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ABSTRACT

In this thesis we study moduli spaces of decorated parabolic principal G-bundles
on a compact Riemann surface X.

In [Sch08] Alexander Schmitt constructed the moduli space of affine g-Higgs bun-
dles’ (P, p) consisting of a principal G-bundle P on X and a global section
¢ € H'(X,P; ® L) as a GIT-quotient. Here L is a line bundle on X and P;
is the vector bundle associated to P by a rational representation ¢ of the reduc-
tive algebraic group G. p-Higgs bundles are generalizations of several well-studied
objects, such as G-Higgs bundles, Bradlow pairs or quiver representations.

In this work we generalize this GIT-construction of the moduli space of affine -
Higgs bundles to the case of affine parabolic g-Higgs bundles. A parabolic structure
on P over a fixed finite subset S of punctures 27 of the compact Riemann surface
X is given by reductions s’ : {27} — P xx {27}/P’; P’ a parabolic subgroup
of G. Our main result shows the existence of the resulting moduli space .#,,, of
decorated parabolic bundles as a quasi-projective scheme over C.

For a suitable choice of 0, i. e. 0 the adjoint representation of G on its Lie algebra
g, the moduli space of parabolic G-Higgs bundles (see |Sim94]) is obtained from
our construction by slight modifications of the semistability concept. Other im-
portant applications include the construction of a (generalized) projective Hitchin
morphism from .#,, into an affine scheme Hit as well as an extension of the
results of Nikolai Beck [Bel4| on moduli spaces of pointwisely decorated principal
bundles.

L An affine Higgs bundle is called "bump" in [Sch08§].



A. | ZUSAMMENFASSUNG

ZUSAMMENFASSUNG

In der vorliegenden Dissertation untersuchen wir Modulrdume dekorierter parabo-
lischer G-Hauptfaserbiindel iiber einer kompakten Riemannschen Fliche X.
Alexander Schmitt konstruiert in [Sch08| erstmals den Modulraum affiner p-
Higgsbiindel® (P, ) bestehend aus einem G-Hauptfaserbiindel P iiber X sowie
einem globalen Schnitt p € H(X, P; ® L) als GIT-Quotient. Hierbei bezeichnet
L ein Geradenbiindel auf X und P; das durch eine rationale Darstellung ¢ einer
reduktiven algebraischen Gruppe G zu P assoziierte Vektorbiindel. o-Higgsbiindel
enthalten als wichtige Spezialfille unter anderem G-Higgsbiindel, Bradlow-Paare
und gewisse Quiverdarstellungen.

In dieser Arbeit erweitern wir diese GIT-Konstruktion des Modulraums affiner
o-Higgsbiindel auf den Fall affiner parabolischer o-Higgsbiindel. Eine paraboli-
sche Struktur auf P iiber einer vorgegebenen Menge S von Punktierungen der
kompakten Riemannschen Fliche X ist gegeben durch Reduktionen s/ : {27} —
P x x {2}/ P’; P? ist dabei eine parabolische Untergruppe von G. Als Hauptresul-
tat zeigen wir, dass der resultierende Modulraum .#,,, dekorierter parabolischer
Hauptfaserbiindel als quasi-projektives Schema iiber C existiert.

Nach kleineren Modifikationen des Semistabilititsbegriffes ergibt sich der Modul-
raum parabolischer G-Higgsbiindel (siehe [Sim94]) fiir eine gewisse Wahl von g, d.
h. fiir ¢ die adjungierte Darstellung von G auf ihrer Lie Algebra g, als Spezialfall
unserer allgemeinen Konstruktion. Weitere wichtige Anwendungen beinhalten die
Konstruktion einer (verallgemeinerten) projektiven Hitchin-Abbildung von .#,,,
in ein affines Schema Hit sowie eine Erweiterung der Ergebnisse von Nikolai Beck
[Bel4| zu Modulrdumen punktweise dekorierter G-Hauptfaserbiindel.

2Ein affines Higgsbiindel wird in [Sch08] mit ,bump* bezeichnet.
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INTRODUCTION

I.1. Parabolic structures of vector bundles on a punctured Riemann surface were
probably first defined by Mehta and Seshadri in [MS80|. Their extension of a
classical result by Narasimhan and Seshadri [NS65| identifies reductive unitary
representations of the orbifold fundamental group m§™*(X) with semistable vector
bundles of parabolic degree 0. The bijection respects the two natural concepts
of equivalence, namely conjugation of the representation and isomorphy of vec-
tor bundles and thus descends to a homeomorphism on the corresponding moduli
spaces. Bhosle |Bho89] extended the result to connected reductive complex alge-
braic groups.

Carlos Simpson introduced in [Sim90]| the concept of parabolic Higgs bundles and
related tame semistable parabolic Higgs bundles of degree 0 to certain local sys-
tems, flat C'°°-bundles, as well as tame harmonic bundles, i. e. solutions of a
Hermitian-Einstein equation. The corresponding moduli spaces (see [Sim94]) pos-
sess a rich geometric structure. They occur as a hyperkidhler quotient, form a
completely integrable Hamiltonian system, where the leaves of the corresponding
Lagrangean foliation are just the fibers of the Hitchin morphism, and admit a
projectively flat connection.! These properties lead to further applications, for
example in the Geometric Langlands Program (e. g. [DP09]|, [GWO08|) or as ex-
amples of a SYZ duality (e. g. [BD12|).

A rank r Higgs vector bundle is a rank r vector bundle F on X together
with a Higgs field ¢ : F — E ® wyx. The Higgs field amounts to a section
H(X,End(E) ® wy) =~ HY(X, Faq ® wx) where Faq is the vector bundle which
is associated to the corresponding GI1(C")-bundle E by the adjoint representation
Ad : GI(C") x gl(C") — gl(C") on the Lie algebra gl(C") = Lie(GI(C")). If we
replace I/ by a principal G-bundle P, the adjoint representation by an arbitrary
linear representation ¢ of G' and wx by an arbitrary line bundle on X, we get an

Hfor the non-parabolic case see e. g. [Hit87], [Hit90], [ADW91] and for the parabolic case see
e. g. [Fal93], [ScSc95].
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affine g-Higgs bundle. The moduli space of affine o-Higgs bundles has been con-
structed by Alexander Schmitt in [Sch08]. Apart from Higgs vector bundles there
are several other well-studied objects that occur as instances of g-Higgs bundles,
for example Bradlow pairs, conic bundles or augmented quiver representations.
More examples and details on how these objects look in terms of p-Higgs bundles
may be found in great detail in [Sch08|.

Moreover the Kobayashi-Hitchin correspondence extends to the case of (non-
parabolic) ¢-Higgs bundles (J[LT06| or [GGM12]). Further applications include
for example Kapustins work on mirror symmetry [Kap06].

MAIN RESULTS

I.2. Let X be a compact Riemann surface, S a finite subset thereof and G a
reductive algebraic group over C. Let Y be a scheme of finite type over C and
PJ C @ parabolic subgroups for each 27 € S. A Y-family of parabolic G-bundles
is a principal G-bundle 2y over Y x X together with reductions s7 : Y x {27} —
Py xx (Y x {a?})/P?. By a result of Drinfeld and Simpson? we may assume that
Py is locally trivial w. r. t. the product of the étale topology on Y and the
Zariski topology on X.

Given a representation ¢ : G — GI(IW) and a line bundle L on X a Y-family
of (affine) parabolic p-Higgs bundles (or g-bumps) is a Y-family of parabolic G-
bundles together with a homomorphism ¢ : Py, — 7% (L).

The main result 3.19 of this thesis is the construction of a quasi-projective coarse
moduli space for the functors®

M*®) : Sche — Sets
Isomorphism classes of
Y — Y-families of (semi)stable

affine parabolic p-Higgs bundles

Moreover a projective moduli space for projective ¢-Higgs bundles*
(P, (s7)jys5, ¥, L) is constructed in 2.40 for every homogeneous representation ¢
and non-trivial ¢. The results will be applied to obtain among others:

the moduli space of parabolic G-Higgs bundles in the special case when p is
the coadjoint representation of G on the dual g” of its Lie algebra g;

the projective moduli space of parabolic Hitchin pairs;

an extension of the construction of Nikolai Beck (see [Bel4]) of moduli spaces
of pointwisely decorated principal bundles;

a generalized Hitchin morphism.

2|DS95].
3Sche denotes the category of schemes of finite type over C.
4cf. the notational remarks below.
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SYNOPSIS

I.3. An affine parabolic o-Higgs bundle (P, ¢ : P, — L, (s7)js) gives rise
to a projective parabolic ¢-Higgs bundle (P, ¢ : P. — L, (s7)jys) where ¢ is
a homogeneous representation of G' constructed from p and L is a line bundle
on X depending on L. Projective parabolic ¢-Higgs bundles on the other hand
identify under a to be constructed closed embedding ¢ : G — X 4 GI(C"*) with
projective ¢-Higgs bundles for a homogeneous representation ¢ of X o4 GI(C™).
The properties of the homogeneous representation ¢ finally define a resulting finite
tuple £ = (Ea)a[IAH of vector bundles F, together with the global homomorphism
©: (BE®")%Y — det(E)®" @ L for certain integers u, v, w. We call these objects
Higgs tuples. A parabolic Higgs tuple additionally admits parabolic filtrations,
i. e. vector space filtrations of the stalks F|,; over the punctures 27 € S. These
are of particular interest to us since the moduli problem for parabolic Higgs tuples
can be solved by classical Geometric Invariant Theory as originally introduced by
Mumford in [MFK]. We extend the approach of [Sch08] to the parabolic situation.
The first two sections are devoted to the construction of a parameter scheme for
Higgs tuples. If we wish to construct a parameter scheme for Higgs tuples we
first have to show that those vector bundles E, (of fixed rank r, and degree d,)
underlying a Higgs tuple live in a bounded family. While this is not the case in
general, the subfamily of vector bundles underlying a semistable Higgs tuple is in
fact bounded. Now the vector bundle part of a Higgs tuple is parametrized by a
tuple of (open subsets of) Quot schemes 9, and we are able to build a parameter
scheme ¥ for non-parabolic Higgs tuples. Adding Grafsmannian varieties for every
puncture results in a parameter scheme %, for parabolic Higgs tuples. In section
three we check the universal properties of T, necessary to construct moduli spaces
as quotients of the given parameter scheme. £, comes with a natural group action
G4 that extends to Tp,,. In order to realize the moduli space of parabolic Higgs

tuples as TEY // G4 we construct an equivariant morphism Gies from T into
some projective space P and try to pull back an existing projective GIT-Quotient
P(s)s /) Ga. This will work under two conditions: first of all the morphism Gies
should be at least finite, secondly Gies should be compatible with the intrinsically
defined semistability concepts on T, and the GIT-semistability on P given by
a properly chosen linearization in some ample line bundle on P. While the first
condition is satisfied by 1.59, the second one follows in 1.52 after some rather
lengthy calculations in the sections 1.6 to 1.9. The existence of the coarse moduli
space of stable Higgs pairs is proved in 1.64. We postpone the discussion of S-
equivalence to chapter 4. The last two sections deal with slightly modified moduli
problems. In particular, we prove the existence of the moduli space of pointwisely
decorated Higgs tuples formerly constructed by Nikolai Beck in his dissertation
[Bel4] for a different choice of stability parameters.
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Chapter 2 is devoted to the study of projective parabolic ¢-Higgs bundles. We
first define a semistability concept for parabolic fiber bundles. Given our faithful
representation ¢ the subsequently defined concept of a pseudo parabolic (g o ¢)-
Higgs bundle helps us relate semistable parabolic ¢-Higgs bundles to semistable
Higgs tuples, where ¢ is a homogeneous representation chosen such that ¢ C go.
This one-to-one correspondence allows us to deduce the existence of the projective
moduli space ‘Béi)f /| Ga of pseudo non-parabolic ¢-Higgs bundles like in [Sch08]
from the the existence of T*)* / G, using again a finite morphism to pull back
the GIT-quotient. It turns out later that 3., contains a parameter scheme ‘.
for non-parabolic ¢-Higgs bundles as a closed subscheme. Hence the moduli space
PB. / Ga exists as a projective scheme, too. The final section 2.4 of chapter 2
constructs a parameter scheme B, ,—par for pseudo parabolic (g o¢)-Higgs bundles
as a fiber bundle over the parameter scheme P.., of pseudo non-parabolic (cou)-
Higgs bundles. We show that the finite morphism constructed in the non-parabolic
case can be lifted to a finite equivariant morphism between the parameter schemes
for parabolic objects. This morphism moreover preserves parabolic semistability.
The moduli space of pseudo parabolic (s o ¢)-Higgs bundles ‘Bgi)jL_par / Ga exists
as a projective scheme. -

The third chapter starts with a discussion of asymptotic semistability. We give
a new proof for the boundedness of the family of vector bundles underlying a e-
semistable pseudo (non-parabolic or parabolic) (s o ¢)-Higgs bundle for any choice
of a stability parameter ¢ > (0. This result allows us to show that semistable
(¢ o ¢)-Higgs bundles correspond to semistable pseudo (¢ o ¢)-Higgs bundles, as
claimed in chapter 2. Finally we are in the situation to address the existence of
a moduli space for the functors given in 1.2. Isomorphism classes of semistable
affine p-Higgs bundles map finite-to-one to isomorphism classes of asymptotically
semistable projective ¢-Higgs bundles. The constructions of chapter 2 may be
used now to prove our main result: the existence of a quasi-projective moduli
space Q(l(jz)f /| Ga of affine parabolic o-Higgs bundles in 3.19.

In section 3.4 it turns out that the semistability concept used so far does not allow
any stable objects to exist if G is not semisimple. In particular it fails to extend
the known stability criteria for G-bundles (cf. [Ram96i]) or G-Higgs bundles (e.
g. in [GGM12|) in the general reductive case. Using a central isogeny this deficit
will be overcome. The last section of chapter 3 extends the Hitchin morphism
constructed in the non-parabolic case by [Sch08| to a projective morphism Hit
from the moduli space Q(gz)f // Ga into an affine scheme Hit.

We decided to put the treatment of S-equivalence into a separate chapter 4. This
allows us to define S-equivalence for all occurring objects at once and relate the
concepts immediately. Note that the existence of a moduli space of semistable
objects is only really established once S-equivalence is treated.
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The final chapter 5 rewrites the semistability concept in terms more suited to the
formulation of the Kobayashi-Hitchin correspondence in 5.2. We will recover the
concept of a tame parabolic Higgs bundle as originally defined in [Sim90]. The
moduli space of tame parabolic Higgs bundles is constructed as a closed subscheme
of the moduli space of affine parabolic Ad-Higgs bundles. Furthermore the moduli
space of Hitchin pairs exists as a projective scheme.

Notation. A scheme (if not specified differently) is assumed to be a scheme of finite
type over C. A vector bundle is assumed to be algebraic. A reductive group G
is assumed to be connected. However all results extend as in remark 2.7.5.4,
[Sch08] to non-connected reductive groups.

If a semistability criterion is checked against one-parameter subgroups or filtra-
tions, we assume those to be non-trivial. In some theorems or definitions we will
use brackets to treat several (slightly differing) versions at once. For example there
are some theorems that work for both parabolic and non-parabolic objects, i. e.
[parabolic] G-bundles (P, [(s7);ysy]). Most prominent example is the definition
of (semi)stability. The symbol (<) stands for < in the semistable version of the
definition, and for < in the stable version.

7y will (if not otherwise defined) denote the projection onto Y where Y is a com-
ponent of some cartesian (or fiber) product.

As in [LP97], 5.3 the vector subbundle generated by a coherent subsheaf F' C E
is the inverse image of Tor(FE/F') under the projection £ — E/F.

If o: GxW — W is a representation of G and P a principal G-bundle, P, denotes
the associated fiber bundle. GI(W)-bundles and their associated vector bundles
are identified throughout the text.

We denote vectors and matrices as (v')jpn = (V')i<i<m OF (Agj)ifmljin)
(Ajj)1<i<m,. If it is obvious over which range an index varies we will often shorten
1<j<n

the notation by writing simply (v'); or (A;;);;.

Weights will usually be denoted by the letters o, 55, ~Z, dF, ranks and degrees of
coherent sheaves by r} resp. d, where } stands for a possible indexing. We write
E® =P, _, E as well as E®" := Q)._, E.
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THE MODULI SPACE OF
HicGgs TUPLES

The main objects of this first chapter are parabolic Higgs tuples. The construction
of their moduli space is the central application of Mumford’s Geometric Invariant
Theory in this thesis and also marks the starting point for all further constructions
to follow in the upcoming chapters. Before we can however start with the actual
construction we need to state basic facts about one-parameter subgroups, parabolic
filtrations and their weights. The techniques presented in the following are crucial
for every numerical calculation performed later on.

1.1. Parabolic Vector Bundles. A punctured Riemann surface (X, S) is a
compact Riemann surface X together with a finite set of punctures S C X.

A quasi-parabolic vector bundle over the punctured Riemann surface (X, S) is an
algebraic vector bundle £ — X together with filtrations of the stalks

0CEYC...CEY =E|,; i ¢€8.

A parabolic vector bundle additionally contains the information of rational num-
bers

0< B <. <Y <.

The parabolic degree of E is defined to be the rational number par-deg(E) :=
deg(E) + Y mics Soiy B (dim(E7) — dim(E=19)) 1

1.2. Higgs Tuples. Let A be a finite set and k, € Z, for every a € A. Let
u, v, w € N. A parabolic Higgs tuple (E, ¢, L) is a tuple of (quasi-)parabolic
vector bundles E = (F,, (Eéj)i[sg]jHSH)GHAH plus a non-trivial homomorphism ¢ :

(E®")®Y — det(E)®" ® L where L is a line bundle on X and F = @,_, E&%e.

a€A a

!For equivalent definitions see 1.8.
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1.3. Weights. Let v* € Z, 1 <k < m be a tuple of integers and r € Z \ {0}.
Define

-1 1 0
-1 1
1 mXm
Ly i=— eC )
r
-1 1
0 —1
Then Ty, is invertible with inverse I} = (4}, ... 9%,).2 Let of :=

(Conre (Y )kpm))i = D002y Dok 7*. Analogously a tuple (a');pn) induces by multi-
plication with T, a tuple (Y")ipm). If the 4% are ordered ' < 4% < ... < 4™,
then o >0, V1 <k <m —1 and vice versa. Given 7* € Z, 1 < k < m — 1 such

that > v*(r* —r*=1) = 0 with r* = 0 and 7™ = r, then

1 B B m
;(Tk —r 1)Z[m}rm}r(ak)k[m] = (—Tk)};[m](@k)k[m] - Z o7t = 0.
k=1
On the other hand if o™ = —w for r* as above, then 7" A*(rk—rF=1) = 0.
T k=1

1.4. Filtrations of Tuples. Let (£,)qq4 be a tuple of coherent Ox-modules
and (F¥)ym,) a filtration by coherent submodules of E, with weights 7} < .-+ <
yMe Va € A such that 4% = 48 o FF = FM1for 1 <k <m,—1. We call a pair
of a filtration and suitable weights (as above) a weighted filtration of (E,)a[ap-
Let {v*: k=1,...m}={1y:ae A 1 <i<my}s t. ¥ <A 1<k<
m—1and F* = @, (Fh)",

P max{i € {1,...,ma}| 7. <~A*}  Fie{l,....m.}: 7 <Ak
700 otherwise.

Then (F¥)yp, is a filtration of E. If (F¥)ypn,) is proper for all a € A, so is (F*)g.
On the other hand given a filtration F* = @, ,(FF)" and weights
¥ < A+ such that 4F = AF* o FF = F* for 1 <k < m — 1. Then (EF)gpm)
is a filtration of E,. Setting ¢ := min{~y*| F! = F*} leads us back to ascending
weights (7.);im) such that ¥ = 75t o FF = FM for 1 <k < m — 1. Observe
that (EF,v¥)kim.) leads by the previous two constructions to some (EF,4/%)..

Note that by removing improper inclusions the two weighted filtrations become
the same.

Remark. We say that the weights (77)ipmjafa)) are induced by (F*)gpm) from (v%) -
If additionally there are weights (9.);pmjaja) induced by another filtration (F%) k[m

’If m = r we define T, := T, and j ;= /. forall 1 < j <.



from the same (’yk)k[m}, then we will call the weights (V.)ipmje[4 coarser than the
weights (%)ﬂm}anAn if {yp:1<i<m}c{y:1<i<m} Va€A

Given r¥ € 7 and increasing Weights vF € Z,1 <k <m, we call the weight vector
(VE) k) Wlth v¥ = min{4’ : 7% = r7} induced by (r¥)ypm from (7F)gpm).

1.5. Let 0=F'C F' C---C I = E =@, ., E&" be a filtration of a rank r
locally free sheaf E. For (v")yn) ascending integer weights as in 1.4 let (%) xpmafa|
be the induced weights and (F¥)g, the induced filtrations of the locally free
sheaves E, with rk(F*) = r* for 0 < k < m and rk(E,) = r,. Note that we have
> uen Barh =18, V1 <k < m. As in 1.3 we get weights (&")ipm) = (T (32) jim))
and (Oé];)k[m} = (Fm,ra(’}/g)j[m]% VYa € A. Then

m m—1 m
§ : k. .k __ k+1 k k T, E k k—1 k
T oa'r = (’}/ ’}/)7” — Y Tr= ’7(7’ —7’),

k=1 k=1 k=1

m

E k -1 § E :

= ’)/alia RaTq ,
a€A k=1 a€A

1.6. Semistability. Let 6 >0, £, € Q for a € A. A Higgs tuple (E, ¢, L) is
(€4, 0)—(semi)stable if and only if

MSag(F k) +5/’L(Fk705k7()0> (Z) 0
holds for all (F* o)y, where (o®)y,_1) € Q;)l and (F*)y is a filtration of F
such that F* := @, ,(FF)®" with subbund]es

OCF!'Cc---CF'=E, and ar::—rk(E)_IZakrk(Fk).

Define

T

MES(FF, k) =) "ok <par—deg(E) rk(F*) — par-deg(F*) rk(E)

par
kf

+ 3 &a(rk(E,) tk(FF) — rk(F) rk(E))),

acA
p(F* ¥, o) ——mm{ZV

where 7' is defined as in 1.3, i. e. 7' := —rk(E) >, _, o”

[u] S {1 }U : 90|(®;t:1 ij)@” 7_é 0}7

3For the transition (F¥, o )k[,]a[‘AH to (F*, « )k[r] see 1.4.

a? a
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1.7. Let & =&, + 1+ Kk, Then
Y 6L (k(By) tk(F) — rk(F,) tk(E) = Y &u(rk(E,) rk(F) — rk(F,) rk(E))

acA a€A

for every subbundle F' C E. Thus for every weighted filtration (F*, ak)k[r] we get

M[’;’fr](Fk,ak) = M[’;’frl](F’“,ak), i. e. the (semi)stability concept is independent

of the choice of a representative within {(&, + 1 - Kq)qa, | € R}. Hence we may
J— Za E‘lra J—

choose [ = —ﬁ = D wealara = 0.

1.8. Equivalent Definitions of the Parabolic Degree. We want to apply the
general transition described in 1.3 to the parabolic degree.

Let (E%,37);s) be a parabolic filtration of E|,; and ¢¥ : E|,; — V* quotients
onto vector spaces V¥ such that ker(¢¥) = E¥, ker(q%) = E% = 0, ker(¢*7) =
E¥1 = FE|,;.

Elementary properties of linear maps imply

Z Zﬁzj(dim EY —dim B ) = — Z Zﬁij(dim im ¢ — dimim ¢'~ ).
jaies i=1 jaies i=1
Set ¢4 = B — Bithi for 0 < i < s, §59 := 3579
Z Z5ij(dim im ¢")
jaies i=1
s7—1
= > > (89— 5 (dimimg?)
jixieS =1
s7—1 sJ
= Z Z B9 (dim im ¢") — Z BY(dim im ¢~ ")
=2

jixies \ =1

i
= 3 Y A(dimimg? — dimimg ) + 87 dimim ¢’ .
\H/_'/

jixieS i=1 —r

On the other hand for gY = Z;l oFi B = BN — 3L 6% i > 1 we have
p9 — pFLi = §9 whenever i < s/ and the calculation above works the other
way round. Note that using 1.3 we have (6Y);j5) = I'ss _1(8" )y(ss) and (89);55) =

F;fﬁl(ékj)k[sj]. Moreover

Z SZ(Sij(dim ker ¢”) = Z 826’7 (dim ker ¢ — dim ker ¢*~1).

jixieS =1 jixies =1
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Finally for admissible weights 6%, i. e. 6% > 0, Zf; 5% < 1 we get for the weights
B9

0< B <. .. <BY<1 (1)
and for 3% satisfying (1) the §% are admissible:

07 =B — B >0, Y 6V =pY < 1.

i=1

Sometimes in literature the order of the 3% is reversed, i. e. 0 < Y < ... <
B <1to Bl 2EYD...DE =0.

Furthermore we will take a look at parabolic tuple filtrations. By 1.4 we see that a
parabolic filtration of a tuple induces a filtration (EY, 5% )54 and we already
know that both add the same parabolic contribution

sJ

> > B (dim EY — dim E7Y)

jixies =1

to the parabolic degree par-deg(E,). Denote by (EY, 7). the corresponding
filtration of E|,; for every 27 € S. Then we get

2 Z F(dim B — dim BM) = 3 Y Z B ko (dim EJ — dim EL9),

jixies =1 a€A j:xieS i=1

where we used that for Y # E'=Y & g9 = g4 £ pi=Li Thus par-deg(FE) =
Y aca Ka par-deg(E,).

Remark. Up to a scalar factor the transition from (7)) t0 @)k is the same
as from (3%9);) to (07);5). We will often switch between the different kinds of
weights to simplify some of the calculations ahead. Additionally we will often
simplify the notation by using trivially extended filtrations as above or in 1.4.

1.1. BOUNDED FAMILIES OF VECTOR BUNDLES

The goal of the next two sections is the construction of a scheme parametrizing
(at least) all semistable parabolic Higgs tuples. This can be done stepwise starting
with the parametrization of those vector bundles that occur in semistable parabolic
Higgs tuples. If we can show that this family of vector bundles E, is bounded then
we already know that there is a natural number ng such that for all n > ng: E,(n)
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is globally generated and H'(E,(n)) = 0.* This on the other hand implies that F,
may be written as a quotient q, : H°(F,(n)) ® Ox(—n) — E, and such quotients
are parametrized by a suitable Grothendieck Quot scheme.

Definition. A family of vector bundles § is bounded, if there is a scheme Y of
finite type over C and a universal bundle &y, x on Y x X such that each element
of § is isomorphic to &y x|y}« x for some y € Y.

We will mainly use the following criterion for boundedness of families of vector
bundles:

1.9. Lemma. ([Sch08], 2.2.3.7.) A family § of isomorphy classes of vector bundles
of a certain rank r and certain degree d is bounded, if and only if there is a ¢ € R
such that for every vector bundle E with [E] € §:

max {M(F) = degi(;; ’ (VCFCE subbundle} <uWE)+e

1.10. Proposition. (Harder-Narasimhan Filtration) Let E be a vector bun-
dle. Then there is a unique filtration

0=EFE'C...CE"=FE

such that Ey := E*/E*1 is semistable for all 1 < k < m and p(Ex_1) > p(Ey)
holds for all 2 < k < m. Denote by pimee(E) = p(E1) = u(EY) and by pimin(E) =
(E)-

Remark. There is a version of the Harder-Narasimhan filtration for parabolic bun-

dles (|Ses82|) as well as for principal G-bundles with a reductive structure group
(see e. g. Biswas, Holla [BHO04]).

1.11. We would like to extend the Harder-Narasimhan filtration to tuples of
vector bundles. Let (E,)q4) be such a tuple and (E¥)g(n,) the Harder-Narasimhan
filtration of E,. Let pu; > ... > pj denote the pairwise distinct weights in
M = {,u(Ek/Ek 1) 1<k<mg ac A} Now deﬁne HN(E)o = 0 and HN(FE); =
@aeAE e with Ex* such that u(E 7“/E ey > py > u(Efj’“H/Efj’“) or 0 if
no such index exists. We claim that 0 € HN(F); C ... C E is the unique
Harder-Narasimhan filtration of £ = € ., E,. By definition of the filtration,
HN(E);/HN(E),_; is isomorphic to the direct sum of all those E¥/E*~! for which
w(EY/EF1) = pj. In particular u(HN(E);/HN(E);_1) = p;. Thus it remains to
check that the direct sum of semistable vector bundles with the same slope is again
semistable. Suppose that there is a 0 # G C E with u(G) > u(E) = u(E;), Vi€ I

4[Ha77], III 12.11.
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and F = D,cs E; a finite direct sum of semistable vector bundles E;. Then the
morphism pr; : E — E; must be trivial on G and since E = D, E;, G is trivial
in contradiction to our assumption. In general if ¢ : G — F is a morphism of
semistable vector bundles and u(G) > p(F'), then ¢ is trivial: Consider the short
exact sequence of coherent sheaves 0 — ker(¢) — G — ¢(G) — 0, then the given
conditions tell us for p(G) # 0 that u(p(G)) < p(F) < u(G) and furthermore by
deg(G) = deg(ker(y¢)) + deg(¢(G)), rk(G) = rk(ker(p)) + rk(p(G)) we must have
p(ker(¢)) > u(G). Therefore G can be semistable only if ¢(G) = 0.

This shows that HN(E);/HN(E),_; is in fact semistable and the uniqueness of
the Harder-Narasimhan filtration already implies that (HN(£)y )k is the desired
filtration. Note in particular that fime.(E) = max{me:(Ea) @ a € A}, pimin(E) =
min{ fin(Fa) 1 a € A}

1.12. The tensor product of semistable sheaves is semistable ([HL10], Theorem
3.1.4.). Moreover u(E ® F) = pu(E) + u(F) since deg(F ® F) = rk(F) deg(F') +
deg(E> I“k(F) Hence Mmam(E ® F) = Mmam(E> + :umax(F> and ﬂmm(E ® F) =
Remark. For Q = E/F, deg(E) = deg(F) + deg(Q). Thus if {u(F): F C E} is
not bounded from above, {u(Q) : @ quotient of E'} is not bounded from below.
Hence instead of searching for an upper bound for the slope of subbundles, we
may establish boundedness equivalently if we find a lower bound for the slope of
quotients.

We can now apply the previous definitions to our family of vector bundles under-
lying a semistable [parabolic|] Higgs tuple:

1.13. Lemma. Fizxr,, d,, l. The family of vector bundles E, such that there is a
semistable [parabolic| Higgs tuples (B, ¢, L) with B = (Eq, (EY),;5)alla) and
E, ~ Ey for some a € A, is bounded.

Proof. First note that by 1.11 we get fimar(E) = max{ e (Fa) : @ € A}. By
lemma 1.9 it is enough to show that all ji,,,.(FE,) are bounded. Therefore upper
bounds on fimne.(E,) for all a € A will in particular bound fi,,4.(E). We consider

an arbitrary subbundle F, C E, and denote by FF = 0& F% & 0 C F the trivial
extension to a subbundle of E. Using 1.8 we get

deg(F) < par-deg(F) < deg(F) + |S| - tk(F)

for every subbundle ' C E. Consider the weighted filtration 0 C F! = ... =
Fre) — [ ¢ prif+l — oo — prk(B) — [ with a non-zero weight o™(F) = 1. 1.3
implies

u r—1 r—1 r—1
Zyij = uZakrk —rZak#{ij| k>i;, 1<j<u}> uzak(k—f)
j=1 k=1 k=1 k=1
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= u(F* o ¢) < urz:ak(r — k) =u- o™ . (1k(E) — 1k(F)) < u - rk(E).

Semistability tells us further that

0< MFE(F* of) 46 - u(F*, o, )

[par]

< deg(F) - tk(F) + |S| - tk(E) - tk(F) — deg(F) - rk(E)

+1k(E) - rk(F) - (Z |§a|> +0-u-rk(E)

acA
and therefore

deg(F,) deg(F) _ deg(E)

rk<Fa) rk F) - I‘k(E) +|S’+QEZA|£(1|+5 U

—~

1.2. CONSTRUCTION OF THE PARAMETER SPACE

Before we can define a parameter scheme we need to state the following central
technical lemma.

1.14. Lemma. (|GS00|, Lemma 3.1.) Let Y be a scheme of finite type over C,
Fy a Y-flat and &y an arbitrary coherent Oy x-module and vy : &y — Fy a
homomorphism. Then there is a unique closed subscheme)) C'Y with the universal
property, that a morphism f : T — Y from an arbitrary scheme T of finite type
over C factorizes over Q) if and only if (f x idx)*(¢y) = 0.

1.15. For future use we collect some properties of pullback and direct im-
age sheaves. First recall that for a morphism of schemes f : Y — T and
a locally free sheaf £ on T there are morphisms F — f.f*E and f*f.F —
E. Moreover direct images of isomorphisms/monomorphisms are again iso-
morphisms/monomorphisms. Note as well that for a commutative diagram of
morphisms

fxidx

Y x X TxX

Y T
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we have by construction f.my, = 7mr.(f x idx).. Furthermore for locally free
sheaves Flon T, Hon T'x X, GonY and fx := fxidx we get using fx .7y >~ 7} f,
(|Ha77], 111.9.3):

Hom((7r fx)"(F), 73 (G) @ fx(H))

~ Hom (A om(my [*(F), 75(G)))", fx(H))
~ Hom (75 fo 7 om(f*(F),GQ))", H)

~ Hom (S om(F,nr.H))", f.G)

~ Hom (f*#om(F,mr,.H)", Q).

1.16. Since our family of semistable parabolic Higgs tuples of given type is
bounded and all line bundles on X are semistable, i. e. the corresponding fam-
ily is bounded as well, there is a ny € Ns. t. Vn > n; Va € A and for all
L, L,, [L] € Jac', [L,] € Jac™, M =@, , L2

- E,(n), M®" @ L ® Ox(un), L,(n) are globally generated,
- HY(Eq(n)) = H(M®" @ L ® Ox(un)) = H'(La(n)) = {0}.

Fix n big enough and p, the Hilbert polynomial at n, i. e. p, = d, +7r,(n+1—g),
a € A, p = .cakala Let Q, C 9, be the quasi-projective Quot scheme
parametrizing quotients ¢, : V, ® Ox(—n) — E,, V, vector space of dimension p,,
E, vector bundles of rank r, and degree d,, s. t. H%(q,(n)) : Vo — H°(E,(n)) is
an isomorphism. £, comes with a universal quotient

qq, - W}(V:l X OX(—n)) ~V,® W}(OX(_n» — g}Da

and a universal family &5, . Putting the several quotients together leads to &y :=
Boca o xx (657 on Q x X, Q := (X ,e4Q,) x Jac'. Now take &' a Poincaré
line bundle on Jac' x X and let Pg := T 1 (P') be the corresponding bundle
on Qx X. Let V=@, _, V% and V,, := (V)¥. Define

acA

Fr = Vo @ % (Ox(u(k —n))),
= det(EQ)"" ® Pq @ T (Ox (uk)).

Note that the general base change properties stated e. g. in [Ha77|, I11.12.11,
guarantee that mq . (F(k)) is locally free for a coherent sheaf F' on Q x X and k
big enough. Therefore .7, %} are locally free for k big enough, so is

FCom(mq . (Fr), Ta«(Hr)).



10 | 1. THE MODULI SPACE OF HI1GGS TUPLES

Next define X := P(Som(mq.(Fi), ma.())") = Q° and Py = (7 xidx)*(Py)
as well as

qx = (m xidx)"(ga) : V @ 7x(Ox(=n)) = &x := (7 x idx)"(&a)

the corresponding pullbacks. Then [Ha77|, IT 7.12 implies that we find a surjec-
tive morphism 7* 7 om(nq . (Fr), ma(Hr)) — Ox(1). Note that mgmg %) —
Fr, TET Kl — H, are surjektive for our large k ([Ha77|, 111, Theorem 8.8) and
hence 1.15 gives us a resulting morphism (7 xidx )" (74mg %) — (7 xidx)* () ®
7%(0x%(1)) which descends to ¢y : (7 x idx)*(Fk) — (7 x idx )" () @ 75(O0x(1))
on some closed subscheme X'.

Lemma 1.14 further provides us with the closed subscheme T C X’ C X s. t.
Vg = Yx ® idey Oy (—uk)) |txx vanishes on ker(gz ). The fundamental theorem
on homomorphisms tells us now that sz factorizes over &z, ,:

Vio ® 75 (Ox (—un)) o det(&5)% © Pr ® 5(Ox(1))|x
4% ,u,v YT
éf}T,u,m ker(QT,u,v) C kel‘(ws)-

Remark. Since all restrictions result from properties shared by at least all
semistable Higgs tuples, T still parametrizes (at least) all non-parabolic Higgs
tuples underlying a semistable parabolic Higgs tuple.

