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Zusammenfassung

Das künstliche Einschleusen genetischer Information in Form von exogener Plasmid Desoxyribonu-
kleinsäure (pDNA) oder messenger Ribonukleinsäure (mRNA) in Zellen bezeichnet man als Trans-
fektion. Infolge der Transfektion werden in der Zelle neue Proteine nach dem Bauplan des auf
der pDNA/mRNA kodierten genetischen Codes exprimiert. Es zeigt sich, dass dabei starke Un-
terschiede im zeitlichen Verlauf der Proteinexpression und in der Anzahl exprimierter Proteine pro
Zelle auftreten. Diese Phänomene waren bislang ungeklärt.
Im Rahmen der vorliegenden Arbeit wurden Messungen zum zeitlichen Verlauf der Expression solch
künstlicher Gene durchgeführt und eine stochastische Beschreibung der mRNA Transfektion ent-
wickelt. In den Experimenten wurden mit Hilfe automatisierter Langzeit-Fluoreszenzmikroskopie
viele tausend Zellen pro Messung abgerastert und dabei die Zeitverläufe der Fluoreszenzintensität
jeder individuellen Zelle aufgenommen. Die kontinuierliche Beobachtung individueller Zeitverläufe
ist entscheidend, um die zugrunde liegende Variabilität von Zelle zu Zelle zu erfassen, da diese
Information in herkömmlichen Ensemble-Messungen ausgemittelt wird.
Im ersten Teil wurden eukaryontische Zellen mittels kationischer Lipide mit in vitro-transkribierter
(IVT) mRNA oder pDNA transfiziert, welche für das Reporterprotein EGFP (engl. enhanced green
fluorescent protein) kodieren. Es zeigte sich, dass die Zeitverläufe der mRNA-vermittelten EGFP
Expression durch die analytische Lösung eines einfachen biochemischen Ratenmodells für Trans-
lation und Degradation beschrieben werden kann. Auf diese Weise wurde die Verteilungsfunktion
der mRNA Degradationsraten ermittelt. Die Anzahl fluoreszenter Proteine pro Zelle sowie der
Prozentsatz erfolgreich transfizierter Zellen wurden zusätzlich mit Hilfe von Durchflusszytometrie
bestimmt. Im Vergleich zu den langen onset-Zeiten von bis zu 20 Stunden, die für pDNA Trans-
fektion gemessen wurden, findet man für die mRNA Transfektion kurze onset-Zeiten zwischen 0.5
und 5 Stunden. Dies ist in Übereinstimmung mit der Tatsache, dass bei mRNA Transfektion der
raten-limitierende Schritt der pDNA Transfektion, nämlich der Eintritt in den Zellkern, entfällt.
Auf Basis einer zusätzlich gemessenen Dosis-Wirkungs-Kurve wurde ein Zwei-Schritt mRNA Trans-
fektionsmodell aufgestellt, welches Aussagen über die Anzahl effektiv transfizierter Komplexe aus
mRNA und Helferlipid (Lipoplexe) erlaubte. Auf Grundlage dieses Modells konnte die Verteilung
der Expressionsraten sehr gut beschrieben und erstmals eine Erklärung für die Varianz der Expres-
sionsniveaus gegeben werden.
Ausgehend von der Möglichkeit, auf oben beschriebene Weise mRNA Lebenszeiten zu messen,
wurden in Zusammenarbeit mit der Arbeitsgruppe von Professor C. Plank (Technische Univer-
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sität München) in einem weiteren Projekt die Verteilungen der Lebenszeiten von sechs chemisch
modifizierten mRNA Konstrukten gemessen, die verschiedene Kombinationen von stabilisierend
wirkenden untranslatierten Bereichen (engl. untranslated regions (UTRs)) eines humanen Gens
aufwiesen. Um eine ausreichende Statistik im Hochdurchsatz generieren zu können, wurden die
Zellen hierzu auf mikrostrukturierten Substraten kultiviert. Dies ermöglichte eine nahezu vollau-
tomatisierte Bildverarbeitung der Einzelzellspuren. In zwei verschiedenen Zelltypen wurden ma-
ximal lebenszeitsteigernde Wirkungen für solche Konstrukte gefunden, die entweder nur an ihrem
3’ - Ende, oder aber sowohl am 5’ - als auch am 3’ - Ende UTRs enthielten. Durch Integration der
analytischen Lösung der mRNA-vermittelten Proteinexpression für t → ∞ konnte eine wichtige
pharmakokinetische Kenngröße, die Integralfläche der Dosis-Zeit-Kurve (engl. area under the curve,
AUC ), extrapoliert werden.
Schließlich wurde auf Grundlage experimenteller Daten ein Multi-Level Modell für mRNA Transfek-
tion aufgestellt, mit dem die Kinetik des Gentransfers und damit die experimentell bestimmte onset-
Zeitverteilung reproduziert werden kann. In einem iterativen Prozess wurden durch stochastische
Simulation generierte Daten analog zu reellen Daten gefittet. Die daraus resultierenden Verteilun-
gen wurden mit Hilfe eines Standardverfahrens für globale Optimierung an die von mir experimentell
bestimmten Werte angepasst. Das Modell konnte auch experimentelle Dosis-Wirkungskurven re-
produzieren sowie den Einfluss bestimmter Raten auf die Transfektionseffizien vorherbestimmen.



Abstract

In transfection experiments, exogenous plasmid deoxyribonucleic acid (pDNA) or messenger ribonu-
cleic acid (mRNA) are artificially introduced into cells. Subsequently, new proteins are expressed
according to the genetic information that is encoded on the nucleic acid. To date, a quantitative
description of the temporal cell-to-cell variability of the resulting protein expression and the differ-
ences in numbers of expressed proteins is missing.
This thesis is focussed on measuring the time courses of gene expression. In addition, a new model
for mRNA transfection that relates experimental observations to a stochastic description of mRNA
transfection was developed. Only continuous, single-cell observation is able to elucidate cell-to-cell
variabilities, which are averaged out in ensemble measurements. Therefore, most experiments of
this thesis consisted of automated, long-term fluorescence time-lapse microscopy. This way, thou-
sands of cells were scanned in each measurement and the fluorescence intensity time courses of
individual cells were monitored.
The first part of this thesis reports on a quantitative study about transfection of eucaryotic cells
with in vitro-transcribed (IVT) mRNA or pDNA. Both of them encode for the enhanced green
fluorescent protein (EGFP) as a reporter and were introduced to the cells by cationic helper lipids.
We were able to fit the time courses of mRNA-mediated protein expression using the solution of a
simple biochemical rate model for translation and degradation. This way, the distribution function
of mRNA life times could be determined. Furthermore, the number of fluorescent proteins per cell
and the percentage of successfully transfected cells were measured by flow cytometry. Consistent
with the fact that mRNA transfection lacks the rate-limiting step of nuclear entry, the onset times
ranged from 0.5 h to 5 h only. In contrast, longer onset times from 2h to 20 h were observed for
pDNA transfection. Based on an experimental dose-response curve, a simple two-step model for
mRNA tranfection was developed. This enabled us to estimate the number of effectively delivered
lipoplexes (i.e. the complexes of condensed mRNA molecules and cationic helper lipids) and to de-
scribe the distribution of the expression rates. Moreover, the variability of the protein expression
levels can be explained by our model.
The method described above to measure mRNA life times was also used in a second project, which
was carried out in close collaboration with the group of Professor C. Plank (Technische Universität
München). Here, the stability of six different, chemically modified mRNA constructs was assessed.
The constructs differed in the number and combination of inserted untranslated regions (UTRs)
of a human gene which are known to cause stabilising effects. However, to be able to generate
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decent statistics at high throughput, cells were grown on micropatterned substrates to allow for
automated image analysis of single-cell time courses. The best life time prolongation was detected
for constructs that had UTR insertions either at their 3’ end or at their 5’ and 3’ ends in two dif-
ferent cell types. Interestingly, by integration of the analytical solution for mRNA-induced protein
expression for t→∞, we were able to extrapolate the area under the curve (AUC), which is a key
pharmacokinetic parameter.
Finally, a multi-level kinetic model for mRNA transfection and the kinetics of gene transfer was
developed on the basis of experimental data. This model correctly reproduced experimental dose-
response curves as well as onset time distributions. The data obtained by stochastic simulation
were analysed in exactly the same way as the corresponding experimental data and the resulting
distributions were iteratively adjusted to the parameter distributions of the experimental data sets
using a standard technique for global parameter optimisation. In the spirit of predictive modeling,
the effect of specific rates on the resulting transfection efficiencies was analysed.



1 Introduction

Various revolutionary discoveries and technical developments of the past decades have paved the
way for measuring and monitoring biochemical reactions and processes in the natural environment
of live cells. In fact, living cells can be considered to be ”the test tubes of the 21st century”, as
claimed by Jonathan Widon in his famous remark1. Achievements such as the discovery and sub-
sequent engineering of a multitude of fluorescent proteins used as reporters [1–6], super-resolution
microscopy [7–10], and fluorescent labeling techniques as well as single-particle tracking (SPT) ap-
proaches [11–14] allow the study of individual molecules with unprecedented temporal and spatial
resolution inside living organisms [15–18].

The field of gene delivery
The field of molecular medicine and gene therapy has evolved rapidly and the vision of person-
alised and tailored drugs that treat diseases such as cancer at targeted sites of action is becoming
increasingly realistic [19]. For example, more than 900 clinical trials involving viral gene transfer
were conducted between 1989 and 2004 [20]. Following the spirit of the ”magic bullet” as proposed
by the Nobel Prize laureate and inventor of chemotherapy, Paul Ehrlich, more than 100 years ago
[21], a multitude of viral and non-viral delivery systems for drug delivery have been proposed in
the last years [22–24]. Due to the high safety risks that are associated with viral gene delivery,
a number of improved, highly efficient and non-toxic non-viral alternatives have been developed.
These include chemical as well as physical methods, such as cationic lipids, cationic polymers, or
magnetic carriers [25–38]. Most recently, DNA-based nanostructures acting as carrier systems have
also been introduced and shown promising results for the innovative field of nanomedicine [39, 40].
Besides the transfer of actual drugs into cells, for another class of applications cargos such as pDNA
or RNA molecules that induce the production of therapeutic proteins inside the cell are of high
importance. pDNA transfection generally suffers from poor transfection efficiencies that stem from
the numerous intracellular barriers. The discovery of small interfering RNAs (siRNA) introduced
an entirely new class of molecules to be delivered in gene-therapy applications, with the possibility
of suppressing the expression of malignant proteins by silencing specific mRNA sequences inside
target cells [42, 43].

1Jonathan Widom, 1955-2011
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Figure 1.1: Intravenous, liposome-aided gene delivery and its barriers. (1) After intravenous injec-
tion, serum proteins may bind to cationic lipoplexes and lead to particle aggregation. (2) The aggregates
can be taken up by macrophages and thus be eliminated from circulation. (3) Part of the circulating
lipoplexes may extravasate into tumor tissue. (4) Lipoplexes may manage to transverse the dense ex-
tracellular matrix and reach the cell surface of the target tumor cells. (5) After cellular uptake, the
lipoplex cargo has to successfully complete the pathway of intracellular gene delivery in order to come
into effect. Figure taken from [41] and reprinted with permission from Springer, copyright 2007.

The role of mRNA for gene delivery
In gene delivery, mRNA has become increasingly popular as a carrier of genetic information to
induce transient gene expression without causing genetic modifications. The first non-viral trans-
fer of mRNA into cells was carried out in 1989 by Malone, Felgner, and Verma, and first clinical
studies of mRNA therapeutics were conducted in the late 1990s [44, 45]. Today, mRNA is one of
the upcoming approaches for gene therapy applications, not only because it circumvents the risk
of mutagenesis [45–50].
The introduced mRNA can encode for any protein and its transfection is dose-titratable. The high
efficiency of mRNA transfection offers the possibility to simultaneously co-transfect different ther-
apeutic mRNAs at tunable doses. Unlike pDNA, mRNA does not carry the risk of chromosomal
integration of transgenes by the target cell. Therefore, it is better-suited for clinical applications.
Further advantages of mRNA-induced protein expression as compared to pDNA are the short onset
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times of protein expression and its efficacy in non-dividing cells [51–54]. However, transfection of
mRNA into mammalian cells can cause severe cytotoxic effects due to innate immune response by
Toll-like receptors and RNA sensors [55–57]. Also, first artificial mRNA constructs suffered from low
stability. These problems have been overcome by the development of long-lived, non-immunogenic
mRNAs that further underline the importance of mRNA for gene-therapy applications [49, 58, 59].
For example, the localised use of mRNA by pulmonary delivery has recently been demonstrated
in mice [49] and promising results of mRNA transfection for dendritic cell-based immunotherapy
have been obtained [60, 61].
The discovery that differentiated cell types can be reprogrammed to a state of pluripotency was a
monumental moment in stem cell biology and the associated field of regenerative medicine [62, 63].
Most recently, modified mRNA has been used by several groups for reprogramming of human fi-
broblasts [64–66], which is very promising for regenerative therapies. Here, mRNA transfection acts
as a highly-controllable tool. It has also been used for multiple transfection cycles of mouse and
human neural stem cells to achieve sustained protein expression while avoiding the disadvantages
of pDNA transfection [53].

How to measure mRNA abundance in cells
Today, many efforts are on the way to investigate the role of mRNA as a key player in regulated
gene expression, where it facilitates coordinated gene expression, and the mRNA-decay machinery
[67]. Because mRNA turnover plays such an essential role in the coordinated network of regulated
gene expression, methods to measure mRNA abundance as well as the corresponding rates without
perturbing the cellular system are urgently needed.
Classically, experiments to measure mRNA levels use Western blot or polymerase chain reaction
(PCR)-based methods such as reverse-transcription PCR (RT-PCR) [68], real-time PCR (qPCR)
[69], or real-time RT-PCR (qRT-PCR) [58, 70, 71]. Also, the rates of mRNA decay can be measured
at the whole transcriptome level using transcription blocking agents and microarrays for time
resolved monitoring of mRNA decay [72]. To quantify the amount of newly transcribed mRNA,
metabolic labeling is often used, where the nucleoside analogue 4 - thiouridie (4 sU) is taken up by
cells and incorporated into newly transcribed RNA, which can then be isolated and quantified [73–
75]. In 1998, Femino et al. introduced the technique of fluorescence in situ hybridisation (FISH),
which can count individual mRNAs within single cells and has be used in combination with SPT to
follow the life cycle of mRNA in live cells [12, 13]. However, FISH relies on cell fixation protocols
and requires many probes taken per molecule for a detectable signal. Also, its temporal resolution
is not sufficient to accurately study dynamic cellular processes. A new tool for measuring mRNA
synthesis and decay rates in yeast on a global scale and in a dynamic manner without perturbing
the system has been presented recently [76]. The results obtained by this ”dynamic transcriptome
analysis” (DTA) suggested that in yeast, mRNA decay and synthesis are functionally independent
during normal growth and that both processes contribute to setting cellular mRNA levels [76].
Most recently, microwell-based RNA cytometry has been employed to reveal cellular heterogeneity
of stem cell populations [77]. These methods stand in contrast to the highly time-resolved, indirect
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Figure 1.2: Controlled microenvironments for high-throughput applications. (A) Printed microarrays
for reverse siRNA transfection in combination with automated microscopy can be used for loss-of-
function screens of entire RNA libraries [78]. After incubation with cells, such microarrays can be fixed,
stained and imaged for analysis. Alternatively, they can be imaged live. Parameters such as reporter
expression, cell viability, cell number, or cell morphology can be analysed. Adapted by permission from
Macmillan Publishers Ltd: Nature Genetics [78], copyright 2005. (B) Piel et al. developed a simple
and robust process for patterning glass substrates using deep UV light [79]. This technique can be used
to micropattern multiwell plates with proteins to promote adhesion of single cells. The high number
of confined cells makes this technique a powerful tool for high-throughput screening applications and
standardised cell assays. Scale bars 40µm. Adapted from [79] with permission of The Royal Society of
Chemistry.

method of determining mRNA levels by fitting single-cell time courses of EGFP expression levels,
which will be presented in this thesis.

Cell arrays and the importance of single-cell observation
Time-lapse fluorescence microscopy, which makes use of fluorescent reporter proteins, is a standard
procedure in current research in cell biology, cell biophysics and medicine [80–89]. In combina-
tion with micropatterned substrates (see Figures 1.2 and 1.5) which array the cells in tunable
arrangements, time-lapse fluorescence microscopy can be used to measure single-cell time courses
[84, 90]. To promote ordered cell growth, various micropatterning techniques have been developed.
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Figure 1.3: The importance of continuous observation at the single-cell level: (A) Ensemble measure-
ments obscure single-cell variability inside clonal populations. (B) In contrast to snapshot measure-
ments, continuos observation allows monitoring the temporal evolution of expression patterns inside
cells. Adapted by permission from Macmillan Publishers Ltd: Nature Methods [89], copyright 2011.

Arraying cells facilitates automated image analysis, which eliminates the bias of visual inspection
and significantly speeds up image analysis. Such experimental setups close the gap between tra-
ditional microscopes and plate readers and are a promising approach for standardised assays and
high-throughput cell studies such as loss-of function screens using RNA interference (RNAi) (see
Figure 1.2) [78, 79]. While many of the current high-throughput applications yield ensemble values,
single-cell measurement techniques are needed because population-based averages of cell-biological
parameters are inherently unable to uncover the underlying cell-to-cell variability [69, 86, 91, 92].
To profoundly understand the stochasticity of gene expression and the resulting consequences that
have been reviewed in [93], single-cell observation is indispensable. In fact, only continuous obser-
vation at the single-cell level allows simultaneous detection of temporal parameter variations and
their distribution amongst a population of genetically identical cells, as illustrated in Figure 1.3
[81, 84, 85, 89, 94].

Predictive modeling and its relevance for synthetic biology
With the increasing number of non-viral vectors for gene delivery that have been developed over the
past years, the need for models that are based on quantitative experimental techniques has become
evident. Combining quantitative experimental data with computational modeling facilitates the
process of getting a precise understanding of the kinetics of the administered gene. Models that
represent the cellular and intracellular delivery of exogenous genes as comprehensively and cor-
rectly as possible are essential tools for the analysis, characterisation and optimisation of synthetic
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Figure 1.4: A combined experimental and modeling approach was used by Tigges et al. to create a tun-
able, self-sustained synthetic oscillator in eucaryotic cells [95]. Two exemplary single-cell time courses
are shown here to illustrate the oscillating GFP levels that were induced by the synthetic gene net-
work and monitored using time-lapse fluorescence microscopy. Adapted by permission from Macmillan
Publishers Ltd: Nature [95], copyright 2009.

vectors and might provide a theoretical foundation for developing products with tailored thera-
peutic profiles. However, each vector has its unique uptake and intracellular trafficking kinetics.
Despite optimistic theoretical and experimental predictions for a gene delivery system, additional
in vivo-barriers (as shown illustrated in Figure 1.1) might still come into play when a vector is
finally tested in clinical trials.
A quantitative understanding of the gene-delivery process is also needed for the further development
of synthetic devices that rely on cell transfection with exogenous genes as, for example, proposed
in [95, 96]. Figure 1.4 shows two exemplary single-cell time courses of the synthetic mammalian
oscillator that was introduced by Tigges et al. [95]. Here, three interplaying pDNA constructs were
transfected into Chinese hamster ovary cells and time-lapse fluorescence microscopy was combined
with mathematical modeling. Interestingly, differences in the timing of pDNA uptake (i.e. the
gene transfer process) resulted in cell-to-cell variability of GFP expression. Understanding such
synthetic gene circuits will hopefully advance the understanding of complex intracellular control
networks and signaling pathways that are also involved in severe diseases.
The pharmacokinetics of gene therapies were first described by a numerical multicompartment
model of cellular events in 1994 by Ledley et al. [97]. Soon after, electron microscopy was used to
elucidate the pathway of liposomes inside cells [98]. Varga and co-workers were the first to present
a kinetic model that focused on the characterisation of gene delivery processes [99]. This model cor-
rectly predicted the dependence of transgene expression on the length of the cationic polymers that
were used for transfection as well as a significant increase in gene expression only above a threshold
unpackaging rate. However, this framework was based on mainly polyplex-based transfection of
pDNA only. Because the study founded its basis in snapshot measurements, the authors pointed
out the need for dynamic experimental data. Soon after, they reported on a modification of this
mathematical mass-action model for the comparison of quantitative parameters that characterise
intracellular gene delivery steps and a sensitivity analysis of different vectors [100]. This way, they
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Figure 1.5: The micropatterning technique described in [90] was used to create single-cell arrays for
the measurements of chapter 4. (A) Cell-adhesive islands and cell-repellent areas promote ordered cell
growth. (B) Fluorescently labeled fibronectin was used to visualise the regular pattern. (C) Cells self-
assemble onto the adhesive islands after seeding. Scale bars 100µm. Adapted from [90] with permission
of The Royal Society of Chemistry.

were able to elucidate which steps are faster for a superior vector as compared to an inferior vector.
A pharmacokinetic model to analyse the rate-limiting process of non-viral gene delivery was de-
veloped by Harashima et al. [101, 102]. Similar to the work of Varga, their optimisation strategy
for intracellular trafficking of exogenous genes also focussed on pDNA. In another study, the effect
of the different intracellular composition on kinetic rates was investigated on the basis of a math-
ematical model [103]. However, kinetic models approximate all spatial and transport processes by
kinetic equations. A computational framework for intracellular trafficking of polyplexes that takes
the cell size and shape into account could qualitatively predict the spatiotemporal distribution of
polyplexes inside cells as determined by SPT [104]. The need for such models that combine spatial
and stochastic aspects to comprehensively represent the dynamics of biochemical systems has been
pointed out recently [105]. For further advancement of predictive models, experimental techniques
that allow quantitative and direct measurement of actual molecule numbers will be required [106].
In addition to the models discussed here, statistical frameworks for the uptake of nanoparticles
and pDNA-lipoplexes have been developed recently [88, 107]. Still, a general problem of existing
delivery models is the fact that they do not cover effects such as loss of pDNA or mRNA by dilution
in dividing cells, which is a general problem in existing models.
Besides the above-mentioned delivery models, stochastic, quantitative and kinetic models for gene
expression exist [75, 108, 109]. Also, different components of noise in gene regulatory networks could
be identified on the basis of single-cell measurements and stochastic models [94, 110]. In 2008, a
two-stage model for gene expression in budding yeast was proposed, where analytical expressions
were used to avoid large numbers of simulation runs. This approach exploited the differences in
timescales, thus simplifying the dynamics of the system [111].

This work
Quantitative experimental studies in coordination with mathematical modeling are able to provide
detailed, quantitative understanding of non-viral gene transfer, as will be demonstrated in this
thesis.



8 1. INTRODUCTION

Remaining challenges such as measuring the distribution functions of mRNA and protein life times,
as well as mathematically describing the stochastic processes that are involved in artificial gene
delivery and expression will be tackled in this thesis. To this aim, a comparative, yet quantitative
study on mRNA and pDNA transfection that was analysed at the single-cell level, as well as a
two-step stochastic model for mRNA delivery are presented in chapter 3. Here, we determined
single-cell distributions of characteristic kinetic rates such as the mRNA degradation rate or the
onset times of protein expression and related the distribution of the protein expression levels to a
mathematical model. The same approach was combined with microstructured single-cell arrays (see
Figure 1.5) to measure the life times of differently stabilised mRNA constructs in high-throughput.
This project is described in chapter 4. A multi-level kinetic model for mRNA transfection that
has been developed on the basis of experimental data and which we used to make predictions is
presented in chapter 5.



2 Basic concepts, experimental techniques and
image analysis

2.1 pDNA and mRNA as carriers of genetic information

For most experiments of this thesis, fluorescent reporter proteins were used to monitor protein
expression. To induce the expression of such foreign proteins in cells, molecules carrying the
corresponding genetic code have to be introduced into the cells for subsequent transcription and/or
translation into the protein. In general, such molecules can be either artificial pDNA or mRNA.

coding sequence 5‘UTRCap 3‘UTR polyA
Start codon Stop codon

5‘ 3‘

Multiple cloning sitePromoter

Reporter
gene

Antibiotic
resistance

Origin of
replication

Coding
sequence

pDNA 

mRNA 

Figure 2.1: Schematic representations of a pDNA vector and a typical mature mRNA molecule. Arti-
ficial mRNA vectors as shown above can be produced from pDNA using commercial in vitro transcription
kits.

pDNAs are small, circular, double-stranded DNA molecules that can replicate independently of
chromosomal DNA. The essential parts of a pDNA vector are the origin of replication, the pro-
moter region, the coding sequence, and antibiotic resistances. The DNA sequence consists of four
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nucleobases that encode for the mRNA sequence. To convey genetic information from DNA to the
ribosomes, mRNA is transcribed from DNA. During translation, ribosomes translate the amino
acid sequence of the protein from the mRNA. Both artificial pDNA and mRNA are often used for
molecular cloning and have been used for the transfection experiments of this thesis. To this end,
mRNA was in vitro transcribed. Artificial mRNA vectors that are produced in this way typically
consist of a 5’ cap, a 5’ untranslated region (UTR), a coding sequence, a 3’UTR and a polyA tail.
UTRs and polyA tail are known to be important for mRNA stability [58, 112].

2.2 The general concept of transfection

Transfection is the process of introducing foreign nucleic acids into eukaryotic cells. It is a common
approach to study protein expression or gene function and to transfer DNA or RNA into various
types of cells, including stem cells [47, 63]. Since the first report of artificial gene transfer into
procaryotic cells (termed transformation for bacteria) in 1973 [113], various methods to transfect
also eukaryotic cells have been developed.
In general, one can choose between viral and non-viral methods. In viral gene delivery, which is
also referred to as transduction, viruses are employed to transfer genes into target cells [114, 115].
However, viral vectors carry a high risk of causing host immune response and insertional mutage-
nesis.
As an alternative, there is a broad variety of non-viral gene delivery vectors that can act as ar-
tificial viruses. For example, nucleic acids can be transferred into cells by microinjection [25], by
magnetofection [33, 36], or by electroporation [26]. Also, polymers [34, 37, 38], dendrimers [28, 35],
cell-penetrating peptides [32], calcium-phosphate [29], or liposomes [27, 30, 31, 116, 117] can be
used for transfection. Another approach for gene delivery is the use of stealth liposomes [118–121].
For all transfection experiments that are part of this thesis, the liposomal approach was chosen.
More precisely, the commercial, liposome-based transfection reagent Lipofectamine 2000 R© was
used. Transfecting cells by means of cationic lipids in the form of liposomes, a method which is
also referred to as lipofection, is a very common and reliable way of transfection, resulting in high
transfection efficiencies.
Figure 2.2 shows a simplistic illustration of lipofection. Negatively charged nucleic acids (either
RNA or pDNA) are incubated with cationic lipids and self-assemble into complexes, the so-called
lipoplexes. Both structure and density of these lipoplexes have been studied before using small angle
x-ray scattering (SAXS), x-ray diffraction, and atomic force microscopy (AFM) [122, 123]. After
sedimentation, the lipoplexes attach to the negatively charged cell membrane. Because their overall
surface charge is positive, they bind to the proteoglycans via electrostatic interaction [124, 125].
Alternatively to this top down approach, complexes can also be presented to the cell on the sub-
strate itself before cell seeding. This transfection method is called reverse transfection [126, 127].
Regardless of the way complexes reach the cell surface, they are subsequently incorporated by the
cells via endocytosis [128]. After uptake, RNA-lipoplexes can be unpacked and translated into
protein directly after endosomal release into the cytosol. In contrast to that, the DNA load of
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Figure 2.2: Basic principle of lipofection. The anionic nucleic acid (pDNA/mRNA) is complexed
with a cationic helper lipid and taken up by the cell via the endocytotic pathway. While RNA can be
directly processed in the cytoplasm, DNA has to enter the nucleus in order to be transcribed into mRNA.

pDNA-lipoplexes first has to enter the nucleus where it can be transcribed into mRNA. This event
is more likely to occur when the nuclear membrane disappears during mitosis [129]. Still, the exact
mechanisms underlying intracellular processing of lipoplexes still remain to be explored.

2.2.1 Transfection experiments

In a typical transfection experiment, the cells are incubated with lipoplexes in transfection medium
and the lipoplexes are left to sediment onto the cells, which is a diffusion-limited process. With
increasing lipoplex concentration in the transfection medium or longer incubation time, more
lipoplexes can sediment and attach to the cells during incubation. On the one hand, this re-
sults in a higher number of transfected cells. On the other hand, a higher number of lipoplexes
taken up per cell also leads to increased protein expression levels. The fact that the probability of
lipoplexes to hit the cell surface and thus the resulting transfection efficiency are directly correlated
with the incubation time can be seen in figure 2.3. Here, human hepatocarcinoma cells (Huh 7)
and human adenocarcinoma cells (A 549) were incubated at a constant initial dose of mRNA en-
coding for EGFP and the incubation time was varied. After 25 hours, transfection efficiencies were
determined using flow cytometry (FC). The decreasing transfection efficiency for long incubation
in the case of Huh7 cells is most probably due to toxic effects caused by the carrier lipids. For most
of the experiments described in this thesis, an incubation time of one hour was chosen. Ideally,
the kinetics of protein expression after transfection were to be captured right from the start of ex-
pression, which is rather immediate for mRNA transfection. However, too short incubation would
bring about the disadvantage of significantly lower numbers of transfected cells as can be seen in
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Figure 2.3: Time-dependent mRNA transfection efficiency measured by flow cytometry in A549 and
Huh7 cells at constant initial mRNA dose. Mean transfection efficiencies and standard deviations are
shown.

figure 2.3. Here, the number of transfected cells after increasing incubation time was determined
for triplicates (n=5000) using FC.

2.3 Determination of lipoplex size

A package size representing the number of mRNA molecules per lipoplex had to be assumed for
the quantitative models of mRNA transfection. To this aim, the diameters of the mRNA lipoplexes
were determined using fluorescence correlation spectroscopy (FCS) and dynamic light scattering
(DLS).
FCS is a very sensitive, fluorescence-based method that is frequently used to measure particle num-
bers, diffusion coefficients, hydrodynamic radii, and kinetic rates online, in a small confocal volume,
and at concentrations in the nanomolar range [130, 131]. These parameters can be obtained by
correlating the fluctuating fluorescence signal inside the detection volume with itself. To measure
the hydrodynamic radii of mRNA-lipoplexes with FCS, the mRNA was fluorescently stained with
the intercalating dye Sybr R©Gold before lipoplex formation.
Similar to FCS, the size and the degree of monodispersity of small particles in solution can be
determined with DLS by analysing the intensity fluctuations of Rayleigh-scattered light. However,
DLS is a label-free technique so that here, no mRNA staining was required.

Table 2.1: Overview of mean lipoplex diameters as determined by DLS and FCS

# bases DLS mean diameter ± std [nm] FCS mean diameter ± std [nm]
861 85 ± 2 100 ± 11
1000 107 ± 7 114 ± 5
1239 n.a. 120 ± 10

Table 2.1 shows an overview of the lipoplex diameters determined for three mRNA constructs of
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different lengths. The values that were obtained using the two techniques are in agreement within
experimental error. A detailed description of how the number of mRNA molecules per lipoplex can
be deduced from their size is given in the supplementary of associated publication P1 [54].

