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Abstract

Ensemble-based systems are software-intensive systems consisting of large numbers of
components which can dynamically form goal-oriented communication groups. The
goal of an ensemble is usually achieved through interaction of some components, but
the contributing components may simultaneously participate in several collaborations.
With standard component-based techniques, such systems can only be described by
a complex model specifying all ensembles and participants at the same time. Thus,
ensemble-based systems lack a development methodology which particularly addresses
the dynamic formation and concurrency of ensembles as well as transparency of partic-
ipants.

This thesis proposes the HELENA development methodology. It slices an ensemble-
based system in two dimensions: Each kind of ensemble is considered separately. This
allows the developer to focus on the relevant parts of the system only and abstract
away those parts which are non-essential to the current ensemble. Furthermore, an
ensemble itself is not defined solely in terms of participating components, but in terms
of roles which components adopt in that ensemble. A role is the logical entity needed
to contribute to the ensemble while a component provides the technical functionalities
to actually execute a role. By simultaneously adopting several roles, a component can
concurrently participate in several ensembles.

HELENA addresses the particular challenges of ensemble-based systems in the main
development phases: The domain of an ensemble-based system is described as an en-
semble structure of roles built on top of a component-based platform. Based on the
ensemble structure, the goals of ensembles are specified as linear temporal logic formu-
lae. With these goals in mind, the dynamic behavior of the system is designed as a set
of role behaviors. To show that the ensemble participants actually achieve the global
goals of the ensemble by collaboratively executing the specified behaviors, the HELENA
model is verified against its goals with the model-checker Spin. For that, we provide
a translation of HELENA models to PROMELA, the input language of Spin, which is
proven semantically correct for a kernel part of HELENA. Finally, we provide the Java
framework jHELENA which realizes all HELENA concepts in Java. By implementing a
HELENA model with this framework, HELENA models can be executed according to
the formal HELENA semantics. To support all activities of the HELENA development
methodology, we provide the HELENA workbench as a tool for specification and auto-
mated verification and code generation. The general applicability of HELENA is backed
by a case study of a larger software system, the Science Cloud Platform. HELENA is
able to capture, verify and implement the main characteristics of the system. Looking
at HELENA from a different angle shows that the HELENA idea of roles is also well-suited
to realize adaptive systems changing their behavioral modes based on perceptions. We
extend the HELENA development methodology to adaptive systems and illustrate its
applicability at an adaptive robotic search-and-rescue example.
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Zusammenfassung

Ensemble-basierte Systeme sind software-intensive Systeme mit einer grofien Anzahl
von Komponenten, die sich dynamisch zu kleineren, ziel-orientierten Kommunikation-
sgruppen zusammenschlieken kénnen. Das Ziel eines Ensembles kann iiblicherweise
nur erreicht werden, indem mehrere Komponenten interagieren. Allerdings kénnen die
beitragenden Komponenten auch an mehreren Kollaborationen gleichzeitig teilnehmen.
Mit den iiblichen komponenten-basierten Entwicklungstechniken kénnen solche Systeme
nur durch ein komplexes Modell beschrieben werden, das alle Ensembles und Teilnehmer
gleichzeitig spezifiziert. Deshalb bedarf es einer Entwicklungsmethodik fiir ensemble-
basierte Systeme, die die dynamische Bildung und Nebenladufigkeit von Ensembles sowie
die Transparenz der Teilnehmer adressiert.

Die vorliegende Arbeit schlagt die HELENA-Entwicklungsmethodik vor, die ein ens-
emble-basiertes System entlang zweier Dimensionen aufspaltet: Jede Art von Ensem-
ble wird einzeln betrachtet. Dies erlaubt dem Entwickler, sich nur auf die relevanten
Teile des Systems zu konzentrieren und von den Teilen zu abstrahieren, die nicht das ak-
tuelle Ensemble betreffen. Ein Ensemble selbst wird nicht nur iiber seine teilnehmenden
Komponenten definiert, sondern durch Rollen, die Komponenten in einem Ensemble
annehmen konnen. Eine Rolle ist die logische Einheit, die zum Ensemble beitrigt,
wahrend eine Komponente nur die technischen Funktionalititen bereitstellt, um eine
Rolle auszufithren. Indem eine Komponente mehrere Rollen gleichzeitig annimmt, kann
sie zur gleichen Zeit an mehreren Ensembles teilnehmen.

HELENA adressiert die speziellen Herausforderungen eines ensemble-basierten Sys-
tems in den Hauptentwicklungsphasen: Die Doméne eines ensemble-basierten Systems
wird durch eine Ensemblestruktur von Rollen beschrieben, die auf einer komponenten-
basierten Plattform aufbaut. Basierend auf der Ensemblestruktur werden die Ziele des
Ensembles als Formeln in linearer temporaler Logik erfasst. Mit diesen Zielen vor Au-
gen wird das dynamische Verhalten des Systems als eine Menge von Rollenverhalten
modelliert. Um zu zeigen, dass die Ensemble-Teilnehmer die globalen Ziele des Ensem-
bles tatsdchlich durch kollaborative Ausfithrung der spezifizierten Verhalten erreichen,
wird das HELENA-Modell mit dem Model-Checker Spin verifiziert. Dafiir stellen wir
eine Ubersetzung von HELENA Modellen nach PROMELA, der Eingabesprache fiir Spin,
bereit, die fiir eine Kernsprache von HELENA als semantisch korrekt bewiesen wird.
Schlieflich stellen wir die Java-Bibliothek jHELENA zur Verfiigung, die alle HELENA-
Konzepte in Java realisiert. Indem ein HELENA-Modell mit dieser Bibliothek implemen-
tiert wird, kann es anschliefsend gemil der formalen HELENA-Semantik ausgefiihrt wer-
den. Um alle Aktivitdten der HELENA-Entwicklungsmethodik zu unterstiitzen, bieten
wir die HELENA Workbench an, die als Werkzeug zur Spezifikation und automatisierten
Verifikation und Codegenerierung dient. Die allgemeine Anwendbarkeit von HELENA
wird durch eine Fallstudie eines groferen Softwaresystems, der Science Cloud Plattform,
gezeigt. HELENA erlaubt es die Hauptmerkmale des Systems zu erfassen, zu verifizieren
und zu implementieren. Auferdem betrachten wir HELENA noch von einem anderen
Blickwinkel aus: Wir zeigen, dass die HELENA-Idee von Rollen sich gut dafiir eignet,
adaptive Systeme zu realisieren, die ihre Verhaltensart aufgrund von Wahrnehmungen
ihrer Umgebung dndern. Wir erweitern die HELENA-Entwicklungsmethodik fiir adap-
tive Systeme und veranschaulichen ihre Anwendbarkeit an einem adaptiven roboterzen-
trierten Rettungsszenario.



viil



to my mother

my idol for life

ix






xl1

Acknowledgments

My cordial thanks go to Rolf Hennicker, my supervisor and first reviewer. In 2011, I
got to know him as an excellent lecturer at our group at LMU and worked with him
as his teaching assistant. It was one of the best coincidences that one day in 2013,
we happened to engage into a lively discussion about ensembles, although we never
scientifically worked together until then. I deeply appreciate his excellent supervision:
Our discussions were always fruitful and at eye level. We shared the same love for the
detail. His interested and insistent questions as well as his constructive feedback and
honest appreciation of my work pushed me to cover each topic in depth. He always
showed me the light at the end of the tunnel, may it be scientifically or personally. 1
thank him for his close supervision and all the moral support he provided to me.

I also cordially thank Rocco De Nicola, my second reviewer. He crossed my scientific
way at many pleasant occasions. In the EU project ASCENS, I experienced him as
an excellent discussion partner about ensembles and their formal models. As a guest
lecturer, he enriched our group with his bright and friendly personality as well as with
his open scientific interest. Personally, I pleasantly remember our joint participation
at the Dagstuhl seminar “Collective Adaptive Systems: Qualitative and Quantitative
Modelling and Analysis”. I appreciate him as a very dedicated and warm person who
always has a joyful twinkle in the eye.

Without Martin Wirsing, the head of the PST group during my PhD thesis, I would
never have had the opportunity to meet all the people who scientifically supported my
work. I thank Martin Wirsing for the faith he had in me and my abilities when hiring
me back in 2010. He introduced me to the world of science and especially the ASCENS
project. He encouraged me to build up my scientific knowledge by guiding collaborative
work with my colleagues Matthias Holzl, Christian Kroiff and finally Rolf Hennicker. It
is due to his enviable talent of bringing people together that I had such wonderful co-
workers. Among them, I especially thank Andreas Schroeder, Philip Mayer, Marianne
Busch, Lenz Belzner and Joschka Rinke for their moral support during my PhD thesis;
they persuaded me that I can do it. Furthermore, I thank Anton Fasching with all my
heart for every chat we had during the mornings when everybody else was still asleep
at home while we already started working. His open-heartedness and honest personal
appreciation helped me through many hard times sitting in my office.

I also wish to thank all my friends who supported me in lots of tearful and terrified,
but also joyful and enthusiastic moments of my thesis. A special word of thanks is due
to Benedikt Hauptmann. As my “Diss Buddy”, he supported me with the necessary
pressure to work on my thesis, motivated me in times of procrastination and helped me
out of my panic when opposed with new, seemingly unbearable challenges. He also came
up with the wonderful idea to occasionally work at the offices of the group of Manfred
Broy at TUM. I am very grateful for the warm welcome from everybody of the group
and the buzzing and motivating work atmosphere which I enjoyed there. Furthermore,
I thank Chrisi Gerlach who invested his spare time into proofreading parts of my thesis.

My last thanks are directed to my family, my mother, my father and my sister.
They always believed in me, never lost the faith in my abilities and encouraged me to
do the same. They sensed when I was totally out of my mind and stressed and calmed
me down with their love and extensive hiking and cooking sessions.

Thank you all!



xii



Contents

1 Introduction
1.1 Challenges of Ensemble-Based Systems . . . . . . ... ... ... ....
1.2 Shortcomings of Existing Approaches . . . . .. ... ... 0oL
1.3 Problem Statement . . . . . . .. .. ...
1.4 Solution Idea . . . . . . . . . .. ...
1.5 Contributions . . . . . . . . ...
1.6 Outline . . . . . . . . .

2 Syntax — Speaking HELENA
2.1 P2P Example . . . . . ..
2.2 Component-Based Platform . . . . .. ... ... ... ... ... ...
2.3 Ensemble Structures . . . . . . . ...
2.4 Ensemble Specifications . . . . . ... oL L o
2.5 Related Work . . . . . ..
2.6 Publication History . . . . . . . . . ... o
2.7 Present Achievements and Future Perspectives . . . . . . .. ... ...

3 Semantics — Understanding HELENA
3.1 Notatlons . . . . . . . . . . L
3.2 Ensemble States . . . . . .. ..
3.3 Structured Operational Semantic Rules . . . . . . . ... ... ... ...
3.4 Semantic Labeled Transition System . . . . ... ... ... ... ....
3.5 Related Work . . . . . .. .o
3.6 Publication History . . . . . . . . . ...
3.7 Present Achievements and Future Perspectives . . . . . . ... .. ...

4 Goal Specifications — Being Successful with HELENA
4.1 Goals and their Specification in LTL . . . . . .. ... ... .. ... ..
42 HELENALTL . .. .. ..
4.3 Publication History . . . . . . . ... .. oo oo
4.4 Present Achievements and Future Perspectives . . . . . .. .. .. ...

5 Verification — Being Sure about Goal Satisfaction
5.1 Approach for Checking HELENA LTL Formulae . . . . .. .. ... ...
5.2 Translation from HELENA to PROMELA . . . . . .. .. .. ... ....
5.3 Model-Checking HELENA with Spin. . . . . ... ... .. ... .. ..
54 Related Work . . . . . ..o
5.5 Publication History . . . . . . . . . .. . o
5.6 Present Achievements and Future Perspectives . . . . . . .. ... ...

xiii

O 00 =1 = DN =

17
17
18
20
24
32
42
43

45
45
46
23
60
61
62
63

65
65
70
72
73



xiv

CONTENTS

6 Correctness Proof — Allowing HELENA to Rely on Spin 115
6.1 Foundations on LTL\x Preservation . . ... ............... 116
6.2 HELENALIGHT . . . . . . . . . . . 119
6.3 PROMELALIGHT . . . . . . . . . . 131
6.4 Translation from HELENALIGHT to PROMELALIGHT . . . . ... .. .. 140
6.5 Correctness Proof . . . . . . . . . Lo 144
6.6 Correctness of the Full Translation . . . . ... ... ... ... .. ... 151
6.7 Publication History . . . . . . . . . .. o 155

7 Implementation — Vivifying HELENA with jHELENA 157
7.1 Architecture . . . . . ... 158
7.2 Metadata Layer . . . . . . . . ... L 159
7.3 Developer Interface . . . . . . . .. ..o 162
7.4 System Manager . . . . . . . .. L 173
7.5 Framework Application . . . .. . ..o 173
7.6 Related Work . . . . . . .. oo 178
7.7 Publication History . . . . . . . . . .. oo 180
7.8 Present Achievements and Future Perspectives . . . . . . ... ... .. 180

8 HELENA Workbench — Working with HELENA 183
8.1 Overview of the HELENA Workbench . . . . . . ... ... .. ... ... 184
8.2 The Domain-Specific Language HELENATEXT . . . . . . . . . ... ... 188
8.3 Automated PROMELA Code Generator . . . . . . ... ... ... .... 192
8.4 Automated JHELENA Code Generator . . . . .. ... .. ... ..... 194
8.5 Publication History . . . . . . . . . .. . . 199
8.6 Present Achievements and Future Perspectives . . . . . .. .. .. ... 199

9 HEeLENA Development Methodology — Developing with HELENA 201
9.1 Domain Modeling . . . . . . . . .. 203
9.2 Goal Specification . . . . . ... 204
9.3 Design . . . . .. 205
9.4 Verification . . . . .. . ... 207
9.5 Implementation . . . . . . . .. 209
9.6 Related Work . . . . . . . . ..o 210
9.7 Publication History . . . . . . . . . .. o 211
9.8 Present Achievements and Future Perspectives . . . . . .. .. ... .. 211

10 HELENA@QWork — Applying HELENA to the Science Cloud Platform 213

10.1 The Science Cloud Platform . . . . . .. .. ... ... ...
10.2 Domain Model . . . . . . . . .. .. ... ... ... ...
10.3 Goal Specification . . . . .. ... ... ... L.
10.4 Design . . . . . . oL
10.5 Verification . . . . . .. .. oL
10.6 Implementation . . . . . . .. . .. ... ...
10.7 Related Work . . . . . . . . . ... oL
10.8 Publication History . . . . . . ... . ... ... ... ...
10.9 Present Achievements and Future Perspectives . . . . . ..

....... 214



CONTENTS

11 Role-Based Adaptation — Being Adaptive with HELENA

11.1 Introduction . . . . . . . . . . . ... ... ..

11.2 HELENA Development Methodology for Self-Adaptive Systems . . . . . .

11.3 Search-and-Rescue Scenario . . . .. ... ..
11.4 Adaptation Specification . . . . . . . ... ..
11.5 HAM Pattern . . . . . . . . . . .. ... ...

11.6 Model Transformation Part 1 — Derivation of a Role-Based Architecture
11.7 Model Transformation Part 2 — Derivation of Dynamic Behaviors . . . .

11.8 Related Work . . . . . . .. ... ...
11.9 Publication History . . . . . . . .. . ... ..
11.10Present Achievements and Future Perspectives

12 Conclusion
12.1 Contributions . . . . . . . . . . ... .. ...

12.2 Challenges of Ensemble-Based Systems Revisited . . . . . . . . ... ..

12.3 Future Work . . . . ... ... ... ...
12.4 Final Thoughts . . . . . .. . ... ... ...

Appendix A Correctness Proof in Full Detail

A.1 Satisfaction of LTL\x Formulae in ~-Equivalent States . . . . . ... ..

A.2 Divergence-Sensitivity of the Relation ~ . . .
A.3 ~-Equivalence of Initial States . .. ... ..

A4 =-Stutter Simulation of HELENALIGHT Specifications . . . . ... . ..
A5 ~-Stutter Simulation of PROMELALIGHT Translations . . .. . ... ..

A.6 Stutter Trace Equivalence . . . ... ... ..

Appendix B HELENA Workbench

B.1 User-Guide for Developing the HELENA Workbench . . . . . . . ... ..

B.2 User-Guide for Using the HELENA Workbench
B.3 Complete HELENATEXT Grammar . . . . . .

Appendix C P2P Example
C.1 Specification in HELENATEXT . . . . . . . ..
C.2 Generated PROMELA Specification with Goals

Appendix D SCP Case Study
D.1 Specification in HELENATEXT . . . . . . . ..
D.2 Generated PROMELA Specification with Goals

Appendix E Search-and-Rescue Scenario
Contents of the Attached CD
Publications by Annabelle Klarl

Bibliography

XV

253
254
255
256
256
261
264
267
272
274
274

277
278
279
280
284

285
285
291
302
303
316
327

331
331
333
333

341
341
342

351
351
356

381

393

395

397



xvi CONTENTS



Chapter 1

Introduction

Ensemble-based systems are software-intensive systems consisting of a large number of
components which can dynamically form goal-oriented communication groups and ac-
complish a common goal in collaboration. In general, the intended goal of an ensemble
can only be achieved by interaction between its constituent members and requires cer-
tain local functionalities to be offered by the participants of the ensemble. As soon as
appropriate components join the collaboration and contribute the desired functionali-
ties, the ensemble becomes effective. Conversely, this means that an ensemble affects
only a part of the global system, which may be a large distributed system, since only
particular participants have to chip in. When performing a goal-oriented task in an
ensemble-based system, only the components participating in the ensemble are of inter-
est and need to be coordinated. But at the same time, components may be employed
in several collaborations simultaneously allowing the ensemble-based system to concur-
rently work on several goals.

Ensemble-based systems especially target two new trends in computing: ubiquitous
computing and autonomic computing. Ubiquitous computing [Wei99| introduces more
and more computing devices into our systems. The contributing components are no
longer restricted to powerful work-stations. They are augmented with small and cheap
mobile devices like laptops, handhelds, and mobiles. Wide heterogeneity is an inher-
ent property of such systems and the number of globally interconnected components
grows daily. Mobile devices also introduce mobility into ensemble-based systems. That
means that on the one hand moving components like mobiles are faced with continu-
ously changing and possibly unknown environments. On the other hand, the overall
system is subject to changes of participating components and cannot rely on a fixed
set of contributors. Performing distributed goal-oriented tasks in such a volatile and
pervasive system calls for dynamically formed collaboration groups as we envision them
by ensembles.

Autonomic computing [KCO03] introduces a certain degree of autonomy to the indi-
vidual components of the ensemble-based system. The paradigm advocates that we no
longer create systems which are thoroughly administrated by hand. Once employed the
system should rather manage itself and keep itself alive and running. The contributing
components have the autonomy to coordinate themselves and their interactions accord-
ing to high-level objectives without any external supervision. This is especially helpful
in ubiquitous systems since the responsibility for coordination is distributed among the
participants of the system.
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Ensembles appear in the human world in a similar way as we described them for
software systems. In the domain of soccer, the underlying platform of distributed com-
ponents consists of the players, trainers, medical staff, managers etc. On top, different
ensembles are formed like national teams or soccer club teams. Each member of such
a team can dynamically join and leave the team, takes over responsibility for different
tasks and can changes his tasks. For example, in the German national team, the player
Manuel Neuer is goal keeper, the trainer Joachim Low is head coach, and the medical
staff member Dr. Hans-Wilhelm Miiller-Wohlfahrt is medical doctor. We say that each
component like the player Manuel Neuer participates in a certain ensemble by adopting
a particular role like goal keeper. Fig. 1.1a illustrates this situation. The boxes in
the lower part represent the components contributing to the ensemble (note that there
might be more components in the overall system which do not contribute to the ensem-
ble under consideration and are thus not shown here). The dashed ellipse encompasses
all roles which are needed for the functionality of the ensemble. Most importantly, we
represent the adoption relation between role and component by an arrow from role to
component. Connections between the roles denote which roles interact.

However, it is not unusual that one component (sequentially or concurrently) adopts
different roles in the same ensemble as shown in Fig. 1.1b. For example, in the German
national team, the player Bastian Schweinsteiger was center midfield, but also captain.
One component can even (concurrently) adopt several roles in different ensembles as
shown in Fig. 1.1¢. For example, a game of the German national team could be organized
as a charity game. Then, two ensembles exist in parallel, the German national team
as well as the charity ensemble. The latter consists of organizers, donors and charity
players such that a player like Bastian Schweinsteiger not only adopts the roles of center
midfield and captain in the German national team, but at the same time also the role
of a charity player in the charity ensemble.

(a) One component (b) One component (¢) A component adopts several roles in
adopts one role adopts two roles the same and different ensembles.

Figure 1.1: Participation of components in ensembles

1.1 Challenges of Ensemble-Based Systems

Ensembles are characterized by the goal-oriented collaboration of participants, building
on top of a common component-based platform. These characteristics bear challenges
for the development of ensemble-based systems which are partially known from dis-
tributed systems [CDKB11]|, but ensembles add a new layer of difficulty to them. The
following list presents important challenges and illustrates some of them on the basis of
the domain of soccer:

Concurrency: Concurrent execution has to be managed on two levels. Within an en-
semble, the goal-oriented work has to be appropriately distributed among the
participants of the ensemble and collaboration must be coordinated. In the do-
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main of soccer, defense and offense have to be assigned to the different positions in
the team like defenders and strikers. On system level, several ensembles must be
able to concurrently perform their goal-oriented tasks possibly sharing the same
participating components and taking care of conflicting participations. In the do-
main of soccer, national tournaments have to be coordinated with international
tournaments to allow different players to participate in both.

Heterogeneity: In the ubiquitous computing paradigm, heterogeneity is increased by
including small and cheap components like mobiles into the system. In such a set-
ting, ensembles have to be formed unaffected or even have to exploit heterogeneity
of available components in the system. They must be able to assign work accord-
ing to the individual properties of each contributing component. In the domain
of soccer, players show different strengths for abilities like dribbling, heading, cor-
ner kicks, free kicks etc. Depending on their particular abilities, they have to be
assigned to the different positions of a soccer team.

Extensibility: On the system level, mobility of mobile devices requires that the overall
system is able to cope with new component instances and it can make them avail-
able to the currently running ensembles. In the domain of soccer, scouts should
continuously discover new talents which organizations like UEFA or Bundesliga
trade between the different clubs. On the ensemble level, an ensemble has to be
able to specify when new participants are allowed to join in and how they are in-
tegrated in the collaboration. This dynamism has to be reflected in the system’s
architecture to allow for connections between component instances to be set up
dynamically. In the domain of soccer, tournaments rules have to define when a

player can join the team on the field in exchange for another player leaving the
field.

Dynamism: Ensembles are dynamically formed collaboration groups. Not only can new
members join the collaboration during the life-time of an ensemble, but also the
participation of a component can change. A component may communicate with
different partners during operation of the ensemble such that communication links
are dynamically reconfigured. Furthermore, a component may take over different
tasks for the accomplishment of the global goal of the ensemble such that the con-
tribution of a single component to the overall ensemble dynamically changes. In
the domain of soccer, the task and preferred communication of a midfield player
may change depending on whether his team is currently attacking or defending.
When attacking, the midfield player may interact more frequently with the strik-
ers; conversely, and when defending, the same player may be integrated into the
line of defense. It may even happen that a player adopts an additional role in the
team during a tournament, e.g., if Bastian Schweinsteiger leaves the field, the role
of the captain is assigned to Manuel Neuer.

Transparency: 1t should be transparent from the user which components form an en-
semble. It is only relevant that the ensemble achieves its goal while the concrete
participants do not matter as long as they provide the required capabilities. This
special kind of transparency allows dynamic composition of ensembles since they
do not rely on particular components, but on their provided capabilities. In the
domain of soccer, different moves can be planned and trained only based on the
positions of those involved. Different players can transparently fill in on these
positions without changing the overall plan of the move.
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Goal-Orientation: Despite heterogeneity, and transparent and dynamic composition, an
ensemble must always work towards the intended goal. It should be guaranteed
that the goal is actually achieved. In the domain of soccer, a team should always
be able to compete in a tournament despite different abilities of the current players
in the squad (e.g., because of players changing affiliations, current assembly of the
team, injuries etc.).

Autonomy: Due to the large number of components in the system and their mobility,
global supervision of the whole ensemble-based system must be avoided. The
organization of ensembles has to be coordinated locally such that each ensemble
determines its composition and behavior itself. The individual components have
to be granted with a certain kind of autonomy to self-organize their contribu-
tion to goal-oriented collaborations. In the domain of soccer, each club should
organize itself independently from other clubs. However, internally, each club is
mostly centrally coordinated. In an ideal ensemble-based system, those central
coordinators should be avoided for the benefit of self-managed collaborations.

1.2 Shortcomings of Existing Approaches

A central approach to describe the structure and behavior of interacting systems is
component-based software engineering (CBSE) [Szy02, RRMPO08|. It aims at develop-
ing self-contained, reusable components. For each component, its structure, interface to
communication partners and behavior is precisely specified to allow integration of sev-
eral components to larger interacting systems. A wide variety of architecture description
languages (ADLs) like Wright [AG94, AG97], Darwin [MK96], ACME [GMW97], and
PADL [BCD00, BCD02] allow description of the high-level structure of a system in terms
of components and their interactions and to reason about system properties at this high
level of abstraction. Frameworks like Fractal [BCL104, BABC109|, SOFA [BHP06],
ArchJava [ACN02], and Java/A [BHH"06] do not only provide formal component-based
architecture models, but also implement them in Java. ADLs and their frameworks
are mainly used for the specification and implementation of component-based archi-
tectures via appropriate tool support. Their specification power is often limited and
verification is only supported for a fixed set of properties [BvVZ06]. In contrast, a set
of formal approaches like team automata [tEKRO03]|, interaction automata [BvVZ06],
assemblies [HK11] or multiparty session types [CDPY15] focuses on the precise specifi-
cation of component interactions with less attention to the system’s architecture. These
approaches aim at automated verification, but are often too abstract to serve as imple-
mentation models [BvVZ06].

All of these approaches share a similar understanding of components and their com-
position to larger systems. An atomic component is thought of as a self-contained
computational unit of the system. Its interface to the outside world is described by
ports which handle communication with other components!. Such atomic components
can be composed to hierarchical components and finally whole systems. The main ar-
chitectural element are connectors which handle interaction and coordination between
components. A connector specifies properties (often by a communication protocol,

!For communication, we only consider bi-directional message exchange in this thesis as opposed to
broadcast messaging, remote procedure call or knowledge exchange via shared knowledge bases. We
assume that the behavior of a component is specified by a single sequence of actions which conversely
means that an atomic component is not able to simultaneously execute different behaviors.
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e.g., [AG94, AG97]) which the ports of components interacting through this connector
have to fulfill. That means that sets of interacting components, like we consider them
in ensemble-based systems, are already a main characteristic of CBSE and its different
proposed component models. However, standard component models are not able to
express some of the distinguishing features of ensemble-based systems:

Explicit Notion of Ensembles: The notion of an ensemble as a group of collaborating
components is central to ensemble-based systems. In standard component models
like Wright [AG94, AG97] or ACME [GMW97|, such ensembles are only implic-
itly defined by sets of connected components. Hierarchical component models
like Fractal [BCLT04, BABC109] or SOFA [BHP06] allow to simulate the explicit
notion of an ensemble by encapsulating the interacting components in a single
composite component. As soon as we envision several ensembles which overlap in
terms of participants, hierarchical composition of components cannot express the
notion of ensembles anymore. Fractal [BCL104, BABC'09] thus introduces the
concept of shared components. They are able to contribute to different collab-
oration groups, but while the concept of sharing is made explicit, groups which
share a component are again only implicitly determined by the sets of connected
components. We still miss an explicit notion of ensemble. Such a notion would
allow focusing design and analysis on the relevant participants of an ensemble
only.

Explicit Notion of Active Roles: If a component is shared between several ensembles,
it has to provide all communication capabilities and behaviors which it needs to
contribute to the different ensembles. To describe a component with different
tasks distributed over several ensembles, standard component-based techniques
propose to design a one-fits-all component which combines all required capabili-
ties and behaviors for such tasks. Some capabilities might be needed in several
ensembles, but others are specific for only one ensemble. Nevertheless, they are
all pooled together into one large component. Which interface is needed in which
ensemble is only implicitly given, e.g., by the involved communication ports. Fur-
thermore, such a one-fits-all component must be able to work on every task which
an ensemble requires from it. Therefore, it has to offer and execute a large parallel
behavior. The design of such a behavior is complex and error-prone due to the
large number of possible interleavings.

This design suffers from two disadvantages: Firstly, the shared one-fits-all com-
ponent cannot be reused to perform other tasks. If we want the component to
perform a different task, the component has to be broken up and appropriate
capabilities and behaviors have to be included. Secondly, we lack an explicit con-
cept to define which functionalities need to be contributed by the participants of
an engsemble and which components of the underlying component-based platform
are able to provide those functionalities. Ensembles do not require a particular
component to contribute to the collaboration. They only require certain capabil-
ities to be offered and tasks to be fulfilled. In general, these requirements could
be offered by different components, but only one will later on contribute to the
ensemble. Thus, the functionalities needed by the ensembles should be described
separately from the capabilities offered by components.

Dynamic Architecture: In ensemble-based systems, components should dynamically col-
laborate towards a global goal. Therefore, they need to establish communication
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links between each other on demand to allow dynamic interaction. Additionally,
they should be able to dynamically request and integrate new participants into the
ensemble if the current ensemble composition is not appropriate to achieve the
global goal anymore. Reconfiguration of the communication structure between
components is already supported by dynamic architecture approaches. For exam-
ple, SOFA [BHPO06] introduces specific reconfiguration patterns to allow controlled
modification of the system’s architecture. Wright [ADG98| proposes a special con-
figurator component which takes care of establishing connections between com-
ponents on demand. Other dynamic architecture approaches like Darwin [MK96|
allow the dynamic instantiation of components at runtime such that collabora-
tions can be extended by new participants on demand. Those techniques can be
transferred to ensemble-based systems, but a developer can soon get lost in the
reconfiguration options if the system grows large and consists of many different
ensembles. Indeed, software development could benefit from the introduction of
the notion of ensembles to only focus on one collaboration group when recon-
figuring and from the introduction of the notion of roles to describe communica-
tion partners separately from the components currently serving as communication
partners.

Some dedicated techniques and tools like the SCEL/PSCEL [DLPT14, MPT13|,
DEECo [BGH*13], DCCL [BBvP13] and BIP/Dy-BIP [BBB*12, BJMS12] already ad-
dress the specific characteristics of ensemble-based systems. Apart from BIP/Dy-BIP,
they all use membership predicates to express ensembles. A membership predicate de-
termines through properties of components which components are currently considered
part of an ensemble. Since the predicate is dynamically evaluated, an ensemble is a
volatile snapshot of a system. This adds flexibility, but the conceptual structure of an
ensemble describing potential participants and their interaction relationships cannot be
explicitly specified. Besides that, all ensemble-based approaches do not propose the
concept of roles. Components are thought of as one-fits-all entities which combine all
functionalities needed in the different ensembles into one large extensive component.
The ensemble-based approaches do neither provide a concept which helps to structure
a component according to the different roles it can adopt nor a concept which allows to
explicitly describe the participants of an ensemble separately from the underlying com-
ponents. One exception is PSCEL [MPT13] which integrates FACPL policies [MMPT14|
into SCEL specifications. These policies define when certain actions of a component are
allowed or how behaviors of components have to be adapted to cope with the current
situation. This resembles the idea of roles which are dynamically adopted according
to the current task which a component has to fulfill. However, all ensemble-based ap-
proaches heavily focus on dynamic communication structures although they rely on
different communication paradigms: In SCEL/PSCEL, components explicitly exchange
knowledge by putting data items to and retrieving them from knowledge repositories.
These knowledge repositories can be dynamically selected by variables or predicates
analogously to membership predicates. DEECo and DCCL support implicit knowledge
exchange by periodically updating the knowledge of all members of an ensemble. Since
the members of an ensemble are dynamically determined from the evaluation of the
membership predicate, knowledge is exchanged between varying partners. In BIP/Dy-
BIP, components send and receive messages via connectors which can dynamically be
bound. Interaction constraints guide the possible connection of communication part-
ners. Finally, SCEL/PSCEL even supports the creation of new components which can
dynamically be integrated into ensembles. In conclusion, all ensemble-based approaches
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make a big step towards the dynamics of ensemble-based systems. However, they lack
structural concepts like ensembles and roles as first-class entities which reduce the com-
plexity of ensemble models on the one hand and support the dynamics of ensembles on
the other hand.

1.3 Problem Statement

The development of ensemble-based systems should be supported by an appropriate de-
velopment methodology aimed at the particular challenges of ensemble-based systems.
Special focus has to be directed towards the most prominent development phases, goal
specification, system modeling, verification, and implementation: We must provide ab-
stractions to describe ensembles, their participants and relationships as first-class en-
tities. KEnsemble goals should be specified on the level of participants of the ensemble.
Verification should allow to check goal satisfaction for a single ensemble to reduce com-
plexity of the state space to be searched, but should nevertheless consider the ensemble
in the context of the underlying component-based platform. The abstractions used to
describe ensemble-based systems should be transferred to the implementation to al-
low a transparent participation of components in goal-directed ensembles and to allow
management of each ensemble independently from all other ensembles.

Ensemble Description: The structure of distributed systems is in general defined
by the contributing components of the system and their interaction patterns. In such
structural models, the collaborating components are assigned with responsibilities and
interaction capabilities to represent the purpose of the system. However, the system
structure of an ensemble-based system is inherently complex since several ensembles and
transitively even more participants have to be captured in one structural model. With
standard component-based techniques, we would create a large and extensive model
which specifies all ensembles at the same time.

To reflect the requirements and the dynamics of ensemble-based systems, the stan-
dard component-based models must be extended. We want to be able to describe the
structure of an ensemble separately from, but on top of a standard component-based
platform. This allows to model each ensemble and its participants as self-contained
entities where other ensembles do not have to be considered. Contributing components
should be able to participate in several ensembles simultaneously without predefining
the composed behavior. Ensembles themselves should support dynamic composition in
terms of contributing components such that the collaboration is formed on demand. At
the same time, the ensemble — or rather the participants — should be able to decide
themselves which components should contribute to the ensemble to allow autonomic
self-management of the system.

Goal Specification and Verification: Ensembles are dynamically formed goal-
directed communication groups. Thus, the question arises how goals, which directly
aim at these dynamically formed communication groups, can be specified and verified.
Goal specification should focus on the ensemble under consideration within the context
of the underlying component-based platform.

When specifying goals in a standard-component-based design with one-fits-all com-
ponents for an ensemble-based system as described in the first paragraph, the goals
would have to be specified on the level of these all-mighty components. It would not
be possible to focus only on the relevant parts for the ensemble under consideration.
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Similarly, when verifying the standard component-based design against its goals, the
model would have to be abstracted to the relevant parts of the ensemble only. The
full-blown model would be too large and would contain many parts which would not
affect the ensemble at all. A more modularized ensemble model would help to facili-
tate specification and verification of goals for ensemble-based systems. Therefore, we
look for an ensemble model which describes the structure of the ensemble-based system
more modularized and which is grounded on a solid formal foundation allowing rigorous
analysis. Appropriate goal specifications capture the purpose of an ensemble and can
be verified in the formal ensemble model.

Implementation: Another question is how to realize an ensemble-based system in im-
plementation. In principle, complexity issues similar to finding an appropriate abstrac-
tion for the system description arise, i.e., how to break down the overall ensemble-based
system into groups of communicating entities which can be shared between ensembles.
A modularized structural model, as envisioned before, already provides abstractions to
describe the underlying component-based platform of an ensemble-based system and
all its employed ensembles independently. By transferring these ideas to the implemen-
tation, we would be able to sustain complexity reduction on this level as well. The
separate implementation of the participants of one ensemble from all other ensembles
furthermore allows to add, change and remove ensembles detached from each other.
However, special care has to be taken to avoid interferences between members of differ-
ent ensembles if they access and change the data of the same underlying components.

1.4 Solution Idea

To tackle the development of ensemble-based systems, we introduce the HELENA de-
velopment methodology to specify ensemble-based systems and their goals as well as to
verify and to implement them. The acronym HELENA stands for “Handling massively
distributed systems with FELaborate ENsemble Architectures”. HELENA’s main idea is
that an ensemble is not specified in terms of participating components, but in terms of
roles a component can adopt. A role is the logical entity needed to contribute to the
ensemble while a component provides the technical functionalities to actually execute
a role. Like that, we separate the basic capabilities which a component offers from the
goal-directed behavior an ensemble requires from its participants. Components take
over responsibility for a certain task in the ensemble by adopting roles. They therefore
no longer have to combine all capabilities in a one-fits-all implementation, but extend
their behavior on demand by acting in a certain role. By adopting several roles in
parallel, they are even able to participate concurrently in several ensembles without
predefining the composed behavior. We also address the heterogeneity of components
since we allow any component with appropriate capabilities to take over responsibility
for a certain role in an ensemble.

HELENA’s main features are best described by looking at a certain state of an
ensemble-based system modeled with HELENA. Fig. 1.2 shows a state of a system with
different components and roles. The bottom layer depicts the component-based platform
building the foundation of the ensemble-based system. In this system, three compo-
nents cl1, c2, and ¢3 exist (which are of two different types CompTypel and CompType2).
They are passive entities in the system and merely provide their capabilities to form
ensembles on top of them. The upper layer represents ensembles of collaborating roles
which are adopted by the underlying components. In this case, the system employs
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Figure 1.2: Ensemble state

two ensembles as shown by the dashed ellipses. In each ensemble, two roles (of differ-
ent types RoleTypel, RoleType2, and RoleType3) collaborate towards a common goal.
These roles are the active entities in the system which actually work towards the goals.
Therefore, a control state (indicated by ellipses in Fig. 1.2) is associated to each role
instance which represents the current progress of the execution of the behavior of the
role. To become active, a role has to be adopted by a component as shown by the de-
pendency arrows linking to the underlying component-based platform. The components
provide their resources to their adopted roles to persistently store data and to perform
(possibly complex) computations.

From this picture of a state of an ensemble-based system in HELENA, the main
differences between component-based design and role-based design become apparent.

Technical Functionalities vs. Goal-Oriented Behavior: The system is modeled
by two layers. One layer represents the underlying component-based platform.
Components merely serve as persistent data storage and offer services in the form
of operations which can be called. They do not exhibit any active behavior and
do not interact with each other (neither via message exchange nor via operation
calls). Thus, in contrast to a component-based design, components in a role-based
design are always passive objects which simply provide their resources, may it be
storage or computing power, upon request from a role. The second layer represents
goal-oriented ensembles of collaborating roles. Roles only exist within a certain
ensemble and have to be adopted by an appropriate component. In contrast to
components, they have a volatile nature in the sense that they only exist as long
as their comprising ensemble has not yet reached its goal. During their lifetime,
they allow to store data; however, and differently from components, the data is
lost as soon as the embracing ensemble terminates since the role does not persist
beyond the ensemble. Furthermore, roles are the active and interacting entities
in the system, i.e., they execute a dynamic behavior contributing to achieving the
ensemble goal in collaboration. In their behaviors, they use three different types
of actions: The first type of actions purely refers to the role layer. Roles can
(synchronously or asynchronously) exchange messages between each other and
store data on themselves. The second type of actions allows the role to access
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its owning component and thus fuses the two layers of roles and components
together. The role can store data on its owning component persistently or call
operations offering a particular service. The latter action is the only way to
involve a component into the goal-oriented behavior of the ensemble. By calling
an operation on the component, a role requests a particular service offered by the
operation from the component and temporarily hands over the control flow to the
component. Finally, the third type of actions supports management operations
for roles. Roles can create other roles and retrieve references to them in order to
communicate with them. This kind of dynamism stands out since it provides an
autonomic and flexible way of managing the composition of an ensemble.

Ensemble Views: The upper goal-directed layer is organized in ensembles. This al-
lows to model each collaboration from the viewpoint of a single ensemble only
and independently from other ensembles. Each ensemble merely has to focus on
its constituent participants in the form of roles. Thereby, each role represents one
particular behavior required in the collaboration of an ensemble. In contrast to a
component-based design, the component is therefore not a collection of all offered
behaviors, but rather is structured by its adopted roles.

The HELENA development methodology is based on a rigorous typing discipline
which distinguishes between types and instances. Fig. 1.2 is only concerned with the
instance level. It shows a snapshot of the currently existing component instances of
the underlying component-based platform and shows how ensembles are formed and
executed from active role instances on top of it. However, these instances are rigorously
typed and are only allowed to interact according to the conceptual relationships between
their types defined on type level. On the one hand, we specify the properties and
capabilities of types on this type level. For example, a component instance of a certain
component type is able to persistently store certain data items in attributes and can
offer particular services through operations. A role instance of a certain role type is able
to store volatile data items in attributes and can communicate with instances of other
role types through certain messages. On the other hand, the type level determines the
conceptual relationships between those types in an ensemble structure. For example,
the ensemble structure specifies which component types can actually adopt a certain
role type and which role types must interact to form a goal-oriented ensemble.

1.5 Contributions

The contributions of this thesis lead to the HELENA development methodology for
ensemble-based systems (cf. Fig. 1.3). The methodology addresses the particular chal-
lenges of ensemble-based systems in the most prominent development phases: domain
modeling, goal specification, design, verification, and implementation.

Let us first summarize the HELENA development methodology in general before
we introduce the particular contributions which this thesis provides to each of the
phases. In the first step, the domain of an ensemble-based system is described as
an ensemble structure building on top of a component-based platform. The ensemble
structure captures the properties and capabilities of all participants of an ensemble and
the structural relationships between them. Based on the domain model, the goals of the
ensemble are specified as linear temporal logic (LTL) formulae. The goal specification
thereby formalizes in terms of formulae over the participants’ properties which state each
participant should reach or maintain. With these goals in mind, the dynamic behavior
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Figure 1.3: The HELENA development methodology for ensemble-based systems

of the system is designed as a set of behaviors for the participants. Together with the
ensemble structure as the system’s structural model, these behaviors form the HELENA
design model. To show that the specified behaviors of the ensemble participants actually
achieve the global goals of the ensemble (in the context of the ensemble structure),
the HELENA design model is then verified against the goals. For that purpose, we
translate the HELENA LTL goals and the HELENA design model to PROMELA, the
input language of the model-checker Spin, and check goal satisfaction in the translated
PROMELA verification model. On the other hand, we also execute those HELENA models
after verification. We provide the Java framework jHELENA which realizes all HELENA
concepts in Java. By implementing the HELENA design model with this framework, we
are able to realize the model using the HELENA abstractions. Both translations, from
HELENA to PROMELA and to JHELENA are supported by automated code generators.

The Modeling Approach of HELENA: Syntax and Semantics

In HELENA, we employ a formal modeling approach building on a component-based
model of the underlying system. The basic entities of the model are components spec-
ified by their type which provide common capabilities available across all the roles the
component can adopt. On top of that, we define roles, more precisely role types, which
are able to take over responsibility for a certain part of the ensemble task. Each role
type must be supported by at least one component type whose instances are able to
adopt that role. The role types add role-specific attributes and communication abilities.
To define the structural characteristics of collaborations, we use ensemble structures.
They define which role types are needed in a collaboration and determine which role
types may exchange which message types. Besides the structural relationships in an
ensemble, we specify the dynamic behavior of each role type in a special kind of process
algebra. We use standard process constructs like termination, action prefix, guarded
choice, and process invocation to form process expressions. However, specific actions
address the particular properties of an ensemble-based system. We support role cre-
ation and retrieval on top of a component-based platform, communication between roles
by (synchronous or asynchronous) message exchange, but also communication with the
underlying components via operation calls. The complete ensemble specification defines
an ensemble structure together with behavior specifications for all involved roles, thus
determining the collaboration needed to solve a specific task. Although all behaviors
of the contributing roles are predefined, the collaboration remains adaptive since role
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behaviors allow to start new roles on demand and therefore to change the composition
of the ensemble at runtime.

The evolution of an ensemble (and therefore its semantics) is described by labeled
transition systems. The states of the semantic labeled transition system describe the
currently existing role instances and which component instances currently adopt which
roles. Transitions between ensemble states are triggered by role instance creation or
retrieval, (synchronous or asynchronous) message exchange between roles, and access
to the underlying components. The semantic labeled transition system follows general
preconditions for firing transitions and postconditions determining the effects of dynam-
ically changing ensemble compositions. Structural operational semantic rules define the
allowed transitions.

Goal Specification and Verification for HELENA Models

Exploiting the formal semantics of HELENA, we propose how goals can be specified
and checked for a given HELENA model. A goal can be an “achieve goal” such that
the ensemble will terminate when the goal is reached, or a “maintenance goal” such
that a certain property is maintained while the system is running. We specify those
goals with linear temporal logic (LTL). The basic atomic propositions for HELENA LTL
goals can refer to data stored on roles or components as well as states reached in the
behavior of roles. Representing the HELENA semantics in PROMELA, the input language
for the explicit state model-checker Spin, we are able to verify those LTL properties in
a given HELENA model. For that, we define a formal translation from HELENA to
PROMELA. Furthermore, we formally prove for a subset of HELENA that its PROMELA
translation satisfies the same set of LTL formulae such that model-checking results can
be transferred from PROMELA to HELENA.

Implementing HELENA Models with Object-Orientation

To express role-based HELENA models with object-orientation, we have to realize the
two key principles underlying HELENA. For each ensemble view, we introduce a separate
container composing all participants of the collaboration and allowing communication
between the members. To separate the technical functionalities from goal-oriented be-
havior when contributing to an ensemble, we slice the realization of an ensemble into
components and roles. To make roles active, they are implemented as Java threads on
top of a component. Role instances are bound to specific ensemble containers while
components can adopt many roles in different concurrently running ensembles. As a
proof of concept, we provide the JHELENA framework, a Java implementation of the He-
LENA syntax and semantics following the ideas for expressing role-based model elements
with object-oriented concepts. The framework consists of two layers, a metadata layer
and a developer interface, and an orthogonal system manager as shown in Fig. 1.4.
The metadata layer allows to define ensemble specifications in terms of component types
and ensemble structures (and thus role types etc.). The developer interface provides
the basic functionality to realize an actual ensemble-based application and implements
the execution semantics of HELENA. The system manager is responsible to instantiate
ensemble structures, to create the underlying component-based platform, and to create
and run ensembles on top of it.
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Figure 1.4: Architecture of the jHELENA framework

Tool Support for HELENA

To support the whole development cycle of ensemble-based systems, we provide an
Eclipse plug-in for specification, verification and execution of ensembles. The domain-
specific language HELENATEXT provides a concrete syntax for ensemble specifications
supporting roles and ensembles as first-class citizens. Building on XTEXT, it is fully in-
tegrated into Eclipse providing a HELENATEXT editor with syntax highlighting, content
assist, and validation. From a HELENATEXT specification either a verification model in
PROMELA or an execution model in Java can be generated. The model transformation
from HELENATEXT to PROMELA realizes the rules introduced in the formal translation
from HELENA to PROMELA in XTEND. The generated PROMELA verification model
can be used directly for verification with the model-checker Spin. The code generation
from HELENATEXT to Java, also written in XTEND, generates executable code for the
JHELENA framework.

Case Study

As a proof of concept, the HELENA development methodology is illustrated by a small
peer-to-peer example for distributed file sharing throughout the thesis. However, to
show general applicability, we provide a larger case study in the field of voluntary
peer-to-peer cloud computing. The case study builds on a platform of distributed,
voluntarily provided computing nodes. The nodes interact in a peer-to-peer manner to
execute, keep alive, and allow use of user-defined software applications. Starting from
the description of the case study, we derive an ensemble structure describing the domain
and formulate HELENA LTL goals to capture the main purpose of the system. Based on
the ensemble structure and the goals, we develop an ensemble specification with goal-
directed behaviors for all employed roles. Goal satisfaction is checked for the HELENA
model using the model-checker Spin and we report on experiences of model-checking
in terms of usability, performance and memory consumption. Finally, we realize the
model with HELENA concepts gaining a clear and easy to understand implementation
from the encapsulation of responsibilities in roles.

Modeling Awareness and Adaptation with HELENA

We show that the concept of roles is also well-suited to model self-adaptive systems
situated in an environment. A self-adaptive component keeps track of its individual
and shared goals, perceives its internal state as well as its environment, and adapts
its behavior accordingly. Such adaptations result in changing the behavioral mode
in response to perceptions. Following the idea of roles, different behavioral modes
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can be realized as roles. Changing the behavioral mode then means to adopt another
role. Therefore, we propose a rigorous methodology to develop self-adaptive systems
extending our HELENA development methodology (cf. Fig. 1.5).
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Figure 1.5: The HELENA development methodology for self-adaptive systems

We start from an adaptation specification. It defines the problem domain by em-
ploying a so-called signature of the self-adaptive system and the triggers (when) and
actions (what) for self-adaptation by employing a so-called adaptation automaton. To
realize the self-adaptive system, we propose the HELENA Adaptation Manager (HAM)
pattern as a blueprint for how the system adapts and how the application logic is
performed. By applying this pattern, the adaptation specification is transformed to a
role-based adaptation specification. The key idea of the transformation is to express
different behavioral modes of a component by roles, thus encapsulating independent
parts of the application logic in self-contained roles. Being aware of the environment is
realized monitoring awareness data via dedicated sensor roles. Furthermore, an adapta-
tion manager — yet another role of the component — controls switching between different
mode roles based on the adaptation automaton. Relying on the role-based adaptation
specification, the application logic executed in each behavioral mode is specified by a set
of mode behaviors for each mode role. Finally, we integrate the role-based adaptation
specification with the mode behaviors by a second model transformation and gain a full
HELENA design model with an ensemble structure describing the proposed role-based
architecture of the self-adaptive system and a set of role behaviors for all contributing
roles, behavioral modes, sensors and the adaptation manager. This model can then be
analyzed and executed with the verification and implementation techniques and tools
of HELENA as described above. All steps in the HELENA development methodology are
illustrated at an adaptive robotic search-and-rescue scenario.

1.6 Outline

The remainder of this thesis is structured as follows:

Chap. 2: Syntax — Speaking HELENA: The formal syntax for the specification of
HELENA models is introduced in this chapter. An ensemble structure describes
the structural relationships between participants of an ensemble and a particular
process algebra is used to specify the dynamic behavior of participants.

Chap. 3: Semantics — Understanding HELENA: This chapter defines the formal
semantics for ensemble specifications. The semantic domain is labeled transition
systems which evolve ensemble states through role creation and retrieval, message
exchange between roles, and access to the underlying component-based platform.
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Chap. 4: Goal Specifications — Being Successful with HELENA: Engsembles are
formed to collaborate towards a global goal. In this chapter, we introduce HELENA
LTL, a logic based on LTLwith HELENA specific atomic propositions. With this
logic, global goals can be specified for a HELENA ensemble specification.

Chap. 5: Verification — Being Sure about Goal Satisfaction: In this chapter,
analysis techniques are proposed to verify goals in HELENA models. We represent
the HELENA model in PROMELA and verify the resulting model against the given
properties by employing the explicit state model-checker Spin.

Chap. 6: Correctness Proof — Allowing HELENA to Rely on Spin: To be able
to transfer model-checking results from PROMELA to HELENA, we prove semantic
equivalence between the two specifications. In this chapter, we formally show that
the semantic labeled transition systems of an ensemble specification in a simplified
version of HELENA and its PROMELA translation are stutter trace equivalent.
They therefore satisfy the same set of LTL formulae such that our approach of
model-checking with Spin is correct.

Chap. 7: Implementation — Vivifying HELENA with jHELENA: In this chap-
ter, we show how the role-based modeling elements in HELENA can be expressed
through object-oriented concepts. The jHELENA framework serves as a proof of
concept of the translation from HELENA to Java.

Chap. 8: HELENA Workbench — Working with HELENA: To support the develop-
ment with HELENA in practice, we present the HELENA workbench in this chapter.
The workbench is fully included into Eclipse and allows to specify HELENA models
in the dedicated domain-specific language HELENATEXT. For verification, HE-
LENATEXT models are automatically transformed to PROMELA to serve as input
for the model- checker Spin. For execution, Java code is generated which relies
on the JHELENA framework to express all HELENA concepts as first-class entities
in Java.

Chap. 9: HELENA Development Methodology — Developing with HELENA:
In this chapter, we combine all techniques from the previous chapters together
resulting in the rigorous HELENA development methodology for ensemble-based
systems which has already been sketched before.

Chap. 10: HELENA@Work — Applying HELENA to the Science Cloud Plat-
form: We apply HELENA to a larger case study from the field of voluntary peer-
to-peer cloud computing. The HELENA development methodology is exemplarily
exercised at the case study and we present a real-life implementation. The imple-
mentation combines the HELENA concepts and their object-oriented realization
with underlying network and communication technologies.

Chap. 11: Role-Based Adaptation — Being Adaptive with HELENA: We pro-
pose a rigorous methodology to develop self-adaptive systems from specification
to design. We specify the system’s adaptation logic through adaptation automata.
The design is realized in HELENA refining the specification by providing a role-
based architecture and adding application logic in terms of role behaviors for
different modes of the system.
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Chap. 12: Conclusion: Lastly, we conclude by providing a résumé of our experiences
with HELENA. We summarize advantages, challenges, and limitations of applying
it and suggest further research directions in order to progress HELENA.

The appendices contain the detailed correctness proof which was only outlined in
Chap. 6, a user guide for the HELENA workbench and the specification and generated
source codes of the p2p example, the science cloud case study and the search-and-rescue
scenario.

Before the bibliography, the author’s publications are listed separately including
statements about her contributions to joint works used in this thesis. Moreover, in each
chapter, the section on “publication history” explains which publications provided the
basis for the content of the chapter and how they were extended for this thesis. Related
work, a summary and future perspectives are discussed for each chapter separately.



Chapter 2

Syntax

Speaking HELENA

The role-based modeling approach HELENA provides concepts to describe systems of a
large number of components which dynamically team up in possibly concurrently run-
ning ensembles to perform global goal-oriented tasks. To participate in an ensemble, a
component adopts a certain role. This role adds role-specific behavior to the component
and allows collaboration with other components playing roles. By switching between
roles, a component changes its currently executed behavior. By adopting several roles
in parallel, a component concurrently executes different behaviors.

HELENA ensemble specifications describe the structural and dynamic properties of
an ensemble on type-level. To define the structure of an ensemble, an ensemble specifi-
cation determines which types of roles have to participate in an ensemble, which types
of components are allowed to adopt the roles, and how many instances of each role type
can collaborate in the ensemble. To define the dynamic behavior of an ensemble, each
role type is equipped with a role behavior which is later on executed by each existing
instance of the role type possibly interacting with other role instances.

In Sec. 2.1, we introduce a peer-to-peer file sharing scenario which is used as a
running example throughout this thesis. Afterwards, we outline the syntax of HELENA
ensemble specifications. We start by describing the specification of the underlying
component-based platform in Sec. 2.2. In Sec. 2.3, we introduce ensemble structures
which determine the structural relationships in a collaboration of components by roles.
To gain a complete ensemble specification, each role type is equipped in Sec. 2.4 with
a dynamic role behavior specified as a process term. We conclude with related work
on the concepts used in HELENA in Sec. 2.5 and a short summary in Sec. 2.7. All
subsections are illustrated with the p2p example introduce in the previous chapter.
The full ensemble specification of the p2p example can be found in Appendix C.1.

Notation: Whenever we work with tuples ¢t = (¢1,...,t,), we may use the notation
ti(t) to refer to the value t; of ¢t. If t; denotes a name, we often write ¢ synonymously
for the name ¢;.

Notation: 7 denotes a list of 2.

2.1 P2P Example

Throughout this thesis, we illustrate the HELENA concepts and tools based on the
example of a peer-2-peer (p2p) network supporting the distributed storage of files which
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can be retrieved upon request. Several peers form the underlying component-based
platform. They are connected in a ring structure and are able to store files and to print
their contents. Whenever a file is requested, some peers work together to find the file in
the network and to transfer it to the requester. To this end, an appropriate ensemble is
formed whose goal is to finally deliver the requested file to the requesting peer. Three
different roles are necessary in the ensemble: One peer plays the role of the requester
of the file, other peers act as routers and the peer storing the requested file adopts the
role of the provider of the file. All these roles can be adopted by peers and rely on their
capabilities to store files and print them. In the following chapters, we will derive the
full specification of this example in HELENA. We will formally define the goal of file
transferal and check it in the ensemble specification. Finally, we provide an executable
implementation of the example based on the JHELENA framework.

2.2 Component-Based Platform

Ensembles are built on top of a componeni-based platform. The component-based plat-
form describes the architectural and functional properties of the underlying target sys-
tem on which ensembles are dynamically formed. Hence, the components provide the
persistent foundation of ensemble-based systems. Components store data and main-
tain associations to other components. Both, data and associations, persist across the
life-time of different dynamically evolving ensembles. They additionally provide their
computing resources in the form of operations which can be called by the roles which
components adopt in ensembles.

Therefore, components are pure data containers and computing resources without
any active behavior. They are just passive objects on which the active entities, the
roles, rely on for storing persistent data or performing computations. Components are
not meant to exchange any messages or data between each other which the adopted
roles are responsible for.

To represent data in HELENA, we assume given a set D of data types (like bool
for boolean values, int for integer values, or double for floating-point numbers). The
semantic domain of a data type dt € D is given by [dt]. To store persistent data, each
component type offers a set of attributes. Attributes are characterized by their name
and typed by a data type from D.

An attribute is of the form atnm:dt such that atnm is the name of the attribute
and dt € D its data type.

To store connections to other components, each component type offers a set of
directed component associations. An association is identified by its name and the type
of the component to which this association refers to.

A component association is of the form assocnm:ct such that assocnm is the
name of the association and ct the component type referred to by this association.

To provide computing resources, each component type offers a set of operation types
which can be called by role instances later on. An operation is identified by its name
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and a list of typed formal data parameters for inputs. The effect of the operation is
not further specified by the operation type (e.g., by pre- and post-conditions), that
means the operation could have side-effects. An operation can just use the resources of
a component to compute something.

