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A Abstract

In this thesis we study moduli spaces of decorated parabolic principal G-bundles
on a compact Riemann surface X.
In [Sch08] Alexander Schmitt constructed the moduli space of a�ne %̃-Higgs bun-
dles1 (P, ϕ) consisting of a principal G-bundle P on X and a global section
ϕ ∈ H0(X,P%̃ ⊗ L) as a GIT-quotient. Here L is a line bundle on X and P%̃
is the vector bundle associated to P by a rational representation %̃ of the reduc-
tive algebraic group G. %̃-Higgs bundles are generalizations of several well-studied
objects, such as G-Higgs bundles, Bradlow pairs or quiver representations.
In this work we generalize this GIT-construction of the moduli space of a�ne %̃-
Higgs bundles to the case of a�ne parabolic %̃-Higgs bundles. A parabolic structure
on P over a �xed �nite subset S of punctures xj of the compact Riemann surface
X is given by reductions sj : {xj} → P ×X {xj}/P j; P j a parabolic subgroup
of G. Our main result shows the existence of the resulting moduli space Mpar of
decorated parabolic bundles as a quasi-projective scheme over C.
For a suitable choice of %̃, i. e. %̃ the adjoint representation of G on its Lie algebra
g, the moduli space of parabolic G-Higgs bundles (see [Sim94]) is obtained from
our construction by slight modi�cations of the semistability concept. Other im-
portant applications include the construction of a (generalized) projective Hitchin
morphism from Mpar into an a�ne scheme Hit as well as an extension of the
results of Nikolai Beck [Be14] on moduli spaces of pointwisely decorated principal
bundles.

1An a�ne Higgs bundle is called "bump" in [Sch08].



A. | Zusammenfassung

Zusammenfassung

In der vorliegenden Dissertation untersuchen wir Modulräume dekorierter parabo-
lischer G-Hauptfaserbündel über einer kompakten Riemannschen Fläche X.
Alexander Schmitt konstruiert in [Sch08] erstmals den Modulraum a�ner %̃-
Higgsbündel2 (P, ϕ) bestehend aus einem G-Hauptfaserbündel P über X sowie
einem globalen Schnitt ϕ ∈ H0(X,P%̃ ⊗ L) als GIT-Quotient. Hierbei bezeichnet
L ein Geradenbündel auf X und P%̃ das durch eine rationale Darstellung %̃ einer
reduktiven algebraischen Gruppe G zu P assoziierte Vektorbündel. %̃-Higgsbündel
enthalten als wichtige Spezialfälle unter anderem G-Higgsbündel, Bradlow-Paare
und gewisse Quiverdarstellungen.
In dieser Arbeit erweitern wir diese GIT-Konstruktion des Modulraums a�ner
%̃-Higgsbündel auf den Fall a�ner parabolischer %̃-Higgsbündel. Eine paraboli-
sche Struktur auf P über einer vorgegebenen Menge S von Punktierungen der
kompakten Riemannschen Fläche X ist gegeben durch Reduktionen sj : {xj} →
P ×X {xj}/P j; P j ist dabei eine parabolische Untergruppe von G. Als Hauptresul-
tat zeigen wir, dass der resultierende Modulraum Mpar dekorierter parabolischer
Hauptfaserbündel als quasi-projektives Schema über C existiert.
Nach kleineren Modi�kationen des Semistabilitätsbegri�es ergibt sich der Modul-
raum parabolischer G-Higgsbündel (siehe [Sim94]) für eine gewisse Wahl von %̃, d.
h. für %̃ die adjungierte Darstellung von G auf ihrer Lie Algebra g, als Spezialfall
unserer allgemeinen Konstruktion. Weitere wichtige Anwendungen beinhalten die
Konstruktion einer (verallgemeinerten) projektiven Hitchin-Abbildung von Mpar

in ein a�nes Schema Hit sowie eine Erweiterung der Ergebnisse von Nikolai Beck
[Be14] zu Modulräumen punktweise dekorierter G-Hauptfaserbündel.

2Ein a�nes Higgsbündel wird in [Sch08] mit �bump� bezeichnet.
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I Introduction

I.1. Parabolic structures of vector bundles on a punctured Riemann surface were
probably �rst de�ned by Mehta and Seshadri in [MS80]. Their extension of a
classical result by Narasimhan and Seshadri [NS65] identi�es reductive unitary
representations of the orbifold fundamental group πorb

1 (X) with semistable vector
bundles of parabolic degree 0. The bijection respects the two natural concepts
of equivalence, namely conjugation of the representation and isomorphy of vec-
tor bundles and thus descends to a homeomorphism on the corresponding moduli
spaces. Bhosle [Bho89] extended the result to connected reductive complex alge-
braic groups.
Carlos Simpson introduced in [Sim90] the concept of parabolic Higgs bundles and
related tame semistable parabolic Higgs bundles of degree 0 to certain local sys-
tems, �at C∞-bundles, as well as tame harmonic bundles, i. e. solutions of a
Hermitian-Einstein equation. The corresponding moduli spaces (see [Sim94]) pos-
sess a rich geometric structure. They occur as a hyperkähler quotient, form a
completely integrable Hamiltonian system, where the leaves of the corresponding
Lagrangean foliation are just the �bers of the Hitchin morphism, and admit a
projectively �at connection.1 These properties lead to further applications, for
example in the Geometric Langlands Program (e. g. [DP09], [GW08]) or as ex-
amples of a SYZ duality (e. g. [BD12]).
A rank r Higgs vector bundle is a rank r vector bundle E on X together
with a Higgs �eld ϕ : E → E ⊗ ωX . The Higgs �eld amounts to a section
H0(X,End(E) ⊗ ωX) ' H0(X,EAd ⊗ ωX) where EAd is the vector bundle which
is associated to the corresponding Gl(Cr)-bundle E by the adjoint representation
Ad : Gl(Cr) × gl(Cr) → gl(Cr) on the Lie algebra gl(Cr) = Lie(Gl(Cr)). If we
replace E by a principal G-bundle P , the adjoint representation by an arbitrary
linear representation %̃ of G and ωX by an arbitrary line bundle on X, we get an

1for the non-parabolic case see e. g. [Hit87], [Hit90], [ADW91] and for the parabolic case see
e. g. [Fal93], [ScSc95].
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a�ne %̃-Higgs bundle. The moduli space of a�ne %̃-Higgs bundles has been con-
structed by Alexander Schmitt in [Sch08]. Apart from Higgs vector bundles there
are several other well-studied objects that occur as instances of %̃-Higgs bundles,
for example Bradlow pairs, conic bundles or augmented quiver representations.
More examples and details on how these objects look in terms of %̃-Higgs bundles
may be found in great detail in [Sch08].
Moreover the Kobayashi-Hitchin correspondence extends to the case of (non-
parabolic) %̃-Higgs bundles ([LT06] or [GGM12]). Further applications include
for example Kapustins work on mirror symmetry [Kap06].

Main Results

I.2. Let X be a compact Riemann surface, S a �nite subset thereof and G a
reductive algebraic group over C. Let Y be a scheme of �nite type over C and
P j ⊂ G parabolic subgroups for each xj ∈ S. A Y -family of parabolic G-bundles
is a principal G-bundle PY over Y ×X together with reductions sj : Y ×{xj} →
PY ×X (Y ×{xj})/P j. By a result of Drinfeld and Simpson2 we may assume that
PY is locally trivial w. r. t. the product of the étale topology on Y and the
Zariski topology on X.
Given a representation % : G → Gl(W ) and a line bundle L on X a Y -family
of (a�ne) parabolic %-Higgs bundles (or %-bumps) is a Y -family of parabolic G-
bundles together with a homomorphism ϕ : PY,% → π∗X(L).
Themain result 3.19 of this thesis is the construction of a quasi-projective coarse
moduli space for the functors3

Ms(s) : SchC → Sets

Y 7→


Isomorphism classes of
Y -families of (semi)stable

a�ne parabolic %-Higgs bundles

 .

Moreover a projective moduli space for projective ς-Higgs bundles4

(P, (sj)j[|S|], ϕ, L) is constructed in 2.40 for every homogeneous representation ς
and non-trivial ϕ. The results will be applied to obtain among others:

- the moduli space of parabolic G-Higgs bundles in the special case when % is
the coadjoint representation of G on the dual g � of its Lie algebra g;

- the projective moduli space of parabolic Hitchin pairs;

- an extension of the construction of Nikolai Beck (see [Be14]) of moduli spaces
of pointwisely decorated principal bundles;

- a generalized Hitchin morphism.
2[DS95].
3SchC denotes the category of schemes of �nite type over C.
4cf. the notational remarks below.
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Synopsis

I.3. An a�ne parabolic %-Higgs bundle (P, ϕ : P% → L, (sj)j[|S|]) gives rise
to a projective parabolic ς-Higgs bundle (P, ϕς : Pς → L̃, (sj)j[|S|]) where ς is
a homogeneous representation of G constructed from % and L̃ is a line bundle
on X depending on L. Projective parabolic ς-Higgs bundles on the other hand
identify under a to be constructed closed embedding ι : G ↪→×a∈A Gl(Cra) with
projective ς-Higgs bundles for a homogeneous representation ς of ×a∈A Gl(Cra).
The properties of the homogeneous representation ς �nally de�ne a resulting �nite
tuple E = (Ea)a[|A|] of vector bundles Ea together with the global homomorphism
ϕ : (E⊗u)⊕v → det(E)⊗w ⊗ L for certain integers u, v, w. We call these objects
Higgs tuples. A parabolic Higgs tuple additionally admits parabolic �ltrations,
i. e. vector space �ltrations of the stalks E|xj over the punctures xj ∈ S. These
are of particular interest to us since the moduli problem for parabolic Higgs tuples
can be solved by classical Geometric Invariant Theory as originally introduced by
Mumford in [MFK]. We extend the approach of [Sch08] to the parabolic situation.
The �rst two sections are devoted to the construction of a parameter scheme for
Higgs tuples. If we wish to construct a parameter scheme for Higgs tuples we
�rst have to show that those vector bundles Ea (of �xed rank ra and degree da)
underlying a Higgs tuple live in a bounded family. While this is not the case in
general, the subfamily of vector bundles underlying a semistable Higgs tuple is in
fact bounded. Now the vector bundle part of a Higgs tuple is parametrized by a
tuple of (open subsets of) Quot schemes Qa and we are able to build a parameter
scheme T for non-parabolic Higgs tuples. Adding Graÿmannian varieties for every
puncture results in a parameter scheme Tpar for parabolic Higgs tuples. In section
three we check the universal properties of Tpar necessary to construct moduli spaces
as quotients of the given parameter scheme. Qa comes with a natural group action
GA that extends to Tpar. In order to realize the moduli space of parabolic Higgs
tuples as T

(s)s
par � GA we construct an equivariant morphism Gies from T

(s)s
par into

some projective space P and try to pull back an existing projective GIT-Quotient
P(s)s � GA. This will work under two conditions: �rst of all the morphism Gies
should be at least �nite, secondly Gies should be compatible with the intrinsically
de�ned semistability concepts on Tpar and the GIT-semistability on P given by
a properly chosen linearization in some ample line bundle on P. While the �rst
condition is satis�ed by 1.59, the second one follows in 1.52 after some rather
lengthy calculations in the sections 1.6 to 1.9. The existence of the coarse moduli
space of stable Higgs pairs is proved in 1.64. We postpone the discussion of S-
equivalence to chapter 4. The last two sections deal with slightly modi�ed moduli
problems. In particular, we prove the existence of the moduli space of pointwisely
decorated Higgs tuples formerly constructed by Nikolai Beck in his dissertation
[Be14] for a di�erent choice of stability parameters.
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Chapter 2 is devoted to the study of projective parabolic ς-Higgs bundles. We
�rst de�ne a semistability concept for parabolic �ber bundles. Given our faithful
representation ι the subsequently de�ned concept of a pseudo parabolic (ς ◦ ι)-
Higgs bundle helps us relate semistable parabolic ς-Higgs bundles to semistable
Higgs tuples, where ς is a homogeneous representation chosen such that ς ⊂ ς ◦ ι.
This one-to-one correspondence allows us to deduce the existence of the projective
moduli space P

(s)s
ς◦ι � GA of pseudo non-parabolic ς-Higgs bundles like in [Sch08]

from the the existence of T(s)s � GA using again a �nite morphism to pull back
the GIT-quotient. It turns out later that Pς◦ι contains a parameter scheme Pς

for non-parabolic ς-Higgs bundles as a closed subscheme. Hence the moduli space
Pς � GA exists as a projective scheme, too. The �nal section 2.4 of chapter 2
constructs a parameter scheme Pς◦ι,ι−par for pseudo parabolic (ς ◦ ι)-Higgs bundles
as a �ber bundle over the parameter scheme Pς◦ι of pseudo non-parabolic (ς ◦ ι)-
Higgs bundles. We show that the �nite morphism constructed in the non-parabolic
case can be lifted to a �nite equivariant morphism between the parameter schemes
for parabolic objects. This morphism moreover preserves parabolic semistability.
The moduli space of pseudo parabolic (ς ◦ ι)-Higgs bundles P(s)s

ς◦ι,ι−par � GA exists
as a projective scheme.

The third chapter starts with a discussion of asymptotic semistability. We give
a new proof for the boundedness of the family of vector bundles underlying a ε-
semistable pseudo (non-parabolic or parabolic) (ς ◦ ι)-Higgs bundle for any choice
of a stability parameter ε > 0. This result allows us to show that semistable
(ς ◦ ι)-Higgs bundles correspond to semistable pseudo (ς ◦ ι)-Higgs bundles, as
claimed in chapter 2. Finally we are in the situation to address the existence of
a moduli space for the functors given in I.2. Isomorphism classes of semistable
a�ne %-Higgs bundles map �nite-to-one to isomorphism classes of asymptotically
semistable projective ς-Higgs bundles. The constructions of chapter 2 may be
used now to prove our main result: the existence of a quasi-projective moduli
space A

(s)s
par � GA of a�ne parabolic %-Higgs bundles in 3.19.

In section 3.4 it turns out that the semistability concept used so far does not allow
any stable objects to exist if G is not semisimple. In particular it fails to extend
the known stability criteria for G-bundles (cf. [Ram96i]) or G-Higgs bundles (e.
g. in [GGM12]) in the general reductive case. Using a central isogeny this de�cit
will be overcome. The last section of chapter 3 extends the Hitchin morphism
constructed in the non-parabolic case by [Sch08] to a projective morphism Hit

from the moduli space A
(s)s
par � GA into an a�ne scheme Hit.

We decided to put the treatment of S-equivalence into a separate chapter 4. This
allows us to de�ne S-equivalence for all occurring objects at once and relate the
concepts immediately. Note that the existence of a moduli space of semistable
objects is only really established once S-equivalence is treated.
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The �nal chapter 5 rewrites the semistability concept in terms more suited to the
formulation of the Kobayashi-Hitchin correspondence in 5.2. We will recover the
concept of a tame parabolic Higgs bundle as originally de�ned in [Sim90]. The
moduli space of tame parabolic Higgs bundles is constructed as a closed subscheme
of the moduli space of a�ne parabolic Ad-Higgs bundles. Furthermore the moduli
space of Hitchin pairs exists as a projective scheme.

Notation. A scheme (if not speci�ed di�erently) is assumed to be a scheme of �nite
type over C. A vector bundle is assumed to be algebraic. A reductive group G
is assumed to be connected. However all results extend as in remark 2.7.5.4,
[Sch08] to non-connected reductive groups.
If a semistability criterion is checked against one-parameter subgroups or �ltra-
tions, we assume those to be non-trivial. In some theorems or de�nitions we will
use brackets to treat several (slightly di�ering) versions at once. For example there
are some theorems that work for both parabolic and non-parabolic objects, i. e.
[parabolic] G-bundles (P, [(sj)j[|S|]]). Most prominent example is the de�nition
of (semi)stability. The symbol (≤) stands for ≤ in the semistable version of the
de�nition, and for < in the stable version.
πY will (if not otherwise de�ned) denote the projection onto Y where Y is a com-
ponent of some cartesian (or �ber) product.
As in [LP97], 5.3 the vector subbundle generated by a coherent subsheaf F ⊂ E
is the inverse image of Tor(E/F ) under the projection E → E/F .
If % : G×W → W is a representation of G and P a principal G-bundle, P% denotes
the associated �ber bundle. Gl(W )-bundles and their associated vector bundles
are identi�ed throughout the text.
We denote vectors and matrices as (vi)i[m] := (vi)1≤i≤m or (Aij)i[m]j[n] :=
(Aij)1≤i≤m,

1≤j≤n
. If it is obvious over which range an index varies we will often shorten

the notation by writing simply (vi)i or (Aij)ij.
Weights will usually be denoted by the letters α∗?, β

∗
? , γ

∗
? , δ

∗
?, ranks and degrees of

coherent sheaves by r∗? resp. d
∗
?, where

∗
? stands for a possible indexing. We write

E⊕v :=
⊕v

i=1 E as well as E⊗u :=
⊗u

i=1E.
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1 The Moduli Space of
Higgs Tuples

The main objects of this �rst chapter are parabolic Higgs tuples. The construction
of their moduli space is the central application of Mumford's Geometric Invariant
Theory in this thesis and also marks the starting point for all further constructions
to follow in the upcoming chapters. Before we can however start with the actual
construction we need to state basic facts about one-parameter subgroups, parabolic
�ltrations and their weights. The techniques presented in the following are crucial
for every numerical calculation performed later on.

1.1. Parabolic Vector Bundles. A punctured Riemann surface (X, S) is a
compact Riemann surface X together with a �nite set of punctures S ⊂ X.
A quasi-parabolic vector bundle over the punctured Riemann surface (X, S) is an
algebraic vector bundle E → X together with �ltrations of the stalks

0 ( E1j ( · · · ( Esjj = E|xj , xj ∈ S.

A parabolic vector bundle additionally contains the information of rational num-
bers

0 < βs
jj < · · · < β1j < 1.

The parabolic degree of E is de�ned to be the rational number par-deg(E) :=

deg(E) +
∑

j:xj∈S
∑sj

i=1 β
ij(dim(Eij)− dim(Ei−1,j)).1

1.2. Higgs Tuples. Let A be a �nite set and κa ∈ Z+ for every a ∈ A. Let
u, v, w ∈ N. A parabolic Higgs tuple (E, ϕ, L) is a tuple of (quasi-)parabolic
vector bundles E = (Ea, (Eij

a )i[sja]j[|S|])a[|A|] plus a non-trivial homomorphism ϕ :

(E⊗u)⊕v → det(E)⊗w ⊗ L where L is a line bundle on X and E =
⊕

a∈AE
⊕κa
a .

1For equivalent de�nitions see 1.8.
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1.3. Weights. Let γk ∈ Z, 1 ≤ k ≤ m be a tuple of integers and r ∈ Z \ {0}.
De�ne

Γm,r :=
1

r


−1 1 0

−1 1
. . . . . .
−1 1

0 −1

 ∈ Cm×m.
Then Γm,r is invertible with inverse Γ−1

m,r =:
(
γ1
r,m . . . γmr,m

)
.2 Let αi :=

(Γm,r(γ
k)k[m])i =

∑m
j=1 Γikm,rγ

k. Analogously a tuple (αi)i[m] induces by multi-
plication with Γ−1

m,r a tuple (γk)k[m]. If the γk are ordered γ1 ≤ γ2 ≤ . . . ≤ γm,
then αk ≥ 0, ∀ 1 ≤ k ≤ m− 1 and vice versa. Given rk ∈ Z, 1 ≤ k ≤ m− 1 such
that

∑m
k=1 γ

k(rk − rk−1) = 0 with r0 = 0 and rm = r, then

1

r
(rk − rk−1)tk[m]Γ

−1
m,r(α

k)k[m] = (−rk)tk[m](α
k)k[m] = −

m∑
k=1

αkrk = 0.

On the other hand if αm = −
∑m−1
k=1 αkrk

rm
for rk as above, then

∑m
k=1 γ

k(rk−rk−1) = 0.

1.4. Filtrations of Tuples. Let (Ea)a[|A|] be a tuple of coherent OX-modules
and (F k

a )k[ma] a �ltration by coherent submodules of Ea with weights γ1
a ≤ · · · ≤

γmaa , ∀a ∈ A such that γka = γk+1
a ⇔ F k

a = F k+1
a for 1 ≤ k ≤ ma−1. We call a pair

of a �ltration and suitable weights (as above) a weighted �ltration of (Ea)a[|A|].
Let {γk : k = 1, . . . ,m} = {γia : a ∈ A, 1 ≤ i ≤ ma} s. t. γk ≤ γk+1, 1 ≤ k ≤
m− 1 and F k =

⊕
a∈A(F ka

a )κa ,

ka :=

{
max{i ∈ {1, . . . ,ma}| γia ≤ γk} ∃i ∈ {1, . . . ,ma} : γia ≤ γk

0 otherwise.

Then (F k)k[m] is a �ltration of E. If (F k
a )k[ma] is proper for all a ∈ A, so is (F k)k[m].

On the other hand given a �ltration F k =
⊕

a∈A(F k
a )κa and weights

γk ≤ γk+1 such that γk = γk+1 ⇔ F k = F k+1 for 1 ≤ k ≤ m − 1. Then (F k
a )k[m]

is a �ltration of Ea. Setting γia := min{γk| F i
a = F k

a } leads us back to ascending
weights (γia)i[m] such that γka = γk+1

a ⇔ F k
a = F k+1

a for 1 ≤ k ≤ m − 1. Observe
that (F k

a , γ
k
a)k[ma] leads by the previous two constructions to some (F ′ka , γ

′k
a )k[m].

Note that by removing improper inclusions the two weighted �ltrations become
the same.

Remark. We say that the weights (γia)i[m]a[|A|] are induced by (F k)k[m] from (γk)k[m].
If additionally there are weights (γ̂ia)i[m]a[|A|] induced by another �ltration (F̂ k)k[m]

2If m = r we de�ne Γr := Γr,r and γjr := γjr,r for all 1 ≤ j ≤ r.
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from the same (γk)k[m], then we will call the weights (γia)i[m]a[|A|] coarser than the
weights (γ̂ia)i[m]a[|A|] if {γia : 1 ≤ i ≤ m} ⊂ {γ̂ia : 1 ≤ i ≤ m}, ∀a ∈ A.
Given rka ∈ Z and increasing weights γk ∈ Z, 1 ≤ k ≤ m, we call the weight vector
(γka)k[m] with γka = min{γj : rka = rja} induced by (rka)k[m] from (γk)k[m].

1.5. Let 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ Fm = E =
⊕

a∈AE
⊕κa
a be a �ltration of a rank r

locally free sheaf E. For (γk)k[m] ascending integer weights as in 1.4 let (γka)k[m]a[|A|]
be the induced weights and (F k

a )k[m] the induced �ltrations of the locally free
sheaves Ea with rk(F k

a ) = rka for 0 ≤ k ≤ m and rk(Ea) = ra. Note that we have∑
a∈A κar

k
a = rk, ∀1 ≤ k ≤ m. As in 1.3 we get weights (αk)k[m] = (Γm,r(γ

j
a)j[m])

and (αka)k[m] = (Γm,ra(γ
j
a)j[m]), ∀a ∈ A. Then

r
m∑
k=1

αkrk =
m−1∑
k=1

(
γk+1 − γk

)
rk − γrr =

m∑
k=1

γk
(
rk−1 − rk

)
,

=
∑
a∈A

m∑
k=1

γkaκa
(
rk−1
a − rka

)
=
∑
a∈A

κara

m∑
k=1

αkar
k
a.

1.6. Semistability. Let δ > 0, ξa ∈ Q for a ∈ A. A Higgs tuple (E, ϕ, L) is
(ξa, δ)−(semi)stable if and only if

Mκ,ξ
par(F

k, αk) + δ · µ(F k, αk, ϕ) (≥) 0

holds for all (F k, αk)k[r] where (αk)k[r−1] ∈ Qr−1
≥0 and (F k)k[r] is a �ltration of E

such that F k :=
⊕

a∈A(F k
a )⊕κa with subbundles3

0 ⊂ F 1
a ⊂ · · · ⊂ F r

a = Ea and αr := − rk(E)−1

r−1∑
k=1

αk rk(F k).

De�ne

Mκ,ξ
par(F

k, αk) :=
r∑

k=1

αk ·
(

par-deg(E) rk(F k)− par-deg(F k) rk(E)

+
∑
a∈A

ξa(rk(Ea) rk(F k)− rk(F k
a ) rk(E))

)
,

µ(F k, αk, ϕ) :=−min

{
u∑
j=1

γkj

∣∣∣∣∣(kj)j[u] ∈ {1, . . . , r}u : ϕ|
(
⊗u
j=1 F

kj)
⊕v 6≡ 0

}
,

where γi is de�ned as in 1.3, i. e. γi := − rk(E)
∑r

k=i α
k.

3For the transition (F ka , α
k
a)k[r]a[|A|] to (F k, αk)k[r] see 1.4.



4 | 1. The Moduli Space of Higgs Tuples

1.7. Let ξ′a = ξa + l · κa. Then∑
a∈A

ξ′a(rk(Ea) rk(F )− rk(Fa) rk(E) =
∑
a∈A

ξa(rk(Ea) rk(F )− rk(Fa) rk(E))

for every subbundle F ⊂ E. Thus for every weighted �ltration (F k, αk)k[r] we get
Mκ,ξ

[par](F
k, αk) = Mκ,ξ′

[par](F
k, αk), i. e. the (semi)stability concept is independent

of the choice of a representative within {(ξa + l · κa)a[|A|], l ∈ R}. Hence we may
choose l = −

∑
a∈A ξara∑
a∈A κara

⇒
∑

a∈A ξ
′
ara = 0.

1.8. Equivalent De�nitions of the Parabolic Degree. We want to apply the
general transition described in 1.3 to the parabolic degree.
Let (Eij, βij)i[sj ] be a parabolic �ltration of E|xj and qij : E|xj → V ij quotients
onto vector spaces V ij such that ker(qij) = Eij, ker(q0j) = E0j = 0, ker(qs

jj) =
Esjj = E|xj .
Elementary properties of linear maps imply

∑
j:xj∈S

sj∑
i=1

βij(dimEij − dimEi−1,j) = −
∑
j:xj∈S

sj∑
i=1

βij(dim im qij − dim im qi−1,j).

Set δij := βij − βi+1,j for 0 ≤ i < sj, δs
jj := βs

jj

∑
j:xj∈S

sj∑
i=1

δij(dim im qij)

=
∑
j:xj∈S

sj−1∑
i=1

(βij − βi+1,j)(dim im qij)

=
∑
j:xj∈S

sj−1∑
i=1

βij(dim im qij)−
sj∑
i=2

βij(dim im qi−1,j)


=

∑
j:xj∈S

sj∑
i=1

βij(dim im qij − dim im qi−1,j) + β1,j dim im q0,j︸ ︷︷ ︸
=r

.

On the other hand for β1j =
∑sj

k=1 δ
kj, βij := β1j −

∑i−1
k=1 δ

kj, i > 1 we have
βij − βi+1,j = δij whenever i < sj and the calculation above works the other
way round. Note that using 1.3 we have (δij)i[sj ] = Γsj ,−1(βkj)k[sj ] and (βij)i[sj ] =
Γ−1
sj ,−1

(δkj)k[sj ]. Moreover

∑
j:xj∈S

sj∑
i=1

δij(dim ker qij) =
∑
j:xj∈S

sj∑
i=1

βij(dim ker qij − dim ker qi−1,j).
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Finally for admissible weights δij, i. e. δij > 0,
∑sj

i=1 δ
ij < 1 we get for the weights

βij

0 < βs
jj < . . . < β1j < 1 (1)

and for βij satisfying (1) the δij are admissible:

δij := βij − βi+1,j > 0,
sj∑
i=1

δij = β1j < 1.

Sometimes in literature the order of the βij is reversed, i. e. 0 < β1j < . . . <
βs

jj < 1 to E|xj ) E1j ) . . . ) Esjj = 0.
Furthermore we will take a look at parabolic tuple �ltrations. By 1.4 we see that a
parabolic �ltration of a tuple induces a �ltration (Eij

a , β
ij
a )i[sj ]a[|A|] and we already

know that both add the same parabolic contribution

∑
j:xj∈S

sj∑
i=1

βija (dimEij
a − dimEi−1,j

a )

to the parabolic degree par-deg(Ea). Denote by (Eij, βij)i[sj ] the corresponding
�ltration of E|xj for every xj ∈ S. Then we get

∑
j:xj∈S

sj∑
i=1

βij(dimEij − dimEi−1,j) =
∑
a∈A

∑
j:xj∈S

sj∑
i=1

βija κa(dimEij
a − dimEi−1,j

a ),

where we used that for Eij
a 6= Ei−1,j

a ⇔ βij = βija 6= βi−1,j
a . Thus par-deg(E) =∑

a∈A κa par-deg(Ea).

Remark. Up to a scalar factor the transition from (γk)k[m] to (αk)k[m] is the same
as from (βij)i[sj ] to (δij)i[sj ]. We will often switch between the di�erent kinds of
weights to simplify some of the calculations ahead. Additionally we will often
simplify the notation by using trivially extended �ltrations as above or in 1.4.

1.1. Bounded Families of Vector Bundles

The goal of the next two sections is the construction of a scheme parametrizing
(at least) all semistable parabolic Higgs tuples. This can be done stepwise starting
with the parametrization of those vector bundles that occur in semistable parabolic
Higgs tuples. If we can show that this family of vector bundles Ea is bounded then
we already know that there is a natural number n0 such that for all n ≥ n0: Ea(n)
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is globally generated and H1(Ea(n)) = 0.4 This on the other hand implies that Ea
may be written as a quotient qa : H0(Ea(n))⊗OX(−n)→ Ea and such quotients
are parametrized by a suitable Grothendieck Quot scheme.

De�nition. A family of vector bundles F is bounded, if there is a scheme Y of
�nite type over C and a universal bundle EY×X on Y ×X such that each element
of F is isomorphic to EY×X |{y}×X for some y ∈ Y .

We will mainly use the following criterion for boundedness of families of vector
bundles:

1.9. Lemma. ([Sch08], 2.2.3.7.) A family F of isomorphy classes of vector bundles
of a certain rank r and certain degree d is bounded, if and only if there is a c ∈ R
such that for every vector bundle E with [E] ∈ F:

max

{
µ(F ) :=

deg(F )

rk(F )

∣∣∣∣ {0}  F ⊂ E subbundle

}
≤ µ(E) + c.

1.10. Proposition. (Harder-Narasimhan Filtration) Let E be a vector bun-
dle. Then there is a unique �ltration

0 = E0 ( . . . ( Em = E

such that Ek := Ek/Ek−1 is semistable for all 1 ≤ k ≤ m and µ(Ek−1) > µ(Ek)
holds for all 2 ≤ k ≤ m. Denote by µmax(E) = µ(E1) = µ(E1) and by µmin(E) =
µ(Em).

Remark. There is a version of the Harder-Narasimhan �ltration for parabolic bun-
dles ([Ses82]) as well as for principal G-bundles with a reductive structure group
(see e. g. Biswas, Holla [BH04]).

1.11. We would like to extend the Harder-Narasimhan �ltration to tuples of
vector bundles. Let (Ea)a[A] be such a tuple and (Ek

a)k[ma] the Harder-Narasimhan
�ltration of Ea. Let µ1 > . . . > µ|M | denote the pairwise distinct weights in
M = {µ(Ek

a/E
k−1
a ) : 1 ≤ k ≤ ma, a ∈ A}. Now de�ne HN(E)0 = 0 and HN(E)j =⊕

a∈AE
kj,a
a with Ekj,a

a such that µ(E
kj,a
a /E

kj,a−1
a ) ≥ µj > µ(E

kj,a+1
a /E

kj,a
a ) or 0 if

no such index exists. We claim that 0 ⊂ HN(E)1 ⊂ . . . ⊂ E is the unique
Harder-Narasimhan �ltration of E =

⊕
a∈AEa. By de�nition of the �ltration,

HN(E)j/HN(E)j−1 is isomorphic to the direct sum of all those Ek
a/E

k−1
a for which

µ(Ek
a/E

k−1
a ) = µj. In particular µ(HN(E)j/HN(E)j−1) = µj. Thus it remains to

check that the direct sum of semistable vector bundles with the same slope is again
semistable. Suppose that there is a 0 6= G ⊂ Ẽ with µ(G) > µ(Ẽ) = µ(Ẽi), ∀i ∈ I

4[Ha77], III 12.11.
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and Ẽ =
⊕

i∈I Ẽi a �nite direct sum of semistable vector bundles Ẽi. Then the
morphism pri : Ẽ → Ẽi must be trivial on G and since Ẽ =

⊕
i∈I Ẽi, G is trivial

in contradiction to our assumption. In general if ϕ : G → F is a morphism of
semistable vector bundles and µ(G) > µ(F ), then ϕ is trivial: Consider the short
exact sequence of coherent sheaves 0→ ker(ϕ)→ G→ ϕ(G)→ 0, then the given
conditions tell us for ϕ(G) 6= 0 that µ(ϕ(G)) ≤ µ(F ) < µ(G) and furthermore by
deg(G) = deg(ker(ϕ)) + deg(ϕ(G)), rk(G) = rk(ker(ϕ)) + rk(ϕ(G)) we must have
µ(ker(ϕ)) > µ(G). Therefore G can be semistable only if ϕ(G) = 0.
This shows that HN(E)j/HN(E)j−1 is in fact semistable and the uniqueness of
the Harder-Narasimhan �ltration already implies that (HN(E)k)k[|M |] is the desired
�ltration. Note in particular that µmax(E) = max{µmax(Ea) : a ∈ A}, µmin(E) =
min{µmin(Ea) : a ∈ A}.
1.12. The tensor product of semistable sheaves is semistable ([HL10], Theorem
3.1.4.). Moreover µ(E ⊗ F ) = µ(E) + µ(F ) since deg(E ⊗ F ) = rk(E) deg(F ) +
deg(E) rk(F ). Hence µmax(E ⊗ F ) = µmax(E) + µmax(F ) and µmin(E ⊗ F ) =
µmin(E) + µmin(F ).

Remark. For Q = E/F, deg(E) = deg(F ) + deg(Q). Thus if {µ(F ) : F ⊂ E} is
not bounded from above, {µ(Q) : Q quotient of E} is not bounded from below.
Hence instead of searching for an upper bound for the slope of subbundles, we
may establish boundedness equivalently if we �nd a lower bound for the slope of
quotients.

We can now apply the previous de�nitions to our family of vector bundles under-
lying a semistable [parabolic] Higgs tuple:

1.13. Lemma. Fix ra, da, l. The family of vector bundles Eb such that there is a
semistable [parabolic] Higgs tuples (E, ϕ, L) with E = (Ea, (Eij

a )i[sja]j[|S|])a[|A|] and
Ea ' Eb for some a ∈ A, is bounded.
Proof. First note that by 1.11 we get µmax(E) = max{µmax(Ea) : a ∈ A}. By
lemma 1.9 it is enough to show that all µmax(Ea) are bounded. Therefore upper
bounds on µmax(Ea) for all a ∈ A will in particular bound µmax(E). We consider
an arbitrary subbundle Fa ⊂ Ea and denote by F = 0⊕ F⊕κaa ⊕ 0 ⊂ E the trivial
extension to a subbundle of E. Using 1.8 we get

deg(F ) ≤ par-deg(F ) ≤ deg(F ) + |S| · rk(F )

for every subbundle F ⊂ E. Consider the weighted �ltration 0 ( F 1 = · · · =
F rk(F ) = F ( F rkF+1 = · · · = F rk(E) = E with a non-zero weight αrk(F ) = 1. 1.3
implies

u∑
j=1

γij = u
r−1∑
k=1

αkrk − r
r−1∑
k=1

αk#{ij| k ≥ ij, 1 ≤ j ≤ u} ≥ u

r−1∑
k=1

αk(k − r)
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⇒ µ(F k, αk, ϕ) ≤ u

r−1∑
k=1

αk(r − k) = u · αrk(F ) · (rk(E)− rk(F )) ≤ u · rk(E).

Semistability tells us further that

0 ≤ Mκ,ξ
[par](F

k, αk) + δ · µ(F k, αk, ϕ)

≤ deg(E) · rk(F ) + |S| · rk(E) · rk(F )− deg(F ) · rk(E)

+ rk(E) · rk(F ) ·

(∑
a∈A

|ξa|

)
+ δ · u · rk(E)

and therefore

deg(Fa)

rk(Fa)
=

deg(F )

rk(F )
≤ deg(E)

rk(E)
+ |S|+

∑
a∈A

|ξa|+ δ · u.

1.2. Construction of the Parameter Space

Before we can de�ne a parameter scheme we need to state the following central
technical lemma.

1.14. Lemma. ([GS00], Lemma 3.1.) Let Y be a scheme of �nite type over C,
FY a Y -�at and EY an arbitrary coherent OY×X-module and ψY : EY → FY a
homomorphism. Then there is a unique closed subscheme Y ⊂ Y with the universal
property, that a morphism f : T → Y from an arbitrary scheme T of �nite type
over C factorizes over Y if and only if (f × idX)∗(ψY ) ≡ 0.

1.15. For future use we collect some properties of pullback and direct im-
age sheaves. First recall that for a morphism of schemes f : Y → T and
a locally free sheaf E on T there are morphisms E → f∗f

∗E and f ∗f∗E →
E. Moreover direct images of isomorphisms/monomorphisms are again iso-
morphisms/monomorphisms. Note as well that for a commutative diagram of
morphisms

Y ×X f×idX //

πY

��

T ×X

πT

��
Y

f
// T
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we have by construction f∗πY,∗ = πT,∗(f × idX)∗. Furthermore for locally free
sheaves F on T , H on T×X, G on Y and fX := f×idX we get using fX,∗π∗Y ' π∗Tf∗
([Ha77], III.9.3):

Hom((πTfX)∗(F ), π∗Y (G)⊗ f ∗X(H))

' Hom (H om(π∗Y f
∗(F ), π∗Y (G))) �, f ∗X(H))

' Hom (π∗Tf∗H om(f ∗(F ), G)) �, H)

' Hom (H om(F, πT,∗H)) �, f∗G)

' Hom (f ∗H om(F, πT,∗H) �, G) .

1.16. Since our family of semistable parabolic Higgs tuples of given type is
bounded and all line bundles on X are semistable, i. e. the corresponding fam-
ily is bounded as well, there is a n1 ∈ N s. t. ∀ n ≥ n1 ∀a ∈ A and for all
L, La, [L] ∈ Jacl, [La] ∈ Jacda , M :=

⊗
a∈A L

⊗κa
a :

- Ea(n), M⊗w ⊗ L⊗OX(un), La(n) are globally generated,

- H1(Ea(n)) = H1(M⊗w ⊗ L⊗OX(un)) = H1(La(n)) = {0}.

Fix n big enough and pa the Hilbert polynomial at n, i. e. pa = da + ra(n+ 1− g),
a ∈ A, p =

∑
a∈A κapa. Let Qa ⊂ Qa be the quasi-projective Quot scheme

parametrizing quotients qa : Va⊗OX(−n)→ Ea, Va vector space of dimension pa,
Ea vector bundles of rank ra and degree da, s. t. H0(qa(n)) : Va → H0(Ea(n)) is
an isomorphism. Qa comes with a universal quotient

qQa : π∗X(Va ⊗OX(−n)) ' Va ⊗ π∗X(OX(−n))→ EQa

and a universal family EQa . Putting the several quotients together leads to EQ :=⊕
a∈A π

∗
Qa×X(E κa

Qa
) on Q × X, Q := (×a∈AQa) × Jacl. Now take P l a Poincaré

line bundle on Jacl×X and let PQ := π∗
Jacl×X(P l) be the corresponding bundle

on Q×X. Let V =
⊕

a∈A V
⊕κa
a and Vu,v := (V ⊗u)⊕v. De�ne

Fk := Vu,v ⊗ π∗X(OX(u(k − n))),

Kk := det(EQ)⊗w ⊗PQ ⊗ π∗X(OX(uk)).

Note that the general base change properties stated e. g. in [Ha77], III.12.11,
guarantee that πQ,∗(F (k)) is locally free for a coherent sheaf F on Q × X and k
big enough. Therefore Fk, Kk are locally free for k big enough, so is

H om(πQ,∗(Fk), πQ,∗(Kk)).
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Next de�ne X := P(H om(πQ,∗(Fk), πQ,∗(Kk))

�)
π−→ Q5 and PX = (π× idX)∗(PQ)

as well as

qX := (π × idX)∗(qQ) : V ⊗ π∗X(OX(−n))→ EX := (π × idX)∗(EQ)

the corresponding pullbacks. Then [Ha77], II 7.12 implies that we �nd a surjec-
tive morphism π∗H om(πQ,∗(Fk), πQ,∗(Kk))

� → OX(1). Note that π∗QπQ,∗Fk →
Fk, π

∗
QπQ,∗Kk → Kk are surjektive for our large k ([Ha77], III, Theorem 8.8) and

hence 1.15 gives us a resulting morphism (π×idX)∗(π∗QπQ,∗Fk)→ (π×idX)∗(Kk)⊗
π∗X(OX(1)) which descends to ψX : (π × idX)∗(Fk)→ (π × idX)∗(Kk)⊗ π∗X(OX(1))
on some closed subscheme X′.
Lemma 1.14 further provides us with the closed subscheme T ⊂ X′ ⊂ X s. t.
ψT := ψX ⊗ idπ∗X(OX(−uk)) |T×X vanishes on ker(qT,u,v). The fundamental theorem
on homomorphisms tells us now that ψT factorizes over ET,u,v:

Vu,v ⊗ π∗X(OX(−un))
ψT //

qT,u,v

##

det(ET)⊗w ⊗PT ⊗ π∗X(OX(1))|T

ET,u,v,

ϕT

88

ker(qT,u,v) ⊂ ker(ψT).

Remark. Since all restrictions result from properties shared by at least all
semistable Higgs tuples, T still parametrizes (at least) all non-parabolic Higgs
tuples underlying a semistable parabolic Higgs tuple.

1.17. Our parameter space T so far does not account for the parabolic structure.
Let Gij

a be the Graÿmann variety parametrizing rija −dimensional subspaces of Va,

1 ≤ i ≤ sja, 1 ≤ j ≤ |S|, a ∈ A. Set G := ×a∈AGa, Ga := ×|S|j=1×sja
i=1 G

ij
a .

We get a tautological quotient qij
Gija

: Va ⊗ OGija
→ V ij

a of vector bundles on Gij
a .

De�ne qijT×G,Va = π∗
Gija

(qij
Gija

) on T × G × X. In order for the parabolic quotients
to factorize in the �bers over S we need to restrict again to a subscheme. Let
Gpar ⊂ G be the subscheme where qijT×G,Va vanishes on ker(π∗T×X(qT)|T×G×{xj})
for every 1 ≤ i ≤ sja, 1 ≤ j ≤ |S|, a ∈ A. Then we �nd quotients qijT×G,a :

π∗T×X(ET,a)|T×Gpar×{xj} → π∗
Gija

(V ij
a )|T×Gpar×{xj} for every 1 ≤ i ≤ sja, 1 ≤ j ≤

|S|, a ∈ A. In order to get �ltrations rather than only a collection of subspaces
let F ⊂ G be the closed subscheme such that for all (qija ) ∈ F: ker(qija ) ⊂ ker(qi+1,j

a ).
Finally de�ne Tpar := T× (Gpar ∩ F) as our parameter space.