2.4 The use of green fluorescent protein as a reporter for protein
expression

The bioluminescent properties of jellyfish Aequorea victoria have first been described by Davenport
and Nicol in 1955 [132]. Almost 50 years later, the introduction of GFP and a whole family of
GFP-like fluorescent reporter proteins sustainably revolutionized the field of biological sciences.
The engineering of fluorescent reporter proteins showing bright and stable emission of light when
excited at specific wavelengths paved the way for quantitative studies on spatio-temporal patterns
of protein distributions inside and outside living organisms. In 2008, Shimomura, Chalfie, and
Tsien were jointly awarded the nobel prize in chemistry by the Royal Swedish Academy of Sciences
for substantially contributing to the discovery and development of GFP [1–3].
GFP consists of 238 amino acids which are arranged in a beta barrel structure, with eleven β-sheets
forming a cylinder that contains the chromophore, thus protecting it from the surrounding solvent.
The chromophore itself, a tripeptide consisting of three amino acids Serine, Tyrosine, and Glycine
(Ser65-Tyr66-Gly67), is formed in an autocatalytic process. This post-translational cyclisation is
also known as maturation. The rate-limiting step of maturation is oxidation.
Nowadays, GFP as well as GFP-derived variants including RNA mimics of GFP as well as photo-
activatable GFP and GFP-fusion proteins are a standard for in vivo cell biological investigations.
All of them act as non-toxic fluorescent reporters inside live cells, some of them even with distinct
subcellular localisation [4–6].
A general prerequisite for quantitative measurements using fluorescent reporter proteins is their
linear response. Hence, quenching or saturation of the excited chromophores have to be excluded.
Also, depending on the time-scale of the measurement, photobleaching effects have to be taken
into account. The recombinant EGFP variant used for the underlying work has bright and stable
fluorescence properties, its major excitation peak at 488nm and its emission peak at 507nm,
and folds efficiently at 37◦ [133]. For all measurements, fluorescence intensity decrease due to
photobleaching of EGFP was excluded by control experiments.

2.5 Microstructured single-cell arrays

In recent years, various techniques that describe how to create defined microenvironments for cell
growth have been published. Approaches include microwell-based arraying of single and multiple
cells [134–141] as well as two-dimensional confinement of cell growth with the help of different
micropatterning techniques for adhesion molecules [79, 90, 137, 142, 143].
Arraying cells in microenvironments of tunable size and versatile surface functionalisation guaran-
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Figure 2.4: Patterning technique for the creation of single-cell arrays. (I) A polydimethylsiloxane
(PDMS) stamp cast from a master produced by photolithography is placed on top of the substrate and
treated with oxygen plasma. (II) The parts exposed to plasma are rendered hydrophilic and passivated
with PLL-g-PEG. (III) After removal of the stamp, the remaining area is exposed to the extracellular
matrix protein fibronectin. (IV) Ideally, seeded cells adhere to the cell-adhesive fibronectin areas only.
See appendix C for a detailed protocol.

tees reproducible and comparable growth conditions for all cells under observation. In addition to
that, it facilitates automated image analysis of time-lapse movies, because the investigated cells
can no longer migrate due to the confinement to restricted areas of the substrate [84].
For the project presented in chapter 4, the same method as in [90] was used to create single-cell
arrays that consist of cell-adhesive, fibronectin-coated squares that are separated by areas func-
tionalised with a cell-repellent block copolymer (PLL-g-PEG). Figure 2.4 shows the manufacturing
process of such micropatterned surfaces. Microstructured surfaces were produced by selective oxy-
gen plasma treatment on a plastic substrate with subsequent passivation.

2.6 Quantitative time-lapse fluorescence microscopy

2.6.1 Time-lapse fluorescence microsopy

Fluorescence microscopy is based on the adsorption and subsequent, red-shifted emission of light by
both organic and inorganic specimens. As such, it is an essential tool for a broad range of biological,
biophysical and biomedical investigations and, more specifically, for time-lapse microscopy studies
[84–87, 89, 144, 145].
While the general phenomenon of fluorescence had already been discovered and described in 1852
by Stokes [146], the use of specific fluorochromes to observe biological samples did not begin until
the early 20 th century. Today, one can choose from a variety of synthetic and naturally occuring
fluorescent dyes and fluorescent proteins [147] for biological imaging.
Figure 2.5 shows the general components of an inverted epifluorescence microscope as it was used
for this work. More specifically, a Nikon Eclipse Ti-E microscope equipped with an objective lens
(CFI PlanFluor DL-10 x, Phase 1, N.A. 0.30, Nikon) was used. For brightfield imaging, light coming
from a halogen lamp is transmitted through the sample. In the fluorescence mode, multispectral
light coming from a mercury lamp first passes through a wavelength-selective excitation filter. This
light is then reflected by a dichroic mirror and shines on the specimen through the objective. Parts
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Figure 2.5: (A) General components of an inverted fluorescence microscope for automated time-lapse
microscopy. (B) Photography of the actual setup. The heating system, the sample, and the motorised
stage are indicated with arrows.

of the isotropically emitted fluorescence light are thereafter gathered by the objective and pass
through the dichroic mirror. Because the excitation light is generally much brighter than the light
emitted by the sample, the emitted light has to be properly separated from the excitation light by
an emission filter before reaching the detector, which is a charge-coupled device (CCD) camera in
our case. The filter set used for this work was filter set 41024, Chroma Technology Corporation,
BP450-490, FT510, LP 510-565.
For the multi-position time-lapse microscopy used for this work, two more components that allow
extended observation periods under optimal growth conditions for live-cell imaging are added to a
basic fluorescence microscope: First, a motorised stage for automated, repeated scanning of mul-
tiple positions. Second, a heating chamber that provides optimal growth conditions for biological
samples at 37◦.
In addition to adverse environmental conditions such as medium depletion or temperature fluc-
tuations, the most significant pitfalls to quantitative live-cell imaging are the inherent focus drift
and lamp-intensity fluctuations during long-term imaging. To counter the first problem, our setup
profits from a commercial hardware solution for axial focus fluctuations caused by thermal gradi-
ents and mechanical instabilities: The so-called Nikon Perfect Focus System detects and defines an
offset between an axial reference plane and the specimen’s focal plane to correct for possible focus
drift. The challenge of intensity-fluctuations of the mercury lamp is partly solved by background
correction during image analysis (see also 2.7.1).
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Figure 2.6: Exemplary calibration curve for one specific set of experimental settings. Microchannels
of known dimensions were filled with serial dilutions of an EGFP stock solution of known concentration.
This way, pixel intensities were assigned to numbers of fluorescent protein. (For details, see supporting
information of P1 [54].)

2.6.2 EGFP calibration

For all transfection experiments of this thesis, GFP variants (namely EGFP and d2EGFP) were
used as fluorescent reporters of protein levels inside the cells. In order to assign actual protein
numbers to the intensity values captured by the CCD camera during measurement, we developed a
calibration method that is based on microchannels of known dimensions that were filled with EGFP
stock solutions of known concentrations. Images of these channels containing serial dilutions of
EGFP were taken under the exact same conditions as for the time-lapse measurements. The height
of the channels did not exceed the focal depth of the objective used (which is 8.4µm for the 10 -
fold objective). Thus, by knowing the dimensions of the channels, intensities could be correlated to
numbers of fluorescent protein as shown in figure 2.6. This way, we could quantitatively analyse the
dynamics of protein expression by conversion of grey values into protein numbers. Our calibration
method is described in detail in the supplementary of P1 [54] and the corresponding experimental
protocol can be found in the Protocols section.

2.7 Image analysis of time-lapse movies

Given the large data-sets that result from long-term time-lapse measurements, manual image anal-
ysis would not only be biased by the person conducting the analysis, but simply not be feasible
within a decent amount of time. In a scenario where not only the intensity of the observed objects
changes with time, but also the objects of interest are moving at the same time (for example trans-
fected cells producing increasing amounts of protein and migrating on the substrate), automated
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image analysis has to reliably track and identify the objects and to detect the intensity of corre-
sponding pixels.
A multi-parameter tracking algorithm based on brightness clustering of pixels that are brighter
than a certain threshold value has been presented in [148]. This programm simultaneously tracks
moving, fluorescent objects, monitors their cumulative intensity, and can handle events such as
dividing or dying cells.
For this work, the Cell Evaluator-tracking algorithm as described in [148] and an in-house-develop-
ment plugin for image analysis, which will be described in chapter 2.7.2, were used to extract data
from time-lapse movies.

2.7.1 Background correction

Profound background correction is possibly the most important step in quantitative image process-
ing and crucial for good data quality because incorrect image processing can impair data quality.
Image cytometry data can be affected by experimental errors such as intensity distortions caused
by the light source or the camera. In addition to the correction of spatial non-uniformity of illumi-
nation, systematic intensity fluctuations of the lightsource and autofluorescent effects of cells and
cell medium, which are inherent to live-cell imaging, have to be taken into account.
Uneven illumination of the viewfield and pixel-to-pixel variations of the CCD camera’s sensitivity
are usually overcome by the so-called flatfield correction, which eliminates systematic errors so
that a uniform signal will result in a uniform output [149]. Subsequent to shading correction, the
actual background can be subtracted. Different methods for image normalisation and background
correction have been published in the past years [77, 84, 150, 151].
For the underlying work, background correction was implemented in the image-analysis plugins that
were used. On the one hand, the Cell Evaluator software used for data analysis of the experiments
described in chapter 3 possesses a background correction tool that uses either directly measured
backgrounds or a background that is created after the measurement. To correct for non-uniform il-
lumination, each pixel was multiplied with a so-called illumination factor fillu = <b>

b that accounts
for brightness distortions throughout the viewfield by comparing the background for any pixel b
and the mean background of the whole image. The resulting pixel values were then given by

pcorrected = pold × fillu− < b > . (2.1)

More details can be found in the supplementary of [148].
On the other hand, the background correction tool of the plugin for cell-array data analysis detected
empty squares, which were then used to calculate a mean background per frame, bci, as well as a
time-averaged background, < bc >t. The background corrected value wcorrected of a square with a
cell on it in frame i is given by

wcorrected,i = (wold,i− < bc >t)×
bci

< bc >t
. (2.2)
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Squares at the border of the viewfield, i.e. in regions where the shading effect is most pronounced,
were automatically deselected. The relative brightness fluctuations within the rest of the analysed
image were reasonably small (less than 10%).
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Figure 2.7: Workflow of automated, single-cell array image analysis and data extraction using the
ImageJ plugin. (I) During automatic well detection, the plugin discriminates squares with cells on them
(shown in colour) from empty ones (shown in white). (II) During well analysis, pixel intensities of
every frame of the analysed image sequence are recorded. Intensity values of empty squares are used for
background correction. Here, the green and purple lines show raw data, the blue and red lines are the
corresponding time courses after background correction. (III) Subsequently, table-formatted data can be
exported for data analysis.

2.7.2 Automated image analysis of single-cell arrays

Confining cell migration on micropatterned substrates does not only guarantee defined and com-
parable microenvironments for the observed cells, but also facilitates and speeds up image analysis
[84]. To analyse the single-cell protein expression data that are discussed in chapter 4, a versatile
plugin for ImageJ that was developed in our group was used.
Firstly, the plugin automatically detects squares (called wells for historical reasons) that are oc-
cupied by cells and those that are empty in the automatic well detection step. The size and
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interdistance of these rectangles can be adjusted easily by the user. Then, intensity values of pixels
within rectangles are recorded for every frame of an image sequence (well analysis). Empty squares
with no cell adhering to them are used for automatic background correction (as described above in
2.7.1). Subsequently, table-formatted data can be exported for further data-analysis, for example
using IgorPro software. The workflow of the automated single-cell array image analysis is shown
in figure 2.7.
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Figure 2.8: Schematic drawing of flow cytometric setup. A 488 nm laser excites EGFP expressing
cells that pass through a flow cuvette. Emitted fluorescent light (FL) is guided to the detector through
a long pass dichroic mirror. Forward scattered light (FSC) and sideward scattered light (SSC) are
detected, as well.

2.8 Flow cytometry

Flow cytometry is a high-throughput, laser-based technique that is often used in diagnosis and basic
research applications for the assessment of protein expression levels inside cells, to detect binding
of labeled antibodies to cell receptors, to measure transfection efficiencies, or for cell sorting and
counting. The first impedance-based flow cytometric device was introduced in 1965 [152]. Three
years later, the first fluorescence-based flow cytometer was commercially available.
In flow cytometry measurements, the cells are sucked into a flow cuvette, where they are surrounded
by the so-called ”sheath fluid”. Thousands of single cells pass through the cuvette every second,
where they are excited by one or more lasers corresponding to the excitation wavelength of the
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fluorescent markers to be detected. The following signals are detected: First, the forward scattered
light, which is a means to measure the size of a particle passing through the light beam. Second,
the sideward scattered light, which is an indicator for the inner structure and hence the granularity
of a cell. Third, the fluorescent light emitted by the cell, corresponding to the amount of fluorescent
protein produced by it, or indicating binding of labeled antibodies. Depending on the subject of
investigation, multicolor setups can be used. Figure 2.8 shows a schematic of the flow cytometric
setup that was used for the underlying work.



3 Quantitative analysis of single-cell mRNA
and pDNA transfection

Recent advances in the stabilisation of mRNA constructs paved the way for a multitude of mRNA-
based studies and gene-therapy applications [46, 48]. Novel mRNA constructs no longer have the
disadvantage of low stability and show superior properties over pDNA for the induction of protein
expression [153].
In associated publication P1 [54], we discovered another advantage of mRNA transfection, which is
its predictability in terms of delivery statistics and protein expression dynamics. In a former study
on predictive modeling of non-viral gene transfer, Schwake and co-workers presented quantitative
descriptions of the protein expression levels, the transfection efficiencies, and the co-transfection
ratio after transfection of cells with two different plasmids at the same time [88]. They reported
on simultaneous nuclear entry of complexes, i.e. correlated units comprising several plasmids, and
were able to give an estimate of the number of efficiently delivered plasmids per complex.
In the same spirit, we analyzed and compared the timing and the protein expression levels after
transfection of eucaryotic cells with either pDNA or mRNA at the single-cell level here. We show
a method to determine the distribution functions of mRNA life times. In agreement with the fact
that mRNA can be directly translated in the cytosol because, unlike pDNA, it does not have to
enter the nucleus in order to be translated, we found significantly shorter onset times of protein
expression for mRNA-mediated expression of EGFP.
Moreover, the distribution of the onset times was distinctly narrower for mRNA than for pDNA
transfection. In other words, the more complex pDNA transfer process is reflected by a broad
distribution of the onset times as well as by higher and less homogeneous protein expression levels
as compared to mRNA-induced protein expression. Here, the high copy numbers of each efficiently
delivered and subsequently transcribed plasmid, which itself is only a small number, come into
effect with their high impact on the resulting number of proteins.
Describing mRNA-mediated protein expression with the analytical solution for a simple biochemi-
cal rate model that consists of mRNA-translation and degradation of mRNA and protein, we were
able to fit the experimental time courses of mRNA-mediated protein expression. This way, we
obtained distributions for the degradation rates and the protein expression rate. The fact that this
held true for three different cell types suggests a generic behaviour underlying mRNA-mediated
protein expression.
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Interestingly enough, a rather simple two-step model for the stochastic delivery of mRNA-lipoplexes
correctly describes the dose-response relation. The small number of efficiently delivered mRNA
lipoplexes is consistent with previously reported findings for liposome-mediated mRNA transfec-
tion where Barreau and coworkers showed that most of the transfected mRNAs are confined in
cellular compartments that sequester the molecules away from the cytoplasmatic machineries re-
sponsible for mRNA degradation and translation [154]. It had already been reported before that
some lipoplexes remain trapped in perinuclear vesicles [155]. The strength of our method to deter-
mine mRNA life times lies in the fact that such effects can not bias our results. All degradation
rates are assessed on the basis of released mRNA only. As a consequence, the overestimation of life
times due to analysis of total mRNA numbers per cell, regardless of the fact that some of them are
not even accessible for endogeneous degradation, is circumvented. The multi-level kinetic model
that is presented in chapter 5 is an expansion of the model presented in P1.

The experimental data and the resulting conclusions are presented in the following publication P1
[54].
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Abstract

In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the
cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and
predictable in terms ofmathematicalmodeling.Wemeasured the single-cell expression time-courses and levels of enhanced green fluorescent protein
(eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life
times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of
successfully delivered and translated mRNA molecules and thereby the dose–response relation. Our results establish a statistical framework for
mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs.

From the Clinical Editor: This team of authors established a statistical framework formRNA transfection by using a two-step stochastic delivery
model that reproduces the number distribution of successfully delivered and translated mRNAmolecules and thereby their dose-response relation.
This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules.
© 2014 The Authors. Published by Elsevier Inc. All rights reserved.

Key words: mRNA transfection; Non-viral gene delivery; Expression kinetics; Single-cell studies; Pharmacokinetics

Nucleic acid transfer is widely used in basic research as well as
biomedical applications. In recent years, novel stabilized mRNA
constructs have becomemore prevalent in therapeutic applications
showing superior properties compared to plasmid DNA.1–3 This
progress is mostly due to the discovery of 5′ mRNA anti-reverse
cap analogues (ARCA), to the insertion of additional untranslated
regions, and to poly(A) tails that significantly promote and prolong
efficient translation of foreign mRNA inside cells.4–10 In general,
mRNA delivery has considerable advantages over pDNA delivery
in gene therapy applications. Firstly, mRNA does not require

transfer into the nucleus and hence mRNA transfection is also
effective in non-dividing cells, which is a major drawback of
pDNA transfection.11–13 This makes mRNA a particularly strong
therapeutic agent in dendritic cells which are otherwise hard to
transfect.14–16 Secondly, immunogenic response to mRNA
activated by Toll-like receptors (specifically TLR3) is less
pronounced compared to unmethylated CpG motifs of DNA
recognized by TLR9.2,9,17,18 In addition, mRNA transfection
remains transient, preventing the risk of permanently integrating
into the genome. Hence, mRNA delivery is of increasing interest
for future biomedical applications in particular with regards to
strategies that aim to use mRNA as a programmable device for
controlled intracellular mRNA targeting and in situ logic
evaluation of disease-related conditions.19–24

The major hurdle to clinical trials remains the delivery of
nucleic acid to eukaryotic cells. As a result, an ongoing search is
still underway for non-viral delivery methods that are optimized
for efficient and controlled delivery of mRNA. Since the first
non-viral delivery of mRNA using cationic lipids by Malone,
Felgner and Verma,25 many synthetic delivery systems were
found to be effective for mRNA delivery, with generally better
efficiency found for liposomes than for polyplexes.26–31 It is

BASIC SCIENCE

Nanomedicine: Nanotechnology, Biology, and Medicine
10 (2014) 679–688

nanomedjournal.com

This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-ShareAlike License, which permits
non-commercial use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Financial support by the Elite Network of Bavaria is gratefully
acknowledged by CL. This project was supported by the German Excellence
Initiative of the Deutsche Forschungsgemeinschaft (DFG) via the Excellence
Cluster “Nanosystems Initiative Munich” (NIM), the Sonderforschungsbereich
“Nanoagents” SFB 1032, and by the EU-FP7 project ‘‘NanoTransKinetics”.

⁎Corresponding author.
E-mail address: raedler@lmu.de (J.O. Rädler).
1 These authors contributed equally to the work.

Please cite this article as: Leonhardt C, et al, Single-cell mRNA transfection studies: Delivery, kinetics and statistics by numbers. Nanomedicine: NBM
2014;10:679-688, http://dx.doi.org/10.1016/j.nano.2013.11.008

1549-9634/$ – see front matter © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.nano.2013.11.008



generally accepted that both mRNA as well as pDNA are
translocated via endosomal uptake, cytosolic release and - in case
of pDNA - nuclear entry. However, mechanistic insights are
mostly limited to assessment of changes in the transfection
efficiency as a function of biochemical or structural variations of
the carrier. A full pharmacokinetic model, which in principle has
been established using compartment models and rate
equations,32–34 lacks validation due to the multitude of kinetic
rates. In comparative studies, it was shown that mRNA
transfection compared to pDNA transfection is faster and yields
a larger fraction of transfected cells.27,35 However, a more
detailed and quantitative understanding in particular of artificial
mRNA delivery is of increasing importance for gaining a
systems-level description of the kinetics of RNA-based
devices.21,24,36 The degree of predictive power describing
synthetic RNA expression level and timing will nevertheless
depend on the degree of accuracy with which the transfer
efficiency and transfer kinetics can be described. Moreover,
predictive modeling of mRNA transfection will be instrumental
for the advancement of mRNA based therapies. Yet, any non-
viral delivery is inherently stochastic and the expression level
and timing of every single cell is different. Hence, measurements
at the single-cell level and analysis of the corresponding
distribution functions are necessary to acquire the true
population response in transfection experiments. Using single-
cell analysis, we recently showed that in the case of pDNA
transfection, the distribution of gene expression levels can be
reproduced using a stochastic model.37 Similarly, a recent
statistical analysis of nanoparticle dosing exhibited Poisson-type
distribution in the number of nanoparticles being taken up.38

Here, we study gene expression after non-viral delivery of
synthetic mRNA analyzing single-cell expression traces in terms
of numbers of complexes delivered and numbers of proteins
being expressed. Using single-cell fluorescence time-lapse
imaging and FC, we monitored expression of a cap-stabilized

mRNA vector encoding for eGFP. Single-cell fluorescence time-
courses were fitted based on rate equations for translation and
mRNA/eGFP degradation yielding the onset time distribution,
mRNA/eGFP degradation rates, and the expression rate. The
mRNA expression model applies to at least three different cell
lines. We interpret the cell-to-cell variability in eGFP levels, i.e.
the distribution of expression rates, in terms of number of
successfully delivered and translated mRNA. The latter is
estimated using a two-step stochastic delivery model. The model
assumes delivery of mRNA in finite size complexes that are
taken up stochastically by endosomes and randomly released
from endosomes into the cytosol. The model quantitatively
reproduces the dose–response relation and yields the correct
shape of the distribution function. As such, this work represents
an advance in predictive modeling of mRNA transfection for
quantitative gene expression studies, which we believe will be
particularly useful for research on siRNA and miRNA kinetics.

Methods

pDNA and mRNA-vectors

Two different vectors for pDNA and mRNA transfection
were designed. The peGFP-N1-Vector (commercially available
at BD Biosciences Clontech, Germany, 4733 base pairs) is the
standard eGFP vector. As an mRNA reference construct for in
vitro transcription, we designed a vector that is based on the
pSTI-A120-vector (4746 base pairs, transcript 1192 bases),
which has previously been described in literature.10 The
complete vector map is presented in Figure S1. Both vectors
contain the same eGFP gene but differ in their promoter region:
The peGFP-N1-Vector has a strong CMV-promoter for
expression in vitro. The mRNA is generated with a commercial
in vitro transcription kit from the pSTI-A120-vector under the
control of the T7 promoter. The backbone of both vectors is

Figure 1. Comparison of mRNA and pDNA Vectors (both gene vectors encoding for the same eGFP protein) and their respective uptake pathways. (A)
Linearized RNA (1192 bases) furnished with a stabilizing CAP sequence, an enhancing UTR sequence, and poly-(A) tail. (B) pDNA (4733 base pairs) under the
control of the CMV promoter. The vector transfer under identical transfection protocols differs because mRNA is translated after endosomal escape, while
plasmid DNA must be transferred into the nucleus for the initiation of transcription.
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based on the pCMV-Script vector. pSTI-A120 has a 120-bp
poly(A) tail and a 3′ untranslated region (UTR) from human
β-globin enabling in vitro transcription of polyadenylated RNA.

To generate in vitro-transcribed mRNA (IVT RNA), the
plasmid is linearized downstream of the poly(A) tract by SapI
digestion and purified by phenol/chloroform extraction and
sodium acetate precipitation. One μg of the linearized vector is
used as a template for the in vitro transcription reaction using the
Biozym Kit (MessageMAX™ T7 ARCA-Capped Message
Transcription Kit). Having an Anti-Reverse Cap Analog
(ARCA) (m2

7, 3′-OG[5′]ppp[5′]G) cap on the 5′ end, ARCA
cannot be incorporated in the reverse orientation. Thus, 100% of
the caps in the produced IVT RNA are in the correct orientation,
increasing the translation efficiency of the IVT RNA.10,39

Materials

FBS, Leibovitz's L-15 Medium (Gibco), Lipofecta-
mine™2000, OptiMEM (Gibco) and Sybr Gold were purchased

from Invitrogen, Germany. Syto RNAselect was purchased from
Life Technologies, Germany. 6-well culture plates (Falcon) were
purchased from VWR International GmbH, Germany. Sterile
PBS was prepared in-house. Ham's F-12K, MEM, DMEM and
Trypsin-EDTA were purchased from c.c.pro GmbH, Germany.

Cell culture

Ahuman alveolar adenocarcinoma cell line (A549,ATCCCCL-
185) was grown in Ham’s F12K medium supplemented with 10%
FBS. HeLa cells (ATCC CCL-2) were cultured using minimum
essential medium (MEM) with Earle's salts and L-Glutamine
supplemented with 10% fetal bovine serum (FBS). AMadin-Darby
Canine Kidney epithelial cell line (MDCKII, ATCC CCL-34) was
cultured in DMEM with 4,5 g/L glucose and 110 mg/L pyruvate,
supplemented with 10% fetal bovine serum. All cell lines were
grown in a humidified atmosphere at 5% CO2 level.

Transfection

The cells were transfected with equimolar amounts of pDNA
and mRNA for FCmeasurements and with equal weight amounts

Figure 2. Representative FC scatter plots for mRNA- and pDNA- mediated eGFP expression in three different cell lines (arbitrary units). (A-F) Two-dimensional
scatterplots (sideward scatter vs. fluorescence intensity) for HeLa, A549 and MDCKII cells 25 h post-transfection with mRNA and pDNA. (G-I) Average
fluorescence intensity per fluorescent cell (RNA data are shown in blue, DNA data are shown in red); (J-L) Percentage of fluorescent cells (mean ± SD).
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of pDNA and mRNA for single-cell measurements (see
Supplementary). The same transfection reagent (Lipofecta-
mine2000®) and the same standard transfection protocols were
used for pDNA and mRNA delivery. For transfection with
fluorescently labelled mRNA, we followed the standard pro-
tocols for labelling mRNA with Sybr Gold/Syto RNAselect and
prepared lipoplexes with labelled mRNA.

Data acquisition and quantitative image analysis

Live-cell imaging was performed on a motorized inverted
microscope (Nikon, Eclipse Ti-E) equipped with an objective
lens (CFI PlanFluor DL-10×, Phase1, N.A. 0.30; Nikon) and
with a temperature-controlled mounting frame for the micro-
scope stage. To acquire cell images, we used a cooled CCD
camera (CLARA-E, Andor). A mercury light source (C-HGFIE
Intensilight, Nikon) was used for illumination and a filter cube
with the filter set 41024 (Chroma Technology Corp., BP450-
490, FT510, LP510-565) was used for eGFP detection. An
illumination shutter control was used to prevent bleaching.
Images were taken at 10 fold magnification with a constant
exposure time of 1300 ms at 10-minute intervals for at least
25 hours post-transfection. Fluorescence images were consoli-
dated into single-image sequence files. Negative control images
were taken to assess lamp threshold values and were subtracted
from corresponding image sequence files to eliminate auto-
fluorescence effects. Using SINGLECELLTRACKER, an in-house-
development software based on ImageJ,40 fluorescence intensities
were integrated over cell contours and corrected for background
noise. The software calculates the cells’ fluorescence over the
entire sequence and connects corresponding intensities to time-
courses of the fluorescence per cell.

eGFP quantification and calibration

To calculate numbers of eGFP molecules from grey values of
the recorded time-lapse movies, a calibration-channel system
was developed. Micro channels of known dimensions were filled
with eGFP solutions of defined concentrations. Images of the
channels were taken under the same experimental conditions as
the monitored expression kinetics data, corrected for background
and analysed to get calibration curves. For a detailed description
of the calibration method, see Supplementary.

Flow cytometry

eGFP fluorescence intensity in cells was measured by FC
(Partec, CyFlow space). Flow cytometer settings were adjusted
to discriminate transfected and non-transfected cells. The
Windows™ FloMax® software package was used for data
analysis. See Supplementary for additional information.

Results

mRNA vs. pDNA transfection

In a first set of experiments, mRNA-mediated transfection
was quantified using FC and compared to pDNA-mediated
transfection as a reference. As schematically depicted in Figure 1,
the design of the mRNA vector (Figure 1, A) was chosen for
maximal analogy to the pDNA vector. The pDNA vector is a
commercial eGFP plasmid equipped with a CMV promoter
(Figure 1, B). The mRNA construct consists of polyadenylated
RNAs enabling in vitro transcription under the control of the T7-
promoter and contains 2 sequential human β-globin 3′UTRs as
well as the anti-reverse cap analog (ARCA) (see also Methods,

Figure 3. mRNA- and pDNA-mediated gene expression kinetics. (A, B) Exemplary images of an average transfection of A549 cells 25 h post-transfection
(overlay of bright field and eGFP fluorescence image. Scale bars 100 μm). (C, D) Representative fluorescence time-courses of eGFP gene expression after
transfection with mRNA (C) and pDNA (D). To highlight the characteristic differences, we chose and color-labeled three exemplary time-courses each. mRNA
expression shows early onset and continuous rise in the eGFP level, while pDNA expression exhibits delayed onsets and S-shape expression time-courses.
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Supplementary).10 To collate the outcome of the transfection
experiments, identical transfection protocols were followed for
mRNA and pDNA transfection using the commercial cationic
lipid agent Lipofectamine2000®.

The FC data shown in Figure 2 were taken 25 hours post-
transfection. The scatterplots with the fluorescence intensity on

the x-axis and the sideward scattering signal on the y-axis show
consistent bimodal populations. Both mRNA and pDNA
mediated transfection exhibit eGFP-expressing cells and cells
that do not express any eGFP. However, for three different cell
types, the fluorescence level of eGFP expressing cells in case of
pDNA mediated expression is more broadly distributed and
shifted towards higher values than the eGFP distribution
appearing in mRNA transfection. This effect is also seen in the
integrated representation, where the distribution of the average
number of eGFP molecules per eGFP expressing cell is shown
(Figure 2, G–I). Here, pDNA transfection is shown in red and
mRNA transfection in blue. Note that for pDNA transfection,
22% (HeLa), 7% (A549), and 28% (MDCKII) of the cells exhibit
eGFP expression levels of 1000 (a.u.) and higher that are not
shown for better clarity. In the last row (Figure 2, J-L), the
percentage of transfected cells are depicted, which is a direct
measure of the transfection efficiencies. We find slightly lower
percentages of transfected cells for mRNA-transfected cells
compared to pDNA-transfected cells except for MDCKII cells,
which feature higher transfection for pDNA vectors.

Single-cell mRNA expression kinetics

The most revealing difference between transfection with
mRNA and pDNA is seen in the single-cell expression kinetics
retrieved from time-lapse studies (Figure 3). Typically, begin-
ning after 1.5 hours of incubation, fluorescence microscopy
movies were taken over 25 hours using automated time-lapse
microscopy. The total fluorescence intensity of each single cell
was followed by image analysis40 and converted into the number
of eGFP molecules per cell (see Supplementary). Figure 3 shows
two typical microscopy images of transfected cells 25 hours
post-transfection (Figure 3, A and B). Bright field and
fluorescence images were overlaid to illustrate the fraction of
transfected cells. Figure 3, C and D show gene expression time-
courses of single cells. To highlight the characteristic differences
in the expression kinetics, we picked three representative traces
each and show them in color. While mRNA-transfected cells
show an early and steady rise to a maximum with a subsequent
decrease, pDNA transfection results in sigmoidal intensity time-
courses with a steady-state level of eGFP expression and random
onset times. In contrast to the ubiquitous early onset of eGFP
expression with mRNA that mainly occurs within 5 hours after
transfection, the onset of eGFP expression after transfection with
pDNA is spread over the range of 2 hours to 20 hours.