Def. 2.3: Operation Type

|

An operation type op is of the form opnm(x : dt) such that opnm is the name_gf
the operation type and x : dt is a list of formal parameters for data with type dt.

To classify components, we use component types. Fach component type is identified
by its name and offers a set of attributes to store data, a set of component associations,
and a set of operation types which can be called on and executed by (instances of)
the component type. Note that by using sets, we consider all attributes, component
associations, and operations unique per component type.

Def. 2.4: Component Type

A component type ct is a tuple (ctnm, ctattrs, ctassocs, ctops) such that ctnm
s the name of the component type, ctattrs a set of attributes, ctassocs a set of
component associations, and ctops a set of operation types.

Example: In the p2p example introduced in Sec. 2.1, we employ a set of components
connected in a ring structure. They support the distributed storage of files and allow
to retrieve the files upon request. For simplicity, we only consider one single file which
is stored and exchanged in the network. All components in the network are of the same
type Peer. Formally, the component type for a peer is given by

Peer = ("Peer", {hasFile:bool, content:int}, {neighbor: Peer}, {printFile()}).

The component type Peer has the name "Peer". The attribute hasFile of type bool
indicates whether the peer has the file independently from the file’s content information
represented by the attribute content of type int (we assume that the content can be
stored as an integer). A peer is furthermore connected to its neighboring peer given
by the association neighbor:Peer. Lastly, a peer can print the content of the file by
executing the operation printFile which does not have any parameters. Note that the
effect of the operation is not specified by the operation type, i.e., printing the file is just
the intuitive meaning of the operation printFile.

For visualization, we use a graphical representation inspired by UML class diagrams
which is depicted in Fig. 2.1. It consists of three parts: the name of the component
annotated with the stereotype «component type», the component attributes, and the
component operations. Component associations are shown by arrows pointing to com-
ponent types.

«component type»
Peer

hasFile:bool
content:int neighbor

printFile()

Figure 2.1: Component type Peer in graphical notation
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2.3 Ensemble Structures

For becoming active and performing certain tasks, components team up in ensembles.
Each participant in the ensemble contributes specific functionalities to the collaboration,
we say, the participant plays a certain role in the ensemble. Roles are the active entities
in the system and collaborate with each other to reach a goal, possibly commonly shared
in the ensemble.

2.3.1 Role Types

For collaboration, roles exchange messages which are classified by their type. Each
message type has a name, a list of formal parameters to pass references of role instances
for further communication, and a list of formal parameters to pass ordinary data.

A message type msg is of the form msgnm(X : rt)(x : dt) such that msgnm is
the name of the message type, X is a list of formal role instance parameters with
type ﬁ, and  : dt is a list of formal data parameters with type dt.

Roles themselves are also classified by their type. The definition of a role type always
builds upon a given component-based platform specified by a set of component types.
A role type determines the types of the components that are able to adopt this role.
It also defines a set of role-specific attributes to store data which is only relevant while
performing the role (and hence is volatile just as role-playing), and sets of message types
for outgoing and incoming messages for interaction and collaboration with other roles.
Note that by using sets, we assume that all attributes and messages types as well as
adopting component types are unique per role type.

Given a set CT of component types, a role type rt over CT is a tuple rt =

(rtnm, rtcomptypes, rtattrs, rtmsgs .., rtmsgs;, ) such that

o rinm declares the name of the role type®,

o rtcomptypes C CT is a finite, non-empty set of component types whose
instances can adopt the role,

e rtatlrs is a set of role-specific attributes,

o 1imsgs,,: ond rtmsgs;, specify sets of message types for outgoing and in-
coming messages resp. supported by the role type.

“In the following, we often write 7t synonymously for the name rtnm of the role type.

Example: In the context of our p2p network, we consider the task of requesting and
transferring a file. To perform this task, we envision three role types: requester, router,
and provider. The requester wants to download the file from the network. Thus, it
requests the address of the peer storing the file from the network, while using the
routers as forwarding peers of its request. Once the requester knows the address, it
directly requests the file from the provider for download. Each role can be adopted
by instances of component type Peer, but exhibits different capabilities to take over
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responsibility for the transfer task: the requester must be able to request the address of
the provider from a router and receive the reply. Afterwards, it must be able to request
the file from the provider and receive the content. The router must be able to receive a
request for the address, to send a reply back to the requester or to forward it to another
router. The provider of the file must be able to receive a request for the file and send
the content back to the requester.

The formal specification of the three role types is given in Fig. 2.2. A Requester has
the name "Requester" and can be adopted by a component instance of type Peer. It
has a role-specific attribute hasFile of type bool to store whether it already received the
requested file or not. To request the address of the provider, it supports the message
reqAddr(req: Requester)() as outgoing message. The parameter req is used to transfer
the reference of the requesting peer to the receiver of this message such that an answer
can be sent back to the requesting peer via this reference. To receive the address of
the provider, the requester supports the message sndAddr(prov:Provider)() as incoming
message. The parameter prov thereby holds the reference of the provider of the file.
Downloading the file is requested with the message reqFile(req: Requester)() supported
as outgoing message by the requester. The actual content is transferred to the requester
with the incoming message sndF'ile()(content:int) where the parameter content of type
int holds the actual content. The other two role types support the corresponding
messages, e.g., the Router supports receiving a request for the address of the provider,
replying to the request and forwarding the request while the Provider supports receiving
a request for the content of the file and transferring the file’s content.

Requester ("Requester",{Peer}, {hasFile:bool}, msgsout(rq), msgsin(rq))

with msgsout (rq) {reqAddr(req:Requester)(), reqFile(req: Requester)() }

{sndAddr(prov: Provider)(), sndFile()(content:int)}

and msgsin (rq)

Router

("Router", { Peer}, 0, msgsout(ro), msgsin(ro))
{reqAddr(req: Requester)(), snd Addr(prov: Provider)() }
{reqAddr(req:Requester)()}

with msgsout (ro)

and msgsin (r0)

Provider

("Provider",{Peer}, 0, msgsout(pv), msgsin(pv))
{reqFile(req:Requester)()}
and msgsin (pv) = {sndFile()(content:int)}

with msgseut (pv)

Figure 2.2: All role types for the p2p example

A graphical representation of all three role types is given in Fig. 2.3. Similarly
to the graphical representation of component types, it again consists of three parts
inspired by UML class diagrams: The first compartment specifies the name of the
role type annotated with the stereotype «role type». The notation RoleType:{Peer}
indicates that any component instance of type Peer can adopt the role RoleType. The
second compartment specifies role-specific attributes and the third compartment lists
all supported messages together with the modifiers in and out.

2.3.2 Ensemble Structures

To define the structural characteristics of a collaboration, an ensemble structure deter-
mines the type of an ensemble which is able to perform a certain task. It specifies the
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«role type»

Requester:{Peer} «role type»
hasFile:bool Router:{Peer} «role type»

Provider:{Peer}

out regAddr(req:Requester) ()

in sndAddr(prov:Provider) () out regAddr(..)()

out reqFile(req:Requester) () in regAddr(..)() in reqgFile(..)()

in sndFile() (content:int) out sndAddr(..)() out sndFile()(..)
(a) Role type Requester (b) Role type Router (c) Role type Provider

Figure 2.3: All role types for the p2p example in graphical notation

set of role types which are needed in the collaboration and how many instances of each
role type may (or must) contribute (note that by using a set of role types, we assume
that role types are unique per ensemble structure). The roles contributing to the en-
semble can then exchange messages which are outgoing at the source role and incoming
at the target role. Interacting role instances can use synchronous or asynchronous com-
munication via input queues. An ensemble structure specifies, for each role type, the
(finite) capacity of the input queue of each role instance of that type where the value 0
expresses synchronous communication. An ensemble structure is always built on top of
a given set C'T" of component types whose instances can adopt roles as specified in the
ensemble structure.

Let CT be a set of component types. An ensemble structure X over C'T is a tuple
Y = (nm, roletypes, roleconstraints) such that

e nm is the name of the ensemble structure,
o roletypes is a set of role types over C'T' and for each rt € roletypes,
e roleconstraints(rt) is a triple of

— the minimal number min € N of role instances of rt,

— the mazimal number maz € NT U {x} of role instances of rt (* refers
to the UML multiplicity of arbitrarily many instances), and

— the finite capacity cap € N of the input queue of rt.

An ensemble structure X is called closed ensemble structure if each outgoing mes-
sage type supported by some role type of 3 is matched by an incoming message type
supported by any (possibly the same) role type of ¥, i.e.,

Vrt € roletypes(X), msg € rtmsgs,,,(rt) . Irt’ € roletypes(X) : msg € rtmsgs,, (rt') A
Vrt € roletypes(X), msg € rtmsgs;, (rt) . Irt’ € roletypes(X) : msg € rtmsgs . (rt').

Otherwise the ensemble structure is called open. In the following, we only consider
closed ensemble structures.

Example: The ensemble structure for the p2p example consists of the three role types
Requester, Router, and Provider where we now associate a minimal and maximal number
for the allowed instances per role type and capacities for their input queues. Its formal
representation is given in Fig. 2.4

For instance, exactly one instance of the role type Requester is required in a file
transfer ensemble while arbitrarily many instances of the role type Router might be



2.3. ENSEMBLE STRUCTURES 23

Siransfer = (" Siransfer ", { Requester, Router, Provider}, roleconstraints)
with roleconstraints(Requester) = (1,1, 2),
::(1’*72L

roleconstraints(Provider) = (0,1,1).

roleconstraints(Router)

Figure 2.4: Ensemble structure X qnsfer for the p2p example

necessary to route messages through the network. The input queue of an instance of
the role type Requester or Router can store up to two messages, of an instance of the role
type Provider only one message. Which messages can be exchanged between each of
the role types is implicitly given by the intersection of outgoing and incoming message
types of two role types.

Fig. 2.5 shows a graphical representation of the ensemble structure Xignser for
the p2p example. This graphical representation makes some of the implicitly specified
properties more explicit. Firstly, it depicts by dependency arrows with the stereotype
«adoptedBy» that each role type in the p2p example can be adopted by the component
type Peer. Secondly, minimal and maximal numbers, and capacities are explicitly shown
in a separate compartment of each role type. Lastly, arrows between role types denote
sets of messages which can be exchanged between the roles, i.e., which are outgoing
for the source role and incoming for the target role. For instance, the Requester can
send the message regAddr(req:Requester) () to a Router. This message will be used
for requesting the address of a Provider for the requested file such that the file can be
directly downloaded afterwards using the messages between Requester and Provider.

«role type»
Requester

min

O
reQP\dd"k‘ 3
O
ndhed” ¢

re .
1 quZe(
1 sn 20
5 dFiZe()(
)

max
cap
«role type» : «role type»
Router | Provider
min = 1 «adop%edBy» min = 0
max = \\“\\‘;\gadoptedBy» | «adoptedBy» _ -~~~ |max =1
cap = 2 R ! -7 cap = 1
~xVo--
«component type»
regAddr(..) () Peer

Figure 2.5: Ensemble structure ¥;nsfer for the p2p example in graphical notation

2.3.3 Well-Formedness of Ensemble Structures

An ensemble structure has to satisfy two conditions to be well-formed. Firstly, the
ensemble structure determines the minimal number and maximal number of instances
for each role type. Thus, we must take care that those two numbers are ordered.
Secondly, in the context of an ensemble structure, only the role types named in the
ensemble structure are known. Thus, the messages exchanged between role types of
the ensemble structure can only refer to those known role types as parameters. These
conditions are expressed by well-formedness of ensemble structures.
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An ensemble structure X = (nm, roletypes, roleconstraints) is well-formed if for
all role types rt € roletypes(X),

(1) the minimal number of allowed role instances is less or equal to the mazimal
number of allowed role instances,
i.e., min(roleconstraints(rt)) < max(roleconstraints(rt)), and

(2) all types rt’ of role instance parameters of all message types
msg € rtmsgs . (1t) U rtmsgs;, (rt) are part of the ensemble structure ¥,
i.e., rt’ € roletypes(X).

Example: The ensemble structure X4ysfer for the p2p example shown in Fig. 2.4 resp.
Fig. 2.5 is well-formed according to Def. 2.8. Firstly, the minimal and maximal number
are ordered. Secondly, from Fig. 2.2 resp. Fig. 2.3, we know that only the message
types reqAddr(req:Requester)(), sndAddr(prov:Provider)(), and reqFile(req:Requester)()
have role instance parameters. Their role types Requester and Provider are part of the
underlying ensemble structure Xy qnsfer-

2.4 Ensemble Specifications

After having modeled the structural aspects of ensembles, we focus on the specification
of behaviors for each role type of an ensemble structure. A role behavior declaration is
given by a process expression and a set of process declarations which can be called in
that process expression.

2.4.1 Process Expressions

In HELENA, process expressions are built from termination, action prefix, nondetermin-
istic choice, if-then-else, and process invocation. Note that HELENA process expressions
do not support parallel composition. In HELENA, a role is always responsible for a
specific task which we consider to be achieved by a (possibly branching) sequential pro-
cess. If a component is meant to perform two tasks in parallel, it has to adopt two roles
in parallel and therefore to concurrently execute their sequential role behaviors. The
HELENA semantics presented in the next chapter will support this kind of concurrency
since it formalizes the concurrent execution of all roles of a component in the context
of an ensemble.

There are eight different kinds of actions which can be used in action prefix: creation
and retrieval of role instances, sending (!) and receiving (?) a message, operation calls
on the owning component, setting attribute values for the role instance or the owning
component!, and state labels. Intuitively, these actions must fit to the declared ensemble
structure, e.g., messages can only be sent by roles which declare them, as we discuss it
more formally in the following subsection about well-formedness of process expressions.

Guards used in if-then-else constructs are the boolean primitives true and false,
data variables (e.g., from a message reception or the result value of an operation call),
access of component attributes or role attributes, the predefined query plays(rt, C') to
request whether the component instance identified by C' currently plays the role rt,

!Getters are not provided as distinct actions, but the values of attributes can be retrieved and
accessed in data expressions as we will present in the following.
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data expressions (e.g., summation and subtraction or relations comparing expressions
and constants with the usual relational operators) or any boolean expression built from
these primitives using propositional operators like ! and &&. In the following subsection,
we will formalize well-formedness of guards to determine that they are actually boolean.

Notation: We use the special, predefined role instance variable self to refer to the
current role instance and the special, predefined component instance variable owner
to refer to the owning component instance. Furthermore, the notation owner.assocnm
is used to refer to the name of the component association assocnm:ct of the owning
component instance.

In the following definition, P, P;, and P» are process expressions, a is an ac-
tion, guard, guard;, and guards are guards, N is the name of a declared process,
rt is the name of a role type, C is either the special, predefined variable owner or
owner.assocnm referring to the name of a component association of the owning compo-
nent instance, msgnm is the name of a message type, opnm is the name of an operation
type, attr is the name of an attribute (either of a component type or a role type), X
and Y are role instance variables (including the special, predefined variable self), x is
a data variable?, and e is a data expression.

A process expression P is built from the following grammar:

P ::= quit (termination)
| a.P (action prefiz)
| PL+ P (nondeterministic choice)
| if (gquard) {P;} else { P} (if-then-else)
| N (process invocation)

a = X< create(rt,C) (role instance creation)
| X<—get(rt,C) (role instance retrieval)
| Y!msgnm(?)(?) (sending a message)
| 7msgnm(m)(m) (receiving a message)
| [z =] owner.opnm (7€) (component operation call)
| owner.attr = e (component attribute setter)
| self.attr =e (role attribute setter)
| label (state label)

guard == true | false (boolean primitives)

| © (data variable)
| owner.attr | self.attr (attribute access)
| plays(rt, C) (plays query)
| e (data expression)
| lguard | guardy && guards | ... (propositional operators)

2We distinguish between role instance variables and data variables since role instance variables can
be used as recipients for messages later on, for instance for callbacks.
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In the following, we give an intuitive meaning for each of the process constructs and
actions in the context of an ensemble structure. The explanations anticipate the formal
semantics in Chap. 3.

Termination is expressed by the process construct quit. When using a process expres-
sion to describe the behavior of a role, quit first advises the owning component
of the role to quit playing the role and then terminates the execution of the role
behavior.

Action prefix is of the form a.P. This process construct first executes the action a
and then behaves like the remaining process P.

Nondeterministic choice is of the form P; + P». Nondeterministic choice in HELENA
realizes external (nondeterministic) choice: The executability of the first action of
either branch, the process expression P; and the process expression Ps, is checked.
If both branches are executable, one branch is selected nondeterministically for
execution. If only one is executable, this branch is selected for execution. If none is
executable, the execution of the whole nondeterministic choice process construct
is blocked until at least one of the branches becomes executable. Importantly,
the question of executability just arises in the context of an ensemble. A single
role instance can always execute its actions, but in collaboration with other role
instances, some actions might not be executable, e.g., one role instance wants to
send a message to another role instance which is currently not able to receive it.

If-then-else is of the form if (guard) {P;} else {P,}. This process construct allows
to choose between two process expressions P; and P, based on the value of the
boolean guard guard. The if-then-else process construct can only be executed
if either the guard evaluates to true and the first action of the first process
expression P is currently executable or the guard evaluates to false and the first
action of the second process expression P, is currently executable. Otherwise
the whole if-then-else process construct blocks until one of the aforementioned
execution conditions holds.

Process invocation is of the form N. This process construct simply invokes the
process with the name N and instantaneously continues by executing this process.

A create action is of the form X<-create(rt,C). It creates a new role instance of
type rt which is adopted by the component instance identified by C, and referenced
by the variable X of type rt in the sequel.

A get action is of the form X<—get(rt,C). It retrieves an existing role instance of
type rt already adopted by the component instance identified by C' and binds a
reference to the found role instance to the role instance variable X. This actions
blocks if the component instance does not currently adopt such a role. Note
that there can only be one active instance of each role type per component in an
ensemble.

A send action is of the form Y!msgnm(?)(?). It expresses that a message with
name msgnm and actual parameters X and ¢ is sent to a role instance referenced
by Y. The first parameter list )? consists of role instances to be passed to the
receiver; with the second parameter list ?, data is passed to the receiver. This
action blocks if the message queue of the receiving role instance is full.
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A receive action is of the form 7msgnm(X—r1>f)(m) It expresses the reception of
a message with name msgnm. The values received on the parameters are bound
to the variables ? for role instances and to the variables ' for data. This action
blocks if the message queue of the receiving role instance is empty.

A component operation call is of the form [z =] owner.opnm(€). It calls the
corresponding operation with the name opnm on the owning component of the
role instance with the given parameters @ and binds the retrieved value to the
data variable z if the operation returns a value in one atomic step. Note that in
HELENA, we do not specify any effect of operations in an ensemble specification
(i.e., when defining a component type with its operations). That means that
semantically, an operation call can change the state of an ensemble other than
progressing a role behavior; more specifically, it can have side-effects on the state
of the owning component instance as we will see in the next chapter about the
semantics of HELENA.

A component attribute setter is of the form owner.attr = e. It sets the value of
the attribute attr of the owning component of the current role to the value e in
one atomic step.

A role attribute setter is of the form self.attr = e. It sets the value of the attribute
attr of the current role to the value e.

A state label is of the form label. It can semantically be seen as a silent non-
communication action. We will only use state labels during verification to explic-
itly refer to a particular state in a role behavior. State labels do not contribute to
the actual goal-directed behavior of a role except labeling a certain state in the
role behavior.

The variables Y, 7 used in message reception and operation call, and the variable
X for role instance creation and retrieval open a scope which binds the open variables
with the same names in the successive process expression. The bound variables receive
a type as declared by the role types ﬁ and rt or dt resp.

2.4.2 Well-Formedness of Process Expressions

In the context of an ensemble structure ¥ = (nm, roletypes, roleconstraints), a pro-
cess expression has to satisfy some conditions to be well-formed. First of all, actions
and guards employed in the process expression have to be well-formed, i.e., they must
conform to the underlying ensemble structure.

We do not allow mixed states in nondeterministic choice such that the first actions
of both branches have either to be incoming messages or any other actions than an
incoming message. Otherwise, it would be possible for example to nondeterministically
choose between sending and receiving a message. Intuitively, sending a message can
internally be decided, but receiving a message is externally triggered if a message from
another role is available. Due to this different kind of decision it does not make sense
to allow selecting between those two options.

Furthermore, state labels are not allowed as first actions of any branch in nonde-
terministic choice or if-then-else. State labels mark a certain progress of execution in
a process expression. If used as a first action in nondeterministic choice, it is unclear
when the designated point of progress is reached. Before executing nondeterministic
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choice, the point is not yet reached since we can still decide for either of the branches.
When choosing one of the branches, we immediately execute the first action such that
after executing the first action the designated point is not reached either since the state
label was already passed. Therefore, we cannot allow state labels as first actions of
branches in nondeterministic choice. The same argumentation applies to state labels as
first actions of branches in if-then-else.

Lastly, a process expression must not immediately invoke itself. An immediate
recursive process invocation would not progress the process since process invocation is
not a separate step in the semantics (as we will see in the next chapter), but immediately
executes the first action of the invoked process.

A process expression P is well-formed for a role type 1t € roletypes(X) w.r.t. ¥,
if
(1) in any action prefix construct of P, all actions are well-formed for rt with
respect to 3,

(2) in any if-then-else construct of P, all guards are well-formed for rt with
respect to X3,

(8) in any nondeterministic choice construct of P, the first actions of the two
branches are either incoming messages or any other action than an incom-
ing message,

(4) in any nondeterministic choice construct or if-then-else construct, state la-
bels are not the first action of any branch,

(5) a process expression does not immediately invoke itself, also not by a chain
of process invocations being the first and last invocation the same.

An action is well-formed for a role type 1t € roletypes(¥) w.r.t. 3, if
(1) for X+create(rt’,C) and X<«get(rt’,C) resp.,

(a) rt’" € roletypes(X), i.e., rt’ is a role type in the ensemble structure X,

(b) C is either the special, predefined variable owner or owner.assocnm refer-
ring to the name of a component association assocnm:ct’ which is defined for
all component types ct € rtcomptypes(rt) which can adopt a role of type rt,

(¢) the component instance identified by C is of a type ct € rtcomptypes(rt'),
i.e., the instances of the component type ct can adopt a role of type rt’,

(d) the variable X has not been declared before,

(2) for Y!msgnm(?)(?),

() msgnm (X' : rt’)(2" : dt') € rtmsgs,,.(rt), i.e., the role type rt supports the
message type msgnm(X' : rt')(z’ : dt') as outgoing message,

(b) the type of the role instance variable Y supports the message type

msgnm (X' : rt') (2" : dt’) as incoming message,
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(c) the actual parameters Y and € fit in number, ordering, and type to the

formal ones X’ and 2/,

(d) the expressions Y, ?, and € only name the predefined constant self, con-
crete values, or variables or parameters which have been declared before,

),

(a) msgnm(X : rt’)(xz : dt) € rtmsgs;,(rt), i.e., the role type rt supports the

_—
(3) for ?msgnm(X : rt')(z : dt

message type msgnm(X : rt’)(x : dt) as incoming message,
(b) X and 7 have not been declared before,

(4) for [x =] owner.opnm(€),

—

(a) Vet € rtcomptypes(rt) . opnm(z : dt) € ctops(ct), i.e., all component types
which can adopt a role of the type rt support the operation type opnm(x : dt),

(b) the actual parameters @ fit in number and ordering to the formal ones 77,

(c) < only names concrete values or variables and parameters which have been
declared before,

(d) the variable x has not been declared before,
(5) for owner.attr = e and self.attr = e resp.,
(a) Vet € rtcomptypes(rt) . attr € ctattrs(ct), i.e., all component types which
are able to adopt a role of type rt provide the attribute attr,
(b) attr € rtattrs(rt), i.e., the role type rt provides the attribute attr resp.,
(c) e must be an expression with the same type as attr,
(d) e only names concrete values or variables and parameters which have been
declared before,
(6) all state labels are unique.
A guard is well-formed for a role type rt € roletypes(X) w.r.t. 3, if the guard is

(1) a data variable x which was declared before and is of type bool,

(2) an attribute access owner.attr with Vet € rtcomptypes(rt) . attr € ctattrs(ct),
i.e., all component types which are able to adopt a role of type rt provide the
attribute attr, and attr is of type bool,

(3) an attribute access self.attr with attr € rtattrs(rt), i.e., the role type rt provides
the attribute attr, and attr is of type bool,

(4) a plays query plays(rt’, C') which only refers to a role type rt’ € roletypes(X)
and C' is either the special, predefined variable owner or owner.assocnm refer-
ring to the name of a component association assocnm:ct’ which is defined for all
component types ct € rtcomptypes(rt) which can adopt a role of type rt,

(5) a data expression e in which operators (e.g., summation, subtraction or relational
operators like <, ==, ...) are applied to expressions with matching data types
and where type of the complete data expression is bool.
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2.4.3 Role Behavior Declarations

Building on process expressions, we first introduce the notion of process declarations
which the specification of role behavior declarations relies on.

A process declaration is of the form process procnm = P such that procnm is
the name of the declared process and P is a process erpression.

Relying on process expressions and process declarations, we can now define role
behavior declarations which specify the dynamic behavior of instances of a role type.

Let 3 be an ensemble structure and rt € roletypes(X) be a role type in 3. A role
behavior declaration for rt has the form

roleBehavior rt = P

where P is a process expression which is well-formed for rt with respect to 3.°
Additionally, a set procdecls(rt) of (local) process declarations can be associated
to the role behavior rt such that

e the expressions of all process declarations in procdecls(rt) are well-formed
for rt w.r.t 3 and

e all process invocations in P and in the expressions of all process declarations
in procdecls(rt) only invoke processes in procdecls(rt).

“Note that we use 7t also as a process name for the role behavior of the role type rt.

Notation: The notation rivars(rt) denotes all role instance variables from message
reception, role instance creation, and role instance retrieval in the role behavior decla-
ration (and the associated process declarations) for role type rt. Similarly, the notation
datavars(rt) denotes all data variables from message reception and operation call.

Example: The three role types Requester, Router, and Provider in the p2p example are
equipped with a role behavior to fulfill their responsibilities. To download the file from
the network, the role behavior of the Requester is given in Fig. 2.6. The requester first
creates a router on the neighboring peer of its owner and sends a request for the address
of the provider to the newly created router. The message reqAddr thereby includes the
self-reference to the requester itself such that a reply can be sent back via this reference.
Afterwards, the requester waits for the message sndAddr which transmits a reference of
the provider. Via this reference, it sends a request for the file to the provider (again
equipped with a self-reference to itself). Lastly, it waits to receive the content of the
file with the message sndFile, stores the content in the attribute content of its owner,
sets the attributes hasFile of its owner and of itself to true, prints the file by calling
the operation printFile on its owning component, and finally quits its execution.

To retrieve the address of the provider by forwarding the request for it through the
network, the role behavior of a router is given in Fig. 2.7. The set procdecls(Router) is
here implicitly given by the three process declaration Pprovide; Prwd, 30d Pereqte. Initially,
a router is able to receive a request for an address of the provider of the requested file.
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roleBehavior Requester = router<create(Router, owner.neighbor) .
router!reqAddr(self)() .
?sndAddr(prov: Provider)() .

provlreqFile(self)() .
?sndFile()(content:int) .

owner.content = content .
owner.hasFile = true .
self.hasFile = true .
owner.printFile() .

quit

Figure 2.6: Role behavior of a Requester for the p2p example

roleBehavior Router = ?reqAddr(req:Requester)() .
if (owner.hasFile) {Pprovide }
else {Prua}

Pprovide = provider<—create(Provider, owner) .

reqlsnd Addr(provider)() . quit

Py,a = if (plays(Router, owner.neighbor)) {quit}
else {Pcreate}

Pereate = Touter<—create(Router, owner.neighbor) .

routerlreqAddr(req)() . Router

Figure 2.7: Role behavior of a Router for the p2p example

Depending on whether the router’s owner has the file or not, it either provides the file
to the requester in the process P, ovide Or forwards the message to another router Pjyq.
To provide the file in P, oviqe, the router creates a new role instance of type Provider
on its owning component and sends the reference of the newly created provider back to
the requester before it quits its execution. To forward the message in Pj,q, the router
checks whether the neighboring component of its owner already plays the role Router.
If so, the neighboring component does not have the file (since it already forwarded
the message in its role as a router) and the router can stop to forward the message
(represented by quit). That means for the whole ensemble that the file does not exist
in the p2p network. If the neighboring component does not play the role Router, a
new router is created on the owner’s neighbor and the request is forwarded to this new
router (cf. process P.rcae). Afterwards, it resumes its behavior from the beginning.
Note that a router only terminates if its owning component has the file, i.e., the owning
component serves as provider of the file, or the neighboring component of its owning
component already plays the role of a router, i.e., the message traversed the whole chain
of routers and none of the owning components had the file. The extension to always
terminate the router is easily done by a second round-trip throughout the p2p network,
but not presented here to keep the example simple.
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To provide the file to the requester, the role behavior of the provider is given by
Fig. 2.8. The provider waits for a request for the file. Via the received reference to the
requester it sends back the content of the file which is stored in the attribute content of
its owner.

roleBehavior Provider = ?reqFile(req:Requester)() .
req!sndFile()(owner.content) .

quit

Figure 2.8: Role behavior of a Provider for the p2p example

2.4.4 Ensemble Specifications

The full ensemble specification in HELENA consists of two parts: an ensemble structure
describing the structural composition of the ensemble and a set of role behavior decla-
rations describing the interaction behavior of the ensemble by introducing a dynamic
behavior for each role type occurring in the ensemble structure.

An ensemble specification over CT is a pair EnsSpec = (X, behaviors) such that ¥
s an ensemble structure over CT and behaviors is a set of role behavior declara-
tions which contains exactly one role behavior declaration roleBehavior rt = P
for each role type rt € X.

Example: The ensemble specification for the p2p example consists of the ensemble
structure Yyansfer in Fig. 2.4 and the behaviors for the three role types Requester,
Router, and Provider in Fig. 2.6, Fig. 2.7, and Fig. 2.8 resp. For a complete overview,
we refer the reader to Appendix C.1.

2.5 Related Work

HELENA as we presented it in this chapter is related to different fields of research: It
builds on a component-based platform and therefore shares concepts with component-
based software engineering (CBSE). However, it enhances standard component models
by the dynamic formation of ensembles from a set of components, similarly to works in
the field of ensemble-based systems. In contrast to these ensemble-based approaches,
HELENA furthermore introduces the notion of roles to model participants of ensembles
independently from the actual components adopting the roles in ensembles. Role models
in general already have a long history. Our understanding of roles is highly influenced
by existing work in this field, but HELENA is the first to apply roles to ensemble-
based systems. However, in multi-agent systems roles are also already used to describe
participants of interacting agent organizations similarly to participants of ensembles.
Finally, we introduce a dedicated process algebra for the description of roles which
shares ideas with other common process algebras. In the following, we will consider
each of the fields separately.
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2.5.1 Component-Based Models

As we already discussed in the introduction, component-based software engineering
(CBSE) [Szy02, RRMPO08]| is concerned with the development of self-contained com-
ponents, their composition and interaction. For each component, its interface to the
outside world is described by a set of ports. Connectors allow and coordinate interaction
between components whose ports fit to the required properties of the connector.

Component  models like  Wright [AG94, AG97|, Darwin [MKO96],
ACME |[GMW97|, and PADL [BCD00, BCDO02|, component frameworks like Frac-
tal [BCLT04, BABC109], SOFA [BHP06|, ArchJava [ACNO02|, and Java/A [BHH"06] or
formal component approaches like team automata [tEKRO03|, interaction
automata |[BvVZ06|, assemblies |[HK11| or multiparty session types [CDPY15]| already
consider sets of interacting components. However, CBSE approaches are not sufficient
for the description of ensemble-based systems in three main points: They do not intro-
duce an explicit notion of ensembles such that they do not allow to focus design and
analysis on the participants of an ensemble only. They lack an explicit notion of active
roles which would help to structure the different functionalities needed to contribute
to an ensemble and the different behaviors which a component offers. They do not
handle reconfiguration and dynamic instantiation transparently from components par-
ticipating in ensembles which HELENA allows due to the introduction of the two levels
of components and roles.

Let’s take a closer look how standard component-based techniques like Wright [AG94,
AG97, ADGI8|] or Darwin [MK96| could be used to model an ensemble-based system
like the p2p example which we used for illustration throughout this chapter. We only
focus on the architectural description of an ensemble leaving the behavior aside for now.
Fig. 2.9 shows a modular component model of the p2p example. Each contributing role

req2rout req2prov
1 Requester []

— -~
Router Provider

Figure 2.9: P2P example described by a modular component model

of the ensemble is specified by a separate component, i.e., a Requester component,
a Router component, and a Provider component. Ports expose the interface for bi-
nary interactions. For example, the port req2rout handles the communication of the
Requester with the Router while the port req2prov handles the communication of the
Requester with the Provider. The components thus offer a port for each type of binary
communication which they can be involved. Some components like Requester expose
several ports while others like Router or Provider only expose one port. All ports of
a component together describe its communication facilities. This modular component
model of the p2p example has two disadvantages: Firstly, the model does not show that
depending on the actual peer network, a chain of routers has to forward the request
for the file through the network. If we wanted to specify that, we would have to use
techniques like lazy or dynamic instantiation in Darwin [MK96]. It allows to describe
structures evolving according to a fixed pattern. However, most component models
do not support this kind of dynamism. Secondly, the p2p example is not sufficiently
described by this modular component model. The underlying peer network does not
consist of dedicated Requester, Router, or Provider components. It rather is composed
of general purpose components which can serve in the role of a Requester, Router, or
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Provider. A more suitable model would therefore combine all these sub-components to
a larger composite Peer component.

Fig. 2.10 shows a component model where the Peer component is modeled as a
one-fits-all component. It combines all functionalities and behaviors needed in all of the

provider

Figure 2.10: P2P example described by a one-fits-all component model

three roles discussed before. The four ports of the one-fits-all component expose the
different communication facilities: The port req2rout exposes the interface of the Peer
component acting in the role of a requester when communicating with another Peer
component acting in the role of a router (and vice versa for the port router). Similarly,
the port reg2prov exposes the interface of the Peer component acting in the role of
a requester when communicating with another Peer component acting in the role of a
provider (and vice versa for the port provider). However, this one-fits-all component
suffers from two disadvantages. Firstly, the functionalities and behaviors for all possible
roles of the Peer component are mixed together into one large component without any
structure depending on the different tasks the component has to fulfill in the different
roles. Secondly, ports only expose a binary communication interface such that a role like
the requester has to be represented by two different ports, one for each communication
partner of the requester. Already crammed, this one-fits-all component model gets even
more overloaded if we imagine a second type of ensemble built on top of the same Peer
component. Even more goal-directed behaviors would be introduced to the large one-
fits-all component and even more ports and connections to form the new ensemble would
be needed. To overcome this overly large component model, we propose a separation
between component and role in HELENA. A role describes the functionalities needed in
an ensemble and an adoption relation between role and component allows the component
to provide its capabilities to the adopted role.

