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‘The road not taken’ 
 
TWO roads diverged in a yellow wood, 

And sorry I could not travel both 
And be one traveler, long I stood 
And looked down one as far as I could 
To where it bent in the undergrowth; 
 

THEN took the other, as just as fair, 
And having perhaps the better claim, 
Because it was grassy and wanted wear; 
Though as for that the passing there 
Had worn them really about the same, 
 

AND both that morning equally lay 
In leaves no step had trodden black. 
Oh, I kept the first for another day! 
Yet knowing how way leads on to way, 
I doubted if I should ever come back. 
 

I shall be telling this with a sigh 
Somewhere ages and ages hence: 
Two roads diverged in a wood, and I— 
I took the one less traveled by, 
And that has made all the difference. 
 
Robert Frost, 1916 

 

 

 

 

 

 

 

Für meine Familie 

 



Summary 

I 

Summary 

Gene expression and hence the fine-tuned and well-orchestrated transcription of genes is a 

fundamental process in living cells. Beside RNA polymerase II (RNAPII), which transcribes 

protein-coding genes and non-coding RNAs, RNA polymerase III (RNAPIII) synthesizes 

small RNAs, the most prominent being tRNAs. These RNAs are highly structured and have a 

central function in translation and cell metabolism. Although the basic mechanism of RNAPIII 

transcription is well understood, many molecular details of this transcription system remain 

elusive. 

In the present study, we identified - by a genome-wide approach - that Nab2, a poly(A)-

binding protein important for correct poly(A) tail length of mRNAs and nuclear mRNA export, 

is present at all RNAPIII-transcribed genes in the model organism Saccharomyces 

cerevisiae. Remarkably, this occupancy is specific for RNAPIII and independent of RNAPII. 

Analysis of the occupancy of Nab2 at RNAPIII-transcribed genes furthermore unveiled that it 

is dependent on active RNAPIII transcription. After generating a novel temperature-sensitive 

allele of NAB2, nab2-34, we could show that Nab2 is required for the occupancy of RNAPIII 

at its target genes.          

 In addition, we found that Nab2 directly interacts with RNAPIII and its precursor 

transcripts, suggesting a function of Nab2 in RNAPIII transcription. Importantly, impairment of 

Nab2 function causes an RNAPIII transcription defect in vivo and in vitro that can be rescued 

by the addition of recombinant Nab2. Stimulating the transcriptional activity of a minimal in 

vitro transcription system in a dose-dependent manner demonstrated that the function of 

Nab2 in RNAPIII transcription is direct.       

 Investigation of the molecular function of Nab2 in RNAPIII transcription revealed the 

involvement of the essential transcription initiation factor TFIIIB. Interestingly, the TFIIIB 

subunit Bdp1 and thus most likely the whole TFIIIB complex is less recruited to its target 

genes in our mutant NAB2 strain. Consistently, Brf1, another TFIIIB subunit, interacted with 

Nab2 in vivo. Having found that TFIIIC was not affected by nab2-34 nor did TFIIIC interact 

with Nab2, we studied how Nab2 specifically influences TFIIIB on RNAPIII genes. These 

experiments revealed that Nab2 increased the binding of TFIIIB to promoter DNA and is thus 

most likely required for efficient assembly and stability of the RNAPIII transcription initiation 

complex in S. cerevisiae. 

Taken together, we discovered that Nab2, an important mRNA biogenesis factor, is a novel 

player required for full RNAPIII transcription by stabilizing TFIIIB and RNAPIII on promoter 

DNA. 
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Abbreviations 
 

 

Amino acids are abbreviated according to the standard single or three letter code. The 

nucleotides Adenine, Cytosine, Guanine, Thymine, and Uracil are abbreviated A, C, G, T, 

and U, respectively. Standard unit prefixes are used when needed. The abbreviations used 

throughout this study are listed below in an alphabetical order:

α  Anti 

aa  Amino acid 

°C  Celsius 

AID  Auxin-inducible degron 

APS  Ammonium persulfate 

ARE  AU-rich element 

bp  Base pair 

C-  Carboxy-terminal 

CBP  Calmodulin binding  

peptide 

cDNA CopyDNA 

ChIP Chromatin 

Immunoprecipitation 

CPF Cleavage and 

Polyadenylation factor 

CRAC  Crosslinking and analysis 

of cDNA 

Da  Dalton 

DAPI  4′,6-Diamidin-2-

phenylindole 

ddH2O Double-distilled water 

DEPC Diethylpyrocarbonate 

DMSO  Dimethyl sulfoxide 

DNA  Desoxyribonucleic acid 

dNTP  Desoxynucleoside 

triphosphate 

ds  Double stranded 

DTT  Dithiothreitol 

EDTA  Ethylene diamine tetra 

acetic acid 

EM  Electron microscopy 

EMSA  Electromobility shift assay 

ER  Endoplasmic reticulum 

FACT  Facilitates chromatin 

transcription 

6-FAM 6-carboxyfluorescein 

Fig.  Figure 

gDNA Genomic DNA 

GFP Green fluorescent protein 

GST Glutathione-S-transferase 

h  Hour 

HEK293  A human embryonic 

kidney cell line 

HeLa  A human cervical cancer 

derived cell line (Henrietta 

Lacks) 

HEPES  4-(2-hydroxyethyl)-1-

piperazineethanesulfonic 

acid 

HMG  High mobility group 

hnRNP  Heterogenous nuclear 

ribonucleoprotein 

Ig  Immunoglobuline 

IPTG Isopropyl β-D-1-

thiogalactopyranoside 

M Molar 

MCS Multiple Cloning Site 

min  Minute 

mRNA  Messenger RNA 

mRNP  Messenger 

ribonucleoprotein 

ncRNA  Non-coding RNA 
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N-  Amino-terminal 

NLS  Nuclear localization 

sequence 

nt  Nucleotides 

NTP  Nucleoside triphosphate 

OD  Optical density 

ORF  Open reading frame 

PABP  Poly(A)-binding protein 

PAF  Polymerase associating 

factor 

PAGE  Polyacrylamide gel 

electrophoresis 

PAR-CLIP  Photoactivatable-

Ribonucleoside-Enhanced 

Crosslinking and 

Immunoprecipitation 

PBS  Phosphate buffered saline 

PCG  Protein coding gene 

PCR  Polymerase chain reaction 

PDB  Protein Data Bank 

PEG  Polyethylene glycol 

pH  Potentia hydrogenii 

poly(A)  Poly adenosine 

RBP  RNA binding protein 

RNA  Ribonucleic acid 

RNAP  DNA dependent RNA 

polymerase 

RNase  Ribonuclease 

RNP  Ribonucleoprotein 

rpm  Rounds per minute 

RGG  Arginine-glycine-glycine 

repeats 

RRM  RNA recognition motif 

RSC  Remodel the Structure of     

Chromatin 

RT  Room temperature 

s  Seconds 

SANT  Transcription regulation 

domain (Swi3, Ada2, N-

Cor and TFIIIB) 

SCF  Skp1, Cullin, and F-box 

SD  Standard devitation 

SRP  Signal recognition particle 

ss  Single stranded 

SUMO  Small ubiquitin-like 

modifier 

Tab.  Table 

TAE  Tris-acetate-EDTA 

TAP  Tandem affinity 

purification 

TBE  Tris-borate EDTA 

TEMED Tetramethyl-

ethylenediamine 

TEV Tobacco etch virus 

cleavage site 

TF Transcription factor 

tgm tRNA gene-mediated 

silencing 

THSC Thp1-Sac3-Sus1-Cdc31 

TPR Tetratricopeptide repeat 

TREX Transcription and Export 

TRIS Tris(hydroxyl-

methyl)aminomethane 

tRNA Transfer RNA 

ts Temperature-sensitive 

qPCR Quantitative PCR 

U Unit of enzyme activity, 

conversion of 1 µmol 

substrate min-1 

v/v Volume per volume 

w/v Weight per volume 

wt Wild-type 

Zn Zinc 

Znf Zinc finger  
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Introduction 

1 

1. Introduction 

 

 Gene expression 1.1

In eukaryotes, transcription of genes requires the orchestrated activity of three DNA 

dependent RNA polymerases. Each of these polymerases serves a specific class of genes. 

RNA polymerase II (RNAPII) transcribes the most complex set of genes, which yields 

thousands of different protein-coding messenger RNAs (mRNAs) but also microRNAs 

(miRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs). In contrast 

to this huge and diverse number of genes, RNA polymerase I (RNAPI) transcribes genes 

coding for the 5.8S, 18S, and 28S ribosomal RNA (rRNA). Moreover, RNA polymerase III 

(RNAPIII) transcribes tRNA genes and other small noncoding RNA genes, such as the RNA 

of the Signal recognition particle (SRP), the 5S rRNA or the RNA subunit of RNase P. 

 

 

 mRNA biogenesis and export 1.2

The compartmentalization of eukaryotic cells into nucleus and cytoplasm necessitates export 

and import pathways that facilitate the movement of molecules into and out of the nucleus. 

The export of mRNA, one of the main products of RNA polymerase II (RNAPII), is a crucial 

step in gene expression. However, before the transcripts can be transported to the 

cytoplasm, where they are translated into proteins, several processing steps have to occur 

(See Fig. 1). 

 Three platforms provide the recruitment of mRNA binding proteins 1.2.1

When RNAPII travels along the gene and synthesizes mRNA, the C-terminal domain (CTD) 

of its biggest subunit Rpb1 is heavily and dynamically phosphorylated. It thereby acts as a 

platform orchestrating the recruitment of proteins that are involved in transcription, RNA 

processing, export or chromatin remodeling (Zhang et al. (2012) and references therein). The 

coordinated recruitment of factors is achieved by different phosphorylation patterns of mainly 

serine 2, 5, 7, and tyrosine 1 of the highly conserved heptapeptide repeat YSPTSPS. For 

example, in yeast 26 of these repeats are present in Rpb1 (Buratowski, 2009; Mayer et al., 

2010; Zhang et al., 2012). In addition to the CTD of Rpb1, two other recruitment platforms 

have been described: First, the C-terminal region of Spt5 (CTR) and, second, the nascent 

mRNA itself (reviewed in Meinel and Strasser (2015)).      
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 Spt5 is a general transcription elongation factor that can be phosphorylated at the C-

terminal repeats similar to RNAPII (Yamada et al., 2006). In yeast, phosphorylation of these 

repeats by the kinase Bur1 leads to the recruitment of the PAF complex (Polymerase 

associated factor, Liu et al. (2009)), which is known to be a platform for chromatin 

remodeling enzymes, such as the histone H3K4 methylating Set1/COMPASS complex (Li et 

al., 2007). Besides the interaction with chromatin regulating enzymes and complexes (e.g. 

Set1 or FACT), interactions of Spt5 with general transcription elongation factors such as 

TFIIF or TFIIS, as well as with the mRNA capping enzyme or the pre-mRNA cleavage factor I 

(CFI) were identified, pointing out the general role of Spt5 as an auxiliary platform for mRNA 

binding proteins (Lindstrom et al., 2003; Mayer et al., 2012).    

 The nascent RNA, as it emerges from RNAPII, is accessible for mRNA binding 

proteins that recognize specific motifs. As an example, the Cleavage and Polyadenylation 

Specificity Factor (CPSF) recognizes the A-rich positioning element on the RNA directly, 

directing the 3’ cleavage of transcripts (Mandel et al. (2008) and references therein). Other 

proteins with affinity to RNA are recruited to the nascent transcript early after or during 

synthesis, such as Nab2, which binds to the mRNA body and poly(A) tails of the maturated 

3’-end of the mRNA, and Npl3, which binds RNA with a slight preference for G+U-rich RNAs 

but mostly in a non-sequence specific way (Anderson et al., 1993; Deka et al., 2008; Marfatia 

et al., 2003). 

The three introduced recruitment platforms do not act independently of each other, but are 

combined to efficiently recruit core components of the maturation machinery to the nascent 

RNA. As an example, the CFI subcomplex of CPF (Cleavage and Polyadenylation Factor), 

may be recruited simultaneously by the S2-phosphorylated CTD of RNAPII, the CTR of Spt5, 

and a poly(A) sequence within the RNA (Mayer et al., 2012). Another concept of recruiting 

protein complexes to the RNA is the initial interaction of one subunit via the described 

platforms. Then the complex assembles by interaction with the previously bound subunit. 

This has been described for the U1 snRNP that initially recruits subunits of the spliceosome 

to the nascent mRNA but leaves the pre-catalytic spliceosome (Matera and Wang, 2014). A 

more complex example for this is the Pcf11-Yra1 interaction. Pcf11, a 3’-end processing 

factor, is recruited to the S2-phosphorylated CTD and RNA (Hollingworth et al., 2006). It then 

promotes basis for Yra1 binding, which is necessary for coupling 3’-end processing with 

mRNA export via its interaction with Mex67 and hence for recruitment of the conserved 

exporter complex (Johnson et al., 2009; Strasser and Hurt, 2000). 
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Fig. 1: Different steps in mRNP biogenesis. Co-transcriptionally, the nascent mRNA protruding from the 
transcribing polymerase is capped at its 5’-end, spliced, cleaved, and polyadenylated at the poly(A) site. These 
processes go hand in hand with a rich decoration of several mRNA binding proteins that remodel the maturating 
RNA until an export competent mRNP is formed. The mRNP complex is transported through the nuclear pore 
complex into the cytoplasm, where it will be translated and eventually degraded. Colored circles: different 
proteins / protein complexes acting on the nascent RNA or DNA. Figure modified after Meinel and Strasser 
(2015). 

The proteins recruited to the mRNA can be involved in a variety of modifications, e.g. 5’-

capping, splicing, 3’-end processing, which are summed up as mRNA processing. Later 

maturation steps are RBP binding and subsequently mRNP formation, followed by export to 

the cytoplasm (see Fig. 1). 

 

 mRNA processing and mRNP formation 1.2.2

The first maturation step that occurs as soon as the first 15-30 nucleotides of the nascent 

pre-mRNA exit the RNA polymerase is 5’-capping. Here, a three step process is utilized to 

produce a functional cap by (i) removing the 5’-γ-phosphate group of the first transcribed 

nucleotide, (ii) transferring a guanosine monophosphate nucleotide (GMP, after hydrolysis of 

pyrophosphate from GTP) to the 5’-end of the RNA, and (iii) finally by methylation of the N-7 

atom of the guanosine (reviewed in Topisirovic et al. (2011)). This process is carried out by 

the ‘capping enzymes’, which are recruited to the S5-phosphorylated CTD of RNAPII at an 
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early step of the transcription cycle. The mature cap (m7GpppN) is recognized and bound in 

yeast by the cap binding complex (Cbp 20 and Cbp 80). It has been shown that the cap 

structure has pivotal roles for the fate of mRNAs, as capped mRNAs are spliced more 

efficiently (Edery and Sonenberg, 1985) and binding of the general translation initiation factor 

eIF4E, the first step of cap-dependent translation, directs the ribosome to the mRNA 

(Sonenberg and Hinnebusch, 2009). 

Also co-transcriptionally, the nascent mRNA is spliced. This is an essential process that 

removes intronic sequences from the mRNA. It is also thought to be a quality control step, as 

incorrectly spliced mRNAs (e.g. retention of inefficiently spliced introns) are subjected to 

exosomal pre-mRNA decay (Lemieux et al. (2011) reviewed in Schneider and Tollervey 

(2013)). Recognizing the 5’-splice site by base pairing with the U1 snRNA, the U1 snRNP 

binds as the first component. Now, a highly ordered and ATP-dependent assembly of the 

spliceosome commences and multiple RNA-protein interactions are required to build an 

activated spliceosome. Subsequently, the RNA is cleaved, a lariat structured intron is 

released and the exons are ligated (reviewed in Matera and Wang (2014)). Although only 

roughly 5% of all genes in Saccharomyces cerevisiae contain single introns, they account for 

nearly 30% of synthesized RNAs. This is due to the over-representation of introns in genes 

coding for ribosomal proteins and other highly transcribed genes, such as actin (Spingola et 

al., 1999). This highlights the importance of splicing even in the relative simple model 

organism S. cerevisiae. 

A later step in mRNA biogenesis and mRNP formation is 3’-end processing. Briefly, the 

transcribed RNA is cleaved, released from the RNA polymerase II, and a poly(A) tail is 

produced subsequently. 

The first step in 3’-end formation is cleavage of the nascent RNA. The CPF complex 

(Cleavage and Polyadenylation Factor) consisting of more than 20 proteins is recruited to a 

canonical cleavage site, partially through the interaction with the RNA and the S2-

phosphorylated CTD of RNAPII (see CFI complex above and reviewed in (2013); Zhao et al. 

(1999)). The cleavage site in yeast is defined by a single pyrimidine, which is followed by 

multiple adenosines and located between an up- and downstream U-rich element (Mandel et 

al., 2008; Zhao et al., 1999).         

 After the mRNA is cut, the poly(A) polymerase Pap1, which is also a subunit of CPF, 

produces a poly(A) tail. During synthesis, poly(A)-binding proteins (PABPs) bind to the 

growing tail thereby stabilizing it (Mandel et al., 2008). Not only the occupancy of proteins 

like Nab2 or Pab1 on poly(A) tails, which both are thought to stabilize the mRNA, but also the 

length of the produced poly(A) tail is crucial for mRNA stability (Amrani et al. (1997); Mandel 
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et al. (2008); Soucek et al. (2012) and references therein). After initial polyadenylation of the 

mRNA, the yeast poly(A) nuclease complex (PAN) trims the poly(A) tail to a length of 60-80 

nucleotides (nt) (up to 200-300 nt in humans) (Mandel et al. (2008) and references therein). 

In addition, binding of Nab2 to the mature mRNA regulates the poly(A) tail length by 

preventing readenylation (Kelly et al., 2010; Viphakone et al., 2008).   

 Recent findings show that Rrp6, a 3’-5’ exonuclease component of the nuclear 

exosome can displace Nab2 by direct interaction and subsequently leads to mRNA decay 

(Schmid et al., 2012). In general, errors in the correct 3’-end processing are recognized and 

defective RNAs are degraded by the exosome (reviewed in Parker (2012); Schneider and 

Tollervey (2013)). 

As described above, a variety of RNA binding proteins (RBPs) is binding to the nascent 

mRNA during and after transcription with modular structural motifs and different RNA-

sequence affinities and specificities. Forming an mRNP, these proteins regulate mRNA 

translation, mRNP localization and eventually its degradation. By the use of modern 

techniques, such as PAR-CLIP or coupling of mRNP purification with mass spectrometry, 

hundreds of proteins and their binding-sites have been identified to bind to mRNPs in S. 

cerevisiae or higher eukaryotic cells (Baejen et al., 2014; Baltz et al., 2012; Castello et al., 

2012; Mitchell et al., 2013). Also, the temporospatial binding could now be investigated, 

which highlighted mRNPs as highly dynamic macromolecular particles that are tailored to the 

individual function and fates of the bound transcript, i.e. from synthesis to decay (Baejen et 

al., 2014; Tuck and Tollervey, 2013). An interesting observation is that besides the classical 

RBPs with known RNA binding motifs, many new proteins were found to bind these RNAs, 

even without encoding a classical RNA-binding motif. They are rather a heterogeneous 

group of proteins, such as enzymes (e.g. kinases or ubiquitin proteases), that might be 

activated by RNA or lead to a local modification or remodeling of the mRNP as a second 

independent function (Castello et al., 2012; Mitchell et al., 2013). 

In addition to RNA binding proteins, large ncRNAs have been found to bind to and act on 

mRNA and mRNP complexes in higher eukaryotic cells. They can function as post-

transcriptional regulators, e.g. during splicing by influencing the binding of SR-proteins 

(serine-/arginine rich) to the mRNA (Yoon et al. (2013) and references therein). Furthermore, 

they were described to regulate mRNA stability and translational activity by recruiting 

proteins or impeding the binding of proteins to the RNA (Faghihi et al. (2008); Yoon et al. 

(2012) and reviewed in Yoon et al. (2013)). 

Altogether, the above mentioned mechanisms lead to a very complex picture of the assembly 

of mature RNAs and mRNPs. The customized mix of mRNA decorated with proteins and 



Introduction 

6 

regulatory ncRNAs provides tunable sets of messenger ribonucleoprotein complexes that 

fulfill the various needs of cells depending on their surrounding environment. 

 Nuclear export of mRNPs 1.2.3

After successful processing of the mRNA, the protein decorated mRNP needs yet to be 

exported. In order to promote efficient export, these export-competent mRNPs interact with 

export adapter proteins, e.g. Mex67-Mtr2 and NPC-associated factors (NPC: Nuclear pore 

complex) to initiate mRNA export (Rodrigues et al., 2001; Strasser and Hurt, 2000; Sträßer et 

al., 2002). The NPC spans the nuclear envelope and facilitates nucleocytoplasmic transport. 

With an approximate size of 40-60 MDa in yeast and up to 125 MDa in vertebrates, it is one 

of the biggest proteinaceous particles in the cell. It has an eight-fold rotational symmetry that 

creates a pore with an approximate diameter of 40 nm. In addition, filaments on each site 

reach out about 50-80 nm into the cytoplasm and nucleoplasm, respectively, creating the 

nuclear basket at the nuclear side. NPC proteins, also called nucleoporins or Nups, are the 

building blocks of the NPC. Structural Nups create a scaffold for other proteins temporarily 

binding to the NPC, such as Yrb2 or Nup2, as well as FG-nucleoporins (Dilworth et al., 2001; 

Dilworth et al., 2005; Floer and Blobel, 1996). The latter are rich in FG-repeats 

(phenylalanine-glycine repeats), highly conserved among eukaryotic evolution and have 

pivotal roles in NPC barrier formation, transport selection, and present docking stations for 

transportable complexes (reviewed in Aitchison and Rout (2012), Bjork and Wieslander 

(2014) and Hurt and Beck (2015)).  

The nuclear pore not only serves as a gate, providing regulated transport into and out of the 

nucleus. It has been reported for several model organisms, including S. cerevisiae, that the 

NPC has an additional role in gene expression as it influences the sub-nuclear localization of 

transcriptionally active gene regions by interacting with chromatin and the mRNA export 

machinery (reviewed in Burns and Wente (2014). These processes, which are thought to 

physically couple transcription to the nuclear pore, are summed up in the hypothesis of ‘gene 

gating’ (Blobel (1985), Burns and Wente (2014) and references therein). 

Mlp1 (Myosin like protein 1) is one example of the Mlp protein family that act as docking 

platforms for export competent mRNPs. In addition, this pre-export binding serves as a final 

quality check for malformed or unspliced mRNAs (Fasken et al., 2008; Strambio-de-Castillia 

et al., 1999; Vinciguerra et al., 2005). At this stage, the mRNP has undergone a vast number 

of remodeling events, as described above and has also been decorated with proteins 

involved in export.  
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The subdivision of cells in cytoplasm and nucleus necessitated the development of proteins 

that link transcriptional processes to mRNA export. One of the key players in coupling 

transcription to mRNA export is the highly conserved TREX complex that is already co-

transcriptionally loaded onto the mRNA in a length dependent manner (Meinel et al., 2013). It 

is composed of the heteropentameric subcomplex THO (Hpr1, Mft1, Tex1, Tho2 and Thp2) 

that is complemented by Gbp2, Hrb1, Sub2, and Yra1 as shown in Chavez et al. (2000); 

Sträßer et al. (2002) and Figure 2. Only recently, it was shown that the Hpr1 subunit of the 

THO complex can be sumoylated on its C-terminus by Siz1 and Siz2, thereby regulating its 

recruitment to the nascent mRNP.  

 

Fig. 2: The mRNA export machinery. As RNAPII transcribes through its target gene, the THO/TREX complex 
gets recruited to the nascent mRNA via interaction with the S2-/S5-diphosphorylated CTD of RNAPII and the 
mRNA. After release and remodeling of the mRNA, the heterodimer Sub2-Yra1 recruits the canonical exporter 
Mex67/Mtr2. In addition, alternative adaptors like Nab2 and Npl3 help to load the exporter onto the mRNP (see 
text for details). After passing the NPC, the mRNP is again remodeled on the cytoplasmic side of the NPC by 
Dbp5 and the shuttling exporters are released from the mRNP. In addition, the reimport of released Nab2 by its 
karyopherin Kap104 into the nucleus is depicted. Figure modified after Chanarat et al. (2012). 

The sumolyation is rather needed for the expression of stress-inducible genes, as the bulk 

mRNA export was not affected in a non-sumoylatable HPR1 mutant (Bretes et al., 2014).

 As a next step in mRNA export, the conserved heterodimer Sub2-Yra1 recruits the 

conserved mRNA exporter Mex67-Mtr2 to the mRNA, which directly facilitates export of the 

mRNA through the NPC (Stewart (2010) and references therein, Strasser and Hurt (2000); 

Strasser and Hurt (2001); Sträßer et al. (2002); Stutz et al. (2000)). At the NPC, Mex67 
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interacts with the FG-nucleoporins and is released in an ATP-dependent manner on the 

cytoplasmic site by the IP6-activated (Inositol hexakisphosphate) DEAD box helicase Dbp5, 

which is bound to the cytoplasm-localized Nup Gle1 (Lund and Guthrie, 2005; Noble et al., 

2011; Tran et al., 2007). An alternative mechanism to recruit Mex67-Mtr2 to the mRNA is 

proposed by the ubiquitinylation of the THO subunit Hpr1 (Gwizdek et al., 2006; Hobeika et 

al., 2009). Although this is only shown for some genes yet, the above mentioned 

observations of proteins being recruited in a non-sequential order may point out the presence 

of a central and complex packing station. In this model, recruitment of remodeling factors and 

the export machinery, as well as mRNP compaction already happen during transcription 

(Meinel and Strasser, 2015). This theory is underlined by findings, such as that Mex67 was 

found to play a role in 3’-end processing (Qu et al., 2009) or the vast amount of proteins that 

interact with the CTD, but are required for different other processes than RNA synthesis. 

Examples are the capping enzyme (Hossain et al., 2013), the TREX complex (Meinel et al., 

2013), or the THSC (Thp1-Sac3-Sus1-Cdc31-Sem1) complex (Pascual-García et al., 2008) 

to name but a few. 

Besides the exporter Mex67-Mtr2, other proteins associate with the mRNA and support its 

export. Examples for this kind of alternative mRNA export adaptors are Nab2 and Npl3. Npl3 

is one of three SR-like proteins (serine-/arginine-rich) in S. cerevisiae and functions in 

multiple RNA-related processes such as transcription, splicing, and mRNA export ((Santos-

Pereira et al., 2014) and references therein). It binds to the RNA by interacting with the S2-

phosphorylated CTD of Rpb1 (RNAPII), is crucial for preserving genome integrity by 

inhibiting R-loop formation (DNA-RNA hybrids with a displaced DNA strand), and does not 

leave the mRNA until it is exported (Santos-Pereira et al. (2013), Santos-Pereira et al. (2014) 

and references therein). The dephosphorylation of mRNP-associated Npl3 by the nuclear 

phosphatase Glc7 leads to subsequent release of 3’-end processing factors and recruitment 

of Mex67-Mtr2, which then promotes the export of mRNPs (Gilbert and Guthrie, 2004). The 

role of the poly(A)-binding protein Nab2 in mRNA export is described below (see 

Introduction,1.3.2). 

In addition to the TREX complex, the THSC complex (also termed TREX-2) is an additional 

conserved, multi-subunit complex that plays important roles in mRNA export and gene 

tethering to the NPC (Luna et al. (2009) and references therein). In S. cerevisiae, it consists 

of Thp1, Sac3, Sem1, Sus1 and Cdc31, and its structure is partially resolved as different 

subunits of THSC have been co-crystalized (Ellisdon et al., 2012; Jani et al., 2009; Jani et 

al., 2014). It tethers the TREX complex and Mex67 close to the NPC, as revealed by genetic 

interaction of YRA1 and SAC3 and strong defects in mRNA export upon mutations in e.g. 

Sac3 or Thp1 (Fischer et al. (2002) and reviewed in Luna et al. (2009)). Only very recently, 
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THSC was found to interact with the Mediator complex via Med31/Med7 and to influence 

Ser5 phosphorylation of RNAPII, thereby providing another link between transcription and 

mRNA export (Schneider et al., 2015). 

The combination of multiple processes, leading to a mature mRNA that is translated in the 

cytoplasm is controlled and intertwined at different steps (see above). Many of the mentioned 

events seem not to take place consecutively, but rather occur simultaneously or in an RNA 

customized order (Meinel and Strasser, 2015). Thus, transcription is linked to mRNA 

processing, mRNP formation, and mRNA export in a much more complex way than 

anticipated before. 

 The poly(A)-binding protein Nab2 1.3

One of the many proteins that are recruited to the nascent mRNA is Nab2 (Nuclear abundant 

poly(A) RNA binding 2, see above). It was originally discovered in a screen for proteins that 

bind to nuclear polyadenylated RNAs in S. cerevisiae by UV crosslinking and oligo(dT)-

Sepharose purification of RNPs (Anderson et al., 1993). It consists of 525 amino acids 

(58 kDa) and has essential functions in mRNA export and poly(A) tail length control 

(Anderson et al., 1993; Green et al., 2002; Hector et al., 2002). Nab2 is present along the 

whole open reading frame of protein-coding genes as determined by single chromatin 

immunoprecipitation (ChIP) experiments and genome-wide experiments, e.g. ChIPs 

hybridized to high density tiling arrays (Gonzalez-Aguilera et al., 2011; Meinel et al., 2013). 

As a member of the poly(A)-binding protein family (PABPs), Nab2 binds specifically to the 

poly(A) tail and the body of mRNAs during or shortly after their polyadenylation (Kelly et al. 

(2010); Tuck and Tollervey (2013); Soucek et al. (2012) and references therein). After 

passage through the NPC, Nab2 is released from the mRNP complex through the earlier 

mentioned RNA helicase Dbp5 and cycles back to the nucleus (Hodge et al., 1999; Noble et 

al., 2011; Tran et al., 2007). The interaction with components of the TREX (Yra1) and THSC 

(Thp1) complexes, as well as Mex67 in yeast and the shuttling of Nab2 with the mRNA 

suggest Nab2 as a key component in the tightly intertwined system of transcription, 

processing, mRNP formation, and export of mRNA (Batisse et al., 2009; Gallardo et al., 

2003). 

Four major domains have been characterized in Nab2 (see Fig. 3A). The N-terminal domain 

(amino acids 1-97) assembles in a five alpha-helix bundle with a PWI-like (proline-

tryptophane-isoleucine) fold and is necessary for the physical interaction with Mlp1 (Grant et 

al., 2008; Green et al., 2003; Marfatia et al., 2003). Mlp1, as a representative of Mlp proteins 
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(see above), is located at the nucleoplasmic site of the NPC and is thought to act as a control 

step through binding to mRNPs before export of mature mRNP complexes can occur 

(Fasken et al., 2008; Green et al., 2003; Strambio-de-Castillia et al., 1999). The direct 

interaction of Nab2 with the C-terminal globular domain of Mlp1 is mediated by a 

hydrophobic patch surrounding Phe73 (see Fig. 4A, F73). Deletion or mutagenesis of this 

residue results in disruption of the Mlp1-Nab2 interaction in vitro and nuclear accumulation of 

polyadenylated mRNAs in vivo (Fasken et al., 2008). In addition, the F73D mutant shows 

genetic interactions with MEX67 and YRA1, which supports the hypothesis of Nab2 binding 

to Mlp1 as an important step in mRNA export (Fasken et al., 2008). 

 

Fig. 3: A schematic view of the Nab2 domain structure. (A) The domain structure of Nab2 and the 
corresponding functions are indicated. The N-terminal domain is required for Mlp1 interaction, facilitating the 
export of Nab2. The QQQP-domain has an unknown function. The RGG-domain is necessary for import/ export 
of Nab2 and gets methylated by Hmt1. The C-terminal domain is structured into of two zinc finger repeats 
comprising three and four zinc fingers in series. This domain is crucial for poly(A) RNA binding. (B) The human 
orthologue of Nab2 and domain structures are presented. Most conserved domains are the nuclear localization 
domain and the zinc fingers. These have been implicated in poly(A) tail length control and are present in each 
expressed isoform. Isoforms are arranged according to their size (Isoform 1: 82.8 kDa, isoform 2: 65.4 kDa, 
isoform 3: 64.5 kDa and the cytoplasmic isoform 4: 34.8 kDa). Isoform 3short is not presented. 

 Another important interface at the N-terminus of Nab2 is located around the Tyr34 

residue, as it is necessary to bind Gfd1. Gfd1, a protein involved in enhancing mRNA export, 

interacts with Gle1 and Nab2 on the cytoplasmic site of the NPC.    
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 The interaction of Gfd1 with Nab2 is important for the Dbp5 remodeling activity at the 

last step of mRNA export and mRNP disassembly (see Introduction, 1.3.2 and 

Suntharalingam et al. (2004); Zheng et al. (2010)).      

 The second domain of Nab2 (amino acids 100-144) contains multiple QQQP 

(glutamine-proline) repeats with so far unknown function and deletion of which shows no 

growth defect (Marfatia et al., 2003).       

 Similar to other proteins that bind to mRNA and are known to be involved in RNA 

metabolism, the third domain of Nab2 contains an RGG-domain (arginine-glycine-glycine, 

amino acids 201-260), a classical RNA recognition motif (RRM) in metazoans and yeast, with 

a total of four RGG repeats (Birney et al., 1993; Green et al., 2002). However, several 

studies showed that Nab2 does not bind to RNA with this domain compared to many other 

proteins (reviewed in Rajyaguru and Parker (2012)). It rather functions as a nuclear 

localization sequence (NLS), through which Nab2 binds to its importin Kap104 and is thus 

important for the import of cytoplasmic Nab2. No alternative importin for Nab2 was identified, 

as a Kap104 depletion results in a rapid cytoplasmic shift of Nab2 from the nucleus 

(Aitchison et al., 1996; Green et al., 2002; Lee and Aitchison, 1999; Marfatia et al., 2003; 

Truant et al., 1998).  

 

Fig. 4: Structural data for S. cerevisiae Nab2. (A) The crystal structure of the N-terminus of Nab2 is presented. 
It consists of a five alpha-helix bundle with a PWI-fold and interacts with Mlp1 to promote nuclear export of 
mRNPs. The important residues Y34 and F73 are indicated and discussed in the text. (B) The solution structure 
of zinc finger 5-7 of Nab2 by NMR spectroscopy is shown. Each zinc atom (grey dots) is coordinated in one 
CCCH-zinc finger by three cysteines in a planar way and perpendicular by a single histidine. The figure was 
generated using PyMol software from the PDB files (A) [2V75] (Grant et al., 2008) and (B) [2LHN] (Brockmann 
et al., 2012), available at the RSCB Protein data base. 

The sequence within Nab2 that interacts with Kap104 is known and was crystalized together 

with the human karyopherin homologue Kapβ2 (Soniat et al. (2013) PDB file [4JLQ]). 

 In addition, Hmt1, a SAM-dependent type I protein-arginine methylase, acts on 

arginine residues of several hnRNPs (e.g. Hrp1 or Npl3) and also targets the RGG-domain of 
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Nab2 (see Fig. 3A and Gary et al. (1996); Green et al. (2002); Shen et al. (1998). Deletion of 

Hmt1 results in nuclear retention of Nab2 and mRNA, whereas removal of the RGG-domain 

has no influence on the export, indicating the binding of an unknown nuclear factor to Nab2 

preventing its export when Nab2 is not methylated (Green et al., 2002; Marfatia et al., 2003). 

This presents the methylated RGG domain as a second prerequisite for an export competent 

Nab2 offering an additional step for mRNP quality control. 

The C-terminal part of Nab2 is composed of seven zinc fingers that can be divided in two 

repeats of three (amino acids 415-473) and four zinc fingers in series (amino acids 261-386, 

see Fig. 3A), which furthermore are structurally independent subdomains (Martinez-

Lumbreras et al., 2013). Zinc fingers are small protein folds that usually consist of 2-3 

cysteines and 1-2 histidines that tetrahedraly coordinate one Zn2+ atom. Some proteins only 

contain a single zinc finger, but usually at least two or more serial zinc fingers occur. Around 

14 classes of zinc fingers were identified so far with varying functions, such as DNA or RNA 

binding, but also interactions with lipids or proteins have been described (Carballo et al. 