Modeling mRNA expression

Since mRNA transgene expression solely involves transla-
tion, quantitative modeling reduces to a simple biochemical
reaction scheme defined by three kinetic rates as shown in
Figure 4, B. The schematic shows a rate equation model for
mRNA expression consisting of translation, mRNA, and eGFP-
degradation. The model is described by the following set of
equations for the changes in the number of eGFP molecules,
G(t), and the number of mRNA molecules, m(t):

d

dt
G ¼ kTL⋅m−β⋅G ð1Þ

Figure 4. Single-cell mRNA translation, analyzed by a kinetic rate model. (A)
Time-courses of eGFP expression after mRNA transfection (gray lines). Blue
lines are fits according to the rate equation model (shown schematically as
insert in (B)). (B) Shows the same data as (A), normalized to their maximal
value and shifted by their fitted onset times, t0. (C) Distribution of the onset
time t0 (mRNA data shown in blue, pDNA data shown in red). (D)
Distribution of the expression rate kTL · m0. (E) Distribution of the mRNA
degradation rate. The black dashed line shows the Gaussian fit to the
experimental data, whereas the red dashed line is the Gaussian fit to simulated
data (see Supplementary) (F) Distribution of the eGFP decay rate. Dotted lines
represent the Gaussian fit to experimental (black) and simulated (red) data.
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d

dt
m ¼ −δ⋅m ð2Þ

where kTL denotes the translation rate and δ and β the degradation
rates of mRNA and eGFP, respectively. With t0 being the time of
expression onset and the initial conditions G (t0) = 0 and m
(t0) = m0, the following solution for the number of eGFP
molecules is obtained:

GmRNA tð Þ ¼ kTL⋅m0

δ−β
⋅ 1−e− δ−βð Þ t−t0ð Þ
� �

⋅e−β t−t0ð Þ ð3Þ

Applying Eq. 3 to the experimental time-courses, the data are
indeed well fitted. The blue curves in Figure 4, A show
exemplary best fits to single-cell time-courses (from a total of
281 time-courses). There are four free parameters: the onset time
t0, the product of translation (kTL) and initial number of
effectively translated mRNA molecules (m0), as well as mRNA
and protein degradation rates (δ and β). Eq. 3 entails a time-

course showing an exponential increase with rate δ-β and a long-
term decay with decay rate β (see Supplementary). Each fit
yields an individual set of parameters. Figure 4, C-F presents the
corresponding distribution of the best-fit parameters, which will
be discussed in the following.

Expression onset time distribution

In Figure 4, C, the onset time of mRNA (blue) is shown in
comparison to the onset time for pDNA transfection (see
Supplementary). The faster transfer of mRNA is clearly
documented in this distribution. In the case of A549 cells
shown here, the onset time distribution after transfection with
mRNA peaks approximately 3 hours after transfection and
hardly shows any delayed expression onset events after 5 hours,
whereas the pDNA onset time distribution is spread over the
interval between 2 and 20 hours post-transfection. The time-
distribution is an indirect, yet quantitative measure for the
transfer time of delivery. As known from microscopy studies,
endosomal uptake already starts 10–30 minutes after
transfection.30,41 Therefore, the measured delay in case of
mRNA transfer must be limited by endosomal escape rates.
Remarkably, mRNA expression onset ceases after 10 hours,
indicating that no more endosomes lyse or (more likely) that
mRNA molecules are degraded in acidic late endosomes. The
broadly distributed onset times for pDNA are associated with
rare nuclear entry events, which are believed to occur
predominately during mitosis.

mRNA degradation rates

Figure 4, E shows the distribution of the mRNA degradation
rate retrieved from fitting single-cell time-courses with the
described model. The average mRNA degradation rate of 0.062/h
(corresponding to an mRNA life time of t1/2 ≈ 11 hours) is in
rough agreement with the literature value of 0.028/h.10 The value
is clearly smaller than the degradation rate of endogenous mRNA
(δ b 0.14/h42), which is consistent with the reportedly higher
stability of ARCA capped mRNA vectors. The distribution of
mRNA degradation is well described by a Gaussian with half-
width 0.024/h. This variability in the degradation rate is on the
order of the so-called “extrinsic noise” in eukaryotes.43 The
values for the degradation of eGFP (with a mean of 0.056/h) are
higher than values that have been reported previously.42,44 In
general, it is noteworthy that the single-cell analysis yields
estimates for δ and β with high accuracy. The Gaussian fit yields
mean values with less than 6% relative error. Knowing the
degradation rates is of great value for the improvement of novel
vectors and capping sequences. Furthermore, the degradation
times are a key to predicting the time-course of expression. In
fact, analysis of Eq. (3) predicts that the maximum of expression
is reached approximately at tmax = 17 h. The time point of half
maximum expression value in the declining late phase of
expression is t1/2 = 45 h. The latter is important because it is a
measure for the duration of the transient mRNA expression. Note
that Eq. 3 also holds for the case δ b β (see Supplementary).
Moreover, the expression rate kTL · m0 and the difference in
the degradation rates (δ-β) both determining the amplitude and
hence the maximal expression levels, are uncorrelated (see

Figure 5. Dose–response relation. (A) Percentage of positively transfected
A549 cells as a function of increasing amount of mRNA (0.05/0.1/0.5/1/
2 μg). Squares correspond to FC data. The dashed grey line is a single-
Poisson fit, the black line is a double-Poisson fit according to our stochastic
delivery model. (B) Corresponding fluorescence intensity distributions as
measured by FC (bottom to top with increasing mRNA dose).
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Supplementary, Figure S3C). In Figure 4, E and F, Gaussian fits
to simulated data are additionally shown. For simulation, we
used the experimentally measured mean degradation rates (see
Supplementary). These fits should represent intrinsic noise only,
which accounts for about 30% of the total noise. The additional
width of the experimental data can be attributed to extrinsic sources
of noise involved in the gene transfer process. The kinetics of
mRNA proves to be generic because different cell types show the
same mRNA expression curves (see Supplementary).

A stochastic delivery model by Numbers

It is generally understood that mRNA as well as pDNA
delivery via artificial, non-viral vectors is stochastic and
dominated by rare processes. In the case of mRNA transfection,
the limiting steps are endosomal uptake, endosomal lysis, and
mRNA release from lipoplexes. Here, we ask the question
whether the measured distribution of expression levels can be
reproduced in a stochastic rate model, where each step is
assumed to be described by a random process with defined
transition probability. The fact that a large fraction of cells does
not express eGFP at all indicates that there is a finite probability
that no nucleic acid is successfully transferred. Figure 5, A
shows the dose–response curve in terms of the percentage of
transfected cells versus the concentration of mRNA in μg RNA
per ml transfection medium. The corresponding distribution of
eGFP expression levels can be seen in Figure 5, B. Data were
taken 25 h after transfection using FC. The number of
transfected cells monotonically increases with mRNA dosage.
It is instructive to describe the transfection process in terms of
number of lipoplexes: Lipoplexes form when cationic lipid
liposomes are complexed with nucleic acid. Each lipoplex
contains a large average number of mRNA molecules (as
discussed below). Hence, the delivery of a single lipoplex results
in a burst of eGFP expression. If lipoplexes were delivered by
overcoming a single barrier, the dose–response function would
be described by a Poisson-like process as represented by the
dashed line in Figure 5, A (see Supplementary). In this case, the
average number of effectively delivered lipoplexes would be
〈C〉SP = 0.5. However, as shown in Figure 5, A, the fraction of
transfected cells can be more closely described by a chain of two
successive Poisson processes. In this case, the response does not
rise up to 100% at large mRNA concentration, which is due to
the fact that the two Poisson processes are sequential. A physical
interpretation of such a chain of events is shown in Figure 6,A: The
scheme shows endosomal uptake of lipoplexes, endosomal lysis,
and mRNA release from lipoplexes. It is assumed that N
endosomes are stochastically loaded with a small number of lipo-
plexes, Leff, and that subsequently a small fraction of endosomes,
Neff, undergoes lysis. These two stochastic steps are modeled as
Poisson processes and determine the number of delivered
lipoplexes, C. If we assume the lipoplex load Leff to be propor-
tional to the mRNA concentration, i.e. Leff = λ⋅cmRNA, we obtain a
two-parameter expression for the dose–response function (see
Figure 5, A and Supplementary). The best fit yields Neff = 0.9 and
λ = 1.1 μg-1, meaning that at the highest dose of 2 μg, an effective
number of Leff = 2.2 lipoplexes are contained per endosome and
that an average of 〈C〉 = Neff⋅Leff = 2 successfully delivered

complexes is obtained. To demonstrate that such a surprisingly
small number of effectively delivered lipoplexes is realistic, we
assessed the average number of lipoplexes resting on a single cell in
an experiment. At a dose of 1 μg mRNA and after one hour

Figure 6. Two-step stochastic mRNA delivery model. (A) Schematic drawing
of the stochastic uptake of lipoplexes by endosomes, lysis of the endosomes,
and release of the mRNA load by lipoplexes. The model reproduces the
dose–response relation shown in Figure 6, A. (B) Fluorescence autocorre-
lation function of lipoplexes showing an average hydrodynamic radius of
Rhydr. = 60 nm. (C) Fluorescence image of fluorescently labeled mRNA
lipoplexes adsorbed to a petri dish at the concentration that was used for time-
lapse transfection experiments (dose: 1 μg/ml mRNA). Image analysis led to
a typical lipoplex density of order 4000/mm2 corresponding to about 4–
8 lipoplexes per cell (intensity scale inverted for clarity, scale bar 25 μm). (D)
Typical A549 cell five hours after transfection with fluorescently labeled
mRNA-lipoplexes (shown in red, scale bar 25 μm). (E) Predicted distribution
of delivered lipoplexes derived from the dose–response relation. (F)
Predicted distribution of delivered mRNA molecules, based on an average
of 350 mRNA molecules per lipoplex. (G) Experimental probability
distribution of expression rates (kTL · m0, black bars) derived from single-
cell data. Blue line indicates best fit of mRNA distribution to the expression
distribution, yielding an approximate translation rate of kTL = 170/h.
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incubation time, we found a lipoplex surface density of about
4000/mm2, corresponding to an average of 4–8 lipoplexes per
cell (Figure 6, C). This number is strongly dependent on
incubation time due to the diffusion limited transport of the
lipoplexes. After five hours of incubation, the number of
lipoplexes doubles as seen in Figure 6, D. We can safely assume
that almost all lipoplexes that hit the cell surface will be taken
up by endocytosis over time as reported by others.29,30 How-
ever, not every endosome releases its lipoplex cargo into the
cytosol. We find that a lysis rate of about 25–50% leads to
accordance of the experimental dose–response relation with the
above theoretical estimate.

A single lipoplex contains an average of 〈m〉 = 350 mRNA
molecules. This number is derived knowing the size and packing
density of lipoplexes (see Supplementary). The mRNA lipo-
plexes used here exhibit an average hydrodynamic radius of
60 nm as measured by fluorescence correlation spectroscopy
(FCS) (Figure 6, B). The structure and packing density have
been measured previously using small angle X-ray scattering
(SAXS).45,46 Figure 6, E shows the theoretical distribution of
delivered lipoplexes based on the double-Poisson model and the
mRNA dose that was used for these experiments (1 μg). If this
distribution is multiplied with the number of mRNA molecules
per lipoplex, we obtain the theoretical distribution of mRNA per
cell as shown in Figure 6, F. It is noteworthy that the theoretical
distribution (Figure 6, G, blue curve) is in very satisfying
agreement with the shape of the experimental distribution
(Figure 6, G, black bars) of expression rates. Comparing the
theoretical mRNA distribution with the actually measured
distribution of expression rates, kTL · m0, we find kTL = 170/h.
This translation rate, which emerges from the analysis of single-
cell expression rates, is in the range of independently published
values of translation rates.42

Discussion

We studied the expression kinetics of eGFP following
transfection mediated by mRNA and pDNA. While pDNA
complexes have to enter the nucleus, mRNA molecules released
from mRNA lipoplexes can be translated immediately after
endosomal escape. Consequently, mRNA-induced expression is
profoundly earlier and more homogeneously timed than pDNA-
induced expression. This behavior is generic and similar onset
time distributions are observed e.g. for HeLa and MDCKII cells
(data not shown). The high transfection efficiencies for pDNA
transfected cells as compared to mRNA transfected cells might
be a result of size-dependent lipoplex uptake that has been
reported previously.47 We determined the pDNA-lipoplexes to
be about 230 nm in diameter (data not shown), as opposed to
120 nm for mRNA-lipoplexes. The narrow timing of mRNA
expression onset at approximately 3 hours post-transfection is in
agreement with the observed timing found for endosomal uptake
and release in single-particle tracking studies.30,41 Therefore, the
mRNA expression onset distribution might serve as a valuable
indicator for the endosomal release time distribution and could
be useful for the advancement of artificial endosomolytic agents.
Furthermore, our data imply that mRNA expression modeling

can predict the transient course of therapeutic efficacy of mRNA
therapeutics in preclinical studies. For example, the development
of improved capping sequences of mRNA vectors can be carried
out using destabilized eGFP variants. In this case, the protein
level decreases substantially faster and long observation times
causing experimental difficulties can be circumvented (see
Figure S7, Supplementary). Based on kinetic rates obtained in
such studies, the time-course of arbitrary gene products with
longer half-life times can be inferred. In this context, it should be
noted that the half-life of about 12 hours for eGFP determined
from single-cell tracks is shorter than previously reported in
ensemble measurements, which necessarily average over the
somewhat heterogeneous timing of whole populations.42,44 We
also showed that the cell-to-cell variability in the expression
levels is well described by a two-step Poisson process. The two-
step stochastic model is capable of reproducing the measured
dose–response curve consistently with the statistical distribution
of expression rates. However, it is limited to transfection in vitro
and provides only an approximate description of the underlying
delivery cascade. The most important element provided by our
model is the account of quantal delivery of mRNA in form of
lipoplexes, which is in quantitative agreement with the measured
distribution functions. The small number of successfully
delivered lipoplexes per cell is the key to understanding the
stochastic outcome of transfection experiments that inherently
allow a finite number of non-transfected cells. More refined
modeling has to be done to picture the dynamics of transfection
and to reproduce the onset time distribution. Here, computational
representation of size-dependent uptake rates, the nature of
endosome lysis, and intracellular diffusion need to be solved.
Furthermore, computational modeling of extracellular delivery,
mimicking in vivo situations, needs to be advanced to gain
impact on translational medicine.

In our experiments, the single-cell time-courses of mRNA-
mediated transfection showed excellent agreement with the
standard biochemical rate model of translation. Hence, single-
cell analysis enables direct determination of expression rates as
well as decay rates for both mRNA and eGFP with great
accuracy and provides a quantitative foundation for kinetic
studies on mRNA translational regulation as for example RNA
interference. The fact that mRNA transfection exhibits a narrow
time window of delivery is beneficial for kinetic studies. This
advantage should be of practical importance for future time-
resolved studies on siRNA knockdown and RNA constructs for
programmed gene regulatory operations.
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3. QUANTITATIVE ANALYSIS OF SINGLE-CELL MRNA AND PDNA

TRANSFECTION



4 Single-cell array mRNA expression time
course analysis for optimization of mRNA
stability

Starting from the quantitative study of gene transfer and the mathematical model for pDNA trans-
fection, the characteristic differences of mRNA- and pDNA-mediated protein expression were inves-
tigated in P1. There, we found that mRNA transfection leads to fast and homogeneous response
and that it is predictive in terms of modeling. In the following study presented in manuscript
M1, the dynamics of protein expression induced by different mRNA constructs are assessed and
compared.
In gene therapy, the use of mRNA for therapeutic applications has become increasingly popular
in recent years. Protein expression induced by mRNA has the advantage that mRNA can not
be included into the genome of the target cell because unlike pDNA, mRNA is processed outside
the nucleus during translation. This also leads to fast cellular response to mRNA transfection as
shown in P1, which is favourable for therapeutic applications and makes mRNA one of the upcom-
ing approaches in regenerative medicine and a potential therapeutic agent for a variety of medical
indications [46, 48–50]. Mandal and Rossi recently claimed that ”modified mRNA seems poised to
emerge as a novel therapeutic paradigm for application in regenerative medicine and beyond” [66].
An ideal therapeutic mRNA construct induces prolonged protein expression above a certain thresh-
old level, so that intervals between repeated administration of the mRNA therapeutic are as long
as possible. Novel mRNA constructs show low immunogenic potential due to chemical modification
of the nucleotides [49]. In addition to that, a prolongation of their life times can be achieved by
inserting untranslated regions into the mRNA sequence [58]. Also, most therapeutic recombinant
mRNA constructs have a poly-A tail consisting of 120 nucleotides at their 3’ end, which is known
to protect the mRNA from degradation [58] (see figure 2.1).
For the study presented in M1, the effect that different combinations of inserted UTRs can cause
with respect to the stability and the translational efficiency of the corresponding mRNA construct
was systematically investigated using single-cell arrays for mRNA transfection. For each single-cell
protein expression time course, characteristic parameters such as mRNA and protein degradation
rate and the expression rate kT L ·m0 were fitted as described in P1 [54].
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4. SINGLE-CELL ARRAY MRNA EXPRESSION TIME
COURSE ANALYSIS FOR OPTIMIZATION OF MRNA STABILITY
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Figure 4.1: Microstructured multi-channel slide for parallel mRNA transfection on single-cell arrays.
Cells were grown on micropatterned single-cell arrays and transfected with mRNA. Enlargements show
one out of six micropatterned channels filled with cells and a zoom-in on the protein pattern. To visualise
the microstructures, fluorescently labeled fibronectin was used here. Protein expression of d2EGFP after
mRNA transfection was monitored using time-lapse fluorescence microscopy. Subsequent image analysis
was automated to great extent to generate sufficient statistics at high-throughput. This way, we were
able to measure mRNA life time distributions of six different constructs in parallel. All techniques used
in these experiments are described in chapter 2.

Conversion of degradation-rates into life times according to

half -lifeconstructx = ln2
degradation rateconstructx

(4.1)

yielded single-cell distributions of mRNA and protein life times. This indirect approach circum-
vents the problem of overestimated mRNA life times that have been observed for measurement
techniques such as radioactive labeling, which are based on the total content of transfected mRNA
inside a cell, regardless of its actual subcellular location [154].
We choose naturally occuring 5’ - and 3’ -UTRs of a human gene (namely the cytochrome b - 245
alpha polypeptide, CYBA) whose mRNA transcripts are known for their long life time. Different
combinations of these UTRs were cloned into mRNA constructs encoding for d2EGFP, which was
used as a fluorescent reporter protein. For long-term fluorescence time-lapse microscopy, single-cell
arrays were prepared as described before [90]. We used multi-channel slides for transfection of up
to six different mRNA constructs in parallel as schematically shown in figure 4.1.
Image processing was done according to chapter 2.7.2. This approach enables fast, systematic,
and quantitative assessment of mRNA life times at the single-cell level. This way, distinct and
characteristic features of the life time distribution of the different constructs can be uncovered. To
further corroborate the findings for the analysis of single-cell time courses, additional snap-shot
measurements of mRNA-induced protein expression levels were conducted in more cell-types.
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The data presented in M1 suggest life time prolonging effects for any UTR-insertion, with the high-
est values for the 3’ - UTR or the 5’+3’ -UTR stabilisation. We find this trend in two different cell
types. Also, surprisingly low stabilising effects for constructs with a double-insertion of 3’UTRs
suggest the impact that the mRNA’s secondary structure has on its stability.

The experimental data and the resulting conclusions are presented in the following manuscript M1.
This study was a done in collaboration with the group of Prof. Plank at the Technische Universität
München. More specifically, all mRNA constructs were cloned and produced by Mehrije Ferizi, who
also conducted flow cytometric measurements. Time-lapse fluorescence microscopy and analysis of
the corresponding data were done by me.
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Abstract 

The measurement of mRNA turnover in living cells plays an important role in the search for 

stable mRNA constructs for RNA-based therapies. Here we show that automated time-lapse 

microscopy combined with micropatterned arrays allows for efficient high-throughput 

monitoring of fluorescent reporter protein expression at the single-cell level. The 

fluorescence time courses after mRNA transfection yield the distribution of individual mRNA 

degradation rates within a population. We compare mRNA constructs with combinations of 5’ 

and 3’ UTR sequences and find a systematic broadening and shift towards longer half-lives 

for UTR stabilized mRNA. Most prominently, the 3’ UTR stabilized sequence prolongs life 

time by a factor of nearly 4 in A549 cells. At the same time the life time distribution of the 

destabilized EGFP reporter was found to be constant and narrowly distributed. Using 

mathematical modeling, we show that mRNA life time predicts the area under the curve 

(AUC) which is relevant for mRNA therapeutics. Our approach paves the way for quantitative 

assessment of hitherto unexplored mRNA life time heterogeneity, possibly predicated on 

multiple mRNA secondary structures and its dependence on UTR sequences.   

  



Introduction 

In recent years, messenger RNA (mRNA) has become increasingly relevant as a new drug 

entity. As opposed to DNA-based gene therapeutics, mRNA does not need to be transported 

into the nucleus but is directly translated into protein in the cytoplasm (1, 2). This makes 

mRNA safer in avoiding potential insertional mutagenesis, an unlikely but existent risk of 

DNA gene medicines. As a consequence, mRNA therapeutics are emerging as promising 

alternatives for gene and protein replacement therapies in a broad variety of medical 

indications (1-4). However, the strong immunogenicity as well as the limited stability of 

conventional mRNA has to be overcome to further establish its clinical applicability. In 

particular, mRNA stability is an essential parameter for envisaged medical applications 

because it determines, for example, dosing and the dosing intervals of mRNA drugs.  

 

Several strategies have proven successful both at increasing the stability and reducing the 

immunogenic response triggered by mRNA administered to cells or organisms. Amongst 

these is the inclusion of chemically modified nucleotides (5). Kormann et al. have shown that 

the replacement of only 25% of uridine and cytidine residues by 2-thiouridine and 5-methyl-

cytidine suffices to increase mRNA stability as well as to reduce the activation of innate 

immunity triggered by externally administered mRNA in vitro (3). 

Also, untranslated regions (UTRs) in mRNAs have been reported to play a pivotal role in 

regulating both mRNA stability and mRNA translation. UTRs are known to influence 

translational initiation, elongation, and termination, as well as mRNA stabilization and 

intracellular localization through their interaction with RNA binding proteins . Depending 

on the specific motives within the UTR, it can either enhance or decrease mRNA turnover (8-

11). Recently, data on mRNA half-lives and the corresponding UTR sequences have been 

published (12).  

One mRNA with a particularly long half-life is the one transcribed from the human 

cytochrome b-245 alpha polypeptide (CYBA) gene. The CYBA gene comprises specific 5’ 

and 3’ UTRs. In general, 5’ UTR motives such as upstream open reading frames (uORFs) or 

internal ribosomal entry sites (IRES) are known to be involved in gene regulation, particularly 

in translational initiation . The 3’ UTRs can comprise even more regulatory functions than 

the 5’UTRs, some of them even hindering mRNA translation . While no regulatory 

motives are known for the CYBA 5’ UTR unit, the CYBA 3’ UTR contains two of them. Firstly, 

the polyadenylation signal (PAS), which interacts with the cytoplasmic polyadenylation 

element binding protein (CPEB), as well as with the cleavage and polyadenylation signaling 

factor (CPSF) . CPEB is responsible for the prolongation of the poly-A tail in the 

cytoplasm, whereas CPSF primes the pre-mRNA through cleavage at a specific site for the 



upcoming addition of poly-A . As a second regulatory motif, the CYBA 3’ UTR 

contains the insulin 3’ UTR stability element (INS_SCE). The INS_SCE sequence has been 

shown to bind to the polypyrimidine tract binding protein (PTB) under reducing conditions, 

increasing the mRNA half-life of insulin . UTRs of CYBA are shown in Supplementary 

Table S2. Another important feature influencing mRNA translation efficiency is the poly-A tail, 

which is located on the 3’ end. It has been shown that a prolongation of the poly-A tail to 120 

nucleotides has beneficial effects on protein expression, assumingly because of the 

protective effect of longer poly-A tails against mRNA degradation (16). In contrast to long 

poly-A tails, mRNAs with poly-A tails shorter than 50 nucleotides are claimed not to be 

translated at all (11, 17). Hence, in mRNA therapy, recombinant mRNA constructs are likely 

to be furnished with a poly-A tail of 120 nucleotides. Degradation of most mRNA transcripts 

in eukaryotic cells begins with 3’ to 5’ exonucleolytic deadenylation, resulting in removal of 

most of the poly A-tail. Subsequently, two major pathways that are responsible for the 

degradation of the rest of the mRNA body are known to come into play. On the one hand, the 

5’ end is decapped by the Dcp1/Dcp2 complex, followed by 5’-3’ exonucleolytic degradation 

that is catalyzed by Xrn1p. On the other hand, the exosome enables 3’-5’ exoribonucleolytic 

degradation with the 5’ cap being retained (18). Moreover, it is known that the 5’ cap 

interaction with the 3’ poly-A tail results in circular forms of the mRNA. It is assumed that the 

circular shape of the mRNA increases the initiation rate of ribosomes after translating the first 

stop codon and also protects mRNA against degradation (19).  

 

We were interested in whether the reported long half-life of natural CYBA mRNA can be 

conferred to a foreign mRNA by virtue of flanking its coding sequence with combinations of 

CYBA 5’- and 3’-UTRs. So far, mRNA stability and turnover has been measured by a variety 

of approaches including metabolic labelling, mass spectrometry, quantitative real time 

reverse transcription polymerase chain reaction, microarrays, or fluorescence labelling 

techniques for imaging mRNA inside cells (16, 20-25). Most of these are ensemble 

measurements. 

 

Recently, we have shown that single-cell analysis of mRNA transfection time-lapse movies is 

capable of assessing individual expression time courses yielding the mRNA decay rates at 

the single-cell level (26). Furthermore, we have reported on the use of regular micropatterns 

to position cells on a regular grid of adhesion sites . Hence, we were interested in 

whether this technology is suited to rapidly analyse the functions of CYBA UTR combinations 

on a foreign mRNA. To address this question, we have chosen the coding sequence of 

destabilized enhanced green fluorescence protein (d2EGFP)  to artificially shorten the life 

cycle of the reporter protein inside the cell (28). The combinations included insertion of the 



respective CYBA UTRs at 5’ or 3’ ends, respectively, at both 5’- and 3’ ends, at the 5’ end 

combined with two repeats of the 3’ UTR at the 3’ end, or two repeats of 3’ UTR without 5’ 

UTR, and all of these compared to a control construct without UTRs. Protein and mRNA life 

times and the expression rate from each of the compared transcripts were assessed. The 

dynamics of gene expression after mRNA transfection were compared to a population based 

method (FACS and fluorescence microscopy). We observed an improvement of total protein 

expression over a period of three days for all UTR combinations compared to the control.  

Results 

Fluorescence microscopy and analysis via flow cytometry (FC) 

To evaluate the effect of different UTR combinations on transgene expression kinetics, two 

different cells lines were transfected using LipofectamineTM2000 with different d2EGFP 

mRNA constructs containing a 5’ UTR alone,  a 3’ UTR, 5’+3’ UTR, two copies of 3’UTR and 

5’+2x3’ UTR. A schematic representation of the building blocks of all constructs can be seen 

in Figure 1A. At different time points through three days post-transfection, d2EGFP 

expression was quantified using FC. An exemplary dot plot for t=24h, illustrating d2EGFP 

expression levels of live A549 cells, is shown in Figure 1C (see Figure S4 B for 

corresponding Huh7 data). In addition, we imaged the cells using fluorescence microscopy 

(see Figure 1B and D and Figure S4 A and C). Comparable transfection efficiencies for all 

mRNA constructs were confirmed 24 hours post transfection (Figure 1B and S5 A). Thereby, 

we can rule out differential transfer efficiencies to be a causal factor for the observed 

differences in expression kinetics. Based on fluorescence microscopy images, we detected a 

drastic reduction of d2EGFP expression for all constructs at 48 h post-transfection (see 

Figure 1B and1D and S4 A and C). However, higher EGFP expression levels respect to the 

control were found for all UTR-stabilized mRNAs. More specifically, mRNA constructs 

containing 3’ UTRs seemed to enhance expression more than constructs without 3’ UTRs. 

We observed this for A549 and Huh7 cells (see Figure 1 and S 4, respectively). At time 

points later than 48h, this effect was pronounced even more (data not shown). In Figure 2 A 

and B, the time courses of the mean fluorescence intensities (MFI) as determined by FC are 

shown for all constructs in both cell types. Also here, all UTR-containing mRNA constructs  

showed higher MFI values than the control construct in both cell lines at all points in time. 

Taken together, our fluorescence microscopy and FC data suggest that mRNA molecules 

furnished with CYBA UTRs show persistent d2EGFP expression for more than 24 hours.  

  



Single-cell expression arrays 

We fabricated microstructured, cell-adhesive substrates as shown in Figure 3A and B as a 

platform for single-cell time-lapse microscopy. The rectangular squares are functionalized 

with the extracellular matrix protein fibronectin, while the surrounding dark area is passivated 

with cell repellent PEG-PLL. Cells were seeded at an appropriately dilute cell density such 

that after about three hours, cells adhered to the rectangular squares. This cellular self-

organization process has been studied in detail before (27). The size of the squares was 

30µm for optimal filling with single cells. The distance between the squares was just big 

enough (60µm) to minimize bridging effects of cells adhering to more than one square at the 

same time. Time-lapse fluorescence microscopy and automated image analysis of the 

fluorescence signal per square yields hundreds of individual time courses. A typical set of 

background corrected raw data is shown in Figure 3D. The red lines represent exemplary fits 

to the mathematical expression for mRNA translation (see also Materials and Methods 

section). Data were analyzed as described recently (26) by fitting each time-course with the 

analytical solution for mRNA-induced protein expression,  
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using IgorPro software. Here, G denotes the amount of protein, K is the expression rate, δ is 

the mRNA degradation rate, and β is the degradation rate of the reporter protein d2EGFP. 

The expression rate K is the product of the initial amount of mRNA molecules inside the cell 

(m0) and the translation rate kTL. The time-course that is described by Equation 1 will be 

discussed in detail in below section “mastercurves of protein expression”.   

 

In vitro transfection on cell arrays 

In a typical experiment, cells were allowed to adhere to the micropatterns for three hours 

before transfection. Each of the six microchannels was filled with a different lipoplex solution, 

containing one of the constructs of interest. In initial experiments, we compared two different, 

commercially available transfection reagents (namely LipofectamineTM 2000 and DOGTOR). 

We found higher transfection efficiencies for LipofectamineTM 2000 than for DOGTOR (see 

Figure S1). Because we additionally obtained high cell viability rates of above 80% with 

LipofectamineTM2000 (data not shown), all further transfection experiments were conducted 

using LipofectamineTM2000. As mRNA-mediated protein expression starts shortly after 

transfection,  incubation time was kept to a minimum. Accordingly, the ratio between mRNA 

dosage and incubation time was adjusted to achieve high transfection efficiencies (see also 

Supplementary, Figure S1) and negligible toxic effects caused by over-expression of the 

reporter protein. At an mRNA dose of 5pg/cell, an incubation time of one hour was found to 

be optimal.  



Expression rates 

All results for the two cell types are based on four independent measurements under the 

same experimental conditions. Time-lapse data of about thousand A549 cells and thousand 

Huh7 cells have been analyzed. The distributions of the obtained expression rates K are 

shown in Figure 4A and the corresponding mean values can be seen in Figure 4D. Both the 

mean expression rates and the shape of their distributions were found to be rather similar for 

the different constructs.  

 

mRNA half-lives 

We converted the fitted mRNA-degradation rates δ into mRNA half-lives according to 

     
   

 
.              (Equation 2) 

Figure 4B shows the half-life distributions of differently stabilized mRNA constructs in A549 

and Huh7 cells, respectively. Here, it becomes evident that for stabilized constructs, both 

mean half-life and broadness of the underlying distribution increase as compared to the 

reference construct.  

An overview of all determined half-lives is given in Figure 4D. Both for A549 and for Huh7 

cells, we found the longest half-life for mRNA stabilized either by a 3’UTR alone or both 

5’and 3’UTR. The life time prolonging effect is more pronounced in A549 cells. Expectedly, 

the shortest half-life was obtained for the control construct that does not contain a stabilizing 

UTR. It amounts to 5.8 hours for A549 cells and to 7.8 hours for Huh7 cells.  

 

Protein half-lives 

The distributions of protein (d2EGFP) degradation life times are presented in Figure 4C. As 

expected the half-lives of the expressed protein do not vary for the different mRNA 

constructs. The determined mean life times range from 4.2 to 4.9 hours for A549 cells and 

from 5.6 to 8.5 hours for Huh7 cells as shown in Figure 4D. The coefficients of variation are 

about 0.29 (A549) and 0.45 (Huh7) and hence is significantly smaller than the coefficient of 

variation of up to 0.6 that we found for the distribution on mRNA life-times. As a control, we 

also measured the half-lives in an alternative approach, where translation was inhibited by 

addition of cycloheximide at a given time point, t0, after transfection (see Figure S3 in the 

Supplement). In this case, protein expression is induced for a while and then stopped. The 

exponential decay in fluorescence after inhibition yields protein life times. These half-lives 

were found to be smaller by a factor of about two, compared to the above experiments 

without inhibition. In both experiments, however, the relative ratios of the protein life times in 

Huh7 cells as compared to those in A549 cells is the same.  