The notion of roles already appears in CBSE techniques in a different meaning: A
connector describes the partners required for binary communication by roles [AG94,
AG97| as shown in Fig. 2.11. Each role of a connector normally prescribes a certain

~~~~~
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Figure 2.11: The role concept used in binary communication via connectors

interaction protocol. A component which is later on bound via its port to this role has
to fulfill this interaction protocol (cf. compatibility of protocols [AG94]). The connector
itself coordinates the interaction between the two communication partners by prescrib-
ing a certain sequence of interactions. In contrast, in HELENA, roles are not restricted
to one part of binary communication only, but rather which part a participant of an
ensemble contributes to the overall ensemble. Furthermore, roles are active instances
in HELENA which define a goal-directed behavior relying on the capabilities of the un-
derlying component. In CBSE, a role at a connector only constrains the behavior of a
component which adopts the role at the connector.
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Standard CBSE techniques focus on some of the aforementioned aspects of ensemble-
based systems like sharing components between several collaboration groups [BCLT04,
BABC™09], reconfiguration [ADG98, BHP06], and dynamic instantiation [MK96]. How-
ever, none of them combines these aspects with an explicit concept for ensembles and
their participants which allows dynamic reconfiguration and instantiation as we do it
in HELENA. For a more detailed comparison of component-based approaches we refer
the reader to [BHP06] or [Jan10].

2.5.2 Ensemble-Based Models

Approaches from the field of ensemble-based systems take into account the notion of
ensembles, but do not yet explicitly separate the functionalities needed for a particular
goal-oriented ensemble from the components actually contributing the functionalities.
We focus on four works from this field.

SCEL [DLPT14] provides a kernel language for abstract programming of autonomic
systems. The entities of the systems are autonomic components which rely on knowledge
repositories to store knowledge items and interact via explicit knowledge exchange on
these repositories.

In SCEL, ensembles are understood as group communications. Such groups are
defined by predicates over properties of components, e.g., a predicate describes all com-
ponents in range of the acting component. With these predicates, an action to put or
retrieve knowledge items can be directed to a set of knowledge repositories all satisfying
the given predicate. Like that, all components which can access the involved reposi-
tories are included in this group communication. An ensemble is thus a very dynamic
concept which is evaluated at runtime and might only exist for a single interaction. Op-
posed to ensemble structures in HELENA, these predicates do not specify the conceptual
structure of an ensemble collaborating to achieve a certain global goal.

SCEL components are in principle modeled as one-fits-all components. However,
it is possible to simulate the idea of roles by starting parallel processes on top of a
component, even dynamically at runtime.

The behavior of a component is also described by a dedicated process algebra. On
the level of process constructs, SCEL goes beyond HELENA by providing a controlled
composition construct. This allows to compose parallel processes which is not allowed
in HELENA since parallel behaviors should be expressed by different roles on top of
a component. In contrast to HELENA, SCEL relies on knowledge exchange instead
of message exchange. As already mentioned before, knowledge exchange allows group
communications which are not yet part of HELENA. Furthermore, components can
dynamically create other components. In HELENA, we do not create new component
instances during the run of an ensemble because we assume them to be already given
by an overall system management when an ensemble is started. However, component
instances can dynamically join and leave an ensemble by dynamically creating new role
instances and letting components adopt these new roles during ensemble execution.

An interesting extension of SCEL is PSCEL [MPT13|. It integrates FACPL poli-
cies [MMPT14] into SCEL specifications to define adaptation actions of ensemble-based
systems. With these adaptation actions, an ensemble-based system is able to react to
changes in the environment, can allow or forbid certain actions, and can switch to be-
haviors more suitable to the current situation. In HELENA, this can be expressed by
components which adopt roles depending on the current state of the environment. A de-
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velopment methodology for adaptive systems based on HELENA roles will be presented
in Chap. 11.

DEECo |[BGH'13] is a component-based framework which introduces an explicit
specification artifact for ensembles. An ensemble is a dynamic group of components
characterized by a membership predicate similarly to a former variant of SCEL. DEECo’s
runtime infrastructure dynamically determines the current members of an ensemble
according to this membership predicate. Thus, in contrast to SCEL, ensembles are
more explicit since DEECo provides an explicit specification artifact, but in contrast
to HELENA, it still does not support any structural description of members and their
interactions like in HELENA’s ensemble structures.

On the level of components, DEECo offers a structural element to describe the
different tasks which a component can perform. For each task, a separate process can be
defined which manipulates the local knowledge appropriately. Depending on the given
scheduling policy, this process is executed periodically or whenever a certain trigger
condition is met. Although the behavior of a component is thus structured into separate
processes (which can be started on demand), these processes are not directly associated
to particular ensembles where the component contributes to. Furthermore, DEECo does
not allow to instantiate new members of an ensemble by component instance creation.
The set of components which can contribute to an ensemble is fixed during runtime,
only the membership predicate controls when a component joins or leaves an ensemble.
In HELENA, we achieve the clear assignment of goal-directed behavior (represented by
processes on components) to ensembles by structuring ensembles in roles. These can
dynamically be instantiated and adopted by components.

Instead of direct communication between the components of an ensemble, DEECo’s
runtime infrastructure manages implicit knowledge exchange between the participants
of an ensemble which can then operate on their local knowledge. A computational
model for DEECo is defined in terms of automata [ABG'13] which express knowledge
exchange by buffered updates of the components’ knowledge.

DCCL [BBvP13] is a similar approach to DEECo. It also defines an ensemble by a
membership predicate which is dynamically evaluated during runtime of the ensemble.
Components do also not communicate directly via message exchange, but implicitly via
knowledge exchange among the participants of an ensemble. Components only operate
on their local knowledge. While DEECo focuses on the implementation and execution
of ensemble models, DCCL is a verification-oriented modeling language. It allows to
verify the modeled ensemble-based system against properties over the local state of a
component or the global state of the system. Compared to HELENA, it comes with the
same restrictions as DEECo: no explicit structure for ensembles, no explicit structure
for roles, no instance creation, and only implicit knowledge exchange.

BIP [BBB"12] and DyBIP [BJMS12] are component-based frameworks which
focus on a clear separation between components and interactions while DyBIP addi-
tionally supports change of interaction models. The BIP framework can be viewed as
an architecture description language with a rigorous formal semantics. Atomic com-
ponents are finite-state automata which basically interact with other components via
shared actions called ports (they should not be confused with ports in standard compo-
nent models which expose an interface). The concept of shared actions is extended by
connectors: They define which actions are synchronized between components even if not
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sharing the same name. They define the type of interaction, e.g., whether the actions
are executed synchronously or asynchronously. Finally, priorities at connectors specify
which interaction is taken if several interactions are possible. DyBIP extends the BIP
framework by dynamic connectors between components. These dynamic connectors are
defined by interaction constraints on the transitions of the finite state-automaton of
an atomic component. Dynamic connectors nicely support the dynamic architecture of
ensemble-based systems where components dynamically form ensembles and therefore
new connections to collaborate for some global goal. However, compared to HELENA,
BIP and DyBIP do not introduce any notion of ensemble or role. Components have
to be designed again as one-fits-all components; there does not exist any structuring
element which allows to separate the different behaviors which a component offers. Fur-
thermore, it is not possible to create new instances for a particular task on demand like
HELENA allows by role instance creation.

2.5.3 Role-Based Models

HELENA is centered around the notion of roles. Bachmann and Daya [BD77] were the
first to propose role-based modeling. They observed that an item in a data model often
only represents a certain subset of properties of a real-world entity. According to them,
this is “in contrast with integrated database theory which has taught that each record
should represent all aspects of some one entity in the real world”[BD77]. They therefore
suggested to define roles which allow to consider a real-world entity from a certain
viewpoint or in a certain context. In this context, only some particular properties of
the entity are relevant.

The role models which emerged starting from this vision all focus on different aspects
such that no common understanding of roles was formed. Thus, Steimann [Ste00b]
identified a set of features according to which the different approaches can be evaluated.
Most prominently among these are whether a role has its own properties, state and
behavior, whether it shares identity with the underlying real-world entity, and whether
an entity can play several roles simultaneously. Later on, Kiihn et al. [KLG14] observed
that most role models nowadays especially focus on the context in which the roles exist.
Dedicated concepts are introduced in many approaches which particularly specify this
context, called “compartments” in [KLG"14]. HELENA is an approach where roles are
represented by volatile instances which can only exist bound to an owner, but which
have their own properties, state and behavior. A HELENA component can adopt several
roles simultaneously, but not of the same type in the same ensemble. Furthermore,
HELENA particularly considers ensemble structures, i.e., compartments in which several
roles collaborate for some global goals.

Apart from these features, Steimann [SteOOb| concluded that existing role mod-
els mainly fall into three categories which we extend by one category contributed
by [KLG'14]: roles as named places of a relationship, roles and real-life entities as
conglomerates, roles as adjunct instances, roles as participants of collaborations. In
the following, we review each of the categories together with some representative ap-
proaches. For a more detailed review, we refer the reader to [Ste00b] and [KLG™14].

Roles as Named Places: Relational models mainly describe types and their rela-
tionships. However, as soon as there exist more than one relationship between two
types or one type participates several times in one relationship, it is not enough to just
name the related types. They have to be distinguished by the contribution which they
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bring to the relationship. Such contribution is identified by a meaningful name which
expresses the role of the type in the relationship.

This notion is for example used in UML [HKKRO5]; other representatives of this
category are the well-known ER model [Che76] or the ORM model [Hal09]|. In a UML
class diagram, the ends of an association between two classes are provided with a role
name; in sequence diagrams, interaction partners are identified by a role name. In both
cases, the role is just a name expressing the contribution which the entity offers to the
relation or interaction. It does not support the characteristic that roles have their own
properties and behavior as we consider it central for the notion of roles in HELENA.

Roles and Real-Life Entities as Conglomerates: The main characterization of
this category is that roles are mapped onto the type hierarchy of the underlying real-
world entities. Roles can be seen as subtypes of the types of real-world entities. They
specialize a real-world entity by focusing only on particular properties. However, with
roles as specialization, we experience problems if several different types of real-life enti-
ties can adopt the same role. The role then has to specialize both supertypes although
a concrete instance of the role at runtime will never specialize both supertypes. Taking
an example from [Ste00Ob|, a person as well as an organization can adopt the role of a
customer, i.e., the role customer has to specialize both supertypes, person and organiza-
tion. However, at runtime, a customer will always be either a person or an organization
and not both.

Therefore, roles can also be considered as supertypes of types of real-world entities.
A role only provides a certain set of role-specific properties and operations while the
whole real-life entity combines all these. With roles as generalizations, we are able
to express that either subtype can adopt the role, but we also force each subtype to
actually adopt the role. Taking the same example as before, a person as well as an
organization can adopt the role of a customer if the role of a customer is the supertype
of persons and organizations. However, consequentially each person and organization
must automatically always be a customer and can never drop the role.

Most approaches in this category [SD96, BO98, JSHS96, GWGvS04] solve the prob-
lem whether a role is a subtype or a supertype of the type of a real-world entity by
using dynamic specialization. They define roles as a dynamic type which comprises all
objects which are currently engaged in a certain relationship.

A further example for this category which we want to consider more closely are UML
composite structure diagrams for classes as presented in [HKKRO05, Chap. 3.5.1]. This
type of diagram allows to refine the classes and their relationships already structured in
a UML class diagram from the viewpoint of a single context class. The underlying class
diagram specifies the general associations and interaction relationships between classes.
In the context of a certain class, only some of these classes and relationships might be
used and some of them might even be restricted. The composite structure diagram for
a context class therefore provides a view on the modeled system from the perspective of
this context class. In the manner of speaking of UML, the composite structure diagram
determines the roles in which classes of the complete system act if considered from the
viewpoint of the context class. This category of roles thus requires that a role and its
underlying real-world entity share identity and state, but the role serves as a view on
particular properties of the real-world entity. Therefore, it is not allowed that roles have
their own properties and behavior as we consider it essential in HELENA.
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Roles as Adjunct Instances: Instead of mapping roles directly onto the type hi-
erarchy of the underlying real-life entities, this category introduces roles as own types.
Role types define role-specific properties and behavior, instances of those types have
their own state. However, role instances cannot exist without a real-life entity adopt-
ing it. Therefore, a role instance must always be bound to its owner. The owner can
adopt several roles in parallel and can dynamically pick up or drop them. Simultane-
ous role adoption naturally allows the underlying owner to simultaneously be in several
role-specific states. By using roles as facades for the underlying real-life entities, inter-
action partners only communicate via their adopted roles such that their mutual view
is restricted to the role-specific properties only.

Kristensen and Osterbye [K(096] as well as Gottlob et al. [GSR96| are the most
prominent authors to transfer this idea of roles to conceptual modeling and program-
ming. Their understanding of roles builds the foundation for HELENA: Intrinsic proper-
ties describe the core information about a real-world entity. For example, for a person,
these are properties like date of birth. Extrinsic properties describe the properties which
are only relevant in a certain context. They are defined as a role which can temporarily
be bound to a real-world entity. For example, a person can adopt the role of a teacher
whose main property is the subject the person teaches. HELENA is influenced by the
characteristics proposed in this role model: A role has its own state and its own opera-
tions to manipulate that state, a role is dependent on a real-world entity and can only
exist bound to an entity currently adopting the role, a role is dynamically bound to
an entity and is therefore of a temporary nature. Opposed to HELENA, the role model
by Kristensen, Osterbye and Gottlob does neither consider active entities nor active
roles. Furthermore, the context in which the roles exist is not considered which is in
contrast to HELENA where we explicitly model ensemble structures consisting of roles.
Kristensen, Osterbye and Gottlob mainly focus on the dynamism of role playing and
interferences between concurrent roles.

The modeling language LODWICK by Steimann [Ste00b] is one important formal
approach to modeling roles as adjunct instances sharing ideas with HELENA. A “model
specification” in LODWICK consists of three parts: a signature, a static model and
a dynamic model. The signature relates types and roles which the types can adopt.
The static model determines all instances of types and roles as well as their adoption
relationships which may potentially exist during the lifetime of the system. The dynamic
model consists of sequences of sets of concrete (type and role) instances and their
adoption relationships over time. HELENA follows the same idea of roles and their
dynamic adoption by components (as we will see in Chap. 3 about HELENA’S semantics).
However, it goes one step further by allowing to dynamically create new role instances
on demand while in LODWICK all instances are predefined. Furthermore, LODWICK
is only designed as a rudimentary modeling language. The properties and capabilities of
types and roles is not part of the modeling language while it is in HELENA. LODWICK
does not contain collaboration specifications opposed to ensemble structures in HELENA.
Most importantly, it does not support interactions in the dynamic models as we consider
it central to describe ensembles and the goal-oriented behaviors of their participants.

Roles as Participants of Collaborations: According to Kiihn et al. [KLGT14],
more recent role-based approaches do not only model roles and their relationships to
real-world entities, but also the context in which they exist. The “context represents
a collaboration or container of a fixed, limited scope” [KLG114]. In some approaches,
the context is called team [Her03], institution [BSI07], role model [Ree96], or compart-
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ment [KLGT14]. In HELENA, we call the context ensemble. Following Kiihn et al., roles
operate in a certain context or collaboration, but can also be shared between differ-
ent collaborations. By introducing an explicit notion of such collaborations, they can
be handled as first-class modeling concepts which may have their own identity, may
play roles themselves, may be hierarchically composed etc. [KLG114]. In HELENA,
collaborations are represented by ensemble structures. The participants of an ensem-
ble structure are specified by role types which can be shared between several ensemble
structures. It is considered future work in HELENA to allow hierarchical composition of
ensembles or to let several ensembles collaborate for a higher shared global goal.

UML [HKKRO05, Chap. 3.5.2] already proposes composite structure diagrams for
collaborations to model the structure of a system in the context of a collaboration. The
composite structure diagram provides a structural view on the whole system which only
shows the relationships between elements of the collaboration. Thereby, the elements
do not need to be actual structural elements of the system, but can be aggregations or
abstractions of them. Each element of the collaboration contributes under a certain role
which describes the function which the element fulfills in the collaboration similar to
role names in class diagrams or sequence diagrams. However, UML composite structure
diagrams are very limited compared to other role-based approaches. They only describe
the structure of a collaboration. Since their elements are not integral parts of the
system, behavioral UML diagrams cannot directly refer to these elements to specify
their behavior. Furthermore, collaborations cannot be instantiated such that they are
mostly used to specify structural patterns.

Other approaches which include collaborations as first-class entities mostly reside
in the area of programming languages. For example, ObjectTeams/Java [Her03| intro-
duces aforementioned “teams” as a first-class programming construct, powerJava |[BSI07|
“Institutions”, and OOram [Ree96| “role models”. Like in HELENA, they all define the
structural model of a collaboration by participating roles. However, in ObjectTeam-
s/Java and powerJava, roles are not active, but only react to operation calls. In the
OOram method, roles are autonomic entities which start to exchange messages for col-
laboration upon external stimulus (like a file being requested from the outside). In
contrast to HELENA, all role models representing collaborations are composed to a sin-
gle composite role model. Thus, the OOram method only considers composite behaviors
while HELENA explicitly considers the parallel execution of role behaviors as we will see
in Chap. 3.

Apart from programming languages, role modeling is also incorporated as a central
part in methodologies for analysis and design of (multi-)agent systems. For instance, the
GATIA methodology [WJKO00] and its extensions [CJSZ04] consider a multi-agent system
as a computational organization consisting of various interacting roles; this is very sim-
ilar to our interpretation of ensembles. Most specifications in these methodologies are,
however, rather informal or at most semi-formal, like the UML-based notation Agent
UML [BMOO01]. Agent UML models collaborations by interaction protocols which com-
bine sequence diagrams with state diagrams. Another approach has been pursued in the
ROPE project [BGKM99|, which proposes to use “cooperation processes’ represented
by Petri nets for the specification of collaborative behavior. A model-driven approach
to the development of role-based open multi-agent software is presented in [XZP07]. It
uses Object-Z notation and focuses merely on structural properties of role organizations
and agent societies and not on interaction behavior. The structural concepts involve,
however, specifications of role spaces as containers of role instances (that can be taken
by agents), which resembles ensemble states in HELENA. All these methods are not
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based on a formal semantics and do not provide verification techniques which we will
present in the next chapters. In particular, they do not formalize concurrent executions
which is built-in in HELENA’s semantics as shown in Chap. 3.

2.5.4 Process Calculi

HELENA also shares ideas with process algebras and multiparty session types.

Process Algebras

In HELENA, the behaviors of roles are described by process expressions. Leading process
algebras like CSP [HoaT78|, CCS |Mil82], ACP |BK89| or the m-calculus [Mil99] already
propose the main process constructs which we use similarly in the HELENA syntax:
termination, action prefix, nondeterministic choice, the if-then-else construct and pro-
cess invocation. Apparently, HELENA does not support a parallel composition operator
which is contrast to standard process algebras. The main reason is that a role provides
a behavior which is responsible for exactly one task in the collaboration of an ensemble.
If we allowed parallel composition in role behaviors, we would be able to specify several
processes which are all executed in parallel in one single role behavior. Thus, a role
would be able to simultaneously work on several tasks. This would contradict the idea
to extract each task to a separate role type and its behavior. As we will see in Chap. 3
about the semantics of HELENA, termination is also not formalized in a standard way.
Since we introduce two layers in HELENA, components and roles which are adopted by
components, termination does not only terminate the execution of the role behavior,
but also advises the owning component of the role to quit playing the role. More details
on that can be found in Chap. 3.

On the level of actions, HELENA provides the standard message passing actions for
sending and receiving messages. These messages are directed towards one particular
receiver only and are sent and received synchronously or asynchronously. Compared
to leading process algebras, the following two types of actions in HELENA stand out:
Firstly, HELENA allows to create and retrieve role instances. Therefore, new role in-
stances can dynamically be created by another role instance during runtime of the en-
semble and references to existing role instances can be retrieved on demand. Secondly,
since HELENA introduces two layers, components and roles adopted by the underlying
components, HELENA also introduces a special action to bridge these two layers. A
role can call an operation on its owning component to exploit the capabilities of the
underlying component. A deeper comparison of HELENA and its communicating roles
is left to Sec. 3.5 since differences mainly become apparent on the level of semantics.

Multiparty Session Types

Finally, we want to highlight a process calculus which particularly focuses on groups of
interacting components, multiparty asynchronous session types [CDPY15|. This calcu-
lus allows to model and reason about interactions between several components within a
certain scope of a distributed system. This scope is called a multiparty session since sev-
eral different parties communicate within a private session. Outsiders cannot interfere in
this private session since communication relies on a private session channel. Multiparty
session types are used to describe the interaction protocol between the participants of
the multiparty session. The goal of the formalization of the interaction protocol is to
guarantee communication safety, protocol fidelity and progress [CDPY15].
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An interaction protocol is first designed at global level. A global type describes the
communication from a neutral global viewpoint and gives an abstract overview about
the whole interaction structure. From the global type, local types are derived by a
strict projection operation. Each local type abstractly describes the interaction from the
viewpoint of a single participant of the multiparty session. Finally, processes following
a dedicated process calculus describe the concrete implementation of the behavior of
a single participant. A strict type system takes care that each process respects its
derived local type. The main advantage of this approach is that the global properties
of communication safety, protocol fidelity and progress can be checked on the local
types only. Due to the type system relating a local type and its concrete process
implementation, their satisfaction is preserved by the concrete implementation.

Compared to HELENA, the first thing to note is that multiparty session types do
not define the architecture of the underlying system. They only consider the abstract
and concrete specification of behaviors without the underlying component types. HE-
LENA goes beyond that by introducing component types which define the capabilities
of the underlying component-based platform and by introducing role types which allow
a component to dynamically join a certain ensemble contributing a certain behavior.

Leaving the point of architecture aside, multiparty session types focus on the global
description of the interaction protocol of a group of components. Local types are only
derived for analysis and implementation proposes. HELENA, however, supports to spec-
ify local role behaviors and the interaction is treated on ensemble level. The systematic
derivation of local role behaviors from a global interaction specification is future work
for HELENA.

When we look into type and process description of multiparty session types more
closely, we observe that HELENA is more flexible. A multiparty session is always started
by an initiation action which makes all participants known to each other. Compared
to HELENA, multiparty session types employ just one single global channel where all
messages are put and retrieved from one single message queue. The message itself
contains sender and receiver to distribute the message to the correct participant. In
HELENA, role instances directly communicate with each other and each role instance
manages its own (asynchronous) message queue, as we will see in Chap. 3. This might
not preserve message ordering on global level, but is more flexible and does not require
a central message queue which is not efficient in dynamically evolving ensembles.

Another difference is the dynamic participation of components in the collaboration.
In multiparty session types, new participants cannot be created on demand, but they can
dynamically join a multiparty session by channel delegation. Dynamic multirole session
types [DY11] furthermore allow participants to join a collaboration under a certain role.
However, participants under certain roles are also not created on demand. The notion of
roles is only used to dynamically communicate with all participants of a session which
currently adopt the role, similarly to the concept of broadcasting. HELENA is more
flexible here since it supports the dynamic creation of new role instances which can join
the ensemble on demand, albeit leaving broadcast messaging still open for future work.

2.6 Publication History

The notion of an ensemble specification as presented in this chapter is based on [HK14]
and [KMH14|. In [HK14], ensemble specifications still rely on role connectors for mes-
sage exchange between roles and on labeled transition systems to describe role behaviors.
To simplify ensemble specifications, role connectors have been removed from HELENA
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in [KMH14|. Thus, messages can now be exchanged between two role types which are
outgoing for one role type and incoming for the other. Additionally, [KMH14| proposes
a process algebra for the description of role behaviors as a more compact notation than
labeled transition systems.

Compared to these publications, ensemble specifications as presented in this chapter
include a more sophisticated notion of data. Types are introduced for all attributes of
component types and role types and parameters of messages. The process algebra
introduced in [KMH14]| is extended and improved, in particular to include data and to
allow branching according to guards. Furthermore, we add component associations to
component types, rely on operations provided by component types instead of internal
operations or messages provided by role types, and all role types of an ensemble structure
are equipped with a capacity of their input queues. Specific criteria define the well-
formedness of ensemble structures and process expressions.

2.7 Present Achievements and Future Perspectives

Present Achievements: The main concept for describing ensemble-based systems is
the notion of roles. Components team up in concurrently running ensembles by adopting
particular roles. While the components are just pure data containers and computing
resources, the adopted roles are the active entities exhibiting a goal-directed behavior
and collaborating with each other in ensembles.

The whole system is structured into independently running ensembles. They are
goal-oriented communication groups of roles which do not rely on any other ensembles
or any components not participating in the very same ensemble.

The syntax for the description of HELENA ensembles is following a model-based
specification technique. An ensemble specification consists of two parts: the structural
relationships between participants of an ensemble are specified by an ensemble structure
and its collaborating roles; the dynamic behavior is given as a set of role behaviors, one
for each contributing role. The behaviors describe how an ensemble evolves via message
exchange between the participating roles.

Future Perspectives: On the level of syntax, several extensions of the HELENA
approach come to mind:

Broadcasting: The set of actions could be extended by broadcast messages. Those
messages could either be used to broadcast information to a whole ensemble, to
instances of a particular role type, or even to a set of role instances specified by a
logical predicate.

Component Interfaces: It might be useful to introduce component interfaces which com-
ponent types implement. With that extension, a role type does no longer have
to name all component types whose instances are allowed to adopt the role, but
rather just indicates the required component interface. The component interface
exposes all attributes and operation types the implementing component types
share. On the one hand, this facilitates the criteria for well-formedness of process
expressions. On the other hand, this allows to extend the underlying component-
based platform by new component types independently from an ensemble-based
system since the ensemble specifications do not have to be adapted.
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Open Ensembles: Lastly, the use of open ensembles would allow to interact with com-
ponents or actors outside of an ensemble. Open ensembles could communicate
with other ensembles or roles inside of other ensembles which allows information
exchange between ensembles. An ensemble could rely on another ensemble to
perform a task divided into several subtasks. Open ensembles could also com-
municate with actors outside the ensemble, e.g., humans. Thus, humans could
employ an ensemble with a certain task, contribute to the completion of the task,
and retrieve the results of work from the ensemble.



Chapter 3

Semantics
Understanding HELENA

The semantic domain of ensemble specifications are labeled transition systems describ-
ing the evolution of ensembles. Informally, a labeled transition systems consists of a
set of states and a set of labeled transitions between states. In the context of ensem-
ble specifications, the states are the states which an ensemble can be in. Structured
operational semantics (SOS) rules define the allowed transitions between those states.
We pursue an incremental approach, similarly to [HL93] and [Wei97], by splitting the
semantics into two different layers. The first layer describes how a single role behavior
evolves according to the constructs for process expressions of the last section. The sec-
ond layer builds on the first one by defining the evolution of a whole ensemble from the
concurrent evolution of its constituent role instances.

3.1 Notations

In the definition of the semantics of HELENA, we will make use of functions to describe
the state of a HELENA ensemble. To facilitate the notation of the following subsections,
we define some preliminary properties of functions.

We assume given a function f: D — V which maps elements d of its domain given
by the set D to values v of its range given by the set V.

e The notation f(d) = L expresses that the value for the item d is undefined.

e The function f is partial if there exists d € D such that f(d) = L; otherwise, f is
total.

e The function f for which holds that f(d) = L for all d € D is denoted by 0.

e The maximal set D' C D, for which holds f(d) # L for all d € D', is called the
definition domain of f and is denoted by dom(f).

o If the value for an element d € D is either newly defined or redefined to the value
v € V for a function f, we denote the redefined function by f[d +— v].

e The function f is non-extensible if the definition domain is not allowed to be
extended by any new element; otherwise, it is extensible.

For the special case of a function f : NT — V which maps positive natural numbers
i € NT to values v € V, we introduce some additional notations.

e The function f is finite if there exists n € NT such that f(i) # L forall0 <i <mn
and f(i) = L for all i > n.

45
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e The index n € NT for which holds f(i) # L for all 0 < i < n and f(i) = L for all
i > n describes the size of a finite function f and is denoted by size(f).

e The first free index whose value is undefined in a finite function f is size(f) + 1
and is denoted by next(f).

e The definition domain of a finite function f can also be extended by defining a
value v for the first free index next(f). The extended function is denoted by

fnext(f) — v].

Furthermore, the semantic domain of a HELENA ensemble specification are labeled
transition systems. They consist of a set of states and labeled transitions between those
states. A traversal of the labeled transition systems starts in some initial state and
follows a path of transitions which are labeled with actions.

Def. 3.1: Labeled Transition System

A labeled transition system (LTS) T is a tuple (S, Ir, Ar,—71) such that

St is a set of states,

It C St is a set of initial states,

Ar is a set of actions such that the silent action T ¢ Ap, and

—1p C Sp X (ApUT) X St is a labeled transition relation.

3.2 Ensemble States

For the semantics of a HELENA ensemble specification, we describe the states which an
ensemble can be in and how the ensemble evolves from one ensemble state to another.
In this section, we consider ensemble states and their formal description. Intuitively,
an ensemble state captures the local states of all components composing the underlying
component-based platform and the local states of all roles currently participating in
the ensemble. Components are considered as persistent data storage which can be
accessed from their owning roles while roles only store data which is needed for the
execution of their goal-directed behavior. In the following, we first explain the local
states of components and roles before we merge them together to describe the state of
a complete ensemble.

Assumption: For simplification, we assume that role instance parameters as well as
data parameters of messages are unary during the remainder of this chapter, i.e., we do
not consider lists of parameters, but only a single role instance parameter and a single
data parameter. The extension to lists of parameters is straightforward.

3.2.1 Component Instance State

The local state of a component instance represents all information locally stored on the
component: the (unmodifiable) type of the component instance, the values of all its
attributes and the references to all its associated components and to itself.

Def. 3.2: Component Instance State

Let V' be the domain of data values. The local state of a component instance is
a tuple (ct,at®, as) which stores the following information:
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e the unmodifiable component type ct = (ctnm, ctattrs, ctassocs, ctops) of the
component instance,

e a total attribute value function at® : ctatirs — V mapping attributes of the
component type ct to values in V,

e a (possibly partial) association value function as : ctassocs U {owner} —
N* mapping component associations of the component type ct and the spe-
cial, predefined variable owner to component instances identified by natural
numbers.

The set Lcomps denotes all local states of component instances.

The tuple (ct, at®, as) contains three parts: the (non-modifiable) type of the compo-
nent instance and two value functions at® and as.

The type ct of the component instance is unmodifiable and therefore fixed throughout
the lifetime of the component instance.

The function at® maps attributes to data values. Therefore, its domain encompasses
the set ctatirs of all attributes of the component type ct and its range all data
values in V. Most importantly, we require the function at® to be total, i.e., for each
attribute attr € ctattrs, there must exist a value v € V such that at®(attr) = v.
Intuitively, that means that each attribute of a component instance must always
have a defined value.

The function as maps component associations and the special, predefined variable
owner to component instances. Therefore, its domain encompasses the
set ctassocs of all component associations of the component type ¢t and the vari-
able owner. Component instances are identified by natural numbers such that
the image of the function as is the natural numbers N*. We do not require the
function as to be total, i.e., a component association can be unspecified. For all
other component associations and the special, predefined variable owner we re-
quire that they must link to an existing component instance identified by a natural
number. In the formal definition of the local state of a component instance, we
cannot guarantee that these natural numbers always represent an existing com-
ponent instance, but we formalize this restriction as a well-definedness condition
for global ensemble states in Def. 3.5.

3.2.2 Role Instance State

The local state of a role instance represents the connection to its owning component,
all information locally stored on the role, and all information related to the progress of
execution of its role behavior. Thus, the local state of a role instance is composed of
the (unmodifiable) type of the role instance, the reference to its owning component, the
values of all its attributes, the values of all declared role instance variables including the
special, predefined variable self and data variables used in its role behavior (resulting
from role creation and retrieval, message reception and operation call), all messages
which were sent to the role, but not yet received (i.e., the current content of its message
input queue), the current progress of executing its role behavior.
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Let V' be the domain of data values. The local state of a role instance is a tuple
(rt,ci,at”, v, w, q, P) which stores the following information:

o the unmodifiable role type rt = (rtnm,rtcomptypes, rtattrs, rtmsgs
rtmsgs;,) of the instance,

out»

e the owning component instance ci € Nt of the role instance or ci = L if
the role instance terminated its role behavior,

o a total attribute value function at” : rtattrs — V mapping attributes of the
role type rt to values in V,

e a (possibly partial) extensible local environment function v : rivars(rt) U
{self} — NT mapping local role instance variables to values, i.e., role in-
stances identified by natural numbers,

e a (possibly partial) extensible local environment function w : datavars(rt) —
V' mapping local data variables to values in 'V,

e the current content q of the input queue of the instance (the empty queue
is denoted by e, the length of q is denoted by |q|), and

e a process expression P representing the current control state of the instance
or L representing termination.

The set L, o1es denotes all local states of role instances.

Let us explain the individual parts of the local state (rt, ci, at”, v, w, q, P) of a role

instance in more detail:

The type rt of the role instance is unmodifiable and therefore fixed throughout the

lifetime of the role instance.

The component instance ci adopts the role instance. It is identified by a natu-

ral number (similarly to associations in the local state of components). Well-
definedness conditions of ensemble states in Def. 3.5 formalize that this number
must always represent an existing component instance. However, if the role in-
stance terminated execution of its role behavior, the adopting component can also
quit adopting the role meaning the role does no longer have an owner. This is rep-
resented by the value | for the owning component instance. Again, we formalize
in Def. 3.5 about well-definedness of ensemble states that L is only allowed as a
value for the owning component instance if the role instance terminated execution
of its role behavior.

The function at™ maps attributes to data values. Therefore, its domain encompasses

the set rtattrs of all attributes of the role type rt and its range all data values in V.
The function at” is total, i.e., the values of all attributes have to be specified. Like
in Java, we therefore assume that all attributes are initialized to default values at
the beginning.

The function v maps role instance variables to role instances. Therefore, its domain

encompasses the set rivars(rt) of all role instance variables of the role behavior
declaration of the role type rt and the special, predefined variable self. The
variables originate from role creation, role retrieval, and message reception (see
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notation associated to Def. 2.12 on page 30). Similarly to component instances,
role instances are identified by natural numbers such that the image of the function
vis NT. The function v can be partial and is extensible, i.e., the value of some role
instance variable might be unspecified at first, but can be changed to a specific
value during the lifetime of the role instance. However, in the formal definition of
the local state of the role instance, we cannot guarantee that the natural numbers
always represent an existing role instance. Therefore, we formalize this restriction
as a well-definedness condition for global ensemble states in Def. 3.5.

function w maps data variables to data value. Therefore, its domain encom-
passes the set datavars(rt) of all data variables of the role behavior declaration of
the role type rt and the image all data values in V. The data variables originate
from message reception and operation call (see notation associated to Def. 2.12 on
page 30). Like the previous two functions at” and v, the function w can be partial
and is extensible, i.e., the value of some data variable might be unspecified at first,
but can be changed to a specific value during the lifetime of the role instance.

content of q represents the input queue of the role instance. The queue lists all
messages, which were sent to the role but not yet received, in order of reception.
If the role instance communicates synchronously, the input queue is always empty
since messages have to be received synchronously with sending the message from
another role. Thus, the input queue only contains elements if the role instance
communicates asynchronously with other roles. The number of elements in the
input queue (and therefore asynchronous or synchronous communication) is re-
stricted by the maximal capacity of the input queue which is given in an ensemble
structure. We formalize this restriction as a well-definedness condition for global
ensemble states in Def. 3.5.

process expression P represents the current progress of execution of the cor-
responding behavior of the role instance. If the role instance terminated the
execution of its role behavior, the remaining behavior is represented by L. The
process construct | is a semantic extension of the syntax of process expressions
to describe that the role finished its role behavior and the owning component quit
playing the role. In contrast, the process construct quit expresses that the role in-
stance reached the end of its role behavior, but still the owning component has to
quit playing the role. In the formal definition of the local state of a role instance,
we cannot guarantee the role instance is no longer adopted by a component (de-
noted by L for the owning component) if the remaining process expression is L.
We formalize this restriction as a well-definedness condition for global ensemble
states in Def. 3.5.

3.2.3 Ensemble State

The state of an ensemble is characterized by the component instances which provide
computing and storage resources and by the role instances which execute their goal-
directed behavior and therefore participate in the ensemble. The ensemble state man-
ages two functions, one mapping component instance identifiers to local states of com-
ponent instances and another one mapping role instance identifiers to local states of
role instances.
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The global state o of an ensemble is a pair (comps, roles) such that

o comps : N — L omps s a non-extensible finite function mapping each
component instance identifier to a local state,

e roles : NT — L, 05 45 an extensible finite function mapping each role in-
stance identifier to a local state.

Component instances and role instances are both identified by identifiers taken from
the natural numbers. These identifiers are unique if considering component instances
and role instances separately, but might overlap if considering both at the same time.
Therefore, the ensemble state manages two separate functions: comps maps a com-
ponent instance identified by a natural number to a local component instance state
and similarly, roles maps a role instance identified by a natural number to a local role
instance state. In the following, we focus on the specific features of both functions:

The function comps is non-extensible, i.e., it has a fixed definition domain which
cannot be extended throughout the lifetime of the ensemble. Intuitively, that
means that the component-based platform building the foundation of the ensemble
relies on a fixed set of components. Components cannot be added or removed
during the execution of the ensemble. The current version of HELENA is focused on
roles dynamically being created and adopted, apart from focused on components
dynamically joining and leaving the underlying component-based platform.

The function comps is finite, i.e., the function comps maps local states to component
instance identifiers beginning from the identifier 1 continuously up until a maximal
identifier n. That means that we identify the fixed set of component instances by
a set of monotonously increasing natural number identifiers.

The range of component instance identifiers will never change throughout the
lifetime of the ensemble since the function comps is non-extensible (and therefore
the number of component instances is fixed) and finite. However, we strongly
emphasize that the local state of a component instance can change nonetheless,
e.g., by attribute setters.

The function roles is extensible, i.e., the definition domain can be extended through-
out the lifetime of the ensemble. That means that new role instances can be cre-
ated during the execution of the ensemble and their local states are managed in
the global ensemble state as well. Though, role instances are never deleted from
a global ensemble state, even when they have been terminated. A role instance
remains in the global ensemble state after termination, but it quits its connection
to its owning component by setting the value L as its owning component.

The function roles is finite. That means similarly to the previous function comps
that role instance identifiers are monotonously increasing beginning from the iden-
tifier 1 up until a maximal identifier m. Whenever a new role instance is created,
the range of identifiers is increased by 1 and the new role instance is identified by
the new maximal identifier.

The definition domain of the function roles can be monotonously extended
by new role instances since the function roles is extensible and finite. However,
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we want to highlight that we can also change the local state of already existing
role instances, e.g., by any action in the executed role behavior.

As we already hinted in the description of local states of components and roles, an
ensemble state has to satisfy some conditions to be well-defined, e.g., identifiers must
point to currently existing components and roles resp. The following definition lists all
those restrictions for an ensemble state in the context of a given ensemble specification.

A global ensemble state o = (comps, roles) is well-defined w.r.t. an ensem-
ble specification EnsSpec = (X, behaviors) over CT with ¥ = (nm, roletypes,
roleconstraints) if

(1) for all i € dom(comps) and comps(i) = (ct,at® as):

(a) ct € CT,
(b) as(owner) =1,

(¢) for any C € dom(as) : as(C) € dom(comps),
(2) for all i € dom(roles) and roles(i) = (rt, ci,at”,v,w,q, P):

(a) 1t € roletypes,

(b) if P # L: ci € dom(comps),
ifP=1:ci=1,
(c) v(self) =i
(d) for any X € dom(v) : v(X) € dom(roles),
(e) for roleconstraints(rt) = (min, maz, cap): |q| < cap,

(f) for g = msgnmy(k1)(e1) - ... msgnm,,(km)(em) :
ki,...,kn € dom(roles),

(9) if P # L, P is well-formed for rt w.r.t. ¥ with the exception of all
(local) variables X occurring in dom(v) and all (local) variable x oc-
curring in dom(w),

(8) for all rt € roletypes and roleconstraints(rt) = (min, max, cap):
min < ‘{2 | roles(i) = (rt, ci,at”,v,w,q, P) and ci # J_}’ < maz.

Let us explain the specific conditions for well-definedness of ensemble states:

We first consider the restrictions on the local states of component instances stored in
the function comps: Item (la) expresses that every existing component instance
must be of a component type ¢t which is part of the component-based platform
C'T building the foundation for the ensemble specification EnsSpec. Furthermore,
we require that the association value function as of each component instance maps
the variable owner to its own identifier in item (1b). This condition is necessary
to be able to use the variable owner as a predefined constant in the specifica-
tion of role behaviors. Lastly, since the function as is total, every association is
mapped to a natural number identifier representing a component instance. How-
ever, item (1c) requires that every such identifier actually represents a currently
existing component instance.
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Similar conditions restrict the local state of role instances stored in the function roles:
Item (2a) expresses that every existing role instance must be of a role type 7t
which is part of the ensemble structure of the underlying ensemble specification
EnsSpec. As item (2b) states, the identifier of the owning component instance of
a role instance must refer to an actually existing component instance if the role is
not yet terminated. However, if the role is terminated (expressed by the process
construct L as the remaining process expression), the owning component instance
must be unspecified (expressed by the value L for the owning component in-
stance). Similarly to the predefined constant owner for component instances, the
predefined constant self must be mapped to the role’s own identifier in the local
environment function v, as stated in item (2¢). Furthermore, item (2d) requires
that every role instance variable in the definition domain of the local environment
function v represents an actually existing role instance (which might already be
terminated). For the input queue ¢, the number of possible entries is restricted
to the maximal capacity given for that role type in the ensemble specification
(item (2e)) and we require all role instance parameters of messages in the input
queue to refer to actually existing role instances (item (2f))!. Finally, the pro-
cess expression P describing the remaining behavior to be executed for this role
must be well-formed (item (2g)) except that all variables occurring in the local
environment functions v and w must not be declared before.

Apart from these individual restrictions for each role instance, a well-defined ensemble
state must contain at least as many role instances per role type as the minimal
multiplicity for the corresponding role type in the ensemble structure states and

at most as many as the maximal multiplicity in the ensemble structure states
(item (3)).

The semantics of a HELENA ensemble specification evolves ensemble states beginning
from an admissible initial ensemble state. Such an admissible initial ensemble state must
capture (1) at least one component instance such that there can be (2) at least one role
instance being adopted by the former component instance. (3) All role instances existing
in the initial state must be initial, in the sense that they must be at the beginning of
their corresponding role behavior without having executed any actions so far. That
means that the role instance is adopted by a component instance, but all values for
attributes, role instance parameters and data parameters are unspecified (except for
the predefined constant self) and the input queue is empty.

A well-defined ensemble state o = (comps,roles) is an admissible initial state
for the ensemble specification EnsSpec = (X, behaviors) over CT with ¥ =
(nm, roletypes, roleconstraints) if

(1) there exists i € dom(comps),
(2) there exists i € dom(roles),

(3) for all i € dom(roles): roles(i) = (rt,ci,0,D[self — i],0,¢, P) such that
behaviors contains the declaration roleBehavior rt = P, i.e., P is the
process expression in the declaration of the role behavior for rt,

!Note that we assumed that parameter lists are unary at the beginning of this section.
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If we consider that the execution of an ensemble must start in an admissible initial
ensemble state, well-definedness of ensemble states is not a real restriction. Any admis-
sible initial state is well-defined per definition. Furthermore, the structural operational
semantics rules to evolve an ensemble which are defined in the next section preserve
well-definedness. This follows from the syntactic restrictions for well-formed process
expressions, and therefore role behavior declarations. The most important restrictions
result from send actions. A send action in a process expression in HELENA is only well-
formed if (amongst others) the variables X and Y have been declared before (or refer
to the predefined variable self). Declaration however is done via receive, create, or get
actions such that each send action must be preceded by appropriate receive, create or
get actions if a process expression is well-formed. That matches the requirements for
well-definedness of the ensemble states described in Def. 3.5.

3.3 Structured Operational Semantic Rules

To evolve an ensemble from one state to another, we determine the allowed transi-
tions by structured operational semantic (SOS) rules. Thereby, we split the rules into
two different layers. The first layer describes the evolution of a single role behavior
without taking into account interaction with other roles and components. The second
layer describes the evolution of a complete ensemble by considering the communication
between roles and between roles and components. It builds on the first layer to concur-
rently evolve the constituent role instances of an ensemble. In the following, we present
both layers of rules.

Assumption: For simplification, we assume as in the previous chapter that role in-
stance parameters as well as data parameters of messages are unary, i.e., we do not
consider lists of parameters, but only a single role instance parameter and a single data
parameter.

3.3.1 Evolution of Roles

On the first level, we formalize the progress of a single role and its role behavior. The
progress only captures how a process expression can evolve according to its structure
without taking into account any interaction with other roles and components. The
SOS rules in Fig. 3.1 define this progress inductively over the structure of well-formed
process expressions (cf. Def. 2.9 on page 25). The symbol <i>w describes a transition
on the role level when executing an action a for the role instance with identifier ¢ in the
global ensemble state o. The role instance identifier ¢ and the global ensemble state o
are necessary to be able to evaluate the guards of if-then-else constructs.

Let us consider each process construct individually: Termination with the process
construct quit cannot evolve at role level. Intuitively, termination requires the owning
component instance to quit playing the role. However, this means that on the role level
no action is possible and the role simply terminates.

Action prefix a.P can always evolve on the role level by executing the action a.
Restrictions on the execution of an action only result from the communication between
roles and components, e.g., for sending a message the input queue of the receiving role
must be able to store one more element. These restrictions are taken into account when
we consider the second layer, i.e. the evolution of the whole ensemble and therefore all
interactions and dependencies between roles and components.
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(action prefix) aP <%, P

P, P
(nondet. choice-1) 1—111
P+ P, =0 P|
i Py <%, Ps
(nondet. choice-2) L{l?
P+ P —i,o P2/

P S, P

(if-then-else-1) =
if (guard) {P;} else {P>} —; - P|

if [guard]s,»

a
PQ —i,o PQ/

(if-then-else-2) —
if (guard) {P;} else {P2} —; - P}

if not [guard];,o

P, P
NS, P

if roleBehavior N = P

or process N = P

(process invocation)

Figure 3.1: SOS rules for the evolution of roles

Nondeterministic choice can evolve any branch for which the corresponding process
expression can evolve. If both process expressions can evolve, one of the branches
is nondeterministically selected for execution. Consequently, nondeterministic choice
cannot evolve if none of the process expressions of the branches can evolve. On the first
level of a single role instance, only quit cannot evolve, all other process constructs and
especially all actions can always evolve. On the second level of roles collaborating in
an ensemble, we will see that some actions cannot evolve, e.g., if a role wants to send a
message to another role which currently cannot receive it. This means, nondeterministic
choice is realized in HELENA as an external choice between its two branches. It does
not internally decide for one of the branches, but decides based on the executability
of the branches which one to execute. Nondeterministic choice is therefore externally
triggered since, e.g., we cannot internally decide to receive a message, but have to wait
for the external action of sending a message from the outside to be able to receive it.

The if-then-else construct can evolve its then-branch if the guard evaluates to true
and the corresponding process expression of the then-branch can evolve. It evolves its
else-branch if the guard evaluates to false and the corresponding process expression
of the else-branch can evolve. If the process expression of the branch chosen based on
the evaluation of the guard is not executable, the whole if-then-else process construct
cannot evolve. Note again that on the first level of a single role instance, only quit
cannot evolve, all other process constructs and especially all actions can always evolve.
On the second level of roles collaborating in an ensemble, branches might become not
executable. To evaluate the guards of guarded choice, we assume that guards are well-
formed as presented in Sec. 2.4.2. Fig. 3.2 inductively defines the evaluation [guard]; »
of a guard guard based on its syntactic structure according to Def. 2.9 on page 25.
The evaluation depends on the role instance ¢ in whose behavior the guard occurs.
Furthermore, it depends on the current state o of the ensemble, e.g., when evaluating
attributes of the role instance or its owner.
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[true];,» = true

[false];,» = false

[x]:,0 = w(x) iff o = (comps, roles) and
roles(i) = (rt, ci,at”,v,w, q, P)

[owner.attr]; o = at®(attr) iff o = (comps, roles),

roles(i) = (rt, ci,at”,v,w, q, P), and
comps(ci) = (ct,at®, as)

[self.attr];,o

at”(attr) iff o = (comps, roles) and

roles(i) = (rt,ci,at”,v,w, q, P)
[plays(rt, C)]s,o = true iff o = (comps, roles),
roles(i) = (rt;, ciz, at;, v, wi, qi, P;),
comps(ci;) = (cts, ats,as;), and
there exists j such that

roles(j) = (rt,as:(C), at},v;,w;,q;, Pj) and

as;(C) # L
= false otherwise
leli,o = ... (usual evaluation of data expression)
llguard];,o = true iff not [guard];, -
= false otherwise
lguard: && guards]i,» = true iff [guardi]s,o and Jguards];,o
= false otherwise

Figure 3.2: Evaluation of guards

e The boolean primitives true and false directly evaluate to their corresponding
semantic value.

e A data variable x is evaluated based on the current state o of the ensemble.
The value w(z) of the data variable z is retrieved from the local environment
function w of data variables stored for the role instance 7 in the ensemble state o.

e Similarly, the guard owner.attr, i.e., the attribute attr of the owning component
of the current role instance, is evaluated. We access the attribute value function at¢
of the owning component ¢i of the role instance i and retrieve the value at®(attr)
for the attribute attr. Thereby, it is important that the guard owner.attr is well-
formed, in the sense that the attribute attr of the owning component must be of
type bool to serve as a guard.

e For the guard self.attr, we access the attribute value function at” of the role
instance i and retrieve the value at” (attr) for the attribute attr. Again, the guard
self.attr must be well-formed to retrieve a boolean value.

e Intuitively, a plays query plays(rt, C') evaluates to true if the component instance
identified by C' adopts a role of type rt. However, C' is not a component instance
identifier, but is either the special, predefined variable owner or owner.assocnm
referring to the name of a component association of the owning component in-
stance. Thus, we have to retrieve the corresponding component instance identifier
as;(C) from the association value function as; of the owning component instance
ci; of the current role instance 4. If this identifier as;(C) is not L, we then deter-
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mine whether there exists a role instance j in the current ensemble state o which
is of type rt and is adopted by the component with the identifier as;(C).

¢ Data expressions e are not further specified in the syntax of HELENA. We assume
them to be built from constant values, data variables, and attribute getters com-
bined with the usual arithmetic and relational operators. These expressions are
evaluated as usual, e.g., self.count < 1+ 2 evaluates to true if the current value
of the attribute count of the role instance 4 is smaller than 3.

e Finally, propositional operators like ! and && can be used in guards. In Fig. 3.2,
the evaluation of negation with ! and conjunction with && is specified as usual.
The evaluation of further propositional operators is omitted here, but is straight-
forwardly defined.

To come back to the evolution of roles, we finally consider the evolution of process
invocation. In the context of a role behavior, only the role behavior itself or a process
from the set of associated local process declarations can be invoked. In either case, we
assume that the role behavior N or the process N is defined by the process expression P.
Then, if the process expression P can evolve by an action a to the process expression P/,
the process invocation N can evolve by the same action a to the process expression P’.
The semantics of HELENA does not prescribe a separate step for process invocation,
but immediately executes the first action of the invoked process.

3.3.2 Evolution of Ensembles

On the second level, we formalize the concurrent evolution of roles based on the under-
lying component-based platform. This level takes into account the interaction between
roles and components and therefore evolves the state of a complete ensemble. The SOS
rules in Fig. 3.3, Fig. 3.4 and Fig. 3.5 define the evolution of an ensemble state in the
context of an ensemble specification under the assumption of asynchronous communica-

tion. The symbol 29 e describes a transition from one ensemble state to another when
executing an action a for the role instance with identifier ¢ on the ensemble level. For
each rule, the transition between the two ensemble states is inferred from a transition
of a process expression on the role level, denoted by <i>w

If a role terminates the execution of its role behavior by the process construct quit
(rule quit), the role cannot execute any action on the role level, but on the ensemble level
the owning component has to quit playing the role. Thus, the SOS rule for quit takes
care that the owning component of a terminating role is set to the value | (expressing
that the role is no longer owned or played by any component) and likewise that the
remaining behavior is set to L (expressing that the execution of the role behavior is
completely finished). However, the role is only allowed to terminate its execution if
the number of adopted (i.e., not terminated) instances of its role type is greater than
the minimal number of instances for its role type required in the ensemble specification
(item (2)).

The SOS rule of a create action formalizes three conditions when a role instance ¢
can issue the creation of a role instance of type rt; on a component instance identified
by C (rule create): Firstly, the component identified by C? must exist and be defined

2Similarly to plays queries, C' is not a component instance identifier, but C is either the special,
predefined variable owner or owner.assocnm referring to the name of a component association of the
owning component instance. Thus, we have to retrieve the corresponding component instance identifier
as;(C) from the association value function as; of the owning component instance ci; of the role instance
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(quit) —
(comps, roles) Lauit, e (comps, roles[i — (rt, L,at™,v,w,q, L)])
(1) i € dom(roles), roles(i) = (rt, ci,at”, v, w, g, quit)
if < (2) roleconstraints(rt) = (min, maz, cap),
’{k | roles(k) = (rt, cik, aty, vk, Wi, gk, Px) and ciy # J_}‘ > man.
X «create(rt;,C)
Pp————, P .
(create) S R———— =t with o = (comps, roles)
(comps, roles) — L He. (comps, roles’)
(1) i € dom(roles), roles(i) = (rt;, cis, aty, vi, wi, gi, P;),
comps(ci;) = (cts, ats, as;)
(2) asi(C) € dom(comps)
(3) there does not exist k € dom(roles) such that,
" roles(k) = (rt;, asi(C), atk, vi, Wk, Gk, Pr),
i
(4) roleconstraints(rt;) = (min, maz, cap),
|{k | roles(k) = (rt;, cig, aty, vi, Wk, qr, Px) and cij # L}} < mazx
(5) roleBehavior rt; = P;,
(6) roles’ = roles[i = (rts, ciz, aty, v;[X — next(roles)], wi, g, P;)]
[next(roles) — (rt;,as;(C), 0, O[self — next(roles)], D, e, P;)].
X<—get(rt;,C)
Pi #)i,o Pz'/ . .
(get) with o = (comps, roles)

i: X «get(rt;,C)
—>

(comps, roles) He. (comps, roles’)

(1) ¢ € dom(roles), roles(i) = (rt;, iz, ats ,vi, w;, qi, Pi),
comps(ci;) = (cts, ats, as;)
if ¢ (2) as:i(C) € dom(comps)
(3) there exists j € dom(roles), roles(j) = (rtj,as;(C),at}, v;, w;, g5, Pj)
(4) roles’ = roles [i — (rt;, cii, at],vi[X — j],ws, g, P})].

Figure 3.3: SOS rules for the evolution of ensembles (part 1)

(item (2)). Secondly, the new role instance of type rt; can only be created on a com-
ponent identified by C' which does not yet play a role of the same type rt; (item (3)).
Intuitively, this restriction is reasonable since a component cannot play the same role
twice in one ensemble. It can only play it twice when participating in two different en-
sembles. Thirdly, the new role instance of type rt; can only be created if the maximal
number of instances for this role types required in the ensemble specification has not yet
been reached (item (4)). Other conditions, like that the component instance identified
by C'is of a type which is allowed to adopt a role of type 7t;, are already guaranteed
due to well-formedness of process expressions (cf. Sec. 2.4.2). If the two aforementioned
conditions are satisfied and the role instance i can execute the create action on role
level, the ensemble can also evolve by the corresponding create action. In the resulting
ensemble state (item (6)), a new role instance with the identifier next(roles) has been
added which is in its initial state. Furthermore, the role instance ¢ which issued the

¢ which wants to create the new role instance. With this identifier as;(C), we then determine whether
there currently exists a role instance & which is of type rt; and is adopted by the component with the
identifier as;(C).
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creation stores a reference to the newly created role by setting the value of the role
instance variable X in its local environment function v; to nezt(roles). Obviously, also
the remaining behavior of the role instance i changed to P’ after executing the create
action.

To be able to execute a get action on ensemble level (rule get), two conditions have to
be satisfied: the component identified by C' must exist and be defined (item (2)) and in
the current ensemble state, there must exist a role instance j of the desired role type 7t;
which is currently adopted by the component instance identified by C, or rather the
component instance with the identifier as;(C) as before (item (3)). If this condition is
satisfied and a role instance ¢ can execute the get action on role level, the ensemble can
also evolve by the corresponding get action. In the resulting ensemble state (item (4)),
the role instance ¢ which issued the get action stores a reference to the retrieved role
by setting the value of the role instance variable X in its local environment function v;
to 7. Obviously, also the remaining behavior of the role instance i changed to P’ after
executing the get action.

Y !msgnm(X)(e)

/
Pe————, P

(send) P ——ey with o = (comps, roles)
(comps, Toles) ———————— g, (comps, roles’)
(1) i € dom(roles), roles(i) = (rt;, cis, aty , vi, ws, qi, B;),
(2) vi(Y) = j € dom(roles), roles(j) = (rt;, cij, aty,v;, wy, g5, P;),
” roleconstraints(rt;) = (min, maz, cap),|q;| < cap,
(3) vi(X) = k € dom(roles)
(4) roles’ = roles[i — (rtq, cis, at}, vi, wi, qi, Py )]
[ = (rtj, cij, aty, vj, w;, q; - msgnm(k)([e]io), P5)]-
 Pmsgnm(Xertj)(@idt)
(receive) : Lo i with o = (comps, roles)

i:?msgnm (X:rt ;) (z:dt) ,
Hee (comps, roles’)

(comps, roles)
(1) 7 € dom(roles), roles(i) = (rt;, ciz, at; , vi, w;, msgnm(j)(e) - ¢, B;),
if ¢ (2) j € dom(roles),
(3) roles’ = roles[i > (rts, ciy, aty, v:[X = j],wi[z — €], g, P)).

Figure 3.4: SOS rules for the evolution of ensembles (part 2)

The SOS rule of a send action formalizes one condition when a role instance ¢
can send a message msgnm(X)(e) to a role instance identified by the variable Y (rule
send): The input queue of the role instance Y has not yet exceeded its maximal capacity
determined in the underlying ensemble specification (item (2)). Thereby, the variable YV
is not a role instance identifier, but refers to a variable whose value v;(Y) = j has to
be retrieved from the local environment function v;. Other conditions, like that the
sending role must support the message as outgoing message and the receiving role as
