proteins for finding the shortest sequence of mutation, deletion
and insertion events that separate one protein sequence from another. The annotation of
two protein sequences with these events and assigning a similarity score is called a pairwise
sequence alignment. Ideally, the biologically most likely alignment gets the highest score.
For the detection of the optimal alignment of two protein sequences, one needs a scoring
scheme, describing the cost of converting one amino acid into another and inserting gaps in
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the alignment which describe insertion/deletion of an amino acid.

1.1. Scoring models, gap penalties

A pairwise alignment of sequences should detect if the two sequences have a common evolu-
tionary ancestor from which these sequence diverged by a series of mutations, deletions and
insertions of amino acids. Some amino acids share similar biochemical properties and are
more likely to mutate into one another, like charged amino acids. Other mutations occur
very rarely in the nature, like a mutation of a charged into a hydrophobic amino acid. The
alignment score of two sequences should be a good indication if the sequences are stemming
from a common ancestor, i. e. if the sequence of the matches, mismatches and gaps in the
alignment is likely to occur due to common ancestry or only occurs by chance.
Common scoring schemes for pairwise sequence comparison assume that all mutations

occur independently from each other at each position in the sequence. The alignment score
of two sequences is the sum of the scores for the matches/mismatches at each position
and penalties for gaps. Furthermore, conservative substitutions that are observed often
should get a positive score and non-conservative substitutions that occur rarely in real
world alignments should be penalized with a negative score. The scores are recorded in a
20 × 20 amino acid substitution matrix which is symmetric, i. e. it is assumed that the
probability of an amino acid a to mutate into an amino acid b is equal to the probability of
b to mutate into a.
A substitution score compares the probability of a and b to be related to the probability

of a and b to be aligned only by chance. The former is often related to as the match model
M, and the latter as the random or null model R. In the random model R the alignment
of a and b is a product of their background probabilities: P (a,b|R) = f(a) f(b). In the
match model M, the alignment of the two residues a and b occurs with a joint probability
P (a,b|M) = p(a,b). The alignment score for a and b is a log-odds-ratio :

s(a,b) = log
(
P (a,b|M)
P (a,b|R)

)
= log

(
p(a,b)

f(a) f(b)

)

To be able to calculate s(a,b), we need the background probability f(a) for each amino
acid a and the joint probability p(a,b) for each amino acid pair (a,b) to be aligned. f(a)
is easy to calculate from unbiased protein sequence data. However, p(a,b) depends on
the evolutionary distance of the sequences. The evolutionary distance of two sequences is
commonly measured as the sequence identity, i. e. the percentage of identical residues in
the pairwise sequence alignment.
PAM was one of the first amino acid substitution matrices (Dayhoff et al., 1978). The
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authors first measured the substitution probability p(a,b) for very similar sequences with
1% accepted mutations (PAM1). Then, they extrapolated the substitution matrix to more
diverse sequences to derive matrices up to PAM250. However, the extrapolation does not
work well for diverged sequences with low sequence identities.

This problem was addressed by the BLOSUM matrices (Henikoff and Henikoff, 1992).
The authors generated the BLOCKS database consisting of homologous sequences aligned
without gaps and measured the joint probability p(a,b) for different maximum sequence
identities. BLOSUM62 matrix, i. e. a matrix derived from alignments with maximum 62%
sequence identity, is now a default substitution matrix in many applications.
For the gap penalties, there are two widely used scoring schemes. In the first scheme, a

linear gap penalty that assigns the same negative score −d to the gap at each position in
the sequence:

γ(g) = −gd

The second scheme involves a more sophisticated affine gap penalty that assigns a higher
penalty −d to opening a gap and a lower penalty −e to the gap extension:

γ(g) = −d− e (g − 1)

Affine gap penalties take into account the observation that in real alignments one long
gap is more likely to appear than many short gaps.

1.2. Pairwise sequence alignment

1.2.1. Global alignment

Given a scoring scheme, the challenge is to find an optimal alignment between the two
sequences, i. e. the alignment with the highest score. However, for two sequences x
and y with lengths n and m there are

(n+m
n

)
possibilities for a non-redundant alignment.

Therefore, the number of possible alignments grows exponentially with sequence length, so
it is computationally not feasible to search for the best alignment by just generating all
possible alignments and identifying the one with the best score. However, the vast majority
of these alignments are not meaningful and have very low scores.
The solution is dynamic programming, i. e. to extend a subalignment of x and y from

shorter subalignments. This algorithm was developed by Needleman & Wunsch in 1970
(Needleman and Wunsch, 1970). A subalignment x1, . . . ,xi and y1, . . . ,yj can arise in three
ways: (1) by extending the alignment of xi, yi−1 with a gap in x, (2) by extending the
alignment of xi−1, yi with a gap in y and (3) by extending the alignment of xi−1 and yi−1with
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a match xi, yi. From this follows a recursive formula for the calculation of the dynamic
programming matrix H, where the cell H(i,j) records the best score for the subalignment
x1, . . . ,xi and y1, . . . ,yj

H(i,j) = max


H(i− 1,j − 1) + s(i,j)

H(i− 1,j)− d

H(i,j − 1)− d

(1.1)

Starting with an empty alignment, the algorithm fills the matrix H from the upper left
corner to the lower right corner. After filling the whole matrix, the score of the best global
alignment, i. e. where each position in x is aligned either with a position in y or with a
gap, is recorded in the matrix cell H(n,m).
The actual alignment of x and y, i. e. the sequence of matches in gaps in x and y, is built

by performing a traceback on the dynamic programming matrix H. It is built in reverse
by starting at cell H(n,m) and identifying in each step which of the three possible cells
H(i− 1,j − 1), H(i− 1,j) and H(i,j − 1) has contributed to the value of H(i,j).

1.2.2. Local alignment

Real biological sequences are often only similar in one part of their sequence, for example
due to a shared homologous domain, but unrelated otherwise. In this case, we want to find
a best local alignment, ignoring the rest of the sequences. The algorithm for identifying
the best local alignment was developed by Smith & Waterman in 1981 (year of my birth)
(Smith and Waterman, 1981). It allows S(i,j) to become 0 if all other options lead to the
score dropping below 0:

H(i,j) = max



H(i− 1,j − 1) + s(i,j)

H(i− 1,j)− d

H(i,j − 1)− d

0

(1.2)

After the filling of S the cell S(k,l) with the best local alignment score is identified.
To construct the full local alignment, a traceback is performed analogously to the global
alignment traceback with the difference that it stops when the score reaches the value 0.

1.2.3. Local alignment with affine gap penalties

Until now, we used linear gap penalty to compute the best alignment for x and y. For using
affine gap penalties, Gotoh developed
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H(i,j) = max



E(i,j)

F (i,j)

H(i− 1,j − 1) + s(i,j)

0

(1.3)

where the first two terms describe closing the gap in x, and y, respectively, and the third
term describes elongating the alignment with a match between xi and yj . The affine gap
matrices are filled as follows:

E(i,j) = max

E(i,j − 1)− e

H(i,j − 1)− d
(1.4)

F (i,j) = max

F (i− 1,j)− e

H(i− 1,j)− d
(1.5)

where the first term describes elongating a gap in x and y, and the second term describes
opening a gap in x and y, respectively.

All presented dynamic programming algorithms have time and space complexity O(nm).
This makes them unfeasible for the use with large sequence databases often containing
millions of sequences.

1.3. Alignment acceleration using SIMD parallelization

Smith-Waterman alignments (Section 1.2.3) find the best possible alignment between two
sequences. However, the computation of pairwise local sequence alignments is slow due
to quadratic run time complexity. Therefore, usually it is not feasible to calculate Smith-
Waterman alignments for a large amount of query and database sequences (in the order of
hundreds of thousands and more). During the last 20 years, several efforts were made to
achieve a speed up using SIMD parallelization.

Several efforts were made to accelerate the calculation of Smith-Waterman alignments
with Gotoh improvements using Single-Instruction-Multiple-Data (SIMD) processors. The
most notable are the implementation of Farrar (Farrar, 2007) which uses intra-sequence
parallelization, and Rognes (Rognes, 2011) using inter-sequence parallelization.
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1.3.1. SIMD technologies

A SIMD (single instruction multiple data) instruction is able to perform a simple arithmeti-
cal operation on a vector instead of a single value in one processor cycle. These arithmetical
operations include basic integer and floating point operations such as addition and multi-
plication, number comparison operations, data shuffling, data-type conversion and bit-wise
logical operations.
Most modern CPU designs include SIMD instructions. Well known examples are the SSE

(Streaming SIMD Extensions) instruction set of Intel, introduced in 1999, and its extensions
SSE2, SSE3, SSSE3 and SSE4, introduced in 2001, 2004, 2006 and 2007, respectively. All
SSE instruction set iterations are also supported by modern AMD processors. SSE work
with 128-bit registers (XMM registers), where different data types can be stored. For
example, an XMM register can hold four 32-bit single-precision floating point numbers.
Then, a single instruction is performed in parallel on all numbers stored in an XMM register.

SSE2 expand the usage of the XMM registers to be more flexible. XMM is then able
to hold two 64-bit double-precision floating point numbers, or two 64-bit integers, or four
32-bit integers, or eight 16-bit short integers, or sixteen 8-bit bytes or characters.
A recent instruction set is AVX (Advanced Vector Extensions), proposed by Intel in 2008

and also supported by newer AMD processors. The width of the SIMD register file in AVX
is increased from 128 bits to 256 bits. Therefore, AVX is able to process twice as much data
in one CPU cycle as SSE instruction sets.

1.3.2. Smith Waterman SIMD implementations

One of the first vectorized Smith-Waterman implementations is the implementation of Woz-
niak in 1997 (Wozniak, 1997) running on the Sun Ultra SPARC using its SIMD instructions.
It subdivided the dynamic programming matrix in vectors held in 128 bit registers lying on
anti-diagonals of dynamic programming matrix (Figure 1.1). A 2-fold speedup was achieved
over the original Smith-Waterman implementation. This implementation has no conditional
branches in the inner loop, therefore the runtime does not depend on the scoring matrix or
the gap penalties.
The other notable Smith-Waterman implementation was presented by Rognes and See-

berg in 2000 (Rognes and Seeberg, 2000). It used MMX SIMD instructions to parallelize
the calculation of the dynamic programming matrix. The vectors holding the dynamic
programming matrix values were placed simply along the matrix (Figure 1.1). The main
speed up was achieved by generating a query profile once for the entire database search.
A drawback are conditional branches in the inner loop slowing down the program. This
implementation achieved a 6-fold speedup over optimized non-SIMD implementation.
However, both implementations have a major drawback: for the calculation of the dy-

namic programming matrix values, single values have to be extracted from SIMD registers
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and combined (Figure 1.1). This slows down the program, since the extraction of values
from vectors in SIMD calculations instead of operations on SIMD registers as a whole is
expensive.

Striped Smith-Waterman

This implementation of the Smith-Waterman algorithm with the Gotoh improvements
for affine gap penalties developed by Michael Farrar (Farrar, 2007) uses SSE2 instruc-
tion set for the parallelization of the dynamic programming matrix calculation. Striped
Smith-Waterman implementation achieves a speedup of 2-8 times over the Wozniak and
Rognes&Seeberger SIMD implementations. The main algorithmic improvements are the
usage of the query profile instead of many substitution matrix lookups, removing of the
most single-value dependencies between the SIMD registers during the matrix calculation
and removing of the conditional branches in the inner loop.
Before the calculation of alignments of the query with database sequences starts, a scoring

profile for the query is generated, i. e. at each query position the row of the substitution
matrix for the amino acid at that position is stored. Therefore, the calculation of the next
Hi,j (eq. 1.3) requires just an addition of the pre-calculated score to the previous Hi.j .
Striped Smith-Waterman uses two different data types during the calculation. Due to the

limitation in the SSE2 instruction set, unsigned 8-bit integers are used for the calculation
of the values in the dynamic programming matrices. To make use of the whole unsigned
8-bit integer range, the query profile is biased to the smallest value in the scoring matrix.
The unsigned 8-bit integer range is sufficient for most Smith-Waterman alignment score

Figure 1.1.: SIMD implementations of Smith-Waterman alignment: (A) Wozniak - vectors
along the anti-diagonal, (B) Rognes and Seeberger - vectors along the query. The values held in
a single SIMD register are circled. For simplicity it is assumed that one vectory contains only 4
values. Updates requiring extraction of single values are shown with arrows (red: reads of matrix
H, magenta: reads of matrix F ).
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calculations. After the calculation of the maximum score, the bias is subtracted from the
score again. When the score is greater than the maximum possible 8-bit integer value, the
calculation is repeated again with 16-bit integers. However, the calculation is then only half
as fast, since a SIMD register can store and process half as many 16-bit integers in every
step, compared to 8-bit integer values.
The algorithm uses a striped layout of the query for avoiding computationally expensive

shifting and extracting values held in SIMD registers. The query is divided into segments,
the number of segments is the number of entries in the SIMD register, i. e. 16 segments
when 8-bit integers are used, and 8 segments when 16-bit integers are used. Then, dynamic
programming matrix values are stored in matrix such that one SIMD register contains one
value per segment (Figure 1.2). Due to this layout, the next column of the matrix can be
updated by adding the profile query scores vector-wise without shifting or extracting values.
The only exception per database position where a shifting of values is necessary is the last
vector.

The gap extension matrix E can be updated simply from left to right. It uses the same
segmentation as in the H matrix. For the updating, it uses the previously calculated
columns of H and E and adds the gap penalties to calculate the current column.
A column of the gap extension matrix F is calculated from the top to the bottom. The

conditional branches in the inner loop should be avoided, since the penalty for the wrong
branch prediction, used by the modern processors, is especially high in the inner loop.
Therefore, the algorithm uses lazy evaluation of the gap extension matrix F . F only starts
to influence the value of H when H becomes greater than g + e, what is mostly not the
case. After the calculation of H without considering F , the values of F are checked to see
if they are high enough to influence H and a recalculation is necessary. If the scores in F
are high enough, F and H are recalculated, since F can then change the values of H.

Smith-Waterman with inter-sequence parallelization

Here the algorithm developed by Rognes (Rognes, 2011) parallelized the computation of the
Smith-Waterman alignments with Gotoh improvements over multiple database sequences
instead of parallelizing the computation of a single alignment like previously described
approaches (Figure 1.2).
First, the scoring profile of the query sequence is computed similar to the algorithm of

Farrar to remove the scoring matrix lookups. Then, the alignments of a query sequence to
multiple database sequences are computed. Residues from 16 different database sequences
are processed in parallel (Figure 1.2 shows it on an example of processing 4 database se-
quences in parallel). The values of the three dynamic programming matrices H, E and F
are calculated independently for each database sequence in parallel. In each step, dynamic
programming matrices are filled for 4 database residues, before going to the next query
sequence residue. The reason is the reduction of the running time through more efficient
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Figure 1.2.: SIMD implementations of Smith-Waterman alignment. For simplicity it is
assumed that a vector contains only 4 values. The values of the matrix belonging to one vector are
marked in the same colour. (A) Farrar intra-sequence parallelization. The query is processed not
linearly, but by partitioning the query into 4 parts. One vector is containing 4 values from each
part of the query. Due to the arrangment of the matrix values in the vectors, the updating of the
H matrix along the database sequence can be done mostly without extracting single values. Only
for one vector per database sequence position (yellow) the values have to be shifted (red arrows)
for the updating the matrix at the next database sequence position (light green). (B) Rognes inter-
sequence parallelization. Each vector holds scores for residues from 4 different database sequences
(for simplicity, in practice vectors of 16 elements are used). The 4 database sequences are aligned
to the query simultaneously.

cache usage when processing multiple database residues consecutively.

After having processed the 4 residues block for the whole query sequence, the algorithm
checks if one of the database sequences ended. In this case, the score of the database
sequence is recorded and the next database sequence is loaded in the channel. For sequences
which length is not a multiple of 4, the sequence is padded with null symbols. Then, the
check for the sequence end does not need to be carried out during the processing of the 4
residues block.

For the speed, the most inner loop, i. e. the updating of the three dynamic programming
matrices H, E and F , is written in assembly instructions.

The implementation of the algorithm (SWIPE) is the fastest among the SIMD Smith-
Waterman implementations. It achieves running times 2-18 times faster than the Farrar
implementation, depending on the input data. However, the main limitation of SWIPE is
the necessity of a minimum amount of the database sequences per query in order to reach
its maximum speed.
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1.4. Sequence profiles and HMMs

In the scoring scheme described above, we assumed that all the positions in the sequence
evolve independently and have an equal probability for mutations. However, this assumption
does not hold under the real life conditions. Some positions in the protein are more likely
to mutate, like unstructured loops that connect functional units of the proteins. Others
are strongly conserved, like an active site of the enzyme. To take the different mutation
probabilities of the different sequence positions into account, sequence profiles are used for
the similarity scoring.
A sequence profile is generated from a multiple sequence alignment of the query sequence

with its homologs. For each alignment position, different mutation probabilities are derived
from the frequency of the different amino acids at this position. The resulting sequence
profile can then be aligned with some target sequence. During the alignment, the match
scores s(i,j) are not taken from an amino acid substitution matrix like BLOSUM62, but
from the sequence profile at position i. Therefore, the resulting alignment considers the
conservation of the residues stated in the sequence profile.
An extension of this approach is the use of Hidden Markov Models (HMMs). HMMs not

only determine position specific mutation probabilities, but also position specific insertion
and deletion probabilities for the query MSA. Therefore, an alignment to a target sequence
becomes even more accurate. HMM-HMM alignment has proven to be most powerful
method for remote homology detection in proteins (Eddy, 1996). The fastest available
HMM-HMM alignment tool is HHsearch (Söding, 2005).
There exist faster HMM-HMM search methods that use fast prefilters to reduce the size

of the search space before the actual HMM-HMM search is run. HMMER (Sonnhammer
et al., 1998), developed by Sean Eddy in 1998, uses fast prefilters before calculating HMM-
sequence alignments to accelerate the search. HMMER3 (Eddy, 2011) adds the iterative
HMM-HMM search and improves the performance by using vector programing. HMMER3
is approximately three times slower than PSI BLAST.
HHblits (Remmert et al., 2012) is an iterative HMM-HMM search tool that uses a clus-

tered database to generate an HMM database and accelerates the search by using several
fast prefiltering steps before computing a most sensitive and costly HMM-HMM alignment
for the rest of the database.

