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Abstract 

The spatial organization of the genome plays an important role in the regulation of 

nuclear functions, including transcriptional control. The two major classes of chromatin, 

transcriptionally active euchromatin and transcriptionally silent heterochromatin, have 

distinct spatial segregation in the nucleus. In conventional nuclei, heterochromatin 

underlies the nuclear envelope and abuts nucleolar periphery, whereas euchromatin 

localizes to the nuclear interior. Such chromatin arrangement is nearly universal among 

eukaryotes. The only known exception is found in rod photoreceptor cells of nocturnal 

mammals where, for optical reasons, eu- and heterochromatin invert their positions: 

heterochromatin is accumulated in the nuclear center and euchromatin forms a thin 

peripheral shell. Thus, rod nuclei have an inverted organization in comparison to the 

conventional nuclei. Recently, two mechanisms for tethering peripheral heterochromatin 

to the nuclear envelope, a lamin A/C-dependent (A-type) and LBR-dependent (B-type), 

were identified. In particular, it was shown that absence of both of them lead to the 

nuclear inversion. Still, our knowledge about the mechanisms of chromatin classes 

positioning in both conventional and inverted nuclei is very limited. In the present work I 

attempted to elucidate these mechanisms further.  

    First, I analyzed the distribution of epigenetic marks characteristic of eu- and 

heterochromatin as well as several chromatin associated proteins which might be 

involved in establishing the nuclear inversion in rods. For this purpose I used extensive 

immunoassays of mouse retina cryosections. I found that the major chromatin classes in 

both inverted and conventional nuclei possess the same histone modifications and that 

inversion in rod nuclei, as well as maintenance of peripheral heterochromatin in 

conventional nuclei, are not affected by a loss of the major silencing histone 

modifications, such as H3K9me2,3 and H4K20me2,3. My results show that conventional 

nuclear organization relies on strong redundancy of the epigenetic code and code writers, 

whereas nuclear inversion relies on the absence of specific code readers, A- and B-type 

heterochromatin tethers.   

    Second, I analyzed the functional distribution of the chromatin regulating protein, 

Methyl-CpG binding protein 2 (MECP2), in retina and other mouse tissues. I found that 

MECP2 is expressed at very high levels in all retinal neurons except in rods, and it is 

also present in almost all non-neural cell types, with the exception intestinal epithelial 

cells, erythropoietic cells, and hair matrix keratinocytes. I demonstrated that MECP2 is a 

marker of the differentiated state. In particular, I showed that the onset of its expression 

during retina development coincides with massive synapse formation. Surprisingly, I 

found that overall development of retina as well as the nuclear architecture and 
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distribution of major histone modifications were unaffected in MECP2-null mice. I also did 

not find a compensatory expression of other methyl-CpG binding proteins in cultured 

cells and various tissues upon MECP2 deletion.  

    Third, I sought to identify an interacting partner of lamins A/C in the A-type tether of 

the peripheral heterochromatin in mammalian cells. For this purpose, I screened wild 

type mouse tissues with antibodies against several inner nuclear envelope 

transmembrane proteins (INM proteins) and obtained a cell-type specific signature of the 

INM proteins expression for nearly twenty cell types in WT and Lmna-KO mice. I found 

that the two most prominent candidates were LEM-domain proteins LEM2 and emerin. 

To test their functional role in the A-type tether, I aimed at ectopic expression of both 

proteins together with lamin C in mouse rod cells. To this end, I have cloned these 

proteins and prepared vectors containing either single proteins or their combination with 

lamin C (LEM2 & lamin C; emerin & lamin C) under the rod-specific Nrl promoter. 

Conventional nuclear architecture of rod cells upon transgenic expression of one of the 

vectors would indicate a role of these INM proteins in the coordination of A-type lamins 

to maintain the peripheral heterochromatin. This study is still in progress. 
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1  Introduction 

1.1 Epigenetic factors: chromatin level 

Epigenetics refers to the heritable processes regulating gene expression without alteration of 

gene sequences, mainly achieved by chemical modifications. It involves several 

mechanisms, such as DNA methylation, post-translational histone modifications (PTMs), as 

well as RNA-based mechanisms. The control of eukaryotic gene expression is achieved by a 

complex regulatory network from three hierarchical levels: DNA sequence, chromatin 

structure and nuclear organization (Misteli, 2007; van Driel et al., 2003). 

1.1.1 DNA methylation 

In mammals DNA methylation occurs exclusively at the C5 position of cytosine residues as 

5-methylcytosine (5mC) in the context of CpG dinucleotides. It is involved in normal 

mammalian genomic imprinting, X-chromosome inactivation and lineage-specific gene 

expression regulation (Bernstein et al., 2007; Illingworth and Bird, 2009; Li, 2002). DNA 

methylation of promoter regions causes a strong and heritable transcriptional inhibition of the 

corresponding genes (Bird, 2002). So far two modes of repression have been proposed. 

First, the methyl group can directly interfere with the transcription factor to bind their target 

sites (Becker et al., 1987). Second, the binding of the methyl-CpG binding proteins (MBPs) 

recruit repressive chromatin modifiers. However, DNA methylation occurring at gene bodies 

was positively correlated with transcription (Hellman and Chess, 2007; Rauch et al., 2009). 

The active X chromosome displays more than two times as much allele-specific methylation 

as inactive X chromsome, and the methylation is concentrated at gene bodies (Hellman and 

Chess, 2007).  

    DNA methylation marks are established and maintained by the DNA methyltransferases 

(DNMTs), which contain a highly conserved C-terminal catalytic domain, while the N-

terminal regulatory domain shows striking differences. The de novo DNMTs, DNMT3a and 

DNMT3b, together with their catalytically inactive cofactor DNMT3L, are responsible for the 

establishment of methylation mark during differentiation (Jia et al., 2007; Okano et al., 1999; 

Okano et al., 1998). The obtained marks are maintained by maintenance methyltransferase 

DNMT1 through the cell cycle (Bacolla et al., 2001; Bacolla et al., 1999; Bestor et al., 1988; 

Pradhan et al., 1999). The occurred DNA methylation sites can be recognized by MBPs, 

including the methyl-CpG binding domain (MBD) family (Hendrich and Bird, 1998; Saito et 

al., 2002), the Kaiso protein family (Filion et al., 2006; Prokhortchouk et al., 2001) and the 
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ubiquitin-like plant homeodomain and RING finger domain-containing (UHRF) protein family 

(Unoki et al., 2004).  

DNA methylation could be reversely removed by the ten-eleven translocation (TET) 

protein family, including TET1, TET2 and TET3. All members of the TET family contain a C-

terminal 2-oxoglutarate (2OG) - and Fe (II)-dependent dioxygenase domain (DSBH), 

catalyzing the conversion of 5mC into 5 hydroxymethylcytosine (5hmC) in vitro and in vivo. 

5hmC could be further oxidized to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) (Ito 

et al., 2010; Kriaucionis and Heintz, 2009; Maiti and Drohat, 2011; Tahiliani et al., 2009). 

The products hmC, fC, caC could be subsequently removed by TDG or NEIL glycosylase 

and the BER pathway (Muller et al., 2014). 

1.1.2 Histone modifications 

Nucleosome builds up the fundamental unit of chromatin, which consists of an octamer of 

core histones, two copies of H3-H4 and H2A-H2B dimers, wrapped by 147 bp of DNA. The 

structure of histones is similar, each consisting of a globular, hydrophobic internal region and 

a highly conserved N-terminal histone tail, which extends beyond the nucleosome and 

where the post-translational modifications occur. These residues can be modified by 

different enzymes that can “write” or “erase” the modifications. Lysine residues can be 

acetylated or deacetylated, methylated or demethylated, or coupled to ubiquitin; arginine 

residues can be methylated or demethylated; and serine or threonine residues can be 

phosphorylated (Kouzarides, 2007; Peterson and Laniel, 2004). 

Table 1. Activating and repressive histone posttranslational modifications.  

Modification Role in transcription Modification site 

Acetylation Activation H2B K6,K7,K16,K17* 

H3 K9, K14, K18, K56* 

H4 K5,K8,K12,K16* 

Methylation Activation H3 K4me2, K4me3, K36me3, 
K79me2* K4me1, K79me1, 
K79me3, K9me1, K27me1** 

H4 K20me1** 

Methylation Repression H3 K9me3, K27me3*** 

H4 K20me3*** 

* Strahl and Allis, 2000; ** Balazs, 2011; *** Joshua C. Black 2012. 

    Histone PTMs “tailor” the degree of chromatin fibers compaction: the chromatin fibers 

tend to be less compact during transcription and replication. Correspondingly, PTMs, such 
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as acetylation occurs to “unravel” chromatin since it neutralizes the basic charge of lysine 

residues, decreasing the affinity for DNA. The chromatin fibers are more compact in 

transcriptionally silent regions and during mitosis (Schneider and Grosschedl, 2007). From 

the perspective of euchromatin and heterochromatin establishment and maintenance, lysine 

acetylation and methylation of H3K4 or H3K36 always correlates with transcriptionally active 

euchromatin (Berger, 2007). High level of H3K27me3 is the characteristic of the facultative 

heterochromatin (Cao et al., 2002). Strong enrichment of H3K9me3, H4K20me3 and 

H3K64me3 is associated with the constitutive heterochromatin (Daujat et al., 2009; Peters et 

al., 2002; Schotta et al., 2004) (Table 1). In particular, distinct chromatin marks are observed 

in pericentric heterochromatin, including DNA methylation, histone hypoacetylation, 

repressive histone modifications, such as H3K9 methylation, which contains a binding sites 

for the Heterochromatin protein 1 (HP1) family (Almouzni and Probst, 2011). 

1.1.3 Chromatin binding proteins 

The histone PTM marks and methylated CpG dinucleotide recruits non-histone proteins to 

chromatin, which mediates the downstream effects on chromatin compaction, e.g., 

H3K9me2/3 and methylated CpG recruits HP1/CBX1 (Kutateladze, 2011) and MECP2 

(Brero et al., 2005), respectively. Spreading of heterochromatin features was shown to 

exploit a self-sustaining loop mechanism in which HP1 self-associates and interacts with the 

H3K9 HMTase, Suv39 h1/2, to add more H3K9me (Aagaard et al., 1999; Maison and 

Almouzni, 2004). HP1 also has the capacity to recruit de novo methyltransferase and directs 

DNA methylation to major satellite repeats at pericentric heterochromatin (Lehnertz et al., 

2003). 

    MECP2 was firstly identified as a protein that binds specifically to methylated DNA (Lewis 

et al., 1992). Mutations of the MECP2 gene were found to be the cause of an autism 

spectrum disorder, Rett syndrome (Wan et al., 1999). MECP2 is characterized by a methyl 

binding domain (MBD) and a transcription repression domain (TRD). The unstructured 

aminoacidic sequence linking MBD and TRD domains is responsible for the interaction of 

MECP2 with LBR. The formation of the MECP2-LBR protein complex might partly explain 

the link of peripheral heterochromatin to inner membrane (Guarda et al., 2009). Moreover, 

by interacting with Sin3A and recruiting histone deacetylases, MECP2 represses 

transcription and thereby stabilizes and consolidates the heterochromatic state of DNA (Bird 

and Wolffe, 1999; Leonhardt and Cardoso, 2000). MECP2 has also been shown to be 

particularly concentrated at the pericentromeric heterochromatin (Lewis et al., 1992). 
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1.2 Epigenetic factors: genome packaging into the nucleus 

Based on the results from extensive studies using microscopic approaches, and more 

recently molecular based methods, a detailed view of three-dimensional (3D) arrangement 

of chromosomes inside interphase nucleus emerged (Bickmore, 2013; Bickmore and van 

Steensel, 2013; Cook, 2010; Cremer and Cremer, 2001; Cremer and Cremer, 2010; Dekker 

et al., 2013; Gibcus and Dekker, 2013; Gilbert et al., 2005; Misteli, 2007). 

1.2.1 Chromosome territories and their arrangement in the nucleus 

Chromosomes occupy distinct territories (Chromosome Territories; CTs) in the interphase 

nucleus (Cremer and Cremer, 2010). The visualization of microirradiated DNA by 3H-

thymidine incorporation (Cremer et al., 1982) or immunostaining with antibodies against UV-

damaged DNA (Raith et al., 1984) provided the first indirect evidence of the existence of 

CTs. The direct visualization of individual CTs was enabled by in situ hybridization 

techniques in the mid 1980s (Manuelidis, 1985; Schardin et al., 1985). Fluorescence In Situ 

Hybridization (FISH) experiments revealed the nonrandom distribution of chromosomes 

depending on their size and gene density: large and gene-poor chromosomes tend to be 

located near the nuclear periphery, whereas small and gene-rich chromosomes are located 

more internally (Bolzer et al., 2005; Boyle et al., 2001; Cremer et al., 2003; Cremer and 

Cremer, 2001; Croft et al., 1999; Kreth et al., 2004) (Figure 1B).. 

      

Figure 1. Chromosome territories revealed by two (A) and 24-color (B) FISH. A, 3D 

reconstruction of chromosome 18 (red) and 19 (green) territories after FISH with respective 

chromosome paints in the nucleus of G0 human lymphocytes. Chromosome 19 is located closer to 

the center of the nucleus, whereas chromosome 18 is preferentially located closer to the nuclear 

envelope, according to their gene-density. The mid-plane section of the nucleus is shown in magenta. 

Scale bar: 5 μm (adapted from Cremer & Cremer, 2001). B, False-colored chromosome territories in 

human G0 fibroblast nucleus (46, XY). Each chromosome paint was labeled with a different set of 

fluorochromes by combinatorial labeling which secured correct identification and classification of 

chromosomes using goldFISH software. The distribution of chromosomes is not random: large and 

gene-poor chromosomes tend to be located near the nuclear periphery, whereas the small and gene-

rich chromosomes are located more internally (Adapted from Bolzer, 2005; Speicher and Carter, 

2005). 
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    Early evidence was based on the FISH studies on human chromosome 19 and 18, with 

the highest and lowest gene density, respectively. The chromosome 19 was found to be 

consistently localized in the interior of nuclei, not only in human lymphocyte, but also in other 

cell types. In contrast, chromosome 18 was found at the nuclear periphery (Cremer et al., 

2003; Cremer and Cremer, 2001; Croft et al., 1999) (Figure 1A). Similar gene density 

correlated radial arrangements in the nuclei were shown for all human chromosomes (Boyle 

et al., 2001; Kreth et al., 2004)     

    The limitations of microscopic studies, which include the fluorescence sensitivity and the 

spatial resolution, make it difficult to obtain a comprehensive analysis of the three dimension 

(3D) folding of the genome, or to determine an entire chromosome organization at kilobase 

resolution. For example, with the standard fluorescence microscopy system the diffraction-

limited spatial resolution is at the classic Abbé limit of ~0.2 μm. Recently, few new 

microscopic techniques were employed to increase the resolution, such as the application of 

three-dimensional structured illumination microscopy (3D-SIM) (Carlton, 2008; Schermelleh 

et al., 2008). 