incoming message, are already guaranteed due to well-formedness of process expressions
(cf. Sec. 2.4.2). If the aforementioned condition is satisfied and the role instance 7 can
execute the send action on role level, the ensemble can also evolve by the corresponding
send action. In the resulting ensemble state (item (4)), the message has been placed at
the end of the input queue of the receiving role instance j. Obviously, also the remaining
behavior of the role instance ¢ changed to P’ after executing the send action.
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To receive a message msgnm(X:rt;)(x:dt) on a role instance 7 in an ensemble (rule
receive), only one condition has to be satisfied: The first entry of the input queue of
the role instance ¢ must be an appropriate message (item (1)). Other conditions, like
that the receiving role must support the message as incoming message, are already
guaranteed due to well-formedness of process expressions (cf. Sec. 2.4.2). If the afore-
mentioned condition is satisfied and the role instance i can execute the receive action
on role level, the ensemble can also evolve by the corresponding receive action. In the
resulting ensemble state (item (3)), the role instance i has received the message and has
stored the received value j for the role instance parameter X in its local environment
function v; and the received value e for the data parameter x in its local environment
function w;. Obviously, also the remaining behavior of the role instance ¢ changed to
P’ after executing the receive action.

When calling an operation from a role instance ¢ on its owning component (rules
op call 1 and op call 2) in an ensemble, no special conditions have to be satisfied.
Whenever the role instance ¢ can execute the operation call, the ensemble can also
evolve by the corresponding operation call. Most interesting is the resulting ensemble
state after the execution of the operation call. In HELENA, we do not specify any
effects of an operation, e.g., by pre- and post-conditions. Thus, an operation can have
arbitrary side-effects on the owning component instance where the operation is called.
That means if an operation without return value is called (rule op call 1), it evolves
the global ensemble state by locally evolving the remaining behavior of the calling role
instance i to P’ (item (2)) and by arbitrarily, but well-definedly changing the local state
of the owning component instance ci; while all other local states of component instances
have to remain unchanged (item (3)). If an operation with a return value is called (rule
op call 2), the variable x for storing the return value is set to an arbitrary value e in
the local environment function w; of the role instance ¢ in the resulting ensemble state
(item (2)). This reflects that in HELENA we do not specify the effect of an operation and
therefore the return value is arbitrary. Furthermore, the operation can have side-effects
on the local state of the owning component instance ci; as before (item (3)).

If data should be changed on the owning component of a role instance 4 in a defined
way, the role instance uses the component attribute setter i:owner.attr (rule comp
attr). No special conditions have to be satisfied to execute that action on the ensemble
level. Whenever the role instance ¢ can execute the component attribute setter, the
ensemble can also evolve by the corresponding action. In the resulting ensemble state,
the value of the attribute attr in the attribute value function at{ of the owning compo-
nent instance ci; of the role instance ¢ is set to the evaluation [e];, of the expression e
(item (2)). Obviously, also the remaining behavior of the role instance i changed to P’
after executing the receive action (item (3)).

Similarly, if data should be changed on the role instance ¢ in an ensemble, the role
instance uses the role attribute setter i:self.attr (rule role attr). No special conditions
have to be satisfied to execute that action on the ensemble level. Whenever the role
instance ¢ can execute the role attribute setter, the ensemble can also evolve by the cor-
responding action. In the resulting ensemble state (item (2)), the value of the attribute
attr in the attribute value function at] of the role instance 7 is set to the evaluation
le]io of the expression e. Obviously, also the remaining behavior of the role instance i
changed to P’ after executing the receive action.

Finally, whenever a role instance ¢ in the current ensemble state can execute a state
label action label, the action can also be executed in the ensemble (rule label). In the
resulting ensemble state (item (2)), only the remaining behavior of the role instance i
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changed to P’ after executing the label action. That means that state labels do not
contribute to the goal-oriented behavior of a role. They are used for verification purposes

only.

(op call 1)

(op call 2)

(comp attr)

(role attr)

(label)

owner.opnm(e)

/
Pe—i, P

: with o = (comps, roles)
i:owner.opnm(e)

(comps, roles) ue. (comps’; roles’)

(1) i € dom(roles), roles(i) = (rti, cis, aty , vi, wi, qi, Pr),
(2) roles’ = roles[i — (rt;, cis, at}, vi, wi, qi, P})],
(3) (comps’, roles’) well-defined

and for all ¢i € comps with ci # ci; holds comps’(ci) = comps(ci).

z=owner.opnm(e)

/
Pp———o P

. i
: with o = (comps’, roles)
i:z=owner.opnm(e)

(comps, roles) ue (comps, roles’)

(1) i € dom(roles), roles(i) = (rti, cis, aty , vi, wi, qi, Pr),
(2) roles’ = roles[i — (rts, cis, at}, vi, wi[x — €], qi, P})]
if for an arbitrary value ¢,
(3) (comps’, roles’) well-defined
and for all ¢i € comps with c¢i # ci; holds comps’(ci) = comps(ci).

owner.attr=e

Ppe—-——, , P

i:owner.attr=e

(comps, roles) ———————3yg (comps’, roles’)

with o = (comps, roles)

(1) i € dom(roles), roles(i) = (rt;, cis, aty , vi, wi, qi, Pi),
if { (2) comps’ = comps[ci; > (cts, at[attr — [e]i o], asi))
(3) roles’ = roles[i — (rts, cis, at}, vi, wi, qi, P )].
self.attr=e

P ———i, P .
: with o = (comps, roles)

He. (comps, Toles’)

i:self.attr=e
(comps, roles)

(1) i € dom(roles), roles(i) = (rti, cis, aty , vi, wi, qi, Pi),
(2) roles’ = roles[i — (rts, ciy, at} [attr — [€]i.o], vi, ws, gi, P})].
label

P—is Pi/ .
g = with o = (comps, roles)

(comps, roles) M>HEL (comps, Toles")

{ (1) ¢ € dom(roles), roles(i) = (rt;, cii, ats ,vi, w;, qi, Pi),

(2) roles’ = roles[i — (rt;, cis, at},vi, wi, qi, P;)].

Figure 3.5: SOS rules for the evolution of ensembles (part 3)

3.4 Semantic Labeled Transition System

The semantic rules given in the previous subsection generate a labeled transition system
with ensemble states evolving by role instance creation and retrieval, communication
actions of roles, and access to the owning component.
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Let EnsSpec be an ensemble specification over a set C'I' of component types.
Given an admissible ensemble state o, the semantics of the ensemble specifi-
cation EnsSpec is the labeled transition system Tirg. = (Stew, IHen, AdeL, —He)
with Ipg, = {0imi} which is generated by the structured operational semantic
rules in Fig. 3.3, Fig. 3.4 and Fig. 5.5.

The states Spg, of the generated labeled transition system are all (well-defined)
ensemble states of the ensemble specification EnsSpec, the set It1g, of initial states only
contains oy, the actions Ay, are all actions on ensemble level, and the transitions in
—g, are described by the SOS rules in Fig. 3.3, Fig. 3.4 and Fig. 3.5.

3.5 Related Work

In the literature, many process algebras of concurrent communicating processes exist.
We focus on three representatives of them which are quite similar to our HELENA ap-
proach: The Fork Calculus by Havelund and Larsen [HL93], a process algebra using
the special fork operator to put processes in parallel; PROMELA, a language for mod-
eling systems of concurrent processes and the input language for the model-checker
Spin [Hol03], and its incremental semantics by Weise [Wei97]; and SCEL by De Nicola
et al. [DLPT14], a language to model systems of autonomic components.

First of all, they all share the idea of concurrently executing, communicating pro-
cesses, but they employ different communication styles. In the Fork Calculus, two
processes synchronously communicate on complementary actions. PROMELA allows
synchronous and asynchronous message passing via global channels. Components in
SCEL exchange knowledge via dedicated knowledge repositories, similarly to tuple
spaces, where knowledge is asynchronously put and retrieved in the form of data tu-
ples. HELENA is most similar to PROMELA in its communication style. Messages are
asynchronously exchanged (the extension to synchronous message passing is straight-
forward). However, in contrast to PROMELA, messages in HELENA are received on a
dedicated input queue per role which is not globally available like channels in PROMELA.

The three approaches also differ in the handling of data. The Fork Calculus does not
include data. In PROMELA, data is allowed as global and local variables of processes,
as parameters of processes and as content of messages. In SCEL, data is stored as
tuples in knowledge repositories and put and retrieved from them via special knowledge
repository manipulation actions. HELENA again resembles PROMELA in the treatment
of data. Data is stored in attributes of components and roles similarly to local variables
and parameters of processes. Furthermore, roles exchange data as content of messages.

Dynamic process creation as proposed by dynamic role creation in HELENA has
not found much attention in the literature about concurrent communicating processes.
Bergstra [Ber92] uses an environment operator which allows to place the newly created
process in parallel with the process initiated the process creation. Thus, he mainly ex-
ploits parallel composition to express process creation. Baeten [BV92] proposes a more
direct way to express process creation. He uses continuations which allow a process with
dynamic process creation to continue with either process expression, the newly created
process or the process which initiated the process creation. The three approaches, to
which HELENA is mainly related, all allow to create a new process which is executed in
parallel to all existing processes in the system. The Fork Calculus introduces the special
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fork operator. The operator allows to start a separate evaluation of a process expression
and runs it in parallel with all other processes. The run operator of PROMELA spawns
a new process instance of a certain process type. Again, this new process is run in par-
allel with all other processes of the system. SCEL provides the new action to create a
new component. This component executes its behavior modeled as a (possibly) parallel
process concurrently to all other components in the system. Similarly, HELENA allows
to dynamically create a new role instance from within another role behavior. The newly
created role then executes its behavior in parallel to all other roles.

The main difference to all these approaches is that HELENA not only has the concept
of active role instances executing their goal-directed behavior. The approach addition-
ally employs components which serve as data storage and computing resources for the
active roles. Components thereby provide their capabilities to their adopted roles such
that in the semantics of a HELENA ensemble specification, roles and their progress of
execution as well as components with their data state have to be handled.

In general, HELENA and the three approaches share the idea of describing their
semantics by transition systems. They all split the semantics in two levels, the first
level representing the evolution of a single entity and the second level representing the
concurrent execution of all entities. In the Fork Calculus, structured operational se-
mantics (SOS) rules are defined for the execution of a process in isolation. The SOS
rules for programs are derived from the single process rules as an interaction between
a multiset of processes. Similarly, in PROMELA, first the semantics of the behavior of
a single process is defined before the behavior of the complete system is derived from
a set of interacting processes. In SCEL, the execution of a process retrieves commit-
ments for the process, i.e., actions which the process can perform and continuations
how the process would proceed after executing the actions. With these commitments, a
system configuration composed from several components executing the aforementioned
processes is evolved. Similarly, in HELENA, we describe the evolution of a single role
instance without considering the interaction with other roles and components on the
first level. On the second level, we evolve all role instances of an ensemble in parallel
and take into account communication. In contrast to the other three approaches, roles
thereby do not only communicate with other roles in HELENA, but also with compo-
nents. Therefore, we have to manage not only the local states of roles for an ensemble,
but also the local states of components.

3.6 Publication History

The semantics of ensemble specifications has first been defined by ensemble automata
in [HK14] and [KH14]. These publications verbosely describe ensemble states by families
of functions and ensemble automata by the evolution of ensemble states by ensemble
actions. In [HKW15|, we propose a precise SOS semantics for a subset of HELENA
ensemble specifications which is based on the previous notion of ensemble states and
their evolution. This chapter extends the SOS semantics to full HELENA ensemble
specifications. In particular, the simplified SOS semantics in [HKW15] does not consider
the level of components which is an essential part of the full semantics. The simplified
semantics omits any notion of data which is included in the full semantics as values
of (component or role) attributes, content of messages, and guards in role behaviors.
Finally, the semantics of the restricted set of process constructs and actions is extended
to the full syntactic constructs of HELENA. This extension is particularly important for
the treatment of guards, the if-then-else construct, and nondeterministic choice.
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3.7 Present Achievements and Future Perspectives

Present Achievements: The semantics of HELENA ensemble specifications is de-
scribed by labeled transition systems. These labeled transition systems follow struc-
tured operational semantics (SOS) rules to evolve the states an ensemble can be in
according to the ensemble specification.

An ensemble state captures the states of the components and roles forming the
system. Since a component is thought of as a pure data container and computing
resource in HELENA, the state of a component is just characterized by information
currently stored on the component. In contrast, a role is meant to execute a goal-
directed behavior and to store information only relevant for that behavior. Thus, the
state of a role is characterized by the information currently stored on the role and all
information related to the progress of behavior execution (like the current content of
the input queue or the remaining behavior to be executed). Furthermore, the role keeps
a reference to its owning component to access the data stored on the component and to
exploit the computing resources of the component by calling operations.

SOS rules determine the allowed transitions between those ensemble states according
to the ensemble specification. Inspired by [HL93| and [Wei97]|, we split the rules into
two layers: The first layer describes the evolution of a single role instance and its
corresponding role behavior without considering the interaction with other roles and
components. The second layer describes the concurrent evolution of all role instances
of an ensemble. It formalizes the interaction between roles, like sending a message to a
role by putting it into its input queue, and the communication with components, e.g.,
to access data stored on the components or to call operations on the components.

The main aspects of the semantics are that HELENA allows to dynamically create
new role instances and employs asynchronous communication between roles. From the
technical side, it is important to note that in the HELENA semantics neither the selection
of a branch in guarded choice nor process invocation does take a separate step. Both
directly execute the first action of the selected branch or the invoked process resp. This
is in-line with other process algebras like SCEL [DLPT14], but is sometimes differently
handled as in PROMELA, the input language for the model-checker Spin [Hol03|. In
contrast, termination of a role behavior has to take an additional step to allow the
owning component to quit playing the role before the role terminates its executiomn.
Lastly, it remains to mention that no effects are specified for operations in HELENA and
thus operations can have arbitrary side-effects on the owning component instance of the
calling role instance.

Future Perspectives: For future work, there exist some interesting extension points:

Effect of Operations: So far, we cannot formalize any specific effects of operation calls.
To be able to formalize specific effects, operations could be extended by pre-
and post-conditions. These would allow to specify the particular tasks which a
component can fulfill for a role by executing operations.

Interferences between Roles: According to the proposed semantics, an operation call is
handled as an atomic step such that concurrent operation calls cannot happen.
However, if we allowed an operation to consist of several steps and additionally
allowed to specify precise effects of operations, it might happen that two con-
currently called operations interfere which each other and their effects contradict
each other. For example, one operation tells the component to move to a certain
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location while another advises the component to remain at the current location.
Solutions to this problem could be to only allow the execution of a single operation
at a time (known as synchronized methods in Java) or to define which roles can
only mutually exclusively be adopted.

Shared Components between Ensembles: In the semantics of HELENA, the local states

of components are part of the state of an ensemble. However, the idea of HELENA
is to employ several ensembles concurrently on the same underlying component-
based platform. Hence, the local states of components should be shared between
different ensembles, but this comes with the problems of interferences again.
Whenever, the data on a component is changed during the execution of one en-
semble; it is also changed for all other ensembles which rely on the same set of
components. Problems similar to database reads and writes may arise, i.e., an
ensemble reads data from a component which is immediately outdated due to a
write from another ensemble.

Openness for New Components: Finally, we restricted the set of components to a fixed

number. In the semantics, the local states of components can be changed, but new
components cannot be added or removed. However, if we allow to dynamically
extend or shrink the set of represented components, we come across the problem
what happens to roles which are currently played by a leaving component. A new
action to transfer a role to another owning component may solve the problem of
a leaving component, but could also help to exploit new resources if a component
joins.



Chapter 4

(Goal Specifications
Being Successful with HELENA

Ensembles are formed to collaborate for some global goal. Following [vL09], a goal can
be an achieve goal, such that the ensemble terminates when the goal (specified, e.g., by
a particular state) is reached, or a maintenance goal, such that a certain property (spec-
ified, e.g., by an ensemble invariant) is maintained while the ensemble is running. Such
goals are often described by linear temporal logic (LTL) formulae [DvLF93, DAC99| to
allow formal verification of goal satisfaction in the underlying model. In this chapter,
we introduce HELENA LTL, a logic based on LTL with HELENA-specific atomic propo-
sitions to be able to specify goals for a HELENA ensemble specification. We rely on
the formal semantics of HELENA to define satisfaction of LTL formulae over a HELENA
specification.

In the following, we first explain the general notion of goals and their representation
in LTL in Sec. 4.1. Sec. 4.2 defines HELENA LTL formulae and their satisfaction over
HELENA specifications. We conclude this chapter with a short outlook about future
work in Sec. 4.4.

4.1 Goals and their Specification in LTL

The notion of goals has widely been used in the field of requirements engineering.
KAOS [vL09] is one of the most famous frameworks of goal-oriented requirements engi-
neering and we base our understanding of goals on their notions. In KAOS, the system
and its environment is seen as a collection of active components or agents, i.e., some
agents define the system while others define its environment. According to van Lam-
sweerde [vLO03], a “goal is a prescriptive statement of intent about some system (existing
or to-be) whose satisfaction in general requires the cooperation of some of the agents
forming that system”. That means that a goal is a high-level strategic objective which
the system should achieve. Each agent plays a certain role towards achieving the goal.
By refining a goal into a set of subgoals where each subgoal is realizable by a single
agent, the high-level goal is operationalized into low-level requirements. A requirement
thus represents a way of achieving a (part of a) goal. It defines the contribution of a
single agent and therefore its role in the collaboration.

FEnsemble-based systems as considered in the HELENA approach are large distributed
systems where components dynamically collaborate for a high-level objective. Each
component participates in a certain role in the ensemble. Similarly to KAOS, we de-
scribe the high-level objective of an ensemble by a global goal. Each role in the ensemble
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intends to contribute a particular functionality to achieving the goal and is thus an op-
erationalization of (a part of) the goal.

4.1.1 Goal Types

In the literature of goal-oriented requirements engineering, goals have been classified
according to different axes [vL01, vL09].

Concern: The first axis describes the kind of properties the goal is concerned with.
Functional goals are services or functions which the system should provide. Given
a certain input, the system should execute a specific behavior to produce the de-
sired output. Opposed to that, non-functional goals are concerned with the quality
of the system. Thus, they describe the performance of the system and constraints
on how the system provides the desired functionalities, e.g., time bounds or secu-
rity levels.

Time: A taxonomy that is especially chosen when considering goals is the types of
temporal behavior prescribed by the goal. Achieve goals describe a property or
a system state that is established at some point in the future; analogously, cease
goals describe a property which is ceased at some point in the future. Maintain
goals require the system to maintain a certain property throughout the whole
lifetime of the system; analogously, avoid goals require it to avoid a certain state.

Achievement: The third axis considers whether a goal can explicitly be achieved. A
hard goal is a property of the system whose satisfaction can strictly be verified
while a soft goal is not characterized by a clear-cut criterion. A soft goal is al-
ways only satisfied to a certain degree and complete achievement is not possible.
Soft goals can be specialized to optimize goals. Optimize goals define an objec-
tive function according to which different behaviors are evaluated. The behavior
maximizing the function is favored over the others.

In ensemble-based systems, components collaborate to perform goal-oriented tasks.
Therefore, we focus on functional goals, i.e., the ensemble executes a specific behavior to
provide a certain functionality. Furthermore, an ensemble can pursue two types of goals:
either it strives to achieve a certain goal or to maintain a certain property throughout
execution. In both cases, we only consider hard goals to be able to verify satisfaction.

Example: The transfer ensemble in the p2p example pursues two goals. On the one
hand, the ensemble is formed to transfer a file from the providing peer to the requesting
peer if the file is present in the p2p network. Hence, we formulate an achieve goal to
reach a state in the running system where the requesting peer has the file. On the other
hand, the ensemble has to guarantee that whenever the file is available in the system
it should not accidentally be deleted. Thus, the system has to fulfill the maintain goal
that one peer always has the file if it was present in the initial state.

4.1.2 Linear Temporal Logic

Besides giving an informal (but intuitive) description of goals as in the previous sub-
section, we formally specify them. Together with a formal specification of the system,
this allows to check satisfaction of goals for the intended system.

A popular approach to specify goals is linear temporal logic (LTL). It is especially
suitable to describe properties which have to be achieved at some point of time or
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maintained throughout the whole lifetime of a system. LTL are formulae built from a
set, of atomic propositions and logic operators. The atomic propositions of LTL formulae
are simple properties which have a specific boolean value in each state of the system.

Def. 4.1: Linear Temporal Logic [BKO0S]

Let AP be a set of atomic propositions. LTL formulae over AP are then induc-
tively defined by:

o =pe AP (atomic proposition)
|~ | dAY (proposition logic operators)
| Xo | 0o | 0o | oUY (linear temporal logic operators)

The set of LTL formulae over AP is denoted by LTL(AP).

Disjunction, implication, and equivalence are given by the usual abbreviations:

¢V = (¢ AN ),
o= = ¢ V1, and
=P =(@p=V)AN W= 9).

LTL in Kripke Structures: To define when a given system satisfies an LTL formula,
the system must be formally described. The first possibility is to use the notion of Kripke
structures. They consist of a set of states connected by (unlabeled) transitions. The
states are labeled by sets of atomic propositions which hold in the state and some states
are marked as initial states.

Def. 4.2: Kripke Structure

Let AP be a set of atomic propositions. A Kripke structure K over AP is a tuple
(Sk, Ik, — K, Fr) such that

o Sk is a set of states,

o I C Sk is a set of initial states,

o —x C Sk xSk is an (unlabeled) transition relation without terminal states
(i.e., Vs € Sk3s’ € Sk . s =k §'), and

o F : Sk — 247 is a labeling function associating to each state the set of
atomic propositions that hold in it.

For a Kripke structure K = (Sk, Ik, — i, Fr), we further define:

e A path of K is an infinite sequence p = sgs182... (with s; € Sk for all i € N)
such that sg € Ik and s; = Si+1. A path fragment of K is an infinite sequence
p = s182... (with s; € Sk for all i € N) such that s; =g S;+1-

e A {race of K is an infinite sequence t = tgt1ts ... such that there exists a path
p = S08182... in K and t; = Fk(s;) for all i € N. A trace fragment of K is an
infinite sequence ¢ = t1ty ... such that there exists a path fragment p = s1s9. ..
in K and t; = Fk(s;) for all i € N,

When a system described by a Kripke structure satisfies a goal described by an LTL
formula is defined by the usual inductive definition |[BK08|. Note that satisfaction is
always evaluated according to an infinite trace of the Kripke structure.
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Def. 4.3: Satisfaction of LTL in Kripke Structures

Let K = (Sk, Ik, — Kk, Fr) be a Kripke structure over AP, t = totity. .. a trace
fragment of K, and ¢ € LTL(AP); t|; denotes the subsequence tit;y1tit2 ... of t.
The satisfaction of ¢ for trace t, written t |= ¢, is inductively defined by
i tl:pz ifpet();
tE g, if t |~ ¢,
tEOANY, ift = andt =1,
t = Oo, if there exists k > 0 such that t|y = ¢,
t = 0o, if for all k > 0 holds t| = ¢,

t = o Uy, if there exists k > 0
such that t|, =1 and for all 0 < j < k holds t|; |= ¢,

The Kripke structure K satisfies an LTL formula ¢, written K |= ¢, if all traces
of K satisfy ¢.

LTL in Labeled Transition Systems: A second possibility is to describe systems
as labeled transition systems. In contrast to Kripke structures, they do not label states
with atomic propositions, but transitions with actions. Let’s recall the definition of
labeled transition systems from Def. 3.1 on page 46. A labeled transition system 7' is a
tuple (St, I, Ap, —7) such that St is a set of states, It C St is a set of initial states,
Ar is a set of actions such that the silent action 7 ¢ Ap, and —p C Sp x (ApUT) X St
is a labeled transition relation. For an LTS T = (St, I, Ap, —71), we further define:

e a* denotes a (possibly empty) sequence of a actions.

e If w=ay...a, holds for some n € N and ay,...,a, € (Ap UT), then s N4
stands for s = &, if n = 0, and s 7 $1...50-1 —p s with appropriate
$1,...,8n—1 otherwise.

e The LTS T together with a set of atomic propositions AP and a satisfaction
relation s = p (for s € Sp and p € AP) induces a Kripke structure K(7') =
(ST, IT, —)51, F):

— The labeled transition relation — is transformed into an unlabeled, total

transition relation —3 which forgets the actions and adds a new transition
s —% s for each terminal state s € Sp.

— The labeling function F: Sp — 247 is defined by F(s) = {p € AP | s = p}.

When a system described by a labeled transition system satisfies an LTL formula is
defined relying on the induced Kripke structure.

Def. 4.4: Satisfaction of LTL in Labeled Transition Systems

Let T = (St,Ir, Ar,—71) be a labeled transition system, AP a set of atomic
propositions, s = p a satisfaction relation for s € Sy and p € AP, and ¢ €
LTL(AP) an LTL formula over AP.

T satisfies ¢, written T = ¢, if K(T) | ¢, i.e., the induced Kripke struc-
ture K(T) satisfies ¢.
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4.1.3 Goal Patterns

To support the engineer of a system, goal-oriented requirements engineering recom-
mends a set of temporal logic patterns to describe achieve and cease goals as well as
maintain and avoid goals. Dwyer et al. [DAC99| recommends a set of patterns for the
specification of properties in finite-state verification which are similarly proposed for the
specification of temporal goals by the KAOS methodology [DvLF93, vL.09]. We only fo-
cus on the most general form of achieve, cease, maintain, and avoid goals (cf. Fig. 4.1).
They can be extended to cope with more complex goals like that a system has to
maintain a certain property until a new (possibly more desirable) property is achieved
(cf. [vL09, Chap. 17]).

Achieve Goal: P = {Q,
Cease Goal: P = ¢—Q,

Maintain Goal: P = 0Q,
Avoid Goal: P = 0-Q,

Figure 4.1: Patterns for temporal goals formulated in LTL (taken from [DvLF93])

An achieve goal expresses that a certain state of the system has to be reached at
some point of time in the future. The formalization in LTL thus requires by the term $Q
that the property @ eventually holds at some point in the future. However, it might be
that the system only has to achieve @ if it is started in a certain state. This is expressed
by the implication P = to indicate the initial property P which requires achieving the
property @ at some point in the future. Analogously, a cease goal requires the system
to cease the property @ at some point in the future expressed by the term $—Q).

In contrast, a maintain goal demands to fulfill a certain property throughout the
lifetime of the system. The formalization in LTL thus requires by the term Q) that the
property @ always holds. Similarly to an achieve goal, it might by that the property
(Q must only be maintained if the system is started in a certain state expressed by the
implication P =-. Analogously, an avoid goal requires the system to always avoid the
property @ expressed by the term -Q).

Example: To express the goals for the p2p example which were informally defined in
the previous section, we have to assume that the system exposes some properties about
its state. Firstly, it exposes by Peer[i:hasFile whether the ith peer currently has the
file. Secondly, the term Requester:hasFile denotes whether the single requester in the
file transfer ensemble has the file. Since LTL does not allow quantification, we have to
assume given a set of peers Peer[l], Peer[2], and Peer|[3] to express our goals.

The achieve goal that the requester has the file at some point in the future if it
exists in the p2p network is expressed by the LTL formulae in Fig. 4.2

(Peer[1]:hasFileV Peer|2]:hasFileV Peer[3]:hasFile) = O Requester:hasFile.

Figure 4.2: Achieve goal for the p2p example in LTL

The first part of the implication determines whether the file exists in the p2p network
in the initial state of the system. Since we assumed that the system only consists of three
peers, it is enough to include them in the premise. The second part of the implication
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indicates that the ensemble actually achieves its goal at some point in time by specifying
that the single requester in the network eventually has the file. Since we formulated
the goal as an implication, we require the system only to transfer the file if the file is
present in the p2p network; otherwise, the system does not have any achieve goal.
The maintain goal for the transfer file ensemble that the file is not accidentally
deleted throughout the lifetime of the system if it was present in the initial state of the
system is expressed by the LTL formula in Fig. 4.3. We start from the same premise as

(Peer[1]:hasFile V Peer[2]:hasFile V Peer[3]:hasFlile)
= O(Peer[1]:hasFile V Peer[2]):hasFile V Peer|[3]:hasFile).

Figure 4.3: Maintain goal for the p2p example in LTL

before that one peer should have the file. Then, the system has to always maintain the
file in the system which is expressed by the second part of the implication. It indicates
that at least one peer has the file at all points of time (this must not be the initial owner
of the file).

4.1.4 Reasoning about Goals

A formal specification of goals does not only provide a precise formulation of the criterion
when a goal is satisfied. The formal specification can also be used for reasoning about
goals [vLO1].

Firstly, we can use the formalization of goals to validate them. From their formal
representation, concrete scenarios can be generated. They describe typical examples
or counterexample of the intended system behavior which helps to identify the desired
system behavior. We can even go further and detect overlapping or conflicting goals
which must be resolved to gain a clear goal specification.

Secondly, we can apply goal verification on a given system specification such that
the satisfaction of goals is checked for a the system specification. Techniques of model-
checking are used to verify that the specified system actually meets its goal. We therefore
can guarantee that the specified system is an operationalization which achieves the
desired goals.

Thirdly, formal goal specifications can be used to derive a system’s operationaliza-
tion. Requirements of single agents are derived from goal specifications, for example,
by goal refinement. They in turn are used to elicit concrete pre- and post-conditions
for operations of agents.

In the following, we will focus on goal verification for ensemble-based systems. We
describe goals for ensembles by LTL formulae and verify their satisfaction for a given
HELENA ensemble specification.

4.2 HELENA LTL

To express achieve and maintain goals over HELENA ensemble specifications, we use
LTL formulae over a set of particular atomic HELENA propositions. Thereby, we can
refer to properties of role instances and component instances, but also to states in
role behaviors. In the following, we formally define LTL formulae over a HELENA
specification in Sec. 4.2.1. In Sec. 4.2.2, we discuss satisfaction of LTL formulae over a
HELENA specification based on the semantics presented in Chap. 3.
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4.2.1 HELENA LTL Formulae

To express HELENA LTL formulae, we assume given a HELENA ensemble specification
EnsSpec = (X, behaviors) (over a set of component types C'T') where ¥ is an ensemble
structure and behaviors is a set of extended role behaviors for each role type occurring
in ¥. In the HELENA LTL formulae, we can either refer to particular states of role
behaviors by state labels or to values of role attributes or component attributes.

Let EnsSpec be a HELENA ensemble specification. The set AP(EnsSpec) of
atomic propositions for EnsSpec consists of either state label expressions or a
boolean expressions over attributes.

(1) A state label expression is of the form rt[n]Qlabel where 1t is a role type
of ¥, n € NT is the identifier of a role instance of rt, and label is a state
label in a role behavior of the set behaviors.

(2) An attribute expression has to be boolean and is built from the usual arith-
metic and relational operators, data constants, and expressions of the form
rt[n]:attr or ct[n]:attr where n € N is the identifier of a role instance or
component instance, 1t is a role type and attr is a role attribute of rt, or
ct € CT is a component type and attr is component attribute of ct.

A HELENA LTL formula for EnsSpec is an LTL formula over the set AP(EnsSpec)
of the atomic HELENA propositions.

Example: For our p2p example, we repeat the two goals from Sec. 4.1. To recap, the
achieve goal that the requesting peer eventually has the file is expressed by the LTL
formula in Fig. 4.4 (which is the same as in Fig. 4.2). In the formula, only state label

(Peer[1]:hasFileV Peer|[2]:hasFileV Peer[3):hasFile) = {Requester:hasF'ile.

Figure 4.4: Achieve goal for the p2p example in HELENA LTL

expressions are used. Peer[1]:hasFile refers to the value of the attribute hasFile of the
component instance with the identifier 1 of component type Peer; analogously for the
state label expression Requester:hasFile. However, the latter is a shorthand notation
for Requester[l]:hasFile which can be used since we know by the minimal and maximal
multiplicity constraints for the role type Requester in the ensemble structure X qpnsfer
(cf. Fig. 2.4 on page 23), that there exists exactly one requester instance in the running
ensemble.

Similarly, the maintain goal that the file will never be accidentally deleted is ex-
pressed in HELENA LTL in Fig. 4.5 (which is the same as in Fig. 4.3).

(Peer[1]:hasFile V Peer[2]:hasFile V Peer[3]:hasFile)
= O(Peer[l]:hasFile V Peer[2]):hasFile V Peer|[3]:hasFile).

Figure 4.5: Maintain goal for the p2p example in HELENA LTL
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4.2.2 Satisfaction of HELENA LTL Formulae

To determine when an ensemble specification satisfies a HELENA LTL formulae, we rely
on Def. 4.4 on page 68 which requires a set of atomic propositions and a satisfaction
relation to define satisfaction of LTL formulae for a labeled transition system.

For an ensemble specification EnsSpec, the semantic rules of HELENA in Fig. 3.3,
Fig. 3.4, and Fig. 3.5 generate a labeled transition system (Sygy, [teL, AdeL, —Hew)
for a given admissible initial state ony € Ie.. The atomic propositions for EnsSpec
which are used to formulate LTL formulae are the state label expressions and attribute
expressions defined by the set AP(EnsSpec) in the previous subsection. Therefore, it
remains to define a satisfaction relation o = p for ¢ € Syg, and p € AP(EnsSpec)
(the satisfaction relation serves as labeling function when inducing a Kripke structure
from the labeled transition system). Satisfaction of LTL formulae in labeled transition
systems was already defined in Def. 4.4 and satisfaction in Kripke structures in Def. 4.3.

Let Trg, = (Stew, Ige, AdeL, —HeL) be the labeled transition system of a HE-
LENA ensemble specification EnsSpec, o = (comps,roles) € Spg. be a well-
defined ensemble state, and let AP(EnsSpec) be the set of atomic propositions
for EnsSpec.

The ensemble state o satisfies an atomic HELENA proposition p € AP, denoted

by o = p, if

(1) p is a state label expression p = rt[n]Qlabel and there exists n € dom(roles)
such that roles(n) = (rt, ci,at”, v, w, q, label.P) and ci # L,

(2) p is an attribute expression p = e and

o for every subexpression rt[n]:attr of e:
there exists n € dom(roles) with roles(n) = (rt,ci,at”, v, w, q, P) and
ci # L such thatl the value at”(attr) combined with the values of the
other subexpressions of e evaluates to true and

o for every subezpression ct[n]:attr of e:
there exists n € dom(comps) with comps(n) = (ct,at®, as) such that
the value at®(attr) combined with the values of the other subezpressions
of e evaluates to true.

Example: For our p2p example, we can show that both goals are actually met by
the file transfer example. However, the representation of ensemble states is quite large
and the application of the semantics rules is soon hard to do by hand. Therefore, we
support checking our HELENA models for goal satisfaction by an automated model-
checking approach which is presented in the following sections.

4.3 Publication History

The content of this chapter relies on [HKW15|. In [HKW15|, we propose to specify
goals of ensembles by linear temporal logic for a simplified version of HELENA.

This chapter extends [HKW15| by an overview about goals, their specification and
reasoning about them. It significantly extends the expressive power of the logic to
describe goals by attribute expressions to be able to reason about data states.
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4.4 Present Achievements and Future Perspectives

Present Achievements: Ensembles normally collaborate to achieve some global
goal. In this chapter, we proposed to express these goals by LTL formulae to allow
to check for an ensemble specification whether the specified ensemble reaches its global
goal. Atomic propositions in LTL formulae refer two types of expressions: state la-
bel expressions and attribute expressions. A state label expression denotes whether a
particular role instance reached a certain state label in its executed role behavior. An
attribute expression reasons about the value of attributes of particular role instances or
component instances.

Future Perspectives: The logic for goal specification gives rise for future advance-
ment. In particular, the formulation of goals is sometimes tiresome. Since we cannot
use any quantifiers, full enumeration of all possibilities is needed. For example instead
of specifying that all peers have a file, we have to enumerate all peers in the system and
must specify for each peer that it has the file. An interesting extension would therefore
be to use first-order LTL, i.e., LTL with quantifiers. There also exist approaches on
model-checking first-order LTL [WTMO04, XSCMO04|, but most of these approaches only
offer prototypic implementations which cannot be used as an off-the-shelf model-checker
like Spin.
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Chapter 5

Verification
Being Sure about Goal Satisfaction

The previous chapters introduced how to specify an ensemble by its structure and be-
havior as well as how to formulate the global goals which it strives to achieve in HELENA
LTL. In this chapter, we focus on the early (pre-implementation) verification of such
HELENA models for their intended global goals. To support automated model-checking,
we propose to translate HELENA specifications to PROMELA and check satisfaction of
LTL properties with the explicit state model-checker Spin [Hol03]. PROMELA is well-
suited as a target language since it supports dynamic creation of concurrent processes
and synchronous and asynchronous communication as required by HELENA ensembles.

In the following, we informally describe in Sec. 5.1 our approach of model-checking
HeLENA LTL formulae for HELENA ensembles specifications by translating them to
PROMELA and give an intuition why model-checking results from a PROMELA trans-
lation can be transferred back to the original HELENA specification. In Sec. 5.2, we
present how HELENA is translated to PROMELA. In Sec. 5.3, we explain the practical
application of the model-checker Spin to the translated PROMELA specification and how
model-checking results can be mapped back to the original HELENA ensemble specifi-
cation. We conclude this chapter in Sec. 5.4 by related work and give a short outlook
about future work in Sec. 5.6.

We illustrate the translation from HELENA to PROMELA by the p2p example. The
translated PROMELA specification together with all goals is shown in Appendix C.2 and
on the attached CD in the project eu.ascens.helenaText.p2p in the file
promela-gen/p2p-check.pml.

5.1 Approach for Checking HELENA LTL Formulae

To support automated model-checking of HELENA models against HELENA LTL for-
mulae, we do not provide a HELENA-specific model-checker. We rather rely on the
well-established explicit state model-checker Spin [Hol03] by translating HELENA spec-
ifications to PROMELA, the input language of Spin. PROMELA [Hol03] is a language for
modeling systems of concurrent processes. Its most important features are the dynamic
creation of processes and support for synchronous and asynchronous communication via
message channels. PROMELA verification models serve as input for the model-checker
Spin [Hol03]|. On the one hand, Spin can be used to run a randomized simulation of the
model. On the other hand, it can check LTL properties, formulated over a PROMELA
specification, and find and display counterexamples.

70
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To verify LTL properties for HELENA specifications, we exploit PROMELA and Spin.
We systematically translate a HELENA specification to PROMELA® and check the spec-
ified LTL properties in the translated specification with Spin. Thereby, PROMELA is
well-suited as a target language: dynamic role creation in HELENA can be expressed by
dynamic process creation in PROMELA, and asynchronous message exchange between
roles in HELENA by asynchronous communication via message channels in PROMELA.

In the translation, we have to make two assumptions concerning nondeterministic
choice:

(1)

Process invocation is not allowed as one of the branches of nondeterministic choice.
In HELENA, one of the branches of nondeterministic choice is selected based on
its executability. If one branch is a process invocation, executability is decided
based on the executability of the first action of the invoked process.

In PROMELA, nondeterministic choice will be represented by the PROMELA if-
construct which nondeterministically executes one of the branches whose first
statement is executable, i.e., nondeterministic choice is not a separate action, but
is executed together with the first action of the chosen branch. Furthermore,
process invocation will be represented by a goto-jump to the beginning of the
invoked process. Therefore, for nondeterministic choice, executability of a branch
consisting of process invocation would be decided based on the executability of the
goto-jump rather than the executability of the first action of the invoked process
if we allowed process invocation as a branch of nondeterministic choice.

Process invocation is easily avoided as a branch of nondeterministic choice by
inlining at least the first action of the invoked process into nondeterministic choice
and then invoking the desired process.

The first action of a branch of nondeterministic choice has to be executable if it
is translated to a sequence of several PROMELA statements. As we will see in
the following, all actions concerning components are translated to a sequence of
PROMELA statements, i.e., the create- and get-action which advise a component
to adopt or retrieve a role, calling an operation on a component, and setting a
component attribute.

To explain why this assumption is necessary, let’s consider a nondeterministic
choice construct where the first action of one branch is one of the aforementioned
and is not executable. In HELENA, this branch would never be selected for exe-
cution since the first action of the branch is not executable.

In PROMELA, nondeterministic choice will be represented by the PROMELA if-
construct which nondeterministically executes one of the branches whose first
statement is executable. However, as we assumed it, the HELENA action will be
represented by a sequence of PROMELA statements, i.e., a request to a component
instance, some internal computation, and an answer from the component instance
(details about the translation follow in the next section). Thereby, the request
to the component would always be executable while the latter steps would not
be executable if the corresponding HELENA action is not executable. Thus, in
PROMELA, the branch with the non-executable HELENA action as first action
could be selected for execution since executability in PROMELA is only decided

! An automatic code generator exploiting the systematic translation from HELENA to PROMELA is
presented in Sec. 8.3
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based on the request to the component (and not based on the whole sequence
of PROMELA statements representing the HELENA action). Even composing the
statements to an indivisible sequence with the atomic-block of PROMELA would
not overcome this problem, since also for an atomic-block executability is decided
based on the executability of its first action and not based on the executability of
the whole sequence of actions in the block.

However, we do not have to completely forbid all HELENA actions, which are
translated to a sequence PROMELA statements, as first action of a branch of
nondeterministic choice. It is enough to require that they have to be executable.
In terms of actions, the following assumptions must be fulfilled:

(a) The create-action is only allowed if the multiplicity of instances of the role
type to be created is not yet exceeded and the owning component instance
does not yet play the role.

(b) The get-action is only allowed if the requested owning component is guar-
anteed to currently adopt the requested role.

These assumptions are not a real restriction of the expressibility of HELENA.
On the one hand, nondeterministic choice is mainly used to allow waiting for
several incoming messages like in a server-client-architecture. Then, the control
flow is externally triggered by the reception of messages. Therefore, it is mostly
important to support nondeterministic choice between message receptions and not
between any internal actions like role creation or retrieval. On the other hand,
if the application requires to decide between role creation and retrieval and we
cannot guarantee aforementioned conditions, we can avoid nondeterministic choice
and rather use the if-then-else construct. In the if-then-else construct, we inquire
with a plays query whether a component currently plays a certain role. Based on
this plays query as a guard of an if-then-else construct, we select from the options
to create or to retrieve the corresponding role.

For all other actions, we do not require any assumptions since sending and receiv-
ing a message translates to one PROMELA statement only?, calling a component
operation, setting a component attribute or role attribute are always executable.
Note that labels are not allowed as first actions of nondeterministic choice due to
the well-formedness conditions in Def. 2.10 on page 28.

Two more assumptions concern the if-then-else construct:

(3) Process invocation is not allowed as one of the branches of the if-then-else con-
struct. In HELENA, the evolution of the if-then-else construct evaluates the guard
and executes the first action of the corresponding branch in one single step. If
the corresponding branch is a process invocation, the first action of the invoked
process is directly executed in the same step.

In PROMELA, the if-then-else construct will be represented by the PROMELA if-
construct where the first statement is the translated guard and the following state-
ments are the translated process expression. The guard and the first (possibly-
nested) action are executed as one indivisible sequence by enclosing them into

2To be able to translate message reception to only one PROMELA statement, the declaration of local
variables to receive the content of the message is shifted to the beginning of the translated role behavior
in PROMELA as we will discuss in Fig. 5.12.
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the atomic-block of PROMELA. However, as already mentioned, process invoca-
tion will be represented by a goto-jump to the beginning of the invoked process.
Therefore, atomicity of the if-then-else construct would be lost in PROMELA if we
allowed process invocation as a branch of the if-then-else construct.

Process invocation is easily avoided as a branch of the if-then-else-construct by in-
lining at least the first action of the invoked process into the if-then-else construct
and then invoking the desired process.

The first action of the branch of the if-then-else construct which is chosen based
on the evaluation of the guard has to be executable.

To explain why this assumption is necessary, let’s consider an if-then-else construct
where the guard evaluates to true, but the first action of the corresponding process
expression in this branch is not executable. In HELENA, the if-then-else construct
as a whole would not evolve since executability is decided based on the evaluation
of the guard and the executability of the first action of the corresponding process
expression.

As already mentioned, in PROMELA, the HELENA if-then-else construct will be
represented by the PROMELA if-construct where the first statement is the trans-
lated guard and the following statements are the translated action. In principle,
the PROMELA if-construct nondeterministically chooses between branches whose
first statement is executable, i.e., for the translated HELENA if-then-else construct,
it decides for the branch where the guard evaluates to true. Only after the se-
lection of the branch, it would check the executability of the translated HELENA
action. Since we assumed the action not to be executable, the PROMELA transla-
tion would not further evolve. However, in PROMELA, a branch would have had
already been chosen while in HELENA the evolution blocked before the complete
if-then-else construct and can still choose between both branches.

However, we do not have to completely forbid all HELENA actions as first action
of a branch of an if-then-else construct. It is enough to require that they have to
be executable. In terms of actions, the following assumptions must be fulfilled:

(a) The create-action is only allowed if the multiplicity of instances of the role
type to be created is not yet exceeded and the owning component instance
does not yet play the role (assumption shared with nondeterministic choice).

(b) The get-action is only allowed if the requested owning component is guar-
anteed to currently adopt the requested role (assumption shared with non-
deterministic choice).

(c) Sending a message is only allowed if the capacity of the message queue of the
receiving role is not yet exceeded.

(d) Receiving a message is not allowed since we cannot guarantee that a corre-
sponding message can always be received.

These assumptions are not a real restriction of the expressibility of HELENA. For
create- and get-actions, the assumption can be guaranteed by a corresponding
plays query in the guard and the multiplicity limit can be set to the number
of the underlying components to avoid exceeding it. For sending a message, we
normally can assume that capacity limits are not reached if the application is
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correctly modeled. Even that message reception is not allowed in the if-then-
else construct is not a real restriction since waiting for several incoming messages
should normally be expressed with nondeterministic choice.

For all other actions, we do not require any assumptions since calling a compo-
nent operation and setting a component attribute or role attribute are always
executable. Note again that labels are not allowed as first actions of nondeter-
ministic choice due to the well-formedness conditions in Def. 2.10 on page 28.

We make two further general assumptions which can be alleviated in future work:

(5) For simplicity reasons, we assume that each role type can only be adopted by a
single component type. This is not a restriction of generality since we plan to
extend HELENA by component interfaces which would combine all shared features
of a set of similar component types into a single interface which can be translated
similarly to one single component type.

(6) Additionally, we only verify a single ensemble per translation. Arrays in PROMELA
will help us in future work to realize the extension to several parallel ensembles
(possibly of different types).

To be able to transfer model-checking results to the original HELENA specification,
we need to formally show that a HELENA specification and its PROMELA translation
satisfy the same set of LTL formulae. To prove that kind of semantic equivalence, we
establish a stutter trace equivalence between the induced semantic Kripke structures of
a HELENA specification and of its PROMELA translation. In Chap. 6, the formal proof
of semantic equivalence is shown in full detail for two simplified variants of HELENA
and PROMELA and is informally extended to full HELENA and PROMELA.

The following two sections will first introduce the translation from HELENA to
PrROMELA in full detail. Afterwards, we explain the practical application of the model-
checker Spin to PROMELA translations and illustrate it at our p2p example.

5.2 Translation from HELENA to PROMELA

In this section, we discuss how a PROMELA model can be constructed from a HELENA en-
semble specification. The PROMELA verification model is then used for model-checking
LTL properties with Spin [Hol03]. In Sec. 5.2.1, we first give an overview about the fea-
tures of HELENA and how they are represented in PROMELA. Afterwards in Sec. 5.2.2,
we explain the translation to PROMELA in detail by specifying translation functions for
each feature of HELENA. As a proof of concept, we provide an automatic code generator
implementing the transformation in Sec. 8.3.

Assumption: In the translation, we make several assumptions as described in the
previous section:

e Process invocation is not allowed as one of the branches of nondeterministic choice
or the if-then-else process construct(cf. item (1) and (3) in Sec. 5.1).

e The create-action is only allowed as first action of a branch in nondeterministic
choice or an if-then-else construct if the multiplicity of instances of the role type
to be created is not yet exceeded and the owning component instance does not
yet play the role (cf. item (2a) and (4a) in Sec. 5.1).
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e The get-action is only allowed as first action of nondeterministic choice or an if-
then-else construct if the requested owning component is guaranteed to currently
adopt the requested role (cf. item (2b) and (4b) in Sec. 5.1).

e Sending a message is only allowed as first action of a branch of an if-then-else
construct if the capacity of the message queue of the receiving role is not yet
exceeded (cf. item (4c) in Sec. 5.1).

e Receiving a message is not allowed as first action of a branch of an if-then-else
construct (cf. item (4d) in Sec. 5.1).

e Each role type can only be adopted by a single component type and we only verify
a single ensemble instance per translation (cf. item (5) and (6) in Sec. 5.1).

e For simplicity, we additionally only allow integers as data parameters of messages.

In the following, the translation idea is showcased at the p2p example. In particular,
we show how the p2p example has to be adapted such that it meets all assumptions
without changing the goal-directed behavior. With these adaptations, the complete
translated PROMELA specification has 531 lines of code and is listed in Appendix C.2.

5.2.1 Overview

PROMELA is a language for modeling systems of concurrent processes. HELENA, though,
employs a two layered approach where components adopt roles. Components are passive
and only provide storage and computing resources to their adopted roles while the roles
themselves are the active entities in ensembles. To transfer the two layered approach
of HELENA to PROMELA, we represent both, components and roles, as processes in
PROMELA, but with different communication abilities and behavior.

The process for a component does not actively communicate with other processes.
It only waits for requests from its adopted roles on a dedicated input channel, executes
some internal computations, and responds with an appropriate answer. Hence, a HE-
LENA component is represented by a long-running PROMELA process. The PROMELA
component process is repeatedly able to receive requests form its adopted roles and its
progress is completely triggered by those requests.

In contrast to a component, a HELENA role is represented by a short-living PROMELA
process. The PROMELA role process reflects the corresponding role behavior declara-
tion specified in HELENA by issuing requests to its underlying component process and
actively communicating with other role processes. Therefore, the role process needs a
kind of connection to its underlying component process and its communication abilities
have to include role-to-component facilities and role-to-role facilities.

In the following, we outline which facilities are needed to allow role-to-component
communication and role-to-role communication between the processes in PROMELA and
how data stored in component and role attributes is represented in PROMELA. Based on
these communication and storage facilities, the main ideas of the translation from Hg-
LENA to PROMELA are explained: the (long-running) repeated and externally triggered
process for a component, the (short-living) active process for a role, and the interplay
between both. Each step is showcased at the p2p example.

5.2.1.1 Role-to-Component Communication

In HELENA, roles communicate with components to advise them to adopt or quit playing
other roles, to request references to already adopted roles from them, to request and
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set the value of component attributes, or to invoke operations on them. Thus, each
PROMELA component process relies on a dedicated synchronous channel self, only used
for communication between itself and its adopted roles. Conversely, each PROMELA
process for a role adopted by the component stores a reference to the very same channel
by the name owner.

The type of requests which can be sent via this channel is restricted by a dedicated
user-defined data type. It only allows to send requests for the creation, retrieval and
termination of roles which the component can adopt, for access of component attributes,
and for invocations of component operations.

Example: We illustrate the translation at our p2p example. For now, we do not show
the process of the component Peer since we so far just discussed its self channel and no
behavior. The component process for a Peer is shown Sec. 5.2.1.5. However, Fig. 5.1
depicts the used-defined data type for role-to-component communication in our p2p
example. Since we have just one component type Peer, there is only one user-defined
data type PeerOperation which restricts the communication of all role types with this
component type. The most important feature of the data type PeerOperation is the
enumeration type in line 2-10. It lists all types of requests which can be sent to a
Peer: there are constants for the request for role creation, retrieval and termination of
the role types Requester, Router, and Provider, for access to the component attributes
hasFile and content, for access to the component association neighbor, and for invoking
the operation printFile. The fields optype, parameters, and answer will be used to
built the actual request with concrete values (more details on that can be found in
Sec. 5.2.2.2).

1 typedef PeerOperation {

2 mtype {

3 CREATE_REQUESTER, GET_REQUESTER, QUIT_REQUESTER, ...
4 CREATE_ROUTER, GET_ROUTER, QUIT_ROUTER, ...

5 CREATE_PROVIDER, GET_PROVIDER, QUIT_PROVIDER, ...
6 GET_HASFILE, SET_HASFILE,

7 GET_CONTENT, SET_CONTENT,

8 GET_NEIGHBOR,

9 OP_PRINTFILE,

10 }i

11 mtype optype;

12 chan parameters;

13 chan answer;

14 }

Figure 5.1: Data type for role-to-component communication
for the p2p example in PROMELA

5.2.1.2 Role-to-Role Communication

In HELENA, roles additionally interact with other roles by exchanging directed messages
on input queues. Thus, each PROMELA role process relies on a dedicated (possibly
asynchronous) channel self to model its input queue. Since channels are global in
PROMELA, but input queues are local in HELENA, special care has to be taken that the
channel self of the current role process is only available to PROMELA processes of roles
which are allowed to communicate with the current role in HELENA. Additionally, each
PROMELA role process relies on the synchronous channel owner to communicate with
its owning component as described in the previous section.
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The type of messages which can be sent to this channel is restricted by a list of
PrROMELA types. The list requires the messages to consist of a constant representing
the message type declared in the HELENA ensemble structure, a fixed number of channel
references representing the role parameters of the message type, and a fixed number of
integers representing the data parameters of the message type. Since all messages might
differ in the number of parameters, the channel references and integer values might later
on be filled up with dummy values.

Example: We illustrate the translation at our p2p example again. Similarly to role-
to-component communication, we do not show any role process here since we so far
just discussed its self channel (and owner channel in the previous subsection), but did
not yet discuss its behavior. An example for a role process is shown in Sec. 5.2.1.6.
However, Fig. 5.2 depicts the enumeration type representing all message types for role-
to-role communication in our p2p example. It used for all communications between
roles, independently between which particular role types. It lists all types of messages
which can be sent between roles. These constants can directly be determined from the
set of all message types in our p2p example.

1 mtype { regAddr, sndAddr, regFile, sndFile }

Figure 5.2: Enumeration type for role-to-role communication
for the p2p example in PROMELA

The channel self of any role in the p2p example then requires that only messages
of the signature { mtype,chan,int } are sent to it. First, a constant representing the
message type to be sent must be given. Afterwards, exactly one channel representing
a role instance parameter and exactly one integer representing a data parameter have
to be transmitted. The number of role instance parameters is restricted to exactly one
since this is the maximal number of role instance parameters in message types in the
ensemble structure of the p2p example (and similarly for data parameters). If a message
type does not declare any role instance parameters (or similarly for data parameters),
like the message sndFile, this will be filled up by dummy parameters later on.

5.2.1.3 Data Storage on Components

In HELENA, a component stores data in component attributes and links to other com-
ponents in associations. Both are reflected in the PROMELA component process by
parameters with corresponding type. Thus, they are only visible for the current process
instance, similarly to attributes and associations of components in HELENA.

To access component attributes and associations from an adopted role in PROMELA,
an appropriate request can be sent via the aforementioned channel owner of the
PROMELA role process corresponding to the channel self of the PROMELA process
for the owning component. Internally, the component process accesses its attributes
by retrieving the values of its parameters or by assigning new values to its parameters
depending on the issued request.

We show an example for data storage on components in Sec. 5.2.1.5.
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5.2.1.4 Data Storage on Roles

In HELENA, a role stores data either permanently in the attributes of its owning compo-
nent or volatile in its own attributes. Role attributes are reflected in the PROMELA role
process by local variables with corresponding type (component attributes are reflected
in the corresponding PROMELA component process). Thus, they are only visible for the
current process instance, similarly to attributes and associations of components. How-
ever, we opted for local variables (instead of parameters as for components) since when
we create a new role instance in HELENA, we do not explicitly set the role attributes in
the create-action. In the PROMELA translation, creating a role instance will correspond
to spawning a new role process such that we do not want to have any parameters for
that process.

To access role attributes, the set of actions in HELENA is extended by (getters and)
setters. They are realized in PROMELA by (access of and) simple assignments to the
local variables for role attributes.

We show an example for data storage on roles in Sec. 5.2.1.6.

5.2.1.5 Behavior of Components

On the behavioral side, a component must be able to react to requests and invocations
from roles. Thus, the PROMELA component process implements a do-loop to wait for
requests from its roles on the self channel. Depending on the request, it runs some
internal computation and sends back a reply. To later on preserve the evolution of the
translated if-then-else construct of a role as one indivisible sequence of actions, it is
important that the reception of the request from the role and the reaction to it are exe-
cuted as an indivisible sequence of actions. By introducing an atomic-block embracing
the reception of the request and the reaction these two steps cannot be interrupted by
other processes. Details on the translation and preservation of the semantics of the
if-then-else construct will be given in the next section.

The internal computations of a component differ depending on the request from the
role. We will walk through all types of requests a role process can send to a component
process. Let us first consider role creation which is expressed in HELENA by the action
X<«create(rt,C). Fig. 5.3 depicts the sequence of actions in PROMELA representing
role creation. First, the role process which wants the component process C' to create
another role process X sends an appropriate request to the component process C. The
request contains the type rt of the role process to be spawned. The component process C
spawns a new process (representing the role) with the run-command of PROMELA. To
the newly spawned process, it hands over a reference to the channel self variable and
a reference to a special channel rtchan variable. Afterwards, it sends the reference to
the special channel rtchan variable back to the role process requesting the role creation
which stores the reference to the channel rtchan in its local variable X.

By this sequence of actions, the component process takes care to initialize the owner
channel variable and the self channel variable of the newly created role process as shown
in Fig. 5.4. In the run-command, the component process hands over the reference
its own self channel variable as first parameter. It is stored in the owner channel
variable of the newly created role process and can then be used for role-to-component
communication. Furthermore, the component process hands over the reference to the
special channel rtchan as second parameter. It is stored in the self channel variable
of the newly created role process. By sending the reference to the very same channel
rtchan variable also to the role process issuing the role creation, the two role processes



84 CHAPTER 5. VERIFICATION

:Role | I C:Component |
| |
| create(rt,C) -

X=rtchan || %
|
|

Figure 5.3: Interactions between component process and role processes
during creation of a new process X for the role type rt

can later on communicate via this channel. However, also the component process stores
the channel rtchan variable such that whenever another role process requests a reference
to the newly created role process again (i.e., a request for role retrieval was sent), the
component process sends back the stored channel variable as a reference to the role
process.

:Role

self

Figure 5.4: Shared channels between a component process and role pro-
cesses during creation of a new process X for the role type rt

To retrieve or change the value of component attributes or component associations,
the component process evaluates the request from the role process to determine the
requested attribute or association and possibly the value to be set. Afterwards, it
accesses the parameter corresponding to the attribute or association and either sends
the value to the requesting role process or assigns the new value.

Similarly for operation calls, the component process evaluates the request from the
role process to determine which operation was invoked. However, the effect of the
operation is not specified in HELENA. Therefore, in the PROMELA translation, the
operation call does not have any other effect than being processed by the component
process. Any effect of the operation must be specified in PROMELA by hand.

Example: Let us illustrate the complete structure of the PROMELA process for the
component type Peer in our p2p example. Fig. 5.5 shows the corresponding process
type in PROMELA.

Its parameters reflect the component attributes hasFile and content as well as the
component association neighbor as explained in Sec. 5.2.1.3. Furthermore, the last
parameter is the self channel which is used for role-to-component communication as
explained in Sec. 5.2.1.1.

Before starting the actual behavior of the component process, a dedicated channel
is declared for each role type the component can adopt, e.g., line 2 declares the channel
requester for the role type Requester. The capacity of the channel in PROMELA is
initialized with the capacity of the message of the role type in HELENA, i.e., 2 for the
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1 proctype Peer(bool hasFile; int content; chan neighbor; chan self) {
2 chan requester = [2] of { mtype,chan,int };

3

4

5 PeerOperation op;

6 do

7 ::atomic {

8 self?op ->

9 if

10 ::op.optype == GET_HASFILE -> op.answer'hasFile

11 r:op.optype == SET_HASFILE -> op.parameters?hasFile
12 e

13 ::op.optype == CREATE_REQUESTER ->

14 e

15 run Requester(self, requester);

16 op.answer!requester

17

18 }

19 od

20 }

Figure 5.5: Excerpt of the component process for the component type Peer
for the p2p example in PROMELA

role type Requester in line 2. Furthermore, the channel can only receive elements which
have the form {mtype, chan,int} (cf. line 2) corresponding to a message name, a single
role instance parameter and a single data parameter of type int. If the component is
later on advised to create a new instance for the role type Requester, it hands this channel
over to the newly created role as its self channel (providing role-to-role communication
as described before). If the component is later on requested to retrieve a reference to
the very same role instance, it can then send back this channel as reference.

The behavior of the component process is basically a do-loop (line 6-19) which con-
tinuously waits for a request from a role on its self channel (line 8). To decide which re-