1.5. Fast sequence search heuristics

In the last sections, I presented exact sequence comparison with the Smith-Waterman algo-
rithm. However, the calculation of exact pairwise alignments is too slow for many real life
applications where often millions of sequences have to be compared. Therefore, over the
last decades, many fast heuristics for the sequence search were developed.



1.5 Fast sequence search heuristics 11

1.5.1. FASTA

FASTA is a fast heuristic for sequence comparison that was developed by Pearson and
Lipman in 1988 (Pearson and Lipman, 1988). In the first step, it counts short identical
words between the query sequence and database sequences and identifies the best diagonals
with the most proximate matches which indicate regions of high similarity. In the second
step, it rescores these regions using a scoring matrix and saves the best scoring initial regions.
In the third step, FASTA checks if several initial regions can be joined together using their
score and gap penalty for the distance between the initial regions. Finally, a local alignment
around the best match is recalculated and reported.

1.5.2. BLAST and PSI-BLAST

BLAST is a fast search tool with a high sensitivity which searches for homologous sequences
of a query sequence within a sequence database (Altschul et al., 1990). BLAST search
algorithm is based on the observation that a sequence pair with a high-scoring alignment
has multiple short words, so-called k-mers, in common, which lie on the alignment path
within a short distance.

First, all 3-mers of the query sequence are indexed. For each 3-mer, similar 3-mers are
generated based on their similarity score until a certain similarity threshold. The resulting
3-mer list is organized into a search tree to make the search more efficient. Then, the
database is searched for the high-scoring 3-mers and each match is recorded.
Then, BLAST tries to extend 3-mer matches into a so-called high-scoring segment pair

Figure 1.3.: BLAST algorithm. The green line is the optimal alignment between the query and
the database sequence. BLAST searches for the matches of similar 3-mers between the sequences
(red rectangles) and finds two 3-mer matches within a short distance on the same diagonal. The
two exact matches are extended with an ungapped alignment to form a HSP (red line). The HSP is
then extended with a bounded Smith-Waterman alignment restricted to the grey area around the
HSP.



12 Chapter 1: Introduction to homology searching and clustering

(HSP). The original version of BLAST extended each 3-mer match between the query and
the database sequence until the score dropped below a certain threshold. However, this
approach involves the dilemma between speed and sensitivity: short k-mers are required to
be sensitive, but at the same time short k-mers produce a large amount of chance matches
that need to be verified. Therefore, the newer version requires two non-overlapping k-mer
matches on a diagonal within a window of 40 residues which reduces the number of chance
matches. The matches are then extended to form a HSP. The extension procedure is based
on the Smith-Waterman alignment, but is restricted to the neighborhood of the found HSPs.
All resulting alignments with a score above a threshold and a high statistical significance
are then reported. The whole algorithm is illustrated in Figure 1.3.

PSI-BLAST (Altschul et al., 1997) is an extended version of BLAST that first runs a
standard BLAST algorithm. Then, it builds sequence profiles from each query sequence
and similar sequences found in the first step. Then, it searches the database again using
the generated sequence profiles as queries. The accumulation of sequences, generation of
profiles and search can be repeated iteratively, each step resulting in a more sensitive search.

Karlin-Altschul statistics

Karlin-Altschul statistics (Altschul and Gish, 1996) provide a theory for computing the
probability that a local alignment with a certain score will be found between two sequences
of a database at random.

It is assumed that matches of amino acids between two sequences occur independently. In
addition, the expected score of a match should be negative, since otherwise local alignments
with a considerably high score could occur by chance.

It is known that the sum of a large number of independent identically distributed ran-
dom variables tends towards a normal distribution, and the maximum of a large number
of independent identically distributed random variables tends towards an extreme value
distribution. Under the assumption that local alignment scores are independent identically
distributed, the optimal local sequence alignment scores should obey an extreme value dis-
tribution. For a query sequence of lengthm and a database sequence of length n obtaining a
local ungapped alignment score S, the expected number of ungapped alignments E (e-value)
obtaining the score S or better is given by the formula

E = Kmne−λS (1.6)

where K and λ are the factors describing the scale of the search space size and the scoring
scheme, respectively. Therefore, to use the formula 1.6 for the e-value computation, we need
to know K and λ, i. e. to normalize the raw scores to obtain so-called “bit scores”:
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S′ = λS − lnK
ln 2

Using bit scores instead of raw scores, the e-value can be calculated with the formula

E = mn 2−S′ (1.7)

To calculate the e-value of a local alignment of a query with a sequence contained in a
database of N sequences, there are two different approaches. In the first approach, it is
assumed that every sequence of the database is equally likely to be related to the query. In
this case, to calculate an e-value for an alignment found during a database search, one has
to multiply the e-value in the formula 1.9 with the number of database sequences:

E = N mn 2−S′ (1.8)

The other approach assumes that long sequences are more likely to be related to the
query than short sequences (e. g. because longer proteins often contain multiple distinct
domains). In this case, the database is treated as a very long sequence of length L, where L
is the sum of lengths of the database sequences, the e-value for an alignment found during
a database search is

E = mL 2−S′ (1.9)

BLAST uses the second approach for computing e-values.
Computational tests and analytical results suggest that the same e-value calculation

applies also to gapped local alignments.

1.5.3. BLAST-like searches

There are several methods implementing search algorithms very similar to BLAST. They
are usually either faster than BLAST, but much less sensitive, or they achieve only a very
modest speed-up.

PLAST

PLAST (Nguyen and Lavenier, 2009) is a faster alternative to the BLAST algorithm, achiev-
ing a speedup ranging from 3 to 6 with a similar level of accuracy. PLAST indexes both
query and target databases and uses the SIMD parallelization and multi-core parallelization
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to achieve the speed-up. The seed searching and extension algorithm differs from BLAST
only slightly. PLAST shows the best performance when searching large databases.

BLAT

Another BLAST-like search tool is BLAT (Kent, 2002) which indexes non-overlapping k-
mers and then uses a BLAST-like extension of the matches, eventually aligning the regions
likely to be homologous. BLAT achieves a 50 fold speedup compared to BLAST, at the
cost of the lower search sensitivity.

PSimScan

PSimScan (Kaznadzey et al., 2013) is a search tool building a k-mer index of the database
and then extending these matches in several steps in a BLAST-like manner. Finally, align-
ments for the remaining sequence pairs are computed. Its speedup compared to BLAST
ranges from 5 to 100 depending on the chosen parameters.

RAPSearch

RAPSearch (Ye et al., 2011; Zhao et al., 2012) uses a reduced amino acid alphabet and a
collision-free hash table to identify common substrings of flexible length which eventually
trigger a seed extension with BLAST extension algorithm. RAPSearch achieves ~20-90
times speedup as compared to BLAST, but its sensitivity is considerably lower.

1.5.4. UBLAST

UBLAST (Edgar, 2010) is a very fast sequence search algorithm similar to BLAST. It
searches for short word matches between sequence pairs and extends the found matches by
computing a local alignment around them. It is designed to find sequence pairs with low
sequence similarity below 50%.
UBLAST uses matches of short words of length 3 (3-mers) to find candidate sequence

pairs. To increase sensitivity, it uses spaced seeds - k-mers with gaps which are designed to
reduce the correlation between positions of the k-mer. Another feature for increasing the
sensitivity is the usage of reduced amino acid alphabet for the k-mers, which allows not
only exact matches but also matches between similar amino acids.
The database is indexed to enable fast access to the 3-mers of the database sequences.

The sequences of the database are ordered by the number of unique k-mers in common
with the query sequence. Then, the matching 3-mer pairs are extended to HSPs using a
BLAST-like algorithm. The similarity of a HSP is defined either as fractional sequence
identity or e-value of the local alignment. For targets with similarity of the HSP above a
given threshold, remaining regions are aligned using banded dynamic programming (Chao
et al., 1992) and similarity is computed from the final alignment.
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The search is terminated after a predefined number of targets were accepted (default 1)
or rejected (default 8).

1.5.5. Ultra-fast search heuristics

Several sequence search heuristics were developed for very fast searches in large databases.
Though being orders of magnitude faster than BLAST, they are only able to detect very
close similarities, missing more distant homology.

Tachyon

Tachyon (Tan et al., 2012) search represents a sequence with a set of five contained 5-mers.
Sequences sharing at least three 5-mers are then compared with a full-length sequence
comparison method, which can be chosen by the user. Tachyon is about 200 times faster
than BLAST, but produces about 15 times less hits when searching the NCBI NR database.

Simrank

Simrank (DeSantis et al., 2011) counts unique k-mers in the sequences. For each query,
it returns the database sequences with the most similarities based on the k-mer counts,
without calculating any alignment. Simrank is very fast, being 10 to 1000 times faster
than BLAST depending on the dataset. However, it has a very low sensitivity and specifity
compared to BLAST.

PAUDA

PAUDA (Huson and Xie, 2014) is a very fast method for the sequence search which builds
an index from the reference database and encodes sequences with a reduced amino acid
alphabet containing 4 letters. It achieves a 10 000 times speedup compared to BLASTX on
a set of 246 M Illumina DNA reads. PAUDA succeeds in assigning only 33% of the number
of reads assigned by BLAST.

1.6. Clustering

Clustering of the sequence data is often applied to large sequence databases as the first
processing step.
Generally, clustering of a sequence database would require an all-against-all comparison

of the sequences and then definition of groups (clusters) based on the similarity graph.
However, for larger databases it is far too time-consuming to do an all-against-all comparison
using Smith-Waterman alignments of the sequences.
The most straightforward way to cluster a database is to compute all-against-all sequence

comparison with a sequence search method and to cluster the database with some clustering
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algorithm based on the search scores. The most exact sequence search method is the
computation of Smith-Waterman alignments (Smith and Waterman, 1981). However, the
computation of all-against-all Smith-Waterman alignments and subsequent clustering is
not feasible for larger databases, since it has quadratic time complexity in the number of
database sequences and Smith-Waterman alignment has the quadratic time complexity in
the sum of database sequence lengths.

1.6.1. BLAST-based clustering

There are multiple clustering algorithms based on the BLAST and PSI-BLAST scores and
statistics (Enright et al., 2002; Heger et al., 2007; Nepusz et al., 2010).
Many clustering methods use FASTA or BLAST for this purpose. Some of these methods

use the pairwise sequence similarities for hierarchical clustering (Krause et al., 2000; Miele
et al., 2011; Rappoport et al., 2012; Yona et al., 2000). Others use them to cluster sequences
into orthologous or functionally similar groups (Alexeyenko et al., 2006; Chen et al., 2010;
Enright et al., 2002; Li et al., 2003; Powell et al., 2012; Remm et al., 2001; Tatusov et al.,
2003). However, FASTA or BLAST would still need at least 70 years of even parallelized
computation to cluster a sequence database like the present UniProtKB with ≈80 millions
sequences from scratch.
SIMAP (Rattei et al., 2010) employs a 9-TeraFLOP distributed network of computers

to regularly update their database of precomputed FASTA similarity scores for a large set
of protein sequences. This database can be tapped to avoid the time-consuming sequence
alignments (Powell et al., 2012), but it cannot be used for sequences not yet contained in
SIMAP or when the clustering should depend on information other than sequence similarity
scores.
Here, we present a few clustering methods able to cluster large databases in the order

of millions of sequences down to low (30-50%) sequence identities from scratch. All the
methods use a fast prefilter to sort out sequence pairs that are not similar at all. Based on
the observation that homologous sequences share a certain number of short subsequences of
length k (k-mers), not similar sequence pairs are sorted out and sequence pairs that passed
the prefiltering are compared with a more sensitive pairwise sequence comparison method.

1.6.2. CD-HIT

CD-HIT is a widely used program for clustering biological sequences. It was first published
in 2001 (Li et al., 2001) and refined in 2002 (Li et al., 2002b). CD-HIT uses a greedy incre-
mental clustering algorithm. Each cluster is represented by its longest sequence, called the
representative sequence. Before the clustering starts, the database is sorted by decreasing
length. The first sequence is the representative sequence of the first cluster. Then each
sequence is compared to the existing representative sequences. If a representative sequence
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is similar enough to the query, the query is put in its cluster. Otherwise, the query forms
a new cluster and becomes its representative sequence.
Sequence comparison step consists of a k-mer based prefiltering step and a subsequent

Smith-Waterman alignment. In the prefiltering, number of k-mer matches between the
query sequence and the sequences of the database is determined. k is chosen in the range
[2 : 5]. For clustering protein sequences down to high sequence identities (more than 70%),
5-mers can be used. It makes the prefilter very fast and efficient, since a lot of sequence
pairs can be excluded. For lower sequence identities, the k-mer size is reduced in order
to make search more sensitive. However, the reduction of the k-mer size slows down the
program because of the high probability of chance k-mer matches.
The sequence pairs that passed the prefiltering are aligned with banded Smith-Waterman

alignment.
CD-HIT can be used for clustering protein and nucleotide sequences. In addition, it

offers a version for comparing two different datasets (Li and Godzik, 2006). Recently, a new
parallelized version of CD-HIT was implemented which uses all the cores of a computer (Fu
et al., 2012).

1.6.3. USEARCH

USEARCH (Edgar, 2010) is a sequence search and sequence clustering algorithm similar
to UBLAST, but designed to find high-identity hits, for proteins with sequence identity
above 50%. It uses 5-mer matches to identify similar sequence pairs. USEARCH prioritizes
the database sequences by the number of 5-mer matches, similarly to UBLAST, and then
extends the matches with a local alignment.
The clustering algorithm is similar to CD-HIT. Initially, an empty clustering is created

and the sequences of the database are ordered by length. The first sequence becomes
the representative sequence of the first cluster. Each following sequence is compared to
the existing representatives with USEARCH. If a match of sufficient similarity is found,
the sequence becomes a member of its cluster. Otherwise it becomes the representative
sequence of a new cluster.

1.6.4. SEED

SEED (Bao et al., 2011) is a very fast clustering tool based on the usage of block spaced seeds.
It works only with Illumina reads. SEED can only handle short evolutionary distances,
joining sequences into one cluster that differ by up to three mismatches an three overhanging
residues from their virtual center. SEED is very fast, needing only about 4 hours to cluster
100 M short read sequences but it yields many more clusters as other methods such as
CD-HIT and USEARCH.
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1.6.5. kClust

kClust (Hauser et al., 2013) is the predecessor of MMseqs, the clustering method presented
in the next chapter. It is able to cluster large protein sequence databases containing tens
of millions of sequences. kClust uses a greedy incremental clustering algorithm as used in
CD-HIT, sorting the database sequences by length and putting the next query sequence
into the cluster of the most similar representative sequence.
kClust compares the query sequence to already found representative sequences in two

steps. First, it reduces the number of considered representative sequences in the prefilter,
by summing up the scores of the similar 6-mers instead of simply counting the number of
exact k-mer matches as done in CD-HIT. The use of similar k-mers makes more sensitive
searches possible, at the same time reducing the number of chance matches thanks to the
used k-mer length. By adding the scores of similar 6-mers instead of simply counting them,
the prefiltering can distinguish better between related and unrelated sequences.
For the sequences that pass the prefiltering step, pairwise alignments are calculated using

a fast heuristic, k-mer dynamic programming (Mayer, 2007).
kClust has two major drawbacks. First, it is not parallelized - it uses only one core for the

computations. Second, kClust does not offer the possibility to update the existing clusters
with new sequences. This functionality would be very useful considering the growth of the
major protein sequence databases, where hundreds of thousands of protein sequences can
be added to a database within a week.
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Figure 1.4.: Overview of the kClust prefiltering algorithm. The 6-mers of the database are
stored in the index table prior to the calculation of the prefiltering scores. For each possible 6-mer,
the index table contains a pointer to the list of database sequences containing this 6-mer. During
the prefiltering scores calculation, the query sequence is processed from left to right. For the 6-
mer at each position, a list of similar 6-mers is generated. Database sequences containing this
6-mer are identified using the index table and the similarity score of the 6-mers is added to the
overall prefiltering score of this database sequence, stored in the array S. After the query sequence
is processed, the best scoring database sequences passing the prefilter are extracted. (Figure taken
from Hauser et al., 2013).





Part I.

Very fast and sensitive sequence
search and clustering





2. Motivation

The rapid development of next-generation sequencing (NGS) strategies leads to a drastic
increase of available sequence data at ever lower costs. New sequencing technologies from
Roche/454, Illumina, Pacific Biosciences Inc., and Oxford Nanopore Technologies are able
to produce data on the order of hundreds of giga base-pairs per machine day (Metzker,
2010). With the release of Illumina’s HiSeq X Ten, for the first time a 1000$ genome has
become reality (Hayden, 2014).
This development makes many applications possible which were limited by the low se-

quencing throughput in the past: metagenomic projects sequence whole bacterial commu-
nities, analyzing their taxonomic and genetic composition (Qin et al., 2010; Rusch et al.,
2007; Yooseph et al., 2007). The 1000 Genomes Project (1000 Genomes Project Consortium
et al., 2010) has sequenced over 1000 genomes and the sequencing of even larger datasets is
planned in the future. This effort will provide a detailed image of human genetic variations,
help us to understand common human deseases by analysing their association with genetic
variation, and, based on the disease-associated biochemical and regulatory pathways, to
develop personalized medical treatments (Koboldt et al., 2013).
The rapid growth of protein sequence data is reflected by the growth of the central

repository of protein sequence data UniProtKB (Apweiler et al., 2004). UniProtKB contains
about 80M sequences as of end of July 2014, and has doubled every two years until recently,
but the last year suggests even faster growth in the future (Figure 2.1a).
However, the flood of sequence data poses new challenges in their storage and analysis

(Berger et al., 2013; Kahn, 2011; Kircher and Kelso, 2010). The sequence data accumulates
more quickly than the growth in computing efficiency predicted by Moore’s law (Figure
2.1b). Although the amount of protein sequence data grows rapidly, the rate of discovery of
novel sequences declines. While one would expect the fast growth of the sequence databases
and therefore the denser sampling of the sequence space to lead to better performance of
sequence searches, the opposite seems to be true: The increase has led to stagnating or even
negative returns, as measured by the ability to detect homologous sequences for structure
or function predictions (Chubb et al., 2010).
Removing redundant sequences through clustering can partly alleviate this problem:

Li et al., 2002a and Park et al., 2000 showed that sequence searches through clustered
databases, which contain one representative sequence per cluster, improve the sensitivity
of homology search methods. This is one reason for the popularity of the UniRef database,
which provides clusterings of the UniProtKB at different sequence identity thresholds (Suzek
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et al., 2007). Clustered databases also increase the sensitivity of profile-based sequence
search methods (Li et al., 2002a).