In the last decade, the development of Chromosome Conformation Capture (3C) 

technology, combined with computer simulations, has revolutionized the analysis of genome 

organization within the nucleus (Bau and Marti-Renom, 2011; Bohn and Heermann, 2010; 

Dekker et al., 2002; Fudenberg and Mirny, 2012; Hakim and Misteli, 2012; van Steensel and 

Dekker, 2010). Hi-C method, one of the modified 3C techniques, confirmed territorial 

organization of the interphase chromosome shown previously by FISH and microscopic 

studies. The average intrachromosomal contact probability, even at distances greater than 

200 Mb, is always much higher than the contact probabilities between different 

chromosomes (interchromosomal contacts) (Figure 2A). Moreover, ratio of 

observed/expected interchromosomal contact probabilities shows that small, gene-rich 

chromosomes, including chromosomes 16, 17, 19, 20, 21, 22, preferentially interact with 

each other (Lieberman-Aiden et al., 2009) (Figure 2B). 

    The recent Hi-C studies have shown that chromosomes are composed of smaller 

domains, referred to as Topologically Associated Domains (TADs) (Figure 4B). TADs are 

contiguous chromosomal regions where the genomic interactions are strong within the 

regions but are sharply depleted on the boundaries. TADs comprise from several hundreds 

kb up to 1-2 Mb (Dixon et al., 2012; Nora et al., 2012; Sexton et al., 2012). Studies from 

multiple cell lines have revealed that TADs are to a large extent tissue invariant, leading to 

the proposal that TADs are fundamental architectural building blocks of chromosomes 

(Dekker et al., 2013; Gibcus and Dekker, 2013; Nora et al., 2013). Earlier microscopic 

studies identified so called chromosomal domains (or 1Mb replication domains), structurally 

defined chromatin entities of several hundred kb in size (the same length scale as TADs), 
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moving as a unit and persisting over at least several cell cycles (Cremer and Cremer, 2001; 

Markaki et al., 2010). It is tempting to speculate that chromosomal domains and TADs are 

the same entities, although direct proof for this is still lacking (Dekker, 2014). 

 

 
Figure 2. Chromosome territories (A) and their intranuclear distribution (B) revealed by Hi-C.  

A, Frequencies of interchromosomal interactions are significantly higher in comparison to intra-

chromosomal interactions: loci within chromosome 1 homologue interact more frequently with each 

other (blue solid line) than with loci of another homologue of chromosome 1 (black dash line) or with 

loci on other chromosomes 10 or 21 (green and red dash lines, respectively). B, Observed/expected 

number of interchromosomal contacts between all pairs of human chromosomes in lymphoblastoid 

cells. The number ranges from 0.5 to 2, blue and red indicate depletion and enrichment, respectively. 

Small, gene-rich chromosomes tend to interact more frequently with each other than large gene-poor 

chromosomes, with exception to small but gene-poor chromosome 18. Both figures adapted from 

Erez Lieberman-Aiden et al (2009).  

1.2.2 Chromosome territory dynamics 

The CTs undergoes dynamic changes to meet the needs of development, differentiation, 

proliferation, or disease status. In addition to the relocation of individual region of 

chromosomes, repositioning of whole chromosome territory has also been observed during 

differentiation of the following cell types: ES cells (Dixon et al., 2015), T-cells (Kim et al., 

2004), myoblasts (Gianakopoulos et al., 2011) and adipocytes (Kuroda et al., 2004). The 

nuclear architecture changes are observed during early development of different mammalian 

species, such as mouse, rabbit and cow (Koehler et al., 2010).  

    The global arrangement of CTs plays an important role in the regulation of nuclear 

functions, especially the transcriptional activities of genes within (Deng and Blobel, 2014). 

The genome-wide transcriptome is affected when CTs are repositioned via chromosome 

translocation (Harewood et al., 2010). Also, FISH assays demonstrated that a number of 

genes relocate away from the nuclear periphery upon transcriptional activation and towards 

the nuclear periphery upon transcriptional silencing (Kosak et al., 2002; Takizawa et al., 
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2008; Williams et al., 2006). Such as, during thymocytes maturation the Dntt gene becomes 

silenced and relocates to loci of pericentromeric heterochromatin (Su et al., 2004). 

Notably, the proximity to the nuclear lamina is not sufficient to cause the transcriptional 

repression. Artificially targeting of chromatin to nuclear lamina cause either silencing or 

maintenance of the normal expression level (Finlan et al., 2008; Kumaran et al., 2008; 

Reddy et al., 2008). The effect of proximity to nuclear lamina on gene silencing might 

depend on the nature of the genes, their transcriptional status in the studied cell types, and 

the 3D structure of the chromosome regions flanking the genes in question (reviewed in 

(Joffe et al., 2010)).   

1.2.3 Segregation of euchromatin and heterochromatin in the nucleus 

Chromatin is traditionally classified to euchromatin and heterochromatin based on the 

differential compaction and spatial arrangement during interphase (Heitz, 1928). 

Euchromatin occupies the internal nuclear regions whereas heterochromatin is distributed 

along the nuclear envelope and around the nucleoli (for detailed information see 2.4) (Figure 

3A). Euchromatin is decondensed, more accessible, characterized by gene richness and 

active transcription. In general, euchromatin replicates early in S-phase and is associated 

with the active epigenetic marks, such as histone acetylation, H3K4 methylation and H3K36 

methylation. By contrast, heterochromatin is condensed, gene poor and predominately 

silent. Heterochromatin replicates late in S-phase (Dillon and Festenstein, 2002) (Figure 3B). 

In mammals, heterochromatin is characterized by high levels of H3K9me2/3, H4K20me2/3, 

deacetylated histone H4 and DNA methylation (Misteli, 2007). 

                               
Figure 3. Segregation of euchromatin and heterochromatin in the nucleus observed on 

ultrastructural level (A) and after replication labeling (B). A, Transmission electron microscopy 

images of nucleus after standard contrasting procedure using uranyl acetate and lead citrate 

highlighting DNA and proteins. Heterochromatin lines the nuclear envelope and the nucleolus 

(magenta arrows), whereas euchromatin is distributed in the nuclear interior (green arrows). B, Sites 

of DNA replication in early (Cy3-dUTP, green) versus mid-late (Cy5-dUTP, red) S phase revealed by 

a "pulse-chase-pulse" experiment in mouse SH-EP N14 cells. Note that DNA replication during late S-

phase takes place preferentially at the nuclear periphery and nucleolar periphery, whereas during 
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early S phase, it takes place in the interior of the nucleus with exception of the nucleoli (n). Scale bar: 

5 μm (adapted from Schermelleh, 2001). 

    The compartmentalization of eu- and heterochromatin can be detected at a higher 

resolution and genome-wide scale with 3C-based methods. Based on the plaid pattern of the 

matrix obtained from Hi-C, each chromosome is divided into compartment A and B (Figure 

4A). Greater interaction is found within each kind of compartment rather than between them 

(Dixon et al., 2012). When comparing the data obtained from Hi-C to known epigenetic 

features, compartment A correlates strongly with high gene densities, high expression, open 

state chromatin (positive correlation with H3K36me3 and strongly attenuated correlation with 

H3K27me3). The characteristics of A compartment identify it as euchromatin. The loci within 

compartment B exhibit stronger trend for interaction, which suggests that compartment B is 

packed more densely, indicating its heterochromatic nature (Lieberman-Aiden et al., 2009). 

Moreover, Rao and his collaborators zoomed in to the compartments (at higher resolution of 

25 kb) and divided compartment A and B into two (A1 and A2) and four (B1, B2, B3 and B4) 

subcompartments, respectively, based on the high resolution Hi-C long-range contact 

patterns (Rao et al., 2014). 

 
Figure 4. Segregation of euchromatin and heterochromatin in the nucleus observed by Hi-C. A, 

Matrix of intrachromosomal contact frequencies of human chromosome 14 after normalization and 

Pearson correlation. The plaid pattern indicates the presence of two compartments within the 

chromosome. B, PCA analysis to the matrix identifies A (red) and B (blue) compartments with more 

open and more close conformation, respectively. There are strong interactions within each 

compartment and weak interactions between A and B compartments. C, Schematics show that TADs, 

smaller structural units of chromosomes, belong to either A or B compartments (modified from Erez 

Lieberman-Aiden et al, 2009). 

    Compartmentalization of active (A) and inactive (B) chromatin domains is likely driven in 

part by the interaction of two domains with specific subnuclear structures. For instance, 

inactive chromatin domains are often found associated with the nuclear lamina (NL), which 

serves as a large anchoring platform for peripheral chromatin (Chubb et al., 2002; van 

Steensel and Dekker, 2010). Using DamID technique, an approach in which lamins (or 
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LAP1, emerin) are fused to a bacterial methyltransferase and the proximity to NL leads to A6 

methylation of lamina-associated loci, it was shown that mammalian genome harbors about 

1100-1400 Lamina-Associate Domains (LADs), which are characterized by low gene density 

and a general lack of transcription. LADs have the size from ~10kb to ~10Mb, and the 

overall amount of LADs cover nearly 40% of the genome (Guelen et al., 2008).  

    At least a fraction of LADs is recruited to NL via the Lamina-associated sequences 

(LASs), which are typically, however not globally, enriched in (GA) repeats. LASs are 

tethered to the NL by the complex formed by transcription repressor cKrox, histone 

deacetylase HDAC3 and INM protein LAP2β (Zullo et al., 2012). Although LADs are shown 

to interact with A- and B-type lamins (Collas et al., 2014; Kind and van Steensel, 2014; 

Meuleman et al., 2013), removal of essentially all lamins does not have any detectable effect 

on the genome-NL interaction in murine embryonic stem cells (Amendola and van Steensel, 

2015). In lamin B1/B2 double knockout mES cells, overall LADs organization is largely 

retained from the perspective of both the number of LADs and the overall coverage (dKO vs 

wt: 38.4% vs 38.8%). Furthermore, no changes in LADs number were found when lamin A/C 

was reduced in lamin B1/B2 double knockout cells (Amendola and van Steensel, 2015). 

    During interphase, the genome-NL contacts are dynamic within a confined narrow zone 

(up to ~1μm). Kind and co-authors showed that LADs remained at the nuclear periphery are 

marked by H3K9me2, while LADs that relocated to the nuclear interior showed significantly 

less H3K9me2 (Kind et al., 2013). Similar dynamic is also observed when cells differentiate: 

some LADs may become associated with the NL, while others may lose their association 

with the nuclear periphery. These processes coincide with altered gene expression in a way 

that inactivated genes are found in new LADs and activated genes move to the nuclear 

interior. Thus LADs have significant cell-to-cell heterogeneity, and the NE serves as a cell-

type specific anchoring platform where heterochromatic loci are tethered (Peric-Hupkes et 

al., 2010; Peric-Hupkes and van Steensel, 2010). 

1.2.4 Inverted rod nuclei is a unique exception in vertebrates 

As described above, most eukaryotic nuclei have conventional nuclear architecture during 

interphase, that is, heterochromatin is distributed along the nuclear envelope and around the 

nucleoli, whereas euchromatin occupies the internal nuclear regions (Figure 5B) (Solovei et 

al., 2009). The nuclei of mouse rod photoreceptor cells are characterized by the inverted 

distribution of chromatin: heterochromatin localizes in the nuclear center, whereas 

euchromatin lines the nuclear border (Figure 5C). All the mouse chromosomes are 

acrocentric and subpericentromeric major satellites of chromosomes aggregate to form the 

chromocenters (Figure 5A) (Guenatri et al., 2004; Joseph et al., 1989). In conventional 

nuclei, chromocenters adjoin both the nuclear envelope and the nucleoli. LINE-rich 
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facultative heterochromatin (fHC) lines the chromocenter, the nucleoli, and the nuclear 

envelope. SINE-rich euchromatin occupies the nuclear interior (Figure 5B). In rod cells there 

is one centrally located chromocenter, which is surrounded by a thick shell of facultative 

heterochromatin (LINE-rich) and thinner outer shell of euchromatin (SINE-rich). Centromeres 

and proximal telomeres fuse to 3-5 clusters at the surface of the chromocenter, while distal 

telomeres are found predominantly in the peripheral shell of euchromatin (Figure 5C) 

(Solovei et al., 2009).  

    Rod nuclei have conventional nuclear architecture at birth, which is characterized by the 

peripheral and the chromocenters-surrounding localization of L1-rich heterochromatin, 

whereas euchromatin localizes more internal. The process of nuclear architecture inversion 

is accompanied by chromocenter fusion: the median number decreases from 13 at P0 to 2 

at P28 and concomitantly the median diameter increases from 1.2 μm to 2.8 μm. At P6, L1-

rich heterochromatin begins to move away from the nuclear periphery and accumulates 

around the chromocenters. The relocalization of L1-rich hetrochromatin to chromocenters 

finished when examined at P14 and P21 (Solovei et al., 2009). 

 

Figure 5. Schematics of chromosome subregions distribution on metaphase chromosome (A) 

and in interphase nuclei with the conventional (B) and inverted (C) nuclear architecture. A, In 

mammalian mitotic chromosomes gene-rich and gene-poor regions alternate as R- and G-bands, 

corresponding to early replicating and SINE-rich euchromatin and mid-late replicating LINE-rich 

facultative heterochromatin. Subcentromeric constitutive heterochromatin, comprised by satellite 

repeats, corresponds to C bands. B, In mouse nuclei with conventional nuclear architecture, 

euchromatin (white) localizes in the interior of the nucleus, whereas LINE-rich heterochromatin 

adjoins the nuclear border (light grey) and surrounds the chromocenter (dark grey). C, In nuclei of 

mouse rod photoreceptors chromatin is distributed in a concentric fashion: a single chromocenter 

(dark grey) localizes in the center of the nucleus and is surrounded by a shell of heterochromatin (light 

grey), which is in turn surrounded by a thin shell of euchromatin (white). In order to position eu- and 

heterochromosomal segments (green and red regions, respectively) into corresponding nuclear 

compartments, chromosomes are significantly folded between these two compartments (adapted from 

Solovei, 2009).  
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    The inverted architecture was found exclusively in the rod cells of nocturnal mammals, 

and was shown to be related to nocturnal lifestyle. Direct measurements of light propagation 

through mouse rod cells proved that rod nuclei function as microlenses focusing light. 

Computer simulations demonstrated that columns of inverted nuclei do not scatter light, 

while columns of conventional nuclei scatter light strongly. These finding indicate that rod 

nuclei inversion is connected not to nuclear function but rather to retinal optics (Solovei et 

al., 2009).  