quest was sent, a large if-statement provides branches for every possible request (line 9—
17). Depending on the request, the component reacts differently. For example, if the
value of the component attribute hasFile was requested (op.optype == GET_HASFILE in
line 10), the component process answers on the channel op.answer with the value of the
corresponding parameter hasFile (op.answer!hasFile in line 10). Similarly, if the value
of the component attribute hasFile was requested to be set (op.optype == SET_HASFILE
in line 11), the component process waits on the channel op.parameters for the new
value and assigns it to the corresponding parameter hasFile (op.parameters?hasFile
in line 11). Another example is role creation in line 13-16. The component process
spawns a new process for the role where it hands over its own self channel as the role’s
owner and the channel requester as the role’s self channel (line 15). Afterwards, it
sends back the reference (here requester) to the newly created role via the channel
op.answer (line 16).

5.2.1.6 Behavior of Roles

On the behavioral side, the PROMELA process for a role must reflect the corresponding
role behavior declaration of the HELENA ensemble specification. We translate each
process construct and action of the role behavior declaration:
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Termination quit is translated to two steps in PROMELA. Similarly to the se-
mantic rule of quit in Fig. 3.3 on page 57, the role process first requests that the
component process quits playing the role. Afterwards, it stops execution by the
statement false.

Action prefix is translated to sequential composition. Thereby, role creation is
expressed by issuing an appropriate request to the owning component process
which spawns the new role process and sends back the self channel of the newly
created role process. Role retrieval also issues an appropriate request to the owning
component process which sends back the stored self channel of the requested role
process (as explained in the previous subsection). Sending and receiving messages
is mapped to message exchange on the self channel of role processes. Operation
calls and access to component attributes issue appropriate requests to the owning
component process. Access to role attributes is given by access and assignments
to the local variables of the role process.

Nondeterministic choice is translated to the if-construct in PROMELA. Similarly
to nondeterministic choice in HELENA, the if-construct in PROMELA allows to
nondeterministically choose between the branches whose first statement is cur-
rently executable. However, special care has to be taken since some process con-
structs and actions in HELENA need additional preparation steps in PROMELA
such that they are not expressed by a single PROMELA statement. This leads to
a different set of executable branches if in HELENA the action is not executable,
but in PROMELA the first preparation steps are executable (and therefore the
branch can be selected for execution) while the final steps are not. As explained
in Sec. 5.1, process invocation is not allowed as a branch of nondeterministic choice
and the create- and get-action are only allowed as first action of a branch only
if the two actions are guaranteed to be executable.

The if-then-else construct is also translated to the if-construct in PROMELA where
the first statement is the translated guard and the following statements are ob-
tained from the translated process expression. The guard and the first (possibly-
nested) action are executed as one indivisible sequence by enclosing them into the
atomic-block of PROMELA. Since in HHELENA the evaluation of the guard and the
executability of the first action determines the executability of the whole if-then-
else construct, but in PROMELA only the first statement of each branch determines
the executability of the whole if-construct (even if employing the atomic-block),
special care has to be taken. If in HELENA the first action is not executable,
the whole if-then-else construct will not evolve. In PROMELA, one branch has
already been selected before checking the executability of the first action. Thus,
as explained in Sec. 5.1, process invocation is not allowed as a branch of the if-
then-else construct, the create- and get-action are only allowed if preceded by
a corresponding plays query, sending a message is only allowed if the capacity of
the message queue of the receiving role is not exceeded, and receiving a message
is not allowed at all.

In HELENA, we can furthermore invoke arbitrary process declarations from a fixed
set of process declarations for each role behavior declaration. We do not trans-
late these auxiliary process declarations to self-contained processes in PROMELA.
We rather inline them into the calling role behavior adhering to the following
procedure:
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o When reaching the invocation of a certain process for the first time during the
translation from HELENA to PROMELA, we inline the translation of the whole
process into the translation of the role behavior declaration. Additionally,
we prefix the translation of the process with a particular state label denoting
the invoked process.

e When reaching the invocation of the same process once again during the
translation of the role behavior declaration (and its invoked processes), we
translate the repeated invocation to a goto action which jumps to the state
label we introduced for this process before.

Example: Let us finally illustrate the complete structure of the process for the role
type Requester in our p2p example. Fig. 5.6 shows the corresponding process type
in PROMELA. Its parameters are only its owner channel which is used for role-to-
component communication as explained in Sec. 5.2.1.1 and its self channel which is
used for role-to-role communication as explained in Sec. 5.2.1.2. The attribute hasFile
of the role type Requester is represented by a local variable roleAttr_hasFile in line 2.
Local variables for all created role instances and formal parameters are listed afterwards,
we only show the variables for the created router in line 4 and for the formal parameter
prov of receiving the message sndAddr in line 5.

1 proctype Requester(chan owner, self) {
2 bool roleAttr_hasFile;

3

4 chan router;

5 chan prov;

6

7

8 PeerOperation op;

9 op.optype = CREATE_ROUTER;

10 chan answer = [0] of { chan };
11 op.answer = answer;

12 neighbor!op;

13 answer?router;

14

15 router!regAddr,self,1;

16
17 self?sndAddr,prov,1;
18

19 }

Figure 5.6: Excerpt of the role process for the role type Requester
for the p2p example in PROMELA

The behavior of the role process is basically the translation of the role behavior
declaration for a Requester (cf. Fig. 2.6 on page 31). The first block (line 8-13) is the
translation of the create action for a Router. The block basically creates a request for
role creation in line 8-11 and sends the requests to the neighboring component of its
owner in line 12 (the retrieval of the neighbor from the owning component is not shown
here, but is analogous to the role creation request). The neighboring component sends
a reference to the self channel of the newly created role which is stored in the local
variable router (line 13). The next part (line 15) is the translation of sending the
message reqAddr(self) to the newly created router. The content consists of the type of
the message regAddr, the reference to the requester itself by the channel variable self
and a final dummy parameter since the message does not have any data parameters.
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The last shown part (line 17) is the translation of receiving the message sndAddr with
the parameter prov. The role process waits for a message on its self channel. The
type of the message has to match the value sndAddr and the sent channel reference
representing the provider is stored in the local variable prov. The final parameter is
again a dummy parameter since the message does not have any data parameters.

To meet the discussed assumptions for if-then-else construct, the role behavior of the
role type Router (cf. Fig. 2.7 on page 31) needs adaptation before it can be translated to
PrROMELA. All process invocations except the recursive role behavior invocation must
be removed since they occur as branches in if-then-else constructs. The resulting role
behavior is shown in Fig. 5.7.

roleBehavior Router = ?reqAddr(req: Requester)() .
if (owner.hasFile) {
provider<—create(Provider, owner) .
req!sndAddr(provider)() .
quit
}
else
if ( !plays(Router, owner.neighbor) ) {
router<—create(Router, owner.neighbor) .
routerlreqAddr(req)() .
Router

else { quit }

Figure 5.7: Role behavior of a Router for the p2p example (adapted)

5.2.1.7 Multiplicities of Role Instances

Lastly, in HELENA, an ensemble structure determines for each role the minimal and
maximal number of instances per participating role type. These multiplicities have to
be respected throughout the execution of the ensemble. Therefore, we include three
global variables in PROMELA per role type: Two global variables are used to represent
the minimal and maximal number of instances per role type. The third global variable
counts the current number of instances per role type in the evolving ensemble.

The two variables for minimal and maximal number are final and should not be
changed throughout the lifetime of an ensemble. The variable for the current number,
however, is accessed and changed whenever a new process instance for that role type is
created or quit since the process instance finished its translated behavior. The owning
component process is responsible for the creation and the termination of role instances
and therefore for the update of the current number of process instances per role type.
Before a new role process instance is created in PROMELA, the component process checks
whether the current number of process instances for that role type is smaller than the
maximal allowed number of instances. If the creation action is allowed, the role process
instance will be created and the current number of process instances for that role type
is increased by one; otherwise the creation action is blocked. Similarly, the component
process checks whether the current number of process instances for a certain role type
is bigger than the minimal allowed number of instances before it quits playing a role
instance. If the quit action is allowed, the component process will quit playing the
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role and the current number of process instances of that role type is decreased by one;
otherwise the quit action is blocked.

5.2.2 Translation Functions

After the informal overview about the translation of the features of HELENA, we in-
troduce formal translation functions for all of them. We assume given a full HELENA
ensemble specification EnsSpec = (X, behaviors) over CT. The translation proceeds in
five steps:

e For each role type in 3, we introduce three global variables to reflect the minimal,
maximal and current number of process instances of that type (cf. Sec. 5.2.1.7).

e For each component type in C'T" in HELENA, we introduce a user-defined data
type in PROMELA to represent all requests which can be invoked on a component
by its adopted roles (cf. Sec. 5.2.1.1).

e For each component type in CT in HELENA, we create a process type in PROMELA
which is able to adopt roles and repeatedly handle requests from its adopted roles
(cf. Sec. 5.2.1.5 together with Sec. 5.2.1.1 and Sec. 5.2.1.3).

e We introduce a user-defined data type in PROMELA to represent all messages
which can be exchanged between any roles in the HELENA ensemble specification
(cf. Sec. 5.2.1.2).

e For each role type and its corresponding role behavior declaration in HELENA,
we create a process type in PROMELA which reflects the execution of the role
behavior where any invoked processes are inlined (cf. Sec. 5.2.1.6 together with
Sec. 5.2.1.1, Sec. 5.2.1.2, and Sec. 5.2.1.4).

In the following, we will present translation functions for each of the steps. Everything
notated in normal or bold font is pure PROMELA code, everything notated in italic font
has to be evaluated to get PROMELA code, especially functions prefixed with a $-sign
are fixed names in PROMELA which are not further specified here. We furthermore
use the notation Ve . expr(e). It means that the expression expr(e) is evaluated for all
elements e identified by the quantifier.

5.2.2.1 Multiplicities of Role Instances

The multiplicities of role types in HELENA and the current number of corresponding
role instances is reflected in PROMELA by three global variables. These variables are
created by the function transy, shown in Fig. 5.8 for each role type rf in a HELENA
ensemble specification EnsSpec = (X, behaviors) with ¥ = (nm, roletypes, roleconstraints).

transmuit (EnsSpec) =
Vrt € roletypes(X) . int $min(rt) = min(roleconstraints(rt));
Vrt € roletypes(X) . int $maz(rt) = maz(roleconstraints(rt));
Vrt € roletypes(X) . int $current(rt) = 0;

Figure 5.8: PROMELA translation of multiplicities

To recap our notation, Vrt € roletypes(X) . int $min(rt) = min(roleconstraints(rt));
means that for each role rt in the ensemble structure X, a new global variable (whose
name expressed by the function $min(rt)) of type int is created. It is meant to store the
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(final) minimal number of instances allowed for the role type rt and is thus, it is initial-
ized by this minimal number according to the role constraints of the ensemble struc-
ture. Similarly, the notation Vrt € roletypes(X) . int $maz(rt) = maz(roleconstraints(rt));
creates a second variable (expressed by the function $maz(rt)) to store the (final) max-
imal number of instances allowed for the role type rt. Thus, it is initialized by the
maximal number of allowed instances according to the role constraints of the ensemble
structure. A third variable per role type rt (expressed by the function $current(rt))
stores the (non-final) current number of instances of the role type rt and is initialized
by 0.

5.2.2.2 Role-to-Component Communication Facilities

To reflect all requests in PROMELA which roles can sent to a component of a certain
type®, we declare a user-defined data type per component type. The function transops
creates this user-defined data type per component type ct = (ctnm, ctatirs, ctassocs, ctops)
and is shown in Fig. 5.9. Thereby, the set of all role types rt = (rtnm, rtcomptypes, rtattrs,
TIMSGS put, TtMSGS,,) I a HELENA ensemble specification EnsSpec = (X, behaviors) with
Y = (nm, roletypes, roleconstraints) which can be adopted by the component type ct is
given by:

roletypes(ct, EnsSpec) = {rt | 3rt € roletypes(X) . ct € rtcomptypes(rt)}

transops(ct, EnsSpec) =  typedef $op(ct) {
mtype {
Yattr € ctattrs(ct) . $getter(attr),
Vattr € ctattrs(ct) . $setter(attr),
Vassoc € ctassocs(ct) . $getter(assoc),
Yop € ctops(ct) . opnm(op),

Vrt € roletypes(ct, EnsSpec) . $create(rt),
Vrt € roletypes(ct, EnsSpec) . $get(rt),

Vrt € roletypes(ct, EnsSpec) . $quit(rt),
Vrt € roletypes(ct, EnsSpec) . $playsreq(rt),

&

mtype optype;
chan parameters;
chan answer;

Figure 5.9: PROMELA translation of component-to-role communication facilities

The name of the user-defined data type, called “typedef”, is given by the function
$op(ct). The function is not further specified here since its actual value is not important
here. The data type declares three fields which are listed at the end of Fig. 5.9:

The first field “optype” determines the type of the request. Its values are given by the
enumeration type, called “mtype”, listed at the beginning of the data type definition.
There are constants for getting or setting the value of a component attribute, for getting
the value of a component association, for invoking a component operation, creating,
retrieving or quitting to play a certain role with the current component itself as owner,
or for determining whether the component already plays a certain role. The constants
are represented by functions, e.g., $getter(attr), which are again not specified here. Note

®Note that we assumed that a role type can only be adopted by a single component type.
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that again the notation Ve . expr(e) means that the expression expr(e) is evaluated for
all elements e identified by the quantifier as explained before.

The second field “parameters” introduces a channel via which parameters for the
request can be sent. For example, if the value of a component attribute should be set,
this channel is used to transfer the value to the component.

The third field “answer” again introduces a channel. Via this channel any answer to
the request can be sent. For example, if the value of a component attribute should be
retrieved, this channel is used to transfer the value to the requesting role process.

In summary, a concrete instance of this user-defined data type represents a request
from a role process to a component process. The request itself is identified by the field
“optype”, the channel through which any parameters for the request can be sent is given
in the field “parameters”, and the channel through which an answer can be sent from
the component process to the role process is given in the field “answer”.

5.2.2.3 Behavior of Components

Component types themselves are reflected by process type declarations in PROMELA.
These process type declarations manage the currently adopted role types and can handle
requests from roles. The function transcomp creates such a process type declaration for
a component type ct = (ctnm, ctattrs, ctassocs, ctops) in a HELENA ensemble specification
EnsSpec = (X, behaviors) with ¥ = (nm, roletypes, roleconstraints) and is shown in Fig. 5.10.

The component type is represented by a new process type declaration (with the
same name) with parameters in PROMELA. We explain the parameters beginning from
the last one: Firstly, the parameter self is a channel which is used for communication
from a role process to this component process. Every request for component attributes,
operation calls, or role creation, retrieval or termination or plays queries is sent via this
channel. Secondly, for each association declared by the component type, a parameter
is added with the same name (expressed by the function $name(assoc)). The parameter
is typed as channel since references to other components are represented via their self
channel. Lastly, for each attribute declared by the component type, a parameter with
the name of the attribute (expressed by the function $name(attr)) and its type (expressed
by the function $type(attr)) is added to the process type declaration. Note that we can
only support the PROMELA data types byte, short, int, and bool.

During the execution of the process for the component type, we have to store refer-
ences to all roles which the component currently plays. Therefore, for each role type the
component can adopt, we define a boolean local variable $plays(rt) in the process type
declaration which stores whether the component currently plays the corresponding role.
A boolean variable is enough since in HELENA each component can adopt a role only
once per ensemble and we assumed that we only check one ensemble instance in each
PROMELA run. Furthermore, we initialize a new channel for each role type the compo-
nent can adopt. This channel will be used as the self channel of the corresponding role
instance as soon as it was created.

Afterwards, we add a state label $startlabel(ct) : true to mark the point in the process
where initialization was finished.
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transcomp (ct, EnsSpec) =
proctype ct(Vattr € ctatirs(ct) . Stype(attr) $name(attr),
Vassoc € ctassocs(ct) . chan $name(assoc),
chan self) {
Vrt € roletypes(ct, EnsSpec) . bool $plays(rt) = false;
Vrt € roletypes(ct, EnsSpec) . chan $chan(rt) = [cap(roleconstraints(rt))] of {Msg};

$startlabel(ct) : true;

$op(ct) op;

do
::atomic {
self?op ->
if
Vattr € ctattrs(ct) . ::op.optype == $getter(attr) -> op.answer!$name(attr)
Vattr € ctattrs(ct) . ::op.optype == $setter(attr) -> op.parameters?$name(attr)
Vassoc € ctassocs(ct) . ::op.optype == $getter(assoc) -> op.answer!$name(assoc)
Yop € ctops(ct) . ::op.optype == opnm(op) -> \\ add intended behavior here
Vrt € roletypes(ct, EnsSpec) . ::op.optype == $create(rt) ->
if
:18plays(rt) && $current(rt) < $maz(rt)— >
run rt(self, $chan(rt));
$plays(rt)=true;
Scurrent(rt)+-+;
op.answer!$chan(rt)

fi

Vrt € roletypes(ct, EnsSpec) . ::op.optype == $get(rt)— >
if
:$plays(rt) -> op.answer!$chan(rt)
fi

Vrt € roletypes(ct, EnsSpec) . ::op.optype == $quit(rt) ->
if

=8plays(rt) && Scurrent(rt) < $min(rt) ->
$plays(rt)=false;
Scurrent(rt)——
fi
Vrt € roletypes(ct, EnsSpec) . ::op.optype == $playsreq(rt) ->
op.answer!$plays(rt)
fi

}
od

Figure 5.10: PROMELA translation of a component type

Finally, the main behavior of the process of a component is given by a do-loop.

The loop is responsible for continuously waiting for requests from role processes and
for appropriately reacting to the request. Thereby the whole block from waiting for
the request until the final reaction has to be executed as one indivisible sequence of
actions caused by the keyword atomic in PROMELA. Atomicity is needed to reflect the
semantics of the if-then-else construct in role behaviors. In HELENA, the if-then-else
construct evaluates the guard and executes the first action of the selected branch in
one single step. To guarantee this atomicity even if the first action is a request to the
owning component (e.g., a create-action), the atomic execution of the reception of the
request, the internal computation and the answer from the component is established by
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the atomic-block. In this atomic-block, the component waits for the guard “self?op”
representing a message on the self channel of the component. The content of the
message is the request from the role process and is stored in the local variable “op”
which is typed by the user-defined data type $op(ct). The request consists of three parts
as explained in Sec. 5.2.2.2: the type of the request given by the field “optype” of the
local variable “op”, a channel “parameters” allowing to send parameters for the request
from the requesting role process to the component process, and a channel “answer”
allowing to send back a reply to the requesting role process. Depending on the type of
the received request, we decide how to react in the following if-statement.

e The first line of the loop represents the request of the value of an attribute. For
each attribute of the component type, an option of the if-statement is created.
It checks which attribute was requested by “op.optype == $getter(attr)” where
$getter(attr) determines the type of the request as in Sec. 5.2.2.2. Afterwards,
the value of the attribute is sent by the expression “op.answer!$name(attr) where
$name(attr) is the parameter representing the attribute in the component process.

e Similarly, the request to set the value of an attribute is handled in the second
line of the loop. However, this time the component waits for the new value with
the expression “op.parameters?$name(attr)” where $name(attr) is the parameter
representing the attribute in the process type declaration and is automatically set
as soon as a value is sent via the channel “op.parameters”.

e For the retrieval of associations to other components in the third line of the loop,
we proceed exactly like for the retrieval of attribute values.

e The call of operations is handled in the fourth line of the loop. Since the behavior
of the operation is not specified in HELENA, we only add a placeholder for the
behavior of the operation to the translated PROMELA file.

e Most interesting is the handling of role instance creation, retrieval and termination
which is represented in the following three blocks of the loop. If role instance
creation was requested by “op.optype == S$create(rt)” for any role type rt, we
check in the if-statement of the first block that the component does not yet play
the role by the expression !$plays(rt) and that the number of current instances
of that role type did not yet reach the maximum number of allowed instances
by S$current(rt) < $maz(rt). If the check is passed, the following statements are
executed: A new process representing the role is started by “run rt(self, $chan(rt))”
where the self channel of the component is passed as the owner channel of the
newly created role and the channel $chan(rt) is passed as the self channel of
the newly created process. The value of the boolean variable $plays(rt) is set
to true, the global variable $current(rt) for the current number of instances of
that type is increased, and the channel $chan(rt) representing the self channel
of the newly created role instance is sent back to the requesting role process by
“op.answer!$chan(rt)” such that the requesting role process can now communicate
to the newly created role process. Similarly, role retrieval and role termination
are handled, but in these cases we do not need atomicity since no new processes
are spawn.

e The last line in the loop takes care to answer requests whether the component
currently plays a certain role and is self-explanatory with the previous explanation
of role creation.
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5.2.2.4 Role-to-Role Communication Facilities

To reflect all messages which can be sent between roles of a HELENA ensemble speci-
fication, we declare a an enumeration type which lists constants for all messages. The
function transmsgs creates this enumeration type for all message types of an ensem-
ble specification and is shown in Fig. 5.11. Thereby, the set of all message types of
a HELENALIGHT ensemble specification EnsSpec = (X, behaviors) with ¥ = (nm, roletypes,
roleconstraints) is given by:

msgs(EnsSpec) = {msg | 3rt € roletypes(X).
msg € Ttmsgs . (rt) V msg € rtmsgs;, (rt)}.

The enumeration type consists of constants for every message type which is declared
as outgoing or incoming message of a role type in the underlying ensemble specification.

transmsgs (EnsSpec) = mtype { Vmsg € msgs(EnsSpec) . msgnm(msg) }

Figure 5.11: PROMELA translation of role-to-role communication facilities

5.2.2.5 Behavior of Roles

Role types themselves are reflected by process type declarations in PROMELA. These
process type declarations are responsible to execute the behavior prescribed by the
corresponding role behavior declaration in HELENA. They thereby issue requests on
their owning component using their role-to-component communication facilities and
exchange messages with other roles using their role-to-role communication facilities.

Process Type Declaration: The function trans;qe in Fig. 5.12 creates such a process
type declaration for a role type rt = (rtnm, rtcomptypes, rtatirs, rtmsgs ., rtmsgs;,) with
the corresponding role behavior declaration roleBehavior 1t = P in a HELENA
ensemble specification EnsSpec =(X, behaviors). As we mentioned at the beginning of
this section, we assume that each role type can only be adopted by one component

type.

transrole (1t, EnsSpec) =
proctype rt(chan owner, self) {
Vattr € rtattrs(rt) . $type(attr) $name(attr);
Vinst € roleinsts(rt) . chan $name(inst);
Vparam € dataparams(rt) . $type(param) $name(param);
Vre € opereturnvals(rt) . $type(re) $name(re);

$startlabel(rt) : true;
transproc(rt, EnsSpec, P)

$endlabel(rt) : false;

Figure 5.12: PROMELA translation of a role type
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The role type is represented in PROMELA by a new process type declaration (with
the same name) with parameters. The parameter owner is a channel which is used for
communication from the role process to its owning component process. Every request
for component attributes, operation calls, or role creation, retrieval or termination is
sent via this channel. The parameter self is another channel which is used as input
channel of the role process. Every message addressed to the role process is sent via this
channel.

The first statements in the process type declaration for the role type declare local
variables for all role attributes. For each role attribute attr of the role type rt, a new
uninitialized local variable with the name of the attribute (expressed by the function
$name(attr)) and its type (expressed by the function $type(attr)) is added. Note again
that we can only support the PROMELA data types byte, short, int, and bool. After-
wards, local variables for all role instances which are created in the role behavior or
received via message exchange are created. Similarly, local variables for all data param-
eters received via message exchanged or created as return values of operations calls are
added.

After the declaration of all local variables, we add a state label $startlabel(rt) : true
to mark the point in the process where initialization was finished. Finally, the process
expression P of the role behavior declaration for that role type is translated as the main
behavior of the process which is expressed by the function call transyyoc(rt, EnsSpec, P).
The process is terminated by a dedicated end state label $endlabel(rt) : true.

Process Expressions: The function transprc itself is inductively defined over the
structure of process expressions and is shown in Fig. 5.13.

To translate termination with quit, we follow the formal semantics in Fig. 3.3 on
page 57. The role process first requests that its owning component process quits play-
ing it. To this end, a new local variable “op” is created which is used to compose the
request to the owning component. The local variable is typed with the user-defined
data type for role-to-component communication (cf. Sec. 5.2.2.2). Thereby, we have to
assume that the role type can only be adopted by a single component type (denoted by
rtcomptypes(rt)) to uniquely determine the user-defined data type of “op”. Afterwards,
the field “optype” of the local variable “op” is set to $quit(rt) to express that the ter-
mination of the adoption of the role is requested. With this information the request is
ready to be sent to the owning component process by the statement ownerlop. Finally,
the role process stops execution jumping to the end label goto $endlabel(rt).

Action prefix a.P is simply translated to sequential composition in PROMELA. We
sequentially compose the translation of the action a with the translation of the remaining
process expression P. The translation of actions is denoted by the function transac
(cf. Fig. 5.16) and will be described later on.

Nondeterministic choice is translated to nondeterministic choice with the if-
construct in PROMELA. Each branch is thereby the direct translation of one option
of nondeterministic choice. To preserve the semantics of HELENA that a branch is se-
lected based on the executability of the first action of each branch, it is essential that
the assumptions explained in Sec. 5.1 are respected: Firstly, process invocation is not
allowed as a branch of nondeterministic choice. Secondly, the create- and get-action
are only allowed as first action of a branch if they are executable.

The if-then-else construct is translated to nondeterministic choice with the if-
construct in PROMELA as well. To guarantee that the evaluation of the guard and
the execution of the first action of the selected branch are performed without interrup-
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transproc(rt, EnsSpec, quit)

$op(rtcomptypes(rt)) op;
op.optype = Squit(rt);
owner!op;

goto Sendlabel(rt)

transproc(rt, EnsSpec, a.P) = transact(rt, EnsSpec,a);
transproc(rt, EnsSpec, P)

transproc(rt, EnsSpec, P1 + P;) = if
it transproc(rt, EnsSpec, Py)
it transproc(rt, EnsSpec, Py)

fi
transproc(rt, EnsSpec, = atomic {
if (guard) {P:} transretrieval (guard)
else {P>}) if
it transguard (quard)
-> transproc-first (7t, EnsSpec, Py)
:: else
-> transproc-first (7t, EnsSpec, Pa)
fi
}

transprocq‘ema‘ining(Tt7 EnsSpea Pl);
tranSI)roc—ren)aining(Tt7 Enssp607 P2)7

transproc(t, EnsSpec, N) = S$startlabel(N) : true;
transproc(rt, EnsSpec, Q)
if N is invoked for the first time and process N = Q € procdecls(rt)

transproc(rt, EnsSpec, N) = goto $startlabel(N)
if process IV has already been invoked

Figure 5.13: PROMELA translation of a process expression

tions, we enclose the following translation into an atomic-block: If the guard of the
if-then-else construct contains plays queries or refers to component attributes, they have
to be retrieved before the guard is evaluated. The retrieval is expressed by the function
transretrieval Which is not further specified here since it resembles the translation of op-
eration calls shown in Fig. 5.16. Afterwards, the if-then-else construct is translated to
the if-construct of PROMELA. The guard of each branch in HELENA is reflected by the
first statement of the corresponding branch in PROMELA. The HELENA guard is trans-
lated to PROMELA by the function transgyarq which is not further specified here, since
it is mainly a direct translation of the boolean expression from HELENA. Afterwards,
the first (possibly nested) action of the corresponding process expression is translated
before leaving the atomic-block. This is expressed by the function transproc-first Shown
in Fig. 5.14.

Intuitively, this function follows the nesting of process constructs until it finally
reaches a single action to be executed. This action is translated as we will describe
in Fig. 5.16 followed by a jump outside the atomic-block where the remaining pro-
cess expression of this branch is described. Note that also here it is essential that the
assumptions explained in Sec. 5.1 and at the beginning of this section are respected
to preserve the semantics of HELENA: Firstly, process invocation is not allowed as a
branch of the if-then-else construct. Secondly, the create- and get-action are only
allowed as first action of a branch if they are preceded by guards with corresponding
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transproc-first (rt, EnsSpec, quit) transproc(rt, EnsSpec, quit)

transproc-first (7t, EnsSpec, a.P) = transact(rt, EnsSpec,a);
goto Sproclabel(rt)

transproc-first (rt, EnsSpec, P1 + P;) = if
it transproc-first (1t, EnsSpec, Pr)
i tranSproc-first (1T, EnsSpec, Ps)

fi
transproc-first (7t, EnsSpec, = tranSretrieval (guard)
if (guard) {P:} if
else {P>}) i transguard (quard)
-> tranSproc-first (1t, EnsSpec, Pr)
:: else
-> transproc-first (1, EnsSpec, Ps)
fi

Figure 5.14: PROMELA translation of the first (possibly nested) action
of a process expression

plays queries. Thirdly, message reception is not allowed as first action of a branch
at all. Afterwards, the else-branch of the if-then-else construct is analogously trans-
lated. Finally, the atomic-block is closed since the guard and the first action of each
branch have been translated now. After the atomic-block, we add the translation of
the remaining process expressions of both branches such that each branch inside the
atomic-block can jump to its remaining process expression after having executed its
first (possibly nested) action. The translation of the remaining process expression is
given by the function transproc-remaining and shown in Fig. 5.15.

transproc-remaining (7t, EnsSpec, quit) —

trans proc-remaining (7t, EnsSpec, a.P) = S$proclabel(P) : true
transproc (P)
transproc-remaining (7t, EnsSpec, P + P2) = transproc-remaining (1t, EnsSpec, Pr)

transproc—remaining(Tt7 Ensspec7 PZ)

transproeremaining(Tt7 Enssp607 - transproc—remaining(Tt, Ensspec, Pl)
if (guard) {PJ} trans})roc-remaining(T‘t, ENSSPGC, Pz)
else {P:})

Figure 5.15: PROMELA translation of the remaining process term af-
ter having executed the first (possibly nested) action

The idea of the translation of process invocation is to inline the behavior of the
process into the behavior of the role. We prefix the inlinement with a particular state
label to mark the beginning of the invoked process. Whenever the process gets called
in the behavior again, we simply jump back to this state label with a goto-statement.
Therefore, we distinguish two cases in the translation of process invocation: If the
process N is invoked for the first time, we add the dedicated state label (expressed by
$startlabel(N) : true) followed by the translation of the process expression ) representing
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the behavior of the process N. If the process IV has already been invoked, the translation
is just a goto-statement to the state label $startlabel(N) : true representing the beginning
of the inlinement of the process N.

Actions: Finally, we describe the translation of actions which is given by the func-
tion transaet in Fig. 5.16. All actions from Def. 2.9 on page 25 are covered. While
create- and get-actions, operation calls, and component attribute setters use the role-
to-component communication facilities, sending and receiving messages requires the
role-to-role communication facilities. Role attribute setters and state labels can be
translated straightforward in the role process itself.

For the translation of role creation with the action X< create(rt,C), an appropriate
request must be sent to the component C which should adopt the newly created role of
type rt. This component will internally spawn a new process for the role and sent back
the role’s self channel as a reference to the newly created role (cf. Sec. 5.2.2.3). To store
this local reference, the local variable X of type chan was created at the beginning of
the process type representing this role type (cf. Fig. 5.12). Afterwards, the request for
the component is built by creating a new local variable “op”. The local variable is typed
with the user-defined data type for role-to-component communication (cf. Sec. 5.2.2.2).
Thereby, we again have to assume that a role type can only be adopted by a single
component type (denoted by rtcomptypes(rt)) to uniquely determine the user-defined
data type of “op”. Afterwards, the field “optype” of the local variable “op” is set to
$create(rt) to express that the creation of a new role is requested. Furthermore, we
have to add a channel “answer” to the request which serves as a callback channel to
transmit the reference of the newly created role process from the owning component to
the requesting role. The channel “answer” is therefore initialized to transmit messages
of type chan which is the type of the self channel used as the reference. This channel
is added in the field “answer” of the request “op”. With this information, the request is
ready to be sent to the component process which should own the newly created role by
the statement Clop. Finally, we wait for the reference of the newly create role process
to be sent via the channel “answer” by the statement answer?X and assign the received
channel to the local variable X.

Thereby, it is important that the semantic rule for role creation in HELENA (cf.
Fig. 3.3 on page 57) prescribes only one step for the role creation and the assignment
to the variable X. To reflect that in PROMELA, spawning the new role process from the
component process and assigning a value to the local variable X in the requesting role
process has to be done in one indivisible step. This has already been taken care of in
the behavior of the component process in PROMELA (cf. Fig. 5.10). There, receiving a
request from a role up until the appropriate reaction to it was declared as one indivisible
sequence. It only remains to include the assignment of the self channel to the variable
X in this indivisible sequence. Although this assignment is done by the statement
answer?X in the role process and not in the component process, atomicity is not lost. If
in PROMELA synchronous message exchange is used inside an atomic sequence, control
passes from sender to receiver. That means that control passes from the component
process with the send statement op.answer!$chan(rt) to the role process with the receive
statement answer?X. Thus, the assignment of the variable X in the role process is
directly executed after the indivisible sequence of statements in the component process
and therefore we can consider all statements from spawning the new role process until
the assignment of the variable X as one atomic step.
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transact (1t, EnsSpec, X +create(rt, C))

transact (1t, EnsSpec, X +get(rt, C))

transacs (rt, EnsSpec, Y!msgnm()?)(?))

transact (1t, EnsSpec, ?msgnm(?:ﬁ) (7))

transact (rt, EnsSpec, owner.opnm(€))

transact (rt, EnsSpec, owner.attr = e)

transacs (rt, EnsSpec, self.attr = ¢e)

transacs (1t, EnsSpec, label)

= $op(rtcomptypes(rt)) op;

op.optype = Screate(rt);
chan answer = [0] of {chan};
Op.answer — answer;

Clop;

answer?X
Sop(rtcomptypes(rt)) op;
op.optype = $get(rt);

chan answer = [0] of {chan};
Op.answer = answer;

Clop;

answer?X

Y'!msgnm,

forie size(?) . }[z],

99

for size(Y) < it < $mazroleparams(EnsSpec) . 1,

for i € size(€) . €Ji],

for size(€) < i < $mazdataparams(EnsSpec) . 1

self?msgnm,

forie size()?) . Y[z],

for size(?) < it < $mazroleparams(EnsSpec) . 1,

for i € size(T) . TV,

for size(T) < i < $mazdataparams(EnsSpec) . 1

Sop(rtcomptypes(rt)) op;

op.optype = opnm;

chan parameters = [0] of {$type(e)};
op.parameters — parameters;
owner!op;

parameters! e

Sop(rtcomptypes(rt)) op;

op.optype = $setter(atir);

chan parameters = [0] of {$type(attr)};
op.parameters — parameters;
owner!op;

parameters!e

= $name(attr) =e

= label : true

Figure 5.16: PROMELA translation of an action

The translation of the get-action for role retrieval is exactly the same as for role
creation except that the “optype” of the request is set to $get(rt). Internally, the request
for role retrieval triggers a different behavior on the owning component than for role
creation. Instead of spawning a new role process, the component will just sent back the
self channel of the requested role (cf. Sec. 5.2.2.3).

For the sake of simplicity, we postpone the explanation of the translation of sending
and receiving messages and go on with the explanation of the translation of operation
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calls and component attribute setters. For both, the role process must also send requests
to its owning component process. Therefore, in both cases, a local variable “op” is
created to hold the request as before. For operation call, the field “optype” is set to the
name of the operation to be called (expressed by opnm; for the component attribute
setter, it is set to $setter(attr). In both cases, we furthermore add a channel “parameters”
to the request which will be used to transmit the values of the parameters of operation
call or the value of the component attribute to be set to the owning component. With
this information, the request is ready to be sent to the owning component process by
the statement ownerlop. Afterwards, the values of the parameters or the attribute are
sent to the owning component process by the statement parameters!@ or parametersle.

For sending and receiving messages, we use the role-to-role communication facilities
of PROMELA role processes, especially the enumeration type for messages and the input
channel self of role processes (cf. Sec. 5.2.1.2 and Sec. 5.2.2.4). The translation of
sending a message with the action Y!msgnm(?)(?) sends a message to the receiving
role process Y which contains several items. The first item msgnm represents the type
of the message to be sent and is one of the constants of the aforementioned enumeration
type. Afterwards, the values of all role parameters and data parameters are added. We
use the notation Vi € size(?) . X [i] to denote that we iterate over all role parameters of
the list Y and add the value of the ith role parameter of the list ? to the content list of
the message. Afterwards, the list of role parameters is filled up with entries of value 1
to match the maximal length of a role parameter list over all messages in the ensemble
specification. Thereby, $maxroleparams(EnsSpec) denotes the maximal number of role
parameters in a message in the ensemble specification EnsSpec Similarly, the values of
the data parameters given in the list 7 are added and filled up with entries of value 1.
In summary, a message is sent to the role process Y containing the message type as the
first entry followed by all role parameters (possibly extended by dummy role parameters
to match the maximal length of a role parameter list) and all data parameters (again
possibly extended by dummy data parameters).

In contrast to the translation of sending a message, the translation of receiving a
message with the action 7msgnm(}_(>ﬁ)(7£) has to bind all received values to the
local variables representing the formal parameters. A message is received on the self
channel of the role process. The first entry of this message represents the type of the
message to be received and is one of the constants of the aforementioned enumeration
type. Via pattern matching, this constant will be matched to the received message®.
Afterwards, all received values are bound to the local variables representing the formal
parameters. The local variables have already been declared at the beginning of the
process type representing this role type (cf. Fig. 5.12). We use the same notation as
before to iterate over the list of parameters. The ith received value of a role parameter
is stored in the ith local variable for role parameters (if the list was filled up with
entries of value 1, these values are dismissed). Similarly, the ith received value of a data
parameter is stored in the ith local variable for data parameters (while fill-up entries
are dismissed).

Setting a role attribute with the action self.attr = e is translated to a simple
assignment in PROMELA. The local variable for the attribute is accessed by $name(attr)
and is assigned with the new value e.

Finally, a state label in HELENA is translated to a state label with the same name
in PROMELA. Furthermore, state labels in PROMELA always have to label a certain

*If the first message on the channel does not match this constant, message reception blocks until a
matching message is at the first position of the channel
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statement. To simulate the semantics of labels in HELENA which takes a single step, we
use true as statement for the state label to also execute a separate step for the state
label in PROMELA.

Summary: This concludes the description of the translation functions from HELENA
to PROMELA. We showed that we can find a mapping between HELENA and PROMELA
and could thus express all HELENA concepts in PROMELA. However, it remains to
show that a HELENA ensemble specification and its PROMELA translation are seman-
tically equivalent such that model-checking results from the PROMELA translation can
be transferred back to the original HELENA ensemble specification. The formal proof of
semantic equivalence is discussed in Chap. 6 for two simplified variants of HELENA and
PROMELA in full detail and is informally extended to full HELENA and PROMELA.

5.3 Model-Checking HELENA with Spin

The previous section outlined how to translate a HELENA ensemble specification to
PromELA. This section explains the practical application of Spin to the PROMELA
translation. We summarize in Sec. 5.3.1 how a concrete initial ensemble state is estab-
lished in PROMELA and how HELENA LTL formulae need to be adapted to conform
to the PROMELA translation. Afterwards in Sec. 5.3.2, we explain the principles of
model-checking with Spin and two different state compression techniques in Spin. Both
subsections are illustrated by our p2p example. The full PROMELA specification for
model-checking has 512 lines of code (the specification has automatically been gener-
ated with the code generator presented in Sec. 8.3) and is listed in Appendix C.2. It
can also be found on the attached CD in the project eu.ascens.helenaText.p2p in the
file promela-gen/p2p-check.pml

5.3.1 Preparation of the PROMELA Translation

Establishing an Initial Ensemble State: To prepare the PROMELA translation
for model-checking with Spin, we first have to take into account that the semantics
of HELENA and therefore satisfaction of LTL formulae is defined relatively to a given
initial state ojpse. Thus, when model-checking the corresponding PROMELA translation,
we have to establish the corresponding initial state transinit(oinit) in PROMELA and
verify properties relatively to this initial state. We setup the initial state in a dedicated
init-process. This process is mainly used to initialize the self channels of components
and to start component processes as well as to start the initial role instances in o;,;; with
the appropriate owning component. Thereby, it is important that component processes
are started before role processes since role processes need a reference to their owning
component. We will later on explain the init-process for the p2p example (cf. Fig. 5.17).

Translating HELENA LTL Formulae in PROMELA Furthermore, we have to trans-
late the HELENA LTL formulae to PROMELA. In HELENA LTL formulae, we use
state label expressions and attribute expressions as atomic propositions (cf. Def. 4.5
on page 71). In principle, they can directly be reused in PROMELA with small adapta-
tions to express operators in ASCIL. Additionally, some PROMELA-specific adaptations
and scoping adaptations need to be done:

Let’s consider a state label expression rt[n]@label where rt is a role type, n an iden-
tifier of a role instance, and label a state label in a role behavior declaration. Since we
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express HELENA role behavior declarations by PROMELA process declarations with the
same name and reuse the name of a HELENA state label for the corresponding PROMELA
state label, we can directly employ the same syntactic expression in PROMELA LTL for-
mulae. The individual ingredients are thereby newly interpreted: rt is a process type, n
an identifier of a role process instance, and label a state label in a process declaration.
However, special care has to be taken for the identifier of the role process instance in
PROMELA. In HELENA, we start counting role instances beginning from 1 (cf. Def. 3.4
on page 50). In PROMELA, however, the identifiers of processes for components and
roles are shared, but we create component processes before role processes in the init-
process explained in the previous paragraph. Therefore, we have to add the number
of components to the HELENA identifier of a role instance to get the identifier of the
corresponding role process in PROMELA.

Let’s move on to attribute expressions. In HELENA, an expression 7t[n|Qattr refers
to the value of the attribute atér of the role instance with identifier n of type rt. To
transfer this expression to PROMELA, we make two adaptations. Firstly, the identifier is
increased as explained before. Secondly, to distinguish role attributes from component
attributes, we prefix role attributes with roleAttr_ in the PROMELA translation.

However, attribute expressions can also contain expressions like ct[n]@attr where n
is an identifier of a component instance, ct is a component type and attr is a component
attribute of ct. In contrast to expressions over role attributes described before, the
expression ct[n]@attr can directly be reused in PROMELA. The identifier does not need
to be adapted since component identifiers start at 1 in both, HELENA and PROMELA®.
Furthermore, component attributes are reflected by parameters of component processes
and therefore do not get a prefix as local variables.

With these adaptations, LTL formulae are added to the PROMELA file by using the
inline specification facilities of PROMELA. The syntax for inline specification is:

1tl <name> { <formula> }

After the prefix 1t1, a name identifying the 1tl formula is given followed by the desired
1t formulae in curly braces.

Defining LTL Formulae in PROMELA relatively to an Initial Ensemble State:
Lastly, as mentioned before, the semantics of HELENA and therefore satisfaction of
LTL formulae is defined relatively to a given initial state o;,;;. Therefore, all translated
ProOMELA LTL formulae have to be extended such that they are defined relatively to
the initial state transinit(oinit). We extend the translated PROMELA LTL formula ¢ to
O(init = ¢). init is thereby a property which only holds when the initialization in the
init-process in PROMELA according to the given initial state in HELENA was finished.

P2P Example: At the beginning of this chapter, we introduced an achieve goal and a
maintain goal for our p2p example in HELENA LTL (cf. Fig. 4.4 and Fig. 4.5). To model-
check these goals in the full HELENA specification of the p2p example (cf. Chap. 2), we
can use the translated PROMELA specification and verify the goals for that specification.
To be able to translate the p2p example, we have to remove all process invocations as
branches in if-then-else constructs. Therefore, the role behavior of a router is adapted
by inlining all process invocations as shown in Appendix C.1. This HELENA ensemble

5In PROMELA, process identifiers start at 0, but the init-process always gets the identifier 0 such
that all user-defined processes have an identifier greater than 0.
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specification is translated as proposed in Sec. 5.2 and excerpts of the translation are
shown in Sec. 8.3. However, to be able to allow Spin verification, the adaptations
mentioned in this subsection need to be carried out. Thus, we first have to define an
initial state according to which the goals should be verified. This initial state has then
to be established in the init-process of the PROMELA translation. Finally, both goals
have to be transformed to PROMELA respecting the adaptations previously described.

As initial state in HELENA, we assume that the underlying component-based plat-
form consists of three peers where each of the peers might or might not have the file
which is stored in the network. Note that it is possible that none of the peers has the
file and thus, the file does not exist in the network. Additionally, only one role instance
of type Requester exists which is owned by the first peer. The translation of this initial
state to PROMELA is established by the init-process in Fig. 5.17.

1 init {

2 chan pl = [0] of { PeerOperation };
3 chan p2 = [0] of { PeerOperation };
4 chan p3 = [0] of { PeerOperation };
5

6 if

7 ::run Peer(false,0,p2,pl);

8 ::run Peer(true,12345,p2,pl);

9 fi;

10

11 if

12 ::run Peer(false,0,p3,p2);

13 r:run Peer(true,12345,p3,p2);

14 fi;

15

16 if

17 ::run Peer(false,0,pl,p3);

18 r:run Peer(true,12345,pl1,p3);

19 fi;

20

21 chan req;

22 PeerOperation op;

23 op.optype = CREATE_REQUESTER;

24 chan answer = [0] of { chan };

25 op.answer = answer;

26 pllop;

27 answer?req;

28 }

Figure 5.17: The init-process for the p2p example in PROMELA

This process first creates three channels pl1, p2, and p3 in line 2-4. These channels
are later on used as the self channels of the corresponding peers and therefore allow
role-to-component communication. Afterwards, in line 6-19, processes for the three
peers are created. A peer process in PROMELA has four parameters corresponding to
the peer’s component attributes and associations (cf. Fig. 2.1 on page 19) and its self
channel. The first and second parameter reflect the peer’s component attributes hasFile
and content, the third parameter reflects the peer’s component association neighbor,
and the last parameter is the self channel of the component process. For each peer,
it is nondeterministically decided whether the peer has the file or not, e.g., in line 7
a peer is created which does not have the file expressed by the first parameter being
false and the second parameter being 0 and in line 8 a peer is created which has the
file expressed by the first parameter being true and the second parameter being 1. As
a third parameter the neighbor is set, so for example for peer pl, peer p2 (reflected
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by its self channel) is the neighbor. Finally, the corresponding channel from line 2-4
is set as self channel. Last in the initialization process, the initial role instance of a
requester is created. We use role-to-component communication facilities as they are
used during role behavior execution to create this role process. The local variable req
in line 21 will be used to store the reference to the self channel of the newly created
role process. In line 22-25, the request to spawn a new role process for the requester is
created. The request is sent to the peer plin line 26. The component process for peer pl
will internally spawn the new role process and therefore execution of the whole transfer
ensemble is started. Finally, the init-process receives the reference to the newly created
role process in line 27.

Furthermore, the two goals need to be translated to PROMELA. Respecting the
aforementioned adaptations to LTL formulae, the achieve goal for our p2p example in
Fig. 4.4 is translated and inlined in the PROMELA file as shown in Fig. 5.18.

1t1 Achieve {
[1 ( Requester@startRequester ->
((Peer[1]:hasFile || Peer[2]:hasFile || Peer[3]:hasFile)
-> <> Requester:roleAttr_hasFile)

Figure 5.18: Achieve goal for the p2p example inlined in PROMELA

We use Requester@startRequester to describe when the initialization process in
PROMELA was finished. Since in the initial state, exactly one role instance of type
Requester exists, we know that as soon as its start label startRequester is reached,
initialization was finished. Furthermore, disjunction is expressed by the operator V
in HELENA LTL which is now translated to ||. Lastly, the role attribute hasFile
has to be prefixed with roleAttr_ to distinguish role attributes from component at-
tributes. The adaptation of the identifier of a role identifier cannot be seen here, since
we used the abbreviation Requester for Requester[1]. However, if one would have used
it, the translation in the PROMELA goal would be Requester[4] since the underlying
component-based platform consists of three peers.

Similarly, the maintain goal for our p2p example in Fig. 4.5 is translated and inlined
into the PROMELA file as shown in Fig. 5.19.

1t1 Maintain {
[1 ( Requester@startRequester ->
((Peer[1]:hasFile || Peer[2]:hasFile || Peer[3]:hasFile)
-> [] (Peer[1l]:hasFile || Peer[2]:hasFile || Peer[3]:hasFile))

Figure 5.19: Maintain goal for the p2p example inlined in PROMELA

With these adaptations, the PROMELA translation is ready to be checked against
the prepared LTL formulae. We will give results and statistics on model-checking the
p2p example in the next subsection.
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5.3.2 Running Spin

To perform model-checking, we rely on Spin Version 6.4.4 64Bit. Spin first generates a
verifier in C. Generation for a PROMELA file sample.pml is started with the command:

"spin.exe -a sample.pml"”

Depending on whether a liveness property like achieve goals or a safety property
like maintain goals, the generated C file is compiled differently to an executable verifier,
called pan as abbreviation for process analyzer. However, for both types of goals, we
enable advanced code optimization techniques in the C compiler with the runtime option
-02. This option yields a more optimized code and therefore speeds up runtime of the
later verification process. For achieve goals, compilation is started with the command:

"gcc -02 -0 pan pan.c"

Afterwards, the verifier is started for an achieve goal with the name AchieveGoal in the
original PROMELA file with the command:

"pan -a -N Achieve"
For maintain goals, compilation is started with the command:
"gcc -02 -DSAFETY -o pan pan.c"

Afterwards, the verifier is started for a maintain goal with the name MaintainGoal in
the original PROMELA file with the command:

"pan -N Maintain"

In both cases, achieve goals and maintain goals, the verifier executes a full state space
search. Thus, nondeterminism resulting from if- and do-statements and scheduling of
processes is resolved in all possible ways and the state space is searched exhaustively.

Typical Model Size: Holzmann et al. [HB07] use different case studies to evaluate
the model-checker Spin. For small models like the dining philosophers®, the size of the
vector to store a single state is a few hundred bytes, i.e., around 200 bytes and the state
space to be searched contains a few million states, i.e., 1-35 million states. For larger
models as discussed in [HB07], the state space grows to several hundred million states,
i.e., 10-600 million states, and/or the size of the vector to store a single state grows up
to 4000 bytes.

Memory Consumption: Spin can by default cope with state vectors with a size
up to 1024 bytes (B). If this upper bound is exceeded by the employed model, Spin
may be advised to allocate more memory for the state vector by adding the option
-DVECTORSZ=N to the compilation of the executable verifier (step 2) where N is the size of
the state vector in bytes. On the other hand, Spin uses up to 200 mega bytes (MB) to
store the searched state space. If the model exceeds this memory limit, the upper bound
can be increased by adding the option -DMEMLIM=N to the compilation of the executable
verifier (step 2) where N is the memory to be allocated in mega bytes. This number
should most certainly not exceed the amount of physical memory in the machine used
for verification.

5Most of the benchmark example models can be downloaded with the Spin distribution from http:
//www.spinroot.com/spin/multicore/
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Lossless Optimization: To scale verification to larger systems as we will handle them
later on in our case study, Spin offers different optimization techniques [Hol03, Chap. 9|
which improve the memory consumption of the verification run, but may increase the
runtime.

The first optimization technique Partial Order Reduction (POR) reduces the number
of reachable states to be searched during verification. POR is enabled in Spin by default
and can be disabled by adding the parameter -DNOREDUCE to the second step of compiling
the C verifier.

The second type of optimization techniques reduces the amount of memory for the
storage of states without loss of information, but possibly with increase of runtime.
On the hand, we use Collapse compression by adding the option -DCOLLAPSE to the
compilation of the executable verifier (step 2). Collapse compression exploits the fact
that many states only differ at a few points. Hence, the overlapping part does not need
to be stored multiple times, but only the differing part needs to extracted and stored.
On the other hand, we use a Minimized Automaton (MA) representation for the state
space by adding the option -DMA=N to the compilation of the executable verifier (step 2).
where N is an estimate of the maximal depth of the graph used as the MA representa-
tion. This compression technique builds and maintains a minimal deterministic state
automaton representing states without duplicates. To achieve maximal compression,
both techniques can be used simultaneously.

Lossy Optimization: If these lossless optimization techniques are not able to reduce
the size of the searched state space sufficiently, Spin also offers some lossy optimization
techniques [Hol03, Chap. 9] to stay in the available memory limits for verification.
The most prominent technique to tackle very large models is bit state space search. It
is added to the compilation of the executable verifier (step 2) by the option -DBITSTATE.
Its main idea is to give the explored state space some structure by storing the states
in a hash-table. During searching the state space, every explored state is looked up in
the hash-table. If it is not contained in the hash-table, it has not been visited before,
is added the hash-table and search continues for this part of the state space. If it is
already contained in the hash-table, it has been visited before and therefore search can
stop exploring this part of the state space since it already has been searched before.
In principle, exploiting a hash-table as a structuring means for the state space is not a
lossy optimization techniques. Each state is stored in the slot of the hash-table which
is characterized by its hash-value. If several states have the same hash-value, they are
stored in the same slot as a list. However, if the memory consumption of the hash-
table exceeds the memory of the machine running the verification, no more states can
be added to the hash-table and the verification run starts to become lossy. States are
missed and the verification run does not cover the whole state space anymore. An
indicator for this coverage is the hash-factor printed in the output of a bit state space
search with Spin. It is approximately the number of available slots in the hash table
divided by the slots which are actually engaged by a state during search. If the hash-
factor is greater than 100, we can expect a coverage of 100% since collisions are not
likely in this case. If the hash-factor approaches 1, the coverage decreases down to 0%.
Another technique is hash-compact search (HCJ). 1t is added to the compilation of
executable verifier (step 2) by the option -DHC4. In contrast to bit state space search,
this method is more likely to achieve a good coverage. Similarly to bit state space
search, the state space is stored in a hash-table, but it uses a hash-function which could
address a lot more slots than they are actually available. With this large hash-function,
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collision are unlikely to happen such that instead of the state, we can now just store
the hash-value of the state. This yields a compression of the state space in addition
to omitting already visited states. This means that for large models which exceed the
memory during a full state space search even with the lossless compression techniques
mentioned before, one should first try to run a hash-compact search which is most likely
to reach a coverage of 100% if enough memory is available. Only if hash-compact search
also exceeds the memory, one should use bit state space search to get results with a
lower coverage.

Multi-core Model-Checking: Lastly, Spin supports a multi-core depth-first search
mode since Version 5.0 and a multi-core breadth-first search mode since Version 6.2
(more details can be found in the online documentation at http://www.spinroot.
com/spin/multicore/).

The depth-first search mode [HB07| is enabled by adding the option -DNCORE=N to
the compilation of verifier where N is the number of core to be used. The depth-first
search mode works for liveness properties like achieve goals and safety properties like
maintain goals. However, for checking liveness properties only two cores can be used
because the checking algorithm is mainly dualcore.

The breadth-first search mode [Holl12] is enabled by adding the option -DBFS_PAR
to the compilation of verifier. During verification, it uses by default all available cores
except one. This multi-core verification mode is especially targeted at safety properties,
it was also extended to allow verification of bounded liveness properties.

Spin Output: The output of Spin contains statistics about the verification runs in
terms of memory consumption and execution time. It also lists the employed optimiza-
tion techniques and possibly unreached states during the full state space search. Most
importantly, Spin output whether verification ended with an error or not. An error can
have two reasons: Either Spin ran out of memory which is shown at the beginning of
the output or the checked LTL property is not satisfied in the PROMELA specification.
For the latter, Spin also provides a counterexample by issuing the command:

"spin.exe -t -c sample.pml"

The counterexample is a trace through the PROMELA specification. To map the coun-
terexample back to HELENA, it is therefore necessary to fully understand the translation
from HELENA to PROMELA. It is still an open problem how to generate a trace in the
original HELENA specification instead of the trace in the PROMELA translation.

Example: For our p2p example, we check both goals presented in Fig. 5.18 and
Fig. 5.19. Verification is performed with Spin version 6.4.4 64-bit and GCC version
6.9.2 64-bit” on a 64-bit Debian 8.1 desktop computer with 32GB RAM and eight
Intel(R) Xenon(R) cores each running on 3.40Ghz.

The achieve goal is satisfied for the translated PROMELA specification (and therefore
because of stutter trace equivalence also for the original HELENA ensemble specifica-
tion). The statistics of different verification runs concerning optimization are shown in
Table 5.1: The table compares runs in full state space search without any optimiza-
tion technique, without any state compression, but with POR optimization, and with
POR optimization and both state compression techniques Collapse Compression and

It is important to use the 64-bit versions of Spin and GCC to be able to address more than 2GB
of memory.
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Table 5.1: Statistics of model-checking the p2p example against its achieve goal
in a full state space search without any optimization (no opt.), with
POR optimization (POR), and POR optimization together with both
two compression techniques Collapse compression and Minimized Au-
tomaton (MA) representation (lossless opt.) and in a hash-compact
search (HC4)

no opt. POR lossless opt. HC4
search depth 283 283 283 283
state vector size (B) 736 736 736 736
stored states 24134 5069 7309 5069
transitions 130917 14991 14991 14991
theoretic memory (MB) 17.584 3.693 5.381 3.693
actual memory (MB) 10.044 2.220 0.402 0.361
elapsed time (sec) 0.11 0.02 0.05 0.01

MA representation against a run in hash-compact search (HC4). The search depth of
283, i.e., the maximal depth of a path through the search space, and the state vector
size of 736 bytes is the same for all verification runs. However, the runs differ highly in
the actual memory consumption for storing all states. Without any optimization, the
actual® memory consumption is around 10 MB; with POR optimization but without
any state compression, the actual memory consumption is around 2 MB; with POR, op-
timization and both state compression techniques, the actual memory consumption is
only around 0.4 MB; and with hash-compact search 0.4 MB. Concerning execution time,
runtime is improving from 0.11 seconds for a run without any optimization technique
to 0.02 seconds with POR optimization only. This improvement is caused by the fact
that POR optimization reduces the number of reachable states to be searched. How-
ever, execution time increases to (.05 seconds again when state compression techniques
are additionally used. State compression techniques reduce the memory consumption
for storing states, but this comes with the disadvantage of possibly increasing runtime
because of low-performance data structures. One interesting side-effect of using POR
optimization together with state compression is that POR optimization might not be
able to reduce the reachable states as much as without state compression (the number
of stored states with state compression is 7309 while it is 5069 without state compres-
sion). For hash-compact search, runtime improves to 0.01 seconds again since POR
optimization can come to its full potential such that the number of searched states is
the same as with POR, optimization only. As we can see, hash-compact search has a
coverage of 100% in this case and is therefore reliable since the same number of states
is search as with POR optimization only.

The output of the verification runs furthermore produces an overview about the
states which were not reached during the verification. Since we employ a full state
space search, these states represent dead code in the PROMELA specification which can
never be reached. This does not impede verification, but can be used to improve the

8The theoretic memory consumption is the memory consumption which would be needed if no
optimization techniques are employed at all. The actual memory consumption, however, is the memory
consumption which is really needed and results from applying optimization techniques. Note that even
without any special optimization techniques or with only POR optimization, Spin employs a simple
byte masking technique to reduce memory consumption.
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specification. In our case, the end states of all role processes are not reached. This is
expected since the last statement of each role process is false which is never executable.
Furthermore, some statements in the component process for the peer are not reached.
They all refer to requests which are never sent in our p2p example, e.g., a plays query
for a requester, and thus can be tolerated as dead code.

The maintain goal is also satisfied for the translated PROMELA specification (and
therefore also for the original HELENA ensemble specification). The statistics of the
different verification runs concerning optimization are shown in Table 5.2. The search

Table 5.2: Statistics of model-checking the p2p example against its maintain goal
in a full state space search without any optimization (no opt.), with
POR optimization (POR), and POR optimization together with both
two compression techniques Collapse compression and Minimized Au-
tomaton (MA) representation (lossless opt.) and in a hash-compact
search (HC4)

no opt. POR lossless opt. HC4
search depth 283 283 283 283
state vector size (B) 736 736 736 736
stored states 25574 5293 5293 5293
transitions 89770 9290 9290 9290
theoretic memory (MB) 18.438 3.857 3.852 3.857
actual memory(MB) 10.541 2.318 0.306 0.459
elapsed time (sec) 0.08 0.01 0.03 0.01

depth and the state vector size are the same as for the achieve goal. Again, the runs
for verifying the maintain goal differ highly in the actual memory consumption for stor-
ing all states. Without any optimization, the actual memory consumption is around
11 MB; with POR optimization but without any state compression, the actual memory
consumption is around 2 MB; with POR optimization and both state compression tech-
niques, the actual memory consumption is only around 0.3 MB; and with hash-compact
search 0.5 MB Concerning execution time, runtime is improving from 0.08 seconds for
a run without any optimization technique to 0.01 seconds with POR optimization only,
but again increased to (.03 seconds when state compression techniques are additionally
used. The reasons are similar to the verification of the achieve goal. Finally, runtime
is improved to 0.01 seconds again if employing hash-compact search. The verification
runs furthermore produce the same set of unreached states which are again acceptable
due to the aforementioned reasons.

5.4 Related Work

Our approach of verification is in-line with goal-oriented requirements approaches like
KAOS [vL09]. They also specify goals by LTL properties. However, they translate
their system specifications into the process algebra FSP [MKO06], which is not sufficient
to represent the dynamics of ensembles since dynamic process creation and directed
communication are not supported.

To the best of our knowledge, PROMELA and Spin can express more HELENA features
than other model-checkers, especially dynamic process creation and directed message
passing. For example, TAPAs [CDLT08] allows to verify concurrent systems specified
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in CCS. The specification language does not support any notion of data and dynamic
process creation can only be simulated by parallel composition with process invocation.
CADP [GLMS13] is a software toolbox for the verification of distributed processes. The
tool supports FSP and LOTOS NT (amongst others) as input language and allows to
verify LTL properties as required by HELENA. However, both input languages are not
enough to support all features of HELENA. FSP does not allow directed message passing
between two processes and cannot dynamically create new processes. In contrast, LO-