5Recall that ϕ is non-trivial.
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Remark to 1.16 and 1.17. Replace Q by an arbitrary scheme Y which parametrizes
(surjective) quotients qY,a : Va ⊗ π∗X(OX(−n))→ EY with EY a family of coherent
sheaves on Y × X and no restrictions imposed on the 1st cohomology of any of
the appearing sheaves. Since X is proper over C, Y ×X → Y is proper. Now the
generalization of [Ha77], III 12.11 to proper maps follows from [EGA] III, 3.2.1.6

and 1.14 still holds in this more general case. The previous construction yields a
closed subscheme TY that parametrizes Higgs �elds over Y .

1.3. Moduli Functor and Universal Properties

1.18. De�nition. Let P l be a Poincaré line bundle on Jacl×X, Y a scheme of
�nite type over C and υY : Y → Jacl a morphism. A family of parabolic Y -Higgs
tuples is a tuple ((EY,a, (qijY,a, H ij

Y,a)i[sja]j[|S|])a[|A|], υY , HY , ϕY ) s. t.

(i) EY,a is a vector bundle of rank ra on Y ×X with degree da on each �ber over
{y} ×X,

(ii) υY : Y → Jacl is a morphism,

(iii) HY → Y a line bundle, H ij
Y,a → Y × {xj} vector bundles of rank rija ,

(iv) ϕY : (E ⊗uY )⊕v → det(E )w ⊗PυY ⊗ π∗Y (HY ), PυY := (υY × idX)∗(P l), a
homomorphism non-trivial on {y} ×X for all y ∈ Y closed,

(v) qijY,a : EY,a|Y×{xj} → H ij
Y,a surjective morphisms on Y × {xj} such that

ker(qijY,a) ⊂ ker(qi+1,j
Y,a ), ∀a ∈ A, 1 ≤ j ≤ |S|, 1 ≤ i ≤ sja.

1.19. Equivalence of Y−Families. Two Y -families ((E 1
Y,a, (qij,1Y,a ,

H ij,1
Y,a )i[sja]j[|S|])a[|A|], υ

1
Y , H 1

Y , ϕ
1
Y ) and ((E 2

Y,a, (qij,2Y,a , H ij,2
Y,a )i[sja]j[|S|])a[|A|], υ

2
Y , H 2

Y ,

ϕ2
Y ) are isomorphic if υ1

Y = υ2
Y = υY and there are isomorphisms ψY,a : E 1

Y,a →
E 2
Y,a, γY : H 1

Y →H 2
Y , γ

ij
Y,a : H ij,1

Y,a →H ij,2
Y,a s. t.

ϕ1
Y =

(
det(ψY )⊗w ⊗ idPυY

⊗π∗Y (γY )
)−1◦ϕ2

Y ◦ψY,u,v, qij,2Y,a ◦ψY,a|Y×{xj} = γijY,a◦q
ij,1
Y,a .

Remark. If there is no chance of confusion we will call a family of parabolic Y -
Higgs tuples just Y -family.
The non-parabolic version of a family of Y -Higgs tuples admits no vector bundles
H ij

Y,a and no quotients qijY,a. The de�nition of equivalence is changed accordingly.

1.20. Moduli Functor. For stability parameters (ξa, δ, β
ij
a ) we get the functor

M(ξa,δ,β
ij
a )−(s)s(κa, u, v, w, ra, da, l, S, r

ij
a ):

6[Ha77], II 8.8.
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SchC −→ Set

Y 7−→


Isomorphism classes of families of

(ξa, δ, β
ij
a )− (semi)stable

parabolic Y -Higgs tuples


Remark. Note that this functor still depends on the choice of a Poincaré line bun-
dle. However since two Poincaré line bundles are isomorphic up to the pullback of
a line bundle on the Jacobian, we may identify the corresponding moduli functors.

1.21. De�nition. A quotient family of Y -Higgs tuples is a family of Y -Higgs tu-
ples ((EY,a, (qijY,a, H ij

Y,a)i[sja]j[|S|])a[|A|], υY , HY , ϕY ) together with surjective mor-
phisms

qY,a : Va ⊗ π∗X(OX(−n))→ EY,a, a ∈ A

s. t. πY,∗(qY,a ⊗ idOX(n)) : Va ⊗ OY → πY,∗(EY,a ⊗ π∗X(OX(n))) are isomorphisms
for all a ∈ A. Two quotient families are equivalent if there is an isomorphism ψY,a
of the corresponding Y -Higgs tuples such that q2

Y,a = ψY,a ◦ q1
Y,a.

1.22. Proposition. Every quotient family of Y -Higgs tuples is the pullback of
the universal quotient family ((qTpar,a, ETpar,a, (qijTpar,a

, H ij
Tpar,a

)i[sja]j[|S|])a[|A|], νTpar ,

OX×G(1)|Tpar , ϕTpar) by a unique morphism h× idX : Y ×X → Tpar ×X.

Remark. Recall νTpar : Tpar → Q
π
Jacl−−−→ Jacl and PTpar = PνTpar

as well as H ij
Tpar,a

=

π∗
Gija

(V ij
a |Tpar×{xj}).

Proof. Let ((qY,a,EY,a, (qijY,a, H ij
Y,a)i[sja]j[|S|])a[|A|], υY , HY , ϕY ) be a quotient family.

The universal property of the Quot schemes Qa implies the existence of morphisms
fQa : Y → Qa s. t. qY,a ' (fQa × idX)∗(qQa). Using that πY,∗(qY,a⊗ idOX(−n)) is an
isomorphism, we see that fQa,∗πY,∗(qY,a ⊗ idOX(n)) is an isomorphism, too. Hence
fQa : Y → Qa. Together with υY we get a morphism fQ : Y → Q. The morphism
fX is the morphism induced by πY,∗(ψY ) considered as a morphism

πY,∗(Vu,v⊗π∗X(OX(u(k−n))))⊗
(
πY,∗

(
det(EY )⊗w ⊗PυY ⊗ π∗X(OX(uk))

)) � →HY .

using [Ha77], II.7.12. By de�nition of qT = π∗(qQ)|T we get (fX × idX)∗(qT) = qY .
Furthermore by construction f ∗X(OX(1)) = HY and thus (fX × idX)∗(ψX) = ψY
resp. (fX × idX)∗(ϕX) = ϕY .
Now fX factorizes over T: By 1.14 it is enough to show that (fX × idX)∗(ψX ⊗

idπ∗X(OX(−uk)) |ker qX,u,v) ≡ 0. This on the other hand follows directly from general
properties of the pullback

(fX × idX)∗(ψX ⊗ idπ∗X(OX(−uk)) |ker qX,u,v)

= (fX × idX)∗(ψX)⊗ (πX(fX × idX))∗(idOX(−uk))|ker((fX×idX)∗(qX,u,v))
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= ψY ⊗ idπ∗X(OX(−uk)) |ker(qY,u,v)

= (ϕY ◦ qY,u,v)|ker(qY,u,v) ≡ 0.

The considerations above imply now that fT : Y → T de�ned by fX is unique.
Similarly the universality of the Graÿmann variety provides us with morphisms
gija : Y → Gij

a s. t. ((fT × gija × idX)∗(qijT×G,Va))|Y×{xj} = qijY,a ◦ qY,a. Let g : Y → G
be the resulting map on the product space. Obviously g : Y → F. Now h :=
fT × g : Y → Tpar if ((fT × g × idX)∗(qijT×G,Va |ker(π∗T×X(qT,a))))|Y×{xj} ≡ 0. But

((fT × g × idX)∗(qijT×G,Va)|ker(π∗T×X(qT,a)))|Y×{xj}
= ((fT × g × idX)∗(qijT×G,Va)|ker((fT×g×idX)∗π∗T×X(qT,a)))|Y×{xj}
= qijY,a ◦ qY,a|ker((fT×idX)∗(qT,a)) = qijY,a ◦ qY,a|ker(qY,a) ≡ 0.

This proves the claim.

1.23. Proposition. Let Y be a scheme of �nite type over C and ((EY,a,
(qijY,a, H ij

Y,a)i[sja]j[|S|])a[|A|], υY , HY , ϕY ) a semistable Y -Higgs tuple. There is

an open covering (Yk)k∈I of Y and morphisms hk : Yk → Tpar, k ∈ I in-
dex set, s. t. ((EY,a, (qijY,a, H ij

Y,a)i[sja]j[|S|])a[|A|], υY , HY , ϕY )|Yk×X ' (hk ×
idX)∗((ETpar,a, (qijTpar,a

, H ij
Tpar,a

)i[sja]j[|S|])a[|A|], νTpar , OX×G(1)|Tpar , ϕTpar) on Yk×X.

Proof. EY,a is locally trivial in the product of the étale topology on Y and the
Zariski topology on X, of rank ra over Y × X and degree da on {y} × X.
Let (Yk)k be a common re�nement of the locally trivial coverings for a ∈ A,
s. t. all EYk,a are locally trivial on Yk × Xl for a covering (Xl)l of X.7 Then
there exists a quotient qYk,a : Va ⊗ OYk×X(−n) → EYk,a s. t. πYk,a,∗(qYk,a ⊗
idOX(n)) is an isomorphism since πYk,a,∗(qYk,a ⊗ idOX(n))|{y} ' H0(qy,a(n)) :
Va → H0(EYk,a(n)|{y}) is an isomorphism on every �ber y ∈ Yk. Hence
((qYk,a, EY,a, (qijY,a, H ij

Y,a)i[sja]j[|S|])a[|A|], υY , HY , ϕY )|Yk×X is a quotient family
on Yk × X. The previous proposition together with the de�nition of equivalence
of quotient families implies the claim.

Remark. To construct a suitable quotient family it is in fact enough to show that
πY,∗(EY,a)(n) is locally trivial.8

Analogous results to 1.22 and 1.23 hold in the non-parabolic situation. The proofs
are (almost) identical; a non-parabolic quotient family is de�ned as the extension
of a non-parabolic Y -family.

7cf. I.2 resp. [DS95].
8cf. for example [Be14], Lemma 4.10.
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1.4. Group Action

Let Tsspar ⊂ Tpar denote the subset of semistable Higgs tuples. We aim to de�ne
a group action of some group GA on Tpar that leaves Tsspar-invariant such that two
Higgs tuples are isomorphic if and only if they lie in the same orbit. If we are able
to show in a future step that the semistability condition de�ned before is in fact
GIT-semistability (w. r. t. a linearization of the group action in some line bundle
on Tsspar) then the good GIT-Quotient Tsspar �GA will exist and the previously stated
universal properties imply the existence of a coarse moduli space.
Let GA :=×a∈A Gl(Va) and

m : V ⊗OGA → V ⊗OGA ;

V ⊗OGA|g 3 (v, s) 7→ (g · v, s)

m is an automorphism.
Let ((EGA×Tpar,a, (qijGA×Tpar,a

, H ij
GA×Tpar,a

)i[sja]j[|S|])a[|A|], νGA×Tpar , HGA×Tpar , ϕGA×Tpar)
be the pullback of the universal family to GA × Tpar ×X and

qGA×Tpar : V ⊗ π∗X(OX(−n))
π∗GA

(m−1)⊗idπ∗
X

(OX (−n))
−−−−−−−−−−−−−−−→ V ⊗ π∗X(OX(−n)) −→

−−
π∗X×Tpar

(qTpar )

−−−−−−−−−→ EGA×Tpar .

qGA×Tpar is surjective, since qTpar is surjective and m bijective. Furthermore
πGA×Tpar,∗(qGA×Tpar⊗ idOX(n)) is an isomorphism, since m and πTpar,∗(qTpar⊗ idOX(n))
are isomorphisms.
Hence (qGA×Tpar , (EGA×Tpar,a, (qijGA×Tpar,a

,H ij
GA×Tpar,a

)i[sja]j[|S|])a[|A|], νGA×Tpar ,

HGA×Tpar , ϕGA×Tpar) is a quotient family. Proposition 1.22 provides a unique
morphism

α : GA × Tpar → Tpar.

α is a group action: α maps a quotient q : V ⊗OX(−n)→ E to the quotient

V ⊗OX(−n)
g−1⊗idOX (−n)=:α̃(g)
−−−−−−−−−−−−→ V ⊗OX(−n)

q−→ E.9

Therefore
α(e) ' idTpar ,

α(gh, q) = q ◦ α̃(gh) = q ◦ α̃(h) ◦ α̃(g) = α(g, α(h, q)),

for all g, h ∈ GA and all quotients q.
The center C∗ · idV acts trivially: Let mc = c ·m for c ∈ C∗. Then the induced

9More precisely: A class represented by a tuple ((qa)a[|A|], (Ea, (Eija )i[sja]j[|S|])a[|A|], ϕ, L) is
mapped to the class of ((qa)a[|A|](g

−1 · ∗), (Ea, (Eija )i[sja]j[|S|])a[|A|], ϕ, L).
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quotient families are trivially equivalent as families on {pt} × Tpar × X, i. e.
Proposition 1.22 implies that the induced actions are the same.

1.24. Conclusion. W. l. o. g. we may replace the GA-action by an action of
SκaA := Sl(V ) ∩ GA = {(ga)a ∈ ×a∈A Gl(Va)|

∏
a∈A det(ga)

κa = 1}. Note that we
have in fact a PGA-action, PGA := GA/C∗. Furthermore observe, that SκaA → PGA
has �nite kernel, in particular the parabolic subgroups of SκaA and PGA may be
identi�ed.

1.25. Proposition. Let Y be a scheme of �nite type over C,
hk : Y → Tpar, k = 1, 2 two morphisms s. t. (h1 ×
idX)∗((ETpar,a, (qijTpar,a

, H ij
Tpar,a

)i[sja]j[|S|])a[|A|], νTpar , HTpar , ϕTpar) '
(h2 × idX)∗((ETpar,a, (qijTpar,a

, H ij
Tpar,a

)i[sja]j[|S|])a[|A|], νTpar , HTpar , ϕTpar). There is

a morphism Φ : Y → GA s. t. h2 = α(Φ× h1).

Proof. Construct quotients q1
Y,a, q2

Y,a like in the proof of 1.23 s. t.
((qkY,a, E k

Y,a, (qij,kY,a , H ij,k
Tpar,a

)i[sja]j[|S|])a[|A|], υ
k
Y , H k

Y , ϕY ), k = 1, 2 are the pull-
backs of the universal family by (hk × idX). By assumption υ1

Y = υ2
Y =: υY and

there are morphisms

ψY,a : E 1
Y,a → E 2

Y,a, γY : H 1
Y →H 2

Y , γ
ij
Y,a : H ij,1

Y,a →H ij,2
Y,a

such that

ϕ1
Y =

(
det(ψY )⊗w ⊗ idPυY

⊗π∗Y (γY )
)−1 ◦ ϕ2

Y ◦ ψY,u,v, qij,2Y,a ◦ ψY,a = γijY,a ◦ q
ij,1
Y,a .

Consider next the isomorphism

Va ⊗OY
πY,∗

(
q1Y,a⊗idπ∗

X
(OX (n))

)
−−−−−−−−−−−−−−→

'
πY,∗(E

1
Y,a ⊗ π∗X(OX(n))) −→

−−
πY,∗

(
ψY,a⊗idπ∗

X
(OX (n))

)
−−−−−−−−−−−−−−→

'
πY,∗(E

2
Y,a ⊗ π∗X(OX(n))) −→

−−
πY,∗

(
q2Y,a⊗idπ∗

X
(OX (n))

)−1

−−−−−−−−−−−−−−−−→
'

Va ⊗OY

and the induced morphism Φ : Y → GA. By the uniqueness property of
1.22, it will be enough to show that h2 and α ◦ (Φ × h1) induce isomor-
phic quotient families. But the quotient family to α ◦ (Φ × h1) is the tuple
((q3

Y,a, E 1
Y,a, (qij,1Y,a , H ij,1

Tpar,a
)i[sja]j[|S|])a[|A|], υ

1
Y , H 1

Y , ϕY ) with

q3
Y,a : Va ⊗ π∗X(OX(−n))

π∗Y Φ∗(m−1)⊗idπ∗
X

(OX (−n))
−−−−−−−−−−−−−−−−→ Va ⊗ π∗X(OX(−n))

q1Y,a−−→ E 1
Y,a
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since (α◦(Φ×h1)×idX)∗ = (Φ×h1×idX)∗(α×idX)∗. Furthermore by construction
using the natural map π∗Y πY,∗(F )→ F which exists for every sheaf F , we get the
commuting diagram

Va ⊗ π∗X(OX(−n))
π∗Y Φ∗(m−1)⊗idπ∗

X
(OX (−n))

//

q2Y,a

��

Va ⊗ π∗X(OX(−n))

q1Y,a

��
E 2
Y,a

ψ−1
Y,a

// E 1
Y,a.

Hence q2
Y,a = ψY,a ◦ q3

Y,a and the two families are isomorphic.

Remark. (i) By construction of α

(α× idX)∗((ETpar,a, (qijTpar,a
, H ij

Tpar,a
)i[sja]j[|S|])a[|A|], νTpar , HTpar , ϕTpar)

= (πTpar × idX)∗((ETpar,a, (qijTpar,a
, H ij

Tpar,a
)i[sja]j[|S|])a[|A|], νTpar , HTpar , ϕTpar)

holds.

(ii) For Y = {pt} we see that two tuples are isomorphic if and only if they are
in the same GA−orbit. The direction "⇐" is obvious from the de�nition of
α.

(iii) All results of this section may be transferred to the non-parabolic setting, in
particular 1.25 works w. r. t. the non-parabolic version of our group action.

1.5. Gieseker Space and Gieseker Map

Now that we have de�ned a group action we are left with the task to prove that
semistability, as de�ned before, is in fact the notion of semistability that we would
expect from Geometric Invariant Theory. This will be done in two steps: First
we are going to construct a closed equivariant embedding Gies of our parameter
scheme Tpar into some projective space P following a well-known construction
principle introduced by D. Gieseker in [Gi77]. Since GIT-semistability of points
in a projective space is relatively easy characterized numerically, we are only left
with the task to show that Gies maps semistable points to GIT-semistable points.
As GIT-semistability is preserved under closed embeddings, the existence of the
GIT-Quotient Pss � GA guarantees the existence of Tsspar � GA.
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1.26. Let Pda be a Poincaré line bundle on Jacda . We get10 a locally free sheaf

G 1
a := H om

(
ra∧
Va ⊗OJacda , πJacda ,∗(P

da ⊗ π∗X(OX(ran)))

)
, a ∈ A.

We can modify Pda by a line bundle L on Jac0 such that P ′ := Pda ⊗ π∗
Jac0

(L )
is another Poincaré line bundle. The space G 1

a transforms into G 1
a ⊗L ([Ha77], Ex.

II.5.1 (b), (d)). Furthermore OP((G 1
a ) �)(1) transforms into OP((G 1

a ) �)(1)⊗ π∗a(L �) for
the bundle projection πa : P((G 1

a )) �) → Jacda ([Ha77], Lemma II.7.9, Proposition
II.7.10). Therefore by choosing L suitably OP((G 1

a ) �)(1) ⊗ π∗a(L

�) is very ample
([Ha77], II.7.10 (b)). Thus w. l. o. g. we may assume that OP((G 1

a ) �)(1) is very
ample. Let P1 =×a∈A P((G 1

a ) �).
Next de�ne the locally free sheaf

G 2 := H om
(
Vu,v ⊗OJacl× JacA

,

πJacl× JacA,∗
(
π∗JacA×X (PA)⊗w ⊗ π∗

Jacl×X(P l)⊗ π∗X(OX(un))
) )

for PA :=
⊗

a∈A π
∗
Jacda ×X(Pda,⊗κa), JacA := ×a∈A Jacda . For a suitable choice

of P l , OP((G 2) �)(1) is very ample. De�ne P := P1 × P((G 2) �) × PG the Gieseker

space, where PG =×a∈A×|S|j=1×sja
i=1 P

(∧rija Va

)
.

1.27. De�ne deta : Tpar → Jacda , t 7→ [det Ea,t]. By the universal property of the
Poincaré line bundle Pda

det(Ea,t) 'Pda
∣∣
deta(t)

.

For the varieties Jacda , X, [Ha77], III.Ex.12.4 implies the existence of a line bundle
LTpar on Tpar s. t.

det(ETpar,a) ' (deta× idX)∗(Pda)⊗ π∗Tpar
(LTpar,a).

In other words we use the universal property of the Jacobian variety ([Ha77],
IV.4.10).
We want to construct a morphism Gies1

a : Tpar → P((G 1
a ) �) s. t.

(Gies1
a)
∗(OP((G 1

a ) �)(1)) ' LTpar,a. For any morphism g : Tpar → Jacda it is known
that to give a morphism Tpar → P((G 1

a ) �) is equivalent to give an invertible sheaf
L on Tpar and a surjective map of sheaves on Tpar, g∗((G 1

a ) �) → L ([Ha77],
II.7.12). In particular the morphism can be chosen to satisfy g∗(OP((G 1

a ) �)(1)) '

10compare with the construction of X in 1.16.
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L .11 We choose g = deta and L := LTpar,a. The surjective morphism
q̃a :=

∧ra
(
qTpar,a ⊗ idπ∗X(OX(n))

)
induces by 1.15 a surjective morphism

q̃a ∈ Hom

(
ra∧
Va ⊗OTpar×X , (deta× idX)∗(Pda ⊗ π∗X(OX(ran)))⊗ π∗Tpar

(LTpar,a)

)
' Hom

(
(deta)

∗ (G 1
a )

�

,LTpar,a

)
De�ne now Gies1 :=×a∈A Gies1

a.

1.28. The process can be transferred to G 2. Note that for LTpar,A :=
⊗

a∈A L ⊗κa
Tpar,a

det(ETpar) '
(×a∈A deta×νTpar × idX

)∗
(πJacA×X)∗(PA)⊗ π∗Tpar

(LTpar,A)

Consider the map ψ̂ := (ϕTpar ◦ qTpar,u,v)⊗ idπ∗X(OX(un)). Again using 1.15

ψ̂ ∈Hom

(
Vu,v ⊗OTpar×X ,

(
×
a∈A

deta×νTpar × idX

)∗
(πJacA×X)∗(P⊗w

A )

⊗ π∗Tpar
(L ⊗w

Tpar,A
⊗HTpar)⊗PTpar ⊗ π∗X(OX(un))

)
' Hom

((×a∈A deta×νTpar

)∗
(G 2) �,L ⊗w

Tpar,A
⊗HTpar

)
Hence we �nd a morphism Gies2 : Tpar → P((G 2) �) ([Ha77], II.7.12).

1.29. For the �nal component we may use the Plücker embedding Gies3 :=

×a∈A×|S|j=1×sja
i=1 Giesija |F∩Gpar and Giesija : Gij

a ↪→ P
(∧rija Va

)
.

1.30. De�ne the Gieseker morphism Gies = (Gies1×Gies2×Gies3) : Tpar → P.
Note that by the de�nition of Gies, Giesa uniquely de�nes q̃a. Now q̃a is the
sheaf morphism that induces the Plücker embedding and therefore q̃a de�nes qa
uniquely. Furthermore note, that once Gies(t) is �xed, qt,a is uniquely de�ned
and thus by construction ϕt is uniquely de�ned. Finally the Plücker embedding
induces a unique qijt,a ∈ Gij

a mapped to Giesija (t), i. e. Gies(t) is one-to-one.
Furthermore Gies1 commutes with the GA-action, where GA acts on P in the natural
way. Moreover we have already seen that the action descends to an action of PGA,
i. e. it is in particular well-de�ned on our projective space P.

Remark to 1.30. It is sometimes possible to repeat the construction of a morphism
to Giesecker space P for Y -families even if a given morphism qY is not every-
where surjective. For example if qY |{y}×X is surjective for every y /∈ T with T a

11There is a unique morphism satisfying this additional property.
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closed codimension 2 subset of a regular (or normal) scheme Y , then qY induces a
morphism Y \ T → P, which extends uniquely to a morphism GiesY : Y → P.
Observe that for a Y -family EY , a Y ′-family EY ′ and a morphism f : Y → Y ′ such
that EY = f ∗EY ′ and LY ' f ∗LY ′ the functorial properties of the pullback imply
that GiesY = GiesY ′ ◦f whenever GiesY ,GiesY ′ exist.

1.6. GIT-Semistability and Linearizations

In the following section we will give a brief account of the de�nitions and theorems
from Geometric Invariant Theory that will be applied later on. Subsequently we
will use these criteria to derive GIT-semistability conditions for certain (model)
types of linear actions of SκaA .

1.31. Theorem. (Hilbert-Mumford-Criterion) Let Y be proper over k, k an
arbitrary �eld of characteristic 0, L an ample line bundle on Y with a linearization
of a group action by a reductive linear algebraic group G on Y . Let λ be a one-
parameter subgroup of G, then for any y ∈ Y , consider the morphism z 7→ λ(z)−1y.
Since Gm identi�es with Spec(k)[α, α−1] we may embed Gm into A1 = Spec(k)[α].
We �nd a unique extension fy : A1 → Y .12 Now the action of Gm on Ly∞ , y∞ :=
fy(0) is given by a character χ(z) = zr for z ∈ Gm. De�ne µ(y, λ) = −r.
A rational point y in Y is semistable if and only if µ(y, λ) ≥ 0 holds for every
one-parameter subgroup λ of G.
y is stable if and only if µ(y, λ) > 0 holds for every (non-trivial) one-parameter
subgroup λ of G.

Proof. [MFK], Theorem 2.1, Proposition 2.2 and 1.�3. The case of a not necessarily
algebraically closed ground �eld k is treated e.g. in Théorème 5.2 of [Rou78] and
[RR84].

Remark. 1. For Y projective over C, de�ne y∞ = limz→∞ λ(z)y and C∗ acts on
Ly∞ by l 7→ zr · l.

2. For every g ∈ G and every one-parameter subgroup: µ(gy, λ) = µ(y, g−1λg).

3. Given a closed G-invariant subscheme Z ⊂ Y , z ∈ Z already implies z∞ ∈ Z.
Thus given the induced linearization on L|Z a point z ∈ Z is (semi)stable w.
r. t. this linearization in LZ if and only if z ∈ Y is (semi)stable w. r. t. the
linearization in L.13

12A1
(0) is a valuation ring, X proper over k.

13This statement can be proved without using the Hilbert-Mumford-Criterion, cf. [Sch08],
1.4.3, The General Theory.
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1.32. One-Parameter Subgroups and Filtrations. Let ν : G → Gl(W ) be
the action of a linear algebraic group G on some vector space W . Let λ be a
one-parameter subgroup of G, then ν ◦ λ is a one-parameter subgroup of Gl(W ).
There is a basis (wi)i[dim(W )] and integer weights γi ∈ Z, ∀1 ≤ i ≤ dim(W ) such
that ν ◦λ(z)wi = zγ

i
wi and γi ≤ γi+1, ∀1 ≤ i ≤ dim(W )− 1. If ν maps to Sl(W ),

then
∑dim(W )

i=1 γi = 0. On the other hand given a basis (wi)i[dim(W )] and ascending
integer weights γi ∈ Z, ∀1 ≤ i ≤ dim(W ) we receive a one-parameter subgroup of
Gl(W ). If

∑dim(W )
i=1 γi = 0 the image of this one-parameter subgroup lies in Sl(W )

(cf. [Sch08], Example 1.1.2.3 and 1.5.1.11).
Every basis (wi)i[dim(W )] as above de�nes subspaces 〈wj : γj ≤ γi〉 of W and
hence (wi, γi)i[dim(W )] de�nes a proper weighted �ltration (W i, γi)i[m] of W . The
�ltration (W i)i[m] is uniquely de�ned by λ. The converse is obviously not true.
However, we will see below that the value of our weight functions µ(p, λ), p ∈
P(W ) solely depends on the weighted �ltration (W i, γi)i[m] induced by λ. To
check (semi)stability of a point p ∈ P(W ) it is therefore enough to choose for
every proper (non-trivial) �ltration (W i)i[m] with strictly ascending integer weights
(γi)i[m] a single one-parameter subgroup λ that induces (W i)i[m] and to verify that
µ(p, λ) (≥) 0.

1.33. Semistability in Projective Space. Let L π−→ P be a very ample line
bundle on a projective variety P with a linearization σ : G×L→ L of a G-action
υ on P . Recall that π ◦ σ = υ ◦ π and Lp → Lυ(g,p), l 7→ σ(g, l) is linear for every
g ∈ G, ∀p ∈ P .
Then there exists an immersion ι : P → Pn, an action υPn of G on Pn, and a
G-linearization σPn in OPn(1) such that ι is G-linear and such that L together
with its G-linearization σ is induced via ι from OPn(1) and its G-linearization σPn
([MFK], Proposition 1.7).

Let W := Cn+1. Now since H0(P(W ),OP(W )(1)) ' W , the linear action σP(W ) on
OP(W )(1) to υP(W ) on P(W ) induces a linear action

υW : G×W → W

(g, w) 7→ {p 7→ σP(W )(g, w(υP(W )(g
−1, p)))}.

Then the dual linear action
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υW � : G×W � → W �

(g, w �) 7→ {u 7→ w �(υW (g−1, u))},

descends via the natural projection π � : W � \ {0} → P(W ) onto P(W ) s. t.
π �(υW �(g, w �)) = υP(W )(g, π

�(w �)). On the other hand we will soon see, that if π �

is equivariant with respect to two actions then there is a linearization of the action
on P(W ) in OP(W )(1).
Hence we can lift the action υP(W ) to a vector space action υW on W . Let λ be
a one-parameter subgroup of G acting diagonally on a basis (wi)i[n+1] of W with
weights γ1

υW
≤ · · · ≤ γ

dim(W )
υW . De�ne λ � := υW �(λ, · ). Now λ � acts diagonal

w. r. t. the dual basis (wi, �)i[dim(W )] of W � with weights −γ1
υW
, . . . ,−γdim(W )

υW .
If p =

∑dim(W )
i=1 piwi, � and γl−1

υW
< γlυW = · · · = γl+kυW

= min{γiυW : pi 6= 0} <
γl+k+1
υW

then p∞ := limz→∞ λ(z)[p] = [. . . , 0, pl, . . . , pl+k, 0, . . .]. In particular we
get µ([p], λ) = −min{γiυW : pi 6= 0}.

1.34. If L→ P, L′ → P ′ are line bundles with a linearization σ of a G-action on
P and a linearization σ′ of a G′-action on P ′, then π∗P (L)⊗ π∗P ′(L′)→ P × P ′ has
an induced linearization

σ ⊗ σ′((g, g′), (lp ⊗ l′p′)) := σ(g, lp)⊗ σ′(g′, l′p′) ∈ L⊗ L′|(gp,g′p′)

∀ lp ∈ L|p, ∀ l′p′ ∈ L′|p′ , ∀g ∈ G, ∀g′ ∈ G′ s. t. µσ⊗σ′((p, p′), λ× λ′) = µσ(p, λ) +
µσ(p′, λ′), ∀p ∈ P, ∀p′ ∈ P ′ and one-parameter subgroups λ : C∗ → G, λ′ :
C∗ → G′. For P = P ′ we use the pullback of σ ⊗ σ′ by the diagonal embedding
P ↪→ P × P instead. The linearization in the tensor product OP(W )(k) from 1.33
leads us consequentially to µk([l], λ) = k · µ1([l], λ) for the µ-functions µ1 and µk
w. r. t. the natural linearizations in OP(W )(1) and OP(W )(k).
Let χ : G → C∗ be a character of G. Then σχ := χ · σ is another linearization,
since σ is linear. Further σχ(λ(z), · ) = χ(λ(z)) · σ(λ(z), · ) implies

µχ( · , λ) = µ( · , λ) + 〈λ, χ〉

for µχ the µ-function to the linearization σχ and 〈λ, χ〉 the dual pairing, i. e.
〈λ, χ〉 = γ unique with χ(λ(z)) = zγ, z ∈ C∗ ([Bo91], 8.6).
Fix a basis (wi)i[n+1] of W and consider all one-parameter subgroups with re-
spect to this basis. Assume that there is a one-parameter subgroup λ(γiυW )
of G that corresponds to an integer tuple (γiυW )i[n+1], i. e. νW (λ,wi)(z) =

zγ
i
υWwi, ∀1 ≤ i ≤ n + 1, z ∈ C∗, as in the previous paragraph 1.33. Then

µ([l], λ(c · γiυW )) = c · µ([l], λ(γiυW )), ∀[l] ∈ P(W ), c ∈ Q+ by de�nition of the
µ−function. If (γiυW )i[n+1], (δiυW )i[n+1] are ordered tuples, i. e. γi+1

υW
≥ γiυW and

δi+1
υW
≥ δiυW for all 1 ≤ i ≤ n , then µ([l], λ(γiυW + δiυW )) = µ([l], λ(γiυW )) +

µ([l], λ(δiυW )), ∀[l] ∈ P(W ). The same result holds for ≥ replaced by ≤, i.
e. γi+1

υW
≤ γiυW and δi+1

υW
≤ δiυW for all 1 ≤ i ≤ n. For the special case
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when γiυW is chosen arbitrary and (δiυW )i[n+1] = (1, . . . , 1), c ∈ Q we receive
µ([l], λ(γiυW + cδiυW )) = µ([l], λ(γiυW )) + c · µ([l], λ(δiυW )), ∀[l] ∈ P(W ). Note in
particular µ([l], λ(γiυW )) =

∑n+1
i=1 α

iµ([l], λ(γin+1)) in the notation of 1.3.

1.35. Semistability in Quotients and Tensor Products. Let V be a vec-
tor space of dimension p, (vi)i[p] a basis of V and

(∧r
j=1 v

θ(j)
)
θ∈Monpr

, Monpr :=

{θ : {1, . . . , r} → {1, . . . , p} monotone increasing} ⊂ Mappr := {1, . . . , r}p a cor-
responding basis of

∧r V . Consider the usual action of Gl(V ) on
∧r V with lin-

earization in OP(
∧r V )(1). Now let λ be a one-parameter subgroup of Gl(V ) with

associated ascending weights γi w. r. t. a basis of eigenvectors (vi)i[p]. Note, that
for quotients q : V → W with the rules derived in 1.34 and the linearization in-
duced by the Plücker embedding we have µ([q], λ(γip)) = p dim(im(q(〈v1, . . . , vi〉)))
and µ([q], λ(γi)) =

∑p
i=1 α

iµ([q], λ(γip)).
More precisely: If q : V → W is a quotient, then

∧r q, r = dimW induces a mor-
phism to projective space ([Ha77], II.7.12).14 This is the Plücker embedding of the
Graÿmannian into P(

∧r V ). Then 1.34 implies that the natural weight function is
de�ned as −min{

∑r
j=1 γ

θ(j)| q(vθ) 6= 0, θ ∈ Monpr}.
Denote by θq ∈ Mappr : θq(j) := min{k : dim(q(v1, . . . , vk)) = j}. Then

∑r
j=1 γ

θq(j)

is minimal for any choice of a (ascending) weight vector (γj)j[p]. Assume there was
a θ′ ∈ Mappr such that q(v

θ′) 6= 0, then the q(vθ
′(j)) are linearly independent. Hence

by the de�nition of θq we get θq(j) ≤ θ′(j) for all 1 ≤ j ≤ r. In particular for
monotone increasing weights

∑r
j=1 γ

θq(j) ≤
∑r

j=1 γ
θ′(j).

Thus the weight function becomes with 1.34

µ([q], λ) = −min

{
r∑
j=1

γθ(j)| q(vθ) 6= 0, θ ∈ Monpr

}
=

p∑
k=1

αkpv (k, θq)

=

p∑
k=1

αkp dim(im(q(〈v1, . . . , vk〉))), v (k, θq) := #{j : θq(j) ≤ k}.

Finally note that for a tensor product (V ⊗u)
⊕v and a basis (vi)i[p] of V :

vθs :=

(
δst

u⊗
j=1

vθ(j)

)
t[v]

is a basis of (V ⊗u)
⊕v if s varies over 1 ≤ s ≤ v and θ ∈ Mappu. Then for q =∑v

s=1

∑
θ∈Mappu

aθsv
θ, �

s

µ([q], λ) = −min

{
−

p∑
i=1

αipv (i, θ) | ∃1 ≤ s ≤ v, θ ∈ Mappu : q(vθs) 6= 0

}
.

14Take the universal quotient over the Graÿmannian of r-dimensional quotients of p-
dimensional space and the determinant thereof.
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Remark. Observe that the weight functions in 1.35 depend only on the proper
weighted �ltration induced by λ (see 1.32). This is a general property of weight
functions (see [Sch08], Proposition 1.5.1.35.).

Example. Let λ(z) = diag(z−1, 1, z) = diag(zγ
1
, zγ

2
, zγ

3
) be a one-parameter sub-

group of Sl(V ), V = C3 w. r. t. a basis (v1, v2, v3) and νV ⊗2 the natural action of
Sl(V ) on W = V ⊗2. By 1.3 we get α1 = α2 = 1

3
= −α3. The weights of νV ⊗2 ◦ λ

are γjk = γj + γk = j + k − 4 w. r. t. the basis (vj ⊗ vk)j[3]k[3]. Now consider
q = (v1 ⊗ v3) � + (v2 ⊗ v2) � ∈ (V ⊗2) �. We get

−
3∑
i=1

3 · αi min
{
−v(i, θ)| ∃θ ∈ Map3

2 : q(vθ) 6= 0
}

= −1 · (−v(1, (1, 3))− 1 · (−v(2, (2, 2)) + 1 · (−v(3, (1, 3)) = 1 + 2− 2 = 1

but

µ([q], λ) = −min

{
−

3∑
i=1

3 · αiv (i, θ) | ∃θ ∈ Map3
2 : q(vθ) 6= 0

}
= v (1, (1, 3)) + v (2, (1, 3))− v (3, (1, 3)) = 1 + 1− 2 = 0.

We see that we cannot sum over the minimized v(i, θ) as in the case of an action
on an exterior product. However the additivity in 1.34 still holds: Order the γij

as γkνV⊗2
∈ {γij : i + j = k + 1}. Then αkνV⊗2

= 1
9
for 1 ≤ k ≤ 4 and α5

νV⊗2
= −2

9

and
r1
νV⊗2

= 1, r2
νV⊗2

= 3, r3
νV⊗2

= 6, r4
νV⊗2

= 8, r5
νV⊗2

= 9.

We get

µ([q], λ) = −min{γij : q(vij) 6= 0} = −min{γi + γj : (i, j) ∈ {(1, 3), (2, 2)}} = 0

as well as

µ([q], λ)

= −
5∑

k=1

αkνV⊗2
min

{
(γ

rkν
V⊗2

9 )rlν
V⊗2

= (γk5,9)l : q(vij) 6= 0 for some i+ j = l + 1

}
=

(
−1

9

)
· 0 +

(
−1

9

)
· 0 +

(
−1

9

)
· (−9) +

(
−1

9

)
· (−9) +

(
2

9

)
· (−9)

= 0.

1.36. Let G act on a vector space V and let W be another vector space. Then G
acts on W trivially and we get an action on the tensor product g(v⊗w) = gv⊗w
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for all g ∈ G, v ∈ V, w ∈ W . Let λ : C∗ → G be a one-parameter subgroup and
(vi)i[dimV ] a basis of V such that λ is diagonal w. r. t. this basis with weights
γi. Choose any basis (wj)j[dimW ] of W , then µ(L, λ) = −min{γi : L(vi ⊗ wj) 6=
0 for some wj} and L =

∑
ij L

ij(vi ⊗ wj) � a non-trivial linear form. The isomor-
phism Ψ : V � ⊗W � → (V ⊗W ) �, l ⊗ k 7→ {

∑
ij a

ijvi ⊗ wj 7→
∑

ij a
ijl(vi)k(wj)}

shows that for L = Ψ(l, k) : µ(L, λ) = −min{γi : l(vi) 6= 0} = µ(l, λ).

1.37. As we have seen above GIT-semistability depends on the choice of a lin-
earization in some suitable (ample) line bundle. We make the following choices

ν̃a :=
κa

(
p− uδ −

∑|S|
j=1

∑sj

i=1 δ
ij(r − rij)

)
− ξa · r

p
,

ν̃ :=
r · δ
p
,

ν̃ija :=
r · κa · δija

p

and l ∈ N minimal s. t. νa := lν̃a, ν := lν̃, νij := lν̃ij ∈ Z.

For line bundles La, L on X, the �ber over (×a∈A[La], [L]) in P is×a∈A P(La)×
P(L)× PG with

La := Hom

(
ra∧
Va, H

0(La(ran))

)

�

'
ra∧
Va ⊗H0(La(ran)) �

L := Hom (Vu,v, H
0 (
⊗

a L
⊗κaw
a ⊗ L(un)))

� ' Vu,v ⊗H0 (
⊗

a L
⊗κaw
a ⊗ L(un))

�

.

Remark. Obviously every point y in P belongs to one of these closed �bers. By
de�nition of (semi)stability (resp. the Hilbert-Mumford criterion 1.31 and its
following remark) we are allowed to check the (semi)stability of y considered as an
element of some �ber×a∈A P(La)×P(L)×PG. The �bers are tuples of projective
spaces (or closed subschemes thereof) and the GIT-weight functions µ are well-
known in this situation (cf. 1.35 and 1.36).

Assume there is an action σ of Gl(W ) on P(W �), W some vector space. Then
σ lifts to an action on W and by de�nition of OP(W �)(−1) ⊂ P × W �, we re-
ceive a linearization in OP(W �)(−1) and hence a linearization in OP(W �)(1) resp.
OP(W �)(m), m ∈ Z. By construction of the GA-action on the components of P, this
action lifts to G 1

a , a ∈ A, G 2 and we get a linearization of the GA-action in

OP(νa, ν, νij)

:=
⊗
a∈A

(π∗P(La)(OP(La)(νa))
)
⊗
|S|⊗
j=1

sja⊗
i=1

(
π∗
Gija

(OGija
(νija ))

)⊗ (π∗P(L)(OP(L)(ν))
)
.
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1.38. Modi�cation by a Character. Let λ be a one-parameter subgroup of
SκaA with associated �ltration (V i)i[p] and weights γi. Using 1.34 for the character
χ : SκaA → C∗, (Ma)a∈A 7→

∏
a∈A det(Ma)

χa with
∑

a∈A χa dim(Va) = 0 and σ :
SκaA ×OP(νa, ν, νij)→ OP(νa, ν, νij) the linearization of our SκaA -action, we receive

〈λ, χ〉 =

p∑
i=1

γi
∑
a∈A

χa dim(V i
a/V

i−1
a ),

for V i
a := Va ∩ V i. By using 1.3 and some index shifting we may rewrite this

expression as

〈λ, χ〉 =

p−1∑
i=1

αi dim(V ) ·
∑
a∈A

χa(dim(Va)− dim(V i
a )).

Denote by σχ the group action altered by χ.

1.39. De�nition. A point p ∈ P is χ-(semi)stable if µχ(p, λ) (≥) 0 holds for every
one-parameter subgroup λ : C∗ → SκaA , where µχ is the µ-function w. r. t. the
linearization σχ.
Fix χ : SκaA → C∗, (Ma)a[|A|] 7→

∏
a∈A det(Ma)

χa with χa := χ1
a + χ2

a

χ1
a :=

 |S|∑
j=1

sj∑
i=1

δija κa

(
rija r − rarij

ppa

) ,

χ2
a :=

((
1− uδ

p

)
· κa

(
r

p
− ra
pa

)
+

(
ξar

p
· ra
pa

))
.

1.7. Main Calculations

From now on we will use the following notational conventions.