 
 

Figure 6. The cellular layers of mouse retina stained by DAPI. Retina is composed of three 

layers, outer nuclear layer (ONL), inner nuclear layer (INL) and ganglion cell layer (GCL). In 

mouse 97% of the photoreceptor cells are rod cells and cone cells comprise only 3% of 

photoreceptors. The INL comprises microglia, Muller cells, amacrine cells, horizontal and bipolar cells. 

GCL is mainly composed of ganglion cells. Endothelial cells of the retinal blood capillaries are found 

in the space between each two layers, including ONM and INM, INM and GCL.  

    Despite of their inverted organization, nuclei of rod photoreceptors are fully functionally 

active and have a very high transcriptional level (Siegert et al., 2012), which justifies using 

them as a model for studying the functional organization of the nucleus (Eberhart et al., 

2013). Moreover, mouse retina represents a convenient model to study mechanisms of 

nuclear architecture. First, rod photoreceptors have clear separation of the three major 

chromatin classes, which allows comparing the distribution of histone modification marks 
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within different chromatin classes. Second, the results of histone mark distribution of rods 

can be compared to those of conventional nuclei found in other retinal cell types (Eberhart et 

al., 2012). Indeed, retina is a regularly structured tissue which consists of three distinct cell 

layers: DAPI image of mouse retina): outer nuclear layer (ONL), inner nuclear layer (INL) 

and ganglion cell layer (GCL). The major cell types in each layer can be easily identified 

even after only nuclear counterstaining with DAPI (Figure 6). 

1.3 Roles of the nuclear envelope in the organization of the nuclear chromatin 

The eukaryotic cell nucleus is enclosed by the nuclear envelope (NE). The NE includes two 

membranes, the inner nuclear membrane (INM) and the outer nuclear membrane (ONM), 

which are separated by the perinuclear lumenal space and joined at nuclear pore complexes 

(NPCs). Underneath the NE lies a mesh of the nuclear lamins, the major components of the 

nuclear lamina, which are connected to INM by more than 100 transmembrane proteins 

(Figure 7). NE defines nuclear integrity, positioning of the nucleus in cytoplasm, 

communication between cytoplasm and nucleoplasm as well as transporting of 

macromolecules, and organization of chromatin (Brachner and Foisner, 2011; Mellad et al., 

2011; Shimi et al., 2011; Sosa et al., 2012; Starr and Fridolfsson, 2010). Below I focus on 

the roles of the NE in chromatin organization. 

1.3.1 Lamins 

Nuclear lamins are type V intermediate filaments and contain small N-terminal “head” 

domain, central α-helical rod domain and a large C-terminal “tail” domain. The rod domain is 

divided into four α-helical segments, coil 1a, coil 1b, coil 2a, coil 2b, separating by non-α-

helical linker sequence (Fisher et al., 1986). The tail domains of all lamins contain a nuclear 

localization signal (NLS) and an Ig-fold domain (Dittmer and Misteli, 2011). The nuclear 

lamin proteins include A- and B-type lamins - A-type lamins, lamin A and C (as well as two 

rare varaints C2 and AΔ10), are splice variants of the same LMNA gene (Lehner et al., 

1987; Rober et al., 1989; Stick and Hausen, 1985). B-type lamins, lamin B1 and lamin B2, 

are encoded by LMNB1 and LMNB2. In addition a splice variant of LMNB2, lamin B3 was 

identified in mouse spermatocyte (Furukawa and Hotta, 1993). 

    A- and B-type lamins have fundamentally different properties. First of all, they have 

different fates during mitosis: A-type lamins become soluble whereas B-type lamins stay 

associated with the NE vesicles, most possibly due to their different isoelectric points or 

CaaX-dependent isoprenylation. A-type lamins lose their isoprene moiety soon after 

incorporation into the lamina (Beck et al., 1990; Kilic et al., 1999; Weber et al., 1989), while 

B-type lamins are permanently isoprenylated (Gerace and Blobel, 1980; Hennekes and 

Nigg, 1994; Nigg et al., 1992; Stick et al., 1988). Secondly, expression pattern of lamins 
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differs: during development at least one B-type lamin is expressed in all cells, while A-type 

lamins are expressed later in development and in a differentiation-dependent and cell type-

specific manner (Bestor et al., 1988; Dechat et al., 2010; Solovei et al., 2013). 

    Lamins can interact with chromatin either directly or through histones and other lamin-

associated proteins, such as lamin B receptor (LBR), HP1, BAF, INM protein MAN1, emerin, 

LEM2 and several LAP2 isoforms (reviewed in (Maraldi et al., 2010; Wilson and Foisner, 

2010)). Tethering of peripheral chromatin to the NL is visible in mammalian cells by electron 

microscopy (Belmont et al., 1993) and can be demonstrated biochemically (Guelen et al., 

2008). Loss-of-function experiments in C. elegans and D. melanogaster reveal the changed 

chromatin organization in lamins null cells (Bao et al., 2007; Liu et al., 2000; Margalit et al., 

2005a; Mattout et al., 2011). The changed chromatin organization can modulate gene 

expression by altering their accessibility to transcription factors (Bank and Gruenbaum, 

2011; Milon et al., 2012).  

1.3.2 Transmembrane proteins   

1.3.2.1 LINC complexes link the nuclear interior to the cytoplasm 

The INM and ONM possess different sets of transmembrane proteins (Schirmer and 

Foisner, 2007; Schirmer and Gerace, 2005). One well studied INM proteins are SUN 

proteins, which contain a conserved SUN domain (Sad1p, Unc-84). At the nucleoplasmic 

face of the INM, SUN1 was shown to bind directly to Lamin A. Despite the binding of SUN 

proteins to lamins, the localization of SUN proteins is not necessarily dependent on lamins in 

mammals, at lease in certain cell types, such as human UNC84A (Crisp et al., 2006; Haque 

et al., 2006; Hasan et al., 2006). At the perinuclear lumenal space, SUN proteins traverse 

the INM and bind to KASH (Klarsicht/ANC-1/SYNE homology) proteins which traverse ONM. 

At the cytoplasmic face of the ONM, KASH protein interacts with cytoskeletal components. 

Interaction of SUN and KASH proteins forms the so called LINC complexes (linker of the 

nucleoskeleton and cytoskeleton) (Figure 7) (Herrmann et al., 2007; Ketema et al., 2007). 

     In mammals there are four KASH proteins identified so far: the first, NESPRIN 1 (also 

known as SYNE1, MYNE1, and ENAPTIN) was found to be enriched in the NE of muscle 

nucleus clustered beneath the neuromuscular junction (NMJ) (Apel et al., 2000). The 

NESP1/SYNE1 gene encodes several splice isoforms, NESPRIN 1 Giant (NESP1G) is the 

largest one with the molecular weight of about 1000 kDa. The second, NESPRIN 2 (also 

known as SYNE2 and NUANCE) is transcribed from the SYNE2 gene which also encodes a 

large isoform NESP2G with molecular weight of 800 kDa. Both NESP1G and NESP2G have 

the same structure: N-terminal ABD, spectrin repeats (defining a high flexibility of molecule), 

and C-terminal KASH domain (Apel et al., 2000; Zhang et al., 2002; Zhang et al., 2001). The 
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third, NESPRIN 3 (NESP3) is also localized to ONM via the same mechanism. The fourth, 

NESP4 has only 42 kDa with a single spectrin repeat and somewhat degenerated KASH 

domain.  

    At the cytoplasmic face of the ONM, NESPRIN 1/2 Giant binds to Actin directly, NESPRIN 

1/2 and NESPRIN 2/4 bind to microtubules via DYNEIN and KINESINE 1, respectively. 

NESPRIN 3 binds to intermediate filaments via PLECTIN (Figure 7) (Herrmann et al., 2007; 

Ketema et al., 2007; Mellad et al., 2011; Roux et al., 2009; Sosa et al., 2012; Starr and 

Fridolfsson, 2010). LINC has been found to be conserved from yeast to mammals and has 

essential roles in cell polarization, nuclear positioning and migration (Lei et al., 2009; Starr, 

2009; Zhang et al., 2009). Mutations in proteins of LINC complexes causes laminopathies, in 

particular, EDMD (Emery-Dreifuss muscular dystrophy) can arise from mutations in different 

genes: EMD (which encodes EMERIN), LMNA (which encodes lamin A/C), SYNE1 

(NESPRIN-1) or SYNE2 (NESPRIN-2). These proteins are interconnected, suggesting 

common mechanisms for development of laminopathies, and illustrating the importance of 

proper LINC complex functionality for healthy human development. 

1.3.2.2 Transmembrane proteins and their involvement in the chromatin tethering 

In mammals, there are over 100 different INM integrated proteins. In this chapter I will focus 

on eight transmembrane proteins (Figure 7, 8). LBR is the best characterized among them. 

N-terminus of LBR comprises two globular domains, one of them is Tudor domain, joined by 

a linker region. N-terminal faces to the nucleoplasm and interacts with DNA (directly bound 

to DNA via Tudor domain), B-type lamins, HP1, HA95 and chromatin (Duband-Goulet and 

Courvalin, 2000; Gajewski and Krohne, 1999; Holmer and Worman, 2001; Wagner et al., 

2004). In vivo, LBR forms a complex with the core histones H3, H4 and linker histone HP1 

(Polioudaki et al., 2001) (Figure 7,8) . LBR is involved in heterochromatin organization via 

the binding of LBR N-terminus to chromatin and histones. C-terminus of LBR is a short 

hydrophilic spanning region facing the nucleoplasm with unknown function (Hoffmann et al., 

2002). The large middle part (212-583 aa of human LBR) is composed of eight putative 

transmembrane domains encompassing a conserved sterol reductase domain (Worman et 

al., 1990) (Figure 8). The first transmembrane domain is critical for the incorporation of LBR 

to the INM (Smith and Blobel, 1993). During cell cycle, LBR is found to play a central role in 

targeting the NE precursor membrane vesicles to the chromatin during NE assembly at the 

end of mitosis, by the interaction of N-terminal spanning region with importin β (Ma et al., 

2007).  

    INM LEM-D proteins are defined by the presence of a common structural bihelical motif 

called the LEM domain. The name of LEM domain derives from the firstly identified proteins 

LAP2 (LAP2, lamina-associated polypeptide 2), EMERIN and MAN1 (Laguri et al., 2001; Lin 
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et al., 2000). Based on the domain organization, LEM-D proteins fall into three groups 

(Brachner and Foisner, 2011; Lee and Wilson, 2004; Wagner et al., 2010). Group I proteins 

contain N-terminal LEM domain and large nucleoplasmic domain, most of them have a 

single transmembrane domain at their C-terminus. Representatives of Group I include 

EMERIN and LAP2. Like Group I, Group II proteins also carry N-terminal LEM domains. 

Different from Group I proteins, they contain two internal transmembrane domains and C-

terminal winged-helix MAN1/Scr1p/C-terminal (MSC) motif domains that directly bind DNA 

(Caputo et al., 2006). LEM2 and MAN1 are the representatives of Group II. Proteins of group 

III have internal LEM domains and multiple ankyrin groups, including ANKLE1 and ANKLE2. 

In contrast to other LEM-D proteins, Ankle1 shuttles between the nucleoplasm and 

cytoplasm (Brachner et al., 2012)(Brachner A, 2012), whereas Ankle2 localizes throughout 

the endoplasmic reticulum in human cells and at the NE in worms due to a transmembrane 

domain (Figure 7) (Asencio et al., 2012).  

    LEM-D proteins tether chromatin through different mechanisms. The shared LEM domain, 

an ~45-residue motif that folds as two α-helices (Laguri et al., 2001), binds a conserved 

metazoan chromatin protein BAF (Cai et al., 2001; Cai et al., 2007; Furukawa, 1999; Lee et 

al., 2001; Shimi et al., 2004; Shumaker et al., 2001). BAF was shown to interact with 

chromatin (Figure 7) (Margalit et al., 2007). Moreover, some LEM-D proteins have additional 

domains that directly bind DNA, or chromatin proteins. For example, LAP2 contains a 

second LEM-like domain that binds directly to DNA (Cai et al., 2001; Laguri et al., 2001); 

MAN1 and probably LEM2 bind DNA directly via the C-terminal winged helix MAN1/Scr1p/C-

terminal domain (Caputo et al., 2006). LAP2β also binds chromatin protein HA95 (Martins et 

al., 2003). Furthermore, all identified LEM-D proteins bind either A- or B-type lamins, or both, 

directly (Brachner et al., 2005; Clements et al., 2000; Lee et al., 2001; Mansharamani and 

Wilson, 2005; Sakaki et al., 2001). 

    The interactions of LEM-D proteins, lamins, and BAF are strongly conserved between 

flies, nematodes and mammals, suggesting their fundamental roles in the nucleus, including 

anchoring chromatin to the NE (Wilson and Foisner, 2010). C. elegans contains three LEM-

D proteins Ce-emerin, Ce-lem2 and Ce-Lem3. Double-knockdown of the former two LEM 

proteins causes embryonic lethality at the 100-cell stage. The phenotype includes more than 

50% of the nuclei with abnormally condensed chromatin, anaphase bridges which appear as 

early as the first nuclear division, aneuploidy and failure of chromosome assembly after 

mitosis (Liu et al., 2003). Notably, down-regulation of either Ce-lamin (Margalit et al., 2005a) 

or BAF (Margalit et al., 2005b) causes the identical phenotype in C. elegans, strongly 

suggesting that LEM-D proteins, BAF and lamins are key components for maintenance of 

nuclear architecture. 
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Figure 7. Schematics of the nuclear envelope proteins and interconnections between nuclear 

and cytoskeleton. Nuclear envelope is underlined by A- and B-type lamins. INM proteins, including 

LBR, EMERIN, LAP2β, MAN1, LEM2, SAMP1, and LAP1B, are anchored in the INM and connect to 

lamins. LBR and LEM-D proteins bind peripheral chromatin via the interaction with HP1 and BAF, 

respectively. SUN proteins, SUN1 and SUN2, are also anchored into INM and bind lamins, but they 

penetrate intermembrane space and interact with KASH domains of NESPRINS. NESPRINS are 

transmembrane proteins of the outer nuclear membrane and, in turn, interact with cytoskeleton 

filaments and microtubules. LAP2α is the only LEM-D protein which lacks the transmembrane domain 

and thus distributes throughout nucleoplasm, it interacts with soluble fraction of lamin A/C and 

chromatin.  