(1998) and reviewed in Hall (2005); Matthews and Sunde (2002)).   

 The zinc fingers (ZnF) in Nab2 are C3H1-type (CX5CX4-6CX3H, see Fig. 4B) zinc 

fingers, which have been shown to bind to RNA motifs in vivo (Hall (2005); Kelly et al. (2007) 

and reviewed in Soucek et al. (2012)). This domain is crucial for the binding of Nab2 to 

poly(A) RNA in vitro and in vivo (Anderson et al., 1993; Marfatia et al., 2003). Complete or 

partial deletion of the zinc fingers results in inviability, hyperadenylated mRNAs, and a 

severely reduced binding of poly(A) RNA in vitro (Hector et al., 2002; Marfatia et al., 2003). 

Furthermore, the zinc finger domain was proposed to bind RNA in a 3’-5’ manner and to be 

involved in protein-protein interactions on RNA e.g. in self-recognition, as described for the 

mammalian PABN1 protein (Eckmann et al., 2011; Kuhn et al., 2009; Martinez-Lumbreras et 

al., 2013). Here, the growing poly(A) tail is recognized by PABN1 and other PABN1 

molecules are recruited via protein-protein interactions and specificity for poly(A) RNA. It still 

remains to be shown whether this is true for Nab2. 

Interestingly, the affinity of the two zinc finger arrays to poly(A) RNA is different as revealed 

by in vivo crosslinking of zinc finger deletion mutants to poly(A) RNA and in vitro binding 

studies (Kelly et al., 2007; Marfatia et al., 2003). Full length Nab2 binds poly(A)25 RNA in vitro 

with an approximated Kd of ~30 nM. When ZnF 5-7 were deleted from the protein, the Kd was 

reduced about 60 fold to ~2 µM. This defined the last three zinc fingers as the main 

poly(A)RNA binding site of Nab2, as the first four zinc fingers were only weakly binding to 

tested RNAs and deletion of which resulted in a modest reduction of Nab2 / poly(A) RNA 

interaction (Kelly et al., 2007; Marfatia et al., 2003).     

 The high specificity of Nab2 to poly(A) RNA is further underlined by the fact that other 
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tested RNA sequences (e.g. poly(N), poly(G), RNA oligonucleotides like UAUU) could not 

compete Nab2 from poly(A) RNA in vitro (Kelly et al., 2010; Kelly et al., 2007). Nevertheless, 

poly(G), poly(U) but not poly(C) can be bound by Nab2 (Anderson et al., 1993). An unspecific 

binding to RNA, as well as to the bodies of mRNAs in vivo was also described (Kelly et al., 

2007; Tuck and Tollervey, 2013). This led to the conclusion that ZnF 5-7 of Nab2 are 

necessary and sufficient for the high affinity binding of Nab2 to poly(A) RNA in yeast. 

Moreover, the C-terminal part of Nab2 interacts with Pub1 (poly(U)-binding protein 1), which 

predominantly localizes to the cytoplasm, thereby recruiting it to the mRNA. Together with 

Nab2, it is important for regulating mRNA stability, especially for transcripts that contain 

ARE-like (AU-rich elements) elements (Apponi et al., 2007). 

 Regulation of poly(A) tails 1.3.1

While Nab2 is recruited to the nascent mRNA during transcription elongation of protein 

coding genes (Meinel et al., 2013), it has also been found to associate with the 3’-end 

processing machinery by genetic interaction with RNA15, the CFIA cleavage factor, and 

physically contacting the cleavage factor I subunit Hrp1 (Soucek et al. (2012) and references 

therein). This is further supported by the fact that Nab2 was found to support 3’-end 

processing reactions of purified CFIA, CFIB, and CPF in vitro and thus having a role in 3’-end 

processing (Dheur et al., 2005; Hector et al., 2002).      

 The control of poly(A) tail length is mainly achieved by a combination of the RGG-

domain and a part of the zinc fingers ZnF 5-7 of Nab2 by inhibiting readenylation of trimmed 

poly(A) tails. This inhibition is thought to be accomplished by limiting the accessibility of 

mRNA 3’-ends to modifications (Hector et al., 2002; Viphakone et al., 2008). In line with this, 

it is thought that Nab2 can cover poly(A) units of around 20 nt in vitro (Viphakone et al., 

2008). In addition, it was shown that Rrp6, a nuclear exosome subunit, can displace Nab2 

from poly(A) tails and may lead to poly(A) RNA turnover (Schmid et al., 2012). A similar 

mechanism was described for the Schizosaccharomyces pombe orthologue of Nab2 (Grenier 

St-Sauveur et al., 2013). Only recently, it was shown that Nab2 can protect early mRNAs 

from degradation by the exosome. Rapid depletion of Nab2 caused a general loss of poly(A) 

mRNAs that can be partially restored after long-term depletion of Nab2 (Schmid et al., 2015). 

Being a central player in regulating poly(A) tails during early and late stages of mRNP 

biogenesis, Nab2 has a well-defined role in 3’-end processing of mRNAs in S. cerevisiae and 

potentially other organisms (Kelly et al., 2014). 
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 Nab2 mediates export of mature mRNPs 1.3.2

Being processed and decorated with a variety of proteins, the mature mRNP can interact 

with the export machinery. One key step in this process is the recruitment of Mex67-Mtr2 to 

the mRNP (see 1.2.2). Nab2 was found to be directly interacting with Mex67, which is 

enhanced by the TREX subunit and export adapter Yra1 (couples TREX to the exporter 

Mex67-Mtr2) (Iglesias et al., 2010). Interestingly, Yra1 becomes dispensable for this 

interaction, when either NAB2 or MEX67 were overexpressed. Furthermore, Yra1 gets 

ubiquitinylated by Tom1 at the nuclear side of the NPC and leaves the mRNP before export, 

supported by the fact that Yra1 is not a shuttling factor (Iglesias et al., 2010; Strasser and 

Hurt, 2000; Stutz et al., 2000).        

 Nab2 also seems to interact with the THSC/TREX-2 complex, as overexpression of 

NAB2 rescues the mRNA export defect in ∆thp1 cells (Gallardo et al., 2003). Together with 

the fact that Mex67-Mtr2 additionally interacts with Sac3 of THSC/TREX-2 (see above and 

Fischer et al. (2002)), it was suggested that Nab2 and THSC/TREX-2 act synergistically on 

the same biological pathway (Gallardo et al., 2003).  

Finally, reaching the nuclear face of the NPC, Nab2 interacts with Mlp1 (see 1.3) and the 

mRNA is exported (Grant et al., 2008). On the cytoplasmic side, Nab2 interacts with Gfd1 

and is disassembled from the mRNP by Dbp5 (see 1.2.2, 1.3 and Hodge et al. (1999); Lund 

and Guthrie (2005); Suntharalingam et al. (2004); Tran et al. (2007)). 

 Nab2 is conserved from yeast to humans 1.3.3

Orthologues of Nab2 have been identified in many organisms including Homo sapiens 

(ZC3H14), Mus musculus (MSUT-2), Rattus norvegicus (ZC3H14), Caenorhabditis elegans 

(SUT-2), Drosophila melanogaster (dNab2), and S. pombe (nab2), showing its conservation 

throughout evolution (Anderson et al., 1993; Guthrie et al., 2011; Guthrie et al., 2009; Leung 

et al., 2009; Pak et al., 2011; Yoon, 2009). The overall function of Nab2 in poly(A) tail length 

control seems to be conserved within these different organisms, as poly(A) RNA binding of 

orthologues have been shown in H. sapiens, M. musculus, R. norvegicus, and 

D. melanogaster (Kelly et al., 2007; Pak et al., 2011). To prove that orthologues of Nab2 

have similar functions, it was shown that human ZC3H14 can functionally substitute dNab2 in 

fly neuronal tissue (Kelly et al., 2014). Furthermore, Nab2 is required for correct poly(A) tail 

length in D. melanogaster and probably in H. sapiens (Kelly et al., 2014; Pak et al., 2011).

 Being ubiquitously expressed in human, ZC3H14 exists in at least four different 

isoforms (see Fig. 3B). Isoforms 1, 2, 3 and 3short contain predicted classical nuclear 

localization signals (cNLS) and localize to the nucleus, whereas isoform 4 contains an 
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alternative first exon lacking the NLS and consequently localizes to the cytoplasm (Leung et 

al., 2009). Besides the cNLS, every isoform contains an array of zinc finger domains in the 

C-terminus, probably mediating poly(A) tail binding (Leung et al., 2009). Interestingly, 

mutations in ZC3H14 (e.g. R154Stop) cause a form of non-syndromic autosomal recessive 

intellectual disability (NS-ARID) in humans and abnormal behavior in Drosophila, where 

Nab2 is needed for neuronal function (Pak et al., 2011). Even more, a recent study identified 

Nab2 as a supporting factor for correct axiogenic development of mushroom body neurons in 

D. melanogaster (Kelly et al., 2015). 

In summary, the known data present Nab2 as an essential protein in mRNA processing and 

export throughout evolution. It binds to the poly(A) tails of mRNA, interacts with Mex67-Mtr2, 

the NPC-associated factor Mlp1 and shuttles to the cytoplasm. When reaching the cytoplasm 

Dbp5 gets recruited to the mRNP and remodels it, thereby releasing Nab2. Finally, it is 

reimported into the nucleus where it can undergo another round of mRNA export. 

 

 RNA polymerase III transcribes tRNA and other ncRNA genes 1.4

RNAPIII is necessary for transcription of a small set of highly expressed, infrastructural 

RNAs, such as tRNAs, the 5S rRNA or the RNA of the signal recognition particle (SCR1), 

and other small non-coding RNAs, which e.g. function in tRNA splicing or maturation 

(reviewed in Dieci et al. (2007)). The majority of products, the tRNAs and the 5S rRNA, serve 

in translation by either providing activated amino acids to the ribosome or being an integral 

component of the large ribosomal 60S subunit (reviewed in Ciganda and Williams (2011); 

Pang et al. (2014)). 

 The RNA polymerase III transcription apparatus 1.4.1

RNAPIII is composed of a total number of 17 subunits, of which five subunits (Rpc160, 

Rpc128, Rpc40, Rpc19 and ABC23) build up its core structure. Five proteins are present in 

all RNA polymerases (ABC27, 23, 14.5, 10α, and 10β) and eight subunits are RNAPIII 

specific, from which five do not have RNAPI or RNAPII paralogues (Rpc31, Rpc34, Rpc37, 

Rpc53, and Rpc82). However, four of these RNAPIII subunits (all except Rpc31) were 

identified as ‘permanently recruited’ homologues of RNAPII general transcription factors (e.g. 

Rpc34 and Rpc82 show homologies to TFIIE α and β (Carter and Drouin, 2010; Kuhn et al., 

2007). Thus, many RNAPIII subunits show evolutionary conservation to RNAPI and RNAPII 

as well as to subunits of archaeal and bacterial polymerases (reviewed in Gabrielsen and 

Sentenac (1991); Geiduschek and Kassavetis (2001); Memet et al. (1988); Werner et al. 
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(2009)). Several other subunits join the above mentioned core to finally enable the complex 

to be recruited to its target genes (Wang and Roeder, 1997). A few years ago, the structure 

of RNAPIII was solved by cryo-electron microscopy and single-particle analysis at 9.9 Å 

resolution and at 16.5 Å resolution in the elongating form, showing the incoming DNA duplex 

as well as the exit pathway of the newly synthesized RNA (see Fig. 6B and Fernandez-

Tornero et al. (2010); Fernandez-Tornero et al. (2007)).     

 General transcription by RNAPIII is dependent on the three transcription factors 

TFIIIA, TFIIIB and TFIIIC. TFIIIB is a tripartite complex composed of Tbp (TATA-box binding 

protein), Bdp1 (B double prime 1), and Brf1 or 2 (TFIIB related factor 1 or 2). TFIIIC is the 

most complex transcription factor with total of six subunits (See below and Acker et al. 

(2013); Schramm and Hernandez (2002)).       

 Similar to RNAPII genes, the TSS of tRNA genes in yeast is free of nucleosomes and 

flanked by two highly positioned nucleosomes (-1 and +1 with a distance of each ~150-

200bp from the TSS) that contain the H2A histone variant H2A.Z, a marker for open 

chromatin at the 5’-end of RNAPII transcribed genes (Kumar and Bhargava, 2013; Lieb and 

Clarke, 2005; Mahapatra et al., 2011). As tRNA genes are rather small, the nucleosome free 

region mostly covers the whole gene body (reviewed in Bhargava (2013)). Together with the 

H2A.Z histone variant, nucleosomes closely located to transcribed tRNA genes show 

classical euchromatic histone modifications in humans, such as H3K4 tri-methylation and 

H3K4/9/23/27 acetylation (Moqtaderi and Struhl, 2004). These open structures are 

prerequisites for the high transcription rate, necessary to produce sufficient amount of tRNAs 

and ncRNAs in the exponentially growing cell. An estimation revealed that cells need 

approximately 3-6 million tRNAs per cell cycle/ division (Dieci et al., 2013). 

 RNAPIII promoter elements 1.4.2

Transcription by RNAPIII is initiated at three distinct types of promoters, which are highly 

diverse and have a relatively small number of cis-acting elements. These are located largely 

intragenically, and require only two or three transcription factors (TFs) for minimal 

transcriptional activity (see Fig. 5 and Acker et al. (2013); Orioli et al. (2012); White (2011) 

and references therein). In general, TFIIIC recruits TFIIIB to the transcription start site at type 

1 (with help of TFIIIA) and 2 promoters, whereas type 3 promoters use a different 

mechanism. 

The most common RNAPIII promoters are type 2 promoters that mainly drive transcription of 

the ~274 nuclear tRNA genes in S. cerevisiae, but are also present upstream of the SCR1 

(RNA of the signal recognition particle), SNR52 (coding for a C/D box small nucleolar 

RNAS), and RPR1 (coding for the RNA of RNase P) genes (see Fig. 5 for type 2 promoter 
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and Dieci et al. (2007); Guffanti et al. (2006); Hani and Feldmann (1998)). A typical type 2 

promoter consists of an A and a B box, which together recruit TFIIIC. Their transcribed 

sequences also build up the universally conserved D- and TψC-loops of the tRNA structure 

(see Fig. 8B, Introduction 1.5, and Orioli et al. (2012)). The A box is a precisely located 

sequence element 12-20 bp downstream of the transcription start site (TSS) with a flexible 

consensus sequence of T8RGYnnAnnnG (the number indicates the nucleotide position in 

respect to the canonical and mature tRNA sequence) that itself is insufficient to recruit TFIIIC 

to the DNA, but indispensable for TFIIIB recruitment and hence precise transcription initiation 

(Geiduschek and Kassavetis, 2001; Marck et al., 2006).     

 In contrast, the B box mostly functions as an activator and has a consensus 

sequence of G52WTCRAnnC (the number indicates the nucleotide position in respect to the 

canonical and mature tRNA sequence) (Marck et al., 2006). Its location is relatively flexible, 

as intronic sequences are usually interspersed between the A and B boxes (Orioli et al., 

2012). In addition, the promoters of the SCR1 and the SNR6 genes contain TATA boxes 

located 5’ of the transcription start sites (see Fig. 5 and Dieci et al. (2002); Eschenlauer et al. 

(1993)). The type 2 promoter structure of the SNR6 gene is an exception, as the B box is 

located around 120 bp downstream of the gene (Eschenlauer et al., 1993). In addition, it was 

shown that this gene can be transcribed in the absence of TFIIIC in vitro (Joazeiro et al., 

1994).             

 Type 1 promoters are exclusively present at the genes encoding the 5S rRNA, named 

RN5S in mammalians and RDN5 in yeast. A typical type 1 promoter has three internally 

located DNA elements: The A box, the intermediate element (IE), and the C box, which 

together constitute the Internal Control Region (ICR, see Fig. 5) and span around 50 bp on 

the DNA. During initiation at type 1 promoters, TFIIIA binds to the ICR and recruits TFIIIC 

(Rothfels et al. (2007) and Layat et al. (2013) and references therein).    

 In contrast to type 1 and 2 promoters, type 3 promoters are relatively rare and all their 

elements lie 5’ of the transcription start site: a distal sequence element (DSE), a proximal 

sequence element (PSE) and a TATA box (reviewed in Dieci et al. (2007); Orioli et al. 

(2012)). Type 3 promoters are only present in metazoan genomes, e.g. at the U6 snRNA 

gene. The DSE recruits the transcription factors Oct1 and STAF, whereas the PSE recruits 

the conserved multi-subunit SNAPc complex, which in turn binds TFIIIB and recruits it 

together with the TATA box to the promoter (Dumay-Odelot et al. (2010); Schramm and 

Hernandez (2002) and references therein). Notably, the promoter of the S. cerevisiae U6 

snRNA gene, SNR6, is of type 2 (instead of type 3 in metazoans) and contains an upstream 

TATA box in addition to the canonical A and B box (Brow and Guthrie, 1990; Eschenlauer et 

al., 1993). 

 



Introduction 

18 

 

Fig. 5: Schematic representation of RNAPIII promoter types. The three different promoter types and the 
approximate positions of promoter elements that drive expression of RNAPIII genes are depicted. The solid black 
bar represents flanking DNA regions, orange boxes the mature product, blue, green and yellow boxes show 
different promoter elements (A: A box, B: B box, C: C box, IE: interspersed element, ICR: Internal Control 
Region, DSE: distal sequence element and PSE: proximal sequence element) and red boxes mark the site of 
transcription termination (T-stretches). The arrows indicate the transcription start sites and note that gene sizes 
and distances are not in scale. Gene names on the right are representatives for each type of promoter. 

After assembling the pre-initiation complex (PIC), TFIIIB recruits RNAPIII to the gene at all 

three types of promoters (Acker et al. (2013) and references therein). 

 The RNAPIII transcription factor TFIIIA 1.4.3

In yeast, TFIIIA is a single DNA-binding protein (Tfc2) with a molecular weight of ~40 kDa 

(Wang and Weil, 1989), is highly conserved from yeast to human, and consists mostly of 

C2H2 zinc finger repeats (Acker et al., 2013; Layat et al., 2013). Using these ZnFs, TFIIIA 

contacts the ICR element at the 5S rRNA gene and TFIIIC. Furthermore, it has been 

reported that TFIIIA binds to the 5S rRNA with high specificity and thereby either protects the 

RNA from degradation or forms a storage RNP (7S RNP) that accumulates the 5S rRNA for 

later ribosomal biogenesis (reviewed in Layat et al. (2013)). 

 The RNAPIII transcription factor TFIIIB 1.4.4

The transcription factor TFIIIB is the key player that ultimately recruits RNA polymerase III to 

its target genes. TFIIIB is also responsible for opening the double-stranded DNA and thus for 

establishing a closed pre-initiation complex and the transcription bubble (Acker et al. (2013) 

and references therein and Kassavetis et al. (2001)).     

 TFIIIB is a heterotrimeric complex consisting of the TATA-box binding protein (Tbp), 

Brf1 (TFIIB related factor 1), and Bdp1 (B double prime 1) (see Fig. 6A, Geiduschek and 
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Kassavetis (2001) and references therein). DNA binding of TFIIIB to TATA-box containing 

genes is mediated by Tbp (~27 kDa). Interestingly, RNA polymerase III promoters are the 

most prominent binding targets for this general transcription factor that is also required in 

RNAPII PIC formation (Kim and Iyer, 2004). Once bound, Tbp sharply bends the DNA and 

this bending is preserved during TFIIIB assembly. Brf1 (~67 kDa) joins the Tbp-DNA 

complex, then called B’, and binds Tbp tightly via a large interacting surface that extends 

from the N-terminus of Tbp to the other site of the bent complex (see Fig. 6A, blue structure). 

This strong and very stable association of Tbp with class III gene promoters together with 

Brf1 is thought to contribute to the high levels of RNAPIII transcription in cells (reviewed in 

Acker et al. (2013); Geiduschek and Kassavetis (2001)). 

 

Fig. 6: Structural data for the RNAPIII transcription machinery. (A) Tbp binds directly to the DNA (non-
transcribed strand in grey, transcribed strand in orange) and interacts tightly with Brf1 (blue). The very large 
binding surface of Brf1 extends from the N-terminus of Tbp over the saddle-like structure that binds the DNA. 
The same region within Brf1 was mapped to interact with Bdp1 (not shown). The figure was generated using 
PyMol software from the PDB file [1NGM], (Juo et al., 2003). (B) The RNAPIII cryo EM structure with 
modeled DNA (light and dark blue), RNA (red), TBP (purple), and Brf1 (green and yellow) is shown during 
transcription elongation phase (modified after Fernandez-Tornero et al. (2011)). Interestingly, the fitted DNA 
accumulates a U-shaped structure, instead of an, as earlier proposed, L-like shape (Fernandez-Tornero et al., 
2011). 

 In contrast, TFIIIB is recruited to TATA-less RNAPIII genes in a mostly TFIIIC 

dependent manner via initial Brf1 recruitment to TFIIIC subunits together with Tbp (see below 

and Chaussivert et al. (1995); Deprez et al. (1999)), as well as (Male et al. (2015); Rameau 

et al. (1994) and Geiduschek and Kassavetis (2001) and references therein). Furthermore, 

RNAPIII is finally recruited to the assembled PIC on the respective RNAPIII gene by Brf1 

(Brun et al., 1997; Werner et al., 1993). 
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In higher cells, two homologues of Brf1 exist (Brf1 and Brf2). Brf1 is necessary and sufficient 

for transcription of type 1 and 2 promoter driven RNAPIII genes, whereas Brf2 is needed for 

expression of type 3 promoter containing genes (Schramm and Hernandez, 2002). 

 Bdp1 (~68 kDa), the last subunit in joining TFIIIB, is only weakly associated, but 

nevertheless mandatory for transcriptional activity in vitro (Geiduschek and Kassavetis, 

2001). The interaction of Bdp1 with Brf1 was mapped to a 66 amino acid long stretch at the 

C-terminus of Bdp1 (aa 410-476) that also comprises a SANT domain, the only sequence in 

Bdp1 with homology to other proteins (Kassavetis et al., 2006). Interestingly, the domain 

within Brf1 needed for Bdp1 interaction overlaps with the crystalized Tbp binding domain 

(see Fig. 6A) and presents Brf1 as a two-sided adhesive structure. Consistent with this is the 

finding that a Brf1N-Tbp-Brf1C fusion protein can replace Brf1 in vivo (Kassavetis et al., 2005). 

 The RNAPIII transcription factor TFIIIC 1.4.5

The S. cerevisiae TFIIIC complex has an approximate mass of ~520 kDa and is composed of 

the six subunits Tfc1, Tfc3, Tfc4, Tfc6, Tfc7, and Tfc8, which are further organized into two 

globular domains called τA (Tfc1, Tfc4 and Tfc7) and τB (Tfc3, Tfc6 and Tfc8). The domain 

names reflect the binding of each domain to either the A or B box promoter element 

(reviewed in Geiduschek and Kassavetis (2001)). Only recently, the first model of the overall 

TFIIIC architecture was reported, also showing how τA (Tfc4) and τB (Tfc3) interact (Male et 

al., 2015). Binding to the DNA is most likely mediated via the subunits Tfc1 and Tfc3, as 

suggested by UV crosslinks of TFIIIC and DNA (Ducrot et al., 2006; Gabrielsen et al., 1989). 

Tfc4 (τA) and Tfc8 (τB) have additional roles, as these subunits contact TFIIIB and therefore 

are crucial for its recruitment via interacting with Brf1 (N-terminal 580 aa containing TPR 

motifs) and Tbp on the one hand and Bdp1 on the other hand. As Bdp1 competes with Tfc3 

for binding to Tfc4 and B’, it might induce a break or a conformational change within TFIIIC, 

potentially leading to its partial displacement from the DNA (Male et al., 2015). In addition, 

interactions with RNAPIII subunits, e.g. Rpc53 and ABC10α, are described (Chaussivert et 

al. (1995); Deprez et al. (1999); Male et al. (2015) and reviewed in Geiduschek and 

Kassavetis (2001); Schramm and Hernandez (2002)).      

 TFIIIC is mostly involved during PIC formation and initiation of transcription on class 

III genes. It was suggested that TFIIIC leaves the DNA after transcription initiation, as only 

low levels of TFIIIC are present at transcribed genes (compared to TFIIIB and RNAPIII) and 

TFIIIB alone is sufficient to enable transcription on shorter genes (i.e. tRNA genes) in vitro 

(Dieci and Sentenac, 1996; Kassavetis et al., 1990). On the other hand, TFIIIC was shown to 

function in transcription reinitiation and/or elongation (Ferrari et al. (2004) and reviewed in 

Acker et al. (2013)). Which of these hypotheses or whether a combination of both holds true 

still remains to be shown, although the role of TFIIIC, depending on the local genomic 
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environment seems to be more complex than just being crucial for initial recruitment of 

TFIIIB.           

 Interestingly, TFIIIC was found to bind to isolated B boxes in the genome of 

S. cerevisiae and H. sapiens without other components of the RNAPIII machinery (Moqtaderi 

and Struhl, 2004; Moqtaderi et al., 2010). Being genomic association sites for TFIIIC, these 

isolated B boxes are discussed to be cis-acting elements for RNAPII transcription or, more 

general, to serve as ‘bookmarks’ for maintaining or delimiting chromatin states on the 

genomic landscape (Donze (2012); Kleinschmidt et al. (2011); Orioli et al. (2012) and 

references therein). Evidence for this was shown in S. pombe, where TFIIIC, bound to 

isolated B boxes, is involved in boundary formation against heterochromatin spreading 

(Noma et al., 2006). Although RNAPII and RNAPIII do not occupy the same set of genes in 

yeast (Venters et al., 2011), a crosstalk of RNAPII and RNAPIII transcription systems was 

shown in higher cells (Barski et al., 2010; Raha et al., 2010). Additionally, it was found that a 

TFIIIC bound B-box can negatively regulate transcription of a TFIIIC subunit (Kleinschmidt et 

al., 2011). Taken together, these observations point to additional TFIIIC-DNA association 

modes, which participate in chromatin organization and extend the possibility for RNAPII–

RNAPIII crosstalks (Orioli et al., 2012). 

 The RNAPIII transcription cycle and termination 1.4.6

After the PIC has formed at the promoter site of RNAPIII genes, RNAPIII is assembled over 

the TSS and the transcription bubble is opened. Initiation occurs and often -as with other 

polymerases- short, abortive transcripts are produced (Bhargava and Kassavetis, 1999). 

Once a stable elongation complex is formed, transcription proceeds through the gene body 

with a speed of 60-75 nt/s and a reinitiation interval of ~1.2 s (French et al., 2008). Although 

still prone to pausing and back-tracking (note that TFIIIA and TFIIIC bind intragenic, but do 

not affect overall transcription speed (0.2 sec delay for passing TFIIIC; Matsuzaki et al. 

(1994); Wolffe et al. (1986)), productive transcription advances until a simple T-rich repeat on 

the non-template strand is reached (Fig. 7; Acker et al. (2013); Geiduschek and Kassavetis 

(2001) and references within).         

 This poly(dT) stretch has been identified as the universal terminator for RNAPIII at 

every gene, irrespective of the promoter, other cis-elements, or trans-acting factors 

(Arimbasseri et al. (2013) and references therein). This signal is usually located ~20 bp 

downstream of the 3’-end of the mature RNA sequence. Depending on the organism, a 

minimum T-stretch (a series of thymidines in the DNA) of four (vertebrates) to six T residues 

(S. cerevisiae) is necessary to induce cleavage of the product and termination (reviewed in 

Arimbasseri et al. (2013); Orioli et al. (2012)). This mechanism is reminiscent of the factor 

independent, intrinsic termination in bacteria (reviewed in Santangelo and Artsimovitch 
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(2011)), but even requires less sequence elements. For example, a hairpin 5’-located of the 

oligo(dA) stretch is not required for efficient termination in S. cerevisiae (Arimbasseri et al., 

2014).           

 Transcription termination of the 17-subunit RNAPIII holoenzyme is dependent on the 

three intrinsic subunits Rpc53, Rpc37, and Rpc11 recognizing 5-7 thymidine residues on the 

non-template strand, thereby forming a pre-termination complex (PTC) (see Fig. 7, step 

2&3). These complexes are highly conserved and Rpc57 as well as Rpc37 share homology 

to the auxiliary factor TFIIF of RNAPII, whereas Rpc11 is homologous to TFIIS and Rpb9 

(Arimbasseri and Maraia (2015); Chedin et al. (1998) and reviewed in Arimbasseri et al. 

(2013)). A very recent study by Arimbasseri and Maraia showed how transcription is 

terminated on a molecular level (Arimbasseri and Maraia, 2015). Recognition of four Us (four 

uridines in the nascent RNA) by the subcomplex Rpc53/37 and Rpc11 leads to 

transformation of the elongating complex to a PTC. 

 

Fig. 7: RNAPIII termination mechanism. (1) The RNA polymerase III (blue) with the subcomplex C53/37 
(ruby/green) and C11 (red) encounters the terminator. (2) The elongating complex is destabilized and the PTC is 
formed by recognition of T3/T4 through C53/37. (3) Synthesis of >4Us and recognition of T5 on the non-template 
strand leads to switching from the PTC to transcript release mode. Cleavage of the nascent transcript is dependent 
and mediated by the C11 subunit and finally (4) the nascent transcript is released. Figure modified after 
Arimbasseri and Maraia (2015). 

Upon addition of subsequent Us, the T5-stretch and Rpc37 are important for switching the 

polymerase to a transcript release compatible mode (see Fig. 7, step 3). Release of the 

transcript occurs after transcript cleavage, which is dependent on the C11 subunit (Fig. 7, 
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step 4 and Chedin et al. (1998)). Albeit transcription can be alternatively terminated in an 

Rpc53/37 and Rpc11-independent manner when a minimum of eight U residues are 

synthesized, most RNAPIII terminators contain seven or less Ts preferring an Rpc53, Rpc37 

and Rpc11 dependent termination mechanism (Arimbasseri and Maraia, 2013; Rijal and 

Maraia, 2013). The possibility of this termination factor independent termination and the 

efficient release of RNAs consisting of small U stretches (1-4Us) without a non-template 

strand points toward a termination mechanism initially activated by the weak rU:dA hybrid 

(see Fig. 7 and Arimbasseri and Maraia (2015)). Especially this kind of hybrid is very 

unstable and was proposed to be very important in general transcription termination 

throughout evolution (Martin and Tinoco, 1980). As with many essential processes in the cell, 

important steps are not coupled to the function of a single protein. The same is true for 

transcription termination, as one of the first proteins that interact with the nascent tRNA, Lhp1 

with its human homologue La, was found to be important for the release of new transcripts 

and re-initiation of the transcription cycle (Maraia et al., 1994). It was first described as a 

chaperone for RNAs transcribed by RNAPIII and binds to them sequence- and length-

specific to oligo(U) sequences of the RNA (reviewed in Arimbasseri et al. (2013); Maraia 

(2001)). This and other proteins, such as Rpc1 and Rpc2, Tfc6 or the human PC4 (Sub1 in 

S. cerevisiae), NF1 or TFIIICβ have been proposed to aid in transcription termination of 

RNAPIII (Acker et al. (2013) and references therein). 

 RNAPIII recycling is required for multiple rounds of transcription 1.4.7

The need of tRNAs and other ncRNAs in the cell is high, as rRNAs and tRNAs represent up 

to 95% of cellular RNA (~10% tRNA; White (2005)). Therefore, efficient transcription 

mechanisms had to be evolved to meet these high requirements. One way to do so is 

entitled ‘facilitated recycling’, in which a polymerase that transcribed a gene is committed 

predominantly to reinitiation on the same gene, thereby circumventing the slow steps of 

initiation. Hence, a new transcription cycle is completed up to 10-fold faster than the initial 

round of transcription, but only when a proper termination signal is present (Dieci and 

Sentenac, 1996). Interestingly, recycling RNAPIII is also approximately 10-fold less sensitive 

to Heparin treatment, which sequesters the polymerase from the gene by occupying the DNA 

binding site of RNA polymerases (Dieci and Sentenac, 1996).    

 Without facilitated recycling, RNAPIII is released from the gene into a free pool of 

RNAPIII after completing a full round of transcription (see Fig. 8A, 1). As a new round of 

transcription again requires the formation of the initiation factors and recruitment of the 

polymerase, which is the rate-limiting step, synthesis levels are comparably low. In contrast, 

facilitated recycling does not result in free polymerase, but rather tethers a single polymerase 

to a gene (see Fig. 8A, 2) (Dieci and Sentenac, 1996; Ferrari et al., 2004). However the 
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complete mechanism of how the polymerase is transferred back to the promoter to reinitiate 

transcription (see Fig. 8A) still remains elusive.      

 It is anticipated that the polymerase never leaves the vicinity of the promoter during 

transcription of the small tRNA genes. As the DNA is bent by TFIIIB and TFIIIC (bending not 

shown in Fig. 8A) into a potential gene loop, it is thought that the polymerase is reloaded on 

the same promoter. The still assembled PIC then promotes another round of transcription 

(Dieci et al., 2013; Dieci and Sentenac, 1996; Ferrari and Dieci, 2008; Ferrari et al., 2004; 

Leveillard et al., 1991). Although, in vitro a basic reinitiation only relies on the presence of 

TFIIIB, TFIIIC is needed for efficient transcription reinitiation especially of long RNAPIII 

genes (>300 bp) (Ferrari et al., 2004). In addition, it is discussed in the field, whether Rpc11 

has a function in fostering reinitiation (Dieci et al., 2013). Furthermore, it was reported for 

H. sapiens that facilitated recycling protects the RNA polymerase III from repression by Maf1, 

the conserved, negative regulator of RNAPIII (Cabart et al., 2008). 

 

Fig. 8: Recycling of RNAPIII and tRNA structure. (A) A model of the reinitiating RNAPIII is depicted. (1) 
Classical initiation/ reinitiation from a free pool of RNAPIII. (2) Facilitated recycling by reloading the nearby 
polymerase to the same gene promoter with an intact PIC. Especially for long genes, TFIIIC is required for 
efficient reinitiation. See text for details. (B) Secondary cloverleaf structure and schematic of modifications of 
tRNA is shown. (D): D-loop, (A): Anticodon loop, (T): TψC-loop, blue area: acceptor stem, red area: D-arm, 
orange area: anticodon arm, purple area: variable loop and green area: T-loop. Unmodified bases (green circles), 
modified bases (pink), additional bases (white), the anticodon (red) and the CCA end (blue) are depicted. The 5’- 
and 3’-ends of the tRNA are highlighted. See text for details. Figure modified after Phizicky and Hopper (2010). 
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 tRNA and tRNA metabolism 1.5

 tRNA structure and function 1.5.1

After the nascent tRNA transcripts are released from the polymerase, they usually contain 5’-

leader and 3’-trailer sequences and optionally introns (22% of all tRNA genes in yeast) that 

need to be removed to yield the typical 75-90 nt, long-living tRNAs that are present in all 

kingdoms of life. Forming the typical L-like tertiary structure, its secondary structure is often 

visualized as the known cloverleaf structure (see Fig. 8B). In this structure, five main 

domains can be recognized. These include (1) a relatively unmodified acceptor stem (Fig. 

8B, blue area) that is extended with CCA bases on the 3’-end, where eventually an amino 

acid is coupled to by aminoacyl tRNA synthetases and (2) the D-loop (Fig. 8B, red area), 

which is important for tRNA recognition by aminoacyl tRNA synthetases together with the 

anticodon (Shimada et al., 2001). Furthermore, an (3) A-loop is present (Fig. 8B, orange 

area) that includes the important anticodon and hence is crucial for decoding the genetic 

information on the mRNA by providing the correct amino acid to the nascent peptide chain. A 

(4) variable loop (Fig. 8B, purple area) and the (5) TψC-loop (Fig. 8B, green area) that binds 

to the 5S rRNA of the large subunit of the ribosome complete the secondary cloverleaf 

structure of tRNAs (Grummt et al. (1974) and Hopper (2013); Hopper and Huang (2015); 

Phizicky and Hopper (2010) and references therein). The most important function of this 

structural RNA is to serve in translation, linking the genetic information of the nucleic acid 

sequence to the amino acids that are incorporated into the nascent polypeptide.  

 tRNA maturation, export and degradation 1.5.2

Being synthesized as precursors, tRNAs undergo a variety of maturation events. Post-

transcriptionally, the 5’-leaders and 3’-trailers (Fig. 9, purple extensions on tRNA) are 

cleaved, respectively. The nucleolar RNase P complex consists of nine proteins (Pop1, 

Pop3-8, Rpp1 and Rpp2) and the RPR1 RNA, which is transcribed by RNAPIII (Lee et al. 