(a) Growth of the UniProtKB database.

(b) The growth of the sequence data against the processor speed.

Figure 2.1.: a) Number of entries in the UniProtKB plotted over time (figure taken from
http://www.ebi.ac.uk/UniProt/TrEMBLstats). b) A doubling of sequencing output every 9 months
(blue) has outpaced and overtaken performance improvements within the disk storage (yellow) and
high-performance computation (magenta) fields (figure taken from Kahn, 2011).

Furthermore, clustered databases, in which each cluster of homologous sequences is rep-
resented by a profile HMM, are a requirement for more sensitive sequence analysis methods
based on the pairwise comparison of HMMs such as HHblits. HHblits is probably the most
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sensitive protein sequence search method to date (Remmert et al., 2012). It calculates a
profile HMM from the query sequence and searches for homologous matche to this query
HMM in a database of profile HMMs computed from the MSAs obtained by clustering
all UniProtKB sequences down to 20%-30% sequence identity. In subsequent iterations,
sequences belonging to significantly similar database HMMs are added to the query mul-
tiple sequence alignment (MSA). Thanks to the additional information from homologous
sequences in the MSAs, HMM-HMM comparison is more sensitive and accurate than profile-
sequence comparison: Compared to PSI-BLAST (Altschul et al., 1997), HHblits is faster,
up to twice as sensitive, and produces alignments with several percent higher accuracy.
For HHblits it is critical that only a very low number of clusters are corrupted by non-

homologous sequences, since these can cause high-scoring false-positive matches. The clus-
tering sensitivity is also important because MSAs with higher sequence diversity and higher
information content are better at finding remotely related sequences. Also, the lower num-
ber of clusters results in shorter search times.
The established sequence search tools BLAST, PSI-BLAST (see section 1.5.2) and FASTA

(section 1.5.1) are sensitive but are not fast enough to cluster the huge data amounts
produced by NGS methods. Even faster methods were developed during the last years: A
few faster search have been developed like BLAT, UBLAST and RAPsearch (see sections
1.5.3 and 1.5.4) but at the cost of a much lower sensitivity.
In addition, several ultra-fast sequence search methods exist (see section 1.5.5), but all of

them lack sensitivity to do searches down to sequence identities below 70% (Li et al., 2012).
Most noteworthy for sequence clustering are the tools CD-HIT (see section 1.6.2), USEARCH

(section 1.6.3) and kClust (section 1.6.5). Each of these methods has its own drawbacks:
CD-HIT is fast if only very similar sequences are required to be clustered but becomes very
inefficient below a sequence identity threshold of 70%. USEARCH and kClust are not paral-
lelized and therefore not able to make use of the steady increase in the number of cores per
CPU. Parallelization has become crucial in the last years, since the exponential growth of
the CPU speed predicted by Moore’s Law can now only be achieved by using the multiple
cores of a computer in parallel (Sutter, 2005).
In the next chapters, we describe MMseqs, a very fast highly parallelized sequence clus-

tering and sequence search tool. It implements a k-mer prefilter that sums up the similarity
scores of similar k-mers, instead of counting exact k-mer matches. By analysing not only
identical but similar k-mers, we obtain sufficient numbers of k-mer matches even at low se-
quence similarities. At the same time, the longer k-mers we use - between 5 and 7 - ensure
very few chance matches and thus high search speeds.

MMseqs is around 1000 times faster than protein BLAST and sensitive enough to capture
similarities down to less than 30% sequence identity. MMseqs owes its speed and sensitivity
to the fast prefilter that sums up the scores of similar k-mers for sequence pairs. Then,
a SIMD-parallelized Smith-Waterman alignment is computed for all sequence pairs that
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passed the prefiltering. The alignment implementation is based upon the implementation
of Farrar (Farrar, 2007). Prefiltering and alignment modules of MMseqs are the core of its
functionality and can also be used for stand-alone sequence search. They are parallelized to
use all cores of a computer to full capacity. A clustering is computed based on the sequence
alignment results. In addition, MMseqs offers an updating function, which is very useful
considering the fact that about five million sequences are added to the UniProtKB each
month. Updating takes an already clustered version of the database and the new version of
the sequence database. Then it adds new sequences to the clustering and removes deleted
sequences without needing to calculate the whole clustering from scratch.



3. Description of algorithms

3.1. MMseqs overview

MMseqs (Many-against-Many sequence searching) is a novel software suite for very fast
protein sequence searches and clustering of huge protein sequence data sets, such as sets of
predicted protein sequences or 6-frame-translated open reading frames (ORFs) from large
metagenomics experiments.
MMseqs consists of three modules. The first two modules do the sequence search: (1)

the prefiltering module computes the similarities between all sequences in one set with
all sequences in the other based on a very fast and sensitive alignment-free metric, the
sum of scores of similar k-mers; (2) the alignment module is an SSE2-accelerated Smith-
Waterman-alignment of all sequences that pass a cut-off for the score in the first module.
Both modules are highly parallelized in order to make use of all the cores of a multi-core
computer. The first two modules are the core of MMseqs, taking most of the runtime and
resources.
For the clustering, the sequences of a database are first compared all-against-all with the

prefiltering module and all prefiltering matches are then checked in the alignment module.
The third (3) clustering module orders sequence sets in clusters based on the similarity
graph obtained from the comparison of the sequence set with itself in modules 1 and 2.
Overview of the MMseqs search and clustering workflows is given in Figure 3.1.
In addition to the possibility to run modules separately, MMseqs implements three work-

flows. Workflows offer the possibility to run the sequence search and clustering in one step,
and run cascaded clustering and updating. Workflows have less possibilities of parameter
tuning than running MMseqs modules separately, but they are more comfortable to use and
offer additional functionalities in case of the cascaded clustering and updating.
The first, sequence search workflow, does a sequence search by running prefiltering and

alignment module. The second, MMseqs clustering workflow, clusters the input databases
by running prefiltering, alignment and clustering modules. Additionally, it offers the possi-
bility to run cascaded clustering, which clusters the input database incrementally in multiple
steps, increasing clustering sensitivity in each step. By postprocessing the results from the
clustering iterations, it produces clustering results as if done in a single clustering step. The
third workflow is an updating workflow. It takes a new version of the database and already
done clustering of an older database version and updates the clustering by deleting removed
sequences and adding new sequences to the existing clusters.
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Figure 3.1.: Overview over the two basic MMseqs workflows: sequence search and clus-
tering. A: Sequence search. All sequences from the query set A are matched against sequences
from the database set B. Prefiltering produces for each sequence from set A a list of similar sequences
from set B. In the alignment module, alignments are computed for all sequence pairs that passed the
prefiltering. For each query sequence from set A, there is then a list of sequences from B producing
significant alignments with the query sequence. B: Clustering. All sequences from the database
are compared to each other in the prefiltering module and the prefiltering matches are checked in the
alignment module. The result is a list of similar sequences together with the similarity scores and
alignment statistics for each sequence in the database. Based on the alignment results, a clustering
of B is defined.
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The three modules of MMseqs and the workflows are explained in detail in the following
sections.

3.2. Prefiltering

The prefiltering module is the core of MMseqs and is crucial for its speed and sensitivity.
It does a fast and sensitive all-against-all comparison of the sequences contained in a query

Figure 3.2.: Overview over MMseqs prefiltering module. All sequences from the query dataset
A are compared to all sequences from the database B. First, all k-mers for every sequence in B are
stored in an index table. Then prefiltering scores are calculated for each query sequence from A. For
each k-mer in the query sequence, a list of similar k-mers is generated together with the similarity
scores. For each k-mer in the list, a list of sequences in the database B containing this k-mer is
retrieved from the index table. The similarity score is added to the overall score for the database
sequence. After the query sequence is processed, database sequences producing a significant score
are identified using a statistical approach and stored in the result list for the query sequence.
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set A to the sequences in the database set B, using a very fast, alignment-free metric. The
overview over the prefiltering module is shown in Figure 3.2. During the prefiltering, most of
unrelated sequence pairs are eliminated, such that much slower exact sequence comparison
has to compute pairwise alignments for only a very small fraction of all-against-all sequence
pairs.
The main idea of the prefilter is the matching of short similar subsequences of a fixed

length k, so-called k-mers, between the query and the database sequence. The similarity
score of each k-mer pair is the BLOSUM score of its ungapped alignment. MMseqs prefilter
identifies all k-mers with a similarity score above a threshold for each pair of sequences.
The sum of the similarity scores of all matching k-mer pairs is the prefiltering score for the
sequence pair. Sequences from the database B passing the prefiltering for a query sequence
from A are identified basing on raw prefiltering scores using a statistical approach.

3.2.1. Similar vs. identical k-mers

Counting similar k-mer words for pairs of sequences is much more sensitive than counting
identical k-mers, because it allows us to keep the word length k large while still maintaining
a high sensitivity for detecting similar pairs of sequences at low sequence identities. A
higher word length in turn reduces the number of chance k-mer matches much more than
the number of k-mers matching as a result of the common ancestry of the two sequence
segments. But MMseqs does not simply count similar k-mers, instead it sums up their
BLOSUM62 similarity scores. This results in a further improvement in sensitivity, since
k-mer pairs formed by chance will have lower scores on average than k-mer pairs that match
due to their homology.
Consider first two homologous sequences with a sequence identity pseqid, which we in-

terpret as the probability that two homologous residues are identical. Assuming that the
match probability of the k positions in a k-mer are approximately independent, the proba-
bility for two homologous k-mers to be identical is pkseqid. (In fact, since conserved positions
are usually clustered in proteins, the true probability is actually larger than that, which
will make the following estimates conservative.) For counting matches of similar k-mers, we
demand that the score is larger than a certain threshold, such that for every k-mer there
are on average r similar k-mers above this threshold (for example r ≈ 100 in the 6-mer
prefilter with default settings). The probability for two homologous k-mers to be similar is
then approximately rpkseqid. To be able to detect the homology between two sequences, we
need to count enough similar matching k-mers. If the sequences have a sequence identity
pseqid and their alignment has a length L, the number of expected matches should obey

rpkseqidL � 1 . (3.1)

The probability for two random k-mers to be identical is pkran, where pran is the probability
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to observe two identical amino acids by chance. We estimate this probability using known
background amino acid probabilities pbg(a): pran =

∑20
a=1 pbg(a)2 ≈ 0.058. Hence, the

probability for two random k-mers to have a similarity above the threshold is rpkran. A
second necessary condition to be able to distinguish two homologous sequences of length L
with sequence identity pseqid from other, non-homologous sequences is that the homologous
pair yield many more similar k-mer pairs than the number of chance matches rpkranL

2 in
the pair of non-homologous sequences. Therefore, we should have

(
pseqid
pran

)k
� L. (3.2)

For pseqid = 0.3, the term under the power of k is pseqid/pran ≈ 5. Therefore, we gain a factor
of five for each of position of the k-mer in the ratio of k-mer matches between homologous
over nonhomologous sequences. We therefore should choose k as large as possible. For
k = 6 we obtain 56 ≈ 15 000 � L, showing that for sequences longer than 15 000 residues,
the number of chance 6-mer matches begins to outweigh the number of matches due to real
homology. When using 7-mers, we get 57 ≈ 78 000 � L, so there is basically no protein
sequence that is long enough to produce enough chance 7-mer matches to outweigh the
number of matches due to real homology. To estimate a suitable value r, note that eq. 3.1
tells us that we need to detect a sufficient number of matches even for short proteins. For a
length L = 50 and k = 6, for example, the equation demands that r � 1/(0.36× 100) ≈ 40.
Hence r = 100 seems like a reasonable choice for the default similar 6-mer list length.

3.2.2. Index table generation

The index table guarantees a fast access to all database sequences containing a certain k-
mer. In a preprocessing step of the prefiltering, before the prefiltering scores calculation
starts, all k-mers of the database sequences are stored in the index table (Figure 3.3). For
each possible k-mer, the index table stores a pointer to the list of all database sequences
containing this k-mer.

The index table needs much memory, depending on k and the size of the database. The
sizes of the sequence lists are distributed very unequally, so no average value can be assumed
for the size of a sequence list. Therefore, the frequency of each k-mer is counted in the first
pass though the database. Then, the memory for the sequence lists is allocated in one
block to avoid memory fragmentation. The pointer array is then pointing to the position
in the sequence lists block where the corresponding sequence list starts. The size of each
sequence list is stored in an auxiliary array (Figure 3.3). Repeat k-mers are removed after
the sequence list generation, i. e. each sequence is stored only once in the sequence list
for every k-mer. For the distribution of the sequence list sizes for different k-mers, see
Figure 3.4.
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Figure 3.3.: Index table. The index table consists of three arrays (grey rectangle). The lists
of database sequences containing a certain k-mer are stored consecutively for every k-mer in the
sequence list array. The pointer array contains pointers to the beginning of the list of database
sequences for every possible k-mer. The third list sizes array stores the size of every list. In addition,
during the index table initialization a fourth array is necessary (current position array). It stores the
current position in the sequence list and therefore, indicates the next position where the sequence
ID of a sequence containing a k-mer can be written.

3.2.3. Memory consumption of the index table

The index table consists of the three arrays shown in the Figure 3.3: list sizes array, pointer
array and sequence list array. One additional array is used during the filling of the index
table which stores the current position in each k-mer sequence list where the next database
sequence containing this k-mer can be written. The number of entries in this array is the
same as the number of entries in the pointer array and in the list sizes array. This is the
number of possible k-mers, which is ak, where a is the alphabet size and k is the k-mer
size. The current position array and the list sizes array contain unsigned integers (unsigned
integer size is 4 byte), the pointer array contains pointers (pointer size in a 64-bit system
is 8 byte). Therefore, these three arrays need (4 + 4 + 8)× ak B of memory.
The memory consumption of the sequence lists can be calculated as following: each

sequence of length Li contains Li − k k-mers. We need 4 byte to store the sequence ID
in the sequence list for a k-mer. For a database containing N sequences with an average
length L, the index table needs approximately 4×N × L B for the sequence lists.
Therefore, the general memory consumption of the index table can be calculated with

the following formula (in byte):
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Figure 3.4.: Distribution of the sequence list sizes in the index table for the different
k-mers. Sequence list size distribution is shown for the sequence list before and after the duplicates
removal (red and green, respectively). The k-mer counts are divided into bins of size 10. Note
the logarithmic scale on both axes. After the duplicates removal, there is much less k-mers with
extremely large sequence list sizes. Such long lists occur mostly for frequently occuring repeat k-
mers (like “AAAAAA”) and by removing repeats within sequences, the length of the sequence list
for such k-mers is drastically reduced.

Mindex_table = 16 ak + 4N L (3.3)

Based on this formula, we can calculate the memory consumption of the index table for
storing k-mers of the recent version of the UniProtKB database containing 54M sequences,
average sequence length is 350. For storing 6-mers of this database, we need 16 × 216 B +
4 × 54 × 106 × 350 B = 1,2 GB + 70,4 GB = 71,6 GB. When using 7-mers, the memory
consumption for the three arrays (first term in the equation 3.3) rises to 16×217B = 26,8 GB.

3.2.4. Index table matching

Prefiltering scores are calculated for each query sequence separately. A query sequence is
processed from left to right. The current prefiltering score for each database sequence is
stored in the array S (Figure 3.2). For each query sequence, S[·] = 0 at the beginning of
the query sequence processing. At each query sequence position, the k-mer at this position
is retrieved and the list of similar k-mers down to a certain score cutoff is generated and
stored together with the similarity scores. For each k-mer from this list, a list of database
sequences containing this k-mer is retrieved from the index table. The similarity score is
already known from the similar k-mer list generation and added to the prefiltering score of
each database sequence in the sequence list. Then, the next k-mer of the query sequence
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is processed. At the end of the query sequence, array S contains prefiltering scores of all
database sequences for this query sequence.