1.40. Notation. Let λ be a one one-parameter subgroup of SκaA de�ned by a basis
(vk)k[p] of V and ascending weights (γk)k[p] and let (V k)k[p] be the corresponding
complete �ltration. As usual we will receive �ltrations (V k

a )k[p] and weights (γka)k[p]

for every a ∈ A. Given a �ltration (V k)k[p] of V we choose a suitable basis (vk)k[p]

and proceed as before. We will sometimes write λ((γk)k[p]) if we want to lay special
emphasis on the weights of the one-parameter subgroup.
Vektor subspace �ltrations (V k

a )k[p] of Va generate �ltrations of Ea by coherent
subsheaves F k,coh

a = qa(V
k
a ⊗ OX(−n)). These add up to a �ltration of coherent

subsheaves F k,coh of E in the usual way. Let F k
a = F k,coh

a (resp. F k = F k,coh) be
the vector subbundles of Ea (resp. E) generated by V k

a (resp. V k). Furthermore



26 | 1. The Moduli Space of Higgs Tuples

there is an induced �ltration of each ker(qija ) = Eij
a ⊂ Ea|{xj} over the puncture

xj by vector subspaces F ij,k
a,coh = Eij

a ∩ F k
a,coh|{xj}, 1 ≤ i ≤ sj.15 We receive another

�ltration of Eij
a by F ij,k

a := Eij
a ∩F k

a |{xj}. Denote by F
ij,k
coh and F ij,k the correspond-

ing subspaces of Eij ⊂ E|{xj}.
The dimensions and ranks of vector (sub)spaces and coherent (sub)sheaves are de-
noted in the usual way, i. e. r∗? = rk(F ∗? ) and r? = rk(E?) as well as p∗? = dim(V ∗? ).
Note that for a complete �ltration (V k

? )k[p] we get pk? = k.
Finally de�ne f ij,ka,coh = dim(im

(
qija
(
F k,coh
a |{xj})

))
, f ij,ka = dim

(
im
(
qija (F k

a |{xj}
))

and f ij,kcoh , f
ij,k, f ija , f

ij accordingly. Note that f ij,ka,coh = rka−r
ij,k
a,coh, f

ij,k
a = rka−rij,ka .

Let the weights δija be de�ned as in 1.8 from parabolic weights βija ∈ Q. Further-
more let νa, ν, νija and χ1

a, χ
2
a be de�ned by the expressions in 1.37 and 1.39 as

functions of the already de�ned parameters r, ra, etc.
For a function θ ∈ Mapm

2

m1 denote v(k, θ) = #{j ∈ {1, . . . ,m1} : θ(j) ≤ k} (cf.
1.35). We identify quotients with the corresponding elements of an exterior power.
Further if q =

∑
θ∈l q

θvθ(1) ? · · · ? vθ(m1), l = Monm
2

m1 ∨Mapm
2

m1 for (vi)i[m2] basis of
Cm2

and ? = ⊗,∧ then θλq denotes the element of l such that −
∑m1

k=1 α
kv(k, ·) is

minimal within the set {θ ∈ l : qθ 6= 0}.

1.41. Semistability for points in Gies(Tpar). We use the notation from 1.40.
Let t ∈ Tpar resp. q := qt correspond to E. Gies(t) is represented by a tuple
(qa, qϕ◦qu,v , q

ij
a ) ∈×a∈A

∧ra Va⊗H0(La(ran)) �×Vu,v⊗H0 (
⊗

L⊗κawa ⊗ L(un))

�×
×a∈A×|S|j=1×sja

i=1

∧ria Va. Using 1.36 we can apply the general calculations in 1.35
to get with resp. to the standard linearization in the corresponding O?(1):

µ(Gies1
a(t), λ(γkpa)) = pav(k, θ

λ(γkpa )
qa ),= par

k
a

µ(Gies2(t), λ(γkp )) = pv(k, θ
λ(γkp )
ϕ◦qu,v),

µ(Giesija (t), λ(γkpa)) = pav(k, θ
λ(γkpa )

qija ◦qa
) = paf

ij,k
a,coh = pa(r

k
a − r

ij,k
a,coh).

Recall that γkp , γ
k
pa were de�ned in 1.3. Observe that θ

λ(γkp )
ϕ◦qu,v might change if we

consider λ = λ((γk)k[p]) instead of λ(γkp ), i. e. θλϕ◦qu,v 6= θ
λ(γkp )
ϕ◦qu,v in general. We

are mainly interested in µ(Gies2(t), λ), thus we usually consider the minimizing
element θλϕ◦qu,v for λ.

1.42. We use the notation from 1.40 and q = qt for the quotient corresponding
to E. For the linearization 1.37 we deduce from 1.34 that

µχ(Gies(t), λ) =
∑
a∈A

νaµ(Gies1
a(t), λ) +

 |S|∑
j=1

sja∑
i=1

νija µ(Giesija (t), λ)


+ ν · µ(Gies2(t), λ) + 〈λ, χ〉.

15See 1.4 for the transition from a �ltration of length sja to a �ltration of length sj .
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From 1.35 we know that µ(Gies1
a(t), λ) =

∑p
k=1 α

k
aµ(Gies1

a(t), λ(γkpa)) and analo-
gously for the parabolic components.
In a �rst step we will bring our weight function above into the more classical form16

µχ(Gies(t), λ) =
∑
a∈A

νa

p∑
k=1

αka(par
k
a − pkara)︸ ︷︷ ︸

Comp1

+ ν ·
p∑

k=1

αk
(
pv(pk, θλϕ◦qu,v)− p

ku
)

︸ ︷︷ ︸
Comp2

+
∑
a∈A

|S|∑
j=1

sj∑
i=1

νija

p∑
k=1

αka

(
paf

ij,k
a,coh − p

k
af

ij
a

)
︸ ︷︷ ︸

Comp3

+〈λ, χ〉. (?)

Note that in the case |A| = 1 this equality obiously holds as λ is a one-parameter
subgroup of SκaA and hence in particular

∑p
k=1 α

kpk = 0⇒ αp = −p−1
∑p−1

k=1 α
kpk.

However in the tuple case we cannot replace the αpa-term that easily, since in
general αpa 6= −p−1

a

∑p−1
k=1 α

kpka. It is fortunately not very di�cult to show

∑
a∈A

p∑
k=1

αka

νa(−pkara) +

|S|∑
j=1

sj∑
i=1

νija
(
−pkaf ija

)+ ν ·
p∑

k=1

αk
(
−pku

)
=

p∑
k=1

αk
(
−pkr

)
= 0 (>)

and therewith (?). Here the �nal step follows from
∑p

k=1 α
kpk = 0 for the SκaA -

one-parameter subgroup λ. The �rst equation will result from the upcoming more
general calculations that lead to (M1) (see remark to 1.47).

The following numerical calculations are the main technical di�culty in proving
the existence of our moduli space with Geometric Invariant Theory. We will �rst
prove two technical lemmas.

1.43. Lemma. Let ηa := ξa · c, c ∈ R. Then the following formula holds:

∑
a∈A

p∑
k=1

αka(−ηa(parka − pkara) + ηara(pa − pka)) =
∑
a∈A

p∑
k=1

αkp
ηa
r

(rar
k − rkar).

Proof. We have

− ηa(parka − pkara) + ηara(pa − pka)
= −ηaparka + ηarapa = ηapa(ra − rka)

16As usual we replace every length sja weighted �ltration by a length sj �ltration (cf. 1.4).
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and therefore using 1.517

∑
a∈A

p∑
k=1

αkaηapa(ra − rka) =

p∑
k=1

αkp
∑
a∈A

ηa(ra − rka).

By de�nition (cf. 1.7)

∑
a∈A

p∑
k=1

αka(−ηa(parka − pkara) + ηara(pa − pka)) =

p∑
k=1

∑
a∈A

αkp
ηa
r

(rar
k − rkar).

1.44. Lemma. Under the same hypotheses as before and additionally assuming
that (rka)a[|A|]k[p] and (pka)a[|A|]k[p] induce the same (γka)a[|A|]k[p] from given (γk)k[p],
we receive

p∑
k=1

αk(prk − pkr)

=
∑
a∈A

p∑
k=1

κaα
k
a(par

k
a − pkara)−

∑
a∈A

p∑
k=1

αkapaκa

(
ra
pa
− r

p

)
(pa − pka).

Proof. By using 1.5 again, we already see that

∑
a∈A

p∑
k=1

αkapaκa

(
r

p

)
(pa − pka) =

p∑
k=1

αkr(p− pk).

Furthermore∑
a∈A

p∑
k=1

κaα
k
a(par

k
a − pkara)−

∑
a∈A

p∑
k=1

αkapaκa

(
ra
pa

)
(pa − pka)

=
∑
a∈A

p∑
k=1

κaα
k
a(par

k
a − pkara − ra(pa − pka)) =

p∑
k=1

αkp(rk − r)

implies the claim.

Remark. It is in fact enough to assume that (rka)a[|A|]k[p] induces a sub-weight of
the weight (γka)a[|A|]k[p] induced by (pka)a[|A|]k[p] from a given (γk)k[p].

These preparatory results will help us in the next step to split up the (semi)stability
concept into parts:

17Apply 1.5 for rka replaced by ηa
κa

(ra − rka).
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1.45. The Parabolic Contribution. Recall 1.4. Observe that for all 1 ≤
k ≤ p the weight vector (γka)a[|A|]k[p] induced by the (parabolic) data (f ij,ka,coh)a[|A|]k[p]

from (γk)k[p] is coarser than the one induced by (rka)a[|A|]k[p] resp. (pka)a[|A|]k[p],
i. e. we can apply lemma 1.44. Analogously the (βija )a[|A|]i[sj ] induced by the
(parabolic) data (f ij,ka,coh)a[|A|]i[sj ] form only part of the weights of the (βija )a[|A|]i[sj ]
induced by (f ija )a[|A|]i[sj ] from (βij)i[sj ], ∀1 ≤ j ≤ |S|. Hence we can apply 1.5 in
this situation.18

The following calculation will be used to simplify the parabolic part:

Comp3

=
∑
a∈A

p∑
k=1

|S|∑
j=1

sj∑
i=1

κaα
k
arδ

ij
a

p

(
paf

ij,k
a,coh − p

k
af

ij
a

)

=

|S|∑
j=1

sj∑
i=1

rδij

p

∑
a∈A

p∑
k=1

κaα
k
a

(
paf

ij,k
a,coh − p

k
af

ij
a

)

=

|S|∑
j=1

sj∑
i=1

rδij

p

(
p∑

k=1

αk(pf ij,kcoh − p
kf ij) +

∑
a∈A

p∑
k=1

αkaκapa

(
f ija
pa
− f ij

p

)
(pa − pka)

)
.

The parabolic part of the �rst component Comp1 is

−
∑
a∈A

p∑
k=1

|S|∑
j=1

sj∑
i=1

κaα
k
af

ijδij

p
(par

k
a − pkara)

= −
|S|∑
j=1

sj∑
i=1

f ijδij

p

∑
a∈A

p∑
k=1

κaα
k
a

(
par

k
a − pkara

)
= −

|S|∑
j=1

sj∑
i=1

f ijδij

p

(
p∑

k=1

αk(prk − pkr) +
∑
a∈A

p∑
k=1

αkaκapa

(
ra
pa
− r

p

)
(pa − pka)

)
.

Now adding the last summands of each term we have

|S|∑
j=1

sj∑
i=1

δij

p

∑
a∈A

p∑
k=1

αkaκapa

((
f ija r

pa
− f ijr

p

)
−
(
raf

ij

pa
− rf ij

p

))
(pa − pka)

=

p∑
k=1

αkp
∑
a∈A

 |S|∑
j=1

sj∑
i=1

δija κa

(
f ija r − raf ij

ppa

)
︸ ︷︷ ︸

=−χ1
a

(pa − pka)

= −〈λ, χ1〉.
18Recall that (δij)i[sj ] is induced by (βij)i[sj ] as (αi)i[p] is from (γi)i[p] (up to a scalar multi-

plication).
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for rija = r − f ija .
Furthermore the �rst summands of each term add up to

p∑
k=1

αk

 |S|∑
j=1

sj∑
i=1

δij
(
f ij,kcoh r − f

ijrk
) .

1.46. Non-Parabolic Contribution. Next consider the non-parabolic part of
the �rst Gieseker component Comp1 again using 1.43 and 1.44:∑
a∈A

p∑
k=1

αka

((
1− uδ

p

)
· κa −

ξar

p

)
(par

k
a − pkara)

=

(
1− uδ

p

)
·

(
p∑

k=1

αk(prk − pkr) +
∑
a∈A

p∑
k=1

αkapaκa

(
ra
pa
− r

p

)
(pa − pka)

)
− . . .

. . .−
∑
a∈A

p∑
k=1

αka

(
ξa
p
rra

)
(pa − pka) +

p∑
k=1

∑
a∈A

αkξa(rar
k − rkar)

=

p∑
k=1

αk

((
1− uδ

p

)
·
(
prk − pkr

)
+
∑
a∈A

ξa(rar
k − rkar)

)
+ . . .

. . .+

p∑
k=1

αkp
∑
a∈A

((
1− uδ

p

)
· κa

(
ra
pa
− r

p

)
−
(
ξar

p
· ra
pa

))
︸ ︷︷ ︸

=−χ2
a

(pa − pka)

=

p∑
k=1

αk

((
1− uδ

p

)
·
(
prk − pkr

)
+
∑
a∈A

ξa(rar
k − rkar)

)
− 〈λ, χ2〉

=

p∑
k=1

αk

(
prk − pkr +

∑
a∈A

ξa(rar
k − rkar)

)
+

p∑
k=1

αk
(
r

p
δpku− uδrk

)
− 〈λ, χ2〉.

1.47. The Higgs Field Contribution. Finally we consider the second compo-
nent Comp2 of µ(Gies(t), λ):

Comp2 =
r · δ
p

p∑
k=1

αk
(
pv(pk, θλϕ◦qu,v)− p

ku
)

=

p∑
k=1

αk
(
rδv(pk, θλϕ◦qu,v)−

r

p
δpku

)
.

Putting all components (apart from −〈λ, χ1〉 and −〈λ, χ2〉) together we receive
µχ(Gies(t), λ), i. e.

p∑
k=1

αk

prk − pkr +
∑
a∈A

ξa(rar
k − rkar)−

|S|∑
j=1

sj∑
i=1

δij
(
f ijrk − f ij,kcoh r

)
+ δ

p∑
k=1

αk
(
rv(pk, θλϕ◦qu,v)− ur

k
)
. (M1)
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Remark. The equation (>) is the special case where we remove
rka, r

k, f ij,ka,coh, f
ij,k
coh , v(pk, θλϕ◦qu,v) from the calculations in 1.45 through 1.47.

1.8. Simplifications of the Semistability Concept

Before we can apply the previous numerical calculations we still need to show that
all assumptions made above are satis�ed. In this section we will therefore show
that the semistability concept of tuples has to be checked only against a bounded
family of �ltrations. This implies for a suitable natural number n that F k(n) is
globally generated, H1(F k(n)) = 0 and in particular that pk = dk+rk(n+1−g). On
the other hand one-parameter subgroups of SκaA may come with far more weights
γk than weights accessible in a weighted bundle �ltration. Hence we will need to
�nd a way to produce suitable weights for the subbundles F k (resp. subsheaves
F k,coh) induced by V k.
In order to �nd a natural number n as stated above, we start with another bound-
edness result:

1.48. Lemma. The family of rank r and degree d vector bundles E with E '
Et, t ∈ Tpar s. t. Gies(t) is χ-semistable for some n big enough, is bounded.

Proof. Let q := qt : V ⊗ OX(−n) → E and use the notation from 1.40. In
order to apply 1.9 we start with a subbundle F ⊂ E and Q = E/F the quotient
bundle, i. e. the long exact sequence corresponding to 0 → F → E → Q implies
H0(F (n)) ↪→ H0(E(n)) and we may de�ne W := H0(q(n))−1(H0(F (n))) ⊂ V .
DenoteW ∩Va = Wa and wa := dim(Wa), w =: dim(W ). Let (via)i[pa] be a basis of
Va such that (vi)i[wa] is a basis of Wa. Now consider the one-parameter subgroup

λ = (λa)a[|A|] : C∗ → SκaA with weights γja =

{
wa − pa for j ≤ wa
wa for j > wa

.

Using 1.3 as well as 1.34, 1.41 and 1.42 we �nd

pa rk(Fa)− wara ≤ ra(pa − wa),

pv(w, θλϕ◦qu,v)− wu ≤ u(p− w),

pa(r
k
a − r

ij
a,coh)− wa(ra − r

ij
a ) ≤ ra(pa − wa).

Recalling the νa, ν and νija w. r. t. which we chose our linearization, we see that
all but the �rst component are at most constant in p19, i. e. one �nds ca > 0 s. t.
0 ≤ µχ(Gies(t), λ) implies

0 ≤ pa rk(Fa)− wara + ca, ∀a ∈ A.
19w ≤ p, wa ≤ pa ≤ p and all factors are positive for big n (independent of the data of F ).

For the character part χ2 this follows from rap− par = rad− dar for n big.
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Furthermore for all b ∈ A we have

ra
rb

(pb rk(Fa)− warb)− (pa rk(Fa)− wara) =

(
ra
rb
pb − pa

)
rk(Fa).

Now the right hand side is bounded for n big enough since rk(Fb) ≤ rb. Observe,
that this bound depends only on the data of E. Hence we �nd another constant c
such that

p rk(F )− wr + c =
∑
a,b∈A

κaκb(pb rk(Fa)− warb) + c ≥ 0.

We are in a similar situation as considered in [Sch08], 2.3.5.12. For completion we
repeat the argument here: Since by exactness w ≥ p − h0(Q(n)) our inequality
implies

p(rk(F )− r) + h0(Q(n))r ≥ −c⇒ h0(Q(n))

r
≥ p

r
− c

r
.

Choose Q the minimal destabilizing quotient of E coming from the Harder-
Narasimhan �ltration (1.10). In particular Q is semistable with minimal µ(Q)-
value. Lemma 7.1.2 in [LP97] shows for the semistable bundle Q20 that

h0(Q)

rk(Q)
≤ max{0, µ(Q) + 1}. (B1)

µmin(E) + n+ 1 ≥ µ(Q(n)) + 1 ≥ p

r
− c

r
=
d

r
+ n+ 1− g − c

r

⇒ µmin(E) ≥ µ(E)− g − c

r
.

Therefore 1.9 implies the claim.

Remark to 1.48. If we replace Tpar by any scheme that ensures that we still have
a Gieseker morphism (cf. remark 1.30) and such that H0(q(n)) is one-to-one, the
claim still holds. Observe that w ≤ dim(H0(F (n)) and wa ≤ dim(H0(Fa(n)).

1.49. Stability Simpli�cation I. Let Fc be the bounded family of vector bundles
E for which µ(F ) ≤ µ(E)+c holds for every subbundle F ⊂ E and a �xed constant
c (cf. 1.9). In this paragraph we will assume that E belongs to Fc. In particular
the degree of a subbundle is bounded from above.

Claim. There is a �nite set Ξ(s)s such that (semi)stability of a tuple has to be
checked only for �ltrations (F k

a )a[|A|]k[r] with (rk(F k), αk) ∈ {(rk)k[r] : 0 ≤ r1 ≤
. . . ≤ r} × Ξ(s)s.

20For µ(Q) < 0 we have h0(Q) = 0.
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Proof. For now call S[par](F
k, αk) := Mκ,ξ

[par](F
k, αk) + δ · µ(F k, αk, ϕ). For (αk)k →

(zαk)k[r], z > 0 we have S[par](F
k, αk)→ z · S[par](F

k, αk), i. e. we can restrict to
(αk)k[r] ∈ ([0, 1] ∩Q≥0)r in the (semi)stability criterion 1.6. We may extend S[par]

to a continuous function [0, 1]r → R, (αk)k[r] 7→ S[par](α
k), where S[par]( · ) is the

extension of S[par](F
k, · ) to arbitrary degrees dk and ranks rk (independent of the

existence of a suitable �ltration). Of course we get di�erent functions S[par] for a
di�erent choice of the data rk, dk, rij,k and so on.
Note however that apart from the degrees of the F k we only have �nitely many
choices for 0 ≤ rk ≤ r as well as rij,k, etc. In particular, since 0 ≤ v(i, θ∗?) ≤ u for
�xed (αk)k[r], µ( · , αk, · ) has only �nitely many possible values. Since our family
is bounded by assumption, the degree is bounded from above. Thus we only have
to care about small degrees and of course about the (αk)k[r]. For all data (apart
from the (αk)k[r]) �xed, the continuous function S[par](α

k) on the compact set [0, 1]r

has a global minimum m for some (αkmin)k[r].
Assume that di < −|d| − uδ, then

αi(dri − rdi)− δ ·max{0, αi(uri − v(i, θ)r)} ≥ αi(dri − rdi − δru)

≥ αir(−|d| − δu− di) ≥ 0

and hence the function S[par] can be minimal only if αi = 0 in the tuple (αkmin)k[r].
We repeat the argument for all other dj with dj < −|d| − uδ. Of course we �nd
two disjoint subsets I, J ⊂ {1, . . . r} such that di < −|d| − uδ if and only if i ∈ I
and dj ≥ −|d| − uδ if and only if j ∈ J . Therefore all tuples (di)i[r] that share
the same I, the same J and that are equal on J , share the same (αkmin)k[r] that
minimizes S[par](α

k). Note that αimin = 0, i ∈ I. Since there is only a �nite choice
of sets I, J and the dj, j ∈ J are additionally bound from above, we �nd a �nite
set Ξ of (αkmin)k[r] that contains the minimizer S[par](α

k) for any choice of data.

If the actual minimum is smaller than 0, by density of Q in R we �nd a rational
(α̂kmin)k[r] ∈ (Q≥0)r such that S[par](α̂

k
min) < 0 holds. Index these (α̂kmin)k[r] by the

�nite set Ξss. If the minimum is exactly 0 set Ξ′ = {(αkmin) ∈ S−1
[par](0)∩(Q≥0)r∩Ξ}

and Ξs = Ξss ∪ Ξ′. Finally we get

∃(F k, αk)k[r] : S[par](F
k, αk) (≤) 0⇔ ∃(α̂k)k[r] ∈ Ξ(s)s : S[par](F

k, α̂k) (≤) 0.

Remark. Observe that by de�nition µ(F k, αk, ϕ) := 1
q
· µ(F k, q · αk, ϕ) for q · αk ∈

Z≥0[1/r], q ∈ Q∗.
Once we established that there is only a �nite number of (α̂k)k[r] to be checked, we
�nd an integer z as above such that we may check (semi)stability against a �nite
subset of (Z≥0[1/r])r.
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Using (αi)i[r] ∈ Ξ(s)s �nite and the proof of lemma 1.13, we �nd a constant cj1 with

Mκ,ξ
[par](F

i, αi) ≥ −
m∑
i=1

αi
(

par-deg(F i) rk(E)− par-deg(E) rk(F i)

+
∑
a∈A

ξa rk(F i
a) rk(E))

)
≥ cj1 − αj

(
par-deg(F j) rk(E)

)
.

Therefore we �nd for any constant c3 a constant c2 such that the existence of a j
with µ(F j) ≤ c2 and αj 6= 0 impliesMκ,ξ

[par](F
k, αk) ≥ c3. Furthermore we saw in the

proof of lemma 1.13 that µ(F k, αk, ϕ) ≥ −ur
∑r−1

k=1 α
k, i. e. µ(F k, αk, ϕ) ≥ c4 on

Ξ(s)s �nite. Choosing c3 > −δc4 implies that our tuple is already (semi)stable, i. e.
it is enough to check (semi)stability for �ltrations (F k

a )a[|A|]k[r] with µ(F k
a ) > c2,∀k

with αk 6= 0. By the following lemma 1.50 the F k(n) for some n big enough are
now globally generated with vanishing �rst cohomology.

1.50. Lemma. Let Fil be the family of subbundles F of a rank r and degree d
vector bundle E in a bounded family Fc, such that µ(F ) ≥ c2 given a �xed constant
c2. Then there is a n0 ∈ N s. t. for all n ≥ n0 one has h1(F (n)) = 0 and F (n)
globally generated.

Proof. For a n with H1(F (n)) ' Hom(F (n), ωX) 6= 0 (Serre duality) we �nd a
homomorphism ϕ : F (n)→ ωX , ϕ 6≡ 0 and a short exact sequence

0 −→ ker(ϕ) −→ F (n) −→ ϕ(F (n)) −→ 0.

Therefore

rk(F ) · n+ rk(F ) · c2 ≤ deg(F (n)) = deg(ker(ϕ)) + deg(ϕ(F (n)))

≤ (rk(F )− 1) · µ(ker(ϕ)) + 2g − 2

≤ (rk(F )− 1)

(
d

r
+ n+ c

)
+ 2g − 2

⇒ n ≤ d(r − 1)

r
+ rc+ 2g − 2 + |r · c2| =: n0 − 1

Thus for n > n0 − 1 big enough H1(F (n)) = 0, ∀j. Analogously we can show
that H1(F (n)(−x)) = 0 for every x ∈ X if n ≥ n0, i. e. F (n) is then globally
generated.

Remark. This proof is an adaption of the proof of proposition 2.2.3.7 in [Sch08].
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1.51. Stability Simpli�cation II. Let E ∈ Fc be a vector bundle and (F k)k[r] a
�ltration of type (rk, dk)k[r] of E such that F j ∈ Fil as before. From the previous
lemma we know that H1(F k(n)) = 0. We get a �ltration (V k)k[r] of V under the
bijection H0(q(n)) such that pk = dimV k = dk + rk(n + 1 − g) together with
weights (αk)k[r]. As usual we will extend the weights and the �ltration trivially to
(V k, αk)k[p]. By 1.40 we receive an associated one-parameter subgroup λ of SκaA .

We extend a result from [Sch08], 2.3.5.15 to the tuple case:

Claim. For every (semi)stable tuple ((Ea, (Eij
a )i[sja]j[|S|])a[|A|], ϕ, L) and every

weighted �ltration (F k)k[p] with global weights αk, there is a possibly di�erent
weight vector (αkJ)k[p] such that

p∑
k=1

αk

prk − pkr +
∑
a∈A

ξa(rar
k − rkar) +

|S|∑
j=1

sj∑
i=1

δij
(
rijrk − rij,kr

)
+ δ

p∑
k=1

αk
(
rv(pk, θλϕ◦qu,v)− ur

k
)

≥Mκ,ξ
par(F

k, αkJ) + δµ(F k, αkJ , ϕ),

where we used the notation 1.40.

Proof. By 1.13 we �nd a constant c1 such that µ(F k) ≤ c1. Let I(c2) := {k ∈
{1, . . . , r} : µ(F k) < c2} and J(c2) = {1, . . . , r} \ I(c2). Again by (B1) and the
Harder-Narasimhan �ltration 0 = F k,0 ⊂ F k,1 ⊂ . . . ⊂ F k,m = F k we get

h0(F k) ≤
m−1∑
i=0

h0(F k,i+1/F k,i) ≤ (rk(F k)− 1)(c1 + 1) + µ(F k) + 121

⇒ pk = h0(F k(n)) < (rk(F k)− 1)(c1 + 1) + c2 + rk(F k) · n+ 1, ∀k ∈ I(c2).

Choose c2 small enough that

21The expression holds for h0(F k) ≥ 0; else h0(F k) = 0. Observe that µ(F k,m/F k,m−1) ≤
µ(F k).
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(
prk − pkr +

∑
a∈A

ξa(rar
k − rkar)+

|S|∑
j=1

sj∑
i=1

δij
(
rijrk − rij,kr

))
+ δ ·

(
rv(pk, θλϕ◦qu,v)− ur

k
)
≥ 0.22 (S2)

Next consider the �ltrations (F k
I )k∈I(c2) = (F k)k∈I(c2) and (F k

J )k∈J(c2) = (F k)k∈J(c2)

and pkI , p
k
J , a. s. o. the corresponding dimensions. Then

p∑
k=1

αk

prk − pkr +
∑
a∈A

ξa(rar
k − rkar) +

|S|∑
j=1

sj∑
i=1

δij
(
rijrk − rij,kr

)
+ δ

p∑
k=1

αk
(
rv(pk, θλϕ◦qu,v)− ur

k
)

≥
p∑

k=1

αkJ

prkJ − pkJr +
∑
a∈A

ξa(rar
k
J − rkJ,ar) +

|S|∑
j=1

sj∑
i=1

δij
(
rijrkJ − r

ij,k
J r

)
+ δ

p∑
k=1

αkJ

(
rv(pkJ , θ

λ
ϕ◦qu,v)− ur

k
J

)

+

p∑
k=1

αkI

prkI − pkIr +
∑
a∈A

ξa(rar
k
I − rkI,ar) +

|S|∑
j=1

sj∑
i=1

δij
(
rijrkI − r

ij,k
I r

)
+ δ

p∑
k=1

αkI

(
rv(pkI , θ

λ
ϕ◦qu,v)− ur

k
I

)
≥Mκ,ξ

par(F
k, αkJ) + δ · µ(F k, αkJ , ϕ).

In the last step we used 1.50, i. e. prkJ − pkJr = drkJ − dkJr23, as well as the estimate
(S2). Also note the remark below.

Remark. By construction of the parameter space ϕ|(⊗
ij
F ij

)⊕v ≡ 0 ⇔

ψ|(⊗
ij
V ij

)⊕v ≡ 0 and hence by de�nition of the Gieseker map µ(F k, αk∗, ϕ) =∑p
k=1 α

k
(
rv(pk∗, θ

λ
ϕ◦qu,v)− ur

k
∗

)
.

Remark. We �nd a non-parabolic version of 1.51 if we drop the parabolic contri-
bution everywhere, i. e. set δij = 0.

22Note that n drops out and that apart from prk−pkr all other terms are uniformly bounded,
i. e. can be controlled in terms of c2. In particular 0 ≤ v(pk, θλϕ◦qu,v ) ≤ u.

23Apply 1.50 to the family of �ltrations with I = ∅.
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1.9. Main Technical Theorem

We are now able to prove that Gies respects (semi)stability.

1.52. Theorem. Choose admissible weights (δij)i[sj ]j[|S|, i. e.
∑sj

i=1 δ
ij < 1 for

every xj ∈ S. There is a N ∈ Z such that for all n ≥ N and all t ∈ Tpar the
following two properties are equivalent:

(i) t is a (δ, ξa, δ
ij)-(semi)stable tuple,

(ii) Gies(t) is χ-(semi)stable.

Proof. (ii) ⇒ (i): By lemma 1.48, we may apply the semistability simpli�cation
1.49, i. e. it will be enough to check (semi)stability for �ltrations (F k

a )a[|A|]k[r] with
F k
a (n) globally generated and h1(F k

a (n)) = 0. Let (V k
a )a[|A|]k[p] be the resulting

�ltration of V under the bijection H0(q(n)) with the weights (γk)k[p] induced in
the usual way from given (αk)k[p] with αp = −p−1

∑p−1
k=1 α

kpk.24 Let λ := λ(γk)
be a corresponding one-parameter subgroup w. r. t. the �ltration (V k

a )a[|A|]k[pa].25

Now we are in the situation of section 1.7.
If n is big enough, p = d + r(n + 1 − g) and pk = dk + rk(n + 1 − g) and thus
prk − pkr = drk − dkr, i. e. (M1) becomes

µχ(Gies(t), λ) = Mκ,ξ
par(F

k, αk) + δ · µ(F k, αk, ϕ).

This proves the claim.
(i) ⇒ (ii): Start with an arbitrary one-parameter subgroup λ : C∗ → SκaA and use
the notation of 1.40. First note, that on the side of the Gieseker space there is in
general a bigger choice of one-parameter subgroup weights (γi)i[p] and correspond-
ing (αi)i[p] than there is in the semistability condition of Higgs tuples. Thus we
have to produce from the given (αi)i[p] new weights (α̂i)i[p], about which we can say
anything. More precisely they should obey the semistability condition for Higgs
tuples. De�ne p̂ka := h0(F k

a (n)), p̂k := h0(F k(n)) and note that p̂ka ≥ pka. Now take
Jka = {l : F k

a = F l
a} and α̂ka =

∑
l∈Jka

αla. Let λ̂ be the one-parameter subgroup

λ̂ : C∗ → SκaA corresponding to (α̂k)k[p] and H0(F k(n)). Furthermore note that the
torsion decomposes p̂k − pk ≥

∑
j∈supp(Fk/Fk,coh)∩S t

j,k26 with tj,k ≥ f ij,k − f ij,kcoh .
Application of the main calculations 1.7 shows, that

24Extend the (V k, αk)k[r] as in 1.4 to (V k, αk)k[p].
25As mentioned before λ depends on the choice of a suitable basis (see 1.32).
26The part of the torsion that hits the punctures and therefore contributes to the (semi)stability

calculations.
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µχ(Gies(t), λ)

(M1)
=

p∑
k=1

αk

prk − pkr +
∑
a∈A

ξa(rar
k − rkar)−

|S|∑
j=1

sj∑
i=1

δij
(
f ijrk − f ij,kcoh r

)
+ δ

p∑
k=1

αk
(
rv(pk, θλϕ◦qu,v)− ur

k
)

= µχ(Gies(t), λ̂) +

p∑
k=1

αk

(p̂k − pk)r −
|S|∑
j=1

sj∑
i=1

δij
(

(f ij,k − f ij,kcoh )r
)

≥ µχ(Gies(t), λ̂) +

p∑
k=1

αk
|S|∑
j=1

tk,jr

1−
sj∑
i=1

δij

 (Tor 1)

≥ µχ(Gies(t), λ̂).

For the second equality we used 1.35 and the remark above, i. e. v(p̂k, θλϕ) =
v(pk, θλϕ◦qu,v). The last two inequalities are a consequence of p̂k − pk ≥∑

j∈supp(Fk/Fk,coh)∩S t
j,k and admissibility of the weights δij. Note that by choosing

subsheaves with suitable associated torsion sheaves F k/F k
coh supported exactly on

the punctures such that f ij,k − f ij,kcoh = tj,k, admissibility becomes a necessary con-
dition for our construction to work.
Now in order for the claim to hold, we only need to show that we �nd for each
tuple (α̂k)k[p] a tuple (α̃k)k[p] such that

p∑
k=1

α̂k

prk − p̂kr +
∑
a∈A

ξa(rar
k − rkar) +

|S|∑
j=1

sj∑
i=1

δij
(
rijrk − rij,kr

)
+ δ

p∑
k=1

α̂k
(
rv(p̂k, θλϕ◦qu,v)− ur

k
)

≥Mκ,ξ
par(F

k, α̃k) + δ · µ(F k, α̃k, ϕ).

But this is the statement of 1.51.

1.10. Geometric Invariant Theory

We will repeat some of the main results from Geometric Invariant Theory. More-
over it will be shown that Gies is a closed embedding.

1.53. De�nition. Let G be an algebraic group acting by σ on the algebraic
prescheme X (both over C). A pair (X � G, πX) for a prescheme X � G and
a morphism πX : X → X �G is called a categorical quotient (of X by G) if
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(Cat1) the diagram
G×X σ //

pr2
��

X

πX
��

X // X �G

commutes.

(Cat2) Given any pair (Z, πZ) with a prescheme Z and a morphism πZ : X → Z
such that πZ ◦ σ = πZ ◦ pr2, there is a unique morphism f : X � G → Z
such that πZ = f ◦ πX .

(X � G, πX) is a good quotient of X by G if πX is a surjective a�ne morphism
that satis�es (Cat1) and

(G1) πX�G,∗(OX)G = OX�G where πX�G,∗(OX)G(U) is the set of G-invariant func-
tions on π−1

X�G(U) for U ⊂ X �G o�en.

(G2) closed G-invariant subsets are mapped to closed subsets.

(G3) disjoint G-invariant closed subsets stay disjoint under πX .

(X � G, πX) is a geometric quotient of S by G if X � G is a good quotient such
that

(Geo1) for every x ∈ X �G, π−1
X ({x}) contains at most one orbit.

X �G is a universal categorical (resp. universal good, resp. universal geometric)
quotient if it is a categorical (resp. good, resp. geometric) quotient under every
base change, i. e. X ×X�G Z → Z is a categorical (resp. good, resp. geometric)
quotient for every scheme Z → X �G.

Remark. 1. A (universal) good quotient is a (universal) categorical quotient
([MFK].0.�2 Proposition 0.1). (G3) guarantees that ϕ (in the de�nition of a
categorical quotient) exists as a map of the underlying sets, (G2) shows that
ϕ is continuous and (G1) makes ϕ algebraic.

2. If X �G is a good quotient of X by G, then πX�G(x) = πX�G(y) if and only
if Gx∩Gy 6= ∅ (Seshadri [Ses77], remark 8 to theorem 4). Furthermore every
�ber π−1

X�G(x) of every closed point x ∈ X � G contains exactly one closed
orbit.27 Note that for x, y ∈ X with Gx ∩ Gy 6= ∅ and Gy = Gy there is a
one-parameter subgroup λ of G such that limz→∞ λ(z) · x ∈ Gy.28

27e. g. [LP97], Proposition 6.1.7.
28see [Bir71], theorem 4.2 by R. Richardson.
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1.54. Theorem ([MFK], Theorem 1.1). Let Y be an a�ne scheme of �nite type
over C, let G be a reductive linear algebraic group acting on Y . Then the Y � G
exists as a universal good quotient.

1.55. Theorem. Let X, G be as in 1.53 and L a G-linearized line bundle on X.
Then a universal categorical quotient (Xss � G, πXss) exists for Xss the open set
of semistable points w. r. t. the G-linearization on L. Moreover

(i) πXss is a�ne and universally submersive;

(ii) there is an ample invertible sheaf M on Xss�G such that π∗Xss(M) ' Lk for
some k;

(iii) Xss �G is a quasi-projective algebraic scheme;

(iv) there is an open subset Y ⊂ Xss � G such that Xs = π−1
Xss(Y ) and Xs the

set of stable points w. r. t. the G-linearization on L. Then (Y, πXss|Xs) is a
universal geometric quotient, i. e. Y = Xs/G.

Proof. [MFK], Ch. 1, �4.1.10.

Remark 1.55. If X is proper over C and L is ample, Xss �G is projective ([MFK],
Ampli�cation 1.11 in �1).

1.56. Theorem. Let f : X → Y be a �nite G-linear morphism between algebraic
preschemes. Let σ be a G-linearization on an ample line bundle L and σX the
induced linearization on f ∗L, then

Xs = f−1(Y s), Xss = f−1(Y ss).

Proof. [MFK], Ch.1, �5.1.19. and the comment after Corollary Ch.1, �5.1.20..

1.57. Proposition ([Ram96ii], 5.1). Let G be a linear algebraic group acting
on two schemes X, Y and f : X → Y an a�ne G-equivariant morphism, then
if Y � G exists as a good quotient, so does X � G and the induced morphism
f : X � G → Y � G is also a�ne. Furthermore if f is proper (i. e. �nite), then
f is �nite; if additionally Y �G is a geometric quotient, so is X �G.

1.58. De�nition. Let G be an action of a linear algebraic group on a scheme
X over C and let Xss be the open subset of semistable objects with respect to
a linearization of the G-action in some ample line bundle. We call two points
x, y ∈ Xss strongly equivalent, or short S-equivalent, if Gx ∩ Gy 6= ∅. We have
seen above that S-equivalent points are mapped to the same point in a good
quotient.
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In view of 1.57 we still need to show that our Gieseker map is �nite to pull back
the GIT-quotient.

1.59. Lemma. The Gieseker map is a closed immersion Tsspar ↪→ Pss. In particular
Gies �nite.29

Proof. ([Sch08], 2.3.5.17) Since Gies is one-to-one, it is enough to show the proper-
ness30 using the properness valuation criterion. Let R be a discrete valuation
ring R with a fraction �eld K. Start with maps f̂ : Spec(R) → Pss and
f : Spec(K)→ Tsspar such that

Spec(K)

j

��

f // Tsspar

Gies

��
Spec(R)

f̂

// Pss

commutes. We need to �nd a map f : Spec(R) → Tsspar for
every discrete valuation ring R such that the extended diagram com-
mutes.31 Using 1.22 we �nd a quotient family ((qSpec(K),a, ESpec(K),a,

(qijSpec(K),a, H ij
Spec(K),a)i[sja]j[|S|])a[|A|], υSpec(K), HSpec(K), ϕSpec(K)) on Spec(K). Let

π ◦ f : Spec(K) → Q with Q projective. Then qSpec(K),a extends to qSpec(R),a but
the special �ber over the special point p will in general be only a coherent sheaf
on X. Analogously we de�ne the extension υSpec(R) by the projectivity of Jacl and
qijSpec(R),a by the projectivity of the Graÿmann variety.
We have to deal with the possible torsion of E. For T ⊂ {p}×X the support of the
torsion on the special �ber, we may extend det(ESpec(R)|(Spec(R)×X)\T ) uniquely over
the codimension 2 torsion T to the regular two dimensional scheme Spec(R)×X.
Name the corresponding line bundles on Spec(R) × X resp. Spec(R) × {xj}:
HSpec(R), det(ESpec(R)) and H ij

Spec(R).
Next the repetition of the construction of the parameter space with Q replaced
by Spec(R), will lead us to a closed subscheme R and a projective morphism πR :
R → Spec(R).32 Since we already know that some morphism, namely ψSpec(K) =
ϕSpec(K) ◦ qSpec(K),u,v splits, R is not empty and we get a morphism Spec(K)→ R

29Recall that �nite maps are proper and a�ne.
30[EGA] IV, Corollaire 18.12.4 shows that proper injections are proper and quasi-�nite, and

therefore �nite.
31[Ha77], II.4.7.
32cf. remark 1.16 and 1.17.
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over Spec(R). Now the valuation criterion applied to the projective morphism
πR shows the existence of ϕSpec(R) : ESpec(R),u,v → det(ESpec(R))

⊗w ⊗PυSpec(R)
on

Spec(R)×X which extends ϕSpec(K) ([Ha77], II.4.7).
Let ι : ESpec(R) → ÊSpec(R) := E � �

Spec(R). By [Ha80], Corollary 1.2 E � �

Spec(R) is re�exive
and thus by [Ha80], Corollary 1.4 it is already �at on Spec(R)×X. Observe that
the torsion of ESpec(R)|{p}×X is just ker(ι|{p}×X). In particular q̂|{p}×X is in gen-
eral not surjective.33 Hence we still need to de�ne ϕ̂Spec(R). Given the embedding
i : (Spec(R)×X) \ T ↪→ Spec(R)×X, we then de�ne

ϕ̂Spec(R)(e) := i∗(ϕSpec(R)|(Spec(R)×X)\T )(i∗(e))

for all e ∈ ÊSpec(R),u,v, i∗(e) the corresponding point in

i∗

(
ÊSpec(R),u,v|(Spec(R)×X)\T

)
= i∗

(
ESpec(R),u,v|(Spec(R)×X)\T

)
.

Note that we have again34 used that in the image

i∗
(

det(ESpec(R)|(Spec(R)×X)\T )⊗w ⊗PυSpec(R)|(Spec(R)×X)\T

)
= det(ESpec(R))

⊗w ⊗PυSpec(R)
= det(ÊSpec(R))

⊗w ⊗PυSpec(R)
.

We proceed analogously for the parabolic quotients. By construction the family

((q̂Spec(R),a, ÊSpec(R),a, (q̂ijSpec(R),a, Ĥ ij
Spec(R),a)i[sja]j[|S|])a[|A|], υ̂Spec(R),

ĤSpec(R), ϕ̂Spec(R))

de�nes a morphism to P which coincides with f̂ �rst on Spec(K) and (since P is
projective) then already on all of Spec(R). Now restricting our family to a family
r := ((q̂a, Êa, (q̂ija , Ĥ ij

Spec(R),a)i[sja]j[|S|])a[|A|], υ̂, Ĥ , ϕ̂) on {p} ×X, by de�nition

of f̂ the point f̂(r) is semistable. Observe that H0(q̂(n)) is one-to-one - for the
kernel k of H0(q̂(n)) we get by (Tor 1)

∑|S|
j=1

∑sj

i=1 δ
ijf ijcohr − dim(k)r ≥ 0 and∑|S|

j=1 f
1j
coh ≤ dim(k)35

∑sj

i=1 δ
ij<1

=⇒ dim(k) = 0.
Now the remarks to 1.30 and 1.48 as well as the corresponding modi�cation of the
main calculation imply that r is δ-semistable. But the vector bundle associated
to r lives in a bounded family and the monomorphisms H0(q̂a(n)) into spaces of

33Coherence implies that the corresponding modules are of �nite length, i. e. l(M) = l(M �) =
l(M � �) for the length. Then coker(ι) ' M � �/ι(M) ' M � �/(M/ ker(ι)) for ι : M → M � � has
length dim(Tor(M)), i. e. q̂ = q ◦ ι is surjective if the torsion vanishes.