    LAP2α (Lamina-associated polypeptide 2α) is one of six splice variants of the mammalian 

LAP2 gene (originally termed TMPO) (Berger et al., 1996; Dechat et al., 1998; Furukawa et 

al., 1995; Harris et al., 1994). All LAP2 isoforms share the first 187 N-terminal residues 

(Dechat et al., 2000b) harboring the LEM domain (Brachner and Foisner, 2011), which binds 
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to the adaptor protein Barrier-to-autointegration factor (BAF) in a sequence-independent 

manner to mediate the interaction with chromatin (Figure 7,8) (Cai et al., 2001). The C-

terminal domain of LAP2α differs considerably from that of other LAP2 isoforms: no 

transmembrane domain was found in LAP2α. Whereas most LAP2 isoforms are anchored in 

the INM via C-terminal transmembrane domain, LAP2α is uniformly distributed throughout 

the nucleoplasm (Dechat et al., 2004). 

    Moreover, unlike other LAP2 transmembrane proteins which primarily bind B-type lamins 

at the NL (Foisner and Gerace, 1993), LAP2α exclusively binds to A-type lamina via its 

unique C-terminal tail (Dechat et al., 2000a). LAP2α is crucial for the stabilization and the 

nuclear interior localization of the nucleoplasmic lamin A/C pool. In the cells and epithelial 

tissues derived from LAP2α-deficient mice, A-type lamins localize exclusively at the nuclear 

periphery and absent from the nuclear interior. Re-expression of LAP2α rescues the nuclear 

interior lamin A/C pool (Naetar et al., 2008). Both LAP2α (Dorner et al., 2006; Markiewicz et 

al., 2002) and A-type lamins (Mancini et al., 1994; Ozaki et al., 1994) bind pRb in vivo and in 

vitro, a major cell cycle regulator that represses the activity of E2F transcription factor and 

inhibits cell cycle progression (Hatakeyama and Weinberg, 1995). LAP2α and lamin A/C 

were found to negatively affect cell cycle progression and thus enhance cell cycle arrest in 

tissue progenitor cells of regenerating tissues. In LAP2α-deficient mice, the number of 

proliferating tissue progenitor cells increase significantly in skin, colon, skeletal muscle, and 

in the hematopoietic system (Gotic and Foisner, 2010; Gotic et al., 2010; Naetar and Foisner, 

2009; Naetar et al., 2008).  

    LAP1 (Lamina-associated polypeptide 1) was first identified as polypeptide antigens 

recognized by a monoclonal antibody generated against rat liver NE protein extracts and 

was associated with lamina (Senior and Gerace, 1988). LAP1 has three proteins named 

LAP1A, LAP1B and LAP1C arising from splice variants (Foisner and Gerace, 1993). LAP1 

has a single transmembrane segment, with N-terminus facing the nucleoplasm, C-terminus 

within the perinuclear space (Kondo et al., 2002). The luminal domain of LAP1 binds to 

torsinA, the mutation of torsinA gene causes the CNS specific disease DYT1 dystonia 

(Goodchild and Dauer, 2005). The amino-terminal domain of LAP1 binds to the 

nucleoplasmic proteins, such as PP1 (Santos et al., 2013), and the nucleoplasmic domains 

of other INM proteins (Shin et al., 2013) (Figure 8). The functional interaction of LAP1 with 

torsinA and emerin suggests that it may play a role in human disease DYT1 dystonia and 

EDMD (Emery-Dreifuss muscular dystrophy).  

SAMP1 (spindle-associated membrane protein 1) is an inner nuclear membrane integral 

protein. It is conserved in metazoa and fission yeast, homologous to Net5 in rat (Schirmer 

and Gerace, 2005) and Ima1 in S. pombe (King et al., 2008). At the onset of mitosis most of 

SAMP1 dispersed out into the ER, similar to other transmembrane proteins. In addition, a 
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significant fraction of SAMP1 is specifically localized to the polar regions of the mitotic 

spindle during mitosis (Buch et al., 2009). N-terminus of SAMP1 has five hydrophobic 

segments; the first segment is a highly conserved cytoplasmic/nucleoplasmic loop 

containing four characteristic CxxC motifs, which are predicted to be organized into two zinc 

fingers. The rest four segments are transmembrane segments. The N-terminal cysteine-rich 

CxxC part of SAMP1 exposed to nucleoplasm and, although it is not transmembrane 

segment, is responsible for the NE targeting, especially the intact CxxC motif is needed for 

the NE targeting. The C-terminus is also exposed to nucleoplasm (Buch et al., 2009; Gudise 

et al., 2011). In Hela cells SAMP1 defines the correct localization of emerin and SUN1 to NE 

(Gudise et al., 2011) (Figure 8). 
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Table 2. Cell type or tissue specific expression of studied proteins and their implication into 

cellular processes or signaling pathways.  

 

Protein Cell type or tissue specific 

expression (literature) 

(literature) 

Cell type specific expression 

 (this study) 

Implication in cellular 

process/signaling pathway 

 
LBR expressed in undifferentiated cells, 

renewed cells, several cell type of 

adult mice* (Solovei et al., 2013)  

 

 

targeting NE membrane 

precursor vesicles to 

chromatin during NE 

reassembly (Ma et al., 

2007) 

LEM2 ubiquitous expression, much 

greater level in cardiac and 

skeletal muscle (Brachner et al., 

2005; Chen et al., 2006) 

absent in retinal neurons, 

hepatocyte and Kupffer cells, 

crypt cells of thin intestine 

and matrix keratinocytes of 

hair 

ERK signaling (Huber et 

al., 2009) 

MAN1  

 

absent in crypt cells of small 

intestine and matrix cells of 

hair follicle 

TGFbeta/BMP signaling 

(Bourgeois et al., 2013; Lin 

et al., 2005; Pan et al., 

2005) 

EMERIN essentially express in all tissues 

(Tunnah et al., 2005) 

very weak expression level in 

rod cells, and absent in 

hepatocyte of liver 

ERK-signaling (Huber et 

al., 2009; Muchir et al., 

2007), Wnt signaling 

(Markiewicz et al., 2006) 

LAP2β 

 

ubiquitious expression (Berk et al., 

2013a; Ishijima et al., 1996) 

absent in adult skeletal 

muscle, adult cardiac muscle 

and dermal papilla cells of the 

hair follicle 

DNA replication (Martins et 

al., 2003; Martins et al., 

2000) 

LAP1B ubiquitous expression pattern, 

abundant in differentiated adult 

tissues (Goodchild and Dauer, 

2005; Kim et al., 2010; Santos et 

al., 2013; Shin et al., 2013) 

absent in rod and other 

neuroretinal cells of retina, 

Purkinje and granular cells of 

cerebellum, absorptive and 

crypt cells of thin intestine 

and matrix keratinocytes of 

hair 

 

SAMP1 oocyte, fertilized eggs (Figueroa et 

al., 2010) 

present only in neurons, 

muscles 

Migration (Bone et al., 

2014; Borrego-Pinto et al., 

2012), centrosome 

orientation (Buch et al., 

2009) 

LAP2α highest expressed in proliferating 

cells and down-regulated during 

cell cycle exist and differentiation 

(Gotic and Foisner, 2010; 

Markiewicz et al., 2002; 

Markiewicz et al., 2005; Naetar et 

al., 2008) 

absent in Purkinje cells of 

cerebellum 

retinoblastoma-E2F 

pathway (Berk et al., 

2013a) 

To be continued in next page 



Introduction 

20 

*Expression of LBR was detected in the following differentiated cell types of adult mice: microglia cells, 

lymphocytes, granulocytes, Kupffer cells, absorptive cells, podocytes, erythroblasts, megacaryocytes, 

smooth muscle cells and endothelia cells. The nuclei of adult hepatocytes, cardiomyocytes and 

myotubes retain a very low level of LBR. 
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Figure 8. Schematics of INM and LAP2α proteins. Black numbers indicate size of protein domains in amino acids (aa); magenta line indicate regions known to 

interact with specified proteins. References to the sources for first identification of the protein and the interacting partner proteins are indicated in the left and right 

column, respectively.  

LBR 
615 aa 
Worman, et al, 
1990 

 

Histone H3/H4: Liokatis, et al, 2012 
HP1/MECP2: Guarda, et al, 2009 
Lamin B1/ds DNA: Worman, et al, 
1988 

LEM2 
503 aa 
Brachner, et al, 
2005 

 
 
 
 

Lamin A/C: Huber, et al, 2009 

MAN1 
911 aa 
Lin, et al, 2000 

 
 
 
 

DNA: Caputo, et al, 2006 
R-Smad: Pan, et al, 2005 
Smad2/Smad3: Lin, et al, 2005  

emerin 
254 aa 
Bione, et al 1994 

 

BAF: Cai, M. et al, 2007 
Lamin A/C:  Manilal, et al, 1998 
β-catenin: Markiewicz, et al, 2006 
MAN1: Mansharamani, et al, 2005 
HDAC3: Demmerle, et al, 2012 
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LAP2β 
454 aa 
Furukawa, et al, 
1995 

 

 

DNA: Furukawa, et al, 1997 

          Cai, et al, 2001 
BAF: Shumaker, et al, 2001 
          Cai, et al, 2001 
Lamin B: Furukawa, et al, 1998 
 

LAP2α 
693 aa 
Harris, et al, 
1995 

 
 
 
 

DNA: Furukawa, et al, 1997 
          Cai, et al, 2001 
BAF: Shumaker, et al, 2001 

          Cai, et al, 2001 
Lamin A/C: Dechat, et al, 2000 

LAP1B 
584 aa 
Kondo, et al, al 
2002 

 
 
 
 

emerin: Shin, et al, 2013 
TORSINA: Goodchild, et al, 2005 
TORSINB/TORSIN3: Kim, et al, 
2010 
 

SAMP1 
392 aa 
Buch, et al, 
2009 

 
 

emerin/SUN1/Lamin A/C: Gudise, 

et al, 2011 
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1.3.3 Two peripheral tethers of heterochromatin 

Recently it was shown that the presence of either LBR or Lamin A/C is necessary for the 

maintenance of peripheral heterochromatin and conventional nuclear architecture. In 

particularly it was shown that the absence of LBR and Lamin A/C leads to the loss of 

peripheral heterochromatin in rod cells of nocturnal mammals, whereas other cell types 

express at least one of the two proteins and correspondingly, have conventional nuclear 

architecture. LBR directly binds heterochromatin at the nuclear periphery through interaction 

with HP1 (Holmer and Worman, 2001). Ectopic expression of LBR in rod cells under the rod-

specific neural retina leucine zipper (Nrl) promoter of mice was sufficient to revert the 

chromatin organization into conventional one. On the other hand, LBR knockout caused 

inverted nuclear organization in cell types which do not express Lamin A/C in wild type mice. 

    Transgenic expression of lamin C in rod cells is not sufficient to revert the inverted nuclear 

architecture. The inability of LamC to tether peripheral heterochromatin indicates that 

LamA/C predominantly binds chromatin indirectly in vivo, perhaps via a complex with INM 

proteins (Solovei et al., 2013). In mammals, the role of Lamin A/C in peripheral 

heterochromatin tethering is still a subject of controversy. The evidence supporting binding of 

chromatin by Lamin A/C comes from the study of Hutchinson Gilford Progeria Syndrome 

(HGPS), a human disease caused by mutation of LMNA. In the human fibroblast from HGPS, 

loss of lamin A results in loss of peripheral heterochromatin, change in H3K27me3 

distribution and global loss of the chromatin compartmentalization (McCord et al., 2013). 

While in another study no difference was found in wild type and Lamin A mutated cell lines 

(Kubben and Adriaens, 2012). Following-up studies are needed to clarify the exact 

mechanisms of Lamin A/C as peripheral heterochromatin tethers. In D. melanogaster, which 

only express B-type lamin (lamDm(0)), depletion of B-type lamin caused relocation away 

from the nuclear periphery and activation of testis specific genes (Shevelyov et al., 2009). B-

type lamin is also essential for the peripheral localization and corresponding silence of the 

hunchback gene in differentiating drosophila neuroblasts (Kohwi et al., 2013). In C. elegans 

the introduced large heterochromatic repeats were located near the NL; depletion of the only 

lamin reversely detach the repeats from the NL (Towbin et al., 2010). 
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1.4 Aims of this PhD work 

One of the prominent features of eukaryotes is spatial segregation of transcriptionally active 

euchromatin and transcriptionally silent heterochromatin in the nucleus, achieved by 

complicate hierarchical folding of the genome. The segregation is based on different 

epigenetic marks characteristic of the both chromatin classes and on nuclear elements, such 

as recently identified lamin A/C-dependent (A-type) and LBR-dependent (B-type) tethers of 

the heterochromatin to the nuclear envelope. Rod photoreceptors in mouse retina possess a 

very clear spatial separation of the two chromatin classes in their inverted nuclei and, hence, 

represent a convenient model to study different aspects of eu- and heterochromatin 

formation at the microscopic level. A general goal of the present work was to study further 

mechanisms of euchromatin and heterochromatin positioning in conventional and inverted 

mouse nuclei. The work comprises three major parts. 

    The first part focused on the analysis of epigenetic marks characteristic of eu- and 

heterochromatin in conventional and inverted nuclei of mouse retinal cells. I aimed to find 

epigenetic factors, such as histone modifications and chromatin-associated proteins, which 

might be involved in establishing the nuclear inversion in rods. 

    The second part of my work focused on characterization of cell-type specific and 

differentiation-dependent distribution of one of the proteins selectively binding to the 

methylated DNA, so called Methyl-CpG binding protein 2 (MECP2) in various mouse tissues. 

In particular, my goal was to study a functional role of MECP2 in retinal neurons during their 

differentiation by comparison of wild type (WT) and Mecp2 knock-out (KO) retinas.  

    The objective of the third part of my work was to uncover possible interacting partners of 

lamins A/C in the A-type tether of the peripheral heterochromatin. To identify likely proteins, I 

planed to assess cell-type specific expression of transmembrane proteins of the inner 

nuclear membrane, including LEM-D proteins, in a range of WT and Lmna-KO mouse tissues. 

I also aimed at cloning of selected candidates for further genetic engineering work, in 

particular, for transgenic mice generation.  
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Abstract

Background: Methyl-CpG binding protein 2 (MECP2) is a protein that specifically binds methylated DNA, thus
regulating transcription and chromatin organization. Mutations in the gene have been identified as the principal
cause of Rett syndrome, a severe neurological disorder. Although the role of MECP2 has been extensively studied
in nervous tissues, still very little is known about its function and cell type specific distribution in other tissues.