(1991) and reviewed in Xiao et al. (2002)). Recognizing at least two structural domains of 

pre-tRNAs (acceptor stem and the TψC-loop), RNase P is mostly sufficient to generate 

mature 5’-ends of tRNAs (Schon (1999) and references therein). In contrast to that, 3’-end 

maturation is more complex and involves the endonuclease RNase Z, the 3’-5’ exonuclease 

Rex1, and molecular chaperone Lhp1 (La in H. sapiens) (reviewed in Hopper (2013)). After 

trimming of the 3’-end, the CCA residues are added to every tRNA by the tRNA nucleotidyl 

transferase Cca1 (and its isoforms) (Aebi et al., 1990; Martin and Hopper, 1994). This is a 

prerequisite for the aminoacylation of tRNAs, which is conducted by aminoacyl tRNA 

synthetases through covalently attaching a specific amino acid to the ribose of the last 3’-A 
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base of the selected tRNA under ATP consumption (reviewed in Pang et al. (2014)). In 

addition, this process is one of the key fidelity steps for correct translation, as it defines the 

amino acid that will be inserted into a translated protein dependent on a specific codon. 

Hence, some synthetases have evolved amino acid editing mechanisms (Pang et al., 2014). 

In addition to these terminal processing events, intron-containing tRNAs have to be spliced 

before they can function in translation. They are first exported by Los1 after the initial 

modifications took place (see above and Fig. 9, green area) or leave the nucleus as pre-

tRNAs (Fig. 9, blue area), as the splicing occurs on the cytoplasmic surface of mitochondria. 

In yeast, the splicing machinery consists of three parts: (i) the tRNA splicing endonuclease 

complex (Sen complex), (ii) the tRNA ligase (Trl1), and (iii) the 2’ phosphotransferase (Tpt1) 

(reviewed in Hopper and Huang (2015); Phizicky and Hopper (2010)). Subsequently, tRNAs 

are aminoacylated either in the cytoplasm or after their reimport into the nucleus (Fig. 9).  

 

Fig. 9: tRNA quality control overview. Intron-containing tRNA modification and control pathways are 
depicted. Green area: Correct tRNA modification and export. Intron-containing tRNAs are spliced on the outer 
surface of the mitochondria, reimported, aminoacylated, and re-exported to serve in translation. Non-intron 
containing tRNAs are aminoacylated in the nucleus in addition before export. Blue area: Same as in green area, 
but tRNAs are exported prior to end processing, spliced, reimported, and eventually processed or degraded. Red 
area: The various ways of tRNA degradation in the cytoplasm and the nucleus are shown. Black arrows: 
maturation pathways, red arrows: degradation pathways, pink arrows: hypomodified tRNAs, green boxes: 
proteins involved in tRNA export, aaRS: aminoacyl-tRNA synthetases. See text for details. Figure modified after 
Hopper and Huang (2015).  
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Here, additional processing occurs or defective / non-correctly spliced tRNAs are degraded 

(Phizicky and Hopper, 2010). In addition to the mentioned sequence alterations, a plethora of 

base modifications are known for tRNAs. In total, up to 85 modifications have been described 

in all kingdoms (25 in yeast) and usually a combination of 7-17 of these are found in each 

mature tRNA (see Fig. 8B and El Yacoubi et al. (2012); Phizicky and Hopper (2010) and 

references therein). These include acetylation, isopentenylation, methylation, 

pseudouridylation (ψ), or uridine thiolation of pre-tRNA, to name but a few. These base 

modifications play important roles mostly in codon-anticodon recognition, translation fidelity, 

correct tRNA positioning inside the ribosome or tRNA stability (Phizicky and Hopper (2010) 

and references therein). 

tRNA degradation is also highly regulated, depending on the stage of tRNA life. If the tRNA 

processing is too slow, or hypomodification is recognized, an oligo(dA) tail will be attached to 

the 3’-end of the tRNA and it is degraded by the exosome (Fig. 9, upper red area, Parker 

(2012) and references therein). The 5’-3’ exonucleases Rat1 and the cytoplasmic Xrn1 

function in later stages of tRNA life, once the tRNA is matured but is lacking specific 

modifications that cannot be repaired (Fig. 9, lower red area).    

 The latter mechanism, named rapid tRNA decay (RTD), requires Met22, a methionine 

biosynthetic enzyme, to efficiently break down tRNAs (Chernyakov et al., 2008). 

 

 tRNA associated diseases 1.6

Evidence exists that tRNAs function in a variety of cellular pathways, such as stress 

response, gene expression, regulation of apoptosis by binding to cytochrome C or translation 

regulation by cleavage of tRNAs into tiRNA after heat shock (Mei et al. (2010); Yamasaki et 

al. (2009) and reviewed in Raina and Ibba (2014)). Furthermore, several diseases have been 

identified to be caused by defects in tRNA biology. For example, tRNA levels are often 

upregulated in cancer, impaired aminoacylation causes neurological or mitochondrial 

diseases like Charcot-Marie-Tooth syndrome or ataxia. Conversely, it has also been 

described that reduced tRNA levels can lead to neonatal death or hypoplasia, especially 

during development (reviewed in Kirchner and Ignatova (2015)). Interestingly, incorrect or 

insufficient processing of tRNAs has also been linked to Amyotrophic Lateral Sclerosis (ALS) 

or Parkinson’s Disease (PD) (Anderson and Ivanov (2014) and references therein). In 

addition, an emerging role for tRNA halves and processing products (e.g. for the 5’-leader or 

the 3’-trailer) in varying cellular processes is discussed in the field (Deng et al. (2015); 

Haussecker et al. (2010), Anderson and Ivanov (2014) and references therein). 
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 Additional RNAPIII transcription factors and effectors 1.7

As already outlined above, efficient synthesis of RNAPIII products is crucial for many 

different processes in the cell, especially for protein biosynthesis, i.e. providing the structural 

5S rRNA and tRNAs. Therefore, an understanding of regulatory factors that fine-tune 

RNAPIII transcription is important. Biochemical and genome-wide studies have identified 

several factors influencing the expression of class III genes, in addition to TFIIIB and TFIIIC. 

To mention but a few, Maf1, Dst1 (TFIIS), Sub1, Myc, Rb and p53 have been identified to 

function in RNA polymerase III transcription (Ghavi-Helm et al. (2008); Pluta et al. (2001); 

Tavenet et al. (2009) and Acker et al. (2013); White (2005) and references therein). 

Maf1, as mentioned above, is a key negative regulator of RNAPIII transcription. It represses 

transcription by RNAPIII in response to stress conditions (Roberts et al., 2006). Additionally, 

a ∆maf1 deletion strain shows accumulation of pre-tRNAs in the nucleus. This is due to non-

mature transcripts that saturate the tRNA exporter Los1 (Karkusiewicz et al., 2011). Upon 

various stress conditions, Maf1 is dephosphorylated, imported into the nucleus, and can 

interact with RNAPIII. Co-localizing genome-wide with RNAPIII, Maf1 inhibits steps before 

and after the PIC formation (Pluta et al., 2001; Roberts et al., 2006; Vannini et al., 2010). 

 Dst1/ TFIIS is a general elongation factor in yeast and helps RNAPII to read through 

transcription blocks by stimulating the nascent transcript cleavage activity of RNAPIII at 

arrest sites (Ubukata et al., 2003). In addition to that, Dst1 was identified to bind to all 

RNAPIII transcribed genes in yeast and mouse, to function in RNAPIII transcription, and to 

be involved in start site selection (Carriere et al., 2012; Ghavi-Helm et al., 2008). Another 

RNAPII auxiliary factor identified in RNAPIII transcription is Sub1 and its human homologue 

PC4. Sub1/ PC4 was first identified as a coactivator of RNAPII and is required for cellular 

processes such as transcription, DNA repair and replication (Conesa and Acker (2010) and 

references therein). Genome-wide data revealed that Sub1 binds to RNAPIII genes, interacts 

with the transcription machinery and helps efficient initiation and reinitiation of RNAPIII 

transcription in vitro (Tavenet et al., 2009).      

 Furthermore, chromatin modifying enzymes and remodeling complexes have been 

proposed to influence RNAPIII transcription. Detailed mechanisms are not known yet, but 

remodeling complexes are thought to adapt and maintain the local chromatin state 

(euchromatin) and to keep tRNA genes free from nucleosomes (Kumar and Bhargava (2013) 

and Acker et al. (2013); Bhargava (2013) and references therein). In good accordance with 

the nucleosome free region of tRNA genes, RSC (Remodel the Structure of Chromatin), an 

ATP-dependent chromatin remodeling complex, interacts with RNAPIII and was found to be 

necessary for a low density of nucleosomes in this region (Bhargava (2013) and references 

therein). Moreover, RSC promotes the recruitment of the FACT complex (Facilitates 
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Chromatin Transcription) to the SUP4 gene for keeping it nucleosome-free (Mahapatra et al., 

2011). A factor potentially interacting with RSC is Nhp6. Nhp6 delineates the two highly 

homologues and functionally redundant proteins Nhp6A and Nhp6B that bind to DNA in a 

sequence-unspecific manner via their HMG (high mobility group) B domains and modulate 

chromatin structure (reviewed in Acker et al. (2013). It was described that Nhp6 enhances 

transcription of SNR6 genes in vitro and is necessary for transcriptional initiation fidelity of 

some RNAPIII genes (Kassavetis and Steiner, 2006; Kruppa et al., 2001). Strikingly, ∆nhp6 

mutants, i.e. in which Nhp6 is lost from RNAPIII genes, display changed chromatin structure 

over the TATA box of SNR6. Furthermore, barrier activity against heterochromatin spreading 

over a tested tRNA gene is compromised (Braglia et al., 2007; Lopez et al., 2001; Venters et 

al., 2011).           

 Many more proteins have been implicated in RNAPIII transcription, e.g. Fkh1, Reb1, 

or Yap6. These proteins are transcriptional effectors of RNAPII and were identified in 

genome-wide binding analyses (Venters et al., 2011). Unfortunately, their function in RNAPIII 

transcription remains elusive, just as their potential to link the RNAPII and RNAPIII 

transcription systems. Another example is Yox1, which is a homeodomain-containing 

transcriptional repressor that binds to tRNA genes and intergenic regions in close proximity 

(Horak et al., 2002; Kaufmann, 1993). As before, no exact role for this protein has been 

revealed in RNAPIII transcription yet. 

 

 Aims and Scope 1.8

The correct and efficient expression of tRNAs and other ncRNAs by RNA polymerase III is a 

crucial and highly regulated process. Nearly a decade ago, the first complete recombinant 

reconstituted RNAPIII transcription system was described and it was found that this system 

has only low transcription rates, compared to isolated, transcription active cell fractions 

(Ducrot et al., 2006). This strongly highlights the necessity of additional proteins that help the 

polymerase to effectively produce tRNAs and other ncRNAs. In the last decade, genome-

wide studies indeed led to the discovery of several proteins in varying species with a function 

in RNAPIII transcription, whereas the detailed molecular mechanisms often still remain 

elusive (reviewed in Acker et al. (2013)). 

Serendipitously, when investigating the genome-wide localization of the THO/TREX complex 

and other proteins involved in nuclear mRNP biogenesis, the poly(A)-binding protein Nab2 

was found to occupy all tRNA and other ncRNA gene loci examined (Meinel, 2013). 

 Nab2 was originally identified as an essential nuclear polyadenylated RNA-binding 
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protein, in particular important for poly(A) tail length control and export of mRNAs (Anderson 

et al. (1993) and reviewed in Soucek et al. (2012)). Binding to the mRNA occurs shortly after 

transcription or during 3’-end processing and Nab2 accompanies the mRNP to the 

cytoplasm, where it leaves the mRNA and travels back to the nucleus. Additionally, 

orthologues of Nab2 have been identified throughout evolution from yeast to humans (see 

Kelly et al. (2014); Pak et al. (2011) and Introduction, 1.3.3). Hence, it was surprising to find 

an mRNP biogenesis factor that occupies RNAPIII genes. 

The localization of Nab2 to RNAPIII genes raised the question whether Nab2 functions in 

RNAPIII transcription and if so, which function would be fulfilled by Nab2. Hence, starting 

from the genome-wide data, the first aim of this PhD project was to identify whether Nab2 is 

functioning in RNAPIII transcription. As a starting point, the first task of this project was the 

generation of a new conditional allele of NAB2 or a functional degron to deplete Nab2 fast 

from cells. This mutant could subsequently be used to investigate the potential function of 

Nab2 in RNAPIII transcription. Furthermore, it was investigated whether Nab2 interacts 

physically with RNAPIII. Co-occupancies should be confirmed on single target genes. 

 Having identified Nab2 being required for the synthesis of wild-type tRNA levels, the 

second aim was to investigate the molecular mechanism of how Nab2 can stimulate RNAPIII 

transcription. For this, specific assays, such as whole-cell extract based, as well as fully 

reconstituted in vitro transcription assays were set up and performed to detect a stimulation 

of Nab2 on the transcriptional output. In addition, the involvement of the transcription 

initiation factors TFIIIB and TFIIIC was tested. 
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2. Material and Methods 

 

 Material 2.1

 Chemicals and consumables 2.1.1

If not stated otherwise, chemicals and consumables were purchased from the following 

companies: Agilent Technologies (Waldbronn, Germany), Applichem GmbH (Darmstadt, 

Germany), Applied Biosciences (Darmstadt, Germany), Beckman Coulter (Krefeld, 

Germany), Bio-Rad (Hercules, USA), Biozym (Hess. Oldendorf, Germany), Carl Roth 

(Karlsruhe, Germany), Diagenode (Liege, Belgium), Eppendorf (Hamburg, Germany), 

Fermentas (St. Leon-Rot, Germany), Formedium (Norwich, UK), Fujifilm Corporation (Tokyo, 

Japan), GE Healthcare Europe (Freiburg, Germany), Gilson (Bad Camberg, Germany), 

Hartmann Analytic GmbH (Braunschweig, Germany), Invitrogen (Karlsruhe, Germany), Jena 

Bioscience GmbH (Jena, Germany), Life Technologies (Carlsbad, USA), Macherey&Nagel 

(Düren, Germany), MembraPure (Bodenheim, Germany), Merck Biosciences (Darmstadt, 

Germany), Millipore (Molsheim, France), Mobitec (Göttingen, Germany), Molecular Probes 

(Eugene, USA), Nanoprobes (Yaphank, USA), NEB (Frankfurt, Germany), Neolab 

(Heidelberg, Germany), Open Biosystems (Huntsville, USA), Promega (Mannheim, 

Germany), Qiagen (Hilden, Germany), Quantifoil Micro Tools GmbH (Jena, Germany) Roche 

(Mannheim, Germany), Sarstedt (Nümbrecht, Germany), Serva (Heidelberg, Germany), 

Sigma (Taufkirchen, Germany), Spectrum Europe B.V. (Breda, Netherlands), Stratagene 

(Amsterdam, Netherlands), Thermo Scientific (Munich, Germany), VWR (Ismaning, 

Germany). 

 Equipment 2.1.2

The used equipment is listed in Table 1. 

Table 1: Equipment 

Name Supplier 
AEKTA Purifier  GE Healthcare (Freiburg, Germany) 
BAS IP SR2040 E Fujifilm (Tokyo, Japan 
Bioruptor UCL 200 Diagenode  (Liege, Belgium) 
Beckman DU650 spectrophotometer  Beckman Coulter (Krefeld, Germany) 
ChemoCam Imager ECL HR 16-3200 Intas, (Göttingen, Germany) 
CME microscope Leica (Buffalo, USA) 
CO8000 Cell Density Meter  WPA (Cambridge, UK) 
Dissection microscope MSM 400 Singer Instruments (Somerset, UK) 
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Electrophoresis Power Supply Consort E835 Neolab (Heidelberg, Germany) 
Eppendorf centrifuge 5415D, 5424R  Eppendorf (Hamburg, Germany) 
Gel iX20 Intas (Göttingen, Germany) 
Heating oven BINDER GmbH (Tuttlingen, Germany) 
Heidolph shaker duomax 1030  Neolab (Heidelberg, Germany) 
Hybaid Mini Oven Thermo Fisher Scientific (Munich, Germany) 
Innova 44 shaking incubator New Brunswick Scientific (Nürtingen) 
Incubator shaker ISF-1-V Adolf Kühner AG (Basel, Switzerland) 
Laser Scanning microscope Zeiss LSM510 
Mini-Protean II system, Mini Trans-Blot Cell Bio-Rad Laboratories (Herucles, USA) 
Model 583 gel dryer Bio-Rad Laboratories (Hercules, USA) 
Morgagni transmission electron microscope  FEI (Hillsboro, USA) 
Multitron Pro / Labotron shaker Infors HT (Einsbach, Germany) 
Optima TM L-90 K and L80 ultracentrifuge Beckman Coulter (Krefeld, Germany) 
Optimax TR developing machine  MS Laborgeräte (Dielheim, Germany) 
Pipetboy acu INTEGRA Biosciences AG (Zizers, 

Switzerland) 
pH 211 Microprocessor pH meter  HANNA instruments (Woonsocket, USA) 
Poros HS 50 10/100 Life Technologies (Carlsbad, USA) 
Pulverisette  Fritsch (Idar-Oberstein, Germany) 
Rotanda 46R, 460R  Hettich (Tuttlingen, Germany) 
Rotator, Vortex Genie2  Neolab (Heidelberg, Germany) 
Semi Dry Blot Apparatus Peqlab (Erlangen, Germany) 
SLC 6000, GS3, SW34 rotor  Thermo Fisher Scientific (Munich, Germany) 
Spectrophotometer ND-1000 Thermo Fisher Scientific (Munich, Germany) 
Sonifier 250  Branson (Danbury, USA) 
Sorvall Evolution RC, RC 5B Plus Thermo Fisher Scientific (Munich, Germany) 
StepOnePlus Real Time PCR System  Applied Biosystems (Darmstadt, Germany) 
Sunrise Microplate Absorbance Reader Tecan Group Ltd. (Männedorf, Switzerland) 
Superose 6 10/300 GL GE Healthcare (Freiburg, Germany) 
SW-22 shaking waterbath Julabo (Seelbach, Germany) 
SW32, SW40 rotor  Beckman Coulter (Krefeld, Germany) 
T3 Thermocycler Biometra (Göttingen, Germany) 
Thermomixer compact, BioPhotometer Eppendorf (Hamburg, Germany) 
Trans-Blot Cell Bio-Rad Laboratories (Herucles, USA) 
Trans-Blot Semidry Blotter Bio-Rad Laboratories (Herucles, USA) 
Typhoon FLA-9500 / 9400 GE Healthcare (Freiburg, Germany) 
Unichromat 1500 Uniequip (Martinsried, Germany) 
Universal Analytical Balance Satorius (Göttingen, Germany) 
UV Crosslinker FB-UVXL-1000 Fisher Scientific (Hampton, USA) 
Vakulab S3000 MMM GmbH (Planegg, Germany) 
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 Media and buffers 2.1.3

Media and buffers were prepared with MilliQ water (Merck, Darmstadt, Germany) and 

autoclaved (120°C, 20 min). Heat sensitive solutions and buffers used in chromatography 

were sterile-filtered (0.22 µm) prior to use. Glassware was washed, dried and eventually 

autoclaved as stated above. Specific buffers for experiments are mentioned in section 2.2. 

Table 2: Media 

Media Composition 
‘Lysogeny’ Broth (LB) 1% (w/v) tryptone; 0.5% (w/v) yeast extract; 0.5% (w/v) NaCl; (2% 

(w/v) agar for plates) 

Synthetic complete 
dropout medium 
(SDC) 

0.67% (w/v) yeast nitrogen base; 0.06% (w/v) complete synthetic 
mix of aa; drop out as required; 2% (w/v) glucose; when required 
0.1% (w/v) 5-FOA was added; (2% (w/v) agar plates) 

Sporulation medium 
(YPA) 

2% (w/v) peptone; 1% (w/v) potassium acetate; 1% (w/v) yeast 
extract; 2% (w/v) agar 

Yeast full medium 
(YPD) 

2% (w/v) peptone; 2% (w/v) glucose; 1% (w/v) yeast extract; (2% 
(w/v) agar for plates) 

HEK293T cell 
medium 

Dulbecco’s minimal essential medium supplemented with 10% fetal 
bovine serum, 1x L-glutamine and penicillin/streptomycin 

 

Table 3: Buffers 

Buffer Composition 
5x Bradford reagent 0.05% (w/v) Coomassie Brilliant Blue G-250, 25% Ethanol, 42.5% 

Phosphoric acid  

Coomassie stain 
solution 

0.25% (w/v) Coomassie Brilliant Blue R-250, 30% (v/v) ethanol, 10% 
(v/v) acetic acid 

Destain solution 30% (v/v) ethanol, 10% (v/v) acetic acid 

6x DNA loading dye 40% (w/v) sucrose, 0.25% bromphenol blue, 0.25% xylene cyanole 
FF, 

1x Formamide 
loading buffer 

90% (v/v) Formamide, 1x TBE buffer, 0.05% bromphenol blue, 
0.05% xylene cyanole FF 

Phosphate-buffered 
saline (PBS) 

137 mM NaCl, 2,7 mM KCl, 20 mM NaH2PO4, 10 mM Na2HPO4 
(pH 7.5) 

Protease inhibitor 
(100x) 

8 ng/ml Leupeptin, 137 ng/ml Pepstatin A, 17 ng/ml PMSF, 
0.33 mg/ml Benzamidine, solved in 100% EtOH (p.a.) 

4x SDS sample 
buffer 

0.2 M Tris-HCl (pH 6.8); 40% (v/v) glycerol, 8% (w/v) SDS, some mg 
of bromophenol blue, 0.1M DTT 

SDS-PAGE running 
buffer 

25 mM Tris, 0.1% (w/v) SDS, 0.19 mM glycine 

4x separating SDS-
gel buffer 

3 M Tris, 0.4% (w/v) SDS, pH 8.8 (HCl) 

4x stacking SDS-gel 
buffer 

0.5 M Tris, 0.4% (w/v) SDS, pH 6.8 (HCl) 
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20x SSC buffer 300 mM sodium citrate (pH 7), 3M NaCl 

50x TAE 2 M Tris, 100 mM EDTA, pH 8.0; 1 M acetic acid 

TE (1x) 1 mM EDTA, 10 mM Tris-HCl, pH 8.0 

Tris-buffered 
saline(TBS) 

137 mM NaCl, 2.7 mM KCl, 12.5 mM Tris-HCl (TBS-T: add 0.1% 
(v/v) Tween-20) 

Wet blotting buffer 25 mM Tris, 192 mM glycine, 10% methanol 

10x KNOP buffer 500 mM Tris-HCl (pH 9.2), 160 mM (NH4)2SO4, 22.5 mM MgCl2 

 

 Organisms 2.1.4

 Yeast strains and cultivation 2.1.4.1

Wild-type strains were initially purchased from Euroscarf (Frankfurt, Germany). If not stated 

otherwise, cultures were grown in YPD at 30°C and shaking at 230 rpm. Lists with strains 

and organisms used in this study can be found in the tables below. 

Table 4: Saccharomyces cerevisiae Strains 

Strain Genotype Reference 

BY4741 MATa; his3∆1; leu2∆0; met15∆0; ura3∆0 Euroscarf 

RS453 
MATa; ade2-1; his3-11,15; ura3-52; leu2-3,112; trp1-1; 
can1-100; GAL+ 

Euroscarf 

W303 
MATa; ura3-1; trp1-1; his3-11,15; leu2-3,112; ade2-1; can1-
100; GAL+ 

Euroscarf 

∆mod5 MATa; mod5::kanMX4; his3∆1; leu2∆0; met15∆0; ura3∆0 Euroscarf 

BDP1-TAP 
MATa; BDP1-TAP::TRP1; ade2-1; his3-11,15; ura3-52; leu2-
3,112; trp1-1; can1-100; GAL+ 

this study 

BRF1-HA 
MATa; BRF1-HA::HIS3mx6; ade2-1; his3-11,15; ura3-52; 
leu2-3,112; trp1-1; can1-100; GAL+ 

this study 

HPR1-TAP MATa; HPR1-TAP::URA3; his3∆1; leu2∆0; met15∆0; ura3∆0 
(Meinel et 
al., 2013) 

NAB2-AID 
MATa; NAB2-AID::kanMX6; ura3-1; trp1-1; his3-11,15; leu2-
3,112; ade2-1; can1-100; GAL+; ura3::pNHK53 

this study 

NAB2 shuffle 
MATa ;nab2::HIS3; ura3-1; trp1-1; his3-11,15; leu2-3,112; 
ade2-1; can1-100; GAL+; pRS316-NAB2 

this study 

NAB2 shuffle 
BDP1-TAP 

MATa ;nab2::HIS3; BDP1-TAP::TRP1; ura3-1; trp1-1; his3-
11,15; leu2-3,112; ade2-1; can1-100; GAL+; pRS316-NAB2 

this study 

NAB2 shuffle 
RPC160-TAP 

MATa; nab2::HIS3; RPC160-TAP::TRP1; ura3-1; trp1-1; 
his3-11,15; leu2-3,112; ade2-1; can1-100; GAL+; pRS316-
NAB2 

this study 

NAB2 shuffle 
TFC1-TAP 

MATa ;nab2::HIS3; TFC1-TAP::TRP1; ura3-1; trp1-1; his3-
11,15; leu2-3,112; ade2-1; can1-100; GAL+; pRS316-NAB2 

this study 
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Nab2-TAP 
MATa; NAB2-TAP::TRP1; ade2-1; his3-11,15; ura3-52; leu2-
3,112; trp1-1; can1-100; GAL+ 

this study 

Nab2-TAP 
BRF1-HA 

MATa; NAB2-TAP::TRP1; BRF1-HA::HIS3mx6; ade2-1; 
his3-11,15; ura3-52; leu2-3,112; trp1-1; can1-100; GAL+ 

this study 

Nab2-TAP 
TFC8-HA 

MATa; NAB2-TAP::TRP1; TFC8-HA::HIS3mx6; ade2-1; 
his3-11,15; ura3-52; leu2-3,112; trp1-1; can1-100; GAL+ 

this study 

NAB2-TAP 
RPC160-HA 

MATa; NAB2-TAP::TRP1; RPC160-HA::HIS3mx6; ade2-1; 
his3-11,15; ura3-52; leu2-3,112; trp1-1; can1-100; GAL+ 

this study 

RPA190-TAP 
MATa; RPA190-TAP::TRP1; his3-11,15; ura3-52; leu2-
3,112; trp1-1;can1-100; GAL+ 

this study 

RPB3-TAP MATa; RPB3-TAP::HIS3; his3∆1; leu2∆0; met15∆0; ura3∆0 
(Meinel et 
al., 2013) 

RPC25 

(YPH500) 

MATα; ura3-52; lys2-801_amber; ade2-101_ochre; trp1-∆63; 
his1-∆200; leu2-∆1 

(Zaros and 
Thuriaux, 

2005) 

RPC25 
NAB2-TAP 

MATα; NAB2-TAP::TRP1; ura3-52; lys2-801_amber; ade2-
101_ochre; trp1-∆63; his1-∆200; leu2-∆1 

this study 

RPC25 
RPC160-TAP 

MATα; RPC160-TAP::TRP1; ura3-52; lys2-801_amber; 
ade2-101_ochre; trp1-∆63; his1-∆200; leu2-∆1 

this study 

rpc25-S100P 
(DS3-6b) 

MATa; ura3-52; trp1-∆63; his3-∆200; leu2; rpc25-S100P 
(Zaros and 
Thuriaux, 

2005) 

rpc25-S100P 
NAB2-TAP 

MATa; NAB2-TAP::TRP1; ura3-52; trp1-∆63; his3-∆200; 
leu2; rpc25-S100P 

this study 

rpc25-S100P 
RPC160-TAP 

MATa; RPC160-TAP::TRP1; ura3-52; trp1-∆63; his3-∆200; 
leu2; rpc25-S100P 

this study 

RPC160-HA 
MATa; RPC160-HA::HIS3mx6; ade2-1; his3-11,15; ura3-52; 
leu2-3,112; trp1-1; can1-100; GAL+

this study 

RPC160-TAP 
MATa; RPC160-TAP::TRP1; ade2-1; his3-11,15; ura3-52; 
leu2-3,112; trp1-1; can1-100; GAL+ 

this study 

RPC160-TAP 
NAB2-AID 

MATa; RPC160-TAP::TRP1; ura3::pNHK53; NAB2-
AID::kanMX6; ade2-1; his3-11,15; ura3-52; leu2-3,112; trp1-
1; can1-100; GAL+

this study 

TFC1-TAP 
MATa; TFC1-TRP1::TRP1; ade2-1; his3-11,15; ura3-52; 
leu2-3,112; trp1-1; can1-100; GAL++ 

this study 

TFC8-HA 
MATa; TFC8-HA::HIS3mx6; ade2-1; his3-11,15; ura3-52; 
leu2-3,112; trp1-1; can1-100; GAL+ 

this study 

YMS721 
MATα; his3∆1; leu2∆0; met15∆0; ura3∆0; can1∆::STE2pr-
spHIS5; lyp1∆::STE3pr-LEU2 

(Breslow et 
al., 2008) 
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 Mammalian cell culture 2.1.4.2

HEK293T cells were grown at 37°C with 5% CO2 in supplemented DMEM medium and used 

for transfection with ZC3H14 in peGFP-N3 using Lipofectamine 2000 (Invitrogen). 

 E. coli 2.1.4.3

E. coli strains were grown in LB medium, supplemented with the corresponding antibiotic, at 

37°C, 180 rpm and used for molecular cloning and production of recombinant proteins 

originated from humans or yeast according to standard molecular biology procedures. 

Table 5: E . coli Strains 

Strain Genotype Reference 

Escherichia coli 
DH5α 

F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 
deoR nupG Φ80dlacZ∆M15 ∆(lacZYA-
argF)U169 hsdR17(rK

- mK
+) λ– 

Woodcock et al. (1989) 

Escherichia coli 
BL21 (DE3) 

F- ompT hsdSB(rB
– mB

–) gal dcm (DE3) Studier and Moffatt (1986) 

Escherichia coli 
Rosetta™ 
(DE3)pLysS 

F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) 
pLysSRARE2 (CamR) 

Novagen® 

 

 Oligonucleotides 2.1.5

Used oligonucleotides are listed in Tables 6 to 9 and were synthesized by Thermo Fisher 

Scientific (Ulm, Germany) or Biolegio (Njimegen, Netherlands). 