1.17. Our parameter space ¥ so far does not account for the parabolic structure.
Let 8% be the Grakmann variety parametrizing 7% —dimensional subspaces of V,,

1<i<sl,1<j<|S,a€A Set®:=X,,6, 6 = X x5 oy
We get a tautological quotient ¢7,; : Vo ® Oy — ¥, of vector bundles on &%.

Define qéjw’va = ﬂ;y(qgéj) on T x & x X. In order for the parabolic quotients
to factorize in the fibers over S we need to restrict again to a subscheme. Let

Gpar C & be the subscheme where ques,va vanishes on ker(m3, x(g3)|sxex{z})
for every 1 < i < 5,1 < j < |S|,a € A. Then we find quotients ¢

xX®&,a :
W;Xx<gi,a>’5x®parx{xj} — W;y(%ﬁ)"’ixeﬁparx{zﬂ'} for every 1 < i < 5271 <Jj <
|S|,a € A. 1In order to get filtrations rather than only a collection of subspaces
let § C & be the closed subscheme such that for all (¢¥/) € F: ker(¢¥) C ker(g:™7).

Finally define T, := T X (Bp,r N F) as our parameter space.

"Recall that ¢ is non-trivial.
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Remark to 1.16 and 1.17. Replace Q by an arbitrary scheme Y which parametrizes
(surjective) quotients gy, : V, ® 7% (Ox(—n)) — & with & a family of coherent
sheaves on Y x X and no restrictions imposed on the 1% cohomology of any of
the appearing sheaves. Since X is proper over C, Y x X — Y is proper. Now the
generalization of [Ha77|, IIT 12.11 to proper maps follows from [EGA] III, 3.2.1.5
and 1.14 still holds in this more general case. The previous construction yields a
closed subscheme ¥y that parametrizes Higgs fields over Y.

1.3. MODULI FUNCTOR AND UNIVERSAL PROPERTIES

1.18. Definition. Let #' be a Poincaré line bundle on Jac! xX, Y a scheme of
finite type over C and vy : Y — Jac! a morphism. A family of parabolic Y-Higgs

tuples is a tuple ((&yq, (qiﬁ;a, J“i”;i)i[sé]j[|s|])a[|,4”, vy, 5, py)s. t.

(i) &y, is a vector bundle of rank r, on Y x X with degree d, on each fiber over
{y} x X,

(ii) vy : Y — Jac' is a morphism,
(iii) s — Y a line bundle, 747, — Y x {27} vector bundles of rank ¥,

(iv) @y : (&) — det(E) @ P, & T3 (H), Py = (vy x idx)* (), a
homomorphism non-trivial on {y} x X for all y € Y closed,

(v) qiﬂ;a D Evaly ey — %”;Ja surjective morphisms on Y x {27} such that
ker(qi{a) - ker(qi,tll’j), Vae A, 1<j<|S], 1<i<sl.

1.19. Equivalence of Y —Families. Two Y-families ((&y,,, (qyi,

i,y 1 1,1 2 i7,2 g2y 2 2
‘%ﬂY,a >z‘[sg]j[\su)a[lz4|]> vy, Hy, py) and ((éay,aa (QY,m %,a )i[sg]j“s”)a[lA\h vy, Hy,
¢3) are isomorphic if vy, = vy = vy and there are isomorphisms Yy, : &, —

2 . 1 2 4. ij,1 17,2
éayya, vy Ay — Wa %ﬂy’a — %,a S. t.

. ) B —
oy = (det(vy)® ®idy,, @75 (1y)) 003 otyue, @ oUyvalyxier} = WaOUis-

Remark. If there is no chance of confusion we will call a family of parabolic Y-
Higgs tuples just Y-family.

The non-parabolic version of a family of Y-Higgs tuples admits no vector bundles
%ﬁ% and no quotients qiﬁ;a. The definition of equivalence is changed accordingly.

1.20. Moduli Functor. For stability parameters (§,, 0, 37) we get the functor
M(ga’awgéj)i(s‘)s(ﬁax? u7 /l)’ w’ ra’ da’ l7 S7 /r.;[/l]):

6[Ha77], II 8.8.
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Sche — Set

Isomorphism classes of families of
Y +— (&4, 6, BY) — (semi)stable
parabolic Y-Higgs tuples

Remark. Note that this functor still depends on the choice of a Poincaré line bun-
dle. However since two Poincaré line bundles are isomorphic up to the pullback of
a line bundle on the Jacobian, we may identify the corresponding moduli functors.

1.21. Definition. A quotient family of Y-Higgs tuples is a family of Y-Higgs tu-
ples ((&y.q, (qéﬁ;a, ‘%ﬁz)i[sﬁ]j[|s|])a[|f4”7 vy, Hy, py) together with surjective mor-
phisms

Qv Va@7mx(Ox(—n)) = e, a€ A

S. t. Tya(@ve @ idogm)) @ Va ® Oy = 1y, (&y,e @ T (Ox(n))) are isomorphisms
for all @ € A. Two quotient families are equivalent if there is an isomorphism vy,
of the corresponding Y-Higgs tuples such that q}aa =1y, 0 q§,7a.

1.22. Proposition. Every quotient family of Y -Higgs tuples is the pullback of
the universal quotient family ((4z,u.0r E%paras (quar,m ‘%;gar,a%[si}j[\s\])“HAH’ Z
Oxxe(1)|5p0s P5p0) by @ unique morphism h x idx : Y x X — T x X.

Remark. Recall g, @ Tpar — Q T2y Jacl and 22 T = 7

Tr;;';] (%’U |‘3:par X {33]}) *

as well as 77 =
r par;

VTpa a

Proof. Let ((qv.a, 6v.as (@45 %ﬁfa)i[sg]jﬂsl])a[mu, vy, Ay, py) be aquotient family.
The universal property of the Quot schemes 9, implies the existence of morphisms
fa, Y = Q.5 t qva >~ (fa, X idx)*(qg,). Using that my.(qy,e ®idoy(—n)) is an
isomorphism, we see that fa, .7y (qv,e ® idoy(n)) is an isomorphism, too. Hence
fa, 1Y — Q,. Together with vy we get a morphism fa : Y — . The morphism

fx is the morphism induced by 7y .(¢y) considered as a morphism
Ty (Vi @x (Ox (u(k—n)))) @ (my,. (det(y)*" © 2, @ 7r}}((’)X(uk))))v — 5.

using [Ha77], 11.7.12. By definition of gz = 7*(qq)|z we get (fx x idx)*(¢z) = gy
Furthermore by construction f3(Ox(1)) = 44 and thus (fx X idx)*(¢¥x) = ¢y
resp. (fx X ldx)*<30x) = Qy.

Now fy factorizes over T: By 1.14 it is enough to show that (fy X idx)*(vYx ®
i (Ox (—uk)) |kergx..,) = 0. This on the other hand follows directly from general
properties of the pullback

(fx X 1dX)*(,l7D% ® 1d7’r§((0)((*’u}i‘)) |kerqf{,u,v)
= (fx x idx)"(¢x) @ (mx (fx X idx))* (idoy (—uk))[ker((f2 xidx)* (gx.0.0))
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= Yy @ idry, (Ox (~uk)) [ker(ayu.v)

= (v © @vau)lker(ay..) = 0-

The considerations above imply now that f¢:Y — % defined by fx is unique.
Similarly the universality of the Grakmann variety provides us with morphisms

DY = 67 st ((fs x g7 X idx)* (02 ev,) v xiai} = G5a © Gva- Let g:Y — &
be the resulting map on the product space. Obviously g : ¥ — §. Now h :=
fex g Y = Tpar if ((fz x g ¥ 1dx)" (60 v, lker(nt,  (a5.0))) [y xary = 0. But

((fs x g x 1dx)"(¢Fx e v, ) Irer(mz,, (.00 ¥ x {29}
= ((fz x g x 1dx)" (@2 v, ) Iier((fe xaxidy ) ms, 5 (as.0)) ¥ x {2}

= Gy’ 4 © @valker((frxidx)*(gg.0) = @a © Wialker(ay.a) = O-
This proves the claim. O]

1.23. Proposition. Let Y be a scheme of finite type over C and ((&ya,
(qga, jz’glfa)i[sMS”)aHAH, vy, s, @y) a semistable Y-Higgs tuple. There is
an open covering (Yi)rer of Y and morphisms hy = Yy, — Tpar, k € I in-
dex set, s. t. ((Eva, (q?a, z%ﬁffa)i[si}j[|5|])a[\/xu, vy, v, oy)lvixx = (g X

idX)*<<(§Tpar,a7 (quar,a7 jfggar,a)l[sg]jusu)a“A”7 VTpar? OXX@(]‘)’TpaLMQPTpar) on Yk XX

Proof. &y, is locally trivial in the product of the étale topology on Y and the
Zariski topology on X, of rank r, over Y x X and degree d, on {y} x X.
Let (Yx)r be a common refinement of the locally trivial coverings for a € A,
s. t. all &, , are locally trivial on Y; x X; for a covering (X;); of X.” Then
there exists a quotient gy, . : Vo ® Oy,xx(—n) — &via 8. bt Ty ax(@yia @
idoy(m)) is an isomorphism since 7y, o+(qvia ® oyl =~ H%(qya(n))

Vo — H%&.0(n)|y) is an isomorphism on every fiber y € Y. Hence

((qu,aa (gaY,aa (qiicu %ﬁ,]a)z[sfl]]“SH)GHAH’ Vy, %/7 SOY)’Y;CXX Is a qUOtient famlly
on Y, x X. The previous proposition together with the definition of equivalence
of quotient families implies the claim. O]

Remark. To construct a suitable quotient family it is in fact enough to show that
Ty« (Eyq)(n) is locally trivial.®

Analogous results to 1.22 and 1.23 hold in the non-parabolic situation. The proofs
are (almost) identical; a non-parabolic quotient family is defined as the extension
of a non-parabolic Y-family.

Tcf. 1.2 resp. [DS95].
8¢f. for example |Bel4|, Lemma 4.10.
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1.4. GROUP ACTION

Let T35, C Tpar denote the subset of semistable Higgs tuples. We aim to define
a group action of some group G4 on T, that leaves ‘Zf;;r—invariant such that two
Higgs tuples are isomorphic if and only if they lie in the same orbit. If we are able
to show in a future step that the semistability condition defined before is in fact
GIT-semistability (w. r. t. a linearization of the group action in some line bundle
on T32 ) then the good GIT-Quotient T3 / Ga will exist and the previously stated
universal properties imply the existence of a coarse moduli space.

Let G4 := X ,e4 GI(V,) and
m:V®0g, -V ®0g,;
V& 0g,ly3 (1,5) > (g-v,9)
m is an automorphism. -
Let ((gQAXTpar,av (qupra,,a7 ‘%ﬂgljxipar,a)i[sg}j[|s|])aHAHv VG axTpars ‘%Axspar7 QOQAX‘Ipar)
be the pullback of the universal family to G4 x Ty, x X and

* —1 3
75, (M™)®Mdrs (0 (—n))

AGaxTpar - V @ T (Ox(—n)) V@nry(Ox(-n)) —

ﬂ-;( X Tpar (q'l-par )

- ggA szar *

4G4 xTpa 18 surjective, since qg . is surjective and m bijective. Furthermore
TG A xTpars (4G4 xTpar @10 (n)) i an isomorphism, since m and 7, +(¢s,,, ®idoy ()
are isomorphisms.

ij tj .

Hence (qg, XTpar (66, X Tpar, @ (quxs:par,aa %szpar,a>i[sg}j[|5\])a[\AHa VG axTpars
HE  wx <T is a quotient family. Proposition 1.22 provides a unique
gA par’ SOQA par q y p p q

morphism
a:Ga X Tpar = Lpar-

o is a group action: « maps a quotient ¢ : V ® Ox(—n) — E to the quotient

97! ®ido . (—n)=:@(g

V @ Ox(—n) LV © Ox(—n) B B

Therefore
ale) ~ idzg,,,,
a(gh,q) = qoa(gh) = qoa(h)oa(g) = alg, alh,q)),

for all g, h € G4 and all quotients q.
The center C* - idy acts trivially: Let m. = ¢-m for ¢ € C*. Then the induced

9More precisely: A class represented by a tuple ((qa)a“AH, (Ea, (Egj)i[suj“s”)a”,q\], w, L)is
mapped to the class of ((ga)aa(97" %), (Ea, (EY);rsivinsn)allAls @5 L)
d to the class of (@u)agan(o~" - ©)s (Fas (E)iiyiisy) L)
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quotient families are trivially equivalent as families on {pt} x T, x X, i. e.
Proposition 1.22 implies that the induced actions are the same.

1.24. Conclusion. W. [. o. g. we may replace the Gy-action by an action of
St = 8SI(V)NGa = {(9ga)a € Xuea Gl(Va)|[[,eadet(ga)™ = 1}. Note that we
have in fact a PG a-action, PG4 := Ga/C*. Furthermore observe, that S* — PG4
has finite kernel, in particular the parabolic subgroups of S4* and PGa may be
identified.

1.25. Proposition. Let Y be a scheme of finite type over C,
hy Y = T, k= 1,2 two morphisms s. t. (hy x
ldX)* ( (gfzpar,(h (qé‘rgpar7a"' %ﬁar',q)i[sm‘j |S|] )GHA” ’ V‘Ipar ’ %par ’ (prar) =

(hz X idX>*((éa(Ipar7a7 (quar7‘17 %Zaha)z[séh[lsl])QHAH7 Vipar’ f%é:par7 gp‘lpar)' There ZS
a morphism ® :Y — Gy s. t. hy = a(P x hy).

Proof. Construct quotients ¢y, ¢y, like in the proof of 1.23 s.  t.
((qik/’a, é‘){;’a, (q}%a7 jfﬂ )[sﬂ}]HS\])a[‘AH’ U;ﬁ, jféﬁ, gOy), kj = 1,2 are the pull—

Tpar,a/i
backs of the universal family by (h; X idx). By assumption vi = v =: vy and
there are morphisms

Uya: &y = Egy W i I — I, W, A — AR
such that
1 _ (det(w )®w ® id ® *( )_1 2 17,2 — ij 1,1
POy Y Py, STy V) © VY O Yy w, Ay, © Yy V,aCy,a-

Consider next the isomorphism

7y (4, ®iday, 0 ()

Va@OY

- > Ty (60 @ T (Ox(n))) —
Y % d’ ,a®id7r* n
™ ( Y % (0x( >>) WW(@’& R (0x(n))) —

~

Ty (q%a@idﬂ;((ox(n))) -

- /%@OY

~

and the induced morphism ® : Y — G4. By the uniqueness property of
1.22, it will be enough to show that hy and « o (® x hy) induce isomor-
phic quotient families. But the quotient family to « o (® x hy) is the tuple

ij,1 i7,1 .
(B 6o (@ %Iim,a)i[sg]jns”)a[lAHv vy, A, py) with

2% (M) Bidrx (0 (-m))

¢ Vo @ T (Ox(—n)) V, ® mi(Ox(—n)) =% &1,
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since (ao(Px hy)xidy)* = (P xhy xidx)*(axidx)*. Furthermore by construction
using the natural map 7} 7y, (F') — F which exists for every sheaf F', we get the
commuting diagram

Ty & (m™H)®idrx (0 (-m)

V, @ 7% (Ox(—n)) Vo @ 5% (Ox(—n))

%a Woa
2 1
(g)Y,a —1 £Y7a.
wY,a
Hence ¢35, = ¥y.q © ¢y, and the two families are isomorphic. O

Remark. (i) By construction of «

(@ X 1dx)" ((Exparar (92,000 Hapuna)ifsilifs)ell Al Vipus Hpars PTpar)
ij

- (ﬂ—Tpar X idX)*((gzpaha? (Q‘%]pa”a? %par,a)z[sﬂ]]ﬂs\])QHA”’ VTpar? %palﬂ (prar)

holds.

(ii) For Y = {pt} we see that two tuples are isomorphic if and only if they are
in the same G4—orbit. The direction "<" 1is obvious from the definition of
a.

(iii) All results of this section may be transferred to the non-parabolic setting, in
particular 1.25 works w. r. t. the non-parabolic version of our group action.

1.5. GIESEKER SPACE AND GIESEKER MAP

Now that we have defined a group action we are left with the task to prove that
semistability, as defined before, is in fact the notion of semistability that we would
expect from Geometric Invariant Theory. This will be done in two steps: First
we are going to construct a closed equivariant embedding Gies of our parameter
scheme ‘T, into some projective space P following a well-known construction
principle introduced by D. Gieseker in [Gi77|. Since GIT-semistability of points
in a projective space is relatively easy characterized numerically, we are only left
with the task to show that Gies maps semistable points to GIT-semistable points.
As GIT-semistability is preserved under closed embeddings, the existence of the
GIT-Quotient P** J/ G4 guarantees the existence of T3° / G4.

par
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1.26. Let 2% be a Poincaré line bundle on Jac®™. We get'? a locally free sheaf
gal = %Om (A ‘/;1 ® OJaCd‘l?ﬂ-JaCda’*(L@da ® F}(OX(TQTL)))> 3 a G A

We can modify &% by a line bundle .Z on Jac’ such that &' := 2% @1 (L)
is another Poincaré line bundle. The space ¢4 transforms into 4! ®.%¢ ([Ha??] Ex.
I1.5.1 (b), (d)). Furthermore Opg1y(1) transforms into Op(g1y)(1) ® m; (L") for
the bundle projection 7, : IP’((%;))V) — Jac® ([Ha77], Lemma I1.7.9, Proposition
11.7.10). Therefore by choosing . suitably Op(g1))(1) ® 7;(£") is very ample
([Ha77], I1.7.10 (b)). Thus w. 1. o. g. we may assume that Opg1))(1) is very
ample. Let P! = X ., P(4})).

Next define the locally free sheaf

gZ = %Om(vu,v oY OJaCl x Jacp?
T yact x Jaca,* (W}aCA xX (‘@A)(@w ® 7T;acl ><X<'@l) ® ﬂ-;( (OX (un))) )

for P4 = Qe T cite y (Plama) Jacy = Xea Jac?. For a suitable choice
of Z' . Op(g2y(1) is very ample. Define P := P! x P((4?)") x Pg the Gieseker
space, where Pg = X ,c 4 X‘J-S:‘l X5 P (/\T‘Z’J Va).

1.27. Define det, : Tpar — Jac®™, t > [det &,+]. By the universal property of the
Poincaré line bundle 4%

det((fﬁﬁaﬂg) ~ egzda

deta(t)’

For the varieties Jac®, X, [a77], I11.Ex.12.4 implies the existence of a line bundle
L, on T s, t.

det(&,,,,.a) = (detq X idy )" (") @ 7%, (Lsp0ra)-

In other words we use the universal property of the Jacobian variety (|[Ha77],
TV.4.10).

We want to construct a morphism Gies) : T, — P(%))) st
(Gies})*(Op(y(1)) =~ Zx,,. 0 For any morphism g : Tper — Jac™ it is known
that to give a morphism T, — P((4))") is equivalent to give an invertible sheaf
Z on %, and a surjective map of sheaves on T, ¢*((94))) — £ (|Ha77],
[1.7.12). In particular the morphism can be chosen to satisfy g*(Op(g1y)(1)) ~

19¢compare with the construction of X in 1.16.
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LM We choose g = det, and £ = %, The surjective morphism
Gdo i =N\" (quaha ® idw}}(ox(n))) induces by 1.15 a surjective morphism

G. € Hom (A Vo ® Ox,,xx, (dety X 1dx)* (2% @ 1% (Ox(ran))) @ 75 (-fzpa“a)>
~ Hom ((deto)* ()", Zx,u0)

Define now Gies' := X .4 Gies].

1.28. The process can be transferred to 4. Note that for % . 4 = &),c4 LBka

Tpar,a
det(éaipar) = ( >< acA deta X I/‘Ipar X ldX) ’ (T‘-JaCA XX)* (QA) ® ,n—:;,'par (grsparyA)

Consider the map 1) := (PTpar © GTparuw) @ 1drs (O (un))- Again using 1.15

772) € Hom (Vuﬂ, X Orzparxx, <>< deta XUz, X ldX> (WJaCA XX)*(@%M})

acA
® e (Lae 4 ® H,,,) ® Px,, @1 (Ox (un)))

~ Hom ((XaeA det, xz/:;par)* (gQ)V,cfg:’hA ® %’Egpar>

Hence we find a morphism Gies® : T, — P((42)") ([Ha77], 11.7.12).

1.29. For the final component we may use the Plicker embedding Gies® =
X aea X‘jszll X:il Gies;/ |56, and Giesy : 8 — P (/\ry Va) :

1.30. Define the Gieseker morphism Gies = (Gies' x Gies® x Gies®) : Tpor — P.
Note that by the definition of Gies, Gies, uniquely defines ¢,. Now ¢, is the
sheaf morphism that induces the Pliicker embedding and therefore ¢, defines ¢,
uniquely. Furthermore note, that once Gies(t) is fixed, ¢;, is uniquely defined
and thus by construction ¢, is uniquely defined. Finally the Pliicker embedding
induces a unique q?a € % mapped to Gies?(t), i. e. Gies(t) is one-to-one.
Furthermore Gies' commutes with the G4-action, where G4 acts on P in the natural
way. Moreover we have already seen that the action descends to an action of PG 4,
i. e. it is in particular well-defined on our projective space P.

Remark to 1.30. Tt is sometimes possible to repeat the construction of a morphism
to Giesecker space P for Y-families even if a given morphism ¢y is not every-
where surjective. For example if gy |« x is surjective for every y ¢ T with T" a

HThere is a unique morphism satisfying this additional property.
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closed codimension 2 subset of a regular (or normal) scheme Y, then ¢y induces a
morphism Y \ 7" — P, which extends uniquely to a morphism Giesy : Y — P.
Observe that for a Y-family &y, a Y’'-family & and a morphism f : Y — Y’ such
that &y = f*&y and &y >~ f*. %y the functorial properties of the pullback imply
that Giesy = Giesys of whenever Giesy, Giesy: exist.

1.6. GIT-SEMISTABILITY AND LINEARIZATIONS

In the following section we will give a brief account of the definitions and theorems
from Geometric Invariant Theory that will be applied later on. Subsequently we
will use these criteria to derive GIT-semistability conditions for certain (model)
types of linear actions of S’°.

1.31. Theorem. (Hilbert-Mumford-Criterion) Let Y be proper over k, k an
arbitrary field of characteristic 0, L an ample line bundle on'Y with a linearization
of a group action by a reductive linear algebraic group G on Y. Let \ be a one-
parameter subgroup of G, then for anyy € Y, consider the morphism z — \(2)™ly.
Since G, identifies with Spec(k)[a, o] we may embed G, into A = Spec(k)[a].
We find a unique extension f, : At = Y.12 Now the action of G, on Ly, Yoo :=
14(0) is given by a character x(z) = 2" for z € G,,. Define u(y,\) = —r.

A rational point y in Y is semistable if and only if p(y,\) > 0 holds for every
one-parameter subgroup A\ of G.

y is stable if and only if u(y,\) > 0 holds for every (non-trivial) one-parameter
subgroup X\ of G.

Proof. [MFK], Theorem 2.1, Proposition 2.2 and 1.§3. The case of a not necessarily

algebraically closed ground field k is treated e.g. in Théoréme 5.2 of [Rou78| and
IRRS4]. 0

Remark. 1. For Y projective over C, define y, = lim,_,., A(z)y and C* acts on
L, byl 2"-1

2. For every g € G and every one-parameter subgroup: u(gy, \) = u(y, g ' \g).

3. Given a closed G-invariant subscheme Z C Y, z € Z already implies 2z, € Z.
Thus given the induced linearization on L|z a point z € Z is (semi)stable w.
r. t. this linearization in Ly if and only if z € Y is (semi)stable w. r. t. the
linearization in L.'3

IQA%O) is a valuation ring, X proper over k.
13This statement can be proved without using the Hilbert-Mumford-Criterion, cf. [Sch08],
1.4.3, The General Theory.
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1.32. One-Parameter Subgroups and Filtrations. Let v : G — GI(W) be
the action of a linear algebraic group G on some vector space W. Let A be a
one-parameter subgroup of G, then v o X is a one-parameter subgroup of GI(WW).
There is a basis (w');imw) and integer weights 7' € Z, V1 < ¢ < dim(W) such
that vo A(2)w' = 27w’ and 4* < 41, V1 <4 < dim(W) — 1. If v maps to SI(W),
then fof(w) 7" = 0. On the other hand given a basis (w");im(w) and ascending
integer weights ' € Z, V1 <14 < dim(W) we receive a one-parameter subgroup of
GI(W). If Z?E(W) 7" = 0 the image of this one-parameter subgroup lies in SI(W)
(cf. |Sch08|, Example 1.1.2.3 and 1.5.1.11).

Every basis (w");jaimm) as above defines subspaces (w’ : 47 < ~") of W and
hence (w',~");aim(w) defines a proper weighted filtration (W7, ~");;, of W. The
filtration (W");p, is uniquely defined by A. The converse is obviously not true.
However, we will see below that the value of our weight functions pu(p, A), p €
P(W) solely depends on the weighted filtration (W*,~*);4, induced by A. To
check (semi)stability of a point p € P(W) it is therefore enough to choose for
every proper (non-trivial) filtration (W?");;,) with strictly ascending integer weights
(7")ifm] a single one-parameter subgroup A that induces (W");;,) and to verify that
u(p, A) (=) 0.

1.33. Semistability in Projective Space. Let L = P be a very ample line
bundle on a projective variety P with a linearization o : G x L — L of a G-action
v on P. Recall that Too =vomand L, = Lyygy), | = 0(g,1) is linear for every
ge G, VpeP.

Then there exists an immersion ¢ : P — P,, an action vp, of G on P,, and a
G-linearization op, in Op, (1) such that ¢ is G-linear and such that L together
with its G-linearization o is induced via ¢ from Op, (1) and its G-linearization op,
(IMFK], Proposition 1.7).

Let W := C""'. Now since H*(P(W), Opay)(1)) ~ W, the linear action opgy on
Opwy(1) to vpayy on P(W) induces a linear action

v GxW =W
(9, w) = {p = e (9, w(UP(W)(g_l,p)))}-

Then the dual linear action
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v s Gx W =W
(g,w") = {u—w (ow(g™" u)},

descends via the natural projection 7#° : W\ {0} — P(W) onto P(W) s. t.
7 (vw(g,w")) = vpwy (g, ™ (w")). On the other hand we will soon see, that if 7"
is equivariant with respect to two actions then there is a linearization of the action
on P(W) in O[P(W)(l)

Hence we can lift the action vpy) to a vector space action vy, on W. Let A be
a one-parameter subgroup of G acting diagonally on a basis (w");,41] of W with

weights 7, < -0 < VSSV“(WX Define A" := vy~ (A, - ). Now )" acts diagonal

w. 1. t. the dual basis (w"");dimw) of W with weights —fy}}W, . —VS;H(W).

dim 7.1y — . 3 7
If p = Zz:l(W)p " and ’}/11)W1 < ’YLW EE— f}/’f};/k = mln{’va - p # 0} <
%JVFV’““ then po 1= lim, oo A(2)[p] = [...,0,p",...,p"* 0,...]. In particular we

get u([p], A) = —min{y;, @ p' # 0}

1.34. If L — P, L' — P’ are line bundles with a linearization o of a G-action on
P and a linearization o’ of a G’-action on P’, then 75(L) @ 75 (L") — P x P’ has
an induced linearization

o®0'((9,9), (L)) =0(g,l,) @' (¢, 1)) € LR L|(gpgp)

Vi, €Ll VI, Ly, Vg€ G, Vg € G's. t. llowo (0, 0'), A X N) = pio(p, A) +
te(p',N), Vp € P, ¥p' € P’ and one-parameter subgroups A : C* — G, X :
C* — G'. For P = P’ we use the pullback of 0 ® ¢’ by the diagonal embedding
P — P x P instead. The linearization in the tensor product Opyy(k) from 1.33
leads us consequentially to ([, \) = k- p1([l], A) for the p-functions p; and
w. . t. the natural linearizations in Opgyy(1) and Opgy (k).

Let x : G — C* be a character of G. Then o, := x - ¢ is another linearization,
since o is linear. Further o, (\(2), - ) = x(A(2)) - o(A(2), - ) implies

,UX( ' 7)‘)::u< : 7)‘>+<>‘7X>

for 1, the p-function to the linearization o, and (A, x) the dual pairing, i. e.
(A, x) = v unique with x(A(z)) = 27, z € C* (|Bo91], 8.6).

Fix a basis (wi)i[nH] of W and consider all one-parameter subgroups with re-
spect to this basis. Assume that there is a one-parameter subgroup (v, )
of G that corresponds to an integer tuple (V) )i, 1 e vw(Aw')(z) =
Jwawt, V1 < i < n+1, z € C*, as in the previous paragraph 1.33. Then
([l Me-7p,)) = ¢ u([ll, (7%, )), Yl € P(W), ¢ € Q4 by definition of the
p—function. If (7 )i+, (04, )i+ are ordered tuples, i. e. 4Jt1 > 4% and
it > 0y for all 1 <4 < m, then p([l],\(v;,, +0;,)) = pu(lll,\(%,,)) +
w1, A(6,,,.)), V[I] € P(W). The same result holds for > replaced by <, i.
e. gt < 4f and 051 < 60 for all 1 < 4 < n. For the special case
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when 7/ is chosen arbitrary and (0} )intyy = (1,...,1), ¢ € Q we receive
B AGH, + e,)) = a(lAGR, ) +c - #ll A, ). VI € BOW). Note in
particular u([I], M%) = S0 (1], M(7%,)) in the notation of 1.3.

1.35. Semistability in Quotients and Tensor Products. Let V be a vec-
tor space of dimension p, (v');,] a basis of V and (/\;:1 ve(j))eeMonP’ Mon? :=

{6 :{1,...,r} = {1,...,p} monotone increasing} C Map? := {1,...,r}? a cor-
responding basis of A" V. Consider the usual action of GI(V) on A"V with lin-
earization in Opprvy(1). Now let A be a one-parameter subgroup of GI(V') with
associated ascending weights 4" w. r. t. a basis of eigenvectors (v');;. Note, that
for quotients ¢ : V' — W with the rules derived in 1.34 and the linearization in-
duced by the Pliicker embedding we have p([q], A(7})) = pdim(im(q((v',...,v"))))
and p([q], A(v")) = 327, o u(lal, A(7p))-

More precisely: If ¢ : V' — W is a quotient, then A" ¢, » = dim W induces a mor-
phism to projective space ([Ha77|, I1.7.12).!* This is the Pliicker embedding of the
Grafkmannian into P(A" V) Then 1.34 implies that the natural weight function is
defined as —min{}>"_, ~* D] q(v?) #0, 6 € Mon?}.

Denote by 0, € Map! : 0,(j) := min{k : dim(q(v',...,v*)) = j}. Then Y77, Y4 (9)
is minimal for any choice of a (ascending) weight vector (77);;,). Assume there was
a 0 € Mapf such that ¢(v”) # 0, then the ¢(v” () are linearly independent. Hence
by the definition of 6, we get 6 () < 9’( ) for all 1 < j < r. In particular for
monotone increasing Welghts Z; ) < Z

Thus the weight function becomes Wlth 1.34

w([q], A :—mln{Z’y %) 0, GEMonp} :Zakpv (k,6,)

= Zakpdim(im(q((vl, LU, vk, 8,) = #{5 : 0,(5) < K}

Finally note that for a tensor product (VE*)* and a basis (v, of V:

’Ug —= <5st®1}9(])>
=t tfo]

is a basis of (V®)®" if s varies over 1 < s < v and # € Map?. Then for ¢ =

Zs 1 ZQEMapp a9U9V
P
w([q], A) = —min {—Zaipv (1,0)| 31 < s <w, 6 € Map? : ¢(v7) # 0} .

=1
Take the universal quotient over the Grakmannian of r-dimensional quotients of p-
dimensional space and the determinant thereof.




1.6. GIT-SEMISTABILITY AND LINEARIZATIONS | 23

Remark. Observe that the weight functions in 1.35 depend only on the proper
weighted filtration induced by A (see 1.32). This is a general property of weight
functions (see [Sch08|, Proposition 1.5.1.35.).

Ezample. Let A(z) = diag(z~",1, 2) = diag(z?", 27", 27") be a one-parameter sub-
group of SI(V), V = C? w. r. t. a basis (v',v% v?) and vye2 the natural action of
SI(V) on W = V&2 By 1.3 we get o' = o = 3 = —a®. The weights of vye2 0 A
are 7% =49 4+ 4F = j 4+ k—4 w. r. t. the basis (v ® v*);k. Now consider

q= ('@} + (v @0v?)" € (V¥?)". We get
3
— 23 -’ min {—v(i,0)| 30 € Mapj : ¢(v”) # 0}
i=1

1 (—u(1,(1,3)) — 1 (—0(2(2,2)) + 1 (—0(3, (1,3) = 14221

but

1([g], \) = —min {— 23 ~a'v (i,0)] 30 € Map3 : q(v?) # 0}

i=1

=v(1,(1,3) +v(2,(1,3) —v(3,(1,3) =1+1—-2=0.

We see that we cannot sum over the minimized v(i,6) as in the case of an action
on an exterior product. However the additivity in 1.34 still holds: Order the ~%

as fyZ’fV@Q € {y7:i+j=k+1}. Then o/,jv®2 =g for1 <k<4and aivm = -2
and
1 2 3 4 5 _
Toven = 1, Toven = 3, Toven = 0, Toven = 8, Toven = 9.
We get

plla), A) = —min{y" : g(v”) # 0} = —min{y" +77 : (4,) € {(1,3),(2,2)}} = 0

as well as

p([gl, A)

= — kz; o, ,, Min {(%ZEV@? I oy = (s0)i 1 a(v7) # 0 for some i+ j =1+ 1}
(Do (Do (Do (3) s

—0.

1.36. Let G act on a vector space V' and let W be another vector space. Then G
acts on W trivially and we get an action on the tensor product g(v @ w) = gv @ w
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forallge G, veV, weW. Let A: C* — G be a one-parameter subgroup and
(v")ijaimv] & basis of V such that A is diagonal w. r. t. this basis with weights
7. Choose any basis (w)jgimw] of W, then (L, \) = —min{y" : L(v' ® w?) #
0 for some w’} and L = 37, LY (v' ® w’)" a non-trivial linear form. The isomor-
phism ¥ : V'@ W' — (V ® W), L@k = {3, a9 @w’ v 37 al(v")k(w!)}
shows that for L = (I, k) : u(L,\) = —min{~" : [(v") # 0} = p(l, \).

1.37. As we have seen above GIT-semistability depends on the choice of a lin-
earization in some suitable (ample) line bundle. We make the following choices

( —ud — Z‘S‘ Z L0 (r =t )) oo

Vg i= D )
. r-o
U= —

p

. Y
i T Ka O
v o= 2=

p

and [ € N minimal s. t. v, =7, v:= 1D, V9 :=10Y € Z.

For line bundles L,, L on X, the fiber over (X ,c[La], [L]) in Pis X o4 P(L,) x
P(L) x Pg with

L, := Hom (/“\ Vas HO(La(Tan))> ~ /a\Va ® H(Lo(rqn))”

L := Hom (V,,, H* (®Q, L2 ® L(un))) =~ V,, ® H*(Q, L2 ® L(un))".

Remark. Obviously every point y in P belongs to one of these closed fibers. By
definition of (semi)stability (resp. the Hilbert-Mumford criterion 1.31 and its
following remark) we are allowed to check the (semi)stability of y considered as an
element of some fiber X .4 P(LL,) x P(L) x Pg. The fibers are tuples of projective
spaces (or closed subschemes thereof) and the GIT-weight functions p are well-
known in this situation (cf. 1.35 and 1.36).

Assume there is an action o of GI(W) on P(W"), W some vector space. Then
o lifts to an action on W and by definition of Opyy(—1) C P x W, we re-
ceive a linearization in Opyv)(—1) and hence a linearization in Opyv)(1) resp.
Opwy(m), m € Z. By construction of the G4-action on the components of I, this
action lifts to 4!, a € A, 4? and we get a linearization of the G4-action in

O]P’(Vaa v, Vij)
IS| sl

= @ | (o0 Oei (1)) © Q@ (o (Vs () | © (i (O (v)

acA j=1 i=1
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1.38. Modification by a Character. Let A be a one-parameter subgroup of
She with associated filtration (V?);,; and weights 4. Using 1.34 for the character
X 0 Sy = Cf (My)aea — [l,eqdet(Mg)Xe with > -, xodim(V;) = 0 and o :
S X Op(Vg, v, V") — Op(vy, v, v"7) the linearization of our S’°-action, we receive

p
X)) =D 7> Xadim(V;/ViTH),
=1

acA

for V' := V, N V' By using 1.3 and some index shifting we may rewrite this
expression as

A x) = Z o dim(V) -~ ya(dim(V,) — dim(V))).

acA
Denote by o, the group action altered by x.