34as line bundles on a regular two-dimensional scheme minus a codimension 2 torsion T extend
uniquely to line bundles on Spec(R)×X.

35f1jcoh ≥ f
ij
coh for all i ∈ {1, . . . , sj}.
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the same dimensions are isomorphisms. Thus r is a quotient family. Now the
universal property 1.22 provides us with a unique morphism f : Spec(R) → Tsspar

s. t. ((q̂Spec(R),a, ÊSpec(R),a, (q̂ijSpec(R),a, Ĥ ij
Spec(R),a)i[sja]j[|S|])a[|A|], υ̂Spec(R), ĤSpec(R),

ϕ̂Spec(R)) is the pullback of the universal family. By remark 1.30 Gies ◦f = f̂ shows
that f lifts f̂ . On the other hand f ◦ j = f by the uniqueness property in 1.22.
Hence Gies is proper and therefore �nite.

1.11. Existence of the Moduli Space

We are now in the position to state our main result, namely the existence of the
moduli space of Higgs tuples. Before we do so, we repeat the de�nition of �ne and
coarse moduli spaces and establish some conventions that we will use.
In Balaji [Bal10] a detailed discussion of the underlying categorical properties of
moduli spaces is given. Classical references for the construction of moduli spaces
are Newstead's book [New78] and of course Mumford, Fogarty, Kirwan [MFK].

1.60. De�nition. Let M : SchC → Sets be a functor. A scheme M together
with a natural transformation ψM fromM to Hom( · ,M ) is called a coarsemoduli
scheme for M if

1. ψM is a bijection over Spec(C) and,

2. for any scheme S and any natural transformation ψS : M → Hom( · , S),
there is a unique morphism of functors ϕ : Hom( · ,M )→ Hom( · , S) such
that ψS = ϕ ◦ ψM .

Remark. Condition (ii) is equivalent to saying that M corepresents M, i. e.,
that ψM induces Mor(M,Hom( · , S)) ' Mor(M , S) for every scheme S over C.
Sometimes authors (see [HL10], Def. 4.1.1) require only (ii) as the de�nition of a
moduli space.

1.61. De�nition. Let M : SchC → Sets be a functor, that associates to every
scheme S the set of equivalence classes of S-families of objects. A scheme M is
called a �ne moduli space for the functor M if there is a universal family U on
M . A universal family U on M is a M -family such that for every scheme S and
every S-family S there is a unique morphism ψ : S →M such that S ' ψ∗(U ).

Remark. (i) In order for the de�nition to make sense, a speci�c de�nition of a
S-family should allow pullbacks, i. e. given a morphism between two schemes
f : T → S and a universal S-family S there is a T -family f ∗(S ). The pull-
back should naturally have some functorial properties, i. e. for two morphisms
f, g: (f ◦ g)∗ = g∗ ◦ f ∗, id∗S = idT . In our applications we will have additional
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equivalence relations on S-families, e. g. isomorphy of S-families. Naturally the
pullback operation should respect a given equivalence relation. An equivalence
relation on families on the other hand will have to be compatible with a previously
�xed equivalence relation of the underlying objects, i. e. the equivalence relation
of families restricts to the equivalence relation of objects for S = Spec(C).
Whenever we de�ne S-families of objects and equivalence of S-families, these con-
ditions will be satis�ed.
The existence of a pullback may be formalized in the language of �bered categories
(over SchC).36

(ii) Equivalently M together with a natural transformation ψM from M to
Hom( · ,M ) is called a �ne moduli scheme for M if M represents M, i. e.
for any scheme S, ψM induces Mor(Hom( · , S),M) ' Mor(S,M ).37

1.62. Proposition ([New78], 2.13). For a scheme T and a T -family T which
satisfy

(U1) local universality, i. e. for any point s of a scheme S that admits an S-family
S , there is a neighborhood V of s in S and a morphism ϕ : V → T such
that S |V ' ϕ∗(T );

(U2) and which admits an action of a linear algebraic group G such that for any
two morphisms h1, h2 : S → T we get h∗1(T ) ' h∗2(T ) if and only if there
is a morphism Φ : G→ T such that Φ · h1 = h2;

the following two statements hold:

(M1) A coarse moduli space, if it exists is a categorical quotient of T by G,

(M2) A categorical quotient T by G is a coarse moduli space exactly when T is an
orbit space, i. e. if every �ber of T → T �G contains exactly one orbit.

Remark. Given a �xed equivalence relation on objects, it can be shown that a
coarse moduli space is independent of the chosen extension of that equivalence
relation to families. The result does not hold for �ne moduli spaces, whose ex-
istence usually depends on the chosen equivalence relation ([New78], Def. 1.6',
Pro. 1.8 and Lemma 5.10.). For vector bundles for example, if we de�ne equiv-
alence of families by simply requiring that two bundles EY , FY of rank r and
�berwise degree d on Y ×X are isomorphic as vector bundles, we will only get a
coarse moduli space of stable vector bundles. However, if we de�ne EY ∼ FY ⇔
∃LY → Y line bundle such that EY ' FY ⊗ π∗Y (LY ) as vector bundles, then in

36Classical references are [SGA] or [Gr66]. Nicolai Beck gives an excellent account thereof in
[Be14].

37Newstead [New78], Def. 1.5'.
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some cases the stable vector bundles even form a �ne moduli space. More precisely
if gcd(r, d) = 1 the �ne moduli space of stable vector bundles does exist ([New78]
5.12), for gcd(r, d) 6= 1 not (Ramanan [Ra73], theorem 2).
The concept can be easily extended to tuples and vector bundles with
more additional structure. For tuples for example ((E 2

Y ⊗ π∗Y (LY ))⊗u)⊕v '
((E 2

Y )⊗u)⊕v ⊗ π∗Y (L ⊗u
Y ) implies that in 1.19 we should require γY : H 1

Y →
H 2

Y ⊗ L ⊗u
Y such that given ψY : E 1

Y → E 2
Y ⊗ π∗Y (LY ) the formula ϕ1

Y =(
det(ψY )⊗w ⊗ idPυY

⊗π∗Y (γY )
)−1 ◦ ϕ2

Y ◦ ψY,u,v still makes sense.
Since we are temporarily only interested in the construction of coarse moduli spaces
of stable objects we will stick with the easier condition given at the beginning.
However all proofs given should work for the second equivalence relation on fami-
lies as well. Similar results to the ones by Newstead and Ramanan in the case of
vector bundles with additional structure seem desirable.

Remark. Note that the existence and if so the structure of a moduli space depends
on the choice of the equivalence relation on objects. For example if we consider
S-equivalence classes instead of isomorphism classes of semistable Higgs tuples,
we are able to construct a coarse moduli space for the resulting functor of S-
equivalence classes.

1.63. De�nition. We call a scheme M ss and a natural transformations ψM (s)s :
M(s)s → Hom( · ,M (s)s) a coarse moduli space for the functors M(s)s that
associate to a scheme S of �nite type over C an isomorphism class of S-families of
(semi)stable objects, if

(i) (M ss, ψM ss) corepresents (cf. 1.60 (ii)) Mss.

(ii) (M s, ψM s) is a coarse moduli space for Ms.

(iii) ψM ss is surjective and every �ber contains at most one S-equivalence class.

Remark. This abuse of notation38 is justi�ed: For vector bundles Seshadri shows
that the map that associates to every T -family of S-equivalence classes of
semistable vector bundles the associated graded t 7→ Gr(Et) ∈ M ss is a mor-
phism of schemes.39 By de�nition 1.6' in Newstead M ss is therefore the coarse
moduli space of S-equivalence classes of semistable vector bundles.

1.64. Theorem. (i) The coarse moduli space M ss := Tsspar �GA for the functors
in 1.20 exists as a projective scheme.

(ii) The geometric quotient Tspar/GA =: M s ⊂M ss exists as an open subscheme.

38We stick with the notation in [Sch08], 2.2.
39Theorem 8.1 in [Ses67].
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Proof. Observe that by [MFK], 1.7. P(s)s is open and hence T
(s)s
par = Gies−1(P(s)s)

is open. By 1.55 Pss � GA exists. Furthermore 1.56 implies that the preimage
Gies−1(Pss) is the set of (semi)stable points with respect to the by Gies pulled
back linearization and 1.52 shows that Gies−1(Pss) = Tsspar. Thus the quotient
Tsspar �GA exists again using 1.55. Furthermore Pss�GA is projective by 1.10, since
OP(1) is ample. As the pullback of an ample line bundle by a �nite map is ample
again, M ss is projective.
The universal property 2. in 1.53 together with 1.23, 1.25, 1.62 imply that M ss is
a coarse moduli space.40

(ii) is proved the same way, i. e. Tspar/GA is a geometric quotient as pullback of
the geometric quotient Ps/GA by a �nite stability-preserving equivariant morphism;
Ps/GA ⊂ Pss � GA is open, so is Tspar/GA in Tsspar � GA.

Remark. We omit the discussion of S-equivalence for now. It will be shown later
on that the Gieseker morphism does respect a still to be given de�nition of S-
equivalence of tuples.

1.12. Further Extension

In the next two sections we study objects closely related to the parabolic Higgs
tuples considered before. The calculations and constructions will transfer easily to
the new setting and provide moduli spaces in these cases as well.

1.65. Recall that a parabolic �ltration of (Ea)a[|A|] of type (rija )i[sja] over the

puncture xj consists of vector space �ltration 0 ⊂ E1j
a ⊂ . . . ⊂ Esjaj

a ⊂
Ea|xj , dim(Eij

a ) = rija and weights (βija )i[sja] for every a ∈ A. A �rst exten-
sion of the concept considers �ltrations of the full bundle E =

⊕
a∈AE

⊕κa
a of

type (rij)i[sj ]j[|S|] rather than �ltration of each Ea. The construction in this

case stays (almost) the same, we only have to replace ×a∈A×j:xj∈S×sja
i=1 G

ij
a by

×j:xj∈S×sj

i=1 G
ij with Gij the Graÿmannian variety parametrizing rij-dimensional

subspace of V . Of course this space is larger than the one discussed before. How-
ever, the construction depends on less parameters and is therefore easier. In
fact only the parabolic contribution calculated in section 1.7 changes. To get
the expected results replace χ1

a =
∑|S|

j=1

∑sj

i=1
κaf ijδij

p
·
(
ra
pa
− r

p

)
and ν̃ij = rδij

p
and

ν̃a :=
κa(p−uδ−

∑|S|
j=1

∑sj

i=1 δ
ijf ij)−ξar

p
and keep ν̃ and χ2

a the same. Now the given proofs
transfer easily to the new situation and result in the existence of the corresponding
moduli space.

40Observe that the universal properties hold on the G-invariant open subset of semistable
tuples.
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1.66. In his dissertation [Be14] Nikolai Beck considers decorated tuples. These
are non-parabolic Higgs tuples with a point in P(Eσ|S) for one puncture S ∈ X
and a new homogeneous representation σ : Gl(Cra)a := ×a∈A Gl(Cra) → Gl(Vσ)
on some vector space Vσ. We would like to compare the two concepts for one
puncture S. Since σ decomposes into �nite-dimensional irreducible representa-
tions, we restrict our attention to the case σ irreducible for now. The irreducible
representations of×a∈A Gl(Cra) are tensor products of irreducible representations
σa : Gl(Cra) → Gl(Vσa).41 Furthermore the irreducible representations of Gl(Cra)
are parametrized by tuples (σ1

a, . . . , σ
ra
a ) ∈ Zra . We denote by (σi)i[r] ∈ Zr the

resulting weight of σ. For irreducible polynomial representations the last entry is
trivial.
Two irreducible representations are isomorphic if they possess the same Schur char-
acter χ and the Borel-Weil theorem tells us that Gl(Cra)a/Q ↪→ P(Vσ) is a closed
embedding, where the parabolic subgroup Q is the stabilizer of the orbit of the
unique maximal weight vector corresponding to χ and the image of Gl(Cra)a/Q is
the orbit of the maximal weight vector. Thus the parameter space P(Eσ|S) con-
tains more points than some �ag variety Gl(Cra)a/Q that parametrizes parabolic
�ltrations.
Moreover note, that Q = ×a∈AQa for parabolic subgroups Qa ⊂ Gl(Cra) and
Gl(Cra)/Qa ↪→ P(Vσa). Using the Segre embedding the following diagram of
monomorphisms commutes

×a∈A (Gl(Cra)/Qa) //

��

×a∈A P(Vσa)

��
Gl(Cra)a/Q // P(Vσ).

Nikolai Beck de�nes the µ-function for points in P(Eσ|s) w. r. t. the
standard linearization of the natural action of Sl(Cra)a := {(ga)a[|A|] ∈
Gl(Cra)a|

∏
a∈A det(ga)

κa = 1} in O(δ̂).42 Using this de�nition the moduli space of
tuples is constructed under the restriction δ̂uσ < 1 for uσ =

∑r
j=1 σ

j the homoge-
neous degree of σ. Unfortunately this concept implies the existence of the moduli
space of parabolic Higgs tuples only in the case

∑r
i=1 δ

ijrij < 1.
Using the main calculations above, we can however strengthen the result if we use
a stability concept closer related to the properties of σ. The semistability concept
in [Be14] depends on the homogeneous degree uσ of the representation σ rather
than the classifying data (σ1, . . . , σr).

41[KP00] 5.7.
42We allow δ̂ ∈ Q+. This is a slight (but quite common) abuse of notation.
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1.67. Semistability - An Intrinsic De�nition. We will consider G =
Sl(Cra)a[|A|] in this paragraph. However the representation theory that follows
works for arbitrary reductive groups G as well.
As usual denote r =

∑
a∈A ra. Given a one-parameter subgroup λ : C∗ → G with

weights (γl)l[r] and a representation σ : G→ Gl(Vσ) with corresponding character
χσ =

∏
a∈A χσa , λ(C∗) is contained in a maximal torus Tλ ⊂ G.43 Therefore we

�nd a basis of weight vectors viλ of Vσ with corresponding weights (σilλ )l[r] ∈ Zr such
that σ(λ(z))viλ =

∏r
l=1 z

γlσilλ viλ. Now given an arbitrary point v ∈ V �

σ representing
a [v] ∈ P(Vσ), v =

∑dim(Vσ)
i=1 aivi, �λ we de�ne

µσ(λ, v) = −min

{
(γl)tl[r] · (σimλ )m[r] =

r∑
l=1

γlσil
∣∣∣∣ ai 6= 0

}
= −min{χiλ(λ)| ai 6= 0}, (WF)

where χiλ denotes the character of Tλ associated to (σilλ )l[r].

1.68. Note that this de�nition does not depend on any embedding into a tensor
product. However it agrees with the de�nition given before. Since Vσ ⊂ (Cr)⊗u is
a subrepresentation44 the representation on the tensor product splits as σ ⊕ υ for
some representation υ. Hence (Cr)⊗u decomposes into Tλ-weight spaces V i

σ ⊂ Vσ
and V l

υ ⊂ Vυ. On the other hand given a basis (wi)i[r] such that Tλ acts diagonal
we get for (tj)j[r] ∈ Tλ and wθ =

⊗u
i=1 w

θ(i), θ ∈ Mapru

(tj)jw
θ =

u⊗
i=1

(tj)jw
θ(i) =

u∏
i=1

t
χθ,iλ
i wθ, χθ,iλ := #{j : θ(j) = i}.

Denote by W θ = 〈wθ〉 and by I the subset of {1, . . . , r}u such that (wθ)θ∈I is a
basis of Vσ. We have

χθλ(λ) =
r∑
j=1

γjχθ,jλ =
r∑
j=1

r∑
k=1

αk(γkr )jχ
θ,j
λ

=
r∑

k=1

αk(−r)
k∑
j=1

#{i : θ(i) = j} = −r
r∑

k=1

αk#{i : θ(i) ≤ k}

= −r
r∑

k=1

αkv(k, θ) =
r−1∑
k=1

αk(k · u− v(k, θ)r),

43For an arbitrary group G, the representation ς|Tλ , Tλ abelian, decomposes into 1-dimensional
irreducible representations, i. e. characters of Tλ.

44cf. 2.15.
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where χθλ denotes the character of Tλ with weights (χθ,jλ )j[r].
Let Wθ =

⊗u
i=1 Wθ(i),Wθ(i) = 〈w1, . . . , wθ(i)〉 and v � =

∑
θ∈I a

θ(wθ) � be an arbi-
trary element in V �

σ . Observe that

v �|Wθ
6= 0⇔ aθ̃ 6= 0 for some θ̃ ∈ I : θ̃(i) ≤ θ(i), ∀1 ≤ i ≤ u.

Moreover in this case v(k, θ̃) ≥ v(k, θ), ∀1 ≤ k ≤ r and therefore χθ̃λ(λ) ≤ χθλ(λ).
We conclude if θ minimizes χθλ(λ), aθ 6= 0 then v �|Wθ

6= 0. On the other hand if θ
minimizes χθλ(λ), v �|Wθ

6= 0, then there is a θ̃ with aθ̃ 6= 0 such that χθ̃λ(λ) ≤ χθλ(λ).
Hence

−min{χθλ(λ)| aθ 6= 0} = −min

{
r−1∑
k=1

αk(k · u− v(k, θ)r)

∣∣∣∣ v �|Wθ
6= 0

}
.

1.69. Parabolic Filtrations as Elements of a Representation Space. Given
a reduction R : X → P/QG(λ) and a point s : {S} → Pσ|S, consider the QG(λ)-
bundle R∗(P ) de�ned by P → P/QG(λ) and note that σ|QG(λ)(R

∗(P )) = Pσ.45

Now the transition functions of Pσ may be chosen, such that they split over QG(λ),
i. e. QG(λ) induces a �ltration of Pσ by subbundles. A (up to an element of
σ(QG(λ)) uniquely) chosen trivialization φ, identi�es s with a point φ(s(S)) ∈ Vσ
and we can apply the semistability criterion de�ned before. Note that a di�erent
choice of R changes the weight function by a factor in G/QG(λ).
More precisely: A quotient P/Q is a locally trivial bundle if and only if it possesses
local sections.46 For a Lie subgroup Q ⊂ G this condition is satis�ed.47 If (ti)i de-
note local sections of π : P → P/Q and (ψi)i the extensions to local trivializations
with Q-valued transition functions (gij)ij, then (ti ◦ R|Ui)i extend to local trivi-
alizations (ϕi)i, ϕ

i : P |Ui → Ui × G of P with the same transition functions. Of
course this construction depends on the choice of the (ti)i, i. e. on a map to Q. If
we further denote by [(p, v)] ∈ Pσ an element represented by (p, v) ∈ P × Vσ, then
(φi)i for φi([p, v]) = (π(p), σ(pr2ϕ

i(p), v)) are trivializations of Pσ with transition
functions (σ(gij))ij. Note that by construction φi([ti ◦R|Ui(x), v]) = (x, v). If φ
denotes the trivialization at the puncture: φ(s(S)) ∈ Vσ.

1.70. In the special case of a parabolic �ltration, namely an element sj ∈
P |xj/QG(aj) for aj a one-parameter subgroup, we �nd the anti-dominant char-
acter χaj : QG(aj) → C∗. Let σ : G → Vσ be the representation induced by
χaj and Taj the maximal torus to aj. Given a one-parameter subgroup λ of G

45The reduction of the structure group implies the existence of suitable transition functions
Uij → QG(λ) of P .

46[St51], �7.4, Theorem.
47Chevalley, [Ch46], Prop. 1, p. 110.
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as well as a reduction R : X → P/QG(λ), we �nd for every choice of two rep-
resentatives of sj(xj)QG(ai) and R(xj)QG(λ) a g ∈ QG(λ)\G/QG(ai) that maps
one to the other - sj(xj)g = R(xj).48 In 2.7 we will de�ne the weight func-
tion µ(λ, sj) = −〈λ, g−1ajg〉. Since the value of µ depends only on the class of
g ∈ QG(λ)\G/QG(aj) we may assume w. l. o. g. that gλ(z)g−1 ∈ Taj . Let (viaj)i
be the weight vectors to Taj with weights (χiaj)i. Then

gλ(z)g−1viaj = σ(gλ(z)g−1, viaj) = χiaj(gλ(z)g−1)viaj

⇒ λ(z)g−1viaj = χiaj(gλ(z)g−1)g−1viaj ,

i. e. vijλ := g−1viaj is a weight vector of Tλ with weight χijλ = χiaj(g · . . . · g−1). In
particular there is an i0 such that χi0

aj
= χaj and thus

χi0jλ (λ) = χaj(gλg
−1) = 〈λ, g−1ajg〉.

We have seen above, that using a trivialization φ associated to R, sj(xj) maps to
g−1vj while R(xj) maps to vj - vj weight vector to χaj . Hence

−min

χijλ (λ)

∣∣∣∣ aij 6= 0, φ(sj(xj)) =

dim(Vσ)∑
k=1

akjvkjλ

 = −χi0jλ (λ)

= −〈λ, g−1ajg〉.

Remark. In 2.7 it can be seen, that the right-hand term is constant on the class
QG(λ)\G/QG(aj), i. e. independent of the chosen trivializations used to de�ne
sj(xj) and R(xj).

1.13. New Moduli Spaces

1.71. Let G = Gl(Cra)a = {(ga)a∈A ∈ Gl(Cra)a} and choose Ba ⊂ Gl(Cra) the
Borel subgroup of upper triangular matrices, B = {b ∈ Gl(Cra)a : ba ∈ Ba}.
Recall that a character on B takes the form

∏
a∈A

∏ra
i=1(biia )c

i
a for some cia ∈ Z.

More generally let Pa be a parabolic subgroup containing Ba, then

Pa =

P
r1a ∗

. . .

0 P r
m(a)
a

 , P r1a ∈ Gl(Cr1a)

and a character on×a∈A Pa takes the form
∏

a∈A
∏m(a)

i=1 det(P ria)c
i
a , cia ∈ Z.

As we have seen above every representation σ : Gl(Cra)a → Gl(Vσ) comes from
48In abuse of notation denote by sj(xj) resp. R(xj) the image in P under suitable �xed

trivializations.
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a tuple of representations σa : Gl(Cra) ↪→ Gl(Vσa). The weights of σa and σ are
connected as usual (cf. 1.5). We denote the weights as in the classical parabolic
case by (βij)i[r]j[|S|] and (βija )a[|A|]i[ra]j[|S|].

1.72. De�nition. Choose for every puncture xj ∈ S a tuple of representations
σj : Gl(Cra)a → Gl(Vσ) as above and denote by σja the resulting representations of
Gl(Cra). Denote by (βij)i[r], β1j ≥ . . . ≥ βrj the maximal weight of σj.
Consider a tuple ((Ea, (sja)j[|S|])a[|A|], ϕ, L) for sja ∈×a∈A P(Eσa) (cf. 1.2). Recall
that every proper �ltration (F k, αk)k[m], α

k ∈ Q+ as in 1.6 comes from a one-
parameter subgroup λ : C∗ → Sl(Cra)a resp. one-parameter subgroups λa : C∗ →
Gl(Cra). We call a tuple (κa, ξa, δ, ε

j)−(semi)stable if

Mκ,ξ(F i, αi) + δµ(F i, αi, ϕ) + εj
∑
j:xj∈S

µσ
j

(λ, sj) (≥) 0

holds for all weighted �ltrations (F i, αi)i[r] (as in 1.6) and

Mκ,ξ
par(F

i, αi) =
r∑
i=1

αi · (deg(E) rk(F i)− deg(F i) rk(E)

+
∑
a∈A

ξa(rk(Ea) rk(F i)− rk(F i
a) rk(E)))

µ(F i, αi, ϕ) :=−min

{
u∑
j=1

γij

∣∣∣∣∣ (ij)j[u] ∈ {1, . . . , r}u : ϕ|
(
⊗u
j=1 F

ij)
⊕v 6≡ 0

}
,

where µσ
j
(λ, sj) is de�ned as in (WF) with a trivialization like the one of 1.69.

Remark. Using 1.66 the following construction extends as in 1.65 to tuples
((Ea)a[|A|], ϕ, (sj)j[|S|]) with sj ∈ P(Eσa)|xj .

1.73. Recall that in 1.16 we constructed a parameter space X and then added
Graÿmannian varieties Gij

a to parametrize parabolic �ltrations. Now we know

that there are uσ
j
a , vσ

j
a , wσ

j
a ∈ Z such that Ej

σa ⊂ (E⊗u
σ
j
a

a )⊕v
σ
j
a ⊗ det(Ea)

⊗wσ
j
a , �

and as before we �nd sheaves F σja
j =

(
V ⊗u

σ
j
a

a

)⊕vσja
⊗π∗X(OX(−uσ

j
a ·n))|xj , K σja

j =

det(EQa)
⊗wσ

j
a |xj , Xσja = P(H om(πQ,∗(F

σja
j ), πQ,∗(K

σja
j )) �)

π−→ Q. We have again a
tautological morphism

ψ
Xσ

j
a

: (π × idX)∗(F σja
j )→ (π × idX)∗(K σja

j )⊗ π∗
Xσ

j
a
(O

Xσ
j
a
(1)).
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We may pull these morphisms back to X × T ××1≤j≤|S|
a∈A

Xσja and �nd a closed

subscheme Gpar ⊂ ×1≤j≤|S|
a∈A

Xσja such that ×a∈A ψXσ
j
a
splits over ET×Gpar,σ. The

universal properties are proved as in the classical case.
For the Gieseker morphism we replace the Plücker embedding in the last com-
ponent by the identity. Then all proofs and calculations of the classical case
apply in this situation as well, with one exception; namely the admissibil-
ity condition. It may happen that given a �ltration (V k)k[p] of V as before,

quσj , vσj |(Vθ)⊕vσ
j = 0, Vθ =

⊗uσ
j

i=1 V
θ(i) even if the induced map on Eσ|xj is non-

zero on the subbundles generated by (Vθ)
⊕vσ resp. their intersection with Eσ|xj .

Thus we have to bind −(χi0jλ (γr
jk

r ) − χi0jλ (γ
rjkcoh
r )) where rjk = dim(F k)|xj and

rjkcoh = dim(F k,coh)|xj .49 This term is bounded by r
∑rjk

i=rjkcoh
βiji0 and therefore

−(χi0jλ (γr
jk

r ) − χi0jλ (γ
rjkcoh
r )) ≤ β1j(rjk − rjkcoh)r. Hence we call the stability param-

eters εj admissible if they are positive, decreasing and εjβ1j < 1 or equivalently
if εj

∑sj

i=1 δ
ij < 1. If σ is not irreducible, i. e. decomposes σj = ⊕mt=1σ

j
t , the

admissibility condition becomes εj max{β1j
t : 1 ≤ t ≤ m} < 1 for (βijt )i[r] the

maximal weight of σjt .

49χi0jλ is the character of Tλ to the weight vector vi0j with non-zero coe�cient ai0j and minimal
weight function. Let (βiji0 )i be the corresponding weight. In the notation of 1.52 −(χi0jλ (γr

jk

r )−

χi0jλ (γ
rjkcoh
r )) corresponds to

∑sj

i=1 δ
ij
i0

(f ijk − f ijkcoh)r.



2 The Moduli space of
Projective Parabolic
Higgs Bundles

The second chapter studies projective parabolic ς-Higgs bundles and their moduli
space.

2.1. Principal Bundles. An algebraic (resp. holomorphic) principal G-bundle
on the Riemann surface X is a C-scheme (resp. complex space) P with a right
action σ : P × G → P and a G-invariant projection π : P → X such that P
is locally trivial in the étale topology (resp. strong topology). For algebraic G-
bundles we may equivalently choose a trivialization in the fppf-topology or that
locally X admits an unrami�ed cover V → U ⊂ X such that the local pullback
of P is trivial, i. e. P ×X V ' V × G ([Mi80] 4.10, [Sch08] p. 101f). Note that
the category of holomorphic G-bundles (with G-equivariant holomorphic maps)
on X is equivalent to the category of algebraic G-bundles (with G-equivariant X-
morphisms).1

We are mostly concerned with connected reductive algebraic groups, for which
the trivialization may be chosen in the Zariski topology ([Sch08] 2.1.1.17) on X.
More generally, for a scheme of �nite type Y a principal G-bundle with connected
reductive structure group on Y ×X is trivial w. r. t. the product of the étale and
the Zariski topology on Y ×X. Bundles with respect to not necessarily connected
reductive algebraic groups may however occur when we consider H-bundles for
H ⊂ G a subgroup.
Given a parabolic subgroup P j ⊂ G for every punctures xj ∈ S a parabolic
(principal) G-bundle is a pair (P, (sj)j[|S|]) with P a principal G-bundle and sj :
{xj} → P ×X {xj}/P j reductions.

2.2. Projective Higgs Bundles. Let W be a vector space and P(W ) the
corresponding projective space. Let P be a principal G-bundle of �xed topolog-
ical type on X and φ ∈ H0(X,P(Pς)) for a �xed homogeneous2 representation

1see for example [GAGA] and [Ser58].
2ς homogeneous :⇔ ς homogeneous in 2.12. See as well 2.14.
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ς : G → Gl(W ) and Pς = P ×ς W, P(Pς) ' P ×ς P(W ).3 To give φ is equivalent
to the choice of a line bundle L and a surjection ϕ : Pς → L ([Ha77], II.7.12).
In order for our construction to work, we will allow ϕ to be arbitrary non-trivial
for now. Once a (projective) parameter scheme is constructed parametrizing non-
trivial homomorphisms ϕ : Pς → L, the surjective ϕ will form an open invariant
subset thereof.
The triple (P, ϕ, L) is called a projective ς-Higgs bundle. A projective parabolic
ς-Higgs bundle is a quadruple (P, (sj)j[|S|], ϕ, L) with additional reductions sj

for every puncture.

2.1. The Semistability Concept of Parabolic G-Bundles

In this �rst section we will de�ne a semistability concept for projective parabolic
ς-Higgs bundles. We will then rewrite the semistability criterion in terms of an
associated parabolic Higgs tuple.

2.3. Let P be a principal G-bundle on X. Fix a faithful representation ι : G →
Gl(U), U a vector space. Denote by Pι the principal Gl(U)-bundle induced by ι.
Let P j, 1 ≤ j ≤ |S| be a tuple of parabolic subgroups of G - one for each puncture
xj ∈ S - and choose reductions sj : {xj} → P ×X {xj}/P j.
We follow the approach by [Bra91] (see as well [HS10].4) to de�ne the concept of
(semi)stability for tuples (P, (sj)j[|S|], ϕ).
For a one-parameter subgroup λ ∈ Hom(C∗, G) denote

PG(λ) := {g ∈ G| lim
z→0

λ(z)gλ(z)−1 exists in G}, QG(λ) := PG(−λ).4

Let Tι ⊂ Gl(U) be a maximal torus corresponding to a basis (ui)i[dim(U)] and denote
( · , · ) the symmetric Q−bilinear map

T̂ι × T̂ι → Q, T̂ι = Hom(C∗, Tι)⊗Z Q.

induced by

Zdim(U) × Zdim(U) 3 ((ai)i[dim(U)], (b
j)j[dim(U)]) 7→

dim(U)∑
i=1

aibi ∈ Z.

Furthermore we �nd the dual pairing 〈 · , · 〉 : T̂ι × Ťι → Q (cf. 1.34) for
Ťι := Hom(Tι,C∗) ⊗Z Q the rational character group. Hence for every rational
one-parameter subgroup λGl ∈ T̂ι there is a rational character χλ,Gl ∈ Ťι such that

(λ′, λGl) = 〈λ′, χλ,Gl〉, ∀λ′ ∈ T̂ι.
3In abuse of notation we wrote ς for both the action on W and the induced action on P(W ).
4−λ denotes the inverse element of λ in the group T̂ι, i. e. z 7→ λ(z)−1.
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In fact λGl de�nes a character in Hom(QGl(λGl),C∗)⊗Z Q, which we call in abuse
of notation χλ,Gl, too. Further if Tι is the extension of a maximal torus T ⊂ G
and λGl = ι ◦ λ, λ ∈ Hom(C∗, G)⊗Z Q, then the pairing

〈 · , · 〉 : T̂ × Ť → Q, T̂ := Hom(C∗, T )⊗Z Q, Ť := Hom(T,C∗)⊗Z Q

is induced by the canonical pairing for the group Gl(U). Observe that this map
is independent of the chosen extension Tι of T .5 Analogously we �nd χλ and we
have QG(λ) = QGl(λGl) ∩G as well as χλ,Gl|QG(λ) = χλ.

2.4. De�nition. A character χ : QAd → C∗, QAd ⊂ Ad(G)6 a parabolic subgroup,
is called anti-dominant if the line bundle PQAd(χAd) is ample. Here PQAd denotes
the QAd-bundle Ad(G) → Ad(G)/QAd and PQAd(χAd) the line bundle associated
by χAd.
If Q ⊂ G is a parabolic subgroup and QAd ⊂ Ad(G) is the induced parabolic
subgroup, then χ : Q→ C∗ is called anti-dominant, if χ = Ad ◦χAd, Ad : Q→ QAd

holds for an anti-dominant character χAd of QAd.
If G is semisimple, χ is anti-dominant, if PQ(χ) is ample.

2.5. Proposition. Let G be a semi-simple linear algebraic group. The map Ĝ 3
λ → (PG(λ), χ−λ) into the set of pairs of a parabolic subgroup and a dominant
character χ−λ is surjective.7

Ĝ 3 λ → (QG(λ), χλ) into the set of pairs of a parabolic subgroup and an anti-
dominant character χλ is surjective, too.
Every parabolic subgroup of a (connected) reductive group is of the form QG(λ) for
some one-parameter subgroup λ of G.

Proof. [GLSS08], section 3.2 or [Sch04], Example 2.1.8. The last statement is
proven in Springer [Sp81], Proposition 8.4.5.

Remark. For future reference note that ifG is generally reductive a (anti-)dominant
character vanishes on the radical Rad(G) ([Ram96i], 2.14).

2.6. For λ : C∗ → Sl(U) with strictly ascending weights γ1, . . . , γm we get

QGl(λ) = {diag(A1, . . . , Am) +N : Aj ∈ Gl(rj − rj−1,C),

N a strictly block upper triangular matrix}.

Then
∏m

j=1 det(Aj)γ
j
is an anti-dominant character ([Sch08], 2.4.9).

5Lemma 2.8 in Chapter II of [MFK].
6Recall that Ad(G) is semisimple for G reductive.
7For the de�nition of a dominant character see for example [Ram96i], 2.14.
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2.7. Let P j be a parabolic subgroup and T j ⊂ P j a maximal torus.8 Let τ j ∈
T̂ j+ = {τ ∈ T̂ j| QG(τ) = P j}9 and sj : {xj} → P |xj/QG(τ j). Choose a stability
parameter (τ j)j[|S|], τ

j ∈ T̂ j+. Let λ : C → G be a one-parameter subgroup
and (QG(λ), χλ) the corresponding pair of a parabolic subgroup and a character.
Let Rj = R|xj : {xj} → P |xj/QG(λ) be a reduction of the structure group.10

We will write Rj
rep(xj), sjrep(xj) for (a choice of) representatives in P |xj , i. e.

[Rj
rep(xj)] = Rj(xj) ∈ P |xj/QG(λ) and [sjrep(xj)] = sj(xj) ∈ P |xj/QG(τ j). Then

we �nd an element gj ∈ G : Rj
rep(xj)gj = sjrep(xj). Now we may shift the orbit

Rj
rep(xj)QG(λ) by gj, so that it intersects with sj(xj)repQG(τ j). The intersection

of two Borel (and hence of two parabolic) subgroups always contains a maximal
torus. Denote such a torus by T j ⊂ QG(λ)∩ g−1

j QG(τ j)gj. Then we �nd elements
hj ∈ QG(τ j), h ∈ QG(λ) such that gjhjτ j(C∗)h−1

j g−1
j , hλ(C∗)h−1 ⊂ T j. Let

τ s
j
rep = gjhjτ

jh−1
j g−1

j and λRj
rep = hλh−1 be the corresponding one-parameter

subgroups of T j. Now we may de�ne 〈τ s
j
rep , λRj

rep〉. Observe that 〈τ s
j
rep , λRj

rep〉 is
independent of the choices made. In fact if N (T j) denotes the normalizer of T j,
then h is unique up to an element of N (T j)∩QG(λ) and analogously for hj. Using
the faithful representation ι the Zdim(U)-elements corresponding to τ s

j
rep , λRj

rep are
left invariant when conjugating with one of the available permutation matrices.
Thus 〈τ sj , χRj

λ 〉 = 〈τ sj , λRj〉 := 〈τ s
j
rep , λRj

rep〉 is well-de�ned and depends only on
the class gj ∈ QG(τ j)\G/QG(λ).11

2.8. Proposition. Fix a one-parameter subgroup τ j as well as τ jGl = ι ◦ τ j for
every xj ∈ S. Let (P, (sj)j[|S|]) be a principal G-bundle and (Pι, (sjGl)j) with

sjGl : {xj} sj−→ P ×X {xj}/Q(τ j) ↪→ Pι ×X {xj}/Q(τ jGl),

Rj
Gl : {xj} sj−→ P ×X {xj}/Q(λ) ↪→ Pι ×X {xj}/Q(λGl)

for a one-parameter subgroup λ : C∗ → G. Then

〈τ sjGl, χ
Rj

ι◦λ,Gl〉 = 〈τ sj , χRj

λ 〉, ∀1 ≤ j ≤ |S|.

Proof. Obvious by de�nition of the inner product. See as well [HS10], 5.1.2.

2.9. Let λ : C∗ → G be a one-parameter subgroup and χλ the associated anti-
dominant character. Consider the principal QG(λ)-bundle P → P/QG(λ) and

8By Borel, [Bo91] IV.11.3 Corollary, we know that maximal tori in G coincide with the
maximal tori in the various Borel subgroups, and by IV.11.17 that every parabolic subgroup is
conjugated to exactly one-parabolic subgroup containing a given Borel subgroup B.

9See [HS10], section 4.1 for an equivalent de�nition of T̂ j+.
10For an equivalent de�nition of reductions of the structure group see e. g. [KN63], I.5, �ber

bundles.
11χRj

λ denotes the character to λRj

.
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PQG(λ)(χλ) the χλ-associated line bundle on P/QG(λ). Let R : X → P/QG(λ) be
a reduction and PQG(χλ,R) = R∗(PQG(λ)(χλ)).
Observe, that R extends to a reduction

RGl : X → P/QG(λ) ↪→ Pι/QGl(ι ◦ λ)

and that every parabolic subgroup QGl(ι ◦ λ) ⊂ Gl(U) by de�nition stabilizes a
�ag. Let (F j)j[r] be the �ag of rank (rj)j[m] subbundles of E = Pι

12 induced by
λGl = ι ◦ λ and (γj)j[r] resp. (αj)j[r] the corresponding weights. Note that (F j)j[r]
depends on the reduction RGl. We get the following relation

degPQ(χλ,R) = degPQGl
(χλGl

,RGl) =
m−1∑
j=1

αj(deg(E) rk(F j)− deg(F j) rk(E)).

Proof. Since we have a reduction of the structure group to QG(λ) we �nd QG(λ)-
valued transition function (gij)ij of our principal G-bundle P ([KN63] Pro. 5.3
and Pro. 5.6.). If ι is our embedding of G ↪→ Sl(U) we get the transition functions
of R∗(PQG(λ)(χλ)) as (χλ(ι ◦ gij))ij w. r. t. the induced trivializations. ι ◦ gij ∈
QSl(U)(ι ◦ λ) is a block upper triangular matrix of the form

ι ◦ gij =

h
ij
1 ∗

. . .
0 hijm

 .

Hence we have

χλ(ι ◦ gij) =
m∏
k=1

det(hijk )γ
k

.

On the other hand consider the vector bundle
⊕m

k=1(E ⊗ (F k) �)α
kr, where F k is

the subbundle with transition functions

H ij
k =

h
ij
1 ∗

. . .
0 hijk

 .

The determinant of
⊕m

k=1(E ⊗ (F k) �)α
kr has thus transition functions

m∏
k=1

(det(gij)r
k · det(((H ij

k )t)−1)r)α
kr =

m∏
k=1

(
m∏
l=1

det(hijl )α
krrk ·

k∏
l=1

(det(hijl ))−r
2αk

)

=
m∏
l=1

(det(hijl ))r
∑m
k=1 α

krk−r2
∑m
k=l α

k

.

12More precisely: E the vector bundle corresponding to the Gl(U)−bundle Pι.
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Using
∑m
j=1 γ

j(rj−rj−1)

r
= 0, r0 = 0 from 1.3 we see that r

∑m−1
k=1 α

krk = γmr.
Furthermore −r2

∑m−1
k=l α

k = −r(γm − γl) = −γmr + γlr. Putting both formu-
las together we get

∏m
l=1(det(hijl ))γ

lr. Therefore det(
⊕m

k=1(E ⊗ (F k) �)α
kr) and

R∗(PQG(λ)(χλ))
⊗r are isomorphic bundles and hence have the same degree, i. e.

deg(R∗(PQG(λ)(χλ))) =
m∑
k=1

αk deg(E ⊗ (F k) �) =
m∑
k=1

αk(deg(E)rk − r deg(F k)).

Remark. See as well [HS10] 5.1 or [GS05] by Tomás Gómez and Ignacio Sols,
Lemma 5.6. for a proof in the case of a higher dimensional base variety.
Fritzsche, Grauert [FG02] or Kobayashi, Nomizu [KN63] give an excellent account
of the connection between �ber bundles and transition functions on a Riemann
surface X. An algebraic disussion of this relation is given for example in [Mi80].
As transition functions are particularly easy to work with, we will use this descrip-
tion again in section 3.5 as well as chapter 4. It should be mentioned however that
some of our results can be proved without using cocycles.

Furthermore by the calculation in 1.38, 2.6, 2.8 and an embedding ι into Sl(U) we
see that

m−1∑
k=1

αk
sj∑
i=1

βij
(
(rij − ri−1,j)rk − (rijk − ri−1,j,k)r

)
= −〈τ sj , χRj

λ 〉, δij = rαi(τ s
j

Gl) = rαi(τ j), Rj = R|{xj}13

is the parabolic contribution. More precisely, by 2.8 we get14

〈τ sj , χRj

λ 〉 =
sj−1∑
i=1

αi(τ s
j

) · r ·
m∑
k=1

γk(rk − rk−1 − (rij,k − rij,k−1))

= −
sj−1∑
i=1

αi(τ s
j

) · r ·
m∑
k=1

αk · r(rk − rij,k)

= −
sj−1∑
i=1

αi(τ s
j

) · r ·
m∑
k=1

αk · (r(rk − rij,k)− rk(r − rij))

= −
sj−1∑
i=1

δij ·
m∑
k=1

αk · (rijrk − rij,kr).

13αi(λs
j

) is the α-weight of the one-parameter subgroup λs
j

. Further note that the weights αi

are left invariant when conjugating the corresponding one-parameter subgroup, i. e. αi(τs
j

Gl) =
αi(τ j).