3.2.5. Retrieving results for a query sequence

Prefiltering scores of the query with the most database sequences are 0, or very low, when
composed only of chance k-mer matches between the query sequence and the database se-
quence. Truly homologous sequences have much higher prefiltering scores than the average
score in the array S. However, this average score varies greatly among the different query se-
quences, depending on the length of the query sequence, the length of the matched database
sequence and on their amino acid composition. Longer database sequences tend to have
higher prefiltering scores with the query just because of chance matches. A rigid prefiltering
score threshold for all sequences does not work well, missing homologous sequences in some
cases and letting many unrelated sequences pass in other cases.
We do a statistical analysis of the distribution of the prefiltering scores for each query in

order to find a query-specific prefiltering threshold for every query sequence. We assume
that most of the database sequences are not homologous to the query sequence and cause
only chance matches with it.
We are interested in a query-specific and database-sequence-specific prefiltering threshold

above that the prefiltering score for the sequence pair becomes significant.
We correct for the fact that longer database sequences have a higher expected chance

score. First, we calculate the sum of database sequence lengths:

sumL =
N∑
t=1

(Lt − k + 1)

and the sum of all prefiltering scores for a query sequence q with the database:

sumS =
N∑
t=1

Sqt

where N is the database size, Lt is the length of the database sequence t and Sqt is the
prefiltering score of the query sequence q with a database sequence t. Then, the expected
chance prefiltering score between q and t is

S0 = (Lt − k + 1) sumS
sumL

We also correct for the lower score dispersion at high lengths. For this purpose, we need
to determine the standard deviation of the score. We assume that the number of k-mer
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matches is Poisson-distributed, so the standard deviation of the score should be proportional
to the square root of the number of expected k-mer matches. We calculate the expected
number of matches of q with the database. It is

nmatch = (Lt − k + 1) sumS
sumL

/Smatch

where Smatch is the expected score per chance k-mer match. Under the assumption that
the number of k-mer matches is Poisson-distributed, the standard deviation of the chance
score of the query sequence with a database sequence t is

σS = √
nmatch Smatch

=
√

(Lt − k + 1) sumS
sumL

Smatch

Therefore, the offset- and scale-corrected score Zqt for a query sequence q and a database
sequence t is

Zqt = Sqt − S0
σS

We are interested in all sequence pairs, where Zqt > Zthr. I. e. the prefiltering score
should fulfill the condition

Sqt ≥ Zthr σS + S0

≥ Zthr

√
(Lt − k + 1) sumS

sumL
Smatch + (Lt − k + 1) sumS

sumL

However, calculating the offset- and scale-corrected score threshold for each pair q, t
would slow down the retrieving of prefiltering results. Since the threshold value Zthr σS+S0

depends only on the length of the database sequence t for a fixed q, the database sequences
are ordered by length, the threshold is calculated once and recalculated only if the length
of the next sequence falls below 95% of the reference sequence length.
The statistical analysis of the scores gets unreliable for small databases, since in this case

there exist not enough values to calculate the expected score and the standard deviation
reliably. We use pseudo-counts to generate a reliable score threshold. We define the size
of the pseudo-database as 100 000 with an average sequence length 350 (average sequence
length in UniProtKB). We estimate k-mer match probability and set the score of a chance
k-mer match Smatch to be slightly above the k-mer similarity threshold. k-mer match
probability estimation is explained in detail in section 3.2.10. Then, we calculate nmatch,
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sumS and sumL with real values adding the pseudo-counts.

3.2.6. Parallelization

The prefiltering module is parallelized in two ways. First, it calculates on all the cores of the
computer (or the number of cores specified by the user) by using OpenMP parallelization.
Each core calculates prefiltering scores for a bunch of query sequences with the whole
database and writes the results to a separate output database, one output database per
core. After prefiltering scores calculation is complete, prefiltering results from each thread
are merged into one output database (Figure 3.5).
In addition, the time-critical retrieving of the database sequences passing the prefiltering

threshold for a query sequence is parallelized by utilization of vector processing units on the

Figure 3.5.: Parallelization with OpenMP. Parts of the query sequence set are matched against
the database in parallel. Each thread writes to its own output database. In the end, all results are
merged into one output database.
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CPU through SIMD instructions (SSE2 instruction set). By using SIMD parallelization, it
is possible to perform an operation on a vector of values instead on a single value in one
processor cycle.
For be able to use SSE2, we allocate aligned memory for the score array S (see Figure 3.2),

so we can access the values in S vector-wise. Additionally, we store sequence specific
prefiltering score thresholds for each database sequence in another array T , also using
aligned memory allocation (for the threshold calculation, see the chapter 3.2.5). We need
to compare S[i] with T [i] for each database sequence. Using SSE2 instructions, 8 checks
are made in parallel on one core, therefore accelerating the result retrieving 8-fold.

3.2.7. Reduction of the memory consumption

Database sequence lists for each k-mer, stored in the index table, need a lot of memory for
large databases. To hold all the sequence lists in the database for the UniProtKB containing
54M sequences, we need approximately 70 GB of main memory (see chapter 3.2.3). We
offer the user the possibility to reduce the memory usage at the cost of longer runtimes. The
target database is split in multiple chunks and the prefiltering scores of the queries with
the database are calculated only with one chunk at once. In the last step, the prefiltering
result lists are merged (Figure 3.6).

3.2.8. Different k-mer sizes

MMseqs is able to use different k-mer sizes. In the last section, we stated that k-mer size
should be as large as possible to make use of the enhanced signal-to-noise-ratio of larger k-

Figure 3.6.: Reduction of memory consumption. The target database (blue) is divided into
t+1 chunks. In each step, matches of the query database to the current chunk of the target database
is calculated in parallel using OpenMP parallelization (red). In the end, result lists from each step
are appended to each other.
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mers. In practice, k is limited by two considerations. First, the index table needs a memory
of 21k×16B for the index itself and for the auxiliary arrays. Therefore, the memory for the
index table restricts the maximum k to 7 in the practical use. For k = 6, index table and
the auxiliary arrays for k-mer counting need about 1,2 GB for the index and the auxiliary
arrays in addition to the memory for the database sequence lists. For k = 7, this memory
consumption increases to about 26 GB.
Second, larger k makes exponentially larger similar k-mer list lengths r necessary to

achieve the same similarity threshold per k-mer position. This results in longer runtimes
for k-mer lists generation and therefore, more frequent accesses to the lists of sequences
for a k-mer in the index table. On the other side, the probability for a chance match is
reduced by a factor pran, what makes prefiltering score addition and score retrieving faster
for longer k-mers. Therefore, the usage of long k-mers pays off only if the score counting
and retrieving predominates the running time. We want to check which database size is
necessary for the score counting and the score retrieving to dominate the running time.
The time for the generation of the lists of similar k-mers T1 can be described with the

following equation:

T1 ∝ Nq Lq r (3.4)

where Nq is the number of the query sequences, Lq the average length of a query sequence
and r the average length of the similar k-mer lists. The time for the the score counting and
retrieving can be described as follows:

T2 ∝ Nq LqNt Lt p
k
ran (3.5)

where Ntand Lt are the number and the average length of the sequences in the target
database and pkran describes the probability of a chance k-mer match, as stated in the
previous section. For T2 to dominate the running time, T2

T1
> 10 should apply. I. e.,

T1
T2

∝ Nt Lt
pkran
r

∝ Nt Lt p
k
ran > 10

Subsequently, the minimum number of the database sequences for the the score counting
and retrieving to predominate the running time should fulfill the following condition:

Nt >
10

Lt pkran
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The average length of the sequences in the UniProtKB database is approximately 350,
and pran ≈ 0.058 as stated in the section 3.2.1. It follows that the minimum number
of the sequences in the database for 6-mers to pay off versus the use of shorter k-mers is

10
350×0.0586 ≈ 750 000, whereas the number of the sequences in the database for 7-mers to pay
off is 10

350×0.0587 ≈ 12 000 000. So, the usage of 7-mers pays off only for very large databases
containing more than 12M sequences.

3.2.9. Reduced amino acid alphabet

The user has the option to switch to a reduced amino acid alphabet. A reduced amino acid
alphabet is generated by subsequently merging two most similar amino acids. The similarity
is assessed by using the mutual information of their substitution probability distributions.
The merging process is continued until a desired reduced alphabet size is reached.

Using an amino acid alphabet size reduced by 4 reduces the memory needed for indexing
7-mers from 26,8 GB to 6,1 GB (first term in the equation 3.3), without considering the
memory for the sequence lists, since it does not depend on k-mers size but only on the
number of residues in the database.
Mutual information is the measure of two random variables’ mutual dependence. Mu-

tual information for a pair of amino acids is calculated based on the substitution and the
background probabilities of the amino acids taken from the substitution matrix. The goal
is to merge a pair of amino acids that result in the least mutual information loss in the
amino acid substitution matrix. For this purpose, we combine each possible amino acid
pair (i,j), i 6= j into one merged amino acid and calculate the mutual information of the
resulting matrix.
For each amino acid i, we know the background probability pback(i), and for each amino

acid pair (i,j) we know the probability p(i,j) that i is aligned with j. Based on pback and
p, an amino acid substitution matrix is calculated as following:

S(i,j) = log p(i,j)
pback(i) pback(j)

In each step, we merge an amino acid pair (i,j), i 6= j into one new (imaginary) merged
amino acid m and calculate its background probability:

pback(m) = pback(i) + pback(j)

and the new alignment probabilities p(m,·) of m with other amino acids in the amino
acid alphabet:
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Figure 3.7.: Mutual information of the amino acid substitution matrix with reduced
amino acid alphabets. In each step, most similar amino acids are merged and the mutual in-
formation for the resulting reduced alphabet is calculated. The size of the amino acid alphabet is
shown on the x-axis, mutual information on the y-axis.

p(m,·) = p(i,·) + p(j,·)

Then, a new substitution probability matrix Sm is generated for the reduced amino acid
alphabet based on new distributions pbackand p. Finally, the mutual information Im of the
resulting substitution matrix is measured:

Im =
∑

i

∑
j

p(i,j) log p(i,j)
pback(i) pback(j)

The process of merging an amino acid pair and calculating the resulting mutual infor-
mation is repeated for each amino acid pair. Finally, the amino acid pair with the highest
value of Im is chosen and merged into a new amino acid, i. e. the amino acid alphabet is
reduced by one.
The whole process is repeated until a target number of amino acids is reached.
Figure 3.7 shows the mutual information for the different sizes of the reduced amino acids

alphabets, based on the BLOSUM62 matrix.

3.2.10. Automatic sensitivity setting

Using different k-mer sizes and different average similar k-mer list lengths, it is possible
to run MMseqs with different sensitivity. Longer similar k-mer lists per position make
MMseqs more sensitive but also slower. Shorter similar k-mer lists reduce the sensitivity
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and increase the speed. Again, longer k-mers need longer k-mer lists to be as sensitive
as shorter k-mers. MMseqs makes different settings comparable by adjusting the k-mer
similarity threshold and ensuring that the prefiltering run takes the same time for the same
sensitivity parameter value despite the different settings.
The most time-consuming parts of the prefiltering module is the generation of the similar

k-mer lists and the index table matching. Therefore, for a fixed database size the runtime
can be described with the following expression (cf. eq. 3.4 and eq. 3.5 in section 3.2.8):

runtime ∝ α r + β pmatch + γ (3.6)

where r is the average length of the similar k-mer list per query sequence position and
pmatchis the probability of one query sequence position to match one database sequence
position. For the purpose of the usability, we set

2runtime = α r + β pmatch + γ

so increasing the variable runtime by one doubles the runtime approximately and increases
the sensitivity of the prefiltering allowing longer similar k-mer lists to be generated and
examined.
I ran MMseqs with the different k-mer lengths and alphabet sizes and fitted the param-

eters α, β and γ by measuring the runtime and the corresponding values of Lkmer_list and
pmatch.
Subsequently, we are able to compare the runtime of the different settings by measuring r

and pmatch and calculating 2runtime. During the initialization phase, MMseqs does a couple
of test prefiltering runs using only a small fraction of the data with the different k-mer
similarity thresholds and records r and pmatch. It adjusts the k-mer similarity threshold
and therefore changes r and pmatch until the left-side expression 2runtime matches a specified
value of runtime.

To be able to do a fine tuning of the k-mer list lengths and therefore of the sensitivity, we
set the score unit for the k-mer similarity threshold that controls the lengths of the similar
k-mer lists to 1/8 bit. After the generation of the similar k-mer lists, we switch the score to
1/2 bit scale to avoid the frequent overflow of the unsigned short integer range in the array
S[·] during the prefiltering scores calculation (see section 3.2.4).
Similar to the statistical prefiltering threshold calculation, we have to use pseudocounts

if the database is too small to measure pmatch reliably:

pmatch = nmatches + nmatches_pc∑
L+

∑
Lpc
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where nmatches is the observed number of matches of the query and
∑
L is the sum of

lengths of the database sequences. nmatches_pc and
∑
Lpc are the pseudocount contributions

to the number of matches and the lengths.
Pseudocount components are calculated as follows: the pseudo database size is set 1000

query sequences and 100 000 database sequences with an average length 350, resulting in
the pseudo-count contribution

∑
Lpc = 1000×350×100 000×350, since chance matches can

occur anywhere between the two sequences. The probability of a k-mer to match another
k-mer by chance is set to

(
1
a

)k
, where a is a size of the amino acid alphabet. This is a

little lower than would be calculated based on BLOSUM62 self-substitution probabilities,
but matches the observed values better. Pseudocount number of database matches is then

nmatches_pc =
∑

Lpc r

(1
a

)k
Dependence of the running time on the database size It is necessary to note that the
preceding sensitivity setting is only valid for a fixed database size. Equation 3.6 generalizes
equations 3.4 and 3.5. Based on the equations, the full equation for the runtime is

runtime ∝ Nq Lq r +Nq LqNt Lt pmatch + γ (3.7)

∝ r +Nt Lt pmatch + γ (3.8)

Therefore, a particular fitting of the sensitivity and runtime is valid only for a fixed
database size and should be adapted if the database size changes considerably.

3.2.11. Amino acid local composition bias correction

Some sequences have regions of low complexity with an amino acid composition that dif-
fers considerably from the background amino acid distribution assumed in the amino acid
substitution matrix. Therefore, low complexity regions of a sequence can cause high pre-
filtering scores with low complexity regions of other sequences simply because of the same
local amino acid composition bias but not for the reason of true homology. To alleviate this
effect, we correct for the local compositional bias in the sequences by assigning lower scores
to the matches of frequent amino acids. We examine d amino acids on both sides of the the
amino acid xi at position i in the sequence. Score correction ∆Si at position i is

∆Si(xi) = − 1
2d

i+d∑
j=i−d,j 6=i

S(xi,xj) +
20∑
a=1

f(a)S(a,xi)

where S(xi,xj) is the amino acid substitution score between amino acids xi and xj , and
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f(a) is the background frequency of the amino acid a. Then, the final corrected score Sc
for the match of xi with another amino acid yj is

Sc(xi,yj) = S(xi,yj) + ∆Si(xi)

Therefore, amino acids that are less frequent in the window ±d around the sequence
position i than the background frequency of this amino acid contribute more to the score,
and the more frequent less.

3.3. Alignment module

The alignment module calculates Smith-Waterman alignments for sequence pairs that passed
the prefiltering. It implements a SSE2 vectorized, OpenMP parallelized Smith-Waterman
alignment with Gotoh improvements for handling affine gap penalties. It is based on
the implementation by Michael Farrar. For the detailed explanation of the Farrar Smith-
Waterman alignment implementation, see the section 1.3.2.

Farrar first stores 16 8-bit integers in the SIMD registers and recalculates the score using 8
16-bit integers if it exceeds the maximum value of 255 that can be stored in an 8-bit integer.
The first calculation is twice as fast as the second. Farrar assumes here that most sequence
pairs are not homologous and therefore get very low scores in the alignment and don’t have
to be recalculated. However, sequence pairs passing the prefiltering module in MMseqs
are mostly homologous. Between 60% and 99% of the sequences passing the prefilterings
module also pass the alignment module, depending on the settings. The calculation of
the Smith-Waterman scores using 8-bit integers only slows down the calculation needlessly,
since most scores have to be recalculated anyway. Therefore, we calculate the scores storing
8 16-bit integers in the SIMD registers right in the first pass.
In addition to the SIMD parallelization, the alignment module is parallelized with OpenMP

similarly to the prefiltering module. Each core calculates one alignment at one point of time.
Each thread has its own temporary output database, so the output does not have to be
synchronized. After the calculation is complete, the outputs are merged into one output
database.

3.3.1. Backtracing

The original Farrar implementation only outputs the alignment score for a sequence pair.
However, we also need the alignment statistics such as alignment coverage and the sequence
identity. Therefore, I implemented the backtracing of the alignment. Pseudocode is shown
in the Algorithm 1. For the backtracing, we store the three dynamic programming matrices
and the position of the maximum score during the score calculation. Then we start at
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the maximum position and do a traceback of the alignment backwards, stating the next
alignment step - match or gap in either direction - based on the match, gap open and
gap extension scores and the score recorded in the dynamic programming matrices at the
respective position. During the backtracing, the length of the alignment and the number of
matches is recorded.
Traceback stops if it reaches a dynamic programming matrix cell with the score 0. Then,

the end position of the alignment is recorded and the alignment coverage of both query
and database sequence and the sequence identity of the alignment are calculated. Addi-
tionally, an e-value is calculated using Karlin-Altschul statistics for local alignments (see
chapter 1.5.2).

Algorithm 1 Smith-Waterman, Gotoh alignment traceback.
1: i = maxScorePosQuery
2: j = maxScorePosDbSeq
3: while i > 0 && j > 0 do . i: position in the query, j: position in the database sequence
4: if H[i][j] == H[i-1][j-1]+ score(q[i], db[j]) then . match between query and db sequence
5: i = i-1
6: j = j-1
7: else if H[i][j] == 0 then
8: break
9: else if H[i][j] == E[i][j] then . continue with the E matrix, i.e. gap in the db sequence

10: while i > 0 && j > 0 do
11: if E[i][j] == E[i][j-1] - gap_extend then
12: j = j-1
13: else if E[i][j] == H[i][j-1] - gap_open then
14: j = j-1
15: break . end of the gap - leave the E matrix
16: end if
17: end while
18: else if H[i][j] == F[i][j] then . continue with the F matrix, i.e. gap in the query sequence
19: while i > 0 && j > 0 do
20: if F[i][j] == F[i-1][j] - gap_extend then
21: i = i-1
22: else if F[i][j] == F[i-1][j] - gap_open then
23: i = i-1
24: break . end of the gap - leave the F matrix
25: end if
26: end while
27: end if
28: end while
29: return i,j . return the end positions of the alignment

3.3.2. Memory consumption

Storing the dynamic programming matrices for the traceback implies a higher memory
consumption than in the original Farrar implementation. Originally, only the previous and
the current columns of the dynamic programming matrix are stored. To make a traceback
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possible, we have to store all the three dynamic programming matrices completely. For
aligning two sequences with lengths Li and Lj , each core needs 3 × Li × Lj × 16 bits
of memory. In the worst case, assuming the maximum sequence length of about 36 000
residues, the memory consumption for the alignment calculation is about 7,5 GB for the
three dynamic programming matrices. For the average UniProtKB sequence length of 350,
the memory consumption is less than 1 MB.
We want to keep the memory usage at a reasonable level and at the same time avoid

slowing down the program unnecessary. Allocating memory only once would mean that we
need to consider the memory required to aligne the longest sequences, i. e. for a computer
with 32 cores, we would need 7,5×32 = 240 GB memory, what is clearly not feasible. On the
other side, re-allocating memory for each sequence pair would consume not more memory
than necessary but allocating and deleting memory after each alignment is computationally
expensive.
I implemented a compromise of these two solutions. The memory for the three dynamic

programming matrices is allocated when the program starts for sequences with a maximum
length of 1000, i. e. 5,7 MB per core. When the length of the query or the database
sequence exceeds 1000, the memory for the alignment is allocated separately and freed after
the alignment calculation. Otherwise, already allocated memory is reused.