1.39. Definition. A point p € P is x-(semi)stable if 1, (p, ) (>) 0 holds for every
one-parameter subgroup A : C* — S*, where p, is the p-function w. r. t. the

linearization o,.
Fix x : Sh* = €, (Ma)aag = [laeq det(Ma)¥e with xq := xq + Xa

S| s

Ty —
1. ] a a
X, = E g 07 kg (— ,

j=1 i=1 PPa

() 6-2) (5 2)
“ p ‘N Pa P Da

1.7. MAIN CALCULATIONS

From now on we will use the following notational conventions.

1.40. Notation. Let A be a one one-parameter subgroup of §%* defined by a basis
(vF) ) of V' and ascending weights (v¥)g, and let (V) be the corresponding
complete filtration. As usual we will receive filtrations (V) and weights (7))
for every a € A. Given a filtration (V*),, of V' we choose a suitable basis (v%)
and proceed as before. We will sometimes write A((v¥)g},) if we want to lay special
emphasis on the weights of the one-parameter subgroup.

Vektor subspace filtrations (VF)g,; of V, generate filtrations of E, by coherent
subsheaves FFh = ¢ (V¥ @ Ox(—n)). These add up to a filtration of coherent

subsheaves F*<" of F in the usual way. Let FF = Fr“" (resp. F* = Fkoh) he
the vector subbundles of E, (resp. E) generated by V¥ (resp. V*). Furthermore
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there is an induced filtration of each ker(¢7) = EY C E,|(, over the puncture

xJ by vector subspaces ch’;h EJNEY iy, 1 <@ < 7.1 We receive another

filtration of E¥ by Fi* := EJNFF|;.;y. Denote by FF and F7* the correspond-
ing subspaces of E4 C El{aﬂ}

The dimensions and ranks of vector (sub)spaces and coherent (sub)sheaves are de-
noted in the usual way, i. e. r¥ = rk(F}) and r, = rk(F,) as well as pf = dim(V}").
Note that for a complete filtration (VF)y, we get pf = k.

Finally define f72F, = dim(im (¢ (FE<"| (1)), f* = dim (im (¢7 (F¥|1y))
and f2F - fipk - fii g accordingly. Note that fféoh =rk chlzh, fik =k _pik,
Let the weights 6% be defined as in 1.8 from parabolic weights 87 € Q. Further-
more let v,, v, v and x!, x? be defined by the expressions in 1.37 and 1.39 as
functions of the already defined parameters r, r,, etc.

For a function # € Map™ denote v(k,0) = #{j € {1,...,m'} : 0(j) < k} (cf.
1.35). We identify quotients with the corresponding elements of an exterior power.
Further if ¢ = Y5 ¢%0%M % - % 0?0 [ = Mon™; V Map!™; for (v");n2 basis of
C™ and x = ®, A then 0; denotes the element of [ such that — EZil oFo(k,-) is
minimal within the set {# € [: ¢’ # 0}.

1.41. Semistability for points in Gies(%,,). We use the notation from 1.40.
Let t € Tpar resp. ¢ := ¢ correspond to E. Gies(t) is represented by a tuple
(dar Gpogun @) € Xaea N Va® HO(La(ran))” x Vo @ H? (Q LG @ L(un)) x

X aea X‘jill Xfil /\Té V.. Using 1.36 we can apply the general calculations in 1.35
to get with resp. to the standard linearization in the corresponding O,(1):

. (g
M(Glesi(t), /\('Yga)) = PaV (k Hq(f’ypa))7 = pars
pu(Gies®(t), A7) = pu(k, 0ne)),
u(Giesid (£), A(5,)) = puv(k, 057)) = pu f25, = pulrl — r5,).

a,coh —

Recall that 7p7 vp were defined in 1.3. Observe that quw might change if we

consider A = A((Y")p) instead of A()), 1. e. @oq , 7 Ggooqw in general. We
are mainly interested in p(Gies(t), \), thus we usually consider the minimizing
element 9;\9011 for A.

1.42. We use the notation from 1.40 and ¢ = ¢, for the quotient corresponding
to E. For the linearization 1.37 we deduce from 1.34 that

S| sh
fin (Gies(t) Z vapt(Gies) ( Z Z v 1u(Gies? (t), \)
acA j=1 i=1

+ v p(Gies(t), ) + (\, x).

15See 1.4 for the transition from a filtration of length s/ to a filtration of length s7.
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From 1.35 we know that u(Gies)(t),\) = Y_b_, oFu(Giesk(t), A(7})) and analo-
gously for the parabolic components.
In a first step we will bring our weight function above into the more classical form!®

pi(Gies () Zuaza (pars = plra) +v- Z ot (o, 0,.) — ')

aeA .
Cogp Cozp2
[S|  s7 p
#2033 wd Sl (mdi = Phf ) + 00 ()
aEAj 1 =1 .
cc?nfps

Note that in the case |A| =1 this equality obiously holds as A is a one- parameter
subgroup of S%* and hence in particular S27_ ofpF = 0 = o? = —p~1 3P~ afph.
However in the tuple Case we cannot replace the af-term that easily, since in
general af # —p! Zp L afpk. Tt is fortunately not very difficult to show

S| s7

DD an | valphra) + )Y vl (=wfi?) | + v Yok (<ptu
k=1

a€A k=1 j=1 i=1
P
= Zak (—pkr) =0 (*)

and therewith (x). Here the final step follows from Y 7_ a*p" = 0 for the 8-
one-parameter subgroup A. The first equation will result from the upcoming more
general calculations that lead to (M1) (see remark to 1.47).

The following numerical calculations are the main technical difficulty in proving
the existence of our moduli space with Geometric Invariant Theory. We will first
prove two technical lemmas.

1.43. Lemma. Let n, ==&, - ¢, ¢ € R. Then the following formula holds:

ZZO& —Ta pa para)+77ara Pa Zza p Ta’f’ —r 7,)

acA k=1 a€A k=1

Proof. We have

- na(pars - psra> + nara(pa - pl;)
= _n(lpars + NaTaPa = napa(ra - TS)

16 As usual we replace every length s/ weighted filtration by a length s/ filtration (cf. 1.4).
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and therefore using 1.5'7

p
Zzasnapa(a_r ZQPZ% a_rr

acA k=1 acA

By definition (cf. 1.7)

Z Z Qo (Mg pa psra) + Nara(Pa — p’;)) — Z ZakpZa (Tark _ rkr)

a€A k=1 k=1 acA

1.44. Lemma. Under the same hypotheses as before and additionally assuming

that (%), Ak and (pF)a Ak tnduce the same (yf)a[‘AHk[p] from given (’yk)k[pb
we receive

P
Z o (prk — pr)
r
= 323 btk =i = Yok (12 - 5) (=)
a€A k=1 a€A k=1 Pa P

Proof. By using 1.5 again, we already see that

> Z AqPaka ( ) (P — p3) = kz:o/“r(p —ph).

acA k=1
Furthermore
35 vl —vin) = 33 ol (1) =
acA k=1 a€A k=1 Pa
p
= Z Z Ko paT - para - a(pa - p];)) - akp(rk - T)
a€A k=1 k=1
implies the claim. O

Remark. Tt is in fact enough to assume that (r¥).apep induces a sub-weight of
the weight (v¥)agapky induced by (p)aakp) from a given (v%)yp)-

These preparatory results will help us in the next step to split up the (semi)stability
concept into parts:

17 Apply 1.5 for r¥ replaced by te(rq — rF).
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1.45. The Parabolic Contribution. Recall 1.4. Observe that for all 1 <
k < p the weight vector (v¥),akp) induced by the (parabolic) data (fa )l ANk
from (7%)yp) is coarser than the one induced by (r¥)apagrp resp-  (P5)agaep),
i. e. we can apply lemma 1.44. Analogously the (5Y), s induced by the
(parabolic) data ( ajcoh) 4is7) form only part of the weights of the (582)4pis7)
induced by (f)aqapis) from (67);17, V1 < j < [S|. Hence we can apply 1.5 in
this situation.!®

The following calculation will be used to simplify the parabolic part:

Comp®
p S| s

SIS S e (g i)

acA k=1 j=1 i=1

S| sd
rot i y
=32 SO et (puf S — 1)
j=1 =1 acA k=1
[S| s
rét /i : ;J fii
-3 3 Sttt it 5 (£ ) ).
j=1 i=1 acA k=1 Pa p
The parabolic part of the first component Comp’ is
p |S| s oF
KqX fjé”
D DD BB Dl O
a€A k=1 j=1 i=1
S| &7
f’lj(;’bj
S 3) BEALLS 3) SERTIIR- It
7j=1 i=1 acA k=1
S| &7
fzgdz] r
=22 Za RTICED S) SITN (LR TR §
j=1 i=1 a€A k=1 Pa P
Now adding the last summands of each term we have
e 0 fir e\ (raf? g ‘
Yy zza@pa(( ) (L) -t
iy Do o1 Pa p Pa p

IS| 87

XD PRI CC N
acA \ j=1 i=1 a

N J/
~~
1

= Xa

_<)‘7 X1>

¥Recall that (0%);1,s) is induced by (8%);,5 as (o)) is from (v);) (up to a scalar multi-
plication).
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o e g
for vl =r — fJ.

Furthermore the first summands of each term add up to

[S| 87

p

k ij ij,k zgk
DL DIPILE ST
k=1

=1 i=1

1.46. Non-Parabolic Contribution. Next consider the non-parabolic part of
the first Gieseker component Comp' again using 1.43 and 1.44:

% ((1-22) =50t — )

acA k=1 p
ud ST ~ Ta T k
={1-— >kt —pfr) 30 akpara (== ) (0 —pE) | -
p k=1 acA k=1 p
p f p
— Z Z ot < rra> (pa — ) + Z Z A&, (rr® — rhr)
acA k=1 k=1 acA

I
=
Q
e
VN
N\
—_
|
|:
<,
N——
=
3
ol
|
=
>
<
SN—
+
s
>
=
o
3
|
-
o
=
~_
+

k=1 acA
o _ud E_f_fa_T.E» o

..+;apaezm((1 p) fﬁa(pa p) (p o (pa — P%)

p
= Zak ((1 — u_5) . (prk —pkr) + Zfa(ﬁﬂ’k - 7”];7’)> - <)\7X2>

k=1 p a€A
— <pr —p T+Z§a ral —7“7‘>+Z ( opFu — 5k)—</\7X2>-
k=1 acA

1.47. The Higgs Field Contribution. Finally we consider the second compo-
nent, Comp? of u(Cies(t), \):
red u r
Comp®> = — ) aFf (pv(p ,6’20%”) pku> = Zak (rév(p ,ngquv) — —5pku) :
P k=1 p

Putting all components (apart from —()\, x') and —(\, x?)) together we receive
i (Gles(t), A), i. e.

[S] 87

zp:ak p?“ -p T+Zfa rar® —7“7“ ZZ(W (f” k_ c@(yﬁf)

acA j=1 i=1

+ 52 (rv ", (poq D= urk) ) (M1)
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Remark. The equation (%) is the special case where we remove
ko f;{;ﬁh, firk v(p”, 0}, ,) from the calculations in 1.45 through 1.47.

1.8. SIMPLIFICATIONS OF THE SEMISTABILITY CONCEPT

Before we can apply the previous numerical calculations we still need to show that
all assumptions made above are satisfied. In this section we will therefore show
that the semistability concept of tuples has to be checked only against a bounded
family of filtrations. This implies for a suitable natural number n that F*(n) is
globally generated, H'(F*(n)) = 0 and in particular that p* = d*+r*(n+1—g). On
the other hand one-parameter subgroups of §’* may come with far more weights
~* than weights accessible in a weighted bundle filtration. Hence we will need to
find a way to produce suitable weights for the subbundles F’* (resp. subsheaves
FFkeoh) induced by V*.

In order to find a natural number n as stated above, we start with another bound-
edness result:

1.48. Lemma. The family of rank r and degree d vector bundles E with E ~
Ey, t € Tpar s. t. Gies(t) is x-semistable for some n big enough, is bounded.

Proof. Let ¢ :== ¢ : V ® Ox(—n) — E and use the notation from 1.40. In
order to apply 1.9 we start with a subbundle F' C E and Q = E/F the quotient
bundle, i. e. the long exact sequence corresponding to 0 — F — E — () implies
H°(F(n)) — H°(E(n)) and we may define W := H%q(n))"'(H°(F(n))) C V.
Denote WNV, = W, and w, := dim(W,), w =: dim(W). Let (v});},] be a basis of
V. such that (v")p,,) is a basis of W,. Now consider the one-parameter subgroup
A= (Aa)afa : C* — S4* with weights 7 = { ZZ Pa igi “Z § ZZ .

Using 1.3 as well as 1.34, 1.41 and 1.42 we find
Pa rk<Fa) — WqaTq S Ta(pa - wa)7

po(w, 8, ) — wu < ulp —w),
pa(ﬂi - Tzzzj,coh) — Wa(re — T?) < 74(Pa — Wa)-

Recalling the v,, v and v w. r. t. which we chose our linearization, we see that

all but the first component are at most constant in p'?, i. e. one finds ¢, > 0 s. t.

0 < 1y (Gies(t), A) implies

0 < park(F,) — wery +¢,, Ya € A.

Y < p, we < p, < p and all factors are positive for big n (independent of the data of F).
For the character part o this follows from r,p — p,r = r,d — dgr for n big.
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Furthermore for all b € A we have

Ta Ta

. (po1k(Fy) — warp) — (Patk(Fy) — wory) = (T—bpb — pa) rk(Fy).

Now the right hand side is bounded for n big enough since rk(F},) < r,. Observe,
that this bound depends only on the data of E. Hence we find another constant ¢
such that

prk(F) —wr+c= Z Kakp(py TK(Fy) — wery) + ¢ > 0.
a,beA

We are in a similar situation as considered in [Sch08], 2.3.5.12. For completion we
repeat the argument here: Since by exactness w > p — h°(Q(n)) our inequality

implies ()
o 2 roor

P C

pOk(F) —7) + h(Q(n))r = —c =

Choose () the minimal destabilizing quotient of E coming from the Harder-
Narasimhan filtration (1.10). In particular @ is semistable with minimal p(Q)-
value. Lemma 7.1.2 in [LP97] shows for the semistable bundle Q%" that

ho(Q)
< max{0, pu(Q)+1}. B1
o) <Ml (@) +1) (B1)
d
ror r
c
= fimin (E) 2 n(E) =g = =
Therefore 1.9 implies the claim. O

Remark to 1.48. If we replace T, by any scheme that ensures that we still have
a Gieseker morphism (cf. remark 1.30) and such that H°(q(n)) is one-to-one, the
claim still holds. Observe that w < dim(H"(F(n)) and w, < dim(H°(F,(n)).

1.49. Stability Simplification I. Let §¢ be the bounded family of vector bundles
E for which u(F) < u(E)+c holds for every subbundle F' C E and a fixed constant
¢ (cf. 1.9). In this paragraph we will assume that F belongs to §°. In particular
the degree of a subbundle is bounded from above.

Claim. There is a finite set Z(*)* such that (semi)stability of a tuple has to be
checked only for filtrations (F¥),apkep with (tk(F%), o) € {(r*)gp 0 0 < 1 <
o<1} x EB)s,

For 1(Q) < 0 we have h°(Q) = 0.
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Proof. For now call Sjpu(F*, o) := M[';fr](F ,af) + 8- p(F*F o o). For (af), —
(2a®)kpys 2 > 0 we have Sy (FF, oF) — 2+ Span (FF, @), 1. e. we can restrict to
(@) € ([0,1] NQs0)" in the (semi)stability criterion 1.6. We may extend Spay
to a continuous function [0,1]" — R, (o) > Spar (@), where Spa( - ) is the
extension of Sppa(F*, - ) to arbitrary degrees d* and ranks r* (independent of the
existence of a suitable filtration). Of course we get different functions Sy, for a
different choice of the data r*, d*, r“* and so on.

Note however that apart from the degrees of the F* we only have finitely many
choices for 0 < r*F < r as well as 7% etc. In particular, since 0 < v(i, %) < u for
fixed (o), po - - ) has only finitely many possible values. Since our family
is bounded by assumption, the degree is bounded from above. Thus we only have
to care about small degrees and of course about the (a¥)y;). For all data (apart
from the (")) fixed, the continuous function Sy () on the compact set [0, 1]
has a global minimum m for some (o )i

Assume that d' < —|d| — ud, then

al(dr' —rd") — § - max{0, o' (ur’ — v(i,0)r)} > o' (dr' — rd" — dru)
> a'r(—|d] — du —d') >0

and hence the function Sy, can be minimal only if o’ = 0 in the tuple (o )iy
We repeat the argument for all other &/ with &/ < —|d| — ud. Of course we find
two disjoint subsets I, J C {1,...r} such that d' < —|d| — ud if and only if i € [
and &/ > —|d| — ud if and only if j € J. Therefore all tuples (d');;) that share
the same I, the same J and that are equal on J, share the same (o )y that
minimizes S, (a*). Note that ol =0, ¢ € I. Since there is only a finite choice
of sets I, J and the d’,j € J are additionally bound from above, we find a finite
set = of ( , that contains the minimizer Sp,,(a”) for any choice of data.

If the actual minimum is smaller than 0, by density of Q in R we find a rational
(6% ki € (Qs0)" such that Sppar(dk; ) < 0 holds. Index these (&F; )k, by the
finite set Z*°. If the minimum is exactly 0 set Z' = {(aF, ) € Spar (0)N(Qs0)"NZ}
and Z° = Z* UZ'. Finally we get

mm) k[

H(Fk,ak)k[r] : S[par](Fk,Oék) ( ) 0 3( ) [r] €= \_4 )s : S[par}(Fk,d% (S) 0.

Remark. Observe that by definition u(EF*, of, @) :=
Zxo[1/r], ¢ € Q.
Once we established that there is only a finite number of (&*)x}, to be checked, we

find an integer z as above such that we may check (semi)stability against a finite
subset of (Zso[1/r])".

p(F*,q - oF @) for q-aF €

Q=
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Using (o) € Z()* finite and the proof of lemma 1.13, we find a constant ¢, with

[par]

M (F' af) > — Z ai<par—deg(Fi) rk(E) — par-deg(FE) rk(F")
i=1

£ 36 k() rk(E)))

acA

> —of (par-deg(F7) tk(E)) .

Therefore we find for any constant c3 a constant ¢, such that the existence of a j
with p(F7) < ¢y and of # 0 implies M[';’ar](Fk, a¥) > c;. Furthermore we saw in the
proof of lemma 1.13 that u(EF*,a*, ¢) > —ur 221 b ioe. p(EFR af o) > ¢y on
=) finite. Choosing c3 > —dcy implies that our tuple is already (semi)stable, i. e.
it is enough to check (semi)stability for filtrations (EFF)aqagep with p(FF) > ¢, Vk
with o # 0. By the following lemma 1.50 the F*(n) for some n big enough are
now globally generated with vanishing first cohomology.

1.50. Lemma. Let §il be the family of subbundles F' of a rank r and degree d
vector bundle E in a bounded family ¢, such that u(F') > co given a fized constant
cy. Then there is a ng € N s. t. for all n > ng one has h*(F(n)) = 0 and F(n)
globally generated.

Proof. For a n with H'(F(n)) ~ Hom(F(n),wx) # 0 (Serre duality) we find a
homomorphism ¢ : F'(n) — wx, ¢ # 0 and a short exact sequence

0 — ker(¢) — F(n) — ¢(F(n)) — 0.
Therefore

rk(F) - n +1k(F) - ¢z < deg(F(n)) = deg(ker(p)) + deg(p(F(n)))
< (tk(F) = 1) - plker(p)) + 29 — 2

d
< (tk(F) —1) <—+n+c)+29—2
r

1
=n < )+rc+2g—2+\r~02|::n0—1

r

Thus for n > ng — 1 big enough H'(F(n)) = 0, Vj. Analogously we can show
that H'(F(n)(—z)) = 0 for every x € X if n > ng, i. e. F(n) is then globally
generated. O]

Remark. This proof is an adaption of the proof of proposition 2.2.3.7 in [Sch08|.
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1.51. Stability Simplification II. Let £ € §¢ be a vector bundle and (Fk)km a
filtration of type (r*,d")y of E such that FY € Fil as before. From the previous
lemma we know that H'(F*(n)) = 0. We get a filtration (V*)y,) of V under the
bijection H%(g(n)) such that p* = dimV* = d* + r*(n + 1 — g) together with
weights (a*)y;. As usual we will extend the weights and the filtration trivially to
(VF, ak)k[p]. By 1.40 we receive an associated one-parameter subgroup A of S".

We extend a result from [Sch08], 2.3.5.15 to the tuple case:

Claim. For every (semi)stable tuple ((E,, (Eij)i[sﬁ]j[|5”)a[|AH7 ¢, L) and every

weighted filtration (F*)y,; with global weights o, there is a possibly different
weight vector (o) such that

P 15| s
Z of | prf —pFr+ Z Ea(rar™ — k) + Z Z 8 (rrh — rky)
k=1 acA =1 =1
p
+9 ok (Tv(pk, 92% ) - urk)
k=1 ’
> MES(F®, o) + 0u(F*, oy, ¢),

where we used the notation 1.40.

Proof. By 1.13 we find a constant ¢; such that u(F*) < ¢;. Let I(cy) := {k €
{1,...,r} : p(F*) < o} and J(cp) = {1,...,7} \ I(cz). Again by (B1) and the
Harder-Narasimhan filtration 0 = F*9 c Fkt c ... c FF™ = F* we get

m—1

PO(FY) < 3 RO(FFH FR) < ((F¥) = 1)(cy + 1) + p(FY) + 17

=0

= p" = ' (F*(n)) < 0k(F*) = 1)(c; + 1) + co +tk(F*) -n+ 1, Vk € I(cy).

Choose ¢y small enough that

21The expression holds for h°(F¥) > 0; else h°(F¥) = 0. Observe that p(F*™/Fkm=1) <
pu(F").
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[S| 57

(p'rk —prr+ Z Ea(rar® — rhr)+ Z Z 54 (Tijrk — rij’kfr) )

acA j=1 i=1

+0- (rv(p 0o ) — urk> > 0.2 (S2)

Next consider the filtrations (F})rer(es) = (F¥)ker(es) and (F§)ies(es) = (F¥)res(es)
and p¥, p% a.s. o. the corresponding dimensions. Then

P [S] &7
Z of [ prt —pbr Y Galrar® — k) £ Y 89 (KUt — )
=1 acA j=1 i=1
+5Za (rvp, ot U)— ’I“k)
IS| s7

YRS LTS B Y CEER )

acA j=1 i=1

+ (52 04§ (rv(pJ, 9‘20(1 )= ur§>

k=1
IS| s
—i—ZaI priv — pﬂ“—l—Zﬁa (rqrk — +ZZ(5” (7’”7" riik )
acA j=1 i=1
53 ab (o y,,) - urh)
k=1
M;ag(Fk 055) +9- M(Fkv Oé?, ()0)
In the last step we used 1.50, i. e. pr® —phr = drk — d%r?3 | as well as the estimate
(S2). Also note the remark below. O
Remark. By construction of the parameter space <p\<® Fz-j)@v = 0 &
i
1/J|(® V,ij)@v = 0 and hence by definition of the Gieseker map u(F* of o) =
’j

p k A k
k=1 & (Tv(p*vegooquv)_ur*>'

Remark. We find a non-parabolic version of 1.51 if we drop the parabolic contri-
bution everywhere, i. e. set 6 = (.

22Note that n drops out and that apart from pr* — p¥r all other terms are uniformly bounded,
i. e. can be controlled in terms of c;. In particular 0 < v(p¥, 9:},% U) <.
23 Apply 1.50 to the family of filtrations with I = ().
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1.9. MAIN TECHNICAL THEOREM

We are now able to prove that Gies respects (semi)stability.

1.52. Theorem. Choose admissible weights (6" );sijs), i e Zf; 049 < 1 for
every 7 € S. There is a N € Z such that for alln > N and all t € T, the
following two properties are equivalent:

(i) t is a (0, &, 0)-(semi)stable tuple,
(i) Gies(t) is x-(semi)stable.

Proof. (ii) = (i): By lemma 1.48, we may apply the semistability simplification
1.49, i. e. it will be enough to check (semi)stability for filtrations (F¥),ajkp with
F¥(n) globally generated and h'(F¥(n)) = 0. Let (V),aup be the resulting

filtration of V under the bijection H%(g(n)) with the weights (7*)x,; induced in
the usual way from given (%) with o? = —p~ 1 3P~ afph2t Tet A := A(7F)
be a corresponding one-parameter subgroup w. r. t. the filtration (V*)agagsp.)-2
Now we are in the situation of section 1.7.
If n is big enough, p = d+7(n+1 —g) and p* = d* +r*(n + 1 — g) and thus
pr¥ — pkr = drk — d*r, i. e. (M1) becomes

pr(Gies(t), \) = MES(F®, o) 46 - u(F*, 0¥, ).
This proves the claim.
(i) = (ii): Start with an arbitrary one-parameter subgroup A : C* — S’ and use
the notation of 1.40. First note, that on the side of the Gieseker space there is in
general a bigger choice of one-parameter subgroup weights (v*);;; and correspond-
ing (a');) than there is in the semistability condition of Higgs tuples. Thus we
have to produce from the given (o');;;) new weights (&');;,), about which we can say
anything. More precisely they should obey the semistability condition for Higgs
tuples. Define pf := h°(F}(n)), p* := h°(F*(n)) and note that p} > p%. Now take
JV={l:FF =F!}and & = Y, ;i o). Let A be the one-parameter subgroup
A:C* — 8% corresponding to (4%)yy, and HO(F*(n)). Furthermore note that the
torsion decomposes p* — p* > D jesupp(F*/Fhcon)ng k20 with ¢k > fiak . fiIk
Application of the main calculations 1.7 shows, that

?*Extend the (V¥,a")g;) as in 1.4 to (VF,aF) .-

25 As mentioned before A depends on the choice of a suitable basis (see 1.32).

26The part of the torsion that hits the punctures and therefore contributes to the (semi)stability
calculations.
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(G (1), )
IS| &7

z b Y Gl k) = 3008 (7 k)

acA j=1 =1

+5Za (rvp, ot U)—ur’“)
IS| 7

ot 5t (iS50 (- )

7j=1 =1
> 1y (Gies(t +Z Zt’”r 1—25” (Tor 1)
j= i=1
> 1, (Gies(t), A).
For the second equality we used 1.35 and the remark above, i. e. v(p*,0}) =

v(p*,00,,.,)- The last two inequalities are a consequence of pF — pi >
i pkcon o 17F and admissibility of the weights . Note that by choosin
jEsupp(Fk /Fkicoh)ng g g
subsheaves with suitable associated torsion sheaves F*/F* supported exactly on
the punctures such that fi7% — f7% — 7% admissibility becomes a necessary con-
dition for our construction to work.
Now in order for the claim to hold, we only need to show that we find for each

tuple (a%)x a tuple (a%)g such that

P IS| sd

&F [ prt = e+ alrar® —rlr) £ 0 D60 (rrk — k)

k=1 acA 7j=1 i=1

P
+0 Z ak (Tv(p ,H;\,Oqu D) - urk>
k=1

MSaf(F k)+5u(Fkadk7S0)
But this is the statement of 1.51. ]

1.10. GEOMETRIC INVARIANT THEORY

We will repeat some of the main results from Geometric Invariant Theory. More-
over it will be shown that Gies is a closed embedding.

1.53. Definition. Let G be an algebraic group acting by o on the algebraic
prescheme X (both over C). A pair (X J G,7x) for a prescheme X / G and
a morphism 7y : X — X // G is called a categorical quotient (of X by G) if
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(Cat') the diagram
Gx X—2=X

ol |

X/)aG

commutes.

(Cat?) Given any pair (Z, mz) with a prescheme Z and a morphism 77 : X — Z
such that 77 o 0 = 7 o pry, there is a unique morphism f: X /G — Z
such that 7, = fomy.

(X ) G,7x) is a good quotient of X by G if mx is a surjective affine morphism
that satisfies (Cat') and

(GY) 7x)c.(Ox)% = Ox g where mx . (Ox)9(U) is the set of G-invariant func-
tions on W;(}/G(U> for U C X J/ G offen.

(G?) closed G-invariant subsets are mapped to closed subsets.
(G?) disjoint G-invariant closed subsets stay disjoint under y.

(X J G,7mx) is a geometric quotient of S by G if X / G is a good quotient such
that

(Geot) for every x € X | G, 7' ({z}) contains at most one orbit.

X // G is a universal categorical (resp. universal good, resp. universal geometric)
quotient if it is a categorical (resp. good, resp. geometric) quotient under every
base change, i. e. X Xx/)q Z — Z is a categorical (resp. good, resp. geometric)
quotient for every scheme Z — X // G.

Remark. 1. A (universal) good quotient is a (universal) categorical quotient
(]MFK].0.§2 Proposition 0.1). (G*) guarantees that ¢ (in the definition of a
categorical quotient) exists as a map of the underlying sets, (G?) shows that
¢ is continuous and (G') makes ¢ algebraic.

2. If X /G is a good quotient of X by G, then 7xc(z) = mxc(y) if and only
if GeNGy # O (Seshadri [Ses77], remark 8 to theorem 4). Furthermore every
fiber W;(}/G(l‘) of every closed point :EEXLG contains exactllone closed
orbit.?” Note that for z,y € X with Gz N Gy # 0 and Gy = Gy there is a
one-parameter subgroup A of G such that lim, ., A\(z) -z € Gy.?®

2Te. g. [LP97], Proposition 6.1.7.
Z8gee |Bir71], theorem 4.2 by R. Richardson.
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1.54. Theorem (|[MFK]|, Theorem 1.1). Let Y be an affine scheme of finite type
over C, let G be a reductive linear algebraic group acting on Y. Then the Y || G
exists as a universal good quotient.

1.55. Theorem. Let X, G be as in 1.53 and L a G-linearized line bundle on X.
Then a universal categorical quotient (X*° || G, wxss) exists for X*° the open set
of semistable points w. r. t. the G-linearization on L. Moreover

(i) mxss is affine and universally submersive;

(ii) there is an ample invertible sheaf M on X*° | G such that 7. (M) ~ LF for
some k;

(i) X* J G is a quasi-projective algebraic scheme;

(iv) there is an open subset Y C X** || G such that X® = 7y, (Y) and X° the

set of stable points w. r. t. the G-linearization on L. Then (Y, mxss|xs) is a
universal geometric quotient, i. e. Y = X°/G.
Proof. |MFK], Ch. 1, §4.1.10. O

Remark 1.55. If X is proper over C and L is ample, X*% // G is projective (|[MFK],
Amplification 1.11 in §1).

1.56. Theorem. Let f: X — Y be a finite G-linear morphism between algebraic
preschemes. Let o be a G-linearization on an ample line bundle L and ox the
induced linearization on f*L, then

Xs _ f_l(Ys), Xss — f_1<YSS>.
Proof. |MFK], Ch.1, §5.1.19. and the comment after Corollary Ch.1, §5.1.20.. [

1.57. Proposition ([Ram96ii|, 5.1). Let G be a linear algebraic group acting
on two schemes X, Y and f : X — Y an affine G-equivariant morphism, then
if Y ) G exists as a good quotient, so does X || G and the induced morphism
f:X )G =Y )G is also affine. Furthermore if f is proper (i. e. finite), then

f is finite; if additionally Y || G is a geometric quotient, so is X || G.

1.58. Definition. Let G be an action of a linear algebraic group on a scheme
X over C and let X*° be the open subset of semistable objects with respect to
a linearization of the G-action in some ample line bundle. We call two points
x, y € X* strongly equivalent, or short S-equivalent, if Gz N Gy # (). We have
seen above that S-equivalent points are mapped to the same point in a good
quotient.
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In view of 1.57 we still need to show that our Gieseker map is finite to pull back
the GIT-quotient.

1.59. Lemma. The Gieseker map is a closed immersion T35 — P*°. In particular
Gies finite.?

Proof. ([Sch08], 2.3.5.17) Since Gies is one-to-one, it is enough to show the proper-
ness®® using the properness valuation criterion. Let R be a discrete valuation
ring R with a fraction field K. Start with maps f : Spec(R) — P* and

f : Spec(K) — ¥2° such that

par

Spec(K) Toar
J Gies
Spec(R) F [pss
commutes. We need to find a map f : Spec(R) — T for
every discrete valuation ring R such that the extended diagram com-
mutes.?! Using 1.22 we find a quotient family ((gspec(k)ar SSpec(k)as

<qéjpec(K),a7 ’%gec(l(),a)i[sﬂ}j[\s\])‘IUAH7 Uspec(K)s Hpec()s PSpec(i)) 01 Spec(K). Let
mo f: Spec(K) — Q with Q projective. Then ISpec(K),a €xtends to gspec(r), but
the special fiber over the special point p will in general be only a coherent sheaf
on X. Analogously we define the extension vgpec(r) by the projectivity of Jac! and
qg) ec(R).a by the projectivity of the Grafimann variety.

We have to deal with the possible torsion of E. For T' C {p} x X the support of the
torsion on the special fiber, we may extend det(S5pec(r) |(spec(r)xx)\7) Uniquely over
the codimension 2 torsion 7' to the regular two dimensional scheme Spec(R) x X.
Name the corresponding line bundles on Spec(R) x X resp. Spec(R) x {7}
Hpec(r)> det(Espec(r)) and H -

Next the repetition of the construction of the parameter space with Q replaced
by Spec(R), will lead us to a closed subscheme R and a projective morphism 7y :
R — Spec(R).?* Since we already know that some morphism, namely ¢spec(x) =
PSpec(K) © (Spec(K),u,0 SPlits, R is not empty and we get a morphism Spec(K) — R

29Recall that finite maps are proper and affine.

30[EGA] 1V, Corollaire 18.12.4 shows that proper injections are proper and quasi-finite, and
therefore finite.

31[Ha77], 1L4.7.

32¢f. remark 1.16 and 1.17.
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over Spec(R). Now the valuation criterion applied to the projective morphism
T shows the existence of Ygpec(r) : Espec(r)uw — det(Espec(r)) " @ P vspeciry ON
Spec(R) x X which extends pgpec(x) ([Ha77], 1L.4.7).

Let ¢ : Espec(r) — @%pec( R) 1= gsvgec( By [Ha80], Corollary 1.2 @%pec is reflexive
and thus by [Ha80]|, Corollary 1.4 1t is already flat on Spec(R) x X. Observe that
the torsion of Egpec(r)|(pyxx 18 just ker(¢|pyxx). In particular ¢y «x is in gen-
eral not surjective.*® Hence we still need to define Gspec(r). Given the embedding
i:(Spec(R) x X)\ T — Spec(R) x X, we then define

Pspec(r) (€) 1= ix(Pspec(R)|(spec(R)x x)\T) (ix(€))

for all e € éspeC(R)%v, i.(e) the corresponding point in

(Spec(R) x X)\T) .

Uy (£Spec(R),u,'u‘(Spec(R)XX)\T) = 1y (éaSpec(R), ,
Note that we have again®! used that in the image

i (et (Sspec(r) | (spectr) X NT) T @ Pug, il spectrexnr)
= det((gospec(R))®w &® gZU = det(éaspec(]{))(@w X gzy

Spec(R) Spec(R) *

We proceed analogously for the parabolic quotients. By construction the family

N

((dspec(r).ar ESpec(R).as @gpec(m,av %éz;ec(R),a>z‘[sﬁ]j[\SH)a[|A|]’ USpec(R)

%pec @Spec( ))

defines a morphism to P which coincides with f first on Spec(K) and (since P is
prOJectlve) then already on all of Spec(R). Now restricting our family to a family

= ((4a; bu, (47, '%S,Zpec a>z[sa]j[\s”)a[|A|]> 0, A, @) on {p} x X, by definition
of f the point f(r) is semistable. Observe that H°(g(n)) is one-to-one - for the
kernel k of H°(G(n)) we get by (Tor 1) Z|S| S 649 — dim(k)r > 0 and

Z‘S‘ < d1m(k)352i=1:> dim(k) = 0.

NOW the remarks to 1.30 and 1.48 as well as the corresponding modification of the
main calculation imply that r is d-semistable. But the vector bundle associated
to r lives in a bounded family and the monomorphisms H°(G,(n)) into spaces of

33Coherence implies that the corresponding modules are of finite length, i. e. [((M) =[(M") =
[(M™) for the length. Then coker(:) ~ M"/u(M) ~ M"/(M/ker(¢)) for v : M — M" has
length dim(Tor(M)), i. e. ¢ = q o ¢ is surjective if the torsion vanishes.