14Set Vk = F k|xj/F k−1|xj , χk = γk and V i = Eij in 1.38.
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Finally we use 1.8 for the transition to (βij)i[sj ]. Putting both results together we
receive

degPQ(χλ,R)−
∑
j:xj∈S

〈τ sj , χRj

λ 〉

=
m−1∑
k=1

αk(par-deg(E) rk(F k)− par-deg(F k) rk(E)),

where λ corresponds to the �ltration (F k)k[m] plus the weights (αk)k[m] and τ s
j
to

the �ltration (Eij)i[sj ] plus the weights (δij/r)i[sj ] as above.

Remark. Note that occasionally in the literature τ is replaced by −τ .

2.10. De�nition. A stability parameter τ j ∈ T̂ j+ is called ι-admissible if the cor-
responding weights rαi(τ j) are admissible, i. e. r

∑sj

i=1 α
i(τ j) < 1 holds for every

1 ≤ j ≤ |S|. The de�nition extends to arbitrary representations G → Gl(W ) for
some vector space W .

2.11. De�nition. A parabolic principal G-bundle (P, (sj)j[|S|]) over the marked
surface (X, S) is called τ -semistable, if for every one-parameter subgroup λ : C∗ →
G and every reduction R : X → P/QG(λ)

degPQ(χλ,R)−
∑
j:xj∈S

〈τ sj , χRj

λ 〉 ≥ 0

holds.

Before we de�ne a weight function for the Higgs �eld ϕ : Pς → L we should state a
few general facts about the representations used. Consequentially we will be able
to express the intrinsic de�nition of semistability in terms of the associated vector
bundle and an associated homomorphism.

2.12. Let G be a reductive algebraic group. Then there is a representation ι : G→
Gl(U) for a vector space U s. t. ι is a closed embedding (Borel, [Bo91], Corollary
1.4). Furthermore if ς : G → Gl(W ), W vector space is another representation,
then we �nd representations ς : Gl(U)→ Gl(W ) and ς̃ : G→ Gl(Ũ), W = U ⊕ Ũ
such that ς ◦ ι = ς ⊕ ς̃ ([KP00], 5.4, Prop. 1).
Observe, that we can modify ι to ι′ := ι⊕ (det−1 ◦ι) : G→ Sl(U ⊕C) ⊂ Gl(U ⊕C)
which is still faithful.

2.13. Lemma. Let ι : G → Gl(U) be a faithful representation, then there is
a decomposition of U into G-modules Ua, a ∈ A �nite, s. t. ι(Rad(G)) ⊂
Z (×a∈A Gl(Ua)), i. e. the radical maps to the center.
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Proof. Rad(G) is a torus and hence induces a decomposition (Ua)a[|A|] into
eigenspaces to characters χa,Rad(G) : Rad(G) → C∗ ([Bo91], Proposition before
De�nition 11.22). Since Rad(G) ⊂ Z (G) we have for all r ∈ Rad(G), ∀g ∈
G, ∀ua ∈ Ua

ι(r, ι(g, ua)) = ι(rg, ua) = ι(gr, ua) = ι(g, ι(r, ua))

= ι(g, χa,Rad(r)ua) = χa,Rad(r)ι(g, ua).

Therefore ι(g, ua) ∈ Ua, i. e. G preserves Ua and we have a decomposition of U into
G-modules Ua. By de�nition ι(Rad(G)) ⊂ Z (×a∈A Gl(Ua)) ([Sch08], 2.6.1).

Notation. From now on let ι denote a faithful representation G ↪→ Gl(Ua)a[|A|] ∩
Sl(U), U :=

⊕
a∈A Ua (see 2.12 and 2.13).

2.14. De�nition. A representation ς : H → Gl(W ), H = Gl(U),×a∈A Gl(Ua)
is called polynomial, if the matrix coe�cients ς ij are polynomial functions. It is
called rational if detr ·ς ij is polynomial for some r. ς is called homogeneous of
degree r if ς(z · idU) = zr · idW resp. ς(z · id×a∈A Ua

) = zr · idW . In particular
homogeneous representations are rational.

Remark to 2.14. (i) When we talk about representations without further speci-
�cation, we refer to rational representations.

(ii) The standard representation of Gl(U) on U⊗u for a vector space U and an
integer u is polynomial.

(iii) The de�nition is independent of the chosen basis of W .

(iv) The determinant representation det⊗w : Gl(U)→ C∗ is polynomial for w ≥ 0.

(v) The tensor product, the direct sum, exterior powers, symmetric powers, sub-
representations and quotient representations of polynomial (resp. rational)
representations are polynomial (resp. rational).

(vi) The dual representation of a rational representation is rational. Every irre-
ducible representation is homogeneous.

(vii) The representation ς in 2.12 is rational by (ii)-(vi).
For more details see [KP00] sections 5.1 and 5.2.

2.15. Proposition. (i) For every representation ς : Gl(U) → Gl(W ) there are
integers uj, v, w, 1 ≤ j ≤ v such that ς is direct summand of the standard
representation

Gl(U)→ Gl

( v⊕
j=1

U⊗u
j

)
⊗

(dimU∧
U

)⊗w�  .

If ς is homogeneous, u := uj, ∀1 ≤ j ≤ v.
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(ii) Fix κa ∈ N+, a ∈ A. For every representation
ς : ×a∈A Gl(Ua) → Gl(W ) there are integers uj, v, w, 1 ≤ j ≤ v
such that ς is direct summand of the standard representation

×a∈A Gl(Ua)→ Gl

((⊕v
j=1(U(κa))

⊗uj
)
⊗
((∧dimU(κa) U(κa)

)⊗w)� )
,

U(κa) :=
⊕
a∈A

U⊕κaa .

If ς is homogeneous, u := uj, ∀1 ≤ j ≤ v.

Proof. (i) is proved by the proposition in [KP00] 5.3 as well as in [CMS], Theorem
14.3. (ii) is precisely the statement of [KP00], 5.4, Proposition 1 already used
in 2.12. Note that 2.12 and the remark to 2.14 provide us with a representation
ς : Gl(U(κa)) → Gl(W ) such that ς ◦ ι = ς ⊕ ς̃ for some suitable representation ς̃
and ι :×a∈A Gl(Ua) ↪→ Gl(U(κa)) an embedding.
The special property of homogeneous representations follows directly from the
de�nition (of homogeneity).

2.16. Higgs Field. We still need to de�ne a semistability condition for the Higgs
�eld. Let ι be our faithful representation (cf. 2.12, 2.13) and ς the corresponding
homogeneous representation such that ς ◦ ι = ς⊕ ς̃ holds for some representation ς̃
(cf. 2.12, remark to 2.14). Now Eς = Pς◦ι = Pς⊕Pς̃ and E =

⊕
a∈AEa the tuple of

vector bundles associated by ι. Consequentially the morphism ϕ : Pς → L induces
a morphism ϕ ◦ pr1 : Eς → L. We call (E, ϕ, L): the pseudo (ς ◦ ι)-Higgs bundle
induced from (P, ϕ, L). Now we may extend ϕ by 2.15 to (E⊗u)⊕v⊗(detE⊗w) � =
Eς ⊕ Eς̂ for yet another representation ς̂.

2.17. Note that given a one-parameter subgroup λ : C∗ → G, ι as before, R :
X → P/QG(λ) a reduction and π : P → X the bundle projection, we can pull
back the QG(λ)-bundle with projection πR to a QG(λ)-bundle QR over X

QR
//

��

P

π

{{

πR

��
X

R
// P/QG(λ).

Observe that (QR)ς|QG(λ)
' Pς .15 Now QGl(W )(ς ◦ λ) induces a �ltration (F k

ς )k[m]

of Pς . As ϕ 6= 0

µ(λ,R, ϕ) := −min{γj| ϕ|F jς 6= 0, 1 ≤ j ≤ m},
15P admits local trivializations with QG(λ)-valued transition functions.
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is well-de�ned.
On the other hand λ induces a one-parameter subgroup ι ◦ λ : C∗ → Gl(Ua)a :=

×a∈A Gl(Ua) with associated �ltration (F j)j[m], F
j ⊂ E. Hence using 2.15 we

obtain a �ltration (
⊗u

j F
ij)⊕v of (E⊗u)⊕v. The two �ltrations ((

⊗u
j F

ij)⊕v ∩ Pς)i
and (F k

ς )k identify under the identi�cation (E⊗u)⊕v ⊗ (detE⊗w) � = Pς ⊕ Pς̃ ⊕ Eς̂ .
Thus µ(F j, αj, pr1 ◦ϕ) = µ(λ, R, ϕ). To simplify notation in future we will
usually omit the projection pr1.

2.18. Wemay further include the choice of a character ξ ofG into the semistability
concept as follows: a character of G induces a character of the radical Rad(G). If ι
as in 2.16 maps the radical Rad(G) to Z (×a∈A Gl(Ua)), then ξ|Rad(G) comes from
a character of Z (×a∈A Gl(Ua)) ⊂×a∈A Gl(Ua), therefore from a choice of rational
numbers ξa with

∑
a∈A ξara = 0.16 The identical calculation as in the parabolic

case shows that for every one-parameter subgroup λ of G with associated weighted
�ag (F k, αk)k, rk(F k) = rk, rk(F k

a ) = rka: 〈λ, ξ〉 =
∑m

k=1 α
k
∑

a∈A ξa(rar
k− rrka) =

−
∑m

k=1 α
k
∑r

a=1 ξarr
k
a.

2.19. De�nition. Let Y be a scheme of �nite type over C, P l → Jacl×X a
Poincaré line bundle and τ j �xed parabolic weights to given parabolic subgroups
P j ⊂ G. A Y -family of projective ς-Higgs bundles (of given topological type (ϑ, l))
is a tuple (PY , (sjY )j[|S|], ϕY , vY , HY ) where

1. PY is principal G bundle (of topological type ϑ) over every point {y}.

2. vY : Y → Jacl is a morphism, HY → Y a line bundle.

3. ϕY : PY,ς → (vY × idX)∗(P l)⊗ π∗Y (HY ) is a homomorphism non-trivial on
�bers over y ∈ Y .

4. sjY : Y × {xj} →PY ×X (Y × {xj})/QG(τ j) for all xj ∈ S.

An isomorphism of projective Y -families is an isomorphism of the underlying prin-
cipal G-bundles that extends in the natural way to the associated objects such that
it commutes with an isomorphism of the line bundles HY .

2.20. De�nition. A parabolic principal ς-Higgs bundle (P, (sj)j[|S|], ϕ, L) over
the marked surface (X, S) is called (ξ, τ, δ)-(semi)stable, if for every one-
parameter subgroup λ : C∗ → G and every reduction R : X → P/QG(λ)

degPQ(χλ,R)−
∑
j:xj∈S

〈τ sj , χRj

λ 〉+ δµ(λ,R, ϕ) + 〈λ, ξ〉 (≥) 0.

16ι(Rad(G)) is a torus, hence identi�es with (C∗)m, thus ι looks component-by-component
as
∏
i z
aij
i . Now �nding a character that extends ξ equals solving an inhomogeneous system of

linear equations with a highest rank matrix A = (aij)i[m]j[m].
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Given a faithful representation ι : G ↪→ Gl(Ua)a as before a parabolic principal
ς-Higgs bundle (P, (sj)j[|S|], ϕ, L) is (ξ, τ, δ)-semistable if and only if for every
one-parameter subgroup λ : C∗ → G and every reduction R : X → P/QG(λ)

m−1∑
j=1

αj(par-deg(E) rk(F j)− par-deg(F j) rk(E)) + δ · µ(F j, αj, pr1 ◦ϕ)−

−
m∑
k=1

αk
r∑

a=1

ξa rk(E) rk(F k
a ) ≥ 0.

2.2. Principal Bundles as Higgs Tuples

Let P be a principal G-bundle and ι : G ↪→ Gl(Ua)a[|A|] ∩ Sl(U), U :=
⊕

a∈A Ua
our faithful representation. Let (Ea)a[|A|] be the ι-associated Higgs tuple Pι. The
corresponding Gl(Ua)a-bundle is retained from (Ea)a[|A|] as I som(Ua, Ea)a[|A|] :=
I som(U1⊗OX , E1)×X . . .×XI som(U|A|⊗OX , E|A|). We get the following result:

2.21. Proposition. The groupoid of principal G-bundles is isomorphic to the
groupoid of pairs consisting of a tuple (Ea)a[|A|] and a section s : X →
I som(Ua, Ea)a[|A|]/G where

P �
� //

  

I som(Ua, Ea)a[|A|]

ww
X

7→ P/G s //
bb

'
""

I som(Ua, Ea)a[|A|]/G.

vv
X

P is retained as pullback of I som(Ua, Ea)a[|A|] → I som(Ua, Ea)a[|A|]/G via s.

Remark. (i) The determinant of E =×a∈AEa is trivial: If (gij)ij are the tran-
sition functions of P , then det(E) has transition functions (det(ι(gij)))ij = 1
since ι maps to Sl(U). Note that for a semisimple group G there are no
non-trivial characters, so for every faithful representation det(E) ' OX .

(ii) Observe that I som(Ua, Ea)a[|A|]/G ' Pξ with ξ : G ×
×a∈A Isom(Ua,Cra)/G → ×a∈A Isom(Ua,Cra)/G, (g, (×a∈ABa)G) 7→
(ι(g)(×a∈ABa))G.

2.22. De�nition. De�ne H om(Ua, Ea)a[|A|] = H om(U1 ⊗ OX , E1) ×X . . . ×X
H om(U|A| ⊗ OX , E|A|) = Spec(S ym∗(

⊕
a∈A Ua ⊗ E �

a)) and a pseudo principal
G-bundle as a pair of a tuple (Ea)a[|A|] with det

(⊕
a∈AEa

)
= OX plus a section

s : X →H om(Ua, Ea)a[|A|]�G. Equivalently a pseudo G-bundle may be viewed as
a pair of a tuple (Ea)a[|A|] plus a morphism τ : S ym∗(

⊕
a∈A Ua ⊗ E �

a)
G → OX . It
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is further required that s is not the trivial section resp. that τ is not the projection
to the zero component of the graded sheaf S ym∗(

⊕
a∈A Ua ⊗ E �

a)
G.

Let P j
Gl(Ua)a

, 1 ≤ j ≤ |S| be parabolic subgroups of Gl(Ua)a. We call a pair
consisting of a pseudo G-bundle ((Ea)a[|A|], s) and a tuple of reductions (sj)j[|S|] :

{xj} → (×a∈A I som(Ua ⊗OX , Ea)×X {xj}) /P j
Gl(Ua)a

a parabolic pseudo princi-
pal G-bundle. Equivalently a parabolic pseudo G-bundle (Ea, (Eij

a )i[sja]j[|S|])a[|A|]

may be de�ned by adding parabolic �ltrations (Eij
a )i[sja] of �xed type (rija )i[sja] of

Ea|xj for each puncture xj ∈ S.

We have the following result:

2.23. Lemma. ([Sch08], 2.6.3.1) Let ((Ea)a[|A|], s) be a pseudo G-bundle. Then
(Ea)a[|A|] = Pι for a principal G-bundle P if and only if there is a point x ∈ X
such that s(x) ∈ I som(Ua, Ea)a[|A|]/G.

Proof. The local components of s satisfy siι(G) = gijsjι(G) for the Sl(U)-valued
transitions functions (gij)ij. Hence we get a global function det ◦s : X → C that is
constant on the compact Riemann surface X ([For81], chapter I, 2.8). In particular
s(x) ∈ I som(Ua, Ea)a[|A|]/G for one x if and only if s(x) ∈ I som(Ua, Ea)a[|A|]/G
for all x ∈ X.

2.24. A Y -family of parabolic pseudo G-bundles (for a scheme Y ) is de�ned
as the obvious extension of ((Ea)a[|A|], τ, (sj)j[|S|]) to Y × X requiring that on
{y} × X we retain a parabolic pseudo G-bundle as de�ned above. In order to
use the construction of the moduli space of Higgs tuples it will be of particular
importance to relate the two concepts. In a �rst step we are going to choose
u, v, w suitably.
Start by recalling [MRed], III, �8 which shows that we can choose d such that

Sym∗(
⊕
a∈A

Hom(Cra , Ua))G

is generated by m generators of pairwise di�erent degree d1, . . . , dm ≤ d with
d = m · lcm(di : 1 ≤ i ≤ m)17 and

Sym(d) =
⊕
j≥0

Symjd(
⊕
a∈A

Hom(Cra , Ua))G

is generated by elements of Sym(d)1 = Symd(
⊕

a∈A Hom(Cra , Ua))G.
Therefore we �nd a surjective morphism Ud → Sym(d) with Ud =

17If there is no chance of confusion we will sometimes write lcm(di) rather than lcm(di : 1 ≤
i ≤ m).
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⊕
(ej)j[m]∈Zm≥0∑m
j=1 ejdj=d

⊗m
j=1 Symej(Symdj(

⊕
a∈A Hom(Cra , Ua))G). Since Ud is homoge-

neous of degree d as a Gl(Ua)a-module we �nd for every choice of κa ∈ Z integers
ups, vps, wps such that Ud ⊂ ((

⊕
a∈ACκa)⊗ups)⊕vps ⊗

∧r(
⊕

a∈ACκa) �,⊗wps . The
induced surjective morphism of Y families is

ϕ̃ : (E
⊗ups
Y )⊕vps ⊗ det(EY ) �,⊗wps → S ymd(

⊕
a∈A

Hom(EY,a, Ua ⊗OY×X))G.

Therefore we may associate to a pseudo G-bundle ((EY,a)a[|A|], τY ) a tuple con-
sisting of vector bundles (EY,a)a[|A|], a morphism ϕY,τ = (τ ∗Y ⊗ iddet(EY )⊗w) ◦ (ϕ̃ ⊗
iddet(EY )⊗w), υY the constant function on Y with value [OX ] ∈ Jac0 and HY the
invertible sheaf such that (υY × idX)∗(P) = π∗Y (HY ), P Poincaré line bundle on
Jac0×X. ([Ha77], III. Ex. 12.4). For further use denote the representation such
that Eςps = (E⊗ups)⊕vps ⊗ det(E) �,⊗wps as constructed above by ςps.
The astonishing feature of this construction is that it is not only an injection on
isomorphism classes, but that it will allow us to relate the semistability concepts
of G-bundles and Higgs tuples.

2.25. Proposition. ([Sch08], 2.6.3.2)

(i) The map{
Isomorphism classes of

pseudo G-bundles

}
−→

{
Isomorphism classes

of Higgs tuples

}
((Ea)a[|A|], τ) 7−→ ((Ea)a[|A|], ϕτ , OX)

is one-to-one (on isomorphism classes).

(ii) A pseudo principal G-bundle ((Ea)a[|A|], τ) is a principal G-bundle if and only
if µ(F i, αi, ϕτ ) ≥ 0 holds for every weighted �ltration (F i, αi)i[m].

Proof. (i) Consider two pseudo G-bundles ((Ea)a[|A|], τ) and ((Ea)a[|A|], τ̃) that
induce the same Higgs tuple. First note, that τ is de�ned by the components
τdj . Then by construction we have for all (ej)j ∈ Zm≥0,

∑
j ejdj = d

m⊗
j=1

S ymej(τdj) =
m⊗
j=1

S ymej(τ̃dj). (Sym 1)

Restriction to the generic point implies that there is a
(
d
dj

)
th root of unity

ζdj = e2πiϕj , ϕj =
kjdj
d
, kj ∈ Z such that τdj = ζdj τ̃dj .
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In (Sym 1) we read that
∑m

i=1 eiϕi = b for some b ∈ Z. Now let (ei)i be such
that b takes its maximal value B. Then

m∑
i=1

eidiki = Bd,
m∑
i=1

eidi = d⇒
m∑
i=1

eidi

(
1− ki

B

)
= 0

and ki ≤ B for all 1 ≤ i ≤ m imply that ki = B for all 1 ≤ i ≤ m.
If there is an i0 such that ki0 > B, then consider the case ẽi0 = d

di0
and

ẽl = 0 if l 6= i0. For
∑m

i=1 ẽiϕi = b̃ we get the contradiction 1 − ki0
b̃

= 0

since ki0 > B ≥ b̃. Thus all ki are the same, namely equal to B, and hence
ζ = e2πiϕ, ϕ = B

d
is a dth root of unity with ζdi = ζdi .

Therefore the isomorphism ζ · id(Ea)a[|A|] maps ((Ea)a[|A|], τ) to the pseudo
G-bundle whose morphism coincides with τ̃ over the generic point and hence
everywhere.

(ii) The proof of part (ii) is described in Chapter 2.6 of [Sch08]. The weight
function might be written in terms of the stalk over the generic point
η ∈ X and lemma 2.2318 gives a local criterion for a pseudo G-bundle to
be a principal G-bundle. [Sch08], 2.6.2.1 identi�es principal G-bundles with
((×a∈A Gl(Cra) ∩ Sl(Cr))-semistable points19 in (I som(Ua, Ea)a[|A|]/G)|η.
Finally (semi)stability is preserved by the transition s (resp. τ) to ϕτ
([Sch08], 2.6.2.3).

2.26. Let E =
⊕

a∈AE
⊕κa
a and ϕ : Eς → L be a non-trivial homomorphism for

a homogeneous representation ς ; let (Eij
a )i[sja] be parabolic �ltrations of Ea|xj .

Denote by ςps the representation corresponding to our pseudo G-bundle (E, τ).
We call the tuple ((Ea, (Eij

a )i[sja]j[|S|])a[|A|], τ, ϕ, L) a parabolic pseudo (ς ◦ι)-Higgs
bundle. It is (ξa, δps, εps)-(semi)stable if

Mκ,ξ
par(F

k, αk) + δps · µ(F k, αk, ϕ) + εps · µ(F k, αk, ϕτ ) ≥ 0, δps, εps ∈ Q+
20

holds for every �ltration (F k, αk)k[m]. Two pseudo (ς ◦ ι)-Higgs bundles are isomor-
phic if there is an isomorphism of the underlying vector bundles that extends to
an isomorphism of pseudo G-bundles as well as to an isomorphism of Higgs tuples
on the underlying Higgs tuples.

Remark. From now on �x κa = 1 for all a ∈ A. Recall that we still have the choice
of a faithful representation ι. Now to �x κa = 1, ∀a ∈ A and ι =×a∈A ι

κ̃a
a is the

same as to choose κ̃a ∈ Z and ι̃ = (×a∈A ιa). For that reason we will stick with
the notationally easier choice and �x κa = 1.

18see 2.21.(ii) as well.
19w. r. t. the natural action on

(⊕
a∈AEa

)
|η.

20Recall ξa ∈ Q, κa ∈ Z+.
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In order to relate the semistability concepts for pseudo (ς ◦ ι)-Higgs bundles and
Higgs tuples we need to combine the two µ-weight functions in the de�nition of
semistability above in the correct way in order to obtain the semistability condition
for Higgs tuples. Therefore consider the representation ς⊗b ⊗ ς⊗cps and the induced
morphism

ϕb,ctuple := ϕ⊗b ⊗ ϕ⊗cτ : E⊗bς ⊗ E⊗cςps → L⊗b ⊗O⊗cX ' L⊗b.

Then

2.27. Proposition. ([Sch08], Pro. 2.7.2.2, 2.7.2.3.) Fix a parabolic pseudo (ς ◦ι)-
Higgs bundle E = ((Ea, (Eij

a )i[sja]j[|S|])a[|A|], τ, ϕ, L) with associated Higgs tuple

Tb,c = ((Ea, (Eij
a )i[sja]j[|S|])a[|A|], ϕ

b,c
tuple, L).

(i) For every weighted �ltration (F k, αk)k[m] as in 1.6

µ(F k, αk, ϕtuple) = b · µ(F k, αk, ϕ) + c · µ(F k, αk, ϕτ ).

(ii) Let δ, δps, εps be such that δps/δ, εps/δ ∈ Z+. Then E is (ξa, δps, εps)-
(semi)stable if and only if Tδps/δ, εps/δ is (ξa, δ)-(semi)stable.

(iii) Let δ, δps, εps be as in (ii). Then E 7→ Tδps/δ, εps/δ is one-to-one.

Proof. (i) This is a direct consequence of the de�nitions. We skip the details
and refer to 3.13 for a similar argument, or to [Sch08], remark 2.7.2.1.

(ii) Obvious from part (i).

(iii) Follows from 2.25, part (i).

2.28. From the de�nition of semistability of parabolic principal (ς ◦ ι)-Higgs bun-
dles we see immediately: If a pseudo (ς ◦ ι)-Higgs bundle is semistable, so is the
underlying principal (ς ◦ι)-Higgs bundle. For the reverse statement we need to �nd
a criterion, in order to decide which weighted �ltrations of the associated vector
bundle E come from a reduction R : X → P/QG(λ) to a one-parameter subgroup
λ of G. Therefore we will need the following result by Alexander Schmitt:

2.29. Proposition. ([Sch08], 2.6.3.4.) For a principal G-bundle with associated
Higgs tuple (E, ϕτ ) and a weighted �ltration (F k, αk)k[m] the following conditions
are equivalent

1. µ(F k, αk, ϕτ ) = 0;

2. there is a one-parameter subgroup λ of G and a corresponding reduction
R : X → P/QG(λ) such that (F k, αk)k[m] coincides with the �ltration induced
by the pair (λ, R).

This criterion will be used in 3.5.
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2.3. The Moduli Space in the Non-Parabolic Case

We will shortly review the construction in [Sch08] of a parameter scheme B that
parametrizes non-parabolic pseudo G-bundles. The idea is related to the one
used to construct a parameter scheme Tpar for tuples, however since we have to
account for a homomorphism τ : S ym∗(

⊕
a∈A Ua ⊗ E �

a) → OX rather than a
homomorphism ϕ : Eς → L, the involved spaces di�er.

2.30. Fix a n ∈ N as in the construction of the moduli space of tuples. By 2.27
we see that the pseudo G-bundles that occur, live in a bounded family. Hence
we may �nd an open subset Qa of a Quot scheme Qa, such that Qa parametrizes
quotients qa : Va⊗OX(−n)→ Ea with H0(q(n)) an isomorphism and Ea a vector
bundle of rank ra and �berwise degree da. Denote by EQ =

⊕
a∈A π

∗
Qa

(EQa) the
universal bundle overQ whereQ is the �ber over [OX ] in×a∈AQa of the morphism
Q→ Jac0, (qa : Va ⊗OX(−n)→ Ea)a∈A 7→ [det(E)] , E =

⊕
a[|A|] Ea. Denote by

V =
⊕

a∈A Va as well as U =
⊕

a∈A Ua.
As before we �nd a line bundle L on Q such that det(EQ) � ' π∗Q(L ).21 Now by
E �

Q '
∧r−1 EQ ⊗ det(EQ) � we �nd the surjective OX−algebra morphism

ψ∗ : S ym∗(U ⊗
r−1∧

(V ⊗ π∗X(OX(−n)))⊗ π∗Q(L ))G

→ S ym∗(H om(EQ, U ⊗OQ×X))G

→ S ym∗(
⊕
a∈A

(πQa × idX)∗H om(EQa , Ua ⊗OQa×X))G.

Next using S ym∗(U ⊗
∧r−1(V ⊗ π∗X(OX(−n))))G ' Sym∗(U ⊗

∧r−1 V )G ⊗
OX(∗ · (1 − r)n) we �nd a big enough number s22 such that every τ :
S ym∗(

⊕
a∈A Hom(Ea, Ua ⊗OX))G → OX comes from an element of

Y =
s⊕

k=1

H om(S ymk(U ⊗
r−1∧

V ⊗ π∗Q(L ))G, H0(OX(k(r − 1)n))⊗OQ).

Combining the universal homomorphisms τ̃ k : S ymk(U ⊗
∧r−1 V ⊗ π∗Q(L ))G →

H0(OX(k(r − 1)n))⊗OY×X
23 to a morphism

τ̂ : U :=
s⊕

k=1

S ymk(U ⊗
r−1∧

(V ⊗ π∗X(OX(−n)))⊗ π∗Q(L ))G

→ H0(OX(k(r − 1)n))⊗OY×X ⊗ π∗X(OX(−k(r − 1)n))→ OY×X

21Observe that (det× idX)∗(P0) ' OQ×X by the universal property of the Poincaré bundle.
22[MRed], �8.
23π : Y→ Q the natural projection.
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induces a homomorphism τ̌ : S ym∗(U )→ OY×X and after combination with ψ∗

a homomorphism τ̌Y in

S ym∗(U )

ψ̌∗

))

τ̌Y // OY×X .

S ym∗(
⊕

a∈A(π ◦ πQa × idX)∗H om(EQa , Ua ⊗OQa×X))G

τY

55

Thus 1.14 provides us with a closed subscheme B ⊂ Y such that τB = τY|B
exists. By construction B parametrizes all pseudo G-bundles that may occur in a
(ξa, δps, εps)-(semi)stable pseudo (ς ◦ ι)-Higgs bundle. B comes with a morphism
πB,Q : B→ Q as well as a universal family (EB, τB).
We may extend the de�nition of a Y -family of pseudo G-bundles (cf. 2.24) to
a quotient family including an additional qa : Va ⊗ π∗X(OX(−n)) → EY,a that is
surjective with isomorphisms πY,∗(qa ⊗ idOX(n)) for all a ∈ A. As in the proof
of 1.22 πY,∗(τY ◦ ψ̌∗Y ) induces a lift of the unique morphism Y → ×a∈AQa to a
unique morphism f : Y → Y such that the pullback of the universal family under
f is the given Y -family. Here ψ̌∗Y : S ym∗(UY )→ S ym∗(

⊕
a∈A(H om(EY,a, Ua ⊗

OY×X))G, UY =
⊕s

k=1 S ymk(U ⊗
∧r−1(V ⊗ π∗X(OX(−n))) ⊗ (det EY ) �)G is the

surjective morphism induced by the qa. Like in 1.22 f factorizes over B. Hence
the universal property 1.62.(U1) holds for B too. As in the case of tuples this
de�nes a group action of GA on B (resp. Y) and 1.62.(U2) is readily veri�ed.
Furthermore this GA-action on Y leaves B24 invariant and is equivariant w. r. t.
the projection πB,Q. In particular two pseudo G-bundles parametrized by B are
isomorphic if and only if they lie in the same GA-orbit.
Even more so the local universality property is veri�ed for B (as in 1.23)25. The
universal property of the group action holds as in 1.25.
In order to parametrize pseudo (ς ◦ ι)-Higgs bundles we need to account for the
additional Higgs �eld. Therefore let T be the scheme that parametrizes the non-
parabolic ς-Higgs tuples (E, ϕ, L) that occur in a semistable pseudo (ς ◦ ι)-Higgs
bundle. Recall that we constructed a GA-action on T satisfying 1.25. Combining
the two parameter spaces B and T we �nd Pς◦ι = B ×Q T → Q. There is a
universal family (EPς◦ι , τPς◦ι , ϕPς◦ι ,HPς◦ι , υPς◦ι)

26 and a GA-action such that every
semistable pseudo (ς ◦ ι)-Higgs bundle is parametrized by Pς◦ι and two of these
pseudo (ς ◦ ι)-Higgs bundles are isomorphic if and only if they lie in the same
GA-orbit.27

24gx ∈ g ker(ψ̌∗) = ker(g · ψ̌∗) and (g · τ̌Y)(gx) = (τ̌Y)(g−1gx) = (τ̌Y)(x).
25Observe that we only need the local triviality of the vector bundles EY,a.
26Recall that EB and ET are pullbacks of EQ and hence EPς◦ι exists as pullback of EQ.
27Recall the de�nition of isomorphy of pseudo (ς ◦ ι)-Higgs bundles in 2.26.
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2.31. Assume a group G acts on schemes X, Y, Z such that the action is equiv-
ariant to given projections πX : X → Z, πY : Y → Z, then G acts on X ×Z Y :
Use the equivariance to show that all squares in the following diagram commute,
then the universal property of the �ber product implies the claim.

G× (X ×Z Y )

ww ''
G×X

idG×πX

((
pr2

��

G× Y
idG×πY

vv
pr2

��

G× Z
pr2
��

X
πX

// Z Y.
πY

oo

2.32. We have to show that the GIT-quotient of Pς◦ι does exist. Therefore
consider the surjection C∗ × SκaA → GA, (z, g) 7→ zg and the quotient πPς◦ι,Pς◦ι :

Pς◦ι → Pς◦ι = Pς◦ι � C∗. Since πPς◦ι,Q is GA-equivariant and C∗ acts trivially
on Q we get a projective morphism Pς◦ι → Q. Now we use 1.22 and 2.27 to
construct a morphism f : Pς◦ι → T, T parameter scheme of non-parabolic tuples
corresponding to the representation ς⊗(δps/δ) ⊗ ς⊗(εps/δ)

ps . The morphism descends
(again by the trivial action of C∗ on T) to a morphism f : Pς◦ι → T. The
projectivity of πPς◦ι,Q implies the projectivity of f and thus 2.27 shows that f is
�nite. Finally we may pull back the GIT-quotient in the tuple case to Pς◦ι, i. e.

by 2.27 P
(s)s
ς◦ι = (f ◦ πPς◦ι,Pς◦ι)

−1(T
(s)s

) to get

P(s)s
ς◦ι � GA = P(s)s

ς◦ι � (C∗ × SκaA ) = (P(s)s
ς◦ι � C∗) � SκaA

= f
−1

(T
(s)s

) � SκaA 28

and the later quotient exists. Since πPς◦ι,Pς◦ι is a geometric quotient so is Ps
ς◦ι/GA.

Remark. By the universal property of the �ber product the universal property
of 1.22 holds for Pς◦ι and the corresponding notion of quotient pseudo (ς ◦ ι)-
Higgs bundles. Again this implies the other universal properties 1.23 and 1.25. In
particular by 1.62 the moduli space of non-parabolic projective pseudo (ς ◦ι)-Higgs
bundles of given topological type exists as a projective scheme ([Sch08], 2.7.2.4).

2.33. Conclusion. ([Sch08], 2.7.1.4) The moduli space P
(s)s
ς �GA of non-parabolic

principal ς-Higgs bundles exists as a projective scheme.

28see [Sch08], 1.5.3.3 and 1.4.3.11 or [Bo91], 6.10 Corollary resp. [MFK].
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Proof. In conclusion 3.5 we will see that semistable principal (ς ◦ ι)-Higgs bundles
are exactly the semistable pseudo (ς◦ι)-Higgs bundles. By construction ς◦ι = ς⊕ς̃.
If ϕPς◦ι : EPς◦ι,ς◦ι → LPς◦ι is the universal homomorphism over Pς◦ι ×X, choose
in 1.14 ψPς◦ι = pr2 (the projection to the second component). Then 1.14 ensures
the existence of a closed subscheme Pς ⊂ Pς◦ι and a universal homomorphism
ϕPς : EPς ,ς → LPς . Since Pς is GA-invariant, by 3.5 P

(s)s
ς � GA exists. Finally the

universal properties of the parameter space Pς◦ι descend to Pς and thus by 1.62
the moduli space exists.

2.4. Construction in the Parabolic Case

Before we come to the actual de�nition of a parameter scheme in the parabolic
setting we will state some preparatory results on proper morphisms on �ber prod-
ucts.

2.34. From [SGA], Expose XII, Proposition 3.2 we know that for a morphism of
C-schemes of locally �nite type properness is equivalent to topological properness
of the corresponding analytic map, i. e. equivalent to that map having (quasi-
)compact �bers and being closed. Topological properness further implies that
the preimage of every compact set is compact.29 Let Y, E be schemes of �nite
type, F → Y a �ber bundle with a �ber F that is proper over C. Furthermore
let Y be proper and E be separable over C. Then Y an is a compact analytic
space, Ean a compact Hausdor� space and we have F an π−→ Y an the corresponding
analytic �ber bundle (see [Bal10], A.10.4.1 or [GAGA]). Now if ψ : F → E is a
morphism of schemes and ψan the corresponding analytic map F an → Ean than
ψan is topologically proper for example if F an is compact.30 We are going to show,
that F an is in fact compact. Since F an = π−1(Y an) it will be enough to show
that π is topologically proper. Since π has obviously compact �bers, we are left to
show that the map is closed. Now choose a trivializing cover Ui of F an → Y an, let
π|Ui =: πi, A ⊂ F an be closed and Ai = A ∩ π−1(Ui) the restriction (closed w. r.
t. the subspace topology). If u /∈ πi(Ai) then {u}×F does not intersect Ai. Since
Ai is closed we �nd for every pair (u, f) ∈ {u} × F an open neighborhood Vu,f ,
Vu,f ∩Ai = ∅ and compactness of {u}×F shows that {u}×F is covered by �nitely
many open sets Vj, Vj ∩Ai = ∅. Since π is (always) open,

⋂
i πi(Vj) ⊂ π(A)c open

and thus πi(Ai) = π(A) ∩ Ui closed. Hence we get π(A) ∩ Ui closed in Ui for all
i. Next consider the complement V = Y an \ π(A) which satis�es V ∩ Ui open in
Ui. The de�nition of the subspace topology provides us with open sets Ũi s. t.

29Note that for locally compact spaces this property is even equivalent to properness.
30F an compact, A closed in F an ⇒ A compact⇒ ψan(A) compact, hence closed in a Hausdor�

space. Since points in a Hausdor� space are closed, the �bers of ψan are closed and therefore
are compact in the compact space F an. In the algebraic category the corresponding statement
results from [Ha77], II.4.8(e).
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V ∩ Ui = Ũi ∩ Ui open in Y an. Therefore V =
⋃
i V ∩ Ui is open in Y an and π(A)

is closed.
Collecting all results we conclude that π is closed and hence topologically proper.
Thus ψan is topologically proper and the corresponding morphism of schemes ψ is
proper.

Remark. To give the reader a glimpse of the actual application of these techni-
cal lemmas, consider a �ber bundle with compact �ber isomorphic to G/P for a
parabolic subgroup P of G and a morphism to a compact complex Graÿmannian
manifold Gij

a .

2.35. Lemma. Given a proper morphism f0 : Y0 → T0 of schemes and Yi �ber
bundles over Y0 with compact �ber F then the natural morphism Y1×Y0 · · ·×Y0Yn =
Y → T0 is proper.

Proof. By the previous paragraph, the maps Yi → T0 are proper and therefore we
�nd the maps p1, . . . , pn in the following diagram as well as p with the universal
property of the �ber product.

Y1

''
Spec(K)

ι

��

qK // Y

??

''

Y0

f0

��

Yn

>>

Spec(R)

⇒∃p

GG

p1

EE

pn

77
p0

99

qR // T0.

We get f0 ◦pr0 ◦p = f0 ◦p0 = qR and since pri ◦p◦ ι = pi ◦ ι = pri ◦qK the universal
property of the �ber product shows that p ◦ ι = qK .

2.36. Lemma. Let Y1, . . . , Yn be schemes over Y0 and T1, . . . , Tn, T0, Y0 schemes
over C. If there are proper morphisms fi : Yi → Ti, i = 0, . . . , n then there is a
proper morphism f : Y := Y1 ×Y0 . . .×Y0 Yn → T0 × T1 × . . .× Tn = T .

Proof. De�ne f = (f0 ◦pr0, . . . , fn ◦prn). We need to show, that f is proper. The
existence of a lift p : Spec(R)→ Y of qR : Spec(R)→ Y in the valuation criterion
(below) follows from the universal property of the �ber product and the existence
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of the lifts pi : Spec(R)→ Yi, i = 0, . . . , n.

Y1

f1

��

''
Spec(K)

ι

��

qK // Y

??

''

f

��

Y0

f0

��

Yn

fn

��

??

T1

Spec(R)

⇒∃p

HH
p1

EE

pn

88
p0

::

qR // T //

??

''

// T0

Tn

The diagram commutes, since f ◦ p = (f0 ◦ pr0 ◦ p, . . . , fn ◦ prn ◦ p) = (f0 ◦
p0, . . . , fn ◦ pn) = (pr0 ◦ qR, . . . , prn ◦ qR) = qR by uniqueness of the lifts pi. For
the upper triangle it is enough to show, that pri ◦ qK = pri ◦ p ◦ ι, ∀ i = 1, . . . , n,
since then qK = p◦ι by the universal property of the �ber product. But pri◦p = pi
(by construction) and pi ◦ ι = pri ◦ qK by properness of the fi. This proves the
claim.

2.37. If

X ′ //

��

X

��

X ′′oo

��
S ′ // S S ′′oo

Y ′ //

OO

Y

OO

Y ′′oo

OO

commutes, then

(X ′ ×X X ′′)×S′×SS′′ (Y ′ ×Y Y ′′) = (X ′ ×S′ Y ′)×X×SY (X ′′ ×S′′ Y ′′).

For the proof use the universal property of the �ber product.

2.38. Recall the de�nitions of a parabolic ς-Higgs bundle in 2.1 and of a pseudo
parabolic (ς ◦ ι)-Higgs bundle in 2.22. Below we need a slightly modi�ed object: A
ι-parabolic ς-Higgs bundle is a ς-Higgs bundle (P, ϕ, L) together with reductions
sj : {xj} → Pι ×X {xj}/P j

Gl for �xed parabolic subgroups P j
Gl ⊂ ×a∈A Gl(Ua)

resp. parabolic �ltrations (Eij
a )i[sja]a[|A|] (of �xed type) of Pι|xj over every puncture

xj ∈ S.
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2.39. As in the non-parabolic case we are going to construct the moduli space
of parabolic pseudo (ς ◦ ι)-Higgs bundles �rst. 2.27 for a parabolic pseudo (ς ◦
ι)-Higgs bundle implies that (semi)stable pseudo (ς ◦ ι)-Higgs bundles live in a
bounded family. Therefore the construction above works (with a possibly di�erent
integer n). Let EQa , EQ resp. EPς◦ι be the corresponding universal families over
Qa, Q resp. Pς◦ι. Fix a tuple P j

Gl(Ua)a
, 1 ≤ j ≤ |S| of parabolic subgroups

of Gl(Ua)a = ×a∈A Gl(Ua). Let Pj
ς◦ι,ι−par = π∗Pς◦ι,Q×{xj}(P̃

j
ς◦ι,ι−par), P̃j

ς◦ι,ι−par =(×a∈A I som(Ua ⊗OQa ,EQa|Qa×{xj})
)
, 1 ≤ j ≤ |S| and

Pς◦ι,ι−par = P1
ς◦ι,ι−par/P

1
Gl(Ua)a ×Pς◦ι · · · ×Pς◦ι P

|S|
ς◦ι,ι−par/P

|S|
Gl(Ua)a

where Pj
ς◦ι,ι−par/P

j
Gl(Ua)a

is the bundle associated to Pj
ς◦ι,ι−par by the action

Gl(Ua)a ×Gl(Ua)a/P
j
Gl(Ua)a

→ Gl(Ua)a/P
j
Gl(Ua)a

, (g, [q]) 7→ [gq].
The scheme Pς◦ι,ι−par → Pς◦ι parametrizes parabolic principal pseudo G-bundles
over the punctured Riemann surface (X,S). Analogously we de�ne a scheme
Pς◦ι,ι−par on Pς◦ι = Pς◦ι � C∗ as Pj

ς◦ι,ι−par = π∗
Pς◦ι,Q×{xj}

(P̃j
ς◦ι,ι−par) and

Pς◦ι,ι−par = P1
ς◦ι,ι−par/P

1
Gl(Ua)a ×Pς◦ι

· · · ×Pς◦ι
P
|S|
ς◦ι,ι−par/P

|S|
Gl(Ua)a

.