Results: Using immunostaining on tissue cryosections, we characterized the distribution of MECP2 in 60 cell types
of 16 mouse neuronal and non-neuronal tissues. We show that MECP2 is expressed at a very high level in all retinal
neurons except rod photoreceptors. The onset of its expression during retina development coincides with massive
synapse formation. In contrast to astroglia, retinal microglial cells lack MECP2, similar to microglia in the brain,
cerebellum, and spinal cord. MECP2 is also present in almost all non-neural cell types, with the exception of intestinal
epithelial cells, erythropoietic cells, and hair matrix keratinocytes. Our study demonstrates the role of MECP2 as a
marker of the differentiated state in all studied cells other than oocytes and spermatogenic cells. MECP2-deficient
male (Mecp2−/y) mice show no apparent defects in the morphology and development of the retina. The nuclear
architecture of retinal neurons is also unaffected as the degree of chromocenter fusion and the distribution of major
histone modifications do not differ between Mecp2−/y and Mecp2wt mice. Surprisingly, the absence of MECP2 is not
compensated by other methyl-CpG binding proteins. On the contrary, their mRNA levels were downregulated in
Mecp2−/y mice.

Conclusions: MECP2 is almost universally expressed in all studied cell types with few exceptions, including microglia.
MECP2 deficiency does not change the nuclear architecture and epigenetic landscape of retinal cells despite the
missing compensatory expression of other methyl-CpG binding proteins. Furthermore, retinal development and
morphology are also preserved in Mecp2-null mice. Our study reveals the significance of MECP2 function in cell
differentiation and sets the basis for future investigations in this direction.

Keywords: MECP2, MBD, Histone modifications, Nuclear architecture, Mouse retina, Retina development, Mouse tissues
Background
Methyl-CpG binding protein 2 (MECP2) was discovered
as a protein that selectively binds methylated DNA [1].
Mutations of the MECP2 gene were later identified as
the principal causative factor for Rett syndrome, a
severe progressive neurological disorder affecting almost
exclusively females [2]. Mild loss of function mutations,
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duplications, and expression level alterations has also
been found in patients with a plethora of neurological
and mental phenotypes [3-6]. In mice, deletion of the
Mecp2 gene causes symptoms similar to those of Rett
syndrome even when the deletion is restricted to the
brain [7-10], while expression of Mecp2 rescues the
Rett phenotype. More effective rescue was achieved
through embryonic, compared to early postnatal expression
[11-13], whereas targeted expression in postmitotic neurons
resulted in asymptomatic mice [12,14]. Mecp2 mutant mice
exhibit abnormalities in the number of synapses [15], the
morphology of neuronal processes [16,17], neuronal matur-
ation [16], and the neurophysiological activity of these cells
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
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[18,19]. These effects are associated with particular neuron
types. For instance, brain stem GABA-ergic neurons are
affected, but glycinergic ones are not [20]. Glutamatergic
neurons of the brain and their synapses are also affected
through the expression level of brain-derived neurotrophic
factor (BDNF) [21] which is regulated by MECP2 in a
neuronal activity-dependent manner [17,22,23].
The results listed above conform to the conclusion that

MECP2 deficiency leads to subtle changes in the expression
levels of genes causing diverse and widespread phenotypic
changes [24]. There is growing evidence that both Mecp2-
null astrocytes [25] and microglia [26] affect the dendritic
morphology of neurons. Lack of MECP2 causes global
histone H3 hyperacetylation in neurons [10,27], which
can have different effects on transcription depending on
which lysine residues are acetylated. It remains, however,
unknown if global histone H3 acetylation levels increase
exclusively in neurons or also take place in glia [10,21,27].
Factual data about the phenotypic changes in various
tissues of Mecp2-null mice are currently insufficient and
partially controversial.
In addition to its role in transcriptional regulation,

MECP2 appears to be important for maintenance of the
general chromatin organization. Mecp2-null brain shows
a ca. 1.6-fold upregulation in spurious transcription of
repetitive DNA, in particular L1 retrotransposons and
pericentromeric satellites [27], which have been impli-
cated in maintenance of the nuclear architecture and its
formation during cell differentiation [28-30]. In all mouse
cells, subcentromeric repetitive blocks, composed of
major satellite repeat, form spherical bodies, so called
chromocenters that are predominantly located at the nu-
clear periphery and adjacent to the nucleolus. Remarkably,
mouse chromocenters are extremely enriched in MECP2
[1] and the same applies to clusters of human alphoid sat-
ellites, also often called chromocenters. There is growing
evidence that DNA methylation and MECP2 binding to
methylated DNA are pivotal for chromocenter formation
and, therefore, the establishment of normal nuclear archi-
tecture [31-35]. MECP2 indeed seems to be required
for chromocenter fusion during differentiation [8,32,36],
although other methyl binding (MBD) proteins can com-
pensate for its absence [31,33,35].
In order to provide better understanding of MECP2

function, we characterized the distribution of the protein
in more than 60 cell types of 16 mouse neuronal and
non-neuronal tissues by immunostaining. We show that
MECP2 is expressed at a very high level in all retinal
neurons except rod photoreceptors. The onset of its
expression during retina development coincides with
massive formation of the neural synapses. We also describe
the distribution of MECP2 in other tissues at various stages
of development and relate its increased expression to the
terminal differentiation of cells. Mice lacking MECP2 show
no apparent defects in the morphology and development of
the retina, as well as in the nuclear architecture of retinal
neurons. Finally, we show that the absence of MECP2 is
not compensated by upregulation of other MBD proteins
but rather causes their downregulation.
Results and discussion
We studied mouse tissues because the nuclei of all mouse
cells have prominent chromocenters which are convenient
for the microscopic approach. The main DNA sequence
of chromocenters, major satellite repeat, is present on
all autosomes, comprises ca. 10% of whole mouse DNA,
contains ca. 50% of the CpG dinucleotides of the whole
mouse genome [37], and was shown to bind MECP2 [1].
Therefore, chromocenters can serve as a sensitive indica-
tor of MECP2 expression after immunostaining. To avoid
interpretations which might depend only on chromocen-
ters, in all relevant cases, we also studied rat tissues. In
contrast to mouse, rat chromosomes do not have large
blocks of pericentromeric repeats and therefore do not
form noticeable chromocenters in interphase nuclei.
The standard methods of protein-level estimation, such

as Western blot analysis routinely used for homogeneous
cell cultures, are not really useful for native tissues con-
taining various cell types. Therefore, our method of choice
was MECP2 immunostaining on cryosections where we
could distinguish different cell types using either histo-
logical criteria or cell-specific antibodies (Tables 1 and 2).
To avoid false-positive and false-negative results after
antibody staining, we used a robust and reliable method
developed by us earlier [38,39]. This method allows quick
comparison of immunostaining results in the same tissue
after various fixation and antigen retrieval times. Polyclonal
anti-MeCP2 antibodies, mostly used in the study, do
not produce nuclear staining in fibroblasts derived from
MECP2-deficient mice (Additional file 1A) and, when
applied to Western blot, show expected enrichment of
the protein in brain tissue derived from wild-type (WT)
mice (Additional file 1B).
MECP2 in retinal cell types
The retina is an attractive model to study the role of
MECP2 in a nerve center. Most of the retinal cell types
can be recognized by their positions and by the shape of
their nuclei; only in a few cases, identification requires
cell type-specific immunostaining. Most of the mouse
retinal cells express MECP2: their nuclei possess a weak
or moderate staining of the nucleoplasm and a strong
signal in chromocenters. In particular, all neurons in the
ganglion cell layer (GCL), inner nuclear layer (INL), and
cone photoreceptors in the outer nuclear layer (ONL) have
very strong chromocenter staining and a weak nucleoplasm
staining (Figure 1A).



Table 1 List of antibodies for cell type identification in retina and brain and for recognition of retinal structures

Antibody abbreviation Antigen transmitter/protein Recognized cells/structures Source, catalogue number

ChAT Choline acetyl transferase Cholinergic amacrine cells Millipore, AB144P

Calbindin Calcium-binding protein 28 kD Horizontal cells SWANT, #300

GFAP Glial fibrillary acidic protein Astroglia Sigma, G 3893

GABA Gamma aminobutyric acid Amacrine, horizontal cells Sigma, A 2052

GABA-A α1 GABA receptor subunit α1 Bipolar, amacrine, and ganglion
cell processes in IPL

Millipore, #06-868

GABA-C GABA receptor subunit ρ1 Synapses in IPL R. Enz, MPI for Brain Research, Frankfurt

GAT GABA transporter Presynaptic terminals Abcam, ab426

GAD-65 Glutamic acid decarboxylase
(GABA-synthesizing enzyme)

Amacrine, horizontal cells Chemicon, MAB351R

GAD-67 Glutamic acid decarboxylase
(GABA-synthesizing enzyme)

Amacrine, horizontal cells Abcam, ab26116

GS Glutamine synthetase Müller cells (astroglia) BD Biosciences, #610517

GluR3 Glutamate-gated ion channel
(glutamate receptor 3)

Synapses in IPL and OPL Santa Cruz, sc-7612

GlyT1 Glycine transporter 1 Amacrine cells Chemicon, AB1770

Iba 1 Ionized calcium binding adaptor
molecule 1

Microglia/macrophage Wako, #019-19741

MAP2 Microtubule-associated protein 2 Neurons Sigma, M1406

NR1C2 NMDA receptor 1 splice variant C2 IPL and OPL synapses Chemicon, AB5050P

PKCα Protein kinase C Rod bipolar cells Sigma, P 4334

PKA II β Human protein kinase A, regulatory
subunit II beta

Cone bipolar cells BD Biosciences, #54720

PSD-95 Postsynaptic density protein 95 Photoreceptors (rods and cones)
synapse marker

Dianova, MA1-046

SV2 Membrane of synaptic vesicles General synapse marker DSHB, SV2-a1

TH Tyrosine hydroxylase Dopaminergic amacrine cells Immunostar, #22941

VGLUT1 Vesicular glutamate transporter 1 IPL and OPL synapses Millipore, MAB5502

VGLUT3 Vesicular glutamate transporter 3 Amacrine cells Millipore, AB5421

Znp-1 (Syt2) Synaptotagmin II Cone bipolar cells Zebrafish International Resource Center,
University of Oregon, Eugene, OR, Znp-1

Millipore (Billerica, MA, USA), Swant (Marly, Switzerland), Sigma-Aldrich (St. Louis, MO, USA), Abcam (Cambridge, UK), Chemicon (Billerica, USA), BD Biosciences
(Franklin Lakes, NJ, USA), Santa Cruz (Dallas, TX, USA), Wako (Richmond, VA, USA), Dianova (Hamburg, Germany), DSHB (University of Iowa, IA, USA).
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In contrast to other retinal cells, rod photoreceptor
nuclei of nocturnal mammals possess a dramatically dif-
ferent pattern of chromatin distribution [30]. In these
cells, a centrally positioned chromocenter is surrounded
by a shell of LINE-rich heterochromatin, whereas
Table 2 List of antibodies for cell type identification in
tissues other than the retina

Cell type Protein Source, catalogue number

Smooth muscles Calponin Abcam, ab46794

Paneth cells Lysozyme Dako, A 0099

Enteroendocrine cells Secretin Santa Cruz, sc-26630

Goblet cells Mucin-2 Santa Cruz, sc-15334

Satellite cells Pax 7 DSHB

Dako (Troy, MI, USA).
euchromatin occupies the nuclear periphery. This nu-
clear organization is inverted in comparison to all other
eukaryotic cells possessing conventional nuclear architec-
ture with heterochromatin abutting the nuclear periphery
and euchromatin located in the nuclear interior [28,30].
We have shown that the inverted nuclear architecture
in rods has evolved as an adaptation to nocturnal vision:
the heterochromatic cores of rod nuclei function as
microlenses and reduce light scatter in ONL [30]. Un-
expectedly, the nucleoplasm of the inverted rod nuclei is
not stained by anti-MECP2 antibodies, and the central
chromocenter is only weakly positive (Figure 1A).
In comparison to the multiple chromocenters character-

istic of other mouse cell types, the single central chromo-
center in mouse rods has a superior chromatin density,
which is necessary for rod nuclei to function as microlenses



Figure 1 Distribution of MECP2 in the nuclei of retinal cells. (A) MECP2 is abundant in all retinal neurons: in the ganglion cell layer (GCL),
inner nuclear cell layer (INL), in bipolar (BC) and amacrine (AC) cells. The signal is present throughout the whole nucleoplasm but is especially
strong in chromocenters. In the ONL of adult mice, MECP2 produces a strong signal in cone photoreceptors (CP) whereas rod photoreceptors
(RP) have very weak staining only noticeable in the chromocenters (arrowheads). (B) Restoration of conventional nuclear architecture in rod nuclei by
Lbr expression in Lbr-TER mice does not increase MECP2 expression. In Lbr-expressing rods (three such nuclei are marked by empty arrowheads), there
are multiple chromocenters adjacent to the nuclear periphery. These chromocenters (arrows) remain weakly MECP2-positive and with the staining
intensity comparable to that of chromocenters in inverted nuclei not expressing Lbr. For comparison, bright staining of cone nuclei (empty arrows, left
and middle upper panels) is shown. Note that all rods with multiple chromocenters adjacent to the nuclear periphery express Lbr (Solovei et al. [41]);
LBR staining is not shown on this panel. (C) In R7E mice, rods de-differentiate, partially restore the conventional architecture of their nuclei, and lose their
rod identity. This process is accompanied by increased expression of MECP2 which becomes abundant in chromocenters (three such nuclei are marked
by arrowheads) and reaches the same level as in neuroretina (upper panel). For comparison, an unaltered rod nucleus is marked (arrow). (D) Retina of rat
(D1) and macaque (D2). Similarly to mice, MECP2 produces a bright signal in the GCL, INL, and cones (arrowheads) but is weak to undetectable in rod
cells (arrows). Single confocal sections. Scale bars: (A) 10 μm; (B) 5 μm; (C) overview 25 μm, rods 5 μm; (D) overviews 50 μm, ONLs 10 μm.
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[30]. This high chromatin compaction is obvious from
recent electron microscopic studies (e.g., Figure two in [38]
and Figure three panel a in [40]) and from the dramatic
difference in immunostaining properties between rod
chromocenters and chromocenters of other retinal neurons.
As described in detail in the recent immunohistochemical
studies [38-40], the chromocenter in rods requires much
longer antigen retrieval in comparison to the neighboring
cones and INL cells. Therefore, to rule out that weak
MECP2 staining is caused by inaccessibility of chromocen-
ter chromatin to the antibodies, we made use of transgenic
mouse retinas in which rod cells ectopically express lamin
B receptor (LBR). Rods expressing transgenic LBR acquire
conventional nuclear architecture with euchromatin located
to the nuclear interior and heterochromatin, including
multiple chromocenters, located at the nuclear periphery.
Chromocenters of these transgenic rods have apparently
lower chromatin compaction and restore immunostaining
ability typical for other retinal cells [41]. However, despite
their reduced size and density, chromocenters in LBR-
expressing rods remain as weakly MECP2-positive as the
chromocenters of wild-type rods (Figure 1B).
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The above observations are consistent with results
of MECP2 staining in photoreceptors of R7E mice
[42]. These transgenic mice specifically express CAG
trinucleotide repeat encoding a polyglutamine stretch
and represent a mouse model to study spinocerebellar
ataxia type 7 (SCA7). In R7E mice, mature rods with
inverted nuclei begin to de-differentiate in ca. 1-month-
old animals, their nuclei partially restore a conventional
nuclear architecture, and photoreceptors lose their rod
identity [42]. MECP2 expression in R7E rods gradually
increases in parallel to the de-differentiation, and at the
age of 20 weeks, the MECP2 level in chromocenters
reaches the level observed in the other neurons of the
retina (Figure 1C).
Furthermore, we also tested for the presence of MECP2

in rods of two other mammalian species: (i) rat, a noctur-
nal mammal without chromocenters; and (ii) macaque, a
diurnal primate with conventional nuclear architecture in
rods. In both species, MECP2 was undetectable in rods, in
a prominent difference to neuroretinal cells and cone pho-
toreceptors where it produced a clear signal (Figure 1D).
Taken together, the above data imply that weak expression
of MECP2 is an intrinsic feature of rod photoreceptors.
The low level of MECP2 in rods can be tentatively

connected to the relatively high level of linker histone
H1c in rod cells described recently for mouse rod photo-
receptors [43]. It has been shown that in the MECP2-rich
neurons of the brain, approximately half of the linker
histone H1 tends to be replaced by MECP2, and that in
Mecp2-null mice, the H1 level in these neurons doubles
[27]. Remarkably, triple KO mice deficient in linker
H1c/H1e/H10 histone variants show significant increase
of the rod nuclear diameter which was accompanied by
decrease of the nuclear volume occupied by heterochro-
matin. These changes in the nuclear architecture were
noticed only in rod nuclei [40]. The other way around,
in de-differentiated rods of R7E mice, which demonstrate
significantly reduced level of H1c [44,45], the expression
of MECP2 increases (Figure 1C).