3425 line bundles on a regular two-dimensional scheme minus a codimension 2 torsion 7" extend
uniquely to line bundles on Spec(R) x X.

35 Yo forallie {1,...,s}.

coh — Jcoh
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the same dimensions are isomorphisms. Thus 7 is a quotient family. Now the
universal property 1.22 provides us with a unique morphism f : Spec(R) — T5°

.. A e A par
s. 1. ((dSpec(R),av (g)Spec(R),aa (qAé]pec(R),aa jz&sgec(R),a)i[si}jHSH)‘ZHA”7 USpec(R_)a e%jépec(R)a
Pspec(r)) is the pullback of the universal family. By remark 1.30 Giesof = f shows
that f lifts f. On the other hand f o j = f by the uniqueness property in 1.22.

Hence Gies is proper and therefore finite. m

1.11. EXISTENCE OF THE MODULI SPACE

We are now in the position to state our main result, namely the existence of the
moduli space of Higgs tuples. Before we do so, we repeat the definition of fine and
coarse moduli spaces and establish some conventions that we will use.

In Balaji |Ball0| a detailed discussion of the underlying categorical properties of
moduli spaces is given. Classical references for the construction of moduli spaces
are Newstead’s book [New78| and of course Mumford, Fogarty, Kirwan [MFK].

1.60. Definition. Let M : Sche — Sets be a functor. A scheme .# together
with a natural transformation ¢ 4 from M to Hom( -, .#) is called a coarse moduli
scheme for M if

1. 1y is a bijection over Spec(C) and,

2. for any scheme S and any natural transformation s : M — Hom( - ,95),
there is a unique morphism of functors ¢ : Hom( - ,.#) — Hom( - ,S) such

that ¥g = p o1 4.

Remark. Condition (ii) is equivalent to saying that .# corepresents M, i. e,
that ¢, induces Mor(M, Hom( - ,S)) ~ Mor(.#, S) for every scheme S over C.
Sometimes authors (see [HL10|, Def. 4.1.1) require only (ii) as the definition of a
moduli space.

1.61. Definition. Let M : Sch¢e — Sets be a functor, that associates to every
scheme S the set of equivalence classes of S-families of objects. A scheme .Z is
called a fine moduli space for the functor M if there is a universal family % on
A . A universal family % on 4 is a .#-family such that for every scheme S and
every S-family .# there is a unique morphism ¢ : S — .# such that . ~ *(%).

Remark. (i) In order for the definition to make sense, a specific definition of a
S-family should allow pullbacks, i. e. given a morphism between two schemes
f:T — S and a universal S-family . there is a T-family f*(.¥). The pull-
back should naturally have some functorial properties, i. e. for two morphisms
f, g0 (fog)* =g* o f* idg = idy. In our applications we will have additional
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equivalence relations on S-families, e. g. isomorphy of S-families. Naturally the
pullback operation should respect a given equivalence relation. An equivalence
relation on families on the other hand will have to be compatible with a previously
fixed equivalence relation of the underlying objects, i. e. the equivalence relation
of families restricts to the equivalence relation of objects for S = Spec(C).
Whenever we define S-families of objects and equivalence of S-families, these con-
ditions will be satisfied.

The existence of a pullback may be formalized in the language of fibered categories
(over Sche).?

(ii) Equivalently .# together with a natural transformation 1, from M to
Hom( - ,.#) is called a fine moduli scheme for M if .# represents M, i. e.
for any scheme S, v 4 induces Mor(Hom( - ,S), M) ~ Mor(S, .#).3"

1.62. Proposition (|[New78|, 2.13). For a scheme T and a T-family T which
satisfy

(UYY local universality, i. e. for any point s of a scheme S that admits an S-family
<, there is a neighborhood V' of s in S and a morphism ¢ : V — T such
that |y ~ ©*(T);

(U?) and which admits an action of a linear algebraic group G such that for any
two morphisms hy, he : S — T we get h{(T) ~ hi(T) if and only if there
s a morphism ® : G — T such that ® - hy = ho;

the following two statements hold:
(M) A coarse moduli space, if it exists is a categorical quotient of T by G,

(M?) A categorical quotient T by G is a coarse moduli space exactly when T is an
orbit space, i. e. if every fiber of T — T /| G contains exactly one orbit.

Remark. Given a fixed equivalence relation on objects, it can be shown that a
coarse moduli space is independent of the chosen extension of that equivalence
relation to families. The result does not hold for fine moduli spaces, whose ex-
istence usually depends on the chosen equivalence relation ([New78|, Def. 1.6’
Pro. 1.8 and Lemma 5.10.). For vector bundles for example, if we define equiv-
alence of families by simply requiring that two bundles &y, %y of rank r and
fiberwise degree d on Y x X are isomorphic as vector bundles, we will only get a
coarse moduli space of stable vector bundles. However, if we define &y ~ %y <
1% — Y line bundle such that & ~ %y ® 7} (%) as vector bundles, then in

36 Classical references are [SGA] or [Gr66]. Nicolai Beck gives an excellent account thereof in
[Bel4].
3TNewstead [New78], Def. 1.5".



1.11. EXISTENCE OF THE MODULI SPACE | 45

some cases the stable vector bundles even form a fine moduli space. More precisely
if ged(r,d) = 1 the fine moduli space of stable vector bundles does exist (|[New78|
5.12), for ged(r, d) # 1 not (Ramanan [Ra73|, theorem 2).

The concept can be easily extended to tuples and vector bundles with
more additional structure. For tuples for example ((&% ® 75 (% ))%")® ~
(&2)2)P @ 73 (L2") implies that in 1.19 we should require vy : 4 —
JE @ LE" such that given vy @ & — & @ m3(% ) the formula ¢}, =
(det(y)®" @ idg, @y (’}/y))_l 0 3 0 Py, still makes sense.

Since we are temporarily only interested in the construction of coarse moduli spaces
of stable objects we will stick with the easier condition given at the beginning.
However all proofs given should work for the second equivalence relation on fami-
lies as well. Similar results to the ones by Newstead and Ramanan in the case of
vector bundles with additional structure seem desirable.

Remark. Note that the existence and if so the structure of a moduli space depends
on the choice of the equivalence relation on objects. For example if we consider
S-equivalence classes instead of isomorphism classes of semistable Higgs tuples,
we are able to construct a coarse moduli space for the resulting functor of S-
equivalence classes.

1.63. Definition. We call a scheme .#*° and a natural transformations v ;s :
M®)* — Hom( - ,.#)*) a coarse moduli space for the functors M®* that
associate to a scheme S of finite type over C an isomorphism class of S-families of
(semi)stable objects, if

(i) (A% 1) yss) corepresents (cf. 1.60 (ii)) M.
(i) (A*°,1.4+) is a coarse moduli space for M?.

(iii) 1 gss is surjective and every fiber contains at most one S-equivalence class.

Remark. This abuse of notation®® is justified: For vector bundles Seshadri shows

that the map that associates to every T-family of S-equivalence classes of
semistable vector bundles the associated graded t — Gr(E;) € #*° is a mor-
phism of schemes.?* By definition 1.6’ in Newstead .#Z** is therefore the coarse
moduli space of S-equivalence classes of semistable vector bundles.

1.64. Theorem. (i) The coarse moduli space M ** = T35 [/ G4 for the functors
in 1.20 exists as a projective scheme.

s
par

(ii) The geometric quotient T3, /Ga =: M° C M*° exists as an open subscheme.

38 We stick with the notation in [Sch08], 2.2.
39Theorem 8.1 in [Ses67|.
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Proof. Observe that by [MFK], 1.7. P()* is open and hence gl = Gies ' (P()?)
is open. By 1.55 P** / G, exists. Furthermore 1.56 implies that the preimage
Gies ! (P**) is the set of (semi)stable points with respect to the by Gies pulled
back linearization and 1.52 shows that Gies™'(P**) = T35 . Thus the quotient
T55 . /| Ga exists again using 1.55. Furthermore P** /G4 is projective by 1.10, since
Op(1) is ample. As the pullback of an ample line bundle by a finite map is ample
again, ./ *° is projective.

The universal property 2. in 1.53 together with 1.23, 1.25, 1.62 imply that .#Z*° is
a coarse moduli space.*’

(ii) is proved the same way, i. e. T /G, is a geometric quotient as pullback of
the geometric quotient IP* /G 4 by a finite stability-preserving equivariant morphism;

P°/Ga C P/ Gais open, sois T, /Ga in T35/ Ga. []

Remark. We omit the discussion of S-equivalence for now. It will be shown later
on that the Gieseker morphism does respect a still to be given definition of S-
equivalence of tuples.

1.12. FURTHER EXTENSION

In the next two sections we study objects closely related to the parabolic Higgs
tuples considered before. The calculations and constructions will transfer easily to
the new setting and provide moduli spaces in these cases as well.

1.65. Recall that a parabolic filtration of (E,)aa) of type (ry/),s, over the

puncture 27 consists of vector space filtration 0 ¢ EY C ... Cc E% C
Eulw, dim(EY) = ry and weights (87),, for every a € A. A first exten-
sion of the concept considers filtrations of the full bundle E = @, _, ES" of

type (r'7);psi;ys) rather than filtration of each E,. The construction in this
case stays (almost) the same, we only have to replace X ,c4 X ics Xfil &% by
X jwics X * | ®% with &% the Grakmannian variety parametrizing r/-dimensional
subspace of V. Of course this space is larger than the one discussed before. How-

ever, the construction depends on less parameters and is therefore easier. In
fact only the parabolic contribution calculated in section 1.7 changes. To get
IS| s wafY6Y (e _ 1 Sij — '
the expected results replace x; = > 7 Y07, - (pa p) and vV = == and
§_SISI st L8 i) g,

Uy 1= FalP== 2o 2 O 1Y) ber and keep 7 and x?2 the same. Now the given proofs
transfer easily to the new situation and result in the existence of the corresponding
moduli space.

400bserve that the universal properties hold on the G-invariant open subset of semistable
tuples.
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1.66. In his dissertation |[Bel4| Nikolai Beck considers decorated tuples. These
are non-parabolic Higgs tuples with a point in P(E,|s) for one puncture S € X
and a new homogeneous representation o : GI(C™), := X 4 GI(C™*) — GI(V;)
on some vector space V,. We would like to compare the two concepts for one
puncture S. Since o decomposes into finite-dimensional irreducible representa-
tions, we restrict our attention to the case o irreducible for now. The irreducible
representations of X .4 GI(C") are tensor products of irreducible representations
o, : GI(C™) — GI(V,,).** Furthermore the irreducible representations of GI(C")
are parametrized by tuples (o},...,00*) € Z". We denote by (¢');,) € Z" the
resulting weight of o. For irreducible polynomial representations the last entry is
trivial.

Two irreducible representations are isomorphic if they possess the same Schur char-
acter x and the Borel-Weil theorem tells us that G1(C™),/Q — P(V}) is a closed
embedding, where the parabolic subgroup @) is the stabilizer of the orbit of the
unique maximal weight vector corresponding to x and the image of GI(C™), /@ is
the orbit of the maximal weight vector. Thus the parameter space P(E,|s) con-
tains more points than some flag variety GI(C™),/Q that parametrizes parabolic
filtrations.

Moreover note, that @@ = X ,c4 @, for parabolic subgroups @, C GI(C™) and
Gl(C)/Q, — P(V,,). Using the Segre embedding the following diagram of
monomorphisms commutes

X acA (Gl((cra)/Qa) — X acA P(VUa)

| |

GI(C™)a/@ P(Vs).

Nikolai Beck defines the p-function for points in P(E,|s) w. 1. t. the
standard linearization of the natural action of SI(C™), := {(ga)aja; €
GL(C™)y| [T e det(ga)™ = 1} in O(5).*2 Using this definition the moduli space of
tuples is constructed under the restriction du’ < 1 for u® = Z;Zl o’ the homoge-
neous degree of 0. Unfortunately this concept implies the existence of the moduli
space of parabolic Higgs tuples only in the case Y ;_, 677" < 1.

Using the main calculations above, we can however strengthen the result if we use
a stability concept closer related to the properties of o. The semistability concept
in [Bel4| depends on the homogeneous degree u” of the representation o rather
than the classifying data (o!,...,0").

HKPO00] 5.7.
2We allow 6 € Q4. This is a slight (but quite common) abuse of notation.



48 | 1. THE MoODULI SPACE OF HIGGS TUPLES

1.67. Semistability - An Intrinsic Definition. We will consider G =
SI(C" )44 in this paragraph. However the representation theory that follows
works for arbitrary reductive groups G as well.

As usual denote r = Y _, r,. Given a one-parameter subgroup A : C* — G with
weights (7');,) and a representation o : G — GI(V,) with corresponding character
Xo = [luca Xou, A(C*) is contained in a maximal torus T\ C G.** Therefore we
find a basis of weight vectors v} of V, with corresponding weights (o¥),,) € Z" such

that o(\(2))v} = [[/_, 27 vi. Now given an arbitrary point v € V' representing

alv] e P(V,), v = Z?ij(v") a'vy” we define
#°(A,v) = —min {(’Ylﬁ[r] : (Ug\m)m[r] = Z’Vlo'il a' # 0}
I=1

= —min{x\(\)| a" # 0}, (WF)

where x4 denotes the character of T associated to (%)

1.68. Note that this definition does not depend on any embedding into a tensor
product. However it agrees with the definition given before. Since V,, C (C")®" is
a subrepresentation®* the representation on the tensor product splits as o @ v for
some representation v. Hence (C")®" decomposes into Th-weight spaces V! C V,
and V! C V,,. On the other hand given a basis (w');;, such that T\ acts diagonal
we get for (7)) € Ty and w’ = @}, w?®, 6 € Map],
v v 0,i .
()u’ = Q) w'? =[[6> w’, A& =#{j:00)=1i}.
i=1

i=1

Denote by WY = (w?) and by I the subset of {1,...,r}* such that (w’)se; is a
basis of V.. We have

. N
XA =D 08 =D af ()
j=1 j=1 k=1

=3 k() Z #{i:00) =j} = —r)_ of#{i: 0() <k}

r r—1
=—r Zozkv(k:, 0) = Zak(k cu—v(k,0)r),
k=1 k=1

43For an arbitrary group G, the representation <|r, , Ty abelian, decomposes into 1-dimensional
irreducible representations, i. e. characters of T).
def. 2.15.
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where x§ denotes the character of Ty with weights (X?\’j)j[r].
Let Wy = @i, Wa), Wagy = (w',...,w?@) and v" = 3>, a’(w’)" be an arbi-
trary element in V.. Observe that

v |w, 40 a’ #0 for some € I : 0(i) < 0(i),¥1 <i < u.

Moreover in this case v(k,0) > v(k,0), V1 < k < r and therefore 7 () < x4(N).
We conclude if  minimizes x{(\), a’ # 0 then v"[y, # 0. On the other hand if ¢
minimizes 4 (\), v*|w, # 0, then there is a § with a® # 0 such that x§(\) < x§()).
Hence

—min{x{(\)| a’ # 0} = —min {z_: o (k-u—v(k,0)r)

UV|W9 7£ 0} :

1.69. Parabolic Filtrations as Elements of a Representation Space. Given
a reduction Z : X — P/Q¢(N\) and a point s : {S} — P,|g, consider the Qg (A)-
bundle #Z*(P) defined by P — P/Qg(\) and note that o|g, ) (Z*(P)) = P,.%
Now the transition functions of P, may be chosen, such that they split over Q¢(A),
i. e. Qg()\) induces a filtration of P, by subbundles. A (up to an element of
0(Qc(A)) uniquely) chosen trivialization ¢, identifies s with a point ¢(s(S)) € V,
and we can apply the semistability criterion defined before. Note that a different
choice of #Z changes the weight function by a factor in G/Qg(\).

More precisely: A quotient P/Q is a locally trivial bundle if and only if it possesses
local sections.*® For a Lie subgroup @ C G this condition is satisfied.*” If (¢'); de-
note local sections of 7 : P — P/Q and (¢%); the extensions to local trivializations
with @Q-valued transition functions (¢g%);;, then (¢ o Z|y,); extend to local trivi-
alizations (¢');, ¢': Ply, = U; X G of P with the same transition functions. Of
course this construction depends on the choice of the (t');, i. e. on a map to Q. If
we further denote by [(p,v)] € P, an element represented by (p,v) € P x V,, then
(¢"); for ¢'([p,v]) = (7(p), o(pryw’(p),v)) are trivializations of P, with transition
functions (0(g"));;. Note that by construction ¢*([t' o Z|y,(z),v]) = (z,v). If ¢
denotes the trivialization at the puncture: ¢(s(S5)) € V.

1.70. In the special case of a parabolic filtration, namely an element s/ &€
P|,i/Qc(a?) for a/ a one-parameter subgroup, we find the anti-dominant char-
acter Yo @ Qg(a?) — C*. Let 0 : G — V, be the representation induced by
YXoi and T,; the maximal torus to a/. Given a one-parameter subgroup A of G

#>The reduction of the structure group implies the existence of suitable transition functions
Ui]’ — Qg()\) of P.

46[St51], §7.4, Theorem.

47Chevalley, [Ch46], Prop. 1, p. 110.
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as well as a reduction Z : X — P/Qg(\), we find for every choice of two rep-
resentatives of s/(27)Qg(a’) and Z(27)Qc(N\) a g € Qe(N\)\G/Qg(a’) that maps
one to the other - s/(27)g = Z(27).** In 2.7 we will define the weight func-
tion pu(\, s7) = —(\,g 'a’g). Since the value of ;1 depends only on the class of
g € Qc(M\G/Qs(a?) we may assume w. 1. o. g. that gA(z)g™ € T,;. Let (v',);
be the weight vectors to T, with weights (x’;);. Then

7

gM(2)g vl = o(gA(z)g™ " vl) = Xl (gA(2)g ™" )vls
= Xz2)g vl = X (gA(2)g™ g ML,

i e. vy := g ' is a weight vector of Ty with weight XY =x(g...-g7Y). In
particular there is an i such that X' = x,; and thus

XA = Xai(ghg™h) = (N, g7 'l g).

We have seen above, that using a trivialization ¢ associated to %, s’/(x?) maps to
g~ 107 while Z(27) maps to v’ - v/ weight vector to x,;. Hence

dim(Vz)

—min { \¥(\)| a? # 0, (s (27)) = Z akjvl;j = ()

k=1
= _<)\7 gilajg>'

Remark. In 2.7 it can be seen, that the right-hand term is constant on the class
Qc(M)\G/Qc(a?), i. e. independent of the chosen trivializations used to define
s1(z7) and Z(z7).

1.13. NEw MODULI SPACES

1.71. Let G = GI(C™), = {(ga)aca € GI(C™),} and choose B, C GI(C™) the
Borel subgroup of upper triangular matrices, B = {b € GI(C™), : b, € B,}.

Recall that a character on B takes the form [ ., [T, (0%)% for some ¢, € Z.
More generally let P, be a parabolic subgroup containing B,, then
Pra *
P, = , P"s € GI(C™)
0 pr

and a character on X .4 P, takes the form J] _, H?;(la) det(P"a)%, ¢! e 7.
As we have seen above every representation o : GI(C"™), — GI(V,) comes from

*8In abuse of notation denote by s7(z7) resp. Z(z7) the image in P under suitable fixed
trivializations.
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a tuple of representations o, : GI(C™) — GI(V;,). The weights of o, and o are
connected as usual (cf. 1. 5) We denote the weights as in the classical parabolic

case by (ﬁ )Z[r]j“s” and (/Ba )a[lAI] [rald[IS1]-

1.72. Definition. Choose for every puncture 27 € S a tuple of representations
o’ : GI(C"), — GI(V,) as above and denote by o7 the resulting representations of
GI(C"). Denote by (8);, 8% > ... > 3" the maximal weight of o”.

Consider a tuple ((Eq, (s2)jqs))agag, ¢ L) for s2 € X caP(Ey,) (cf. 1.2). Recall
that every proper filtration (F* o/")k[m], o € Q, as in 1.6 comes from a one-
parameter subgroup A : C* — SI(C™), resp. one-parameter subgroups A, : C* —
GI(C"). We call a tuple (kq,&,, 0, &7)—(semi)stable if

MS(F af) + 6p(F ol o) +27 > p” (A, 87) (=) 0

jixies

holds for all weighted filtrations (F”,a);; (as in 1.6) and

par

MEE(F Za (deg(E) rk(F') — deg(F") rk(E)

+ Zga (rk(E,) tk(F") — tk(F!) tk(E)))

acA

p(F' o, ) := — min { > oy
j=1

(i) € {1, 7} 90|(®;:1 P =% O}7

where 17’ (), s7) is defined as in (WF) with a trivialization like the one of 1.69.

Remark. Using 1.66 the following construction extends as in 1.65 to tuples
((Ea)apap, @ (87)j1sy) with 87 € P(Eq, )a-

1.73. Recall that in 1.16 we constructed a parameter space X and then added
Grakmannian Varletles &Y to parametrize parabolic filtrations. Now we know
that there are u®, 1% w® € Z such that El (E®“%)@“U“ ® det(E, )®wU‘J‘ Y
EB'UU?L j j

RTx(Ox(=u" -n))|p, A" =
det(é(’ga)@wg“uj, Xt = P(Aom(mq . (F] ) WQ*(J}Z/U“)) ) = Q. We have again a
tautological morphism

and as before we find sheaves .7 o — (V®“"*‘)

Yoyt (7 xidx) (FF) = (r x idy )" (A7) @ 7 (0 (D).
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We may pull these morphisms back to X x T x X <jcg X7 and find a closed
a€A

J .
subscheme &,,, C XISjSA‘S‘ X% such that X ,cu wxvi splits over &sxe,,. 0. Lhe
ac
universal properties are proved as in the classical case.

For the Gieseker morphism we replace the Pliicker embedding in the last com-
ponent by the identity. Then all proofs and calculations of the classical case
apply in this situation as well, with one exception; namely the admissibil-
ity condition. It may happen that given a filtration (V*)y, of V as before,

ol .
Qyai | ol ](Vg)@vgj =0, Vo = R, V%) even if the induced map on FE,|,; is non-

zero on the subbundles generated by (V5)®¥ resp. their intersection with F,|,;.
Thus we have to bind —(x'/(y2") — Xl)f”(%éo’l)) where 7% = dim(F*)|,;, and

gk 3 k,coh\| 49 : : rik ij
rlo, = dim(F™")| ;% This term is bounded by rzi:rfjh ;) and therefore

— (X (") — Xi()j(%fz‘fh)) < Y (7% — 75 Yr. Hence we call the stability param-
eters &/ admissible if they are positive, decreasing and &/3% < 1 or equivalently
if £95°% 0% < 1. If o is not irreducible, i. e. decomposes o/ = @™ o7, the
admissibility condition becomes e/ max{3,” : 1 <t < m} < 1 for (87 )i the
maximal weight of o7.

19 is the character of T to the weight vector v°J with non-zero coefficient a’*/ and minimal

weight function. Let (ﬁ;({% be the corresponding weight. In the notation of 1.52 —(Xi’\”j(y”k) -

r

0]

X3 (7°°")) corresponds to ijzl 67 (fF — fff):ﬁ



THE MODULI SPACE OF
PROJECTIVE PARABOLIC
HicGcs BUNDLES

The second chapter studies projective parabolic ¢-Higgs bundles and their moduli
space.

2.1. Principal Bundles. An algebraic (resp. holomorphic) principal G-bundle
on the Riemann surface X is a C-scheme (resp. complex space) P with a right
action o : P x G — P and a G-invariant projection m : P — X such that P
is locally trivial in the étale topology (resp. strong topology). For algebraic G-
bundles we may equivalently choose a trivialization in the fppf-topology or that
locally X admits an unramified cover V' — U C X such that the local pullback
of P is trivial, i. e. P xxV ~V x G ([Mi80] 4.10, [Sch08| p. 101f). Note that
the category of holomorphic G-bundles (with G-equivariant holomorphic maps)
on X is equivalent to the category of algebraic G-bundles (with G-equivariant X-
morphisms).!

We are mostly concerned with connected reductive algebraic groups, for which
the trivialization may be chosen in the Zariski topology ([Sch08] 2.1.1.17) on X.
More generally, for a scheme of finite type Y a principal G-bundle with connected
reductive structure group on Y x X is trivial w. r. t. the product of the étale and
the Zariski topology on Y x X. Bundles with respect to not necessarily connected
reductive algebraic groups may however occur when we consider H-bundles for
H C G a subgroup.

Given a parabolic subgroup P? C @G for every punctures 27 € S a parabolic
(principal) G-bundle is a pair (P, (s7);qs) with P a principal G-bundle and s/ :
{27} — P xx {27}/ P’ reductions.

2.2. Projective Higgs Bundles. Let W be a vector space and P(W) the
corresponding projective space. Let P be a principal G-bundle of fixed topolog-
ical type on X and ¢ € HY(X,P(P.)) for a fixed homogeneous® representation

Isee for example [GAGA] and [Ser58|.
2¢ homogeneous :< ¢ homogeneous in 2.12. See as well 2.14.
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s:G — GI(W)and P. = P x W, P(P.) ~ P x_P(W).? To give ¢ is equivalent
to the choice of a line bundle L and a surjection ¢ : P. — L (|[Ha77|, I11.7.12).
In order for our construction to work, we will allow ¢ to be arbitrary non-trivial
for now. Once a (projective) parameter scheme is constructed parametrizing non-
trivial homomorphisms ¢ : P. — L, the surjective ¢ will form an open invariant
subset thereof.

The triple (P, ¢, L) is called a projective ¢-Higgs bundle. A projective parabolic
¢-Higgs bundle is a quadruple (P, (s7)jys, ¢, L) with additional reductions s’
for every puncture.

2.1. THE SEMISTABILITY CONCEPT OF PARABOLIC G-BUNDLES

In this first section we will define a semistability concept for projective parabolic
¢-Higgs bundles. We will then rewrite the semistability criterion in terms of an
associated parabolic Higgs tuple.

2.3. Let P be a principal G-bundle on X. Fix a faithful representation ¢ : G —
Gl(U), U a vector space. Denote by P, the principal GI(U)-bundle induced by .
Let P/, 1 < j < |S] be a tuple of parabolic subgroups of G - one for each puncture
2/ € S - and choose reductions s/ : {27} — P xx {27}/ P7.

We follow the approach by [Bra9l]| (see as well [HS10].4) to define the concept of
(semi)stability for tuples (P, (s7);qs, ©)-

For a one-parameter subgroup A € Hom(C*, G) denote

Pe(\) :={g € G| ll_r}(l) M2)gA(2) ! exists in G}, Qg(A) := Pgo(—)\).A

Let T, C GI(U) be a maximal torus corresponding to a basis (u");jgim(v) and denote
(-, - ) the symmetric Q—Dbilinear map

T,xT, - Q, T,=Hom(C"T,)®;Q.

induced by
dim(U)
2O 5 2D 3 (0 iaimoyys () jamqoy) = Y a'b' € Z.
i=1
Furthermore we find the dual pairing ( -, - ) : 7, x T, — Q (cf. 1.34) for

T = Hom(T,,C*) ®z Q the rational character group. Hence for every rational
one-parameter subgroup Ag; € 7, there is a rational character x, g1 € 7, such that

(N, Aa) = (N, xaa), YN €1,

3In abuse of notation we wrote ¢ for both the action on W and the induced action on P(W).
4\ denotes the inverse element of ) in the group 7, i. e. z + ()7L
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In fact Ag) defines a character in Hom(Qg1(Aa1), C*) ®7 Q, which we call in abuse
of notation x) a1, too. Further if 7, is the extension of a maximal torus 17" C ¢
and A\g; =10\, A € Hom(C*,G) ®7 Q, then the pairing

(«, - ):TxT—=Q, T:=Hom(C*T)®;Q, T:=Hom(T,C") @, Q

is induced by the canonical pairing for the group GI(U). Observe that this map
is independent of the chosen extension 7, of T.> Analogously we find y\ and we

have Q¢(A) = Qai(Aa1) NG as well as x» a1log(n) = Xa-

2.4. Definition. A character x : Qaq — C*, Qaq C Ad(G)® a parabolic subgroup,
is called anti-dominant if the line bundle P, (xaq) is ample. Here P, denotes
the Qaq-bundle Ad(G) — Ad(G)/Qaq and Py ,,(xaq) the line bundle associated
by X Ad-

If @ C G is a parabolic subgroup and Qaq C Ad(G) is the induced parabolic
subgroup, then x : () — C* is called anti-dominant, if y = Ad oy g, Ad : Q = Qg
holds for an anti-dominant character x4 of Qaq.

If G is semisimple, x is anti-dominant, if Py(x) is ample.

2.5. Proposition. Let G be a semi-simple linear algebraic group. The map G >
A = (Pg(N), x_x) into the set of pairs of a parabolic subgroup and a dominant
character y_y is surjective.”

Go\— (Qa(N), xn) into the set of pairs of a parabolic subgroup and an anti-
dominant character x, s surjective, too.

FEvery parabolic subgroup of a (connected) reductive group is of the form Qg(\) for
some one-parameter subgroup \ of G.

Proof. |GLSS08], section 3.2 or [Sch04], Example 2.1.8. The last statement is
proven in Springer [Sp81]|, Proposition 8.4.5. [

Remark. For future reference note that if G is generally reductive a (anti-)dominant
character vanishes on the radical Zad(G) (|[Ram96i|, 2.14).

2.6. For \: C* — SI(U) with strictly ascending weights v!, ..., 4™ we get

Qai(\) = {diag(A*,...,A™) + N : A7 € GI(r/ — 1771, C),
N a strictly block upper triangular matrix}.

Then []2, det(A7)" is an anti-dominant character ([Sch08], 2.4.9).

’Lemma 2.8 in Chapter II of [MFK].
6Recall that Ad(G) is semisimple for G reductive.
TFor the definition of a dominant character see for example [Ram96i, 2.14.
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2.7. Let P7 be a parabolic subgroup and 77 C P’ a maximal torus.® Let 77/ €
T = {r € TV Qa(r) = P} and 87 : {2/} — Pl /Qc(77). Choose a stability
parameter (77);s1, 7/ € TJ. Let A : C — G be a one-parameter subgroup
and (Qa(A), xa) the corresponding pair of a parabolic subgroup and a character.
Let #7 = R\, - {27} — Plu/Qc()\) be a reduction of the structure group.'®
We will write %#7, (z7), si, (27) for (a choice of) representatives in P|,;, i. e.

rep rep

[Pl (27)] = H7(27) € Pl /Qc(N) and [s],(27)] = 57 (27) € Plus/Qc(77). Then

we find an element 9i € G A, (17)g; = sl,(x7). Now we may shift the orbit
R, (#7)Qa(N) by gj, so that it intersects with s7(27).pQca(77). The intersection
of two Borel (and hence of two parabolic) subgroups always contains a maximal
torus. Denote such a torus by 77 C Qa(A) Ng; 'Qa(77)g;. Then we find elements
hi € Qa(m?), h € Qg()\) such that gjthj(C*)hj_lgj_l, RA(C*)R™' C T79. Let

U and M = hAR~! be the corresponding one-parameter

rten — g hj—l 9
subgroups of 77. Now we may define (75 X)) Observe that (75 A\%%r) is
independent of the choices made. In fact if 4 (T7) denotes the normalizer of T7,

then £ is unique up to an element of A4 (77)NQa(A) and analogously for #7. Using
the faithful representation ¢ the Z4™()_elements corresponding to TSter | \#tep are
left invariant when conjugating with one of the available permutation matrices.
Thus (75, x7) = (7%, X%} := (7% \?%) is well-defined and depends only on
the class g; € Qa(7)\G/Qc(N).M

2.8. Proposition. Fiz a one-parameter subgroup 770 as well as Té‘l =107 for
every x € S. Let (P, (s7)jys) be a principal G-bundle and (P,, (s&,;);) with

sh {27} 5 Pxx 27}/Q() < P {27}/Q(ry),
Rl A’} 5 P xx {a7}/QO) = Poxx {7}/ Q)
for a one-parameter subgroup A : C* — G. Then

<Té]be>i\,Gl> = (" X7, V1< <|9).

Proof. Obvious by definition of the inner product. See as well [HS10], 5.1.2. [

2.9. Let A : C* — G be a one-parameter subgroup and y, the associated anti-
dominant character. Consider the principal Qg (A)-bundle P — P/Qg(N) and

8By Borel, [Bo91] IV.11.3 Corollary, we know that maximal tori in G coincide with the
maximal tori in the various Borel subgroups, and by IV.11.17 that every parabolic subgroup is
conjugated to exactly one-parabolic subgroup containing a given Borel subgroup B.

9See [HS10], section 4.1 for an equivalent definition of 77.

OFor an equivalent definition of reductions of the structure group see e. g. [KN63], 1.5, fiber
bundles.

1%’ denotes the character to \%’.
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Poov(xa) the xa-associated line bundle on P/Qq()). Let Z : X — P/Qq(\) be
a reduction and Py, (xx, Z) = Z*(Poo)(X2))-
Observe, that Z extends to a reduction

Hc1: X = P/Qc(N) = P,/Qci(to )

and that every parabolic subgroup Qgi(t o A) C GI(U) by definition stabilizes a
flag. Let (F7);,) be the flag of rank (r7);;, subbundles of E = P,'? induced by
Aci =ctoXand (77);) resp. (a);p) the corresponding weights. Note that (F7);
depends on the reduction Zqg. We get the following relation

—1
deg Po(xa, Z) = deg Py, (Xog s Za1) = o’ (deg(E) 1k(F?) — deg(F7)1k(E)).

1

3

J

Proof. Since we have a reduction of the structure group to Qg(\) we find Q¢(A)-
valued transition function (¢");; of our principal G-bundle P ([KN63] Pro. 5.3
and Pro. 5.6.). If ¢ is our embedding of G < SI(U) we get the transition functions
of Z*(Poun(Xxa)) as (xa(to g7));; w. r. t. the induced trivializations. ¢ o g €
Qs (Lo A) is a block upper triangular matrix of the form

hij *

vog” = 3

0 hii
Hence we have

(Log” H det h”

On the other hand consider the vector bundle @;",(E ® (F¥))2*r where F* is
the subbundle with transition functions

hij *
oy = ,
0 hY

The determinant of @}, (E ® (F¥))**" has thus transition functions

k
(H det(R7) T [(det(n?)) >
=1

(det(R7)yr iz ofrt—rt it ok,

IZISTEI:IS

[T (det(g")™" - det(((H;7)")

N
Il
i

2More precisely: E the vector bundle corresponding to the G1(U)—bundle P,.
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oA () =it i
Using W 0, 7% = 0 from 1.3 we see that r>. 7' afrk = 7.

Furthermore —r2 3" " af = —r(y™ — 4!) = —y™r + 4'r. Putting both formu-
las together we get lel(det(h;]))'yl’". Therefore det(@)",(E @ (F*))*'") and
R*(Pgo (X)) are isomorphic bundles and hence have the same degree, i. e.

-1

deg(Z* (Pou (v (Xa Za deg(E ® (F*)") Za (deg(E)r* — rdeg(F*)).
k=1

]

Remark. See as well [HS10] 5.1 or [GS05| by Toméas Gomez and Ignacio Sols,
Lemma 5.6. for a proof in the case of a higher dimensional base variety.
Fritzsche, Grauert [FG02| or Kobayashi, Nomizu [KN63] give an excellent account
of the connection between fiber bundles and transition functions on a Riemann
surface X. An algebraic disussion of this relation is given for example in [Mi80].
As transition functions are particularly easy to work with, we will use this descrip-
tion again in section 3.5 as well as chapter 4. It should be mentioned however that
some of our results can be proved without using cocycles.

Furthermore by the calculation in 1.38, 2.6, 2.8 and an embedding ¢ into SI(U) we
see that

m—1 sJ

Z Oék Zﬁz] ((Tij - Tifl,j)rk - (,rz'jk . 7ﬁz'fl,j,lf)r)

k=1 i=1

= ("X, 8 =ral(rgy) = rd(7Y), B =Rl

is the parabolic contribution. More precisely, by 2.8 we get!!

s R = if s - ki k k—1 ij,k ij,k—1
(T ,X)\>:Za(7')-7“-27(7" — T — (P — T
i=1 k=1

sI—1 m

= — Z oA (%) Z o (rk — piik)
i=1 k=1
sI—1 m

:—ZO{Z(TSJ) T'Zak (r(rF — iRy —pk(p — i)
i=1 k=1
sl —1 m

- _ Z 54 . Zak (ridpk — pidky)
i=1 k=1

130/ (\*") is the a-weight of the one-parameter subgroup A* . Further note that the weights o
are left invariant when conjugating the corresponding one-parameter subgroup, i. e. o (Téjl) =
a*(17).