Note that the �berwise morphisms gq,j :×a∈A I som(Ua,EQa|{q}×{xj})/P 1
Gl(Ua)a

→

×a∈A×sja
i=1 G

ij
a split over a �ag variety of (rija )-dimensional �ltrations of the �ber

×a∈AEa|xj ' ×a∈ACra and thus by 1.22 there are morphisms g that extend f
and restrict to gq,j over (q, xj). Analogously we construct a morphism g such that
the following diagram over Q commutes

Pς◦ι,ι−par
g //

%%

��

Tpar

��

Pς◦ι,ι−par

g

77

��

Pς◦ι
f //

%%

T

Pς◦ι

f

77

where Tpar ⊂ T ××a∈A×|S|j=1×sja
i=1 G

ij
a is the parameter scheme of parabolic

tuples corresponding to the representation ς⊗(δps/δ) ⊗ ς
⊗(εps/δ)
ps . We get
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Pς◦ι,ι−par � C∗ = Pς◦ι,ι−par: First note that by 2.37 we have Pς◦ι,ι−par =

Pς◦ι ×Q

(
π∗Q×{x1}P̃

1
ς◦ι,ι−par/P

1
Gl(Ua)a

×Pς◦ι · · ·
)

and Pς◦ι,ι−par = (Pς◦ι � C∗) ×Q(
π∗Q×{x1}P̃

1
ς◦ι,ι−par/P

1
Gl(Ua)a

×Pς◦ι · · ·
)
. Now by the universality of the geometric

quotient Pς◦ι � C∗31

Pς◦ι,ι−par = Pς◦ι ×Pς◦ι�C∗
(
Pς◦ι � C∗ ×Q

(
π∗Q×{x1}P̃

1
ς◦ι,ι−par/P

1
Gl(Ua)a ×Pς◦ι · · ·

))
pr2−−→ Pς◦ι,ι−par

exists, i. e. Pς◦ι,ι−par � C∗ = Pς◦ι,ι−par.
Since the morphism g is obviously one-to-one we are left with the task to show the
properness of g. Fortunately 2.34 already implies that the component morphisms
gj : Pς◦ι,ι−par

j
/P j

Gl(Ua)a
→ ×a∈A×sja

i=1 G
ij
a are proper. Therefore the morphism

g is by 2.36 proper and thus �nite. Since g is SκaA -invariant (with respect to the
natural action on Pς◦ι,ι−par (cf. 2.31) we can pull back the GIT-quotient T

(s)s

par �SκaA
whenever it exists. We already know that the GIT-quotient T

(s)s

par � SκaA will exist
if the stability parameters are admissible. So let us assume that this is the case.
By the very de�nition of semistability of parabolic pseudo (ς ◦ ι)-Higgs bundles in
2.20 as well as 2.27 we see that g preserves semistability. Hence we may conclude
as in the non-parabolic case

P
(s)s
ς◦ι,ι−par � GA = P

(s)s
ς◦ι,ι−par � (C∗ × SκaA )

= (P
(s)s
ς◦ι,ι−par � C∗) � SκaA

= g−1(T
(s)s

par ) � SκaA .

Again the universal geometric quotient Pς◦ι,ι−par → Pς◦ι,ι−par induces a universal
geometric quotient Ps

ς◦ι,ι−par/GA.

The transition toG-bundles in the parabolic setting is a little bit more complicated.
Let us start with the extension of 2.33:

2.40. Conclusion. The moduli space P
(s)s
ς,ι−par � GA of τ j-(semi)stable pairs

((P, ϕ, L), (sj)j[|S|]) where (P, ϕ, L) is a principal ς-Higgs bundle and sj :

{xj} →
(
Pι/P

j
Gl(Ua)a

)
xj
, P j

Gl(Ua)a
⊂ Gl(Ua)a parabolic subgroup, exists as a pro-

jective scheme whenever the weights (βij)i[sj ] induced by τ j are admissible (cf.
2.10).

31[MFK] 1.�4.1.10, and [Sch08] 1.4.2.13.
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Proof. We may pull back the GIT quotient to Pς,ι−par = Pς◦ι,ι−par|Pς . The result
will then follow directly from 3.5, i. e. the fact that P

(s)s
ς◦ι,ι−par|Pς parametrizes

already the semistable parabolic principal ς-Higgs bundles.

Let (P, (sj)j[|S|]) be a principal G-Higgs bundle and P j ⊂ G �xed parabolic
subgroups of G with P j = QG(τ j) for some one-parameter subgroups τ j of P j.
First recall that (P, (sj)j[|S|]) is τ j-(semi)stable if and only if (P, (s̃j)j[|S|]) with
s̃j = ι ◦ sj : {xj} → Pι ×X {xj}/QGl(Ua)a(τ̃

j) and τ̃ j = ι ◦ τ j, is βij-(semi)stable
(cf. 2.8). We have the following commuting diagram

G

**

ι

��

G×G/QG(τ j)

��

// G/QG(τ j)

��

G/QG(τ j)

44

��

Gl(Ua)a

**
Gl(Ua)a ×Gl(Ua)a/QGl(Ua)a(τ̃

j) // Gl(Ua)a/QGl(Ua)a(τ̃
j)

Gl(Ua)a/QGl(Ua)a(τ̃
j)

44

(Equ 1)

where the vertical arrows are the embeddings G/QG (τ j) ↪→
Gl(Ua)a/QGl(Ua)a (τ̃ j) , gQG (τ j) 7→ ι(g)QGl(Ua)a (τ̃ j) using ι (QG(τ j)) =
ι(G) ∩ QGl(Ua)a (τ̃ j). Therefore there are induced maps of �ber bundles
P|Pς×{xj}/QG (τ j) and Pι|Pς×{xj}/QGl(Ua)a (τ̃ j) where P is the universal G-
bundle on Pς × X.32 Thus the closed embedding ι : G → Gl(Ua)a de�nes
closed subschemes of the components Pj

ς◦ι,ι−par|Pς and hence de�nes a closed

embedding P
(s)s
ς,par ↪→ P

(s)s
ς,ι−par and P

(s)s
ς,par parametrizes (semi)stable projective

parabolic ς-Higgs bundles. Since two parabolic principal ς-Higgs bundles are
equivalent if and only if the associated ι-�agged ς-Higgs bundles are, we see that
the embedding is equivariant and therefore Pss

ς,par � GA exists as a projective
scheme as well as Ps

ς,par/GA exists as an open subscheme.

32By the previous diagram, the morphisms locally de�ned by ι are compatible with the tran-
sition functions induced by ι.



3 The Moduli Space of
Affine Parabolic
Higgs Bundles

3.1. Asymptotic Behavior

We study the asymptotic behavior of the various semistability concepts. The
results of this section will not only �ll the gaps in the proof of 2.40, but will also
enable us to treat the a�ne case in the next section. Let's start with another
proposition:

3.1. Proposition. Given ra, da, l as well as κa, ξa, δps, there is a ε∞ps ≥ 0
such that for all εps > ε∞ps and every [parabolic] pseudo (ς ◦ ι)-Higgs bundle E =
((Ea, [(Eij

a )i[sja]j[|S|]])a[|A|], τ, ϕ, L), the following two conditions are equivalent:

I. E is (κa, ξa, δps, εps, [βija ])-(semi)stable.

II. For every weighted �ltration (F k, αk)k[r] as in 1.6:

A. µ(F k, αk, ϕτ ) ≥ 0

B. Mκ,ξ
[par](F

k, αk) + δps · µ(F k, αk, ϕ) (≥) 0 whenever µ(F k, αk, ϕτ ) = 0.

Remark. A [parabolic] pseudo (ς ◦ ι)-Higgs bundle that satis�es II. is called asymp-
totically (semi)stable.

The rather evolved proof of the non-parabolic version in [Sch08], Theorem 2.7.2.5
uses instability one-parameter subgroups.1 It works in our situation with small
modi�cations necessary in the parabolic setting.
We will however try a di�erent approach. Therefore we will apply an idea of Adrian
Langer [GLSS08] used by him to show that for |A| = 1 the family of (semi)stable
Higgs tuples is bounded independent of the stability parameter. The proof uses
the existence of a Harder-Narasimhan �ltration; hence a direct extension thereof
should probably use a "Harder-Narasimhan-Filtration for Higgs tuples". Although

1cf. Ramanan and Ramanathan, [RR84].
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there is a version of the Harder-Narasimhan �ltration for parabolic tuples (even
for (κ, ξ)-semistability), to account for the additional Higgs �eld ϕ would lead us
back to instability one-parameter subgroups and thus to a discussion similar to
the proof given by [Sch08], Theorem 2.7.2.5.
Instead we will take a closer look at the boundedness of the weight functions for
the available classical HN-�ltration. Once the stage is set, the following key result
can be proven rather directly.

3.2. Lemma. Fix ra, da, l, κa, ξa, δps but allow εps > 0 arbitrary.
The family of all vector bundles E occurring as E '

⊕
a∈A(Ea)

⊕κa in a semistable
[parabolic] pseudo (ς ◦ ι)-Higgs bundle E = ((Ea, [(Eij

a )i[sja]j[|S|]])a[|A|], τ, ϕ, L) is

bounded (independent of εps > 0).

Proof. First note that the underlying vector bundle of E belongs to a bounded
family (independent of εps) if it is semistable as a vector bundle. From now on
assume that our [parabolic] pseudo (ς◦ι)-Higgs bundle E is (κa, ξa, δps, εps, [βija ])-
semistable, but the underlying vector bundle is unstable. Consider the Harder-
Narasimhan �ltration

{0} = E0 $ E1 ( · · · ( Em = E =
⊕
a∈A

E⊕κaa

with rk = rk(Ek), dk = deg(Ek). Denote µ(E) = deg(E)/ rk(E) the classical µ-
function for vector bundles and denote µi = µ(Ei/Ei−1). Recall from 1.11 that this
is in fact a tuple �ltration. Fix the length m of the Harder-Narasimhan �ltration.
Since µ(Ek) > µ(E) we see that

∑m−1
k=1 α

k(rkd − dkr) < 0 for all real non-trivial
non-negative tuples (αk)k[m−1] ∈ Rm−1

≥0 . Since the map (αk)k[m−1] 7→
∑m−1

j=1 αj =

‖(αk)k‖1 is continuous, the preimage B1 of 1 in Rm−1
≥0 is closed and bounded, and

therefore compact. Note that in terms of the weights γk we have
∑m−1

j=1 αj =
γm−γ1

r
= 1 on B1.

Below we are going to construct a covering of B1 by �nitely many compact sets
Di, such that either µmax(E) (or |µmin(E)|) is already smaller than a prescribed
constant c0 or µ(Ek, · , ϕτ ) is positive on one of the Di. This on the other hand
will again give us a bound for µmax(E) (or |µmin(E)|).
Set α̃j = µj−µj+1

r
, α̂j = α̃j

‖(α̃j)j[m−1]‖1
for j = 1, . . . ,m − 1 with ‖(α̃j)j[m−1]‖1 =

µmax(E)−µmin(E)
r

. Then

Mκ,0(Ek, α̃k) =
m−1∑
k=1

µk − µk+1

r
(drk − rdk)

=
1

r

(
m−1∑
k=1

µk(drk − rdk)−
m∑
k=2

µk(drk−1 − rdk−1)

)
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=
1

r

m∑
k=1

µk
(
(drk − rdk)− (drk−1 − rdk−1)

)
− µm (drm − rdm)

r
+ µ1 (dr0 − rd0)

r

=
1

r

m∑
k=1

dk − dk−1

rk − rk−1

(
(d(rk − rk−1)− r(dk − dk−1)

)
=

m∑
k=1

(dk − dk−1)d

r
−

m∑
k=1

(dk − dk−1)2

rk − rk−1

=
d2

r
−

m∑
k=1

(dk − dk−1)2

rk − rk−1

= µ(E)2r −
m∑
k=1

(µk)2(rk − rk−1).

First note that there are only �nitely many continuous functions Mκ,ξ
[par](E

k, · ) +

δps · µ(Ek, · , ϕ) −Mκ,0(Ek, · ). In particular we �nd a real number rδ,ps such
that Mκ,ξ

[par](E
k, · ) + δpsµ(Ek, · , ϕ)−Mκ,0(Ek, · ) < rδ,ps on B1.2 Fix a positive

integer n such that |µ(E)| · 1−rn2

2n/r
< −rδ,ps for µ(E) 6= 0.3 Further denote by

µM = max{µ1, |µm|} 6= 0. By the same calculation as before we see that for
µM > |µ(E)| · r · n, µ(E) 6= 0

Mκ,0(Ek, α̂k) ≤ µ(E)2r −
∑m

k=1(µk)2(rk − rk−1)

2µM/r

≤ µ(E)2r − µ2
M

2µM/r
<
µ2
M/(rn

2)− µ2
M

2µM/r

≤ µM ·
1− rn2

2n2
< |µ(E)| · 1− rn2

2n/r
≤ −rδ,ps. (∗)

In the case µM > 2rδ,ps/r, µ(E) = 0 we get the same result. Now either µM is
bounded by max{|µ(E)| · r ·n, 2rδ,ps/r} or (∗) holds. Assume that (∗) holds, then
by construction4

Mκ,ξ
[par](E

k, α̂k + tk) + δpsµ(Ek, α̂k + tk, ϕ) ≤Mκ,0(Ek, α̂k + tk) + rδ,ps

2We may choose rδ,ps such that it works in the non-parabolic case as well as in the parabolic
case.

3Note that a non-semistable bundle is not of rank 1.
4Assume αk + tk ∈ B1.
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becomes negative at t = 0. The latter term Mκ,0(Ek, α̂k + tk) + rδ,ps can become
zero only if

tmin(µmax(E)− µmin(E))m(µ(E)− µ(E1))r

≥ (µmax(E)− µmin(E))
m−1∑
k=1

tk(µ(E)− µ(Ek))rk

= −rδ,ps(µmax(E)− µmin(E))

r
− µ(E)2r +

m∑
k=1

(µk)2(rk − rk−1).

Note that the right-hand side is by assumption positive, hence there must be a
negative tk - set tmin = min{tk : 1 ≤ k ≤ m − 1} < 0. Therefore for µ2

M >

2µ(E)2r + 4|rδ|µM
r

|tmin| ≥
∑m

k=1(µk)2(rk − rk−1)− µ(E)2r − rδ(µmax(E)−µmin(E))
r

(µmax(E)− µmin(E))m(µ(E1)− µ(E))r

>
µ2
M/2

2µMm · 2µMr
≥ 1

8r2
.

This shows that for large µM the term Mκ,ξ
[par](E

k, · ) + δps ·µ(Ek, · , ϕ) is negative

on a compact ball BR((α̂k)k[m−1]) ⊂ B1 around (α̂)kk[m−1] of radius at least R = 1
8r2

.
Putting the results together we see that there is a constant c > 0 such that either
µM ≤ c or Mκ,ξ

[par](E
k, · ) + δpsµ(Ek, · , ϕ)|

BR((α̂k)k[m−1])
< 0.

Since B1 is compact it is in particular totally bounded and thus we �nd a �nite
covering by compact balls Di = BR/2(xi), xi ∈ B1, i = 1, . . . , s of radius smaller
R/2. Note that this covering depends only on the initial data r and on the length
of the Harder-Narasimhan �ltration m. Now for µM > c let Di be the compact
set for which (α̂k)k[m−1] ∈ Di. Then by (κa, ξa, δps, εps, [βija ])-(semi)stability of
E, we get µ(Ek, αk, ϕτ ) > 0 on Di. Hence the continuous function µ(Ek, · , ϕτ )
attains its minimum on the compact set Di. Given our intial data µ(Ek, · , ϕτ )
must be one of �nitely many possible functions and thus its minimum is bounded
(from below) by a constant Mini > 0 which depends solely on the initial data.
Next recall that ϕτ : (E⊗ups)⊕vps → det(E)⊗wps is non-trivial. Therefore for all
tuple (ij)j[ups] such that ϕτ is non-trivial on (

⊗ups
j=1E

ij)⊕vps we get

ups∑
j=1

µij =

ups∑
j=1

µmin(Eij)︸ ︷︷ ︸
µij

= µmin

((
ups⊗
j=1

Eij

)⊕vps)

≤ µ(det(E)⊗wps) = wps deg(E)
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where we used that the µ-function decomposes suitably for semistable bundles
(cf. 1.11, 1.12 resp. Huybrechts, Lehn [HL10], Theorem 3.1.4, [La04] Corol-
lary 6.4.14). Recall that γ̃k = µ(E) − µk are the weights corresponding to
α̃k. Moreover µ(Ek, α̃k, ϕτ ) = −

∑ups
j=1 γ̃

ij for a suitable tuple (ij)j[ups]. Thus
−
∑ups

j=1 γ̃
ij ≤ (wpsr − ups)µ(E) = c′. Then

0 < ‖(α̃k)k[m−1]‖1 ·Mini ≤ ‖(α̃k)k[m−1]‖1 · µ
(
Ek,

α̃k

‖(α̃k)k[m−1]‖1

, ϕτ

)
≤ c′

⇒ ‖(α̃k)k[m−1]‖1 ≤
c′

Mini
= ci.

Since ‖(α̃k)k[m−1]‖1 · r = µmax(E) − µmin(E) this implies boundedness. As there
are only �nitely many Di for each of the �nitely many m - m being the length of
the Harder-Narasimhan �ltration - we see that the family of vector bundles E of
�xed data (r, d) such that there is a [parabolic] pseudo (ς ◦ ι)-Higgs bundle E with
E = ((Ea [(Eij

a )i[sja]j[|S|]])a[|A|], ϕ, L) a (κa, ξa, δps, εps, [βija ])-(semi)stable pseudo
(ς ◦ ι)-Higgs bundle and E '

⊕
a∈AE

⊕κa
a is bounded independent of εps > 0.

Remark. (i) The result holds for parabolic as well as non-parabolic tuples and
for non-parabolic (ς ◦ ι)-Higgs bundles. For the proofs in the non-parabolic
case set βij = 0 and apart from some constants that will be di�erent, the
proofs are just the same. For the tuple case we just remove one section. The
calculations stay the same when we replace εps by δ, δps by 0, µ( · , · , ϕτ )
by µ( · , · , ϕ) and ups, vps, wps by u, v, w.

(ii) The proof of 3.2 implies that pseudo (ς ◦ ι)-Higgs bundles that satisfy 3.1.II
live in a bounded family too. If a bundle that satis�es 3.1.II is neither
semistable as a vector bundle nor µ(Ek, · , ϕτ ) > 0 holds on theDi (that con-
tains (α̂k)k[m−1] then by 3.1.II.B we getMκ,ξ

[par](E
k, αk)+δps ·µ(Ek, αk, ϕ) ≥ 0

for a (αk)k[m−1] ∈ Di - a contradiction to the construction of the Di.

(iii) As every subbundle Fa ⊂ Ea amounts to a subbundle · · ·⊕ 0⊕ F⊕κaa ⊕ 0⊕· · ·
of same slope, the family of vector bundles isomorphic to one of the Ea
occurring in a parabolic pseudo (ς ◦ ι)-Higgs bundle is bounded as well.

Before we start with the proof of 3.1 we would like to add another lemma.

3.3. Lemma. Fix two integers b and c and let δps = t · b, εps = t · c, t ∈ R+.
Furthermore �x ra, da, l, κa, ξa, δps, [βija ] as before.
The family of all vector bundles E occurring as E '

⊕
a∈A(Ea)

⊕κa in a semistable
[parabolic] pseudo (ς ◦ ι)-Higgs bundle E = ((Ea, [(Eij

a )i[sja]j[|S|]])a[|A|], τ, ϕ, L) is

bounded (independent of t > 0).
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Proof of Lemma 3.3: We will use the notation of the proof of 3.2. Then we �nd
that either the pseudo (ς ◦ ι)-Higgs bundle is semistable as a vector bundle or there
is a Harder-Narasimhan �ltration (Ek)k[m] of length m. In the latter case either
µM is bounded or we �nd a R > 0 such that Mκ,ξ

[par](E
k, · ) < 0 on BR(α̂k) ⊂ B1.

If µM is not bounded yet, we get δps · µ( · , · , ϕ) + εps · µ( · , · , ϕτ ) > 0 on
BR(α̂k). But then b · µ( · , · , ϕ) + c · µ( · , · , ϕτ ) > 0 on some compact set Di.
Repeating the proof of of 3.2 we �nd tuple iϕj[u], i

τ
j[ups]

such that

b · µ(Ek, α̃k, ϕ) + c · µ(Ek, α̃k, ϕτ ) = −b ·
u∑
j=1

γ̃i
ϕ
j − c ·

ups∑
j=1

γ̃i
τ
j

≤ b · deg(L) + (bwr + cwpsr − bu− cups)µ(E)︸ ︷︷ ︸
=:Cb,c

Now if Minb,ci is the minimum of bµ( · , · , ϕ) + cµ( · , · , ϕτ ) on the compact set
Di we have ‖(α̃k)k[m−1]‖1 ≤ Cb,c

Minb,ci
and this proves the claim.

Proof of Proposition 3.1: (II.⇒ I.): Recall that by the remark above, the family
of bundles that satisfy II. is bounded. Assume that µ(F k, αk, ϕτ ) ≥ 0 for every
tuple �ltration. Than we may proceed as in 1.49, i. e. for dk < −|d| − uδps

αk(drk − rdk)− δps ·max{0, αk(urk − v(k, θ)r)} − εps · αk (urk − v(k, θ̃)r)︸ ︷︷ ︸
≤0

≥ αk(drk − rdk − δpsru) ≥ αkr(−|d| − δpsu− dk) ≥ 0

and therefore the function S[par](α
k) = Mκ,ξ

[par](F
k, αk) + δps · µ(F k, αk, ϕ) + εps ·

µ(F k, αk, ϕτ ) can be minimized only if αk = 0. Now the argument of 1.49 applies
and we �nd a �nite set Ξ ⊂ Qr ∩ [0, 1]r of tuples (αi)i[r] to be checked to guarantee
the semistability. Further we �nd an integer z such that zΞ ⊂ Z[1/r]r and if
S[par](α

k)(≤)0 for any (αk)k[r] ∈ Z[1/r]r, then min(αk)k[r]∈zΞ S[par](α
k)(≤)0. Now

denote by −∞ < m[par] the minimum of Mκ,ξ
[par](F

k, αk) + δpsµ(F k, αk, ϕ) over all
(αk)k[r] ∈ [0, 1]r and all types of �ltrations (F k)k[r] and set

ε∞,1ps = rz|m[par]|.

Assume εps > ε∞,1ps . We have to check the semistability condition for every
(αk)k[r] ∈ zΞ and every �ltration. If for such a (αk)k[r] we have µ(F k, αk, ϕτ ) = 0 for
any �ltration (F k)k[r] then obviously II.B. impliesMκ,ξ

[par](F
k, αk)+δps·µ(F k, αk, ϕ)+

εps · µ(F k, αk, ϕτ ) (≥) 0. If on the other hand µ(F k, αk, ϕτ ) > 0 then already
µ(F k, αk, ϕτ ) ≥ 1/r and hence εps · µ(F k, αk, ϕτ ) > z · |m[par]|, therefore
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Mκ,ξ
[par](F

k, αk) + δps · µ(F k,αk, ϕ) + εps · µ(F k, αk, ϕτ )

> Mκ,ξ
[par](F

k, αk) + δps · µ(F k, αk, ϕ) + z · |m[par]| ≥ 0,

and thus II. implies I.
(I. ⇒ II.): This second implication will be proven along the lines of a proof
given by Alexander Schmitt in the special situation of a pseudo G-bundle with-
out an additional Higgs �eld ([Sch08], 2.3.6.5). Since the family of semistable
pseudo (ς ◦ ι)-Higgs bundles is εps−uniformly bounded by 3.2, we may con-
struct the parameter scheme Pς◦ι,[par] big enough that it parametrizes all pseudo
(ς ◦ ι)-Higgs bundles that are semistable for some εps > 0. Let P

εps−ss
ς◦ι,[par]

denote the open subset of εps-semistable objects. If we set P
εps−ss
ς◦ι,εps≤ε̂,[par] =⋃

εps≤ε̂P
εps−ss
ς◦ι,[par] and P∞−ssς◦ι,[par] =

⋃
εps>0 P

εps−ss
ς◦ι,[par], then P∞−ssς◦ι,[par] is open and we

�nd a ε such that P∞−ssς◦ι,[par] = P
εps−ss
ς◦ι,εps≤ε,[par]. For the last statement recall that

Mκ,ξ
[par](F

k, αk)+δps ·µ(F k, αk, ϕ) is bounded from below and that a non-semistable
bundle can become semistable when increasing εps only if µ(F k, αk, ϕτ ) > 0 when-
everMκ,ξ

[par](F
k, αk)+δps ·µ(F k, αk, ϕ) < 0. As we have seen above for large enough

εps every such bundle is already semistable. Furthermore this observation directly
implies that if ε ≤ ε1 ≤ ε2 then Pε2−ss

ς◦ι,[par] ⊂ Pε1−ss
ς◦ι,[par] since enlarging εps ≥ ε further

will only result in some of the bundles that fail to satisfy A. in 3.2.II to drop out.
Alternatively an argument as in [Sch08] 2.3.6.6 will work, too.
Let Vass

[par] be the set of all [parabolic] pseudo (ς ◦ ι)-Higgs bundles that satisfy
3.2.II. In order to complete the proof of 3.1 we need the following lemma:

3.4. Lemma. The set Vass
[par] ⊂ Pς◦ι,[par] is open.

Remark. In the case of |A| = 1 Higgs tuples this is the statement of [Sch08] 2.3.6.8..

Proof of Lemma 3.4. By the Hilbert-Mumford criterion (cf. 1.31) condition
A. in 3.2.II. is equivalent to the restriction of ϕτ |η ∈ P(Eς |η) to the generic
point η being Sl(Eς |η)-semistable w. r. t. the natural action on the C(X)-
vector space Eς |η. As usual the semistable points form an open subset. Let
Pns denote the ×a∈A Gl(Cra)−invariant closed set of non-semistable points in
the projective �ber P(Eς |η). Since the universal homomorphism ϕτ,Pς◦ι,[par] on
Pς◦ι,[par] × X is �berwise non-trivial and since it maps into a line bundle it is
thus �berwise generically surjective. We may henceforth restrict it to the largest
open subset U ⊂ Pς◦ι,[par] × X where it is surjective. By [Ha77] II.7.12 this
yields a section φ : U → P(EPς◦ι,[par],ς). Now Pns on the generic point induces
a closed subscheme Cns ⊂ P(EPς◦ι,[par],ς) and hence φ−1(Cns) ⊂ U . The closure

φ−1(Cns) ⊂ Pς◦ι,[par] × X
π−→ Pς◦ι,[par] maps properly to Pς◦ι,[par] (since X is

projective) and hence the semi-continuity theorem in [EGA] IV.13.1.5 implies that
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the set Dns := {b ∈ Pς◦ι,[par]| dim(π|−1

φ−1(Cns)
(b)) ≥ 1} ⊂ Pς◦ι,[par] is closed. Finally

by construction Dns parametrizes those G-Higgs bundles that do not satisfy
3.2.II.A. Let V ss = Pς◦ι,[par] \ Dns be the open complement. Then by de�nition
Vass

[par] ⊂ V ss and Vass
[par] ⊃ V ss ∩P

εps−ss
ς◦ι,[par] holds for every εps > 0. Moreover by the

(II. ⇒ I.)-direction of 3.1 Vass
[par] ⊂ V ss ∩ P

εps−ss
ς◦ι,[par] holds for εps big. Therefore as

union of open sets Vass
[par] =

⋃
εps>0 V

ss ∩P
εps−ss
ς◦ι,[par] is open.

Completion of the proof of 3.1. Since P
εps−ss
ς◦ι,[par], εps ≥ ε is a decreasing series of

open sets and Vass
[par] =

⋂
εps≥εP

εps−ss
ς◦ι,[par] is open the series becomes stationary and

we �nd ε∞,2ps : Vass
[par] = P

ε∞,2ps −ss
ς◦ι,[par] . Now set ε∞ps = max{ε∞,1ps , ε∞,2ps }.

Finally note that for the given ε∞ps as above, if a bundle is even stable it is in
particular semistable and thus satis�es II. with ≥ in part B. But then stability
implies that even the strict inequality in B. has to hold. This completes the proof
of the second direction and hence 3.1 is proved.

3.5. Conclusion. Given the same conditions as in 3.1 we �nd for every [parabolic]
pseudo (ς ◦ ι)-Higgs bundle E = ((Ea, [(Eij

a )i[sja]j[|S|]])a[|A|], τ, ϕ, L) that the condi-

tion 3.1.I is equivalent to E being a (ξa, δps, [βija ])-semistable (ς ◦ ι)-Higgs bundle
of suitable topological type.

Proof. By Proposition 3.1 we may replace 3.1.I by 3.1.II. Proposition 2.25 and II.A
in 3.1 show that E comes from a principal G-bundle. 2.29 implies the claim.

Remark. The non-parabolic version is proved in [Sch08], Corollary 2.7.2.6.

For future use we will add two more theorems on asymptotic semistability now.

3.6. Lemma. Fix a character ξ of G and parabolic subgroups QGl(Ua)a(ι ◦ τ j) =

P j
Gl ⊂ Gl(Ua)a for some one-parameter subgroups τ j of G and every puncture
xj ∈ S.

(i) The family of [ι-parabolic] principal ς-Higgs bundles (P, [(sj)j[|S|]], L, ϕ)
that satisfy the conditions A. and B. below is bounded.

A. For every one-parameter subgroup λ of G and every R : X → P/QG(λ):
µ(λ, ϕ) ≥ 0.

B. For every one-parameter subgroup λ of G and every R : X → P/QG(λ):

µ(λ, ϕ) = 0⇒M
(1),ξ
[par] (F

k, αk) (≥) 0 for a weighted �ltration (F k, αk)k[r]

corresponding to λ, R.

(ii) The family of [ι-parabolic] principal ς-Higgs bundles (P, [(sj)j[|S|]], L, ϕ)
that are (δps, [τ j])-semistable for some δps ∈ Q+ is bounded.
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(iii) There is a δ∞ps > 0 such that for some δps > δ∞ps : [ι-parabolic] principal ς-
Higgs bundles (P, [(sj)j[|S|]], ϕ, L) that satisfy the conditions A. and B. are
exactly the [ι-parabolic] (δps, [τ j])-(semi)stable principal ς-Higgs bundles.5

(iv)1 Fix two rational numbers b, c ∈ Q+. There is a T > 0 such that a [ι-
parabolic] principal (ς ◦ ι)-Higgs bundle satis�es A. and B. of part (i), if and
only if the corresponding [parabolic] pseudo (ς◦ι)-Higgs-bundle is (semi)stable
for every pair (δps, εps) with δps = b · t, εps = c · t whenever t > T .

(iv)2 There is a δps > 0 and a εps > 0 (which possibly depends on the chosen δps)
such that a [ι-parabolic] (ς ◦ ι)-Higgs bundle satis�es (i) if and only if the
corresponding [parabolic] pseudo ς-Higgs-bundle is (δps, εps)-(semi)stable.

Proof. Recall �rst that our representations ς and ι give rise to a representation ς
such that ς ⊂ ς ◦ ι. Therefore by 2.25 every principal (ς ◦ ι)-Higgs bundle P gives
rise to a pseudo (ς ◦ ι)-Higgs bundle E if and only if µ(F k, αk, ϕτ ) ≥ 0 holds for
every weighted �ltration (F k, αk)k[r] of E. The ς-Higgs bundles form a subset of
the (ς ◦ ι)-Higgs bundles.

(i) 2.29 implies that every �ltration (F k, αk)k[r] with µ(F k, αk, ϕτ ) = 0 comes
from a one-parameter subgroup λ of G and a reduction R : X → P/QG(λ).
Thus µ(F k, αk, ϕτ ) = 0 ⇒ µ(F k, αk, ϕ) ≥ 0 by part A. Furthermore if
µ(F k, αk, ϕτ ) = µ(F k, αk, ϕ) = 0 then M (1),ξ

[par] (F
k, αk) ≥ 0 by part B. Now

repeat the proof of 3.2, i. e. assume that a bundle is not semistable as a vector
bundle. Let (Ek, α̂k)k[m] be as in 3.2. We �nd a compact set Di, (α̂k)k[m−1] ∈
Di where the continuous function f( · ) = max{µ(Ek, · , ϕτ ), µ(Ek, · , ϕτ )+
µ(Ek, · , ϕ)} attains a positive minima (bounded from below by a positive
constant). Observe that f becomes zero if and only if µ(Ek, · , ϕτ ) = 0
and hence µ(Ek, · , ϕ) = 0. This case however cannot occur by B. and the
construction of Di, i. e. M

(1),ξ
[par] (E

k, αk) < 0 on Di.

(ii) Consider again the function f( · ) = max{µ(Ek, · , ϕτ ), µ(Ek, · , ϕτ ) +
µ(Ek, · , ϕ)} on a suitable set Di 3 (α̂k)k[m−1] whenever the underlying
vector bundle is not semistable. f is non-negative and will have a zero
on Di if and only if µ(Ek, · , ϕτ ) = 0 ⇒ µ(Ek, · , ϕ) ≤ 0. But then
M

(1),ξ
[par] (E

k, αk) + δps · µ(Ek, αk, ϕ) ≤ M
(1),ξ
[par] (E

k, αk) < 0 for every δps > 0 by
construction of the Di in contradiction to δ-semistability.

(iii) For (i) ⇒ (ii) we �rst claim that only a �nite set Ξ of (αk)k[r] ∈ (Q ∩ [0, 1])r

(resp. one-parameter subgroups) has to be checked to guarantee (δps, [τ j])-
(Semi)stability of principal ς-Higgs bundles.

5Again stability corresponds to the strict inequality in B.
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Proof of the claim. The argument is almost the same as in the proof of
3.1. Again we search for minimizers of some function S[par](α

k) :=

M
(1),ξ
[par] (F

k, αk) + δpsµ(F k, αk, ϕ) on [0, 1]r. However we need to be care-
ful since we have the additional condition µ(F k, αk, ϕτ ) = 0, i. e. we
have to minimize over a subvariety. Observe that µ(F k, αk, ϕτ ) = 0 im-
plies that the (αk)k[r] lie in a subset of Rr≥0 de�ned by a �nite number of
equations of the form

∑r
k=1 α

kfkl = 0 or
∑r

k=1 α
kfkl ≥ 0 for some (fkl )k[r]

in the �nite set {−upsr, . . . , upsr}r. Furthermore note that −(dk + |d|)r ≤
drk − dkr ≤ (|d| + c)r. Here c is the upper bound on the degrees existing
in our bounded family. As in 3.1 we �nd a constant c′ such that for ev-
ery choice of (dk)k[r] ∈ {{x ∈ Z : x < c′}, c′, . . . , c}r we �nd a minimizer
of S[par]( · ) := M

(1),ξ
[par] (F

k, · ). We see that only those (αk)k[r] in a �nite
set Ξ ⊂ Qr

≥0 have to be checked to guarantee (δps, [τ j])-semistability (cf.
1.49).

Now we �nd a constant z such that z(αk)k[r] ∈ zΞ ⊂ Z[1/r]r and thus
δ∞ps = rz|m[par]|, where m[par] is the minimum of M (1),ξ

[par] (F
k, αk) over all

(αk)k[r] ∈ [0, 1]r and all types of �ltrations (F k)k[r]. Hence for δps > δ∞ps

we get M (1),ξ
[par] (F

k, αk) + δps · µ(F k, αk, ϕ) ≥M
(1),ξ
[par] (F

k, αk) + z|m[par]| ≥ 0 for
all (αk)k[r] ∈ zΞ and all �ltrations (F k)k[r], i. e. δps-semistability.
For the other direction (ii) ⇒ (i) observe that every δps-semistable ς-Higgs
bundle is semistable as a pseudo (ς ◦ ι)-Higgs bundle for some stability pa-
rameter εps > 0 (that does depend on δps). Furthermore we �nd a δps

such that a δps-semistable ς-Higgs bundle is already δps-semistable for all
δps ≥ δps. Therefore we may construct the scheme Pς◦ι,[ι−par] large enough,
such that it parametrizes all (δps, εps)-semistable pseudo (ς ◦ ι)-Higgs bun-
dles for 0 < δps ≤ δps and 0 < εps arbitrary. Then the δps-semistable ς-Higgs
bundles form an open subset Pδps−ss

ς,[ι−par] of Pς◦ι,[ι−par] for all δps > 0. Thus the
proof of 3.1, (I) ⇒ (II) will work in this situation as well if we are able to
show that the bundles that satisfy (i).A and B form open subsets Ua(s)s

[ι−par] of
Pς◦ι,[ι−par]. We will need the following result by Alexander Schmitt:

3.7. Proposition. ([Sch05], Proposition 2.9). Given two representations
ςi : G → Gl(Wi), i = 1, 2, there is a rational number δ̂∞ such that for
every δ̂ > δ̂∞ a point (x1, x2) ∈ P(W1) × P(W2) is semistable w. r. t. the
linearization induced by ς1, ς2 on OP(W1)×P(W2)(1, δ̂), if x2 is semistable w.
r. t. the ς2-induced linearization on OP(W2)(1) and for every one-parameter
subgroup λ of G with µ(x2, λ) = 0 : µ(x1, λ) ≥ 0.

Proof. The proof is a direct consequence of µOP(W1)×P(W2)
(1,δ̂)((x1, x2), λ) =

µ(x1, λ) + δ̂ ·µ(x2, λ) (cf. 1.34) and the fact that the µ-functions are discrete
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valued and that they have a �nite number of minimizers. For details consult
Alexander Schmitt [Sch05], Proposition 2.9.

As in 3.4 we may replace the conditions µ(F k, αk, ϕτ ) ≥ 0 andA. by the state-
ment, that (ϕ, ϕτ ) is semistable as an element of P(EPς◦ι,ς |η)× P(EPς◦ι,ςps |η)
w. r. t. a suitable linearization as given by the theorem; here η denotes as
usual the generic point of X. Now we are in the situation where the proof
of 3.1 works.

(iv1) Use 3.3 and the same arguments as in (iii) resp. 3.4.

(iv2) By (iii) we �nd a δps > 0 such that (i) ⇔ (ii). Furthermore by 3.1 we �nd
a εps > 0 (that does depend on the choice of δps) such that (ii) is equivalent
to 3.1.I.

Remark. Alternative proofs for the non-parabolic version of the theorems may be
found in [Sch08], 2.7.

3.8. Conclusion. If the stability parameters are chosen such that 3.6 (iii) holds,
then the moduli space Uass[ι−par] � GA exists as a projective scheme and contains the

geometric quotient Uas[ι−par]/GA as an open subscheme.

Proof. This is a direct consequence of 3.6, since Uass[ι−par] is the same asPss
ς,[ι−par].

3.2. The Affine Case

3.9. De�nition. A parabolic a�ne %-Higgs bundle over (X, S) is a pair
((P, (sj)j[|S|]), (φi)i[m]) consisting of a parabolic principal G-bundle (P, (sj)j[|S|])

and sections φi : X → P%̃i⊗Li = (P ×%̃i W̃ i)⊗Li given irreducible representations
%̃i : G → Gl(W̃ i) and line bundles Li → X, 1 ≤ i ≤ m. Equivalently we may
replace φi : X → P%̃i ⊗ Li with a homomorphism ϕi : P%i → Li where %i is the
contragredient representation to %̃i on the dual space (W̃ i) � =: W i.

Remark. Below we will usually use the second description ϕi : P%i → Li where
%i : G→ Gl(W i), 1 ≤ i ≤ m is a representation. L0 denotes OX .

The de�nition of semistability for a�ne bundles may be deduced from the weight
function in the projective case 2.17. Let % =

⊕m
i=1 %

i, then we have the projection
πi : P% → P%i , under % a one-parameter subgroup λ : C∗ → G and a reduction
R : X → P/QG(λ) is associated to a �ltration F k

% of P%. De�ne

µ(λ,R, ϕ) =

{
0 if ϕi = 0,∀ 1 ≤ i ≤ m
−min{γk| ∃ 1 ≤ i ≤ m : ϕi ◦ πi|Fk% 6≡ 0} otherwise.
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3.10. De�nition. A a�ne parabolic %-Higgs bundle is called χ-(semi)stable for a
rational character χ of G, if for every one-parameter subgroup λ of G and every
reduction R : X → P/QG(λ) for which µ(λ, R, ϕ) ≤ 0 already M (1),(0)

[par] (F k, αk) +

〈λ, χ〉 (≥) 0 holds. We will write M[par] := M
(1),(0)
[par] .

3.11. De�nition. Let Y be a scheme of �nite type over C, Li �xed line bundles
over X and τ j �xed parabolic weights to given parabolic subgroups P j ⊂ G.
A Y -family of a�ne [parabolic] %-Higgs bundles is a tuple (PY , [(sjY )j[|S|]], ϕY )
where

1. PY is a principal G-bundle on Y × X of the given topological type over
every point {y};

2. ϕY ∈
⊕m

i=1 Hom(P%i,Y , π
∗
X(Li));

[3.] sjY : Y × {xj} →PY ×X {xj}/QG(τ j) for all xj ∈ S.

Two families are isomorphic if there is a G-bundle morphism ψY : P1
Y →P2

Y such
that ϕ2

Y ◦ ψY,% = ϕ1
Y for the induced isomorphism ψY,% : P1

Y,% → P2
Y,% as well as

ψjY (sj,1Y ) = sj,2Y for the induced isomorphism ψjY : P1
Y /QG(τ j)→P2

Y /QG(τ j).

3.12. In order to reduce the general a�ne case to the projective case we need to
associate to every representation % : G → Gl(W ) a homogeneous representation
ς : G→ Gl(W ). We follow the approach of [Sch08], 2.8.2.
Since G is reductive, % =

⊕m
i=1 %

i decomposes into irreducible representations %i.
These are homogeneous (see the remark to 2.14). After �xing an embedding ι :
G ↪→ Gl(Ua)a, 2.12 implies the existence of an irreducible extension %i : Gl(Ua)a →
Gl(W i)6 such that %i ⊂ %i ◦ ι is a subrepresentation. Let ui ∈ Z be such that
%i(z · idGl(Ua)a) = zu

i · idGl(W ). W. l. o. g. we may assume that 0 < u0 < u1 <
. . . < um for some u0.7 De�ne

ς :=
⊕

v∈Zm+1
≥0 ,

vut=lcm(ui)

m⊗
j=0

%i,⊗v
j

: Gl(Ua)a → Gl(W ), u = (u0, . . . , um), %0 = det, %0 = 1.

Now ς is homogeneous.
Consequentially we may associate to every a�ne %-family a corresponding projec-
tive ς-family with ς = ς ◦ ι. Let Y be a scheme and (PY , [(sjY )j[|S|]], ϕY ) be a

6%̂i ◦ ι = %i ⊕ %̃i, %̂i =
⊕k

j=1 %̂
ij , %̂ij irreducible, i. e. %i ⊂ %̂ij0 ◦ ι for one 1 ≤ j0 ≤ k. Set

%i = %̂ij0 .
7[Sch08], 2.8.2. In fact, the determinant representation (and any power thereof) lifts the

trivial representation % : G → Sl(W ). Thus we may replace %i with %i ⊗ detu
i

for a suitable
ui ∈ Z.
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Y -family of a�ne %-Higgs bundles.
Given Li there is a line bundle L on X that admits injective morphisms ιj :
Lj → L⊗u

j
, 0 ≤ j ≤ m.8 Furthermore let πi : PY,%i◦ι → PY,%i and

ϕi = π∗X(ιi) ◦ ϕiY ◦ πi, 1 ≤ i ≤ m the resulting Higgs �elds. Let hY : Y ×X → C
be a morphism non-trivial over y ∈ Y and set also ϕ0 = hY · π∗X(ι0) : PY,%0◦ι =

OY×X → π∗X(L⊗u
0
).9 Then

PY,ς◦ι =
⊕

v∈Zm+1
≥0 ,

vut=lcm(ui)

m⊗
j=0

P⊗vj
Y,%j◦ι → π∗X(L⊗(vtu)) = π∗X(L⊗ lcm(ui)),

ϕY,ς◦ι : =
⊕

v∈Zm+1
≥0 ,

vut=lcm(ui)

m⊗
j=0

ϕj,⊗v
j

Y
.