TOS NT is a very expressive language which merges process calculi into a programming
language. As in TAPAs, dynamic process creation can only be simulated by parallel
composition with process invocation. Furthermore, LOTOS NT only allows synchronous
communication by rendezvous on gates. mCRL2 [GM14] is a formal specification lan-
guage for concurrent systems which is supported by a toolset for modeling, validation
and verification. The input language resembles FSP, but allows multiactions. As in
FSP, communication between processes is achieved via synchronization between actions
such that directed message exchange is not possible. Furthermore, dynamic process
creation is again only possible by parallel composition with process invocation. It still
remains to investigate whether there exists any further model-checkers which could ex-
press the HELENA features better than Spin, especially the semantics of the if-then-else
construct and atomicity of a sequence of actions. Especially, since we will present the
framework jJHELENA implementing HELENA ensemble specifications in Java in Chap. 7
and a systematic translation of HELENA ensemble specifications to jJHELENA in Sec. 8.4,
Java PathFinder [Laul6, VHB'03] could be an interesting option for model-checking
HeLENA. Java PathFinder allows to analyze executable Java programs for properties
like deadlocks, unhandled exceptions, and data races. To check an LTL formula as we
use it to express goals, the LTL formula has to be transformed to its corresponding
Biichi automaton and implemented by a user-defined listener for the Java PathFinder.
This transformation is not directly supported by the core Java PathFinder, but only by
an external extension [Cuol2| which is not maintained since 2012. Nevertheless, using
Java PathFinder could help us to directly check the final implementation of HELENA
ensemble specifications in Java without making detour to another model specific for a
particular model-checker.

Techniques for the development of ensembles have been thoroughly studied in the
recent ASCENS project [WHKM15]: Closely related to our work is the SCEL language.
Therefore, we look at its verification in more detail. In [DLL*14], ensemble-based
systems are described by simplified SCEL programs and translated to PROMELA. The
main idea of the translation is to declare new PROMELA process types for every process
construct used in the SCEL description of the ensemble-based system. For example,
action prefix is translated to two PROMELA process types, the first one representing
the execution of the action and the second one the execution of the remaining process.
Thus, the behavior of the first process type is just the execution of the action and
afterwards the spawning of a new process instance which is responsible for executing
the remaining process term. In our opinion, this translation suffers from the excessive
creation of new process types and process instances. During verification, Spin will
only allow to create 255 processes at maximum, afterwards it simply ignores additional
spawns. Apart from that, the authors omitted the new operator in the simplified
version of SCEL and thus did not provide any verification mechanism for dynamically
created components. In contrast, HELENA allows dynamic role creation which is fully
represented in our PROMELA translation. Furthermore, the translation from simplified
SCEL to PROMELA is neither proved semantically correct nor automated while our
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translation from HELENA to PROMELA is proven correct in Chap. 6 and automated with
the HELENA workbench in Chap. 8. In addition to model-checking SCEL specifications
with Spin, SCEL specifications can also be implemented in Java relying on the jJRESP
framework |Lorl6, De 16| which also provides a prototypic statistical model-checker.
It can verify whether the implementation of a SCEL specification in jJRESP satisfies a
reachability property with a certain degree of confidence. So far, HELENA is not able to
cope with uncertainty in the environment and thus exact model-checking is possible, but
as soon as changing environmental conditions are included in HELENA, verification of
HELENA ensemble specifications should move to statistical model-checking as proposed
in jRESP for SCEL.

DFINDER [CBK15] implements efficient strategies exploiting compositional verifi-
cation of invariants to prove safety properties for BIP ensemble models, but does not
deal with dynamic creation of components.

DEECo ensemble models [BGHT13] are implemented with the Java framework
jDEECo and verified with Java Pathfinder [CBK15]. Thus, opposed to HELENA, they
do not need any translation. However, since DEECo relies on knowledge exchange
rather than message passing, they do not verify communication behaviors.

In the field of distributed systems, multiparty session types [CDPY15| describe
communication protocols of interacting processes on a global level. The behavior of
each process is obtained by projecting the global multiparty session type on a single
participant. These local projections are used to prove communication safety, protocol
fidelity, and progress of the global multiparty session types. In contrast to our approach,
these properties can be proven in the context of interleaved multiparty sessions while
we only consider one ensemble instance during a verification run so far. However,
in the HELENA approach, we support the verification of arbitrary LTL formulae over
the underlying ensemble specification while verification of multiparty session types is
restricted to communication safety, protocol fidelity, and progress only.

Finally, our approach has been strongly inspired by the way how the distributed lan-
guage KLAIM has been transferred to Maude in [EMMW15]|. There, the correctness of
the translation was established by a stutter bisimulation which preserves CT'L* proper-
ties (without nezt). The translation of HELENA into PROMELA is, however, not stutter
bisimilar but stutter trace equivalent and thus only preserves LTL formulae (without
next) as we will discuss in Chap. 6.

5.5 Publication History

The content of this chapter relies on [HKW15] and mostly on [Klal5b|. In [HKW15],
we introduce a formal translation from a simplified version of HELENA to PROMELA,
the input language of the model-checker Spin. In [Klal5b|, we informally describe
the extension of this translation to full HELENA and give some insights in the formal
translation.

This chapter extends these previous publications by fully defining the translation
from full HELENA to PROMELA which has only been described in excerpts so far. Fur-
thermore, we include a comprehensive introduction to model-checking HELENA ensem-
ble specifications with Spin, present some optimization techniques included in Spin, and
provide detailed statistics about model-checking the p2p example.
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5.6 Present Achievements and Future Perspectives

Present Achievements: To check the HELENA LTL goals in a HELENA ensemble
specification, we proposed to translate HELENA to PROMELA and to verify goal sat-
isfaction in the PROMELA translation with the model-checker Spin. The translation
mainly transfers the two-level approach of HELENA components and roles to PROMELA
processes: A HELENA component is represented by a long-running PROMELA process
which is repeatedly able to receive requests, like operation calls or role creation and re-
trieval requests, from its adopted roles. A HELENA role is represented by a short-living
PROMELA process which reflects the corresponding role behavior declaration specified
in HELENA. It issues requests to its underlying component process and exchanges mes-
sages with other role processes. Using this PROMELA translation, the original IIELENA
goals can be verified with small adaptations in Spin. The obtained results can directly
be transferred back to HELENA since we can show that a HELENA ensemble specification
and its PROMELA translation satisfy the same set of LTL\x formulae (the formal proof
is given in the next chapter).

We illustrated our approach for checking satisfaction of goals for HELENA ensemble
specifications with our p2p example. Although being a very small example, it uses
nearly all features of HELENA and provides a good proof of concept. Even at this small
example, we could see that PROMELA is well-suited to express the distinct HELENA
features and Spin provides powerful optimization and compression methods to speed
up verification and to reduce memory consumption. To show that our approach also
scales to larger systems, we provide a larger case study in Chap. 10.

Future Perspectives: Nevertheless, there exist interesting areas of future work.

Expressiveness of Spin: We had to restrict the usage of nondeterministic choice and
the if-then-else construct to preserve semantic equivalence between a HELENA en-
semble specification and its PROMELA translation. Those restrictions are mainly
caused by two design choices of PROMELA: Firstly, PROMELA prescribes that
a branch of an if-construct can only be selected for execution if its first action
is executable. It is not possible to extend the selection mechanism such that a
block of actions determines the executability of a branch (even not if enclosed in
an atomic-block). Since some HELENA actions have to be translated to several
PROMELA statements, we cannot cope with them as first actions of nondeter-
ministic choice or the if-then-else construct if they are not executable. Secondly,
PROMELA’s selection if-construct does not offer the possibility to evaluate the
guard of a branch and to execute the corresponding first action of the branch as
one step. Therefore, the semantics of the HELENA if-then-else construct cannot
be directly expressed in PROMELA if the first action is not executable. How-
ever, as discussed in Sec. 5.4, PROMELA can express more HELENA features than
other off-the-shelf model-checkers. Thus, these expressibility problems could at
the moment only be overcome by a custom-made HELENA-specific model-checker.

Extension to Component Interfaces: For simplicity reasons, we made the assumption
that a role type can only be adopted by one component type. To alleviate this
assumption, component interfaces can be introduced into the HELENA approach
as already proposed in Sec. 2.7 such that a role type only requires a certain com-
ponent interface from its owning component. In PROMELA, all component types
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would then be represented by corresponding component processes, but requests
to components would no longer be component-specific, but interface-specific.

Model-Checking of Parallel Ensembles: So far, we only check one ensemble instance per
verification run. This assumption can be alleviated by allowing each component
process to adopt the same role in several ensembles. Instead of only one role
instance per type, the component process then has to manage an array of role
instances, each adopted in a different ensemble. While the extension to several
parallel ensembles is syntactically easily realized in PROMELA, it has a huge impact
on the size of the search space. To be able to still verify several parallel ensembles,
the translation has to be optimized to reduce the amount of space to store the
state of the ensemble-based system.

Representation of Counterexamples in HELENA: Currently there is no support for map-
ping model-checking results from PROMELA and Spin back to HELENA. Spin
produces a counterexample if an LTL formulae is not satisfied, but the counterex-
ample is given as a trace through the PROMELA translation. Therefore, deep
understanding of the translation from HELENA to PROMELA is necessary to be
able to map the trace back to HELENA. An automatic generation of the corre-
sponding trace through the HELENA specification would alleviate this problem.
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Chapter 6

Correctness Proof
Allowing HELENA to Rely on Spin

In the previous chapters, we proposed to specify goals for a HELENA engsemble specifi-
cation in LTL and to check satisfaction of goals by translating HELENA to PROMELA
and using the model-checker Spin for verification. However, to be able to use the re-
sults from model-checking a PROMELA translation for the original HELENA ensemble
specification, we have to show that they both satisfy the same set of LTL formulae. To
prove that kind of semantic equivalence, we establish stutter trace equivalence between
the induced semantic Kripke structures of a HELENA specification and of its PROMELA
translation. In the proof of stutter trace equivalence, we rely on a new general criterion
that Kripke structures are stutter trace equivalent if particular simulations (called ~-
stutter simulations) can be established in both directions. This criterion is explained
and proven correct in Sec. 6.1. Relying on results from the literature [BK08|, we know
that satisfaction of LTL formulae (without the next operator) is preserved in stutter
trace equivalent Kripke structures. As a consequence, we can verify LTL properties for
a HELENA specification by model-checking its PROMELA translation. Thereby, the only
restrictions we have to make is that no role behavior declaration in HELENA may start
with a state label and process invocation is not a branch in nondeterministic choice.
In this chapter, we first explain the notion of stutter trace equivalence and LTL\X1
preservation in general and introduce the new criterion for stutter trace equivalence
in Sec. 6.1. This criterion will be used in the formal proof of the correctness of our
approach which follows afterwards. We formally prove stutter trace equivalence for
two simplified variants of HELENA and PROMELA and informally argue that the proof
can be extended to full HELENA and PROMELA. In Sec. 6.2, we reduce the syntax
and semantics of HELENA to the main features of roles defining the simplified variant
HELENALIGHT of our modeling language. In Sec. 6.3, we identify a subset of PROMELA,
called PROMELALIGHT, which is sufficient to express all HELENALIGHT concepts, and
derive SOS rules for PROMELALIGHT from the transition system semantics provided
for full PROMELA in [Wei97|. Afterwards in Sec. 6.4, we discuss the formal translation
function from HELENALIGHT to PROMELALIGHT which is a simplified variant from
the full translation in Sec. 5.2. Based on the formal definition of HELENALIGHT and
PROMELALIGHT, we establish stutter trace equivalence between the induced semantic
Kripke structures of both types of specifications in Sec. 6.5. Finally, we argue in Sec. 6.6
that the correctness proof can be extended to full HELENA and therefore justify our
approach to translate HELENA to PROMELA and to use Spin as a model-checker.

1LTL\X is the fragment of LTL that does not contain the nezt operator X.
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6.1 Foundations on LTL\x Preservation

To define when two Kripke structures satisty the same set of LTL\x formulae, we in-
troduce the notion of stutter trace equivalence. This equivalence entails LTL\x preser-
vation according to the literature [BKO08| and, thus, allows us to deduce satisfaction of
the same set of LTL\x formulae.

We first consider paths of Kripke structures (cf. Def. 4.2): two paths of Kripke
structures over the same set of atomic propositions AP are stutter trace equivalent if
their traces only differ in the number of their stutter steps. That means that there exist
sets of atomic propositions P; C AP (with ¢ € N) such that the traces of both paths
have the form PS‘ Pf‘ P; ... where Pf denotes a non-empty sequence of the same set
P;.

The notion of stutter trace equivalence is extended to Kripke structures by consid-
ering all paths of the Kripke structures.

Two Kripke structures K1 and Ko are stutter trace equivalent if for each path of
K1 there exists a stutter trace equivalent path of Ko and vice versa.

Stutter trace equivalence between two Kripke structures allows to find a path in
one Kripke structure for a path in the other one, we say the path is simulated. The
two paths exhibit the same trace of atomic propositions except stutter steps which
do not change the set of satisfied atomic propositions. That means, we can find a
mapping between the two paths which sequentially maps states satisfying the same set
of atomic propositions. Stutter trace equivalence apparently preserves satisfaction of
atomic propositions on equivalent paths according to this mapping. However, stutter
trace equivalence does not preserve the behavior expressed by the compared Kripke
structures. For stutter trace equivalence, it is only necessary that for every path in
the first Kripke structure there exists a path in the stutter trace equivalent Kripke
structure which preserves satisfaction of atomic propositions on mapped states, but it
is not necessary that at every state on the path in the second Kripke structure preserves
the branching structure of the corresponding state of the first Kripke structure.

To exemplify this, we consider the excerpt of the two Kripke structures K; and Ko
in Fig. 6.1 (the set of atomic propositions which hold in each state are annotated as
subscripts A, B and C). In K7, we have the path s = sgs1 ... with the trace AB. ... For
this path, we find exactly one stutter trace equivalent path in Ky, namely t = tot1ta. ..
with the trace AAB.... We can define a relation =~ = {(so, o), (S0,t1), (s1,%2),...}
which relates all states on the stutter trace equivalent paths satisfying the same set of
atomic propositions. While this relation preserves satisfaction of atomic propositions,
it does not (necessarily) preserve the branching structure of the Kripke structures in
general. In our example, we can choose between two paths in state sg, one leading to
so and one leading to s1, but in state t; we do no longer have the choice. However, we
can find a relation ~ which only relates those states which exhibit the same branching
behavior, here the relation ~ = {(so, t0), (s1,%2), ...}

In principle, it would be nice to define a relation which simulates all paths of one
Kripke structure by the other and preserves satisfaction of atomic propositions. To this
end, we introduce the notion of ~x-stutter simulations in Def. 6.2. In the definition, we
combine the idea of the two relations ~ and = into one simulation relation. With the
relation ~, we simulate all paths (and therefore the branching structure) of one Kripke
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Figure 6.1: Stutter trace equivalent Kripke structures K; (above) and K; (below)

structure in the other. With the relation =, we allow stutter steps on the paths which
do not have to preserve branching.

Def. 6.2: ~-Stutter Simulation

Let K1 = (S1,11,—1,F1) and Ko = (So, Iy, —9, Fa) be two Kripke structures
over AP. Let ~ C S7 x Sy be a relation.
A relation ~ C S X S is a ~-stutter simulation of Ky by Ky if

(1) ~ C ~ and

(2) for all s € S1,t € Sy with s ~t: if s —1 &,
then s’ ~t or itexistst —ot] —o... oty —aoth —a... 2ot —ot
(n,m >0) such that s = t; for alli € {1,...,n}, s’ =,
forall je{l,...,m} and ' ~ 1.

K is m-stutter simulated by Ky if there exists a ~-stutter simulation ~ of Kj
by Ko such that so ~ to for all sqg € I1,ty € I>.

Interestingly, (mutual) ~-stutter simulations are sufficient to provide a criterion
whether two Kripke structures are stutter trace equivalent if we require two additional
properties from the underlying stutter step relation ~. Obviously, the relation ~ has to
guarantee preservation of atomic propositions since stutter steps shall not change the
satisfaction of atomic propositions. Additionally, the relation = has to be divergence-
sensitive, i.e., if one of ~-equivalent states takes infinitely many stutter steps (which do
not change satisfaction of atomic propositions), the other one also has to take infinitely
many stutter steps. That means that divergence-sensitivity guarantees that for every
(infinite) path of one Kripke structure there actually exists an (infinite) path in the
other one, i.e., the paths of the two Kripke structures continuously take stutter steps.

Def. 6.3: Property-Preserving Relation

Let K1 = (S1,11,—1,F1) and Ko = (53, I2,—9, Fy) be two Kripke structures
over AP. A relation ~ C Sy X Sy is property-preserving if for all s € S1,t € So,
s &t implies F1(s) = Fy(t).
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Def. 6.4: Divergence-Sensitive Relation

Let K1 = (S1,I1,—1, F1) and Ko = (S2, Iz, —2, F») be two Kripke structures over
AP. A relation =~ C S1 X Sy is divergence-sensitive if for all s € S1,t1 € Sa
with s1 ~ t1 holds: if there exists an (infinite) path fragment s1S983... in K
with s; = t1 for all i > 1, then there exists an (infinite) path fragment titots . ..
in Ko with sy = tj for all j > 1 and symmetrically for (infinite) path fragments
n K.

Thm. 6.5: Stutter Trace Equivalence

Let K1 and Ko be two Kripke structures over AP with states Si,So resp. Let
~ C S1 x Sy be a property-preserving and divergence-sensitive relation and ~~"
its inverse relation. If Ky s ~-stutter simulated by Ko and Ko is ~~Lstutter
simulated by K1, then K1 and Ko are stutter trace equivalent.

Proof of Thm. 6.5

In the proof, we have to show that for every (infinite) path in one Kripke
structure there exists an (infinite) path in the other Kripke structure such
that the two paths are stutter trace equivalent.

Since K is m-stutter simulated by K5, we find for each path s = sgsys2...
of K7 a finite sequence t = fot1t2...t; or an infinite sequence t = tot1ta. ..
of states t; € So (of K3) such that the properties of a ~-stutter simulation
from Def. 6.2 hold for all states on the path s and the found sequence t. We
first show that the found sequence t cannot be a finite since the relation = is
divergence-sensitive. We assume that the path s in K; is simulated by a finite
sequence t = totita...t; in Ko. Since the properties of a ~-stutter simulation
must be satisfied for the path s and the finite sequence t, the only possibility
is that a state s; € S7 on the path s of K is reached such that from s;,
K takes infinitely many steps s; —1 s;4+1 while the corresponding sequence ¢
in K3 does not take any further steps and remains in the state ¢; such that
si ~ tj, six1 ~ tj, siy2 ~ t;, and so on. This reflects the first condition of
item (2) in Def. 6.2 of a ~-stutter simulation. The following graphics depicts
the situation:
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Since we assumed that the relation =~ is divergence-sensitive and it holds
that ~C=z, the relation ~ is divergence-sensitive, too. Therefore, the depicted
situation cannot happen, i.e., the found sequence cannot get stuck in the state
t; while the path in K; continuously evolves. The found sequence must rather
evolve according the property of a divergence-sensitive relation in Def. 6.4.
The following graphics depicts the required extension of the finite path t:
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This means that every path s of K is simulated by an infinite sequence, i.e.
path t of Ks.

Secondly, we have to discuss why the two paths are stutter trace equivalent.
Since we produced the two paths by a ~-stutter simulation, we know that
for every state s; on the path of Ky we find a corresponding state ¢; on the
path of K> such that either s; ~ t; or s; ~ t; holds. Furthermore, we know
that the relation = is property-preserving and that ~Ca holds. Therefore, all
states on the paths which are related by ~ or ~ satisfy the same set of atomic
propositions which conforms to the definition of stutter trace equivalence of
paths.

Since the relation = is property-preserving and divergence-sensitive, the in-
verse relation ~~! is property-preserving and divergence-sensitive, too. There-
fore, the argumentation from before symmetrically holds in the other direction
if we assume that Ky is ~~!-stutter simulated by K. |

The question arises which LTL formulae are satisfied by two stutter trace equivalent
Kripke structures. It is clear that the next operator X of temporal logic is not preserved
since stutter steps are allowed. However, if we restrict our attention to the temporal
logic LTL\x, we can use a result of [BK08| which shows that all formulae of LTL\x are
preserved. In practice, eliminating the nezt operator is not a great loss since interesting
properties are not so much concerned with what happens in the next step as to what
eventually happens [Lam83].

Let K1 and Ks be two stutter trace equivalent Kripke structures over AP. For
any LTL\ x formula ¢ over AP, we have K1 = ¢ < K3 = ¢.

The proof can be found in [BKO08, pp. 534-535] (Thm. 7.92 and Cor. 7.93). &

6.2 HELENALIGHT

In HELENALIGHT, we simplify the full HELENA approach by omitting the underlying
component types and consider only role types, whose instances can be dynamically
created, and their interactions. Additionally, we omit any notion of data such that we
do not consider attributes and data parameters anymore. Table 6.1 gives an overview
about the features of HELENA and how they are abstracted in HELENALIGHT.

Firstly, HELENALIGHT omits the underlying component-based platform (marked
with (1) in Table 6.1). Because of the lack of components, roles do not have an owner.
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Table 6.1: Features of HELENA vs. HELENALIGHT

HELENA HELENALIGHT
components attributes — (1)
associations — (1)
operations — (1)
roles owner — (1)
attributes —(2)
messages without data (2) and

with exactly one role parameter (3)

ensemble capacity of input queues (cf. HELENA)
structures min/max multiplicity —(4)
actions role instance creation without owner (1)
role instance retrieval — (1)
sending a message without data (2) and

with exactly one role parameter (3)
receiving a message without data (2) and

with exactly one role parameter (3)

component operation call — (1)
component attribute setter — (1)
role attribute setter —(2)
process termination no role instance release (1)
constructs action prefix (cf. HELENA)
nondeterministic choice (cf. HELENA)
if-then-else —(2)
process invocation only recursive role behavior invocation (5)

Thus, role creation is independent from an owner and role retrieval cannot be realized
since there does not exist any owner which manages the references to its adopted roles.
Similarly, at the end of a role behavior, the role must not be released from its owner
when reaching the null process quit. Furthermore, operations cannot be called on
components and component attributes cannot be set.

Secondly, any notion of data is omitted (marked with (2) in Table 6.1). Thus, roles
do not have attributes, there are no role attribute setters, and messages do not have
any data parameters. The if-then-else construct is completely omitted.

We additionally simplify HELENA in three aspects: We only allow a single role
instance parameter in messages instead of a list of role instance parameters (marked by
(3) in Table 6.1). We do not restrict the number of allowed instances for roles anymore
(marked by (4) in Table 6.1). We do not allow arbitrary process invocation anymore,
but only recursive invocation of the role behavior itself (marked by (5) in Table 6.1).
In the following, the simplified variant of HELENA is defined in detail.

6.2.1 HELENALIGHT Syntax

Ensemble Structures: Role typesin HELENALIGHT are characterized by their name
and a set of outgoing and incoming message types. In contrast to full HELENA, we omit
role attributes and consider message types with exactly one role parameter.
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Def. 6.7: HELENALIGHT Message Type

A message type msg in HELENALIGHT is of the form msgnm(X:rt) such that
msgnm 1is the name of the message type and X is a formal parameter of the
HELENALIGHT role type rt.

Def. 6.8: HELENALIGHT Role Type

A role type in HELENALIGHT is a tuple rt = (rtnm, rtmsgs ., 1tmsgs;,) such
that

e rinm is the name of the role type, and

o 1imsgs,,; and rtmsgs,, are sets of HELENALIGHT message types for out-
going and incoming messages supported by the role type.®

“In the following, we often write 7t synonymously for the role type name rtnm.

Ensemble structures specify which role types are needed for a collaboration. In
contrast to full HELENA, we omit multiplicities constraining the number of admissible
role instances for each role type. We assume asynchronous communication and specify
for each role type the (positive) capacity of the input queue of each role instance of that
type, i.e., the capacity must be greater than zero.

Def. 6.9: HELENALIGHT Ensemble Structure

An  ensemble structure X in  HELENALIGHT is a tuple X =
(nm, roletypes, roleconstraints) such that

e nm is the name of the ensemble structure,
o roletypes is a set of HELENALIGHT role types, and

e for each rt € roletypes, roleconstraints(rt) is a finite capacity ¢ > 0 of the
mput queue of rt.

As in full HELENA, we only consider closed ensemble structures ¥. This means that
any outgoing message of some role type of ¥ must occur as an incoming message of at
least one role type of ¥ and vice versa, and any parameter type occurring in a message
type is a role type of X.

Example: We will consider a simplified variant of the p2p example of Chap. 2. The
three role types for requester, router, and provider are formally defined in Fig. 6.2 and
depicted in Fig. 6.3.

In contrast to the specification in full HELENA, we omit the underlying component
type Peer and all role attributes as well as data parameters in the specification of the
three role types. However, since every message in HELENALIGHT must have exactly
one role instance parameter, we have to equip the message sndF'ile of the Requester and
the Provider with an arbitrary parameter which will not matter in the following.

The ensemble structure for the file transfer ensemble in HELENALIGHT names the
participating role types and their capacity, but no multiplicities (cf. Fig. 6.4 and
Fig. 6.5).
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Requester ("Requester", msgsout(1q), msgsin(rq))

with msgsout(rq) {reqAddr(req: Requester), reqF'ile(req: Requester) }

{sndAddr(prov: Provider), sndFile(prov: Provider)}

and msgsin (rq)

Router ("Router", msgsout(r0), msgsin(ro))
{reqAddr(req:Requester), sndAddr(prov: Provider)}

{reqAddr(req: Requester)}

with msgsout(ro)

and msgsin (ro)

Provider

("Provider", msgsout (pv), msgsin (pv))

with msgseut(pv)

{reqFile(req:Requester)}
and msgsin (pv) = {sndFile(prov:Provider)}

Figure 6.2: All role types for the p2p example in HELENALIGHT

«role type»

Requester «role type»
out regAddr(req:Requester) Router <<rPol}oeVitd)/ep:>>
in sndAddr(prov:Provider) out regAddr(..)
out reqFile(req:Requester) in reqgAddr(..) in reqgFile(..)
in sndFile(prov:Provider) out sndAddr(..) out sndFile(..)
(a) Role type Requester (b) Role type Router (c) Role type Provider

Figure 6.3: All role types for the p2p example in HELENALIGHT in graphical notation

Siransfer = (" Siransfer ", { Requester, Router, Provider}, roleconstraints)
with roleconstraints(Requester) = 2,
roleconstraints(Router) =2,

roleconstraints(Provider) =1

Figure 6.4: Ensemble structure X qnsfer for the p2p example in HELENALIGHT

«role type»
r

%W Requester S9File(. )
Sndl\ddr(") cap =2 W

)
«role type» «role type»
Router Provider
cap = 2 cap =1
regAddr(..)

Figure 6.5: Ensemble structure X qnsfer for the p2p example
in HELENALIGHT in graphical notation

Ensemble Specifications: To perform a goal-oriented task, the ensemble needs to
exhibit a certain behavior. Therefore, we specify a behavior for each role type occurring
in the running ensemble which must be respected during execution. Given an ensemble
structure 3, process expressions (over X) are used to specify role behaviors. They are
built from termination, action prefix, nondeterministic choice, and process invocation.
We consider four types of actions: sending (!) and receiving (7) a message, role instance
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creation, and labeling a state (used for verification only). Opposed to full HELENA, we
omit component instances on which role instances are created and any data in message
exchange. Furthermore, we omit the get action, operation calls, and any attribute
setters since we do not have attributes in HELENALIGHT. Lastly, we also weaken
guarded choice to nondeterministic choice since we omitted data completely, i.e., in
message exchange and as attributes.

Def. 6.10: HELENALIGHT Process Expression

A process expression in HELENALIGHT is built from the following grammar, where
N s the name of a process, msgnm is the name of o HELENALICHT message
type, X and Y are names of variables, rt is a HELENALIGHT role type (more
precisely the name of a role type), and label is the name of a state label:

P ::= quit (termination)
| a.P (action prefiz)
| PL+ P (nondeterministic choice)
| N (process invocation)
a = X < create(rt) (role instance creation)
| Yimsgnm(X) (sending a message)
| ?msgnm(X:rt) (receiving a message)
| label (state label)

A receive action ?msgnm(X:rt) (and resp. a create action X < create(rt)) declares
and opens the scope for a local variable X of type rt. We assume that the names of the
declared variables are unique within a process expression and different from self which
is a special, predefined variable which refers to the current role instance and can always
be used.

In the context of an ensemble structure ¥ = (nm, roletypes, roleconstraints), a pro-
cess expression has to satisfy some conditions to be well-formed. These conditions
are directly derived from the well-formedness conditions of process expressions in full
HELENA (cf. Def. 2.10 on page 28) and do not include any new restrictions.

Def. 6.11: Well-Formedness of a HELENALIGHT
Process Expression

Let ¥ = (nm, roletypes, roleconstraints) be a HELENALIGHT ensemble structure.
A HELENALIGHT process expression P is well-formed for a HELENALIGHT role
type rt € roletypes w.r.t. X, if

(1) in any action prefix of P, all actions are well-formed for rt w.r.t. 3,

(2) in any nondeterministic choice of P, the first actions of the two branches are
either incoming messages or any other action than an incoming message,

(8) in any nondeterministic choice of P, state labels are not the first action of
any branch,

(4) a process expression does not immediately invoke itself, also not by a chain
of process invocations being the first and last invocation the same.
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An action is well-formed for @ HELENALIGHT role type 1t € roletypes w.r.t. 3 if
(1) for X < create(rt’),

(a) rt’" € roletypes,
(b) X has not been declared before,

(2) for Ylmsgnm(X),

(a) the role type rt supports the message type msgnm(X':rt’) as outgoing
message,

(b) the type of the role instance Y supports the message type
msgnm(X':rt') as incoming message,

(c) the actual parameter X is of type rt’,

(d) the expressions X and Y only name the predefined constant self, or
variables or parameters which have been declared before,

(3) for Tmsgnm(X:rt'),

(a) the role type rt supports the message type msgnm(X:rt') as incoming
message,

(b) X has not been declared before,

(4) all state labels are unique within the process expression P.

Building on process expressions, we can now define role behavior declarations. Op-
posed to full HELENA, a role behavior declaration cannot invoke other processes, but
can invoke itself recursively. Furthermore, we neither allow recursive process invoca-
tions as the first process construct nor as one immediate option of (possibly nested)
nondeterministic choice if nondeterministic choice is the first process construct in the
role behavior declaration (as defined in the well-formedness condition). That means,
we neither allow roleBehavior 7t = rt nor roleBehavior rt = (rt + P) (and nested
variants). We especially name this condition again in the following definition of a role
behavior declaration.

Let ¥ be a HELENALIGHT ensemble structure and rt be a HELENALIGHT role
type in 2. A role behavior declaration for rt in HELENALIGHT has the form

roleBehavior rt = P

where P is a HELENALIGHT process expression which is well-formed for rt
w.r.t. X such that recursive process invocations may occur in P at most for rt
and not immediately.

An ensemble specification consists, as in full HELENA, of two parts: an ensemble
structure and a set of role behavior declarations for all role types occurring in the
ensemble structure.
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An HELENALIGHT ensemble specification is a pair EnsSpec = (X, behaviors)
such that % is a HELENALIGHT ensemble structure and behaviors is a set of
HELENALIGHT role behavior declarations which contains exactly one declaration
roleBehavior rt = P for each role type rt € X.

Example: In the context of our simplified p2p example, we have to consider the re-
strictions HELENALIGHT imposes on the specification of behaviors. The behavior of a
requester (cf. Fig. 6.6) does not name any component instance where the initial router
is created (line 1) and all data parameters in message exchanges are removed (e.g., line
6). To illustrate the use of state labels, we introduce two state labels (line 4 and 7) to
mark the state when the requester received the address of a provider and the file itself.

roleBehavior Requester = router < create(Router) . (1)
router!reqAddr(self) . (2)
?sndAddr(prov:Provider) . (3)
stateSndAddr . (4)
provlreqFile(self) . (5)
?sndFile(prov2: Provider) . (6)
stateSndFile . (7
quit (8)

Figure 6.6: Role behavior of a Requester for the p2p example in HELENALIGHT

Similarly, the behavior of a provider is adapted to HELENALIGHT (cf. Fig. 6.7).

roleBehavior provider = ?reqFile(req: Requester) .
stateReqF'ile .
req!sndFile(self) .
quit

Figure 6.7: Role behavior of a Provider for the p2p example in HELENALIGHT

However, the role behavior of a router has to be fundamentally restructured (cf.
Fig. 6.8). Process expressions in HELENALIGHT can only use nondeterministic choice
instead of guarded choice. Thus, in contrast to the router behavior in full HELENA in
Fig. 2.7 on page 31, the router nondeterministically either provides the file or forwards
the request (cf. nondeterministic choice in line 2-8). Additionally, we do not provide
an action to retrieve an already existing role instance (action get in full HELENA).
Therefore, a router can only forward the request to a newly created router (cf. line 6-8)
and not to an already existing one as in full HELENA.

6.2.2 HELENALIGHT Semantics

On the semantic level, we reduce the formal semantics of full HELENA in Chap. 3 to
the proposed simplified variant HELENALIGHT. Therefore, as for full HELENA, the se-
mantic domain of HELENALIGHT ensemble specifications are labeled transition systems
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roleBehavior Router = ?reqAddr(req: Requester) . (1)
( provider + create(Provider) . (2)

reqlsndAddr(provider) . (3)

quit ) ()

+ (5)

( router < create(Router) . (6)

router!reqAddr(req) . (7)

Router ) (8)

Figure 6.8: Role behavior of a Router for the p2p example in HELENALIGHT

describing the evolution of ensembles. The states capture the current state of an ensem-
ble with its constituent role instances. Structured operational semantics (SOS) rules
define the allowed transitions between those ensemble states.

Ensemble States: Let us first consider the states of an ensemble. As for full HELENA,
an ensemble state in HELENALIGHT captures the set of currently existing role instances
with their local states, but in contrast to full HELENA, we abstract from component
instances and any notion of data. Thus, the local state of a role instance in HELE-
NALIGHT only stores its role type, the values of all role instance variables used in its
role behavior including the special, predefined variable self, the content of its message
queue, and a process expression describing the current progress of its role behavior.

Def. 6.14: HELENALIGHT Role Instance State

The local state of a role instance in HELENALIGHT is a tuple (1t,v,q, P) which
stores the following information:

o the unmodifiable role type rt = (rtnm, rtmsgs ., 1tmsgs;,) of the instance,

out»

e a (possibly partial) extensible local environment function v : rivars U
{self} — NT mapping local role instance variables to values, i.e., role in-
stances identified by natural numbers,

e the current content q of the input queue of the instance (the empty queue
is denoted by ¢, the length of q is denoted by |q|), and

e a process expression P representing the current control state of the instance
or | representing termination.

The set L, o1es denotes all local states of role instances.

An ensemble state in HELENALIGHT only has to represent the current state of
its constituent role instances. Hence, an ensemble state is a single (extensible) finite
function which maps role instance identifiers to local states of role instances.

Def. 6.15: HELENALIGHT Ensemble State

The global state of an ensemble in HELENALIGHT is an (extensible) finite func-
tion 0 : Nt — L, .s mapping each role instance identified by a unique role
identifier to a local state.
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A HELENALIGHT ensemble state has to satisfy the same restrictions to be well-
defined as in HELENA. However, the restrictions are reduced to local states of role
instances only since we omit the level of component instances in HELENALIGHT com-
pletely. That means that (1) the type of the role instance is part of the underlying
ensemble structure, (2) the self reference refers to the unique identifier of the role in-
stance, (3) all variables in the definition domain of the local environment function have
a value pointing to an existing role instance, (4) the input queue of the role instance
stores at most as many messages as its capacity, (5) all messages in the input queue only
name role instances as parameters which exist in the current ensemble state, (6) the
process expression P describing the current control state of the role instance is well-
formed except that variables which occur in the local environment function do not have
to be declared in P before.

A global HELENALIGHT ensemble state o is well-defined w.r.t. a HE-
LENALIGHT ensemble specification FEnsSpec = (X, behaviors) with ¥ =
(nm, roletypes, roleconstraints) if for all i € o and o(i) = (rt,v,q, P):

(1) rt € roletypes,

(2) v(self) =1,

(3) for any X € dom(v) : v(X) € dom(o),

(4) |g| < roleconstraints(rt),

(5) for g = msgnmy(ky) ... - msgnm,, (k) : ki,..., kn € dom(o),

(6) P is well-formed for rt w.r.t. ¥ with the exception of all (local) variables
X occurring in dom(v).

Similarly, an admissible initial ensemble state in HELENALIGHT has to satisfy the
same conditions as in HELENA, but without any notion of component instances. There
must exist at least one role instance in an admissible initial ensemble state. All role
instances existing in the initial state must be initial themselves, in the sense that they
must be at the beginning of their corresponding role behavior without having executed
any actions so far.

A well-defined HELENALIGHT ensemble state o is an admissible initial state for
the HELENALIGHT ensemble specification EnsSpec = (X, behaviors) with ¥ =
(nm, roletypes, roleconstraints) if

(1) there exists i € dom(o),
(2) for alli € dom(o): o(i) = (rt,0[self — i],e, P) such that
(8) behaviors contains the declaration roleBehavior rt = P, i.e., P is the

process expression in the declaration of the role behavior for rt.

Again, well-definedness is not a real restriction if we consider the execution of an
ensemble starting in an admissible initial ensemble state: Any admissible initial state
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of EnsSpec is well-defined per definition and the SOS rules of HELENALIGHT which are
presented in the next section preserve well-definedness. This follows from the syntactic
restrictions for process expressions and therefore role behavior declarations in HELE-
NALIGHT ensemble specifications. The most important restrictions result from send
actions. A send action in a process expression in HELENALIGHT is only well-formed
if (amongst others) the variables X and Y have been declared before (or refer to the
predefined variable self). Declaration however is done via receive or create actions such
that each send action must be preceded by appropriate receive and create actions if a
process expression well-formed. That matches the requirements for well-definedness of
the ensemble states described in Def. 6.16.

Structured Operational Semantics Rules: Starting from an admissible initial
state, we can now evolve ensemble states. The allowed transitions are captured by
structured operational semantics (SOS) rules. We again pursue an incremental approach
by splitting the rules into two different layers. The first layer describes how a single
role behavior evolves according to the reduced set of constructs for process expressions
of the last section. The second layer builds on the first one by defining the evolution
of a whole ensemble from the concurrent evolution of its constituent role instances. In
contrast to full HELENA, we abstract away from component instances adopting roles
and omit any data like attributes of role instances or data parameters of messages.

On the first level, we only formalize the progress of a single role behavior given
by a process expression in HELENALIGHT. Fig. 6.9 defines the SOS rules inductively
over the reduced structure of HELENALIGHT process expressions in Def. 6.10 where the
symbol < describes transitions on this level (in contrast to full HELENA, we can omit
the role instance ¢ and the ensemble state o at the transition).

(action prefix) aP<3Sp
P (i)i o Pl
(nondet. choice-1) 17a1
P+ P, — P|
: P, <5 P
(nondet. choice-2) 27112
P+ P, — Pj
: . PSP . )
(process invocation) - if roleBehavior 7t = P
rt — P’

Figure 6.9: SOS rules for the evolution of roles in HELENALIGHT

Termination quit cannot evolve at all. In contrast to full HELENA, a role is not
adopted by a component such that the process construct quit simply terminates execu-
tion without any further internal termination action like quitting to play a role. There
are no restrictions on the execution of actions and therefore on action prefix. Nonde-
terministic choice can either evolve the left branch or the right branch of the construct
depending on the executability of either branch. If another process rt is invoked in the
current process expression, it evolves like the process expression P declared in the role
behavior rt. Note that the rule for process invocation relies on a given role behavior
declaration (and can therefore only be evaluated in a context where this role behavior
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declaration is given). Furthermore, note that process invocations are only allowed for
the role behavior itself in HELENALIGHT. In summary, the rules for the evolution of
roles in HELENALIGHT differ only slightly from the ones in HELENA: the if-then-else
construct is omitted in HELENALIGHT; process invocation is restricted to recursive role
behavior invocation only such that we do not allow to call any other associated process
declaration.

On the next level, we consider ensemble states and the concurrent execution of role
instances. For a given ensemble specification EnsSpec = (X, behaviors), the allowed
transitions between ensemble states, denoted by —11g., are described by the SOS rules
in Fig. 6.10. They evolve an ensemble specification EnsSpec under the assumption of
asynchronous communication. For each rule, the transition between two ensemble states
is inferred from a transition of process expressions on the role instance level, denoted by
— in Fig. 6.13. The rules concern state changes of existing role instances in accordance
to communication actions, the creation of new role instances (which start execution in
the initial state of the behavior of their corresponding role type) and state label actions.
The labels on the transitions of — g indicate which role instance ¢ currently executes
which action from its role behavior specification.

X «create(rt;) ,

p— 5 p

(Create) i:X +—create(rt;)
Her 07
(1) i € dom(o),0(i) = (rts,vi, qi, Pr),
i (2) roleBehavior rt; = P,
i
(3) o' = oli = (rts, v:[X — next(0)], qi, P})]
[next(o) — (rt;, O[self — next(o)], e, P;)].
. Y!msgnm(X) ,
(send) - P
:Y !msgnm(X) ,
%HEL (o2
(1) i € dom(o),o(i) = (rts,vi, gi, Pi),
(2) vi(Y) = j € dom(0),0(j) = (rt;,v5,45, Pj),
£ lgj| < roleconstraints(rty),
i
(3) vi(X) = k € dom(o)
(4) o’ = ali = (rts,vi, i, PY)]
[j = (rtj,v5,q; - msgnm(k), P;)].
p ?msgnm(X:rt;) P’
(recelve) i:?msgnm(X:rt;) ,
HeL O
(1) @ € dom(o),0(i) = (rts,vi, msgnm(j) - qi, Pi),
if ¢ (2) j € dom(o),
(3) o’ = ali = (rts, vi[X = ], qi, P)]
: label ’
(label) B P

i:label .
o X e oli = (rti, vi,qi, P})]

ifi € dom(o),o(i) = (1ts,vi, qi, Pi).

Figure 6.10: SOS rules for the evolution of ensembles in HELENALIGHT
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o In contrast to full HELENA, we do not have rules for role instance retrieval, opera-
tion call, and attribute setters since these actions are not part of HELENALIGHT.

e We also omit the rule for quit since in full HELENA, at the end of each role
behavior we need an additional step to remove the adopted-by relation between
the role instance and the owning component instance.

e For role instance creation, we do no longer have to take care for the component
instance which adopts the new role instance and for any multiplicity restrictions
for the type of the role to be created.

e The rules for sending and receiving a message are the same as in full HELENA
except that we do not have to include any data parameters.

e State labels are handled exactly as in full HELENA.

Semantics: The semantic rules of HELENALIGHT in Fig. 6.10 generate a labeled
transition system with ensemble states evolving by role instance creation, commu-
nication actions of roles, and state labels. For an ensemble specification EnsSpec
and any admissible ensemble state oy, we retrieve the labeled transition system
THr = (SHELaIHELaAHEL,_)HEL) with Igg, = {O'im‘t}- The states Spg, are all HE-
LENALIGHT ensemble states of the HELENALIGHT ensemble specification FnsSpec, the
set Iyg. of initial states only contains o, the actions Apg, are all HELENALIGHT
actions on ensemble level, and the transitions in —11;, are described by the SOS rules
in Fig. 6.10.

6.2.3 HELENALIGHT LTL

To express goals over HELENALIGHT ensemble specifications, we use a subset of the
LTL formulae defined for full HELENA in Def. 4.5 on page 71. In contrast to full
HELENA, we omit atomic propositions involving attributes and restrict them to state
label expressions of the form r¢[n]@label only where rt is a role type of ¥, n € NT is the
identifier of a role instance, and label is a state label in a role behavior. LTL formulae
are built over these propositions as explained in Def. 4.1 on page 67.

Satisfaction: As for full HELENA, we rely on Def. 4.4 on page 68 which requires a set
of atomic propositions and a satisfaction relation to define satisfaction of LTL formulae
for a labeled transition system.

For an ensemble specification EnsSpec, the semantic rules of HELENALIGHT in
Fig. 6.10 generate a labeled transition system (Swgr, [Hen, Alen, —He.) fOr a given
admissible initial state o, € Iug.. The atomic propositions for EnsSpec which are
used to formulate LTL formulae are the state label expressions defined by the set
AP(EnsSpec). Therefore, it remains to define a satisfaction relation o = p for o € Sug,
and p € AP(EnsSpec).

As for full HELENA, an ensemble state o satisfies rt[n]@label, denoted by o |=
rt[n]@label, if there exists an active role instance of type rt with identifier n in ¢ and
the next action performed by this role instance is the state label label. Formally, that
means that in o there exists n € dom(o) with o(n) = (rt,v, q, label.P).

Example: For the p2p example, we consider both goals from Sec. 4.2.1. Since we
omit any notion of components and data in HELENALIGHT, we can no longer refer to
Peer|..]:hasFile. Thus, we reformulate the achieve goal from Fig. 4.4 on page 71 in
Fig. 6.11.
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O(Provider@state ReqF'ile = { RequesterQstateSndF'ile)

Figure 6.11: Achieve goal for the p2p example in HELENALIGHT LTL

In HELENALIGHT, we omit component types and cannot refer to attributes. There-
fore, we express that the file exists in the network by the provider reaching its state
labeled by stateReqF'ile (note that we have to add [J since this state label expression
does not hold in the initial state). In this state, the provider has received the request
for the file. Thus, since a provider was created, we know that the file exists in the p2p
network. Similarly, we express that the file was transferred to the requester by using
the state label stateSndFile of the requester.

The maintain goal in Fig. 4.5 on page 71 cannot be transferred to HELENALIGHT
since we have no notion of data in HELENALIGHT. Thus, we cannot express that the
file is stored in the network or deleted from it.

6.3 PROMELALIGHT

PROMELA [Hol03] is a language for modeling systems of concurrent processes. Its most
important features are the dynamic creation of processes and support for synchronous
and asynchronous communication via message channels. In our model-checking ap-
proach for HELENA, we translate a HELENA ensemble specification to PROMELA and
check the translated specification with the model-checker Spin [Hol03] for goal satisfac-
tion. Thus, we introduce a simplified variant of PROMELA which is sufficient to express
all features of HELENALIGHT. We present syntax and semantics of PROMELALIGHT
and discuss goal specifications and their satisfaction in PROMELALIGHT.

6.3.1 PROMELALIGHT Syntax

The following syntax is a simplified version of the PROMELA syntax defined in [Wei97].
The constructs specify a significant sub-language of the PROMELA definition which is
sufficient as a target for the translation of HELENALIGHT.

PROMELALIGHT Specifications: Intuitively, a PROMELALIGHT specification con-
sists of a set of process types whose behavior is specified by process expressions. We
first define process expressions in PROMELALIGHT based on [Wei97]. We use the same
names for nonterminals as in [Wei97|, but sometimes we unfold the original definitions
to get a smaller grammar. In contrast to [Wei97|, we added the expression false as
an explicit construct corresponding to quit in HELENALIGHT. Furthermore, the con-
ditional statement and the goto s tatement are not treated as process steps, but as a
process. Consequently, gotos can only occur at the end of a process expression. We also
removed guards from conditional statements, thus obtaining nondeterministic choice.

A PROMELALIGHT process expression seq is built from the following grammar,
where label is the name of a state label (used for gotos and verification), var,
vary, and vars are the names of variables, const is a constant, pt is the name of
a process type, and typelist is a list of types separated by a comma:
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seq := false (empty process)
| step; seq (sequential composition)
| if = seq :: seqy fi (nondeterministic choice)
| goto label (goto)
step = run pt(var) (run)
| vari!const, vars (send)
| vari?const, vars (receive)
| label : true (state label)
| chan var (channel declaration)
| chan var = [const] of {typelist} (channel declaration)

Note that send and receive steps concern data tuples const,vary consisting of a
constant and a variable. Variables can only refer to channels. A channel declaration
chan var = ... opens the scope for a local channel variable var. We assume that the
names of the declared variables are unique within a process expression and different
from self, which is a predefined variable of type chan that can always be used.

A process expression built from the aforementioned grammar has to satisfy some
conditions to be well-formed. Thereby, we rely on the notion of initialization of a
variable: a variable is initialized if either the variable occurs in a receive step as vars
or in a channel declaration with initialization as var or is the special variable self.

Def. 6.19: Well-Formedness of a PROMELALIGHT
Process Expression

A PROMELALIGHT process expression seq 4s well-formed if
(1) all variables occurring in a send or run step have been initialized before,

(2) the variable vary in a receive step has been initialized before and the variable
vary has been declared before, and

(8) the variable var in a channel declaration has not been declared before,
(4) state labels are unique within the process expression seq, and
(5) state labels are not the first statement of seq, or seqy in the nondeterministic

choice construct if :: seqq :: seqq fi.

Process expressions are used to define process types. In PROMELALIGHT, a process
type has always one parameter self of type chan which represents a distinguished input
channel for each process instance.

Def. 6.20: PROMELALIGHT Process Type Declaration

A PROMELALIGHT process type declaration has the form
proctype pt(chan self){seq,; start,; : true; seqy}

where pt is the name of the process type and seq, and seqy are well-formed process
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expressions not containing a state label starty,; : true and any goto expression
occurring in seq has the form goto start,;.

The above definition associates a process expression to a process type pt. It allows a
restricted version of recursion by introducing the state label start,; : true and allowing
to jump back to that via goto start,;. This syntactic restriction simplifies the semantics
since the continuation of a goto is then uniquely determined. Hence, we do not need
to carry the full body of a process type declaration in the semantic states and to search
for labels in the body to find the continuation as in [Wei97].

Notation: We use the notation pvars(pt) to denote all variables from channel decla-
ration in the process type declaration for the process type pt.

This allows us to finally define a PROMELALIGHT specification which just consists of
a set of PROMELALIGHT process type declarations. For simplification, PROMELALIGHT
specifications often use enumerations, declared by the keyword mtype, which define
symbolic names for constants. These symbolic names can then be used instead of
constants in send or receive actions as it is shown in the example in Fig. 6.12. Since
these symbolic names just improve readability, we do not formally introduce them in
the PROMELALIGHT specification, but regard them as simplification constructs.

A PROMELALIGHT specification PrmSpec consists of a set of PROMELALIGHT
process type declarations.

Example: The formal translation from HELENALIGHT to PROMELALIGHT will be dis-
cussed in Sec. 6.4. However to illustrate PROMELALIGHT, we already present here, in
Fig. 6.12, the PROMELALIGHT translation of the simplified variant of the p2p example.
Let us briefly look at the process type declaration for a router in comparison to the role
behavior declaration in Fig. 6.8. Nondeterministic choice is expressed by reusing the
if-construct of PROMELALIGHT. Role instance creation in HELENALIGHT is translated
to starting a new process in PROMELALIGHT (line 20 and 24). Asynchronous message
exchange is obtained by passing an asynchronous channel to the newly created process
for communication (line 11 and 12).

6.3.2 PROMELALIGHT Semantics

The semantic domain of PROMELALIGHT specifications are again labeled transition
systems. They describe the evolution of a global PROMELALIGHT state. Such a global
state captures the states of the currently existing processes and their associated chan-
nels. Structured operational semantics (SOS) rules again define the allowed transitions
between those global states.

Global States: Let us first consider the global state of a PROMELALIGHT specifica-
tion. Similarly to ensemble states in HELENALIGHT, a global state in PROMELALIGHT
captures the currently existing process instances. However, in contrast to input queues
in HELENALIGHT, process instances communicate via channels which are not owned
by a local process, but belong to the global state. Hence, a global state of a PROME-
LALIGHT specification captures (1) the set of the currently existing channel instances
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1 mtype { regAddr, 1 proctype Provider(chan self) {

2 sndAddr, 2 chan req;

3 reqFile, 3

4 sndFile } 4 startProvider: true;

5 5 self?reqFile, req;

6 proctype Requester(chan self) { 6 stateRegFile: true;

7 chan router = [2] of { mtype, chan }; 7 req!sndFile,self;

8 chan prov; 8 false

9 chan prov2; 9 }

10 10 proctype Router(chan self) {

11 startRequester: true; 11 chan req;

12 12 chan prov = [1] of { mtype, chan };

13 run Router(router); 13 chan router = [2] of { mtype, chan };

14 14

15 router!regAddr,self; 15 startRouter: true;

16 16

17 self?sndAddr,prov; 17 self?regAddr, req;

18 18 if

19 stateSndAddr: true; 19 H

20 20 run Provider(prov);

21 prov!reqFile,self; 21 req!sndAddr,prov;

22 22 false

23 self?sndFile,prov2; 23 :

24 24 run Router(router);

25 stateSndFile: true; 25 router!regAddr, req;

26 26 goto startRouter

27 false 27 fi

28 } 28 }

(a) Message definitions and process type (b) Process type declarations for Provider
declaration for Requester and Router

Figure 6.12: The p2p example in PROMELALIGHT

(together with their states) and (2) the set of the currently existing process instances
(together with their local states).

Let us now look more closely to the formal definition of a global state in PROME-
LALIGHT. Intuitively, a global state describes the local states of all currently existing
channels and the local states of all currently existing process instances. Thus, firstly,
the local state of a channel stores on the one hand the unmodifiable type of entries
which are allowed in the channel and the maximal capacity of the channel and on the
other the current entries in the channel.

The local state of a channel in PROMELALIGHT is a tuple (T, k,w) which stores
the following information:

o the unmodifiable type T of entries of the channel,
o the unmodifiable capacity k > 0 of the channel®, and

e the content w which is a word of T-values
(the empty word is denoted by € ).

The set C denotes all local states of channels.

“In PROMELALIGHT we consider only asynchronous communication and do therefore not
allow a capacity xk = 0.
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Secondly, the local state of a process instance stores on the one hand the unmodifi-
able type of the process referring to a process type declaration. On the other hand, it
stores the current values of all local variables used in the process type declaration and
a process expression describing the current progress in its role behavior.

Def. 6.23: PROMELALIGHT Process Instance State

The local state of a PROMELALIGHT process instance is a tuple (pt, B, 7) which
stores the following information:

o the unmodifiable process type pt of the instance,

e a local environment function (3 : pvars(pt) — Nt U {null} mapping local
variables to values (i.e., channel identifiers or null), and

e process erpression w representing the current control state of the instance.

The set P denotes all local states of process instances.

Finally, a global state of a PROMELALIGHT specification captures the local states
of all currently existing channel instances and process instances. The channel instances
and process instances are represented by finite functions where each channel instance
and each process instance is uniquely identified by a positive natural number?.

Def. 6.24: Global PROMELALIGHT State

The global state v of a PROMELALIGHT specification is a pair (ch,proc) such
that

e ch:NT — C is an extensible finite function mapping each channel instance
identified by a unique channel identifier to a local channel state and

e proc : Nt — P is an extensible finite function mapping each process in-
stance identified by a unique process identifier to a local process instance
state.

A global PROMELALIGHT state has to satisfy some restrictions to be well-defined:
(la) all entries in a channel only name channel instances as parameters which exist
in the current global PROMELALIGHT state, (2a) the PROMELALIGHT specification
contains the corresponding process type declaration for each process instance, (2b) the
self reference of a process instance is in the definition domain of izs local environment
function, (2c¢) the self reference points to an existing channel instance, (2d) all variables
in the definition domain of the local environment function of a process instance (except
the self reference) point to an existing channel instance or are null.

Def. 6.25: Well-Definedness of a Global PROMELALIGHT State

A global PROMELALIGHT state v = (ch,proc) is well-defined w.r.t. @ PROME-
LALIGHT specification PrmSpec if

(1) for all ¢ € dom(ch) and ch(c) = (T, k,w):

(a) for w= (msgnmy,c1)- ... (msgnm,,,cm):

2For technical reasons, explained in the discussion of initial states below, we deviate from [Wei97]
and do not use 0 as an identifier for channels and processes.
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Cly---sCm € dom(ch) and kK > m,
(2) for all i € dom(proc) and proc(i) = (pt,3,7):

(a) PrmSpec contains a process type declaration for pt,

(b) self € dom(B) and [(self) =1,

(c) B(self) € dom(ch), and

(d) for any X € dom(B) with X # self: 5(X) € dom(ch) U {null},

(e) 7 is well-formed except that all (local) variables var € dom(B) must
not be declared or initialized before usage in 7.

Furthermore, an admissible initial global PROMELALIGHT state has to satisfy some
restrictions: (1) all existing channel instances do not contain any entries, (2a) the
local environment function of a process instance is empty except the mapping for self
reference which points to a unique channel instance, and (2b) a process instance refers
to a process type declaration contained in the PROMELALIGHT specification and its
current control state corresponds to the complete process expression of the process type
declaration.

A well-defined global PROMELALIGHT state v = (ch, proc) is an admissible ini-
tial state for a PROMELALIGHT specification PrmSpec if

(1) for all ¢ € dom(ch): ch(c) = (T, k,¢e) for some T and k,

(2) for alli € dom(proc): proc(i) = (pt,[self — c;], starty, : true; seq) such
that

(a) c; € dom(ch) with ¢; # c; for i # j and
(b) PrmSpec contains the process type declaration
proctype pt(chan self){seq; starty: : true; seq,}.

Concrete initial states in PROMELALIGHT are constructed by running an appropriate
initialization as shown in line 20-23 of Fig. 6.12b where one channel and one requester
instance, using that channel as input, are created. The initialization is executed by a
root process init which implicitly obtains the identifier 0. However, we do not consider
this process in a PROMELALIGHT specification and are not interested in the verifica-
tion of properties for the root process (which anyway does not have any counterpart
in a HELENA specification). Thus, we use in our semantic framework and in atomic
propositions of LTL formulae only positive natural numbers for process identifiers.

As for HELENA and HELENALIGHT, well-definedness is not a real restriction since
any admissible initial state is well-defined per definition and the SOS rules of PROME-
LALIGHT (which are presented in the following) preserve well-definedness. This follows
from the syntactic restrictions for well-formed process expressions, and therefore pro-
cess type declarations in PROMELALIGHT specifications. Again the most important
restrictions result from send actions. A send action in a process expression in PROME-
LALIGHT is only well-formed if (amongst others) the variables vary and vary have been
declared before (or refer to the predefined variable self). Declaration however is done
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via channel declarations only. That matches the requirements for well-definedness of
the global PROMELALIGHT states described in Def. 6.25.

Structured Operational Semantics Rules: Starting from an admissible initial
state, we can now evolve global PROMELALIGHT states. The allowed transitions are
captured by structured operational semantics (SOS) rules. We also follow a two-level
SOS approach which has been advocated for the formal PROMELA semantics in [Wei97].
On the first level, the SOS rules only deal with the progress of process expressions spec-
ified by the nonterminal symbol seq in Def. 6.18. Process instances and their concurrent
execution are considered on the second level.

On the first level, we only formalize the progress determined by a single process
expression. Fig. 6.13 defines the SOS rules inductively over the structure of PROMELA-
Li1GHT process expressions in Def. 6.18 where the symbol describes transitions on this
level. In contrast to [Wei97], we postpone not only the treatment of process instances,
but also the treatment of local environments and the consideration of channel instances
to the second level.

ste

(sequential composition) step; seq TP seq

step ’
seq; — Seqq

(nondet. choice-1) prom
if :: seq, :: seq, i — seq)

step ’
seqy — Seqqy

(nondet. choice-2) o
if :: seq, :: seq, i — seq),

goto starty:
(goto) goto start,y —— start,; : true; seq

if proctype pt(chan self){seq,;start,; : true; seq,}

Figure 6.13: SOS rules for the evolution of process expressions in PROMELALIGHT

The empty process false cannot evolve at all. Sequential composition may always
evolve by doing the first step of the composition. Nondeterministic choice can either
evolve the left branch or the right branch of the construct depending on the executability
of either branch. The rule for the goto expression relies on a given process declaration.
Since, in PROMELALIGHT process expressions, it is only allowed to jump to the start
label start,;, the rule is only defined for a start label and the goto expression evolves
to a process expression reflecting the initial state of a process.

On the next level, we consider global states and the concurrent execution of process
instances. For a given PROMELALIGHT specification PrmSpec, the allowed transitions
between global PROMELALIGHT states, denoted by —pgy, are described by the SOS
rules in Fig. 6.14 and Fig. 6.15.

Transitions between global states are initiated by the actions for sending and re-
ceiving a message, running a new process, state labels and channel declarations. They
evolve a set of process instances which execute in accordance with their process types
under the assumption of asynchronous communication. For each rule, the transition
between two global states is inferred from a transition of a single process expression,
denoted by — in Fig. 6.13. We use the same notations as in [Wei97| with less compo-
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nents due to the simplified language (with the exception that we also store the type of
a process instance in its local state). The labels on the transitions of —pgy indicate
which process instance ¢ currently executes which step from its process type specifica-
tion. In the rules, we use the shorthand notations for the extension and update of finite
functions from Sec. 3.1.

] goto label f
(gOtO) i:goto la::l -
(ch,proc) ————pau (ch, procli — (pt;, Bi, 7})])
if i € dom(proc),proc(i) = (pt;, Bi, ™).
run pt;(var) ,
(I‘HH) 7:"Lrun t . (var) .
(ch,proc) — P Pru (ch, proc’)
(1) i € dom(proc), proc(i) = (pt;, Bi, ™),
(2) Bi(var) = c € dom(ch),
if ¢ (3) proctype pt;(chan self){seq,;start,; : true; seq},
(4) proc’ = procli = (pt;, Bi, ;)]
[next(proc) = (pt;, D[self — ], seqy; start,y, : true; seqs,)]
- variy !const,varg 71'/
T
(send) i:var 'CO’VLSt var
(ch,proc) — =" 2 piw (ch, proc’)
(1) i € dom(proc), proc(i) = (pt;, Bi, mi),
(2) Bi(vari) = ¢ € dom(ch), ch(c) = (T, k,w), |w| < K,
if ¢ (3) Bi(varz) = v € dom(ch),
(4) ch’ = chlc — (T, k,w - (const, v))],
(5) proc’ = procli > (pt;, Bi, ;)]
) vary ?const,vars '
(receive) 7;‘7;](17‘ ?const,var -
(ch,proc) =L 2, v (Ch’, proc?)
(1) i € dom(proc), proc(i) = (pt;, Bi, mi),
(2) Bi(vari) = ¢ € dom(ch), ch(c) = (T, k, (const,v) - w),v € dom(ch),
if < (3) vars € dom(B:),
(4) ch’ = chlc = (T, K, w)],
(5) proc’ = proc[i — (pt;, Bi[vars — v], 7))

Figure 6.14: SOS rules for the evolution of concurrent process instances
in PROMELALIGHT (part 1)

e The rules for goto and state labels are the simplest ones since they only have
to consider a single process instance. If the process instance i can execute either
a goto action or a state label action, the global state of the PROMELALIGHT
specification evolves to a state where i just executed that action.

e If a new process instance of type pt; is spawned, we create a new process instance
in proc which is in its initial control state.

e If a process instance ¢ can send a message via vari!const, vare, we retrieve the
channel ¢ which is referenced by war; from the local environment 3; of ¢, check
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whether the capacity of the channel ¢ is not yet exceeded by |w| < K, and add the
message (const,v = [;(vars)) to the channel’s input.

e Likewise, if a process instance i can receive a message via vary?const, varg, we
retrieve the channel ¢ which is referenced by wvar; from the local environment 5;
of i, retrieve the first message (const,v) from the channel ¢, and bind the value v
to the variable vary in the local environment 3; of i.

e If a channel variable var is declared without initialization in the process instance
i, we just extend the local environment (3; of i by this new (fresh) variable var,
but only assign the value null.

e If a channel variable var is declared with initialization in the process instance i,
we create a new channel in ch and extend the local environment (; of ¢ by the
new (fresh) variable var which is assigned to the newly created channel.

label:true ’
T ————— T,
(label)

i:label:true

(ch,proc) —————pru (ch,procfi — (pt,, Bi, 7})])

if i € dom(proc),proc(i) = (pt,;, Bi, ™).

chan var /
Ty — T,

(chan-1) ey
(ch,proc) Z22 2, v (ch,proc’)
(1) i € dom(proc), proc(i) = (pt;, Bi, i),
(2) proc’ = procli — (pt;, Bi[var — null], 7})]
- chan var=[const| of {typelist} o
(chan-2) : :

i:chan var=...

(ch,proc) =22 pry (ch’, proc’)
(1) @ € dom(proc),proc(i) = (pt;, Bi, ™),
if ¢ (2) ch’ = ch[nexst(ch) > (typelist, const,¢)]
(3) proc’ = proc[i > (pt;, Bi[var — next(ch)], 7;)]

Figure 6.15: SOS rules for the evolution of concurrent process instances
in PROMELALIGHT (part 2)

Semantics: The semantic rules of PROMELALIGHT in Fig. 6.14 and Fig. 6.15 generate
a labeled transition system with global PROMELALIGHT states evolving by sending
and receiving a message, running a new process, state labels and channel declarations.
For a PROMELALIGHT specification PrmSpec and any admissible global state ~;ps, we
retrieve the labeled transition system Tpry = (SPru, IPru, APrM, —Pry) With Tpry =
{~init}. The states Spgy are all global PROMELALIGHT states of the PROMELALIGHT
specification PrmSpec, the set Ipry of initial states only contains -;,, the actions
Apgry are all PROMELALIGHT actions on global level, and the transitions in —pg, are
described by the SOS rules in Fig. 6.14 and Fig. 6.15.

6.3.3 PROMELALIGHT LTL

To express goals over PROMELALIGHT specifications, we use LTL formulae. As in HE-
LENALIGHT, we restrict the atomic propositions of LTL formulae to state label expres-
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sions of the form pt[n]@label. However, we explicitly exclude the state label expression
pt[n]@start,, from the set of atomic propositions. The state label start, : true will
later on be used in PROMELALIGHT process expression as markers for goto jumps to
allow recursion and should therefore not be considered as an atomic proposition. LTL
formulae are built over these propositions as explained in Def. 4.1 on page 67.

Let PrmSpec be a PROMELALIGHT specification. The set AP(PrmSpec) of
atomic propositions for PrmSpec consists only of state label expressions.

A state label expression is of the form pt[n]Qlabel where pt is a process type
declaration of PrmSpec, n € NV is the identifier of a process instance and label #