MGet V), = Fk|zj/Fk71|xj, Xk = ’)/k and V= EY in 1.38.
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Finally we use 1.8 for the transition to (8");;). Putting both results together we
receive

degPQ(XM‘%) - Z <7_Sj7X()\%7j>
jixiesS
-1
= o (par-deg(F) tk(F*) — par-deg(F*) 1k(E)),
1

3

>
Il

where \ corresponds to the filtration (F*)z;, plus the weights (), and 7% to
the filtration (£Y);,) plus the weights (0”/r);) as above.

Remark. Note that occasionally in the literature 7 is replaced by —r.

2.10. Definition. A stability parameter 77 € T i is called t-admissible if the cor-
responding weights ra/(77) are admissible, i. e. 737, a/(77) < 1 holds for every
1 < j <|S|. The definition extends to arbitrary representations G — Gl(W) for
some vector space W.

2.11. Definition. A parabolic principal G-bundle (P, (s7);s;) over the marked
surface (X, S) is called T-semistable, if for every one-parameter subgroup A : C* —
G and every reduction Z : X — P/Q¢(\)

deg Po(xp, Z) — Y (77 x{') > 0

jixies
holds.

Before we define a weight function for the Higgs field ¢ : P. — L we should state a
few general facts about the representations used. Consequentially we will be able
to express the intrinsic definition of semistability in terms of the associated vector
bundle and an associated homomorphism.

2.12. Let G be areductive algebraic group. Then there is a representation ¢ : G —
GL(U) for a vector space U s. t. ¢ is a closed embedding (Borel, [Bo91], Corollary
1.4). Furthermore if ¢ : G — GI(W), W vector space is another representation,
then we find representations ¢ : GI(U) — GI(W) and ¢: G — GL(U), W =U & U
such that ¢ o = ¢ &< (J[KP00], 5.4, Prop. 1).

Observe, that we can modify ¢ to ¢/ := 1@ (det ' o1) : G — S(U@C) c GI({U @ C)
which is still faithful.

2.13. Lemma. Let « : G — GIU) be a faithful representation, then there is
a decomposition of U into G-modules U,, a € A finite, s. t. (Zad(G)) C
Z (X ea Gl(U,)), i. e. the radical maps to the center.
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Proof. #Zad(G) is a torus and hence induces a decomposition (Up)aqa into
eigenspaces to characters X, zaa(q) : Zad(G) — C* ([Bo91]|, Proposition before
Definition 11.22). Since Zad(G) C Z(G) we have for all r € Zad(G), Vg €
G, Yu, € U,

Lry (g, uq)) = tlrg,u,) = t(gr,us) = t(g, t(r,u,))
- L(ga Xa7.@ad(r)ua) = Xa,%ad(r)L(ga ua>~
Therefore ¢(g,u,) € U,, i. e. G preserves U, and we have a decomposition of U into
G-modules U,. By definition «(Zad(G)) C Z (X 4c4 GI(Uy,)) ([Sch08], 2.6.1). O

Notation. From now on let ¢ denote a faithful representation G' — GI(Uq)aga N
SIU), U := @ e Ua (see 2.12 and 2.13).

2.14. Definition. A representation ¢ : H — GI(W), H = Gl(U), X ,c4 Gl(U,)
is called polynomial, if the matrix coefficients ¢ are polynomial functions. It is
called rational if det” -¢¥ is polynomial for some r. < is called homogeneous of
degree 7 if ¢(z -idy) = 2" - idw resp. ¢(z -idy = 2" -idw. In particular
homogeneous representations are rational.

acA Ua)

Remark to 2.14. (i) When we talk about representations without further speci-
fication, we refer to rational representations.

(i) The standard representation of GI(U) on U®" for a vector space U and an
integer u is polynomial.

(iii) The definition is independent of the chosen basis of .
(iv) The determinant representation det®" : GI(U) — C* is polynomial for w > 0.

(v) The tensor product, the direct sum, exterior powers, symmetric powers, sub-
representations and quotient representations of polynomial (resp. rational)
representations are polynomial (resp. rational).

(vi) The dual representation of a rational representation is rational. Every irre-
ducible representation is homogeneous.

(vii) The representation ¢ in 2.12 is rational by (ii)-(vi).
For more details see [KP00] sections 5.1 and 5.2.

2.15. Proposition. (i) For every representation ¢ : GI(U) — GL(W) there are
integers v, v, w, 1 < j <wv such that < is direct summand of the standard
representation

Gl(U) — Gl (@UW)@ (di;l\UU)@wv

If ¢ is homogeneous, u := u;, V1 < j <.
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(ii) Fiz R, € N,, a € A. For every representation
s XoeaGUU,) — GUW) there are inlegers v/, v, w, 1 < j < v
such that < is direct summand of the standard representation

Xoea G0 = G (@7 W™ ) & (A" 0Gs)) ™) ).
Ulka) == P U

a€A
If ¢ is homogeneous, u := u;, V1 < j <w.

Proof. (i) is proved by the proposition in [KP00| 5.3 as well as in [CMS], Theorem
14.3. (ii) is precisely the statement of [KP00|, 5.4, Proposition 1 already used
in 2.12. Note that 2.12 and the remark to 2.14 provide us with a representation
¢ : Gl(U(ky)) — GI(W) such that ¢ o1 = ¢ @ < for some suitable representation ¢
and ¢ : X ,c4 GI(U,) — Gl(U(k,)) an embedding.

The special property of homogeneous representations follows directly from the
definition (of homogeneity). O

2.16. Higgs Field. We still need to define a semistability condition for the Higgs
field. Let ¢ be our faithful representation (cf. 2.12, 2.13) and ¢ the corresponding
homogeneous representation such that ¢or = ¢ @ ¢ holds for some representation ¢
(cf. 2.12, remark to 2.14). Now E, = P, = P.® P: and £ = @,_, F, the tuple of
vector bundles associated by ¢. Consequentially the morphism ¢ : P. — L induces
a morphism popr, : E. — L. We call (E, ¢, L): the pseudo (s o¢)-Higgs bundle
induced from (P, ¢, L). Now we may extend ¢ by 2.15 to (E®*)® ® (det E®*)" =
E, ® E; for yet another representation <.

2.17. Note that given a one-parameter subgroup A : C* — G, ¢ as before, #Z :
X — P/Qg(N) a reduction and 7 : P — X the bundle projection, we can pull
back the Qg (A)-bundle with projection 74 to a Qg(\)-bundle Q4 over X

Qz P
X - P/Qc(}).

Observe that (Qz)
of P.. As p #0

~ P. . Now Qciw)(s o A) induces a filtration (Ff)k[m]

sl

HA R, p) == —min{y’| ¢lp #0, 1 < j <m},

15 P admits local trivializations with Qg (\)-valued transition functions.
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is well-defined.

On the other hand A induces a one-parameter subgroup to A : C* — Gl(U,), :=
X aea GI(U,) with associated filtration (F7);p,, F7 C E. Hence using 2.15 we
obtain a filtration (@j F)®" of (E*)®". The two filtrations ((&; F)*" N F,);
and (FF); identify under the identification (E®*)®” @ (det E®*)" = P. @ P: ® E.
Thus u(F7, o, pryop) = pu(\, Z, ¢). To simplify notation in future we will
usually omit the projection pr.

2.18. We may further include the choice of a character £ of G into the semistability
concept as follows: a character of G induces a character of the radical Zad(G). If ¢
as in 2.16 maps the radical Zad(G) to Z°( X 44 GI(Uy)), then €] za4(c) comes from
a character of Z( X ,c4 Gl(U,)) C X ea GI(U,), therefore from a choice of rational
numbers &, with Zae 46aTa = 0.'6 The identical calculation as in the parabolic
case shows that for every one-parameter subgroup A of G with associated weighted
ﬂag (Fk7 ak)k7 rk<Fk> - rk7 rk(Ff) - 7”53 </\7§> - Z;cnzl of ZaeA ga(T‘aT’k _TTS) -
=D @Y Earrg.

2.19. Definition. Let Y be a scheme of finite type over C, 2! — Jac! xX a
Poincaré line bundle and 77 fixed parabolic weights to given parabolic subgroups
P7 C G. A Y-family of projective ¢-Higgs bundles (of given topological type (1, 1))
is a tuple (P, (s});1s), ¢v, vy, 5 ) where

1. Py is principal G bundle (of topological type ) over every point {y}.
2. vy : Y — Jacl is a morphism, /& — Y a line bundle.

3. oy Py — (vy X idx)"(P') @ 7% (4 ) is a homomorphism non-trivial on
fibers over y € Y.

4. s Y x {ad} = Py xx (Y x {27})/Qq(77) for all 27 € S.

An isomorphism of projective Y-families is an isomorphism of the underlying prin-
cipal G-bundles that extends in the natural way to the associated objects such that
it commutes with an isomorphism of the line bundles 4.

2.20. Definition. A parabolic principal ¢-Higgs bundle (P, (s);ysy, ¥, L) over
the marked surface (X, S) is called (¢, 7, 0)-(semi)stable, if for every one-
parameter subgroup A : C* — G and every reduction Z : X — P/Q¢(\)

deg Po(xn, Z) — (77 x3) +0p(0\ 2, 0) + (A, €) (=) 0.

jiwies

16,(#ad(@)) is a torus, hence identifies with (C*)™, thus ¢ looks component-by-component
as [[; 2. Now finding a character that extends ¢ equals solving an inhomogeneous system of
linear equations with a highest rank matrix A = (@i )ifm]j[m)-
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Given a faithful representation ¢ : G — GI(U,), as before a parabolic principal
¢-Higgs bundle (P, (s7);qs, ¢, L) is (§, 7, 0)-semistable if and only if for every
one-parameter subgroup A : C* — G and every reduction Z : X — P/Q¢(\)

m—1
Z o’ (par-deg(E) 1k(F?) — par-deg(F?)rk(E)) + 6 - u(F?, o, pry op)—
j=1

m

—Z Zfark )rk(FF) > 0.

2.2. PRINCIPAL BUNDLES AS HiGcGS TUPLES

Let P be a principal G-bundle and ¢ : G < Gl(U,)aqay NSWU), U = @ 4 Ua
our faithful representation. Let (Ea>a[IAH be the t-associated Higgs tuple P,. The
corresponding Gl(U,),-bundle is retained from (£, )qjja) as & som(Ua, Eq)afja) =
I som(Uy@O0x, E1) xx ... xx I som(Ua®@0x, E14)). We get the following result:

2.21. Proposition. The groupoid of principal G-bundles is isomorphic to the
groupoid of pairs consisting of a tuple (Eg)qay and a section s : X —
I som(Uq, Ey)afa)/G where

P\%Lﬁsom (Uas Eg)ajag — P/G I som(Uq, Eq)afja) /G-

P is retained as pullback of 7 som(Us,, Ey)aa) — & s0m(Uq, Eq)apa)/G via s.

Remark. (i) The determinant of £ = X .4 F, is trivial: If (¢¥);; are the tran-
sition functions of P, then det(F) has transition functions (det(:(¢g%)));; = 1
since ¢ maps to SI(U). Note that for a semisimple group G there are no
non-trivial characters, so for every faithful representation det(£) ~ Ox.

(ii) Observe that Zsom(U,, Ea)oja)/G =~ P with & = G x
X gealsom(U,,C) /G — X ,ealsom(U,,C™) /G, (g, (X sea Ba)G) +—
(L(9) (X 4ea Ba))G.

2.22. Definition. Define JZom (U, E,)qqa) = Hom(Uy @ Ox, Ey) xXx ... Xx
Hom(Uja @ Ox, Eja)) = Spec(Lym* (P e4Us ® E;)) and a pseudo principal
G-bundle as a pair of a tuple (E,)qa) with det (B, 4 E.) = Ox plus a section
s: X = Hom(U,, Eq)qa /| G- Equivalently a pseudo G-bundle may be viewed as

a pair of a tuple (E,)q)4 plus a morphism 7 : .Lym*(P,c, U, ® E;)¢ — Ox. It



64 | 2. PROJECTIVE PARABOLIC HIGGS BUNDLES

is further required that s is not the trivial section resp. that 7 is not the projection
to the zero component of the graded sheaf ym*(P,., U, ® E;)°.

Let Py, 1 < J < |S] be parabolic subgroups of Gl(Us).. We call a pair
consisting of a pseudo G-bundle ((E,)qjap,s) and a tuple of reductions (s7);ys) :
{27} = (Xaea I som(U, @ Ox, ) xx {a7}) /Py, @ parabolic pseudo princi-
pal G-bundle. Equivalently a parabolic pseudo G-bundle (E,, (Eg);1515))alAl
may be defined by adding parabolic filtrations (E/),, of fixed type (r{f), s of

E,|, for each puncture 27 € S.
We have the following result:

2.23. Lemma. ([Sch08|, 2.6.3.1) Let ((Eq)qa),s) be a pseudo G-bundle. Then
(Ea)agay = P for a principal G-bundle P if and only if there is a point v € X
such that s(x) € I som(Us, Eq)apja)/G-

Proof. The local components of s satisfy s'.(G) = ¢g”s/(G) for the SI(U)-valued
transitions functions (¢*/);;. Hence we get a global function det os : X — C that is
constant on the compact Riemann surface X (|[For81|, chapter I, 2.8). In particular
s(x) € Isom(U,, Eq)ajay/G for one x if and only if s(x) € Zsom(Us,, Eq)apa))/G
for all x € X. O

2.24. A Y-family of parabolic pseudo G-bundles (for a scheme Y') is defined
as the obvious extension of ((Eq)aqay, 7, (s7)js)) to Y x X requiring that on
{y} x X we retain a parabolic pseudo G-bundle as defined above. In order to
use the construction of the moduli space of Higgs tuples it will be of particular
importance to relate the two concepts. In a first step we are going to choose
u, v, w suitably.

Start by recalling [MRed|, III, §8 which shows that we can choose d such that

Sym* (@D Hom(C", U,))¢
acA
is generated by m generators of pairwise different degree di,...,d,, < d with

d=m-lem(d;: 1<i<m)'" and

Sym(d) = @ Symjd(@ Hom(C™, U,))“

>0 acA

is generated by elements of Sym(d); = Sym’(,.,Hom(C™, U,))".
Therefore we find a surjective morphism U; — Sym(d) with U; =

71 there is no chance of confusion we will sometimes write lem(d;) rather than lem(d; : 1 <
1< m).
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D)), ez, Q- Sym® (Sym % (@ ,eq Hom(C™=, U,))%).  Since U,y is homoge-
STy ejdi=d

neous of degree d as a GI(U,),-module we find for every choice of k, € Z integers

Ups, Ups, Wps stich that Uy C (P,  C)¥4re)%% @ N"(P,c4 C)"*r. The

induced surjective morphism of Y families is

B o (&7")F @ det(&y) O — . Lym (@D Hom(8y, Uy @ Oy x))“.

a€A

Therefore we may associate to a pseudo G-bundle ((&y,4)aja; Tv) a tuple con-
sisting of vector bundles (&y,q)a[ja), @ morphism ¢y, = (75 ® idgey(s)2w) © (P ®
idget()ow ), vy the constant function on Y with value [Ox]| € Jac® and 4 the
invertible sheaf such that (vy x idx)*(Z?) = 73 (J4-), & Poincaré line bundle on
Jac? x X. ([Ha77], IIL. Ex. 12.4). For further use denote the representation such
that £ = (E®%=)%%s @ det(L)"®"»* as constructed above by q.

The astonishing feature of this construction is that it is not only an injection on
isomorphism classes, but that it will allow us to relate the semistability concepts
of G-bundles and Higgs tuples.

2.25. Proposition. ([Sch08], 2.6.3.2)
(i) The map

Isomorphism classes of R Isomorphism classes
pseudo G-bundles of Higgs tuples

((Ea)agan, )+ (Ea)agap; ©r Ox)

is one-to-one (on isomorphism classes).

(i) A pseudo principal G-bundle ((Eq)ajap, T) s a principal G-bundle if and only
if W(EF', o', r) > 0 holds for every weighted filtration (F", o).

Proof. (i) Consider two pseudo G-bundles ((E,)qjapy, 7) and ((Eq)qqay, 7) that
induce the same Higgs tuple. First note, that 7 is defined by the components
74;- Then by construction we have for all (e;); € Z%, >_;e;d; =d

®5ﬁym (74;) ®5”ym Td;) (Sym 1)

Restriction to the generic point implies that there is a <§>th root of unity

J
k;d; T
Cdj 27T’L§0‘77 ()0] — dj7 kj E Z SuCh that de - Cd] Td7
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In (Sym 1) we read that > ;" e;p; = b for some b € Z. Now let (e;); be such
that b takes its maximal value B. Then

m

=1 =1

i=1
and k; < B for all 1 <7 < m imply that k; = B for all 1 <7 < m.
If there is an i such that k;, > B, then consider the case ¢;, =

e, = 0if [ # 19. For 221 €ip; = b we get the contradiction 1 —
since k;, > B > b. Thus all k; are the same, namely equal to B, and hence
¢ =%, o =L is a dth root of unity with (% = ¢y,

Therefore the isomorphism ¢ - id(g,), ., maps ((Ea)agay, 7) to the pseudo
G-bundle whose morphism coincides with 7 over the generic point and hence
everywhere.

(ii) The proof of part (ii) is described in Chapter 2.6 of [Sch08]. The weight

function might be written in terms of the stalk over the generic point

n € X and lemma 2.23'% gives a local criterion for a pseudo G-bundle to

be a principal G-bundle. [Sch08], 2.6.2.1 identifies principal G-bundles with

((X 4ea GL(C"*) NSI(C"))-semistable points'® in (Fsom(Uy, Ey)agay/G)ly-

Finally (semi)stability is preserved by the transition s (resp. 7) to ¢,
([Sch08], 2.6.2.3).

O

2.26. Let £ = @, ., £&" and ¢ : E. — L be a non-trivial homomorphism for
a homogeneous representation ¢ ; let (Eéj)i[sﬁ be parabolic filtrations of E,|,.
Denote by ¢ps the representation corresponding to our pseudo G-bundle (£, 7).
We call the tuple ((Ea, (Eg )15 allan> 7> %, L) a parabolic pseudo (cot)-Higgs

a

bundle. It is (&4, Ops, €ps)-(semi)stable if
MES(F", %)+ 8p - p(F*, 0¥, @) + e - n(F*, 0%, 07) >0, by, e € Q1

par

holds for every filtration (F*, &*)p,. Two pseudo (s o¢)-Higgs bundles are isomor-
phic if there is an isomorphism of the underlying vector bundles that extends to
an isomorphism of pseudo G-bundles as well as to an isomorphism of Higgs tuples
on the underlying Higgs tuples.

Remark. From now on fix k, = 1 for all a € A. Recall that we still have the choice
of a faithful representation . Now to fix k, = 1, Va € A and 1 = X o4 15 is the
same as to choose K, € Z and I = (X 4c4tq). For that reason we will stick with
the notationally easier choice and fix xk, = 1.

Bsee 2.21.(ii) as well.
Yw. r. t. the natural action on (@, 4 Fa) |-
20Recall £, € Q, Ky € Zy.
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In order to relate the semistability concepts for pseudo (s o ¢)-Higgs bundles and
Higgs tuples we need to combine the two u-weight functions in the definition of
semistability above in the correct way in order to obtain the semistability condition
for Higgs tuples. Therefore consider the representation ¢** ® ¢%° and the induced
morphism

bvc . C ., C c
gptuple = (p®b ® 90? . E5®b ® E?;s — L®b & Og? ~ L®b.
Then

2.27. Proposition. ([Sch08|, Pro. 2.7.2.2,2.7.2.3.) Fiz a parabolic pseudo (sot)-
Higgs bundle E = ((E,, (Eij)i[sf;]j[|5|])a[\f4ﬂv T, @, L) with associated Higgs tuple

c ij b,c
T = ((Ea; (Eaj)i[sg]j“s”)aum]? Pruples L)-
(i) For every weighted filtration (F*,a*)ym as in 1.6
ﬂ(Fka ak’ ‘Ptuple) =b- H(Fk7 akv <P) +c- M(Fkv O‘ka 907)-

(ii) Let 6, Ops, €ps be such that 6ps/0, €ps/0 € Zy. Then E is (&4, Opss Eps)-
(semi)stable if and only if T%:/% /% js (&, §)-(semi)stable.

(iil) Let 6, Sps, €ps be as in (). Then B s T%/% /% js one-to-one.

Proof. (i) This is a direct consequence of the definitions. We skip the details
and refer to 3.13 for a similar argument, or to [Sch08|, remark 2.7.2.1.

(ii) Obvious from part (i).

(iii) Follows from 2.25, part (i).
[

2.28. From the definition of semistability of parabolic principal (s o¢)-Higgs bun-
dles we see immediately: If a pseudo (s o ¢)-Higgs bundle is semistable, so is the
underlying principal (go¢)-Higgs bundle. For the reverse statement we need to find
a criterion, in order to decide which weighted filtrations of the associated vector
bundle E come from a reduction Z : X — P/Qa()\) to a one-parameter subgroup
A of G. Therefore we will need the following result by Alexander Schmitt:

2.29. Proposition. ([Sch08|, 2.6.3.4.) For a principal G-bundle with associated
Higgs tuple (E, ¢;) and a weighted filtration (F*, a*)pn the following conditions
are equivalent

1. u(F* a¥ or) = 0;

2. there is a one-parameter subgroup A of G and a corresponding reduction
X : X = P/Qc(N) such that (F*, o)y coincides with the filtration induced
by the pair (N, Z).

This criterion will be used in 3.5.
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2.3. THE MODULI SPACE IN THE NON-PARABOLIC CASE

We will shortly review the construction in [Sch08| of a parameter scheme 985 that
parametrizes non-parabolic pseudo G-bundles. The idea is related to the one
used to construct a parameter scheme %, for tuples, however since we have to
account for a homomorphism 7 : Sym*(P,.,Us ® E;) — Ox rather than a
homomorphism ¢ : E. — L, the involved spaces differ.

2.30. Fix a n € N as in the construction of the moduli space of tuples. By 2.27
we see that the pseudo G-bundles that occur, live in a bounded family. Hence
we may find an open subset 9, of a Quot scheme 9Q,, such that £, parametrizes
quotients q, : V, ® Ox(—n) — E, with H%(g(n)) an isomorphism and E, a vector
bundle of rank r, and fiberwise degree d,. Denote by &y = @, 75, (£a,) the
universal bundle over Q where £ is the fiber over [Ox]in X ,c4 Q, of the morphism
Q — Jac’, (qu: Vo ® Ox(—n) = Ey)aca — [det(E)], E = @D, Ea- Denote by
V=@, Veaswellas U =P, , U..

As before we find a line bundle .Z on 9 such that det(&y)" ~ 75(.Z).?' Now by
6y /\r*1 q ® det(8y)" we find the surjective Ox—algebra morphism

r—1
v Sym (U (V@ ry(Ox(—n)) @ mh(£))"
— Lym* (A om(Eq, U @ OQXX))G
— SLym* (P (ra, x idx)* Hom(&a,,Us ® Og,xx))°.

acA

Nest wsing 7ym*(U @ NV & wi(Ox(-n)° = Sym' (U & AT V) @
Ox(x - (1 — r)n) we find a big enough number s?> such that every 7
S ym* (B e 4 Hom(E,, U, ® Ox))“ — Ox comes from an element of

2 = @%ﬂom(ﬂymk(U ® /\ Ve WE(X))G, H(Ox(k(r —1)n)) ® Og).

k=1

Combining the universal homomorphisms 7* : .Zym*(U @ NV @ 15(£))% —
HY(Ox(k(r —1)n)) ® Oyxx? to a morphism

r—1

TU ::@mek(U ® /\(V ® 1% (Ox(—n))) @ 75(L))°

— H(Ox (k(r — 1)n)) ® Oyux @ x (Ox(—k(r — 1)n)) — Oyyx

Z1Observe that (det x idx)*(2°) ~ Oqxx by the universal property of the Poincaré bundle.
22|MRed], §8.
231 .9 — 9 the natural projection.
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induces a homomorphism 7 : Sym*(% ) — Oy« x and after combination with ¢*
a homomorphism 7y in

)

yy??”ﬁ(%) OQ)XX-

G -7

Lym* (P, e 4 (1o mg, X idx)* FHom(8y,, Us ® Ogq,xx))¢

Thus 1.14 provides us with a closed subscheme B C 2 such that 7y = 7yl
exists. By construction B parametrizes all pseudo G-bundles that may occur in a
(€ay Opss Eps)-(semi)stable pseudo (g o ¢)-Higgs bundle. B comes with a morphism
Tea B — Q as well as a universal family (&g, 73).

We may extend the definition of a Y-family of pseudo G-bundles (cf. 2.24) to
a quotient family including an additional ¢, : V, ® 7% (Ox(—n)) — &y, that is
surjective with isomorphisms 7y, (¢, ® ido,n)) for all @ € A. As in the proof
of 1.22 my . (1y o %) induces a lift of the unique morphism ¥ — X .4 Q, to a
unique morphism f : Y — %) such that the pullback of the universal family under
f is the given Y-family. Here 9% : Sym* (%) — Lym* (@ es(H 0om(Eyv o, Uy @
Oyux ), U = @i_, Lym*(U e N (V @ 15 (0x(—n))) @ (det & )")C is the
surjective morphism induced by the ¢,. Like in 1.22 f factorizes over 8. Hence
the universal property 1.62.(U!) holds for B too. As in the case of tuples this
defines a group action of G4 on B (resp. 2)) and 1.62.(U?) is readily verified.
Furthermore this G4-action on g) leaves B2* invariant and is equivariant w. 1. t.
the projection 7y . In particular two pseudo G-bundles parametrized by B are
isomorphic if and only if they lie in the same G 4-orbit.

Even more so the local universality property is verified for B (as in 1.23)%. The
universal property of the group action holds as in 1.25.

In order to parametrize pseudo (s o ¢)-Higgs bundles we need to account for the
additional Higgs field. Therefore let T be the scheme that parametrizes the non-
parabolic ¢-Higgs tuples (E, ¢, L) that occur in a semistable pseudo (o ¢)-Higgs
bundle. Recall that we constructed a G4-action on ¥ satisfying 1.25. Combining
the two parameter spaces B and T we find P, = B xq T — Q. There is a
universal family (&g, Tp.o,, ©Peoss o, » Uqgw)zg and a G4-action such that every
semistable pseudo (s o ¢)-Higgs bundle is parametrized by PBeor and two of these
pseudo (s o ¢)-Higgs bundles are isomorphic if and only if they lie in the same
G 4-orbit. %7

lga € gker(P*) = ker(g - ¢*) and (g Ty)(g9z) = (Fp)(9~'g9z) = (Fy)(2).
25Observe that we only need the local triviality of the vector bundles &y .
26Recall that & and & are pullbacks of &, and hence &yp.., exists as pullback of &y.

2TRecall the definition of isomorphy of pseudo (s o ¢)-Higgs bundles in 2.26.
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2.31. Assume a group G acts on schemes X, Y, Z such that the action is equiv-
ariant to given projections 7% : X — Z, 7¥ : Y — Z, then G acts on X x, Y:
Use the equivariance to show that all squares in the following diagram commute,
then the universal property of the fiber product implies the claim.

Gx (X xzY)
GxX GxY
pry GxZ pro
Lprz
X = A ~ Y.

2.32. We have to show that the GIT-quotient of ‘B, does exist. Therefore
consider the surjection C* x 8% — Gy, (z,9) — zg and the quotient T, Foor -
PBeor — @ = Peor J C*. Since myp_, o is Ga-equivariant and C* acts tiriviélly
on £ we get a projective morphismiﬁ — . Now we use 1.22 and 2.27 to
construct a morphism f : ‘B, — T, T parameter scheme of non-parabolic tuples
corresponding to the representation ¢®(%s/9) & g{?;(fps/ . The morphism descends
(again by the trivial action of C* on ) to a morphism f : B, — T. The
projectivity of my_ ., o implies the projectivity of f and thus 2.27 shows that f is
finite. Finally we may pull back the GIT-quotient in the tuple case to B, i. e.

by 227 P = (F o 7y, 572) (@) to et

P ) Ga =B ) (€ x S5) = (BQ ) C) ) S
=7 ET) ) s

and the later quotient exists. Since Moo Jeor 1S @ geometric quotient so is P /Ga

Remark. By the universal property of the fiber product the universal property
of 1.22 holds for B, and the corresponding notion of quotient pseudo (< o ¢)-
Higgs bundles. Again this implies the other universal properties 1.23 and 1.25. In
particular by 1.62 the moduli space of non-parabolic projective pseudo (so¢)-Higgs
bundles of given topological type exists as a projective scheme ([Sch08], 2.7.2.4).

2.33. Conclusion. ([Sch08], 2.7.1.4) The moduli space B ) G of non-parabolic
principal <-Higgs bundles exists as a projective scheme.

Z8see |Sch08§], 1.5.3.3 and 1.4.3.11 or [Bo91], 6.10 Corollary resp. [MFK].
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Proof. In conclusion 3.5 we will see that semistable principal (g o¢)-Higgs bundles
are exactly the semistable pseudo (so¢)-Higgs bundles. By construction o = ¢&¢.
If o, @ Epeorcor — Lip.., 1s the universal homomorphism over B, x X, choose
in 1.14 ¢y, = pr, (the projection to the second component). Then 1.14 ensures
the existence of a closed subscheme B, C Beor and a universal homomorphism
oy, Ep.c — Ly Since P is Gy-invariant, by 3.5 P* ) G4 exists. Finally the
universal properties of the parameter space B.,, descend to P, and thus by 1.62
the moduli space exists. B O

2.4. CONSTRUCTION IN THE PARABOLIC CASE

Before we come to the actual definition of a parameter scheme in the parabolic
setting we will state some preparatory results on proper morphisms on fiber prod-
ucts.

2.34. From [SGA], Expose XII, Proposition 3.2 we know that for a morphism of
C-schemes of locally finite type properness is equivalent to topological properness
of the corresponding analytic map, i. e. equivalent to that map having (quasi-
Jcompact fibers and being closed. Topological properness further implies that
the preimage of every compact set is compact.?? Let Y, E be schemes of finite
type, ' — Y a fiber bundle with a fiber F' that is proper over C. Furthermore
let Y be proper and E be separable over C. Then Y is a compact analytic
space, " a compact Hausdorff space and we have F** 5 Y the corresponding
analytic fiber bundle (see [Ball0], A.10.4.1 or [GAGA]). Now if ¢ : ' — Eis a
morphism of schemes and " the corresponding analytic map F*' — E®* than
1™ is topologically proper for example if F*" is compact.?® We are going to show,
that F* is in fact compact. Since F* = 7~ '(Y") it will be enough to show
that 7 is topologically proper. Since 7 has obviously compact fibers, we are left to
show that the map is closed. Now choose a trivializing cover U; of F'*" — Y " let
7|y, =: m, A C F™ be closed and A; = AN 7~ (U;) the restriction (closed w. T.
t. the subspace topology). If u ¢ m;(A;) then {u} x F' does not intersect A;. Since
A; is closed we find for every pair (u, f) € {u} x F an open neighborhood V,, ¢,
Vi MA; = 0 and compactness of {u} x F' shows that {u} x F' is covered by finitely
many open sets V;, V; N A; = (). Since 7 is (always) open, (), m(V;) C m(A)® open
and thus m;(A;) = 7(A) N U; closed. Hence we get m(A) N U; closed in U; for all
i. Next consider the complement V' = Y" \ w(A) which satisfies V' N U; open in
U;. The definition of the subspace topology provides us with open sets U s. t

29Note that for locally compact spaces this property is even equivalent to properness.

30 fan compact, A closed in F%" = A compact = 1% (A) compact, hence closed in a Hausdorff
space. Since points in a Hausdorff space are closed, the fibers of " are closed and therefore
are compact in the compact space F*"*. In the algebraic category the corresponding statement
results from [Ha77], I1.4.8(e).
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V NU; = U; NU; open in Y. Therefore V = U,V NU;is open in Y and 7(A)
is closed.

Collecting all results we conclude that 7 is closed and hence topologically proper.
Thus ¥*" is topologically proper and the corresponding morphism of schemes v is
proper.

Remark. To give the reader a glimpse of the actual application of these techni-
cal lemmas, consider a fiber bundle with compact fiber isomorphic to G/P for a
parabolic subgroup P of G and a morphism to a compact complex Gralkmannian
manifold &%.

2.35. Lemma. Given a proper morphism fo : Yo — Ty of schemes and Y; fiber
bundles over Yy with compact fiber F' then the natural morphism Yy Xy, - -+ Xy, Y, =
Y — 1y is proper.

Proof. By the previous paragraph, the maps Y; — T are proper and therefore we
find the maps py,...,p, in the following diagram as well as p with the universal
property of the fiber product.

4

-

Ve

Spec(R) " To.

We get foopryop = foopy = qr and since pr;opor = p;0t = pr; oqx the universal
property of the fiber product shows that p ot = qgk. m

2.36. Lemma. Let Yy,...,Y, be schemes over Yy and T, ..., T,, Ty, Yy schemes
over C. If there are proper morphisms f; - Y; — T;, i« = 0,...,n then there is a
proper morphism f: Y :=Y) Xy, ... Xy, Yo =2 To x Ty x ... x T, =T.

Proof. Define f = (foopry, ..., faopr,). We need to show, that f is proper. The
existence of a lift p : Spec(R) — Y of g : Spec(R) — Y in the valuation criterion
(below) follows from the universal property of the fiber product and the existence
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of the lifts p; : Spec(R) = Y;, i =0,...,n.

Spec(K)——=) _,
4| 7
/|rm
/
;/ 7/
;7 7/
L :>3;D// / ’ f
/
// - 7 g
y - /pn .
/7 ////
(e / fn
Vs .
SpeC<R) T\ TO
T,
The diagram commutes, since fop = (foopryop,..., fnopr,op) = (foo
Doy fnoPn) = (Pro©qr,---, PT, ©qr) = qr by uniqueness of the lifts p;. For

the upper triangle it is enough to show, that pr, o qx = pr,opo¢, Vi=1,...n,
since then gx = pot by the universal property of the fiber product. But pr,op = p;
(by construction) and p; o ¢ = pr; o gk by properness of the f;. This proves the
claim. O]

2.37. If
X/ﬁ_XbX//

N

Slé‘5<—5”

]

Y —Y~—Y"
commutes, then
(X' xx X") Xgrxgen (Y Xy Y") = (X' Xg V') Xxxsy (X" xgr Y").
For the proof use the universal property of the fiber product.

2.38. Recall the definitions of a parabolic ¢-Higgs bundle in 2.1 and of a pseudo
parabolic (go¢)-Higgs bundle in 2.22. Below we need a slightly modified object: A
t-parabolic ¢-Higgs bundle is a ¢-Higgs bundle (P, ¢, L) together with reductions
s/ {27} — P, xx {27}/ P}, for fixed parabolic subgroups P% C X4 GI(U,)

resp. parabolic filtrations (Ey);i1, 4y (of fixed type) of P[,; over every puncture
e sS.
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2.39. As in the non-parabolic case we are going to construct the moduli space
of parabolic pseudo (s o ¢)-Higgs bundles first. 2.27 for a parabolic pseudo (s o
t)-Higgs bundle implies that (semi)stable pseudo (s o ¢)-Higgs bundles live in a
bounded family. Therefore the construction above works (with a possibly different
integer n). Let &y,, &y resp. ép,., be the corresponding universal families over

Qa, Q resp. Pe,. Fix a tuple PGI(U) , 1 < 5 < |S] of parabolic subgroups

Of Gl(Ua>a = XaeA Gl( ) Let q3§oLL par = quougx{y}({pgoLL par) ZOL L—par =
(Xaea Fsom(U, @ Oq,, Ea,la,xa91)) » 1 <5 < [S] and

_ml 1 S| |5
mSOL,L—paI‘ - ;BSOL,L—paI'/PGl(Ua)(L Xmgm e Xmgm mSOL,L—Par/PGl(Ua)a

where ‘Bgow_par/Pél(Ua)a is the bundle assoc1ated to ‘Dgou par Dy the action

Gl(Ua)a X G1<Ua)a/Pé1(Ua)a — Gl(Ua)a/ P Cl(Ua)a’ (9, q]) — [gal.
The scheme P, par — Peo, parametrizes parabolic principal pseudo G-bundles
over the punctured Riemann surface (X,S). Analogously we define a scheme

f‘BSOL,L—par on sIESOL mwb // (C* as mgm L— par - ﬁ,ﬂx{xﬂ'}( éOL,L—par) and

_mi 1 misl /ol
"BSOL,L—paI' - mSOL,prar/PGl(Ua)a X‘BSO,, e XQBSOL SoL,L— par/PGl Ua)a"

Note that the fiberwise morphisms gq; : X 4e 4 # s0m(Us, Ea, | {g1x{2i1)/ Pd Gl(Ua)e

X aea X :il &Y split over a flag variety of (r")-dimensional filtrations of the fiber
X pea Ealzi = X aea Ce and thus by 1.22 there are morphisms ¢ that extend f
and restrict to g, ; over (¢, z’). Analogously we construct a morphism g such that
the following diagram over £ commutes

“ng L—par par

\/

iBgoL,L—par

where Tpor C T X X,y Xlsll >< Q5f1j is the parameter scheme of parabolic
tuples corresponding to the representation ¢®(%/9) @ gg’;(gps/ %, We get
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PBeoru—par / € = Peory—par:  First note that by 2.37 we have Peor,—par
mgm X9 (WSX{ml}f‘]};OL,L—par/Pél(Ua)a xmgm o ) and f‘]350L,L—pa1r = (fﬂpgm // (C*) X

(WSX{ml}(’ﬁgoLyz,fpar/Pél(Ua)a X Peo. ) Now by the universality of the geometric
quotient P, J C**

(BSOL,prar = f‘pgu XQBSOL//(C* (mgm // C* X9 (WSX{xl}m;oL,prar/PClil(Ua)a X‘Bgm e ))

Plo v
? CBSOL7L—par

exists, i. €. Peori—par / C* = Peori—par-
Since the morphism g is obviously one-to-one we are left with the task to show the
properness of § Fortunately 2.34 already implies that the component morphisms

‘Bgo“ par / Cl(Ua)e — XacA Xfil &Y are proper. Therefore the morphism
g is by 2.36 proper and thus finite. Since 7 is S’{“-invariant (with respect to the
natural action on Beo,,—par (cf. 2.31) we can pull back the GIT- quotient @E;): JShe

whenever it exists. We already know that the GIT-quotient ‘Ipar J She will exist
if the stability parameters are admissible. So let us assume that this is the case.
By the very definition of semistability of parabolic pseudo (s o¢)-Higgs bundles in
2.20 as well as 2.27 we see that g preserves semistability. Hence we may conclude
as in the non-parabolic case

PO e [ Ga giii par /] (C* X S5%)
= (P [ C) [ ST
= 5‘1( par> / She.