  



Mastercurves of protein expression 

The features of mRNA induced protein expression become evident in the so-called 

mastercurve of protein expression as depicted in Figure 5A (A549) and B (Huh7). The 

mastercurve is the population average of the onset-time corrected single cell traces, i.e. all 

onset-times were shifted to time point zero. Fluorescence intensities were converted into 

actual numbers of d2EGFP as described before in reference (26).  

The superior properties of the 3’ and the 5’+3’-stabilized mRNA constructs are illustrated in 

the mastercurve plot. These constructs showed the shallowest decrease in protein 

expression with time and hence the longest half-lives in addition with higher protein 

expression values as compared to the other constructs.  

 

Area under the curve (AUC) 

An optimal therapeutic mRNA construct should desirably have both long mRNA half-life and 

high translational efficiency. The integral of the amount of protein over time, i.e. the area 

under the curve (AUC), is a means to simultaneously quantify the translational efficiency and 

the stability of an mRNA construct. It can be interpreted as the cumulative time-dose of the 

protein that is encoded on the mRNA and hence describes the efficacy of a chosen mRNA 

construct. Given the biochemical model, the AUC can be calculated explicitly as follows (see 

also Supplementary): 

    
 

K
    (Equation 3) 

An illustrative explanation for the calculated AUC can be seen in Figure 6A. If there was no 

protein degradation (β=0), the amount of protein inside a cell would run into a steady state 

level as a consequence of a balanced flux of mRNA translation and mRNA degradation. In 

this case the expression dynamics follows 
 

 
        . The same would be true in an 

analogous manner for the case where δ was equal to zero. The superposition of this with the 

permanent, exponential decay of the d2EGFP protein (following     ) results in the 

characteristic shape of the AUC as shown in Figure 6A. Figures 6B and C show the overall 

mean relative AUCs as well as the “per-experiment” relative AUCs with respect to the mean 

AUC of the control, the latter being the AUC of protein expression after transfection with the 

control construct. In both cell types, we find the highest relative AUCs for the 3’UTR- and the 

5’+3’UTR-stabilized construct. This is consistent with the observed long half-lives for these 

constructs, because they contribute to the AUC as seen in equation 3. The detailed, single-

cell AUC distributions can be found in Figure S2 of the Supplementary. 

  



Life time-prolongation factor 

The life time-prolongation factors for A549 and Huh7 cells are shown in Figure 5D and E, 

respectively. As expected, all stabilized constructs yield life time-prolongation factors higher 

than one, meaning that the insertion of UTRs at either end causes mRNA stabilization. 

However, the 3’UTR mRNA construct shows longer mRNA life times than the 2x3’UTR 

construct. Similarly, the 5’+3’UTR construct is more stable than the 5’+ 2x3’ construct. These 

results hold true for both cell types. Interestingly, the stabilizing effects are significantly more 

pronounced in A549 cells than in Huh7 cells in all cases. 

 

Discussion 

Determination of mRNA stability and its expression are two major factors to be considered 

when it comes to developing new mRNA therapeutics. Here, we used different combinations 

of UTRs, a 5’ UTR, 3’UTR, a 5’+3’ UTR, 5’+2x3’ UTR, and two copies 3’ UTR to improve 

mRNA in terms of stability and its expression. The AUC of the d2EGFP time course is also 

evaluated, because the total protein expression is relevant for a sustained therapeutic effect. 

In order to get detailed time-resolved data and monitor protein expression dynamics at the 

single-cell level, we used microstructured single-cell arrays for parallel, quantitative 

measurements of mRNA stability and translational efficiency. The regular arrangement of 

cells guaranteed reproducible microenvironments and enabled fast and automated image-

analysis, which are prerequisites for comparative, high-throughput single-cell studies. The 

approach allows the determination of distribution functions for (i) protein half-life, (ii) 

expression rates, and (iii) mRNA half-life. 

In both A549 and Huh7 cells, mean protein half-lives of d2EGFP were narrowly distributed 

and independent of the UTR sequence. The calculated half-life values of 4.5 hours for A549 

cells and 7.4 hours for Huh7 cells could be attributed to cell type specific differences between 

the compared cell lines. Such cell specific differences in d2EGFP half-life have been 

published previously. A study in NIH3T3 cells using a similar imaging cytometry approach, 

recorded a half-life of 2.8 h within a measurement window of 12 hours (29). An even shorter 

half-life of less than two hours has been reported for CHO cells by Li et al.(30). Here, protein 

degradation was measured by Western blotting and flow cytometry for three hours only.  

To validate our findings from single-cell data analysis, we additionally determined d2EGFP 

life times in direct measurements using cycloheximide (see Supplementary, Figure S3). We 

found shorter life times as compared to the values observed from single-cell data analysis. 

This might be due to the fact that in single-cell data analysis, a constant initial number of 

mRNA molecules was assumed as part of the combined expression rate K=kTL*m0 (see 

Equation 1). However, regardless of the fact that cells have been washed after one hour 

incubation time, it is still likely that the number of mRNA molecules is not constant from the 



start of observation. As a consequence, mRNA molecules that are available for translation 

later on, leading to protein expression, might result in longer half-life values obtained from 

single-cell expression time course fitting. When we compare the mean half life determined for 

A549 cells with the mean half life determined for Huh7 cells, we find the same ratio of 

roughly 1.64 for both measurement methods. Also, even a possible systematic over-

estimation of mRNA and protein half-lives does not change the qualitative order of the mRNA 

performance as determined by us.  

The expression rate depends on the initial number of mRNA molecules, m0, as well as on the 

translation rate KTL. Note that the number of successfully delivered mRNA molecules varies 

due to the intrinsic stochasticity of the delivery process. The mean number of mRNA 

molecules, however, is expected to be the same, since the transfection protocol has 

scrupulously been kept up in all experiments. In contrast, the translational activity (KTL) of the 

various UTR constructs might vary. Still, the fact that the distributions as well as the mean 

values of the expression rate K are rather similar for all constructs (see Figure 3A and D) 

indicates that the translation rate is merely influenced by the inserted UTRs.   

The parameter of highest interest is the mRNA half-life. Our results suggest that any 

insertion of 5’ or 3’ UTRs into the mRNA sequence increases its stability. All modifications 

tested in this study led to prolonged mRNA half-lives (see Figures 2 and 3) thereby resulting 

in prolonged expression as measured by fluorescence microscopic imaging and FACS (see 

Figure 1). The heterogenic distribution of the half-lives points out the importance of single-

cell measurement techniques, because these effects are obscured in ensemble 

measurements (Figure 2 and Figure 4). Interestingly, a positive effect on protein expression 

was observed for 5’ UTR alone, although till date, no known motif in the CYBA 5’ UTR has 

been discovered. For the first time, we could show that CYBA UTRs at either end suffice to 

increase both peak and persistent of protein expression in both cell lines. These findings are 

consistent with publications claiming individual or synergistic behaviour of 5’ UTRs and 3’ 

UTRs (14). In contrast to Holtkamp et al. (16), no additional increase in protein expression or 

mRNA stability could be observed with two sequential copies of the 3’UTR as compared to 

one single 3’ UTR (see Figure 4). Conversely, it even resulted in shorter life times both for 

5’+3’ versus 5’+2x3’ UTR insertion and for 3’ versus 2x3’ UTR insertion. This might be due to 

the fact that a different type of cells (namely dendritic cells) was used in the study by 

Holtkamp et al. (16). Another contributing factor affecting both mRNA stability and its 

translation efficiency might be the secondary structure of the different mRNAs. Such effects 

of mRNA secondary structure in regulating gene expression have been reported before (31, 

32). 

Important structural characteristics together with their minimum free energy for the mRNA 

constructs used in the current study are summarized in supplementary Table 1. The 



persistent protein expression of the 5’ + 3’UTR stabilized construct could be due to binding of 

the 5’ to the 3’end, which facilitates circularization of the mRNA (19). Because we could not 

find any stable secondary structures within the 5’ UTR, we assume that this feature enables 

an early expression onset (33). In contrast, we identified secondary structures within the 3’ 

UTRs. These might protect the mRNA from the 3’-5’ degradation pathway. Two 3’ UTRs 

showed even more secondary structures (two hairpins) with the best minimum free energy, 

indicating more persistent expression and slower mRNA degradation at the cost of slow 

onset of translation and reduced peak expression. Taken together, these findings could be 

the explanation for the inferior onset expression of the 2x3’ UTR compared to the 5’UTR and 

the persistent expression at later time points of mRNA constructs containing 3’ UTRs.   

In accordance with protein half-lives, longer half-life values were obtained for mRNAs 

stabilized with UTRs. This was observed in both cell lines with cell specific differences most 

likely affecting the absolute values. In A549 cells, mRNA half-lives for the constructs with 

UTRs ranged from 13.0 h to 23.0 h as compared to 5.8 h for the control. In Huh7 cells, half-

lives from 9.9 h to 13.6 h were measured for UTR-containing constructs, as opposed to a 

half-life of 7.8 h for the control mRNA. The half-life of the 3’UTR-stabilized mRNA in A549 

cells is in good agreement with mRNA life times of similarly stabilized mRNAs that were 

reported previously (16, 26). The fact that stability and decay kinetics of mRNA and protein 

differ in different cell types is most likely due to differences in the complex networks of 

interactions between mRNA and proteins which are very likely to be cell-type dependent. 

Taken together, our results in both A549 and Huh7 cells, independent of the analysis method 

(FACS or single-cell analysis), suggest that sustained, high levels of protein expression can 

be induced by CYBA UTR stabilized mRNA. The choice of UTR combination depends on the 

need of the experiment of application. Where persistent protein expression with reduced 

mRNA decay is desired, mRNA stabilized with a 3' UTR alone might serve the purpose. 

However, the combination of 5'+3' UTR results in additional desirable features of early onset, 

high peak and cumulative protein expression.   

 

Outlook 

Our study demonstrates that single-cell analysis of mRNA-induced protein expression is a 

means to characterize and improve pharmacokinetic properties of mRNA constructs. Using 

this approach, we were able to systematically assess the intracellular bioavailability of 

different mRNA constructs to identify sequences yielding sustained protein expression. In our 

single-cell model we found most prolonged persistence of protein expression for constructs 

stabilized either by 3’UTR alone or 5’+3’UTR in two cell types. We hope that our study helps 

to further refine strategies for the manipulation of mRNA stability for future pharmaceutical 

applications.  



 

Materials and Methods 

 

Plasmid Vectors 

Destabilized Enhanced Green Fluorescent Protein (d2EGFP) was excised from pd2EGFP-

N1 (Clonetech) and cloned in pVAXA120 (3) to generate pVAXA120-d2EGFP. Based on 

previously published data with respect to mRNA stability, preselected 5’ and 3’ UTR 

sequences of cyba gene were synthesized by Eurofins MWG (Germany) and cloned 

upstream (5’UTR) and/or downstream (3’UTR or 2x3’UTR) of d2EGFP in pVAXA120-

d2EGFP, thereby generating the constructs with respective UTR combinations.  

 

mRNA Production 

To generate in vitro transcribed mRNA (IVT mRNA), plasmids were linearized downstream of 

the poly(A) tail by NotI digestion and purified by chloroform extraction and ethanol 

precipitation. Purified linear plasmids were used as template for in vitro transcription using 

RiboMax Large Scale RNA production System-T7 (Promega, Germany). Anti-Reverse Cap 

Analog (ARCA) was added to the reaction mix to generate 5’ capped mRNA. Additionally for 

the production of SNIM mRNAs, chemically modified nucleotides namely methyl-CTP and 

thio-UTP (Jena Bioscience, Germany) were added to a final concentration of 

ATP:CTP:UTP:methyl-CTP:thio-UTP:GTP of 

7.57mM:5.68mM:5.68mM:1.89mM:1.89mM:1.21mM. The complete IVT mix was incubated at 

37°C for 2 hours following which, DNA template was digested with DNaseI. RNA was 

precipitated with ammonium acetate (final concentration 2.5M) and washed with 70% EtOH. 

The washing step was performed twice. Finally, the RNA pellet was re-suspended in RNAse-

free water. All mRNA transcripts were verified on 1% agarose gels. A schematic 

representation of an exemplary mRNA construct can be seen in Fig. 1A. The exact 

sequences of the UTRs are given in the Supplementary (table S1). 

 

Flow Cytometry (FC) 

The experimental set-up looks like as follows: 20,000 cells in 150µl medium were seeded per 

well in 96-well plates and transfected 24 hours post-seeding. Cells were transfected at a 

dose of 5pg mRNA/cell using the commercial transfection reagent LipofectamineTM2000. 

Complexes were prepared at a ratio of 2.5µl LipofectamineTM2000 per 1 µg mRNA. For the 

formation of lipoplexes, LipofectamineTM2000 and mRNA were diluted separately in OptiMEM 

transfection medium in a total volume of 50µl, each. These mixtures were incubated at room 

temperature for 5 minutes. The mRNA solution was then mixed with the 

LipofectamineTM2000 solution, followed by another 20 minutes of incubation at room 



temperature. After incubation, 900µl of OptiMEM were added to the lipoplex solution. Finally, 

50µl of the complex solution were added to the cells and incubated for 1 hour. For every 

mRNA construct, biological triplicates were prepared. After incubation, the lipoplex-solution 

was discarded and fresh 150µl medium was added to each well. d2EGFP expression was 

measured after 8, 24, 36, 48, 60 and 72 hours using FC. Fluorescence microscopy images 

were taken at each of these time points. For FC measurements, the cell culture medium was 

discarded and the cells were washed with 1xDPBS (Gibco Life Technology). Subsequently, 

20µl of TrypLE Express (Gibco Life Technology) were added per well and incubated for 5 

min at 37°C. The reaction was neutralized by adding 80µl 1xPBS, supplemented with 2% 

FBS. Cells were mixed by pipetting and were transferred into a 96 well plate appropriate for 

flow cytometric measurements. Finally, 5µl of Propidium iodide (final concentration 1µg/ml) 

were added per well and measured with Attune Auto Sampler (Applied Biosystems). Please 

note that fluorescence images were taken prior to FC analysis with a JULYTM microscope.  

 

Surface Patterning and Sample Preparation  

Microstructured surfaces were produced by selective oxygen plasma treatment (Femto 

Diener, 40 W for 3 min) on a top as substrate (ibidi GmbH) with subsequent passivation. 

Selectivity was achieved using a polydimethylsiloxane (PDMS) stamp (cast from a master 

produced by photolithography) as a mask. The parts exposed to plasma were passivated by 

incubation for 30 min with PLL(20k)–g(3.5)-PEG(2k) at a concentration of 1 mg/ml in 

aqueous buffer (10 mM HEPES pH 7.4 and 150 mM NaCl). Thereafter, the samples were 

rinsed with PBS and the PDMS stamps were removed. The foils were then fixed to adhesive 

six-channel slides (sticky µ-slide VI). Each channel was filled with a solution of 50 µg/ml 

fibronectin in PBS for one hour to render the remaining sectors cell-adhesive. Probes were 

thoroughly rinsed with PBS three times. The samples were stored in cell medium at room 

temperature before cell seeding. For this study, square adhesion sites of 30 µm x 30 µm 

were used because this size turned out to be reasonable for single-cell adhesion of A549 as 

well as Huh7 cells. Cells were seeded at a density of 10,000 cells per channel so that 

roughly one cell could adhere on each cell-adhesive island. To obtain fluorescent 

micropatterns as shown in Figure 3A, a mixture of 20 µg/ml fibronectin and 30 µg/ml 

fibrinogen conjugated with Alexa Fluor 488 was used.  

 

Materials 

FBS, Leibovitz’s L-15 Medium (Gibco), LipofectamineTM2000, and OptiMEM (Gibco) were 

purchased from Invitrogen, Germany. Sterile PBS was prepared in-house. Ham’s F-12K, 

DMEM, and Trypsin-EDTA were purchased from c.c.pro GmbH, Germany. Channel slides 

were purchased from ibidi, Germany. Fibronectin was purchased from Yo Proteins, Sweden. 



PLL-g-PEG was purchased from SuSoS AG, Switzerland. Alexa Fluor 488 was purchased 

from Life Technologies, Germany. The plasmid pd2EGFP-N1 was purchased from BD 

Biosciences Clontech, Germany. 

 

Cell Culture 

A human alveolar adenocarcinoma cell line (A549, ATCC CCL-185) was grown in Ham’s 

F12K medium supplemented with 10% FBS. A human hepatoma epithelial cell line (Huh7, 

JCRB0403, JCRB Cell Bank, Japan) was cultured in DMEM medium, supplemented with 

10% fetal bovine serum. All cell lines were grown in a humidified atmosphere at 5% CO2 

level.  

 

In vitro Transfection 

Three hours prior to transfection, 10.000 cells per channel were seeded in a 6-channel slide. 

Cells were transfected at a dose of 5pg mRNA/cell using the commercial transfection reagent 

LipofectamineTM2000at a ratio of 2.5µl LipofectamineTM2000per 1 µg mRNA. The complex 

formation was prepared as follows: LipofectamineTM2000 and mRNA were separately diluted 

in OptiMEM transfection medium to add up to a total volume of 45µl, each. These mixtures 

were incubated at room temperature for 5 minutes. The LipofectamineTM2000 solution was 

then mixed with the mRNA solution, followed by another 20 minutes of incubation at room 

temperature. Please note that the microchannels were never empty during all subsequent 

rinsing steps: Immediately before transfection, the cells were washed with PBS. Finally, the 

lipoplex solutions containing different mRNAs constructs were filled into the six channels. All 

five different mRNA constructs plus the reference construct could thus be measured under 

the same experimental conditions. The cells were incubated in a total transfection volume of 

90µl at 37°C (5% CO2 level) for one hour. The transfection medium was thereafter removed 

and the cells were washed with PBS. Subsequently, the cells were re-incubated with 

Leibovitz’s L-15 Medium containing 10% FBS before monitoring of d2EGFP expression. 

  



Data Acquisition and Quantitative Image Analysis  

Live-cell imaging was performed on a motorized inverted microscope (Nikon, Eclipse Ti-E) 

equipped with an objective lens (CFI PlanFluor DL-10×, Phase1, N.A. 0.30; Nikon) and with a 

temperature-controlled mounting frame for the microscope stage. To acquire cell images, we 

used a cooled CCD camera (CLARA-E, Andor). A mercury light source (C-HGFIE 

Intensilight, Nikon) was used for illumination and a filter cube with the filter set 41024 

(Chroma Technology Corp., BP450-490, FT510, LP510-565) was used for d2EGFP 

detection. An illumination shutter control was used to prevent bleaching. Images were taken 

at 10 fold magnification with a constant exposure time of 600 ms at 10 minute-intervals for at 

least 25 hours post-transfection. Fluorescence images were consolidated into single-image 

sequence files.  

Quantitative analysis of characteristic parameters of single-cell expression kinetics allows the 

comparison of various vector performances in terms of expression efficiency and stability. 

Image analysis consisted of several steps and was done using in-house-developed software 

based on ImageJ. First, a rectangular grid was overlaid with the original time-lapse movie 

and adjusted to the size and orientation of the underlying cell-pattern. Next, the software 

automatically detected d2EGFP-expressing cells by reading out the fluorescence intensities 

of all squares. Unoccupied squares were used for background correction. The software 

calculates the cells’ fluorescence over the entire sequence and connects corresponding 

intensities to time courses of the fluorescence per cell. Finally, single-cell fluorescence 

intensities per square were extracted.  

Data were then analyzed as described recently  by fitting each time-course with the analytical 

solution for mRNA-induced protein expression,  
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,           Equation 1 

using IgorPro software. Here, G denotes the amount of protein, K is the expression rate, δ is 

the mRNA degradation rate, and β is the degradation rate of the reporter protein d2EGFP. A 

schematic representation of the simplistic model assumed for mRNA-induced protein 

expression can be seen in Figure 3C. 

  



 

Figure 1 Fluorescence microscopy and flow cytometry data of A549 cells 

A) Schematic illustration of therapeutic mRNA, consisting of a 5’ CAP, a 5’ UTR, an encoding 

region, a 3’ UTR and a poly-A tail. 

B) Fluorescence microscopy pictures taken with 4-fold magnification (JULYTM) at 24 hours 

post-transfection. All constructs showed improved protein expression levels as compared to 

the control. 

C) The percentage of d2EGFP positive cells as determined by FC is similar for all constructs. 

Propidium iodide was used to detect dead cells. The applied gates ensured exclusion of 

dead cells and untransfected cells. 

D) At 48 hours post transfection, sustained protein expression was higher for the stabilized 

constructs as compared to the control. 

  



 

Figure 2 Time courses of protein expression as determined by FC 

Mean fluorescence intensities are plotted versus time in a semi-logarithmic plot. With 

increasing time post transfection, the elevated protein expression levels of the stabilized 

constructs become more and more evident. The green, red and blue lines correspond to the 

control/5’UTR/3’UTR constructs, respectively. The black lines correspond to the constructs 

that are shown on the right hand side in the order of appearance.   

  



 

Figure 3 Microstructured multi-channel slides for parallel single-cell assays to test 

differently stabilized mRNA constructs 

A) Cell-adhesive, microstructured protein patterns with cell-repellent PEG areas in between 

allow ordered cell arrangement. Fluorescently labeled fibronectin was used to visualize the 

micropattern. 

B) Fluorescent A549 cells adhering to fibronectin patterns inside a microchannel (three hours 

after seeding). C) Schematic drawing of mRNA lipofection (on the left) and reaction scheme 

underlying our analytical solution (on the right). 

D) Exemplary time courses of mRNA-mediated d2EGFP expression in A549 cells. Red lines 

are representative fits to the theoretical translation model.  

  



 

Figure 4 Distributions of expression rates K, mRNA-Life times, and d2EGFP-life times 

and corresponding mean values with schematic representations of the constructs 

A) Distributions of expression rate K, which is the product of the initial number of mRNA 

molecules and the translation rates. The fact that the distributions are similarly shaped 

indicates that the transfection kinetics and the translation rates are very similar.  

B) The distributions of the mRNA half-lives show great variations in their broadness. As a 

guide to the eye, dotted lines indicate the mean half-life of the control.  

C) Distributions of d2EGFP half-lives. As expected, the distributions of the different 

constructs are similarly shaped and show comparable mean values. As a guide to the eye, 

the overall mean half-life of d2EGFP based on all measured half-lives is shown as a dotted 

line. 

D) Mean values and the corresponding standard deviations (std) of the fitted rates. Although 

the control construct yields high mean K values in both cell types, the short mRNA half-life of 

this construct leads to small AUC values as compared to the stabilized constructs. This can 

be seen in Figure 6.  

Schematic representations of the constructs can be seen on the right hand side. All 

constructs have the same 5’cap and a poly(A) tail. Data from 895 single A549 and 1355 Huh 

7 cells were analysed.  



 

Figure 5 Mastercurves of the different constructs 

Population averages of A549 (A) and Huh7 (B) cells with the onset time shifted to zero. The 

green, red and blue curves correspond to the control/5’UTR/3’UTR constructs, respectively. 

The black curves correspond to the constructs on the right hand side. Intensities were 

assigned to actual numbers of d2EGFP by calibration as described before (26).   



 

Figure 6 AUC and mRNA life time prolongation factors of the different constructs 

A) Schematic representation of the AUC to illustrate the interplay between mRNA translation 

and degradation of mRNA and protein  

B) and C) AUC of the different constructs as analysed for    . Crosses show relative 

AUCs of different experiments, the bars correspond to the mean of all single-cell AUCs. 

D) and E) mRNA life time prolongation factors. All modifications result in prolonged mRNA 

life times as compared to the control. Similar trends are observed in A549 (D) and Huh7 (E) 

cells.  



Supplementary Information 

Table S1: Secondary structures (mfold) 

 

In Table S1, features of the mRNA constructs such as free minimum energy (∆G) and 

secondary structures found at both ends and within the UTRs are listed. The folding platform 

mfold was used to predict mRNA secondary structures (34).  For each construct, we 

compared the eight secondary structures that have the highest free energy. The highest free 

energy values are predicted for the 2x3’ UTR and the 3’ UTR constructs. The 5’ end of each 

mRNA construct partially binds with the 3’UTR or the 5’UTR, except for the control construct, 

which binds to the coding sequence (cds). Interestingly, the 5’ end of the 2x3’ mRNA 

construct forms a stabilizing hairpin with itself. However, hairpin loops near 5’end can also 

hinder protein translation (33).  Another feature was found in the 3’ end of the 3’ UTR and 

5’+3’ UTR mRNA constructs: There, the 3’ end binds with the 5’ end, minimizing the distance 

from each other and thus enabling faster initiation of translation. Unlike the 5’UTRs, the 3’ 

UTR of each mRNA construct forms at least one hairpin with itself. 

  

d2EGFP  ∆ G 5'end 3' end 5' UTR 3'UTR 

control -358,9 

partial binding with 

cds (8/8) loose (8/8) none none 

5' 

CYBA -375 

partial binding with 

5' CYBA UTR (7/8) loose (8/8) 

binds with cds 

(6/8) none 

3' 

CYBA -411,6 

partial binding with 

3' CYBA UTR (8/8) 

binds with 

5'end (4/4) none forms one hairpin (7/8) 

5'+3' 

CYBA -405,7 

binds with 3' CYBA 

UTR (3/8) 

binds with 

5'end (4/4) 

binds with 3' 

CYBA UTR (4/8) forms one hairpin (7/8) 

5'+2x3' 

CYBA -437,7 

binds with 3'UTR 

(8/8) loose (8/8) 

binds with 3'UTR 

and gene (6/8) 

1st 3'UTR: hairpin;  

2nd 3'UTR: hairpin 

(7/8) 

2x3' 

CYBA -444,1 

binds with itself and 

forms hairpin (8/8) loose (7/8) none 

1st 3'UTR: hairpin;  

2nd 3'UTR: two 

hairpins (3/8) 



 Table S2: Human CYBA and its UTRs 

Untranslated region   
  
   

 

DNA sequence (from 5’ to 3’) 

5‘  
 

CGCGCCTAGCAGTGTCCCAGCCGGGTTCGTGTCGCC 

3‘ CCTCGCCCCGGACCTGCCCTCCCGCCAGGTGCACCC  

ACCTGCAATAAATGCAGCGAAGCCGGGA 

 

Table S2 shows the exact genetic code of the human CYBA gene UTRs. DNA sequences 

are shown from the 5’ to the 3’ end. The poly-adenylation signal (PAS) of the 3’ UTR is 

shown in bold letters and the insulin 3’UTR stability element (INS_SCE) is underlined. The 5’ 

UTR consists of 36 base pairs, whereas the 3’ UTR contains 64 base pairs. Both UTRs are 

shorter than average human UTRs, which consist of around 200 nucleotides in the case of 

5’UTRs and approximately 1000 nucleotides in the case of 3’UTRs. 

  



Transfection efficiencies on microstructured substrates  

The percentage of successfully transfected cells was assessed to compare two different 

transfection agents and to ensure that transfection efficiencies were not hampered by 

microstructured cell growth (see Figure S1). Here, all cells grew on microstructured protein 

arrays. We obtained higher transfection efficiencies for LipofectamineTM2000 as compared to 

DOGTOR. Using a commercial Live/Dead cell viability assay (Molecular Probes, Germany), 

we found high cell viability rates above 80% (data not shown). 

 

 

Figure S1 Transfection efficiencies on microstructured substrates 

Percentage of transfected cells and corresponding standard deviations for A549 cells 

and Huh7 cells transfected with SNIM RNA with help of LipofectamineTM2000 or 

DOGTOR. We find higher transfection efficiencies for cells transfected with 

LipofectamineTM2000. 

  



Area under the curve (AUC) 

Assuming biochemical rate equations for translation and degradation, the amount of 

expressed protein after mRNA transfection can be written as 
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  (Equation 1 of the main text). 

The cumulative efficacy of an mRNA, known as the AUC, can then be calculated for long 

times (    ) as follows: 

           
 

   
                 

 

   
            

 

 

   

   

 

This can be rewritten as 
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Hence, the expression of a therapeutic protein after mRNA transfection can be interpreted as 

a trade-off between translational efficiency and degradation as illustrated in Figure 3 C of the 

main text. 

The single-cell AUC distributions can be seen in Figure S2. Because the AUC depends 

linearly from the mRNA and protein life times, the single-cell AUC distributions are closely 

related to the mRNA and protein half-life distributions that are shown in Figure 4B and 4C of 

the main text.  



 

Figure S2 Distribution of the single-cell AUCs  

  



Degradation rate of the reporter protein 

To check the fitted d2EGFP degradation rates, we independently measured the degradation 

rate of d2EGFP inside A549 and Huh7 cells in microstructured six-channel slides. Protein 

synthesis was blocked by the antibiotic cycloheximide, which interferes with peptidyl 

transferase activity (35). Single-cell fluorescence intensity time courses were monitored for 

approximately 20 hours (see Figure S3). Control experiments ensured that the decrease in 

fluorescence intensity was not due to photobleaching of the chromophore. Single-cell time 

courses were fitted by a single exponential fit, yielding distributions of protein degradation 

rates. The mean degradation rates were found to be 0.28/h (std 0.08/h) in A549 cells and 

0.17/h (std 0.08/h) in Huh 7 cells, corresponding to protein life times of 2.46 hours and 

4.04 hours, respectively. Although these life times are significantly shorter than the life times 

as determined by single-cell time course analysis of mRNA mediated protein expression, the 

ratio between the mean life times of d2EGFP inside Huh7 and A549 cells is the same 

(4.04h/2.46h=1.64 as measured by translational blocking as compared to 7.4h/4.5h=1.64 as 

determined by fitting the analytical solution for mRNA expression). 

 

 

Figure S3 Distributions of directly measured d2EGFP half-lives  

A) Exemplary time courses of cycloheximide-induced d2EGFP degradation in Huh7 cells. 

Red lines are simple exponential fits for protein degradation. 

B) Distribution of d2EGFP half-lives measured in A549 cells, yielding a mean half-life of 

2.46 hours (std 0.71 h). 

C) Distribution of d2EGFP half-lives measured in Huh7 cells, yielding a mean half-life of 

4.04 hours (std 1.82 h). 

  



 

Figure S4 Fluorescence microscopy and flow cytometry data of Huh7 cells 

A) Fluorescence microscopy pictures taken with 4-fold magnification (JULYTM) at 24 hours 

post-transfection. All constructs showed improved protein expression levels as compared to 

the control. 

B) The percentage of d2EGFP positive cells as determined by FC is similar for all constructs. 

Propidium iodide was used to detect dead cells. The applied gates ensured exclusion of 

dead cells and untransfected cells. 

C) At 48 hours post transfection, sustained protein expression was higher for the stabilized 

constructs as compared to the control. 
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5 Predictive modeling of mRNA lipofection

Predictive modeling is highly likely to take its place in future mainstream biological research. The
integration and evaluation of quantitative experimental data and the subsequent integration of
such information into the model allow the generation of predictions and a focusing of experimental
directions. Figure 5.1 illustrates the interplay of experimental data and theory in the context of
predictive modeling approaches.