Microglial cells have no detectable MECP2
Non-neuronal cells of the retina—pigment epithelium,
endothelial cells of blood vessels, and Müller cells (radial
astroglia)—also expressed MECP2. The only exception
was microglia where MECP2 was never detected by im-
munostaining (Figure 2A). Moreover, microglial cells,
identified using anti-lba1 antibodies, were negative for
MECP2 staining not only in the retina but also in the
brain, cerebellum and spinal cord (Figure 2A). In contrast,
in astroglial cells (Figure 2B) and neurons (Figure 2C1,
C2), nuclei are strongly positive after MECP2 staining.
Absence of MECP2 in microglial cells revealed by immu-
nostaining is especially intriguing in view of recent
data on the involvement of microglial cells in the Rett
phenotype [46] and questions the role of these cells in
neuropathologic consequences of MECP2 deficiency.
On the other hand, sensitivity of immunostaining is
unquestionably lower than most of biochemical in vitro
approaches, and therefore, one cannot wholly exclude that
microglia cells express MECP2 at a level not detectable
microscopically.

Retinas of Mecp2-null mice show no apparent defects
Absence of MECP2 impairs neuronal morphology and
strongly affects functions of the brain [9]. The retina, as
a compact and very regularly structured part of the CNS,
represents an attractive model to study the possible effects
of MECP2 on the nervous system development. Earlier, it
was shown that in Mecp2 knockout mice, decline in visual
acuity, which was observed in late postnatal development,
is caused by general silencing of the cortical circuitry [47].
However, major morphological characteristics of retinas in
MECP2-deficient mice have not been yet reported. We
dissected retinas of Mecp2−/y mice at different stages of
retina maturation, at postnatal days P1, P7, P13, P30,
and P53, and compared their histology to the retinas of
wild-type littermates. We found that Mecp2−/y and WT
retinas were not different with respect to the time of
layer formation, thickness, and morphology of the layers
at all five studied developmental stages (Additional file 2).
In addition, we compared Mecp2−/y and Mecp2wt retinas
with respect to the distribution of various retinal markers.
Twelve immunocytochemical markers specific for various
amacrine, bipolar, ganglion, and horizontal cells, seven
markers for inner plexiform layer (IPL) or/and outer plexi-
form layer (OPL), and markers for radial glia (Müller cells)
and microglia (Table 1) were applied to retinas from adult
Mecp2−/y and WT littermate mice. As shown in Figure 3A
and Additional file 3, no noticeable differences in the
distribution of certain neurons, synapses, and neuro-
transmitters were found between the two genotypes.

Nuclear architecture of neuronal nuclei in Mecp2-null
mice is generally preserved
Since MECP2 is a methylation reader and apparently
involved in heterochromatin formation [27,36], we checked
whether its absence causes changes in the epigenetic land-
scape of rod and other retinal nuclei. We found that
MECP2 deficiency did not have any microscopically visible
effect on the presence and distribution of major histone
modifications (Table 3). In Mecp2−/y mice, euchromatin
marked by acetylated H3, H4, H3K9ac,me1, and H4K20ac,
me1 was present in the nuclear interior of GCL and INL
cells and in the outermost peripheral shell of rod nuclei,
just as it was observed in WT mice (Figure 3B, Additional
file 4). The presence of histone modifications H3K9me2,3
and H4K20me2,3, characteristic of heterochromatin, was
restricted to the nuclear periphery and chromocenters



Figure 2 Microglial cells (A) have no detectable MECP2 compared to astroglia (B) and neurons (C). (A, B) MECP2 detection in brain cortex,
cerebellum, spinal cord, and retina combined with microglial (A) and astroglial (B) cell type-specific staining. Overlays of 4',6-diamidino-2-phenylindole
(DAPI) staining (red) with markers for microglia (Iba-1) and astroglia (GFAP) are shown in left columns as projections of short stacks. Middle and right
columns show single optical sections (zoomed in) for DAPI and MECP2. Non-marked cells in the same images are predominantly neurons and strongly
express MECP2. Red outlines in the right column images trace the shape of the nuclei of interest. (C) Neurons from cerebellum – Purkinje cells (C1) and
granular cells (C2) demonstrate strong MECP2 staining in chromocenters and moderate staining of the nucleoplasm in a single confocal section. Scale
bars: (A,B) 10 μm, (C) 5 μm.
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of neuroretina cells and was also not different from the
wild-type (Additional file 4; see also [38]).
Conversely, we checked whether erasing of the major

heterochromatin hallmarks, H3K9me2,3 and H4K20me3,
would prevent MECP2 binding. For this purpose, we stud-
ied retinas from mice lacking H4K20me3 due to deletion
of Suv4-20 h2 and mice lacking both H4K20me3 and
H3K9me3 due to deletion of Suv4-20 and Suv3-9 h1,2
methyltransferases. In mice of both genotypes, rod nuclei
had the same morphology as the rod nuclei in the wild-
type littermate controls [38]. We found that the pattern
of MECP2 staining was not different between the retinal
cells in the wild-type and knockout mice, suggesting
that MECP2 binding to chromatin was not affected. In-
deed, MECP2 was strongly expressed in neuroretina
and cones, where it localizes mostly in chromocenters,
and was almost undetectable in rods (Additional file 5).
Recently, it was shown that deletion of Suv4-20 h2 influ-
ences chromatin organization in cultured cells, in particular,
it increases the number of chromocenters in cultured fibro-
blasts derived from a Suv3-9/Suv4-20 h double knockout
mouse [48]. In contrast, double knockout of Suv3-9 and
Suv4-20 affects neither rod nuclear morphology [38] nor
MECP2 binding patterns (this study), suggesting that cells
in a tissue context might have more redundancy in epigen-
etic mechanisms than cultured cells.
Although even a complete loss of MECP2 does not

prevent chromocenter formation in mouse cells [8],
observations on astroglial cells and neurons differenti-
ated from embryonic stem cells in vitro showed that
the number of chromocenters was significantly higher
in MECP2-null cells compared to wild-type cells [36].
The other way around, ectopic expression of MECP2
induces clustering and fusion of chromocenters, a
process which takes place during myotube differentiation
[31]. These findings prompted us to assess rod chromo-
center numbers in adult mice of both genotypes. Chro-
mocenter fusion in nuclei of mouse rods is a slow
process. A significant proportion of rods at ca. 1 month
still have two or more chromocenters; their fusion in
all rods is completed only at 2–2.5 months of age
([30,41]; c.f. Figure 3C2,C3). We scored cells with one



Figure 3 Retinas of Mecp2−/y mice show no apparent defects. (A) Positioning of amacrine cells, rod bipolar cells, and photoreceptor synapses
is similar in retinas of Mecp2−/y and Mecp2lox/y littermates. Other 14 markers for retinal cell types, synapses, and neurotransmitters are shown in
Additional file 2. (B) Similar distribution of a histone modification typical of euchromatin (H3ac) in Mecp2−/y and Mecp2wt littermate retinas; nuclei with
conventional (ganglion and INL cells) and inverted (rods) architecture are shown. (C) The proportions of rod nuclei with two or more chromocenters
were scored in retinas of two Mecp2−/y and one Mecp2wt littermate at two age points, P30 and P53 (C1). At P53, nearly all nuclei have a single
chromocenter. Average proportions of rods with two or less chromocenters were not significantly different between the two genotypes. Errors bars
are the 95% confidence intervals. Rod nuclei with two (C2) and one (C3) chromocenter. Scale bars: (A) 25 μm, (B) 5 μm, (C) 2 μm.
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and two chromocenters in rod nuclei of Mecp2−/y

mice and their wild-type littermates at P30 and P53
(see the ‘Methods’ section for detailed description).
The number of rods with two or more chromocenters
in Mecp2−/y mice of these ages was 15.5% at P30 and
1.2% at P53, which was not different from the wild-
type (Figure 3C1).
In full agreement with our observations on rod cells,

data obtained from cortical neurons in tissue sections and
primary neuronal cultures indicate that chromocenter num-
ber is comparable between neurons from Mecp2−/y and
Mecp2+/y mice [35]. Apparently, the difference in results ob-
tained on cells in native tissues of Mecp2−/y and Mecp2+/y

mice and on cultured cells derived from these mice [36] is
analogous to the observations on Suv3-9/Suv4-20 h double
knockout cells and might be tentatively explained by com-
pensatory mechanisms operating in vivo but not in vitro.

Almost all cell types in adult mammalian tissues express
MECP2
The absence of MECP2 in microglia and its low level in
rods raised the question of how common MECP2 is in
various cell types. Data on MECP2 expression in different
tissues are limited, and most reports are based on a
bulk analysis of protein or RNA extracted from a whole
tissue (e.g., [49,50]). Analyses of specific cell types are only
occasional and predominantly concern neuronal tissues
[49-51]. Therefore, we studied MECP2 distribution across



Table 3 List of antibodies for histone modification detection

Histone/residue Modification Source (catalogue number)

H3K9 Acetyl HK (CMA310)

Me1 HK (CMA316)

Me2 HK (CMA317)

Me3 HK (CMA318)

H4K20 Acetyl HK (CMA420)

Me1 HK (CMA421)

Me2 HK (CMA422)

Me3 HK (CMA423)

H3 Acetyl Upstate (#06-599)

H4 Acetyl Upstate (#06-866)

HK produced in the laboratory of Hiroshi Kimura, Osaka University (Osaka,
Japan). Upstate (Lake Placid, NY, USA).
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a number of mouse cell types. Cell identification was
based either on histological criteria or, when needed,
on cell type-specific immunostaining (for the list of
antibodies used, see Table 2). Altogether, about 60 cell
types were studied from 12 non-neuronal adult mouse
tissues. In addition, epidermis and skeletal muscles were
studied at five age points (P0, P2, P5, P9, and P14). The
results of immunostaining are summarized in Figure 4A,
and telling examples are shown in Figure 4B,C,D,E,F,G,H.
We found that the majority of cell types express MECP2;
those that do not are rather a minority. MECP2 is lacking
in epithelial cells of the intestine and colon. In epidermis,
the expression of MECP2 varies: it is absent or present at
a hardly detectable level in keratinocytes of the trunk skin
but is more abundant in lip epidermis cells, both basal
and suprabasal. In the hair, proliferating matrix keratino-
cytes of the hair bulb lack MECP2 in clear difference to
differentiated keratinocytes of hair shaft and hair root
sheath where MECP2 produces a clear signal. MECP2
is also not expressed in the erythropoietic lineage, in
contrast to other cells of the myeloid lineage and lympho-
cytes. A noteworthy exception are resident macrophages.
As mentioned before, microglial cells in all studied ner-
vous tissues do not express MECP2 at a detectable level
(Figures 2A and 4A), whereas resident macrophages from
other tissues, in particular, hepatic Kupffer cells, do
express it (Figure 4A,H).
As MECP2 is primarily visible in the chromocenters of

mouse cells, we studied MECP2 distribution in tissues of
a species, which does not possess chromocenters in inter-
phase nuclei. Rat chromosomes, in difference to mouse
chromosomes, lack large blocks of pericentromeric satel-
lite sequences, and consequently, rat nuclei have no clear
chromocenters. Rat small intestine, skin with hairs, and
skeletal and heart muscles were studied. Staining of these
tissues confirmed that the gastrodermal epithelial and hair
matrix cells in rat, similarly to mouse, lack MECP2,
whereas the nuclei of muscle cells (smooth, skeletal, and
heart muscles) had a strong punctate MECP2 signal in the
nucleoplasm (Figure 5). Our data support the notion that
in addition to the functions in the nervous system that are
associated with a major pathologic phenotype, MECP2
plays some important roles in almost all non-nervous
tissues.
Involvement of MECP2 in chromatin regulation and

maintenance of global nuclear architecture is well docu-
mented [27,52,53]. In particular, it is known that MECP2
plays a role in the regulation of transcription, being
mostly a transcriptional repressor [54-56] and also an
activator [54]. In the light of these findings, the fact that
some cell types across different species are lacking MECP2
is intriguing and requires further analysis.