Thus we constructed a family (PY , (sjY )j[|S|], ϕY,ς◦ι, vY , HY ) where HY is a
suitable line bundle on Y such that (vY × idX)∗(P l)⊗HY = π∗X(L⊗ lcm(ui)) holds
for a suitably �xed Poincaré line bundle P l → Jacl×X, l = lcm(ui) · deg(L), and
vY (y) := [L⊗ lcm(ui)].10 In particular by choosing a non-trivial function h : X → C
we may assign to every a�ne [parabolic] %-Higgs bundle (P, (sj)j[|S|], (ϕi)i[m]) a
projective [parabolic] (ς ◦ ι)-Higgs bundle (P, (sj)j[|S|], ϕς◦ι, L

⊗ lcm(ui)).

Remark. The function hY is introduced here to serve as a technical tool later in
the construction of the moduli space. We will use it again in 5.2.

3.13. Proposition. (i) The map
Isomorphism classes
of a�ne [parabolic]
%-Higgs bundles

 −→


Isomorphism classes
of projective [parabolic]

(ς ◦ ι)-Higgs bundles


(P, [(sj)j[|S|]], (ϕi)i[m]) 7−→ (P, [(sj)j[|S|]], ϕς◦ι, L

⊗ lcm(ui))

has �nite �bers for every non-trivial map h.

(ii) An a�ne [parabolic] %-Higgs bundle (P, [(sj)j[|S|]], (ϕi)i[m]) is (χ, τ j)-
(semi)stable if and only if for the associated projective [parabolic] ς-Higgs
bundle (P, ϕς◦ι, [(sj)j[|S|]], L

⊗ lcm(ui)) the following properties hold:

8L ample, u0 big ⇒ H0(X,L⊗u
0

) 6= 0 ⇒ ∃ OX → L⊗u
0

one-to-one. Then inductively for
some u1 ≥ u0: H0(L1, π1,∗(L⊗u

1

)) 6= 0 ⇒ ∃ L1 → L1 ×X L⊗u
1 → L⊗u

1

one-to-one, a. s. o..
9Recall that %0 ◦ ι = det(ι) = 1 and OY×X is associated to the trivial representation.

10[Ha77], III.Ex.12.4.
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A. µ(λ,R, ϕς◦ι) ≥ 0 holds for an arbitrary one-parameter subgroup λ of G
and every reduction R : X → P/QG(λ).

B. If µ(λ,R, ϕς◦ι) = 0 then M
(1),(0)
[par] (F k, αk) + 〈λ, χ〉 (≥) 0.

Proof. (i) If two a�ne %-Higgs bundles are isomorphic so are the associated
projective (ς ◦ ι)-Higgs bundles. Furthermore the parabolic �ltrations stay
invariant under the assignment. Hence it is enough to consider the underlying
non-parabolic objects. In the non-parabolic case a proof may be found in
[Sch08], 2.8.2.1. The proof is identical to that of 2.25. First note that if the
classes represented by (P, (ϕi1)i[m]) and (P, (ϕi2)i[m]) have the same image,
then for all v ∈ Zm+1

≥0 with vut = lcm(ui):
⊗m

j=0 ϕ
i,⊗vj
1

=
⊗m

j=0 ϕ
i,⊗vj
2

. As in
2.25 we restrict to the generic point and see that there is a lcm(ui)th-root of
unity ζ s. t. ϕi

1
= ζu

i
ϕi

2
. Since the πi are surjective and the ιi injective, we

get ϕi1 = ζu
i
ϕi2.

11

(ii) Consider the summand ϕ0,⊗ lcm(ui)/r = hlcm(ui)/r · ι0,⊗ lcm(ui)/r 6≡ 0 of ϕς◦ι. The
induced �ltration on OX is trivial and the induced weight is therefore 0.
Thus µ(λ,R, ϕς◦ι) ≥ 0 for an arbitrary one-parameter subgroup λ of G and
every reduction R : X → P/QG(λ). Hence it will be enough to show that
µ(λ,R, ϕς◦ι) = 0 if and only if µ(λ,R, ϕς◦ι) ≤ 0 if and only if µ(λ,R, ϕ) ≤ 0.
Assume that µ(λ,R, ϕ) ≤ 0, i. e. ϕj|F ij 6≡ 0 implies γi ≥ 0. Here F i

j denotes

the %j-induced �ltration with weights γij, F̃
i
j the %j ◦ ι-induced �ltration

and the weights γi correspond to the �ltration F i w. r. t. % (cf. 1.4).
Observe that ϕς◦ι|⊗m

j=0 F̃
ij ,⊗vj

j

6≡ 0 ⇔ ϕj|
F̃
ij
j

6≡ 0, ∀0 ≤ j ≤ m (vj 6= 0)

⇔ ϕj|
F
ij
j

6≡ 0, ∀0 ≤ j ≤ m (vj 6= 0) directly follows from the de�nition of

ς ◦ ι and ϕς◦ι. Therefore µ(λ,R, ϕ) ≤ 0 implies that ϕς◦ι|⊗m
j=0 F̃

ij ,⊗vj

j

6≡ 0 ⇒

γ
ij
j ≥ 0, ∀0 ≤ j ≤ m (vj 6= 0) ⇒

∑m
j=0 v

jγ
ij
j ≥ 0, i. e. µ(λ,R, ϕς◦ι) ≤ 0. On

the other hand if µ(λ,R, ϕ) > 0, there is a γij < 0 with ϕj|F ij 6≡ 0. But then

ϕς◦ι|(F̃ ij )⊗ lcm(ui)/uj 6≡ 0 and lcm(ui)
uj
· γij < 0⇒ µ(λ,R, ϕς◦ι) > 0.

3.14. 3.13 implies that the family of (χ, [τ j])-semistable a�ne [parabolic] %-Higgs
bundles is bounded if the corresponding family of projective [parabolic] (ς◦ι)-Higgs
bundles, that satisfy A. and B., is bounded. Though these live in a bounded family
by 3.6.

3.15. We already know from 3.13 that a�ne [parabolic] semistable %-Higgs bun-
dles have associated projective [parabolic] (ς ◦ ι)-Higgs bundles that satisfy A. and

11h · ι0 is generically injective.
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B. in 3.13. Furthermore the GIT-Quotients for these objects do exist by 3.8. In
order to pull these quotients back we need to construct a parameter scheme to-
gether with a semistability preserving equivariant a�ne morphism to Pς◦ι,[ι−par].
We follow the approach by Alexander Schmitt in 2.8 of [Sch08].
First note again that by 3.6 the a�ne %-Higgs bundles live in a bounded family and
we can hence choose n big enough such that all constructions done previously hold.
Recall that we already found a parameter scheme Pς◦ι → B that does parametrize
certain projective (ς ◦ ι)-Higgs bundles. Furthermore recall that on B×X we have
a universal vector bundle EB. For every m ∈ B, EB|{m}×X is a principal G-bundle
on X (more precisely on {m}×X). Since EB is locally trivial over B×X, we con-
sequentially see that the reduction induced by τB �berwise extends to a reduction
of EB to a principal G-bundle over B × X. To this principal G-bundle we may
associate vector bundles EB,%i on B×X and for k big enough ([Ha77], III.12.11)

F i
k = Hom(πB,∗(E%i,B ⊗ π∗X(OX(k)), πB,∗(π

∗
X(Li(k)))), 1 ≤ i ≤ m

Fk := F 1
k ×B · · · ×B Fm

k

is locally free over B. Let

F 0
k = OB×X ×B Fk ' C×Fk.

Then using the usual GA-action on EB,%i induces a GA-action on Fk and thus an
action on F 0

k as EB,%0 ' OB×X (2.31). While F 0
k accounts for the additional choice

of hB used to associate a�ne and projective objects, Fk is the space that contains
the closed parameter scheme A over which the morphisms ϕiA : EA,%i → π∗X(Li)
exist for all 1 ≤ i ≤ m (again use 1.14). The GA-action descends to the invariant
subscheme A.12 Now A together with the GA-action ful�ll the usual universal
properties (1.62). Unfortunately we may not proceed as in the projective case
since we are not guaranteed that A�C∗ does exist. Therefore we will construct a
slightly bigger space (inside F 0

k ) which admits a C∗-quotient, prove the existence
of the moduli space there and subsequently realize A as a subscheme thereof.
Here the morphism hA comes into play. We will choose it to depend only on A,
i. e. to be constant on X. By our construction leading up to 3.13 we can now
associate to our universal family of a�ne objects parametrized by A a projective
family. Hence we �nd the induced morphism f : A0 = C× A→ Pς◦ι over B. We
need to �nd a C∗-action that leaves A0 invariant, such that A0 = (A0 \ 0)/C∗ is a
closed subscheme of the (weighted) projective bundle (F 0 \ 0)/C∗ and such that
f is C∗-invariant. Therefore consider the �berwise actions

12See footnote 24 of chapter 2.
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C∗ ×OB×X → OB×X , C∗ ×F i
k → F i

k, 1 ≤ i ≤ m

(z, (m, f)) 7→ (m, z−u
0 · f) (z, (m, f)) 7→ (m, z−u

i · f)

which induce a C∗-action on F 0
k (cf. 2.31). By construction of f it is invariant w.

r. t. this action. By construction of A (in particular its GA-invariance) it is C∗-
invariant. Observe that the C∗-action and the GA action commute (since �berwise
the C∗-action is just the composition of the GA-action and C∗ → GA, z 7→ zu

i ·idGA);
thus the induced morphism

A0
f //

��

Pς◦ι

~~
B

is GA-equivariant w. r. t. to the induced GA-action on A0. Since A0 → B is
projective (by construction) so is f using [Ha77].II.4.8.(e). Unfortunately this
morphism f does not have to be quasi-�nite. The obstruction here are the points
with a vanishing �rst component (compare to 3.13), i. e. we have to take a closer
look at the �rst component of ϕς◦ι. By construction f maps to the �ber Pς◦ι,L (of
Pς◦ι → Jacl) over [L⊗ lcm(ui)], hence

ϕς◦ι,Pς◦ι : EPς◦ι,ς◦ι|Pς◦ι,L︸ ︷︷ ︸
EPς◦ι,L,ς◦ι

→ π∗Pς◦ι,L(HPς◦ι |Pς◦ι,L︸ ︷︷ ︸
HPς◦ι,L

)⊗ π∗X(L⊗ lcm(ui)).

Recall that the representation ς ◦ ι on W contains the trivial representation
and therefore we �nd a G-submodule W such that W = C ⊕ W and such
that pr1 is G-invariant, i. e. an element of Sym(W �)G. As in 2.24 we
�nd a closed embedding Proj(Sym∗(W �)G) ↪→ Ps, [w] 7→ [τ 0(w), . . . , τ s(w)]
for some d > 0 and s + 1 homogeneous degree d G-equivariant functions
τ j ∈ Symd(W �)G, 0 ≤ j ≤ s (see [MRed], III.�8). Choose a local trivialization
Ui of Pς◦ι,L × X, then the universal homomorphism ϕς◦ι,Pς◦ι induces maps
ϕς◦ι,i : Ui → Hom(W,C) ' W �. Combining these with the τ j leads to sections
σj ∈ H0(Pς◦ι,L × X, (π∗Pς◦ιL

(HPς◦ι,L) ⊗ π∗X(L⊗ lcm(ui)))⊗d): Recall that the τ j

were G-invariant and of degree d, thus the (Gl(W ) ⊗ C∗)-valued transition
functions cik · g−tik of H om(EPς◦ι,L,ς◦ι, π

∗
Pς◦ι,L

(HPς◦ι,L) ⊗ π∗X(L⊗ lcm(ui))) satisfy
τ jϕς,i = τ j(cik · g−tik ϕς◦ι,k) = cdikτ

jϕς◦ι,k. Consequentially by [Ha77], III.7.12 we
�nd a GA-invariant morphism H : Pς◦ι,L → P(H0(X, (L⊗d lcm(ui))⊕s+1) �) such that
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H∗(OP(H0(X,(L⊗d lcm(ui))⊕s+1) �)(1)) = H ⊗d
Pς◦ι,L

.13 Observe that if we choose τ 0 = prd1

then σ0 = (ϕ0
ς◦ι)

d = h
d·lcm(ui)/u0

A · ι0,⊗d·lcm(ui)/u0 . Hence the set we are interested in
lies over P(H �)− = {[h0, . . . , ht] ∈ P(H �) : h0 6= 0} where h0 is the coordinate to
the basis element h0 = ι0,⊗d·lcm(ui)/u0 of H = H0(X,L⊗d lcm(ui))⊕s+1.
The setH−1(P(H �)−) is of course still too big to admit a GIT-quotient. Fortunately
3.13 and 3.8 already show that under f (semi)stable a�ne objects land inside
Ua(s)s ∩ Pς◦ι,L and the GIT-quotient thereof exists as a projective scheme. Since
H is GA-invariant and P(H �) as well as Ua(s)s ∩Pς◦ι,L �GA are projective, so is the
morphism induced by H(s)s : Ua(s)s ∩Pς◦ι,L → P(H �) on Ua(s)s ∩Pς◦ι,L � GA.14 By
construction we get G−1((H(s)s)−1(P(H �)−)) = A(s)s for

A
c 7→ (1,c) //

G

77
A0 f // Pς◦ιL

H // (P(H �)−.

As the restriction of the proper map f is proper over H−1(P(H �)−), it is �nite by
construction. Thus by f

−1
((Hss)−1(P(H �)−)) = (C∗ × Ass)/C∗

(C∗ × Ass) � (C∗ × GA) = ((C∗ × Ass)/C∗) � GA
= f

−1
((Hss)−1(P(H �)−)) � GA

is a quasi-projective scheme (like (Hss)−1(P(H �)−) � GA). Since (C∗ × Ass) is, as
a good quotient, a�ne over its (C∗ × Ass) � (C∗ × GA)-quotient and since the
quotient map is trivially GA-equivariant, the GIT-quotient pulls back to C∗ × Ass

and therefore to its closed GA-invariant subscheme A. Finally this shows that

Ass � GA

exists and that it is a quasi-projective scheme. Furthermore the good quotient
As/GA exists as an open subscheme since G preserves stability, is �nite and Uas/GA
is a geometric quotient. It is in fact a geometric quotient if we can show that an
orbit GA · c in Ass is closed, if and only if the corresponding orbit in Uas is closed.
Then as Uas admits a geometric quotient, the orbit GA · c in Ass of a stable point
c is closed as the image of c is in Uas. If there was another orbit GA · z ∩GA · c 6= ∅
then z and c would map to the same point in Uas/GA, thus the corresponding

13Combine the σi to get an element of H0(Pς◦ι,L × X,π∗Pς◦ι,L(H ⊗d
Pς◦ι,L

) ⊗
(π∗X(L⊗d lcm(ui)))⊕s+1). Consequentially we get elements of H om((πPς◦ιL,∗

π∗X(L⊗d lcm(ui))⊕s+1) �,H ⊗d
Pς◦ιL

) and H om(H0((L⊗d lcm(ui))⊕s+1) �) ⊗ OPς◦ιL
,H ⊗d

Pς◦ιL
). Then

note that [Ha77], III.7.12 may be applied by our assumption on the τ j .
14This morphism will be used to construct the Hitchin map in 3.26.
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orbits in Uas equal each other; hence they are closed. So is GA · z and therefore
GA · z = GA · c as the unique closed orbit in our good quotient.
To prove that closed orbits are exactly the closed orbits under our assignment,
recall that by de�nition of the C∗-action there is an isomorphism (C∗ × A)/C∗ '
({1}×A)/{ζku0 : 1 ≤ k ≤ u0} since the group of (u0)th-unit roots stabilizes 1; thus
we �nd a �nite morphism

L : A→ {1} × A→ (C∗ × A)/C∗15 → H−1(P(H �)−)

which in particular preserves closed orbits: Finite morphisms are closed, so the
image of each closed orbit is closed. On the other hand the preimage of each closed
orbit is closed. Since L is �nite there is a �nite number of orbits in the preimage,
each of which is mapped by equivariance to our closed orbit inH−1(P(H �)−). Hence
every orbit GA · c in the preimage must have dimension dim(GA). In particular
GA · c is closed, since otherwise GA · c \ GA · c must contain orbits of strictly lower
dimension16 in contradiction to the previous statement about the dimension of an
orbit in the preimage of a closed orbit. We particularly see, that a point in Ass/GA
is closed if and only if its image is closed in Uass/GA.

Remark. Observe that we could pull the GIT-quotient back directly by L only if
we already knew that Ass resp. As were C∗-invariant subsets.

3.16. Theorem. ([Sch08], 2.8.1.2) The moduli space of a�ne %-Higgs bundles of
given topological type exists as a quasi-projective scheme.

3.3. Affine parabolic Higgs bundles

As in the projective case, the parabolic a�ne case can either be treated similarly
as the non-parabolic one, given a suitable parameter scheme, or we can lift the
morphism constructed in the non-parabolic case so that the GIT-Quotient Ua(s)s

par �
GA can be pulled back. To avoid repetition we will use this second approach.

3.17. Let A be the parameter scheme constructed before and choose parabolic
subgroups P 1

Gl(Ua)a
, . . . , P

|S|
Gl(Ua)a

⊂ Gl(Ua)a.
De�ne Aj

ι−par = π∗A,Q×{xj}(P
j
ς◦ι,ι−par), Pj

ς◦ι,ι−par =(×a∈A I som(Ua ⊗OQa),EQa|Qa×{xj})
)
, 1 ≤ j ≤ |S| and

Aι−par = A1
ι−par/P

1
Gl(Ua)a ×A · · · ×A A

|S|
ι−par/P

|S|
Gl(Ua)a

.

15(C∗ × A)/C∗ ⊂ A0/C∗ is open as the restriction of the universal quotient to a C∗-invariant
open subset, thus the projection is proper, so is L after composition with f .

16If GA ·c is not closed, then it shows that the orbit is open in GA · c, therefore the complement
is closed and of strictly smaller dimension.
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We use the maps constructed in the non-parabolic case. Let Pς◦ι,ι−par,L be the re-
striction ofPς◦ι,ι−par toPς◦ι,L and note that by 2.34, 2.35 π : Pς◦ι,ι−par,L → Pς◦ι,L is
proper. Hence we get a morphismHpar : Pς◦ι,ι−par,L → P(H0(X, (L⊗d lcm(ui))⊕s+1) �)
that descends to a proper morphism Pς◦ι,ι−par,L � GA → P(H �). Note that as in
the case of projective parabolic Higgs bundles we get

(C∗ × Aι−par) � C∗ = π∗(C∗×A)�C∗,Q×{x1}(P
1
ς◦ι,ι−par)/P

|1|
Gl(Ua)a

×(C∗×A)�C∗ · · ·

· · · ×(C∗×A)�C∗ π
∗
(C∗×A)�C∗,Q×{x|S|}(P

|S|
ς◦ι,ι−par)/P

|S|
Gl(Ua)a

.

We get a commuting diagram

C∗ × Aι−par

((

��

Pς◦ι,ι−par,L

��

Aι−par

88

��

(C∗ × Aι−par)/C∗

66

��

C∗ × A

((

""

Pς◦ι,L

||

A

88

++

(C∗ × A)/C∗

66

��
B

��
Q.

Furthermore the induced morphisms are just base extensions (over B resp. Q) of
the underlying morphisms constructed in the previous section. We restrict our at-
tention as above to H−1

par(P(H �)−). By construction this set lies over H−1(P(H �)−).
Denote by Hss

par the restriction of Hpar to the open subset Uasspar (cf. 3.8).
Since a�ne/proper/quasi-�nite/�nite morphisms are stable under base extension
([EGA] II, 1.6.2(iii) resp. [Ha77] II.4.6, [EGA] II, 5.4.2(iii) resp. [Ha77] II.4.8,
[EGA] II, 6.2.4(iii) and [EGA] II, 6.1.5(iii)) the induced morphisms have the same
properties and thus the GIT-quotients pull back as in the non-parabolic case. We
�nd Ass

ι−par � GA as a quasi-projective scheme. The �nite morphism L extends
accordingly and hence we get As

ι−par/GA as the geometric quotient. This proves

3.18. Conclusion. Let P j
Gl(Ua)a

⊂ Gl(Ua)a be parabolic subgroups for every punc-

ture xj ∈ S. The moduli space A
(s)s
ι−par �GA of (semi)stable pairs ((P, ϕ), (sj)j[|S|])

where (P, ϕ) is an a�ne principal %-Higgs bundle and sj : {xj} → Pι ×X
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{xj}/P j
Gl(Ua)a

are reductions for every puncture xj ∈ S, exists as a quasi-projective

scheme whenever the τ j-induced weights (βij)i[sj ] are admissible (cf. 2.10).

The �nal missing step will now be taken as in the projective case. Let P denote
the universal principal G-bundle on Aι−par. The closed embedding G ↪→ Gl(Ua)a
induces a �berwise closed embedding of the corresponding bundles P/Q(τ jG) ↪→
Pι/Q

(
τ jGl(Ua)a

)
and thus we �nd a closed GA-invariant subscheme A

(s)s
par ⊂ A

(s)s
ι−par

that parametrizes semistable a�ne %-Higgs bundles (cf. (Equ 1)). Therefore

3.19. Theorem. Let P j ⊂ G be parabolic subgroups for every puncture xj ∈ S.
The moduli space A

(s)s
par �GA of (semi)stable pairs ((P, ϕ), (sj)j[|S|]) where (P, ϕ) is

an a�ne principal %-Higgs bundle and sj : {xj} → P ×X {xj}/P j are reductions,
exists as a quasi-projective scheme whenever the τ j-induced weights (βij)i[sj ] are
admissible (cf. 2.10).

Remark. A
(s)s
par � GA is the moduli space for the functors

Ms(s) : SchC → Sets

Y 7→


Isomorphism classes of
Y -families of (semi)stable

a�ne parabolic %-Higgs bundles

 .

3.4. Refining the Semistability Concept

The following example shows that for non-semisimple reductive groups G the mod-
uli space of stable objects (as de�ned before) might be empty. In order to over-
come this de�cit we will slightly alter the semistability concept. Using a central
isogeny, the moduli space of (semi)stable objects (with respect to this new notion
of (semi)stability) is constructed from the previous results.

3.20. Example. Consider the group Gl(Cr1) × Gl(Cr2), r1, r2 ∈ N+ and
the faithful representation ι : Gl(Cr1) × Gl(Cr2) ↪→ Sl(Cr1+r2+1), (g1, g2) 7→
(g1, g2, det(g1⊕ g2)−1). Observe that an element z · idCr1 ⊕z′ · idCr2 , (z, z′ ∈ C∗)
of the radical of Gl(Cr1)×Gl(Cr2) is mapped to the center of Gl(Cr1)×Gl(Cr2)×C∗.
Now if E is a vector bundle associated to a principal (Gl(Cr1) × Gl(Cr2))-
bundle P by ι, then by looking at the transition functions we see that E =
E1 ⊕ E2 ⊕ det(E1 ⊕ E2) � and therefore deg(E) = 0.17 Consider the two one-
parameter subgroups

17The transition functions of the dual line bundle are just the inverse-valued functions.
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C∗ → Gl(Cr1)×Gl(Cr2)
λ1 : z 7→ (zr2 , z−r1)

λ2 : z 7→ (z−r2 , zr1)

Now

ι ◦ λ1(z) = (zr2 , z−r1 , z−r1r2+r2r1︸ ︷︷ ︸
=0

), ι ◦ λ2(z) = (z−r2 , zr1 , 0).

We get induced �ltrations

0 ( F 1
1 = E2 ( F 2

1 = E2 ⊕ det(E1 ⊕ E2) � ( E respectively
0 ( F 1

2 = E1 ( F 2
2 = E1 ⊕ det(E1 ⊕ E2) � ( E

to ι◦λ1 respectively ι◦λ2. The corresponding α-weights are (α1
1, α

2
1) = (r1/3, r2/3)

respectively (α1
2, α

2
2) = (r2/3, r1/3). Choose for example r1 = r2. Now we can

calculate M (1),(0)(F k
t , α

k
t ) for t = 1, 2. If E was (semi)stable as a vector bundle we

would get M (1),(0)(F k
t , α

k
t ) ≥ 0 and thus

t = 1 :− (deg(E2) + (deg(E2)− (deg(E1) + deg(E2)))) (≥) 0

⇒ deg(E1) (≥) deg(E2),

t = 2 :− (deg(E1) + (deg(E1)− (deg(E1) + deg(E2)))) (≥) 0

⇒ deg(E2) (≥) deg(E1).

While semistability can still hold if deg(E1) = deg(E2), E cannot be stable.
If E occurs in a ς-Higgs bundle it might be still stable as a ς-Higgs bundle. How-
ever for a one-parameter subgroup λ of ker(ς|Rad(G)) (and hence a one-parameter
subgroup of the connected component Rad(ς) = ker(ς|Rad(G))

0 of the identity
in ker(ς|Rad(G)), the (ς ◦ λ)-induced �ltration of Pς will be trivial, therefore
µ(λ,R) = 0.18 Here R = idX : X → P/QGl(Cr1 )×Gl(Cr2 )(λ) is the only reduc-
tion that can occur. Thus the (semi)stability discussion from above is valid for
the ς-Higgs bundle as well and we will not �nd any stable objects. As an example
take the adjoint representation ς = ι ◦ AdGl(Cr1 )×Gl(Cr2 ):

(Gl(Cr1)×Gl(Cr2))× (Cr1×r1 × Cr2×r2 × C)→ Cr1×r1 × Cr2×r2 × C
((g1, g2), (m1, m2, m3)) 7→ (g1m1g

−1
1 , g2m2g

−1
2 , m3).

We see that ι ◦AdGl(Cr1 )×Gl(Cr2 ) splits over the obvious (homogeneous) representa-
tion ς = AdGl(Cr1 )×Gl(Cr2 )×C∗ and ι ◦ AdGl(Cr1 )×Gl(Cr2 )(λt) = id for t = 1, 2.

18Observe that by our conventions on page V of the Introduction we only exclude trivial
one-parameter subgroups λ from the (semi)stability condition; ς ◦ λ may be trivial.
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3.21. As a consequence of the previous example we should really check semista-
bility against one-parameter subgroups of G/Rad(ς) rather than against one-
parameter subgroups of G. This phenomena is analogous to one that occurs for
principal G-bundles without a Higgs �eld. There the semistability condition re-
stricts to anti-dominant characters of parabolic subgroups. But anti-dominant
characters are trivial on the connected component of the center of G, hence they
do not correspond to one-parameter subgroups of Rad(G). In the semisimple case
this situation cannot occur since by de�nition Rad(G) = {e}. In the previous ex-
ample we have χλ1(g1, g2) = det(g1)r2 ·det(g2)−r1 and χλ1(2·idGl(Cr1 )⊕1·idGl(Cr2 )) =
2r2 6= 1.
Consider π : G → G/Rad(ς), then a principal G-bundle P induces a prin-
cipal G/Rad(ς)-bundle PRad . Since Rad(ς) ⊂ Z (G), Rad(ς) is an abelian
subgroup and G/Rad(ς) is an algebraic group. By de�nition of Rad(ς), ς
factors over a representation ςRad : G/Rad(ς) → Gl(W ). Therefore the as-
sociated vector bundles Pς ' PRad ,ςRad

are isomorphic since PRad = Pκ and
κ : G×G/Rad(ς)→ G/Rad(ς), (g, π(r)) 7→ π(gr) is the natural action. Further-
more Rad(ς) ⊂ Q holds for every parabolic subgroup Q of G, and thus Q/Rad(ς)
identi�es with a parabolic subgroup of G/Rad(ς): If we write Q = QG(λ) for some
λ : C∗ → G we get by de�nition Q/Rad(ς) = QG/Rad(ς)(π ◦λ). On the other hand
a one-parameter subgroup λRad of G/Rad(ς) induces a one-parameter subgroup
of G/Z (G):

1. First recall that π : [G,G]→ G/Rad(G) is surjective19.

2. The �bers are �nite, since using our embedding ι, Rad(G) is mapped into
the center and [G,G] is mapped into [Gl(Ua)a,Gl(Ua)a] ⊂×a∈A Sl(Ua) and
therefore ι([G,G] ∩Rad(G)) ⊂×a∈A Sl(Ua) ∩Z (Gl(Ua)) is �nite. Hence a
power of λRad lifts to a one-parameter subgroup of [G,G] ⊂ G.

3. Now let T be any subtorus of Rad(G), then there is another subtorus T̃
such that the multiplication T × T̃ → Rad(G) is an isomorphism. Now
[G,G]× T̃ → G has a linear algebraic group RT as its image since T̃ is in the
center and the morphism is a morphism of algebraic groups. For T = Rad(ς)
we have RRad(ς) → G/Rad(ς) surjective: Let gRad(ς) ∈ G/Rad(ς), then
g = hz, h ∈ [G,G], z ∈ Rad(G) and z = r̃r, r ∈ Rad(ς), r̃ ∈ T̃ ⇒ g = hr̃r,
i. e. hr̃ ∈ RRad(ς) is mapped to gRad(ς).

4. We still need to check, that the �bers of RRad(ς) → G/Rad(ς) are �nite.
This however is a direct consequence of our previous considerations, i. e.
RRad(ς) 3 hr̃ = r ∈ RRad(ς) ⇒ h = r̃−1r ∈ [G,G] ∩Rad(G) �nite.

19G/Rad(G) is semisimple, therefore G/Rad(G) = [G/Rad(G), G/Rad(G)] by [Hum75], 27.5
Theorem and π([G,G]) = [G/Rad(G), G/Rad(G)].
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5. Since QG/Rad(ς)(λRad) = QG/Rad(ς)(λ
m
Rad) for any m ∈ N we see that every

parabolic subgroup of G/Rad(ς) comes from a parabolic subgroup of RRadς .

As a result of the previous construction we see that PRad/(Q/Rad(G)) ' P/Q.
In particular every projective parabolic ς-Higgs bundle (P, (sj)j[|S|], ϕ, L) in-
duces a projective parabolic ςRad-Higgs bundle (PRad , (sj)j[|S|], ϕ, L); every a�ne
parabolic ς-Higgs bundle (P, (sj)j[|S|], ϕ) induces an a�ne parabolic ςRad-Higgs
bundle (PRad , (sj)j[|S|], ϕ).

3.22. De�nition. Let χ be a character of G/Rad(ς) (that naturally comes from a
character of G trivial on Rad(ς)). A parabolic ς-Higgs bundle is called (χ, τ j, δ)-
(semi)stable if the associated ςRad-Higgs bundle is (χ, τ j, δ)-(semi)stable. With
the preceding considerations, this is equivalent to the statement that a projective ς-
Higgs bundle is (χ, τ j, δ)-(semi)stable ifM (1),(0)

[par] (F k, αk)+〈λ, χ〉 (≥) 0 holds for ev-
ery one-parameter subgroup λ of RRad(ς) and every reduction R : X → P/QG(λ).
(F k, αk)k denotes as usual the weighted �ltration to λ and R.
An a�ne %-Higgs bundle is (χ, τ j)-(semi)stable if for every one-parameter sub-
group λ of RRad(%) and every reduction R : X → P/QG(λ) for which µ(λ,R, ϕ) ≤
0 holds, the inequality M (1),(0)

[par] (F k, αk) + 〈λ, χ〉 (≥) 0 can be veri�ed.

3.23. In order to construct moduli spaces for our new de�nition of (semi)stability
we will follow [Ram96ii], 4.15 (resp. [Sch08], 2.7.5). First recall that for all con-
structions discussed so far, the conditions (U1) and (U2) of the proposition 1.62
(see as well [Ram96ii], Def. 4.6) are satis�ed and thus we were able to construct
moduli spaces. Now however we will not have a universal family T as before.
Coarse moduli spaces can still be constructed using the methods of [Ram96ii]
which will be outlined below in the a�ne case.

3.24. Central Isogenies. Consider a scheme Y over C as a complex space.
Let θ : G → H be a surjective group homomorphism between algebraic groups,
with ker θ ⊂ Z (G), ker θ �nite20, then the exact sequence 0 → K := ker(θ) →
G → H ' G/K → 0 induces an exact sequence · · · → H1(Y,D) → H1(Y,G) →
H1(Y,H) → H2(Y,D) of �ech Cohomology sets. In the abelian case, these are
just the singular cohomology groups.21 Given a H−bundle HY on Y ×X de�ne
a functor as follows:

Γ(θ,HY ) : SchY → Sets

T
f−→ Y 7→


Isomorphism classes of pairs

(GT , ψT ) with a G-bundle GT → T ×X
and ψT : θ∗(GT )

'−→ (f × idX)∗(HY )

 .

20We call θ with the given properties a central isogeny.
21The famous theorem of Leray states that �ech and Singular cohomology agree on a locally

contractible space, i. e. in particular on every complex space (see [BV72], lemma 3.2 using
[Whi65]).
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On morphisms f ∈ Mor(Y, Z) we set Γ(f) = f ∗. The functor Γ(θ,HY ) is in gen-
eral not a sheaf ([Ram96ii], 4.9 and [FGA], V, �1). Its shea��cation Γ̃(θ,HY ) (w.
r. t. the faithfully �at or étale topology or strong topology) is representable by a
complex space f : Z → Y such that f is a �nite étale morphism resp. unrami�ed
cover over f(Z) = Z̃. Z̃ is just the preimage of 0 of the morphism Y → H2(X,D)
induced as follows: HY de�nes a class in H1(Y × X,H) hence a global sec-
tion of the sheaf R1(πY,∗)(H) associated to the presheaf U 7→ H1(U × X,H).
Combining this section with the connecting homomorphism22 gives a section of
R2(πY,∗)(ker(θ))( · ) = H2( · ×X, ker(θ)), where the latter is the constant sheaf to
H2(X, ker(θ)). Recall ker(θ) ⊂ Z (G). Furthermore it can be shown, that every
point in Z̃ has an open (contractible) neighborhood U such that Γ(θ,HY )(U) 6= ∅.
A proof may be found in [Sch08], 2.4.8.7 or [Ram96ii], 4.15. A purely algebraic
proof is given in Proposition 5.4.1 of [GLSS06].
Further assume that we have an action A of a reductive algebraic group say G
on Y and a linearization of this action in HY , i. e. Â : G ×HY → HY such
that the bundle map is equivariant w. r. t. the two actions and the induced
morphism HY |y → HY |gy, g ∈ G is a H-bundle morphism. Then we �nd a G-
bundle isomorphism Ψ : π∗Y×X(HY )→ (A× idX)∗(HY ) over G × Y ×X: Observe
that π∗Y×X(HY ) ' HY ×Y×X (G × Y × X) is isomorphic to (A × idX)∗(HY ) '
HY ×Y×X (G × Y ×X) as a scheme by the universal property of the �ber prod-
uct. The G-invariance guarantees, that the isomorphism is compatible with the
bundle projections. Since the induced morphisms HY |y → HY |gy, g ∈ G are
H-equivariant, so is Ψ.

Assume that we are given two equivalence relations on Y and on Z such that
equivalent points of Z are mapped to equivalent points of Y . Furthermore for every
two equivalent points y ∼ y′ of Y there must be an isomorphism Ψy : HY |y →
HY |y′ of H-bundles. We will apply the following proposition, when equivalence
corresponds to isomorphy of %-Higgs bundles.

3.25. Proposition. ([Sch08], 2.4.8.9) Consider an action A : G × Y → Y with
associated isomorphism Ψ : π∗Y×X(HY )→ (A× idX)∗(HY ) as above, such that for
any two equivalent points y ∼ y′, Ψy : HY |y → HY |y′ there is a g ∈ G such that
gy = y′ and Ψy = Ψ(g,y) on X. Then the action A lifts to an action AZ of Z, such
that z′ ∈ G · z if and only if z ∼ z′ in Z.

Remark. The proposition is already proved in 4.10 in [Ram96ii].
More details on isogenies can be found in the original work by Claude Chevalley,
[Che58]. An easy example of a central isogeny is Sl(V ) → PGl(V ) for a vector
space V .

22A connected homomorphism may still be constructed under the given assumptions.
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We have seen above that θ : G → Rad(%) × G/Rad(%) is a central isogeny in
the sense of 3.25. In order to account for the torus part recall that Rad(%) '
(C∗)m for some m ∈ N. θ associates to every G-bundle P on X a G/Rad(%)-
bundle PRad(%) on X and m line bundles Li of degree di.23 Let Ass

[par] be our
parameter scheme of (semi)stable a�ne parabolic %Rad -Higgs bundles with our
action A′ of GA and with the universal family (PAss

[par]
, (sjAss

[par]
)j[|S|], ϕAss

[par]
) on

Ass
[par] ×X. By de�nition of the GA-action, there is a linearization on PAss

[par]
and

thus an isomorphism Ψ : π∗Ass
[par]
×X(HY ) → (A′ × idX)∗(HY ). Furthermore take

P i Poincaré line bundles on Jacd
i ×X. We may linearize the trivial Rad(%)-

action on ×m
k=1 Jacd

k

in the Rad(%)-bundle R = (π
Jacd

1 ×X)∗(P1) ×
X××m

k=1 Jacd
k

· · · ×
X××m

k=1 Jacd
k (πJacd

m ×X)∗(Pm) by

Rad(%)×R → R, ((zk)k, (r
k)k) 7→ (zkrk)k.

24

Combining the two actions and the corresponding linearizations we get a
(GA × Rad(%))-action on Y = Ass

[par] × ×m
k=1 Jacd

k

with linearization in
π∗X×Ass

[par]
(PAss

[par]
) ×X×Y π∗

X××m

k=1 Jacd
k (R). We still need to show that the con-

structed action satis�es the conditions stated in 3.25. For the ×m
k=1 Jacd

k

-part
this is clear by de�nition of the Poincaré line bundles.25 For Ass

[par] this follows
from (the proof of) the universal property 1.25. Recall the proof of Proposi-
tion 3.25 provides us with an unbranched covering Z → Y and an action AZ on
Z such that the covering map is equivariant w. r. t. the two actions. Since
the quotient Y � (GA × Rad(%)) = (Ass

[par] � GA) ×
(
×m

k=1 Jacd
k

�Rad(%)
)

=

(Ass
[par] �GA)×

(
×m

k=1 Jacd
k
)
exists and the covering is a �nite map, again by 1.57

we see that Z � GA exists as well.
The space Z represents the functor

Γ(θ,PAss
[par]

) : SchAss
[par]

→ Sets

T
f−→ Ass

[par] 7→


Isomorphism classes of pairs

(GT , ψT ) with a G-bundle GT → T ×X
and ψT : θ∗(GT )

'−→ (f × idX)∗(PAss
[par]

)

 .

If two a�ne %-Higgs bundles are isomorphic, so are the corresponding %Rad -Higgs
bundles.26 Therefore we can apply 3.25, which tells us that two a�ne %-Higgs

23The topological types of PAss
[par]

,Rad(%) and the Li are uniquely de�ned by the topological
type of PAss

[par]
(cf. remark 5.1 in [Ram75]).

24cf. [Ram96ii], 4.15.
25Note that an automorphism of a line bundle on a compact Riemann surface is uniquely

de�ned by an element of C∗.
26See 3.21 and the de�nition of isomorphy of %-Higgs bundles in 3.11.
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bundles are in the same AZ-orbit if and only if they are isomorphic as %-Higgs
bundles.
Putting all results together we �nd that Z is the quasi-projective coarse moduli
space of semistable %-Higgs bundles. By construction we recover the geometric
quotient of stable %-Higgs bundles as an open subscheme of Z.

3.5. Hitchin Morphism

The existence of a (generalized) Hitchin morphism, i. e. a proper morphism from
our moduli space of a�ne parabolic objects to an a�ne space has been shown
in the non-parabolic situation by Alexander Schmitt in [Sch08], 2.8.1.4. The
following result is an easy extension thereof to the parabolic setting.

Let %j : G → Gl(W j) as before and W =
⊕m

j=1 W
j. Then we �nd T G-invariant

generators σk ∈
⊗m

j=1 Symtjk(W j, �) of Sym∗(W �)G. Denote by Hit the a�ne space⊕T
k=1 H

0(X,
⊗m

j=1 L
⊗tjk).

3.26. Lemma. A projective Hitchin morphism Hit : Ass
par � GA → Hit exists.

Proof. First note, that it is enough to show that Hit (if it exists) is proper, since
Ass

par � GA is quasi-projective and H is a�ne, i. e. Hit is quasi-projective and
proper into a quasi-compact space and therefore by [EGA], II.5.5.3 projective (see
as well [EGA], II.5.3.4 (v)). Furthermore, if we can construct two morphisms Hit
and G̃par such that (Hit) commutes, then already Hit is proper, since Hss

par ◦Gpar

is proper ([Ha77], II.4.8).

Ass
par � GA

Gpar //

Hit

��

Uasspar ∩Pς◦ι,L � GA
Hss

par

��
Hit

G̃par

// P(H∗)−

(Hit)

Similar to the discussion in 3.14 we de�ne Hit locally on a trivializing cover
(Ui)i by composition of the universal morphisms (ϕjAsspar)j[m]|Ui =: (ϕji )j[m] and

σk, 1 ≤ k ≤ T . If (ljin)in are transition functions of Lj and %j(gin) the transition
functions of PAsspar,%

j , then σk
(⊕m

j=1 l
j
in%

j(gjin)−tϕjn

)
=
∏m

j=1(ljin)t
jk
σk(ϕjn) and the

corresponding map Hitk is a global section of
⊗m

j=1 L
⊗tjk . By GA-invariance we

thus �nd our map Hit =
⊕T

k=1 Hitk.
We still have to construct G̃par. The embeddings ιj used in the construction
of a projective (ς ◦ ι)-Higgs bundle provide maps ιk : H0(X,

⊗m
j=1 L

⊗tjk) →
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H0(X,
⊗m

j=1 L
⊗ujtjk). Moreover by homogeneity of the σk the global morphism

de�ned locally by σk((ιj ◦ ϕj)j[m]) coincides with the image of Hitk((ϕj)j[m]) un-
der ιk. We need to account for the zero-component of the projective Higgs �eld.
Therefore denote by σ0 a generator of Sym(C)G (w. r. t. the trivial action) and
consider the function

Ψi : (wj)j[m] 7→ τ i

 ⊕
v∈Zm+1

≥0

vut=lcm(ui)

m⊗
j=0

wj,⊗v
j

 .

As a function on C ⊕W it may be written in terms of the generators σk, i. e.
there is a polynomial pi such that Ψi = pi(σ0, . . . , σT ). By the equivariance of
σk and ιk we now get pi((ιk ◦ σk)0≤k≤T ((ϕj)j[m])) = pi(σ0, . . . , σT )((ιj ◦ ϕj)j[m]) =

Ψi((ιj ◦ ϕj)j[m]) = τ i(ϕς◦ι). In particular pi(ιk( · )) de�nes G̃par suitably.27

Remark. Using the �nite morphism Z → Ass
[par]××m

k=1 Jacd
k

the Hitchin morphism
extends as a projective morphism to Z.

27Note that the �rst component of G̃par is non-trivial.





4 S-Equivalence

Unfortunately, already in the case of G-�ber bundles, the functor witch associates
to each scheme over C the set of isomorphism classes of S-families of semistable
G-bundles admits no coarse moduli space (Ramanathan [Ram96i], Proposition
3.5). In the previous sections we have constructed the categorical quotients of
the open subsets of semistable and stable objects. While for stable objects we
were able to construct even a geometrical quotient and henceforth these quotients
become coarse moduli spaces by 1.62, the semistable objects might have �bers
which contain more than one orbit. Again by 1.62 this implies that they do not
form a coarse moduli space. However, to overcome this de�cit, we can associate
non-isomorphic semistable bundles in the same �ber over the GIT-quotient. Thus
two points x, y representing semistable objects in one of our parameter schemes,
say Tsspar, should be S-equivalent if GA · x ∩ GA · y 6= ∅.1 Since we were able to
construct geometric quotients on the subset of stable objects, by (Geo1) of 1.53
GA · x ∩ GA · y 6= ∅ already implies x ∈ GA · y, i. e. the S-equivalence relation is
the same as the isomorphy relation. On the other hand S-equivalence guarantees
that in every �ber over the GIT-quotient of semistable objects there is only one
S-equivalence class, i. e. our GIT-Quotient becomes a coarse moduli space for the
functor of S-equivalence classes.
To make any sense of the condition imposed by S-equivalence we have to �nd
intrinsic de�nitions for the speci�c moduli problems we faced.