Again the universal geometric quotient Peo, ,—par — Peor,—par induces a universal
geometric quotient P2, , .. /Ga.

The transition to G-bundles in the parabolic setting is a little bit more complicated.
Let us start with the extension of 2.33:

2.40. Conclusion. The moduli space ‘B“ par /| Ga of TI-(semi)stable pairs
(P, o, L), (s7)jysy) where (P, @, L) is a principal s-Higgs bundle and s’ :

{z7} — <P/ AN Pél(Ua)a C GI(U,)q parabolic subgroup, exists as a pro-

jective scheme whenever the weights (Bij),-[sj] induced by 0 are admissible (cf.

2.10).

31|MFK] 1.§4.1.10, and [Sch08] 1.4.2.13.
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Proof. We may pull back the GIT quotient to B¢ ,_par = ‘BEOL,L_par@g. The result
will then follow directly from 3.5, i. e. the fact that P lp. parametrizes

got,L—par

already the semistable parabolic principal ¢-Higgs bundles. O]

Let (P, (s7)jjsy) be a principal G-Higgs bundle and P/ C G fixed parabolic
subgroups of G with P/ = Qg(77) for some one-parameter subgroups 77 of P7.
First recall that (P, (s’);ys)y) is 7/-(semi)stable if and only if (P, (87);ys) with
§ =108 {2’} = P, xx {27} /Qciwv,).(77) and 77 = 1o 77, is $"-(semi)stable
(cf. 2.8). We have the following commuting diagram

G

/

G x G/Qa(r) G/Qa(17)

\

G/Qa(T7)

G1<Ua)a

/

Gl(Ua)a X Gl(Ua)a/QGl(Ua)a(%j) - G1<Ua)a/QGl(Ua)a<7:j)

\

Gl(Ua)a/Qai(v,). (T7)
(Equ 1)

where  the vertical arrows are the embeddings G/Qq (77) —
Gl(Ua)a/Qar(w,). (fj)a 9Qc (77) =  wg)Qaw,)., (77) using ¢(Qa(?)) =
L(G) N Qayw,), (7). Therefore there are induced maps of fiber bundles
Py xtaiy/Qa (77) and P,y «iwiy/Qcrw.), (T7) where 27 is the universal G-
bundle on P, x X.** Thus the closed embedding ¢ : G — GI(U,), defines

closed subschemes of the components ‘Béow_par\mq and hence defines a closed

embedding P — %Ei)fpar and PLLs. parametrizes (semi)stable projective
parabolic ¢-Higgs bundles. Since two parabolic principal ¢-Higgs bundles are
equivalent if and only if the associated (-flagged ¢-Higgs bundles are, we see that
the embedding is equivariant and therefore P2/ G4 exists as a projective

scheme as well as P | /G4 exists as an open subscheme.

32By the previous diagram, the morphisms locally defined by ¢ are compatible with the tran-
sition functions induced by ¢.



THE MODULI SPACE OF
AFFINE PARABOLIC
HicGs BUNDLES

3.1. ASYMPTOTIC BEHAVIOR

We study the asymptotic behavior of the various semistability concepts. The
results of this section will not only fill the gaps in the proof of 2.40, but will also
enable us to treat the affine case in the next section. Let’s start with another
proposition:

3.1. Proposition. Given 14, d,, | as well as Ko, &, Ops, there is a g3 > 0
such that for all eps > €32 and every [parabolic| pseudo (s o 1)-Higgs bundle E =
((E,, [(Eij)i[sg]j[\SH])a“AH7 7, ¢, L), the following two conditions are equivalent:

I. E is (Ka, &a, Ops, Epss [87])-(semi)stable.
II. For every weighted filtration (F*, o)y, as in 1.6:

A. /L(Fk,ak7907') 2 O
B. MES (FE.0%) 4 8- p(F¥,05, ) (2) 0 whenever p(F*, o, ;) = 0.

[par]

Remark. A [parabolic| pseudo (so¢)-Higgs bundle that satisfies II. is called asymp-
totically (semi)stable.

The rather evolved proof of the non-parabolic version in [Sch08], Theorem 2.7.2.5
uses instability one-parameter subgroups.! It works in our situation with small
modifications necessary in the parabolic setting.

We will however try a different approach. Therefore we will apply an idea of Adrian
Langer [GLSS08| used by him to show that for |A| = 1 the family of (semi)stable
Higgs tuples is bounded independent of the stability parameter. The proof uses
the existence of a Harder-Narasimhan filtration; hence a direct extension thereof
should probably use a "Harder-Narasimhan-Filtration for Higgs tuples". Although

lcf. Ramanan and Ramanathan, [RR84.
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there is a version of the Harder-Narasimhan filtration for parabolic tuples (even
for (k,&)-semistability), to account for the additional Higgs field ¢ would lead us
back to instability one-parameter subgroups and thus to a discussion similar to
the proof given by [Sch08|, Theorem 2.7.2.5.

Instead we will take a closer look at the boundedness of the weight functions for
the available classical HN-filtration. Once the stage is set, the following key result
can be proven rather directly.

3.2. Lemma. Fiz r,, dg, 1, ke, &a, Ops but allow e, > 0 arbitrary.

The family of all vector bundles E occurring as E ~ @, ,(E,)" in a semistable
[parabolic| pseudo (s o 1)-Higgs bundle E = ((E,, [(E}ZJ)Z[‘ jisp)atian, T, @, L) s
bounded (independent of eps > 0).

Proof. First note that the underlying vector bundle of E belongs to a bounded
family (independent of e,) if it is semistable as a vector bundle. From now on
assume that our [parabolic| pseudo (so¢)-Higgs bundle E is (kq, &4y Ops, Epss [87])-
semistable, but the underlying vector bundle is unstable. Consider the Harder-
Narasimhan filtration

{0}=E°CE'C---CE"=E=E
acA

with r* = rk(E*), d* = deg(E*). Denote u(E) = deg(E)/rk(E) the classical u-
function for vector bundles and denote p' = pu(E?/E*™"). Recall from 1.11 that this
is in fact a tuple filtration. Fix the length m of the Harder-Narasimhan filtration.
Since u(E*) > u(E) we see that 37" a*(r*d — d*r) < 0 for all real non-trivial
non-negative tuples (a*)yp,—1; € RZ;". Since the map (a¥)gp—1 — Z;”;ll ol =
|(@®)k |1 is continuous, the preimage B; of 1 in RZ; " is closed and bounded, and
therefore compact. Note that in terms of the weights +* we have Z;”:_ll ol =
er_”’l =1on B.

Below we are going to construct a covering of By by finitely many compact sets
D;, such that either fi..(E) (or |pmin(E)|) is already smaller than a prescribed

constant ¢y or p(E*, -, ,) is positive on one of the D;. This on the other hand
will again give us a bound for umw(E) (or |,umm(E)|)
Set af = & T{‘JH, & = ——0 for j = 1,. — 1 with ||(&7)jpn-1)|1 =

II(aJ)J[m ylh

Mmaz (E) = tmin (E ) Then

MR k) =Y BT gk rat

k=
1 m—1 m
- < pF(dr® — rd®) — Zuk(drk_l — rdk_l))
-
k=2

k=

—
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1 m
o Z'uk ((drk Tdk) (drk 1 rdk:—l))
r
k=1
dr™ — rd™ dTO B 'rdo
" T
1 < gk — gkt )
S i
k=1
m dk _ dkfl)d m (dk dk,I)Q
=1 k=1
B2 SN (dF — dh1)2
B ? B Tk _ Tk—l
k=1

First note that there are only finitely many continuous functions M[’;fr](Ek , )+

Ops - W(E*, - o) — M®O(E® . ). In particular we find a real number 75, such
that M (E*, - ) + 0peu(E*, - @) — MPO(EF, - ) < 15, on By.? Fix a positive

[par]

integer n such that |u(E)| - 12_7:/’;2 < —Tsps for p(E) # 0. Further denote by

py = max{p', [u™} # 0. By the same calculation as before we see that for
it > (B -7+, u(E) #0

P(E)*r — 3 (pR)*(r — )
2pip )T

o WEYT =y _ e/ (rn?) — iy

2un /1 2p /7

1—rn? 1—rn
< E)| -

MH,O(Ek’ éék) S

2

< Mar - < —T5ps- (*)
In the case pp > 2r5,s/r, (E) = 0 we get the same result. Now either i, is
bounded by max{|u(E)|-r-n, 2rs,s/r} or (x) holds. Assume that (*) holds, then
by construction*

MK7£

[par]

(E®, &% 4 %) + pspu(E®, 6% 417, ) < M™O(E* 65 + %) + 15

?We may choose 75 s such that it works in the non-parabolic case as well as in the parabolic
case.

3Note that a non-semistable bundle is not of rank 1.

4Assume of + tF € By.
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becomes negative at ¢t = 0. The latter term M®0(E¥ &% + t*) 4 rs s can become
zero only if

tmin(Hmaz (E) = fimin(E))m(u(E) — p(EY))r

> (e (B) — pimin(B)) 3 #4(u(E) — pu( B
_ _T5,PS(Mmar(E> — Lme(E» _ /L(E)QT' + Z(Nk)Q(rk _ rkfl)'

,
k=1

Note that the right-hand side is by assumption positive, hence there must be a

negative t* - set t,,;,, = min{t* : 1 < k < m — 1} < 0. Therefore for p3, >

QM(E)QT—l- Alrslpn

o o r maz (E) —pmin(E
S ()2 — Rty — p(B)2p — raltmea(E)pimin(E))

r

(tmaz(E) = fimin(E))m(pu(EY) — p(E))r
pa/2 o1

2puprm - 2 812

This shows that for large p5; the term M[';fr](Ek, )+ Ops - (E®, - ) is negative

on a compact ball Br((6*)kpm-1)) C Bi around (&)ﬁ[mfl] of radius at least R = g’5.
Putting the results together we see that there is a constant ¢ > 0 such that either
py < cor M[;fr](Ek, S) + (5psu(Ek, . ’@)‘731%((&’“)&[7”711) <0

Since Bj is compact it is in particular totally bounded and thus we find a finite
covering by compact balls D; = Bprjs(x;), x; € By, i = 1,...,s of radius smaller
R/2. Note that this covering depends only on the initial data r and on the length
of the Harder-Narasimhan filtration m. Now for uy, > ¢ let D; be the compact
set for which (&*)ypm—1) € D;. Then by (ka, &a, Ops, Eps, [87])-(semi)stability of
E, we get u(E* oF ¢,;) > 0 on D;. Hence the continuous function u(E*, - ©;)
attains its minimum on the compact set D;. Given our intial data u(E*, -, ©;)
must be one of finitely many possible functions and thus its minimum is bounded
(from below) by a constant Min; > 0 which depends solely on the initial data.
Next recall that ¢, : (E®%=)®%s — det(E)®" is non-trivial. Therefore for all

tuple (4;) ju,,) such that ¢, is non-trivial on (@™, £%)%" we get

Ups Ups Ups Dups
2= ) = e | (&

j=1

< p(det(E)®r) = wp, deg(E)
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where we used that the p-function decomposes suitably for semistable bundles
(cf. 1.11, 1.12 resp. Huybrechts, Lehn [HL10], Theorem 3.1.4, [La04] Corol-
lary 6.4.14). Recall that #* = u(E) — p* are the weights corresponding to
a*. Moreover pu(E* a* ¢;) = =3 7™ 4% for a suitable tuple (i;)j,,). Thus

- Z;isl ;j/ij S (wpsr - UPS)M(E) - C/. Then

- . - ak
0 < (@ sgpm_ylls - Ming < [[(G*) g1y 11 - s (Ek k—go) <
(&%) k111
k d
= o m— < " = C;.
(@l < g =

Since ||(&")kpm—1]ll1 * 7 = fmaz(E) — fmin(E) this implies boundedness. As there
are only finitely many D; for each of the finitely many m - m being the length of
the Harder-Narasimhan filtration - we see that the family of vector bundles E of
fixed data (r, d) such that there is a [parabolic| pseudo (s o¢)-Higgs bundle E with
E= ((Ea [(Eéj>z‘[sg]j[\5|]])a[\AH; 2 L) 3 (’iay &as 61957 Eps> [Béj])'(semi)Stable pseudo
(s o ¢)-Higgs bundle and £ ~ @ _, E&" is bounded independent of £, > 0. O

aceA “a

Remark. (i) The result holds for parabolic as well as non-parabolic tuples and
for non-parabolic (s o ¢)-Higgs bundles. For the proofs in the non-parabolic
case set 3% = 0 and apart from some constants that will be different, the
proofs are just the same. For the tuple case we just remove one section. The
calculations stay the same when we replace €5 by 0, dps by O, p( -, -, @)
by pu( -, -, @) and ups, Vps, Wps by u, v, w.

(ii) The proof of 3.2 implies that pseudo (s o¢)-Higgs bundles that satisfy 3.1.11
live in a bounded family too. If a bundle that satisfies 3.1.1I is neither
semistable as a vector bundle nor u(E*, - | ,) > 0holds on the D; (that con-
tains (&*)p,—1) then by 3.1.1LB we get M;);r](Ek, aF)+0ps (EF, aF) ) >0
for a (o/“)k[m_l] € D, - a contradiction to the construction of the D;.

(iii) Asevery subbundle F, C F, amounts to a subbundle ---® 0 & F&% 0 ®- -
of same slope, the family of vector bundles isomorphic to one of the E,
occurring in a parabolic pseudo (g o ¢)-Higgs bundle is bounded as well.

Before we start with the proof of 3.1 we would like to add another lemma.

3.3. Lemma. Fiz two integers b and c and let dps = 1-b, e,s =1 ¢, t € Ry.
Furthermore fix vo, da, 1, K, oy Ops, [BY] as before.

The family of all vector bundles E occurring as E ~ @, ,(E,)" in a semistable
[parabolic| pseudo (s o 1)-Higgs bundle E = ((Ea, [(EY) 01150 elians 7> @5 L) is
bounded (independent of t > 0).
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Proof of Lemma 3.3: We will use the notation of the proof of 3.2. Then we find
that either the pseudo (go¢)-Higgs bundle is semistable as a vector bundle or there
is a Harder-Narasimhan filtration (E*)yp, of length m. In the latter case either

fas is bounded or we find a R > 0 such that M/ (E*, . ) < 0 on Bg(d*) C B;.

[par]

If pps is not bounded yet, we get ps - p( -, -, @) +eps-pl -, -, ©r-) >0 on
Bgr(a*). But then b-pu( -, -, o) +c-pu( -, -, ¢;) >0 on some compact set D;.
Repeating the proof of of 3.2 we find tuple zj[u], U upe] such that
b p(E", 8 0) - p(B* 65 o) = =b- Y 5T —e Y Y
j=1 j=1
< b-deg(L) + (bwr + cwpsr — bu — cups) (W(E)
:E,c
Now if Min?® is the minimum of bu( -, -, @) +cu( -, -, ;) on the compact set
D; we have [[(&)gpm—1l1 < MC:# and this proves the claim. O

Proof of Proposition 3.1: (II. = 1.): Recall that by the remark above, the family
of bundles that satisfy II. is bounded. Assume that u(F* o* ¢,) > 0 for every
tuple filtration. Than we may proceed as in 1.49, i. e. for d* < —|d| — udg

of (dr* — rd®) — 6,6 - max{0, of (ur® — v(k,0)r)} — ey - &F (ur® — v(k, O)r)
<0

> o (dr® — rd" — 6ysru) > oFr(—|d| — Spsu — d¥) >0

and therefore the function Spu(a®) = M[';fr](F ) + Gy - p(FF QR ) + epg -
w(F* o o.) can be minimized only if o = 0. Now the argument of 1.49 applies
and we find a finite set = C Q" N0, 1]" of tuples ('), to be checked to guarantee
the semistability. Further we find an integer z such that z= C Z[l/r]T and if
Sppar] (@F) ()0 for any (o) € Z[1/r]", then min,x, vimye=E Spar] (@ ¥)(<)0. Now

denote by —00 < My the minimum of M';Efr](Fk F) + Opstt(F*, ok ) over all

(aF)gpy € [0,1]" and all types of filtrations (F¥)y, and set

et = rzmppa.
Assume eps > 52", We have to check the semistability condition for every
(aF)gp) € 22 and every filtration. If for such a (o)) we have p(F*, o, ¢,) = 0 for
any filtration (F*)y,1 then obviously ILB. implies ]\/[[';fr] (F*, aF)+0ps 1 (F*, % )+
eps - (FF ok ) (>) 0. If on the other hand p(F* a* ;) > 0 then already

W(F* o @.) > 1/r and hence e, - pu(EF*, 0%, ;) > 2 - [mypay|, therefore
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MH7§

[par]

(Fka O‘k) + Ops - ﬂ(Fkvak> @)+ Eps M(Fka Oéka 907')
>MH’£ (Fk )+5ps':U’(Fkaak7(p)+z"m[par]l 207

[par]

and thus II. implies I.

(I. = II.): This second implication will be proven along the lines of a proof
given by Alexander Schmitt in the special situation of a pseudo G-bundle with-
out an additional Higgs field ([Sch08], 2.3.6.5). Since the family of semistable
pseudo (s o ¢)-Higgs bundles is eps—uniformly bounded by 3.2, we may con-
struct the parameter scheme P, [par) big enough that it parametrizes all pseudo

(¢ o ¢)-Higgs bundles that are semistable for some e,s > 0. Let ‘DEPS >

sou,[par]

denote the open subset of ep-semistable objects. If we set P " .

Eps—SS o0—S8S o Eps—S8S o0—S8S
Uapg<€ (‘Bgm [par] and q3§OL [par] Uaps>0 SBSOL,[paur]7 then g’pgm [par] 18 open and we
00—S88 . Eps —SS
find a € such that ‘BSOL’[IW] = ‘BSOL,&DS <z [par]’ For the last statement recall that

M[par] (F*, aF) +6ps- u(F*, o ) is bounded from below and that a non-semistable
bundle can become semistable when increasing e, only if u(F*, a* ¢.) > 0 when-
ever M ](Fk F) 4+ 0ps - (F*, %, ) < 0. As we have seen above for large enough
eps every such bundle is already semistable. Furthermore this observation directly
implies that if £ < e < ey then B2 C P =, since enlarging €, > € further
will only result in some of the bundles that fail to satisfy A. in 3.2.IT to drop out.
Alternatively an argument as in [Sch08| 2.3.6.6 will work, too.

Let U5, be the set of all [parabolic] pseudo (¢ o ¢)-Higgs bundles that satisfy

3.2.11. In order to complete the proof of 3.1 we need the following lemma:

3.4. Lemma. The set ‘Z]“ss C Beow,[par] 15 open.

[par]

Remark. In the case of |A] = 1 Higgs tuples this is the statement of [Sch08] 2.3.6.8..

Proof of Lemma 3.4. By the Hilbert-Mumford criterion (cf. 1.31) condition
A. in 3.2.IL is equivalent to the restriction of ¢.|, € P(E(|,) to the generic
point 7 being SI(E.|,)-semistable w. 1. t. the natural action on the C(X)-
vector space I|,. “As usual the semistable points form an open subset. Let
P denote the X ,c4 GI(C™)—invariant closed set of non-semistable points in
the projective fiber P(E([,). Since the universal homomorphism ¢ g - on
PBeo,par] X X is fiberwise non-trivial and since it maps into a line bundle it is
thus fiberwise generically surjective. We may henceforth restrict it to the largest
open subset U C Peoypar] X X where it is surjective. By [Ha77] 11.7.12 this
yields a section ¢ : U — IP’(é?Bgm pars)- Now P on the generic point induces

a closed subscheme C™ C P(‘g)‘ﬁgo, as) and hence ¢~'(C™) C U. The closure

o (C’”S) C Peospar] X X 5 Beowpar] Maps properly to Peo,par (since X is
projective) and hence the semi-continuity theorem in [EGA| IV.13.1.5 implies that
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the set D™ := {b € Pco, par| dlm(ﬂ R cns)( )) = 1} C Beoy,par) is closed. Finally

by construction D™ parametrizes those G-Higgs bundles that do not satisfy
3.2.ILA. Let V** = P, par) \ D™ be the open complement. Then by definition

Yoy C V= and Vs, O V=N P holds for every e,s > 0. Moreover by the

[par [par] sou,[par]
(IT. = L)-direction of 3.1 Y=, C V> ‘Bigj [:; holds for e,s big. Therefore as
union of open sets 57, = U6p5>0 VN SB;SZ,[;;] is open. O

Completion of the proof of 3.1. Since gg’L [;:r], £ps > € is a decreasing series of
ass Eps—5S
open sets and [par] — meps>e ‘43<OL [pa] is open the series becomes stationary and
oo 2 ass __ 5pb _ 00,2
we find epo®: Ut =P [par] Now set 22 = max{e>!, 097}

Finally note that for the given £ as above, if a bundle is even stable it is in
particular semistable and thus satisfies II. with > in part B. But then stability
implies that even the strict inequality in B. has to hold. This completes the proof
of the second direction and hence 3.1 is proved. ]

3.5. Conclusion. Given the same conditions as in 3.1 we find for every |parabolic|
pseudo (sot)-Higgs bundle E = ((E,, [(Ezizj)z‘[sg}jusu])a[lfl\]7 T, @, L) that the condi-
tion 8.1.1 is equivalent to E being a (., dps, [BY])-semistable (s o 1)-Higgs bundle
of suitable topological type.

Proof. By Proposition 3.1 we may replace 3.1.1 by 3.1.IL. Proposition 2.25 and II.A
in 3.1 show that E comes from a principal G-bundle. 2.29 implies the claim. [

Remark. The non-parabolic version is proved in [Sch08|, Corollary 2.7.2.6.
For future use we will add two more theorems on asymptotic semistability now.

3.6. Lemma. Fiz a character § of G and parabolic subgroups Qcyw,), (¢ © e
Pél C GU(U,), for some one-parameter subgroups 17 of G and every puncture
2 eS.
(i) The family of [t-parabolic| principal <-Higgs bundles (P, [(s?);ysyl, L, ¢)
that satisfy the conditions A. and B. below is bounded.

A. For every one-parameter subgroup \ of G and every Z : X — P/Qa(N):
(A ) = 0.

B. For every one- pammeter subgroup A of G and every # : X — P/Qqa(\):
p(A, ) =0= M[par] (F*, a¥) (=) 0 for a weighted filtration (F*, ")y
corresponding to A, X% .

(ii) The family of [t-parabolic] principal <-Higgs bundles (P, [(s);ys1], L. ©)
that are (Ops, [77])-semistable for some 0,5 € Q4 is bounded.
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There is a 055 > 0 such that for some 6ps > 632 ¢ [t-parabolic] principal -
Higgs bundles (P, [(s);1s1], ¥, L) that satisfy the conditions A. and B. are
ezactly the |t-parabolic| (8,5, [77])-(semi)stable principal ¢-Higgs bundles.”

Fiz two rational numbers b, ¢ € Qy. There is a T > 0 such that a |i-
parabolic| principal (s o1)-Higgs bundle satisfies A. and B. of part (i), if and
only if the corresponding |parabolic] pseudo (soi)-Higgs-bundle is (semi)stable
for every pair (8ps, €ps) With 0ps = b1, €,s = ¢ -t whenever t > T.

There is a dps > 0 and a ,5 > 0 (which possibly depends on the chosen 0y)
such that a [t-parabolic] (s o )-Higgs bundle satisfies (1) if and only if the
corresponding [parabolic| pseudo s-Higgs-bundle is (0ps, £ps)-(semi)stable.

Proof. Recall first that our representations ¢ and ¢ give rise to a representation ¢
such that ¢ C g o Therefore by 2.25 every principal (s o ¢)-Higgs bundle P gives
rise to a pseudo (s o ¢)-Higgs bundle F if and only if pu(F* o ;) > 0 holds for
every weighted filtration (F*, o®)y;) of E. The ¢-Higgs bundles form a subset of
the (¢ o¢)-Higgs bundles.

(i)

(iif)

2.29 implies that every filtration (F*, o), with p(F* oF, ¢,) = 0 comes
from a one-parameter subgroup A of G and a reduction Z : X — P/Q¢ ().
Thus w(F* o ¢.) = 0 = p(F* o ¢) > 0 by part A. Furthermore if
w(F* o o) = u(F* o p) = 0 then M[(;a)lif(Fk,ak) > 0 by part B. Now
repeat the proof of 3.2, i. e. assume that a bundle is not semistable as a vector
bundle. Let (E*, &) be as in 3.2. We find a compact set Dy, (6%)gm—1) €
D; where the continuous function f( - ) = max{u(E*, -, ¢,), u(E*, - ¢ )+
w(E*, - o)} attains a positive minima (bounded from below by a positive
constant). Observe that f becomes zero if and only if u(E*, - ¢,) = 0
and hence p(E*, - ) = 0. This case however cannot occur by B. and the

construction of Dy, i. e. M[S;;]g(Ek, a*) < 0on D;.

Consider again the function f( - ) = max{u(E*, - ¢,), u(E* - ¢.)+
W(E*, - )} on a suitable set D; > (&%)pm—1] whenever the underlying
vector bundle is not semistable. f is non-negative and will have a zero
on D; if and only if u(E*, - ,0;) = 0 = u(E* - @) < 0. But then
M(l)’g(Ek,ozk) + 0ps - (EF 0 ) < M(l)’g(Ek,ozk) < 0 for every d,s > 0 by

[par] [par]
construction of the D; in contradiction to J-semistability.

For (i) = (ii) we first claim that only a finite set = of (a*)g,1 € (QN[0,1])"
(resp. one-parameter subgroups) has to be checked to guarantee (Jps, [77])-
(Semi)stability of principal ¢-Higgs bundles.

% Again stability corresponds to the strict inequality in B.
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Proof of the claim. The argument is almost the same as in the proof of
3.1.  Again we search for minimizers of some function Spay(a¥) =

MUYE(FR k) 4 6u(F* ¥ o) on [0,1]". However we need to be care-

[par]
ful since we have the additional condition p(F* o* o,) = 0, i. e. we
have to minimize over a subvariety. Observe that u(F* of ¢,) = 0 im-
plies that the (a*)yp) lie in a subset of RZ, defined by a finite number of
equations of the form > ,_, o ff = 0 or >, o fF > 0 for some (f})ip
in the finite set {—upsr, ..., upsr}". Furthermore note that —(d* + |d|)r <
drk — d*r < (|d| + ¢)r. Here c is the upper bound on the degrees existing
in our bounded family. As in 3.1 we find a constant ¢ such that for ev-
ery choice of (d*)y € {{z € Z : < },d,...,c}" we find a minimizer
of Span( - ) = M[(pa)W] (F*, ). We see that only those (a¥)y;) in a finite
set = C QL, have to be checked to guarantee (d,s, [77])-semistability (cf.
1.49). O

Now we find a constant z such that z(a*)y,) € 22 C Z[1/r]” and thus

Ope = rz|mpay|, where mp,, is the minimum of Mpgr] (F*, aF) over all

(@) € [0,1]" and all types of ﬁltramons (F )k[r] Hence for 0y > 055
we get M(l)’g(F’f aF) + Ops - u(F* 0k ) > MWE(Fr ok 4 z|Mpar| > 0 for

par
all (a®)y, TE E] 2= and all filtrations (F )kfr]» 1- [e gipb—semlstability.
For the other direction (ii) = (i) observe that every d,s-semistable ¢-Higgs
bundle is semistable as a pseudo (s o ¢)-Higgs bundle for some stability pa-
rameter £,; > 0 (that does depend on §,). Furthermore we find a d,,
such that a d,s-semistable ¢-Higgs bundle is already 3ps—semistable for all
Ops = Sps, Therefore we may construct the scheme B, [, —par) large enough,
such that it parametrizes all (Jps, €ps)-semistable pseudo (s o ¢)-Higgs bun-
dles for 0 < dps < Sps and 0 < g, arbitrary. Then the dps-semistable ¢-Higgs
bundles form an open subset i]35pj ‘;‘;r] of Peos j1—par) for all dp > 0. Thus the
proof of 3.1, (I) = (II) will work in this situation as well if we are able to

show that the bundles that satisfy (i).A and B form open subsets il[ ] Of
PBeor,i—par)- We will need the following result by Alexander Schmitt:

3.7. Proposition. ([Sch05]|, Proposition 2.9). Given two representations
G G — GI(W,), © = 1,2, there is a rational number doo such that for
every 0 > 0s a point (x1,x5) € P(W1) x P(Ws) is semistable w. 1. t. the
linearization induced by <1, G on OP(WI)XP(WQ)(l,g), if xo 1s semistable w.
r. t. the G-induced linearization on Opay,) (1) and for every one-parameter
subgroup A of G with p(xa, A) =0: p(z1,A) > 0.

Proof. The proof is a direct consequence of e )(13)((x1,x2),/\) =
1)x 2)3 5

(21, A) +0 - u(2, A) (cf. 1.34) and the fact that the p-functions are discrete
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valued and that they have a finite number of minimizers. For details consult
Alexander Schmitt [Sch05], Proposition 2.9. O

Asin 3.4 we may replace the conditions p(F*, o, .) > 0 and A. by the state-
ment, that (¢, ¢;) is semistable as an element of P(&yp_,, <|n) X P(Ep.0, csln)
w. 1. t. a suitable linearization as given by the theorem; here 7 denotes as
usual the generic point of X. Now we are in the situation where the proof
of 3.1 works.

(iv!) Use 3.3 and the same arguments as in (iii) resp. 3.4.

(iv?) By (iii) we find a d,s > 0 such that (i) < (ii). Furthermore by 3.1 we find
a eps > 0 (that does depend on the choice of d,s) such that (ii) is equivalent
to 3.1.1. —

Remark. Alternative proofs for the non-parabolic version of the theorems may be
found in [Sch08], 2.7.

3.8. Conclusion. If the stability parameters are chosen such that 3.6 (iii) holds,
then the moduli space ilﬁsfpar] /| Ga exists as a projective scheme and contains the
geometric quotient ilﬁipar]/gA as an open subscheme.

Proof. This is a direct consequence of 3.6, since 1% ] is the same as ‘132’3[ O

[t—par ,[t—par]”

3.2. THE AFFINE CASE

3.9. Definition. A parabolic affine p-Higgs bundle over (X, S) is a pair
(P, (s7)jysn)s (@")ipmy) consisting of a parabolic principal G-bundle (P, (s7);sy)
and sections ¢’ : X — Py @ L' = (P x5z W) ® L given irreducible representations
§ : G — GL(W?) and line bundles L' — X, 1 < i < m. BEquivalently we may
replace ¢' : X — Py ® L' with a homomorphism ¢* : Py — L' where o' is the

contragredient representation to ¢' on the dual space (W?)" =: W

Remark. Below we will usually use the second description ¢ : P, — L' where
o' G — GI(W?), 1 <i<mis a representation. L° denotes Ox.

The definition of semistability for affine bundles may be deduced from the weight
function in the projective case 2.17. Let o = @]", o', then we have the projection
7 . P, — P, under g a one-parameter subgroup A : C* — G and a reduction

Z : X — P/Qq()) is associated to a filtration F¥ of P,. Define

0 if i =0,¥1<i<m
M()U'%a gp) - { _min{7k| 91 S 7 S m : (pio7ri|F§ §é O} otherwise.
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3.10. Definition. A affine parabolic g-Higgs bundle is called y-(semi)stable for a
rational character y of G, if for every one-parameter subgroup A of G and every
reduction Z : X — P/Qa()) for which u(X, Z, ¢) < 0 already M)V (Fk k) +

[par]
(A, x) (=) 0 holds. We will write My := M0,

[par]

3.11. Definition. Let Y be a scheme of finite type over C, L’ fixed line bundles
over X and 7/ fixed parabolic weights to given parabolic subgroups Pl C G.
A Y-family of affine [parabolic| o-Higgs bundles is a tuple (Py, [(s)i1s)]s ¥v)
where

1. Py is a principal G-bundle on Y x X of the given topological type over
every point {y};

2. ¢y € @ Hom(Zyy, mx (L));
[3.] s Y x {27} = Py xx {27}/Qq(77) for all 27 € S.

Two families are isomorphic if there is a G-bundle morphism vy : 2. — 2% such
that ¢3 o ¢y, = @y for the induced isomorphism vy, : Py, = P53, as well as

Wl (i) = 517 for the induced isomorphism ¢ : 2L /Qa(17) = PE/Qa(7).

3.12. In order to reduce the general affine case to the projective case we need to
associate to every representation ¢ : G — GI(WW) a homogeneous representation
¢: G — GI(WW). We follow the approach of [Sch08§], 2.8.2.

Since G is reductive, o = )", o' decomposes into irreducible representations o'.
These are homogeneous (see the remark to 2.14). After fixing an embedding ¢ :
G — Gl(U,)q, 2.12 implies the existence of an irreducible extension ¢ : G1(U,), —
GI(W") such that o' C ¢’ ot is a subrepresentation. Let u’ € Z be such that
0'(z - idayw,),) = 2" - idgiwy. W. L o. g. we may assume that 0 < u® < u! <
... < u™ for some u’.” Define

m
¢ = @ ®Qi’®vj :Gl(U,), — GIW), u=(u...,u™), QO = det, o' = 1.
vezrtt, =0
vut=lem(u?)
Now ¢ is homogeneous.
Consequentially we may associate to every affine p-family a corresponding projec-

tive ¢-family with ¢ = ¢ 0. Let Y be a scheme and (Zy, [(s})jysy], #v) be a

66001 =o' @ g, o' = @5:1 0", 0 irreducible, i. e. o' C §¥° oy for one 1 < jo < k. Set
o' = ov°.
~ 7|Sch08], 2.8.2. In fact, the determinant representation (and any power thereof) lifts the
trivial representation ¢ : G — SI(W). Thus we may replace o' with o' ® det® for a suitable
u' € 7.
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Y -family of affine o-Higgs bundles.

Given L! there is a line bundle L on X that admits injective morphisms I
LI — L[®, 0 < j < m? Furthermore let 7 : Py i, — Py, and
0 =% (1)) ol omi, 1 < i < m the resulting Higgs fields. Let hy : Y x X — C
be a morphism non-trivial over y € Y and set also p* = hy - 7% (:°) + Py, o, =
Oy x — mi(L#*").2 Then

m

_ ®uvI * (T W)Y _x (7 ®lem(ul
P o = @ ®'@Y,910L — mx (L ( )) =mx(L ( ))7
vezztt, i=0
vut=lem(u?)

m
- 7@
e = D Qg™

vezmt, =0

vut=lem(u?)