Expression of MECP2 increases during tissue
development and terminal cell differentiation
There is a clear difference between MECP2 expression
levels in tissues of different developmental stages. A tell-
ing example are fibroblasts of the dermal papilla in the
hair bulb. These cells lack MECP2 at the late embryonic
stages and in the first 2 days of postnatal development;
the expression starts at P2 and continues afterwards
(Figure 6D).
The expression of MECP2 in the retina starts at different

times depending on the cell type. Remarkably, the onset of
expression coincides with massive formation of synapses
and, as a consequence, the formation of the IPL and OPL
[57-59] (Figure 6A,B). In particular, MECP2 appears in
the ganglion and amacrine cells at E17, when a clear
gap appears between the GCL and INL + ONL anlage,
marking the emerging IPL. Similarly, the MECP2 expres-
sion in the bipolar cells starts at P6 together with the
formation of the gap between the INL and ONL, which
develops into the OPL later. In rods, weak MECP2 expres-
sion starts after 2 weeks of postnatal development and
remains weak thereafter (Figure 6A,C). Noteworthy, the
onset of MECP2 expression roughly correlates with cell
birthdays (the day of the last cell division; [60]) of the
retinal neuronal cell types (RSpearman = 0.62) and persists
afterwards.
Initiation of MECP2 expression at late differentiation

stages proved to be a general rule: undifferentiated or
weakly differentiated cells (progenitors) do not express
MECP2 or show a low expression level compared to the
respective fully differentiated cells. In particular, matrix
keratinocytes of the hair bulb do not express MECP2,
the more differentiated keratinocytes of the hair shaft
show a weak expression, and a stronger expression is ob-
served in the keratinocytes at the root hair shaft. MECP2
is weak in satellite cells but abundant in the myotube nu-
clei (Figure 4A,F). The reverse situation occurs only in the
gonads. In the ovaries, the follicle epithelium and the



Figure 4 Presence of MECP2 in different cell types of adult mouse tissues. (A) List of the studied tissues and cell types; the strength of
MECP2 signal is shown by the number of plus signs (1 to 3). *Tissues studied at six developmental age points (P0, P2, P5, P9, and P14). **Satellite cells
were negative at P0–P14. ***Dermal fibroblasts were negative at P0–P5. ****Fibroblasts of dermal papilla were negative at P0 and weakly positive at
P2; see also Figure 5D. Examples of mouse tissues after MECP2 staining: intestine (B, C), hair (D), muscles (E, F, G), and liver (H). In (C), empty arrows
point at MECP2-negative gastroepithelial cells in colon crypt; empty arrowheads point at positive smooth muscle nucleus beneath the gastrodermis. In
(D), solid arrows mark fibroblasts of the dermal papilla; solid arrowheadsmark matrix keratinocytes of the hair bulb. For comparison of MECP2 staining
in mouse and rat tissues, see Additional file 4. Single confocal sections. Scale bars: (B) 50 μm, (C, D) 10 μm, (E, F, G, H) 5 μm.
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youngest oocytes express MECP2, whereas mature oocytes
do not (Figure 7A). Sertoli cells and fibroblasts are MECP2
positive, whereas spermatogenic cells do not express
MECP2 at any stage (Figure 7B). The absence of MECP2
immunostaining in mature gametes conforms to the known
fact that zygotes, stem cells, and cells of young embryos
[61-63] lack MECP2. In summary, our results indicate that
MECP2 is a marker of the differentiated state.
Absence of MECP2 is not compensated by altered
expression of other MBD proteins in cultured cells and
native tissues
Considering the specific binding of MECP2 to methyl-
ated DNA, we questioned whether other proteins are
able to replace MECP2 on 5-methylcytosine (5mC) in case
of its absence. Though this has not been systematically
investigated, the question has been addressed genetically



Figure 5 Comparison of MECP2 staining in selected mouse and rat tissues. Nuclei of striated muscle cells (A, cardiomyocytes; B, skeletal
myotubes), smooth muscles (C, empty arrows in duodenum), and fibroblasts of dermal papilla (D, solid arrows) have strong MECP2 signal in
both species. Similarly, gastrodermal epithelial cells (empty arrowheads) and matrix keratinocytes (solid arrowheads) lack MECP2 in both species.
Single confocal sections. Scale bars: (A) 5 μm, (B, D) 10 μm, (C) 25 μm.
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by Caballero and co-authors [64]. The authors showed
that simultaneous deficiency of three methyl-CpG binding
proteins MECP2, MBD2, and KAISO in mice is compat-
ible with normal embryogenesis and provided evidence
for redundancy of function between these proteins in
postnatal mice. Since antibodies to other methyl-CpG
binding proteins reliably working on cryosections are
lacking, we quantitatively studied the expression level
of all known 5mC-binding proteins in Mecp2−/y cultured
cells and tissues by reverse transcription quantitative poly-
merase chain reaction (RT-qPCR). We focused on an
expression analysis of the following methyl binding pro-
teins: four MBD proteins, MBD1, MBD2, MBD3, and
MBD6 (MBD4 and MBD5 were omitted due to the nearly
undetectable expression level); UHRF1 and UHRF2;
SETDB1; and three methyl-CpG binding zinc finger
proteins, namely, ZBTB33, ZBTB38, and ZBTB4. First,
we analyzed the expression of all the above genes in
adult Mecp2−/y, adult Mecp2lox/y, and embryonic wild-
type fibroblasts. The analyzed genes were transcribed at
different levels in embryonic and adult fibroblasts. In
particular, we noted a statistically significant decrease in the
expression of Mbd1 and Mbd6, Uhrf1 and Uhrf2, Zbtb33
and Zbtb4, and Setdb1 in the embryonic fibroblasts
compared to the adult cultured fibroblasts. However, we
found no apparent difference in gene expression between
the adult Mecp2lox/y and Mecp2−/y fibroblasts (Figure 8A).
Similarly, comparison of gene expression in the skeletal
muscle, heart, and small intestine did not reveal any differ-
ences between tissues from Mecp2−/y and Mecp2wt mice
(Additional file 6). Unexpectedly, in the Mecp2−/y brain
and liver, the expression of these proteins (e.g., MBD2)
was even significantly decreased (Figure 8B,C). Thus, we
demonstrated that absence of MECP2 is not compensated
by any other known 5mC binding protein at least at the
mRNA level.
Conclusions
Based on the above discussion, the following conclusions
were made:

� All retinal neurons, except rods, express MECP2 at
a high level and the onset of its expression coincides
with neuron differentiation, in particular, with
massive formation of neural synapses in the inner
and outer plexiform layers.

� Low expression of MECP2 in rod photoreceptors
was found in both the inverted rod nuclei of
nocturnal mammals and the conventional rod nuclei
of diurnal mammals. We relate this fact to an
unusually high level of histone H1c in these cells in
comparison to other retinal neurons [43].

� MECP2 is not detectable by immunostaining in the
retinal microglial cells, nor in the microglia of the
cortex, cerebellum, and spinal cord. In contrast to
microglia, the astroglial cells in all neuronal tissues
express MECP2 at a level comparable to that in
neurons.

� The retina of Mecp2-null mice shows no apparent
defects in the timing and morphology of the nuclear
and plexiform layer formation. No noticeable
difference in the distribution of certain neuron
types, synapses, and neurotransmitters was found
between Mecp2-null and wild-type retinas.

� The nuclear architecture of the neuroretinal cells
and rod photoreceptors is generally preserved in
Mecp2-null mice; in particular, there are no obvious
changes in the distribution of pericentromeric
heterochromatin and major epigenetic markers
characteristic for eu- and heterochromatin.

� MECP2 is expressed in the majority of studied 64
non-neuronal cell types; cells which do not express
MECP2 are epithelial cells of the intestine, cells of



Figure 6 Expression of MECP2 during development and terminal cell differentiation. (A) The onset of MECP2 expression (green) in different
cell types of mouse retina. Time lines are shown for pigment epithelial cells (PEC), ganglion cells (GC), amacrine cells (AC), horizontal cells (HC), bipolar
cells (BC), cone photoreceptor (CP), and rod photoreceptor (RP). On the left, postnatal age points are shown; numbers below the time lines show
the cell birthdays (the day of the last cell division; [60]). Grey horizontal lines mark age points when the outer and inner plexiform layers (OPL and IPL,
respectively) become detectable (see also [57-59]). Light green marks a low MECP2 level. The onset of MECP2 expression in neurons coincides with
massive formation of synapses and, consequently, IPL and OPL plexi. (B) Arrangement of the nuclear and plexiform layers in mouse retina revealed
in a paraffin section after hemalaun-eosin staining and in a cryosection after nuclear counterstain with DAPI. The perikarya of GCs are located in the
GCL; those of BCs, ACs, and HCs are in the INL; and those of the photoreceptors are in the ONL. (C) Examples of retinal cells (marked by arrows) with
initiated MECP2 expression at three age stages. Single and double asterisksmark OPL and IPL, respectively; the abbreviations are the same as in (A). For
comparison with adult mouse retina, see Figure 1A. (D) In the fibroblasts of the dermal papilla (arrowheads) of the hair follicle, MECP2 expression is
initiated postnatally and becomes detectable at P2; later, the MECP2 expression in these cells remains stably high (see also Figure 4A,D). (C, D) Single
confocal sections. Scale bars: (B) 10 μm; (C) overviews 50 μm, close-ups 10 μm; (D) 25 μm.
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the erythropoietic lineage, hair matrix keratinocytes,
and mature gonads; epidermis keratinocytes express
MECP2 at a very low level.

� Similarly to neurons, the expression of MECP2 in
non-neuronal cells is initiated at the late differentiation
stages; in this respect, gonads show a reverse pattern
with no expression in differentiated oocytes and
spermatozoids.

� An absence of MECP2 is not compensated by
increased expression of other methyl binding
proteins; in contrast, expression of some of them
was downregulated.



Figure 7 Expression of MECP2 in the ovary (A) and testis (B). Only young oocytes (A1, arrows) express MECP2; the more mature oocytes
(A2) do not express MECP2 (A2, empty arrow). Neighboring follicular cells (arrowheads) strongly express MECP2. In testis, only Sertoli cells
(B2, arrowhead) and fibroblasts (B2, arrows) express MECP2; spermatocytes at all stages of maturation and sperm cells are MECP2-negative.
Single confocal sections. Scale bars: (A1, A2) 25 μm, (B1) 50 μm, (B2) 10 μm.
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Methods
Animals and primary cell cultures
All procedures were approved by the Animal Ethic
Committee of Munich University and Edinburgh Univer-
sity. CD1, C57Bl/6, and Mecp2-null mice were killed by
cervical dislocation according to the standard protocol.
Mecp2−/y mice (described in [9]; Jackson Laboratory stock
number: 003890) were generated along with wild-type
littermates by crossing Mecp2+/− females with wild-type
male mice. The generation of mice ectopically expressing
LBR in rod cells under the control of the Nrl promoter is
described in [41]. Retinas of R7E mice [42] were studied at
the age of 70 weeks. Retinas from mice with combined
deletions of Suv3-9 and Suv4-20 were a kind gift from
G. Schotta (University of Munich). Wild-type littermate
controls for all genetically modified mice were studied
in parallel. Tail fibroblast cell lines from Mecp2−/y and
Mecp2lox/y mice are described in [9].

Tissues, fixation, and cryosections
The retinas of the ICR/CD1 mice were studied on each
day between E12 and P28. The retinas of Mecp2−/y mice
and their WT littermates were studied at the ages of P1,
P7, P14, P30, and P53. Retina fixation, embedding in
freezing medium, and preparation of cryosections were
performed as described previously [38,39]. Briefly, the
eyes were enucleated immediately after death; the ret-
inas were dissected and fixed with 4% formaldehyde in
phosphate-buffered saline (PBS) for various times (15 min,
30 min, 1 h, 3 h, and 24 h). After washing in PBS, the sam-
ples were infiltrated in 10%, 20%, and 30% sucrose in PBS
before freezing in Jung freezing medium. Importantly,
the retina samples at different ages, from WT and trans-
genic mice, and of various fixation times, were arranged in
respective order in the same block to assure identification
of all retina samples in a section [39]. Retinas from
monkey (Macaca fascicularis) and rat (Rattus norvegicus)
were post mortem experimental materials from the MPI
for Brain Research (Frankfurt, Germany). Other tissue
samples from adult C57Bl/6 mice and rats were fixed
with 4% formaldehyde in PBS for 24 h. For some tis-
sues, the samples from different developmental stages –
P0, P2, P5, P9, P14, and P28 – were used.

Immunostaining on cryosections
Immunostaining was performed according to the protocol
described in detail by [38,39]. This protocol allows quick
testing of a wide range of fixation and antigen retrieval
times and detection of the range in which the results of
staining are robust. Antigen retrieval was crucial for
robust MECP2 staining and was performed by heating
cryosections in 10 mM sodium citrate buffer at 80°C.
MECP2 detection after 12–24 h of tissue fixation was
most successful after 20–30 min of antigen retrieval.
For MECP2 immunostaining, mostly rabbit polyclonal
antibodies were used. Specificity of the antibody was
checked using fibroblasts derived from Mecp2−/y and
Mecp2lox/y mice (Additional file 1). In some cases, rat
monoclonal antibodies were used as well [65]. The anti-
bodies for cell type identification and for recognition of
retinal structures are listed in Tables 1 and 3. Antibodies
for the detection of histone modifications are listed in
Table 2. Secondary antibodies were anti-mouse IgG
conjugated to Alexa555 (A31570, Invitrogen, Renfrew,
UK) or Alexa488 (A21202, Invitrogen), and anti-rabbit
IgG conjugated to DyLight549 (711-505-152, Jackson
ImmunoResearch, West Grove, PA, USA) or DyLight488
(711-485-152, Jackson ImmunoResearch). The nuclei were
counterstained with DAPI added to the secondary anti-
body solution. After staining, the sections were mounted
under a coverslip with Vectashield (Vector Laboratories,
Inc., Burlingame, CA, USA).



Figure 8 Analysis of expression of MBD proteins in cultured fibroblasts and tissues from Mecp2−/y and wild-type mice. (A) Relative
transcription level of MBD proteins in wild-type embryonic fibroblasts (MEF W9) and adult fibroblasts established from Mecp2−/y and littermate
Mecp2lox/y mice. Values are normalized to the Mecp2 transcript in the embryonic fibroblasts. Note that the mRNA levels in the embryonic and
adult fibroblasts differ, whereas no difference in transcription was detected between Mecp2−/y and Mecp2lox/y genotypes. Relative transcription
level of MBD proteins in the brain (B) and liver (C) from Mecp2−/y and littermate Mecp2wt mice. Values are normalized to the Mecp2 transcript in
the respective Mecp2wt tissue. Note that there is no upregulation of MBD protein genes upon deletion of Mecp2. Results of real-time PCR analysis
of two (for tissues) and three (for cells) biological replicates are given as mean ± S.E.M. Statistical difference between values was estimated by t
test; statistically significant differences in transcription levels are marked by asterisks (*<0.05; **<0.01).

Song et al. Epigenetics & Chromatin 2014, 7:17 Page 13 of 16
http://www.epigeneticsandchromatin.com/content/7/1/17
Light microscopy
Single optical sections or stacks of optical sections
were collected using a Leica TCS SP5 confocal micro-
scope (Milton Keynes, UK) equipped with Plan Apo
63×/1.4 NA oil immersion objective and lasers with
excitation lines 405, 488, and 561 nm. Dedicated plug-
ins in the ImageJ program were used to compensate
for axial chromatic shift between fluorochromes in
confocal stacks, to create RGB stacks/images, and to
arrange optical sections into galleries [66,67].