start, is a state label in a process declaration of PrmSpec.

A PROMELALIGHT LTL formula for PrmSpec is an LTL formula over the set
AP(PrmSpec) of the atomic PROMELALIGHT propositions.

Satisfaction: As for full HELENA and HELENALIGHT, we rely on Def. 4.4 on page 68
which requires a set of atomic propositions and a satisfaction relation to define satis-
faction of LTL formulae for a labeled transition system:.

For a PROMELALIGHT specification PrmSpec, the semantic rules of PROMELALIGHT
in Fig. 6.14 and Fig. 6.15 generate a labeled transition system (Spru, IPrys APrys —Pru)
for a given admissible initial state 7ipiy € Ipryw. The atomic propositions for PrmSpec
which are used to formulate LTL formulae are the state label expressions defined by
the set AP(PrmsSpec). Therefore, it remains to define a satisfaction relation v = p for
v € Spry and p € AP(PrmSpec).

Similarly to HELENA and HELENALIGHT, a global PROMELALIGHT state vy satisfies
pt[n]Qlabel, denoted by v | pt[n]Qlabel, if there exists an active process instance of
type pt with identifier n in v and the next action performed by this process instance is
the state label label : true. Formally, that means that in v = (ch, proc) there exists
n € dom(proc) with proc(n) = (pt, B, label : true; ).

6.4 Translation from HELENALIGHT to PROMELALIGHT

Since we omit the component-baged platform and any notion of data in HELENALIGHT,
also the translation from HELENALIGHT to PROMELALIGHT can be simplified. The
translation only proceeds in two steps: Firstly, we provide role-to-role communication
facilities by creating a user-defined enumeration type in PROMELALIGHT for all message
types from HELENALIGHT. The enumeration type only provides symbolic names for
the message types to the translation of role behaviors. These symbolic names are simple
constants which do not influence verification. Thus, we do not have to consider them
in the correctness proof in the following section. Secondly, for each role type and its
corresponding role behavior declaration in HELENALIGHT, we create a process type in
PROMELALIGHT which reflects the execution of the role behavior. Thereby, the trans-
lation of the role behavior declaration is changed due to the simplification of guarded
choice to nondeterministic choice and arbitrary process invocation to recursive role be-
havior invocation. Furthermore, role creation does not longer have to be requested
from a component, but can directly spawn a new process. Role-to-role communication
is additionally simplified since we omit any notion of data.
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In the following, we will present translation functions for each of the steps. Ev-
erything notated in normal or bold font is pure PROMELA code, everything notated in
italic font has to be evaluated to get PROMELA code. We assume given a HELENALIGHT
specification EnsSpec = (X, behaviors) with ¥ = (nm, roletypes, roleconstraints) being
a HELENALIGHT ensemble structure.

6.4.1 Role-to-Role Communication Facilities

To reflect all message types of the ensemble specification EnsSpec, we declare an enu-
meration type in PROMELALIGHT, called mtype, whose constants denote all message
names occurring in the role types of 3. This enumeration type is the same as in the full
translation (cf. Sec. 5.2.2.4). For the formal proof, the introduction of the enumeration
type itself is not strictly needed and does not influence the equivalence proof since all
symbolic names could also be replaced by the corresponding constants. It is introduced
due to readability of the final PROMELALIGHT specification only.

The translation function transmsgs for message types is specified in Fig. 6.16 and just
creates this enumeration type. Thereby, the set of all message types of a HELENALIGHT
ensemble specification EnsSpec = (X, behaviors) with ¥ = (nm, roletypes, roleconstraints) is
given by:

msgs(EnsSpec) = {msyg | 3rt € roletypes(X).
msg € 1tmMsgs . (rt) V msg € rtmsgs;, (rt)}.

transmsgs (EnsSpec) = mtype { Vmsg € msgs(EnsSpec) . msgnm(msg) }
Figure 6.16: Translation of role-to-role communication facilities in HELENALIGHT

The notation Vmsg € msgs(EnsSpec) . msgnm(msg) means that for every message type
msg in the ensemble specification EnsSpec a symbolic name is created which is given
by the name msgnm of the message type msg. We implicitly assume that the created
symbolic names are separated by comma. Note that the curly braces do not express
set braces, they are pure PROMELALIGHT braces which embrace the symbolic names
constituting the enumeration type.

6.4.2 Behaviors of Roles

As for full HELENA, role types and their role behavior declaration are reflected by pro-
cess type declarations in PROMELA. These process type declarations are responsible
to execute the behavior prescribed by the corresponding role behavior declaration in
HELENA. The translation function is specified in Fig. 6.17) and relies on additional
channel declarations specified in Fig. 6.18. The translation function of a role behav-
ior declaration differs from the translation for full HELENA in Sec. 5.2 in the following
aspects: the if-then-else construct is omitted and arbitrary process invocation is sim-
plified to recursive role behavior invocation only. Furthermore, role creation does not
longer have to be requested from a component, but can directly spawn a new process.
Role-to-role communication when sending and receiving messages is simplified since we
omit any notion of data.

A role behavior declaration for a role type rt is translated to a process type in
PROMELALIGHT with the same name. The process type has one channel parameter self
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transole (roleBehavior rt = P) = proctype ri(chan self) {
chandeclsproc(P)
start,: : true;
transproc (P)
}
transproc(quit) = false
transproc(a.P) = transact(a); transproc(P)
transproc(P1 + Pa2) = if :: transproc(P1) :: transproc(P2) fi
transproc (V) = goto starty
transact (X < create(rt)) = run rt(X)
transact (Y!msgnm (X)) = Y!msgnm, X
transacs (?msgnm(X:rt)) = self?msgnm, X
transacs (label) = label : true

Figure 6.17: Translation of a role behavior declaration in HELENALIGHT

chandeclsproc(quit) = _
chandeclsproc(a.P) = chandeclsact (a); chandeclsproc(P)
chandeclsproc(P1 + P2) = chandeclsproc(P1)_chandeclsproc (P2)
chandeclsproc(N) = chandeclsproc(N)
chandeclsact (X < create(rt)) = chan X = [roleconstraints(rt)] of {mtype, chan}
chandeclsact (Y!msgnm(X)) =_
chandeclsact (Tmsgnm(X:rt)) = chan X
(

chandeclsact (label) = _

Figure 6.18: Channel declarations for a HELENALIGHT process expression

which reflects the input queue of the corresponding role type. The process expression
defining the process type in PROMELALIGHT starts with the declarations of all local
variables which will be used throughout the process (cf. the function chandeclsproe in
Fig. 6.18). Namely, for each create-action X <— create(rt) in the process expression P
defining the role behavior, a local variable X of type chan is declared and initialized
which will later on represent the self channel of the role to be created. For each message
reception ?msgnm(X:rt), a local variable X of type chan is declared which will later
on be used to store the reference X received with the message. Back in the translation
of the role behavior declaration, a label start,; : true follows which is used to reflect
recursive process invocation by goto jumps in PROMELALIGHT. The label start,; : true
must be unique, i.e., in the HELENALIGHT role behavior declaration for the role type
rt, there does not exist a state label start,;. Afterwards, the process expression P of
the role behavior is translated into PROMELALIGHT with transproc(P).

The translation of a HELENALIGHT process expression is inductively defined over
its structure. Termination with quit in HELENALIGHT is translated to the empty
process false in PROMELALIGHT. Action prefix a.P in HELENALICGHT is translated the
sequential composition of the translation trans,e(a) of the action a and the translation
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transproc(P) of the process P. Nondeterministic choice Py + P» in HELENALIGHT is
translated to nondeterministic choice with the if-construct in PROMELALIGHT. The
process P and P, are recursively translated to PROMELALIGHT. Process invocation N
in HELENALIGHT is translated to a goto expression in PROMELALIGHT which jumps to
the state label N in PROMELALIGHT. Since we only allowed recursive process invocation
for at most the role type rt in a HELENALIGHT role behavior declaration for rt, this
goto expression can only jump to the beginning start,; : true of the process expression.

The translation of a HELENALIGHT action is inductively defined over its structure
again. The creation of a new role instance X in HELENALIGHT for the role type rt is
translated to running a new process instance of type rt in PROMELALIGHT. To reflect
the implicit input queue of the newly created role instance, we declared and initialized
a dedicated channel X with the capacity roleconstraints(rt), which is retrieved from the
associated ensemble structure, at the beginning of the PROMELALIGHT process type (cf.
chandeclsyet in Fig. 6.18). This channel X is now given as the input parameter self to
the new process instance in PROMELALIGHT. This channel is able to receive message
consisting of a constant of an enumeration type (denoted by mtype) and a channel
instance (denoted by chan). These two values reflect the message name and the role
instance parameter of messages in HELENALIGHT. A send action in HELENALIGHT is
translated to a send action in PROMELALIGHT where the message name msgnm and
the role instance parameter X are now only separated by a comma. Note that while Y
is a reference to a role instance in HELENALIGHT, it is a reference to a channel instance
in PROMELALIGHT. For a receive action in HELENALIGHT, we declared a channel
variable X at the beginning of the PROMELALIGHT process type (cf. chandeclsyet in
Fig. 6.18) representing the role instance parameter X. To actually receive the message
in PROMELALIGHT, we wait for a corresponding message with parameter X on the
channel self which reflects the input queue of the current role instance. A state label
in HELENALIGHT is directly translated to a state label in PROMELALIGHT.

6.4.3 Translation of an Ensemble Specification

In summary, a HELENALIGHT ensemble specification EnsSpec is translated to a PROME-
LALIGHT specification by translating all role behavior declarations from HELENALIGHT
to PROMELALIGHT. Moreover, we add the enumeration type transmsgs(EnsSpec) cre-
ated from all message types of the HELENALIGHT specification for readability issues as
described before.

Let EnsSpec = (X, behaviors) be a HELENALIGHT ensemble specification such
that any role behavior b € behaviors does not contain a state label starty. Its trans-
lation trans(EnsSpec) to PROMELALIGHT s given by the set of all transoe(b)
for b € behaviors.

Example: As an example, we consider the HELENALIGHT specification of the p2p
example. The role types are given in Fig. 6.2, the ensemble structure in Fig. 6.4,
and the behaviors of all roles in Fig. 6.6, Fig. 6.7, and Fig. 6.8. With the rules from
Fig. 6.16, Fig. 6.17, and Fig. 6.18, the specification is translated to the PROMELALIGHT
specification shown in Fig. 6.12.
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6.4.4 Translation of Initial States

To be able to show semantic equivalence between HELENALIGHT and PROMELALIGHT
in Sec. 6.5, we additionally have to translate admissible initial states.

Let o be an admissible initial HELENALIGHT ensemble state for a HELENALIGHT
ensemble specification with local states o(i) = (rt,D[self — i],e, P) for all i €
dom(o).

Its translation is the admissible initial PROMELALIGHT state transiy(o) =
(ch,proc), such that

(1) dom(ch) = dom(o),
(2) dom(proc) = dom(o), and

(3) for all i € dom(proc):
proc(i) = (rt,0[self — ¢;|, chandecls proc(P) starty; : true; transproc(P))
with ¢; = ((mtype, chan), roleconstraints(rt),e) € dom(ch)
and ¢; # cj fori # j.

6.5 Correctness Proof

In this section, we sketch the proof of the correctness of the translation from HELE-
NALIGHT to PROMELALIGHT, i.e., that a HELENALIGHT specification and its PROME-
LALIGHT translation satisty the same set of LTL\x formulae. To this end, Thm. 6.5
provides a criterion for stutter trace equivalence of Kripke structures on which we can
apply Thm. 6.6 entailing preservation of LTL\x formulae. In Sec. 6.5.1, we introduce a
set of silent actions which are internal in PROMELALIGHT and do not have any direct
counterparts in HELENALIGHT. In Sec. 6.5.2, we define two relations ~ and ~ between
the Kripke structures induced from a HELENALIGHT specification and its PROMELA-
LIGHT translation. In Sec. 6.5.3, we give an overview about the proof obligations to be
able to apply Thm. 6.5. We have to show that

e the relation &~ preserves satisfaction of atomic propositions,
e the relation = is divergence-sensitive,

e any admissible initial state of a HELENALIGHT ensemble specification and its
PROMELALIGHT translation are related by the relation ~,

e the relation ~ is a =-stutter simulation of the Kripke structure of the HELE-
NALIGHT specification by the Kripke structure of the PROMELALIGHT transla-
tion, and

-1

e the inverse relation ~~1 is a ~ L-stutter simulation in the other direction.

Having proven stutter trace equivalence, we can then apply Thm. 6.6 entailing
preservation of LTL\x. The full proof with all details can be found in Appendix A.

6.5.1 Silent Actions

To prove stutter trace equivalence of Kripke structures, we rely on the transitions of the
LTSs which induce the Kripke structures. Thereby, PROMELALIGHT introduces addi-
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tional transitions compared to HELENALIGHT: Firstly, some preparations for declaring
and initializing local variables are needed at the beginning of the translated role behav-
ior in PROMELALIGHT. Secondly, process invocation is reflected by several transitions
in PROMELALIGHT, i.e., a jump to the beginning of the role behavior with the action
goto start,;, the execution of the start state label with the action start,; : true, and
the execution of the first action of the invoked process. Both actions, the jump and
the execution of the start state label, do not change satisfaction of atomic propositions.
Thus, we consider these actions in PROMELALIGHT as silent and denote them by 7.

(1) On the level of process types in PROMELALICGHT, we consider all actions
of the form chan var, chan var = [const] of {typelist}, start,, : true and
goto starty; for all process types pt as silent and denote them by 7.

(2) On the level of concurrent processes in PROMELALIGHT, we consider all
(global) actions of the form i:chan var, i:chan var = [const] of {typelist},
i:starty; : true and i:goto starty, for all process types pt as silent and
denote them by 7.

(8) All other PROMELALIGHT actions are considered to be non-silent.

In the correctness proof, we need an additional notation concerning transitions.

Notation: The function transac-global determines for each HELENALIGHT action on
the ensemble-level the corresponding PROMELALIGHT action on the level of concurrent
processes and is defined as follows:

transact-global (1 : X < create(rt;)) = i:run rt;(X)

(
transact-global (¢ : Y!msgnm(X)) =i :Y!msgnm, X
transact-global (¢ :?msgnm(X:rt;)) =i :self?’msgnm, X
transact-global (7 : label) = 1 : label : true

6.5.2 Simulation Relations

We now define two relations which both express a correspondence between HELE-
NALIGHT ensemble states and global PROMELALIGHT states, but require a different
level of correspondence. We will later on show that they define ~-stutter simulations
between the Kripke structures obtained from the labeled transitions systems of the
semantics of HELENALIGHT and PROMELALIGHT.

Let

o K(Tte.) = (Stew, Atien, =g, Fre) be the induced Kripke structure of a
HELENALIGHT ensemble specification EnsSpec = (X, behaviors) with ¥ =
(nm, roletypes, roleconstraints) and

o K(Tpam) = (Spam, APrus = Prys Frru) be the induced Kripke structure of
a PROMELALIGHT specification.

The relation ~ C Spg. X Spry 18 defined as follows: o ~ v = (ch,proc) if
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(1) dom(c) = dom(proc) and
(2) for all i € dom(o) with (i) = (rti, vi, ¢, P;) and proc(i) = (pt;, Bi, m):

(a) rt; = pt;,
(b) dom(v;) C dom(S;) such that for all X € dom(v;):
0l(X) = j & Bi(X) = B(self) (where proc(j) = (pt;. B, 7,)),
(¢c) qi = msgnmy (k1) - ... - msgnm,,(kn) <
ch(Bi(self)) = (T, k, (msgnm, Bi, (self))- ... -(msgnm,,, B, (self))),
T = (mtype, chan), k = roleconstraints(rt;) and
proc(k;) = (pty;, Bk, k,) for all 1<j<m,
(d) 7; = transproc(FP;) or
m; = chandeclsproc(P;) starty, : true; transproc(F;)
with roleBehavior rt; = P; € behaviors.

The relation = C StgL X Spru 15 defined just as the relation ~ with the exception
of item (2d) which is replaced by

(2d) transproc(F;) <i> m; or

chandecls proc(P;) starty, : true; transproe(F;) SN
with roleBehavior rt; = P;.

Obuviously, it holds that ~ C ~.

Firstly, in the defined relations, there must be as many role instances in HELE-
NALIGHT as process instances in PROMELALIGHT. Secondly, the local state of each
role instance ¢ must be related to the local state of the process instance with the same
identifier i: (a) The role type rt; must match the process type pt;. (b) The local vari-
ables in v; must have counterparts in 3;, but note that the value types of HELENALIGHT
and PROMELALIGHT are subtly different. A local variable in HELENALIGHT points to
a role instance whereas a local variable in PROMELALIGHT points to a channel. More
precisely, a local variable in HELENALIGHT points to the name of a role instance; in
the PROMELALIGHT translation the same variable points to the input channel of the
corresponding process instance. Furthermore, note that vice versa, there might be local
variables in ; which do not have any counterparts in v;. (¢) The content of the input
queue of the role instance must match the content of the corresponding channel of the
process instance. As for local variables, the input queue of the role instance consists
of role instance identifiers whereas the related PROMELALIGHT input channel contains
the identifiers of the input channels of the process instances (corresponding to these role
instances). (d) For the process expression 7; occurring in the local state of the process
instance, we either require that it is the same as the translation of the process expres-
sion P; occurring in the local state of the role instance or that it adds declarations (and
initializations) of all local variables and the start label start,, : true to the translation
of P; if P; is the process expression expressing the whole role behavior for the role type
rt;. The latter takes into account that the translation of a role behavior into PROME-
LALIGHT adds the declaration of local variables and a start label at the beginning of
the translated role behavior. For the relation ~, we weaken both conditions such that
m; must only be reachable by evolution with arbitrary many 7 actions.
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6.5.3 Overview of Proof Structure

Table 6.2 summarizes the structure and the ideas how to prove that the induced Kripke
structures of a HELENALIGHT specification and its PROMELALIGHT translation sat-
isfy the same set of LTL\x formulae. The full proof with all details can be found in
Appendix A. The table lists all auxiliary lemmata and propositions with their proof obli-
gations which we need to finally prove LTL\x preservation. We further indicate which
lemmata and assumptions were necessary to prove the different proof obligations and
how the syntax definitions and well-formedness conditions of HELENALIGHT ensemble
specifications contribute.

The ultimate goal of the proof is to apply Thm. 6.6 which states that two stutter
trace equivalent Kripke structures satisfy the same set of LTL\x formulae. Therefore,
we show stutter trace equivalence of a HELENALIGHT specification and its PROME-
LALIGHT translation according to Thm. 6.5 by establishing two ~-stutter simulations
with appropriate properties like property-preservation, divergence-sensitivity, and re-
lating initial states.

Prop. A.8 shows that the relation ~ is a ~-stutter simulation of a HELENALIGHT
specification by its PROMELALIGHT translation. In Prop. A.10, we show that
the relation ~~' is a ~~l-stutter simulation in the other direction. For both
propositions, an auxiliary lemma is needed: Lemma A.7 relates one step on the role
type level of HELENALIGHT to the corresponding sequence of steps on the process
type level of PROMELALIGHT for the ~-stutter simulation of HELENALIGHT by
PROMELALIGHT and vice versa Lemma A.9 for the ~~!-stutter simulation of
PROMELALIGHT by HELENALIGHT. The two lemmata are needed to be able to
reason about transitions on ensemble level in HELENALIGHT based on transitions
on role type level and about transitions on global level in PROMELALIGHT based

on transitions on process type level.

Prop. A.2 shows that the relation =~ is property-preserving based on the auxiliary
lemma Lemma A.1 which reasons about the relation of structure of process ex-
pressions in HELENALIGHT and PROMELALIGHT.

Prop. A.5 shows that the relation & is divergence-sensitive. To prove that lemma we
need two auxiliary lemmata Lemma A.3 and Lemma A.4 which explain which
transitions in HELENALIGHT and PROMELALIGHT are stutter steps according to
the relation ~.

Prop. A.6 shows that any admissible initial state of a HELENALIGHT ensemble speci-
fication is related to its PROMELALIGHT translation by the relation ~.

Lastly, all five propositions Prop. A.2, Prop. A.5, Prop. A.6, Prop. A.8, and Prop. A.10
entail according to Thm. 6.5 that the induced Kripke structure of a HELENALIGHT
specification and the induced Kripke structure of its PROMELALIGHT translation
are stutter trace equivalent as stated in Thm. A.11. Therefore, we can deduce in
Cor. A.12 that they satisfy the same set of LTL\x formulae.

In the proofs, we need six assumptions which are all satisfied by the syntactic defi-
nitions and well-formedness conditions of HELENALIGHT except the last two:

(1) State labels are not the first actions of branches of nondeterministic choice con-
structs in HELENALIGHT role behavior declarations. This is a well-formedness
condition of HELENALIGHT process expressions in Def. 6.11.
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(2)

(3)

(4)
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Recursive process invocation may occur in a HELENALIGHT role behavior decla-
ration 7t at most for r¢. This is a syntax restriction in Def. 6.12.

Recursive process invocation may not occur immediately at the beginning of a
HELENALIGHT role behavior declaration. This is a syntax restriction in Def. 6.12.

All state labels in HELENALIGHT role behavior declarations are not of the form
start,;. This is an additional assumption which is not part of the syntax restriction
or well-formedness conditions, but is required for stutter trace equivalence between
HELENALIGHT and PROMELALIGHT.

The first action of a HELENALIGHT role behavior declaration is not a state label.
This is an additional assumption which is not part of the syntax restriction or
well-formedness conditions, but is required for stutter trace equivalence between
HELENALIGHT and PROMELALIGHT.

In any nondeterministic choice in a HELENALIGHT role behavior declaration, pro-
cess invocation is not one of the branches. This is an additional assumption which
is not part of the syntax restriction or well-formedness conditions, but is required
for divergence-sensitivity of the relation =.
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6.6 Correctness of the Full Translation

The correctness proof of the simplified translation is extended to the full translation.
In the following, we first summarize which are the main extension points in the proof to
reflect full HELENA. Afterwards, we informally explain for each of the main propositions,
how the proof is extended to full HELENA.

6.6.1 Main Extension Points of the Proof

To recap the additional features which HELENA offers in contrast to HELENALIGHT, we
summarize the main points of Table 6.1 once again: (1) Full HELENA extends the role-
based model of HELENALIGHT by components which adopt roles and serve as computing
and storage resources. (2) Data can be stored on components and roles as well as
exchanged by messages between roles. Based on the data, we also introduce an if-then-
else construct selecting between branches based on guards opposed to nondeterministic
choice. (3) Messages allow lists of role instance parameters and data parameters instead
of a single role instance parameter. (4) The number of allowed instances per role type is
restricted by a minimal and maximal count. (5) Arbitrary process invocation is allowed
instead of recursive role behavior invocation only.

For the correctness proof, these additional features mainly require to introduce more
silent actions and particular data structures to include data. Some steps have to be
composed to an atomic sequence of actions to particularly reflect the semantics of non-
deterministic choice and the if-then-else construct. Furthermore, goto-jumps to the
beginning of a translated role behavior have to be generalized to jumps to arbitrary
points in a translated role behavior. (1) More specifically, some additional steps are
required in PROMELA to realize role-to-component communication for role creation, re-
trieval, and termination as well for access of component attributes and for component
operation calls, e.g., packing and unpacking a variable of type “Op” and exchanging
messages between the role and the component (cf. Fig. 5.10 and Fig. 5.16). These steps
are considered as silent actions in the proof which just execute some auxiliary steps
needed in PROMELA in contrast to HELENA to finally progress the state of the over-
all PROMELA system similarly to the ensemble state in HELENA. However, we make
all actions executed by the component process atomic by using the atomic-block of
PROMELA such that they can be considered as one step and therefore do not influence
the formal proof. (2) Stored data in attributes of components and roles is translated to
values of parameters and local variables in PROMELA (cf. Fig. 5.10 and Fig. 5.12). This
just extends the representation of states and any changes to the stored data directly
results in changes in the state. To send and receive messages containing data, we extend
the transferred message by more parameters to describe messages with a payload. To
represent the HELENA if-then-else construct in PROMELA, we use the nondeterministic
if-construct in PROMELA where the first statement is the translated guard and the
following statements are the translated process expressions. To guarantee atomicity of
the evaluation of the guard and the execution of the first action, we encapsulate the
whole if-construct in PROMELA in an atomic-block. Furthermore, we have to make
the assumption that the first action of each branch has to be executable (cf. Sec. 5.1).
Without this assumption, the PROMELA specification could select a branch which would
later on not be executable while the HELENA specification would immediately single out
this non-executable branch (cf. Sec. 5.1 for an explanation of this problem). (3) To al-
low lists of parameters in message exchange, we extend each message by a fixed number
of parameters reflecting the maximum number of parameters which a message has in
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the HELENA specification. If the actual message to be exchanged has fewer parameters
than the maximum number, dummy parameters are introduced. (4) The restriction on
the number of allowed role instances is expressed in HELENA by side-conditions of the
semantic rules for role creation and the quit process (cf. Fig. 3.3). In PROMELA, the
restriction is expressed by the same boolean expression used as a statement prefixing
spawning a new role process and quitting to play a role in the component process (cf.
Fig. 5.10). Thereby, we exploit the fact that a boolean expression as a statement can
only be executed if it evaluates to true. For the proof, this means that the boolean
expression is considered as a silent action which establishes the side-condition of the
semantic rule in HELENA. (5) Lastly, we allow arbitrary process invocations by inlining
the translated process declarations into the translated role behavior and jumping to the
beginning of the translated process declaration with a goto-statement for every process
invocation (cf. Fig. 5.13). This is a straightforward extension of the idea of recursive
role behavior invocation which we allowed in HELENALIGHT. Therefore, in the proof
of the full translation, arbitrary process invocation is handled analogously to recursive
role behavior invocation. However, this requires to generalize the condition that no role
behavior declaration may start with a state label to process declarations, i.e., for the
full proof, no role behavior declaration and no (local) process declaration in HELENA
may start with a state label.

6.6.2 Overview of the Proof Structure

After having summarized the main extension points of the proof, we explain in this
subsection how these extension points influence the proof of each main proposition.

Extended Simulation Relations: We first informally define the relations ~ and
~ for full HELENA based on Def. 6.31 for HELENALIGHT. Firstly, the mapping in
both relations between the local states of roles in HELENA and the local states of the
corresponding role processes in PROMELA must be extended to capture the additional
features of roles in the full version of HELENA: In both relations ~ and = for the
simplified versions of HELENA and PROMELA, the local environment function v for role
instance variables in HELENALIGHT is mapped to the local environment function 5 for
local variables in PROMELALIGHT. This mapping is extended such that also all values of
role attributes and all data variables in HELENA are reflected by the local environment
function 8 in PROMELA. Thereby, we take into account that the values in PROMELA
are typed as channels for role instance variables and by one of the built-in PROMELA
data types for role attributes and data variables. Furthermore, the local state of a role
in HELENA also stores a reference to its owning component. In both relations ~ and =,
this reference must be reflected in the local state of the corresponding role process in
PROMELA by a reference to the self channel of the owning component process. Secondly,
both relations ~ and =~ must map the local states of components in HELENA to the local
states of the corresponding component processes in PROMELA. We define the mapping
analogously to roles in Def. 6.31, but extend it similarly as before with a mapping
between the local environment functions for component attributes and associations.

Entire Set of Silent Actions: Furthermore, we have to assume some of the state-
ments in the PROMELA translation as silent. We rigorously consider all statements in
the component process as silent (cf. Fig. 5.10) as well as all statements in the role pro-
cess (cf. Fig. 5.12; Fig. 5.13, and Fig. 5.16) except the last statement (possibly a whole
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atomic block) of each translated HELENA action. All PROMELA statements before the
last one can be considered silent since they do not change equivalence of the HELENA
ensemble state and the corresponding global PROMELA state according to the extended
relation ~.

Entire Set of Assumptions: As listed in Table 6.2, we require a set of assumptions
during the proof. These conditions apply to full HELENA as well while some have to be
lifted to full HELENA:

The following assumptions are either guaranteed by well-formedness conditions
(cf. Def. 2.10): State labels are not the first action of any branch of nondetermin-
istic choice or the if-then-else construct. Role behavior declarations and process
declarations do not immediately call themselves. The last assumption also pro-
hibits a chain of direct process invocations in which one process invocation occurs
two times, e.g., N is called which immediately calls M and this immediately calls
N again.

Role behavior declarations do not contain any start labels starty being N the
name of a role type or a process. This assumption is not guaranteed by the
syntax of HELENA or any well-formedness conditions, but it is needed to show
property-preservation of the relation =.

No role behavior declaration and also no process declaration may start with a
state label. This assumption is not guaranteed by the syntax of HELENA or any
well-formedness conditions, but it is needed to establish stutter trace equivalence.

Process invocation is not allowed as one branch in any nondeterministic choice
or if-then-else construct in a role behavior in the HELENA specification. This
assumption is not guaranteed by the syntax of HELENA or any well-formedness
conditions, but it is needed to establish divergence-sensitivity of the relation ~.

The create-action is only allowed as first action of a branch in nondeterministic
choice or an if-then-else construct if the multiplicity of instances of the role type
to be created is not yet exceeded and the owning component instance does not yet
play the role. This assumption is not guaranteed by the syntax of HELENA or any
well-formedness conditions, but it is needed to establish divergence-sensitivity of
the relation ~ (cf. Sec. 5.1 for a detailed explanation).

The get-action is only allowed as first action of nondeterministic choice or an
if-then-else construct if the requested owning component is guaranteed to cur-
rently adopt the requested role. This assumption is not guaranteed by the syn-
tax of HELENA or any well-formedness conditions, but it is needed to establish
divergence-sensitivity of the relation & (cf. Sec. 5.1 for a detailed explanation).

Sending a message is only allowed as first action of a branch of an if-then-else
construct if the capacity of the message queue of the receiving role is not yet
exceeded. This assumption is not guaranteed by the syntax of HELENA or any
well-formedness conditions, but it is needed to establish divergence-sensitivity of
the relation ~ (cf. Sec. 5.1 for a detailed explanation).

With the extended relations ~ and =, silent actions, and assumptions, we can now
transfer the proofs of each main proposition to full HELENA:

Satisfaction of LTL\x Formulae in ~-Equivalent States: Prop. A.2 and its
auxiliary lemma Lemma A.1 show that =s-equivalent states satisfy the same set of
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LTL\x formulae, i.e, the relation ~ is property-preserving. The proof can directly
be transferred to full HELENA. Its argumentation is extended to the full set of HELENA
process expressions and actions. It just requires to lift the assumptions to full HELENA
and to extend the set of silent actions as explained before.

Divergence-Sensitivity of the Relation ~: Prop. A.5 and its auxiliary lemmata
Lemma A.3 and Lemma A.4 show that the relation = is divergence-sensitive. Here again
the proof can directly be transferred to full HELENA if the assumptions are lifted to full
HELENA and the set of silent actions is extended. In the argumentation, special care
has to be taken for nondeterministic choice and the if-then-else construct. As in HELE-
NALIGHT, process invocation is not allowed as branch of nondeterministic choice which
is now also extended to the if-then-else construct. Furthermore, we have to introduce
some conditions when a create-action, a get-action or message reception are allowed
as first action of a branch of nondeterministic choice or the if-then-else construct (cf.
Sec. 5.1 for a detailed explanation of the conditions). These restrictions are necessary to
avoid that the PROMELA translation can get stuck while the HELENA specification can-
not. For a HELENA specification, a branch of nondeterministic choice is not selected for
execution if its first action is not executable (and similarly for the if-then-else construct).
In PROMELA, this HELENA action might be translated to several steps where the first
one is executable, but a later one is not. Thus, in the PROMELA translation, a branch
might be selected for execution which is actually not executable. This problem cannot
be avoided by encapsulating all PROMELA steps into an indivisible sequence of actions
with the PROMELA atomic-block because executability is still decided based on the
first action of the atomic-block. Therefore, we have to restrict nondeterministic choice
and the if-then-else construct as described above to guarantee divergence-sensitivity of
the relation =.

~-Equivalence of Initial States: Prop. A.6 shows that an admissible initial state of
a HELENA specification and its PROMELA translation can be related by the relation ~.
With a simple extension of the translation for initial states, the proof is trivial.

~-Stutter Simulation of HELENA Specifications: Prop. A.8 and its auxiliary
lemma Lemma A.7 show that the relation ~ is a a-stutter simulation of the induced
Kripke structure of a HELENALIGHT specification by the induced Kripke structure of
its PROMELALIGHT translation. The proof argumentation is again extended to the
full set of HELENA process expressions and actions which again requires to lift the as-
sumptions to full HELENA and to extend the set of silent actions as explained before.
Two points in the proof require special care: Firstly, the if-then-else construct is trans-
lated to the nondeterministic if-construct in PROMELA where the first statement is a
boolean expression and reflects the guard of the branch. Similarly to the realization of
multiplicities of role instances in PROMELA, we again exploit the fact that a boolean
expression as a statement can only be executed if it evaluates to true. For the proof,
this means that the boolean expression is considered as a silent action which establishes
the side-condition of the semantic rule for guarded choice in HELENA. Secondly, we rely
on atomicity of the if-then-else construct and all actions of the component process to
show that the PROMELA translation takes some silent steps compared to the original
HELENA specification which does not change ~z-equivalence of states.
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~-Stutter Simulation of PROMELA Translations: Prop. A.10 and its auxiliary
lemma Lemma A.9 show that the relation ~~' is a ~~!-stutter simulation of the in-
duced Kripke structure of a PROMELA translation by the induced Kripke structure of
its corresponding HELENA specification. The proof argumentation is extended in the

same points as the previous paragraph.

Lastly, we want to mention why we did not use the atomic keyword to make all
translation of actions atomic, but rather introduced silent actions to hide additional
steps in PROMELA. This would have led to a more scattered PROMELA specification
while we wanted to keep it as clean and directly relatable to HELENA as possible.
Furthermore, the atomic-block only encapsulates actions into an indivisible sequence
of actions, but the executability of the whole block is still decided based on the first
action of the block.. However, to actually gain an advantage from the usage of the
atomic-block, it would be nice if the PROMELA semantics and Spin allowed to check
the executability of the atomic-block as a whole instead of just based on the first action.

6.7 Publication History

The idea and the structure for the correctness proof has already been presented for
HELENALIGHT and its translation to PROMELALIGHT in [HKW15|. This chapter aug-
mented by the Appendix A presents the proof for HELENALIGHT in full detail. All
theorems and auxiliary lemmata are precisely stated and proven correct. Particular
care is taken for the edge case of divergence-sensitivity. For that reason, the translation
had to be changed such that channel declarations are shifted to the beginning of the
translated role behavior in PROMELALIGHT.

The extension of the correctness proof to full HELENA has already shortly been
discussed in [Klal5b|. This chapter describes the extension in more detail, though not
formally showing the correctness.
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Chapter 7

Implementation
Vivifying HELENA with JHELENA

To realize ensemble-based systems following the role-based modeling approach HE-
LENA, this chapter describes the prototypic implementation and execution framework
JHELENA. It is realized in Java and transfers the concepts of roles and collaborations in
ensembles to an object-oriented implementation. Roles are implemented as Java threads
on top of a component. Role objects are bound to specific ensembles while components
can adopt many roles in different, concurrently running ensembles.

The goal of the framework is twofold: jHELENA implements the structural and
dynamic rules enforced by the formal modeling concepts of ensemble specifications and
their semantics. It furthermore provides an interface for the developer to realize concrete
ensemble-based applications according to the HELENA approach and to allow to execute
them. To support both goals, the framework contains two layers, a metadata layer and
a developer interface, and an orthogonal system manager.

e With help of the metadata layer, the developer can define ensemble structures.
For that, the metadata classes must be instantiated by objects which represent
the various kinds of types that can occur in an ensemble structure, like role types,
message types, etc. Thus an ensemble structure is represented by a net of objects
which are linked in accordance with the general rules for ensemble structures.

e The developer interface contains abstract base classes to implement concrete
components, roles, messages, etc. They are related to the metadata classes by asso-
ciations determining their types. The abstract classes of the developer interface
must be extended by the developer to implement concrete ensembles in accordance
with a particular ensemble structure (defined on the metadata level). Most im-
portantly, for each concrete role class the behavior of the instances of that role
must be realized. The framework prescribes that any role instance is an active
object implemented as a thread whose run-method executes the role behavior.

e The system manager is responsible to instantiate ensemble structures, to create
the underlying component-based platform, and to create and run ensembles on top
of it. For a particular ensemble-based application, this class has to be extended
to prescribe the contributing types of the ensemble structure, the particular com-
ponents forming the component-based platform, and the ensemble to be run on
top of that.

In the following, we first present the architecture of the jJHELENA framework in
Sec. 7.1. The next three sections, Sec. 7.2, Sec. 7.3, and Sec. 7.4, cover the two layers and
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the abstract system manager of the framework in detail. To illustrate the application
of the framework, Sec. 7.5 walks through the implementation of the p2p example. We
finish with a discussion of related work in Sec. 7.6 and concluding remarks in Sec. 7.8.

The complete implementation of the jJHELENA framework can be found on the at-
tached CD in the project eu.ascens.helena. The application of this framework to the
p2p example is exercised in the project eu.ascens.helena.p2p.

7.1 Architecture

The JHELENA framework is implemented in Java and consists of two layers, the metadata
layer and the developer-interface, which both are used by a system manager. Its
architecture is shown in Fig. 7.1.

o]
] Component < _ Ensemble
é Metadata Metadata
B B
SysManager |- — | i
I I
T o
o Component Ensemble
% 2 | Developer Interface Developer Interface
(=
JAN JAN N N VANEVANERAY
ConcSysManager - — = |C1||C2||C3| |E1||E2||E3||E4|

Figure 7.1: Architecture of the jHELENA framework

The metadata layer allows to define the meta model of ensemble specifications in
terms of component types and ensemble structures (and thus role types etc.)
according to the definitions in Chap. 2. Thereby, the ensemble-related parts
built upon the component-related parts as indicated by the dependency arrow
from left to right, e.g., to define the possible owning component type of a role
type. The classes of this layer provide the means to describe the structural as-
pects of an ensemble structure, the internals of the framework guarantee that
all syntactical restrictions from Chap. 2 are respected during the definition of
an ensemble structure. For example, this layer takes care that a role type rt =
(rtnm, rtcomptypes, rtattrs, rtmsgs ., rtmsgs;, ) is reflected in jHELENA by a role
type class which is associated to a set of component type classes which can play
this role, to a set of role-specific attribute classes, and to a set of outgoing and
incoming message classes for message exchange. Other associations are forbidden
by the framework.

The developer-interface provides the basic functionality to realize an actual
ensemble-based application and implements the execution semantics of HELENA.
The developer extends the abstract base classes of this layer to implement con-
crete components, indicated by C1,C2,C3, as well as concrete ensembles including
roles and their behavior, indicated by E1,E2,E3,E4. As in the previous layer, the
ensemble-related parts built upon the component-related parts as indicated by the
dependency arrow from left to right. Furthermore, this layer provides the means
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to describe the dynamic aspects of an ensemble. A further set of classes allows to
define role behaviors according to the syntax of HELENA ensemble specifications
in Chap. 2. By relying on these classes, the developer is forced to adhere to the
basic structure of role behaviors and it is guaranteed that the execution semantics
of HELENA is preserved.

The system manager and its concrete, application-dependent extension are respon-
sible for the configuration of the component-based platform and ensemble struc-
tures, the creation of initial ensemble states, and the launch of concrete ensemble-
based applications running ensembles concurrently on top of the component-based
platform. Most certainly, the system manager thereby relies on the (component-
related and ensemble-related) infrastructure of the JHELENA framework. Extend-
ing the abstract SysManager class guides the developer through its main activi-
ties: The developer first needs to implement the method configureTypes() (cf.
Fig. 7.2) which configures all structural types for the application, i.e., component
types and operation types, role types and message types as well as ensemble struc-
tures formed from role types relying on component types. Afterwards, the method
createComponents () initializes all component instances providing the component-
based platform for the application-specific ensembles. Lastly, the initial state of
each ensemble is established and the ensembles themselves are launched in the
method startEnsembles(). With this method, many concurrently running en-
sembles can be started one after the other.

In following sections, we discuss in detail how the formal definitions of ensemble
structures are realized in the metadata layer of JHELENA, which infrastructure the
developer-interface provides for the implementation of actual ensemble-based ap-
plications, and how the system manager handles the initialization of concrete ensemble-
based applications. The complete implementation of the jHELENA framework can be
found on the attached CD in the project eu.ascens.helena.

7.2 Metadata Layer

The upper package of Fig. 7.2 gives an overview of the metadata layer. All types used
to provide a component-based platform and to build ensemble structures are realized
by corresponding metadata classes; the relationships between types are represented by
associations in the metadata layer of the JHELENA framework. Hence, this layer defines
the meta model of a component-based platform and the ensemble structures building
on top of it. Concrete instances of classes on this layer represent the types contributing
to the ensemble-based system (and not the actual instances of the types). We walk
through all classes of this layer in unison with their counterparts of the formal HELENA
syntax.

7.2.1 Component-Based Platform

The main element forming the component-based platform in HELENA is a component
type ct = (ctnm, ctattrs, ctassocs, ctops). Abstractly, such a component type is repre-
sented in JHELENA by the class ComponentType:
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Figure 7.2: jHELENA framework and its application to the p2p example (for readability
some associations are omitted and only mentioned in the following descrip-
tions, e.g., for the class NondeterministicChoice)

e The name ctnm of the component type rt is stored in an attribute name of the
class ComponentType (not shown in the diagram). The attribute name has the type
Class<? extends Component>. This ensures, using the reflection mechanism of
Java, that only those objects of the class ComponentType can be created whose
name attribute refers to a component class extending the abstract class Component
of the developer-interface (cf. Sec. 7.3).

e The component type attributes ctattrs are determined by the association with end
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attrTypes directed from the class ComponentType to the class DataFieldType. The
super class AbstractFieldType<T> of the class DataFieldType represents abstract
fields (like known as attributes of Java classes) which have a name and a certain
type T. The class DataFieldType instantiates the type parameter T by the class
Object such that an instance of the class DataFieldType represents an arbitrary
data attribute.

e Similarly, the component association types ctassocs of the component type ct are
determined by the association with the end assocTypes directed from the class
ComponentType to the class ComponentAssociationType. This class instantiates
the type parameter T of its super class AbstractFieldType by the class Component
such that an instance of the class ComponentAssociationType represents only as-
sociations to other components.

e Finally, the operation types ctops provided by the component type ct are deter-
mined by the association with the end opTypes directed from the class
ComponentType to the class OperationType. To represent an operation type op =
opnm(x : dt), the class OperationType stores the name of the operation type in an
attribute name of type Class<? extends Operation> analogously to the name of a
component type. Furthermore, it requires a list 7 of data parameters represented
by an ordered list of instances of the class DataFieldType (the association from
OperationType to DataFieldType is not shown in Fig. 7.2).

Particular component types are represented by objects of the class ComponentType. They
are constructed with the static factory method createType of the class ComponentType
(not shown in the diagram) such that the actual parameters point to objects representing
the constituent parts of a component type like its association types.

7.2.2 Ensemble Structures

Components team up in ensembles to perform certain tasks. Kach participant of an
ensemble is described by a role type. The class RoleType represents such a role type

rt = (rtnm, rtcomptypes, rtattrs, rtmsgs ., 7tmsgs;, ):

e The name rtnm of the role type rt is stored in an attribute name of the class
RoleType (not shown in the diagram). Analogously to the attribute name of the
class ComponentType, this attribute has the type Class<? extends Role>. This
ensures, using the reflection mechanism of Java, that only those objects of the
class RoleType can be created whose name attribute refers to a role class extending
the abstract class Role of the developer-interface (cf. Sec. 7.3).

e The set rtcomptypes of component types, which are able to adopt the role type rt,
is represented by an association with end compTypes directed from the class
RoleType to the class ComponentType which was already described before.

e Similarly to component attributes for component types, the role type attributes
rtattrs of a role type rt are determined by the association with end attrTypes
directed from the class RoleType to the class DataFieldType.

e Lastly, the sets of message types rtmsgs,,; and rtmsgs;, representing outgoing
and incoming messages supported by the role type rt are modeled as associations
with end msgTypesOut and msgTypesIn directed from the class RoleType to the
class MessageType. Analogously to the representation of operation types, a mes-

sage type msg = msgnm(X : rt)(x : dt) is represented by the class MessageType.
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The class stores the name of the message type in an attribute name of type
Class<? extends Message>. The list X of role instance parameters is represented
by an ordered list of instance of the class RoleFieldType, the list 7 of data param-
eters by an ordered list of instances of the class DataFieldType (both associations
from MessageType are not shown in Fig. 7.2).

Particular role types used in an ensemble structure are represented by objects of the
class RoleType. They are constructed with the static factory method createType of the
class RoleType (not shown in the diagram) such that the actual parameters point to
objects representing the constituent parts of a role type.

Several role types collaborate in an ensemble. The structural relationships between
the collaborating role types are described by an ensemble structure ¥ = (nm, roletypes,
roleconstraints) which is represented in jJHELENA by an object of the corresponding class
EnsembleStructure. The set roletypes of role types contributing to the ensemble is de-
termined by the association with end roleTypes directed from the class
EnsembleStructure to the class RoleType. The role constraints roleconstraints fur-
thermore determine how many instances per role type may and have to contribute to
the ensemble and how many messages the input queue of each role type can store. The
multiplicity constraints are represented by an additional parameter of the list of role
types of the class EnsembleStructure. However, the capacity of the input queue is
stored per role type (not shown here). Again, particular ensemble structures are repre-
sented by objects of the class EnsembleStructure. They are constructed with the static
factory method createType of the class EnsembleStructure (not shown in the diagram)
such that the actual parameters point to objects representing the constituent parts of
an ensemble structure.

7.3 Developer Interface

The goal of the developer interface is to facilitate the implementation of concrete
ensemble applications by providing abstract base classes for all formal HELENA concepts
and to guarantee that the execution semantics of HELENA is preserved by these abstract
classes. In contrast to the metadata layer, concrete instances of classes on this layer
represent actual instances of HELENA types. For instance in our p2p example, the role
type Router is a type instance on the metadata layer while the router with ID 1 is
an instance on the developer interface layer whose type is defined by the role type
Router.

In the following, we divide the set of classes provided by the developer interface
into two categories: classes to represent the instances of component types, role types
and ensemble structures and their current state according to the HELENA semantics (cf.
Sec. 3.2) and classes to represent role behaviors and their execution according to the
structural operational semantic rules of HELENA (cf. Sec. 3.3).

7.3.1 Instances and Their Current State

The first part concentrates on classes which represent the HELENA instances of the HE-
LENA types. As depicted in Fig. 7.2, the developer interface offers the abstract classes
Component, Role, and Ensemble for the corresponding metadata classes; the subclasses
of AbstractFieldType do not need any counterparts in the developer interface since
attribute instances are implicitly represented by Java instance variables and their values
associated to component and role instances. Each abstract class has an association with
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end type to the corresponding metadata class such that the type of an instance can be
determined.

As already mentioned, instances of the classes of the metadata layer represent HE-
LENA types while instances of the classes of the developer interface represent HELENA
instances like role instances. These two layers are necessary to guarantee compliance of
an ensemble-based system developed in jHELENA with the formal rules and restrictions
of the HELENA modeling approach. The metadata layer prescribes how the different
HELENA types can or must be connected. The developer interface takes care for the
definition and execution of the dynamic behavior of an ensemble-based system. Without
the metadata layer, all type information would have to be encoded into the developer
interface. For example, the class Role would have to provide static fields to store
the allowed owning component types or the supported message types. Extracting this
static information about the relationships between types to the metadata layer allows
to focus with the developer interface just on the dynamic aspects of an ensemble,
i.e., its current state and its execution.

The relationships between the abstract classes characterize the state of an ensemble
according to the formal HELENA semantics in Chap. 3.

e According to Def. 3.4 on page 50, the global state o of an ensemble is defined as a
pair (comps, roles) where comps is a function mapping each component instance
contributing to the ensemble to its local state and roles is a function mapping
each role instance participating in the ensemble to its local state. In jHELENA,
an ensemble is represented by an instance of the class Ensemble. The set comps
of component instances contributing to the ensemble is given by the association
with end comps directed from the class Ensemble to the class Component. The
set roles of role instances currently participating in the ensemble is given by the
association with end roles directed from the class Ensemble to the class Role.

e According to Def. 3.2 on page 46, the local state of a component instance is
defined as a tuple (ct, at®, as) where ct is the component type of the instance, at®
is a function mapping attributes of the component type ct to values, and as is a
function mapping component associations of the component type ct to component
instances. In JHELENA, a component instance is represented by an instance of the
clags Component. The component type ct of the instance can be accessed via the
association with end type from the Component to the class ComponentType. The
attribute values at® and the component association values as of the component
instance are given by the current values of the instance variables of the concrete
component class later on (cf. Sec. 7.5).

e According to Def. 3.3 on page 48, the local state of a role instance is defined as a
tuple (rt, ci, at”, v, w, q, P) where rt is the role type of the instance, ci is the owning
component instance of the role instance, at” is a function mapping attributes of
the role type rt to values, v is a function mapping role instance variables to values,
w is a function mapping data variables to values, ¢ is the current content of the
input queue of the role instance, and P is process expression representing the
current control state of the role instance. In jJHELENA, the role type rt of the
instance can be accessed via the association with end type from the class Role
to the class RoleType. The association with end owner navigates to the unique
component instance ci which currently adopts this role. The attribute values
at” of a role instance are given by the current values of the instance variables
of the concrete role class later on (cf. Sec. 7.5). Similarly, the values of role
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instance variables and data variables are implicitly given by the current values
of the instance variables of the concrete role which are accessed when the role
behavior is executed. The input queue ¢ is represented by the association with
end input from the class Role to RoleInputChannel. The current control state P
of each role instance is represented by the association with end p from the class
Role to the class ProcessExpression.

To implement a concrete ensemble application, the abstract classes of the developer
interface must be extended by concrete subclasses as indicated by the inheritance
arrows to the lower p2p layer in Fig. 7.2. The framework ensures, using Java reflection,
that concrete subclasses and the attributes of concrete component and role classes fit
to an ensemble structure represented by type instances on the metadata level.

7.3.2 Evolution of Instances

The second part of the developer interface concentrates on classes which represent
the description of role behaviors and allow their execution in unison with the HELENA
semantics.

7.3.2.1 Description of Role Behaviors

As depicted in Fig. 7.2, the developer interface offers the abstract classes
ProcessExpression and Action together with their concrete subclasses to describe role
behaviors. The subclasses of the class ProcessExpression represent all constructs of
process expressions according to Def. 2.9 on page 25; one additional subclass Bottom
represents the semantic extension 1 describing that a role finished its role behavior
(cf. Sec. 3.2.2). For these subclasses, Fig. 7.2 only shows the associations for the
simplest class ActionPrefix. Similarly to the syntactic construct of action prefix in
Def. 2.9, the class is characterized by an action (represented by the association with
end a from the class ActionPrefix to the class Action) and the following process expres-
sion (represented by the association with end p from the class ActionPrefix to the class
ProcessExpression). All other process expressions are analogously implemented (not
all associations needed in the implementation are shown in Fig. 7.2). The subclasses
of the class Action represent all actions according to Def. 2.9. To describe the actions,
the classes Operation and Message are additionally used to represent concrete operation
calls and exchanged messages.

The class Role offers an abstract method initializeRoleBehavior which must be
implemented by concrete subclasses, i.e., concrete roles. The implementation of this
method uses the hierarchy of classes for process expressions and actions, concrete mes-
sage and operation classes as well as role instance and data variables to define the role
behavior of a certain role (cf. Sec. 7.5).

7.3.2.2 Execution of Role Behaviors

The execution of the role behavior defined by the method initializeRoleBehavior is
started with the method start of the class Role. The method is responsible to initialize
and start a new Thread (depicted in Fig. 7.2 by the association with end thread).
In this thread, the method run of the class Role is then executed. With that, a role
instance becomes an active entity which executes its role behavior in parallel to all other
currently existing role instances. The method run takes care to continuously execute
one step of the role behavior until the role behavior has been terminated and the role
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has been quit, i.e., if the role behavior in HELENA is infinite, it will also be infinitely be
executed in JHELENA. This corresponds to taking one path, projected to a role instance,
through the semantic labeled transition system of the ensemble-based system according
to the semantics in Chap. 3. Each step represents the evolution of the ensemble by one
operational semantic rule on the ensemble-level (cf. Sec. 3.3), projected on a particular
role instance. The implementation of the method run is shown in Fig. 7.3. The method

1 public final void run() {

2 try {

3 while (!(this.p instanceof Bottom)) {
4 try {

5 this.p = this.p.step(this);

6 }

7 catch (ActionCurrentlyNotExecutableException e) {
8 this.log.fine(e.toString());

9 Thread.sleep(10);

10 }

11 }

12 }

13 catch (ActionNeverExecutableException
14 | WellFormednessViolatedException

15 | GuardNeverEvaluableException

16 | InvokedProcessNotSetException

17 | InterruptedException e) {

18 this.log.severe(e.toString());

19 this.quit();

20 }

21}

Figure 7.3: jHELENA implementation of the method run of the class Role

implements a while-loop (line 3-11) which continuously evolves the process expression
p, representing the role’s current control state, by one step (line 5). If no exceptions
occur, the while-loop evolves the process expression until the process expression is an
instance of the class Bottom (line 3). This class represents the semantic extension L of
process expressions (cf. Sec. 3.3) which cannot evolve anymore and thus describes that
a role finished its role behavior and has been quit. During the execution of one step,
exceptions may occur:

e If an exception of type ActionCurrentlyNotExecutableException occurs (line 7),
the evolution of the process expression is currently not possible, but at a later
point of execution, it might become executable again. Therefore, this exception
is caught and after some delay, evolution of the process expression is tried again
(line 7-10). Examples for that are that a role can currently not be created since
too many instances of the desired role type exist or a message can currently not
be received since there is no message in the input queue.

e If any other exception occurs, the process expression will never become executable
again or some assumptions are violated such that the evolution of the process ex-
pression has to be abnormally terminated (line 13-20). Each caught exception can
have different reasons: The exception ActionNeverExecutableException is raised
whenever the next action to be executed will never be executable, e.g., a message
should be received, but another message is the first item in the input queue of the
role. The exception WellFormednessViolatedException is raised if some syntactic
well-formedness condition of process expressions according to Def. 2.10 on page 28
was violated, e.g., a message was sent which is actually not supported as outgoing
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message by the sending role. The exception GuardNeverEvaluableException is
raised if the guard of an if-then-else construct was not well-formed according to
Def. 2.10, e.g., a role attribute was requested which was not declared in the corre-
sponding role type. The exception InvokedProcessNotSetException is thrown if a
process was invoked, but internally the invoked process could not be determined.
Finally, the exception InterruptedException is thrown whenever the execution of
the role gets abnormally interrupted. In all these cases, the role behavior cannot
be executed from this point on. Thus, an error is logged and the role is quit
(line 19-20).

The subclasses of the class ProcessExpression and Action then implement the sin-
gle step according to the semantic operational rules of the HELENA semantics in Sec. 3.3
on page 53. The rules for the evolution of process constructs in Fig. 3.1 on page 54 and
for the process construct quit in Fig. 3.3 on page 57 are represented by the method step
of each JHELENA counterpart of a process expression. The rules for the evolution of
ensembles by particular actions in Fig. 3.3 on page 57, Fig. 3.4 on page 58, and Fig. 3.5
on page 60 are represented by the method execute of each jHELENA counterpart of an
action. In the following, we walk through all process constructs and show the imple-
mentation of the method step of each JHELENA counterpart of a process expression.
Furthermore, we discuss the implementation of the method execute of each jJHELENA
counterpart of an action when we reach the actual execution of an action (during action
prefix).

Role Termination: According to the rule quit in Fig. 3.3 on page 57, role termination
quits the current role and evolves the process expression representing the current control
state to the semantics extension L. The corresponding jHELENA implementation of the
method step in the class Quit is shown in the code snippet of Fig. 7.4. It quits the role
executing the process expression by calling the method quit of the class Role (line 2)
and returns the singleton instance of the class Bottom (line 3). The implementation of
the method quit in the class Role thereby takes care to close the input channel of the
role and to remove the role from the set roles of currently existing role instances which
is linked to the class Ensemble by a corresponding association.

1 ProcessExpression step(Role source) {
2 source.quit();
3 return Bottom.getInstance();

Figure 7.4: jHELENA implementation of the method step of the class Quit

Action Prefix: According to the rule action prefiz in Fig. 3.1 on page 54, action prefix
simply evolves by executing the current action to the remaining process expression. In
JHELENA, action prefix is described by the class ActionPrefix which represents the ac-
tion to be executed by the association with end a to the class Action and the remaining
process expression by the association with end p to the class ProcessExpression. The
implementation of the method step in the class ActionPrefix uses these two associa-
tions to realize the semantics of action prefix. Its implementation is shown in the code
snippet in Fig. 7.5. Most importantly, the method executes the action a by calling the
method execute of the class Action in line 6 (the implementation of the method execute
is discussed in the next paragraph) and returns the remaining process expression p
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(line 17). However, it might happen that an exception is raised during the execution
of the action. The implementation then takes care to categorize the raised exceptions:
Either they violate the well-formedness conditions of process expressions in Def. 2.10
on page 28 (which raises an exception of type WellFormednessViolatedException in
line 8-10) or the action is just currently not executable (which raises an exception of
type ActionCurrentlyNotExecutableException in line 11-13) or the action will never
be executable (which raises an exception of type ActionNeverExecutableException in
line 14-16).

1 ProcessExpression step(Role source)

2 throws WellFormednessViolatedException,
3 ActionCurrentlyNotExecutableException,
4 ActionNeverExecutableException {

5 try {

6 this.a.execute(source);

7

8

}
catch (MessageNotAllowedAsInputException | ... e) {
9 throw new WellFormednessViolatedException(this.a, source, e);
10 }
11 catch (NoMessageException | ... e) {
12 throw new ActionCurrentlyNotExecutableException(this.a, source, e);
13 }
14 catch (RoleInputChannelClosed | ...s e) {
15 throw new ActionNeverExecutableException(this.a, source, e);
16 }
17 return this.p;
18 }

Figure 7.5: jHELENA implementation of the method step of the class ActionPrefix

An action is represented by the class Action with appropriate subclasses for all
possible HELENA actions. The implementation of the method execute in each subclass
realizes the semantics of the corresponding action of in Fig. 3.3 on page 57, Fig. 3.4
on page 58, and Fig. 3.5 on page 60. The implementation thereby always follows the
same pattern: All static well-formedness criteria for the action according to Def. 2.10
on page 28 are checked if they are not yet guaranteed by the metadata layer. Then,
the ensemble, the issuing role or the owning component is invoked with an appropriate
method call to actually realize the action, e.g., for role creation the method createRole
in the class Ensemble is called. In this method, the side-conditions of the semantic rules
are checked and finally the action is taken to effect. In the following, we summarize for
each HELENA action all well-formedness criteria and side-conditions which are checked
and which method implements the actual effect of the action. We furthermore discuss
which actions can interfere with each other and how atomicity is guaranteed:

A create action is represented in jJHELENA by the class CreateRoleAction which
maintains attributes for the type of the role instance to be created, the desired
owning component, and the variable used to store the reference of the created
role instance. Its method execute first checks the well-formedness criteria that
the type of the role instance to be created is allowed for the underlying ensemble
structure and the type of the given component instance is allowed as owner of the
role instance to be created. Furthermore, it checks whether the desired owning
component instance is not null. If a criterion is not satisfied, an appropriate
exception is thrown. Afterwards, the method createRole of the class Ensemble is
invoked which returns a reference to the created role instance if it could be created
(otherwise, an exception is thrown). This reference is stored in the given variable.
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The actual role creation according to the rule create in Fig. 3.3 is implemented by
the method createRole of the class Ensemble. It first checks the side-conditions
of the semantic operational rule that the given component instance is actually
contributing to the ensemble (i.e., that it is contained in the set comps associated
to the class Ensemble, cf. item (1) of the side-condition), that the given component
instance does not yet adopt an instance of the desired role type (item (2)), and that
the multiplicity bounds for the desired role type are not yet exceeded (item (3)). If
a side-condition is not satisfied, an appropriate exception is thrown. Afterwards,
the role instance is created, added to the set roles of the class Ensemble repre-
senting the currently existing role instances, and finally its behavior is started by
calling the method start of the class Role.

The execution of this action can interfere with other role creations and role ter-
mination on the same owning component and in the same ensemble because the
set of adopted roles for the component and/or the multiplicity of currently ex-
isting role instances in the ensemble is changed. Therefore, role creation as well
as role termination have to acquire the single lock of the owning component and
the owning ensemble to guarantee exclusive execution. Furthermore, role creation
can interfere with plays-queries in guard of the if-then-else construct. Therefore,
also plays-queries have to acquire the same lock of the owning component.

A get action is represented in JHELENA by the class GetRoleAction which maintains
attributes for the type of the role instance to be retrieved, the desired owning com-
ponent, and the variable used to store the reference of the retrieved role instance.
Its method execute first checks the well-formedness criteria that the type of the
role instance to be created is allowed for the underlying ensemble structure and
the type of the given component instance is allowed as owner of the role instance
to be created. Furthermore, it checks whether the desired owning component
instance is not null. If a criterion is not satisfied, an appropriate exception is
thrown. Afterwards, the method getRole of the class Ensemble is invoked which
returns a reference to the retrieved role instance if it already exists (otherwise, an
exception is thrown). This reference is stored in the given variable.

The actual role retrieval according to the rule get in Fig. 3.3 is implemented by
the method getRole of the class Ensemble. It first checks the side-conditions
of the semantic operational rule that the given component instance is actually
contributing to the ensemble (i.e., that it is contained in the set comps associated to
the class Ensemble, cf. item (1) of the side-condition) and that the given component