3.4. Clustering module

The clustering module takes the alignment results produced in the alignment module as
input. The alignments in fact form an undirected sequence relationship graph, where the
sequences are the vertices and the alignments are the edges.
We have implemented two clustering algorithms: the greedy set cover algorithm and the

greedy incremental clustering algorithm as used by a lot of clustering tools, e. g. CD-HIT,
kClust and USEARCH.

3.4.1. Greedy set cover

The algorithm transforms the Smith-Waterman results into an undirected sequence relation-
ship graph. We try to select a minimal amount of vertices to cover the whole graph. This
problem can be expressed a NP-complete optimization problem called set cover.
Chvatal at al (Chvatal, 1979) introduced an approximation for this problem, called greedy

set cover. We implemented this algorithm to subdivide the graph into clusters by selecting
an approximately minimal amount of vertices covering the whole graph. The Figure 3.8
illustrates the clustering with greedy set cover.
For our purpose, the algorithm should be fast enough to handle 108 vertices with about

50 connections per vertex. Our implementation of the algorithm has linear runtime and
space complexity.
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Figure 3.8.: Set cover clustering algorithm. In each step, the sequence with the most connections
is chosen, i. e. in our case, the sequences with the most alignment results satisfying the search criteria
(blue point, connections are blue lines). This sequence and the connected sequences are put into a
cluster. All connections of the cluster members are deleted (image in the middle, dashed circle). In
the next step, the sequence with the most connections is chosen from the still unclustered part of
the database (image in the middle, blue point and blue lines). This is repeated until all sequences
of the database are part of a cluster.

Before the clustering starts, the graph resulting from the run of the alignment module is
stored in a data structure allowing efficient access to the vertices and edges of the graph.
Every sequence is a vertex, every significant alignment is an edge. For every vertex, a set
is created, containing a pointer to this vertex and also pointers to all vertices it has edges
to. In addition, every vertex has pointers to all sets where it is contained. Eventually, an
array lookup A containing pointers to the sets ordered by size is created. At each position
i, it stores a pointer to the list of sets of size i.
For the pseudocode of the algorithm, see Algorithm 2. The algorithm iterates over A

in descending order of the set sizes. A set containing the most sequences at this point
(set_max) is selected within the loop. This can be done efficiently because we keep the sets
ordered by size in an array lookup. All edges of the vertices in set_max are removed from
other sets by following the pointers of each vertex to the sets containing this vertex . For
each of these sets, the size of the set and the resulting position in the array A is updated
(remove_from_sets function in Algorithm 2). The vertices contained in set_max form the
next cluster and are added to the resulting clustering (add function). Then, the algorithm
proceeds with the largest remaining set.
The algorithm has a linear runtime, since

∑
|set_max| in the inner loop is equal to the

size of the database.

3.4.2. Greedy incremental clustering

In addition to the clustering with set cover, also a simple greedy clustering algorithm is
implemented, similar to CD-HIT and kClust clustering algorithm. It starts with the longest
sequence and puts all the sequences from the alignment list of the longest sequence into
the first cluster. All the sequences in this cluster are removed from the sequences to cluster
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Algorithm 2 Greedy set cover.
1: result = empty_set
2: pos = size(A)
3: while pos > 0 do
4: if A[pos] 6= NULL then
5: set_list = A[pos]
6: for set_max ∈ set_list do
7: remove_from_sets(set_max) // O(|set_max|)
8: add(result, set_max)
9: end for

10: end if
11: pos = pos - 1
12: end while
13: return result

and from their alignment lists. Then, the algorithm goes on with the longest remaining
sequence until each sequence is assigned to a cluster.
The implementation of the algorithm is very similar to the implementation of the greedy

set cover. Array A now contains sets ordered not by their size, but by the length of the
representative sequence of the set. The representative sequence is the query sequence of
the alignment list, other sequences in the set are the sequences of the database matched
by the query sequence in the alignment module. The function remove_from_sets in the
Algorithm 2 has only to remove the vertices contained in set_max from other sets. Pointers
in A always remain the same, since the lengths of the representative sequences do not change
and every sequence is only once a representative sequence of a set.

3.5. MMseqs workflows

In addition to the base modules, MMseqs offers three workflows that make the clustering eas-
ier and more efficient. The search workflow and the simple clustering workflow implement
the simple sequence of MMseqs module calls necessary for sequence search or clustering, i.
e. prefiltering and alignment modules for the search and prefiltering, alignment and clus-
tering modules for the clustering. Cascaded clustering and update modules offer additional
functionalities that cannot simply be reproduced by calling MMseqs prefiltering, alignment
and clustering modules.

3.5.1. Sequence search workflow

Sequence search workflow runs the prefiltering and the alignment modules subsequently
with predefined parameters. The most important parameters like search sensitivity still can
be set by the user. The search workflow outputs a list of database sequences producing
significant alignments for each query sequence (see Figure 3.1).
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3.5.2. Clustering and cascaded clustering workflow

This workflow does a simple clustering of an input database in a single run. Internally,
it executes the prefiltering, alignment and clustering modules consecutively with a user
defined sensitivity (Figure 3.1). It makes it easy for a user to calculate a basic clustering
of a protein sequence database. More advanced user still can execute the single modules
consecutively what allows more sophisticated parameter tuning.
This workflow also offers the possibility to run a cascaded instead of simple clustering

workflow. Cascaded clustering workflow clusters the input database incrementally by in-
creasing the clustering sensitivity in each step. It combines three independent clustering
steps. The first clustering step clusters the input database with the lowest possible sensitiv-
ity very fast. Then, only representative sequences of the resulting clusters are clustered in
the next clustering step with higher sensitivity. Finally, representative sequences remaining
after the second step are clustered with the user defined target sensitivity. By postprocess-
ing the results from all clustering iterations, cascaded clustering produces clustering results
as if done in a single clustering step. The whole process is illustrated in Figure 3.9.
Cascaded clustering yields more sensitive clustering at a constant speed since many ho-

mologous pairs are eliminated from the database early in a faster run with a low sensitivity.
Particularly for large databases it is highly recommended to use the cascaded instead of
the simple clustering workflow. For larger databases, the maximum cluster size is limited
by two factors when running a simple clustering workflow. First, the amount of prefiltering
results per query is limited to prevent the prefiltering from forming very long prefiltering
lists for one sequence during the clustering of a large database. Otherwise, clustering results
for a large database like UniProtKB clustered with a high sensitivity can easily need several
TB of disc memory. Second, the alignment module would have to compute a very large
amount of alignments for certain sequences, what can get very slow for large databases.
Finally, the clustering module easily runs out of memory if it has to process a large amount
of connections per sequence (in the order of a few hundreds). The default maximum cluster
size is 50 for large databases containing tens of millions of sequences. Larger clusters result
in very high consumption of resources.
The solution for the cluster size restriction is the cascaded clustering. In the first step,

it clusters the database with the lowest possible sensitivity, therefore being very fast, and
restricts the maximum result list length in all modules to 50, therefore avoiding high disc
space consumption in the prefiltering module, long running times in the alignment module
and high memory consumption in the clustering module. The first cascaded clustering step
reduces the size of the UniProtKB database by the factor of two in the cascaded clustering
run with default settings. In the second step, the sensitivity and the maximum result list
length are raised, and the database size is reduced further. In the third step, the size of
the database is reduced to a small fraction of the original size (e. g. approximately one
fifth for cascaded clustering of the UniProtKB with default settings). The clustering is now
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Figure 3.9.: Cascaded clustering workflow. Cascaded clustering workflow consists of three steps
(cyan rectangles). In the first step, the database (blue) is clustered in the usual MMseqs workflow
with the lowest possible sensitivity parameter value 1. The representatives of the clusters (red dots)
yield a new input database (database R1 in red). This database is clustered with a fair sensitivity.
The representatives of the resulting clustering (database R2) are clustered with high sensitivity. In
the end, the clusters are merged based on the clustering assignments in each step (clustering result
on the bottom, resulting in two clusters containing all the sequences of the initial database).
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run with the maximum sensitivity and the longest result lists - the disc space and memory
consumption and the running times are not problematic anymore with the smaller database
size.
The maximum cluster size resulting from cascaded clustering increases by orders of mag-

nitude: representative sequences from the previous run can accumulate sequences in the
cluster in the next run and so, clusters can grow exponentially. With default settings, the
maximum possible cluster size when using cascaded clustering is 50×100×300 = 1 500 000.
Since the clusters are merged only in the end of the calculation and all the already clustered
sequences are not considered anymore in the subsequent clustering step, the space, mem-
ory and runtime consumption remain constant or even decrease compared to the straight-
forward clustering.

3.5.3. Updating workflow

Today, the amount of the protein sequence data is growing very fast. A large sequence
database like UniProtKB grows exponentially (Figure 2.1a) and can easily accumulate
several hundred thousand sequences per week. Sequences can also be deleted from the
database. MMseqs updating workflow allows the user to add new sequences to and delete
sequences from an existing clustering without the need to cluster the whole database from
scratch. Updating workflow is illustrated in Figure 3.10.
MMseqs gets the old and the current versions of the database and the clustering of

the old database version. Removed sequences are then deleted from the clustering. New
sequences are either added to existing clusters if there is a significant match to a member
of this cluster, or they form new clusters. The updating is very fast compared to the
clustering from scratch, since much less similarities of sequence pairs have to be computed.
Therefore, updating allows to keep the clustering of very large databases up to date at very
low computational cost. Cluster identifiers remain stable during the updating process.
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Figure 3.10.: Updating workflow. Input for the updating workflow is the old database version and
its clustering. In the first step, sequences deleted from the database are determined (red upper part
of the database) and deleted from clustering (red cross in the intermediate clustering). Then, the
prefiltering and alignment modules determine new sequences (small blue database) that are similar
to some sequences in the old database version. Sequences with matches to the old database are
added to the corresponding clusters (blue dots in the intermediate clustering result). The rest of
new sequences are clustered and the resulting clusters are added to the complete clustering.
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MMseqs suite for fast and sensitive batch searching and clustering of huge
protein sequence sets
(c) 2014 Maria Hauser, Martin Steinegger, and Johannes Soeding

4.1. Summary

MMseqs (Many-against-Many sequence searching) is a software suite for very fast protein
sequence searches and clustering of huge protein sequence data sets. MMseqs is around
1000 times faster than protein BLAST and sensitive enough to capture similarities down to
less than 30% sequence identity.
At the core of MMseqs are two modules for the comparison of two sequence sets with

each other - the prefiltering and the alignment modules. The first, prefiltering module
computes the similarities between all sequences in one set with all sequences in the other
based on a very fast and sensitive alignment-free metric, the sum of scores of similar k-mers.
The alignment module implements an SSE2-accelerated Smith-Waterman-alignment of all
sequences that pass a cut-off for the prefiltering score in the first module. Both modules
are parallelized to use all cores of a computer to full capacity. Due to its unparalleled
combination of speed and sensitivity, searches of all predicted ORFs in large metagenomics
data sets through the entire UniProtKB or NCBI-NR databases are feasible. This could
allow for assigning to functional clusters and taxonomic clades many reads that are too
diverged to be mappable by current software.
MMseqs’ clustering module can cluster sequence sets efficiently into groups of similar

sequences. It takes as input the similarity graph obtained from the comparison of the
sequence set with itself in the prefiltering and alignment modules. MMseqs further supports
an updating mode in which sequences can be added to an existing clustering with stable
cluster identifiers and without the need to recluster the entire sequence set. We will use
MMseqs to regularly update versions of the UniProtKB database clustered down to 20-30%
sequence similarity threshold.

4.2. Installation

First, set environment variables:
$ export MMDIR=$HOME/path/to/mmseqs/



54 Chapter 4: MMseqs user guide

$ export PATH=$PATH:$MMDIR/bin

MMseqs uses ffindex, a fast and simple database for wrapping and accessing huge amounts
of small files. Setting the environment variable LD_LIBRARY_PATH ensures that ffindex
binaries are in the path:

$ export LD_LIBRARY_PATH = $LD_LIBRARY_PATH:$MMDIR/lib/ffindex/src

Then create MMseqs binaries:
$ cd $MMDIR/src

$ make

MMseqs binaries are now located in $MMDIR/bin.

4.3. Getting started

Here we explain how to run a search for matches of sequences in the query database in the
target database and how to cluster a database. Test data (a query and a target database
for the sequence search and a database for the clustering) are stored in $MMDIR/data.

Search

You can use the query database queryDB.fasta and target database targetDB.fasta to
test the search workflow.
Before clustering, you need to convert your database containing query sequences (queryDB.fasta)

and your target database (targetDB.fasta) into ffindex format:
$ fasta2ffindex queryDB.fasta queryDB

$ fasta2ffindex targetDB.fasta targetDB

It generates ffindex database files, e. g. queryDB and ffindex index file queryDB.index

from queryDB.fasta. Then, generate a directory for tmp files:
$ mkdir tmp

Please ensure that in case of large input databases tmp provides enough free space. For
the disc space requirements, see the section
To run the search, type:
$ mmseqs_search queryDB targetDB outDB tmp

Then, convert the result ffindex database into a FASTA formatted database:
$ ffindex2fasta outDB outDB.fasta

Clustering

Before clustering, convert your FASTA database into ffindex format:
$ fasta2ffindex DB.fasta DB

Then, generate a directory for tmp files:
$ mkdir tmp
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Run the cascaded clustering of your database and output the result into the database
files DB_clu, DB_clu.index:

$ mmseqs_cluster DB DB_clu tmp --cascaded

To generate a FASTA-style formatted output file from the ffindex output file, type:
$ ffindex2fasta DB_clu DB_clu.fasta

To run the more sensitive cascaded clustering and convert the result into FASTA format,
type:

$ mmseqs_cluster DB DB_clu_s7 tmp --cascaded -s 7

$ ffindex2fasta DB_clu_s7 DB_clu_s7.fasta

4.4. System requirements

MMseqs runs under Linux only. Alignment and prefiltering modules are fully parallelized
with SSE2 and OpenMP, i. e. MMseqs runs fastest on a computer with many (e.g. 16-32)
cores. Besides, MMseqs needs much memory (you need 128G of memory in order to cluster
the current UniProtKB version containing 54M sequences). We offer an option for limiting
the memory use at the cost of longer runtimes. The database is split into chunks and
the program only holds one chunk in memory at any time. For clustering large databases
containing tens of millions of sequences, you should provide enough free disc space (≈500
GB). In section 4.11, we will discuss the runtime, memory and disc space consumption of
MMseqs and how to reduce resource requirements for large databases.

4.5. ffindex database format

All modules take ffindex databases as input and produce ffindex databases as output. ffindex
was developed to avoid drastically slowing down the file system when millions of files need
to be written and accessed. ffindex hides the files from the file system by storing them
as unstructured data records in a single data file. In addition to this data file, an ffindex
database includes a second file: This index file stores for each unique accession code the
start position in bytes of the data record in the ffindex data file. When transforming a
FASTA file with multiple sequences into an ffindex database, the accession code is the ID
of the sequence parsed from the header. If no ID can be identified, the accession code is
the whole header without the > character before the first blank space.
The binaries fasta2ffindex and ffindex2fasta located in mmseqs/bin do the format

conversion from and to the ffindex database format. fasta2ffindex generates a ffindex
database from a FASTA sequence database. ffindex2fasta converts an ffindex database
to a FASTA formatted text file: the headers are ffindex accession codes preceded by >, with
the corresponding dataset from the ffindex data file following.
However, for a fast access to the particular datasets in very large databases it is advisable
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to use the ffindex database directly without converting. We offer the binary ffindex_get

for direct access to the datasets stored in an ffindex database.

4.6. Overview of folders in MMseqs

• bin: MMseqs binaries, fasta2ffindex and ffindex2fasta binaries

• data: BLOSUM matrices and test data

• lib: ffindex sources and binaries

• src: MMseqs sources and the Makefile

4.7. Overview of MMseqs commands

MMseqs contains six binaries. Three commands execute workflows that combine MMseqs
core modules. The other three commands execute the single modules which are used by the
workflows and should be used by more advanced users.

Workflows:

• mmseqs_search: Compares all sequences in the query database with all sequences in
the target database.

• mmseqs_cluster: Clusters the sequences in the input database by sequence similarity.

• mmseqs_update: Given an the existing clustering of a sequence database and a new
version of the sequence database with some new sequences being added and others
having been deleted, MMseqs incrementally updates the clustering.

Single modules:

• mmseqs_pref: Computes k-mer similarity scores between all sequences in the query
database and all sequences in the target database.

• mmseqs_aln: Computes Smith-Waterman alignment scores between all sequences in
the query database and the sequences of the target database whose prefiltering scores
computed by mmseqs_pref pass a minimum threshold.