Thus we constructed a family (Py, (S{/)j“SH, OYorr Vy, Hy) where J6 is a

suitable line bundle on Y such that (vy x idy)*(2") ® JG = n% (L2'™()) holds
for a suitably fixed Poincaré line bundle 2! — Jac' x X, | = lem(u’) - deg(L), and
vy (y) := [L21™)] 10 In particular by choosing a non-trivial function h : X — C
we may assign to every affine [parabolic|] o-Higgs bundle (P, (s7);1s1, (¢")im)) a
projective [parabolic] (s o ¢)-Higgs bundle (P, (s7);qs(, @cors L@lemu)y,

Remark. The function hy is introduced here to serve as a technical tool later in
the construction of the moduli space. We will use it again in 5.2.

3.13. Proposition. (i) The map

Isomorphism classes Isomorphism classes
of affine |parabolic] — ¢ of projective |parabolic|
0-Higgs bundles (s o1)-Higgs bundles

(P, [(s)0s0)s (@ )itm)) = (P, [(87) 5080y o LE1D)
has finite fibers for every non-trivial map h.

(ii) An affine [parabolic] o-Higgs bundle (P, [(s7)jsp)s (©D)ipm)) is (x, 77)-
(semi)stable if and only if for the associated projective |parabolic| <-Higgs
bundle (P, peo, [(s7)j15)], L&) the following properties hold:

8L ample, u° big = HO(X,L®"") # 0 = 3 Ox — L®" one-to-one. Then inductively for

some u! > u® HO(L',7'*(L®' ) #£0 = I L' — L' xx L®" — L one-to-one, a. s. o..
9Recall that o® o1 = det(:) = 1 and Oy x x is associated to the trivial representation.
19|Ha77], IT1.Ex.12.4.
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A (N R, o) = 0 holds for an arbitrary one-parameter subgroup A of G
and every reduction Z : X — P/Qa ().

B. If f(\ R, o) = 0 then MO (FF ok) + (A x) () 0.

[par]

Proof. (i) If two affine o-Higgs bundles are isomorphic so are the associated

projective (g o ¢)-Higgs bundles. Furthermore the parabolic filtrations stay
invariant under the assignment. Hence it is enough to consider the underlying
non-parabolic objects. In the non-parabolic case a proof may be found in
[Sch08], 2.8.2.1. The proof is identical to that of 2.25. First note that if the
classes represented by (P, (¢})ipm)) and (P, (¢h)ijm)) have the same image,
then for all v € ZZ{" with vu' = lem(u’): Qo g0’1®” = Q. g0;®” As in
2.25 we restrict to the generic point and see that there is a lem(u’)""-root of
unity ¢ s. t. ¢! = Cuzfg. Since the 7 are surjective and the /' injective, we

get ¢ =

Consider the summand (0®lem@)/r = plem()/r 0.@lem@)/r =£ ( of . The
induced filtration on Oy is trivial and the induced weight is therefore 0.
Thus p(A, Z, pco,) > 0 for an arbitrary one-parameter subgroup A of G and
every reduction #Z : X — P/Qa()\). Hence it will be enough to show that
WA Z, o) = 01if and only if (X, Z, peo,) < 0 if and only if (N, Z, ¢) < 0.
Assume that u(\, Z,p) <0, i. e. g0j|Fi # 0 implies 7* > 0. Here F; denotes

the o’-induced ﬁltratlon with weights VJ; F’ the Q] o t-induced filtration
and the weights ~* correspond to the ﬁltratlon Fiw. 1. t. o (cf 1.4).
Observe that 3050L|® o Z0 e ¢ |~z Z 0, VO <j<m @ #0)

Jj=0"7

i £ 0, V0 <5 <m (v #£0) dlrectly follows from the definition of

sout and @eor- Therefore (X, %, p) < 0 implies that @SOL|®W v 2 0=
”y;-j >0,V0<j<m (v #0) = Z;nzo vj’y;j > 0,1 e u(\Z, gpsm) <0. On
the other hand if (X, Z, p) > 0, there is a 7} < 0 with ¢/ i # 0. But then

@COL](FI)WCH,W)W # 0 and 1cm(u) Y < 0= p(N\ 2, peor) > 0.

Cu 111

& @l

]

3.14. 3.13 implies that the family of (y, [77])-semistable affine [parabolic| o-Higgs
bundles is bounded if the corresponding family of projective [parabolic| (co¢)-Higgs
bundles, that satisfy A. and B., is bounded. Though these live in a bounded family

by 3.

6.

3.15. We already know from 3.13 that affine [parabolic| semistable p-Higgs bun-
dles have associated projective [parabolic| (s o¢)-Higgs bundles that satisfy A. and

h .9 is generically injective.
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B. in 3.13. Furthermore the GIT-Quotients for these objects do exist by 3.8. In
order to pull these quotients back we need to construct a parameter scheme to-
gether with a semistability preserving equivariant affine morphism to PBeo, [ .—par)-
We follow the approach by Alexander Schmitt in 2.8 of [Sch08§].

First note again that by 3.6 the affine p-Higgs bundles live in a bounded family and
we can hence choose n big enough such that all constructions done previously hold.
Recall that we already found a parameter scheme B, — B that does parametrize
certain projective (so¢)-Higgs bundles. Furthermore recall that on B x X we have
a universal vector bundle &y. For every m € B, &g|{m)xx is a principal G-bundle
on X (more precisely on {m} x X). Since &y is locally trivial over B x X, we con-
sequentially see that the reduction induced by 7y fiberwise extends to a reduction
of &% to a principal G-bundle over B x X. To this principal G-bundle we may
associate vector bundles &y ,, on B x X and for k big enough (|Ha77], 1I1.12.11)

Fi, = Hom(mp (8 0 @ i (Ox (k)), s (X (L'(K)))), 1<i<m
Ty = Fp X - Xog T
is locally free over 8. Let
ﬁ’g:(/)%xx ngk:Cxﬁk.

Then using the usual G4-action on &y ,, induces a G4-action on %, and thus an
action on #) as &y o, ~ Omxx (2.31). While .Z accounts for the additional choice
of hy used to associate affine and projective objects, % is the space that contains
the closed parameter scheme 2 over which the morphisms ¢} : &y i — 7x (L")
exist for all 1 < i < m (again use 1.14). The Ga-action descends to the invariant
subscheme 20.'2 Now A together with the G4-action fulfill the usual universal
properties (1.62). Unfortunately we may not proceed as in the projective case
since we are not guaranteed that 2 / C* does exist. Therefore we will construct a
slightly bigger space (inside %) which admits a C*-quotient, prove the existence
of the moduli space there and subsequently realize 2 as a subscheme thereof.
Here the morphism hg comes into play. We will choose it to depend only on %A,
i. e. to be constant on X. By our construction leading up to 3.13 we can now
associate to our universal family of affine objects parametrized by 2l a projective
family. Hence we find the induced morphism f: A% = C x A — P, over B. We
need to find a C*-action that leaves 2° invariant, such that 20 = (2°\ 0)/C* is a
closed subscheme of the (weighted) projective bundle (#°\ 0)/C* and such that
f is C*-invariant. Therefore consider the fiberwise actions

12Gee footnote 24 of chapter 2.
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C*XO%XX—)O%X)(, C*Xﬁlz—)y];, 1<:<m
—u0 i
(z,(m,f))H(m,z f) (Z7<m7f))'_>(mvz f)
which induce a C*-action on .Z? (cf. 2.31). By construction of f it is invariant w.

r. t. this action. By Constructlon of 2 (in particular its G4-invariance) it is C*-
invariant. Observe that the C*-action and the G4 action commute (since fiberwise
the C*-action is just the composition of the G 4-action and C* — G4, 2 +— 2% +idg, );
thus the induced morphism

(’BCOL

\/

is G-equivariant w. r. t. to the induced G4-action on A9, Since AT — B is
projective (by construction) so is f using [Ha77].I11.4.8.(e). Unfortunately this
morphism f does not have to be quasi-finite. The obstruction here are the points
with a vanishing first component (compare to 3.13), i. e. we have to take a closer
look at the first component of ¢.,,. By construction f maps to the fiber P, 1, (of

Peo, — Jac') over [L21m )] hence

SOSOM‘BSOL . (g)mgo:,7£0L|‘B50L,L — W‘%gu,L (%SOL‘QSOL’L) & W}(L‘glcm(ul))'
—_——— = —_——

(O@(’BSOL’L’SOL meSoL,L

Recall that the representation ¢ o ¢ on I contains the trivial representation
and therefore we find a G-submodule W such that W = C @& W and such
that pr, is G-invariant, i. e. an element of Sym(W" )% As in 2.24 we
find a closed embedding Proj(Sym*(W")¢) — P* [w] — [(w),...,7*(w)]
for some d > 0 and s + 1 homogeneous degree d G-equivariant functions
77 € Sym (W%, 0 < j < s (see [MRed], IT1.§8). Choose a local trivialization
Ui of Peo,r x X, then the universal homomorphism ¢, 3., induces maps
Peoui U, — Hom(W,C) ~ W". Combining these with the 77 leads to sections
ol € H'(Peorr x X, (Moo, (M) ® i (LE1em®)))@d): Recall that the 77
were G-invariant and of degree d, thus the (GI(W) @ C*)-valued transition
functions ey - g5 of Hom(Ep, o T, (M, ) © T(LEMD)) satisty

o = T (Cin + 93 Peork) = Tl peor . Consequentially by [Ha77], II1.7.12 we
find a Ga-invariant morphism H : P, ; — P(HO(X, (LEm@))®s+1)) such that
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H*(OP(HO(X7(L®d1cm(ui))@s+1)v)(1)) = %ﬁiii.l?’ Observe that if we choose 70 = pr¢

0

d _ hd~lcm(ui)/u . LO,®d-lcm(ui)/uO
T

then o = (2., . Hence the set we are interested in
lies over P(HY)_ = {[h°,...,h!] € P(H") : h° # 0} where h° is the coordinate to
the basis element h0 = (O®dlem(u)/u® of F — [O(X [@dlem(u’))®s+1,

The set H ' (P(H")_) is of course still too big to admit a GIT-quotient. Fortunately
3.13 and 3.8 already show that under f (semi)stable affine objects land inside
4ao)s Beoi,z and the GIT-quotient thereof exists as a projective scheme. Since
H is G-invariant and P(H") as well as 42()* 0 Beowz / Ga are projective, so is the
morphism induced by H®) : $[¢(s)s PBeor, — P(H) on g[als)s 0 Beorr /| Gat* By
construction we get G—1((H®®*)~"(P(H")_)) = A®* for

¢ — (1,0

A0 !

\/

G

A Peos, T (P(H)_.

As the restriction of the proper map f is proper over H'(P(H")_), it is finite by
construction. Thus by f ((H*)"Y(P(H")_)) = (C* x A*)/C*

(C xA%) J(C" x Ga) = ((C" xA*)/C") [ Ga
F(™) 7 (BH)-)) [ Ga

is a quasi-projective scheme (like (H*¥)"'(P(H")_) / Ga). Since (C* x 21%%) is, as
a good quotient, affine over its (C* x %) J/ (C* x Ga)-quotient and since the
quotient map is trivially G4-equivariant, the GIT-quotient pulls back to C* x 2(**
and therefore to its closed G -invariant subscheme 2(. Finally this shows that

DI // gA

exists and that it is a quasi-projective scheme. Furthermore the good quotient
20° /G 4 exists as an open subscheme since G preserves stability, is finite and $%° /G 4
is a geometric quotient. It is in fact a geometric quotient if we can show that an
orbit G4 - ¢ in 2A** is closed, if and only if the corresponding orbit in £*® is closed.
Then as £* admits a geometric quotient, the orbit G4 - ¢ in A*® of a stable point
c is closed as the image of ¢ is in 4%, If there was another orbit G4 - 2N Gy - ¢ # ()
then z and ¢ would map to the same point in %°/G,, thus the corresponding

Combine the o' to get an element of H(Peor x X,mp . (Y ) ®

mgo;,,L
(1% (L@ Iem(u) ))@st1y, Consequentially ~we get elements of JZom((myp,,,
i (L@@ g0l ) and S om(HO((LEVen (D)o 1)) @ Og 45 ). Then

note that [Ha77], II1.7.12 may be applied by our assumption on the 77.
14This morphism will be used to construct the Hitchin map in 3.26.
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orbits in U equal each other; hence they are closed. So is G4 - z and therefore
G4 -2 =Gu - c as the unique closed orbit in our good quotient.

To prove that closed orbits are exactly the closed orbits under our assignment,
recall that by definition of the C*-action there is an isomorphism (C* x 2()/C* ~
({1} x 0)/{¢k 1 < k < ug} since the group of (u”)™-unit roots stabilizes 1; thus
we find a finite morphism

L:A— {1} xA— (C*xA)/C - HHPH)-)

which in particular preserves closed orbits: Finite morphisms are closed, so the
image of each closed orbit is closed. On the other hand the preimage of each closed
orbit is closed. Since L is finite there is a finite number of orbits in the preimage,
each of which is mapped by equivariance to our closed orbit in H~*(P(H")_). Hence
every orbit G4 - ¢ in the preimage must have dimension dim(G,4). In particular
G4 - cis closed, since otherwise m\ G - ¢ must contain orbits of strictly lower
dimension'® in contradiction to the previous statement about the dimension of an
orbit in the preimage of a closed orbit. We particularly see, that a point in 2°*/G 4
is closed if and only if its image is closed in U**/G,.

Remark. Observe that we could pull the GIT-quotient back directly by L only if
we already knew that 2A*° resp. 2° were C*-invariant subsets.

3.16. Theorem. ([Sch08|, 2.8.1.2) The moduli space of affine o-Higgs bundles of
gien topological type exists as a quasi-projective scheme.

3.3. AFFINE PARABOLIC HIGGS BUNDLES

As in the projective case, the parabolic affine case can either be treated similarly
as the non-parabolic one, given a suitable parameter scheme, or we can lift the
morphism constructed in the non-parabolic case so that the GIT-Quotient $(25)° /
G4 can be pulled back. To avoid repetition we will use this second approach.

3.17. Let 2 be the parameter scheme constructed before and choose parabolic

S
subgroups Pgyy.s- -« Pél‘(Ua)a C Gl(Uy)a.

Deﬁne lefpar - WSLQX {xj} (mém,bfpa& ) §OL,L7par
(XaeA S som(U, @ Ogq,), ggﬂ’gax{mj}>) , 1 <7 <S|and

S S
Q[L—par - %Ll—par/P(l}l(Ua)a X+ Xy ﬁl | /P(‘}lan)a‘

L—par

15(C* x A)/C* c A°/C* is open as the restriction of the universal quotient to a C*-invariant
open subset, thus the projection is proper, so is L after composition with f.

167 G 4 - ¢ is not closed, then it shows that the orbit is open in G4 - ¢, therefore the complement
is closed and of strictly smaller dimension.
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We use the maps constructed in the non-parabolic case. Let B, ,—par,z. be the re-
striction of Peo,,—par t0 Peo,, L and note that by 2.34, 2.35 7 : ‘Bioibkpam — Peour 18
proper. Hence we get a morphism Hpar : Peovs—par.r, — P(HO(X, (LETem(u))@s+1)Y)
that descends to a proper morphism ‘Dgo;_par,L J Ga — P(H"). Note that as in
the case of projective parabolic Higgs bundles we get

* * * :
(C X QLL—par) // C = ﬂ_((c*xQ[)//C*,QX{wl}(m;OLvL_par)/PC‘}ﬂ(Ua)a X((C* XQ[)//(C* e
* IS] |5
" X (CrxA) )t 7T((C*xm)//cc*,nx{ac\s‘}( souhpar)/PGl (Ua)a”

We get a commuting diagram

C* x QLL par (ﬂngL,L—par,L

P

QlL—par C* X Q’[L par /C*

(C* X Q[ mSOL,L

NG

(C* x A)/C*

\93

Q.

Furthermore the induced morphisms are just base extensions (over B resp. Q) of
the underlying morphisms constructed in the previous section. We restrict our at-
tention as above to H,1(P(H")_). By construction this set lies over H~1(P(H")_).

par

Denote by H3: the restriction of Hp,, to the open subset U (cf. 3.8).

Since affine/ proper/ quasi-finite /finite morphisms are stable under base extension
(|EGA] II, 1.6.2(iii) resp. |Ha77| IL4.6, |[EGA] II, 5.4.2(iii) resp. [Ha77| IL1.4.8,
[EGA] I, 6.2.4(iii) and [EGA] II, 6.1.5(iii)) the induced morphisms have the same
properties and thus the GI'T-quotients pull back as in the non-parabolic case. We
find A%* ../ Ga as a quasi-projective scheme. The finite morphism L extends
accordingly and hence we get 217 /G4 as the geometric quotient. This proves

3.18. Conclusion. Let Pj Gl(Ua)e C Gl(U,)q be parabolic subgroups for every punc-

ture 29 € S. The moduli space A? var /| Ga of (semi)stable pairs (P, ¢), (s);qs1)
where (P, ) is an affine principal o-Higgs bundle and s : {27} — P, xx
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{xj}/Pél(Ua)a are reductions for every puncture ¥’ € S, exists as a quasi-projective
scheme whenever the T/ -induced weights (8Y);) are admissible (cf. 2.10).

The final missing step will now be taken as in the projective case. Let &2 denote
the universal principal G-bundle on 2,_p,,. The closed embedding G — Gl(U,),

induces a fiberwise closed embedding of the corresponding bundles &2 /Q(7}) —
2,/]Q (Tél(Ua)a) and thus we find a closed G4-invariant subscheme Qlésa)rs - Qlfs_);ar
that parametrizes semistable affine p-Higgs bundles (cf. (Equ 1)). Therefore

3.19. Theorem. Let P/ C G be parabolic subgroups for every puncture x/ € S.
The moduli space Qll(;?rs//QA of (semi)stable pairs (P, ¢), (s7)js) where (P, ¢) is
an affine principal o-Higgs bundle and 7 : {x7} — P xx {27}/ P’ are reductions,
exists as a quasi-projective scheme whenever the 7/ -induced weights (6ij)i[5j] are
admissible (cf. 2.10).

Remark. A5 // G4 is the moduli space for the functors

M*®) : Sche — Sets
Isomorphism classes of
Y oy Y-families of (semi)stable

affine parabolic p-Higgs bundles

3.4. REFINING THE SEMISTABILITY CONCEPT

The following example shows that for non-semisimple reductive groups G the mod-
uli space of stable objects (as defined before) might be empty. In order to over-
come this deficit we will slightly alter the semistability concept. Using a central
isogeny, the moduli space of (semi)stable objects (with respect to this new notion
of (semi)stability) is constructed from the previous results.

3.20. Example. Consider the group GI(C™) x GI(C™), r, r, € N, and
the faithful representation ¢« : GI(C™) x GI(C™2) — SI(C2+h) (¢ ¢?) —
(g', g°, det(g' @ g*)~!). Observe that an element z -idcr @2’ -idere, (2, 2/ € C*)
of the radical of GI(C™ ) x GI(C") is mapped to the center of GI(C™ ) x GI(C™) x C*.
Now if E is a vector bundle associated to a principal (GI(C™) x GI(C"™))-
bundle P by ¢, then by looking at the transition functions we see that F =
E, ® By @ det(E;, @ E,)” and therefore deg(E) = 0.'7 Consider the two one-
parameter subgroups

I"The transition functions of the dual line bundle are just the inverse-valued functions.
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C* — GI(C™) x GI(C™)
Aoz o= (277 27T
Aotz o (277 2™

Now

Lo )\1<Z) — (Zm, Z—m’ 2—7'17"24-7"27"1)7 L O )\2(2:) — (Z—r27 Zm’ 0)
=0

We get induced filtrations

0C F! = B, C F} = B, @ det(E, ® E,)” C E respectively

0CF =FE,CF=E ®det(E,® F,) CFE

to Lo\ respectively to)y. The corresponding a-weights are (al, a?) = (r1/3, r2/3)
respectively (a3, a3) = (r/3, r1/3). Choose for example 1 = r5. Now we can
calculate MO (Fk k) for t = 1, 2. If E was (semi)stable as a vector bundle we
would get MO (FF o) >0 and thus

While semistability can still hold if deg(E;) = deg(F>), E cannot be stable.

If E occurs in a ¢-Higgs bundle it might be still stable as a ¢-Higgs bundle. How-
ever for a one-parameter subgroup \ of ker(¢|zq4(c)) (and hence a one-parameter
subgroup of the connected component Zad(s) = ker(s|zauc))’ of the identity
in ker(<|zad(c)), the (¢ o A)-induced filtration of P, will be trivial, therefore
w\, Z) = 0.2 Here # = idx : X — P/Qcicr)xcicrz)(A) is the only reduc-
tion that can occur. Thus the (semi)stability discussion from above is valid for
the ¢-Higgs bundle as well and we will not find any stable objects. As an example
take the adjoint representation ¢ = 1 o Adgicr)xai(cra):

(GI(C™) x GI(C™)) x (€77 x C2572 x C) = T x T2 x C

((g17 92)7(m17 ma, m3)) — (glmlgl_17 92m292—17 m3)‘

We see that ¢ o Adgicriyxai(cr2) splits over the obvious (homogeneous) representa-
tion ¢ = Adgicryxaicr2yxer and o Adgicryxaier2) (M) = id for t =1, 2.

BObserve that by our conventions on page V of the Introduction we only exclude trivial
one-parameter subgroups A from the (semi)stability condition; ¢ o A may be trivial.
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3.21. As a consequence of the previous example we should really check semista-
bility against one-parameter subgroups of G/Zad(<) rather than against one-
parameter subgroups of G. This phenomena is analogous to one that occurs for
principal G-bundles without a Higgs field. There the semistability condition re-
stricts to anti-dominant characters of parabolic subgroups. But anti-dominant
characters are trivial on the connected component of the center of G, hence they
do not correspond to one-parameter subgroups of Zad(G). In the semisimple case
this situation cannot occur since by definition Zad(G) = {e}. In the previous ex-
ample we have X, (g1, g2) = det(g1)"-det(g2) ™" and X, (2-idaicr) D1-idayer)) =
2 £ 1.

Consider 7 : G — G/Zad(s), then a principal G-bundle P induces a prin-
cipal G/Zad(s)-bundle Pg.q. Since Zad(s) C Z(G), Zad(s) is an abelian
subgroup and G/Zad(s) is an algebraic group. By definition of Zad(s), ¢
factors over a representation <p.g : G/Zad(s) — GI(W). Therefore the as-
sociated vector bundles P. ~ Pguq,,, are isomorphic since Pp,q = P, and
K:GxG/Rad(s) = G/RZad(s), (g,m(r)) — w(gr) is the natural action. Further-
more Zad(s) C @ holds for every parabolic subgroup @ of G, and thus Q/Zad(s)
identifies with a parabolic subgroup of G/Zad(s): If we write Q) = Q¢ () for some
A C* — G we get by definition Q/Zad(s) = Qc/#ad()(mo ). On the other hand
a one-parameter subgroup Ag.q of G/Zad(s) induces a one-parameter subgroup

of G/ Z(G):
1. First recall that 7 : [G, G] — G/Zad(G) is surjective'.

2. The fibers are finite, since using our embedding ¢, Zad(G) is mapped into
the center and [G, G] is mapped into [GL(U, )4, GI(Uy, )] C X 4ea SI(U,) and
therefore «([G, G| N Zad(G)) C X 4ea SWU,) N Z(GL(U,)) is finite. Hence a
power of Apqq lifts to a one-parameter subgroup of [G, G| C G.

3. Now let T be any subtorus of Zad(G), then there is another subtorus T
such that the multiplication T x T — Zad(G) is an isomorphism. Now
[G,G] x T — G has a linear algebraic group Ry as its image since T is in the
center and the morphism is a morphism of algebraic groups. For T' = Zad ()
we have Ryaq) — G/Zad(s) surjective: Let gZad(s) € G/Zad(<), then
g=hz, hel[G,G], z € Zad(G) and z = 7r, r € Rad(s), 7 € T = g = hir,
i. e. h7 € Ryqa(c) is mapped to gZad(s).

4. We still need to check, that the fibers of Rypeq) — G/Zad(s) are finite.
This however is a direct consequence of our previous considerations, i. e.
R%ad(g) Shr=rc¢e Rgad(g) =h=7"1re [G, G} N %’ad(G) finite.

YG /% ad(G) is semisimple, therefore G/Zad(G) = |G/ # ad(G), G/ % ad(G)] by [Hum75], 27.5
Theorem and «([G, G]) = [G/Zad(G),G/Zad(G)].
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5. Since Q¢ /zad(c)(Azad) = Qc/zad(c)(Njpqaq) for any m € N we see that every
parabolic subgroup of G/Zad(s) comes from a parabolic subgroup of Ry ..

As a result of the previous construction we see that Py.q/(Q/Zad(G)) ~ P/Q.
In particular every projective parabolic ¢-Higgs bundle (P, (s7);ysy, ¢, L) in-
duces a projective parabolic ¢gqq-Higgs bundle (Pgaq, (s7);1s), ¢, L); every affine
parabolic ¢-Higgs bundle (P, (s7);qs, ¢) induces an affine parabolic ¢g.q-Higgs
bundle (Pygaa, (s7)j1s, %)

3.22. Definition. Let x be a character of G/Zad(s) (that naturally comes from a
character of G trivial on Zad(s)). A parabolic ¢-Higgs bundle is called (y, 77/, §)-
(semi)stable if the associated grqq-Higgs bundle is (x, 77, §)-(semi)stable. With
the preceding considerations, this is equivalent to the statement that a projective ¢-
Higgs bundle is (x, 77, §)-(semi)stable if M[SJ;](O)(F’“, a®)+(\, x) (>) 0 holds for ev-
ery one-parameter subgroup A of Rg,q() and every reduction Z : X — P/Qa()).
(F*, ak); denotes as usual the weighted filtration to A and Z.

An affine p-Higgs bundle is (x, 77)-(semi)stable if for every one-parameter sub-

group A of Repaq(e) and every reduction Z : X — P/Qq(X) for which p(\, Z, ¢) <
0 holds, the inequality M(l)’(o)(F’“, a®) + (A, x) (=) 0 can be verified.

[par]

3.23. In order to construct moduli spaces for our new definition of (semi)stability
we will follow [Ram96ii|, 4.15 (resp. [Sch08], 2.7.5). First recall that for all con-
structions discussed so far, the conditions (U') and (U?) of the proposition 1.62
(see as well [Ram96ii|, Def. 4.6) are satisfied and thus we were able to construct
moduli spaces. Now however we will not have a universal family .7 as before.
Coarse moduli spaces can still be constructed using the methods of [Ram96ii]
which will be outlined below in the affine case.

3.24. Central Isogenies. Consider a scheme Y over C as a complex space.
Let 0 : G — H be a surjective group homomorphism between algebraic groups,
with ker C Z°(G), ker @ finite?®, then the exact sequence 0 — K := ker(f) —
G — H ~ G/K — 0 induces an exact sequence --- — H (Y, D) — HY(Y,G) —
H'(Y,H) — H2(Y,D) of Cech Cohomology sets. In the abelian case, these are
just the singular cohomology groups.?! Given a H—bundle 24 on Y x X define
a functor as follows:
', ) : Schy  — Sets
Isomorphism classes of pairs
T4y — { (%, ¢r) with a G-bundle % — T x X

and Yp 1 0,(%p) = (f x idx )" (4)

20We call # with the given properties a central isogeny.
21The famous theorem of Leray states that Cech and Singular cohomology agree on a locally

contractible space, i. e. in particular on every complex space (see [BV72], lemma 3.2 using
[Whi65]).
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On morphisms f € Mor(Y, Z) we set I'(f) = f*. The functor I'(0, .74) is in gen-
eral not a sheaf ([Ram96ii, 4.9 and [FGA], V, §1). Tts sheafification I'(6, /&) (w.
r. t. the faithfully flat or étale topology or strong topology) is representable by a
complex space f: Z — Y such that f is a finite étale morphism resp. unramified
cover over f(Z) = Z. Z is just the preimage of 0 of the morphism Y — H?(X, D)
induced as follows: %4 defines a class in H'(Y x X, H) hence a global sec-
tion of the sheaf R'(my.)(H) associated to the presheaf U — H' (U x X, H).
Combining this section with the connecting homomorphism?? gives a section of
R*(my.)(ker(9))( - ) = H?*( - x X,ker(f)), where the latter is the constant sheaf to
H?(X,ker(6)). Recall ker(d) C Z(G). Furthermore it can be shown, that every
point in Z has an open (contractible) neighborhood U such that I'(8, 74 )(U) # 0.
A proof may be found in [Sch08], 2.4.8.7 or [Ram96ii|, 4.15. A purely algebraic
proof is given in Proposition 5.4.1 of [GLSS06].

Further assume that we have an action A of a reductive algebraic group say G
on Y and a linearization of this action in J4,, i. e. A:Gx 5 — H5 such
that the bundle map is equivariant w. r. t. the two actions and the induced
morphism J&/|, — 74|, g € G is a H-bundle morphism. Then we find a G-
bundle isomorphism W : 7} (J4) — (A x idx)*(J4 ) over G x Y x X: Observe
that 75, (H4) ~ A5 Xyxx (G X Y x X) is isomorphic to (A x idx)*(4) ~
Hy Xyxx (G XY x X) as a scheme by the universal property of the fiber prod-
uct. The G-invariance guarantees, that the isomorphism is compatible with the
bundle projections. Since the induced morphisms J&-|, — 74|,y g € G are
H-equivariant, so is W.

Assume that we are given two equivalence relations on Y and on Z such that
equivalent points of Z are mapped to equivalent points of Y. Furthermore for every
two equivalent points y ~ y' of Y there must be an isomorphism W, : J& |, —
|,y of H-bundles. We will apply the following proposition, when equivalence
corresponds to isomorphy of o-Higgs bundles.

3.25. Proposition. ([Sch08|, 2.4.8.9) Consider an action A : G xY — Y with
associated isomorphism V : 73 () — (A xidx)*(F4) as above, such that for
any two equivalent points y ~ ', U, : A5 |, — A5 |, there is a g € G such that
gy =y and U, =W,y on X. Then the action A lifts to an action Ay of Z, such
that 2/ € G-z if and only if z ~ 2" in Z.

Remark. The proposition is already proved in 4.10 in [Ram96ii].

More details on isogenies can be found in the original work by Claude Chevalley,
|Cheb8|. An easy example of a central isogeny is SI(V) — PGI(V) for a vector
space V.

22A connected homomorphism may still be constructed under the given assumptions.
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We have seen above that 0 : G — Zad(p) x G/Zad(o) is a central isogeny in
the sense of 3.25. In order to account for the torus part recall that Zad(p) ~
(C*)™ for some m € N. 6 associates to every G-bundle P on X a G/Zad(p)-
bundle Pzqq) on X and m line bundles L of degree d'.** Let A, be our

[par]
parameter scheme of (semi)stable affine parabolic 0444- Higgs bundles with our
action A’ of G4 and with the universal family (Pos . (Sé[f;ar])j[\SH pass ) on

legar x X. By definition of the G-action, there is a linearization on . and

thus an isomorphism V¥ : ngs ]XX(%”Y) — (A’ x idx)* (74 ). Furthermore take
par

2" Poincaré line bundles on Jac® xX. We may linearize the trivial Zad(o)-
action on X, Jac™ in the Zad(p)-bundle #Z = ) (2) x

. ><X>< XZLZI Tacd (ﬂ'JaCdm XX)*((@m) by

Rad(o) x B — Z, ("), (")) = (2FrF),,. 2

(T‘—Jac“‘1 x X Xx X Ln:l Jacd

Combining the two actions and the corresponding linearizations we get a
(Ga x Zad(o))-action on Y = A5, x X Jac™  with linearization in

T wass (Pass ) Xxxy T ™ (#). We still need to show that the con-

[par] [par] ak

k=1 Jac
structed action satisfies the conditions stated in 3.25. For the X}, Jac?'- part
this is clear by definition of the Poincaré line bundles.?® For Ay this follows
from (the proof of) the universal property 1.25. Recall the proof of Proposi-
tion 3.25 provides us with an unbranched covering Z — Y and an action Az on
Z such that the covering map is equivariant w. r. t. the two actions. Since

the quotient Y / (G4 x Zad(0)) = (A}, / Ga) X (X’:n:1 Jac® //%’ad(g)) —
(les /Ga) X (XZLI Jacdk> exists and the covering is a finite map, again by 1.57

[par]
we see that Z /) G4 exists as well.
The space Z represents the functor

F(Q, yg{f;ar]) : SChQ[[ssar] — Sets
Isomorphism classes of pairs
AN Ay (“r,Yr) with a G-bundle ¥ — T x X
and 1/}T . 9*(gT) — (f X ldx) (gzmss )

[par]

If two affine p-Higgs bundles are isomorphic, so are the corresponding 04.4-Higgs
bundles.? Therefore we can apply 3.25, which tells us that two affine o-Higgs

23The topological types of @gl.[e;ar] Zad(o) and the L' are uniquely defined by the topological
type of ‘@mfﬁar] (cf. remark 5.1 in [Ram75]).

Zcf. [Ram96ii], 4.15.

25Note that an automorphism of a line bundle on a compact Riemann surface is uniquely
defined by an element of C*.

26See 3.21 and the definition of isomorphy of o-Higgs bundles in 3.11.
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bundles are in the same Az-orbit if and only if they are isomorphic as o-Higgs
bundles.

Putting all results together we find that Z is the quasi-projective coarse moduli
space of semistable p-Higgs bundles. By construction we recover the geometric
quotient of stable p-Higgs bundles as an open subscheme of Z.

3.5. HiTcHIN MORPHISM

The existence of a (generalized) Hitchin morphism, i. e. a proper morphism from
our moduli space of affine parabolic objects to an affine space has been shown
in the non-parabolic situation by Alexander Schmitt in [Sch08|, 2.8.1.4. The
following result is an easy extension thereof to the parabolic setting.

Let ¢/ : G — GI(W7) as before and W = ", W/. Then we find T' G-invariant
generators 0 € @' Sym”" (W4") of Sym*(W")¢. Denote by Hit the affine space
Do HO(X, @)L, L5,

3.26. Lemma. A projective Hitchin morphism Hit : 0% ) G, — Hit exists.

par

Proof. First note, that it is enough to show that Hit (if it exists) is proper, since
2055 // Ga is quasi-projective and H is affine, i. e. Hit is quasi-projective and
proper into a quasi-compact space and therefore by [EGA], 11.5.5.3 projective (see
as well [EGA], I1.5.3.4 (v)). Furthermore, if we can construct two morphisms Hit
and épar such that (Hit) commutes, then already Hit is proper, since H35 o G

par
is proper (|Ha77], I11.4.8).

Gpar .
91;‘:’“ // Ga —>113§§ M ;'BSOL,L // Ga (Hlt)

Hitl ala

Hit P(H*)_

par

Similar to the discussion in 3.14 we define Hit locally on a trivializing cover
(U;); by composition of the universal morphisms (SO%lggr)j[m] v, = (¢])jm) and
ok, 1 <k <T.If (I]); are transition functions of L’ and ¢’(g;,) the transition
o> then o* (@7 1,0 (g],) ) ) = T ()"0 ()) and the
corresponding map Hit" is a global section of ®;n:1 L®"" . By Gu-invariance we
thus find our map Hit = @2:1 Hit".

We still have to construct Gp,. The embeddings +/ used in the construction
of a projective (¢ o ¢)-Higgs bundle provide maps /* : H(X, Q" Loy

functions of A s
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HO(X, Q7 L") Moreover by homogeneity of the o* the global morphism
defined locally by o*((¢/ o ¢7);1n) coincides with the image of Hit"((¢7) ;) un-
der /*. We need to account for the zero-component of the projective Higgs field.
Therefore denote by o a generator of Sym(C)“ (w. r. t. the trivial action) and
consider the function

m
. . . R
Ul - (w])j[m] 7 @ ®w]7®v
+1 =
vezZft  7=0

vut=lem(u?)

As a function on C @ W it may be written in terms of the generators o*, i. e.
there is a polynomial p’ such that ¥' = p‘(c°,... 07). By the equivariance of
o* and * we now get p'((t" © o*)o<r<r((¥?)jim)) = ' (0 -, ") (¢ 0 ) jim) =

T (9 0 @) jim)) = T (Peor)- In particular p'(LF( - )) defines Gy suitably.?”
[

Remark. Using the finite morphism 2 — 217 < X ey ac” the Hitchin morphism
extends as a projective morphism to Z.

2"Note that the first component of épar is non-trivial.