Predictive modeling Experimental biology

Model Experiments

Simulation Data

Comparison

Refine experimentsAdjust model

Figure 5.1: Methodology of predictive modeling. Quantitative data are provided by experimental
biology and compared to the outcome of simulation runs of the model to test hypotheses as well as to
optimise and refine both the model and the experiments’ design. (Adapted by permission from Macmillan
Publishers Ltd: Nature Biotechnology [106], copyright 2007)

The following publication P2 reports on this multi-level kinetic model, which covers the cooperative
effects of vectors during cellular uptake. Because the predictive power of a model highly relies on
experimentally substantiated, quantitative data, we used continuous, long-term quantitative time-
lapse microscopy and single-cell time course analyis as a basis. This mRNA transfection model is
an extension of the model that was introduced in P1 [54]. In the refined version, the lipoplexes are
compartmentalised and varying numbers of lipoplexes are allowed per endosome. However, lipoplex
unpacking and degradation inside endosomes is not covered by the model but proposed for a future
model refinement. Deterministic simulations are compared with stochastic Monte Carlo simulation
on the basis of the Gillespie algorithm, which was a first stochastic formulation of chemical kinet-
ics [156]. Our model covers the multi-level nature of the lipoplex pathway in mRNA lipofection.
Unlike existing models, it explicitly reflects the compartments that are involved in the transfer
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Figure 5.2: Dose-dependent cell viability rates of A 549 and Huh 7 cells. Cell viability, as reflected
by the percentage of intact cells, suffers from increasing amounts of the cationic helper lipid and toxic
effects caused by protein-overexpression. Mean values and standard deviations of triplicates (n=10000)
are shown.

process. Our approach was to generate simulated time courses of protein expression on the basis
of the model, which comprises the delivery as well as the expression phase of mRNA transfection.
Thereby obtained in silico-data were treated in exactly the same way as experimental data, i.e.
resulting time courses were fitted using the analytical solution of the biochemical rate equations
as described in [54]. Subsequently, parameter optimisation was done on the basis of the resulting
distributions of both onset times and expression levels, as well as the simulated dose-response curve.
A simulated annealing algorithm, which is a standard technique for parameter optimisation, was
used. The name of this global optimisation method is inspired by the slow cooling processes in
metallurgy, termed annealing. In the algorithm, this slow temperature decrease is reflected by a
slow decrease of the probability of accepting inferior solutions while searching the parameter space.
The fact that such worse solutions are occasionally accepted by the algorithm ensures that the en-
tire solution space is sampled, yielding global optima. Hence, the simulated annealing algorithm is
not gradient-based nor influenced by the initial parameter guess and thus well-suited for parameter
optimisation of stochastic simulations like ours. We employed known rate-constants to reduce the
number of free parameters. The remaining five kinetic rates were then fitted and optimal agreement
of simulated and experimental data was achieved.
It should be mentioned that toxic effects with increasing mRNA dose, which can be seen in figure
5.2, are not covered by our model or other existing models. The percentage of intact cells decreases
with increasing amounts of expressed protein and helper lipids. An excess of lipoplexes signifi-
cantly compromises cell viability, which for example has been observed for pDNA lipoplexes in a
different type of cells [157]. As a consequence, the direct comparison of experimental and simulated
transfection efficiencies at high doses is rather delicate. Also, our model can only release whole
packages of mRNA, which most likely is not a realistic scenario. However, regardless of the chosen
model, some parameters inherently have to be approximated. Our study demonstrates the power
and limits of existing toolboxes for biological modeling and their potential to ultimately enhance
the communication between experimentalists and theoreticians.
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A future, refined model that allows lipoplex unpacking and degradation of mRNA inside endosomes
could be used to test hypotheses such as the assumption that longer mRNA life times result in more
mRNA molecules surviving the endosomal phase and hence increasing transfection efficiencies and
protein expression levels. For corresponding experiments, differently stabilised mRNA constructs
as used for the study of chapter 4 could be employed.

The results of this project are presented in the following publication P2.



72 5. PREDICTIVE MODELING OF MRNA LIPOFECTION



5.1 Associated publication P2 73

5.1 Associated publication P2

Multi-Level Kinetic Model of mRNA Delivery via Transfection of
Lipoplexes

By

Thomas S. Ligon, Carolin Leonhardt, Joachim O. Rädler

published in
PLoS ONE 9(9): e107148, 2014.
doi: 10.1371/journal.pone.0107148

Published under CC BY license. Copyright 2014 Thomas Ligon et al..



Multi-Level Kinetic Model of mRNA Delivery via
Transfection of Lipoplexes
Thomas S. Ligon*, Carolin Leonhardt, Joachim O. Rädler
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Citation: Ligon TS, Leonhardt C, Rädler JO (2014) Multi-Level Kinetic Model of mRNA Delivery via Transfection of Lipoplexes. PLoS ONE 9(9): e107148. doi:10.
1371/journal.pone.0107148

Editor: Roeland M.H. Merks, Centrum Wiskunde & Informatica (CWI) & Netherlands Institute for Systems Biology, Netherlands

Received March 22, 2014; Accepted August 14, 2014; Published September 19, 2014

Copyright: � 2014 Ligon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via project B1 within the SFB 1032, the Excellence Cluster ‘Nanosystems
Initiative Munich (NIM)’, and FP7 EU grants NanoTransKinetics and Nano-MILE. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: Thomas.Ligon@physik.uni-muenchen.de

Introduction

Quantitative analysis of transfection is important for gene

therapy involving plasmid DNA and mRNA, as well as high-

throughput screening (HTS) and siRNA research [1–4]. For this

reason, it is important to know more about the kinetics and dose-

response relationship for delivery of genes and RNA-based nucleic

acid constructs and to understand the common principles that

underlie nucleic acid pharmacokinetics in any given cell type.

Many studies have collected quantitative data on the uptake and

pathway of gene carriers [5–10] and the physico-chemical

characterization of cationic lipoplexes and polyplexes has been

reviewed extensively [11–17]. In the last few years, first theoretical

considerations modeling the uptake and pharmacokinetics of

lipolexes using biochemical reaction kinetics have been undertaken

[18–20]. Some specialized models also address the spatial

distribution and active transport along microtubules [21]. The

stochastic nature of in the delivery process has been investigated

for nanoparticles [22] and for plasmid DNA [23]. The use of

movies for the analysis of single-cell tracking experiments has been

reviewed [24]. For modelling of biological systems in general,

there is an emerging set of tools in the context of systems biology,

including a new generation of computational methods, such as

process calculi and ‘‘executable biology’’ [25]. In fact, many

biological reactions require addition of stochastic modeling as well

as spatial aspects that go beyond reaction and diffusion [26]. For

example, endosomes contain lipoplexes and lipoplexes contain

mRNA molecules, and this can lead to a combinatorial explosion

in the number of variables and equations. The transfection process

requires the use of modeling techniques that have not been used

often, because substances can be contained in each other.

The problem of multi-level modeling has been treated in many

investigations and tools. Systems Biology Markup Language

(SBML) [27] and tools based on it, for example Cell Designer

[28] and Copasi [29], include the concept of compartments, which

contain species, but the compartments are only containers that

cannot support reactions of their own. First attempts to allow

modelling with compartments include the process calculus Pi

Calculus [30–35] and tools based on it, such as BioAmbients [36],

Beta-Binders [37–39] and the Stochastic Pi Machine SPiM [40].

In addition, the ‘‘rules-based’’ language BioNetGen Language

BNGL [41] and tools based on it, such as NFsim [42], contain

some very explicit methods for handling nested structures. One

example where these techniques were used is a model for the

uptake of nanoparticles is the work by Dobay et al. using SPiM

[43], which also demonstrates the need for multi-level modeling in

many situations involving nanoparticles.

Recently, we showed that quantitative analysis of transfection at

the single-cell level makes it possible to analyze the stochastic aspects

of transfection quantitatively [23,44]. The single cell exhibits time

courses that are characterized by a distinct delay time before the

onset of expression, a phase of GFP increase and finally a steady

state level. We showed that the distribution of steady-state levels was

related to the number of successfully delivered plasmids and well

described by an analytical model [23]. In the same spirit, we

analyzed the transfection of mRNA, which is more homogeneous
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and earlier compared to pDNA [45,46]. However, there is yet little

understanding regarding the kinetics of mRNA delivery. It is

generally accepted that mRNA lipoplexes are taken up via clathrin-

dependent endocytosis [47]. Existing models for RNA delivery

sometimes include a single ‘‘internalization’’ reaction, but that is not

sufficient for reproducing the data created by single-cell tracking

experiments. In particular, there is no kinetic model for the delivery

of mRNA that explicitly takes the compartments of the transfer

process into account.

Here we present a mathematical model, based on mass-action

kinetics, which describes the uptake of mRNA lipoplexes via

endocytosis and endosomal lysis. Our goal was to create a kinetic

model that reproduces experimental data, especially the distribu-

tion of time courses, and supports predictive modeling. While the

investigation of plasmid DNA [23] provides some background and

motivation, this model was based solely on the data published on

the experiment with mRNA [44]. We demonstrate that the uptake

kinetics is well described by a stochastic, mass action based model

that accounts for uptake of multiple lipoplexes. We solve the

problem of parameter estimation by choosing well-known rate

constants from literature and keeping five kinetic rates free, which

we optimize to meet the constraints of the experimental

transfection statistics and measured onset time distribution by

using a simulated annealing algorithm. As such, the model yields

uptake behavior that reproduces the experimental data and is

capable of predicting behavior beyond the experimental param-

eter regimes. The model also demonstrates the need for modeling

of nested species as well as modeling kinetic reactions in a

stochastic version in order to reproduce the shape of the dose-

response and expression-level curves, and the need to include the

maturation step in order to reproduce the variance of the onset-

time distribution. The benefit of predictive modeling and the

known limitations of the model are discussed.

Model Description

Streamlined Model
We model mRNA transfection by a sequence of mass-action

type chemical reactions (shown in Figure 1), which can be divided

into the delivery of lipoplexes and the GFP expression via the

mRNA released.

The delivery phase is described by the following ODEs:

dLex

dt
~{kALex{kW Lex ð1Þ

dP

dt
~zkALex{kEP ð2Þ

dE

dt
~zkEP{kLE{dEE ð3Þ

dLin

dt
~zkLE{kU L{dLL ð4Þ

dM

dt
~z350kU Lin{dMM ð5Þ

Where Lex is the concentration of external lipoplexes, kA is the

rate at which lipoplexes attach to the cell surface, kW is the

washing rate, which is equal to zero at first and jumps to a high

value after the incubation time or normally one hour, P is the

concentration of clathrin-coated pits (i.e. number per cell), kE is the

rate of endocytosis, E is the concentration of endosomes (i.e.

number per cell), kL is the rate of lysis of endosomes, dE is the rate

of endosome degradation, Lin is the concentration of internal

lipoplexes, kU is the rate of lipoplex unpacking, dL is the rate of

degradation of lipoplexes, M is the concentration of mRNA, kU is

the rate of unpacking of lipoplexes, and dM is the rate of

degradation of mRNA. The degradation of endosomes is primarily

a model parameter to represent endosomes that are never

observed to lyse, and includes mRNA degradation in the

endosome.

The expression phase is described by the following ODEs, plus

equation (5), which includes mRNA degradation:

dG

dt
~zkTLM{kM G{dGG ð6Þ

Figure 1. Diagram of the streamlined transfection model. External (extracellular) lipoplexes attach to the surface of the cell, forming clathrin-
coated pits, which enter the cell via endocytosis, leading to the formation of endosomes, which either lyse or degrade. This puts the lipoplexes into
the cytosol, where they unpack, releasing the mRNA, which translates to unfolded GFP molecules, which then mature (folding and oxidation), to
produce active GFP. In addition to the endosomes, the lipoplexes, mRNA, immature and mature GFP are all degraded at set rates.
doi:10.1371/journal.pone.0107148.g001

mRNA Delivery Model
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dG�

dt
~zkM G{dGG� ð7Þ

Where G is the concentration of immature (unfolded) GFP, kTL

is the rate of translation, kM is the rate of maturation (folding and

oxidation), dG is the rate of degradation of both immature and

mature GFP, and G* is the concentration of mature GFP. The

reaction rates are documented in Table 1.

This first model shows a very linear progression of single

lipoplexes attaching to and entering the cell, but we know from

experiment that endosomes can contain multiple lipoplexes, so we

need to address that and allow for endocytosis of multiple

lipoplexes per endosome. This means that we will have multiple

levels of containment.

Multi-Level Modeling
The solution to the complexity that arises from multiple levels of

structure is a key aspect of the model shown in Figure 2, so we will

describe it here in very general terms. For readers who are

interested in more detail, the File S1 contains the code of all

versions of the model.

The initial condition of external lipoplexes provides a first

example of this. In ordinary differential equations, we would use

the name of the lipoplexes (Lext or Lex) as a variable in the

equations. This variable refers to the concentration of lipoplexes,

or, equivalently, the number of particles in a given volume. In an

SBML-based [27] tool, this is also called a species. Now the

problem here is that the lipoplexes come in different sizes, based

on the number of mRNA molecules they contain. In the current

experimental situation we are modeling, the lipoplexes have a

mean diameter of 120 nm and a standard deviation of 10 nm.

This size was determined by fluorescence correlation spectroscopy

(data not shown). When we additionally take the packing density of

the lipoplexes into account, this size corresponds to a mean of 350

mRNA molecules per lipoplex and lipoplex sizes ranging from 270

to 445 mRNA molecules. See Supplementary data of Leonhardt

et al. [44] for a detailed description.

There are three solutions to this problem. First, we can use a

tool in which we can include a parameter for the size of the

lipoplex. In other words, we can write Lext(n), where n is the

number of mRNA molecules, and use that in the model. Second,

as an alternative, we can simply list all possible values of the size as

separate species, e.g. Lext270, Lext271 … Lext445. Finally, we

can apply a key simplification and assume that all lipoplexes

contain exactly 350 mRNA molecules.

Next, we need to consider the endosomes. Our experience with

both experimental data and modeling shows us that each

endosome can only contain a small number of lipoplexes, and

we are safe when we set this to an arbitrary maximum of 10. In

addition, each of those lipoplexes can contain anywhere from 270

to 445 mRNA molecules. In order to list all of these cases, we

would need more than 17510 different variables (or species),

something that is clearly impossible.

The key simplification in this paper, assuming that all lipoplexes

have the same size, along with listing all possible endosome sizes,

makes it possible to formulate the model in SBML and use Copasi

to run the simulations. We have also evaluated the use of other

tools and present those results here, for the benefit of experts in

those tools and modeling techniques in general. The second

implementation uses Pi-Calculus-based SPiM and preserves full

Table 1. Rates.

A parameters, fitted (optimized) and fixed

role goal (exp.) streamlined with
slow maturation

multiple-lipoplex
with fast maturation

multiple-lipoplex with
slow maturation

literature

kA (attach) fitted .03 0.26 0.27 0.006–0.5 [20,21,59]

kE (endocytosis) fitted .8 0.73 0.81 0.16–0.5 [20,21,59]

kL (lysis) fitted .065 0.10 0.11 0.001–0.96 [20,21,59]

kM (maturation) fitted or
fixed

5.5 9.23 5.5 0.5–9.23 [48,60–63]

dE (endosome degradation) fitted 0.65 0.60 0.67 n.a.

kU (unpack) fixed 1e+06 1e+06 1e+06 n.a.

dL (lipoplex degradation) fixed 1e–06 1e–06 1e–06 n.a.

kTL (translation) fixed 170 170 170 170 [44]

dM (mRNA degradation) fixed 0.062 0.062 0.062 0.062 [44]

dG (GFP degradation) fixed 0.056 0.056 0.056 0.056 [44]

B experiment vs. simulation

TE (transfection efficiency) target 40 44 36 38

LC (lipoplexes on cell) target 6 6.43 6.02 6.03

maxGFP target 7.09e+5 4.32e+5 4.91e+5 5.34e+5

t0-mean target 3.14 3.36 3.49 3.23

t0-width target 1.54 1.72 2.05 1.65

A) The table shows the rate constants used by the simulation. During optimization, kA, kE, kL, and dE were varied, and kM was varied in one case. Column ‘‘streamlined
with slow maturation’’ is the streamlined model with kM = 5.5 fixed. Column ‘‘multiple-lipoplex with fast maturation’’ is the multiple-lipoplex model with kM = 9.23 fixed
to the value from literature. Column ‘‘multiple-lipoplex with slow maturation’’ is the multiple-lipoplex model with kM varied (optimized). The literature values are
described in more detail in the File S1. B) The last 5 rows are the experimental data used as a goal in optimization.
doi:10.1371/journal.pone.0107148.t001
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complexity, except that we used a smaller width for the lipoplex

size distribution in order to keep the code smaller. The variable

sizes of the lipoplexes are kept throughout their lifetime, and the

variable sizes of pits and endosomes are represented by listing all

possible values, due to limitations in formulating reactions of

parameters in SPiM (as opposed to processes). The third version

uses the rule-based language BioNetGen Language (BNGL) in the

tool NFsim, and exposes a limitation that prevents us from using a

parameter (such as the number of mRNA molecules in a lipoplex)

in a reaction without setting it to an explicit value.

Multiple-Lipoplex Model
The multiple-lipoplex model (Figure 2) follows the lines of the

streamlined model (heavy arrows), but also includes the formation

of clathrin-coated pits that include multiple lipoplexes.

The delivery phase is described by the following ODEs:

dLex

dt
~{kAX Lex{

X9

i~1
kAX LexPi{kW Lex ð8Þ

dPi

dt
~zkAX Lex{kAX LexPi{kEPi ð9Þ

dPiz1

dt
~zkAX LexPi{kAX LexPiz1{kEPiz1

i~1:::9

ð10Þ

dEi

dt
~zkEPi{kLEi{dEEi

i~1:::10

ð11Þ

dLin

dt
~z

X10

i~1
ikLEi{kU Lin{dLLin ð12Þ

and equation (5) from above, where Pi is the concentration of

clathrin-coated pits of size i, i.e. containing i lipoplexes, Ei is the

concentration of endosomes of size i, and the new rate of

attachment is kAX calculated by dividing kA by the number of pits

plus one, in order to assure a constant rate of attachment even

when the number of pits increases. All other symbols are the same

as in the streamlined model.

The expression phase is described by the same ODEs as in the

streamlined model, (5), (6), and (7).

This model, in contrast to the streamlined model, includes

different-sized lipoplexes, with their sizes preserved through all

reactions up to unpacking. This seemingly easy extension allowing

variable lipoplex sizes and variable endosome sizes leads to a

severe combinatorial explosion of species and reactions. For the

analysis included in this paper, we have avoided a large part of this

issue by assuming that all lipoplexes have the same size. This is a

very significant simplification, but nevertheless allows fairly good

simulation results, and makes it possible to run simulations both

deterministically and stochastically, and also to run parameter

estimation.

We created 3 implementations of the model. The first is written

in SBML, was run in Copasi, and assumes a very significant

simplification (all liposomes have the same size); it was used for the

analysis in this paper. The second is written in Pi Calculus and was

run in the Stochastic Pi Machine (SPiM), and includes a limited

example of variable-sized lipoplexes. The third is written in BNGL

and was tested in NFSim.

Parameter Optimization
In order to compare the model to the experimental data, the

best values need to be found for the five parameters that have been

left free, such as the rate of endocytosis. This requires adjusting the

model to best fit the five experimental determinants, such as the

dose-response relationship. However, since the experimental data

Figure 2. Diagram of the multiple-lipoplex transfection model. This includes the same processes as in the streamlined model, except that
here the clathrin-coated pits and the endosomes can contain multiple lipoplexes.
doi:10.1371/journal.pone.0107148.g002
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is based on single-cell tracking, it includes the variance of the

distributions of multiple time courses. As a result, each attempt to

find a better value for the parameters requires two steps: First, it is

necessary to run the simulation many times (typically 1,000–5,000)

and second, to compare the distributions with the experimental

data. In all cases where we compare simulation data to

experimental data, we use the same analytical model for the

expression phase and the same fitting procedures for both data

sets, in order to make a good comparison between simulation and

experiment, as reported in [44].

Since we are optimizing a stochastic model, we have chosen to

use the simulated annealing algorithm. This algorithm chooses a

new set of values for the parameters, based on random numbers,

then runs the two steps of simulation and analysis described above,

and compares the results with the experimental data. The

comparison involves the current value of a ‘‘temperature’’ variable

and the Boltzmann function in order to allow the algorithm to

move away from local optima that may not be globally optimal.

The first two parameters in the model are the initial

concentration of external lipoplexes and the incubation time (time

until the cells are washed). These parameters are not part of the

optimization process, since they are determined by experiment,

but they do appear in the plots we have created of the dose-

response relationship and incubation dependency, which we also

compare with experimental data. In addition, we have varied these

parameters as part of predictive modeling.

The parameters in the optimization process are the rates of

attachment, endocytosis, and lysis, along with the rate of

endosome degradation, plus the rate of GFP maturation. We

optimize these five parameters to match five data points from the

experimental data: The number of lipoplexes that attach to the cell

surface (4–8), the dose-response curve (transfection efficiency vs.

dose), the mean and variance of the onset time of GFP expression

are as reported in [44], and the mean maximum GFP expression

level. This gives us a good estimate of these five parameters.

The remaining parameters that need optimization are thus the

rates of lysis and unpacking. Currently, we don’t have a way to

distinguish between delays caused by lysis vs. unpacking, so we set

unpacking to be immediate. In addition, we assume no negligible

degradation of lipoplexes, so we set that rate to a small number.

The values of all parameters, both fixed and fitted, are

documented in Table 1. Due to the significant simplifications

involved in the model, and the inherent ‘‘sloppiness’’ of models

with this many parameters, we do not consider the parameters to

be accurate measurements of the real values. The value of the

model is demonstrated more by its overall performance and

matching with the experimental data.

Model Implementations
The formulation of the SBML implementation of the model is

based on reactions, and is a very straightforward step from the

reactions documented here. The only difference is the fact that

some species are listed, such as End1…End10, instead of the

subscripted notation Endi i = 1…10 used in the documentation.

The Pi Calculus implementation is discussed in the File S1. This

implementation of the model, which was run in SPiM, deals with

the variable lipoplex size by including the size as a parameter in

the process. It is an implementation of the model in Pi Calculus

where the number of lipoplex sizes (the width of the lipoplex size

distribution) is restricted to 11, even though 175 is required. This

model was run and produced the same data as the Copasi model

with only 1 lipoplex size.

The BNGL implementation is discussed in the File S1. This is a

prototype of an implementation of the model written in BNGL

and run in NFSim. This implementation does not cover enough of

the model to produce useful data.

Results and Discussion

Time Courses
Since we are dealing with low copy numbers in the first parts of

the transfection process, we need to account for the stochastic

nature of them, and see how that compares with a more traditional

solution to the equations. Figure 3 shows time courses created by

deterministic simulation, i.e. by numerical solution of the

differential equations in the green dotted line, and a typical

example of time courses created by stochastic simulation, i.e. using

Monte Carlo simulation via the Gillespie algorithm in the red full

line. The important message in this figure is the very significant

difference between deterministic and stochastic simulations. Due

to the low copy numbers involved (except for GFP), the

deterministic plots are not good representations of the biological

reality, and they do not necessarily represent the average behavior

of the stochastic simulations. However, they are sometimes useful

for running early steps in the parameter estimation task. Figure 3A

shows the number of lipoplexes attached to the cell surface, which

grows rapidly until the cells are washed after 1 hour of incubation,

and then decays exponentially as they enter the cell. Figure 3B

shows the number of lipoplexes in endosomes, which demonstrates

how they enter and leave the endosomes. Figure 3C shows the

number of mRNA molecules, where our example of a stochastic

simulation shows that 1 lipoplex (containing 350 mRNA

molecules) has entered the cell; this can vary from 0 to about 5.

Figure 3D shows the number of GFP molecules, which first

increases after mRNA molecules appear and begin to translate,

then decreases due to degradation of both mRNA and GFP.

Now that we have set our focus on stochastic simulation time

courses, we would like to see how they compare with the

experimental data. Figure 4 is another visualization of the GFP

time course presented earlier. Figure 4A shows the simulation

data. The clustering of the absolute height of the curves results

from the fact that mRNA molecules are delivered in ‘‘packets’’, i.e.

lipoplexes of size 350. We consider this to be a result of the

simplification where we assumed all lipoplexes to contain exactly

350 mRNA molecules, even though the range (within one

standard deviation) goes from 270 to 445. This clustering behavior

was not observed in the experimental data. The horizontal axis

clearly shows the variation in the onset time, and the vertical axis

shows the variation in expression level (maximum GFP concen-

tration). These two distributions will be examined in more detail

below. Figure 4B shows the experimental data. In the plots, it

appears as though the absolute level of GFP expression differs by a

factor of 4. However, the value used for parameter optimization

was the mean of the maximum GFP expression level, and that is

7.16105 in the experiment and 5.46105 in the simulation. The

other values used for optimization varied much less (see Table 1).

The time for reaching a peak value in Figure 4B is not easy to see,

so we calculated the mean and variance of both distributions, and

found that both peak at about 20 hours with a standard deviation

of about 5.5 hours.

Simulation vs. Experiment
In order to compare simulation with experiment, probability

distributions of some of the key parameters are shown in Figures 5

and 6. In all cases, the experimental data refers to the data

published in [44]. Figure 5 shows the onset time of GFP

expression, which is defined as the first time where GFP can be

detected, and we have measured it by fitting the analytic solution
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of the expression kinetics to the experimental data and the

simulations using the same technique as in the original paper [44].

This makes it unnecessary to use an arbitrary threshold for GFP or

to use the simple slope of the curve to determine onset time. The

maturation reaction was not included in the original analysis in

[44], which means that the maturation delay was included in the

onset time there. The green dashed line kM = 9.23 (fitted

parameters 3.5 mean and 2.1 width), from literature [48], and

solid red line kM = 5.5 (fitted parameters 3.2 mean and 1.6 width),

as determined by our parameter optimization. The dotted blue

lines show the onset times of the experimental data (fitted with 3.1

mean and 1.5 width). The reason for the difference lies in the fact

that all reactions have a small copy number, and thus a large

stochastic variation, except for the maturation reaction. We know

that, for Poisson processes, the mean is proportional to the number

of reactants, and the width is proportional to the square root of the

number of reactants, and this number is on the order of 1–100 for

endocytosis, 1–100 for lysis, 1–100 for unpacking, 300–2000 for

Figure 3. Simulation Time Courses. Green dotted (red full) line: deterministic (stochastic) simulation. A) Number of lipoplexes attached to the cell
surface. B) Number of lipoplexes contained in endosomes. C) Number of mRNA molecules in the cell. D) Number of GFP molecules in the cell.
doi:10.1371/journal.pone.0107148.g003

Figure 4. GFP expression: simulation vs. experiment. A) Computer simulation. B) Experimental time courses.
doi:10.1371/journal.pone.0107148.g004
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translation, and 200,000–5,000,000 for maturation. In order to

match the experimental results, our optimization routine found a

maturation rate of 5.5 h21 or 11 min delay. In contrast, the rate of

kM = 9.23 (6.5 min) from literature produces a distribution that is

too wide. Maturation delays of 20 or 30 minutes also match the

experimental data well. This is within the range of published

EGFP maturation rates, which vary widely and go as high as a few

hours due to the time required for oxidation (more details in File

S1). This figure was created in the multiple-lipoplex model, but the

streamlined model shows exactly the same behavior, i.e. it is

capable of reproducing the experimentally-measured onset time

distribution, but also needs the maturation reaction to do so.

Now that we have seen the comparison of simulation and

experiment for the onset time of GFP expression, we need to look

at how much GFP is created in the cells. Figure 6A shows the

distribution of the maximum number of GFP molecules, as

determined by fitting the analytical solution of gene expression

(translation and degradation) to the data of simulation and

experiment. This is the value that we use to determine the level of

expression, and, along with the degradation rates, it uniquely

determines the time course of GFP expression. The dashed green

lines are from a simulation of the streamlined model (fitted with

4.3*105 mean and 0.47 width). The solid red lines are from a

simulation of the multiple-lipoplex model (fitted with 5.3*105

mean and 0.69 width). The dotted blue lines show the

experimental data (fitted with 7.1*105 mean and 1.1 width). We

can see that the simulation of the streamlined model misses the

experimental results significantly, which we attribute to the fact

that the streamlined model never transports more than one

lipoplex per endosome. In contrast to the streamlined model, the

multiple-lipoplex model allows a better match to the expression

level data. The use of lognormal curves to fit the simulation and

experimental data in Figure 6A is more than a convenient guide

for the eye; they provide a good representation of the data, since

the GFP expression is the result of multiple random processes.

Along with the maximum amount of GFP expressed, we are

also interested in seeing how the amount of GFP compares with

the dosage of lipoplexes, i.e. the concentration presented to the

cells. Figure 6B shows the dose-response relationship, defined as

transfection efficiency, i.e. percentage of cells that successfully

express GFP vs. concentration of mRNA. The green open

triangles are from the simulation of the streamlined model, and

the dashed green line is a single-Poissonian fit (fitted parameter

1.1). The open red circles are from the simulation of the multiple-

lipoplex model and the solid red line is a double-Poissonian fit

(fitted parameters 1.9 and 0.6). The solid blue squares are from the

experimental data and the dotted blue line is a double-Poissonian

fit (fitted parameters 1.1 and 0.9). In Figure 6B, we can see that

the simulation of the streamlined model is much too straight and

significantly misses the shape of the experimental results, which we

attribute to the fact that the streamlined model never transports

more than one lipoplex per endosome. In fact, the good fit of a

single Poissonian to the streamlined model is a clear indication

that one of the Poissonian processes, representing the number of

lipoplexes per endosome, is missing in this model. This process is

referred to as Leff in the original paper, and the process that is

included in the streamlined model is referred to as Neff [44], File

S1. The dose-response relationship for the multiple-lipoplex model

shows a reasonable fit to a double Poissonian and to the

experimental data, and is a big improvement over the streamlined

model.

Figure 5. Onset time of GFP expression (Simulation vs.
Experiment based on time courses shown in Figure 4). The
curves are Gaussian curves based on mean and variance of the full
distribution data (shown as a histogram). The dashed green lines show
the onset times for simulation with a maturation rate (kM) of 9.23 taken
from literature. The solid red lines show the onset times for simulation
with a maturation rate (kM) of 5.5. The dotted blue lines show the onset
times of the experimental data.
doi:10.1371/journal.pone.0107148.g005

Figure 6. GFP expression (Simulation vs. Experiment based on
time courses shown in Figure 4). A) Expression Level. Maximum
number of GFP molecules with histograms of the distributions and
lognormal fits of the histograms as curves. The dashed green lines are
from a simulation of the streamlined model. The solid red lines are from
a simulation of the multiple-lipoplex model. The dotted blue lines show
the experimental data. B) Dose-Response Relationship. Transfection
efficiency (TE) is the percentage of cells that exhibited a successful
transfection, based on GFP expression. The curve was determined by
varying the dosage (mg/ml) in the experiment, and the initial
concentration of lipoplexes in the simulation (Lex). The green open
triangles are from the simulation of the streamlined model, and the
dashed green line is a single-Poissonian fit. The open red circles are
from the simulation of the multiple-lipoplex model and the solid red
line is a double-Poissonian fit. The solid blue squares are from the
experimental data and the dotted blue line is a double-Poissonian fit.
doi:10.1371/journal.pone.0107148.g006
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We can summarize these differences by observing that the

streamlined model is capable of reproducing the delay and

variance of the onset time of GFP expression, but the multiple-

lipoplex model is required to reproduce the dispersion of the data.

In other words, multi-level modeling is necessary for reproducing

the dispersion of the data, because it is the only model that

includes the second Poisson process discussed in the experimental

paper.

Predictive Modeling
The power of mathematical modeling is its capability to predict

the behavior of systems before running experiments. It is

instructive to test the outcome of our simulation for various

scenarios of practical relevance in our lab work. In the following,

the red circles show the transfection efficiency (percentage of cells

transfected) and the green triangles show the maximum GFP

expression level.

For determining the dosage presented to the cells, the

incubation time, i.e. the time until the cells are washed, plays an

important role. Figure 7A shows the transfection efficiency (TE)

and the maximal number of eGFP expressed (GFP) as a function

of incubation time. The model predicts a strictly linear relation of

incubation time and transfection efficiency. This outcome is due to

the fact that the model assumes a constant concentration of

lipoplexes in bulk and hence a constant diffusion-limited flux. Yet

we expect this dependence to be only observable in a very limited

time window avoiding saturation of the uptake capacity of the cells

as well as the depletion of the lipoplex pool. Most importantly,

however, the model does not account for increasing toxic side

effects that come with increasing dose.

In this model, the endosome degradation rate is a catch-all for

any kind of degradation that occurs before endosomal lysis,

especially mRNA degradation, so a small endosome degradation

rate should show the benefit of improved mRNA stability.