• mmseqs_clu: Computes a similarity clustering of a sequence database based on Smith
Waterman alignment scores of the sequence pairs computed by mmseqs_aln.
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4.8. Description of workflows

4.8.1. Batch sequence searching using mmseqs_search

For searching a database, you need your query and target database in ffindex format and
an empty directory for MMseqs temporary files. Then, you can run the search by typing

$ mmseqs_search queryDB targetDB outDB tmp

To get more sensitive results, increase the search sensitivity (-s option):
$ mmseqs_search queryDB targetDB outDB tmp -s 7

The default sensitivity is 4, sensitivity can be set in the range [1 : 9].
This workflow combines the prefiltering and alignment modules into a fast and sensitive

batch protein sequence search that compares all sequences in the query database with
all sequences in the target database. Query and target databases may be identical. The
program outputs for each query sequence all database sequences satisfying the search criteria
such as sensitivity of the search.
The underlying algorithm is explained in more detail in section 4.9.1, and the full param-

eter list can be found in section 4.12.1.

4.8.2. Clustering databases using mmseqs_cluster

For clustering a database, your need your sequence database in ffindex format and an empty
directory for MMseqs temporary files. Then, you can run the clustering with

$ mmseqs_cluster inDB outDB tmp

and cascaded clustering with
$ mmseqs_cluster inDB outDB tmp --cascaded

For more sensitive clustering, adjust the sensitivity (-s option):
$ mmseqs_cluster inDB outDB tmp --cascaded -s 7

The clustering workflow combines the prefiltering, alignment and clustering modules into
a simple clustering or cascaded clustering of a database. There are two possibilities to run
the clustering:

• Simple clustering runs the prefiltering, alignment and clustering modules with prede-
fined parameters.

• Cascaded clustering clusters the sequence database using prefiltering, alignment and
clustering modules incrementally in three steps. In the first step, the prefiltering runs
with a low sensitivity of 1 and a very high results significance threshold in order to
accelerate the calculation and search only for hits with a high sequence identity. Then
alignments are calculated and the database is clustered. The second step takes the
representative sequences of the first clustering step and repeats the prefiltering, align-
ment and clustering steps. This time, the prefiltering is run with a higher sensitivity
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and a lower result significance threshold for catching sequence pairs with lower se-
quence identity. In the third step, the whole process is repeated again with the target
sensitivity defined by the -s parameter. Eventually, the clustering results are merged
and the resulting clustering is written to the output ffindex database.

Cascaded clustering yields more sensitive results than simple clustering. Also, it allows very
large cluster sizes in the end clustering resulting from cluster merging (note that cluster size
can grow exponentially in the cascaded clustering workflow), which is not possible with the
simple clustering workflow because of the limited maximum number of sequences passing
the prefiltering and the alignment. Therefore, we strongly recommend to use cascaded
clustering especially to cluster larger databases and to obtain maximum sensitivity.
The underlying algorithm is explained in more detail in section 4.9.1, and the full param-

eter list can be found in section 4.12.2.

4.8.3. Updating a database clustering using mmseqs_update

To run the updating, you need the old and the new version of your sequence database in
ffindex format, the clustering of the old database version and a directory for the temporary
files:

$ mmseqs_update oldDB newDB oldDB_clustering outDB tmp

This workflow efficiently updates the clustering of a database by adding new and removing
outdated sequences. It takes as input the older sequence database, the results obtained by
this older database clustering, and the newer version of the sequence database. Then it
adds the new sequences to the clustering and removes the sequences that were removed
from the newer database. Sequences which are not similar enough to any existing cluster
will be founders of new clusters.

4.9. Description of core modules

For advanced users, it is possible to run core modules for maximum flexibility. Especially
for the sequence search it can be useful to adjust the prefiltering and alignment parameters
according to the needs of the user. The detailed parameter lists for the modules is provided
in section 4.12.
MMseqs contains three core modules: prefiltering, alignment and clustering.

4.9.1. Computation of prefiltering scores using mmseqs_pref

The prefiltering module calculates the sum of scores of similar k-mers between all query
sequences and all database sequences and outputs the most similar sequence pairs.
If you want to cluster a database, or do an all-against-all search, you only have one input

database. In this case, the prefiltering does an all-against-all search with the following
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program call:
$ mmseqs_pref inputDB inputDB resultDB_pref

inputDB is the base name of the ffindex databases you produced from your FASTA se-
quence databases, the prefiltering results are stored in the ffindex database files resultDB_pref,
resultDB_pref.index.
If you want to do a sequence search, you have two input databases: query database and

target database, that also can be identical. In this case, the prefiltering program call is:
$ mmseqs_pref queryDB targetDB resultDB_pref

First, the database sequences are indexed in an index table to provide a fast access to the k-
mers of the database sequences. The index table has an array with a pointer for each possible
k-mer to an index list storing the IDs of the database sequences containing this k-mer. After
the index table generation, the algorithm processes each query sequence from left to right
and generates a list of similar k-mers for the k-mer at the current query sequence position.
For each k-mer in the list, the k-mer similarity score is added to the overall prefiltering score
for each database sequence containing this k-mer, retrieved using the index table. After
processing the whole query sequence, database sequences with significant prefiltering scores
are extracted and written to the prefiltering result database.
Since different queries yield different score distribution in the database, a rigid prefiltering

score threshold does not work well. The statistical significance of a prefiltering score for a
given query sequence is described by the Z-score. The Z-score for a prefiltering score of a
query sequence and a database sequence is calculated based on the score distribution for
the query in the database. For each query and database sequence pair, the prefiltering score
Sqt is normalized by subtracting the background score S0 expected by chance and dividing
by the standard deviation of the score σS , resulting in a normalized Z-score Zqt:

Zqt = Sqt − S0
σS

Instead of setting a prefiltering score threshold, we set a rigid Z-score (i. e. result
significance) threshold. Only results with a sufficient Z-score are written to the output.
The sensitivity of the prefiltering can be set using the -s option. Internally, -s sets the

average length of the lists of similar k-mers per query sequence position and the Z-score
threshold.

• Similar k-mers list length: Low sensitivity yields short similar k-mer lists. Therefore,
the speed of the prefiltering increases, since only short k-mer lists have to be generated
and less lookups in the index table are necessary. However, the sensitivity of the search
decreases, since only very similar k-mers are generated and therefore, the prefiltering
can not identify sequence pairs with low sequence identity.

• Z-score threshold: Z-score of a prefiltering result describes its statistical significance.
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Lower sensitivity yields a higher Z-score threshold, i. e. only the most significant
results are displayed.

Furthermore, there is a possibility to use different lengths of the k-mers used in the prefilter-
ing. Longer k-mers are more sensitive, since they cause less chance matches. On the other
hand, for a fixed run time, longer k-mers only pay off for larger databases. The reason is
the different relation between the time for the k-mer list generation and database matching
for different database sizes. Longer k-mers need more time for the k-mer list generation,
but less time for database matching. Therefore, the database matching should take most of
the computation time, which is only the case for large databases. For a fixed run time, the
default value k = 6 is the best for databases containing a few million sequences. For very
large databases containing about 100 million sequences, k = 7 should be a better choice
theoretically, though the real life performance of 7-mers on large databases is not tested
yet. For databases containing only hundreds of thousands of sequences, k = 5 should be
sufficient.

4.9.2. Local alignment of prefiltering sequences using mmseqs_align

In the alignment module, you can also specify either identical or different query and target
databases. If you want to do a clustering in the next step, query and target database need
to be identical.

$ mmseqs_align inputDB inputDB resultDB_pref resultDB_aln

Alignment results are stored in the ffindex files resultDB_aln, resultDB_aln.index.
Program call in case you want to do the sequence search and have different query and

target databases:
$ mmseqs_align queryDB targetDB resultDB_pref resultDB_aln

This module implements an SSE2-accelerated Smith-Waterman-alignment (Farrar, 2007)
of all sequences that pass a cut-off for the prefiltering score in the first module. It processes
each sequence pair from the prefiltering results and aligns them in parallel, calculating one
alignment per core at a single point of time. Additionally, the alignment calculation is
vectorized using SIMD (single instruction multiple data) instructions. Eventually, the align-
ment module calculates alignment statistics such as sequence identity, alignment coverage
and e-value of the alignment.

4.9.3. Clustering sequence database using mmseqs_clu

For the clustering, you need the input sequence database and the alignment results for the
database:

$ mmseqs_clu inputDB resultsDB_aln resultsDB_clu

Clustering results are stored in the ffindex database files resultsDB_clu, resultsDB_clu.index.
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The clustering module offers the possibility to run two different clustering algorithms. A
greedy set cover algorithm is the default. It tries to cover the database by as few clusters
as possible. At each step, it forms a cluster containing the representative sequence with
the most alignments above the special or default thresholds with other sequences of the
database and these matched sequences. Then, the sequences contained in the cluster are
removed and the next representative sequence is chosen.
The other clustering algorithm is a greedy clustering algorithm, as used in CD-HIT. It

sorts sequences by length and in each step forms a cluster containing the longest sequence
and sequences that it matches. Then, these sequences are removed and the next cluster is
chosen from the remaining sequences.
Note that we always recommend to use the cascaded clustering workflow instead of the

clustering module for larger databases, since the maximum cluster size is limited to a
quite low value otherwise (between 50 and 300 for large databases containing millions of
sequences, depending on the database size). The reasons are the limited result list length in
the prefiltering and alignment modules (the maximum list length determines the maximum
cluster size in the simple clustering workflow) and the high memory consumption of the
clustering for large databases with many alignment results per query.

4.10. Output file formats

Results of MMseqs commands are stored in ffindex databases. All records within those
ffindex databases are in plain text format.

4.10.1. Prefiltering

The ffindex accession code is the UniProtKB ID (or other ID depending on the database
format) of the query. A line in the prefiltering result database record (= one match) has
the following format:

targetId Z-score prefilteringScore

where targetId is the database ID of the matched sequence, Z-score is the statistical
significance score of the match and prefilteringScore is the raw score of the match (the
sum of the scores of similar k-mers of the query and target sequence) in half bits. Example
of a prefiltering result for the SwissProt sequence Q54G30 (excerpt):

Q54G30 1177.95 55735

Q869W0 159.179 5274

Q86IM3 99.2044 1823

Q54E43 85.8743 3224

The first match is the identity Q54G30 having a very high prefiltering score of 55735 and
the Z-score of 1177.95.



62 Chapter 4: MMseqs user guide

4.10.2. Alignment

The ffindex accession code is the UniProtKB ID (or other ID depending on the database
format) of the query. One line of the alignment results record has the following format:

targetId alnScore queryCov targetCov seqId evalue

where targetId is the database ID of the matched sequence, alnScore is the raw score
of the alignment in half bits, queryCov is the alignment coverage of the query in the range
[0 : 1], targetCov is the alignment coverage of the target database sequence in the range
[0 : 1], seqId is the sequence identity and evalue is the e-value of the match. Example of
an alignment result for the SwissProt sequence A0PUH6 (excerpt):

A0PUH6 1305 1.000 1.000 1.000 1.507e-186

Q6NFN4 824 0.956 0.974 0.649 3.682e-114

Q8DD39 256 0.900 0.909 0.335 1.136e-28

P52973 182 0.808 0.822 0.238 1.597e-17

The first line is the identity match. The last sequence P52973 has a Smith-Waterman
alignment score 182, query sequence coverage 0.808, database sequence coverage 0.822, the
alignment has the sequence identity 0.238 and the e-value 1.597e-17.

4.10.3. Clustering

Every cluster is stored once (i. e. one result database record per cluster). Each database
record contains UniProtKB IDs (or other IDs depending on the database format) of the
sequences assigned to this cluster, one ID per line. The ffindex accession code is the ID of
the representative sequence of the cluster. An example of a cluster record with 4 cluster
members:

Q9ZZZ1

Q96189

O03850

P03887

4.11. Optimizing sensitivity and consumption of resources

This section discusses how to keep the run time, the memory and disc space consumption of
MMseqs at reasonable values, while obtaining results with the highest possible sensitivity.
These considerations are relevant if the size of your database exceeds several millions of
sequences and they are most relevant if the database size is in the order of tens of millions
of sequences.

4.11.1. Prefiltering module

The prefiltering module can use a lot of resources regarding all the memory consumption,
the runtime and the disc space, if the parameters are not set appropriately.
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Memory consumption For maximum efficiency of the prefiltering, the entire database
should be held in RAM memory. The major part of memory is required for the k-mer index
table of the database. For a database containing N sequences with an average length L, the
memory consumption of the index lists is N ×L× 4B. Note that the memory consumption
grows linearly with the size of the sequence database. In addition, the index table stores the
pointer array and two auxiliary arrays with the memory consumption of ak × 16B, where
a is the size of the amino acid alphabet (usually 21 including the unknown amino acid X)
and k is the k-mer size. The overall memory consumption of the index table is

M = (4N L+ 16 ak)B

Therefore, the UniProtKB database version of April 2014 containing 55 million sequences
with an average length 350 needs about 71 GB of main memory.

To limit the memory use at the cost of longer runtimes, the option --max-chunk-size

allows the user to split the database into chunks of the given maximum size.

Runtime The prefiltering module is the most time consuming step. To cluster the 55
million sequences of UniProtKB (04/2014), the MMseqs prefiltering module needs about 6
days when running on 32 cores and about 10 days when running on 16 cores of a modern
computer.

Disc space The prefiltering results for very large databases can grow to considerable sizes
(in the order of TB) of the disc space if very long result lists are allowed and a low Z-score
threshold is set. As an example, an all-against-all prefiltering run on the UniProtKB with
--max-seqs 300 yielded average prefiltering list length 150 and the output file size 146 GB.

Important options for tuning the memory, runtime and disc space usage

• The option -s controls the sensitivity in the MMseqs prefiltering module. The lower
the sensitivity, the faster the prefiltering gets at the cost of search sensitivity. Default
sensitivity is 4, increasing the sensitivity by one roughly doubles the runtime of the
prefiltering. In order to cluster the UniProtKB down to ≈30% sequence identity,
you should leave this parameter at the default value of 4. For clustering down to
90%, sensitivity 1 should be sufficient, although there are still no specific tests for the
optimum parameters necessary for clustering down to a fixed sequence identity.

• The option --max-seqs controls the maximum number of prefiltering results per
query sequence. For very large databases (tens of millions of sequences), it is a good
advice to keep this number at reasonable values (i. e. the default value 300). For
considerably larger values of --max-seqs, the size of the output can be in the range
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of several TB of disc space for databases containing tens of millions of sequences.
Changing --max-seqs option has no effect on the run time.

• The option --z-score describes the minimum significance of the results written to
the output. Usually, this option is set automatically depending on the sensitivity.
However, especially for the sequence search it can be desired to see also less significant
results. Setting --z-score at lower values yields more results and therefore increases
the size of the output written to disc. In addition, it slows down the program.

4.11.2. Alignment module

In the alignment module, generally only the runtime is a critical issue.

Memory consumption The major part of the memory is required for the three dynamic
programming matrices, once per core. Since most sequences are quite short, the memory
requirements of the alignment module for a typical database are in the order of a few GB.

Runtime It takes about 2-3 days to compute Smith-Waterman alignments for the UniPro-
tKB sequence pairs which passed the prefiltering step (at default parameters for deep clus-
tering down to ≈20 - 30% pairwise sequence identity).
If a huge amount of alignments has to be calculated, the run time of the alignment module

can become a bottleneck. The run time of the alignment module depends essentially on
two parameters:

• The option --max-seqs controls the maximum number of sequences aligned with
a query sequence. By setting this parameter to a lower value, you accelerate the
program, but you may also lose some meaningful results. Since the prefiltering results
are always ordered by their significance, the most significant prefiltering results are
always aligned first in the alignment module.

• The option --max-rejected defines the maximum number of rejected sequences for a
query until the calculation of alignments stops. A reject is an alignment whose statis-
tics don’t satisfy the search criteria such as coverage threshold, e-value threshold etc.
Per default, --max-rejected is set to INT_MAX, i. e. all alignments until --max-seqs

alignments are calculated.

Disc space Since the alignment module takes the results of the prefiltering module as
input, the size of the prefiltering module output is the point of reference. If alignments are
calculated and written for all the prefiltering results, the disc space consumption is 1.75
times higher than the prefiltering output size.
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4.11.3. Clustering module

In the clustering module, only the memory consumption is a critical issue.

Memory consumption The clustering module can need large amounts of memory. The
memory consumption for a database containing N sequences and an average of r alignment
results per sequence can be estimated as

M = 40×N × rB

To prevent excessive memory usage for the clustering of large databases, you should use
cascaded clustering (--cascaded option) which accumulates sequences per cluster incremen-
tally, therefore avoiding excessive memory use.
If you run the clustering module separately, you can tune

• --max-seqs parameter which controls the maximum number of alignment results per
query considered (i. e. the number of edges per node in the graph). Lower value
causes lower memory usage and faster run times.

• Alternatively, -s parameter can be set to a higher value in order to cluster the database
down to higher sequence identities. Only the alignment results above the sequence
identity threshold are imported and it results in lower memory usage.

Runtime Clustering is the fastest step. It needs about 2 hours for the clustering of the
whole UniProtKB.

Disc space Since only one record is written per cluster, the memory usage is a small
fraction of the memory usage in the prefiltering and alignment modules.

4.11.4. Workflows

The search and clustering workflows offer the possibility to set the sensitivity option -s

and the maximum sequences per query option --max-seqs. --max-rejected option is set
to INT_MAX per default. Cascaded clustering sets all the options controlling the size of the
output, speed and memory consumption, internally adjusting parameters in each cascaded
clustering step.

4.12. Detailed parameter list

4.12.1. Search workflow

Compares all sequences in the query database with all sequences in the target database.
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Usage:
mmseqs_search <queryDB> <targetDB> <outDB> <tmpDir> [opts]

Options:
-s [float] Target sensitivity in the range [1:9] (default=4).

Adjusts the sensitivity of the prefiltering and influences the prefiltering run time. For
detailed explanation see section 4.9.1.