4.1. S-Equivalence of Tuples

Let λ be a one-parameter subgroup of G, QG(λ) the associated parabolic subgroup,

Radu(λ) = {g ∈ G : lim
z→∞

λ(z)gλ(z)−1 = e}

its unipotent radical and

L evG(λ) = {g ∈ G : λ(z)gλ(z)−1 = g, ∀z ∈ C∗}
1Recall that if GA · y is closed and GA · x ∩ GA · y 6= ∅ there is a one-parameter subgroup λ

such that µ(λ, x) = 0 and limz→∞ λ(z) · x ' y (cf. remark to 1.53).



106 | 4. S-Equivalence

a Levi subgroup. We recover QG(λ) as semi-direct product Radu(λ) oL evG(λ)
([Bo91], IV.11.22).2 For G = Gl(V ), q ∈ QG(λ) is a block-upper triangular matrix,
l ∈ L evG(λ) the corresponding block-diagonal matrix and r ∈ Radu(λ) is r =
ql−1. A semi-direct product corresponds to a split-exact sequence 1→ Radu(λ)→
QG(λ)

p

�
i

L evG(λ)→ 1 ([St93], Proposition 4.7.5). Recall that given a reduction

R : X → P/QG(λ) we get a QG(λ)-bundle R∗(P ), P → P/QG(λ). Extending
the structure group by i ◦ p we get another principal G-bundle which we call the
admissible deformation dfλR(P ) of P associated to R. If (F k)k[m] is the �ltration of
the vector bundle E = Pι associated to λ and R, then dfλR(P )ι =

⊕m
k=1 F

k/F k−1:
We use cocycles as in 2.8. Let (gij)ij be the QG(λ)-valued transition functions of
P given by the reduction R. Then

ι ◦ gij =

h
ij
1 ∗

. . .
0 hijm

 .

If we de�ne F k as the subbundle with transition functions

H ij
k =

h
ij
1 ∗

. . .
0 hijk

 ,

then the quotient F k/F k−1 has transition functions hijk .
3 Thus

⊕m
k=1 F

k/F k−1 has
transition functions h

ij
1 0

. . .
0 hijm

 ∈ L evGl(Ua)a(ι ◦ λ).

Observe, that L evG(λ) = L evGl(Ua)a(ι ◦ λ) ∩ G. Consequentially dfλR(P )ι =⊕m
k=1 F

k/F k−1. For the deformation of the Higgs �eld we proceed analogously.
First note that ς(gij) ∈ QGl(W )(ς ◦ λ) are the induced transition functions of Pς
and hence p′(ς(gij)) ∈ L evGl(W )(ς ◦ λ) the transition functions of dfς◦λς◦R(Pς) w. r.
t. the morphism p′ : QGl(W )(ς ◦ λ)→ L evGl(W )(ς ◦ λ) induced by p. On the other
hand dfλR(P )ς has transition functions ς ◦ p(gij) ∈ ς(L evG(λ)). We claim that
p′(ς(gij)) = ς ◦ p(gij): This follows for example from the product decompositions

2The semi-direct product for the homomorphism L evG(λ) → Aut(Radu(λ)), l 7→ {r 7→
lrl−1}.

3The projection F k → F k/F k−1 looks in our local coordinates as π =
(
0 Erk−rk−1

)
and

πHij
k = hijk π.
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QG(λ) = Radu(λ)oL evG(λ) and QGl(W )(ς ◦λ) = Radu(ς ◦λ)oL evGl(W )(ς ◦λ).
If gij = rijlij then ς ◦ p(gij) = ς(lij) and ς(gij) = ς(rij)ς(lij), ς(rij) ∈ Radu(ς ◦
λ), ς(lij) ∈ L evGl(W )(ς ◦ λ), i. e. p′(ς(gij)) = ς(lij).
If ς ◦ λ is the induced one-parameter subgroup with induced �ltration (F k

ς )k of
Pς , rk(Pς) = dim(W ), then since ϕ is non-trivial, we �nd a smallest index ι0
such that ϕ|F ι0ς 6= 0. Therefore the fundamental theorem on homomorphisms pro-
vides us with a non-trivial homomorphism ϕdf |

F
ι0
ς /F

ι0−1
ς

: F ι0
ς /F

ι0−1
ς → L witch

extends trivially to a ϕdf on dfς◦λς◦R(Pς) ' dfλR(P )ς . We de�ne dfλR(P, ϕ, L) :=

(dfλR(P ), ϕdf , L).
Now let sj : {xj} → P×X{xj}/P j be a parabolic reduction to a parabolic subgroup
P j ⊂ G and P our principal G-bundle. As in 2.7 we �nd gj with Rj(xj) = sj(xj)gj
for some representatives. Let ψi : Ui × QG(λ) → P be local trivializations of
P → P/QG(λ), R−1(Ui) = Vi and ψi = ψi ◦ (R × idQG(λ)) : Vi ×QG(λ)→ R∗(P )

the resulting trivialization of the QG(λ)-bundle R∗(P ). Now pr2 ◦(ψi)−1(sj(xj)gj)
de�nes an element qj of QG(λ) and hence under projection with p an element of
L evG(λ). Furthermore QG(λ) and g−1

j P jgj intersect in (at least) a torus T . De-
note by L evG(T ) the Levi subgroup of QG(λ) associated to T . Then there is a
unique rj ∈ Radu(λ) such that L evG(T ) = rjL evG(λ)r−1

j .4 Now we �nd a unique
decomposition g−1

j P jgj ∩ QG(λ) = (g−1
j P jgj ∩ L evG(T )) · (g−1

j P jgj ∩ Radu(λ))

([DM91], 2.1 Proposition) and thus p(g−1
j P jgj∩QG(λ)) = r−1

j g−1
j P jgjrj∩L evG(λ).

The group L evG(T ) ∩ g−1
j P jgj is a parabolic subgroup of L evG(T ). We �nd a

point in L evG(λ)/(r−1
j g−1

j P jgjrj)∩L evG(λ) independent of the chosen represen-
tative sj(xj). Consequentially we get a point sj,df in dfλR(P )/P j using the injection
L evG(λ)/L evG(λ) ∩ (r−1

j g−1
j P jgjrj) → G/P j, l(r−1

j g−1
j P jgjrj) 7→ (lr−1

j g−1
j )P j.

Note that the constructed point is independent of the chosen representatives; the
independence of the choice of sj(xj) is clear. For gj replaced by gjq, q = l · r and
consequentially rj replaced by r−1rj and qj replaced by qjq we use that

p(qjq)r
−1
j rq−1g−1

j P jgjqr
−1rjr

−1
j rq−1g−1

j = p(qj)r
−1
j lrjr

−1
j l−1g−1

j P j

= p(qj)r
−1
j g−1

j P j.

Note in particular that the construction does not depend on the choice of the
maximal torus T .

Remark. Observe that we could have chosen gj such that L evG(T ) = L evG(λ).

Furthermore for vector bundle �ltrations Eij ⊂ E|xj this becomes just the induced
�ltration (

⊕m
k=1 F

k ∩ Eij/F k−1 ∩ Eij)i of
⊕m

k=1 F
k/F k−1

∣∣∣
xj
.

4For a proof as well as the de�nition of L evG(T ) see [DM91], 1.17 Proposition, 1.18 Corollary.
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Remark. If we replace our parabolic reductions by points in G/P j ↪→ P(Vσ) for
the corresponding action σ and if p =

∑dim(Vσ)
i=1 aivi, �λ for a basis of weight vectors

viλ of the (σ ◦λ)-induced C∗-action on Vσ, then the previous construction produces
a rj ∈ Radu(λ) such that σ(rj)p = ai0jvi, �λ for ai0j the highest indexed ai0j 6= 0.5

4.1. De�nition. We call a projective parabolic ς-Higgs bundle (P, (sj)j[|S|], ϕ, L)

polystable if it is semistable and dfλR(P, (sj)j[|S|], ϕ) := dfλR(P, (sj,df)j[|S|], ϕ) '
P for all reductions R to every one-parameter subgroup λ of G such that
M

(1),ξ
par (λ,R) + δ · µ(λ,R, ϕ) = 0. Since every semistable P becomes polystable

after �nitely many (essentially di�erent) admissible transformations, P de�nes a
G-bundle Gr(P ). Two G-bundles P1 and P2 are called S-equivalent if Gr(P1) '
Gr(P2) are isomorphic as G-bundles.

Remark. The concept of S-equivalence is de�ned for Higgs tuples analogously.

4.2. Lemma. Let n be as in 1.52. Let ((Ea, (Eij
a )i[sja]j[|S|])a[|A|], ϕ, L) = t be a

(δ, ξa, δ
ij)-semistable Higgs tuple for admissible weights (δij)i[sj ]j[|S|]. Let λ be a one-

parameter subgroup of SκaA with associated �ag (V k, αk)k[m] and µ(λ,Giesχ(t)) = 0,
thenMκ,ξ

par(F
k, αk)+δ ·µ(F k, αk, ϕ) = 0 holds for the induced �ltration (F k, αk)k[r]

of E =
⊕

a∈AE
⊕κa
a and F k,coh = F k, h1(F k(n)) = 0. If (F k, αk)k[r] is a �ltration

such that Mκ,ξ
par(F

k, αk) + δ ·µ(F k, αk, ϕ) = 0 then µ(λ,Gies(t)) = 0 holds for any
induced one-parameter subgroup λ with associated �ag V k = H0(F k(n)).

Proof. If µχ(λ,Gies(t)) = 0, then by part (i) ⇒ (ii) of 1.52 we see that 0 =
µχ(λ,Gies(t)) ≥ Mκ,ξ

par(F
k, α̂k) + δ · µ(F k, α̂k, ϕ) ≥ 0. In particular since δij > 0

(Tor 1) implies V k = H0(F k(n)) and therefore α̂k = αk. Thus we have F k,coh = F k

and h1(F k(n)) = 0. On the other hand ifMκ,ξ
par(F

k, αk)+ δ ·µ(F k, αk, ϕ) = 0 then
F k is globally generated for big n ≥ 0 and the main calculation (M1) shows that
µχ(λ,Gies(t)) = 0 holds for any induced one-parameter subgroup λ of SκaA .

Let q = (qa)a[|A|] ∈ ×a∈AQa be the underlying quotient of the vector bundle⊕
a∈AEa corresponding to a point t in Tpar. Let λ = (λa)a[|A|] be a one-parameter

subgroup of SκaA with associated �ags (V k
a )k[va] and weights (γka)k[va] such that

µχ(λ,Gies(t)) = 0. Then qa induces a �ltration of Ea by (generated) subbundles
Ek
a , 1 ≤ k ≤ ma

6 and therefore a one-parameter subgroup λ̃ = (λ̃a)a[|A|] : C∗ →
×a∈A Gl(ra,C)

λ̃a(z) =

zγ
1
a 0

. . .
0 zγ

ma
a


5Recall that we order weights of the representation σ descending while the γj are ordered

ascending.
6Note that by the previous result 4.2 va = ma.
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together with a reduction R : X → E/Q×a∈A Gl(ra,C)
(λ̃). Now let

gija =

g
ij
11,a ∗

. . .
0 gijmama,a

 , (gija )a[|A|] ∈ Q×a∈A Gl(ra,C)
(λ̃)

be the transition functions of
⊕

a∈AEa. Locally q is of the form

qi = (qia)a, q
i
a =

q
i
11,a · · · qi1ma,a

. . . ...
0 qimama,a

 , qikl,a ∈ Crk(Eka/E
k−1
a )×dim(V la/V

l−1
a )

w. r. t. a suitable local trivialization over some Ui. Hence

λ̃a(z)qiaλ
−1
a (z) =


qi11,a zγ

1
a−γ2a · qi12,a · · · zγ

1
a−γ

ma
a · qi1ma,a

0 q21,a · · · zγ
2
a−γ

ma
a · qi2ma,a

... . . . . . . ...
0 · · · 0 qimama,a

 .

Since q(V k
a ) = Ek

a we see that (qilt,a)l[ma]t[k] is of rank rk(Ek
a) independent of z. In

particular

lim
z→∞

(λ̃a(z)qiaλ
−1
a (z)) =

q
i
11,a 0

. . .
0 qimama,a


has full rank. Finally note that by construction (λ̃a(z)qiaλ

−1
a (z))a[|A|]i and

(qiaλ
−1
a (z))a[|A|]i de�ne the same point in×a∈AQa for all z ∈ C∗ (since they have the

same kernel) and that (λ̃a(z)qiaλ
−1
a (z))i induces transition functions λ̃a(z)gija λ̃

−1
a (z)

as
λ̃a(z)gija λ̃

−1
a (z)λ̃a(z)qjaλ

−1
a (z) = λ̃a(z)gija q

j
aλ
−1
a (z) = λ̃a(z)qiaλ

−1
a (z).

The special form of the transition functions (gija )a[|A|] ∈ Q×a∈A Gl(ra,C)
(λ̃) implies

now that

zγ
1
a 0

. . .
0 zγ

ma
a

 gija

z−γ
1
a 0

. . .
0 z−γ

ma
a



=


gij11,a zγ

1
a−γ2a · gij12,a · · · zγ

1
a−γ

ma
a · gij1ma,a

gij22,a · · · zγ
2
a−γ

ma
a · gij2ma,a

. . . ...
0 gijmama,a

 z→∞−−−→

g
ij
11,a 0

. . .
0 gijmama,a
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as γla < γka for l < k. Thus limz→∞(λ̃(z)ag
ij
a λ̃(z)−1

a )a[|A|] ∈ L ev (Gl(ra,C))a(λ̃) and
limz→∞ qλ(z)−1 is isomorphic to df λ̃R(E).

Remark. A di�erent proof without using cocycles is given in [HL10], 4.4.3.

Let ϕ be the underlying Higgs �eld of our point t ∈ T and denote by λ(z)ϕ the
Higgs �eld to λ(z)t. For the Higgs �eld we proceed as above: (ς((gija )a))ij are the
induced transition functions of Eς . If ς ◦ λ is the induced one-parameter subgroup
with induced �ltration (F k

ς )k of Eς , rk(Eς) = dim(W ) and induced weights γkς , 1 ≤
k ≤ mς the same calculation as above shows that qu,vλ−1(z) converges against
dfς◦λ̃ς◦R(Eς) ' df λ̃R(E)ς . We �nd an index ι0 such that ϕiι0 6= 0 for some i and
such that (ϕi)i =

(
0 . . . 0 ϕiι0 . . . ϕidim(W )

)
i
de�nes the Higgs �eld ϕ. Then

λ(z) ·ϕ corresponds to ϕi · ς(λ̃(z)−1) =
(

0 . . . 0 z−γ
ι0
ς ϕiι0 . . . z−γ

mς
ς ϕidim(W )

)
.7

Further denote by (lij)ij the transition functions of the line bundle L. Since scalar
multiplication becomes the identity on T8, zγ

ι0
ς (λ(z) · ϕ) corresponds to(

0 . . . 0 ϕiι0 . . . zγ
ι0
ς −γ

mς
ς ϕidim(W )

)
n→∞−−−→

(
0 . . . ϕiι0 0 · · · 0

)
=: ϕidf 6= 0.

Note in particular, that

ϕiς(gij) = lijϕj

⇒ zγ
ι0
ς ϕiς(λ̃(z)−1)ς(λ̃(z)gijλ̃−1(z)) = zγ

ι0
ς lijϕjς(λ̃(z)−1) = lijzγ

ι0
ς ϕjς(λ̃(z)−1).

Hence limz→∞ λ(z) · t ' df λ̃R(E,ϕ, L) := (df λ̃R(E), ϕdf , L).
We still need to check the parabolic contribution. Again denote by λ(z)qij the
parabolic quotient of λ(z)t ∈ Tpar. Choose a basis corresponding to our �l-
tration (F k

a )a[|A|]k[ra] and consider qija = (qlja )t
l[ra−rija ]

the parabolic quotients with

Eij
a = ker(qija ). Let k0j

a (l) be the smallest index k for which the l-th row
qlja = (qlja,t)t[ra] acts non-trivial on F k

a |xj ; let m0j
a (l) = min{t : qlja,t 6= 0}. Let

λ
i

a(z) = diag(zγ
k
0j
a (1)

, . . . , zγ
k
0j
a (ra−r

ij
a )

) with respect to our chosen basis. Thus again

λ
i

a(z)qija · λ̃a(z)−1

=


0 · · · · · · 0 q1j

a,m0j
a (1)

· · · zγ
k
0j
a (1)−γma · q1j

a,ra

...
...

...

0 · · · 0 qra−r
ij
a ,j

a,m0j
a (ra−rija )

· · · · · · zγ
k
0j
a (ra−r

ij
a )−γma · qra−r

ij
a ,j

a,ra


7ϕi ◦ qi = ψi ⇒ ψiλ(z) = (ϕiλ̃(z)−1)(λ̃(z)qλ(z)−1) and ϕigij = ϕj ⇒

ϕiλ̃(z)−1(λ̃(z)gij λ̃(z)−1) = ϕj λ̃(z)−1.
8A global multiplication of the values of ϕ by a scalar is compensated by an automorphism

of L.



4.2. S-Equivalence of Principal Bundles | 111

z→∞−−−→


0 · · · · · · 0 q1j

a,m0j
a (1)a

· · · 0
...

...
...

0 · · · 0 qra−r
ij
a ,j

a,m0j
a (ra−rija )

· · · · · · 0

 .

Observe that there might be more than one non-zero entry in each row.
Finally note that ker(λ

i

a(z)qija · λ̃a(z)−1) = ker(qija · λ̃a(z)−1) for all z ∈ C∗ as well
as dim ker(limz→∞ λ

i

a(z)qija · λ̃a(z)−1) = dim ker(qija · λ̃a(z)−1) = dim ker(qija ) = rija .
Therefore we receive limz→∞ λ(z) · t ' df λ̃R(E, (Eij)i[sj ]j[|S|], ϕ, L).

4.2. S-Equivalence of Principal Bundles

We need the following consequence of 3.1:

4.3. Lemma. Let (P, (sj)j[|S|], ϕ, L) be a semistable projective parabolic ς-Higgs
bundle with associated Higgs tuple (E, (Eij)i[sj ]j[|S|], ϕtuple, L) (cf. 2.25). For every
�ltration (F k, αk)k[m] such that M

(1),ξ
par (F k, αk) + δ · µ(F k, αk, ϕtuple) = 0 there is

an associated one-parameter subgroup λ of G and a reduction R : X → P/QG(λ)

such that M
(1),ξ
par (λ,R) + δps · µ(λ,R, ϕ) = 0 and vice versa.

Proof. In the proof of 3.1 we have seen that for εps big enough either
µ(F k, αk, ϕτ ) = 0 or the strict inequality M (1),ξ

par (F k, αk) + δps · µ(F k, αk, ϕ) + εps ·
µ(F k, αk, ϕτ ) > 0 holds. Hence for a suitable εps the equality M

(1),ξ
par (F k, αk) +

δps · µ(F k, αk, ϕ) + εps · µ(F k, αk, ϕτ ) = 0 implies already µ(F k, αk, ϕτ ) = 0.
By 2.29 we get a one-parameter subgroup λ of G together with a reduction
R : X → P/QG(λ) that correspond to (F k, αk)k[m]. In particular 3.1 implies
that Mpar(λ,R) + δ · µ(λ,R, ϕ) = 0.

The lemma directly implies that admissible deformations of a semistable projective
parabolic ς-Higgs bundle P directly correspond to admissible deformations of the
associated Higgs tuple.
We still need to extend the concept to the a�ne case. Apart from the Higgs �eld
we de�ne dfλR(P, (sj)j[|S|]) as before. Then admissible transformations commute
with the transition from a�ne parabolic G-bundles to projective parabolic G-
bundles. This property will extend to %-Higgs bundles if we can de�ne (ϕj,df)j[m]

in such a way that (ϕdf)ς◦ι = (ϕς◦ι)
df . First recall that as above we get dfλR(P )ς◦ι '

df
ς◦ι◦λ
ς◦ι◦R(Pς◦ι). Moreover we have seen in the proof of 3.13.(ii) that ϕς◦ι|⊗m

j=0 F̃
ij ,⊗vj

j

6≡

0 ⇔ ϕj|
F
ij
j

6≡ 0,∀1 ≤ j ≤ m (vj 6= 0) where (F̃ i
j )i is the �ltration associated to

%j ◦ ι ◦ λ and (F i
j )i the �ltration associated to %j ◦ λ. Thus we already see that
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4.4. Lemma. Given an a�ne parabolic %-Higgs bundle (P, (sj)j[|S|], (ϕi, Li)i[m])
with associated projective parabolic (ς ◦ ι)-Higgs bundle (P, (sj)j[|S|], ϕς◦ι, L),
then the following two conditions are equivalent for every reduction R to a one-
parameter subgroup λ of G:

(i) M
(1),ξ
par (λ,R) = 0 whenever µ(λ,R, ϕ) ≤ 0,

(ii) M
(1),ξ
par (λ,R) = µ(λ,R, ϕς◦ι) = 0.

Furthermore we see that for µ(λ,R, ϕ) < 0, i. e. ϕj|
F
ij
j

6≡ 0 ⇒ γ
ij
j > 0, the

condition µ(λ,R, (ϕς◦ι)
df) = 0 implies that (ϕς◦ι)

df = ι
lcm(ui)/u0

0 .9 We conclude

that (ϕdf)ς◦ι = ι
lcm(ui)/u0

0 and thus we de�ne ϕdf ≡ 0. As might be expected this
also implies, that for ϕ ≡ 0 we have to de�ne ϕdf := 0. We are left with the more
interesting case of µ(λ, R, ϕ) = 0, in which there is at least one γ

i0j
j = 0 such

that ϕj|
F
i0
j
j

6≡ 0. Using again that ϕj|F ij 6≡ 0 already implies γij ≥ 0 we see that in

terms of the zero weight subbundle F i0

ς◦ι of Pς◦ι, (ϕς◦ι)
df is induced by ϕς◦ι|F i0ς◦ι 6≡ 0.

Therefore (ϕj,df)ς◦ι will be de�ned as the trivial extension of the homomorphism on⊕m
j=1 F

i0j
j /F

i0j−1

j which is induced by
⊕m

j=1 ϕ
j|⊕m

j=1 F
i0
j
j

. Here F
i0j
j is the subbundle

corresponding to γ
i0j
j = 0 or 0 if no such weight exists for j. Thus ϕj,df : P%j → Lj

is de�ned.

4.5. De�nition. We call an a�ne parabolic %-Higgs bundle (P, (sj)j[|S|], ϕ)

polystable if it is semistable and dfλR(R, P, (sj)j[|S|], ϕ) ' P for all reduc-
tions R to every one-parameter subgroup λ of G such that M (1),ξ

par (λ,R) = 0
and µ(λ,R, ϕ) ≤ 0. Two a�ne parabolic %-Higgs bundles are called S-equivalent
if they become isomorphic as a�ne parabolic %-Higgs bundles after a series of
admissible deformations.

By construction of the admissible deformations and the results of this chapter we
get (for a suitable choice of δps and εps) the following theorem.

4.6. Theorem. Two semistable a�ne parabolic %-Higgs bundles are S-equivalent if
and only if the associated asymptotically semistable projective parabolic (ς◦ι)-Higgs
bundles are S-equivalent, if and only if the associated Higgs tuples are S-equivalent,
if and only if the corresponding points in the respective parameter scheme are GIT-
S-equivalent (cf. 1.58).

9In this case the subbundle corresponding to the zero weight is just Olcm(ui)/u0

X ⊕ 0 since any
other subbundle in the �ltration corresponds to a positive, therefore bigger weight.



5 Applications

In this �nal paragraph we will reformulate the (semi)stability concept of %-Higgs
bundles in a way more suited to the formulation of a Kobayashi-Hitchin correspon-
dence in 5.2. Furthermore we will recover tame parabolic Higgs bundles as well as
Hitchin pairs as a special case of our construction.

5.1. Reformulation of the Semistability Concept

Let G be a reductive algebraic group and g = Lie(G) its Lie algebra. Recall that
for every reductive group G there is a compact real Lie group K such that G is
the complexi�cation of K. In particular g = k ⊕ ik for k = Lie(K). Furthermore,
the Lie algebra g is reductive, i. e. it decomposes as z ⊕ gss

1 resp. rad(g) = z,
where gss = [g, g] is the semisimple part of g and z = Lie(Z (G)) for the center
Z (G) ⊂ G.2 Given a maximal torus T ⊂ G with t = Lie(T ) we denote by
tC = t ⊗R C the complexi�cation. Moreover there is a non-degenerated invariant
symmetric bilinear form 〈 · , · 〉 on h = z ⊕ c where c is the Cartan subalgebra
tC ∩ gss of gss.3

Let λ be a one-parameter subgroup of G then Xλ = dλ(1+t)
dt

∣∣∣
t=0
∈ ik ∩ (z ⊕ c)

for a maximal compact subgroup K and a maximal torus T with t = Lie(T ).
By de�nition of the exponential map we have QG(λ) = P = {g ∈ G :
limt→∞ exp(tXλ)g exp(−tXλ) exists}. For the dual representation %̃ := % � : G →
Gl(W �) recall that Rad(%) = Rad(%̃) = ker(%̃|RadG)0 ⊂ Rad(G) ⊂ Z (G) is a
compact connected normal subgroup and hence gRad(%̃) ↪→ z is an ideal. Now an el-
ement of Hom(C∗,Rad(%̃)) corresponds to an element of ikRad(%̃), KRad(%̃) maximal

1[OV90], Chapter 1, �4, theorem 6.
2Note that there are (non-reductive) algebraic groups (like C) that have a reductive Lie

algebra.
3Onishchick, Vinberg, [OV90], Chapter 1, �9, theorem 9.6 and the following remark.
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compact subgroup in Rad(%̃) and Lie(KRad(%̃)) = kRad(%̃).4 KRad(%̃) is contained in a
maximal compact subgroup KZ (G) of Z (G), kRad(G) = kZ (G) := Lie(KZ (G)), and
we have ikRad(%̃) = {ξ ∈ ikZ (G) : d%̃(ξ) = 0}.5 Thus a one-parameter subgroup of
Rad(%̃) corresponds to an element of ker(d%̃|z). Using the non-degenerated bilinear
form on k we get ik = ikRad(%̃) ⊕ il for some Lie algebra l. In particular non-trivial
one-parameter subgroups C∗ → G/Rad(%) correspond to elements of the comple-
ment ik \ ker(d%̃|z).
Now denote by W �

λ = {w � ∈ W � : limt→∞ exp(tXλ)w

� exists}. Since W �

λ is
QG(λ)-invariant we get for every reduction R : X → P/QG(λ) a subbundle
Pλ,%̃ = (R∗(P )) ×%̃|QG(λ)

W �

λ ⊂ (R∗(P )) ×%̃ W � ' P%̃. A section φ : X → P%̃ ⊗ L
maps to Pλ,%̃ ⊗ L if and only if µ(λ,R, ϕ) ≤ 0 for the to φ associated homo-
morphism ϕ ∈ Hom(P%, L): λ and R induce a �ltration (F k

% )k of P%. Denote
by wij the eigenvectors of %(λ) to the eigenvalue zγ

i
. Then locally over some

open set U we get F k
ς = 〈wij : i ≤ k〉 ⊗ OU and µ(λ,R, ϕ) ≤ 0 if and only if

ϕ(wij) = 0 for all γi < 0 and every U . But then limz→∞ %̃(λ(z))φx(
∑

i,j α
i
jw

i
j) =

limz→∞ φx(
∑

i,j α
i
jz
−γiwij) =

∑
i,j:γi≥0(limz→∞ z

−γiαijϕx(w
i
j)) exists for all α

i
j ∈ C,

∀x ∈ U and every U . On the other hand if ϕx(wi0j0) 6= 0 for at least one γi0 < 0 and
one j0, then limz→∞ %̃(λ(z))φx(αi0j0w

i0
j0

) = limz→∞ z
−γi0ϕx(w

i0
j0

) does not exist.

5.1. De�nition. Let α ∈ ikZ (G). An a�ne parabolic %-Higgs bundle
(P, (sj)j[|S|], ϕ) is (α, τ j)-semistable if for every one-parameter subgroup λ of
G and every reduction R : X → P/QG(λ) such that ϕ ∈ H0(X, Pλ,%̃ ⊗ L):

degPQ(χλ,R)−
∑
j:xj∈S

〈τ sj , χRj

λ 〉+ 〈α,Xλ〉 ≥ 0.

(P, (sj)j[|S|], ϕ) is (α, τ j)-stable if it is (α, τ j)-semistable and if degPQ(χλ,R) −∑
j:xj∈S〈τ s

j
, χRj

λ 〉 + 〈α,Xλ〉 > 0 holds for every one-parameter subgroup λ of G
such that Xλ /∈ ker(d%̃|z).
Remark. For some applications like the Kobayashi-Hitchin correspondence it is
advantageous to check (semi)stability against (strictly) anti-dominant Lie algebra
characters of p. Compare with [GGM12] or [LT06] for a detailed account of the
semistability concept in this context. Note that not every anti-dominant character
χ of p comes from a character of P . However a (positive) integer multiple of χ
does ([GGM12], section 2.6) and the semistability criterion stays the same.

Remark. The (semi)stability concept above directly generalizes to Γ-Higgs bun-
dles. More precisely, let Γ be a connected real reductive Lie group with com-
pact subgroup K and Cartan decomposition Lie(Γ) = k ⊕ p. Then G = KC is

4Rad(G) = Z (G)0 ⊂ Z (G).
5For a matrix group ξ ∈ kRad(%̃) if and only if exp(tξ) ∈ ker %̃|RadG, ∀t ∈ R if and only if

id = %̃|RadG exp(tξ) = exp(t · d%̃|z(ξ)), ∀t ∈ R.
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reductive. Let % be the complexi�ed isotropy representation (to the Cartan de-
composition) G → Gl(pC). Then a (semi)stable a�ne parabolic % �-Higgs bundle
(P, ϕ : P% � → ωX , (s

j)j[|S|]) is called a (semi)stable Γ-Higgs bundle. A detailed
discussion of (semi)stability in the case Γ = Sp(2r,R) can be found in [Sch08],
2.8.4 or [GGM13].

Example. For a speci�c choice of G we are sometimes able to simplify the semista-
bility concept. For example for the groups G = SO(r,C) and G = Sp(2r,C) we
consider an Ad-Higgs vector bundle (E,ϕ) with an additional non-degenerated bi-
linear form B (symmetric or alternating). We call a subbundle F ⊂ E isotropic if
F ⊂ F⊥ := {e ∈ E : B(e, f) = 0,∀f ∈ F} and parabolicly isotropic if additionally
F ij ⊂ F ij,⊥ := {e ∈ Eij : B(e, f) = 0, ∀f ∈ F ij}. A G-Higgs bundle is now
(semi)stable if for every non-trivial parabolicly isotropic ϕ-preserved subbundle
F ⊂ E we have par-deg(F ) ≤ par-deg(E).6

5.2. Tame Parabolic Higgs Bundles

The attentive reader might have noticed that in all previous constructions we did
not require any interaction between the Higgs �eld and the parabolic �ltration.
Parabolic Higgs vector bundles were introduced by Carlos Simpson in [Sim90] as
follows: A tame parabolic Higgs vector bundle (E, (Eij)i[sj ]j[|S|], φ) on a punc-
tured Riemann surface (X, S) is an algebraic/holomorphic vector bundle E on X,
parabolic �ltrations (Eij)i[sj ] of E|xj , xj ∈ S and a Higgs �eld φ : E → E⊗ωX(D)
such that φ(Eij) ⊂ Eij⊗ωX(D) for all 1 ≤ i ≤ sj, xj ∈ S andD =

∑
xj∈S x

j the di-
visor on X associated to S. (E, (Eij)i[sj ]j[|S|], φ) is semistable if par-degF

rk(F )
≤ par-degE

rk(E)

holds for every φ-invariant subbundle F ⊂ E, i. e. φ(F ) ⊂ F ⊗ ωX(D).
We would like to recover the tame parabolic Higgs vector bundles as a special
case of a�ne parabolic Ad-Higgs bundles (resp. a slight modi�cation thereof).
First note that φ gives rise to a section H0(X, End(E) ⊗ ωX(D)) and that
Ad(E) ' End(E).7 Using the contragredient representation Ãd we get a mor-
phism ϕ : PÃd → ωX(D).8 By 5.1, the corresponding a�ne parabolic Ãd-Higgs
bundle (E, (Eij)i[sj ]j[|S|], ϕ) is (semi)stable for trivial χ if9

r∑
k=1

αk(par-deg(E) rk(F k)− par-deg(F k) rk(E)) (≥) 0

6see e. g. [GGM13] or Arroyo [Arr09] for the non-parabolic version. The limited choice of
reducing parabolic subgroups of Gl(r,C) coming from G also restricts the choice of (pointwise)
parabolic �ltrations and weights.

7If (gij)ij are the transition functions of E, than the Ad(gij)-action on Cn×n is identi�ed with
the ((gij)−1)t ⊗ (gij) action under Cn×n ' Cn2

.
8Note that for a semisimple Lie group Ad is a self-dual representation.
9see 2.20.
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holds for every weighted �ltration (F k, αk)k[r] (as in 1.6) of E such that φ ∈
H0(X, Pλ,Ad ⊗ ωX(D)). But φ ∈ H0(X, Pλ,Ad ⊗ ωX(D)) if and only if the endo-
morphism associated to φ maps φ(F k) ⊂ F k⊗ωX(D). To see the last equivalence,
note that gλ,Ad = {Y ∈ g = Cn×n : limz→∞ λ(z)Y λ(z)−1 exists} for the one-
parameter subgroup λ associated to (F k, αk)k[r]. Locally at x ∈ X we get in a
basis of eigenvectors of λ and for not necessarily di�erent weights (γj)j[r]

lim
z→∞

λ(z)(φkl|x)klλ(z)−1 = lim
z→∞

(zγ
k−γlφkl|x)kl exists⇔ φkl|x = 0, ∀γk > γl.

Thus φ maps to the QGl(Cn)(λ)-subbundle given by the reduction R corre-
sponding to (F k, αk)k[r] and therefore φ(F k) ⊂ F k ⊗ ωX(D) for all k. Since∑r

k=1 α
k(par-deg(E) rk(F k)− par-deg(F k) rk(E)) (≤) 0 if and only if at least one

par-deg(E) rk(F k0) − par-deg(F k0) rk(E) (≤) 0 we see that (E, (Eij)i[sj ]j[|S|], φ)
is (semi)stable if and only if it is (semi)stable as a tame parabolic Higgs vector
bundle.
To get a moduli space for tame parabolic Higgs vector bundles we need to account
for the condition φ(Eij) ⊂ Eij ⊗ ωX(D).
For % = Ãd : Gl(Cr) → Gl ((gl(Cr)) �) 10 there are universal morphisms
φApar : EApar → EApar ⊗ π∗X(ωX(D)) and universal quotients qijApar

: EApar |xj →
H ij

Apar
. Thus there is a closed subscheme Âpar ⊂ Apar where the restriction of

(qijApar
⊗ idπ∗X(ωX(D))) ◦φApar to ker qijApar

vanishes. The universal properties 1.22 and
1.23 still hold for the natural extension of the concept of a Y -family to our new
objects. Since the GA-action leaves Âpar invariant, the result of 1.25 holds for Âpar,
too.11 Since A

(s)s
par � GA exists as a quasi-projective scheme, so does Â(s)s

par � GA.
The concept of a tame parabolic Higgs vector bundle extends to principal bun-
dles as well. Given a line bundle L a tame parabolic twisted G-Higgs bundle
(P, (sj)j[|S|], φ) is a parabolic principal bundle (P, (sj)j[|S|]) on X and a sec-
tion φ ∈ H0(X,PAd ⊗ L(D)) such that φ|xj maps to (Pτ j ,Ad ⊗ L(D))|xj .12 Ob-
serve that Z (G) ⊂ QG(τ j) and therefore sjApar

de�nes a universal morphism
s̃jA : (PApar,Ad/Ad(Q(τ j)) ⊗ π∗X(L(D)))|xj → π∗X(L(D))|xj on A × {xj}. Again
we �nd a closed subscheme where the composition with φApar vanishes.

Remark. Observe that like in the general construction we may associate a projec-
tive object to our a�ne object: a tame parabolic G-Higgs bundle (P, (sj)j[|S|], φ)

10Note that the adjoint representation is homogeneous.
11Observe that since qApar

: V ⊗OX(−n)→ EApar
is an epimorphism, (qijApar

⊗ idπ∗
X(ωX(D))) ◦

φApar
|ker qijApar

= 0 ⇔ (qijApar
⊗ idπ∗

X(ωX(D))) ◦ φApar
◦ qApar

|ker qijApar
◦qApar

= 0. Now GA-invariance
is obvious.

12Sometimes these objects are called ωX(D)-pairs to distinguish them from those
(P, (sj)j[|S|], φ) that satisfy the stronger (nilpotency) condition φ|xj in ((P ×Ad {X ∈ g :
Ad(etXτj )X → 0})⊗ L(D))|xj .
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has an associated Hitchin pair (P, (sj)j[|S|], φ, 1). A Hitchin pair is a tame
parabolic G-Higgs vector bundle (P, (sj)j[|S|], φ) plus a complex number h. Two
Hitchin pairs (P1, (sj1)j, φ1, h1) and (P2, (sj2)j, φ2, h2) are equivalent if there is
a bundle isomorphism ψ : P1 → P2 that respects the parabolic reductions and a
complex number z ∈ C∗ such that h1 = zh2 as well as z · (Ad(ψ)⊗ idL) ◦ φ1 = φ2.
A Hitchin pair (P, (sj)j, φ, h) is (semi)stable if the associated tame parabolic
Higgs vector bundle (P, (sj)j[|S|], φ) is (semi)stable and if in the case h = 0, there
is no reduction R to a one-parameter subgroup λ such that µ(φ, λ,R) < 0. If
G is semisimple φ ∈ H0(X,PAd ⊗ L(D)) induces a ϕ ∈ Hom(PAd, L(D)) under
PAd ' P �

Ad. In particular, since the adjoint representation is homogeneous, we get
an associated projective (%0⊕Ad)-Higgs bundle with Higgs �eld (hι0)⊕(ι1ϕ), which
obviously satis�es asymptotic (semi)stability, i. e. 3.13.(ii). Thus the projective
moduli space of Hitchin pairs exists.

Remark. Yet another application of our general construction are νij-parabolic
Higgs bundles ([IIS06i], [IIS06ii]): Let (νij)i[r]j[|S|] be a tuple of complex numbers
such that deg(E) +

∑|S|
j=1

∑r
i=1 ν

ij = 0. A νij-parabolic Higgs bundle is an a�ne
parabolic Ad-Higgs bundle (E, (Eij)i[r]j[|S|], φ) of parabolic type (rk)k[r] = (k)k[r]

with structure group Gl(Cr) such that (resxj(φ) − νij)(Eij) ⊂ Ei+1,j for all i, j.
We consider φ as a homomorphism E → E⊗ωX(D) and use the classical stability
condition. Again we have universal morphisms φApar : EApar → EApar ⊗π∗X(ωX(D)),
universal quotients qijApar

: EApar |xj → H ij
Apar

and a closed subscheme Âpar ⊂ Apar

where the restriction of (qijApar
⊗ idπ∗X(ωX(D))) ◦ (resxj(φApar) − νij) to ker qijApar

van-
ishes. As a result the moduli space of (semi)stable νij-parabolic Higgs bundles
A

(s)s
par � GA exists as a quasi-projective scheme.

5.3. The Kobayashi-Hitchin Correspondence

Let %K : K → U(W ) denote the unitary representation to %. Consider the open
Riemann surface X̊ = X\S. Given a reduction R : X̊ → P/K we have (R∗P )×%K
W ' P ×% W and hence a chosen hermitian structure on W induces a hermitian
structure h on P ×%W . Let hL be a hermitian metric on L, then h⊗hL is a metric
on P% ⊗ L. Let φ ∈ H0(X̊, P% ⊗ L) and φ �,h⊗hl ∈ H0(X̊, (P% ⊗ L) �) the dual w. r.
t. h ⊗ hL, then iφ ⊗ φ �,h⊗hl is skew-hermitian as an element of H0(X̊,End(P% ⊗
L) �) ' H0(X̊,End(P%)

�), i. e. de�nes an element of H0(X̊, (P%×Ad u) �). The dual
homomorphism d% �K : u � → k � de�nes the moment map d% �K

(
− i

2
φ⊗ φ �,h⊗hl

)
∈

H0(X̊, ((R∗P ) ×Ad k) �)13 and the non-degenerated bilinear form on k identi�es
d% �K

(
− i

2
φ⊗ φ �,h⊗hl

)
with a section µR(φ) ∈ H0(X̊, (R∗P )×Ad k).

13cf. [Kir84], Lemma 2.5. for the case of a projective action.
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We are now able to state the Kobayashi-Hitchin correspondence for stable a�ne
parabolic %-Higgs bundles.

5.2. Theorem. (Kobayashi-Hitchin correspondence) Let α ∈ ikZ (G) and
(P, (sj)j[|S|], ϕ, L) be a (α, τ j)-stable a�ne parabolic %-Higgs bundle. Then

there is a unique reduction R : X̊ → P/K such that

Λ(FR) + µR(φ) = −iα

as an equality in (R∗P ) ×Ad k , where FR denotes the curvature of the (unique)
Chern connection on P w. r. t. R.14

Remark. The Kobayashi-Hitchin correspondence extends to polystable pairs. More
details can be found in [GGM12]. In particular [GGM12] provides a proof of the
Kobayashi-Hitchin correspondence in the non-parabolic case.

The Kobayashi-Hitchin correspondence originates in the 1960's when M. S.
Narasimhan and C. S. Seshadri proved a �rst correspondence between irreducible
�at unitary bundles and stable vector bundles of degree 0 on a compact Riemann
surfaces ([NS65]). At the beginning of the 1980's Kobayashi [Kob80] (and indepen-
dently Lübke [Lüb82]) proved, that a holomorphic bundle on a Kähler manifold
that admits a Hermitian-Einstein metric, is already stable. The reverse state-
ment conjectured by Kobayashi and independently by Hitchin was consequentially
proved by Donaldson in the case of compact Riemann surfaces and algebraic sur-
faces ([Don85], [Don87]). A famous result by Uhlenbeck and Yau established the
correspondence on every Kähler manifold ([UY86]). Higgs bundles where �rst de-
�ned in 1987 by Nigel Hitchin, who extended the until then known correspondence
to relate Hermitian-Einstein metrics to stable Higgs bundles ([Hit87]). Parabolic
Higgs bundles �nally where introduced by Carlos Simpson in [Sim90]. There have
been various further extensions and modi�cations of the original correspondence,
e. g. [Cor88], [Bra91], [Ban96], [Biq97], [Mun00]. The interested reader may �nd
a much more complete account of the available literature in most books on the
topic. Recent results include [GGM12], [LT06], [BS11] or [Moc07]. References for
geometric properties of the moduli space of Higgs bundles may be found in the
introduction.

14Λ is the dual Lefschetz operator.
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