Figure 7B shows the transfection efficiency (TE) and the maximal

number of eGFP expressed (GFP) as a function of endosome

degradation rate. The solid red and green lines are exponential

fits. The exponential increase of transfection efficiency with

decreasing degradation rate clearly shows the (expected) benefit

of increasing the stability of mRNA. It is interesting to note that

the averaged eGFP per expressing cell exhibits a steeper

dependence than the fraction of transfected cells (transfection

efficiency). When we extrapolate the exponential fits to the point

where the endosome degradation rate is zero, we can see that the

model predicts approximately 100% transfection efficiency and

1,000,000 maximum GFP for the case of perfectly stable mRNA.

Extrapolation to an infinite degradation rate (absolutely unstable

mRNA) predicts approximately 0% transfection efficiency as

expected. However, this is only approximately 0%, and maximum

GFP expression is only calculated for successfully transfected cells,

so when we extrapolate to an infinite degradation rate, we see

500,000 GFP molecules per cell, but this is an artifact of the

analysis. We should also recall that our model was optimized to an

average of 6 lipoplexes adhering to each cell.

In order for the lipoplexes to reach the cytosol and be expressed,

they first need to escape from the endosomes, which we have

modeled in the endosomal lysis rate. Figure 7C shows the

transfection efficiency (TE) and the maximal number of eGFP

expressed (GFP) as a function of the lysis rate. The solid red line is

an exponential fit while and the solid green line is a linear fit. The

increase of transfection efficiency with increasing lysis rate

demonstrates the (expected) improvement of transfection with

increasing lysis, or endosomal escape [4,9,49–52]. We expect a

similar effect when changing the attach rate via the use of

magnetofection [8].

The size of the lipoplexes may have an important influence on

their uptake. Figure 7D shows the transfection efficiency (TE) and

the maximal number of eGFP expressed (GFP) as a function of the

lipoplex size. We can see that the model predicts a higher

percentage of cells transfected when the lipoplexes are smaller (but

total mRNA concentration kept the same), and a higher total

amount of GFP when the lipoplexes are larger. This opposing

Figure 7. Predictive Modeling. All plots show a parameter vs. transfection efficiency (TE, red circles) and protein expression (GFP, green triangles).
The lines are linear or exponential fits. A) Incubation time. B) Endosome degradation rate. C) Lysis rate. D) Lipoplex size.
doi:10.1371/journal.pone.0107148.g007
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effect occurs because we assume a constant uptake rate

independent of size and smaller lipoplexes mean a larger number

of them, which increases the probability of successful transfection,

while larger lipoplexes are capable of transporting more material.

A size-independent uptake rate, however, is taken with a very big

caveat. In fact, the dependence of uptake on size has been shown

in experiment for gold nanoparticles [53–56]. Yet, there is some

value to the finding that in case of variation of experiments focused

on an optimal lipoplex size, in which case the size dependence

might be weak, transfection efficiency and GFP expression react in

the opposite direction.

Conclusions and Outlook

We have presented a kinetic model for mRNA delivery via

transfection of lipoplexes. The model consists of a chain of transfer

events including lipoplex attachment, endocytosis, endosomal lysis,

unpacking, translation and maturation. It was shown that

parameter estimation allows direct comparison to the outcome

of a single-cell transfection analysis. The model provides a kinetic

model that reproduces both the delay and dispersion of the onset

time and also the dose-response relationship. The delay can be

reproduced using the streamlined model, but the multiple-lipoplex

model, which is based on multi-level modeling, is necessary in

order to reproduce the dispersion of the data. The key findings are

that in order to achieve the observed level of GFP expression, as

expressed in the maxGFP distribution, we need to use the

multiple-lipoplex model. A multiple-lipoplex model achieves the

correct width (stochastic variance) of the probability distribution

for the onset time of GFP expression if the maturation reaction is

included. A hallmark of the multiple-lipoplex model is its

combinatorial manifold, which exceeds the capacity of ordinary

modeling platforms. We showed that a reduction of the

combinatorial space to a limited variance was able to approximate

the shape of the dose-response relationship.

Extensions of the model that might be necessary as more refined

data become available are more explicit rate equations that

include cooperative behavior (Hill kinetics) or e.g. enzyme limited

reactions (Michaelis Menten type kinetics). Furthermore, degra-

dation processes could be broken down into specifically known

pathways. Yet the most important uncertainty concerns the uptake

process itself. The fact that we used a single, uniform rate of

attachment of lipoplexes to clathrin-coated pits and that the rate of

endocytosis in our model does not depend on the size of the pit is

first of all due to missing quantitative data. We have assumed that

endosomes first undergo lysis, then the lipoplexes are unpacked,

and then the mRNA can begin translation and degradation.

However, unpacking might occur within the endosome before lysis

and, as mentioned earlier, mRNA degradation might begin in the

endosome before lysis. Furthermore, we don’t currently have a

way to distinguish between a delay caused by lysis and delay

caused by unpacking, so we have simplified the model to treat

unpacking as an immediate reaction.

A key aspect of this investigation is multi-level modeling, which

leads to a combinatorial explosion of variables and reactions, but

this could be solved more elegantly by a computational system that

copes with it directly. However, this does not make the

combinatorial explosion disappear; the burden is simply trans-

ferred from the user to the tool in the form of dynamic creation of

species. The basis for this already exists in SBML, Copasi, SPiM,

BioNetGen, NFsim, and ML-Rules, which introduces the concept

of nested species [57,58], meaning that one species, such as

mRNA molecules, can exist and exhibit behavior within another

species, such as a lipoplex or endosome. This would make it

possible to formulate the model in a more elegant way, which

would be easier to understand. As a second benefit, it would make

it possible to remove a significant limitation of today’s model,

which assumes that all lipoplexes have the same size and leads to a

clustering of GFP expression levels visible in Figure 4, and it would

be possible to model explicit unpacking of lipoplexes and

degradation of mRNA within endosomes, instead of resorting to

an endosome degradation reaction, as shown in the fully nested

model (Figure 8). Finally, it would also make it possible to use

species as building blocks to create new ones; for example,

chemical reaction networks could be used to build organelles,

which could be used to build cells, etc. This type of model is often

required for nanoparticle transport in general, and should provide

a basis for more predictive modeling in that area.

Beside all well-founded shortcomings of the current model

limitations, there is substantial value added by comparison of

modeling and experimental data. The fact that data are

reproduced by a set of parameters that is optimized by the same

number of experimental determinants justifies our assertion that

the model has significant predictive power. We have done

predictive modeling by analyzing the effect of varying parameters,

and the results either agree with existing experimental data (e.g.

dose-response), confirm known aspects (e.g. importance of

endosomal escape), or predict new effects, such as the effect that

decreasing the size of the lipoplexes has on transfection efficiency

and GFP expression.

With appropriate modifications, this model should be useful for

new experimental work. The key parameters include the rates of

attachment, endocytosis, lysis, unpacking, and the size-dependen-

cy of those rates; as new data on these parameters becomes

available, this should lead to a significant improvement in the

quality of the model.

Supporting Information

File S1

Code S1. Script for automated simulation of dose-
response relationship.
Code S2. script for automated simulation of lipoplex
size dependency.
Code S3. C# source code for program to set parameters
in Copasi model.
Code S4. C# source code for program to run Copasi
model multiple times and analyze results in Igor Pro.
Code S5. C# source code for program to run TFC.exe
and optimize via simulated annealing algorithm.

Figure 8. Key aspect of the fully nested transfection model. In
addition to the processes in the multiple-lipoplex model, the fully
nested model includes unpacking of lipoplexes and degradation of
mRNA within endosomes.
doi:10.1371/journal.pone.0107148.g008
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Code S6. C# source code for program to run Copasi
streamlined (reduced) model multiple times and ana-
lyze results in Igor Pro.
Code S7. C# source code for program to run TFRC.exe
and optimize via simulated annealing algorithm.
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SPiM model.
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Dataset S1. Dose-response data (Figure 6).
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Dataset S4. Max GFP experiment (Figure 5B).
Dataset S5Max GFP reduced model (Figure 5B).
Dataset S6. Max GFP (Figure 5B).
Dataset S7. Onset time experiment (Figure 5A).
Dataset S8. Onset time reduced model (Figure 5A).
Dataset S9. Onset time (Figure 5A).
Dataset S10. Time courses (Figure 3).
Model S1. Copasi model for deterministic simulation of
multiple lipoplex model.
Model S2. SBML model for deterministic simulation of
multiple lipoplex model.
Model S3. Copasi model for stochastic simulation of

multiple lipoplex model.
Model S4. SBML model for stochastic simulation of
multiple lipoplex model.
Model S5. Copasi model for deterministic simulation of
streamlined (reduced) model.
Model S6. SBML model for deterministic simulation of
streamlined (reduced) model.
Model S7. Copasi model for stochastic simulation of
streamlined (reduced) model.
Model S8. SBML model for stochastic simulation of
streamlined (reduced) model.
Model S9. SPiM model.
Model S10. Version 1 of BNGL (BioNetGenML) model
for NFSim.
Model S11. SBML model for BNGL.
Text S1. Detailed model description.
Text S2. ODEs as created by Copasi in TeX format.
Text S3. ODEs imbedded in LaTeX document file.
Text S4. ODEs in PDF format (from LaTeX).
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6 Outlook

In this thesis, the dynamics of mRNA-mediated protein expression was quantitatively investigated
at the single-cell level and a new model for mRNA transfection was introduced. This way, the
distributions of the translational efficiency and the life times of mRNA as well as EGFP were de-
termined in single cells. Additionally, we were able to predict transfection efficiencies and protein
levels for varying rates that are characteristic for the mRNA-transfer process on the basis of the
new transfection model. Combining single-cell arrays with automated image analysis tools has
great potential for high-throughput, quantitative transfection studies in general. More specifically,
this approach could also be used for systematic studies of siRNA knockdown that are carried out
in our laboratory.
For the further development of predictive models, gene carrier systems that offer predictable transfer
kinetics are desirable. We have tested various alternative liposome formulations in order to pro-
duce our own vectors for transfection. Because we observed severe toxic side effects, we decided to
further rely on the standard commercial liposome-based transfection reagent Lipofectamine 2000 R©.
Recently, promising advances in the development of photo-inducible gene carriers and lipoplexes
with tunable cargo loads down to single RNA strands have been reported [121, 158]. In the future,
such vectors could be used. Ideally, a database of cell-type specific rates for intracellular trafficking
could be created using such vectors. Tunable gene delivery frameworks could also provide quanti-
tative data for modeling complex gene-regulatory systems and for RNA-based logic circuits similar
to those described in [95, 96, 159].
So far, all data fitting was done using IGOR Pro software, whose curve fitting tool is based on the
Levenberg-Marquardt algorithm. This algorithm finds optimal parameter values by minimising an
error function, which is a measure for the distance between measured and fitted values. In our
case, IGOR Pro used a local optimisation method. Because this estimated optimum is influenced
by the initial parameter guess, it is possible that the best fit value for a parameter is a local,
however not the global optimum in parameter space. To overcome this problem, a multi-start,
global optimisation method like the simulated annealing algorithm used in chapter 5 was tested on
existing data sets in collaboration with the institute of computational biology (Helmholtz Zentrum
München). We intend to continue on this path and to also test alternative fitting methods that
assume parameter distributions or that simultaneously fit multiple single-cell time courses.
Furthermore, the simple biochemical rate model that was employed for this thesis is symmetric in
mRNA and EGFP degradation rates and assumes a simple model of exponential mRNA decay. We
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Figure 6.1: (A) Exemplary fits of single-cell protein expression time courses. (B) The fit residuals
show small, but systematic variations with time (the mean residual is shown in black). We intend
to eliminate these deviations by more complex modeling approaches and a refined experimental setup.
Figure reprinted with permission of F. Fröhlich, Helmholtz Zentrum München.

have reason to believe that this might not be the complete picture to describe mRNA-mediated
protein expression. To counter these problems, we started to test more complex and thus possibly
more realistic models. These include scenarios where the degradation rates are no longer inter-
changeable. Also, a model that includes a limited pool of ribosomes, where ribosomal (un)binding
to mRNA is represented by an explicit rate is tested. The overall goal is to find a model that yields
the best fit to our data while having the least parameters.
If it were possible to artificially rule out one of the decay channels, it might be possible to identify
the contribution of specific degradation channels, which have been described in [67], to the overall
mRNA decay. For example, this could be achieved by stabilising the mRNA at one of its ends so
that degradation from this side is slowed down drastically as compared to the other decay pathways.
We found systematic variations with time of the residuals for the current model (see Figure 6.1).
This is observed both for the fits of single-cell time courses and for the mean fit residuals of many
time courses. Also, signal-to-noise-related effects remain a major challenge. External disturbances
such as uneven illumination and fluorescence lamp intensity fluctuations can impair data quality
and should be reduced to a minimum level. This can be achieved by using illumination systems
with feedback-loops or light emitting diode (LED)-based fluorescence excitation. Until recently,
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3‘ UTR

5‘ UTR

Figure 6.2: Exemplary secondary structure of a 5’ UTR and 3’UTR stabilised mRNA construct en-
coding for d2EGFP as used for the experiments in chapter 4. Enlarged areas show the UTR sequences.

LED light sources had the disadvantage that long exposure times, which may be harmful to the
cells, were needed because of their low intensities. Thanks to the rapid development in this field,
promising systems for live-cell imaging applications are now available. A white light LED-based
illumination unit will thus soon be included in our setup. Additionally, the background correction
implementation is currently being improved in order to comprehensively take the effects of uneven
illumination into account.
To our surprise, we observed positively correlated mRNA and protein life times. This effect might
be caused by a cell cycle related phenomenon. If the number of degradation enzymes depends on
the cell cycle, this could in turn affect the rates of protein expression, which would be a possible
explanation for the observed correlations. To further investigate this, we intend to either use cell
cycle markers or to synchronise cells in future experiments. Furthermore, we plan to statistically
analyse the effect of different mRNA-cappings. By comparing differently stabilised mRNA con-
structs, we hope to gain insight into the working mechanisms of capping structures, which would
be of interest for the field of systems biology.
Finally, the impact of mRNA-secondary structures on their life times is a topic that is definitely
worth investigating. Figure 6.2 shows one of all possible secondary structures of an mRNA con-
struct that was used for the experiments of chapter 4. The mRNA structure was predicted by a
freely available software that minimises free energy (RNA fold, [160–162]). In the future, features
of the mRNA secondary structure, e.g. stem-loops, could be related to experimentally observed
alterations of mRNA stability. Also, backfolding of inserted UTRs onto the coding sequence could
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be identified with the help of mRNA structure prediction software. This phenomenon might explain
differences in the stability ranking of different constructs that have been found for different reporter
genes. Exchanging only a few bases in the mRNA sequence can cause significant alterations in the
mRNA secondary structure, which might in turn change the stability and hence the life time of the
mRNA.
The experimental and the modeling techniques that have been presented in this thesis may help to
gain a deeper understanding of mRNA transfer and turnover, thus contributing to the framework
of combined quantitative, high-throughput single-cell studies and predictive modeling. Hopefully,
they will also help to further develop and characterise artificial vectors for gene delivery and to
identify superior mRNA constructs that are relevant for gene therapy.



A Further publication P3: Cell motility in
3D-microstructured environments

The results of the following publication are based on a project that I was involved in during the
first year of my doctoral thesis. More specifically, I conducted the experiments on migration in
microstructured pillar islands and analysed the corresponding data (see Figure 3 of [163]).
In this project, the influence of mechanical stimuli on the migration modes of highly motile cells
was studied. To this aim, cell migration on flat and 3D structured substrates that consisted of
micropillar-arrays was investigated. Cell trajectories were analysed with high time-resolution by a
two-state motility model. Most importantly, we found that the cells are attracted by the additional
surface that is available for them in the vicinity of micropillars.
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On flat substrates, several cell types exhibit amoeboid migration, which is characterized by restless

stochastic successions of pseudopod protrusions. The orientation and frequency of new membrane

protrusions characterize efficient search modes, which can respond to external chemical stimuli as

observed during chemotaxis in amoebae. To quantify the influence of mechanical stimuli induced by

surface topography on the migration modes of the amoeboid model organism Dictyostelium

discoideum, we apply high resolution motion analysis in microfabricated pillar arrays of defined density

and geometry. Cell motion is analyzed by a two-state motility-model, distinguishing directed cellular

runs from phases of isotropic migration that are characterized by randomly oriented cellular

protrusions. Cells lacking myosin II or cells deprived of microtubules show significantly different

behavior concerning migration velocities and migrational angle distribution, without pronounced

attraction to pillars. We conclude that microtubules enhance cellular ability to react with external 3D

structures. Our experiments on wild-type cells show that the switching from randomly formed

pseudopods to a stabilized leading pseudopod is triggered by contact with surface structures. These

alternating processes guide cells according to the available surface in their 3D environment, which we

observed dynamically and in steady-state situations. As a consequence, cells perform ‘‘home-runs’’ in

low-density pillar arrays, crawling from pillar to pillar, with a characteristic dwell time of �75 s. At the

boundary between a flat surface and a 3D structured substrate, cells preferentially localize in contact

with micropillars, due to the additionally available surface in the microstructured arrays. Such

responses of cell motility to microstructures might open new possibilities for cell sorting in surface

structured arrays.

Introduction

Amoeboid migration is studied preferentially in the social

amoeba Dictyostelium discoideum or in neutrophils. This

migration type is characterized by formation of stochastically

generated pseudopods and proves to be extremely efficient in

hunting for food or invadors.1 The fact that external stimuli

affect the cellular search behavior is a major feature of this

seemingly random cell motion. Membrane proteins sense and

integrate external cues and transport signals to downstream

effectors for specific cellular response or adaption.2,3

A prominent example for adaption to external stimuli is

chemotaxis, where cells exposed to a gradient of chemoattractant

molecules move up-gradient.4 During the past decade, many

biochemical signalling pathways involved in chemotaxis have

been elucidated for the motile cell archetype Dictyostelium dis-

coideum.5–8 The recruitment of key cytosolic proteins to the

plasma membrane of the leading pseudopod triggers directional

actin polymerization and subsequent migration towards the

chemoattractant source. Analysis of cellular migration patterns

under external stimuli reveals biased random search strategies

with increased migration efficiency in terms of speed and direc-

tional persistence towards the chemotactic source.9

However, in the absence of chemotactic signaling, D. dis-

coideum cells show a ‘‘basic motile behavior’’.10 The dynamics of

this random migration mode is not fully understood yet. Even

less advanced is the general understanding of amoeboid migra-

tion in the presence of three dimensional surface features.

Cell velocity and shape analysis led to simple models of

amoeboid migration, describing it as a random walk.10

Recently, a refined view of amoeboid locomotion emerged,
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based on detailed analyses revealing correlations between

cellular orientation and migration direction11–14 as well as

motional persistence.15 The current understanding of basic

amoeboid locomotion assumes two alternating motility modes:

a random probing mode (rm-mode) and a fast, directed running

mode (dir-run).16 Both modes originate from the spatiotemporal

behavior of biochemical networks in the cell cytoskeleton:

spontaneous actin polymerization near the plasma membrane

results in random protrusions of multiple pseudopods (poly-

podial state, rm-mode), until one of them is reinforced, sup-

pressing other pseudopods and temporarily stabilizing

a directed run (monopodial state or dir-run).17 This two-state-

motility in spontaneous amoeboid migration is strikingly similar

to motion patterns found in large animals,18 which exhibit

a local search mode and a long-distance running mode, and to

the ‘‘run and tumble’’ motion of prokaryotic organisms,19 which

emphasizes the universal character of this very efficient search

strategy.

Moreover, D. discoideum cells were found to be capable of

sensing physical constraints, an obviously vital asset for migra-

tion in a natural soil microenvironment.20 In fact, upon mutation

of adhesion proteins,21 a complex topographical environment

causes a drastic decrease in migration efficiency, in ways that go

totally unnoticed on flat substrates.22 Studies on the effect of

topographical cues on cytoskeleton dynamics have been facili-

tated by recent advances in microfabrication. The strong

influence of prepatterned surfaces shaped as grooves or pillars on

cell polarization and migration has been demonstrated for

a variety of cell types.23–28 Mahmud et al. successfully sorted

metastatic cells from healthy cells by directed migration in

microstructured ratchets.29 Using antibody-coated microstruc-

tures in a fluidic system, rare circulating tumour cells could even

be isolated from blood.30 Thus topographical microstructured

setups have not only been demonstrated to constitute useful tools

for medical assays, but they also allow the analysis of amoeboid

migration in an environment simulating the in vivo situation. The

differences between cell migration on flat substrates and within

a three-dimensional topography are still unknown and remain

a topic of ongoing investigations, for individual cells as well as

for cell sheets.31

In this work, we analyse the migrational behavior of D. dis-

coideum on three-dimensional and flat substrates in order to

unravel the role of surface structures on motility modes. We find

that microstructured surfaces are not sensed as obstacles,

preventing cells from progressing efficiently, but rather lead to

cell deflection or trapping, depending on the cells’ initial

motility mode and the number of surface structures in contact

with the cells.

Materials and methods

We studied the migration modes of single D. discoideum cells in

the vegetative state, in the absence of chemoattractant mole-

cules and at low cell densities. Substrates for the migration

assays were fabricated from the transparent polymer poly-

dimethylsiloxane (PDMS) and consisted of micropillar arrays in

combination with flat surfaces (which were used as a reference

to study spontaneous cell motility in a homogeneous 2D

environment).

1. Cell culture and observation

We used a mutant D. discoideum cell line expressing free GFP,

imaged the cells by brightfield and fluorescence microscopy, and

recorded time-lapse movies of 200 to 600 frames at a frame rate

of 0.1 Hz.

Dictyostelium discoideum culture and preparation for experi-

ments. The axenicD. discoideum strain with GFP insertion, strain

HG1694,32 and the myosin II-null mutant with LimEDcc-GFP,

strain HS2205,33 were obtained from Dr G€unther Gerisch (MPI

for Biochemistry, Martinsried, Germany). The cells were grown

at 21 �C in AX2 medium, supplemented with the antibiotic

gentamicin at a concentration of 20 mg ml�1 (G-418, Biochrom

AG, Berlin, Germany). Myosin II-null mutants were additionally

supplemented with the antibiotic blasticidin at a concentration of

20 mg ml�1. During cell culture in Petri dishes, the cell concen-

tration was kept below 40%.

A benomyl (C14H18N4O3, Sigma-Aldrich, Germany) solution

in phosphate buffered saline (PBS) was used as the microtubule

depolymerization agent. The solution was added to the D. dis-

coideum WT cell suspension 30 min before measurements at

a concentration of 100 mM.

For microscopy experiments, cells were harvested from the

Petri dishes by three successive washing steps with 17 mMK–Na

phosphate buffered saline, adjusted to pH ¼ 6.0 (PBS, Sigma

Aldrich, Steinheim, Germany) and supplemented with 18 g l�1

maltose (Maltose monohydrate, Karl Roth GmbH, Karlsruhe,

Germany). The cells suspended in the maltose–PBS solution were

then added progressively to the Ibidi observation chamber

(uncoated 8-well, Ibidi, Martinsried, Germany) and let to settle

down, until a concentration of 5 to 10 cells per 125 by 125 mm

(camera field of view) was achieved. This concentration ensures

enough cells for statistics and few enough cells to exclude any

cell–cell signaling, which would bias spontaneous migration.

Microscopy. The experimental chamber was mounted onto

a Zeiss Axiovert 200M microscope and kept at T ¼ 21 �C. Both
brightfield and fluorescence images were acquired every 10 s with

an exposure time of 150 ms by an Andor iXon Dv885 CCD

camera (Andor, Belfast, UK), triggered by the corresponding

AndorIQ software.

2. PDMS microstructures

All substrates used for migration assays were fabricated from

transparent polydimethylsiloxane (PDMS) after casting, cross-

linking and unpeeling from a silicon wafer-based master

obtained by photolithography (Fig. 1G–I). These PDMS arrays

of 10–12 mm high pillars of 4 mm diameter are arranged in

a regular lattice or in a network of varying pillar density. Outside

the pillar fields, large areas of the same chemical composition

(PDMS) are used as a reference flat substrate.

Pillar structures and flat surfaces exhibit the same chemical

composition (PDMS) throughout this study. In addition to that,

both the wall and the base of the pillars, as well as the flat area

between two pillars, exhibit homogeneous surface properties.

Cells are not subject to any chemical attraction. Due to their low

adhesivity, D. discoideum cell motility should not be strongly
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influenced by surface chemistry, but the comparison between

purely 2D and quasi 3D substrates on the same sample - con-

sisting of the samematerial - ensures that any difference observed

in cell motility modes can only be attributed to the well-defined

micron-scale topography and not to different chemical proper-

ties of the surface.

Master fabrication. To obtain a master for PDMSmolding, we

used standard clean room microlithography procedures, and

relied on the protocols presented by Steinberg et al.26 A 3-inches

silicon wafer (Si-Mat, Landsberg/Lech, Germany) was cleaned

under nitrogen flow, covered with approximately 5 ml of a SU8-

10 negative photoresist (Microchem, distributed by MicroResist

Fig. 1 Trajectory splitting into the two motion modes by the TRAnSpORT algorithm and PDMS microstructures. (A) Scheme of the transition from

the randommigration mode, the rm-mode (grey), where the cell exhibits multiple pseudopods, to a dir-run (red) characterized by one leading pseudopod

(actin protrusions, represented in green). (B) Cell center-of-mass track on a flat surface before analysis. (C) Landscape of local MSD functions,

calculated for each time ti of the experiment (color-coded for a, the value of the power-law fitting exponent). The high a values, together with a high

angular persistence, set the time points for which the motion is directed (dir-runs). (D and E) Cell track on flat PDMS (D) and within a rectangular

micropillar array (E) after splitting into the 2 motion modes: dir-runs (red) and rm-modes (black). (F) Time course of the different variables defining the

cell motion: cell position R(t), instantaneous speed V(t), local MSD exponent a(t) (black) together with the standard deviation of the angle variations

Df2(t) (grey) and area. The red portions of the curves indicate dir-runs. The windows highlighted in orange correspond to dir-runs (numbered 1 and 2 on

image D). The speed oscillations are closely related to the area oscillations, emphasized by the orange lines. (G) SEM view (close up) of 4 mm diameter

micropillars, with measured heights given after correction for the e-beam angle of 45 deg. (H–I) SEMmicrographs of 4 mm diameter pillars, arranged in

a regular square network (H), and in low-density arrays shaped as pillar islands (I).
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Technology, Berlin, Germany), and spin-coated at 3000 rpm for

30 s after progressive acceleration. A progressive soft bake (1 min

at 65 �C and 2 min at 85–90 �C, with slow cooling down to room

temperature) was followed by UV-illumination in a mask aligner

(S€uss MicroTec, Garching, Germany) through a Chromium

mask (ML&C, Jena, Germany). This mask bears the structures

transferred to the resist. Illumination times varied between 3 and

5 s according to the size of the desired structures. After

a progressive hard bake (1 min at 65 �C and 2 min at 85–90 �C,
with slow cooling down to room temperature), the unlit, and

hence non-crosslinked photoresist, was washed away by two

successive development baths in a SU8-specific developer

(MicroResist Technology, Berlin, Germany). The photoresist

structures obtained were stored at room temperature and exhibit

stable properties for several months.

Preparation of the PDMS structures. To ensure proper PDMS

unmolding, the resist master was silanized: vapour deposition of

a fluorosilane (1H,1H,2H,2H-perfluorooctyltrichlorosilane,

ABCR, Germany) was achieved under vacuum in one hour.

The PDMS base was mixed vigorously with the cross-linking

agent at a 1 to 10 ratio (Sylgard 185 Silicon Elastomer Kit, Dow

Corning, MI, USA). After degassing for 30 min under vacuum,

2–3 ml of PDMS were poured on the Si-photoresist master, and

degassed again for 15 to 30 minutes under vacuum. PDMS cross-

linking was obtained after 3 to 5 hours at 65 �C.
After cutting and peeling the PDMS structures off the master,

the samples were exposed to Argon plasma for 30 s, to make the

surface hydrophilic (Plasmaanlage ‘‘Femto’’, Diener Electronic,

Nagold, Deutschland). They were then immediately transferred

to the observation chambers (uncoated 8-wellplates, Ibidi, Ger-

many), immersed in PBS solution, and kept sterile until further

use with cells.

3. Cell tracking and trajectory analysis

All cell positions, areas and perimeters were retrieved from the

acquired fluorescence images by a homemade plugin for the

ImageJ analysis software (W. S. Rasband, U. S. National Insti-

tutes of Health, Bethesda, USA, http://imagej.nih.gov/ij/). The

pillar positions were obtained from brightfield images with the

same plugin. The cell trajectories were then processed by

a homemade Matlab algorithm (The Mathworks Inc. Natick,

USA), which is able to retrieve the local motion modes charac-

terizing cell migration (Fig. 1C and F). Furthermore, the infor-

mation retrieved on cell contact with pillars enables the study of

the influence of micron-scale obstacles on D. discoideum motility

modes.

Migration track retrieval by the single cell tracker plugin. Our

single fluorescent cell tracking plugin has been adapted to follow

the rapid motion of D. discoideum amoebae. This algorithm

detects fluorescent cells as clusters of more than n bright pixels

above an intensity threshold I0 and in closer proximity than

a distance 3. All three parameters (n, I0, 3) can be freely adjusted

to yield the most reliable cell clustering results. Tracking of each

brightness cluster throughout the movie is achieved by finding,

from one frame to the next, the most proximate cluster (in space

and intensity), which is then identified as the same object. Each

brightness cluster represents a single D. discoideum cell, and

yields its center of mass position (X, Y), area (A) and perimeter

(P) as a function of experiment time.

From brightfield images, the pillar positions can be determined

employing the same plugin:{ after image treatment (noise

reduction) and thresholding, a precise map of the pillar outlines

on each time frame is retrieved. This map is then used for

determining and analyzing the cell-to-pillar contact (see ‘‘Contact

evaluation’’). Also, pillar positions were used to estimate

a potential stage motion (long-term drift or short-term small

oscillations) and to subtract it from the overall cell motion before

analysis.

Cell motion analysis by the TRAnSpORT algorithm. Our

TRAnSpORT (Time-Resolved Analysis for the Splitting Of

Random Trajectories) routine34–36 performs cell motion analysis,

since it is capable of distinguishing two motility modes, one of

them exhibiting high directional persistence and the other mode

being an isotropic, diffusive-like random walk.

For each time point ti, representing the center of a rolling

window ofM¼ 30 points, a local mean square displacement DR2
i

(l-MSD, Fig. 1C) is calculated as a function of the time lag sk ¼
kdt as follows:

DR2ðti; skÞ ¼ DR2
i ðkÞ

¼ 1

M � k þ 1

XðM=2Þ�k

j¼�M=2

�
R
�
tiþj þ kdt

�
� R

�
tiþj

��2

(1)

where dt is the frame rate andR(ti)¼ (X(ti),Y(ti)) are coordinates

of the center of mass. T ¼ Mdt is the duration of the rolling

window. We already showed that the resulting algorithm time

resolution is of the order of T/4.34 The l-MSD functions are then

fitted by power laws fi(s) ¼ Aisai, with the exponents ai bearing

information about the motility state at each point i (Fig. 1C

and F).

The angle persistence function Dfi is calculated from the

values of the velocity angle fi ¼ (vx,i, vy,i):

Dfðti; skÞ ¼ DfiðkÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M � k þ 1

XðM=2Þ�k

j¼�M=2

�
f
�
tiþj þ kdt

�� f
�
tiþj

��2
vuut (2)

The l-MSD exponent and angle persistence values allow for

a dissection of the trajectory into two different motility states: if

ai is close to 2 and Dfi is close to zero, the motion is classified as

directed (or ballistic), and the cell is in a dir-run (see Fig. 1D–F,

red phases). Otherwise, the motion is called random probing (or

non-directed), and the cell is in an rm-mode. This is summarized

by a binary probability for directed motion pdir

pdir ¼
�
1 if ½2� sa#a#2�^½0#Df#sf�
0 otherwise

(3)

The directed parts of the trajectory correspond to phases

during which the amoeba crawls at a quasi-constant speed in

a quasi-preserved direction. An angular deviation of sf ¼ 3sa is

{ Pillars appear as very bright disks, due to a light guiding effect along
their axis.
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allowed, so that dir-runs do not depend on slow changes in the

motion direction (the value of sa is set to 0.3, to ensure correct

discrimination between the dir- and rm-modes). Using both

criteria, the exponent and angle persistence values are necessary

due to the uncertainty of the a-value arising from the limited

number of points in the rolling window.