--z-score [float] Z-score threshold (default: 50.0)

Prefiltering Z-score cutoff. A lower z-score cutoff yields more results, since also less
significant results are written to the output. For detailed explanation see section 4.9.1.

--max-seqs Maximum result sequences per query (default=300)

Maximum number of sequences passing the prefiltering and alignment per query. If the
prefiltering result list exceeds the --max-seqs value, only the sequences with the best Z-
score pass the prefiltering and are aligned in the alignment step.

--max-seq-len [int] Maximum sequence length (default=50000).

The length of the longest sequence in the input database.
--sub-mat [file] Amino acid substitution matrix file (default: BLOSUM62).

Substitution matrices for different sequence diversities in the required format can be
found in the MMseqs data folder.

4.12.2. Clustering workflow

Calculates the clustering of the sequences in the input database.
Usage:
mmseqs_cluster <sequenceDB> <outDB> <tmpDir> [opts]

Options:
--cascaded Start the cascaded instead of simple clustering workflow.

The database is clustered incrementally in three steps and improves the sensitivity of
the clustering greatly compared to the general workflow. For detailed explanation, see the
section 4.8.2.

-s [float] Target sensitivity in the range [2:9] (default=4).

Adjusts the sensitivity of the prefiltering and influences the prefiltering run time. For
detailed explanation see section 4.9.1.

--max-seqs Maximum result sequences per query (default=300).

Maximum number of sequences passing the prefiltering and alignment per query. If the
prefiltering result list exceeds the --max-seqs value, only the sequences with the best Z-
score pass the prefiltering and are aligned in the alignment step.

--max-seq-len [int] Maximum sequence length (default=50000).

The length of the longest sequence in the database.
--sub-mat [file] Amino acid substitution matrix file.

Substitution matrices for different sequence diversities in the required format can be
found in the MMseqs data folder.
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4.12.3. Updating workflow

Updates the existing clustering of the previous database version with new sequences from
the current version of the same database.
Usage:
mmseqs_update <oldDB> <newDB> <oldDB_clustering> <outDB> <tmpDir> [opts]

Options:
--sub-mat [file] Amino acid substitution matrix file.

Substitution matrices for different sequence diversities in the required format can be
found in the MMseqs data folder.

--max-seq-len [int] Maximum sequence length (default=50000).

The length of the longest sequence in the database.

4.12.4. Prefiltering

Calculates k-mer similarity scores between all sequences in the query database and all
sequences in the target database.
Usage:
mmseqs_pref <queryDB> <targetDB> <outDB> [opts]

Options:
-s [float] Sensitivity in the range [1:9] (default=4).

Adjusts the sensitivity of the prefiltering and influences the prefiltering run time. For
detailed explanation see section 4.9.1.

-k [int] k-mer size in the range [4:7] (default=6).

The size of k-mers used in the prefiltering. For guidelines for choosing a different k as
the default, see section 4.9.1.

-cpu [int] Number of cores used for the computation (default=all cores).
--alph-size [int] Amino acid alphabet size (default=21).

Amino acid alphabet size, default = 21 (full amino acid alphabet). For using a reduced
amino acid alphabet, choose a lower value. Reduced amino acid alphabets reduce the
memory usage, but also the sensitivity.

--z-score [float] Z-score threshold (default: 50.0).

Prefiltering Z-score cutoff. A lower z-score cutoff yields more results, since also less
significant results are written to the output. For detailed explanation see section 4.9.1.

--max-seq-len [int] Maximum sequence length (default=50000).

The length of the longest sequence in the database.
--nucl Nucleotide sequences input.
--max-seqs [int] Maximum result sequences per query (default=300).

Maximum number of sequences passing the prefiltering per query. If the prefiltering
result list exceeds the --max-seqs value, only the sequences with the best Z-score pass the
prefiltering.

--no-comp-bias-corr Switch off local amino acid composition bias correction.
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Compositional bias correction assigns lower scores to amino acid matches of the amino
acids that are frequent in their neighborhood in the query sequence.

--max-chunk-size [int] Splits target databases in chunks when the database size exceeds
the given size. (For memory saving only)

Maximum number of sequences stored in the index table at some point of time, default =
INT_MAX. Restraining the number of sequences stored reduces the memory usage, but slows
down the calculation.

--skip [int] Number of skipped k-mers during the index table generation.

Number of k-mers in the database sequences skipped during the index table generation.
Per default, each k-mer of the database is indexed. With skip = 2, 2 k-mers are skipped
and only each third k-mer is indexed. This speeds up the search and reduces the memory
usage at the cost of lower search sensitivity.

--sub-mat [file] Amino acid substitution matrix file.

Substitution matrices for different sequence diversities in the required format can be
found in the MMseqs data folder.

-v [int] Verbosity level: 0=NOTHING, 1=ERROR, 2=WARNING, 3=INFO (default=3).

Verbosity level in the range [0 : 3]. With verbosity 0, there is no terminal output.

4.12.5. Alignment

Calculates Smith-Waterman alignment scores between all sequences in the query database
and the sequences of the target database which passed the prefiltering.
Usage:
mmseqs_pref <queryDB> <targetDB> <prefResultsDB> <outDB> [opts]

Options:
-e [float] Maximum e-value (default=0.01).

E-value of the local alignment is calculated using Karlin-Altschul statistics.
-c [float] Minimum alignment coverage (default=0.8).

Minimum alignment coverage of both query and database sequence, default = 0.8. With
the value of 0.0, the alignments are assessed using only the e-value criterion.

-cpu [int] Number of cores used for the computation (default=all cores).

--max-seq-len [int] Maximum sequence length (default=50000).

The length of the longest sequence in the database.
--max-seqs [int] Maximum alignment results per query sequence (default=300).

Maximum number of sequences passing the alignment per query. Sequences are read
in the order of the prefiltering lists. The reading for a query is stopped if the number of
sequences for a query sequence exceeds the --max-seqs value.

--max-rejected [int] Maximum rejected alignments before alignment calculation for
a query is aborted. (default=INT_MAX)

Maximum number of rejected alignments for a query until the alignment calculation
is stopped. A rejected alignment is an alignment that does not satisfy the e-value and
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alignment coverage thresholds. Default = INT_MAX (i. e., all alignments are calculated).
--nucleotides Nucleotide sequences input.
--sub-mat [file] Amino acid substitution matrix file.

Substitution matrices for different sequence diversities in the required format can be
found in the MMseqs data folder.

-v [int] Verbosity level: 0=NOTHING, 1=ERROR, 2=WARNING, 3=INFO (default=3).

Verbosity level in the range [0 : 3]. With verbosity 0, there is no terminal output.

4.12.6. Clustering

Calculates a clustering of a sequence database based on Smith Waterman alignment scores
of the sequence pairs.
Usage:
mmseqs_clu <sequenceDB> <alnResultsDB> <outDB> [opts]

Options:
-g greedy clustering by sequence length (default: set cover clustering algorithm).

Use a greedy clustering algorithm instead of the set cover algorithm. For the description
of the two algorithms, see section 4.9.3.

-s [float] Minimum sequence identity of sequences in a cluster (default = 0.0)

Minimum sequence identity of the cluster members and the representative sequence. Per
default, the sequence identity criterion is switched off.

--max-seqs [int] Maximum result sequences per query (default=100)

Maximum alignment results read per query. This is at the same time the maximum
possible number of sequences in the cluster.

-v [int] Verbosity level: 0=NOTHING, 1=ERROR, 2=WARNING, 3=INFO (default=3).

Verbosity level in the range [0 : 3]. With verbosity 0, there is no terminal output.

4.13. License terms

The software is made available under the terms of the GNU General Public License v3.0.
Its contributors assume no responsibility for errors or omissions in the software.





5. ROC5 vs. ROC

We usually use ROC5 plots to assess the performance of the sequence search. To build a
ROC5 plot, ROC5 score of each query is calculated, i. e. the fraction of true positives
discovered before the fifth false positive occurs when the results for each query are ordered
by the score. Then, all these ROC5 values are sorted and a cumulative plot is generated.
In a ROC plot, all search results are ordered by the score and each result is labeled

with false positive or true positive. Then, a plot is generated by plotting the cumulative
number of true positives versus the number of false positives for each result, starting with
the highest score and continuing with decreasing scores.
We prefer to use ROC5 plots, since they produce a more balanced picture of tool per-

formance. In a ROC5 plot, each query contributes equally to the plot. In a ROC plot,
few queries producing high scores with the database can dominate the picture. In addi-
tion, queries with a large number of results contribute much more to the plot than queries
having only a few search results. This can be the case, for instance, if someone does a
sequence search against SCOP database, which contains some very large and some small
protein families. A sequence that belongs to a large protein family will get more results and
therefore contribute much more to ta ROC plot, than a sequence stemming from a protein
family with only a few members. In the ROC5 plot, both sequences will contribute equally.

Figure 5.1.: ROC plot bias and the comparison to ROC5 plot. The bias of the ROC plot is
shown on an imaginary example. A database of queries is shown where sequence 3 (yellow) produces
a vast bulk of search results (e. g. because it is member of a very large protein family) and sequence
4 (red) produces very high scoring results (e. g. it is a very long sequence and the score is not
corrected for the query length). In the ROC plot, sequence 3 contributes disproportionately many
values to the beginning of the ROC curve, while sequence 4 contributes disproportionately many
values to the whole curve. In the ROC5 plot, each sequence contributes only one ROC5 value to the
curve. The ROC5 value depends on the proportion of the true positives before the 5th false positive
in the result list.
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Figure A.1 demonstrates an example where the ROC5 plot shows more balanced picture of
the search results for some query sequences.



6. Results

6.1. Prefiltering quality benchmark

We benchmarked different MMseqs prefiltering settings in order to determine the most
effective prefiltering setting. We assessed the quality of the prefiltering results by measuring
its ability to discover sequences producing significant Smith-Waterman alignments with the
query and visualized the results in a ROC5 and a ROC plot. The results are shown in
Figure 6.1a.
For the benchmark, we draw 13 000 query sequences and 300 000 database sequences from

UniRef100 (a non-redundant set of sequences from UniProtKB) (Suzek et al., 2007). For
each query, we calculated Smith-Waterman alignments with all database sequences. Then,
we ran the prefiltering module with different k-mer sizes and different sensitivity settings
and compared the results to the Smith-Waterman results. A true positive sequence pair has
a Smith-Waterman alignment e-value < 0.01. All sequence pairs with the sequence identity
< 0.3 and 0.01 < e− value < 10.0 were removed from the benchmark, because they were
considered as either too hard to detect or as not clearly classified as homologs.
Then the prefiltering results for each query are ordered by their prefiltering score and a

ROC and a ROC 5 plot is produced. ROC5 plot is generally more reliable than the ROC
plot because each query contributes equally to the ROC5 plot, whereas in a ROC plot some
queries with high scores and many matches in the database can dominate the overall picture
(see also chapter 5 for the ROC5 plot discussion).

ROC and ROC5 curves are generated for k = [4,7] and MMseqs sensitivity 4. Addi-
tionally, for k = 6 and k = 7, sensitivities 7 and 9 are tested. Other parameters used
are --max-seqs 1000 and --z-score-thr 5.0 in order to increase the number of results
output for each query and reliably measure the ROC5 score.
When setting sensitivity to 4 (solid lines), 6-mers are performing best. With increased

sensitivity, the performance of 7-mers improves, while the performance of 6-mers stagnates.
The reason is that 7-mers need longer k-mer similarity lists to yield better results than 6-
mers. So, at lower sensitivity, lists of similar 7-mers are too short. In contrast, increasing the
similar 6-mer list length does not bring any performance improvement at any point, since
the 6-mers get too dissimilar to the query sequence k-mer and rather blur than improve
the prefiltering results for a query. In the ROC5 curve in the Figure 6.1a, one can see that
6-mers performance with sensitivity 9 even drops a bit compared to s = 7.
In addition, in section 3.2.8, we have hypothesized that the minimum database size for
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7-mers where matching of the index table and not the k-mer list generation predominates
the running time is 12M sequences. The database we are using here is much smaller, so it
can be expected that 7-mers would show a much better performance if we increase the size
of the database by 15-fold.
The default sensitivity in MMseqs prefiltering is s = 4, since it offers the best trade-off

between the result quality and the runtime. We chose the default length 6 for the k-mers
based on the benchmark results.

6.2. Protein sequence searching

6.2.1. Benchmarked methods and parameters

Our goal was to assess the quality and the speed of protein search with different protein
search tools. We benchmarked MMseqs together with other popular protein search methods:
Smith-Waterman alignments, BLAST, UBLAST and RAPsearch. We assessed the quality
of protein search results on SCOP25-based protein sequence set, checking how well each
tool discovers homologous sequences for the query. The results are shown in a ROC and a
ROC5 plot. For the speed assessment, we searched a set of protein sequences against the
whole UniProtKB.

We set parameters for each tool such that long result lists are produced for each query.
This is necessary for the calculation of ROC5 values, since we are looking for the number of
true positives before the fifth false positive occurs, so the result list should be long enough
to contain at least five false positives.
All runs were made on a 16 cores (processors: Intel Xeon E5-2680, 2.70GHz) computer

with a 128 GB RAM.

MMseqs We used only the prefiltering module and the alignment module of MMseqs for
the protein search. We tested two different sensitivities in the prefiltering module, s = 4
(default setting) and s = 7. Besides that, we set the maximum prefiltering list length to
1000 using --max-seqs 1000, and the Z-score threshold to 10.0 using --z-score-thr 10.0

in order to increase the length of resulted lists of each query. The alignment module was
run with the maximum e-value threshold 10.0 using -e 10.0. The alignment coverage was
switched off using -c 0.0. Both modules use all 16 cores of the machine per default.

Smith-Waterman alignments with swipe We used a SSE2-, multi-core-parallelized Smith-
Waterman alignment calculation with swipe. In order to get many database matches for a
query, we set the e-value to 100 using -e 100.0 and the number of sequence descriptions
and sequence alignments to 10 000 using -v 10000 -b 10000. Additionally, swipe was
using all the 16 cores of the machine with -a 16.
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(a) ROC plot for the performance of the prefiltering module with differ-
ent settings.

(b) ROC5 plot for the performance of the prefiltering module with dif-
ferent settings.

Figure 6.1.: Performance of MMseqs prefiltering module. Performance of 4-mers, 5-mers,
6-mers and 7-mers is compared, using Smith-Waterman scores as the golden standard. k specifies
the k-mer size, s the MMseqs sensitivity value. a) ROC plot for the different prefiltering settings.
4-mers and 5-mers are tested with the default sensitivity 4, 6-mers and 7-mers are additionally
tested with sensitivity 7 (dashed lines). b) For each query, a ROC5 value is calculated - i.e., the
fraction of true positives found for the query until the fifth false positive occurs. Then, the fraction
of queries having a ROC5 value smaller or equal to a ROC5 threshold is plotted against this ROC5
threshold for each ROC5 in the range [0,1]. Solid line shows the results for sensitivity 4, dashed line
for sensitivity 7, dashed and dotted line for sensitivity 9.
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BLAST We ran BLAST using -e 10.0 and -v 10000 -b 10000, in order to increase the
number of results, and -a 16 to parallelize the calculation.

UBLAST We ran UBLAST with -evalue 10.0 option. Therefore, UBLAST outputs all
significant alignments regardless of the sequence identity and alignment coverage. Ublast
uses all available cores per default.

RAPsearch We ran RAPsearch with -z 16 option to parallelize the calculation, and with
-e 10.0 and -v 10000 -b 10000 options.

6.2.2. Protein sequence searching results

We used a dataset based on the SCOP database (Lo Conte et al., 2000) in order to assess
the protein search ability of the tools. For generating the database, we ran one iteration of
HHblits with the sequences from SCOP25 (Brenner et al., 2000), i. e. the SCOP database
filtered down to maximum 25% pairwise sequence identity, against the whole UniProtKB.
The resulting alignments were filtered such that the alignment with the database sequence
covers a minimum of 80% of the query SCOP25 sequence, with minimum 30% and maximum
80% sequence identity. Further, the alignments were filtered to keep the most diverse set of
sequences for each query, at least 50 sequences for each query. Eventually, all sequences con-
taining inserted domains and all “broken” sequences containing only parts of domains were
removed from the database using very sensitive HHblits searches. The resulting database
contained 283 406 sequences. The query set was SCOP25 (7 616 sequences).

The performance of single methods is shown in Figure 6.2. For each query from SCOP25,
the sequences from UniProtKB homologous to that sequence are labeled with the superfam-
ily of the query. Then, ROC5 curve is generated for the results from each protein search
tool. A true positive is a match of the query with a the sequence in the database, that is
labeled with the same superfamily as the query sequence. A false positive is a database
sequence labeled with a different fold than the query. All search results with a different
superfamily but the same fold are ignored.

Smith-Waterman alignments yielded the best performance, with BLAST performance
being slightly inferior. MMseqs with default sensitivity 4 performs slightly better than
UBLAST, and it improves considerably when setting the sensitivity to 7. Noteworthy are
the high-scoring false positives UBLAST produces that can be seen in the ROC plot. The
reason is a bug in UBLAST which leads to the wrong labeling of the sequences in some cases
(some headers are changed). The UBLAST ROC curve is shorter because of the overall
lower number of discovered hits.
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(a) ROC5 plot for the protein sequence search performance of different
methods.

(b) ROC plot for the protein sequence search performance of different
methods.