S-EQUIVALENCE

Unfortunately, already in the case of G-fiber bundles, the functor witch associates
to each scheme over C the set of isomorphism classes of S-families of semistable
G-bundles admits no coarse moduli space (Ramanathan [Ram96i|, Proposition
3.5). In the previous sections we have constructed the categorical quotients of
the open subsets of semistable and stable objects. While for stable objects we
were able to construct even a geometrical quotient and henceforth these quotients
become coarse moduli spaces by 1.62, the semistable objects might have fibers
which contain more than one orbit. Again by 1.62 this implies that they do not
form a coarse moduli space. However, to overcome this deficit, we can associate
non-isomorphic semistable bundles in the same fiber over the GI'T-quotient. Thus
two points z, y representing semistable objects in one of our parameter schemes,
say 5., should be S-equivalent if G4 -2 N Ga-y # 0.1 Since we were able to
construct geometric quotients on the subset of stable objects, by (Geol) of 1.53
Ga-x N Ga-y# 0 already implies x € G4 -y, i. e. the S-equivalence relation is
the same as the isomorphy relation. On the other hand S-equivalence guarantees
that in every fiber over the GIT-quotient of semistable objects there is only one
S-equivalence class, i. e. our GIT-Quotient becomes a coarse moduli space for the
functor of S-equivalence classes.

To make any sense of the condition imposed by S-equivalence we have to find
intrinsic definitions for the specific moduli problems we faced.

4.1. S-EQUIVALENCE OF TUPLES

Let A be a one-parameter subgroup of G, Q¢(A) the associated parabolic subgroup,
Rad,(\) ={g € G : lim \(2)g\(z) " = e}
Z—00
its unipotent radical and

Levg(\) ={g9 € G: \N2)g\(z) ' =g, Vz € C*}

'Recall that if G4 -y is closed and G4 -2 N G4 -y # O there is a one-parameter subgroup A
such that p(A, ) =0 and lim, o0 A(2) -  ~ y (cf. remark to 1.53).
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a Levi subgroup. We recover Q¢(A) as semi-direct product Zad,(\) X Levg(N)
(|Bo91], TV.11.22).2 For G = GI(V), q € Qg () is a block-upper triangular matrix,
I € Levg(N) the corresponding block-diagonal matrix and r € Zad,(\) is r =
ql~!. A semi-direct product corresponds to a split-exact sequence 1 — Zad,(\) —

p
Qc(A) & Levg(A) — 1 ([St93], Proposition 4.7.5). Recall that given a reduction

Z X — P/Qc(N\) we get a Qg(N)-bundle Z*(P), P — P/Q¢()). Extending
the structure group by ¢ o p we get another principal G-bundle which we call the
admissible deformation df},(P) of P associated to Z. If (F¥)y, is the filtration of
the vector bundle £ = P, associated to A and %, then df},(P), = @, F*/FF 1
We use cocycles as in 2.8. Let (¢g%);; be the Qg ()\)-valued transition functions of
P given by the reduction Z. Then

hij *
tog’ = 3
0 h%
If we define F* as the subbundle with transition functions
hij *
H = )
0 hy
then the quotient F*/F*~! has transition functions h}).> Thus @}", F*/F* ! has
transition functions

Y 0
. € ZLevau,), (Lo N).
0 hi

Observe, that ZLevg(\) = Levaw,).(t © A) N G. Consequentially df),(P), =
@,., F¥/F*'. For the deformation of the Higgs field we proceed analogously.
First note that ¢(¢”) € Qaw)(s o A) are the induced transition functions of P,
and hence p'(s(g")) € ZLevaw)(s o A) the transition functions of dfe),(P.) w. 1.
t. the morphism p’ : Qaiw)(s o A) = ZLevgw)(s o A) induced by p. On the other
hand df},(P). has transition functions ¢ o p(¢¥) € ¢(Leve(N)). We claim that
P'(s(g")) = ¢ o p(g*¥): This follows for example from the product decompositions

2The semi-direct product for the homomorphism Zevg(\) — Aut(Zad,(N)), | — {r —
Irl=1}.

3The projection F* — F¥/F*=1 looks in our local coordinates as ™ = (0 Erk,rk—l) and
ﬂH,ij = h;jw
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Qc(N) = Zad,(N) x ZLevg(N) and Qayw)(soA) = Zady(soN) x L evaiw)(soN).
If g = rY1" then g o p(g¥) = ¢(I”) and <(g") = <(r)c(l), <(rY) € Zad,(s o
A), s(lY) € Levaw)(soA), 1. e. p'(s(g¥)) = <(1).

If ¢ o A is the induced one-parameter subgroup with induced filtration (FF); of
P, tk(P.) = dim(W), then since ¢ is non-trivial, we find a smallest index ¢
such that @[ # 0. Therefore the fundamental theorem on homomorphisms pro-
vides us with a non-trivial homomorphism % F10 o=t Fro/Fro~t — L witch
extends trivially to a ¢4 on df$},(P.) ~ df},(P).. We define df},(P,¢,L) :=
(df%(P), ", L).

Now let s7 : {27} — Pxx{x7}/P’ be a parabolic reduction to a parabolic subgroup
PJ C G and P our principal G-bundle. As in 2.7 we find ¢/ with %7 (a?) = s/ (a?)g;
for some representatives. Let 1; : U; X Qg(A\) — P be local trivializations of
P — P/Qc(N), 271 (U;) = Vi and ¢; = 1; 0 (Z x idgyn) = Vi X Qa(N) — Z*(P)
the resulting trivialization of the Qg ()\)-bundle %*(P). Now pryo(¢),) " (s?(27)g;)
defines an element ¢; of Q¢(\) and hence under projection with p an element of
Zevg(N). Furthermore Q¢ (A) and g; ' Pig; intersect in (at least) a torus T'. De-
note by Zevg(T) the Levi subgroup of Qg () associated to T. Then there is a
unique 7; € Zad,(A) such that Zeve(T) = r;.Leva(M)r; . Now we find a unique
decomposition g; ' Plg; N Qa(N) = (g;'Plg; N ZLeva(T)) - (g, Plg; N Rad,(N))
([DM91], 2.1 Proposition) and thus p(g; ' P7g;NQa(N)) = r; 'g; ' Pl grinZ eva(N).
The group ZLevg(T) N g; ' Plg; is a parabolic subgroup of Zeve(T). We find a
point in gevg()\)/(rj_lgj_legjrj) N.Zevg (M) independent of the chosen represen-

tative s/(27). Consequentially we get a point s in df},(P)/P’ using the injection
ZLevg(N) /L eva(N) N (T{lgj_legjrj) — G/P?, l(?“;lg;lpjgjrj) — (lrj_lgj_l)PJ.
Note that the constructed point is independent of the chosen representatives; the
independence of the choice of s/(z7) is clear. For g; replaced by g;q, ¢ = [ - r and
consequentially r; replaced by 7~'r; and ¢; replaced by ¢;q we use that

(qj)rj_llrjrj_ll_lgj_le

p(asq)ry ra~ gy Plgjqr~ ey irg T gyt = p
= p(q;)r; g, P’

Note in particular that the construction does not depend on the choice of the
maximal torus 7.

Remark. Observe that we could have chosen g¢; such that Zevq(T) = ZLevg(N).
Furthermore for vector bundle filtrations £ C E|,; this becomes just the induced

filtration (B,—, F* N EY /Fk1 0 EY); of @), F¥/F*!

4For a proof as well as the definition of .Zevg(T) see [DM91], 1.17 Proposition, 1.18 Corollary.
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Remark. Tf we replace our parabolic reductions by points in G/P? — P(V,) for
the corresponding action o and if p = Zdlm Vo) giy V" for a basis of weight vectors
v} of the (o0 \)-induced C*-action on Vo, then the prev10us construction produces
ar; € Zad,()\) such that o(r;)p = a™vy" for a™ the highest indexed a™’ # 0.°

4.1. Definition. We call a projective parabolic ¢-Higgs bundle (P, (sj)j“s”, e, L)
polystable if it is semistable and df},(P, (s/); s, ) = dfy(P, (79 s, ) ~
P for all reductions #Z to every one-parameter subgroup A of G such that
M* (MZ) + 6 u(\, Z,p) = 0. Since every semistable P becomes polystable
after finitely many (essentlally different) admissible transformations, P defines a
G-bundle Gr(P). Two G-bundles P, and P, are called S-equivalent if Gr(P;) ~
Gr(P,) are isomorphic as G-bundles.

Remark. The concept of S-equivalence is defined for Higgs tuples analogously.

4.2. Lemma. Let n be as in 1.52. Let ((E,, (EY )1[sa]][|S|]> (4, @, L) =1t be a

(8, &, 07)-semistable Higgs tuple for admissible wezghts (07151180~ Let A be a one-
parameter subgroup of 84 with associated flag (V*, o)k and p(X, Gies, (1)) = 0,
then MES(F® oF)+6-u(F*, o @) = 0 holds for the induced filtration (F*, o)y
of E =@, 4 EZ* and FFeoh = Fk hY(FF(n)) = 0. If (F*, o)y is a filtration
such that M;af(Fk P+ u(F* ok o) = 0 then u(\, Gies(t)) = 0 holds for any

induced one-parameter subgroup X\ with associated flag V¥ = H°(F*(n)).

Proof. If 1, (X, Gies(t)) = 0, then by part (i) = (ii) of 1.52 we see that 0 =
fix (A, Gies(t)) > MES(F*, &%) + 6 - p(F*, &% ) > 0. In particular since 0% > 0
(Tor 1) implies V¥ = H°(F*(n)) and therefore &* = o. Thus we have F*<oh = p*
and h'(F*(n)) = 0. On the other hand if MJS(F*, o*)+6- u(F*,oF, ) = 0 then

F* is globally generated for big n > 0 and the main calculation (M1) shows that
fy (A, Gies(t)) = 0 holds for any induced one-parameter subgroup A of . O

Let ¢ = (qa)aja)] € XaeaQa be the underlying quotient of the vector bundle
P, Ea corresponding to a point ¢ in Tpap. Let A = (Ag)qja) be a one-parameter
subgroup of 8% with associated flags (VF)g,,) and weights (v¥)g,) such that
iy (A, Gies(t)) = 0. Then g, induces a filtration of E, by (generated) subbundles
EZj, 1 < k < m,® and therefore a one-parameter subgroup \ = (5\,1),1[|A|] Cr —
X aea Gl(rq, C)

"Recall that we order weights of the representation o descending while the 77 are ordered
ascending.
6Note that by the previous result 4.2 v, = my.
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together with a reduction Z : X — E/QXGGA Gl(rmc)(}\). Now let
iha * )
9i = S v (0aga) € Qx,_, cipray M)
0 Irnamasa

be the transition functions of @, ., F,. Locally ¢ is of the form

i i
A1, " Qmg,a
¢ = <qi)a ¢ = . : C]ziz c Crk(EE /B ) xdim(Vi/Va ™)
a/ar Ha . . ’ N
i
0 qmama,a
w. 1. t. a suitable local trivialization over some U;. Hence
; 1 2 ; 1 maq .
i Yaa . ol Ya=Va® . gi
1, 27" G124 2l Qg a
- O q21.q T Z"/g_%’lna . qé
L\ — 5 Mq,a
Xa(2)geA; " (2) = :
i
0 . 0 @

Since q(V;}) = Ej we see that (g}, ,)ipm, e i of rank rk(EY) independent of z. In
particular

Qﬁ,a 0

lim (Aa(2)g3A; ' (2)) = '

Z—r00

0

Grnatmia,a

has full rank. Finally note that by construction (A\,(2)gi\;"(2))agap and
(g, (2))agiay: define the same point in X .4 Q, for all z € C* (since they have the
same kernel) and that (A,(2)g )\, (2)); induces transition functions \,(2)g?\;*(2)
as

Aa(2)gI 0 (2N (2) @A (2) = Aal2)g a0, (2) = Aa(2)diA, (2)-
The special form of the transition functions (97)aga) € @x._, cy, C)(S\) implies
now that
2 0 PG 0
g
a
0 Y 0 P
i e A R L g
Iila # " 12,0 < Jima, ij 0
o R At g% 9114
_ 22,a ' 2Ma,a z—>_oo> .
0 ' ij ' 0 g%amma

gmama,a
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as 7L < ¥ for I < k. Thus lim, o0 (A(2)agZ A(2); aga) € L ev@ir. c).(A) and

a

lim, . gA(2) ! is isomorphic to df},(E).
Remark. A different proof without using cocycles is given in [HL10], 4.4.3.

Let ¢ be the underlying Higgs field of our point ¢ € T and denote by A(z)¢ the
Higgs field to A(z2)t. For the Higgs field we proceed as above: (¢((g%),)):; are the
induced transition functions of E.. If ¢ o \ is the induced one-parameter subgroup
with induced filtration (F*); of E, rk(E,) = dim(WW) and induced weights v*, 1 <
k < m. the same calculation as above shows that ¢,,A '(z) converges against
dfgg%(Eg) ~ df},(E).. We find an index ¢ such that ¢l # 0 for some 7 and
such that (¢'); = (0 ... 0 ¢ ... SOihm(W))i defines the Higgs field ¢. Then

A(2) - corresponds to - g(A(2)7!) = <O .. 0 zﬂéogofo . Z*V?cgoéim(w)>.7

Further denote by (I"7),; the transition functions of the line bundle L. Since scalar
multiplication becomes the identity on T8, 27 (\(2) - ¢) corresponds to

<O o0 @l z750*7§nggpéim(w)) o, (O gl 0 O) =: @l #0.
Note in particular, that

p's(g”) =17

= 20 (A(2) s(M2)g" A1 (2) = 2 1TpTc(A(2) ™) = 1727 @s(A(2) ).
Hence lim, , \(z) - t ~ df;}(E, o, L) := (dfii(E), wat, L).
We still need to check the parabolic contribution. Again denote by A(z)q¢¥ the

parabolic quotient of A\(2)t € T,,. Choose a basis corresponding to our fil-
tration (F¥)akpr.) and consider ¢ = (qéj)g[r _, the parabolic quotients with

EY = ker(q?). Let k¥(l) be the smallest index k for which the [-th row

¢ = (qi{t)t[ra] acts non-trivial on F¥|,;; let m%(l) = min{t : qut # 0}. Let
- 0j 0 (o pidy , .
X (2) = diag(z7" ", ') with respect to our chosen basis. Thus again
_Z .. ~ _1
Aa(2)dg’ - Aa(2)
1j e 1
0 0 qa,mgj(l) < Yarq
a— fijy' kgj("'airlaj)— ma a— (izjv'
0 - 0 Z,méj (rjafr(iz,j) o e 7 . q;,r'lT ’
oo g = ¢ = WAz = (PAE)THAEAR)TY) and ¢igY = @ =

A THA(2)g7 A (2) ) = @I A(2)
8A global multiplication of the values of ¢ by a scalar is compensated by an automorphism
of L.
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cee L e
0 0 (1), 0
Z—r 00

i -
0 ... 0 e Trad e 0
qa,ng (ra—rd

Observe that there might be more than one non-zero entry in each row.

Finally note that ker(X,(2)g¥ - Ay(2)7!) = ker(q¥ - \o(2)7?) for all z € C* as well
as dim ker(lim,_,o X, (2)g% - Ao(2)™") = dimker (¥ - \,(2)™") = dim ker(¢¥) = 7%,
Therefore we receive lim, oo A(z) - t ~ df}(E, (E) 51180 @5 L)-

4.2. S-EQUIVALENCE OF PRINCIPAL BUNDLES
We need the following consequence of 3.1:

4.3. Lemma. Let (P, (s?);qs, ¢, L) be a semistable projective parabolic ¢-Higgs
bundle with associated Higgs tuple (E, (E")si1j1s) Pouptes L) (cf. 2.25). For every
filtration (F*, %)y such that Mé;%’f(Fk, )+ 6 w(F* o, puuple) = 0 there is
an associated one-parameter subgroup X\ of G and a reduction Z : X — P/Q¢(N)
such that Még’f()\,gf) + 0ps - (A, Z, ) = 0 and vice versa.

Proof. In the proof of 3.1 we have seen that for e,5 big enough either
((F* ¥ @) = 0 or the strict inequality M (F®, a¥) 4 6, - u(F*, oF @) + eps
w(F* o ;) > 0 holds. Hence for a suitable e, the equality Méiﬁ’g(Fk,ak) -+
Ops - (E* a% ) + eps - p(F* 0% ;) = 0 implies already p(F* oF ¢,) = 0.
By 2.29 we get a one-parameter subgroup A of G together with a reduction
X : X — P/Qc()\) that correspond to (F*,a¥)ypn. In particular 3.1 implies
that My (A, Z) 460 - W\, Z, ) = 0. O

The lemma directly implies that admissible deformations of a semistable projective
parabolic ¢-Higgs bundle P directly correspond to admissible deformations of the
associated Higgs tuple.
We still need to extend the concept to the affine case. Apart from the Higgs field
we define df),(P, (s’);ys)) as before. Then admissible transformations commute
with the transition from affine parabolic G-bundles to projective parabolic G-
bundles. This property will extend to p-Higgs bundles if we can define (gpj’df)j[m]
df
)

in such a way that (¢¥)e, = (peo, ). First recall that as above we get df),(P)e, ~

dffziz;(PSOL). Moreover we have seen in the proof of 3.13.(ii) that <p5m|®m iy 0 #
S =01

0 & ¢ P % 0,V1 < j < m (v # 0) where (F!); is the filtration associated to
¢’ ovo X and (Fj); the filtration associated to ¢/ o A. Thus we already see that
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4.4. Lemma. Given an affine parabolic o-Higgs bundle (P, (s7);1s1, (#', L')ifm))

with associated projective parabolic (s o t)-Higgs bundle (P, (s7);1s1, Peors L),
then the following two conditions are equivalent for every reduction Z to a one-
parameter subgroup \ of G:

(i) Mé}iz’g(/\,%) = 0 whenever u(\, %, p) <0,
(it) Mpar®(A %) = p(\, Z. 0cer) = 0.

Furthermore we see that for u(\,Z,p) < 0, i. e. ¢’

¥ Z 0 = v/ >0, the

condition p(X, Z, (peo)™) = 0 implies that (¢e,)* = (emD/ 9 YWe conclude
lem (u?) /u®

that (o™, = g and thus we define ¥ = 0. As might be expected this
also implies, that for ¢ = 0 we have to define ¢ := 0. We are left with the more

0
interesting case of p(\, %, ) = 0, in which there is at least one v/ = 0 such
that ¢/ o # 0. Using again that @ ri # 0 already implies vi > 0 we see that in

F-

o, 70

J

terms of the zero weight subbundle F% of Peo, (¢c0)™ is induced by ¢,

SOL

Therefore (¢ ., will be defined as the trivial extension of the homomorphism on
30 09— m . 0
D, F/Fy " which is induced by DL, ¢’ . Here F}" is the subbundle
Dis F;
i? . ,
corresponding to 7/ = 0 or 0 if no such weight exists for j. Thus @4 : P, — L/
is defined.

4.5. Definition. We call an affine parabolic o-Higgs bundle (P, (s);ys, ¢)
polystable if it is semistable and df}, (%, P, (s)j1sps ) = P for all reduc-

tions & to every one-parameter subgroup A\ of GG such that Méﬁ’g(}\,%) =0
and u(\, Z,p) < 0. Two affine parabolic p-Higgs bundles are called S-equivalent
if they become isomorphic as affine parabolic o-Higgs bundles after a series of
admissible deformations.

By construction of the admissible deformations and the results of this chapter we
get (for a suitable choice of 0,5 and e,) the following theorem.

4.6. Theorem. Two semistable affine parabolic o-Higgs bundles are S-equivalent if
and only if the associated asymptotically semistable projective parabolic (sot)-Higgs
bundles are S-equivalent, if and only if the associated Higgs tuples are S-equivalent,
if and only if the corresponding points in the respective parameter scheme are GIT-
S-equivalent (cf. 1.58).

[ 0
9In this case the subbundle corresponding to the zero weight is just O'S™“)/*" @0 since any

other subbundle in the filtration corresponds to a positive, therefore bigger weight.



APPLICATIONS

In this final paragraph we will reformulate the (semi)stability concept of p-Higgs
bundles in a way more suited to the formulation of a Kobayashi-Hitchin correspon-
dence in 5.2. Furthermore we will recover tame parabolic Higgs bundles as well as
Hitchin pairs as a special case of our construction.

5.1. REFORMULATION OF THE SEMISTABILITY CONCEPT

Let G be a reductive algebraic group and g = Lie(G) its Lie algebra. Recall that
for every reductive group G there is a compact real Lie group K such that G is
the complexification of K. In particular g = £ @ it for ¢ = Lie(K). Furthermore,
the Lie algebra g is reductive, i. e. it decomposes as 3 @ gss' resp. tad(g) = 3,
where gss = [g, g is the semisimple part of g and 3 = Lie(Z(G)) for the center
Z(G) € G2 Given a maximal torus T' C G with t = Lie(7) we denote by
tc = t ®r C the complexification. Moreover there is a non-degenerated invariant
symmetric bilinear form ( -, - ) on h = 3 @ ¢ where ¢ is the Cartan subalgebra
tc N Oss of gss-3

Let A be a one-parameter subgroup of G then X, = W‘ citnN (3o
=0

for a maximal compact subgroup K and a maximal torus 7" with t = Lie(T).
By definition of the exponential map we have Qg(\) = P = {g € G

limy . exp(tX,)gexp(—tX,) exists}. For the dual representation g := o : G —
GI(W") recall that Rad(p) = Rad(g) = ker(g|lraag)? C Rad(G) € Z(GQ) is a
compact connected normal subgroup and hence graq(s) < 3 is an ideal. Now an el-
ement of Hom(C*, Rad(0)) corresponds to an element of i€gaq(s), Krad(z) maximal

1{OV90], Chapter 1, §4, theorem 6.

2Note that there are (non-reductive) algebraic groups (like C) that have a reductive Lie
algebra.

3Onishchick, Vinberg, [OV90], Chapter 1, §9, theorem 9.6 and the following remark.
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compact subgroup in Rad(g) and Lie(KRad(s) = trad(3)-" KRad(g) is contained in a
maximal compact subgroup Ky of Z(G), traae) = tz () := Lie(K#()), and
we have ifraaz) = {§ € iz () : do(§) = 0}.> Thus a one-parameter subgroup of
Rad(g) corresponds to an element of ker(dp|;). Using the non-degenerated bilinear
form on £ we get it = i€gaq(5) @ il for some Lie algebra [. In particular non-trivial
one-parameter subgroups C* — G/ Rad(p) correspond to elements of the comple-
ment € \ ker(dp|;).

Now denote by W, = {w" € W' : limy o exp(tX))w" exists}. Since Wy is
Qc(N)-invariant we get for every reduction #Z : X — P/Qg(\) a subbundle
Prg = (Z"(P)) Xglg, Wi C (Z°(P)) xg W' == Ps. A section ¢ : X — P;® L
maps to Py; ® L if and only if u(\, Z,p) < 0 for the to ¢ associated homo-
morphism ¢ € Hom(P,, L): A and # induce a filtration (F}), of P,. Denote
by wj- the eigenvectors of p(A) to the eigenvalue 27", Then locally over some
open set U we get FF = (w) : i < k) ® Oy and p(\, Z,¢) < 0 if and only if
p(wj) = 0 for all v* < 0 and every U. But then lim, .. 0(A(2))0.(3, ; afwh) =
im0 ¢2(32; a}zﬂiwé) = D i yio(lim. o z’“’ia§g0x(w§)) exists for all o/ € C,
Va € U and every U. On the other hand if cpx(w;g) # 0 for at least one v < 0 and

one jo, then lim, @()\(z))qu(aiojow;g) = lim, 0 277 cpx(w;g) does not exist.
5.1. Definition. Let o ¢ ity (). An affine parabolic p-Higgs bundle
(P, (s)jusps ) is (c, 77)-semistable if for every one-parameter subgroup A of

G and every reduction Z : X — P/Qq()\) such that p € H(X, Py ;® L):
deg Po(xa, ) — > (7 X¥') + (@, X5) > 0.

jixies
(P, (s7)jqsy, ¢) is (o, 77)-stable if it is (o, 77)-semistable and if deg Py (x», %) —
> jmies(T " xT) + (o, X)) > 0 holds for every one-parameter subgroup A of G
such that X ¢ ker(dol;).

Remark. For some applications like the Kobayashi-Hitchin correspondence it is
advantageous to check (semi)stability against (strictly) anti-dominant Lie algebra
characters of p. Compare with [GGM12| or |[LT06] for a detailed account of the
semistability concept in this context. Note that not every anti-dominant character
x of p comes from a character of P. However a (positive) integer multiple of x
does (|GGM12|, section 2.6) and the semistability criterion stays the same.

Remark. The (semi)stability concept above directly generalizes to I'-Higgs bun-
dles. More precisely, let I' be a connected real reductive Lie group with com-
pact subgroup K and Cartan decomposition Lie(I') = ¢ @ p. Then G = K¢ is

1Rad(G) = Z(G)° c Z(G).
®For a matrix group & € tRad(p) if and only if exp(t€) € ker g|raag, V¢t € R if and only if
id = 9|rad ¢ exp(t&) = exp(t - do|;(€)), VYt € R.



5.2. TAME PArABoLIC HIGGS BUNDLES | 115

reductive. Let ¢ be the complexified isotropy representation (to the Cartan de-
composition) G — Gl(pc). Then a (semi)stable affine parabolic ¢"-Higgs bundle
(P, : Py — wx,(s7);ys))) is called a (semi)stable I'-Higgs bundle. A detailed
discussion of (semi)stability in the case I' = Sp(2r,R) can be found in [Sch0§|,
2.8.4 or [GGM13).

Example. For a specific choice of G we are sometimes able to simplify the semista-
bility concept. For example for the groups G = SO(r,C) and G = Sp(2r,C) we
consider an Ad-Higgs vector bundle (E, ¢) with an additional non-degenerated bi-
linear form B (symmetric or alternating). We call a subbundle F' C E isotropic if
FcFt:={ee E:Ble f)=0,Vf e F} and parabolicly isotropic if additionally
Fi9 c P9t .= {e € EY : Ble,f) = 0,YVf € F}. A G-Higgs bundle is now
(semi)stable if for every non-trivial parabolicly isotropic ¢-preserved subbundle
F C E we have par-deg(F) < par-deg(FE).®

5.2. TAME PARABOLIC HIGGS BUNDLES

The attentive reader might have noticed that in all previous constructions we did
not require any interaction between the Higgs field and the parabolic filtration.
Parabolic Higgs vector bundles were introduced by Carlos Simpson in [Sim90] as
follows: A tame parabolic Higgs vector bundle (E, (EY);ys). ¢) on a punc-
tured Riemann surface (X, S) is an algebraic/holomorphic vector bundle £ on X,
parabolic filtrations (E);s) of E|,;, @7 € S and a Higgs field ¢ : £ — EQuwx (D)
such that ¢(EV) C EYQux (D) foralll <i< s, 2/ € Sand D =Y ; 27 the di-

visor on X associated to S. (E, (E¥);i1s), @) is semistable if pa;?%p < parrlg?%E
holds for every ¢-invariant subbundle F' C E, i. e. ¢(F) C F @ wx (D).

We would like to recover the tame parabolic Higgs vector bundles as a special
case of affine parabolic Ad-Higgs bundles (resp. a slight modification thereof).
First note that ¢ gives rise to a section H°(X, End(F) ® wx(D)) and that
Ad(E) ~ End(E).” Using the contragredient representation Ad we get a mor-
phism ¢ : Pgy — wx(D).® By 5.1, the corresponding affine parabolic Ad-Higgs
bundle (E, (EY);j51s1: ¢) is (semi)stable for trivial x if?

> a¥(par-deg(E) rk(F*) — par-deg(F*) rk(E)) (>) 0

bsee e. g. |[GGM13] or Arroyo [Arr09] for the non-parabolic version. The limited choice of

reducing parabolic subgroups of Gl(r,C) coming from G also restricts the choice of (pointwise)
parabolic filtrations and weights.

"If (g%);; are the transition functions of F, than the Ad(g"”)-action on C"*" is identified with
the ((¢)~1)* ® (¢"9) action under C"*" ~ C"".

8Note that for a semisimple Lie group Ad is a self-dual representation.

9see 2.20.
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holds for every weighted filtration (F*, a*)y, (as in 1.6) of E such that ¢ €
HY(X, Pyxaq @wx(D)). But ¢ € H*(X, Pyaq @ wx(D)) if and only if the endo-
morphism associated to ¢ maps ¢(F¥) C FF@wx (D). To see the last equivalence,
note that gyaq = {¥Y € g = C" : lim, .o, A(2)Y\(2) ! exists} for the one-
parameter subgroup A associated to (F*, a”)y,). Locally at z € X we get in a
basis of eigenvectors of A and for not necessarily different weights (77) 1

Hm A(2) (%) A (z) ™ = lim (27" @M |, ) exists < @[, = 0, V4F > 4.
Z—00 Z—00

Thus ¢ maps to the Qgicny(A)-subbundle given by the reduction % corre-
sponding to (F*, oF); and therefore ¢(F*) C F* @ wx(D) for all k. Since
S, of(par-deg(E) rk(F*) — par-deg(F*) rk(E)) (<) 0 if and only if at least one
par-deg(E) rk(F*) — par-deg(F™)rk(E) (<) 0 we see that (E, (E9);1,1s1: @)
is (semi)stable if and only if it is (semi)stable as a tame parabolic Higgs vector
bundle.

To get a moduli space for tame parabolic Higgs vector bundles we need to account
for the condition ¢(E") C B @ wx (D).

For o = Ad : GI(C") — GI((gl(C"))") ¥ there are universal morphisms
P+ EUpr — Sy @ Tx(wx (D)) and universal quotients qé{par NGO O

%’ﬁga Thus there is a closed subscheme ﬁlpar C Apa where the restriction of

(qéfpar ® idrs (wy (D)) © Pty tO ket qé{par vanishes. The universal properties 1.22 and
1.23 still hold for the natural extension of the concept of a Y-family to our new
objects. Since the G4-action leaves ﬁlpar invariant, the result of 1.25 holds for ﬁlpar,
too.!! Since Q[l(osa)f // Ga exists as a quasi-projective scheme, so does Qlf)‘z)rs / Ga.
The concept of a tame parabolic Higgs vector bundle extends to principal bun-
dles as well. Given a line bundle L a tame parabolic twisted G-Higgs bundle
(P, (s7);ys): ¢) is a parabolic principal bundle (P, (s?);4s;) on X and a sec-
tion ¢ € H(X, Pya ® L(D)) such that ¢[,; maps to (Prag ® L(D))|.s."* Ob-
serve that Z(G) C Qg(77) and therefore sé(pm_ defines a universal morphism
Sa 1 (Papuaa/ Ad(Q(77)) @ w3 (L(D)))]as — 7x(L(D))]zs on A x {27} Again
we find a closed subscheme where the composition with ¢, vanishes.

Remark. Observe that like in the general construction we may associate a projec-
tive object to our affine object: a tame parabolic G-Higgs bundle (P, (s7);1s, ¢)

1ONote that the adjoint representation is homogeneous.
"!Observe that since ga,,, : V ® Ox(—n) — &u,,, is an epimorphism, (g5 = ® idrs (wx(p))) ©

DA o @ . = 0 (g, @idrg (wx (D)) © Ppar © Gpar er 4 ot 0. Now Gy4-invariance
is obvious.

12Gometimes these objects are called wx(D)-pairs to distinguish them from those
(P, (s7);ys): @) that satisfy the stronger (nilpotency) condition ¢[,; in ((P xaq {X € g :
Ad(e*+)X — 0}) ® L(D)) |-
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has an associated Hitchin pair (P, (sj)j[m ¢, 1). A Hitchin pair is a tame
parabolic G-Higgs vector bundle (P, (s7);qs), ¢) plus a complex number h. Two
Hitchin pairs (P1, (s]);, ¢1, k1) and (Py, (83);, ¢, ha) are equivalent if there is
a bundle isomorphism ¢ : P, — P, that respects the parabolic reductions and a
complex number z € C* such that hy = zhy as well as z - (Ad(¢)) ®1idy) o ¢ = ¢o.
A Hitchin pair (P, (s?);, ¢, h) is (semi)stable if the associated tame parabolic
Higgs vector bundle (P, (s7);ys, ¢) is (semi)stable and if in the case h = 0, there
is no reduction & to a one-parameter subgroup A such that p(o, N\, %) < 0. If
G is semisimple ¢ € H°(X, Pag ® L(D)) induces a ¢ € Hom(Paq, L(D)) under
Ppq =~ Py4. In particular, since the adjoint representation is homogeneous, we get
an associated projective (0"@®Ad)-Higgs bundle with Higgs field (ht?)®(1'p), which
obviously satisfies asymptotic (semi)stability, i. e. 3.13.(ii). Thus the projective
moduli space of Hitchin pairs exists.

Remark. Yet another application of our general construction are v“-parabolic
Higgs bundles ([IIS06i], [IIS06ii|): Let (v*);;;1s) be a tuple of complex numbers
such that deg(F) + Z'Sl S v¥ =0. A v¥-parabolic Higgs bundle is an affine
parabolic Ad-Higgs bundle (E, (EY);y 515, ¢) of parabolic type (%) = (k)
with structure group GI(C") such that (res,;(¢) — v")(EY) C E" for all 4, .
We consider ¢ as a homomorphism F — E®wx (D) and use the classical stability
condition. Again we have universal morphisms ¢y, : €a,,, = Eayp, ® X (wx (D)),
i = %” J _and a closed subscheme lear C Apar

universal quotients qQ[ B
where the restriction of (qmmr ® idrs (w( D))) (rebx](qﬁm?ér) — ") to ker qQ‘par van-
ishes. As a result the moduli space of (semi)stable v*-parabolic Higgs bundles
Q,[(S)S . . . .

var /| Ga exists as a quasi-projective scheme.

5.3. THE KOBAYASHI-HITCHIN CORRESPONDENCE

Let ok : K — U(W) denote the unitary representation to po. Consider the open
Riemann surface X = X\ S. Given a reduction Z : X — P/K we have (%*P) x,,
W ~ P x, W and hence a chosen hermitian structure on W induces a hermitian
structure h on P x,W. Let hy, be a hermitian metric on L, then h® hy, is a metric
on P,® L. Let ¢ € H'(X, P, ® L) and ¢""*" ¢ H'(X (P, ® L)") the dual w. r.
t. h® hr, then i¢p ® ¢""®M is skew-hermitian as an element of HU()O(, End(P, ®
L)) ~ H(X,End(P,)"), i. e. defines an element of H(X, (P, X aqu)"). The dual
homomorphism doj, : u” — € defines the moment map doy (—%¢ ® ¢""¥M) €
HO(X, ((#*P) x 44 £))* and the non-degenerated bilinear form on ¢ identifies
doy (—%¢ ® ¢""¥M) with a section pz(¢) € HO(X, (Z*P) X 44 t).

13¢f. |[Kir84], Lemma 2.5. for the case of a projective action.
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We are now able to state the Kobayashi-Hitchin correspondence for stable affine
parabolic p-Higgs bundles.

5.2. Theorem. (Kobayashi-Hitchin correspondence) Let o € ity ) and
(P, (s))jusp: . L) be a (o, 77)-stable affine parabolic o-Higgs bundle. Then
there is a unique reduction % : X — P/K such that

A(Fz) + pz(¢) = —ia

as an equality in (Z*P) X aq t , where Fp denotes the curvature of the (unique)
Chern connection on P w. r. t. .1

Remark. The Kobayashi-Hitchin correspondence extends to polystable pairs. More
details can be found in [GGM12|. In particular [GGM12| provides a proof of the
Kobayashi-Hitchin correspondence in the non-parabolic case.

The Kobayashi-Hitchin correspondence originates in the 1960’s when M. S.
Narasimhan and C. S. Seshadri proved a first correspondence between irreducible
flat unitary bundles and stable vector bundles of degree 0 on a compact Riemann
surfaces (|NS65]). At the beginning of the 1980’s Kobayashi [Kob80] (and indepen-
dently Liibke [Liib82]) proved, that a holomorphic bundle on a Kdhler manifold
that admits a Hermitian-Einstein metric, is already stable. The reverse state-
ment conjectured by Kobayashi and independently by Hitchin was consequentially
proved by Donaldson in the case of compact Riemann surfaces and algebraic sur-
faces (|Don85], [Don87|). A famous result by Uhlenbeck and Yau established the
correspondence on every K&hler manifold ([UY86|). Higgs bundles where first de-
fined in 1987 by Nigel Hitchin, who extended the until then known correspondence
to relate Hermitian-Einstein metrics to stable Higgs bundles (|[Hit87]). Parabolic
Higgs bundles finally where introduced by Carlos Simpson in [Sim90|. There have
been various further extensions and modifications of the original correspondence,
e. g. [Cor88|, [Bradl], [Ban96|, [Biq97|, [Mun00|. The interested reader may find
a much more complete account of the available literature in most books on the
topic. Recent results include [GGM12|, [LT06], [BS11] or [Moc07]|. References for
geometric properties of the moduli space of Higgs bundles may be found in the
introduction.

1A is the dual Lefschetz operator.
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