Contact evaluation. The aim is to reliably measure the number

of pillars that the cell is in contact with for each image. This is

called the total contact index Icont of a single cell during its

trajectory. We extract dwell times, which are the periods for

which the cell has been in contact with one or more pillars.

The probability for a cell c to be in contact with a pillar p in its

vicinity depends on the distance between the cell and pillar, and

more specifically, on the fraction of the cell area which is close to

this pillar. More formally, we introduce a pairwise contact index

icont,c–p which reflects this probability. In order to calculate this

index, we define two parameters: 3 (the critical cell distance or

proximity in units of pixels) and Nmin (the minimum cell area in

units of pixels that has to be closer than 3 to the pillar). If ncell, the

number of cell pixels in proximity to the pillar, is greater than

Nmin, then the index icont,c–p is set to 1. Otherwise, if ncell is smaller

than Nmin, the index value is set to ncell/Nmin.

The total contact index for a given cell c in a given frame j is the

sum over all pairwise indices corresponding to different pillars:

Iccontð jÞ ¼
X
p

icont;c�p

This yields the total number of pillars the cell is in contact with.

Running this analysis frame by frame allows for correlating the

cell-to-pillar contact with the cell motility.

Through the use of the contact index, the statistics on the

motion characteristics (instantaneous speed, a exponent and dir-

run lifetimes) can be split into specific categories, corresponding

to the phases during which the cell is in contact with none, one or

two (or more) pillars. Such a distinction is crucial to understand

the influence of topographical cues on cell migration.

Results and discussion

Cell migration analysis by a 2-state motility model

In this work, we investigate the influence of 3D environments on

cellular migration modes. Using standard photolithography

procedures and polymer molding, we fabricated arrays of pillars

of 4 mm diameter and 10–12 mm height, made of transparent

polydimethylsiloxane (Fig. 1G–I). Pillar structures and flat

surfaces exhibit exactly the same chemical composition, ensuring

that any observed effect is of topographical origin only. In order

to compare the migration of D. discoideum cells on flat surfaces

and in microstructured pillar fields, the recorded migration

trajectories of fluorescent cells were analyzed with high spatial

and temporal resolution by a two-state motility model.

First, image processing is used to capture the cell motion of

GFP-labeled D. discoideum cells. The cell center of mass is

identified and tracked throughout the movie. We then analyze

individual cell migration trajectories by our local-MSD-algo-

rithm: a predefined time window slides across the migration track

and allows for the calculation of a local mean square

displacement (MSD)34 (see also Materials and methods). The

migration mode is assigned as directed (dir-run) when two

conditions are fulfilled: (i) the local MSD function is close to

a quadratic law with the exponent a of the power-law fit close to

2, and (ii) the angular persistence of the trajectory is high, with

a standard deviation D4 of the velocity angle close to 0. If these

conditions are not fulfilled, the cell is in a diffusive-like random

probing (rm-) mode (Fig. 1A–F). Each track is dissected into

random probing states and directed runs.

Cell migration on a flat surface

The global MSD functions calculated over the entire trajectories

yield information about the cell migration type as a whole.

Typical example functions are given in Fig. 2N–Q (correspond-

ing tracks shown in the inset). The motion is superdiffusive at

short time scales and diffusive at long time scales with a typical

cross-over time from one regime to the other. But this global

analysis can only give a rough representation of cell migration as

a random walk which, at short time scales, involves periods of

rather directed migration. While the double fitting of the global

MSD functions can only yield one characteristic cross-over time

sC, our high resolution analysis of local motion types enables

separation of the contributions of different migration modes,

and analysis of the distribution of their precise characteristics:

local MSD exponent, velocity and lifetime.

Spontaneous migration on a flat substrate is characterized by

alternating phases of directed and random motion modes

(Fig. 1A). Two directed runs (shown in red in Fig. 1D and E) are

separated by a random phase during which the cell slows down,

probes its environment and repolarizes. A new dir-run in another

direction starts after this isotropic reorientational phase. After

trajectory splitting by our local MSD analysis (Fig. 1C and F),

one can retrieve the phase durations, together with specific

migration parameters such as velocities of the dir-runs and

diffusion coefficients for the rm-modes (Fig. 1F). The advantage

of our time-resolved analysis lies within the fact that the

parameters are only evaluated during the corresponding motion

phases.

Duringmigration on a 2D surface without external stimulus (see

Fig. 1B andD, and Fig. 2B, F, J andN),WT cells show 35% of dir-

runs, which are randomly distributed without preferred direction

in the X–Y plane (Fig. 1D). Their lifetime decays over hsdi ¼ 140 s

and the runs cover a distance of 11–21 mm, which corresponds to

1–2 cell lengths. The speed distribution function exhibits

a Gaussian shape, characterized by a well-defined mean speed of

hVdiri ¼ 0.076 mm s�1 (averaged over all measured cells (Fig. 2B)).

Each dir-run is composed of 2 to 4 cycles of expansion/retraction

of the cell body, which also results in speed oscillations (Fig. 1F).

By contrast, the rm-mode speed is significantly smaller (hVrmi ¼
0.057 mm s�1) and its distribution is best fitted by a log-normal

function, indicating that numerous processes of various origins

and time scales are involved here. Furthermore, rm-modes are

typically concentrated within regions of less than 7 mm in diameter.

Cell migration modes in regular micropillar arrays

We applied the same analysis to cell migration of three different

types of D. discoideum within a dense rectangular micropillar
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network of 4 mm pillar-to-pillar distance, which is about one

third of a typical cell diameter (Fig. 1E). Our measurements

reveal a strong decrease in dir-run frequency compared to flat

surfaces (Fig. 2, and Table 1): dir-runs represent only 10–12% of

the cell motion (vs. 32% on flat). This is also reflected in a smaller

average a value of the local MSD analysis.

In WT cells, we find a smaller average velocity hVrmi of

0.043 mm s�1 in pillar structures as compared to 0.057 mm s�1 on

flat substrates. However, the velocities during directed runs

hVdiri are larger (0.082 mm s�1 as compared to 0.076 mm s�1 on flat

substrates). The most striking effect appears in the velocity angle

distribution: while the rm-modes remain randomly oriented, the

dir-runs reflect the network geometry (Fig. 2). So the presence of

dense and regularly spaced micropillars heavily modifies D. dis-

coideum migration modes: the decrease in frequency and dura-

tion of the dir-runs results in a much more confined cell motion.

The rare directed runs are strongly guided along the lattice axes

of the micropillar network, resulting in a biased run from pillar

to pillar along these preferred directions (see ESI S2†).

Benomyl-treated cells, lacking microtubules, show in general

larger velocities. Compared to WT cells in pillar fields, they do

not stay in dir-runs as long asWT cells and exhibit rather random

orientation. We find that the angle distribution of the dir-runs

does not reflect the pillar geometry any longer.

Myosin-II null mutants show significantly reduced velocities in

general. They are rather confined by neighbouring pillars due to

Fig. 2 Spontaneous amoeboid motility on a flat substrate vs. topography-guided migration within a square lattice of micropillars. (A) Scheme of the

experimental setup: comparison of D. discoideum migration on flat and microstructured areas, both identical in chemical composition. (B–E) Instan-

taneous speed distributions, resulting from all analyzed cells on flat PDMS (N ¼ 27 cells) and within this micropillar array wild type (N ¼ 13 cells),

benomyl treated cells (N¼ 27 cells) andmyosin II-null mutants (N¼ 14 cells) (black: all data points, red: dir-runs, grey: rm-modes). Velocities during rm-

modes are fitted by a log-normal distribution. Angle distributions of the velocity vector are shown in the insets (normalized to one). (F–I) Distributions

of the exponent a, power-law fit of the local MSD functions, revealing the amount of dir-runs and rm-modes in the overall cell motion. (J–M)

Distributions of the dir-run lifetimes, with fits by a simple exponential. (N–Q) Global MSD function, calculated on a single cell track shown in the inset:

the short time/long time power law trends in the global MSD are highlighted in orange and blue respectively. The track has been split into dir-runs (red)

and rm-modes (black).
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their extended cell size, as they cannot retract their tale effec-

tively, and therefore do not show large displacements. Here, we

find slight reflection of the pillar network geometry in the

random migration angle distribution.

Migration modes at the flat/structured interface

In order to identify if significant trends in cell migration directed

towards flat or structured surfaces can be revealed, we investi-

gated motility modes and preferred cell localization at the

interface between flat substrates and pillar fields. For that

purpose, we designed low-density micropillar islands of about

50–100 mm in diameter, each consisting of 13 pillars. The islands

are separated by wide flat areas (Fig. 1I). A contact index, i.e. the

number of pillars a cell is in contact with along its trajectory (see

Materials and methods), is defined. We find contact indices

ranging from 0 to 4, depending on the inter-pillar distances. For

cells migrating within a pillar island with several pillars in their

vicinity, one subpopulation of cells moves from pillar to pillar

with dwell times between 50 and 200 s, exhibiting mostly dir-runs

(Fig. S3C† and 3E and F) whereas another cell population stays

in contact with the same pillar for up to 500–900 s, mostly in the

rm-mode (Fig. S3A†).

For inter-pillar distances larger than the typical cell diameter,

where a single cell cannot touch two pillars at the same time,

a striking ‘‘stick-and-go’’ type of motion is observed: the cells

‘‘jump’’ from pillar to pillar, exhibiting long dir-runs (hldi ¼
8.2 mm) thereby covering long distances (Fig. S1 and Movies S6

and S7†). This manifests the transition regime between 2D

random migration and a migration that is modified by surface

structures. In contrast, when the inter-pillar distance is slightly

smaller than one cell diameter, cell motility is reduced by

temporary trapping. Cells in contact with two pillars do not show

any net displacement and cell locomotion can be stalled for

durations of 900 s and longer (Fig. S2 and Movie S8†).

To quantify statistical dwell times, we averaged over the entire

cell population (Fig. 3A). The dwell time distribution can be

fitted by a double exponential 1� bexp (�s/s1)� (1� b)exp (�s/
s2), which reflects the existence of two characteristic dwell times

(fit calculated for the cumulative distribution). The main dwell

time s1, representing around 77% of the touching events, is found

to be�74 s, and the second characteristic dwell time is s2 z 290 s

(corresponding to 23% of the touching events). This confirms

that the vast majority of cells do not stay in contact for much

more than one minute: most of the touching events are transient,

along the ‘‘stick-and-go’’ motion of the cell. This proves that, in

the case of low-density obstacles, cells are not stalled when they

contact surface structures. Although pillars can be considered to

be cell attractors, they should not be assigned as static traps. The

dynamic trapping effect probably arises from feedback loops

induced by internal signalling. When the cell is close to a pillar,

pseudopods which are randomly protruded in all three dimen-

sions during the rm-phase are more likely to touch the surface of

3D pillars than flat areas. Since it has been proven that

a protrusion which touches a surface becomes a leading pseu-

dopod with higher probability,37 the likelihood for a cell to exit

the random probing mode and to subsequently enter a new

directed run, induced by a stabilized pseudopod, is increased in

the vicinity of a micropillar (Fig. S3C and E†). However, the

dwell time distribution includes values of up to 900 s, which

reflects the rare but still observable very long touching events

that were mentioned previously.

Cell ensemble partitioning between structured and unstructured

surfaces

So far, we discussed migration trajectories of individual cells in

the presence of pillars. We now take a different view and consider

the steady-state situation of an ensemble of cells partitioning

between pillar fields and unstructured areas. We assume that

after a sufficient amount of time (typically 1–3 hours), a detailed

balance of amoebae migrating in and out of the micropillar fields

is reached. As shown in Fig. 3C, we perform a time and ensemble

average for 27 cells in pillar structures for 1–3 hours and find that

22% of the cells are in contact with pillars. This percentage of

cells in contact is now compared to the percentage of substrate in

the vicinity of pillars (i.e. the area where cells can be in contact

with a pillar) with respect to the total surface area. As indicated

in Fig. 3B and C, we define the contact area by a circular region

around a pillar of r ¼ 7 mm in width, i.e. half the typical cell

diameter of aD. discoideum cell. This area accounts for 8% of the

total 2D surface: the ‘‘relocalization’’ factor is thus 0.22/0.08 ¼
2.75 (cf. ESI†). Accordingly, almost three times as many cells are

in contact with pillars than would be expected for equal

Table 1 Parameters describing the cell motility on a flat substrate vs. a square network of dense pillars (4 mm pillar-to-pillar distance), corresponding to
Fig. 2

Micropillar substrate type

Flat surface
Square network

WT WT
Benomyl
treated Myosin II-null

Number of cells in the statistics N 27 13 27 14
Number of data points in the statistics n 10 968 5315 19 467 7389
Exponent of the l-MSD power-law
All hai 1.53 1.35 1.30 1.30
dir-runs hadi 1.82 1.77 1.79 1.79
rm-modes hari 1.37 1.30 1.24 1.24
Instantaneous velocity/mm s�1

All hVi 0.059 0.043 0.061 0.019
dir-runs hVdi 0.076 0.082 0.090 0.034
rm-modes hVri 0.057 0.043 0.060 0.018
dir-runs lifetime/s hsdi 139.50 111.80 86.35 93.85
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distribution according to the available 2D surface. However, if

we additionally consider the vertical surfaces of the pillar walls

(surface area: 2pRh), this situation changes drastically: in this

case, the ratio of contact area (2pRh + p(R + r)2) to total area is

16%, which, considering experimental errors, corresponds to the

percentage of cells in contact with pillars: the ‘‘relocalization’’

factor becomes 0.22/0.16 z1 (Fig. 3D). Hence we find that, on

average, all cells are distributed equally with respect to the

effective surface area within the three-dimensional microstruc-

tures. Given the length scales involved, it is natural to notice that

cells do not distinguish between horizontal and vertical surfaces

during adhesion and migration. We show that 2D projections,

which are our familiar way of seeing things, can be misleading

and even hide fundamental 3D-induced effects.

Conclusion

In summary, we investigated amoeboid migration on micro-

structured surfaces as a prototype example of migration in three-

dimensional, natural environments. We found that the two-

dimensional trajectories of Dictyostelium discoideum cells

encountering micropillars show distinct differences from the

basic two-state motility model on flat substrates.

Amoeboid migration modes are altered by the presence of 3D

structures

According to the initial motility state, we discriminate two types

of cell behavior upon pillar contact: randomly moving cells stay

in contact with pillars, whereas fast moving cells in a directed run

phase get deflected by the pillars. Cells migrating inside pillar

arrays exhibit a characteristic stick-and-go behavior, if the pillar

distance is large compared to the cell diameter. Furthermore, the

partitioning of cells between pillar fields and flat areas allows us

to conclude that cells distribute equally according to the total

available surface in three dimensions.

Amoeboid cells migrate by maximizing contact with available

surfaces

All our observations are consistent within the framework of

a two-state migration model, where cells switch between phases

of random pseudopod formation and phases where a single

pseudopod is stabilized. Our experiments suggest that the

switching from a randomly formed pseudopod into a stabilized

pseudopod is enhanced by surface contact. This additional

feature, in which the protrusion is reinforced independently of

the spatial orientation of the contacted surface, guides cells

through 3D environments.

In cells lacking microtubules or myosin II, we find significantly

different behavior. Cells lacking microtubules do not show

a pronounced attraction to pillars, although we find larger

velocities during dir-runs. We conclude that microtubules

enhance cellular ability to react with external 3D structures. In

cells lacking myosin II, we find strongly decreased migration

Fig. 3 Cell partition between the flat substrate and islands of micro-

pillars. (A) Dwell times: probability distribution function (pdf, grey bars)

and cumulative distribution function (cdf, grey dots) of dwell-times spent

by cells in contact with pillars, for the whole population of cells migrating

within and in-between islands of micropillars. The cdf is well fitted by

a double exponential 1 � bexp (�s/s1) � (1 � b)exp (�s/s2) (black line)

with characteristic times s1¼ 74 s and s2¼ 289 s, where b¼ 0.77 indicates

that 77% of the touching events happen for a typical time s1. (B) Scheme

of the 2D vs. 3D surface available around each pillar: (top) 2D projection

of a pillar (radiusR¼ 2 mm), with the hatched circle representing the zone

within contacting distance for cells (radius r ¼ 7 mm); (bottom) 3D view

of the pillar with its walls offering an additional surface of 2pRh (dotted

blue). (C) Typical image underlining the cell relocalization effect: the

zones within pillar-contacting distance (flat areas circumscribed around

the pillars within which a cell can touch at least one pillar) represent only

25% of the 2D surface and yet, 3 out of 6 cells (50%) are in contact with

pillars (white cell borders), the remaining 3 cells not being in contact with

pillars (no cell borders indicated). This partition can only be explained by

the 3D surface offered by the pillar walls, which yields an equivalent

surface ratio of 50% in this specific case. (D) Cell relocalization factor, i.e.

the percentage of cells in contact with pillars divided by the percentage of

surface area within contact distance to pillars, averaged over all 27

measured cells. Without counting the surface available in the third

dimension, this factor is almost 3. Taking the 2D contact zone and 3D

surface offered by pillar walls into account, the total available surface in

the vicinity of pillars increases drastically, which brings the relocalization

factor close to 1: the cell distribution over the substrate exactly reflects the

total available surface. (E) Velocity distribution and median velocity:

compared to the reference on the flat surface (black, plain), the velocity

distribution shows a slight shift towards low velocity values when the cells

touch one (dashed, grey) or two pillars (dotted, light grey), which can also

be seen in the median velocity values, shown in the inset (black: flat

surface, grey: contact with 1 pillar, light grey: with 2 pillars). (F)

Percentage of dir-runs: the frequency of dir-runs also decreases slightly

with contact index. But on average, the cells keep moving directionally

(more than 25% of the migration modes) and fast (more than 75% of the

migration velocity on 2D), even when contacting 3D microstructures.

1480 | Soft Matter, 2012, 8, 1473–1481 This journal is ª The Royal Society of Chemistry 2012
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velocities in both migration modes and a slight guiding behavior

in the random mode due to the neighboring pillars.

All in all, the best frame to analyze our results on wild-type

cells seems to be the model of contact-reinforced motility, or,

more exactly, pseudopod stabilization upon surface contact with

a subsequently increased probability to become the leading

pseudopod. This leading pseudopod then sets the direction for

a new dir-run, which, in the case of pillar contact, will be directed

towards the pillar.

The effect of pillars, however, should always be considered as

dynamic, as the overall cell motion remains a quasi-random

walk. The emission of random protrusions is probably not biased

by the presence of microstructures, while the dir-runs are. In the

resulting mechanism of contact guidance, it is a stable cell

polarization (the presence of a stable actin front at the leading

edge due to surface-generated feedback loops and intracellular

signalling) that leads to motional persistence towards micro-

structures. Amoeboid migration is hence guided by surface

contact and is ‘‘haptotactic’’ in this sense. Considering the

microstructure of soil, which is the natural habitat of Dictyos-

telium discoideum cells, contact-controlled motility is an advan-

tageous strategy for amoebae to reach surface structures during

their search for food, since bacteria preferably grow in dips and

niches.

Possible advances for quantitative medical assays

As demonstrated here, experiments using micro-structured

surfaces in combination with quantitative analysis of cell motility

provide a useful tool to uncover details of cell–surface interac-

tions and their coupling to cell motility.

In a medical context, this concept offers several opportunities

for invasion assays, allowing for cell sorting on a large scale. By

adding chemical gradients, which can be done in a very sophis-

ticated way by now,38 cells could be separated even more effi-

ciently. The assay could easily be scaled up for insertion of whole

cell sheets or even tissue parts to investigate collective cell motion

phenomena. Related to this, the influence of edges and corners

on cytoskeleton activity remains to be investigated in future

experimental and theoretical work and should reveal crucial

clues for the understanding of how topographical details of

a substrate affect cell migration, as described for wall-like

structures in ref. 39.
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Single-cell mRNA transfection studies: delivery, kinetics 

and statistics by numbers  

 

Supplementary material 

 

Carolin Leonhardt, Gerlinde Schwake, Tobias R. Stögbauer, Jan-Timm Kuhr, 

Susanne Rappl, Thomas S. Ligon and Joachim O. Rädler 

 

Vector for in vitro Transcription 

pEGFP is a commercial vector from BD Biosciences Clontech (4733bp, mRNA transcript 720 

bases). It encodes a red-shifted variant of wild-type GFP, which has been optimized for 

brighter fluorescence and higher expression in mammalian cells. Sequences flanking eGFP 

have been converted to a Kozak consensus translation initiation site to further increase the 

translational efficiency in eukaryotic cells. 

The pSTI-A120-vector (4746bp, mRNA transcript 1192 bases) is a friendly gift from Dr. 

Carsten Rudolph (LMU München, Kinderklinik und Kinderpoliklinik im Dr. von 

Haunerschen Kinderspital). We excised the luciferase gene from the vector pSTI-A120 by 

cutting with BamHI/EcoRI followed by a mutagenesis downstream from the T7 promoter to 

create a ribosome binding site.  

The two vectors were chosen for the highest homology possible. However, they differ in their 

promoter because in vitro transcription of mRNA is only possible using the T7 promoter. To 

our best knowledge, the stabilizing β-UTR of the mRNA construct does not have an influence 

on transfection efficiencies. In addition to that, the sequences of the 3’UTRs of both vectors 

are comparable. The poly(A) tails of both transcripts, which have an impact on transcriptional 

stability, can be expected to be rather similar. 



 

 

Figure S1. Vector maps of the pEGFP-vector and the pSTI-A120-vector. The analogous 

DNA- and RNA-templates are also shown. 

 

Transfection for Single-Cell Time-Lapse Microscopy 

A549 cells were grown in six-well plates for 24 hours before transfection from an initial 

seeding density of 1 x 10
5

 cells/well for pDNA transfection and 5 x 10
4 

cells/well for mRNA 

transfection, respectively. Equal weight amounts of pDNA and mRNA were used for 

transfection (20pg/cell). In the following, we will give the per-well-amounts of the reagents 

that we used for transfection per well: For the formation of lipoplexes, 2.5µl/4.75µl 

(mRNA/pDNA transfection) Lipofectamine were first diluted in 247.5µl/255.25µl OptiMEM 

transfection medium and 1.0µg mRNA/1.95µg pDNA were diluted in OptiMEM to add up to 

a total volume of 250µl. These mixtures were incubated at room temperature for 5 minutes. 

The Lipofectamine solution was then mixed with the nucleic acid solution, followed by 

another 20 minutes of incubation at room temperature. Immediately before transfection, the 

cells were washed with PBS and 500µl OptiMEM were added. Finally, 500µl of the lipoplex 

solution were added. The cells were incubated in a total transfection volume of 1ml at 37°C 

(5% CO2 level) for one hour. The transfection medium was thereafter removed, the cells 

washed with PBS and re-incubated with Leibovitz’s L-15 Medium containing 10% FBS right 

before monitoring of eGFP expression.  



 

Transfection and Preparation for FC Measurements 

A549 cells were grown in 24-well plates for 24 hours before transfection from an initial 

seeding density of 5 x 10
4 

cells per well. Equimolar amounts of pDNA and mRNA were used 

for transfection (0.625pmol/well). In the following, we will give the amounts of the reagents 

that we used for transfection per well: For the formation of lipoplexes, 0.625µl/4.5µl 

(mRNA/pDNA transfection) of Lipofectamine was first diluted in 49.375µl/46.5µl OptiMEM 

transfection medium, respectively. Thereafter, 250ng mRNA/1.8µg pDNA were diluted in 

OptiMEM to add up to a total volume of 50µl. These mixtures were incubated at room 

temperature for five minutes. The Lipofectamine solution was then mixed with the nucleic 

acid solution, followed by another 20 minutes of incubation at room temperature. 

Immediately before transfection, the cells were washed with PBS and 150µl OptiMEM were 

added. Finally, 100µl of the lipoplex solution were added. The cells were incubated in a total 

transfection volume of 1ml at 37°C (5% CO2 level) for one hour. The transfection medium 

was thereafter removed, the cells washed with PBS and re-incubated with full growth medium 

containing 10% FBS for 25 hours. The cells were detached from the 24-well plates with 150µl 

trypsin/EDTA per well. Subsequently, they were disaggregated by vigorous mixing with cold 

PBS containing 10% FBS and centrifuged for 5 minutes at 800 rpm. The cells were 

resuspended in 1ml ice-cold PBS and kept on ice until FC analysis.  

 

Mathematical Modeling of eGFP Synthesis after mRNA Transfection 

 

 

Figure S2. Kinetic rate model for GFP synthesis in mRNA-transfected cells.  

 

We modeled eGFP expression of mRNA-transfected cells with a linear ansatz of two rate 

equations (Eq. 1 and 2 in the main text). Its solution (Eq. 3 in the main text) can be rewritten 

as follows:  



    000)(
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Equation (S1) shows that GmRNA(t) is symmetric with respect to the parameters β and δ, which 

represent the degradation rates of eGFP and mRNA, respectively. The values for β and δ are 

therefore interchangeable in our fitting formula. The eGFP degradation rate has been reported 

to be lower than that of mRNA 
1
. This leads us to the assumption that the higher fitting value 

can always be assigned to δ whereas we believe the smaller value to represent β. 

Another more illustrative representation of the (S1) is:  

     001)( 0 ttttTL
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   (S2) 

 

This product can be divided into three terms, each describing one particular part of the eGFP 

time-courses: /0mkG TLesteadystat   is the steady state protein level that a cell would reach if 

eGFP were not degraded (β = 0). The second term describes the monotonic increase of protein 

expression that we observe in all successfully transfected cells. The exponential decrease of 

the time-courses is defined by the GFP degradation rate β, which is the exponent of the last 

term. The slope of eq. (S2) at t = 0 corresponds to the initial eGFP synthesis rate in a 

transfected cell: 

0)0(' mkG TL  (S3) 

 

For data analysis, we fitted each single time-course to the analytical solution (Eq. S1/S2). 

Here, the translation rate and the number of mRNA molecules were combined to kTL*m0 (i.e. 

the expression rate). All 281 single-cell time-courses were fitted in order to obtain 

distributions of the initial expression rate kTL*m0, the transfer time t0, and the degradation rates 

β and δ. To validate this data analysis approach, we simulated mRNA transfection based on 

the Gillespie algorithm using the biochemical network simulator Copasi version 4.8
2
. The 

reactions that were taken into account were mRNA translation and mRNA as well as GFP 

degradation (see Figure S2). We used a translation rate of kTL = 170/h, the degradation rates 

were assumed to be δ = 0.062/h and β = 0.056/h. These are the mean values of the rate 

distributions that we obtained from fitting the experimental data. With these rates and an 



initial number of 1000 mRNA molecules, we did 300 simulation runs (over a time span of 25 

hours each) and fitted the resulting time-courses in the exact same way as we did for the 

experimental data. Figure S3 shows the resulting probability distributions of β and δ with the 

corresponding Gaussian fits: 

 

 

Figure S3. (A,B) Probability distributions of degradation rates (blue: experimental data, red: 

simulation, dashed lines: Gaussian fit curves). The portion of intrinsic noise (i.e. the width of 

the fit to the simulated data) contributing to the total noise (i.e. the width of the fit to the 

experimental data) is 26% for mRNA degradation and 34% for GFP degradation. (C, D) 

While the expression rate and the degradation rates are not correlated to each other (see 

Figure S3 C), a clear correlation between the degradation rates can be seen in Figure S3 D. 

 

When we fit the distributions that we receive from simulation, the source of noise (i.e. the 

width of the Gaussian fit) can be of intrinsic nature only. This is due to the fact that our 

simulation is exclusively based on state transitions that are described by rates and does not 

include any cell-to-cell variations of these rates nor transfer noise. The variations of the rates 

that we extract from our simulated data are therefore a signature of the inherent stochasticity 

of the underlying biochemical processes. The additional width of the experimentally obtained 

rate distributions can be attributed to sources of extrinsic noise that are also present during 

transfection 
3
. The intrinsic noise contributing a portion of about 30% of the overall noise 

seems to be a reasonable result and is in agreement with values that have been reported in 

literature 
4
. 



 

Universality of mRNA Kinetics 

 

The mRNA kinetics proves to be generic as three different cell types show the same mRNA 

expression curves. The single-cell expression time-courses are normalized with regard to the 

expression maximum and the onset time t0. For comparison, the inserts show the original 

time-courses. The normalized expression curves nearly collapse onto a single expression 

master curve, which is fitted by Eq. 3 of the main text. The variance in the single-cell courses 

is due to cell-to-cell variability in the mRNA and eGFP degradation rates. 

 

.  

 

Figure S4. Normalized mRNA expression time-courses for various cell lines. Exemplary 

time-courses were normalized to their maximal value and shifted by the fitted onset time. 

Blue lines show the resulting master curve, raw data are shown in inserts. Largely cell-type 

independent behavior is observed.  

 



A Stochastic mRNA Delivery Model 

 

In order to describe the process of transfection by numbers, we developed a stochastic mRNA 

delivery model. During incubation, a portion of the lipoplexes in the transfection medium 

settles down onto the cell membrane. Some cells incorporate a fraction of the lipoplexes that 

are attached to their membrane by the formation of endosomes around lipoplexes. After 

uptake, some of the endosomes inside a cell lyse and part of their payload is successfully 

unpacked so that translation of the transfected mRNA can start. We will now describe in more 

detail how we developed a mathematical expression for the probability to find a certain 

amount of lipoplexes inside a cell: 

Let η be the number of endosomes. The number of lipoplexes C inside a single endosome 

(η = 1) is assumed to be given by:  

   ,   (S4) 

which is a Poisson distribution with mean Leff. However, in a given cell the number of lysed 

endosomes is not necessarily η = 1 but η is rather a small, random number itself and therefore 

also Poisson distributed (with a mean Neff). The probability of finding η endosomes in a cell 

then is 

      (S5) 

The probability to have C lipoplexes in a cell (not per endosome) can be written as 

      (S6), 

summing up all possible ways of how C lipoplexes can be delivered to a cell (e.g. in only one 

single endosome η = 1, in two endosomes η = 2, etc.). We now need to find an expression for 

the probability P4 (C|η) to have C lipoplexes in a cell, given that η endosomes have lysed 

inside this particular cell. As the endosomes are statistically independent of each other, we 

can convolve P1(C) with itself η times. Here, we take advantage of the fact that the 

convolution of two Poissonians with means λ1 and λ2 is itself a Poissonian with mean λ1 + λ2. 

The convolution of η Poissonians (each with mean Leff) hence is a Poissonian with mean ηLeff: 

      (S7). 

The overall probability to find C lipoplexes in a given cell then is 



   (S8). 

As every cell that contains one or more lipoplexes is considered to be successfully transfected, 

we can calculate the transfection efficiency by summing P3(C) from C = 1 to infinity: 

  (S9) 

Here, we changed the order of summation. The second sum is a sum over a Poissonian 

excepting the term for C = 0. Since all Poissonians are normalized, this sum gives  

. 

Finally, we get an expression for the transfection efficiency: 

 (S10). 

 

To fit the dose-response curve, we assumed Leff to be proportional to the mRNA concentration 

c in µg ( ) and used this as fit parameter in order to extract Neff from a fit of Eq. 

S10 to the dose-response curve. 

 

Estimation of Lipoplex Size and mRNA Load 

 

To estimate the number of mRNA molecules per lipoplex, <m>, we measured the 

hydrodynamic radius of lipoplexes using fluorescence correlation spectroscopy and calculated 

<m> under the assumption of charge neutralization between the negatively charged 

nucleotides and the positively charged lipid analogues. Lipoplexes exhibit a configuration of 

intercalating mRNA and lipid-bilayer planes 
5
. They can be approximated as cubes of an edge 

length that is twice the hydrodynamic radius of a lipoplex. A phospholipid’s head group that 

is incorporated into a bilayer exhibits an average surface area of 70Å
2
. The repeat distance 

from layer to layer is 65Å 
5
. Lipofectamine is a 3:1 solution of DOSPA (four positive charges) 

and DOPE (neutral). To be more precise, we used Lipofectamine2000
®, which we assume to 

be composed as Lipofectamine for this estimation. The N/P ratio in all single-cell experiments 

was about 5.4 and the mRNA we used consists of 1192 nucleotides. Taken together, this leads 

to an average number of   



 
350

654,5119270
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A
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m  (S11) 

mRNA molecules per lipoplex.  