Table 6: Oligonucleotide Sequences used for Genomic Tagging 

Name Sequence (5′–3′) 
Bdp1-HA fw GACAATGAGGATAATGAAGGAAGTGAAGAAGAGCCTGAGATTGAT

CAACGTACGCTGCAGGTCGAC 
Bdp1-HA rev GTTGTGCTATTTATCCATTATGTATGCATATAAATGTCTCTTAATCG

ATGAATTCGAGCTCG 

Nab2-TAP fw GCAAACCAGTTTTACGCACCAAGAACAAGATACGGAAATGAACTCC
ATGGAAAAGAGAAG 

Nab2-TAP rev GGTGTCTTCCATCAAAAGGGTCACAGGAACATGAATTTCGTTCCTA
CGACTCACTATAGGG 

Rpc160-TAP fw GCGATGTCTATTTGAAAGTCTCTCAAATGAGGCAGCTTTAAAAGCG
AACTCCATGGAAAAGAGAAG 

Rpc160-TAP rev GGTTTTTATCATGTAGTTTTATATGTATAAATACGTTAAATGACTGT
GGTAGTACGACTCACTATAGGG 

3_NAB2AID-rev AAAAGGGTCACAGGAACATGAATTTCGTTCCGTGATTTTAATAGTA
ATCATTAATCGATGAATTCGAGCTCG 
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4_NAB2AID-fw CTCCTCCGCAAACCAGTTTTACGCACCAAGAACAAGATACGGAAAT
GAACCGTACGCTGCAGGTCGAC 

5_Rpc160HA -fw AGCGATGTCTATTTGAAAGTCTCTCAAATGAGGCAGCTTTAAAAGC
GAACCGTACGCTGCAGGTCGAC 

6_Rpc160HA-rev GTAGAAAAATAATACAAATGCTATAAAAAAGTTTAAAAACGACTACT
TTAATCGATGAATTCGAGCTCG 

113_LHP1-HA-fw CAAAAGAGGACTCTTCTGCCATTGCCGATGACGATGAGGAGCACA
AGGAGCGTACGCTGCAGGTCGAC 

114_LHP1-HA-
rev  

TATGCTATGATAATGAGATACGAGAACCAGAAGAAACACAAGAATC
AATCGATGAATTCGAGCTCG 

128_Bdp1-TAP-
fw 

GGATAATGAAGGAAGTGAAGAAGAGCCTGAGATTGATCAATCCAT
GGAAAAGAGAAGATGG 

129_Bdp1-TAP-
rev 

GTGCTATTTATCCATTATGTATGCATATAAATGTCTCTTATACGACT
CACTATAGGGCGAATTG 

130_Tfc1-TAP-fw TGAAAAGCGAGCTCAAGGGATTTGTTGATGAAGTCGATCTGTCCAT
GGAAAAGAGAAGATGG 

131_Tfc1-TAP-
rev 

GGCATATTTTGATATTGAAATAAAAGAAAACCTACTTATTATACGAC
TCACTATAGGGCGAATTG 

186_Brf1_HA_for CAAGTTTCTCCAAGAAGATTAATTACGACGCCATTGACGGTTTGTT
TAGGCGTACGCTGCAGGTCGAC 

187_BRf1_HA-
rev 

CTTTATTTCCGTTCCCTTTTTCCTTCCTAGGGTTGATTACCTAAACG
TTAATCGATGAATTCGAGCTCG 

205_Tfc8-HA-fw AAAGATTTAATGAAATAAGCGTATATTGTGGAACAACGCTGGAAGT
TATGCGTACGCTGCAGGTCGAC 

206_Tfc8-HA-rev TATGACTACTTTTTATATCTGCAAGTAATTCTTTGTCTCTTGTATCCT
TAATCGATGAATTCGAGCTCG 

 

Table 7: Oligonucleotide Sequences used for Cloning 

Name Sequence (5′–3′) 
27_Nab2aa526_rev TAAGCGGCCGCTCAGTTCATTTCCGTATCTTG 
26_seqNAB2_fw ATCGCGCAACAGCAACCTC 
60_Nab2_rev ATTGGATCCGTTCATTTCCGTATCTTG 
35_Nab2aa1_fw ATTGGATCCATGTCTCAAGAACAGTACAC 
28_Nab2aa101_rev TAAGCGGCCGCTCATTGTCCCAAGCTTTGC 
29_Nab2aa180_rev TAAGCGGCCGCTCAGGATGGAGTTGCAGG 
30_Nab2aa183_fw ATTGGATCCATGGCCTTTTCCGGCGTTGTTAAC 
31_Nab2aa261_rev TAAGCGGCCGCTCAACGCCCCTCTTTCTTG 
32_Nab2aa262_fw ATTGGATCCATGTGCAGATTGTTTCCTCAC 
58_Nab2aa399_fw  ATTGGATCCAGCCAGAAGAAAGCAGCTCC 
59_Nab2aa398_rev  ATTGCGGCCGCTCATATTGGTTTTACTTCC 
66_Nab2aa330_rev  ATTGCGGCCGCTCACCTTTTTGCCGCCAAT 
67_Nab2aa328_fw ATTGGATCCGCAAAAAGGAAACCGG 
120_Zc3h14rev97aa CATGCGGCCGCTCATGAAGGCACGTTACTATC 
123_Zc3h14rev97aa ATTGGATCCATGGAGATCGGCACC 

135_Zc3h14-GFP_fw ATTCTCGAGATGGAGATCGGCACC 
136_Zc3h14-GFP_rev TTAGGATCCTTCGCTGGTTTGAGG 
145_SUP4-200_fw ATTGCGGCCGCTTTCTAATTCCGTTG 
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146_SUP4+197_rev ATTCTCGAGTTCAAGCGCACTTTTAG 
154_Bdp1-His_fw ATTGAATTCATGAGTAGTATTG 
155_Bdp1-His_rev ATTGCGGCCGCTTGATCAATCTCAGGCT 
156_Brf1-His_fw ATTGAGCTCATGCCAGTGTGTAAG 
157_Brf1-His_rev ATTGCGGCCGCCCTAAACAAACCGTC 
158_Tbp-His_fw ATTGAATTCATGGCCGATGAGGAAC 
159_Tbp-His_rev ATTGCGGCCGCCATTTTTCTAAATTCAC 
167_URA3_fw GCGGAGCTCTCAATTCATCATTTT 
168_URA3_rev TCAAAGCTTGCGGCCGCTAGCCACGTTCTTTAATAG 
169_SUP4_fw GTGGCTAGCTTTCTAATTCCGTTG 
170_SUP4_rev TAAAAGCTTGCGGCCGCATAATAACTCTTCG 
1449_NAB2 ATTCTCGAGGTCACCGTTGTCGGAGAGTT 

1450_NAB2 ATTGCGGCCGCTCAGCAAGAGAAGCAAGATTAGG 

1542_NAB2mutPCRfw CCAGGGTTTTCCCAGTCA 

1543_NAB2mutPCRrev ACTTTATGCTTCCGGCTCCT 

 

Table 8: Oligonucleotide Sequences used for qPCR 

Name Sequence (5′–3′) 
PMA1_fw CGATGACGCTGCATCTGAA 
PMA1_rev CCGTGATTAGATTGTAGTTCTTCGATT
RT_5S-2-fw AAGATTGCAGCACCTGAGTTTCG 
RT_5S-2-rev ATGTCTGGACCCTGCCCTCATAT 
RT_RPR1-fw ATGGTACGCTGTGGTGCTC 
RT_RPR1-rev CCATAGGTGGGGATCCTTTCT 
RT_SNR6-fw GTCATCTTCCTGGACCTCATGTGA 
RT_SNR6-rev AGGGGAACTGCTGATCATCTCTGT 
RT_YER-fw TGCGTACAAAAAGTGTCAAGAGATT 

RT_YER-rev ATGCGCAAGAAGGTGCCTAT 

46_RT-tK-fw CTTGTTGGCGCAATCGGTAG  
47_RT-tK-rev GGGCTCGAACCCCTAACCTT 
99_SCR1-1fw CCAGGACATCCATAGCTTGTG 
100_SCR1-1rev ATGAAAAGTTCCTGGCGATG 
101_SCR1-2fw CATCGCCAGGAACTTTTCAT 
102_SCR1-2rev ACAGCCTAGCACAATTGGAA 
103_SCR1-3fw CTTTCTGGTGGGATGGGATA 
104_SCR1-3rev TTTACGACGGAGGAAAGACG 
105_SCR1-4fw GTCCTGGGCAGAGCTGTCT 
106_SCR1-4rev AAGGTGGAGCCCCTAAGGA 
107_SCR1-5fw ACCGCTGTTAGGGGAGTTTT 
108_SCR1-5rev CCAAATTAAACCGCCGAAG 
109_SCR1-6fw CGGTGCCATCAGGATTTACT 
110_SCR1-6rev CTTCCAACATCCCTCATTGG 
111_SCR1-7fw TTTTCGAATATAAATGACGATTGG 
112_SCR1-7rev TGTCGCTACTCACTCTACAACCA 



Material and Methods 

39 

Table 9: Oligonucleotide Sequences used for EMSA 

Name Sequence (5′–3′) 
160_TA-
30B6-fw 

GCTGAAATCTCTTTTTCAATTGCTCCGGTGTATAAAGCCGCGGTCCCTTA
CTCTTTCTTCAACAATTAAATACTC 

161_TA-
30B6-rev 

GAGTATTTAATTGTTGAAGAAAGAGTAAGGGACCGCCCCTTTATTGACCG
GAGCAATTGAAAAAGAGATTTCAGC 

196_Scr_TA
1+_fw 

ATCGTAGATACTGAGTACTCACATCGTCAAGATCACAAGACTATGCACTA
GTCACGTCACGTCATAGACTAGATA 

197_Scr_TA
1+_rev 

TATCTAGTCTATGACGTGACGTGACTAGTGCATAGTCAAGTGATCAAGAC
GATGTGAGTACTCAGTATCTACGAT 

198_Scr_TA
1-_rev 

TATCTAGTCTATGACGTGACGTGACTAGTGCATAGTCTTGTGATCTTGAC
GATGTGAGTACTCAGTATCTACGAT 

199_Scr_TA
2+_fw  

GACTATCTAGACTGCGATCTCAATCTTCGAAGCTTACAAGTATCACCTAT
GCATTCAAGTTGCAACGTACTGCAT 

200_Scr_TA
2+_rev  

ATGCAGTACGTTGCAACTTGAATGCATAGGTGATACAAGTAAGCAACGA
AGATTGAGATCGCAGTCTAGATAGTC 

201_Scr_TA
2-_rev 

ATGCAGTACGTTGCAACTTGAATGCATAGGTGATACTTGTAAGCTTCGAA
GATTGAGATCGCAGTCTAGATAGTC 

 

Table 10: Oligonucleotide Sequences used for Northern Blotting 

Name Sequence (5′–3′) 
34_tI(UAU)L_Northern TGCTTTTAAAGGCCTGT 

73_RPR1_Northern TCCTTCTGTAAACAGG 

78_SNR6_Northern GTTCATCCTTATGCAGGGGA

80_SNR14_Northern ACACAATCTCGGACGAATCC

 

 Plasmids 2.1.6

Used plasmids are listed in Table 11. 

Table 11: Plasmids 

Name Description Source 
pAC1038 ∆N-NAB2-GFP, CEN, LEU2 (Green et al., 

2002) 
pAC1152 ∆N-NAB2 (nab2-1), CEN, LEU2 (Marfatia et al., 

2003) 
pAC2307 nab2-C437S, CEN, LEU2 (Kelly et al., 

2007) 
pBluescriptIIKS-
SNR6 

the genomic SNR6 locus including 117 bp upstream 
and 253 bp downstream was cloned into 
pBluescriptIIKS  

(Brow and 
Guthrie, 1990) 
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pBluescriptIIKS-
SUP4 

the genomic SUP4 locus including 200 bp upstream 
and 197 bp downstream was cloned into 
pBluescriptIIKS  

this study 

pBluescriptIIKS-tA the coding region of tRNAAla(UGC)E was cloned in 
pBluescriptII KS 

this study 

pBS1479 plasmid for genomic TAP-tagging with the TRP1-KL 
marker 

Euroscarf 

peGFP-N3 Neomycin, Ampicillin, C-term GFP tag, CMV 
promoter 

Conzelmann 
lab 

peGFP-N3-ZC3H14 peGFP-N3 with inserted ZC3H14 This study 
pET21a-BDP1 pET21a plus full length BDP1 this study 
pET21a-BRF1 pET21a plus full length BRF1 this study 
pET21a-NAB2 pET21a plus full length NAB2 this study 
pET21a-TBP pET21a plus full length TBP this study 
pGex-6p-1 Vector for IPTG-inducible GST-protein production GE Healthcare 
pGex-6P-1-NAB2 pGex-6p-1 plus Nab2 (aa 1-525) this study 
pGex-6P-1-NAB2-B pGex-6p-1 plus Nab2 (aa 1-261) this study 
pGex-6P-1-NAB2-C pGex-6p-1 plus Nab2 (aa 1-180) this study 
pGex-6P-1-NAB2-D pGex-6p-1 plus Nab2 (aa 1-101) this study 
pGex-6P-1-NAB2-E pGex-6p-1 plus Nab2 (aa 102-525) this study 
pGex-6P-1-NAB2-F pGex-6p-1 plus Nab2 (aa 183-525) this study 
pGex-6P-1-NAB2-G pGex-6p-1 plus Nab2 (aa 262-525) this study 
pGex-6P-1-NAB2-H pGex-6p-1 plus Nab2 (aa 262-398) this study 
pGex-6P-1-NAB2-I pGex-6p-1 plus Nab2 (aa 399-525) this study 
pGex-6P-1-ZC3H14 pGex-6p-1 plus ZC3H14 (aa1-97) this study 
pMK43 AID, Vector to introduce IAA17 tag plus kanMX 

selection 
(Nishimura et 
al., 2009) 

pNHK53 AID, Vector coding OsTIR1 and fully integratable in 
ura3 locus 

(Nishimura et 
al., 2009) 

pRS314, pRS315, 
pRS316 

E. coli, yeast shuttle vectors (Sikorski and 
Hieter, 1989) 

pRS314-NAB2 the ORF of NAB2 including 532 bp 5’ and 311 bp 3’ 
was cloned into pRS314 

this study 

pRS315-NAB2 the ORF of NAB2 including 532 bp 5’ and 311 bp 3’ 
was cloned into pRS315 

this study 

pRS315-nab2-34 nab2-34 inserted by homologous recombination after 
mutagenic PCR of the NAB2 ORF 

this study 

pRS316-NAB2 the ORF of NAB2 including 532 bp 5’ and 311 bp 3’ 
was cloned into pRS316 

this study 

pYM15 plasmid for genomic HA tagging with the HIS3mx6 
marker  

Euroscarf 
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 Antibodies 2.1.7

Used antibodies are listed in Table 12. 

Table 12: Antibodies 

Name Source Dilution Supplier 
Peroxidase anti- 
Peroxidase 

rabbit, monoclonal  1:5,000  Sigma (P1291) 

anti-CBP rabbit, polyclonal 1:2,000 
OpenBiosystems 
(CAB1001) 

anti-GFP mouse, monoclonal 1:2,000 Förstemann lab 
anti-HA  rat, monoclonal  1:1,000 Roche (1-867-423) 
anti-His  mouse, monoclonal  1:1,000 ABM (G020) 
anti-Nab2 mouse, monoclonal 1:10,000 Swanson lab (3F2) 
anti-PGK-1 mouse, monoclonal 1:10,000 Molecular probes (A6457) 
Anti-ZC3H14 #2 rabbit, polyclonal 1:1,000 Pineda, Sträßer lab 
anti-rabbit- 
HRPO 

goat, monoclonal 1:3,000 
Bio-Rad Laboratories 
(#170-6515) 

anti-mouse- 
HRPO 

goat, monoclonal 1:3,000 
Bio-Rad Laboratories 
(#170-6516) 

anti-rat- 
HRPO 

goat, monoclonal 1:5,000 Sigma (A9037) 

 

 Methods 2.2

 Standard methods 2.2.1

Standard molecular cloning techniques including growth of bacteria, DNA subcloning, 

restriction enzyme digestion, dephosphorylation of DNA, DNA ligation, small scale DNA 

isolation and DNA analysis on 1% (w/v) agarose gels in 1x TAE were performed according to 

standard procedures as described in Sambrook and Russel (2001). Whenever a kit or 

commercially available enzymes were applied, procedures were carried out as written in the 

manufacturer’s instructions. For plasmid isolation from E. coli, the NucleoBond® PC100 

(Macherey & Nagel) or NucleoSpin® Plasmid QuickPure kit (Macherey & Nagel) was used. 

Gel extraction of DNA, clean up after crosslink reversal or restriction digesion were carried 

out using the NucleoSpin® PCR and Gel Clean-up kit (Macherey & Nagel). All plasmids in 

this study were confirmed by restriction digestion and sequencing (MWG, Eurofins or GATC 

Biotech). Enzymes were either purchased from Fermentas or NEB (New England Biolabs). 

Ethidium bromide (VWR) or DNA Stain G (Serva) was used to stain DNA and RNA agarose 

gels according to the manufacturer’s instructions. 
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 PCR 2.2.2

Depending on the planned cloning, either KNOP-Polymerase Mix (integration of DNA in 

yeast, regular cloning) or a high fidelity polymerase was used. 

 KNOP-Polymerase-mix 2.2.2.1

Taq-DNA Polymerase (5 U/µL, Fermentas or NEB), Vent Polymerase (2 U/µL, NEB), and 

50% glycerol were mixed prior to PCR in a ratio of 10:7:8. A typical PCR reaction per tube is 

shown in Table 13. Usually, a minimum of 300 µL of PCR product was used for integration 

into yeast cells. Therefore, the PCR product was purified and concentrated by phenol-

chloroform extraction and a chloroform wash. The DNA was precipitated with 3 volumes 

100% ethanol, 1/10 volume 3 M NaOAc (pH 5.2) and incubation of at least 20 min at -20°C. 

After washing once with 70% ethanol, the DNA was dried and resuspended in 10 µL 1x TE. 

Table13: KNOP PCR Mix and Program 

Amount [µL]   Temperature Time [min]  
0.5 Each primer (100 µM)  94°C 2  
1 Template (1-250 ng)  94°C 1  
8 dNTP (2.5 mM)  50°C 0.5 35x

10 10x KNOP buffer  68°C 2.5  
2 KNOP Polymerase mix  68°C 10  

78 H2O     
100 Total volume     

 

 Phusion high-fidelity PCR master-mix 2.2.2.2

For high-fidelity amplification of DNA, the Phusion High-Fidelity PCR Master-Mix (NEB) was 

utilized. PCRs were carried out in a total volume of 20 µL and a typical reaction mixture is 

shown in Table 14. The PCR products were directly subjected to agarose gel analysis or 

restriction digestion after clean-up. 

Table 14: High-Fidelity PCR Mix and Program 

Amount [µL]   Temperature Time  
1 Each primer (10 µM)  98°C 60 sec  
1 Template (1-250 ng)  94°C 30 sec  

10 2x Phusion PCR Master-Mix  48-58°C 25 sec 35x 
7 H2O  72°C 15 sec/kbp  

20 Total volume  72°C 300 sec  
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 Error prone PCR 2.2.2.3

Error Prone PCR (epPCR) was applied for generation of randomly mutagenized NAB2. 

Hereby, a standard KNOP polymerase mix PCR (see Material and Methods, 2.2.2.1) was 

modified to further decrease the inherently low fidelity of the Taq Polymerase. This was 

accomplished by adding 2.5 mM MnCl2, increasing the MgCl2 concentration to 5 mM and 

changing dNTP concentrations to 1 mM dCTP, dGTP, dTTP and 0.5 mM dATP. 

 Yeast culture 2.2.3

 Cultivation of S. cerevisiae 2.2.3.1

Yeast strains were cultivated either on solid agar plates (at 30°C, if not stated otherwise) or 

in liquid culture (at 30°C and 250 rpm, if not stated otherwise), containing full media or 

synthetic complete drop-out media (SC). Cell densities in liquid culture were measured in a 

spectrophotometer at a wavelength of 600 nm. One optical density unit (OD600) corresponds 

to approximately 2.5 × 107 cells. 

 Genomic tagging of S. cerevisiae 2.2.3.2

Genomic integration of tags was done essentially as described before (Janke et al. (2004); 

Puig et al. (2001). In brief, PCR reactions were prepared by amplifying the desired tag and a 

marker or an antibiotic resistance gene. The 5’- and 3’-ends of the PCR products contained 

sequence homologies to the 3’-end of the target gene to be tagged. By exploiting 

homologous recombination in yeast, the tag sequences were integrated in frame excluding 

the stop codon of the target gene. 

 Dot spots 2.2.3.3

To test for potential growth defects, mutant strains were analyzed using dot spots. Therefore, 

one loop of freshly grown cells was mixed in 1 mL of ddH2O and diluted 4 times, each 

10 fold. 5-10 µL of these dilutions were spotted on the respective media plate, air dried and 

incubated for up to 5 days under different conditions (e.g. temperature, chemicals). 

 Mating 2.2.3.4

In order to construct the conditional allele of NAB2, haploid wild-type strains had to be 

mated. For mating, freshly grown cells were mixed on a YPD medium plate and incubated 

several hours. Cells were checked for ‘shmooing’ under a light microscope (Leica) and 
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diploid cells were picked with a micromanipulator (Singer Instruments) and incubated on 

YPD medium plates. 

 Sporulation and tetrad dissection 2.2.3.5

To gain haploid strains from diploid progenitor cells, sporulation of yeast cells was 

conducted. Therefore, freshly grown yeast cells were restreaked on YPA sporulation media 

plates. These plates contain only a few nutritional substances and a non-fermentable carbon 

source so that yeast cells undergo meiosis to form spores. Here, the genetic information is 

divided into haploid spores, enclosed in a tetrade. These can be examined visually under a 

light microscope (Leica) and dissected using a micromanipulator (Singer Instruments). Prior 

to dissection, the outer cell wall was digested with 10 µL Zymolyase 20T (MP Biomedicals). 

Tetrades with four growing spores were restreaked and tested for growth on auxotrophic 

maker plates to check for the correct segregation of markers. 

 Yeast gene deletion 2.2.3.6

To delete or disrupt a gene in S. cerevisiae, it is necessary to partially or completely replace 

the coding region of this gene. Typically, this is done by exploiting naturally occurring 

homologous recombination in yeast and thereby replacing a target gene with an auxotrophic 

marker or an antibiotic resistance gene. A PCR reaction was set up containing primers that 

carry homologous sequences to the promoter and the 3’-downstream region of the gene to 

be deleted. The disruption cassettes can either be amplified from plasmid collections (e.g. 

PCR toolbox by Janke and colleagues (Janke et al., 2004) or from DNA of the 

corresponding, commercially available BY deletion strain (Euroscarf). PCR products were 

transformed and growing yeast cells were selected on selective media plates. 

 Transformation of yeast cells 2.2.3.7

For genomic integration of DNA or plasmid transformation, a 50 mL yeast culture was grown 

to mid-log phase (OD600: 0.6-0.8), harvested (3600 rpm, 3 min) and washed once with ddH2O 

and 0.5 mL of solution I (see Table 15). Cells were resuspended in 0.25 mL solution I and 

50 µL of this cell suspension was mixed with 300 µL solution II, 1-5 µg of DNA and 5 µL of 

single stranded carrier DNA (2 mg/mL). After incubation for 30 min on a rotating wheel, a 

10 min heat shock at 42°C was conducted and cells were incubated on ice for 3 min. 1 mL of 

ddH2O was added to remove the PEG solution and cells were pelleted (3600 rpm, 3 min, 

RT). When transforming plasmids, the cells were directly spread on selective media plates. 

For integrations into the genome, cells were incubated in 1 mL of YPD for 1-5 h on a rotating 
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wheel prior to spreading on selective media plates. Cells were typically incubated for 2-

4 days at 30°C. 

Table 15: Reagents for Yeast Transformation 

Solution I  Solution II 
10 mM Tris-HCl (pH 7.5)  10 mM Tris-HCl (pH 7.5) 
1 mM EDTA  1 mM EDTA 
100 mM LiOAc  100 mM LiOAc 

  40% (v/v) PEG-4000 

 

 Yeast whole cell extracts 2.2.3.8

To verify the successful genomic integration of protein tags, whole cell extracts were 

prepared from fresh yeast cells growing on plate. Therefore, a white loop of cells was 

suspended in 40 µL 1x SDS sample buffer and approximately 30 µL of glass beads. 

Repeated (3 times) vortexing for 1 min and boiling at 95°C for 2 min was sufficient to lyse the 

cells and these lysates were loaded directly on a SDS-PAA gel and subjected to Western 

Blot analysis. 

For protein quantification, denaturing whole cell extracts were prepared as described 

previously (Knop et al., 1996). 5 OD600 of cells growing logarithmically were harvested and 

washed once with water. After resuspension in 0.5 mL H2O and 150 µL pre-treatment 

solution, cells were incubated 20 min on wet ice, followed by addition of 0.15 mL 55% 

trichloroacetic acid (TCA, w/v) to precipitate total protein and 20 min incubation on ice. After 

30 min centrifugation at maximum speed, the pellet was resuspended in up to 100 µL 1x 

SDS sample buffer and neutralized using 5-10 µL of 1 M Tris base. Samples were then 

subjected to SDS-PAGE and further analysis. 

 Allele identification (nab2-34) 2.2.3.9

The S. cerevisiae NAB2 ORF was deleted using a PCR based strategy. The HISMx6 locus 

was amplified from the pYM15 plasmid with 50 bp flanking sequences that are homologous 

to the 5’- and 3’-end of the NAB2 coding sequence. The PCR product was subsequently 

transformed into a diploid wildtype yeast strain (W303). Heterozygous HIS+ transformants 

were selected and again transformed with a centromeric plasmid encoding the complete 

NAB2 ORF, 500 bp flanking region each and the URA3 locus (pRS316_NAB2). Yeast cells 

being both His+ and Ura+ were then sporulated and tetrads dissected. Retrieved spores, the 

shuffle strain, were tested on growth on selective media to confirm the constructed strain. 
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To generate the desired conditional allele, random mutagenesis PCR (epPCR) was 

performed. Resulting PCR fragments were transformed together with a linearized plasmid 

(pRS315_NAB2; cut with NotI and XhoI) encoding the LEU2 gene. This so called plasmid 

gap repair is used to incorporate the different PCR fragments into a desired DNA molecule in 

yeast (Chekanova, 2003; Lundblad and Zhou, 2001; Puig et al., 2001; Sträßer et al., 2002). 

Transformants, grown on media lacking leucine, were plated on plates containing 5-

Fluoroorotic Acid to shuffle out the URA3-containing plasmid. Colonies were then tested for 

thermo-sensitivity at 18, 25, and 37°C. One allele identified that way, the nab2-34, was used 

in this study. It was further isolated from yeast, transformed into E.coli and sequenced. To 

confirm that the observed phenotype was due to the mutated ORF of NAB2, the isolated 

plasmid was transformed again into the shuffle strain and tested for growth deficiencies. 

 Protein purifications 2.2.4

 Tandem affinity purification 2.2.4.1

Tandem affinity purification (TAP) was essentially done as in Sträßer et al. (2002). The fused 

and endogenously expressed tag is comprised of two affinity tags (Protein A and Calmodulin 

binding peptide) that are used to specifically purify the desired protein and interacting 

proteins from yeast. In this study, all strains were tagged C-terminally, to purify either RNAP 

complexes or Nab2. 

Lysates were prepared from 2 L yeast cultures grown to an OD600 of 3.0 - 3.5 using a 

planetary mill (Fritsch) and glass beads at 4°C (ratio: 1 pellet volume, 1 volume TAP-buffer 

and 2 volumes of glass beads). After a two-step centrifugation (4000 rpm, 10 min at 4°C and 

100,000 g for 1 h at 4°C) the lysate was bound to 0.4 mL pre-equilibrated IgG Sepharose 6 

Fast Flow (GE Healthcare) slurry for one hour at 4°C. If needed, DNase I or RNase A was 

added to remove nucleic acid contaminations following extensive washing with TAP-buffer, 

the bound proteins were eluted by TEV cleavage for 1 h and 20 min on a rotating wheel at 

16°C in TAP-buffer. 

Table 16: TAP-buffer 
 

 

 

    

                   

TAP buffer 
50 mM Tris-HCl pH 7.5 
100 mM NaCl 
1.5 mM MgCl2 
0.15% NP-40 (w/v) 
1 mM DTT 
1x protease inhibitor 
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Further purification was achieved by binding the TEV eluate to Calmodulin Sepharose 

(Agilent Technologies) for 1 h at 4°C. During binding and washing the TAP-buffer was 

supplemented with 2 mM CaCl2. Elution was done in 50 mM Tris-HCl pH 7.5, 5 mM EGTA for 

15 min at 37°C. Finally, eluted proteins were precipitated by addition of TCA to a final 

concentration of 10% (v/v) and incubated for 20 min on ice. After pelleting the precipitated 

proteins for 20 min at 13000 rpm at 4°C, the pellet was resuspended in 60 µL 1x SDS 

sample buffer and neutralized using 1 M Tris base.  

For in vivo interaction analysis of Nab2 with RNAPIII, proteins were purified using both tags 

(with RNase and DNase). For in vitro interaction assays and fully reconstituted in vitro 

transcription assays, proteins were purified with TAP-buffer containing 800 mM NaCl until the 

TEV eluate and treated with RNase/ DNase. 

 Recombinant Nab2 purification 2.2.4.2

In order to purify recombinant Nab2 from E.coli, the complete NAB2 ORF was introduced into 

both pGex6-P1 and pET21a. Proteins were produced in E. coli Bl21 DE3 at 37°C, 200 rpm 

with addition of 0.3 mM isopropyl-1-thio-β-D-galactopyranoside (IPTG) at an OD600 of 0.6 for 

3 hours. Cells from 200 mL culture were harvested, washed, resuspended in NETN 1000 

buffer (50 mM Tris-HCl pH 7.5, 1 M NaCl, 1 mM EDTA, 10 µM ZnCl2, 2 mM DTT, 1x protease 

inhibitors and 1% NP-40), lysed using sonication and centrifuged for 15 min at 13,500 rpm 

and 4°C in a SS-34 rotor. Lysates were bound either to Glutathione coupled or Ni-NTA resin 

and purified according to the manufacturer’s protocol. 

GST-fused Nab2 was either stored coupled to beads in 1x PBS/40% (v/v) glycerol or eluted 

using the ‘PreScission protease’ that cuts within the linker region between the GST-tag and 

Nab2. When purifying His6-tagged protein, a buffer change was applied after regular washing 

to equilibrate the beads in chromatography buffer (Buffer A) before elution. Elution from Ni-

NTA was done using 250 mM Imidazol and eluate fractions were subjected to ion exchange 

chromatography. 

For further purification of Nab2-His6, ion exchange chromatography was conducted on an 

Äkta purifier system (GE Healthcare) under standard conditions as described in the 

manufacturer’s instructions in combination with a Frac-950 automatic fraction collector. 

Samples were centrifuged and filtrated (0.45 µm) prior to loading on the chromatography 

system. Columns used for this were either a Poros HS 20 µm 4.6/100 (Life Technologies) or 

a MonoS 5/50 GL (GE Healthcare) column. Flow rates were usually 1 to 2 mL/min, always 

considering the maximum pressure of the column, read out as the total system backpressure 
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generated by chromatography system. The collected fraction size was 0.5 mL and eluates 

were checked on SDS-PAGE for protein content. A usual run contained the following steps: 

Table 17: Ion Exchange Chromatography of Nab2 

Block Settings 
Equilibration 5-10 CV of Buffer A 
Loading Injecting > 1 loop volume 
Washing 2 CV of Buffer A 
Elution 3 step gradient to 100% buffer B: 
 1.  10 CV linear gradient to 29% buffer B 
 2.  5 CV step gradient to 60% buffer B  
 3.  5 CV linear gradient to 100 % buffer B 
  
Cleaning 5 CV of Buffer A and H2O  

 

Table 18: Ion Exchange Buffer 

Buffer A  Buffer B 
50 mM MES pH 6.5  50 mM MES pH 6.5 
20 mM NaCl  1M NaCl 
10 µM ZnCl2  10 µM ZnCl2 
2 mM DTT  2 mM DTT 

A desalting and a buffer exchange step was subsequently applied to the peak fractions 

containing Nab2. A maximum of 2.5 mL of eluate was pooled and loaded on a pre-

equilibrated PD-10 desalting column (GE Healthcare). In brief, 25 mL of PD-10 buffer was 

used to equilibrate the column by gravity flow at 4°C, 2.5 mL of eluate was loaded and 

allowed to enter the bed completely. Elution was done with 3.5 mL of PD-10 buffer and 

0.5 mL fractions were collected. These were again checked on a SDS-PAA gel, fractions 

containing Nab2 were aliquoted, flash frozen, and stored at -80°C until use. 

Table 19: PD-10 Buffer 

PD-10 buffer 
20 mM Tris-HCl pH 8.0 
90 mM KCl 
10% glycerol 
5 mM MgCl2 
10 µM ZnCl2 
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 Bdp1 purification 2.2.4.3

Bdp1-His6 was expressed in E. coli BL21 DE3 (250 mL) and induced with 1 mM IPTG for 3 h 

at 37°C. Purification was essentially done as described in Kumar et al. (1997). 1 g of cells 

was resuspended in 3 mL of lysis buffer (Table 20) and incubated for 30 min on ice. 0.1% 

Tween-20 (w/v) was added, and the mixture was sonicated 5 x 30 sec (25% output). The 

lysate was diluted twofold with lysis buffer containing 1 M NaCl, but lacking EDTA and 

lysozyme. Again, the lysate was sonicated 5 x 30 sec (25% ouput), followed by centrifugation 

at 22,000 g for 30 min and 4°C. MgCl2 and imidazole were added (7mM and 10 mM) and the 

lysate was loaded on a 2 mL Ni-NTA agarose column equilibrated with buffer D500. After 1 h 

incubation at 4°C, the column was washed with 5 mL buffer D500, 6 mL buffer D500 plus 

30 mM imidazole and proteins were eluted with 6 mL of buffer D500 supplemented with 

100 mM imidazole. Peak fractions were diluted to 250 mM NaCl in bufferD and loaded on a 

Mono S 5/50 GL column (GE Healthcare, 1 mL), which was installed in an Äkta purifier 

system (GE Healthcare) and equilibrated in buffer D with 250 mM NaCl. After washing the 

column, Bdp1 fractions were eluted from the column with a linear NaCl gradient (15 CV, 

0.5 mL fractions) from 250-1000 mM NaCl in buffer D. Peak fractions were collected and 

stored at – 80°C in high salt buffer. 

Table 20: Bdp1 Purification Buffers 

Lysis buffer  Buffer D500 
50 mM Tris (pH 8.0)  20 mM HEPES (pH 7.9) 
0.1 mM EDTA  500 mM NaCl 
5% glycerol (v/v)  7 mM MgCl2 
10 mM β-mercaptoethanol  0.01% Tween-20 (w/v) 
300 µg/mL lysozyme  10 mM β-mercaptoethanol 
1x protease inhibitors  10% glycerol (v/v) 

 

 Brf1 purification 2.2.4.4

Brf1-His6 was expressed in E. coli BL21 DE3 Rosetta (250 mL) and induced with 1 mM IPTG 

for 3 h at 37°C. Purification was essentially done as described previously in Kassavetis et al. 

(1998). Lysis was done under native conditions as mentioned above (see Material and 

Methods, 2.2.4.3). The sedimented pellet was resuspended in buffer A (5 mL) and again 

centrifuged (30 min, 16,800 rpm, 4°C, JA20). The supernatant fluid was applied to 2.5 mL Ni-

NTA agarose (Qiagen) and mixed for 30 min at 4°C. The column was washed with 10 mL of 

buffer A and subsequently developed with buffer B (each 5 mL) at pHs 6.7, 6.3, 5.9, 5.7, 5.5, 

5.1, and 4.9. Peak fractions (pH 6.7-5.9) were dialyzed (Spectra/Por 2, 10mm) for 2 h each 
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at 4°C in buffer D500 (see Table 20) with decreasing urea concentrations (3, 1.5, 0.75, and 

0 M), but without ZnSO4. 

Table 21: Brf1 Purification Buffers 

Buffer A  Buffer B 
50 mM Tris (pH 8.0)  100 mM Na2HPO4 
6 M guanidine HCl  7 M Urea 
0.1% Tween-20 (w/v)  7 mM β-mercaptoethanol 
7 mM β-mercaptoethanol  1x protease inhibitors 
10% glycerol (v/v)  adjust pH with H3PO4 

1x protease inhibitors   

 

 Tbp purification 2.2.4.5

Tbp-His6 was expressed in E. coli BL21 DE3 (250 mL) and induced with 0.1 mM IPTG for 

14 h at 22°C. Cells were lysed in 10-20 mL LB200 (Table 22), supplemented with 20 mM 

imidazole, sonified for 10 min (30% output, 40% duty cycle) and treated with lysozyme 

(100 µg/mL). The lysate was centrifuged and applied to 0.5 mL pre-equilibrated Ni-NTA 

agarose beads (Qiagen) and incubated for 1 h at 4°C. After extensive washing with four 

times LB200 buffer for each 5 min at 4°C, the bound proteins were eluted five times with 

LB200 supplemented with 250 mM imidazole. Peak elution fractions were pooled and loaded 

on a HiTrap Heparin HP column (GE Healthcare, 1 mL), which was installed in an Äkta 

purifier system (GE Healthcare). After washing the column, Tbp fractions were eluted from 

the column with a linear NaCl gradient (10 CV, 0.5 mL fractions) from 200-1000 mM NaCl. 

2.5 mL of peak fractions were then subjected to a PD-10 desalting column (GE Healthcare) 

and eluted with buffer used in in vitro transcription or EMSA (see Material and Methods 2.2.6, 

2.2.7, and 2.2.8.1). 

Table 22: LB200 Buffer 

LB200 buffer 
50 mM Tris-HCl (pH 7.5) 
200 mM NaCl 
0.05 % NP-40 (w/v) 
1 mM EDTA 
2 mM DTT 
1x protease inhibitors 
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 GST protein production and purification 2.2.4.6

Recombinantly produced proteins were expressed according to standard procedures. In 

general, production of proteins in E.coli BL21 DE3 (0.1-0.5 L) was induced at an OD600 of 0.6-

0.8 by adding 0.3 mM IPTG and expression was allowed for 3 h at 37°C. The harvested 

bacteria were resuspended in 10-20 mL NETN 1000 (see Material and Methods, 2.2.3.2), 

supplemented with 1 mM DTT and 1x protease inhibitors, and lysed by sonification (4 x 30 

sec, 25% output). 30 min incubation with lysozyme (100 µg/mL) on ice was applied when 

needed. After clearing of the lysate (15 min, 13,500 rpm, 4°C, SS-34/JA-20 rotor), GST 

proteins were bound to Glutathione Sepharose 4B (200-400µL, GE Healthcare) for 1 h at 4°C 

on a rotating wheel. After three times washing with NETN 1000, proteins coupled to beads 

were treated according to the subsequent experiments. For generation of antibodies, the 

GST proteins were eluted with 15 mM glutathione in a low salt buffer; for pulldown 

experiments, proteins were washed with a low salt buffer and stored in 40% buffer / 60% 

glycerol at -20°C; for purification of the pure protein, the ‘PreScission protease’ was used to 

cleave the linker between GST and the protein of interest. 

 Molecular biology methods 2.2.5

 Chromatin immunoprecipitation (ChIP) 2.2.5.1

To analyze the association of proteins to their target genes or genomic regions, Chromatin 

immunoprecipitation (ChIP) was performed. ChIP assays were conducted according to 

Chanarat et al. (2011); Meinel et al. (2013). In summary, S. cerevisiae strains were grown in 

appropriate media to mid-exponential phase (OD600 = 0.8) and cross-linked with 1% 

formaldehyde for 20 min at RT with mild agitation. Cells harboring thermosensitive alleles 

were shifted for indicated amounts of time to the restrictive temperature and treated the 

same way at the permissive temperature in parallel. Whereas for nab2-34, a shifting time of 

three hours to 37°C was sufficient, the rpc25-S100P allele was shifted 6-10 hours to 37°C. 

The cross-linking was stopped by addition of 0.25 M glycine and incubation for 5 min at RT. 

The cells were then harvested (3600 rpm, 3 min and RT), washed three times in 1x TBS, and 

flash frozen in liquid nitrogen until use. Pellets were thawn on ice, resuspended in 0.8 mL of 

FA-Lysis buffer (see Table 23) and mixed with equal amounts of glass beads. Cell lysis was 

done by vortexing the cells at maximum output for 7 times with each 3 min vortexing and 

2 min break on ice. Lysates were sonicated using a Bioruptor (Diagenode) for 3 times 

15 minutes with 5 min breaks on ice to yield chromatin size between 0.25 – 0.5 kbp. The 

lysate was cleared by centrifugation twice (5 min and 15 min, 13,000 rpm at 4°C), before a 

10 µL aliquot was saved as input sample. The remaining sample was incubated with 15 µL 
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magnetic beads (Invitrogen) coupled with IgG (for TAP-tagged proteins) or a specific 

antibody against the protein of interest. After 2.5 h of incubation at 20°C, beads were 

collected and washed with 800 µL of buffer (2x FA–Lysis (low salt), 2x FA-Lysis (high salt), 

2x TLEND and 1x TE). Next, DNA was eluted from beads using ChIP elution buffer (140 µL) 

and vigorous shaking at 65°C. Beads were collected and the supernatant was mixed with 

80 µL 1x TE and 10 µL Proteinase K (10 mg/mL). Input samples were mixed with 80 µL 1x 

TE, 80 µL ChIP elution buffer and 10 µL Proteinase K. Finally, the reversal of crosslinks was 

incubated for 2 h at 37°C, followed by 12 -16 h of incubation at 65°C. Samples were purified 

using the ‘PCR clean up’ Kit (Macherey & Nagel) according to the manufacturer’s 

instructions. 