instance adopts an instance of the desired role type (item (2)). If a side-condition
is not satisfied, an appropriate exception is thrown. Afterwards, the role instance
is returned.

The execution of this action can interfere with other role termination on the same
owning component because the set of adopted roles for the component is changed.
Therefore, role retrieval as well as role termination have to acquire the single lock
of the owning component to guarantee exclusive execution.

A send action isrepresented in JHELENA by the class SendMessageAction which main-
tains attributes for the message to be sent and the target role. Its method execute
first checks the well-formedness criteria that sending role type supports the given
message as outgoing and the receiving role type supports the given message as
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incoming. If a criterion is not satisfied, an appropriate exception is thrown. Af-
terwards, the method sendMessage of the class Role is invoked.

The actual transmission of the message according to the rule send in Fig. 3.4 is
implemented by the method sendMessage of the class Role. It first checks the side-
condition of the semantic operational rule that the sending role instance and the
receiving role instance are in the same ensemble (item (1) and (2). Afterwards, it
calls the method write of the input channel input of the target role instance. This
method checks the another side-condition that the capacity of the input channel
of the target role instance is not yet exceeded (item (2)). If a side-condition is
not satisfied, an appropriate exception is thrown. Afterwards, the message is
written to the input channel. It depends on the implementing subclass whether
this method returns immediately (for the class AsyncInputChannel) or waits until
the message is received (for the class SyncInputChannel).

The execution of this action can interfere with other message transmissions on the
input channel of the same target role instance. Therefore, the method write of the
class RoleInputChannel is synchronized such that only one thread can exclusively
execute it.

A receive action isrepresented in JHELENA by the class ReceiveMessageAction which
only maintains an attribute for the message to be received. Its method execute
first checks the well-formedness criterion that the receiving role type supports
the given message as incoming. If the criterion is not satisfied, an appropriate
exception is thrown. Afterwards, the method receiveMessage of the class Role is
invoked which returns the received message if it could be received (otherwise, an
exception is thrown). The received parameters are stored in the message to be
returned.

The actual reception of the message according to the rule receive in Fig. 3.4
is implemented by the method receiveMessage of the class Role. The method
directly calls the method read of the input channel input of the receiving role
instance. This method checks the side-condition that a message fitting to the
expected message is actually first in the input channel (item (1)). If the side-
condition is not satisfied, an appropriate exception is thrown. Afterwards, the
message is retrieved from the input channel.

The execution of this action can interfere with other message receptions on the
input channel of the same role instance. Therefore, the method read of the class
RoleInputChannel is synchronized such that only one thread can exclusively exe-
cute it.

A component operation call is represented in jHELENA by the class
OperationCallAction which maintains attributes for the operation to be called
and the variable to store the return value of the operation call. Its method execute
first checks the well-formedness criterion that the owning component instance of
the issuing role supports the given operation. If the criterion is not satisfied, an
appropriate exception is thrown. Afterwards, the method callOperation of the
class Component is invoked which returns the return value of the operation call.
The return value is stored in the variable.

The actual call of the operation according to the rule op call 1 and op call 2 in
Fig. 3.5 is implemented by the method callOperation of the class Component.
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The method calls the method which implements the operation on the concrete
component class via reflection.

The execution of this action cannot interfere with other actions.

A component attribute setter is represented in jHELENA by the class
CompAttrSetterAction which maintains attributes for the attribute to be set and
the value to be set. Its method execute first checks the well-formedness criterion
that the owning component type of the issuing role supports the given attribute.
If the criterion is not satisfied, an appropriate exception is thrown. Afterwards,
the method setCompAttr of the class Component is invoked.

The actual update of the value of the component attribute according to the rule
comp attr in Fig. 3.5 is implemented by the method setCompAttr of the class
Component. The method sets the attribute of the concrete component class via
reflection.

The execution of this action can interfere with the evaluation of guards of the if-
then-else construct. Therefore, setting a component attribute as well as evaluation
of a guard containing a component attribute have to acquire the single lock of the
component to guarantee exclusive execution.

A role attribute setter is represented in JHELENA by the class
RoleAttrSetterAction which maintains attributes for the attribute to be set and
the value to be set. Its method execute first checks the well-formedness criterion
that the issuing role type supports the given attribute. If the criterion is not sat-
isfied, an appropriate exception is thrown. Afterwards, the method setRoleAttr
of the class Role is invoked.

The actual update of the value of the role attribute according to the rule role attr
in Fig. 3.5 is implemented by the method setRoleAttr of the class Role. The
method sets the attribute of the concrete role class via reflection.

The execution of this action cannot interfere with other actions.

A state label is not represented in jJHELENA since it is only introduced for model-
checking purposes only.

Nondeterministic Choice: According to the rules nondet. choice 1 and nondet.
choice 1 in Fig. 3.1 on page 54, nondeterministic choice can evolve by either branch
which is currently executable. In jJHELENA, nondeterministic choice is described by the
class NondeterminsticChoice which represents both branches by associations with end
pl and p2 to the class ProcessExpression (not shown in Fig. 7.2). The implementation
of the method step in the class NondeterministicChoice uses these two associations to
realize the semantics of nondeterministic choice. Its implementation is shown in the code
snippet in Fig. 7.6. The idea of the method is to randomly select one branch and to try
to execute it. If the first action of the first branch is currently not executable, we try to
execute the second branch. In line 818, one branch is randomly selected to be executed
first (assignment to the local variable choicel) and the other to be executed in case that
the first was currently not executable (assignment to the local variable choice2). After-
wards, we try to execute the first choice in line 21. If the execution of the first action of
the first branch raised an exception of type ActionCurrentlyNotExecutableException or
ActionNeverExecutableException (line 23-24), the second choice is executed in line 25
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1 ProcessExpression step(Role source)

2 throws WellFormednessViolatedException,
3 ActionCurrentlyNotExecutableException,
4 ActionNeverExecutableException,

5 GuardNeverEvaluableException,

6 InvokedProcessNotSetException {

7
8

ProcessExpression choicel = null;
9 ProcessExpression choice2 = null;
10
11 if (Math.random() < 0.5) {
12 choicel = this.pl;
13 choice2 = this.p2;
14 }
15 else {
16 choicel = this.p2;
17 choice2 = this.pl;
18 }
19
20 try {
21 return choicel.step(source);
22 }
23 catch (ActionCurrentlyNotExecutableException
24 | ActionNeverExecutableException e) {
25 return choice2.step(source);
26 }
27}

Figure 7.6: jHELENA implementation of the method step
of the class NondeterministicChoice

since the first choice was not executable. If any other exception was raised during execu-
tion of the first choice, we do not continue with the second choice since some fatal excep-
tion occurred like well-formedness of process expressions was violated which has to be re-
ported to the developer of the ensemble-based system. However, if also the execution of
the second choice raises an exception of type ActionCurrentlyNotExecutableException
or ActionNeverExecutableException, this exception is handed over to the caller of the
method step.

If-Then-Else: According to the rules if-then-else 1 and if-then-else 2 in Fig. 3.1 on
page 54, the if-then-else construct can evolve by the first branch if its guard evaluates
in the current state to true and the first branch can evolve; the if-then-else construct
can evolve by the second branch if its guard evaluates to false and the second branch
can evolve; otherwise, the whole if-then-else construct cannot evolve. For example,
if the guard evaluates to true, but the first branch cannot evolve, the if-then-else
construct as a whole cannot evolve. In JHELENA, the if-then-else construct is described
by the class IfThenElse which represents both branches by associations with end pl
and p2 to the class ProcessExpression (not shown in Fig. 7.2) as well as the guard
by an association with end guard to the class Guard expressing arbitrary guards over
an ensemble specification (not shown in Fig. 7.2). The implementation of the method
step in the class IfThenElse uses these three associations to realize the semantics of
the if-then-else construct. Its implementation is shown in the code snippet in Fig. 7.7.
The idea of the method is to evaluate the guard (line 17) and to try to execute the
appropriate branch according to the guard’s evaluation (line 17-22). If the selected
branch cannot evolve, an exception is raised during the execution of the selected branch
(i.e., in line 18 or 21) which is handed over to the caller of the method step.
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1 ProcessExpression step(Role source)

2 throws WellFormednessViolatedException,

3 ActionCurrentlyNotExecutableException,

4 ActionNeverExecutableException,

5 GuardNeverEvaluableException,

6 InvokedProcessNotSetException {

7

8 Set<Component> locks = this.guard.lockObjects(source);
9 try {

10 for (Component lock : locks) {

11 if (lock = null) {

12 throw new ComponentIsNullException();

13 }

14 lock.lock();

15 }

16

17 if (this.guard.isTrue(source)) {

18 return this.pl.step(source);

19 }

20 else {

21 return this.p2.step(source);

22 }

23 }

24 catch (ComponentIsNullException | PropertyNotDeclaredInClassException
25 | ReflectionException | NoBooleanValueException e) {
26 throw new GuardNeverEvaluableException(this.guard, source, e);
27 }

28 finally {

29 for (Component lock : locks) {

30 if (lock !'= null) {

31 lock.unlock();

32 }

33 }

34 }

35 }

Figure 7.7: jHELENA implementation of the method step of the class IfThenElse

In addition to that, the HELENA semantics prescribes that the evaluation of the
guard and the evolution of the appropriate branch must occur as one step. That means
that it is not allowed that the value of the guard changes during the execution of the first
action of the selected branch. Basically, a guard is built from boolean primitives, data
variables, component or role attributes, and plays-queries (and arbitrary compositions
of these atomic propositions). Boolean primitives, data variables and role attributes
cannot change while the if-then-else construct is evaluated. The reason is that only
the role itself can access these variables and attributes and no other role can change
them. However, the values of component attributes and plays-queries can change if any
other role owned by the same component sets the component attributes from its role
behavior or a role which concerns the plays-queries is created or quit. Therefore, in
JHELENA, we have to take care that for all component attributes and plays-queries in
the guard the corresponding component is locked for changes until the first action of the
selected branch was executed. By calling the method lockObjects on the guard (line 8),
all components are retrieved which occur in the guard. All retrieved components are
temporarily locked for modifications in line 8-15 by calling the method lock of the class
Component (if the component to be locked is null, an exception is raised). Then, the
if-then-else construct is evolved and finally, the locks for all components are revoked
(line 28-35). This locking mechanism is in-line with the locking of the actions for role
creation, role termination, and component attribute setters discussed previously.
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Process Invocation: According to the rule process invocation in Fig. 3.1 on page 54,
process invocation can evolve if the invoked process can evolve. In jJHELENA, process
invocation is described by the class ProcessInvocation which represents the invoked
process by an association with end n to the class ProcessExpression (not shown in
Fig. 7.2). The implementation of the method step in the class ProcessInvocation uses
this association to realize the semantics of process invocation. Its implementation is
shown in the code snippet in Fig. 7.8. The method just calls the method step for the
invoked process if the invoked process is not . Otherwise, an appropriate exception is
thrown.

1 ProcessExpression step(Role source)

2 throws WellFormednessViolatedException,

3 ActionCurrentlyNotExecutableException,

4 ActionNeverExecutableException,

5 GuardNeverEvaluableException,

6 InvokedProcessNotSetException {

7 if (this.n == null) {

8 throw new InvokedProcessNotSetException();
9
0
1

}

return this.n.step(source);

}

Figure 7.8: jHELENA implementation of the method step
of the class ProcessInvocation

7.4 System Manager

It remains to mention the abstract SysManager class which provides a template method
start to set-up and start an ensemble system. The method is responsible for the config-
uration of the component-based platform and ensemble structures, the creation of initial
ensemble states, and the launch of concrete ensemble-based applications running ensem-
bles concurrently on top of the component-based platform. Therefore, it sequentially
calls the methods configureTypes to construct ensemble structures, createComponents
to create the underlying component instances and startEnsembles to start all concur-
rently running ensembles of the ensemble-based system. All three methods have to be
implemented by the developer in a manager subclass when implementing a concrete
ensemble-based application.

7.5 Framework Application

We illustrate the use of the framework by implementing our running p2p file transfer
ensemble. We perform the implementation in two major steps concerning the structural
aspects of the ensemble, i.e., its contributing types and their conceptual relationships
described by and ensemble structure, and the dynamic behavior of the ensemble, i.e.,
the role behaviors of the participating roles. Using the JHELENA framework, the imple-
mentation of the p2p example was straightforward and could easily be derived from the
formalization in HELENA. Different file transfer ensembles could be instantiated and run
concurrently. The complete implementation of the p2p example relying on the jJHELENA
framework can be found on the attached CD in the project eu.ascens.helena.p2p.
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7.5.1 Structural Aspects

To create all contributing types and their conceptual relationships of the ensemble, we
first extend the classes of the developer-interface for each type in the example as
shown in the package p2p in Fig. 7.2: Peer extends Component, Requester, Router, and
Provider extend Role, TransferEnsemble extends Ensemble, PrintFileOperation ex-
tends Operation, and RegAddrMessage, SndAddrMessage, RegFileMessage and
SndFileMessage extend Message. We define component and role attributes as instance
variables of the concrete component and role classes, operations as methods of compo-
nent classes, and parameters of messages as attributes of the particular message classes
(not shown in Fig. 7.2). However, we do not realize the role behaviors yet.

Afterwards, we extend the abstract class SysManager by the class PeerSysManager
and implement the method configureTypes to configure all types of the p2p example.
This method instantiates all type classes of the metadata layer and connects them
appropriately to represent the ensemble structure X0 in Fig. 2.5 on page 23. An
excerpt of the implementation is shown in Fig. 7.9. The method first has to create
all component types underlying the ensemble-based system. For the p2p example, we
instantiate only one component type for peers (instantiation of attribute types and
component association types is shown inline as well as for the single operation type)
and add it to the set componentTypes of the system manager by calling the method
addComponentType (cf. line 2-8 in Fig. 7.9). Furthermore, we create instances for all
message types occurring in the ensemble structure (line 10-24). Afterwards, we create
instances for all types of the ensemble structure and connect them accordingly. Line 26—
33 in Fig. 7.9 exemplify this for the role type of a requester. Lastly, we compose all
types to the desired ensemble structure and add it to the set of ensemble structures
ensembleStructures for the system (line 35-37).

7.5.2 Dynamic Behavior

The second step is to add dynamic behavior such that the ensemble-based system fulfills
its goal-directed behavior. For this purpose, we realize the ensemble specification by
implementing the method initializeRoleBehavior of all concrete role classes together
with a set of attributes representing the variables of the role behavior in the corre-
sponding role class and by implementing the methods representing operations of com-
ponents. Afterwards, we indicate how to concretely start an ensemble by implementing
the method startEnsemble of the class TransferEnsemble. Lastly, we realize a concrete
application by implementing the methods createComponents and startEnsembles of the
class P2PSysManager.

Role Behaviors: To realize the role behavior of a role, we implement the method
initializeRoleBehavior in its concrete role class. Each process expression and action
is directly translated to its JHELENA representation. Concrete exchanged messages and
called operations are expressed by their JHELENA counterparts. However, the represen-
tation of role instance variables and data variables needs special care. For each variable
in the role behavior of a certain role including the predefined constant self, we define
an attribute in the JHELENA class for the role. However, we do not directly type it
with the type T of the variable used in the role behavior. We rather wrap the variable
in the wrapper class Variable<T> which just stores the type T and the value of the
variable. This wrapper class is necessary since Java implements call-by-value. At the
moment of initialization of the role behavior, most of the variables occurring in the role
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protected void configureTypes() {
ComponentType peerType = ComponentType.createType(Peer.class,
getAsSet (DataFieldType.createType("hasFile", Boolean.class),
DataFieldType.createType("content", Integer.class)),
getAsSet (ComponentAssociationType.createType("neighbor", Peer.class)),
getAsSet(OperationType.createType(
PrintFileOperation.class, new ArrayList<DataFieldType>(), Void.class)));
this.addCompType(peerType);
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MessageType reqAddrMsg = MessageType.createType(
RegAddrMessage.class,
getAsList(RoleFieldType.createType("req", Requester.class)),
new ArrayList<DataFieldType>());

MessageType sndAddrMsg = MessageType.createType(
SndAddrMessage.class,
getAsList(RoleFieldType.createType("prov", Provider.class)),
new ArrayList<DataFieldType>());

MessageType reqFileMsg = MessageType.createType(
ReqFileMessage.class,
getAsList(RoleFieldType.createType("req", Requester.class)),
new ArraylList<DataFieldType>());

MessageType sndFileMsg = MessageType.createType(

23 SndFileMessage.class, new ArrayList<RoleFieldType>(),

24 getAsList(DataFieldType.createType("content", Integer.class)));

25

26 Set<ComponentType> reqCompTypes = getAsSet(ComponentType.getType(Peer.class));

27 Set<DataFieldType> reqAttrTypes =

28 getAsSet (DataFieldType.createType("hasFile", Boolean.class));

29 Set<MessageType> regMsgsOut = getAsSet(regAddrMsg, reqFileMsg);

30 Set<MessageType> reqgMsgsIn = getAsSet(sndAddrMsg, sndFileMsg);

31 RoleType req = RoleType.createType(
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32 Requester.class, reqCompTypes, reqgAttrTypes, regMsgsOut, regMsgsIn);
33 Cas

34

35 EnsembleStructure transferEnsemble =

36 EnsembleStructure.createType(TransferEnsemble.class, ...);

37 this.addEnsembleStructure(transferEnsemble);

38 }

Figure 7.9: Instantiation of types in the method configureTypes
of the class P2PSysManager

behavior have not been set yet. Their values will be received via message receptions
or role creations. However, since Java implements call-by-value, the role behavior is
initialized with empty values at all places even if the variable is used afters its initial-
ization. However, if we wrap the variables in the wrapper class Variable<T>, the role
behavior no longer refers to the value of the variable, but to an object which contains
the value. Thus, if the variable is initialized during the execution of the role behavior,
this value is changed and all later invocations of the variable refer to this new value.

Fig. 7.10 shows the implementation of the class Router in our p2p example. The
foundation for the implementation is the role behavior given in Fig. 2.7 on page 31. The
class Router declares attributes for the predefined constant self and all role instance
variables router, req and provider (line 2-5) which are used in the role behavior.
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= new Variable<>(Requester.class);

1 public class Router extends Role {

2 protected final Variable<Router> self = new Variable<>(Router.class);
3 protected final Variable<Requester> req

4 protected final Variable<Provider> prov = new Variable<>(Provider.class);
5 protected final Variable<Router> rout = new Variable<>(Router.class);
6

7

8 protected ProcessExpression initializeRoleBehavior() throws ... {

9 ProcessInvocation createInvocation = new ProcessInvocation();

10 ProcessInvocation provideInvocation = new ProcessInvocation();

11 ProcessInvocation fwdInvocation = new ProcessInvocation();

12 ProcessInvocation recursion = new ProcessInvocation();

13

14 ProcessExpression routerProc =

15 new ActionPrefix(

16 new ReceiveMessageAction(new ReqgAddrMessage(this.req)),

17 new IfThenElse(

18 new CompAttrGetter<>("hasFile", Boolean.class),

19 provideInvocation,

20 fwdInvocation));

21

22 ProcessExpression provide =

23 new ActionPrefix(

24 new CreateRoleAction<>(this.prov, Provider.class, this.getOwner()),
25 new ActionPrefix(

26 new SendMessageAction(this.req, new SndAddrMessage(this.prov)),
27 Quit.getInstance()));

28

29 ProcessExpression fwd =

30 new IfThenElse(

31 new PlaysQuery(

32 new CompAssociationGetter("neighbor").getValue(this),

33 Router.class),

34 Quit.getInstance(),

35 createlnvocation);

36

37 ProcessExpression create =

38 new ActionPrefix(

39 new CreateRoleAction<>(

40 this. rout,

41 Router.class,

42 new CompAssociationGetter("neighbor").getValue(this)),

43 new ActionPrefix(

44 new SendMessageAction(this.rout, new RegAddrMessage(this.req)),
45 recursion));

46

47 provideInvocation.setInvocatedProcess(provide);

48 fwdInvocation.setInvocatedProcess(fwd);

49 createInvocation.setInvocatedProcess(create);

50 recursion.setInvocatedProcess(routerProc);

51

52 return routerProc;

53

54

Figure 7.10: jHELENA implementation of the class Router

The method initializeRoleBehavior realizes the role behavior relying on the
JHELENA representations of process expressions and actions. The process expression
routerProc is the starting point of the role behavior (line 14). The original role behav-
ior starts by action prefix with the action reqAddr. The implementation translates this
to a new object of the class ActionPrefix (line 15) with two parameters. The first pa-
rameter represents the reception of the message reqAddr by instantiating a new object of
the class ReceiveMessageAction with an object for the message to be sent as parameter
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(line 16). The second parameter of action prefix is the remaining process expression,
in this case an if-then-else construct. The if-then-else construct is expressed by a new
object of the class IfThenElse (line 17) where the first parameter in line 18 represents
the guard of the if-then-else construct (evaluating whether the attribute hasFile of the
owning component instance is true), the second parameter in line 19 the if-branch and
the third parameter in line 20 the else-branch. Both branches invoke another process
which is expressed by the local variables of type ProcessInvocation. The invoked pro-
cesses are defined only after this with the process expression provide (line 22-27) and
fwd (line 29-35). Thus, we cannot set the invoked process directly in the definition of
the process expression routerProc, but we have to set it afterwards in line 47 and 48.
The remaining process is translated analogously and depicted in Fig. 7.10.

Operations: Operations of components are implemented as methods of the corre-
sponding (subclass of the) class Component. They have to take the parameters of the
operation as input. The body of the method implements the behavior of the operation
which was not yet part of the ensemble specification, but has now to be added by the de-
veloper. In our p2p example, the component type Peer has just one operation printFile
which is implemented by the method printFileOperation of the class Peer. As shown
in Fig. 7.11, the operation just prints the String PRINT FILE to the Java output console.
However, more sophisticated behavior could be added, e.g., printing to a real printer.

1 public void printFileOperation() {
2 System.out.println("PRINT_FILE");
3}

Figure 7.11: jHELENA implementation of the method printFileOperation
in the class Peer

Initial State of an Ensemble: The method startEnsemble of the class
TransferEnsemble actually starts an instance of the ensemble (cf. Fig. 7.12). The
method gets an initial component as input where the file was initially requested. It
creates a role instance of type Requester adopted by the initial (peer) component, thus
starting to execute the requester’s behavior.

1 public void startEnsemble(Component initialComponent) throws ... {
2 this.createRole(Requester.class, initialComponent);
3}

Figure 7.12: jHELENA implementation of the method startEnsemble
in the class TransferEnsemble

Lastly, a concrete scenario needs to be set up. The system is populated by concrete
peers in the method createComponents of the P2PSysManager (cf. Fig. 7.13). Five peers
are initialized as indicated in line 2—6. All peers do not have the requested file except the
fourth peer. The network of peers as a ring structure is set up (line 8-12), and each peer
is added to the set currentComponents of the class P2PSysManager (line 14-18). After-
wards, concrete ensemble instances are created and run in the method startEnsembles
(cf. Fig. 7.14).
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1 protected void createComponents() {

2 Peer peerl = new Peer("pl", false, 0);
3 Peer peer2 = new Peer("p2", false, 0);
4 Peer peer3 = new Peer("p3", false, 0);
5 Peer peerd4 = new Peer("p4", true, 12345);
6 Peer peer5 = new Peer("p5", false, 0);
7

8 peerl.setNeighbor(peer2);

9 peer2.setNeighbor(peer3);

10 peer3.setNeighbor(peer4);

11 peer4.setNeighbor(peer5);

12 peer5.setNeighbor(peerl);

13

14 this.addComponent (peerl);

15 this.addComponent (peer2);

16 this.addComponent (peer3);

17 this.addComponent (peer4d);

18 this.addComponent (peer5);

19 }

Figure 7.13: Instantiation of peers in the method createComponents
of the class P2PSysManager

1 protected void startEnsembles() throws ... {

2 Ensemble ensl = new TransferEnsemble("ensl", this.getComponents());
3 this.addEnsemble(ensl);

4 ensl.startEnsemble(this.getComponent());

5

6 Ensemble ens2 = ...

7}

Figure 7.14: jHELENA implementation of the startEnsembles
in the class P2PSysManager

7.6 Related Work

When it comes to implementation, the HELENA approach shares its foundation with
frameworks from different areas: Ensemble-based systems which particularly deal with
groups of autonomic entities, role-based modeling which introduces the notion of roles
for only focus on a certain perspective of an object, and implementations of communica-
tion groups which consider the architecture and protocol throughout the collaboration
of a group.

7.6.1 Implementations of Ensemble-Based Systems

The EU project ASCENS [WHKM15] develops foundations, techniques and tools to
support the whole life cycle for the construction of Autonomic Service Component EN-
Sembles. In this context, several approaches to formalize and implement ensemble-based
systems have been developed. SCEL and its implementation jJRESP [DLPT14] provide
a kernel language for abstract programming of autonomic systems, whose components
rely on knowledge repositories, and models interaction by knowledge exchange. In SCEL
and jRESP, ensembles are understood as communication groups which are defined by
predicates determining the participants of the group. The participants communicate by
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putting knowledge items to knowledge repositories of communication groups. In con-
trast, HELENA relies on directed message exchange between participants of ensembles
and introduces a second role layer on top of a component-based platform to allow a
more flexible mechanism for dynamic ensemble composition.

DEECo and its implementation jDEECo [BGH™ 13| introduces an explicit speci-
fication artifact for ensembles dynamically formed according to a given membership
predicate. Interaction is realized by implicit knowledge exchange managed by DEECo’s
runtime infrastructure. However, HELENA is more concrete since we include an explicit
notion of interaction and collaboration.

Compared to both implementations, JHELENA introduces a clear separation between
type level and instance level. The metadata level implements the formal syntax of HE-
LENA and thus the type level. By using the abstractions introduced in this layer, the
developer is forced to respect the syntactic restrictions of HELENA when introducing
component types, role types and ensemble structures. The developer interface im-
plements the formal semantics of HELENA and thus the instance level. By relying on
the abstractions provided by this layer, the developer defines concrete instances of com-
ponent types, role types and ensembles. He furthermore specifies role behaviors using
the JHELENA abstractions of the formal HELENA process constructs. JHELENA takes
care to execute the roles and their behavior according to the semantic rules of HELENA.

7.6.2 Implementations of Roles

With HELENA, we offer a rigorous approach for developing goal-oriented groups on the
basis of roles. Modeling evolving objects with roles as perspectives on objects has been
proposed by various authors [GSR96, K(96, Ste00b, Ste00a|, but they do not see them
as autonomic entities with behavior as we do in HELENA.

Gottlob et al. [GSR96] propose role hierarchies to complement object-oriented sys-
tems for evolving objects. Their implementation in Smalltalk follows the same concept
as the HELENA framework by binding role instances to objects. However, they do not
consider any collaboration between roles to perform cooperative tasks.

Kristensen et al. [K(96] define roles as perspectives of some objects sharing the
basic ideas with Gottlob et al. Like the HELENA framework, their implementation in
BETA and Smalltalk emphasizes that objects can only be accessed through their role
references (or in the case of sets of roles, subject references). In their approach, roles can
be transferred between objects without interrupting role-specific behavior. This idea
could be interesting to integrate into HELENA to complement the idea of ensembles.

Steimann [Ste00b, Ste00a] proposes a formal model for roles and relationships be-
tween roles. His “model specifications” are comprised of signature, static model, and
dynamic model similarly to HELENA, but they do not specify any collaborations or
object interactions. Based on this formal model for roles, Steimann defines the rudi-
mentary modeling language LODWICK. Compared to HELENA, this modeling language
is very high-level and not supported by an execution framework like jJHELENA. How-
ever, he proposes to indicate by interface realization which (component) types can adopt
which roles. Hence, roles correspond to interfaces and do not provide behavior imple-
mentations.

Steegmans et al. [SWHBO05] propose a role model where agents commit themselves to
roles and therefore execute the associated behavior given by action diagrams. However,
they do not transfer the idea of roles to the implementation level as we do it with
JHELENA, but rather rely on free-flow architectures for realization.
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7.6.3 Implementations of Collaboration Groups

The idea to describe structures of interacting objects without having to take the entire
system into consideration was already introduced by several authors [Her03, BSI07,
Ree96, TUIOT|, but they do not consider roles as autonomic entities and do not tackle
concurrently running ensembles as we do in HELENA.

Herrmann [Her03| introduces “teams” in his framework ObjectTeams/Java, Baldoni
et al. [BSIO7| “institutions” in their framework powerJava, and Reenskaug [Ree96]| and
Andersen [And97] “role models” in their OOram method. Like in HELENA, they define
the structural model of a collaboration by participating roles, but they handle behavior
very differently. In ObjectTeams/Java and powerJava, collaboration between roles is
initiated through operation calls while in the OOram method, roles exchange message
like in HELENA. In ObjectTeams/Java and powerJava, roles are not active themselves,
but can only react to operation calls. The OOram method pursues our idea of roles
as being autonomic entities which start their behavior based on an external stimulus
(like a file being requested from the outside). However, while in HELENA we model
concurrently running ensembles, in the OOram method overlapping role models are
composed into a single composite role model. Therefore state spaces only represent
composite behaviors while we explicitly run behaviors in parallel.

The modeling approach Macodo [HWH14| introduces a set of role-based abstrac-
tions to define collaborations. It is supported by a proof-of-concept middleware which
provides appropriate programming concepts to map the role-based abstractions to Web
service technologies. However, their focus is only on the collaboration-level and does
not include the concrete realization of individual role behaviors.

Related approaches have also been developed in the context of multi-agent systems
and multi-party session types with the Scribble framework [YHNNI13|. It provides a
high-level language to describe collaborations or, in terms of the authors, session types
which consist of a prescribed scenario of interactions. In contrast to JHELENA, Scribble
does not allow the dynamic creation of new participants and the concurrent execution
of ensembles which is built-in in the HELENA semantics and its implementation.

7.7 Publication History

This chapter extends and improves the JHELENA framework already presented in [KH14].
Compared to this publication, the JHELENA framework in its current implementation
considers all syntactic constructs of Chap. 2 and realizes the formal SOS semantics in
Chap. 3 which was not available when the first version of jHELENA has been presented
in [KH14]. Especially, the implementation of role behaviors has been improved with
special care to match the SOS rules in Sec. 3.3. Furthermore, this chapter describes
the JHELENA framework in full detail while in [KH14| we focused only on the most
important ideas.

7.8 Present Achievements and Future Perspectives

Present Achievements: For the implementation of ensemble-based systems, we pro-
vide the Java framework jJHELENA. The construction of the framework was rigorously
guided by the abstract notions of ensemble specifications and their semantics used for
modeling ensembles in the HELENA approach. HELENA extends component-based sys-
tems with the notion of roles and ensembles to focus on capabilities of a component
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needed for particular collaborations. Our framework transfers this concept to an object-
oriented platform and directly implements the formal foundations and the execution
model of the HELENA approach. The classes provided by the jHELENA framework can
be extended for particular ensemble-based applications. The developer is forced by the
framework to respect the formal restrictions of the HELENA approach. If an ensemble-
based application is executed with the jHELENA framework, it is guaranteed that the
execution of the system follows the semantics of HELENA.

As the reader might have noticed, the derivation of the implementation follows
a systematic translation from the formal HELENA ensemble specification to jJHELENA
code. In the following chapter, we will exploit this systematic translation to provide an
automated code generator. It takes a HELENA ensemble specification described with the
domain-specific language HELENATEXT as input and automatically generates a Java
implementation based on the jHELENA framework.

Future Perspectives: The JHELENA framework is a first prototype which can be
extended in several directions:

Communication Styles: Further communication styles like broadcast messaging or
knowledge exchange as envisioned in SCEL and DEECo could be supported. This
would extend the set of actions by broadcasting and knowledge repository access.
At the same time, the way of message transmission which is currently realized via
message queues must be reconsidered and special data structures for knowledge
repositories have to be included.

Distributed Deployment: To allow real distribution, the framework could be based on a
component infrastructure which supports distributed deployment of components.
So far, all components are initialized in the same Java virtual machine; only roles
are run in different threads, but on the same machine. A distribution framework
would allow to set up a distributed network of components which collaborates in
ensembles across different machines. However, new issues have to be addressed
like limited communication range or message loss.

Proof of Preservation of the HELENA Semantics: Throughout this chapter, we argued
that the JHELENA framework preserves the HELENA semantics by construction.
To formally guarantee that, the semantic equivalence of a HELENA ensemble spec-
ification with its Java implementation following the jHELENA framework should
be shown similarly to the semantic equivalence with the PROMELA translation.
However, this would be a challenging proof which had to rely on a formal Java
semantics including threads like in [CKRW99|. Anyway, it could be an interesting
option to use Java PathFinder [Laul6] for verification instead of Spin as proposed
in Chap. 5. Java PathFinder allows to analyze executable Java programs for
properties like deadlocks, unhandled exceptions, and data races, but also for LTL
properties if given in the form of a Biichi automaton.
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Chapter 8

HELENA Workbench
Working with HELENA

When developing ensemble-based system according to HELENA from specification
through verification to implementation, the developer may experience some pitfalls.
Without any editor support, the developer has to ensure himself that his ensemble
specifications conform to HELENA and respect all constraints formulated in the formal
definitions. To verify the satisfaction of goals for an ensemble, the specification has to
be translated to PROMELA by hand to be able to model-check the resulting verification
model with Spin. Although concrete formal rules accurately determine the translation,
it is inherently error-prone due to its manual execution. To implement an ensemble, the
specification must also be translated to Java code relying on the JHELENA framework by
hand. Thus, it cannot be guaranteed that the manual implementation indeed respects
the formal specification, in particular, that role behaviors are implemented correctly.

We therefore provide the HELENA workbench supporting the whole development
process of ensemble-based systems with HELENA. The domain-specific language HE-
LENATEXT serves as concrete syntax for HELENA ensemble specifications supporting
roles and ensemble structures as first-class citizens. Relying on the XTEXT workbench,
Eclipse integration of the domain-specific language is offered which features a full HELE-
NATEXT editor including syntax highlighting, content assist, and validation. Moreover,
we define a set of rules for the automatic generation of the PROMELA verification model
and the Java implementation from an ensemble specification. The rules are directly
derived from their formal counterparts and therefore allow a reliable translation. Both
code generators are integrated into Eclipse and the fully-fledge editor.

Table 8.1 gives an overview about the development of and with the HELENA work-
bench. In Sec. 8.2, we introduce HELENATEXT, the domain-specific language realizing
the formal syntax rules of HELENATEXT, and the HELENATEXT editor integrated into
Eclipse. The two generators to PROMELA and Java are presented in Sec. 8.3 and Sec. 8.4.
We finally conclude with future work in Sec. 8.6.

The complete implementation of the HELENA workbench can be found on the at-
tached CD in the projects eu.ascens.helenaText, eu.ascens.helenaText.sdk,
eu.ascens.helenaText.tests, and eu.ascens.helenaText.ui. The p2p example is ex-
ercised with the HELENA workbench in the project eu.ascens.helenaText.p2p.

183
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8.1 Overview of the HELENA Workbench

The HELENA workbench is implemented as a plug-in for the Eclipse development en-
vironment!. Fig. 8.1 shows a screenshot of the final HELENA workbench during the
implementation of the p2p example. The XTEXT workbench of Eclipse provides the
means to define the domain-specific language (DSL) for the HELENA workbench, to
generate and customize a fully-fledged editor for the DSL, and to define code genera-
tors from the DSL to any other language. We give a short overview about the XTEXT
workbench in the next subsection. Afterwards, we focus on the workflow how the HE-
LENA workbench itself has been implemented and on the workflow how to implement
ensemble specifications with the HELENA workbench.

£ Java - eu.ascens.helenaText.p2p/src/p2p.helena - Eclipse Platform - [m] *
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= \,:_v| = 1 // p2p example L laz g:b‘ = ﬁ‘
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Figure 8.1: Screenshot of the HELENA workbench during development
of the p2p example

8.1.1 Eclipse’s XTEXT Workbench

XTEXT? is a framework for the development of DSLs fully integrated into Eclipse. The
user of the XTEXT workbench can define a custom grammar for his DSL in a BNF-like

"http://www.eclipse.org/
2https://eclipse.org/Xtext/
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notation. XTEXT generates a complete language infrastructure for this DSL including
parser, linker, compiler, interpreter, and a fully-fledged Eclipse editor. All provided
tools can be extended to fit the user’s needs. In particular, special validation rules can
be defined to detect errors in specifications written in the new DSL. The appearance and
provided features of the editor can be adapted, e.g., formatting of code, content assist,
or code outlines can be customized. Furthermore, code generators can be defined which
translate specifications written in the DSL to any other language. To allow adaptation
and extension of the language infrastructure, the XTEXT workbench internally creates
an EMF (Eclipse Modeling Framework) metamodel which builds the foundation for the
editor and all code generators. This metamodel allows the integration with other EMF
framework of Eclipse, e.g., with the Graphical Modeling Framework (GMF) to provide
a graphical syntax and editor for the DSL.

An integral extension to the XTEXT workbench is the programming language
XTEND3. Formerly part of the XTEXT project, it now resides as a separate project
in the Eclipse context. XTEND is a dialect of Java which also directly compiles to Java.
However, compared to Java, it offers some important features which make it a perfect
companion in the context of language development:

e Type interference and lambda expressions allow efficient programming.
Types can automatically be derived and thus method signatures can be left un-
specified or variable declarations untyped. Lambda expressions allow amongst
others to map transformation functions to a whole collection of objects.

¢ Extension methods enhance types generated from the DSL grammar by new
methods without modifying the types themselves.

e Template expressions allow a code generator to specify abstract translation
rules which are easy to read. They define placeholders which the code generator
replaces at runtime by concrete values to gain the final translation. Furthermore,
template expression provide control structures like conditional branching or loops
to control the composition of the template expression.

The XTEXT workbench finally relies on Java to provide the Eclipse editor for the new
DSL with all its features like syntax highlighting, content assist, validation, formatting,
and code generation. The editor is implemented as an Eclipse plug-in which can be
imported into any Eclipse installation.

8.1.2 Workflow of the Implementation of the HELENA Workbench

The XTEXT workbench guides the development process of the HELENA workbench as
an Eclipse plug-in. Fig. 8.2 gives an overview about the steps which are necessary to
create the HELENA workbench. Boxes with rounded corners denote activities in the
workflow and boxes with sharp corners input and output artifacts of these activities.
The gray artifacts provide the HELENA workbench as an Eclipse plug-in consisting of the
domain-specific language HELENATEXT and an appropriate Eclipse editor with syntax
highlighting, validation and code generators.

The workflow starts with the creation of an empty XTEXT project in Eclipse. The
project mainly contains a stub for the grammar of the DSL to be defined as an .xtext-
file. The stub for the grammar is extended with the definition of the domain-specific
language HELENATEXT, carefully capturing all conditions from the formal definitions of
the HELENA syntax (we will discuss the grammar in Sec. 8.2). From the fully-specified

3http://www.eclipse.org/xtend/
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Figure 8.2: Workflow of the implementation of the HELENA workbench

grammar, the generation of all artifacts required for the textual HELENATEXT editor is
triggered. The editor is offered by a set of generated Java classes which all reside in the
folder src-gen. On the one hand, they represent all constructs specified in the HELENA-
TEXT grammar in Java. On the other hand, they provide a basic Eclipse editor which
supports the DSL HELENATEXT as input language. To this end, the generated Java
code contains a parser, lexer and linker for HELENATEXT and the implementation of
the HELENATEXT editor with basic syntax highlighting, content assist, outline propos-
als etc. In addition to the Java classes representing the HELENATEXT constructs and
the editor, the generation of artifacts from the HELENATEXT grammar creates an ecore
metamodel of the newly specified DSL. This metamodel is not further used in the cur-
rent implementation of the HELENA workbench. However, if a graphical editor should
be provided in addition to the textual HELENATEXT editor, this metamodel serves as
foundation for the editor’s development with the Graphical Modeling Framework of
Eclipse.

The next steps in the workflow adapt and extend the basic (textual) HELENATEXT
editor to support the whole HELENA development process. Firstly, some restrictions of
the HELENA syntax cannot be expressed in the HELENATEXT grammar, e.g., a message
can only be sent to a role which supports it as incoming message. Such restrictions are
defined as validation rules using XTEND (we will discuss an excerpt of the validation
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rules in Sec. 8.2). During the usage of the final HELENATEXT editor, the rules will
be evaluated on-the-fly on concrete HELENATEXT specifications. To integrate the val-
idation rules in the HELENATEXT editor, the XTEXT workbench automatically (and
without any interaction with the user) translates the XTEND rules to Java classes in the
folder xtend-gen. Furthermore, two generators are defined. The first generator trans-
lates a HELENATEXT specification to PROMELA and the second to Java code relying
on the jJHELENA framework. The translation rules for both generators are defined with
XTEND. During the usage of the final HELENATEXT editor, the rules will automatically
translate valid HELENATEXT specifications to PROMELA and Java resp. To integrate
the generators the HELENATEXT editor, the XTEXT workbench again automatically
translates the XTEND rules to Java classes in the folder xtend-gen. Finally, the ap-
pearance and features of the HELENATEXT editor can be further customized, e.g., to
include user-defined formatting. This customization is also specified with XTEND and
integrated in the HELENATEXT editor. A user-guide how to implement and provide the
HELENA workbench to ensemble developers can be found in Appendix B.1.

To make the dependencies between the created and generated artifacts of the He-
LENA workbench clear, Fig. 8.3 only considers the relationships between all artifacts.
The main input artifact is the .xtext-file. The developer of the HELENA workbench
defines the grammar of the DSL HELENATEXT in this file. From the .xtext-file, two
artifacts are generated: The ecore metamodel represents all constructs of the HELENA-
TEXT grammar as a metamodel according to the Eclipse Modeling Framework. It can
be used as a foundation for the development of a graphical HELENA editor with the
Graphical Modeling Framework of Eclipse. The (textual) HELENATEXT editor is de-
fined by a set of Java classes in the folder src-gen. The classes represent all constructs
of the HELENATEXT grammar in Java and provide the basic HELENATEXT editor. To
adapt and extend the basic HELENATEXT editor, a validator, the PROMELA genera-
tor and the jHELENA generator are defined by XTEND rules. These rules rely on the
representation of all constructs of the HELENATEXT grammar in Java, i.e., on the set
of Java classes in the folder src-gen. From the XTEND files, their representations in
Java are automatically generated in the folder xtend-gen and integrated into the basic
HELENATEXT editor. Thus, the HELENA workbench consists of the two Java artifacts
shown in gray in Fig. 8.3: The basic HELENATEXT editor in the folder src-gen and the
user-defined customizations and extensions in the folder xtend-gen.
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Figure 8.3: Dependencies between artifacts of the HELENA workbench
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8.1.3 Workflow of the Usage of the HELENA Workbench

The HELENA workbench is installed in an Eclipse instance as an Eclipse plug-in. Ap-
pendix B.2 explains the installation process. Once the HELENA workbench is set up,
the user can develop ensembles from specification through verification to implementa-
tion fully-integrated into in Eclipse. Fig. 8.4 gives an overview about the workflow of
developing ensembles with the HELENA workbench. The user creates a HELENA-project
and in particular a .helena-file. This file is automatically opened in the HELENATEXT
editor provided by the HELENA workbench. In the editor, an ensemble specification
can be written in HELENATEXT with full tool support like syntax highlighting, code
completion, validation, and code generation. The particular features of the HELENA
workbench are triggered by typing any letter in the HELENATEXT editor or by saving
the .helena-file: Whenever a letter is added to the .helena-file, the HELENATEXT
editor takes care to present the ensemble specification in the .helena-file with syntax
highlighting, content assist, code outline to the user. At the same time, the valida-
tor evaluates its validation rules and gives feedback about incorrect parts annotated
as warnings and errors to the .helena-file. On any save action of the HELENATEXT
specification, the two automatic code generators are started: The PROMELA generator
translates the .helena-file to a .pml-file. The translation follows the rules described
in Sec. 5.2. The resulting .pml-file has to be enhance by an initial states and goals to
be checked to be used for verification with Spin. The jHELENA generator translates
the .helena-file to Java code as described in Chap. 7. The generated code is split into
two parts: All files in the package src-gen implement the ensemble specification given
in HELENATEXT. However, HELENATEXT does not yet allow to specify the effect of
component operations and an initial state for the ensemble specification. Code stubs
for these two open points are generated to the folder src-user. They are only created
once to not overwrite any user-defined code and need to be implemented by the user.
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Figure 8.4: Workflow of the usage of the HELENA workbench

8.2 The Domain-Specific Language HELENATEXT

To allow the user of the HELENA workbench to specify ensemble specifications with
the HELENA concepts as first-class citizens, we introduce the domain-specific language
HELENATEXT. The grammar of the DSL HELENATEXT is defined in the BNF-like
notation of XTEXT. It follows the formal definitions of the HELENA modeling elements
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like component and role types, ensemble structures and role behaviors. Constraints
which cannot be included into the DSL grammar are formulated as validation rules
written in XTEND. The grammar rules for all syntactic constructs of HELENATEXT
can be found in Appendix B.3. In this section, we focus on the representation of
structural aspects, in particular role types, as well as on the representation of dynamic
behavior, in particular role behaviors. We show grammar rules written in XTEXT as
well as examples of validation rules written in XTEND.

8.2.1 Structural Aspects

To exemplify the derivation of the grammar rules for types, let us revisit the definition
of a role type from Chap. 2: A role type rt over a given set of component types CT
is a tuple rt = (rtnm, rtcomptypes, rtattrs, rtmsgs ,,;, 1tmsgs;y,). Fig. 8.5 shows the
corresponding grammar rule. A role type declaration in HELENATEXT must start with
the keyword roleType followed by its name referring to rtnm. The set rtcomptypes of
component types which can adopt the role are reflected by the list compTypes after
the keyword over. It is a list of references to already defined component types which
is expressed by the square brackets, the cross reference concept of XTEXT. In curly
braces, the two sets roleattrs referring to rtattrs and rolemsgs referring to rtmsgs are
defined in arbitrary order.

1 RoleType:

2 'roleType’ name=ValidID ’over’ compTypes+=[ComponentType]

3 (", ’compTypes+=[ComponentType])* ’"{’

4 (

5 roleattrs += (’'roleattr’ type=JvmTypeReference name=ValidID ’;’)

6 | rolemsgs += ('rolemsg’ direction=MsgDirection name=ValidID

7 formalRoleParamsBlock=FormalRoleParamsBlock
8 formalDataParamsBlock=FormalDataParamsBlock ’;’)
9

0

1

_

Figure 8.5: XTEXT grammar rule for role types in HELENATEXT

However, the DSL grammar rule cannot express that the lists compTypes, roleattrs,
and rolemsgs (depending on the direction of the message) all have to be duplicate-free
to represent the sets rtcomptypes, rtattrs, rtmsgs,,; and rtmsgs;,. For that, a validation
rule in XTEND is added (cf. Fig. 8.6). Each set of elements is handled separately, for
messages we even split the set according to whether they are incoming or outgoing
messages (cf. line 5-6). For each set, we call the method findDuplicates which reports
an error in line 13 if an element with the same name exists in the investigated set.

Fig. 8.7 illustrates the application of the grammar rule for role types in the HELENA
workbench on the p2p example. We rely on the declaration of the role type of a router
which was already presented in Fig. 2.2 on page 21 in abstract notation and in Fig. 2.3b
on page 22 graphically. Fig. 8.7 defines the same role type in HELENATEXT.
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@Check
def check_rt_hasDuplicates(RoleType rt) {
findDuplicates(rt.compTypes);
findDuplicates(rt.roleattrs);
findDuplicates(rt.rolemsgs.
filter[direction == MsgDirection.OUT || direction == MsgDirection.INOUT]);
findDuplicates(rt.rolemsgs.
filter[direction == MsgDirection.IN || direction == MsgDirection.INOUT]);

© 00 N O U A W N

}
10
11 private def void findDuplicates(Iterable<T extends AbstractDuplicateFreeObject> list) {

12 var Set<String> nameSet = new TreeSet();

13 for (AbstractDuplicateFreeObject elem : list.filterNull) {
14 if (!nameSet.add(elem.name)) {

15 error(’'Duplicate declaration of ' + elem.name, ...)

16 }

17 }

18}

Figure 8.6: XTEND validation rule for role types in HELENATEXT

roleType Router over Peer {
rolemsg in/out regAddr(Requester req)();
rolemsg out sndAddr(Provider prov)();

}

_ W N

Figure 8.7: Role type of a router in the p2p example in HELENATEXT

Dynamic Behavior Besides capturing the structural aspects of an ensemble specifi-
cation with component types, role types and ensemble structures, the dynamic behavior
is defined as role behaviors. Role behaviors are composed from process expressions with
the process constructs quit for role termination, action prefix, nondeterministic choice,
if-then-else, and process invocation. The grammar rule for defining such role behav-
iors (cf. Fig. 8.8) directly follows the inductive definitions in Def. 2.9 on page 25 and
Def. 2.12 on page 30. A role behavior can either directly declare its defining process
expression (line 2-3) or it can invoke another process (line 4-5) from the set processes
which it exclusively defines for itself (line 6). The definition of a process (line 9) thereby
only differs from the definition of a declaring role behavior insofar that it is declared
with the keyword process instead of the keyword roleBehavior. Furthermore, a pro-
cess can only be defined in the scope of a certain role behavior which is not further
shown here. The different process constructs which can be used as process expression in
HELENA according to Def. 2.9 on page 25 are captured by appropriate counterparts in
the HELENATEXT grammar (line 11-18). Their composition is a direct representation
of the abstract syntax defined in Chap. 2.

The actions for role instance creation and retrieval, sending and receiving messages,
operations calls, setting values of attributes, and state labels which can be executed in
a role behavior are similarly expressed in the HELENATEXT grammar. The rules can be
found in Appendix B.3. They follow the inductive definition in Def. 2.9 on page 25 and
directly transfer the abstract syntax to a concrete intuitive notation. Instead of listing
all rules here, we will rather illustrate the application of the HELENATEXT grammar
rules for role behaviors and actions at the p2p example later on.

In Sec. 2.4.2, we stated all conditions which a role behavior has to satisfy to be
well-formed. Those well-formedness criteria cannot be expressed in the DSL grammar.
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RoleBehavior:

{DeclaringRoleBehavior} ’roleBehavior’
roleTypeRef=[RoleType] ’'=' processExpr=ProcessExpression
{InvokingRoleBehavior} ’roleBehavior’
roleTypeRef=[RoleType] ’=’' processInvocation=ProcessInvocation
'{'" (processes+=Process)* '}’;

Process: ’process’ name=ValidID ’'=' processExpr=ProcessExpression;

ProcessExpression:

{QuitTerm} ’'quit’
{ActionPrefix} (action=Action
{NondeterministicChoice}

'(' first=ProcessExpression '+’ second=ProcessExpression ')’

)

processExpr=ProcessExpression)

{IfThenElse} ’'if’ ’(’ guard=Guard ')’ '{’ ifProcessExpr=ProcessExpression '}’

'else’ '{’ elseProcessExpr=ProcessExpression '}’
{ProcessInvocation} process=[Process];

191

Figure 8.8: XTEXT grammar rule for role behaviors, processes and process expressions

in HELENATEXT

Therefore, we add validation rules written in XTEND. We explain two validation rules.
The rule in Fig. 8.9 expresses that in any nondeterministic choice construct, the first
actions of the two branches are either incoming messages or any other action than an
incoming message. Line 3 recursively retrieves all first actions of possibly nested non-
deterministic choice or if-then-else constructs of the first branch. The condition of the
if-statement in line 4-5 then checks whether the first actions are either all incoming mes-
sages (line 4) or any other action (line 5). If so, an error is shown in the HELENATEXT

editor. Similarly, the first actions of the second branch are checked in line 9-13.

© 00 N OOt R W N

e
w N = O

Figure 8.9: XTEND validation rule for nondeterministic choice in HELENATEXT

@Check
def check_rb_noMixedStates(NondeterministicChoice term) {
var actions = term.first.firstActions;
if (! (actions.forall[it instanceof IncomingMessageCall] ||
actions.forall[! (it instanceof IncomingMessageCall)]) ) {
error(’In nondeterministic choice, mixed states are not allowed.’,
}
var actions2 = term.second.firstActions;
if (! (actions2.forall[it instanceof IncomingMessageCall] ||
actions2.forall[! (it instanceof IncomingMessageCall)]) ) {
error(’'In nondeterministic choice, mixed states are not allowed.’,
}
}

)5

W)

We illustrate the use of the DSL HELENATEXT for role behaviors at the role behavior
of a router in the p2p example. The role behavior is given in abstract notation in Fig. 2.7
on page 31. Fig. 8.10 defines the same role behavior in HELENATEXT. Apparently, most
formal constructs occurring in role behaviors are directly represented in an intuitive
concrete syntax.
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1 roleBehavior Router = RouterProc {

2 process RouterProc =

3 ? regAddr(Requester req)() .

4 if ( owner.hasFile ) { Provide }

5 else { Fwd }

6

7 process Provide =

8 prov <- create(Provider, owner) .

9 req ! sndAddr(prov)() . quit

10

11 process Fwd =

12 if ( plays(Router, owner.neighbor) ) { quit }
13 else { Create }

14

15 process Create =

16 router <- create(Router, owner.neighbor) .
17 router ! regAddr(req)() .

18 RouterProc

19 }

Figure 8.10: Role behavior of a router in the p2p example specified in HELENATEXT

8.3 Automated PROMELA Code Generator

To assure that an ensemble specification actually achieves its goals, we proposed in
Chap. 5 to translate it to a PROMELA verification model and to check the translation
with the model-checker Spin [Hol03| against its goals specified as LTL formulae. Ta-
ble 5.2 already proposed a formal translation function from HELENA to PROMELA and
Chap. 6 proved (a simplified version of) the translation semantically correct. How-
ever, though formally defined, a manual translation according to this formal translation
function is error-prone. Thus, we support the user of the HELENA workbench for his
verification job with an automated code generator translating a HELENATEXT spec-
ification to PROMELA. The PROMELA generator consists of rules written in XTEND
similarly to the validation rules for the DSL. The rules are directly derived from the
formal translation function proposed in Sec. 5.2. They take a HELENATEXT file con-
taining a particular ensemble specification as input and generate the corresponding
PROMELA file containing the translated process definitions.

In the following, we show an excerpt of the translation rules expressed in XTEND.
We focus on role types and their behaviors only. The translation function is formally
defined in Sec. 5.2. Its complete implementation in XTEND has a size of 2568 lines of
code and can be found on the attached CD in the project eu.ascens.helenaText in
package eu.ascens.generator.promela.

8.3.1 Generator Rule for Role Types

HELENA role types are translated to PROMELA processes which actively communicate
with component processes to rely on the capabilities of the components, e.g., to cre-
ate other role instances or call operations, and with other role processes to exchange
messages. They furthermore store the values of role attributes and represent the cor-
responding role behavior. The formal translation function for a role type is given in
Fig. 5.12 on page 94.

For the code generator, this function is directly expressed with template expres-
sions in the XTEND function compileProctype as shown in Fig. 8.11. The function
compileProctype is called for any role type given in a HELENATEXT specification and
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generates the corresponding process type in PROMELA. Basically anything in the func-
tion compileProctype between "' and "' is written to the generated PROMELA file
except text enclosed in tag brackets «» which must be evaluated first. For example, in
line 4 the head of the process type declaration is built. The name of the process type is
dynamically evaluated from the expression «rt.name». This is a function of RoleType
which is called for the first parameter rt of the function (see line 1) and retrieves the
name of the role type rt (the resulting head of the process type for the role type Router
is shown in line 376 of Appendix C.2).

The rest of the template expressions of the function compileProctype directly corre-
spond to the formal translation function in Fig. 5.12 on page 94: Line 5-7 declare local
variables for all role attributes of the role type, line 9-11 for all role instance variables
used in the role behavior of the role type, line 13-15 for all data parameters of the role
behavior, and line 17-19 for all return values of operations. Finally, the start state label
is generated in line 21, the complete role behavior is translated to PROMELA by calling
the function compileRoleBehavior in line 23, and the end state label is added in line 25.
The complete generated process type for the role Router can be found in Appendix C.2.

1 def compileProctype(RoleType rt, Model model) {
2 var rb = model.headPkg.roleBehaviors.findFirst[it.roleTypeRef == rt]
3 vr

4 proctype «rt.name»(chan owner, self) {

5 «FOR attr:rt.roleattrs»

6 «attr.type» «attr.name»;

7 «ENDFOR»

8

9 «FOR inst : rb.abstractRoleInstances»

10 chan «inst.name»;

11 «ENDFOR»

12

13 «FOR param : rb.formalDataParams»

14 «param.type» «param.name»;

15 «ENDFOR>»

16

17 «FOR op : rb.operationCalls»

18 «op.operationType.returnType» «op.variable.name»;
19 «ENDFOR>»

20

21 «rt.startlLabel» : true;

22

23 «rb.compileRoleBehavior»;

24

25 «rt.endLabel» : false

26 }

27 !

28 }

Figure 8.11: XTEND generation rule for role types from HELENATEXT to PROMELA

8.3.2 (Generator Rule for Role Behaviors

The role behavior of a role type is generated as body of the PROMELA process type dec-
laration for the role type. Each HELENA process construct is expressed by PROMELA
representations and actions are simulated by message exchange on channels either be-
tween role and component or between two roles. A role behavior is translated to its
PROMELA representation by the function compileRoleBehavior which only translates
its defining process expression and is thus not shown here. The translation of pro-
cess expressions is however inductively defined as shown in excerpts in Fig. 8.12. Each



194 CHAPTER 8. HELENA WORKBENCH

dispatch variant of the function compileProcExpr specifies the translation rule for a
specific process construct. The correspondence of the XTEND functions to the formal
translation functions in Fig. 5.13 on page 96 can eagsily be seen: For role termination
with the quit, the dispatch function in line 1-8 generates the corresponding PROMELA
code. Line 3 generates a new local variable for the request to the component to quit
the role, line 4 sets the type of the request to quitting the role and line 5 generates the
transmission to the owning component. Finally, a goto-statement to the end label of
the role is created in line 6. For action prefix, the dispatch function in line 9-14 advises
the generator to first compile the action with a closing semicolon (line 11) and then to
compile the remaining process expression (line 12) similarly to the formal translation
function in Fig. 5.13. The translation of all further process expression constructs is not
shown here since they can be directly derived from he formal translation function and
expressed in XTEND. Similar functions are also defined for the translation of actions
and guards.

private def dispatch CharSequence compileProcExpr(RoleType rt, QuitTerm expr) {
«rt.ownerComponentType.operationTypeName» op;
op.optype = «rt.quit»;
ownerlop;
goto «rt.endLabel»

rr

}

private def dispatch CharSequence compileProcExpr(RoleType rt, ActionPrefix expr) {

1

[ B S S A

=
= O ©

«expr.action.compileAction»;
«expr.processExpr.compileProcExpr»
"

e
SIS )
-

Figure 8.12: XTEND generation rule for process expressions
from HELENATEXT to PROMELA

The translation functions for role behaviors, process expressions, actions and guards
together generate the body of the PROMELA process type for a role type according to its
role behavior. The complete generated process type for the role Router can be found in
Appendix C.2. As a side-note, the generated PROMELA file corresponds to the formal
translation function given in Sec. 5.2, but it uses abbreviation macros at some points,
e.g., for message exchange such that the generated PROMELA file is better readable.

Although the code generator translates the complete ensemble specification to
PROMELA, it still remains to prepare the PROMELA translation for model-checking with
Spin. As explained in Sec. 5.3.1, an initial state has to be established in the dedicated
init-process and HELENA LTL formulae have to be translated to PROMELA LTL.

8.4 Automated JHELENA Code Generator

In Chap. 7, we proposed the Java framework jHELENA to make HELENA ensemble spec-
ifications executable. To facilitate the realization of HELENA ensemble specifications
with JHELENA even further, this subsection introduces an automatic code generator
translating a HELENATEXT specification to Java code relying on the jHELENA frame-
work. The jHELENA generator counsists of rules written in XTEND similarly to the
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validation rules for the DSL. It takes a HELENATEXT file containing a particular en-
semble specification as input and generates a package for the ensemble application which
is split into two parts, the (sub)packages src-gen and src-user. The package src-gen
is already complete and must not be touched anymore while the package src-user offers
templates which must be implemented by the user. In the following, we first explain the
idea of the splitting of the generated code into two packages before finally introducing the
rules defining the JHELENA generator. The complete implementation of the jHELENA
generator in XTEND has a size of 3368 lines of code and can be found on the attached
CD in the project eu.ascens.helenaText in package eu.ascens.generator.jHelena.

8.4.1 Package src-gen

Nearly all parts of the realization of an ensemble specification relying on the jJHELENA
framework can be generated from its HELENATEXT specification. On the one hand,
we can generate all contributing types and their conceptual relationships described by
an ensemble structure. We introduce corresponding classes for all contributing types
and a system manager which initializes all types and ensemble structures. On the other
hand, role behaviors which represent the dynamic behavior of the ensemble can also be
automatically translated to jHELENA. The generated role behaviors use the jHELENA
representations of process constructs and instantiate the JHELENA actions appropriately
relying on the introduced classes for component and roles as well as messages and
operations.

For the p2p example, the generated package p2p with is shown in Fig. 8.13. In
comparison to Fig. 7.2 on page 160 where we explained the implementation of the p2p
example by hand, the package p2p is now split into two parts: the package src-gen
contains only classes which is completely generated from the HELENATEXT speci-
fication; the package src-user provides base classes where the user implements the
parts which cannot be generated from the ensemble specification. Let us focus on the
package src-gen. It contains the generated subclasses for the abstract base classes
of the developer-interface. These subclasses, like Peer, Requester, Router, and
Provider, correspond to the types of the given ensemble structure. They implement
the structural composition of a TransferEnsemble as well as the dynamic behavior of
all roles as explained in Sec. 7.5. The generated P2PSysManager implements the method
configureTypes to create objects for the metadata classes which represent types and
the ensemble structure in accordance with the p2p ensemble specification (cf. Fig. 7.9
on page 175).

8.4.2 Package src-user

Only two parts which are necessary for the implementation of an ensemble-based system
cannot be specified with HELENATEXT: the effect of operations and the initial state
for an ensemble (note that the effect of operations is left unspecified in the formal
HELENA syntax as well). To allow the user of the HELENA workbench to implement
these two missing parts, we generate an additional package src-user which contains
implementation classes for the missing parts. For each component type underlying the
ensemble specification, we generate an implementation class which contains empty stubs
for the implementation of its operations offered to the adopted roles of the component.
Furthermore, implementation classes for the system manager and for the ensemble are
created. They allow to implement a concrete initial state for an ensemble and to start
an ensemble.
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Figure 8.13: jHELENA and its application to the p2p example (generated)

Let’s revisit the p2p example once again. The lower part of the p2p-package in
Fig. 8.13 contains the subpackage src-user. It contains three classes:
P2PSysManagerImpl, PeerImpl, and TransferEnsembleImpl. They are generated with
empty code stubs for all declared methods and need to be implemented by the user of
the HELENA workbench. In the class PeerImpl, the user has to add the behavior of the
operation printFileOperation which is not defined in the HELENA (and resp. HELENA-
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TEXT) specification. Additionally, he has to implement the methods createComponents,
startEnsembles, and startEnsemble in the classes P2PSysManagerImpl and
TransferEnsembleImpl to initialize the ensemble for file transfer as explained in Sec. 7.5.

8.4.3 Generator Rules

The rules for the translation to JHELENA were not formalized in the previous chapters
like for the translation to PROMELA. However, the ideas of implementing a concrete
ensemble-based 