 

Estimation of the Fraction of Lipoplexes Adsorbed by the Cells 

 

After one hour of incubation, the number of lipoplexes per cell is on the order of six in our 

experiments (see Figure 6D in the main text). In this section, we estimate the portion of all 

administered lipoplexes that is delivered toward a cellular monolayer within one hour 

incubation time. The transfer is diffusion limited because the theoretical sedimentation 

velocity of lipoplexes is negligible (about 0.4 nm/s). 

The diffusion length is given by 

R

Ttk
Dt B

diff



3

2   (S12) 

With kB = 1.38x10
-23

J/K, T = 310K, RLipoplex = 60nm, µ = 0.7x10
-3

Pa*s and t = 1hour follows 

ζdiff = 200µm. For an mRNA dose of 1µg and the derived package size of 350 mRNA 

molecules per lipoplex, we determined a concentration of 9x10
9
 lipoplexes per ml transfection 

medium using FCS. At this lipoplex concentration, about 3000 lipoplexes should settle down 

on each cell within one hour if we assume an average cell area of 1600µm
2
. However, this 

number is based on a “stick-and-hit” assumption where every lipoplex that hits the cell 

membrane stays there. In our experiment, we find no more than 15 lipoplexes per cell even 

after five hours of incubation at the above discussed dose (see also Figure 6D). Such small 

amounts of successfully delivered lipoplexes and hence the big loss of material must be 

caused by unknown side-effects and remains to be studied in more detail. 

 

Determination of Gene Expression Onset Time after pDNA Transfection 

 

 

In order to determine the onset time after pDNA transfection, the heuristic function 

 





















 


0

21max tanh1
2 t

ttI
tI was fitted to the recorded fluorescence time-courses. The time 

of expression onset, t0, was calculated from the time of the half-maximal expression t1/2 and 

the slope at that point as has been described in
6
. 

 



Calibration of Quantitative Fluorescence Imaging (QFI)  

 

For quantification of eGFP expression levels in terms of eGFP molecules per cell, we imaged 

a polydimethylsiloxane (PDMS) micro-channel system filled with an eGFP standard solution 

at exact same microscopy and camera settings. The calibration system consisted of five 

channels. Each of them was 20µm wide, 8µm high, and 10mm long. The PDMS cast was 

made from a silicon master using standard photolithography. The PDMS cast was mounted on 

a glass cover slip via oxygen-plasma hydrophilisation. In order to prevent eGFP adsorption, 

the channels were passivated by incubation with PBS buffer containing 3µM Pluronic F108 

for 20 hours at 4°C. The channels were consequently washed with PBS three times and dried 

under nitrogen flow. 

The eGFP calibration standard is a His-tagged version of eGFP based on the same plasmid 

that was used for our single-cell transfection experiments. His-tagged eGFP was expressed in 

E. coli and purified using High Performance Liquid Bioaffinity Chromatography. The eGFP 

stock solution contained PBS (pH 7.4), Tween (0.001%, to prevent binding to surfaces), and 

sodium azide (0.002%, as a preservative). In the range of the stock solution’s pH value, eGFP 

fluorescence is expected to be pH insensitive 
7
. The eGFP concentration of the stock solution 

was determined photometrically using a NanoDrop 1000 spectrophotometer (Thermo 

Scientific, Germany) and independently checked by fluorescence correlation spectroscopy 

(FCS) on a ConfoCor2 (Zeiss, Germany).  

The five channels of the calibration chip were filled with a concentration serial dilution of the 

calibration standard. A z-stack of the channels was recorded using the same 10x objective 

(focal depth of 8.5µm), exposure-time, and binning as used for the single-cell experiments. 

Calibration images were corrected for uneven illumination and auto fluorescence effects. In 

the calibration curve (Figure S6 B) the mean grey values (counts per pixel) were assigned to 

the calculated numbers of eGFP molecules in the corresponding channel volume knowing the 

imaged area per pixel and the height of the channels.  

 

 



Figure S6. (A) PDMS micro channels were filled with a dilution series of eGFP solution and 

used to calibrate the grey values of microscopy images of eGFP expressing cells to numbers 

of eGFP molecules per cell. Left: PDMS chip with reservoirs and channels (filled with food 

colouring here for better visibility). Right: enlarged micrograph of the eGFP-filled channels. 

The second and third as well as the fourth and fifth channel (from the top) contain the same 

eGFP concentration, respectively. The far-right graph shows the corresponding brightness line 

plot. (B) Calibration curve for the conversion of grey values to numbers of eGFP molecules. 

 

Rapid Reporter Turnover Using a Destabilized eGFP Variant 

As we mentioned in the main text, the use of the destabilized eGFP variant, namely 

pd2EGFP-N1, as a fluorescent reporter circumvents the problems caused by longer 

observation periods. Figure S7 shows two exemplary curves of A549 cells that were 

transfected with mRNA encoding for destabilized eGFP. Here, the elimination phase of 

mRNA can be seen within 25 hours.  

 

 

Figure S7. Two exemplary curves showing the time-course of d2eGFP expression after 

transfection of A549 cells with a destabilized eGFP variant. A decrease of the protein level to 

half the maximum expression can already be seen after about 20 hours in both cases.  
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A. Supplementary Figures and Tables 
 
 

 
 
Figure S1: D. discoideum migration within pillar fields of high interpillar distance ( mμ15> ).  
(A – movie S6, B – movie S7) Typical cell migration tracks, displaying dir-runs from pillar to pillar: 
the cell (green) is efficiently guided from pillar to pillar, and covers a very long distance (B). 
(C-E) Statistics on 10 measured cells. (C) The speed distribution is shifted towards lower values 
compared to flat, and the angle distribution remains random for dir- and rm-modes (insert). (D) The 
dir-run lifetimes are fitted by a Gamma distribution of average value 120 s, 22% smaller than on flat. 
(E) The distribution of distances covered during dir-runs is fitted by an exponential decay of typical 
cut-off length 8.4µm. 
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Figure S2: D. discoideum cells stalling within a pillar field where the interpillar distance 
equals the cell diameter.  
(A-C) A cell is stalled between two pillars, during the whole recording time of over 80 min (A). 
The angle distribution shows back and forth oscillations between pillars without any net motion 
(B). The time series reveals a strong decrease in cell velocity (C). (D-F- movie S8) Two cells are 
stalled for a certain fraction of their recorded trajectory, as evidenced through their tracks (D), and 
time series (E, F). 
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Figure S3: Modification of spontaneous migration upon contact with micron-scaled 
surface features.  
Various scenarios of cell-pillar interactions: micrographs with individual cell tracks (A, 
C, E, with “touch” phases in white, dir-runs in red) and time sequences of the 
instantaneous cell speed V (B, D, F, “touch” phases in light gray).  
(A, B)  Revisiting track: the cell goes back and forth to the same pillar in an rm-type of 
motion for 40 min. Very rare dir-runs are present when the cell tries to escape from the 
pillar, and the cell is essentially trapped around the pillar.   
(C, D) Guided track: the cell is guided from pillar to pillar within an island of 
microstructures, exhibiting a ”stick-and-go” type of motion: after displaying several 
sequences of touching (grey) and going, the cell leaves the island, probes its surrounding 
flat environment, and finally repolarizes into a new direction (orange) until it finds a pillar 
again.  
(E, F) Deflecting track: the cell probes its surrounding flat environment, polarizes into a 
certain direction (orange shading), increasing its speed (red arrow). After a new probing 
and re-polarizing event, V increases again (red arrow) and upon the next pillar contact, 
the cell is simply deflected by the pillar. 
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Figure S4: Quantitative Analysis of Velocity Distributions 
 
(A) Instantaneous speed distributions, resulting from all analyzed wild-type cells on flat 
PDMS (red: d-runs, grey: rm-modes). The speed distribution of rm-modes is best fitted by 
a log-normal curve. (B) Instantaneous speed distributions, resulting from all analyzed 
wild-type cells within a micropillar array (red: d-runs, grey: rm-modes). The speed 
distribution of rm-modes is best fitted by a log-normal curve. (C) Instantaneous speed 
distributions, resulting from all analyzed cells lacking microtubules within a micropillar 
array ( red: d-runs, grey: rm-modes). The speed distribution of rm-modes is best fitted by 
a log-normal curve. (D) Instantaneous speed distributions, resulting from all analyzed 
Myosin II null cells within micropillar array (red: d-runs, grey: rm-modes). The speed 
distribution of rm-modes is best fitted by a log-normal curve. 
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Micropillar array : interpillar distance  <10µm >15µm 
Number of data points in the statistics n 4623 2189 
Exponent of the l-MSD power-law 
     all <α> 1.64 1.45 
     dir-runs <αd> 1.82 1.81 
     rm-modes <αr> 1.26 1.31 
Instantaneous velocity (µm/s) 
     all <V> 0.040 0.040 
     dir-runs <Vd> 0.059 0.048 
     rm-modes <Vr> 0.031 0.035 
dir-runs lifetime (s) <τd> 120 108 
dir-run length (µm) ld, cut 8.4 5.8 
 
 
Table S1: Parameters describing the cell motility within micropillar networks of varying 
interpillar distance, corresponding to Fig. 3, Fig. S1 to S3. 
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B. Supplementary Text  
 
Text S1.  Details concerning cell motility behavior on flat PDMS  
 
We studied the spontaneous migration of single cells (N = 27 cells, n = 10968 data points) on flat 
PDMS substrates by applying both a global analysis and the time-resolved TRAnSpORT 
algorithm. The characteristic features are illustrated in Fig. 2 and summarized in Table 1.  
 
Global MSD analysis The global MSD functions, calculated over the entire trajectories, yield 
information about the cell migration type as a whole. A typical example function is given in Fig. 
2N (corresponding track shown in insert). The motion is superdiffusive at short time scales 
(power-law trend exponent 170.11 >>=α ) and diffusive at long time scales (power-law trend 
exponent 109.12 ≈=α ), with a typical cross-over time from one regime to the other of 

sC 256=τ . The statistics on all cells yield average values of the same order: 18.054.11 ±=α , 

31.011.12 ±=α and sC 124207 ±=τ . But this global analysis can only give a rough 
representation of cell migration as a random walk which, at short time scales, involves periods of 
rather directed migration. While the double fitting of the global MSD functions can only yield one 
characteristic cross-over time Cτ , our high resolution analysis of local motion types enables to 
separate the contributions of different migration modes, and to analyze the distribution of their 
precise characteristics: local MSD exponent, velocity and lifetime.  
 
Local MSD analysis The α -landscape of local MSD functions (Fig. 2B) shows a succession of 
ballistic-like (local exponent of the power law, 65.1≥α ) and diffusive-like ( 35.1≤α ) phases, 
with an overall tendency towards superdiffusion. By correlating the values of the local exponent 
α  and angle persistency φΔ  (see Materials and Methods), we were able to split the cell 
migration trajectories into two specific motility types: dir -runs, or phases of directed motion, 
which also exhibit high velocities ( 1076.0 −⋅= smv d μ ), separated by rm-modes, i.e. slower 

phases of random probing ( 1057.0 −⋅= smvr μ ).  

The distribution of the local exponents α  confirms the tendency of cells to move in a 
directed way: it peaks around 1.8 (Fig. 2F). A second small bump in the distribution can be seen 
for 1α , which corresponds to the rm-modes, during which the cell randomly probes its 
environment and has a diffusive-like trajectory.  

Moreover, the angle distributions of both phases, whether on a short or a long time scale, 
exhibit no particular trend in direction. So, the symmetry breaking, that triggers each directed 
phase, is isotropic.  
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Text S2. Details concerning cell motility behaviour within regular and homogeneous 
micropillar arrays  

 
To extract the effect of micron-scale topography on amoeboid motility, we placed the cells in 
dense, regular arrays of micropillars (Fig. 1E). In this case, the cells have to squeeze in between 
pillars to move.  

We studied the characteristics of the two motility modes, i.e. directed runs and random 
probing (N = 13 cells, n = 5178 data points), and noticed very clear differences to the spontaneous 
motion on a 2D surface, as illustrated in Fig. 2 and Table 1. The fact that the flat reference and the 
microstructured substrates consist of the same material (PDMS) ensures that any difference in cell 
motility can only be attributed to the well-defined micron-scale topography, and not to different 
chemical properties of the surface.  

 
Global MSD analysis As seen for the typical cell track analyzed on Fig. 2O, the global MSD 
function exhibits a trend towards subdiffusion at long time scales ( 77.02 =α ). Even though the 
motion remains superdiffusive at short time scales, the exponent is lower than on flat 
( 23.11 =α ), and the cross-over time is shorter ( sC 188=τ ). So the cell overall migration is less 
effcient, and results in a more confined random walk. This is confirmed by average 
values: 14.031.11 ±=α , 32.087.02 ±=α and sC 84176±=τ . Also, the average cell 

velocity is lower than the reference velocity on flat: 1043.0 −⋅= smV
pil

μ instead of 
1057.0 −⋅= smV

ref
μ   (Fig. 2C).  

 
Local MSD analysis After splitting into the two motility modes, we observe that the velocity of 
the dir-runs is larger 1082.0 −⋅= smV

pil
μ instead of 1077.0 −⋅= smV

ref
μ on flat. The dir-

runs are much less frequent: within this very dense micropillar environment, they represent only 
10% of the total time, as opposed to 35% for the spontaneous motility on a flat substrate. This 
tendency of cells to move in a more erratic way is reflected in the α exponent distribution (Fig. 
2G): it is peaked around 1.5, significantly lower than the reference distribution. The dir–run 
lifetimes decay much faster: fitting by a simple exponential yields a characteristic time 
of sd 111=τ .  

Finally, the most striking trend can be seen in the angle distribution of dir–runs (Fig. 2C): 
in such a topographical environment, the directed modes of motion do not occur in random 
directions any more. They are guided along the main axes of the lattice. The random probing 
modes, however, remain randomly oriented. This already shows that topographical features act as 
a guide for cell migration only by directing the ballistic phases of motion.  

 
Here, our observation of cell migration in two drastically different topographical 

situations gives hints about the way motion is affected by dense microstructures, but does not 
yield information about the transition from one topographical environment to the other.  

 
To study the migration transition at the interface between flat and microstructured 

environments, we recorded Dd cell migration within scarcely distributed islands of micropillar 
arrays, separated by large areas of flat surface. In addition to the dynamical motility features, we 
observed the steady-state spatial distribution of cells in environments where different 
topographical environments are adjoining, evidencing trends in cell localization towards 
microstructures.  
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Text S3. Details concerning the motility behavior within low-density islands of micropillars  
 
We analyzed cell migration (N = 27 cells, n = 10220 data points) in environments composed of 
low-density islands of micropillars (Fig. 1I, 3C). Out of the 27 cells, 14 (50%) were observed to 
be in contact with pillars for all or a fraction of their trajectory. Out of them, 9 (75% of the 
contacting cells) displayed losing and re-establishing contact with pillars several times1. 
 
3.1. Description of typical motion features  
Typical trajectories observed for cells migrating at the interface between the 2D surface and the 
3D micropillars are presented in Fig. S3A, C and E (and the corresponding movies S3, S5, and S4 
respectively).  
 
The slow and probing cells display "stick-and-go". When a cell reaches a pillar, it typically 
stays in contact with it for more than 200 s (Fig. S3A,E). Upon detaching from it, the cell starts 
crawling on the flat PDMS, and performs a sequence of short dir-/rm-phases, going back and forth 
for 200 to 500 s (Fig. S3B).  

Within that searching time, a "stick-and-go" motion feature was observed for most cells 
(60% of the contacting cells) as a typical reaction to pillar contact: either the cell finds another 
pillar, which becomes the new starting point of the next "stick-and-go" series, or the cell finds its 
way back to the same pillar. In both cases, long interaction times between cell and pillar are 
observed.  

The revisiting events, often displayed several times successively, are a very interesting 
feature. Indeed, one would not expect them in the frame of an optimized searching process, and 
show that the complex internal signalling cascades triggered by prolonged micropillar contact 
(over 500 s) result in cell relocalization towards topographical features. The fact that cells have a 
certain biochemical "memory" of the obstacles they were in contact with can however be linked to 
another motion feature: on flat substrates, motion of the cell along its own previous track can 
sometimes be observed (Fig. 1DA and movie S1), reflecting the cell sensing of its own left-over 
protein traces [SR1].   

 
The fast and efficiently migrating cells are deflected by pillars. If no other pillar is present in the 
cell vicinity after 500 to 1000 s of probing, the cell repolarizes in a new direction and starts a new 
dir–run (Fig. S3C, D: orange arrows). A cell which is then in a fast dir-run displays a very 
different reaction to pillar contact: when touching a pillar, it is deflected by it, but does not show 
any slowing down nor does it stay in contact with the micropillar for more than 100 s (Fig. S3C-
D: white arrow, and movie S5). On the flat part of the substrate, such cells are exhibiting very 
frequent and long dir-runs, with a speed higher than , which is at the upper limit of the 
overall speed distribution, since 70% of the dir-run speed values on 2D substrates are between 
zero and 

11.0 −⋅ smμ

1093.03 −⋅=+ smV Vdd μσ (Fig. 2B).  
 

 
3.2. Statistical results  
Partition coefficient between flat and microstructured substrates Once given the possibility to 
stay on the flat part of the substrate or to come in contact with micropillars, the cells tend to spend 
a very high fraction of their time in contact with pillars. The overall statistics yield a 
"relocalization" factor R of almost 3 (Fig. 3D). This factor is calculated as the ratio of two 
                                                 
1 We also observed cells staying on top of a pillar and turning around it on its edge, which proves 
that D. discoideum cells are sensitive to the high curvature present at the border between pillar top 
and pillar walls. Such a case can be observed in movies S3 and S9.  
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dimensionless numbers:  

flatpil

totcont TTR
∑∑

=  

The numerator, totcont TT , represents the fraction of the time the cells spend in contact with 
pillars, for all measured cells:  takes into account all the time points for which the contact 
index is greater than 1 and  is the total number of time points recorded. The denominator, 

contT

totT

flatpil ∑∑ represents the fraction of the surface available for cells in the neighbourhood of 
pillars, as measured on the images. So the fact that we obtain a factor 2=R .75 means that the 
cells tend to stay almost three times longer in contact with pillars than on flat.  

If we take into account the additional surface offered by pillar walls in the vertical 
direction, we retrieve a surface ratio flatpil ∑∑  twice larger. It results in a new ratio 1≅addsurfR . 
So, by taking into account the additional surface offered to the cells by the pillar walls, we obtain 
an equal distribution between cells on flat and cells in contact with microstructures.  

This relocalization factor can also be seen as a steady-state partition coefficient: when 
considering the dynamical behavior of cells at the transition between a flat and a microstructured 
landscape, this coefficient represents the trend for cells to remain in one or the other topographical 
environment. We show here that the observed partition can be explained exclusively by an 
additional surface effect.  

 
Cell attraction to micropillars as a dynamical effect The velocity distributions obtained from 
the time points during which the cells touch 1 or 2 pillars are slightly shifted towards smaller 
values, compared to the reference velocity distribution for cells migrating on flat PDMS (Fig. 3E). 
Indeed, the velocity distributions peak around for the flat case,  for 

 and for . However, this shift is small compared to the standard 

deviation of the distributions (around in all three cases), and the median velocity 
stays within 10% around the value of , as shown in insert of Fig. 3E.  

103.0 −⋅ smμ 102.0 −⋅ smμ
1=contI 101.0 −⋅ smμ 2=contI

104.0 −⋅ smμ
105.0 −⋅ smμ

 
In summary, the observed cell motion while in contact with a micropillar results from the 

superposition of the following counter-acting effects:  
(1) an "additionally available surface" effect: the probability that random protrusions 

touch a surface is increased. If a pseudopod establishes contact with the micropillar surface, 
feedback loops are activated locally and trigger actin polymerization which stabilizes the 
pseudopod. The resulting probability that this pseudopod becomes a leading one, and hence the 
probability that a dir-run starts, is increased. 

(2) a "three-dimensional motion" effect: when a dir-run starts upon micropillar contact, 
the cell moves partially in the Z-direction, but  the Z-component of the velocity cannot be 
measured by our standard epifluorescence observations. Hence, the measured velocity is lower 
than the actual one and the proportion of dir-runs retrieved by analysis is also biased towards 
lower values, due to the undetected motion in the Z-direction.  

The first effect tends to increase the proportion of directed motion modes, while the 
second tends to decrease it. As a result, a very slight decrease can be observed both in the velocity, 
as described above, and in the dir-run frequency upon pillar contact: from 35% on flat to 27% 
when touching two pillars (Fig. 3F). 
 
This amoeboid search mechanism and its modification upon topography sensing appears 
strikingly similar to the one described for bacterial chemotaxis: the run-and-tumble mechanism 
and its modification upon gradient sensing have long been shown [SR3, SR4].  The underlying 
theory is that the spontaneous motion consists of a superposition of two states, each being a 
random walk on a different length scale (the directed runs result in long-distance bacteria motion 
while the tumble modes allow for local probing), and that chemotaxis results from a shift in the 
distribution of the state frequency. But in the case of bacteria, due to their small size, the long and 
directed runs remain randomly oriented, and the cell motion up-gradient only results from a 
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switch in frequency. While here, the orientation of the dir-runs is biased by topography sensing, 
because contact of one cell protrusion with a surface polarizes the cell into a new preferred 
direction.  
 
 
3.4 Cell interaction with individual micropillars 
Within the framework of our two-state model, we investigated interaction types of single 
cells with individual micropillars. As elaborated above for cell behavior on flat substrates, 
we observed the following characteristics:  
(i) for cells which are initially in the random probing rm-mode:  they frequently return 
to pillars after first pillar contact (Fig. S3A-B, S3C-D and movies S3 and S4). This 
revisiting effect can occur several times successively, which is not expected in the 
framework of an optimized search process. This proves that a cell in the probing rm-mode 
will be very sensitive to the positive feedback provided by contact with a pillar: the pillar 
walls offer additional surface in the third dimension (see scheme in Fig. 3B) and as a 
consequence, the probability for a randomly extruded cell protrusion to become the 
leading pseudopod is increased by pillar contact. The new direction of the cell motion is 
hence biased towards the pillar and the cell seems to be trapped around it.  
(ii) for cells which are initially in a fast dir-run: upon touching a pillar, their dir-run is 
deflected. They slightly slow down and repolarize into a new direction after pillar contact. 
They rarely stay in contact with the micropillar for more than 100 s (Fig. S3E-F and 
movie S5) and do not remain trapped around it.  
 
Micropillars as an indicator of the cell migration type  
These two drastically different ways of reacting to micron-scale topography allow us to 
easily distinguish between two extreme types of motility states, while the cell-to-cell 
variability observed on a flat substrate is harder to categorize. Indeed, on flat substrates, 
the run-and-search motility includes all cell behaviors, ranging from the slow and probing 
cells to the fast and efficient cells. However, when in contact with a microstructure,  cells 
in the rm-mode appear to be very sensitive to topographical cues and stay in contact with 
them for very long periods (over 500 s), tending to return when they do not find another 
pillar close-by. Conversely, the fast and efficient dir-run cells merely sense the 
topography and react to it with no other trajectory modification than a deflection.  

Also, since cells can switch from one migration type to the other (as evidenced in 
Fig. S3C and movie S5), the presence of a topographical feature in the cell 
neighbourhood allows for the rapid discrimination between one or the other cell behavior 
type. Interestingly, the fact that a cell hits the pillar head-on or sideways is not decisive 
for the type of reaction triggered (see Movies S3 and S5: two cells hit a pillar sideways, 
but for one cell this results in a prolonged contact (S3), whereas it leads to deflection for 
the other cell (S5)). 
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D. Description of the supporting movies 
 
Movie S1   D. discoideum cell migrating freely on a flat PDMS substrate.  
Corresponding trajectory : Fig. 1D. 
 
Movie S2   D. discoideum cell migrating within a dense rectangular array of PDMS micropollars. 
In order to be easily followed over the movie, the cell is highlighted by a white circle.  
Corresponding trajectory: Fig. 1E. 
 
Movie S3   D. discoideum cell migrating at the frontier between micropillars and the flat 
substrate. The cell displays revisiting "stick-and-go", by coming back twice to the same pillar.  
Corresponding trajectory: Fig. S3A. 
 
Movie S4   D. discoideum cell migrating at the frontier between an island of micropillars and the 
flat substrate. The cell displays "stick-and-go", by going from pillar to pillar.  
Corresponding trajectory: Fig. S3C. 
 
Movie S5   D. discoideum cell migrating at the frontier between an island of micropillars and the 
flat substrate. The cell switches from slow (pillar-sensitive) motility at the beginning to fast and 
efficient (pillar-insensitive) migration at the end (where pillar contact only results in the deflection 
of the cell). The switching time at which the cell repolarizes and starts migrating fast into a new 
direction is indicated by a red circle.  
Corresponding trajectory: Fig. S3E.  
(N.B. : movie has been rotated by 90 deg. with regard to the original images, for file compressing 
reasons) 
 
Movie S6   D. discoideum cell migrating within a micropillar array of low density, going from 
pillar to pillar. The cell of interest is highlighted by a white circle at the beginning of the movie.  
Corresponding trajectory: Fig. S1A. 
 
Movie S7   D. discoideum cell migrating within a micropillar array of low density, going from 
pillar to pillar and covering a very long distance.  
Corresponding trajectory: Fig. S1B. 
(N.B. : movie has been rotated by 90 deg. with regard to the original images, for file compressing 
reasons) 
 
Movie S8   D. discoideum cells migrating within a micropillar array of intermediate density, at 
which they can touch two pillars at the same time. The cells then display stalling behavior, 
highlighted by magenta circles.  
Corresponding trajectory: Fig. S2D.  
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C Protocols

C.1 Preparation of microstructured six-channel slides

Before you start

• PLL-g-PEG(2) (1mg/ml) in 10mM Hepes buffer with 150mM NaCl @ pH 7.4

• Fibronectin (50µg/ml) in PBS

• Ibidi sticky slide V I0.4

• Ibidi foils uncoated: Place them on top of a channel slide to mark the positions of the channels,
make a little scratch into the protective foil using tweezers to facilitate later lift-off

• PDMS stamp of the wafer

Plasma treatment

• Place the cut PDMS stamps onto the foil.

• Settings: Timer 3.0, Power 5.5, oxygen plasma

• Carefully push the stamps onto the foil after plasma treatment (use tweezers).

PLL-g-PEG (work under the flow-hood from now on)

• You will need very small amounts of PEG (about 1.5µl per stamp), 8µl are sufficient for
PEGylation of a whole channel slide.

• Place the pipette at the top edge of the slightly tilted stamp-on-foil. The PEG will flow under
the stamp by capillary action.

• Incubate for 30 minutes at room-temperature.

Combine sticky foil and channel slide.

• Place the channel slide upside down, remove foil so that the adhesive film is exposed.

• Remove the PDMS stamp from the foil (use tweezers).

• To hit the target, try to guide the foil with your fingers when putting the foil onto the channel
slide.
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• Carefully rub the foil so that it sticks perfectly to the channel slide, using your fingers or
tweezers. Do not destroy the protective film!

• Rinse the channels with deionized water.

• Fill the channels with fibronectin (50µl per channel). Incubate for 1h at room-temperature.

• Rinse three times with deionized water.

You can store the channels (either empty or filled with PBS) in the fridge for up to two weeks (or
more).
A cell number of 10000 per channel was optimal for A549 and Huh7 cells.
Seed the cells at least three hours prior to transfection, pipette cell solution through the channel
several times. The total volume per channel is 150µl.
Add anti-evaporation oil before long-term measurements.
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C.2 Preparation of microchannels and GFP calibration

The height of the PDMS channels should not exceed the focal depth of the microscope objective!
Focal depth of Nikon 10x objective is about 8.5µm, PDMS wafers No.3 (3000rpm, 25s, h = 7.9µm)
and No.5 (5000rpm, 10s, h = 6.6µm) can be used

• Cut PDMS (1:10/crosslinker:monomer/w:w) stamp and punch holes at the end of the channels

• Plasma cleaner: PDMS stamp (upside down) and cover slip, next to each other, oxygen
plasma, power 4.0, timer 2.0

• Immediately turn the stamp and carefully press it onto the cover slip.

• Add 3µl F108 (3mM) into one of the two reservoirs of each channel. After some time, add
3µl to the opposite reservoirs.

• Put a stripe of scotch tape on top of the channel slide and incubate for 20h @ 4◦.

• Rinse each channel three times with PBS, dry them under nitrogen flow.

• Fill the five channels with a concentration serial dilution of GFP stock solution, cover channel
slide with scotch tape or PDMS monomer.

• Use the same microscope settings as in the corresponding experiments (exposure time, fluo-
rescence lamp intensity, binning, intensity range)!

• Capture background for correction.

• Run z-stacks (about 30µm range). The middle one of the eight consecutively brightest slices
(1µm step size) supposedly is the middle of the channel.

Determine the concentration of the GFP stock solution using either fluorescence correlation spec-
troscopy or using the Nanodrop spectrophotometer.
Correct for autofluorescence and uneven illumination using the background correction of SingleCell-
Tracker and determine mean intensities per pixel of equally sized regions of interest using ImageJ.
For the 10-fold Nikon objective, one voxel is roughly 3.17µm3. Assign grey values per pixel to
numbers of GFP molecules (see figure 2.6), thus generating a calibration curve for the conversion
of grey values to numbers of GFP molecules (see also supplementary of [54]).
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C.3 A very general transfection protocol

Before you start:
OptiMEM transfection medium and Lipofectamine 2000 R© (Lipofectamine) should be at room-
temperature, vortex Lipofectamine shortly before usage.
Thaw and vortex DNA.
mRNA should be kept on ice, use RNAse-free pipette-tips!

• Prepare equal volumes of nucleic acid and lipid in transfection medium in the two steps to
follow:

• Dilute nucleic acid in transfection medium.

• Dilute Lipofectamine in transfection medium (for most experiments, 2.5µl of Lipofectamine
were used for each µg of nucleic acid. However, this ratio is cell-line dependent and may have
to be optimised according to the purpose of the experiment.)

• Wait for five minutes.

• Thoroughly mix both solutions in equal amounts, wait for 20 minutes for lipoplex formation.

• Wash cells with PBS before transfection, add OptiMEM before adding the lipoplex solution.

• Carefully add the lipoplexes to the cells, change medium to growth medium or microscopy
medium after incubation at 37◦.
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C.4 Cell preparation for flow cytometry measurements

C.4.1 Preparation for immediate measurements

The amounts are given on a per-well-basis for a standard 24-well plate. Prepare ice-cold PBS for
the resuspension step.

• Remove medium.

• Rinse with PBS.

• Add 100µl Trypsin/EDTA, incubate at 37◦ for 3 minutes.

• Using a 100µl pipette, carefully detach the cells.

• Add 1ml medium to stop the Trypsin/EDTA.

• Centrifuge for 5 minutes at 400g and 21◦.

• Resuspend the cells in 900µl ice-cold PBS containing 10% FCS.

Store the samples on ice and measure immediately.

C.4.2 Paraformaldehyde fixation

The amounts are given on a per-well-basis for a standard six-well plate. Prepare ice-cold PBS for the
resuspension step. Wear protection and work under the extraction hood for all paraformaldehyde-
steps!

• Remove medium.

• Rinse with PBS.

• Add 300µl Trypsin/EDTA, incubate at 37◦ for 3 minutes.

• Using a 100µl pipette, carefully detach the cells.

• Add 1ml medium to stop the Trypsin/EDTA.

• Centrifuge for 5 minutes at 400g and 21◦.

• Remove supernatant.

• Resuspend the cell pellet in 1ml ice-cold PBS.

• Under the hood: mix with 1ml 4% paraformaldehyde.

Samples prepared this way can be stored at 4◦ for more than two weeks. However, because this
protocol is based on toxic paraformaldehyde, the alternative preparation described in the preceding
protocol should be preferred whenever possible.
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