Table 23: Buffers for ChIP 

FA–Lysis (low salt)  FA-Lysis (high salt) 
50 mM HEPES (pH 7.5)  50 mM HEPES (pH 7.5) 
150 mM NaCl  500 mM NaCl 
1 mM EDTA  1 mM EDTA 
1% Triton x-100 (w/v)  1% Triton x-100 (w/v) 
0.1% SDS (w/v)  0.1% SDS (w/v) 
0.1% Sodium Deoxycholate (w/v)  0.1% Sodium Deoxycholate (w/v) 

1x protease inhibitors   

 

TLEND  ChIP Elution 
10 mM Tris-HCl (pH 8.0)  50 mM Tris-HCl (pH 7.5) 
250 mM LiCl  10 mM EDTA 
1 mM EDTA  1% SDS (w/v) 

0.5% NP-40 (w/v)   
0.5% Sodium Deoxycholate (w/v)   

 

 qPCR 2.2.5.2

qPCR is a method for the relative quantification of DNA. It combines the standard 

amplification of a specific DNA, as in regular PCR, with sensitive fluorescent dye detection. 

Here, SYBR green was used as a dye that intercalates into the DNA after amplification and 

thereby enhances its fluorescent properties. For quantification of the purified DNA, the 

StepOnePlusTM cycler (Applied Biosystems) was used with the Applied Biosystems Power 

Sybr Green PCR Master Mix as recommended by the manufacturer’s instructions. When 

possible, Primer express 3.0 software (Applied Biosystems) was used for primer design. To 

determine the primer efficiencies, standard curves were used. Each tested sample or 
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controls (H2O, standard curves) were pipetted as technical duplicates. Specificity of the used 

primers was verified by melting curve analysis of the amplicon products obtained at the 

qPCR run. For calculation of the enrichments, a non-transcribed region (NTR) on 

Chromosome V (174131-174200) was applied. A typical qPCR run is displayed in Table 24, 

a list of qPCR primers is given in Table 8. A qPCR reaction contained 0.1 µL (100 pmol/µL) 

of each primer, 5 µL 2x Power Sybr Green PCR Master Mix, 2.3 µL of ddH2O and 2.5 µL of 

diluted DNA. Usually, the purified DNA was diluted 1:20 prior to analysis of RNAPIII or Nab2 

ChiPs. 

         Table 24: qPCR program 

Step Temperature Time  

Initial Denaturation 95°C 10 min  
Denaturation 95°C 15 sec 

45 Cycles 
Annealing/ Elongation 60°C 60 sec 
    
 95°C 15 sec  
 60°C 60 sec  
Melting curve 60°C - 95°C continuously 0.3 °C 
 95°C 15 sec  

Ct values (cycle threshold) were calculated by the StepOneTM Software (v2.2.2) (Applied 

Biosystems) as the number of cycles necessary for the fluorescent signal to reach a set 

threshold level. Occupancies were calculated as enrichments of the tested gene (YFG) 

relative to the mentioned NTR with the following formula (comparative Ct method): (E^(CT
IP-

CT
INP))NTR/(E^(CT

IP-CT
INP)YFG) as described by Livak and Schmittgen (2001). 

 ChIP-chip data 2.2.5.3

ChIP-chip datasets of Nab2-TAP, TAP-Npl3, TAP-Tho2, Rpb3-TAP cells were used from 

Meinel et al. (2013). ChIP-chip datasets of Rpc160-TAP cells were performed by Cornelia 

Burkert-Kautzsch during this study. The ChIP-chip data was normalized according to Meinel 

et al. (2013). Data normalization and analysis was carried out by Dominik M. Meinel using R 

(CRAN). The meta profiles for tRNA genes were calculated by averaging the occupancies of 

all intron-less tRNA. To analyze the significance of the Pearson’s correlation coefficient for 

the peak occupancies at protein coding or tRNA genes for Nab2 and Rpb3 or Nab2 and 

Rpc160, the correlation coefficients of 100,000 random permutations of the data sets were 

calculated and compared to the correlation coefficient of the not permutated dataset. 
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 Nab2 CRAC data 2.2.5.4

The Nab2 CRAC data from Tuck and Tollervey (2013) was inspected for Nab2 binding to the 

different RNAPIII transcripts using Integrated Genome Browser (Nicol et al., 2009) and R 

(CRAN, by Dominik M. Meinel). For the CRAC tRNA meta profile, the reads for all intronless 

tRNAs smaller than 76 bp were averaged and plotted vs. the position relative to the first 

nucleotide of the tRNA gene. 

 RNA extraction 2.2.5.5

When working with RNA, general precautions were taken to provide an RNase-free 

environment and only DEPC treated water (Diethylpyrocarbonate) was used for all buffers. 

Total RNA was extracted from cells growing in mid-log phase (A600 0.6-0.8), cultivated in 

YPD and harvested at 30°C or after a shift to 37°C for indicated times using 300 µL of 10 mM 

Tris-HCl buffer (pH 8.0), 1 mM EDTA, 100 mM NaCl, 1% SDS (w/v) and 2% Triton X-100 

(w/v). 300 µL glass beads and 300 µL phenol/chloroform solution were added and cells were 

lysed by vortexing at maximum intensity. After centrifugation (13,200 rpm, 5 min, RT) the 

RNA was washed once with chloroform and precipitated with 3 volumes 100% ethanol, 

1/10 volume 3 M NaOAc (pH 5.2) and incubation of at least 20 min at -20°C. The samples 

were centrifuged (13,200 rpm, 4°C and 15 min) afterwards, pellets were dried and the 

extracted RNA was dissolved in RNase-free water. Subsequently, contaminating DNA was 

digested (DNase, 10 U/100 µL) in presence of an RNase inhibitor (80 U/100 µL) for at least 

15 min at 37°C. Finally, RNA concentration was measured using a NanoDrop ND-1000 

(Thermo Scientific) and integrity was tested on 2% (w/v) agarose denaturing formaldehyde 

gels. 

 Northern blotting 2.2.5.6

5-10 µg of total RNA was mixed with at least an equal amount of formamide loading dye 

(95% Formamide, 0.1% TAE, bromophenol blue and xylene cyanol), heated to 65°C for 

5 min and separated by electrophoresis on 6 or 9% polyacrylamide gels with 6 M Urea and 

1x TAE for 45 min and 200 V. After blotting onto a Nylon membrane (Trans-Blot,Biorad) for 

20 V, 45 mA and 60 min in 1xTAE, the RNA was crosslinked to the membrane with UV 

radiation (254 nm, 1,200 µJ, UV Crosslinker, Fisher Scientific). All following steps were 

performed in a hybridization oven (Hybaid Mini Oven, Thermo Fisher). The blot was pre-

hybridized in Church buffer (0.5 M NaHPO4 (pH 7.2), 1 mM EDTA, and 7% SDS (w/v)) for 1 h 

at 37°C, then radiolabeled oligonucleotides were hybridized to the blot in the same buffer 

overnight at 37°C. After washing 3 times with 2x SSC buffer and 0.1% SDS for each 15 min 

at 37°C, the blots were dried and exposed overnight to a storage phosphor screen and 
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analyzed by a phosphoimager (Typhoon 9400, Amersham Bioscience). Quantifications were 

done using ImageQuant 5.2. If necessary, blots could be stripped by boiling in 0.1% SDS 

(w/v) and shaking incubation for 5 min. Afterwards, pre-hybridization was performed again 

before probing with new oligonucleotides. Hybridized oligonucleotides were labeled with 10 

µCi [γ-32P]-ATP (SRP-310, Hartmann Analytic) using the polynucleotide kinase (Fermentas) 

and purified by Micro Bio-Spin 30 columns (Biorad) following the manufacturer’s instructions. 

Oligonucleotides used are listed in Table 10. 

 Transcription assays 2.2.6

 Whole cell extract in vitro transcription assay 2.2.6.1

Whole cell extracts for transcription assays and in vitro transcription were done essentially as 

described in Schultz et al. (1992); Schultz et al. (1991). Yeast cells were grown in 2 L of YPD 

to an OD600 of 1.5, harvested, and frozen in liquid N2. Other than described in their protocol, 

higher transcriptional activity was achieved, when the frozen pellet was crushed in a 

precooled mortar (on wet ice and rinsed with liquid N2) constantly bathed in liquid N2. The 

fine ground pellet powder was weighted and 15% of extraction buffer (v/w) was added. After 

20 min of incubation on ice, the yeast sorbet was centrifuged (100,000 g, 1 h at 4°C) in a 

SW-55 rotor (Beckmann Coultier) and dialyzed 3 times (500 mL each) for 1 h at 4°C against 

dialysis buffer. Protein amount was measured in a Bradford assay (see Material and 

Methods, 2.2.14) and extracts were frozen in liquid N2. 

For in vitro transcription assays (20 µL), 30 µg of whole cell extract was mixed with 4 µL 5x 

transcription buffer complemented with 1 mM DTT, 200 ng of α-amanitin, 20 U of RiboLock 

RNase inhibitor, 500 nM ATP, CTP, UTP, 50 nM GTP, 100 ng of plasmid template and 5 µCi 

of [α-32P] GTP (FP-208, Hartmann Analytic). The reaction was incubated for 30 min on either 

25°C or 37°C and stopped with 180 µL stop buffer (0.1 M NaOAc, 10 mM EDTA, 0.5% SDS 

(w/v) and 5 µg/mL tRNA). In case of add back experiments, Nab2 was added at last in 

varying amounts. After phenol/chloroform extraction and ethanol precipitation, the dried RNA 

pellets were resuspended in formamide loading buffer, ran on a 9% polyacrylamide gel with 

6M Urea in 1x TAE buffer. Gels were dried in a geldryer (Model 583 gel dryer, Biorad) for at 

least 1 h at 80°C and exposed overnight to a storage phosphor screen and analyzed by a 

phosphoimager (Typhoon 9400, Amersham Bioscience). Quantifications were done using 

ImageQuant 5.2. 
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Table 25: In Vitro Transcription Buffers 

Extraction buffer Dialysis buffer 5x transcription buffer 
100 mM HEPES (pH 7.9) 20 mM HEPES (pH 7.9) 100 mM HEPES (pH 7.9) 
245 mM KCl 100 mM KCl 400 mM KCl 
5 mM EGTA 5 mM MgCl2 25 mM MgCl2 
1 mM EDTA 1 mM EDTA 5 mM EDTA 
2 mM DTT 20% glycerol 10% glycerol 
1x protease inhibitors 2 mM DTT  
 1x protease inhibitors  

 

 Fully reconstituted in vitro transcription assays 2.2.7

 Reconstituted specific transcription assay 2.2.7.1

To test for a specific effect of a protein in the transcription events of RNAPIII, reconstituted 

specific transcription assays were performed as described by Huet and colleagues (Huet et 

al., 1996). A reaction (40 µL) contained 100 ng of template plasmid, 10 U RNase inhibitor 

(RiboLock, Fermentas), 1 mM DTT, 0.6 mM of each ATP, CTP, GTP and 0.03 mM UTP, 

10 µCi [α-32P] UTP (SRP-210, Hartmann Analytic) in 1x IVT buffer (Table 26). Proteins were 

added in the following order: 50-100 ng Tbp (see Material and Methods, 2.2.4.5), 80-100 ng 

Brf1 (see Material and Methods, 2.2.4.4), 100 ng Bdp1 (see Material and Methods, 2.2.4.3), 

50-150 ng TFIIIC (see Material and Methods, 2.2.4.1), 50-100 ng RNAPIII (see Material and 

Methods, 2.2.4.1) and varying amounts of Nab2 (0-500 ng, see Material and Methods, 

2.2.4.2). The order of mixture was: DNA, TFIIIC, TFIIIB (Tbp, Brf1 and Bdp1), Nab2 and 

RNAP III. After a 30 min incubation at 25°C, the reaction was stopped by addition of 60 µL of 

2% SDS (w/v) in H2O and subsequent phenol/ chloroform extraction. The RNA was 

precipitated with 1/10 volume of 3 M NaOAc (pH 5.5) and 3 volumes of 100% EtOH and 

incubated for 1 h at -20°C. After centrifugation (>20 min, 13.200 rpm and 4°C), the RNA was 

washed once with 70% EtOH and centrifuged for 5 min at max. speed at RT. The dried pellet 

was dissolved in 10 µL of formamide loading buffer, heated to 85°C for 2 min and cooled on 

wet ice for 2 min. The samples were subjected to electrophoresis in a 10% (v/v) 

polyacrylamide gel containing 8 M Urea at 300 V for 20-25 min in 0.5x TBE. The gel was 

disassembled, dried for 2 h in a geldryer (Model 583 gel dryer, Biorad) on Whatman paper, 

exposed overnight to a storage phosphor screen and analyzed by a phosphoimager (FLA 

9500, (GE Healthcare)) and Image Quant TL (GE Healthcare). 
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Table 26: IVT Buffer 

IVT buffer (1x) 
20 mM HEPES (pH 7.9) 
90 mM KCl 
5 mM MgCl2 
0.1 mM EDTA 
10% glycerol (v/v) 

 prepared as 4x 

 17-mer assay 2.2.7.2

To investigate a role of Nab2 in transcription initiation of RNAPIII, 17-mer assays were 

essentially done as described in Dieci and Sentenac (1996). Briefly, transcription reactions 

were set up containing 250 ng SUP4 tRNA (pBSKII-SUP4), 50-100 ng affinity purified TFIIIC 

(see Material and Methods, 2.2.4.1), 40 ng Tbp (see Material and Methods, 2.2.4.5), 50 ng 

Brf1 (see Material and Methods, 2.2.4.4), and 100 ng Bdp1 (see Material and Methods, 

2.2.4.3) in 42 µL 1x 17-mer buffer (Table 27). The proteins were allowed to assemble on the 

template DNA for 20 min at 25°C, then a mixture (8 µL) of 50-100 ng affinity purified RNAPIII 

(see Material and Methods, 2.2.4.1), 0.5 mM ATP, CTP and 10 µCi [α-32P] UTP (SRP-210, 

Hartmann Analytic) in buffer was added. Eventually, 3’-dGTP (Jena Biosciences) was added 

at 0.1 mM concentration to efficiently arrest all 17-mers at position +18. Forming heparin 

resistant ternary complexes, the production of 17/18 nt long RNAs was monitored over 0-

10 min. The assays were stopped and processed as before (see Material and Methods, 

2.2.7.1). 17% (v/v) PAA gels containing 7 M Urea were used to separate the produced RNAs 

(1000 V, 100 mA, 25 W). The gels were dried, exposed, and analyzed as above (see 

Material and Methods, 2.2.11.1). 

Table 27: 17-mer Buffer 

17-mer buffer (1x) 
20 mM Tris (pH 8.0) 
90 mM KCl 
5 mM MgCl2 
0.1 mM EDTA 
10% glycerol (v/v) 

 prepared as 4x 

 Initiation / reinitiation assay 2.2.7.3

After 17-mer formation, as described in section 2.2.7.2, heparin and the missing nucleotide 

GTP, but without 3’-dGTP, were used to assay single round (SR) versus multiple round (MR) 

transcription events. Therefore, 250 µg/mL Heparin (for inhibition of reinitiation) and 0.5 mM 

GTP were added to the reaction after 10 min of 17-mer formation. Elongation and reinitiation 
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was allowed to proceed for 10 min at 25°C and products were treated as stated in section 

2.2.7.1. A typical ratio for MR/SR events with all recombinant factors was ~2, as described in 

Ferrari et al. (2004). 

 Biochemical methods 2.2.8

 Electrophoretic mobility shift assay (EMSA) 2.2.8.1

EMSAs were done as previously described in Kassavetis et al. (1998) with the following 

modifications. Briefly, protein-DNA complexes were formed in 40 mM Tris-HCl (pH 8.0), 

7 mM MgCl2, 3 mM DTT, 5% glycerol (v/v), 100 µg/mL BSA and 50 mM NaCl. 100 ng of 

ssDNA and 5 pmol of 6-FAM 5′-labeled dsDNA (See Material and Methods, 2.1.5, Table 9) 

was used instead of poly(dG–dC)–poly(dG–dC) and radiolabeled probes. Proteins were 

added as indicated. Reaction mixtures were incubated for 60 min at 25°C and separated on 

a 2% (w/v) agarose gel in 1x TAE at 4°C for 1h at 150 V. Gels were analyzed with a Typhoon 

FLA 9500 and ImageQuant TL software. 

 SDS polyacrylamide gel electrophoresis 2.2.8.2

Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) was done using a 

Mini Protean II system (BioRad) as described in Laemmli (1970). Samples for SDS-PAGE 

were mixed with SDS sample buffer (final conc. 1x) and incubated at 95°C for 3 min. After 

loading, the gels were run in 1x SDS-PAGE running buffer at 100–200 V until the dye front 

reached the bottom of the separating gel. As marker, the PageRulerTM Unstained Protein 

Ladder or PageRulerTM Prestained Protein Ladder (Fermentas/ Thermo Scientific) was used. 

Gels were disassembled and either stained in coomassie stain solution for 1 h shaking, 

destained with Destain solution and fixed in 10% acetic acid or applied to Western Blotting 

for specific protein detection. A typical 10% SDS polyacrylamide (PAA) gel contained the 

following mixture. (Table 28) 

Table 28: SDS Polyacrylamide Gel 

Component Separation gel (10%) Stacking gel (4.5%) 
4x separating SDS-gel buffer 2.5 mL - 
4x stacking SDS-gel buffer - 2 mL 
30% Acrylamide/Bis-acrylamide (29:1) 3.33 mL 1.2 mL 
ddH2O 4.17 mL 4.8 mL 
TEMED (100%) 10 µL 50 µL 
10% APS 100 µL 50 µL 

 ~10 mL ~8 mL 
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 Western blotting 2.2.8.3

When Western Blotting for protein detection was used, proteins were blotted in a wet-blotting 

tank (Biorad) from SDS-PAA gels on a nitrocellulose membrane (Porablot, Macherey & 

Nagel). It comprised of 3 sponges, two pieces of Whatman paper, the SDS-PAA gel, the 

nitrocellulose membrane, again two pieces of Whatman paper and two sponges. After 

assembly, proteins were transferred for 1 h and 400 mA in Wet blotting buffer. The complete 

transfer of proteins was verified by Ponceau S staining. The membrane was blocked in 5% 

BSA in 1x TBST for 1 h at mild agitation, followed by 1.5 h incubation with the primary 

antibody, diluted in the same buffer. After washing with 1x TBST for 3 times each 5 min, the 

secondary antibody coupled to horseradish peroxidase was applied and incubated for 1 h. 

Again, the membrane was washed 3 times for 5 min in 1x TBST. Antibody covered proteins 

were made visible by incubation of the blot with a CheLuminate-HRP PicoDetect ECL kit 

(Applichem). Light sensitive X-ray films (GE Healthcare) were exposed to the blot and 

developed in an Optimax TR developing machine (MS Laborgeräte) or direct pictures of the 

blots were taken with a ChemoCam Imager (Intas).  

 Bradford assay 2.2.8.4

Protein concentration of samples was determined by the method of Bradford with BSA as a 

standard (Bradford, 1976). The samples were diluted according to the calibration curve and 

mixed with 200 µL 1x Bradford reagent. After incubation (5-10 min) in the dark, the 

absorption (595 nm) was measured in a 96-well plate (VWR) in a microplate reader (Tecan 

Sunrise). 

 GST-Pulldown 2.2.8.5

GST fusion proteins were bound to Glutathione Sepharose and purified as described above 

(see Material and Methods, 2.2.4.6). Protein amounts on beads were estimated and 

equalized after SDS-PAGE and coomassie staining in comparison to BSA. For pulldown 

assays, beads with bound protein (~ 5 µg) were equilibrated with GST pulldown buffer (Table 

29), blocked with BSA (10 mg/mL) for 1 h at 4°C and treated with DNase and RNase. Then, 

5-10 µg of purified RNAP complexes were added and incubated 1-2 h at 4°C. After extensive 

washing with GST pulldown buffer for four times each 5 min at 4°C, the beads were 

resuspended in SDS sample buffer, boiled, and subjected to SDS-PAGE and Western Blot 

analysis. 
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Table 29: GST-Pulldown Buffer 

GST-pulldown buffer 
25 mM HEPES (pH 7.6) 
200 mM NaCl 
12.5 mM MgCl2 
20% glycerol 
0.1% NP-40 (w/v) 
1x protease inhibitors 

 

 In vitro interaction assay 2.2.8.6

Investigation of the direct interaction of RNAPIII and Nab2 was carried out by incubating 

GST-fused Nab2 (see Material and Methods, 2.2.4.6) and TEV eluate from high salt purified 

RNAP I or III (see Material and Methods, 2.2.4.1). Therefore, beads with bound Nab2 (30 µL) 

were washed with 2.5 mL PD-buffer (Table 30) followed by digestion of DNA and RNA 

(100 µg/mL RNase A and 25 µg/mL DNase I) for 60 min at 16°C. For this, the buffer was 

supplemented with 10 mM MgCl2 and 10 mM CaCl2. After washing, RNAPI or RNAPIII (60 µL 

or same amounts) was bound to beads for 1 h at 4°C followed by washing with 5 mL of PD-

buffer. Treatment of the beads with ‘PreScission protease’ (5 µL) for up to 2 h at 16°C eluted 

bound complexes from the resin. Alternatively, 1x SDS sample buffer can be used for 

denaturating elution. 

Table 30: PD-Buffer 

PD-buffer 
20 mM HEPES (pH 7.6) 
75 mM NaCl 
2 mM MgCl2 
1 mM DTT 

 Antibody generation 2.2.8.7

To investigate the potential conservation of Nab2’s function in higher eukaryote cells, an 

antibody against the first 97 amino acids of the human Nab2 homolog Zc3h14 (isoform 1) 

was raised. Therefore, GST-Zc3h14 was expressed in E. coli and purified as described 

above (for purification see Material and Methods, 2.2.4.6). The beads were washed 

extensively with buffer NETN 1000 (see Material and Methods, 2.2.4.2) and equilibrated in 

buffer to elute the tagged protein natively from the beads (50 mM Tris HCl (pH 7.5) and 

100 mM NaCl) with 15 mM reduced glutathione and 1x protease inhibitor. To remove the 

glutathione, the eluted protein fractions were applied to a PD-10 desalting column 

equilibrated in elution buffer without glutathione. To test the stability of the preparation, eluted 
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protein was incubated 24 h at 25°C, 37°C, and 42°C and possible protein degradation was 

monitored via SDS-PAGE. Immunization (0.5 mg per rabbit/ immunization) and antibody 

production was conducted by Pineda Antikörper-Service (Berlin). After each immunization, 

sera were received and tested for recognition of the different epitopes in comparison to pre-

immune sera. Rabbits were sacrificed, when no increase in specificity between different 

bleeds was observed. The antibodies were aliquoted, mixed with glycerol, flash frozen and 

stored in -20°C or -80°C. 

  Fluorescence microscopy 2.2.8.8

HEK293 cells were cultivated using standard conditions and transfected with ZC3H14 in 

peGFP-N3 or peGFP-N3 alone using Lipofectamine 2000 (Invitrogen). Untreated cells 

served as mock control. After 24-48 h of incubation, cells were fixed and prepared for 

staining according to Sparrer et al. (2012). Subsequently, co-localization of ZC3H14-GFP 

and recognition of ZC3H14 by the raised antibodies (1: 500 dilution) was investigated via 

Fluorescence Microscopy on a Zeiss LSM510 laser scanning microscope. Staining with DAPI 

was performed to visualize cell nuclei (final. conc. ~300 nM) Images were taken and 

analyzed with Image J (1.49v). Fluorescent images of yeast cells were taken on a Zeiss 

Observer Z1 microscope with a 63x oil immersion objective, after cells were mixed with 

potassium phosphate buffer (pH 7.0) containing 1.2 M sorbitol. 

 Electron microscopy 2.2.8.9

Electron micrographs of RNAPIII core complex or RNAPIII with recombinant Nab2 were 

obtained as negative stain micrographs using 2% uranyl acetate (Nanoprobes) in 

collaboration with Dr. Petra Wendler (Gene Center, LMU Munich). Usually, highly purified 

RNAPIII from yeast was diluted 1:40 up to 1:80 prior to application on glow-discharged (45 s 

at < 29.3 Pa) carbon coated electron microscopy grids (Quantifoil) (Kube et al., 2014). Single 

micrographs were collected using a SIS Megaview 1K CCD camera connected to a FEI 

Morgagni transmission electron microscope (FEI, Hillsboro, USA) at 80 keV.  
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3.  Results 

 

 Nab2 binds to RNAPII- and RNAPIII-transcribed genes genome-wide 3.1

The poly(A) tail binding protein (PABP) Nab2 was discovered more than 20 years ago 

(Anderson et al., 1993). Until now, it has been described in detail how it functions to 

recognize poly(A) tails of nascent mRNAs and how this binding regulates poly(A) tail length, 

mRNA export or decay (Soucek et al. (2012) and references therein). In the nucleus, this is 

accomplished together with the classical factors involved in mRNA export or 

maturation/degradation such as Mex67-Mtr-2 or the 3’-end processing machinery (see 

Introduction and Soucek et al. (2012)). In a recent genome-wide analysis to unravel the 

function of nuclear RNA binding proteins in S. cerevisiae, ChIP-on-chip (Chromatin 

immunoprecipitation and subsequent hybridization of DNA to tiling arrays) experiments of 

mRNA processing and export (mRNP proteins) factors were conducted (Meinel, 2013; 

Meinel et al., 2013). In these studies, proteins of interest were immunoprecipitated from 

sheared chromatin with an average length of 200-250 bp, and purified DNA fragments were 

amplified before hybridizing to high density tiling arrays covering the whole yeast genome 

with a resolution up to four bases (David et al., 2006). These experiments also contained the 

generation of genome-wide occupancy data for RNAPII (represented by the subunit Rpb3) 

and RNAPIII (represented by the biggest subunit Rpc160), as well as for Nab2. In general, 

the ChIP-on chip data was generated and analyzed by Dominik M. Meinel, the Rpc160-TAP 

ChIP-on chip data was generated by Cornelia Burkert-Kautzsch (Meinel, 2013).  

Analyzing the data for Nab2, it was found that in addition to protein coding genes, i.e. RNAPII 

transcribed genes (Meinel, 2013), high occupancies were detected for tRNA genes, 

transcribed by RNAPIII. Although the occupancy of Nab2 on RNAPII transcribed genes was 

known and expected (Gonzalez-Aguilera et al., 2011; Meinel et al., 2013), the observation 

that a major fraction of Nab2 is associated with RNAPIII transcribed genes genome-wide was 

novel. However, it was already shown that Nab2 localizes to single RNAPIII genes in 

S. cerevisiae before (Gonzalez-Aguilera et al., 2011). 

The first aim in this study was to investigate the binding sites of Nab2 on the S. cerevisiae 

genome. Therefore, the occupancies of Nab2 were calculated according to the different gene 

classes (Fig. 10A). These were divided into protein coding genes (PCGs) (black), rRNA 

genes (green), sn/snoRNAs (blue), and tRNA genes (red).  
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Fig. 10: Genome-wide localization of Nab2 to RNAPIII-transcribed genes. (A) Density plots for Nab2 from 
ChIP-on-chip experiments. Four different classes of transcripts are shown: tRNA genes (red), protein coding 
genes (black), sn/snoRNA genes (blue), and rRNA genes (green). Note that rRNA genes are not occupied by 
Nab2 and that the intensity of Nab2 on tRNA genes is even higher than on protein coding genes. (B) Meta-tRNA 
gene occupancy profiles of Nab2-TAP, TAP-Npl3, Rpb3-TAP, Rpc160-TAP, and TAP-Tho2 on intronless 
tRNA genes smaller than 76 bp. ChIP-chip intensities were plotted against the averaged genomic loci of non-
intron containing tRNA genes. TSS: transcription start site; TTS: transcription termination site (Meinel, 2013). 

The frequencies of the occupancies within a group of genes were then plotted against the 

signal intensities. As anticipated before, Nab2 signals were high for PCGs and sn/snoRNA 

genes. Remarkably, Nab2 also localized to tRNA genes (Fig. 10A, red line), whereas RNAPI 

transcribed genes were not occupied by Nab2. The fraction of Nab2 bound tRNA genes was 

even bigger than the fraction binding to protein coding genes. 

To examine whether Nab2 and Rpc160, the biggest subunit of the RNA Polymerase III core 

complex, co-localize genome-wide on tRNA genes, we then calculated meta-tRNA gene 

profiles of Nab2 and Rpc160 by plotting their average nucleotide occupancy against all 

intronless tRNA genes < 76 bp after gene length normalization. In addition, we calculated the 

same for the SR-like protein Npl3, the RNAPII core subunit Rpb3, and the TREX component 

Tho2. As evident from Figure 10B, the meta profiles of Nab2 and Rpc160 (RNAPIII) show a 

strong signal at tRNA genes and are very similar in their profile shape. In contrast to that, 

neither Rpb3 (RNAPII) nor Tho2, or Npl3 show recruitment to tRNA genes. This indicated 

that Nab2 localizes to tRNA genes independent of RNAPII or other mRNP-binding proteins, 

which suggested a possible, RNAPII-independent recruitment of Nab2 to tRNA genes 

transcribed by RNAPIII.         

 Besides the meta-tRNA gene profile, showing that Nab2 localizes to tRNA genes, we 

were interested whether Nab2 also binds to other ncRNA genes transcribed by RNAPIII. 

Hence, we investigated the individual occupancy traces on single genes, such as the SCR1 
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gene (RNA of the signal recognition particle, Fig. 11A), the RPR1 gene (RNA component of 

the nuclear RNase P, Fig. 11D) or the 5S rRNA gene (RDN5, Fig. 11E), which were also 

occupied by Nab2 and RNAPIII in the same manner (Fig. 11). As a control, the occupancy of 

RNAPII (Rpb3) was inspected as well. In the presented occupancy traces (Fig. 11), RNAPII 

only localized to the open reading frames of PCGs, which interspersed tRNA and other 

ncRNA genes. In contrast, Nab2 highly occupied all tested RNAPIII transcribed loci. The 

additional analysis of single tRNA genes also confirmed the co-occupancy of RNAPIII with 

Nab2, as suggested by the meta-tRNA gene profiles, while RNAPII was absent. Thus, Nab2 

is present at all genes that are transcribed by RNAPIII.     

 To test whether the occupancy of Nab2 on RNAPIII genes is independent of RNAPII 

genome-wide, we calculated the peak occupancies of Nab2, RNAPII, and RNAPIII (Fig. 12). 

 

Fig. 11: Nab2 and RNAPIII co-occupy all RNAPIII transcribed genes. (A-F) Individual occupancy traces of 
Rpb3 (RNAPII), Rpc160 (RNAPIII), and Nab2 at tRNA genes as well as at the SCR1, RDN5, SNR6, SNR52, and 
RPR1 gene loci show that Nab2 is recruited to all genes transcribed by RNAPIII. RNAPII (Rpb3) does not 
occupy these loci. “Gaps” as in (F) in the single traces for Nab2 and Rpc160 are due to gene duplication in the 
yeast genome. These duplicated genes are not represented on the used tiling arrays (personal comm. D. Meinel). 
Data analysis and figure preparation was done by D. Meinel. 

Scatter plots of the calculated peak occupancies of Nab2 with the RNAPII subunit Rpb3 

showed high correlations on protein coding genes (Fig. 12A, grey dots), whereas only poor 

correlations were found on tRNA genes (Fig. 12A, red dots), due to the absence of RNAPII 

on these genes. This is in good accordance with previous data, showing that RNAPII and 
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basic RNAPII transcription factors do not associate with genes transcribed by RNAPIII in 

S. cerevisiae, whereas it is a common feature in higher cells (Raha et al., 2010; Venters et 

al., 2011). 

Likewise, calculation of the peak occupancies for Nab2 and RNAPIII (Rpc160) revealed high 

correlations for tRNA genes (Fig. 12B, red dots), but yielded low correlations for PCGs, 

which are not bound by RNAPIII (Fig. 12B, grey dots). The binding of RNAPIII at some 

protein coding genes in the vicinity of tRNA genes (Fig. 12B, orange dots) is most probably 

explained by spillover effects of the high intensity binding of RNAPIII to juxtaposed tRNA 

genes. 

 

Fig. 12: Nab2 occupancy correlates highly with both RNAPII on protein coding genes and with RNAPIII 
on tRNA genes. (A) Scatter plot of the peak occupancies of Nab2 (y-axis) and RNAPII (Rpb3, x- axis) are 
depicted. Nab2 and Rpb3 correlate highly on protein coding genes (PCGs, grey dots), whereas there is poor 
correlation for tRNA genes (red dots). (B) Same as in (A), but peak occupancies for Nab2 (y-axis) and Rpc160 
(RNAPIII, x- axis) are shown. Nab2 and Rpc160 occupancies correlate well for tRNA genes, whereas they do not 
correlate for PCGs. Protein coding genes within a distance of < 250bp from RNAPIII genes are illustrated 
separately (orange dots) to mark potential spill-over effects of RNAPIII on PCGs. (C) Calculated Pearson 
correlation coefficients of Nab2 and Rpb3, Nab2 and Rpc160, as well as Rpb3 and Rpc160 at protein coding 
genes and (D) at tRNA genes. Interestingly, Nab2 occupancy correlates highly with Rpb3 on PCGs, but only with 
Rpc160 on tRNA genes. Asterisks indicate that within 100,000 permutations no similarly high Pearson 
correlation coefficient was obtained indicating that data sets are significantly positively correlated. The positive 
correlation coefficient at protein coding genes for Nab2 and Rpc160 is most likely caused by spillover effects of 
nearby tRNA genes (compare (A) and (B)). Data analysis and figure preparation was done by D. Meinel. 

In addition, Pearson correlation coefficients were calculated for the co-occupancy of 

combinations of the tested proteins (Fig. 12C and D). First, no obvious correlation was 

present for both polymerases localizing to the same genes (Fig. 12.C and D; Rpb3-Rpc160). 
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Second, Nab2 had two highly specific binding preferences. It co-localized with RNAPII on 

protein coding genes and with RNAPIII on tRNA genes. Third, there was no fraction, where 

Nab2 and Rpc160 bound to PCGs, nor a fraction of Nab2 binding tRNA genes together with 

RNAPII. 

Gonzales-Aguilera and colleagues described that Nab2 is binding to RNAPIII genes using 

ChIP analysis on single genes, such as the SUP56 tRNA gene, the 5S rRNA gene, and the 

SNR6 gene (Gonzalez-Aguilera et al., 2011). However, they claimed that the recruitment of 

Nab2 might depend on TREX or THSC/TREX-2 components, e.g. Hpr1, Tho1, or Thp1. They 

showed that these proteins are recruited to RNAPIII transcribed genes, though with very low 

abundance. To check this in more detail we performed ChIP analyses of Hpr1 using the 

same genes to evaluate the binding of the TREX subunit Hpr1 to RNAPIII target genes (see 

Appendix, Fig. A1). Occupancy for Hpr1 was high on PMA1, an intronless RNAPII 

transcribed gene, as expected from earlier experiments (Meinel, 2013). In contrast, the 

recruitment to the 5S rRNA and SNR6 genes was neglectable, as less than 6% recruitment 

was observed, compared to the PMA1 occupancy (see Appendix, Fig. A1). Furthermore, the 

dependency of the Nab2 recruitment on Hpr1, Tho1, or Thp1 was tested, as well as the 

occupancies of these proteins on exemplary RNAPIII genes (Knüppel, 2013). In summary, 

none of the proteins was highly enriched on the tested genes, nor was the recruitment of 

Nab2 reasonably decreased, contrarily to the findings of Gonzales-Aguilera and colleagues 

(Gonzalez-Aguilera et al., 2011; Knüppel, 2013). 