Figure 6.2.: Protein search results of the different tools. Protein search ability of MMseqs,
Smith-Waterman alignments, BLAST, UBLAST and RAPsearch. 7 616 queries from SCOP25 were
searched against the database containing 283 406 sequences homologous to some sequence from
SCOP25. A true positive is a SCOP sequence and the UniProtKB sequence homologous to a
SCOP25 sequence from the same superfamily as the query. A false positive is a pair of sequences
with different folds. All pairs of sequences with different families but the same fold are ignored. The
reason for the jump in the UBLAST ROC curve is a bug in UBLAST causing sometimes wrong
assignment of the sequence headers to the sequences. The UBLAST ROC curve is shorter because
of the overall lower number of discovered hits.
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6.2.3. Benchmark for short-read searching sensitivity

In addition to the previous sequence search benchmark, we tested MMseqs and other tools
on a short read dataset. The ability to map short reads to the longer database sequences
correctly is an important application, i. e. in analysis of metagenomics data. Short reads
where no reference genome exist can be mapped on known proteins contained in the UniPro-
tKB database and annotated based on the matches. Although many tools exist which can
map short reads with very few substitutions or deletions on a reference genome very fast
(Langmead et al., 2009; Li and Durbin, 2009; Li et al., 2008; Trapnell and Salzberg, 2009),
there is a need for tools which search for more diverged homologous sequences in a large
protein sequence database. In the past, BLAST was widely used for homology searches, but
recently, BLAST has become too slow for searches in the constantly growing databases and
analyzing huge NGS data amounts. Therefore, we wanted to test MMseqs’ performance in
search of short reads for homologous protein sequences with low sequence identity.
We generated two simulated short read datasets by randomly cutting sequence pieces

from the query sequences from the previous benchmark (SCOP25 protein domains). The
length of the sequence pieces was 50 for the first and 100 for the second dataset. Then,
we did a sequence search for these two datasets against the same target database as in the
previous benchmark. We tested the performance of the same methods as in the previous
search benchmark.
The ROC5 plot for the performance of the methods is shown in Figure 6.3. The per-

formance of all methods drops with the shorter sequence length. This is not surprising
because of the lower information content of the shorter sequences. Especially for sequence
pairs with low sequence identity we would expect a performance drop compared to the
full length sequences. However, some methods manage short sequences better than oth-
ers. Smith-Waterman alignments perform best, BLAST performance is slightly inferior.
MMseqs performance improves in comparison to the remaining methods with the decreas-
ing sequence length. In the benchmark with full length query sequences, MMseqs perfor-
mance with the sensitivity setting 4 is as good as UBLAST, and at half height between
BLAST and USEARCH with the sensitivity setting 7. With decreasing length of the query
sequences, MMseqs’ performance improves compared to UBLAST and RAPsearch and the
distance to the best methods Smith-Waterman alignment and BLAST decreases. By con-
trast, the performance of UBLAST drops dramatically, falling even below the performance
of RAPsearch for the shortest 50 length query sequences.
The reason for this difference could be that MMseqs uses similar k-mers while USEARCH

and RAPsearch use exact matches for detecting similar sequences. Short sequences offer
less possibilities for exact k-mer matches and could explain the fast drop of the performance
of USEARCH and RAPsearch on short reads compared to MMseqs.
The performance results in the ROC plot look similar to the ROC5 plot (Figure 6.4).

Smith-Waterman alignments and BLAST are the best methods, MMseqs following. Here
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is also noticeable that the performance of UBLAST drops considerably with shorter query
sequence length.

(a)

(b)

Figure 6.3.: ROC5 plots for the performance of different sequence search methods on
two short reads datasets. a) query sequences length 50 amino acids, b) query sequences length
100 amino acids. The performance of all methods drops with the shorter sequence length (cf. also
ROC5 plot for the benchmark with full length sequences in Figure 6.2). MMseqs shows quite stable
performance on short reads. UBLAST is the least robust method, its performance drops the most
compared to the performance on full length sequences.
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(a)

(b)

Figure 6.4.: ROC plots for the performance of different sequence search methods on two
short reads datasets. a) query sequences length 50, b) query sequences length 100. The results
for query sequences are ordered by the score and the number of true positives (y axis) is plotted
against the number of false positives (x axis). The reason for the jump in the UBLAST ROC curve
is a bug in UBLAST causing sometimes wrong assignment of the sequence headers to the sequences.
The UBLAST ROC curve is shorter because of the overall lower number of discovered hits.
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6.2.4. Speed benchmark for sequence searches

The search quality should be considered in context of the search time needed by single
tools. Since the database used for the quality benchmarks is too small to test for speed,
we ran searches with the same query set but using, this time, the whole UniProtKB as the
database (UniProtKB version containing 54 790 250 sequences). The time required by each
tool is shown in Table 6.1. The time for the index structure generation is given separately
from the search time. MMseqs is the fastest tool, being 950 times faster than BLAST with
sensitivity 4 (default setting) and 518 times faster than BLAST with sensitivity 7.

6.3. Protein clustering

6.3.1. Benchmarked methods and parameters

We benchmarked the ability of MMseqs, blastclust, CD-HIT, kClust and USEARCH to clus-
ter sequences based on global similarity. Clustering quality runs were made on a computer
with 16 cores (processors: Intel Xeon E5-2680, 2.70GHz) and 128 GB RAM.

MMseqs We used the clustering workflow for calculating the clustering of the database.
We tested simple and cascaded (option --cascaded) clustering each with sensitivity 4 and
7 (-s 4 and -s 7) respectively.

blastclust Blastclust is the clustering software in the BLAST package. We set the length
coverage threshold to 0.8 using -L 0.8 and the score threshold to 0.3 using -S 0.3.

CD-HIT We clustered the dataset with CD-HIT down to a sequence identity of 40%, the
lowest possible value. We used the -n 2 setting (k-mer word length) recommended for a
clustering threshold of 40%. We set the minimum alignment coverage of the longer sequence
to 80% with the -aL 0.8 option and the number of threads used for the calculation to 16
with the -T 16 option.

kClust We ran kClust with default parameters, therefore we cluster the database down to
30% sequence identity. Since kClust is single-threaded, we did not use any parallelization
options.

6.3.2. Clustering results

We used the same dataset as for the sequence search benchmark, combining all SCOP25
queries and homologous sequences obtained from UniProtKB in one dataset. The resulting
database contained 291 022 sequences that could be arranged into 1 118 clusters, based on
the SCOP fold assignment. However, since all clustering methods tested here are based on
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time index
structure build

time search

MMseqs s=4 1h 17m 6m
MMseqs s=7 1h 17m 11m
swipe 36m 2d 5h 34m
BLAST 36m 3d 23h
UBLAST 1h 07m 48m
RAPsearch 2h 11m 5h 15m

Table 6.1.: Time each tool needed for searching all SCOP25 sequences against the whole UniProtKB.

#clusters #seqs per
cluster

#corrupted
clusters

time

MMseqs s=4 greedy clustering 85 780 3.4 1 4m 03s
MMseqs s=4 set cover 60 915 4.7 1 4m 03s
MMseqs s=4 cascaded 41 173 7.0 3 3m 35s
MMseqs s=7 greedy clustering 41 572 7.0 3 9m 26s
MMseqs s=7 set cover 29 801 9.7 2 9m 26s
MMseqs s=7 cascaded 22 541 12.9 1 5m 07s
blastclust 21 890 13.3 1 7h 58m
CD-HIT 114 386 2.5 260 1h 25m
kClust 91 681 3.2 1 9m 57s
USEARCH 157 981 1.8 11 45s

Table 6.2.: Clustering results on the protein database consisting of SCOP25 and related UniProtKB
sequences. Sequences put into the same cluster, but stemming from different folds are considered to
be false positives.

pairwise sequence comparisons, they were able to recover only a fraction of the similarities.
We considered a cluster as corrupted if it contains sequences from different folds. The results
from this clustering procedure for different clustering methods are shown in Table 6.2.
As deduced from Table 6.2, almost all methods produced clusters of high quality with

a negligible number of sequences assigned to them by mistake, apart from CD-HIT, which
produced 260 corrupted clusters. Blastclust produced the lowest number of 21 890 clusters,
requiring about 8 hours. Out of the remaining methods, MMseqs cascaded clustering with
sensitivity 7 yielded a low number of 22 541 clusters, requiring about 5 minutes. MMseqs
cascaded clustering with sensitivity 4 (default setting for clustering very large databases)
gave 41 173 clusters, taking about 3,5 minutes. Cascaded clustering performs in general
better than the simple clustering. Both cascaded clustering and default simple clustering
in MMseqs uses "set cover" as the clustering algorithm.
To better evaluate the the performance of "set cover" and the greedy clustering algorithms

we ran MMseqs using both options, since most popular methods (CD-HIT, USEARCH and
kClust) utilize the greedy algorithm. This algorithm takes the longest sequence and puts it
and all similar sequences in the first cluster. Then, the next longest sequence and its matches
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are put in the second cluster and so on, until no sequences are left. Table 6.2 demonstrates
that set cover drastically improves the clustering results for the same alignment results.
The reason why so many methods use the greedy clustering algorithm is that an all-against-
all comparison of the sequences in the database is required to run set cover. By contrast,
the greedy clustering only compares each query sequence to a much smaller representative
sequence database.
The remaing three methods CD-HIT, kClust and USEARCH produce significantly larger

amount of clusters. CD-HIT is quite slow, requiring 1h 25 min, and it can define only 114
386 clusters. Usearch is very fast, requiring less than one minute for the clustering, but
producing mostly singletons, giving a total of 157 981 clusters. kClust, the predecessor
method of MMseqs, takes about 10 minutes and produces considerably more clusters than
MMseqs, discovering 91 681 clusters.
In general, MMseqs has clearly the best tradeoff between speed and clustering sensitivity.

When used with sensitivity 7, it produces only 2% more clusters than BLAST, retaining the
same accuracy as BLAST, while being 96x faster than BLAST. Usearch is the only method
that is faster than MMseqs, but it produces 7 times more clusters than MMseqs.

6.3.3. UniProtKB clustering

Only two clustering tools are able to cluster very large databases as UniProtKB to sequence
identities of lower than 50%: MMseqs and USEARCH. We ran the clustering of UniProtKB
(UniProtKB version containing 54 790 250 sequences) on a computer with 32 cores (proces-
sors: Intel Xeon CPU E5-4620, 2.20GHz) and 512 GB RAM. MMseqs is able to use all 32
cores for the clustering procedure, while USEARCH is able to only use one core.
We use MMseqs cascaded clustering workflow with default settings to evaluate the clus-

tering procedure.
In USEARCH, we set the lowest sequence identity of clusters to 50%, since it is the

lowest recommended value corresponding to the documentation (option --id 0.5). We
only want to have sequences with pairwise global similarity in one cluster, so we set the
query and target sequence coverage in USEARCH to 0.8 using the options -query_cov 0.8

and -target_cov 0.8.
BLAST is much too slow to cluster the UniProtKB database. We estimated the runtime of

BLAST clustering using a BLAST run with a small query set against the whole UniProtKB
database, as performed in the section 6.2.4, and extrapolated the measured runtime to
the clustering of the whole UniProtKB database using an all-against-all comparison. We
calculated that clustering based on all-against-all BLAST using all 32 cores would need
about 58 years.
MMseqs requires 8 days and 17 hours and 118 G of memory for the clustering procedure.

It produces 6 374 156 clusters, i. e. an average of 8,5 sequences per cluster. Usearch, on the
other hand, requires, for the same job, 11 days and 2 hours and 42 GB of memory, while
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time #clusters
BLAST 58y ?
MMseqs 8d 17h 6 374 156
USEARCH 11d 2h 9 822 910

Table 6.3.: Time and number of clusters for BLAST, MMseqs and USEARCH. BLAST time is
estimated.

it produces 9 822 910 clusters, i. e. an average of 5,5 sequences per cluster. The results are
shown in Table 6.3.
Noteworthy is the small difference in the runtimes between USEARCH and MMseqs, al-

though MMseqs uses all 32 cores of the computer and USEARCH is single-threaded. There
are two reasons behind this observation: First, MMseqs calculates all-against-all sequence
comparisons, while USEARCH uses the CD-HIT clustering algorithm and compares the
query only to the representative sequences determined in each step. In addition, USE-
ARCH accepts the first match of a query to a representative sequence and then aborts the
calculation for the query. The process of clustering shows that the clustering becomes ever
slower: the first third of the database is clustered on the first day of computation and the
remaining 10 days are needed for the remaining two thirds of the database.
The second reason why the runtime of USEARCH is comparable to MMseqs is that USE-

ARCH sequence comparison algorithm is less complex, counting only exact 5-mer matches
while MMseqs has to generate and match a list of similar k-mers for each query sequence
position.



7. Conclusion and outlook

In recent years, the amount of protein data has increased rapidly and there is a great need
for fast and sensitive tools for sequence searching and clustering. Currently, no tool is both
able to cluster a large sequence database containing tens of millions of sequences within
days and is sensitive enough to discover sequence similarities down to 30%.
We developed a very fast and sensitive protein search and clustering tool called MMseqs.

MMseqs is able to cluster the UniProtKB version containing about 54 millions of sequences
within 8 days down to 20-30% sequence identity. MMseqs can also search for similar pro-
tein sequences in large protein sequence databases containing tens of millions of sequences,
discovering sequence similarities of about 20-30%.
With the sensitivity parameter, the user can adjust the trade off between speed and

sensitivity of the search and the clustering. At the default sensitivity 4, MMseqs finds more
homologs than the other fast protein search methods UBLAST and RAPsearch, while being
an order of magnitude faster. At sensitivity 7, setting the sensitivity improves the clustering
considerably at the cost of two-fold runtime increase. Generally, MMseqs is about 500 to
1000 times faster than BLAST depending on the settings.
In our benchmark with homologous sequences with 30-80% pairwise sequence identity,

MMseqs achieves clustering sensitivities similar to BLAST, while running about 100x faster
than BLAST. No other benchmarked method is able to produce comparable results with
the same runtime - sensitivity tradeoff. MMseqs is the only tool apart from USEARCH
which is able to cluster the UniProtKB database, being slightly faster than USEARCH and
producing 2

3 of the number of clusters.
MMseqs contains three modules: prefiltering, alignment and clustering. It is parallelized

in two ways using OpenMP multi-core parallelization and using vectorization with SIMD
instructions. It also scales very well on multiple CPUs. Therefore, MMseqs is able to make
use of the trend for increasing number of cores per computer that will certainly continue
during the next years.
MMseqs offers the possibility to update an already clustered database with new sequences

very fast, without the need to run the whole clustering from scratch. This is an important
feature with respect to the growth of the UniProtKB which can easily accumulate several
hundreds of thousands new sequences per week. A large database containing millions of se-
quences can be updated with hundreds of thousands of new sequences within hours, making
frequent updating possible. Cluster identifiers are kept stable during the updating.
The cascaded clustering implemented in MMseqs improves the clustering results further.
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Especially for large databases, cascaded clustering offers a possibility to increase the sensi-
tivity and the maximum cluster size considerably while keeping the memory consumption
at the same level and even reducing the runtime.
The next milestone we plan is the development of a more sensitive core algorithm, to

further improve the sensitivity of protein searches without speed loss. Furthermore, we
will develop profile-based searches which boost the sensitivity considerably at the same
speed. We can also easily extend MMseqs to run in parallel on multiple computers in a
computer cluster, therefore accelerating it even further. We also plan to apply MMseqs
to metagenomic data, e. g. gut microbiomes for medical research, soil for agriculture etc.
by searching the 6-frame translated hypothetical protein sequences against the UniProtKB.
MMseqs also implements a nucleotide sequence search that yet remains to be tested on real
data.



Part II.

Appendix





A. Introduction to ffindex

For the management of the prefiltering, alignment and clustering results, we use ffindex, a
simple database for handling huge amounts of small files, developed by Andreas Hauser.
During the development of the MMseqs predecessor clustering method kClust, we no-

ticed that the steadily growing amount of the alignment files containing multiple sequence
alignments of the sequences in a cluster has to be written to disc, what overchallenged
the file system. Even by dividing the alignment files into different directories we obtained
too many alignment files per directory after the further database growth. Also the access
to a particular alignment was very complicated, since we had to use a certain file naming
convention in order to distribute alignment files evenly over the directories. Moreover, we
used too much disc space for the files, since most alignments are very small, but there is
always a minimum of disc space reserved for a file. Similar problems occurred with HMM
files in HHblits. Moreover, since we planned to implement modular design of MMseqs, we
also needed a storage for the intermediate results stemming from a module that allows fast
and efficient access to the single results.
An ffindex database consists of an index file and a data file and is implemented in C

programming language. Figure A.1 shows the structure of the ffindex database. The data
file contains all the datasets stored successively, separated by \0 character, what facilitates
the reading of the dataset in C. The index file contains a short alphanumeric key for each

Figure A.1.: ffindex database structure. An ffindex database constists of an index file and a
data file. The index file is sorted by the key alphabetically and contains the offset and the length of
the corresponding dataset.
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dataset and the offset and length of this dataset. The index file is sorted. ffindex loads
the index file into memory and uses Linux mmap function to map the data file into memory.
mmap loads only the chunks of the file that fit into memory and adjusts the mapping if
different chunks are requested or the mapped size gets too big. When a dataset with a
certain key is requested, ffindex does a binary search in the sorted index and retrieves the
dataset with the help of the offset and length values recorded in the index.
Apart from providing a library for the dataset storage and retrieving, ffindex also of-

fers different binaries for data access and manipulation. ffindex_build builds an ffindex
database from multiple files or appends new entries. ffindex_get can be used for access-
ing a dataset with a certain key. ffindex_apply_mpi executes some program able to read
stdin and write to stdout on each dataset in an ffindex database in parallel on multiple
CPUs of a computer and writes the result to a new ffindex database.
We also wrote two binaries to convert FASTA to ffindex format and back. fasta2ffindex

generates ffindex index and data files for the sequence and header data from a FASTA
formatted sequence database. We also provide ffindex2fasta binary that converts an
ffindex database to FASTA-style formatted flat file.
We use the ffindex library in MMseqs for storing and accessing datasets. MMseqs stores

the sequence and header data, prefiltering, alignment and clustering results in ffindex
databases. ffindex proved to be very fast for our purposes. We recommend to use ffindex
for fast access to the single data records. In addition, ffindex library can be integrated in
programs for fast access and processing of the datasets. Finally, datasets contained in huge
ffindex databases can be converted and processed very fast by using ffindex_apply_mpi.
The results are then stored in another ffindex database.
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