From this data it can be concluded that the occupancy of Nab2 at tRNA genes is specific and 

independent of RNAPII or other mRNP biogenesis factors, such as Tho2. This indicates a 

potential second role for the poly(A)-binding protein Nab2 in addition to serving in correct 

mRNP biogenesis and export. 

 

 Generation of new alleles to impair Nab2 function 3.2

 A novel temperature-sensitive allele of NAB2: nab2-34 3.2.1

The observation that Nab2 is specifically present at RNAPIII-transcribed genes raised the 

question, whether Nab2 might function in RNAPIII transcription. As Nab2 is an essential 

protein in S. cerevisiae, we aimed to use conditional alleles to study the potential role of 

Nab2 in RNAPIII transcription in yeast. Unfortunately, existing alleles do not have optimal 

properties. For example, the nab2-1 and specially the nab2-1-GFP allele have an impaired 

growth already at permissive temperatures (compare different temperatures in Fig. 13A for 
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nab2-1 and nab2-1-GFP and Marfatia et al. (2003)). Other alleles, such as the C437S point 

mutant do not show a very pronounced temperature sensitivity (see Fig. 13A, nab2-C437S at 

different temperatures) or they require media changes for efficient depletion of Nab2 

(Brockmann et al., 2012; Gonzalez-Aguilera et al., 2011). Only recently, an “anchor away” 

allele of Nab2 was described that localizes the nuclear fraction of Nab2 to the cytoplasm 

upon rapamycin treatment of the cells (Schmid et al., 2015).  

 

Fig. 13: Identification of nab2-34 and comparison to existing NAB2 ts-mutants. (A) 10-fold serial dilutions 
(dot spots) of strains expressing wild-type NAB2, the new nab2-34 allele, the previously generated temperature 
sensitive nab2-1-GFP and nab2-1 alleles or the nab2-C437S allele were spotted on YPD plates and grown for 2 
or 4 days at the indicated temperatures. nab2-34 has a severe growth defect at the non-permissive temperature. 
(B) Growth curves of NAB2 and nab2-34 cells at 30°C and 37°C in liquid YPD culture. The mean values and 
standard deviation (SD) of three replicates are shown. nab2-34 shows the first growth defect after 4 hours of 
shifting to the restrictive temperature. 

The system uses the fusion of an FRB-tag to Nab2 in a strain with FKBP-tagged Rpl13a. 

Upon addition of rapamycin, these two tags interact and Nab2 gets exported and tethered to 
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the cytoplasm, but not degraded. Unfortunately, this allele was not available at the time 

experiments were conducted. 

Hence, we decided to generate our own conditional, temperature-sensitive (ts) NAB2 allele 

to use it as a tool to study the new potential function of Nab2 in RNAPIII transcription. 

Therefore, the error prone PCR-mutated (epPCR) NAB2 ORF was co-transformed with a 

linearized pRS315 yeast plasmid that had sequence homologies to the PCR fragment. After 

transformation, yeast cells repaired the plasmid via the homologous repair pathway. The 

generated transformants were subsequently screened for temperature sensitivity (see 

Material and Methods, 2.2.3.9). 

 

Fig. 14: Alignment of Nab2 and Nab2-34 amino acid sequences. Sequences were aligned and single domains 
marked with colors. The N-terminal PWI domain (blue), the QQQP-domain (purple), the RGG domain (yellow), 
and the seven zinc fingers (green) are depicted. Mutations in Nab2-34 are marked in red. Identity of residues is 
marked by double points (highly related amino acid) or asterisks (identical amino acid). No mark indicates no 
sequence similarity. 

The one and only allele identified this way was the nab2-34 allele. As shown in Figure 13A, it 

displayed normal growth on YPD plates at 25°C and 30°C compared to wild-type (wt) cells, 

had a slight growth defect at 18°C, and was inviable at 37°C. Growing in liquid full medium 

(Fig. 13B), cells harboring the nab2-34 mutant already showed a slight growth defect at 

30°C, compared to complemented wild-type cells. Growth curves at 37°C revealed a first 

growth defect after four hours of growth at the restrictive temperature, although cells still 
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continued to grow slowly for at least nine hours (Fig. 13B). Due to its severely impaired 

growth at 37°C, the nab2-34 allele was used for all subsequent experiments for which a 

conditional allele was needed. 

Furthermore, sequencing of the mutant NAB2 allele revealed that Nab2-34 is still produced 

as a full length protein containing several single amino acid exchanges due to point 

mutations in the coding DNA (Fig. 14, red bars).      

 The mutated residues were distributed throughout the whole protein-coding 

sequence. In most cases, ts-alleles have several changes in their amino acid sequence or 

truncations that complicate the prediction, which of the mutations is most important for the 

displayed phenotype. As most of the mutations are likely not changing the overall structure of 

Nab2-34 (three mutations lay within the dispensable QQQP-domain, see purple bar in Fig. 

14), two positions should be emphasized. First, the histidine to proline mutation in the fourth 

zinc finger (Znf) and second, the arginine to cysteine mutation in zinc finger six. Both 

mutations could destabilize the correct complexation of the Zn2+ ion within the Znf fold, 

thereby potentially disrupting the zinc finger and its function at higher temperatures (compare 

to Introduction, 1.3, Fig. 4). Both mutations are in critical regions of the zinc finger and might 

be responsible for the potential or partial unfolding of Nab2, which could finally result in the 

observed ts-phenotype. Interestingly, protein levels stay constant, when cells are shifted to 

the non-permissive temperature, arguing against a complete unfolding and subsequent 

degradation of Nab2-34 (data not shown). 

 NAB2-AID as a second allele to deplete Nab2 from yeast cells 3.2.2

An alternative approach to deplete Nab2 was chosen in parallel by applying the depletion 

technique described by Nishimura and colleagues (Nishimura et al., 2009). This technique 

was named AID, which is the abbreviation for ‘Auxin-inducible degron’ and takes advantage 

of Auxin-induced degradation of polyubiquitinylated proteins. In plants, Auxins are 

representatives of a series of plant hormones, which control gene expression during growth 

and development. Within these processes, indole-3-acetic acid (IAA) is considered as the 

natural auxin (Nishimura et al., 2009; Teale et al., 2006). In this method, the protein of 

interest is fused to the AID degron, which is an auxin- or IAA-transcription repressor. Upon 

addition of auxin to cells, the compound binds to the F-box transport inhibitor response (Tir1) 

protein that is able to interact directly with the fused degron (see Fig. 15A). As the Tir1 

protein can be incorporated into the SCF complex (Skp1, Cullin, and F-box), which is an E3 

ubiquitin ligase complex involved in degrading proteins in yeast and other organisms, the 

protein of interest will be ubiquitinylated by an E2 ubiquitin conjugating enzyme leading to its 

rapid degradation by the proteasome. The substrate specificity of this complex is mediated 
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by the F-box protein – in this case Tir1 - that binds to the highly conserved Skp1 protein of 

the SCF complex. As Tir1 orthologues are only found in plants, the Tir1 protein of the Asian 

rice (Oryza sativa) is additionally expressed in yeast (Nishimura et al., 2009).  

 To generate this degron with Nab2, the genomic NAB2 locus was tagged with the 

IAA17 (AID)-tag and the osTIR1 sequence was integrated into the yeast genome, 

respectively. 

 

Fig. 15: The NAB2-AID degron can be used to mostly deplete Nab2 from cells. (A) Scheme of the AID 
degron system. An auxin transcription repressor is fused to a target protein. Addition of auxin (indole-3-acetic 
acid, IAA) to the media leads to an interaction of the fused repressor with auxin and Tir1. Tir1 in turn recruits an 
E2/E3-ubiquitin ligase complex (SCF) to polyubiquitinylate the fused protein and thus targets the protein to the 
proteasome. Image taken from Nishimura et al. (2009). (B) Dot spots of wild-type cells with and without 
integrated OsTIR1 and two transformants with a NAB2-AID degron grown in full media with DMSO (control) or 
IAA. Depletion of Nab2 from cells resulted in severely impaired growth. (C) Growth curve of wild-type cells or 
cells harboring the NAB2-AID allele. Growth was only impaired when Auxin (IAA) is added to the medium. Data 
(n= 3) represents the mean ± standard deviation (SD). (D) Western blots of RNAPII (Rpb1), RNAPIII (Rpc160), 
Nab2-AID and Pgk1 levels upon addition of Auxin. Nab2 levels dropped massively, but could not be completely 
depleted by this method. Levels of RNAPIII were also slightly reduced upon Nab2 depletion. Marker sizes are in 
kDa. 

As shown in Figure 15B, integration of osTIR1 did not affect the growth, compared to a non-

modified wild-type yeast strain, when auxin (IAA) was added.     
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 In contrast, yeast cells harboring AID-tagged Nab2 showed a severe growth defect in 

the presence of auxin. To study this in more detail, growth curves were recorded for wild-type 

yeast cells, NAB2-AID cells growing in the presence of the solvent DMSO, and NAB2-AID 

cells treated additionally with IAA (Fig. 15C). Cells growing with DMSO behaved as wild-type 

cells, showing no delay or defect in growth, whereas auxin treated cells displayed an 

impaired growth after 2-3 hours of incubation. Nevertheless, the cells were able to slowly 

grow even after nine hours of auxin treatment. This may have resulted from insufficient 

depletion of the AID-tagged Nab2 from the cells. Therefore, we determined the protein levels 

of Nab2, Pgk1, Rpb1 (RNAPII), and Rpc160 (RNAPIII) during auxin treatment at different 

time points. Pgk1 served as an internal loading control of equal loading. Interestingly, Nab2 

levels were reduced rapidly but not completely even after six hours of auxin treatment (Fig. 

15D). Albeit very low, protein levels stayed nearly constant after treatment for four hours or 

longer, indicating that this degradation system is not fast enough to deplete the whole pool of 

Nab2. This may be due to faster neo-synthesis of Nab2 than degradation or a limiting factor 

in the degradation pathway, e.g. the availability of osTir1. 

In summary, two different alleles were constructed that can be used for further analysis of 

Nab2 and its potential function in RNAPIII transcription. The nab2-34 temperature-sensitive 

allele has the advantage of only one locus being modified and the phenotype can be easily 

induced by shifting the cells to 37°C in full medium. In contrast, Nab2 protein could be 

depleted to certain extend by the AID degron. Although Nab2 is not completely depleted from 

the cells using this technique, it is still advantageous over other currently existing alleles, 

such as nab2-1. No medium-shift is required, nor an addition of potential toxic compounds, 

such as heavy metals or drugs, as IAA is a natural derivative of phenylalanine. 

 

 The interdependency of RNAPIII and Nab2 on RNAPIII-transcribed genes 3.3

The observed genome-wide co-occupancy of Nab2 and RNAPIII (Rpc160) on RNAPIII-

transcribed genes raised the question, whether the occupancy of Nab2 on RNAPIII genes is 

transcription dependent, pointing towards a mechanism of Nab2 in transcription of RNAPIII 

genes. To answer this question, single ChIP experiments were conducted to assess whether 

Nab2 occupancy on target genes requires RNAPIII and active transcription. We used the 

rpc25-S100P temperature-sensitive mutant that impairs transcription initiation at the 

restrictive temperature (Zaros and Thuriaux, 2005). To confirm the effect of this mutant on 

general RNA polymerase III occupancy on tRNA and other ncRNA genes, we carried out 

ChIP analyses with Rpc160-TAP, the biggest subunit of RNAPIII on three exemplary RNAPIII 
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genes: RPR1, SNR6, and tDNALys. After shifting to the restrictive temperature of 37°C for 6-

10 h, the cells were crosslinked and analyzed. As expected, the presence of RNAPIII 

decreased significantly at all tested gene loci. Importantly, the occupancy of RNAPIII in 

shifted wild-type cells remained unchanged (Fig. 16A). In line with our hypothesis that Nab2 

might have a role in RNAPIII transcription or processing, occupancy of Nab2 also decreased 

significantly in mutant cells, whereas it stayed the same in RPC25 cells (Fig. 16B). This 

finding suggested that efficient Nab2 recruitment to RNAPIII target genes is dependent either 

on active transcription by the polymerase or the sole presence of RNAPIII on its genes. 

 Next, we investigated whether Nab2 is also required for full occupancy of RNAPIII on 

its genes. This would be another hint for a role of Nab2 in RNAPIII transcription. Hence, the 

novel nab2-34 mutant was used and cells were shifted for three hours to 37°C prior to ChIP 

analysis. Rpc160-TAP occupancy in NAB2 and nab2-34 cells at 30°C was normalized to 

100% (Fig. 16C).  

 

Fig. 16: Nab2 and RNAPIII occupancies on RNAPIII-transcribed genes are interdependent. Occupancy of 
Nab2 in RNAPIII-transcribed genes is transcription-dependent. ChIP analysis of Rpc160-TAP (A) and Nab2-
TAP (B) in RPC25 and rpc25-S100P cells (Zaros and Thuriaux, 2005) at selected genes at the indicated 
temperatures. Occupancies of Rpc160 and Nab2 are reduced in the mutant at the restrictive temperature. Data 
(n ≥ 3) represent the mean ± SD; *: p < 0.05; **: p < 0.01. (C) Nab2 is needed for full RNAPIII occupancy on its 
target genes. ChIP analysis of Rpc160-TAP in NAB2 and nab2-34 cells at indicated temperatures. Data (n ≥ 3) 
represent the mean ± SD; **: p < 0.01. 

The occupancy of RNAPIII did not change in the complemented wild-type cells, whereas 

shifting the Nab2 mutant to the restrictive temperature, resulted in a ~50% decrease of 
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RNAPIII occupancy on tested genes (Fig. 16C, black columns). Interestingly, this effect was 

observed even before the cells showed a growth defect, indicating that the diminished 

presence of RNAPIII on target genes is a direct effect of Nab2.  

Taken together, the transcription-dependent and the genome-wide association of Nab2 with 

RNAPIII at RNAPIII-transcribed genes, as well as the requirement of functional Nab2 for full 

occupancy of RNAPIII on its genes suggest a function for Nab2 in RNAPIII transcription. 

 

 RNAPIII and Nab2 interact directly 3.4

Since it was observed that Nab2 and RNAPIII co-occupy tRNA and other ncRNA genes and 

that they are interdependent on each other, they most probably should interact, if Nab2 has a 

function in RNAPIII transcription. Therefore, we investigated the physical interaction of Nab2 

with the RNA polymerase. A NAB2-TAP tagged strain containing an HA-tagged RNAPIII (on 

Rpc160) was subjected to tandem affinity purification (TAP) from 2 L yeast culture. The 

purification was successful, as the Nab2 importing karyopherin Kap104 was co-purifying (see 

Fig. 17, the second most intense band in the Nab2-TAP purification) Subsequent Western 

blot analysis was applied to reveal a potential co-purification. Indeed, Rpc160-HA and thus 

likely the whole RNAPIII complex co-purified with Nab2 (Fig. 17A, lane 5). A RPC160-HA 

strain without a TAP-tag served as negative control and as evident from Figure 17A, lane 4, 

no protein purification was visible on the Coomassie blue stained SDS-PAA gel. More 

importantly, no HA signal could be detected in the Western blot, indicating that the binding of 

RNAPIII is specifically dependent on Nab2.       

 We additionally purified the RNAPIII core enzyme via an RPC160-TAP tagged strain 

under the same conditions and tested for co-purification of Nab2 (Fig. 17A, lane 6). As 

expected from the results of the Nab2 purification, Nab2 co-purified in the RNAPIII 

purification. Pgk1, the cytoplasmic phosphoglycerate kinase 1, served as a negative control 

for unspecific co-purification.         

 Due to the fact that the whole cell extracts were treated with DNase I and RNase A, 

we concluded that the observed physical interaction of Nab2 and RNAPIII is most likely DNA- 

and RNA-independent.         

 Since it could not be concluded from this experiment, whether the observed 

interaction of Nab2 with RNAPIII is direct or mediated by auxiliary factors, we performed in 

vitro pulldown experiments (Fig. 17B). To do so, RNAPIII was highly purified from S. 

cerevisiae under stringent conditions (800 mM NaCl) that yield the core components of the 

RNAPIII complex. 
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Fig. 17: Nab2 interacts with RNAPIII in vivo and in vitro. (A) Tandem affinity purification (TAP) of Nab2-
TAP, Rpc160-HA and Rpc160-TAP (upper panel) was performed under standard conditions, using 100 mM 
NaCl, DNase I and RNase A. A representative 10% SDS-PAA gel stained with Coomassie brilliant blue is 
shown. Asterisks denote the tagged subunits that were purified. Co-purification of RNAPIII and Nab2 was 
assessed by Western Blot (lower panel) against HA or Nab2. Pgk1 and a non-TAP-tagged Rpc160-HA tagged 
strain served as internal controls. Nab2 and Rpc160 can be natively purified and interact in vivo. The different 
signals for Nab2 in the Western Blots (lanes 2 and 5) can be explained as different degradation products. In lane 
2, whole lysate is blotted before incubation with IgG Sepharose. As the TAP tag is a tripartite tag, the upper band 
corresponds to the full tag (Protein A-TEV-CBP), the middle one to the CBP part of the tag and the lowest band 
might represent Nab2 that completely lost the tag. The CBP part of the tag is also responsible for the molecular 
weight increase observed in lane 5 compared to lane 6. (B) Nab2 interacts directly with RNAPIII in vitro. 
Pulldown assays were performed with GST-Nab2 immobilized to glutathione coupled resin and incubation with 
RNAPIII purified from yeast. Purified GST from E. coli and S. cerevisiae RNAPI served as negative controls. A 
representative Coomassie blue-stained SDS-PAA gel (10%) is shown. Nab2 interacts with RNAPIII directly and 
specifically. Marker sizes are in kDa. 

Nab2 was N-terminally GST-tagged (the tag also contained a cleavage site for ’PreScission’ 

protease) and purified to near homogeneity from E. coli and bound to GST beads. 

Furthermore, negative controls were included. On the one hand, GST (Glutathione-S- 

transferase) only bound to beads served as negative control for unspecific binding of the 

polymerase (Fig. 17B, lane 5). On the other hand, RNAPI, which was purified as RNAPIII 

and was TAP-tagged on the biggest subunit Rpa190, served as control (Fig. 17B, lane 6).

 Before incubation with RNAPIII, GST-Nab2 did not show a high-molecular weight 

bands on Coomassie gels (Fig. 17B, lane 1). After incubation with RNAPIII from yeast 

(Fig. 17B, lane 2) and ‘elution’ with ’PreScission’ protease, proteins were subjected to SDS-
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PAGE on a 10% SDS-PAA gel. Intriguingly, RNAPIII bound to recombinant GST-Nab2 

directly (Fig. 17B, lane 3). We could further argue that this interaction is specific for Nab2, as 

GST alone did not bind to RNAPIII (Fig. 17B, lane 4), and GST-Nab2 could not pulldown 

RNAPI under the same conditions (Fig. 17B, lane 7). 

The presented experiments showed that Nab2 and RNAPIII interact in vivo and that this 

interaction is direct and specific. To map the Nab2 region that is required to bind to RNAPIII, 

GST-fusions of Nab2 deletion constructs were produced (Fig. 18B) and subsequently 

incubated with RNAPIII purified as described above. An overview of the tested constructs is 

given in Figure 18A. All constructs were purified to homogeneity, coupled to GST-beads, and 

amounts were adjusted on SDS-gels. The co-purification of RNAPIII with these constructs 

was eventually assessed by Western blotting against the CBP-tag of the polymerase. These 

experiments revealed that RNAPIII binds to the first four zinc fingers of Nab2 alone or in 

combination with the RGG domain (Fig. 18C). In one set of experiments, the RGG domain 

alone was also able to interact with the polymerase (Fig. 18C, (2)). 

 

Fig. 18: The zinc finger and the RGG domain of Nab2 are crucial for RNAPIII interaction. (A) Schematic 
overview of the Nab2 truncation constructs used in the GST-Pulldowns. Interaction domains of RNAPII (orange) 
and III (blue) are highlighted. (B) A representative, Coomassie-blue stained 10% SDS-PAA gel with purified 
GST-Nab2 truncations is shown. (C) Representative Western blots of the in vitro GST-Nab2-pulldowns are 
shown. For Western Blot detection, an antibody detecting the Calmodulin binding peptide was used. The asterisk 
in (C) marks spill over from the neighboring well. The Western Blot (1) was taken from (Damayanova, 2012). 
Nab2 interacts with RNAPII via the RGG domain, whereas the interaction with RNAPIII can also be mediated by 
the first four zinc fingers. Marker sizes are in kDa. 

In addition to RNAPIII, the binding of Nab2 to RNAPII (Rpb3-TAP) was also tested in this 

assay. The reason for this was the genome-wide binding of Nab2 on RNAPII genes with 
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RNAPII in the earlier mentioned ChIP-on-chip (Fig. 12 and Meinel et al. (2013)). Surprisingly, 

RNAPII also bound to full length Nab2 in vitro and to a region closely to the mapped binding 

domain of RNAPIII. In this case, the presence of the RGG domain within the Nab2 deletion 

construct was required for RNAPII interaction, as no construct without this domain could pull-

down RNAPII (Fig. 18C).          

 The results gained from the in vitro pulldowns are summarized in the lower part of 

Figure 18A. 

In summary, the interaction assays revealed that Nab2 interacts with RNAPIII in vivo and in 

vitro via the first four zinc fingers and potentially with the RGG domain. Interestingly, RNAPII 

also showed physical interaction with Nab2. In this case, the interaction is also direct, as 

affinity purified components were used in pulldown assay and Nab2 most probably requires 

the presence of the RGG domain alone to bind to RNAPII. As it was previously not known, 

whether Nab2 binds to RNAPII, this is the first evidence of a direct interaction. 

 

 Transcriptome-wide binding of Nab2 to tRNAs and other ncRNAs 3.5

As Nab2 was identified in an early study investigating proteins that bind to poly(A) tails in 

yeast, it is a founding member of the poly(A) binding protein family (Anderson et al., 1993). 

Since then, the properties of how Nab2 binds to poly(A) tails and other RNA sequences have 

been examined in detail (Green et al., 2002; Kelly et al., 2007; Marfatia et al., 2003). Nab2 

can bind highly specific to poly(A) RNA, however binding to poly(G), poly(U), and unspecific 

RNA sequences have been described additionally (Anderson et al., 1993; Tuck and 

Tollervey, 2013). As Nab2 associates with RNAPIII on its target genes and interacts directly 

with this polymerase, we were interested whether Nab2 is also able to bind to tRNAs and 

other ncRNAs. Therefore, we analyzed the CRAC data (crosslinking and analysis of cDNA) 

that was generated recently by Tuck and Tollervey to determine the transcriptome-wide RNA 

binding of several RBPs in yeast (Tuck and Tollervey, 2013). In detail, they identified all 

transcripts bound by 13 mRNA processing, export, and turnover proteins in S. cerevisiae in 

vivo. Nab2 was among these proteins.       

 Analysis of the published data was conducted together with Dominik Meinel 

(Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Oberschleissheim, 

Meinel (2013)) to investigate the potential binding of Nab2 to RNAPIII transcripts in vivo. We 

first calculated a meta profile of all non-intron containing tRNAs with a length of ≤ 76 nt by 

alignment of all tRNA reads to their transcription start sites on the yeast genome 
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(‘0’ represents the TSS; Fig. 19A). Importantly, this data revealed a binding of Nab2 to the 

bodies of intronless tRNAs (Fig. 19A). 

 

Fig. 19: Nab2 binds to tRNAs and other ncRNAs transcribed by RNAPIII in vivo. Analysis of the genome-
wide CRAC data set (Tuck and Tollervey, 2013) revealed Nab2 binding to premature tRNA and other ncRNA 
transcripts. (A) Meta profile of Nab2 binding to intronless tRNAs ≤ 76 nt. ‘0’ indicates the corresponding 
transcription start site on the yeast genome. (B-E) Hit distribution of Nab2 along selected tRNA and ncRNA 
genes. Retrieved signals were annotated to the respective genes from SGD (www.yeastgenome.org). The gene 
orientation was considered, as the plus strand is shown in blue, the minus strand in red. The mature 5’- and 3’-
ends of the newly synthesized transcripts are indicated by the dashed lines and the colored bars below each panel. 
Hence, the SCR1 transcript (B) and the 5S rRNA (E) have no or no pronounced precursor molecules in the cell or 
Nab2 does not bind them. (C) The gap in the tRNALeu gene represents an intronic sequence that is later removed. 
(D) Extensive precursors are known for the RPR1 gene. The analysis was done together with Dominik Meinel 
Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Oberschleissheim, Meinel (2013)). 

Furthermore, the results from this meta profile can be generalized to all tRNAs, as Nab2 also 

bound to the bodies of intron-containing tRNAs, including intronic sequences (Fig. 19B 

and C). 

Interestingly, an additional but lower binding was detected downstream of the mature tRNA 

sequences indicating that Nab2 binds to pre-tRNAs already during or shortly after 

transcription (Fig. 19A and C). The binding of Nab2 to pre-tRNA introns, which is depicted for 

tL(UAG)L2 (Fig. 19C) is in line with this observation.     

 A closer inspection of the CRAC data additionally revealed that Nab2 also bound to 

other ncRNAs, such as RDN5, RPR1, or SCR1 (Fig. 19B-E), which are important structural 
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and functional RNAs in translation, tRNA processing, and guiding the translating ribosome to 

the endoplasmic reticulum (ER). Again, binding of Nab2 to precursor ncRNA was observed, 

e.g. for RPR1, the RNA component of RNase P. This RNA possesses a ~84 nt 5’-leader 

sequence and a 3’-trailer. Both precursor sequences, as well as the whole body of this 

ncRNA showed binding by Nab2. Shortly after transcription, the leader sequence is 

processed (Lee et al., 1991), again pointing towards a co-transcriptional binding of Nab2 to 

RNAPIII transcribed precursor RNA.        

 In summary, Nab2 was found to bind to all tRNAs and ncRNAs transcripts 

investigated. This binding was not only observed to mature, but also to non-processed 

RNAPIII transcripts, suggesting an interaction with Nab2 as these transcripts are being 

synthesized. 

 

 Nab2 is required for efficient RNAPIII transcription in vitro and in vivo 3.6

 The nab2-34 mutant causes an in vivo RNAPIII transcription defect 3.6.1

Having found that Nab2 interacts with RNAPIII and its transcripts, as well as the fact that full 

RNAPIII occupancy on its target genes depends on functional Nab2, we wanted to determine 

whether Nab2 is also required for maintenance of RNAPIII transcript levels in vivo. For this 

purpose Northern blot analyses of tRNA and other ncRNAs were conducted. The steady-

state levels, as well as the de novo synthesis of RNAPIII transcripts were investigated by 

blotting total RNA extracted from wild-type cells or nab2-34 mutant cells shifted to the 

restrictive temperature (37°C) for up to six hours (Fig. 20A). Northern blots of the rpc25-

S100P mutant and the respective RPC25 strain, prepared in parallel, served as a positive 

control (Fig. 20B). Three exemplary RNA levels, tRNAIle(UAU)L, RPR1, and SNR6, were 

measured and normalized to the amounts of the respective RNA in wild-type cells. For RPR1 

and the tRNA, levels of the precursor were analyzed (upper bands in Fig. 20A and B). 

However, no precursor molecules are known for SNR6 RNA. The RNAPII-synthesized 

SNR14 RNA was included as control (lowest panel in Fig. 20A and B). In addition, RNA of 

each sample was analyzed by agarose gel electrophoresis to control RNA quality and to 

verify equal loading by quantification of 25S and 18S rRNA levels (see Appendix, Fig. A2). 

 After shifting the cells for six hours to the restrictive temperature, the levels of all three 

transcripts decreased significantly in the nab2-34 and rpc25-S100P mutant cells, when 

compared to RNA isolated from wt cells (Fig. 20C-E). Importantly, a reduction of 30-50% was 

observed in the nab2-34 mutant. The effect of the polymerase mutant was even more 
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pronounced with levels reduced from 50% without shifting the cells, to less than 10% after 

shifting the mutant to 37°C for the pre-tRNA signals. 

 

Fig. 20: Nab2 is important for normal tRNA and ncRNA neo-synthesis in vivo. Northern Blot analyses of 
tRNAIle, RPR1, SNR6, and SNR14 levels, a RNAPII control, in NAB2 and nab2-34 (A) or RPC25 and rpc25-
S100P (B) harboring cells shifted to the indicated temperatures for 0-6 hours. Representative blots of total RNA 
are shown. (C-E) Quantification of Northern Blot levels for tRNAIle(UAU)L (two highest bands) (C), RPR1 
(upper band) (D), and SNR6 (E). Levels were normalized to the corresponding wild-type strains (set to 1 at 
30°C). Data (n ≥ 3) represent the mean ± SD; *: p < 0.05. Equal loading was verified by agarose gel 
electrophoresis and quantification of 25S and 18S rRNA levels (see Appendix, Fig. A2). 

Since the probe for tRNAIle(UAU)L localized to the intron and RPR1 has extended 5’- and 3’-

extensions, precursor level were detected and quantified (Fig. 20C-E). Therefore, it is likely 

that the de novo synthesis of RNAPIII transcripts is impaired in the nab2-34 cells. The same 

effect was also shown for the rpc25-S100P mutant, which is known to affect transcription 

initiation in S. cerevisiae. Thus, Nab2 is most likely involved in the transcription of RNAPIII 

and could be necessary for full transcriptional activity of RNAPIII in vivo. 
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 Full transcriptional activity of RNAPIII depends on functional Nab2 in vitro 3.6.2

To corroborate a role of Nab2 in RNAPIII transcription, RNAPIII transcription assays were set 

up. The protocol described in Schultz et al. (1991) and Schultz et al. (1992) was modified as 

stated in the Material and Methods section (see Material and Methods, 2.2.6). Transcription 

active extracts of wild-type and nab2-34 cells grown at 30°C were prepared and treated with 

α-amanitin to inhibit RNAPII transcription. RNAPIII transcriptional activity of these extracts 

was tested using two different templates: (i) the tRNAAla(UGC)E gene (Fig. 21A) and (ii) the 

SNR6 gene (Fig. 21B). Using this assay, the de novo synthesis of RNAPIII transcripts could 

be determined (Fig. 21A and B). For both templates, a severely reduced synthesis was 

observed in the extracts prepared from the nab2-34 mutant when incubated at 37°C instead 

of 25°C.  

 

Fig. 21: Functional Nab2 is required for wild-type RNAPIII transcription levels in vitro. Transcription assay 
were carried out using whole transcription active extracts of NAB2 or nab2-34 cells and the reporter genes 
tRNAAla(UGC)E (A) or SNR6 (B) on plasmids. Graphs below present quantifications normalized to the 
synthesized RNA amount in wild-type extracts at 25°C and 37°C. Data (n > 3) represent the mean ± SD; **: p 
<0.01 and representative gels are shown.  

However, the temperature shift resulted in different outcome for the wild-type extract. When 

using the tRNA gene as a template, a slight increase of transcriptional activity was observed 

(Fig. 21A, compare first two columns). In contrast, the use of the SNR6 template resulted in a 

reduction to approximately 50% of RNA synthesis (Fig. 21B, compare first two columns) 

compared to transcription in the respective non-shifted extracts. The increase in signal 

resulted from increased transcription and enhanced processing of tRNAs, as the lower bands 

represent processed tRNAs (Fig. 21A, upper panel, compare first and last two lanes). 
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Interestingly, it can be suggested from this data that transcription of the tRNAAla gene rather 

than processing was impaired, as the overall amount of transcripts was lower, but still 

underwent cleavage (Fig. 21A, compare ratios of lower and higher bands for NAB2 and 

nab2-34 cells at 25°C and 37°C). Thus, the shift seemed to have no major effects on 

processing in the prepared extracts. As for SNR6, no precursors are described, the 

additional faint bands probably resulted from aberrant start site selection or degradation of 

the product. 

 

 

Fig. 22: Depletion of Nab2-AID leads to reduced 
ncRNA transcription in vitro. Transcription assays 
were carried out using whole cell transcription 
active extracts of NAB2-AID harboring cells. Upon 
depletion for 2.5 hours using Auxin or DMSO only, 
transcription activity of the extract on the SNR6 
reporter gene was reduced. Data (n=1, three tech. 
replicates) represent the mean ± SD; ***: p < 0.001.  

In another set of experiments, NAB2-AID degron harboring cells were used to generate the 

in vitro transcription cell extracts. Prior to cell harvesting and extract generation, cells were 

treated for 2.5 hours with 0.5 mM IAA (auxin) solved in DMSO or with DMSO only. The auxin 

treatment showed reduced Nab2 levels in Western Blots, but no growth defect of the cells yet 

(compare to Fig. 15C and D). Standard in vitro transcription assays were then carried out as 

before, with the exception that no temperature shift was required (Fig. 22). Signals were 

normalized to the amount of RNA synthesized by the DMSO treated cells. Remarkably, the 

depletion of Nab2 decreased the de novo synthesis of SNR6 around 50%.   

 This result, together with the transcription defect in the nab2-34 mutant, pointed 

towards a direct function of Nab2 in the RNAPIII transcription. 

 Nab2 stimulates RNAPIII transcription in vitro 3.6.3

To show that Nab2 has a direct function in RNAPIII transcription, it should affect 

transcriptional outputs in this assay. Hence, when Nab2 would be added back or provided in 

excess, a stimulatory effect on the in vitro RNAPIII transcription could be expected. 

Accordingly, add-back transcription assays using NAB2 and nab2-34 transcription active 

extracts were conducted at 25°C and 37°C on the SNR6 template.   
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 Recombinantly produced and purified Nab2 (Fig. 25) was added in increasing 

amounts to the extracts incubated at 37°C and the amount of newly synthesized RNA was 

quantified (Fig. 23). Nab2 stimulated the reduced transcriptional activity in the nab2-34 

extracts that were shifted to 37°C in a dose dependent manner (Fig. 23). Interestingly, 

recombinant Nab2 also slightly stimulated the transcriptional activity of wild-type extracts, but 

only at higher concentrations. The additional bands on the gels are most likely due to 

degradation of the newly synthesized RNA or arise from alternative start site selection on the 

corresponding gene.           

 The observation that extracts of nab2-34 yielded lower RNAPIII transcription 

suggested that Nab2 is involved in the transcriptional processes of RNAPIII. Furthermore, 

the add-back of recombinant Nab2 protein showed that the function of Nab2 on RNAPIII 

transcription is direct. 

 

Fig. 23: Recombinant Nab2 rescues deficient transcription in nab2-34 cell extracts. Standard in vitro 
transcription assays were performed as before in extracts from NAB2 (lanes 1-5) or nab2-34 cells (lanes 6-10) at 
the permissive (25°C, lanes 1 and 6) or restrictive temperature (37°C, lanes 2-5 & 7-10) on the SNR6 reporter 
gene. Recombinant Nab2 was purified from E. coli and titrated in (lanes 3-5 and 8-10 with 100, 200, 300, and 
400 ng Nab2). The amount of SNR6 RNA was quantified and the RNA amount at 25°C was set to 1 (mean of 
n > 3 ± SD; *: p < 0.05; **: p < 0.01). Nab2 stimulates RNAPIII transcription in a dose dependent manner. 

 

 Nab2 functions directly in RNAPIII transcription 3.6.4

In order to proof the direct influence of Nab2 on the transcriptional activity of RNAPIII, we 

performed fully reconstituted in vitro transcription assays. The advantage of such an assay is 

that nearly all indirect effects can be excluded, as only the most basic transcription 
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machinery is present in these experiments. Thus, a fully reconstituted in vitro transcription 

system was set up accordingly to Huet et al. (1996), Ducrot et al. (2006), and Ferrari et al. 

(2004). But instead of using the ‘B” fraction’, which is a whole cell extract derived fraction 

eluted from a cation exchange column (Bio-Rex 70, Bio-Rad), TFIIIB should be isolated from 

yeast. Unfortunately, the purification with either TAP-tagged Bdp1 or Brf1 did not yield the 

trimeric, pure TFIIIB complex (Fig. 24, middle lane). Only a single band was visible on the 

SDS-gels corresponding to the tagged protein (Fig. 24, TFIIIB (Bdp1-TAP)). Therefore, 

TFIIIB was recombinantly purified from E. coli (Fig. 25) and reassembled before it was used 

in the transcription assays. Tbp and Bdp1 purified well under the described conditions (see 

Material and Methods, 2.2.4.3-5 and Kassavetis et al. (1998); Kumar et al. (1997)). Brf1 

though had to be purified under denaturing conditions, refolded over night by dialysis, and 

stored in high salt buffer. This may explain the fair gel quality in Figure 25 for Brf1. 

 

Fig. 24: Purification of RNAPIII, TFIIIB and 
TFIIIC from S. cerevisiae using TAP. A 
Coomassie-blue stained 10% SDS-PAA gel was 
used to separate the purified RNAPIII, TFIIIB and 
TFIIIC samples. RNAPIII was purified as the core 
complex with up to 12 separately distinguishable 
bands. TFIIIB (Bdp1-TAP) purification failed under 
the given conditions due to an unknown reason. 
Only a single band was detected with an 
approximate weight of 55 kDa. TFIIIC (Tfc1-TAP) 
was successfully purified and all six subunits are 
visible on the gel. The low molecular weight band 
(~27 kDa) in the TFIIIB and TFIIIC purifications 
corresponds to the TEV protease, which was used to 
elute the protein complexes from the beads. Marker 
sizes are in kDa. 

Additionally, RNAPIII and TFIIIC were not purified via classical chromatography as described 

in Huet et al. (1996). Instead, RNAPIII was purified as before using TAP and high salt 

washing to yield the pure but functional polymerase (see Material and Methods, 2.2.4.1). 

TFIIIC was also TAP-tagged on the Tfc1 subunit and purified under the same conditions as 

RNAPIII. 
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Fig. 25: Purification of recombinant TFIIIB 
subunits and Nab2. A Coomassie-blue stained 10% 
SDS-PAA gel was used to separate the purified and 
recombinant TFIIIB subunit and Nab2 samples. Tbp 
has a molecular weight of 27 kDa, Nab2 an aberrant 
running behavior, as its calculated weight is 58 kDa 
but is detected at around 70 kDa. The purification of 
Brf1 showed some contaminations, although the 
main band corresponds to Brf1 (70 kDa, but running 
slightly higher). Bdp1 has a molecular weight of 
90 kDa and was also purified successfully. Marker 
sizes are in kDa. 

In contrast to TFIIIB, RNAPIII and TFIIIC isolated from S. cerevisiae purified well and 

presented as the full complexes, as far as could be judged by SDS-gel electrophoresis (Fig. 

24). In addition, Figure 25 shows a typical purification of Nab2. One additional band was 

often detected, migrating at low molecular weight. This is most likely a degradation product of 

Nab2 that still contained the His-Tag. 

 

Fig. 26: Nab2 directly stimulates RNAPIII transcription in vitro. A fully reconstituted in vitro transcription 
assay was set up. After pre-incubation of the SNR6 reporter gene with recombinant TFIIIB, varying amounts (0, 
50, 100 and 250 ng) of Nab2 and highly purified TFIIIC, purified RNAPIII from yeast was added and 
transcription was started. The newly synthesized amount of SNR6 RNA was quantified and levels without Nab2 
were set to 1. Data (n= 3) represent the mean ± SD, *: p < 0.05 and **: p < 0.01. A representative gel is shown.

Having purified all necessary proteins to reconstitute a minimal RNAPIII transcription system 

in vitro, transcription assays were carried out and increasing amounts Nab2 were titrated in 
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(Fig. 26). Overall, the transcription activity of this basic apparatus was low, as described in 

Ducrot et al. (2006) and Ferrari et al. (2004). Importantly, Nab2 again stimulated RNAPIII 

transcription in this minimal system in a dose dependent manner, even though less Nab2 

was used than in previous experiments (Fig. 26). 

Taken together, the in vitro transcription experiments with whole cell extracts, the add-back 

experiments, and - most importantly - the fully in vitro reconstituted transcription assays 

showed that Nab2 has a direct function in RNAPIII transcription. 

 

 Towards a molecular function of Nab2 in RNAPIII transcription 3.7

 ChIP profiles of the RNAPIII transcription apparatus on SCR1 3.7.1

Knowing that Nab2 has a direct function in transcription of RNAPIII in vitro, we wanted to 

unravel its molecular function. As a first step towards this, we performed ChIP assays on the 

longest gene transcribed by RNAPIII in yeast, SCR1. SCR1 codes for the 522 nt RNA 

subunit of the signal recognition particle (SRP), which is an abundant and evolutionary 

conserved ribonucleoprotein complex crucial for targeting translating ribosomes and hence 

synthesized proteins to the endoplasmic reticulum. It is the only RNAPIII-transcribed gene 

long enough to allow analysis of the spatial distribution of the proteins of interest. The 

distribution of Nab2 and comparison to the RNAPIII transcription apparatus could yield a first 

hint for the molecular mechanism of Nab2 in RNAPIII transcription.    

 ChIP profiles over the whole gene locus, including up- and downstream regions, were 

generated for RNAPIII (Rpc160-TAP), TFIIIC (Tfc1-TAP), TFIIIB (Bdp1-TAP), and Nab2 

(Nab2-TAP) according to Tavenet et al. (2009) (see Fig. 27). A schematic overview of the 

gene and the amplified regions is given in Figure 27A. RNAPIII and the two transcription 

factors showed profiles similar as described before (Tavenet et al., 2009). RNAPIII (Fig. 27B) 

has the highest occupancy 5’-end of the gene body, where it is assembled on the DNA and 

initiation occurs. As this process is considered to be the rate-limiting step in transcription, the 

presence of RNAPIII is highest at this DNA fragment. Furthermore, a gradual decrease of 

RNAPIII over the gene body and downstream of the gene was observed. TFIIIC also 

preferentially bound to a region within 200 bp around the transcription start site (Fig. 27C). In 

this region, mostly 60-80 bp downstream of the transcription start, the A- and B-box elements 

are located, which are the main recruitment site for TFIIIC. The third basic component, 

TFIIIB, located primarily over the TATA box and the transcription start site, as expected (Fig. 

27D, see Introduction, 1.4.4). Interestingly, TFIIIB did not show major recruitment but for the 

very 5’-end of SCR1. 
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Fig. 27: ChIP profiles of RNAPIII, TFIIIB, TFIIIC and Nab2 on the longest RNAPIII-transcribed gene, 
SCR1. (A) A scheme of SCR1, the longest RNAPIII transcribed gene, and amplified sequences are depicted. 
ChIP occupancy profiles of (B) Rpc160-TAP (RNAPIII), (C) Tfc1-TAP (TFIIIC), (D) Bdp1-TAP (TFIIIB) and 
(E) Nab2-TAP are shown. Data (n > 3) represent the mean ± SD. 

As SCR1 contains a TATA-box, the combination of the TFIIIC-dependent TFIIIB recruitment 

and the binding of the TFIIIB subunit Tbp to the TATA-box efficiently recruits TFIIIB to the 

observed DNA site.          

 As expected from earlier experiments, Nab2 bound to the whole gene body. The 5’- 

and 3’- surrounding sequences were less occupied, arguing for a precise recruitment to the 

SCR1 gene (Fig. 27E, 1 and 7). Furthermore, Nab2 showed a preference to bind to the 5’-

end of SCR1 with decreasing occupancies towards the 3’-end of the gene. In comparison to 

RNAPIII, Nab2 peak recruitment was located more to the 3’ and the decrease was less 

across the whole gene. Based on this experiment, it was suggested that Nab2 primarily binds 

to a region around the transcription start site that is also occupied by the transcription factors, 
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as well as the RNA polymerase III. This in turn implies a potential function of Nab2 in 

transcription initiation. 

 ChIP profiles of the RNAPIII transcription apparatus in nab2-34 cells 3.7.2

Earlier findings in the course of this study showed that full occupancy of RNAPIII was 

dependent on functional Nab2 (see Fig. 16). Due to the major recruitment of Nab2 to the 5’-

region of SCR1, we hypothesized that it could function in transcription initiation (Fig. 27). 

Thus, we were interested whether Nab2 is also needed for full occupancy of the RNAPIII 

transcription initiation factors TFIIIB and TFIIIC. To test for this, ChIP profile analyses were 

performed as before with TAP-tagged TFIIIB and TFIIIC subunits in NAB2 and nab2-34 cells 

shifted to the restrictive temperature (37°C) for three hours (see Fig. 28 and Results, 3.3, 

Fig.16). Profiles of RNAPIII were generated in addition as control. 

As anticipated, RNAPIII occupancies were decreased over the whole gene body, when Nab2 

function was compromised (Fig. 28A). Remarkably, the TFIIIB occupancies were also 

reduced over the complete gene locus in the nab2-34 cells shifted to 37°C, with the biggest 

loss observed over the gene section containing the TATA-box (Fig. 28B). This reduction of 

occupancy seemed to be independent of TFIIIC, as TFIIIC occupancies were also tested in 

this assay and showed no significant change in the shifted mutant compared to wild-type 

cells (Fig. 28C). 

To confirm whether the observed decrease in TFIIIB is a general feature of the nab2-34 

mutant cells we tested more genes by inspection of the three exemplary genes SNR6, 

tDNALys, and RPR1, which were used before (Fig. 29). Again, impairing Nab2 function 

resulted in a significant loss of TFIIIB (Fig. 29A) but not TFIIIC (Fig. 29B) occupancy on all 

tested genes. As TFIIIB is a key component in recruiting RNAPIII to the promoter region of 

the gene to be transcribed and is known to be involved in DNA melting, as well as PIC 

formation, the reduced TFIIIB occupancy in the nab2-34 cells is most likely the reason for the 

lower RNAPIII occupancy. This could furthermore explain the reduced transcriptional activity 

in the different in vitro transcription assays.       

 Taken together with the previous ChIP observations, these results showed that Nab2 

is specifically required for full TFIIIB and RNAPIII occupancy in vivo. 
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Fig. 28: Nab2 is required for full occupancy of RNAPIII and TFIIIB but not of TFIIIC on SCR1. ChIP 
occupancy profiles of (A) Rpc160-TAP (RNAPIII), (B) Bdp1-TAP (TFIIIB), and (C) Tfc1-TAP (TFIIIC) were 
assessed in NAB2 or nab2-34 harboring cells after shift to the restrictive temperature (37°C) for three hours. 
SCR1-1 to SCR1-7 are according to Figure 27A. Data represent the mean ± SD of at least three independent 
replicates, *: p < 0.05 and **: p < 0.01. 
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Fig. 29: TFIIIB occupancy is reduced on several genes in nab2-34. ChIP-qPCR experiments as in Figure 27 in 
NAB2 and nab2-34 cells. (A) Bdp1-TAP (TFIIIB), but not (B) Tfc1-TAP (TFIIIC) occupancies on RPR1, SNR6 
and tK (lysine tRNA locus) were reduced in the mutant at the restrictive temperature. Data (n ≥3) represent the 
mean ± SD; *: p < 0.05; **: p < 0.01. 

 TFIIIB interacts with Nab2 in vivo 3.7.3

Based on the results that functional Nab2 is needed to fully recruit to or stabilize TFIIIB at 

tRNA and other ncRNA gene promoters (Fig. 28 + 29), it seemed likely that they also should 

interact with each other in vivo. 

 

Fig. 30: Nab2 interacts with TFIIIB, but not TFIIIC in vivo. Strains expressing NAB2-TAP were additionally 
tagged with a C-terminal HA-tag on either Brf1 (TFIIIB, left panels) or Tfc8 (TFIIIC, right panels). Strains 
without TAP-tag served as negative control. Copurification of Brf1 and Tfc8 with Nab2 was assessed by Western 
blotting against the HA epitope. Tagged Nab2 is marked with an asterisk and Pgk1 served as negative control. 
Representative 10% Coomassie-blue stained SDS-PAA gels and Western blot are shown. Marker sizes are in 
kDa. 
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To test for a potential interaction, Nab2-TAP was purified from S. cerevisiae by TAP and co-

purification of either TFIIIB (Brf1-HA) or TFIIIC (Tfc8-HA) was assessed using Western 

blotting (Fig. 31). Strains carrying no TAP-tag on Nab2 but either Brf1-HA or Tfc8-HA served 

as negative controls. The purification quality was further monitored by analyzing the non-

specific co-purification of Pgk1. The native purification of Nab2-TAP was successful, as it 

yielded the typical co-purifying proteins, as described above. 

Indeed, Nab2 purifications revealed the presence of Brf1, a subunit of TFIIIB, and thus most 

likely the whole TFIIIB complex interacts with Nab2 in vivo (Fig. 30, left panel). In contrast, 

Tfc8 (TFIIIC) did not show co-purification with Nab2 (Fig. 30, right panel), in line with the fact 

that occupancy of TFIIIC is not affected by the nab2-34 mutant (Fig. 28 and 29). In summary, 

this demonstrated that Nab2 is able to interact with the TFIIIB subunit Brf1 in vivo. 

 Nab2 stabilizes TFIIIB and increases its affinity to promoter DNA 3.7.4

TFIIIB, the trimeric transcription initiation factor comprised of Bdp1, Brf1, and Tbp, has a key 

role in RNAPIII transcription, as its presence is mandatory at all three kinds of promoters, 

and RNAPIII is recruited mainly via the subunit Bdp1 (Kassavetis et al. (1990) and reviewed 

in Acker et al. (2013); Geiduschek and Kassavetis (2001)).    

 Nab2 interacts with TFIIIB and is required for full TFIIIB occupancy. This prompted us 

to investigate whether and how Nab2 influences the binding of TFIIIB to the promoter DNA of 

tRNA and other ncRNA genes. Therefore, electrophoretic mobility shift assays (EMSAs) 

were performed with recombinant TFIIIB and Nab2 to test whether Nab2 could increase the 

fraction of TFIIIB bound to a cognate promoter DNA. The used template, TA-30-B6, is a 

76 bp long, double stranded DNA (dsDNA) derived from the 5’-end of the yeast SUP4 tRNA 

gene tY(GUA)J2 encoding a tyrosine tRNA, as described in Kassavetis et al. (1998). Its 

molecular characteristics are a 6 bp long TATA box (TATAAA) with 2 nt mismatches flanking 

each site (see Fig. 31A). This combination should favor an in vitro Tbp binding to the dsDNA 

independent of TFIIIC, which is naturally required to efficiently recruit TFIIIB to tRNA 

promoters. More importantly, this particular tRNA derived sequence only allows a specific 

and sequential binding of TFIIIB to the DNA (Grove et al., 1999; Kassavetis et al., 1998). 

Hence, the first component being able to bind to the DNA is Tbp, followed by binding of Brf1. 

The Tbp-Brf1 subcomplex is also often referred to as B’-complex.  
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Fig. 31: Nab2 increases the affinity of TFIIIB to promoter DNA in vitro. Electrophoretic mobility shift assays 
(EMSA) of Nab2 and different dsDNA probes. (A) Schematic view of the TA-30-B6 dsDNA used in this assay. 
(B) Increasing amounts of Nab2-His6 (0, 0.5, and 1 µg) were incubated with the specific RNAPIII promoter 
dsDNA (TA-30-B6 Kassavetis et al. (1998)) and four scrambled probes with (dsDNA1(+) and dsDNA2(+)) and 
without (dsDNA1(-) and dsDNA2(-)) two 2-nucleotide mismatches. (C) EMSA of Nab2 and TFIIIB binding to 
TA-30-B6 DNA. Formed DNA-protein complexes are indicated at the right side. TFIIIB assembles in the 
absence of Nab2, but more complex is assembled when Nab2 is present. Furthermore, a supershift is induced by 
Nab2, as soon as Tbp has initially bound to the DNA.  

Both proteins form a very stable interaction that is even preserved during chromatography. In 

contrast, associated Bdp1, the last component to form the complete TFIIIB complex, is easily 

lost (Kassavetis et al., 2006). 

Being characterized as a poly(A)-binding protein that can also bind other RNA sequences 

and displays unspecific binding to RNA (Kelly et al., 2007; Tuck and Tollervey, 2013), a 

potential unspecific binding of Nab2 to TA-30-B6 should be ruled out. Thus, we tested Nab2 

binding to four dsDNAs in addition to TA-30-B6 and also evaluated binding of different 

amounts of Nab2 to the mentioned dsDNAs. The additional dsDNAs were derived from the 
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TA-30-B6 probe by scrambling the given sequence (see Material and Methods, 2.1.5, 

Table 9). Two dsDNAs (dsDNA1+ and dsDNA2+) contained the two two-nucleotide 

mismatches, whereas the mismatches were absent in the other two dsDNAs (dsDNA1- and 

dsDNA2-). In addition, dsDNA1+/- did not contain repeating nucleotides (e.g. AA or UU), 

though in the sequences of dsDNA2+/- double nucleotides were allowed. 

Nab2 bound to these DNAs only at high amounts (1 µg) and the least to the original TFIIIB 

probe TA-30-B6 (Fig. 31B). This indicated that signals derived from Nab2 binding in the 

TFIIIB dependent EMSA should not derive from unspecific background binding of Nab2, as 

also lower concentrations of Nab2 were used.  

The advantage of the sequential binding of TFIIIB to the TA-30-B6 dsDNA was exploited 

when testing the potential effect of Nab2 on this binding (Fig. 31C), by incubating different 

TFIIIB subunit combinations with or without Nab2 on the target DNA.   

 Within these experiments and as expected, the stepwise association of TFIIIB could 

be reproduced (Fig. 31C, lanes 2, 4, and 6 and Kassavetis et al. (1998)). Tbp, although being 

the smallest protein, had the biggest impact on shifting its bound DNA (Fig. 31C, lane 2). 

This is due to the massive kink that is introduced to the DNA upon binding of Tbp (Braun et 

al., 1992; Grove et al., 1999; Leveillard et al., 1991). An only slight increase of this shift was 

detectable upon binding of Brf1 and formation of B’ (Fig. 31C, lane 4). When the last 

component Bdp1 was added, a moderate shift was observed (Fig. 31C, lane 6).  

 Having set up and tested the EMSA with TFIIIB only, the effect of Nab2 on this 

stepwise association was tested. When Tbp was bound to the TA-30-B6 probe, Nab2 could 

also bind to the DNA and induce a supershift (Fig. 31C, lane 3 and compare to lanes 1-3). 

This supershift was also detected, when Nab2 was added either in combination with the B’ 

subcomplex (Fig. 31C, lane 5) or the whole TFIIIB complex (Fig. 31C, lane 7). Nab2 

additionally increased the amount of total protein associated to the DNA.  

In conclusion, we showed that Nab2 is needed to efficiently assemble the RNAPIII initiation 

complex by increasing the overall binding of TFIIIB to the promoter DNA in vitro. This could 

be accomplished by either physically recruiting Brf1 or Bdp1 to Tbp-DNA or by stabilizing 

TFIIIB once the complex bound initially to the DNA. 

 Nab2 stabilizes TFIIIB in in vitro transcription assays 3.7.5

To characterize the stabilization / recruitment of TFIIIB by Nab2 on target genes in more 

detail, we used a modified version of the ’17-mer assay’ (Dieci and Sentenac, 1996). In this 

assay a unique property of the SUP4 tRNA gene is exploited. Figure 32A displays the 

transcription start site region of SUP4 on the coding strand. As the first guanosine is 
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incorporated at position +18 only, leaving out GTP from the reaction results in pausing of the 

polymerase as it tries to incorporate the missing guanosine at this position (Dieci and 

Sentenac, 1996). This pausing can be resolved in three different ways: (1) the polymerase is 

stalled and waiting until GTP is available, (2) the polymerase switches from elongating to 

backtracking and cleavage of 2-3 nt of the RNA, followed by new synthesis (Bobkova and 

Hall, 1997; Chedin et al., 1998), or (3) the transcription bubble collapses thereby releasing 

the polymerase and the 17-mer transcript. As the transcription apparatus with DNA and RNA 

can be purified, it is considered stable favoring the first mentioned possibility (Dieci and 

Sentenac, 1996; Kassavetis et al., 1989).       

 Importantly, the DNA mimicking property of heparin is employed in this assay to 

sequester non DNA-bound polymerases that are either not assembled on DNA or were 

released from the gene after completing an entire round of transcription.   

 With this set up, we were able to distinguish three different phases of tRNA gene 

transcription: (1) Initiation, which is characterized by the 17-mer formation, (2) elongation, as 

GTP will be added to the stalled 17-mers and production of full length RNA can be 

monitored, yet released polymerases are sequestered by heparin or (3) reinitiation, where 

multiple rounds of transcription are allowed after initial 17-mer formation. To set up a 

reinitiation assay from the single round 17-mer assay, GTP is added after 17-mer formation 

and half of the samples were eventually treated with heparin.  

 

 

Fig. 32: Nab2 might stabilize the PIC on 
transcription templates in vitro. A scanned 
phosphorimage of a typical initiation / reinitiation 
assay is presented. Fully in vitro reconstituted 
transcription assays were set up under 17-mer 
formation conditions. These were incubated with or 
without recombinant Nab2 and subsequently 
allowed to form 17-mers. After synthesis of this 
product, half of the samples were supplemented with 
Heparin (0.25 mg/mL) and elongation/ reinitiation 
was allowed. The reactions were stopped and 
products were separated on 17% (v/v) PAA-Urea 
gels after RNA precipitation. DpnI digested 
pcDNA3.1 radiolabeled with [γ-32P] ATP served as 
an internal length standard (M: Marker in bases). 
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Comparing the transcriptional output of reactions complemented with or without Nab2 would 

allow identification, whether Nab2 is involved in transcription initiation, elongation or 

reinitiation.           

 Interestingly, first results point towards a stabilizing role of Nab2 as suggested by the 

in vitro DNA binding experiments from above (Fig. 31C). In general when heparin was 

present, 17-mer transcripts are produced, but only low amounts of full length transcript (Fig. 

32, lane 1). This was expected as only one round of transcription is allowed, due to the 

excess of heparin that captures RNAPIII. Lane two of Figure 32 shows the result from 

reactions treated the same, but no heparin was added. This resulted in production of full 

length tRNA transcripts; still, 17-mers could be detected. Addition of Nab2 and heparin 

resulted in lower amounts of 17-mers in general (Fig. 32, compare lanes 1 and 3), but 

yielded the same or even more full length transcripts, when heparin was omitted from this 

assay (Fig. 32, compare lanes 2 and 4). 

This presents Nab2 as a factor necessary for stabilization of TFIIIB and the initial PIC. Lower 

transcript amounts (17-mers) in the single round transcription assay with heparin and Nab2 

(Fig. 32, lane 3) argued for less abortive transcription in the presence of Nab2. In line with 

that, increased amount of abortive was observed when Nab2 was absent (Fig. 32, lane 1). 

Hence, a more stable initiating RNA polymerase III that is still in the vicinity of the promoter 

together with TFIIIB and Nab2 could result in an increase in full length transcript production 

(Fig. 32, lane 4). Alternatively, lower 17-mer signals could have resulted from more efficient 

elongation when Nab2 was present. Furthermore, presence of Nab2 and stabilization of 

TFIIIB might not only enhance initial transcription initiation but also ease facilitated 

reinitiation/ recycling. Whether this is true, still remains to be shown by e.g. 17-mer assays 

under single round transcription conditions.  

 

 Generation of an anti-ZC3H14 antibody 3.8

As Nab2 is highly conserved from yeast to humans (see Introduction, 1.3 and Fig. 3), we 

raised the question, whether the newly identified function of Nab2 in RNAPIII transcription 

might be also conserved in higher organisms. To study this potential role in higher cells, such 

as human cell culture, interaction assays and ChIP would be of great interest. A versatile 

tool, which could be used for many experiments, is an antibody that recognizes the human 

Nab2 orthologue ZC3H14. Therefore, we decided to raise an antibody against this protein. A 

region of the proteins that proved well for this, are the first 97 amino acids of isoform 1 of 

ZC3H14 (Leung et al., 2009).        
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 The N-terminus of ZC3H14 was hence GST-tagged, produced in E. coli and purified 

to near homogeneity (Fig. 33A). Two rabbits were then initially immunized with 500 µg of 

protein each for 40 days with three boosts (Pineda, Berlin). After this initial immunization, 

samples were tested for recognition of purified GST-ZC3H14. This was repeated monthly 

until the immune response of the animals peaked and antibodies showed specific reactivity 

(Fig. 33B). In our case, serum of day 240 post immunization was chosen. The serum was 

then tested for recognition of endogenous ZC3H14 isoforms and ectopically expressed 

ZC3H14-GFP, using whole cell extracts from HeLa cells (Fig. 33B). 

 

Fig. 33 Generation of an human anti-ZC3H14 antibody. (A) Purification of GST-fused ZC3H14(1-97) (first97 
amino acids) from E. coli. The last lane shows the purified ZC3H14 fragment, which has been cut by 
‘PreScission protease’ to remove the GST-tag. A 12% Coomassie-blue stained SDS-PAA gel is shown. Marker 
sizes are in kDa. (B) Western blot analysis of the ZC3H14 epitope recognition by the anti-ZC3H14 antibody from 
immunized rabbit #2 after 240 days of immunization (1: 1000 dilution). (1) ZC3H14-GFP, (2) ZC3H14 isoform 
1, (3) ZC3H14 isoform 2 /3 and (4) GST-ZC3H14(1-97) from E. coli lysate. Marker sizes are in kDa. (C) ZC3H14-
GFP is barely expressed in HeLa cells. Western blot of HeLa cells transfected with ZC3H14-GFP or GFP alone 
and detection of GFP (1:2000, mouse). Marker sizes are in kDa. (D) Fluorescence microscopy of transfected 
HEK293 cells. ZC3H14-GFP was transfected 24-48 h before cells were fixed and stained. The anti-ZC3H14 
antibody (animal #2, day 240) was diluted to 1:1000 and DNA was stained using DAPI. The overlay of all 
images is depicted on the very right. 
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The anti-ZC3H14 antibody (animal #2) recognized two bands, corresponding to isoform 1, 2, 

and 3 that harbor the respective N-terminal domain or parts of it (see Fig. 33B and 

Introduction 1.3, Figure 3). It then should be tested, whether this antibody can also be used 

in immunofluorescence microscopy. Therefore, HEK293 cells were transfected with ZC3H14-

GFP and subjected to Western blotting to control the production of the tagged ZC3H14 (Fig. 

33C); GFP only transfected cells served as positive control. ZC3H14-GFP was observed at 

the expected molecular weight (Fig. 33C), and fluorescence microcopy was performed with 

these cells and antibodies from both immunized animals. The anti-ZC3H14 antibody (animal 

#2) showed co-localization with the GFP signal in cell nuclei (Fig. 33D, merge), whereas this 

was not the case for the antibody from animal #1 (data not shown). Therefrom, it was 

concluded that the anti-ZC3H14 antibody collected from animal #2 recognizes ZC3H14 in 

Western blot (denatured protein) and most likely the native conformation in HEK293 cells. 

 In summary, the new antibody recognizing ZC3H14 is a versatile tool that will enable 

us to investigate the potential conservation of Nab2’s function in higher cells. 

 

 Electron microscopy of RNAPIII 3.9

After having identified that Nab2 and RNAPIII can interact directly in vitro, an additional aim 

was to reconstitute this binding and to subsequently locate Nab2 on RNAPIII using Electron 

microscopy (EM). Sample processing, image acquisition and data analysis was done in 

collaboration with Dr. Petra Wendler (Gene Center, LMU Munich). For this, stringently 

purified RNAPIII from S. cerevisiae and Nab2 purified from E. coli were mixed, incubated and 

processed as for the in vitro interaction assays (see Results 3.4, Fig. 17). The same 

procedure was done for RNAPIII only. Samples were then prepared for negative stain 

electron microscopy (EM) according to Kube et al. (2014) (see Material & Methods, 2.2.8.9) 

and images were taken on a FEI Morgagni transmission electron microscope. A typical grid 

image for RNAPIII preparations is shown in Figure 34A. 

With an approximate diameter of 20 nm, the bright triangular or square shaped objects 

represented differently oriented polymerases on the grid. This size and shape corresponded 

well to what was described earlier (Fernandez-Tornero et al., 2011; Fernandez-Tornero et 

al., 2007). Initial class building was performed for the acquired data sets with 2751 particles 

for the RNAPIII alone and 1305 particles for the reconstituted RNAPIII-Nab2 interaction (Fig. 

34B, RNAPIII samples). Again, these classes can be considered as different orientations of 

the RNA polymerase on the grid. The class averages were used for multi-variate analysis 
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and 2D multi reference alignments to create EM maps. Final visualization of the EM maps 

was done using Pymol (Fig. 34C, RNAPIII samples). 

 

Fig. 34: Reconstruction of an initial 3D RNAPIII model from electron microscopy micrographs. (A) A 
representative electron micrograph showing negatively stained RNAPIII complexes from S. cerevisiae spotted on 
a carbon coated electron microscopy grid. The single, bright polymerases were distributed evenly all over the grid 
and could be picked for analysis. Note that differences in size and shape are due to the orientation of RNAPIII on 
the grid. (B) Class averages of the RNAPIII are shown. These represent different orientations of the polymerase 
complex on the grid. (C) Initial reconstruction of the core RNAPIII enzyme. The previously compiled class 
averages were used to generate this 3D reconstruction of the polymerase. The circle in the left panel most 
probably displays the DNA entry / exit site. The arrow points to a density potentially involved in DNA strand 
separation. The arrow in the right image points toward the likely RNA exit site of the polymerase (compare to 
Fernandez-Tornero et al. (2011); Fernandez-Tornero et al. (2010)). The 3D model was generated using Pymol 
software (v.1.3) 

Comparison of the initial maps of RNAPIII alone and RNAPIII with Nab2 unfortunately 

did not reveal any additional and reliable densities that could be attributed to Nab2 (data not 

shown and see Appendix, Fig. A3). This might be due to the fact that the initial datasets were 

not accurate enough on the outer surface of the polymerase. On the other hand Nab2 most 

probably has several unstructured regions, which impede a three-dimensional prediction of 

Nab2. This might be the reason why it has not been crystalized yet and was not detected as 

a compact density in the EM maps. To circumvent this problem gold labeling of Nab2-His6 

was tested. However, as the Ni-NTA-gold particles bound non-specifically to RNAPIII itself, 

this approach could not be followed up further. 
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Irrespectively of the not yet solved RNAPIII-Nab2 structure, it was possible to generate an 

initial 3D map of RNAPIII that showed some major features as described by Fernandez-

Tornero et al. (2010) and Fernandez-Tornero et al. (2007). For example, the DNA entry / exit 

site, as well as the RNA exit site of the RNA polymerase III could be assigned (Fig. 34C, red 

circle and arrows).          

 The initial 3D reconstruction of RNAPIII provides proof that TAP purification yields 

complexes in native shape, which can be used for structure determination in general. 

Unfortunately, Nab2 could not be localized yet. To potentially show the binding site of Nab2 

to the core RNAPIII enzyme, this system needs improvement. One the one hand, a bigger 

dataset could be generated, on the other hand, alternative approaches, such as cryo-EM 

should be tested.  
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4. Discussion 

The aim of this PhD project was to identify the role of the poly(A)-binding protein Nab2 in 

RNA Polymerase III transcription. Initially proposed by a genome-wide association of Nab2 

with RNAPIII, the recruitment of Nab2 and RNAPIII on RNAPIII-transcribed genes was 

further investigated. In addition, the molecular interaction of Nab2 and the RNAPIII enzyme 

was shown in vivo and in vitro. Finally, a direct participation in RNAPIII transcription was 

demonstrated and the molecular function of Nab2 was unveiled. Nab2 is important for 

stabilizing the RNAPIII transcription factor TFIIIB on promoter DNA and, hence, transcription 

initiation. 

 

4.1 The generation of new NAB2 alleles 

4.1.1 nab2-34: A novel temperature sensitive allele of NAB2 

The poly(A)-binding protein Nab2 is one of the founding members of the poly(A)-binding 

protein family and binds to the poly(A) tail of mRNAs with its zinc finger modules. Importantly, 

the well described RGG (Arginine-arginine-glycine) domain that is located N-terminally of the 

ZnF modules in Nab2, does not bind to RNA (Anderson et al., 1993; Marfatia et al., 2003). 

This domain is often found in hnRNPs that were identified to bind poly(A)-containing mRNAs, 

such as Npl3 or Hrp1, and was described to mediate nucleic acid binding, as well as export 

by methylation of its arginine residues by PRMTs (protein arginine methyltransferases) 

(Bossie et al., 1992; Valentini et al., 1999; Xu and Henry, 2004).    

 In addition to binding to poly(A) tails, Nab2 has been intensively studied and its roles 

in mRNA export, poly(A) tail length control, as well as mRNA stability have been established 

(Batisse et al., 2009; Gallardo et al., 2003; Grenier St-Sauveur et al., 2013; Hector et al., 

2002; Kelly et al., 2007; Schmid et al., 2015; Schmid et al., 2012). 

A previous genome-wide study of the localization of several mRNA-binding proteins from our 

research group identified that Nab2 occupies all RNAPIII-transcribed genes (see Results, 

3.1, Fig. 10, 11 and 12 and Meinel et al. (2013)). This is in good correlation with the recent 

observation by Gonzalez-Aguilera and colleagues that Nab2 localizes to five different 

RNAPIII-transcribed genes (Gonzalez-Aguilera et al., 2011). They showed that Nab2 

associates with genes transcribed by RNAPII and RNAPIII in a TREX and TREX-2-

dependent manner. Furthermore, they speculated that Nab2 might play a role in the 

metabolism of RNAPI and RNAPIII transcripts, as suggested by e.g. a microarray analysis of 

the nab2-1-GFP allele. In contrast to the study presented here, Gonzalez-Aguilera and 



Discussion 

100 

colleagues excluded a role for Nab2 in RNAPIII transcription (Gonzalez-Aguilera et al., 

2011). The reason for this might be that the used nab2-1-GFP mutant most likely shows 

secondary effects, due to the extremely slow growth even under optimal growth conditions, 

and that the function of Nab2 in RNAPIII transcription was missed. 

To avoid using the nab2-1 mutant or other available alleles of the essential NAB2 gene, we 

generated our own temperature-sensitive NAB2 allele, nab2-34. The Nab2-34 protein is fully 

produced and contains several mutations (see Results, 3.2.1, Fig. 14). Hence, it is interesting 

to argue which of the acquired missense mutations may be responsible for causing the 

growth retardation on the one hand and the observed effects on RNAPIII transcription on the 

other hand or both at once.         

 Three of the mutated residues localized to the QQQP domain of Nab2 (see Results, 

3.2.1, Fig. 14). Although they may change the local protein folding, an influence of these 

mutations on the overall structure of Nab2 seems unlikely, as this domain can be omitted 

from the protein without any consequences for cell fitness (Marfatia et al., 2003). All other 

residue changes could result in the mutant phenotype. In particular, we discuss two amino 

acid exchanges in the zinc finger domains in the following paragraphs, which could play an 

important role in the function of Nab2 and its role in RNAPIII transcription. 

The zinc finger domain of Nab2 is highly conserved in evolution and each Nab2 orthologue 

contains at least 3-5 of these CCCH-type zinc fingers (ZnF, see below Fig. 36 and Leung et 

al. (2009)). The zinc fingers display high homology to each other and are thought to 

coordinate one Zn2+-ion by three cysteine residues and one histidine (Brockmann et al., 

2012). In Nab2, the last three zinc fingers have been extensively studied and their role in 

poly(A)-binding is well established (Brockmann et al., 2012; Kelly et al., 2010; Kelly et al., 

2007). In contrast, the first four zinc fingers are only weakly binding to poly(A) RNA and are 

most probably not the primary domain required to fulfill Nab2’s functions in poly(A) tail length 

control and mRNA export - though they are essential (Marfatia et al., 2003).  

 Recognition of RNA by CCCH-type ZnFs is most likely similar as described for the 

human Tis11d (Hudson et al., 2004). This factor is an ARE-binding (AU-rich element) protein 

involved in regulating mRNA turnover and specifically binds to RNA with a tandem CCCH-

type zinc finger domain (Brockmann et al., 2012; Hudson et al., 2004). The binding to RNA is 

mediated via a combination of electrostatic and hydrogen-bonding interactions with additional 

stacking of RNA bases between conserved aromatic amino acid side chains in an 

intercalative manner (Hudson et al., 2004). Interestingly, an overlay of a zinc finger of Tis11d 

and ZnF 5 of Nab2 showed very high similarity in the three-dimensional structure, suggesting 

a similar recognition mode of RNA by Nab2 (Brockmann et al., 2012). Also, an analogous 

RNA recognition mode was found for the orthologue of Nab2 in Chaetomium thermophilum 
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(Kuhlmann et al., 2013). The purine ring of adenosine stacks against an aromatic side chain 

and overall the RNA seems to be buried in a positively charged grove built up by Znf 3-5 

(Kuhlmann et al., 2013). 

Other proteins involved in RNAPII and RNAPIII transcription contain single or arrays of zinc 

finger modules that mediate DNA, RNA, or even protein-protein interactions. For example 

TFIIB has an N-terminal zinc finger that is necessary for binding to Tbp and efficient 

recruitment of RNAPII-TFIIF to the promoter (Buratowski and Zhou, 1993). On the other 

hand, TFIIIA contains an array of nine zinc fingers in most organisms that are necessary to 

bind to the 5S rDNA, more specifically to the ICR, and the 5S rRNA itself (Rothfels et al. 

(2007) and reviewed in Layat et al. (2013)). As the first four zinc fingers in Nab2 only contain 

a moderate affinity to poly(A) RNA (Marfatia et al., 2003), they could either be necessary to 

bind to nascent RNAPIII transcripts in a specific or non-specific manner, RNAPIII itself, or 

mediate the TFIIIB stabilization on promoter DNA by interaction with TBP and Brf1, which 

also has a zinc finger domain in its very N-terminus (Buratowski and Zhou, 1992). This is in 

accordance with our finding of the in vitro interaction between the first four zinc fingers of 

Nab2, potentially together with the RGG domain, and RNAPIII (see Results, 3.4, Fig. 18). 

Furthermore, it is crucial to investigate whether TFIIIB subunits can interact with this or 

another domain of Nab2 in vitro, as full length Nab2 interacts with the TFIIIB subunit Brf1 in 

vivo and with Tbp in vitro (see Results, 3.7.3, Fig. 30 and 3.7.4, Fig. 31). More detailed 

experiments regarding the interacting domains of Nab2 with TFIIIB and RNAPIII could lead to 

a better understanding of the molecular interplay of Nab2 with the RNAPIII transcription 

apparatus in S. cerevisiae. 

Considering the importance of the zinc fingers for Nab2 function in the cell, it was interesting 

that one mutation in nab2-34 leads to a histidine to proline mutation in the fourth zinc finger. 

As the zinc ion is important for the overall structure and function of the CCCH-type ZnF 

module (Hudson et al., 2004), this mutation may lead to the disruption of the ZnF domain in 

general and could cause the nab2-34 phenotype when shifted to the restrictive temperature. 

Another mutation in the sixth zinc finger module of Nab2 could lead to a similar defect 

(R438C mutation, see Results, 3.2.1, Fig. 14). Although all conserved residues of the ZnF 

are present, the additional cysteine residue neighboring the first cysteine of ZnF six may 

disturb the correct complexation of the central zinc ion and hence destabilize the ZnF module 

at higher temperatures. The ability of the mutant Nab2 to bind zinc atoms could be tested 

and compared to wild-type Nab2 using different techniques, such as ICP-OES (inductively 

coupled plasma optical emission spectrometry, Jobst et al. (2010)) or UV-VIS spectroscopy 

(Lottspeich and Engels, 2012). Furthermore, CD spectroscopy (circular dichroism) of Nab2-

34 and Nab2 could provide initial insight in the structural changes of the mutant at the 
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permissive/ restrictive temperature (Lottspeich and Engels, 2012).   

 To identify the residue changes that are responsible for the mutant phenotype, 

individual or combinations of mutations in Nab2-34 should be introduced into the wild-type 

protein and subsequently tested for a phenotype. 

4.1.2 NAB2-AID: Depletion with a plant hormone 

As an alternative approach to impair the function of Nab2 without applying drugs or toxic 

compounds, we used the AID-degron system. This system employs the natural, 

phenylalanine derived compound auxin to deplete Nab2 from cells (see Results, 3.2.2, Fig. 

15). Indeed, Nab2 could be depleted and the mutant showed comparable phenotypes as the 

nab2-34 mutant in growth and an in vitro transcription assay. Unfortunately, ChIP 

experiments were not reproducible using this system (data not shown). The difference to 

regular ChIP assays conducted in the lab was that the auxin was solved in DMSO and cells 

were treated with this solution. An effect of the DMSO on cross-linking would not be 

expected, as it does not seem to have any influence on the assay in e.g. S. pombe (Kanke et 

al., 2011) and the negative control in our assay varied as well. One potential explanation 

would be that in some cases, residual Nab2, which was not degraded upon degron activation 

(see Results, 3.2,2, Fig. 15D), could still function on RNAPIII genes and, thus, the ChIP 

assay could have revealed varying results. To address this problem, future studies should 

put an emphasis on the complete and rapid degradation of the target protein. Therefore, one 

could use the improved toolkit for the AID degron (Morawska and Ulrich, 2013), which offers 

an optimized AID-tag along with new tagging strategies (N-terminal tagging and new 

selection markers). Other options would be the use of alternative auxin-responsive (IAA) 

proteins with shorter half-lives that promote enhanced degradation or the fusion of multiple 

tandem AID sequences to the protein of interest (Havens et al., 2012; Kubota et al., 2013).

 Nevertheless, having generated the temperature-sensitive nab2-34 mutant, we were 

able to investigate the potential function of Nab2 in RNAPIII transcription. 

 

4.2 Nab2 functions in RNAPIII transcription 

4.2.1 Nab2 and RNAPIII transcription initiation 

Using the novel allele, we substantiated our genome-wide findings, as we were able to 

demonstrate that full occupancies of Nab2 and RNAPIII on RNAPIII-transcribed genes 

depend on each other. Furthermore, a direct interaction of Nab2 with the polymerase was 

observed, pointing towards a direct function in RNAPIII transcription. In addition, we showed 
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that Nab2 is necessary for wild-type levels of tRNAs and other ncRNAs and indeed functions 

directly in RNAPIII transcription. Studying the molecular function of Nab2 in this process, we 

found that Nab2 stabilizes the transcription initiation factor TFIIIB on DNA and is therefore 

needed for transcription initiation of RNAPIII (see Fig. 35, upper part). Importantly, this can 

also explain the effects observed for RNAPIII in the nab2-34 mutant, as TFIIIB has key 

functions in recruiting RNAPIII to the respective gene and is necessary for transcription at all 

three types of RNAPIII promoters (Kassavetis et al. (1990) and Dieci et al. (2007); 

Geiduschek and Kassavetis (2001) and references therein). 

The initial results of the reinitiation assay can be explained when considering the proposed 

stabilization function of Nab2 on TFIIIB in vitro, as well as the physical interaction of Nab2 

with the polymerase. Once Tbp is recruited to the target gene via a TATA box or the 

interaction with Brf1 / TFIIIC (Dumay-Odelot et al., 2002; Male et al., 2015), Nab2 could form 

a much tighter pre-initiation complex (PIC) together with TFIIIB and RNAPIII that 

subsequently allows the synthesis of the 17-mer transcript. Hypothetically, this DNA-RNA-

protein complex might be more stable in the presence of Nab2 and, hence, less RNAPIII 

might dissociate from the gene after 17-mer synthesis and thus less signal would be 

expected in contrast to a repetitive reinitiating and aborting polymerase. This theory is 

supported by the observation that only a few 17-mer transcripts were elongated in the 

absence of Nab2 and presence of heparin. This illustrates that a big proportion of 17-mers 

was released before elongation occurred and that the polymerase was eventually 

sequestered by heparin.         

 A second, simpler explanation for less 17-mers in this assay is enhanced elongation 

of the transcripts in the presence of Nab2. As the generated products may be distributed 

everywhere between the 17-mer and full length transcript, quantification of these 

intermediate products is difficult in this setup.      

 Nonetheless, it is necessary to show that initial 17-mer formation is more efficient in 

the presence of Nab2 and that switching to productive elongation is more effective. 

4.2.2 Nab2 may have a role in ‘facilitated recycling’ 

The stabilization of TFIIIB on its promoter DNA and the interaction with Nab2 also suggests a 

second role of Nab2 in RNAPIII transcription. As tRNAs and other ncRNAs are required in 

high amounts in growing cells and the fact that initiation and PIC formation is the rate limiting 

step in RNAPIII transcription, a mechanism called facilitated recycling was proposed (see 

Introduction, 1.4.6, Fig. 8, and Dieci and Sentenac (1996)). Such a process in which the 

polymerase is reloaded quickly on the same gene locus (gene commitment) is a prerequisite 

to achieve the observed high synthesis rates especially for longer genes, such as the SCR1 
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and SNR6 loci, as well as for tRNA genes (Dieci et al., 2002; Dieci and Sentenac, 1996; 

Ferrari et al., 2004). Recycling of the RNAPIII enzyme seems to be a conserved mechanism, 

as it was also observed in humans to protect RNAPIII from repression by Maf1 (Cabart et al., 

2008).            

 Nab2 could positively influence the facilitated recycling by fixing TFIIIB to the 

promoter of the gene being transcribed by RNAPIII. When transcription is terminated, Nab2 

could interact with the polymerase and together with TFIIIB recruit it to the same gene to 

directly undergo another round of transcription (Fig. 35; an artistic view of the 

initiation/reinitiation mechanism of RNAPIII is presented in Sentenac and Riva (2013)). 

Similarly, hnRNP R interacts with scaffold components of the RNAPII transcription machinery 

(Mediator, Tbp and TFIIH) and facilitates RNAPII reinitiation on the c-Fos gene in higher cells 

(Fukuda et al., 2013). To reload RNAPIII on the target gene, TFIIIB and Nab2 would not 

need to establish long distance interactions with RNAPIII. It has been described that 

transcription initiation factors and other auxiliary proteins introduce kinks into the DNA to be 

transcribed and thus a loop may be formed (Braun et al., 1992; Grove et al., 1999; Leveillard 

et al., 1991). This would greatly reduce the spatial distance of the terminator and the 

promoter, facilitating a directed DNA ‘hopping’ to the promoter by the transcription apparatus. 

More general, it would be interesting whether the proposed loop formation is a feature 

required for facilitated recycling. Therefore, a physically immobilized and linear template 

could be used for transcription assay under single and multiple round transcription 

conditions. If a sterical rearrangement is crucial for the facilitated recycling, one should 

observe a lower reinitiation rate as compared to a non-immobilized template.  

 ‘Gene looping’ was observed in yeast and mammalian cells and is a common 

mechanism for transcriptional activation of genes, high level RNAPII transcription and 

efficient recycling. The formation of a loop thereby juxtaposes promoter and terminator 

regions spatially, which is especially important for long genes. (Ansari and Hampsey, 2005; 

O'Reilly and Greaves, 2007; O'Sullivan et al., 2004; Tan-Wong et al., 2008; Yudkovsky et al., 

2000). This mechanism involves the mediator complex, TFIIB, TFIIH and other basic 

transcription initiation factors, as well as parts of the 3’-end processing machinery (e.g. the 

cleavage and polyadenylation factor) (Calvo and Manley, 2003; He et al., 2003; Singh and 

Hampsey, 2007; Yudkovsky et al., 2000). For example, TFIIB and the co-activator PC4 / 

Sub1 interact with the 3’-end processing machinery, thereby creating a scaffold for gene 

looping (Calvo and Manley, 2005).         

 Analogous, Nab2 could promote gene looping on RNAPIII-transcribed genes by 

stabilizing TFIIIB and the pre-initiation complex. This could either favor gene activation or 

facilitated recycling on target genes (Fig. 35, bent not shown).    

 In addition, the stability of TFIIIB on the DNA in the presence of Nab2 should be 
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tested in further detail. To this end, magnetic traps could be used, in which a TFIIIB-Nab2 

complex would be assembled on a fixed DNA and stability could be tested by twisting or 

stretching the DNA (Lionnet et al., 2012). As TFIIIB induces a strong kink in the bound DNA, 

one could then test whether Nab2 makes the complex more resistant against exogenously 

applied force, additionally arguing for a stabilization function of Nab2 on TFIIIB. 

4.2.3 Nab2 and its potential RNAPIII binding site 

Using tandem affinity purification, we identified an interaction of Nab2 and the RNAPIII 

enzyme. This was confirmed by in vitro pull-down assays and we could show that this 

interaction is direct and involves the first four zinc fingers of Nab2. Interestingly, Nab2 was 

also found to bind to RNAPII in vitro but needed the RGG domain in addition. In contrast, no 

RNAPI interaction was observed. This raised the question, which RNAPIII subunit can 

interact with Nab2 and whether Nab2 binds to the same protein in RNAPII and RNAPIII. 

Table 31 displays all RNA polymerase subunits, their homologies, as well as the basic 

transcription factors from S. cerevisiae. 

Inspection of this table revealed that there is no subunit that is only shared by RNAPII and 

RNAPIII. Either a subunit is shared by all polymerases or at least by RNAPI and RNAPIII 

(e.g. Rpb6 for all polymerases or AC40 for RNAPI and RNAPIII). Hence, the interaction of 

Nab2 with RNAPII and RNAPIII could be mediated via completely different proteins on one 

side or by proteins that show a high degree of homology on the other side. A candidate for 

the first hypothesis would be Rpc31, which shows neither a paralogue nor a homologue 

among the different polymerases. Candidates for the second possibility are all RNAPIII 

subunits marked with an asterisk in Table 31. Some of them also show homology to RNAPI 

subunits, making them rather unlikely candidates, such as Rpa49 that is functionally and 

structurally related to the Rpc37/Rpc53 subcomplex (Beckouet et al., 2008; Landrieux et al., 

2006). Another candidate is Rpc82, which shows homology to TFIIEα, but no direct 

homologue for RNAPI is known.        

 As we could also show that Nab2 binds to TFIIIB, one could argue that Nab2 may 

interact similarly with the RNAPII pre-initiation complex or general transcription factors to 

facilitate RNAPII recruitment (reviewed in Naar et al. (2001)). 

To finally be able to draw a conclusion, the GST-pulldowns of Nab2 and RNAPIII should be 

repeated to define the minimal RNAPIII-binding domain of Nab2. Here, particular emphasis 

should be put on the first four zinc fingers of Nab2 and deletion constructs of those. 

Furthermore, co-purification of RNAPIII / TFIIIB with an additional, but truncated copies of 

Nab2 (Nab2-TAP) will reveal the minimum binding domain in vivo. 
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Table 31: Yeast RNA Polymerase Subunits, Homology and Transcription Factors in S. cerevisiae 

RNAPI RNAPII RNAPIII Function 
Core 
Rpa190 Rpb1 Rpc160 Active center 
Rpa135 Rpb2 Rpc128 
AC40 Rpb3 Rpc40 (AC40)                          1 

AC19 Rpb11 Rpc19 (AC19)  
Rpb6 Rpb6 Rpb6 (ABC23)  
Rpb5 Rpb5 Rpb5 (ABC27)  
Rpb8 Rpb8 Rpb8 (ABC14.5) 2

Rpb10 Rpb10 Rpb10 (ABC10β)  
Rpb12 Rpb12 Rpb12 (ABC10α)  
    
Rpa12.2 Rpb9 and TFIIS Rpc11* RNA cleavage 
Rpa14 Rpb4 Rpc17* Initiation complex 

formation Rpa43 Rpb7 Rpc25* 
    
General transcription factors 
Rpa49 TFIIFα Rpc37* Initiation/Termination3 
Rpa34.5 TFIIFβ Rpc53* Initiation/Termination3 
 TFIIEα Rpc82* Open complex 

formation and 
stabilization 

Rpa49 TFIIEβ Rpc34* 
  Rpc31* 
TBP TBP TBP DNA binding 
 TBP-assoc. factors   
Rrn7 TFIIB (Sua7) Brf1 TBP/polymerase 

binding 
  Bdp1  
 Mediator  Transcriptional 

coactivator 
 TFIIH  PIC formation 
  TFIIIC A/B box binding 

1: Core subunits of RNAPIII. 2: subunits shared by all polymerases (ABC). The number at ABC represents the 
molecular weight in kDa. 3: Termination was shown for RNAPIII (Arimbasseri and Maraia, 2015). *: These 
subunits are RNAPIII specific. However, some show homologies to general RNAPII transcription factors. This 
table was generated using data from Geiduschek and Kassavetis (2001); Vannini and Cramer (2012) and SGD 
(www.yeastgenome.org). 

 

4.2.4 Nab2 may serve in transcription elongation of RNAPIII 

Poly(A) RNA-binding is the best investigated property of Nab2, since its discovery more than 

two decades ago (Anderson et al., 1993). In the course of this study we additionally identified 

that Nab2 binds to newly synthesized but yet not processed RNAPIII transcripts in vivo (see 

Results, 3.5, Fig. 19). Therefore, it is very likely that binding occurs already during or shortly 

after transcription of the corresponding gene. Furthermore, Nab2 localizes to the whole gene 

body of SCR1 in the ChIP profiles (see Results, 3.7.1, Fig. 27). Thus, Nab2 may be needed 
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for transcription elongation of RNAPIII, comparable to the earlier mentioned THO complex 

(Chavez et al., 2000) or Npl3 (Bucheli and Buratowski, 2005; Deka et al., 2008) in RNAPII 

transcription. Alternatively, Nab2 could function in preventing R-loops, similar to what was 

found for the TREX and THSC complex in RNAPII transcription (Gonzalez-Aguilera et al., 

2008; Huertas and Aguilera, 2003). These R-loops (RNA-DNA hybrids with an additional 

displaced DNA strand) occur during e.g. transcription elongation and can cause genome 

instability and even chromosome fragility (reviewed in Aguilera and Garcia-Muse (2012)). To 

prevent such an event, Nab2 could bind to the nascent transcripts at the transiently opened 

DNA double strand (Fig. 35, lower part). 

The co-transcriptional binding of Nab2 to RNAPIII transcripts could also be necessary for 

guiding newly synthesized RNAs to processing or degradation enzymes. For example, Nab2 

could bind to oligo(dA)-tRNAs (which is a signal for tRNA degradation), similarly as to poly(A) 

RNA and interact with Rrp6, as described for the decay of mRNAs (Kadaba et al., 2006; 

Parker, 2012; Schmid et al., 2012). To investigate such a hypothetical role, RNA 

immunoprecipitation and subsequent sequencing of the products (RIP-Seq) could be 

performed with Nab2 in a RNA exosome mutant, such as the described ∆rrp6 mutant (Roth 

et al., 2009; Schmid et al., 2012). This mutant would be deficient in the nuclear decay of 

RNAs and hence cleaved products still bound by Nab2 could be identified. If cleaved 5’-

leaders or intronic RNA molecules will be bound by Nab2, it would argue that Nab2 might be 

involved in directing the newly synthesized products from the RNA polymerase to its 

processing enzymes, thereby linking transcription and maturation of tRNAs and ncRNAs. A 

similar mechanism was described for the Nab2 Mex67-Mtr2 interaction. Here, Nab2 binds to 

the polyadenylated mRNA and is involved in recruiting the conserved exporter Mex67-Mtr2 

(Iglesias et al., 2010). Additionally, Nab2 was described in the regulation of pre-mRNA 

abundance. In more detail, it was found that Nab2 can be displaced from poly(A) tails by 

Rrp6, which possibly leads to the degradation of the mRNA (Roth et al., 2005; Schmid et al., 

2012). Therefrom, it would be interesting to investigate a potential role of Nab2 in tRNA 

metabolism.           

 Regardless of the co-transcriptional binding of Nab2, it does not seem to influence 

processing of pre-tRNAs itself (removal of 5’-leaders, 3’-trailers, or splicing), as these or 

partially processed precursors did not accumulate in the nab2-34 mutant grown at the 

restrictive temperatures (see Results, 3.6.1, Fig. 20). Although tRNAs are spliced in the 

cytoplasm (Hopper and Huang, 2015), no export defect was obvious and no precursor RNAs 

were accumulating over time, further opposing a role of Nab2 in the processing of tRNAs 

(data not shown, Lüling (2014) and pers. commun. Anita Hopper, Ohio State University, 
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Columbus). However, potential defects in base modification of tRNAs were not investigated 

in the nab2-34 mutant and, hence, could be tested. 

 

Fig. 35: Model of Nab2 functioning in RNAPIII transcription. A three-step working model of how Nab2 
could function in RNAPIII-mediated transcription. In upper part, Nab2 helps to stabilize TFIIIB on its promoter 
DNA to assemble wild-type levels of TFIIIB. Then Nab2 might help to recruit RNAPIII to the transcription 
initiation site together with TFIIIB and TFIIIC (middle part). Finally, Nab2 binds to newly, non-processed tRNA 
and other ncRNA transcripts and may travel with the polymerase through the gene (lower part). On the other 
hand, Nab2 could play a role in reinitiation of transcription, by stabilizing TFIIIB on the DNA and thereby 
favoring facilitated recycling of RNAPIII. 

 

4.3 ‘Gene gating’ by tethering Nab2 to nuclear pores? 

During the last decades, a working model was developed in which actively transcribed genes 

are relocated to the nuclear pore to efficiently link transcription to mRNA export (see 

Introduction, 1.2.2 and Blobel (1985); Burns and Wente (2014)). This model was termed 

‘gene gating’ and was not only described in yeast, but examples have been identified in 

many higher cells (Burns and Wente (2014) and references therein). Interestingly, the 

nuclear periphery marks a mostly repressive environment for gene expression. Contrary, the 

NPCs (nuclear pore complexes) represent active zones of transcription (Dilworth et al., 2005; 

Ishii et al., 2002). As an example, the inducible genes GAL1 or HSP104 are relocated to the 
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NPC for maximal transcriptional output in S. cerevisiae upon activation and require special 

nucleoporins at the nuclear periphery (detailed in Burns and Wente (2014) and Steglich et al. 

(2013)). Of course, this relocalization is also dependent on other factors, such as the 

chromatin or transcriptional status of the surrounding genome (Brickner and Walter, 2004; 

Casolari et al., 2004). In addition, genome-wide data from S. cerevisiae showed that a variety 

of Nups associate with many active RNAPII genes (Casolari et al., 2004; Schmid et al., 

2006). 

Besides the fact that overall knowledge of genome organization is still poor, even less is 

known about ‘gene gating’ in RNAPIII gene expression. One study conducted in C. elegans 

revealed that knock-down of NPP-13 (the homologue of the vertebrate Nup93) leads to a 

maturation defect of nearly all snoRNAs transcribed by RNAPIII (Ikegami and Lieb, 2013). 

Although being no proof for a direct gene gating mechanism in RNAPIII transcription, it could 

demonstrate the involvement of Nups in RNAPIII transcription.    

 Another very recent study by Iwasaki and colleagues identified an interaction of the 

kleisin subunit of condensin with Tbp in fission yeast (Iwasaki et al., 2015). When Tbp was 

associated with condensin, actively transcribed RNAPIII genes were relocated to the 

centromeres of chromosomes at the nuclear membrane. Whether this is in spatial proximity 

to NPCs was not investigated.       

 Interestingly, it was shown recently that tDNAs are relocated to the NPCs during their 

peak expression in M phase of S. cerevisiae in a Los1 (a major tRNA exportin, see 

Introduction, 1.5.2) dependent manner (Chen and Gartenberg, 2014). Furthermore, it was 

shown that this relocation connects RNAPIII transcription with pre-tRNA export, but did not 

affect RNAPIII association with its genes or the transcriptional output in general. Moreover, it 

was hypothesized that relocation by the transcribing RNAPIII machinery to NPCs could be a 

mechanism to prevent collisions of DNA replication forks (Chen and Gartenberg, 2014). 

It is known that Nab2 interacts with the nuclear pore associated protein Mlp1 via physical 

contacting the N-terminal domain of Nab2 (see Introduction, 1.2.2, Fig. 2; 1.3 and Fasken et 

al. (2008); Grant et al. (2008)). Thus, Nab2 is thought to be important for linking mRNA 

processing to nuclear export. Having in mind that Nab2 is interacting with TFIIIB and RNA 

polymerase III directly and is involved in stabilizing TFIIIB to promoter DNA, one might 

hypothesize whether Nab2 can also interact with Mlp1 when bound to TFIIIB. Thus, Nab2 

could hypothetically function in linking active transcription of RNAPIII to export of tRNAs and 

other ncRNAs, such as the SCR1 RNA, by relocating actively transcribed genes to the NPC. 
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4.4 Coupling of RNAPII and RNAPIII transcription systems 

In contrast to higher organisms, it was shown that RNAPII and classical RNAPII transcription 

factors do not occupy RNAPIII genes nor their promoter areas in the budding yeast 

S. cerevisiae (Barski et al., 2010; Raha et al., 2010; Venters et al., 2011). Therefore, the 

transcription systems are considered to be independent of each other, despite the presence 

of some RNAPII regulators on RNAPIII genes, e.g. Yap6 or Reb1 (Venters et al., 2011). In 

our genome-wide analysis, we observed that Nab2 occupied genes transcribed by both 

transcription systems (RNAPII and RNAPIII), but only with the corresponding RNA 

polymerase.           

 As Nab2 is the first mRNP biogenesis factor identified to play a role in RNAPIII 

transcription, it will be of great interest to investigate whether more proteins involved in 

RNAPII transcription or metabolism are having a second function in RNAPIII transcription. 

Some examples have been described already, such as Dst1 or Sub1 in yeast (Ghavi-Helm et 

al., 2008; Tavenet et al., 2009). Sub1, for example, is involved in transcription elongation of 

RNAPII and 3’-end processing of mRNA (Conesa and Acker (2010) and references therein) 

and was also shown to function in RNAPIII transcription (Tavenet et al., 2009; Wang and 

Roeder, 1998). Dst1 / TFIIS, as a second example, is an important protein in RNAPII 

transcription, as it is required for stimulation of the intrinsic transcript cleavage activity of 

RNAPII (Qian et al., 1993). As Rpc11 mediates this cleavage activity for the RNAPIII enzyme 

(Chedin et al., 1998), it was surprising that Dst1 also occupies RNAPIII-transcribed genes 

(Carriere et al., 2012; Ghavi-Helm et al., 2008; Venters et al., 2011). However, Ghavi-Helm 

and colleagues showed that ∆dst1 mutant cells showed reduced tRNA synthesis in vivo and 

that Dst1 may influence start site selection of RNAPIII transcription (Ghavi-Helm et al., 2008).

 We observed that Nab2 and Rpc160 together show occupancies on PCGs that are 

close to tRNA genes. Here, Nab2 and RNAPIII could be necessary for barrier formation 

against heterochromatin spreading during RNAPII transcription and co-transcriptional RNA 

processing. The general ability of RNAPIII and TFIIIC in barrier formation is described for 

single loci and genome-wide (see Introduction, 1.4.5; Noma et al. (2006); Scott et al. (2007)). 

Moreover, transcription activity could be regulated by the presence of RNAPIII and Nab2, 

similar to what was described for TFIIIC (Kleinschmidt et al., 2011).  

 Hence, proteins involved in RNAPII and RNAPIII transcription and metabolism could 

coordinate both transcription systems. They could act synergistically, thereby generating 

important junction points between the two transcription systems. 
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4.5 Conservation of Nab2 in higher eukaryotes 

As outlined in the introduction, Nab2 is highly conserved from yeast to humans (see 

Introduction 1.3.3). An alignment of the Nab2 orthologues from different organisms is 

presented in Figure 36. Although all proteins differ in size and also in domain composition, 

some basic features are the same in all analyzed organisms. For example, many orthologues 

share a nuclear localization sequence (NLS). It is needed for the repetitive import of Nab2 

after each round of mRNA export to the cytoplasm (Kelly et al., 2012). Besides the NLS, all 

Nab2 orthologues and splice variants contain an array of zinc fingers, varying from three zinc 

fingers in S. pombe to seven zinc fingers in S. cerevisiae (see Discussion, 4.5, Fig. 36 and 

Grenier St-Sauveur et al. (2013); Guthrie et al. (2009); Kelly et al. (2014); Leung et al. 

(2009)). When these zinc fingers are aligned (Fig. 36) they show high conservation. This is 

due to two characteristics: (i) all zinc fingers are CCCH-type complexing one zinc atom and 

(ii) neighboring amino acids are fairly conserved.      

 Interestingly, the first and the last two zinc fingers of the budding yeast Nab2 are very 

well conserved, whereas the fourth and fifth zinc fingers are not conserved in higher 

eukaryotes and modestly in other fungi species (Fig. 36 and Fig. A4). The conservation of 

the last zinc finger module is not surprising, as it is important for the poly(A) tail recognition in 

yeast and higher organisms (Kelly et al., 2014; Kelly et al., 2007; Pak et al., 2011). For 

example, poly(A) RNA binding was shown for the Drosophila orthologue (dNab2), as well as 

for the human and rat orthologue of Nab2 (ZC3H14) (Kelly et al., 2007; Pak et al., 2011). In 

addition, Nab2 is required for correct poly(A) tail length in D. melanogaster and most 

probably also in humans, showing that the most well described functions of Nab2 in gene 

expression of mRNAs are conserved throughout evolution (Kelly et al., 2014; Pak et al., 

2011). 

As we have identified a novel function for Nab2 in RNAPIII transcription, it would be of great 

interest to know, whether this function is conserved in a similar way across different 

organisms. An argument supporting this is the good conservation of the first zinc finger array, 

which we found to interact with the RNAPIII in vitro. The fourth and fifth zinc finger may be 

repetitive and not needed in other cells, as yeast has the longest array of zinc fingers within 

all orthologues (see Fig. 36, Introduction, 1.3, Fig. 3, and Grenier St-Sauveur et al. (2013)). 

To investigate the potential conservation of Nab2’s role in RNAPIII transcription, experiments 

in higher cells are required. As a starting point ChIP-Seq and single ChIP experiments of 

Nab2 and RNAPIII in Drosophila or human cell lines will generate genome-wide data that 

could be used to judge, whether Nab2 occupies RNAPIII-transcribed genes.  
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are not shown, as they have no homology to the S. cerevisiae Nab2. The alignment file was generated with 

Clustal Omega multiple sequence alignment software (Sievers et al., 2011) and modified using Jalview2 

software (Waterhouse et al., 2009). 

Furthermore, immunoprecipitation of RNAPIII or the Nab2 orthologue would be useful to 

study their potential physical interaction. For this, the generated ZC3H14 antibody will be of 

great use, as it detects native as well as denatured ZC3H14. 

 

4.6  Proteome-wide studies failed to purify Nab2 with RNAPIII so far 

In a recent study, Nguyen and colleagues performed purifications of RNAPIII after in vivo 

crosslinking to identify the proteins associated with RNAPIII in yeast (Nguyen et al., 2015). 

Although identifying more proteins than earlier studies (Collins et al., 2007; Gavin et al., 

2006), still several RNAPIII transcription effectors could not be retrieved, such as Nhp6, 

Yox1, Fkh1, Reb1, Yap6, or most of TFIIIC (Kruppa et al., 2001; Venters et al., 2011). 

 This was also the case for Nab2. Other proteins were only hardly detected in one 

replicate of the purifications, e.g. Dst1 or Sub1 (Ghavi-Helm et al., 2008; Tavenet et al., 

2009). This may be due to inefficient cross-linking as described earlier (Kurdistani et al., 

2002), which could result in the dissociation of less tightly bound proteins as compared to 

Maf1. Using a whole cell or nuclear lysate instead of a chromatin preparation (more protein), 

a different cross-linker (more cross-links), or different purification buffers could increase the 

fraction of cross-linked proteins involved in RNAPIII transcription. Especially the extraction 

buffer after cross-linking seemed to have a big influence on the outcome of the purification 

quality (see Fig. 1A of Nguyen et al. (2015)). Optimizing these steps should increase the 

number or specificity of identified proteins. 

 

4.7 Conclusions 

The correct and regulated expression of genes is a crucial process in living organisms. 

Extensive research was conducted to unravel the basic mechanisms of how RNA 

polymerases function in many different organisms. Starting from the identification of the 

sigma factors in bacteria up to genome- and transcriptome-wide sequencing data for RNA 

polymerases, their transcription factors or mRNP biogenesis protein, many fascinating details 

were discovered (Baejen et al., 2014; Burgess et al., 1969; Mayer et al., 2010; Meinel et al., 

2013). Beside the well investigated RNAPII, RNAPI and RNAPIII were neglected over years, 
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as they only have small sets of genes to be transcribed and only few mandatory and basic 

regulating factors. Hence, details of these transcription systems, including a high-resolution 

three-dimensional structure of RNAPIII, are still lacking. 

Applying genome-wide analysis of the Nab2 binding to the yeast genome, we identified the 

very first mRNP biogenesis factor involved in RNAPIII transcription in the present study. 

Furthermore, analysis of the published CRAC data set of Tuck and colleagues revealed 

transcriptome-wide binding of Nab2 to precursors of tRNAs and other RNAPIII transcripts 

(Tuck and Tollervey, 2013). To unravel the need of Nab2 binding to newly synthesized 

RNAs, as a potential elongation factor, to monitor correct RNA modifications, or to prevent 

the already mentioned R-loops will contribute to the understanding of RNA-binding proteins 

in transcription. 

Additionally, we aimed to dissect the molecular mechanism of how Nab2 can function in the 

transcription of RNAPIII genes. Our study revealed Nab2 as a novel factor required for the 

initiation and potentially also reinitiation of RNAPIII transcription in the budding yeast 

S. cerevisiae. Hence, it will essential to test whether this function is also conserved in other 

organisms, for example D. melanogaster or H. sapiens, in which Nab2 was shown to be 

important for poly(A) RNA-binding.       

 Moreover, it will be interesting to study whether other factors of the RNAPII gene 

expression machinery or mRNP related proteins might also have a second role in the 

transcription, processing, or export of RNAPIII transcripts.     

 Finally, the new role for Nab2 in RNAPIII transcription may also point towards 

intertwined RNAPII / RNAPIII transcription systems. Therefore, proteins such as Nab2, Dst1, 

or Sub1 could coordinate the two transcription systems. Furthermore, downstream processes 

(processing, export of RNA) might be linked to efficiently regulate and coordinate overall 

gene expression. Investigating the potential coordination of these important cellular pathways 

could lead to a better understanding of global gene expression in eukaryotic cells. 
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Fig. A1: Hpr1 is recruited to RNAPII but not to RNAPIII transcribed genes. ChIP analysis was done under 
standard condition with HPR1-TAP harboring cells. PMA1 is a RNAPII transcribed gene, SNR6 and RDN5 are 
RNAPIII transcribed genes (RNAPIII). An enlargement of the low occupancies is given in the right upper corner. 
Data (n> 3) represent the mean ± SD. 

 

 

 

Fig. A2: Nab2 is required for full RNAPIII transcriptional activity in vivo. The amount of RNA used in 
Northern Blots. 1 µg of total RNA of wild-type, nab2-34, or rpc25-S100P cells, which were shifted to 37 °C for 
the indicated amount of time, was loaded on 2% Formaldehyde agarose gels. Total RNA was visualized by 
Ethidium bromide staining. 25S rRNA and 18S rRNA levels were analyzed and quantified. Data represent the 
mean ± SD of at least 4 independent biological replicates. 

 



Appendix 

138 

 

Fig. A3: Reconstruction of an initial 3D RNAPIII model with Nab2 from electron microscopy 

micrographs. (A) A representative electron micrograph showing negatively stained RNAPIII-Nab2 complexes 

from S. cerevisiae spotted on a carbon coated electron microscopy grid. The single, bright complexes were 

distributed evenly all over the grid and could be picked for analysis. Note that differences in size and shape are 

due to the orientation of RNAPIII-Nab2 on the grid. (B) Initial reconstruction of the core RNAPIII enzyme. 

Previously compiled class averages were used to generate this 3D reconstruction of the polymerase. Note that the 

view is the same as in Results 3.9, Fig. 34. No additional and reliable extra density could be identified from this 

dataset. 
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