Table 4 List of primers used for real-time PCR

Gene Forward Reverse

Mbd1* GAGCACAGAGAATCGCCTTC CACACCCCACAGTCCTCTTT

Mbd2* CTGGCAAGATACCTGGGAAA TTCCGGAGTCTCTGCTTGTT

Mbd3* AGAAGAACCCTGGTGTGTGG TGTACCAGCTCCTCCTGCTT

Mbd4* ACAGGATGGCTCTGAAATGC TCTACTTGTGTCCGTGGGATG

Mbd5 isoform 1** GAGGCCATGAGCGAACTG TCTTCCTCCTCTTGGGTTTG

Mbd6** CCCGGGGATAGTCAGAAAGT AGCTGCTCGCGTTGTAGG

Mecp2* CAGGCAAAGCAGAAACATCA GCAAGGTGGGGTCATCATAC

Zbtb33 ATCATTAGCTCCAGTCCAGACTCA ATCTGCATCTTCTGTGTCAATGATC

Zbtb38* CATCTTTTGGAGCCATACGATCT TGACGGTTTCCTGTCTTTTGAC

Zbtb4 CCCTGCCGCTACTGTGAGA CAGCAGAAGATGCACTGGTACCT

Setdb1 GGCCATTCCTCCCCTACTTC GGCCAAAGGTGACCGATATG

Uhrf1 GGCAGCTGAAGCGGATGA CCATGCACCGAAGATATTGTCA

Uhrf2UHRF2 CATGGTCGCAGCAATGATG CACCGCTTCCAGTATACGTGAA

Gapdh CATGGCCTTCCGTGTTCCTA CTTCACCACCTTCTTGATGTCATC

Single asterisk denotes that the sequence was taken from [64]. Double asterisks signify that the sequence was taken from [69].
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Chromocenter scoring
Chromocenters in the rod cells were scored at two age
points, P30 and P53. For each age, three mice were used,
two Mecp2−/y and one Mecp2+/y littermate. From each
animal 25-μm-thick cryosections were prepared from
the three retina areas: central, mid, and peripheral. To
distinguish between individual nuclei in tightly packed
rod perikarya, the nuclear envelope of rod cells was
stained with anti-lamin B1 antibodies (sc-6217). Between
600 and 800 rod cell nuclei were scored in stacks
collected from each retina area. Descriptive statistics was
performed using SigmaStat software.
RNA isolation and RT-qPCR
The tissue samples of Mecp2-null mice were collected
in ‘RNAlater’ (Qiagen, Venlo, Netherlands) and stored
at −20°C. Isolation of RNA and reverse transcription
were carried out as described previously [68]. Primers
for RT-qPCR were either designed with the Primer
Express software (Applied Biosystems Inc., Foster City,
CA, USA) or used as previously published (Table 4).
RT-qPCR was performed on the 7500 Fast Real-Time
PCR System (Applied Biosystems) at standard reaction
conditions using the Power SYBR Green PCR Master
Mix (Applied Biosystems). Gene expression levels were
normalized to Gapdh and calculated using the compara-
tive CT method (ΔΔCT method). Relative quantification
of gene expression was performed by the 2−ΔΔCT method
based on the CT values of both target and reference
genes. The results of the real-time PCR analysis of two
(tissues) and three (cells) biological replicates are given
as mean ± S.E.M. The statistical difference between the
values was estimated by t test using SSPS.
Additional files

Additional file 1: Immunostaining and Western blot analysis with
rabbit anti-MECP2 antibody. Specificity of the rabbit anti-MECP2
antibody and its application for Western blot analysis of MECP2 level in
different mouse tissues.

Additional file 2: Mecp2−/y and Mecp2wt retinas at different
developmental stages. Mecp2−/y and Mecp2wt littermate retinas are not
different with respect to the time of layer formation, thickness of nuclear and
plexiform layers, and other morphological features.

Additional file 3: Distribution of neurons, synapses, and
neurotransmitters in Mecp2wt and Mecp2−/y retinas. Retinas of Mecp2−/y

mice show no apparent defects in the distribution of neurons, synapses, and
neurotransmitters in comparison to Mecp2wt littermates.

Additional file 4: Distribution of histone modifications in ganglion
and INL cells of Mecp2wt and Mecp2−/y retinas. Similar distribution of
histone modifications characteristic of euchromatin and heterochromatin
in Mecp2−/y and Mecp2wt mice.

Additional file 5: MECP2 expression in retinal cells from Suv3-9/
Suv4-20 double KO mice. Similar to WT mouse retina, rods of double
KO mice express MECP2 at a very low level, whereas other retinal
neurons strongly express MECP2.

Additional file 6: Gene expression analysis of MBD proteins in
Mecp2−/y and wild-type mice. Relative transcription levels of MBD
proteins were determined by RT-qPCR in gut, skeletal muscles and heart
of Mecp2−/y and Mecp2wt mice.
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Additional file 1.  
 
Specificity of rabbit-anti-MECP2 antibody (A) and its application for Western 
blot analysis of MECP2 level in different mouse tissues (B). 
 

A.  Immunostaining of cultured primary fibroblasts derived from Mecp2
-/y

 and 

Mecp2
lox/y

 mice. Chromocenters are stained with rabbit-anti-MECP2 antibody 

(green) in Mecp2
lox/y

 but not in Mecp2
-/y

 fibroblast nuclei which indicates to 

specificity of the antibody used. Chromocenters (arrows) comprise AT-rich major 
satellite repeat and consequently brightly stained with DAPI (red). 
 

 
 
 
B. Western blot analysis of MECP2 level in different mouse tissues.  

 
 
 
 
 
 
 
 
 
 
 

 
Nuclei were isolated as previously described (Prusov, A.N. and Zatsepina, O.V. 
(2002) Isolation of the chromocenter fraction from mouse liver nuclei. Biochemistry 
(Mosc), 67, 423-431). In short, mouse tissues were dissected, frozen with liquid 
nitrogen and pulverized using a mortar (3g tissue each), and homogenized in 15 ml 
buffer A (20 mM TEA, 30 mM KCl, 10 mM MgCl2, 0.25 M sucrose) using a douncer. 
The homogenate was centrifuged for 10 min at 1000g using a Eppendorf Centrifuge 
5810 R (rotor A 462), The resulting pellets were resuspended in buffer B (identical 
with A but containing 2.5 M sucrose) to a final concentration of 2.1 M sucrose, and 
centrifuged at 50.000g (SW28 rotor in a Beckmann ultracentrifuge L8-70 M”) for 
40 min with slow deceleration/acceleration. Resulting nuclei pellets were washed in 
20 ml of buffer A and centrifuged at 1000 g for 10 min. All steps were carried out at 
4°C. The obtained pellet contained mostly nuclei; the purity of the fraction was 
controlled by phase contrast microscopy (Zeiss Axioplan 200). Nuclei isolation 
yielded approx. 1x107 (brain, spleen, lung) and 1x108 nuclei (liver, kidney, heart) per 
sample. Proteins were extracted using RIPA buffer and subsequently boiled in 
Laemmli sample buffer. Proteins were separated on a 10% SDS-PAGE and western 
blot analysis was performed using affinity purified rabbit polyclonal anti-MeCP2 
antibody (1:500) and secondary anti-rabbit antibody conjugated to Alexa 488 (Jost 
KL, Rottach A, Milden M, Bertulat B, Becker A, et al. (2011) Generation and 
Characterization of Rat and Mouse Monoclonal Antibodies Specific forMeCP2 and 
Their Use in X-Inactivation Studies. PLoS ONE 6(11): e26499).  



Additional file 2.  
 

Mecp2
-/y

 and Mecp2
wt

 littermate retinas are not different with respect to the 

time of the layers formation, thickness of nuclear and plexiform layers, and 
other morphological features at postnatal ages P1, P7, P13, P30, and P53.  
 
ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer; IPL, 
inner plexiform layer; OPL, outer plexiform layer. Single confocal sections. Scale bar: 
50 µm 
 

 
 



Additional file 3 (A, B).  
 
Retinas of Mecp2-/y mice show no apparent defects in the distribution of 
neurons, synapses, and neurotransmitters in comparison to Mecp2wt 

littermates 
 
Four other marker stainings are shown on Figure 3A. See Table 1 for structures 
selectively marked by immunostaining and for the source of the antibodies. 
 
 
Additional file 3A: 

 

 
 
 



Additional file 3B: 
 

 
 

 
 



Additional file 4.  
 
Similar distribution of histone modifications characteristic of euchromatin and 

heterochromatin in Mecp2 
-/y

 and Mecp2
 wt

 

 
Nuclei with conventional architecture, ganglion and INL cells, are shown. Histone 
modifications and DAPI nuclear counterstain are shown in green and red, 
respectively. Single confocal sections. Scale bars: 5 µm 

 
 
 
 



Additional file 5.  
 
Expression of MECP2 in retinal cells from double KO mice with combined 
deletion of Suv3-9 and Suv4-20 
 
Similar to WT mouse retina, rods of double KO mice (arrowheads) express MeCP2 at 
a very low level, whereas cones (arrows) in ONL and other neurons from INL and 
GCL strongly express MeCP2. Note typical distribution of MeCP2 in nuclei (compare 
with WT retina cells on Figure 1A). Single confocal sections. Scale bars: upper panel, 
25 µm; middle and lower panels, 5 µm 

 
 
 



Additional file 6.  
 

Analysis of expression of MBD proteins in three tissues from Mecp2
-/y

 and 

Mecp2
wt

 mice  

 
Relative transcription level of MBD proteins in gut (A), skeletal muscles (B), and heart 
(C) from Mecp2-/y and littermate Mecp2wt mice. Values are normalized to transcript of 
Mecp2 in Mecp2wt of respective tissue. Note that there are no statistically significant 
changes in transcription of MBD protein genes upon deletion of Mecp2. 
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Abstract 

 

In mammalian cells, peripheral heterochromatin is tethered to the nuclear envelope by two 

developmentally regulated mechanisms depending on the inner nuclear membrane (INM) 

protein lamin B receptor (LBR, B-tether) and the nuclear lamina component lamin A/C (LA/C, 

A-tether) (Solovei et al., 2013). While presence of at least one of the tethers suffices to 

maintain heterochromatin at the nuclear envelope, absence of both proteins results in 

peripheral heterochromatin release, its relocation to the nuclear interior and inversion of the 

nuclear architecture. Emerging evidence suggests that the major chromatin binding 

component of both tethers are integral inner nuclear membrane proteins, which interact with 

both lamins and chromatin. Accordingly, ectopic expression of LBR but not lamin C 

counteracts nuclear inversion in mouse rods. To identify the missing component of the A-

tether, we performed immunostainings of wild type mouse tissues with antibodies against 

various INM proteins. We obtained cell-type specific signatures of their expression for about 

twenty cell types and revealed that the INM protein LEM2 is selectively missing in rod cells, 

as well as in other cell types lacking LA/C. Strikingly, in tissues and cultured cells derived 

from LA/C deficient mice, LEM2 is either missing or mislocalizes to the nuclear herniations, 

weakened nuclear envelope structures devoid of most NE components. Based on these 

results, we propose that LEM2 is the chromatin binding component mediating LA/C-

dependent peripheral heterochromatin maintenance. 

 

Keywords 

 

Nuclear envelope, nuclear architecture, inner nuclear membrane, peripheral heterochromatin, 

LEM-D proteins, LEM2, emerin; MAN1, LAP2beta; LAP2alpha, LAP1B, Samp1, lamin A/C, 

LBR, lamin A/C knock out 
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Introduction  

 

The spatial organization of chromatin within the nucleus is highly ordered and plays an 

important role in the regulation of the nuclear functions (Cremer and Cremer, 2010). 

Chromatin is spatially segregated in the nucleus according to gene-activity. Most nuclei 

exhibit a conventional architecture with transcriptionally active euchromatin (EC) localized 

within the nuclear interior and transcriptionally inactive heterochromatin adjacent to the 

periphery of the nucleoli and the nuclear envelope (NE) (Joffe et al., 2010). The NE, which is 

composed of two concentric lipid bilayers, underlined by a lamina scaffold and equipped with 

hundreds of nuclear envelope transmembrane proteins (NETs) including the inner nuclear 

membrane (INM) proteins (Schirmer et al., 2003; Korfali et al., 2012; Worman and Schirmer, 

2015), emerged to regulate various biological key processes ranging from dynamic 

heterochromatin anchorage and silencing, over regulation of signaling to modulation of 

nuclear mechanics (Davidson and Lammerding, 2014). 

 

Mutations in lamina and NETs are associated with a wide range of tissue-restricted human 

developmental diseases, the nuclear envelopathies, highlighting the functional relevance of 

NE integrity (Schreiber and Kennedy, 2013; Barton et al., 2015). NETs and lamins are widely 

expressed and appear to have at least partially overlapping interactomes (Barton et al., 

2015) pointing towards a functional redundancy. Nevertheless, evidence is emerging that 

both lamina and NET composition varies between different tissues and cell types (Su et al., 

2002; Schirmer et al., 2003; Korfali et al., 2010; Wilkie et al., 2011; Korfali et al., 2012), which 

suggests that the dynamic NE composition is linked to cell-type specific functions and 

corresponds to tissue-specificity of the described to-date envelopathies. 

 

Spatial chromatin arrangements are not fixed but change during development and 

differentiation (Solovei et al., 2004; Brero et al., 2005; Solovei et al., 2009; Clowney et al., 

2012). During the course of differentiation, many genes change their association with the 

nuclear periphery, depending on whether they are expressed or not (Guelen et al., 2008; 

Pickersgill et al., 2006; Towbin et al., 2010; Mattout et al., 2011; Peric-Hupkes et al., 2010). 

This can be mimicked by artificial tethering genes to the periphery (Finlan et al., 2008; Reddy 

et al., 2008; Dialynas et al., 2010), while targeted internal reposition and chromatin 

decondensation leads to gene activation (Chuang et al., 2006; Dundr et al., 2007; Therizols 

et al., 2014). The mechanisms anchoring heterochromatin to the periphery, however, 

remained largely elusive.  

 

Recently, we uncovered two major mechanisms which independently anchor 

heterochromatin to the NE, the so called B-tether based on the integral INM protein Lamin B-

receptor (LBR) and the A-tether characterized by presence of the nuclear lamina component 

Lamin A/C (LA/C) (Solovei et al., 2013).  A- and B-tethers are differentially used, 

developmentally regulated, and oppositely affect gene expression and cellular differentiation. 

Usually, both or at least one of the two tethers are present. During development or cellular 

differentiation, LBR is expressed first and at the later developmental stages it is replaced or 

joined by LA/C expression. Depletion of LA/C is often compensated by prolonged LBR 

expression but not vice versa. Loss of both tethers results in release of the heterochromatin 

from the NE and its accumulation in the nuclear interior. In mouse cells, chromocenters, 

formed by densely packed subcentromeric blocks of major satellite repeat, detach from the 

NE and fuse in the nuclear interior. LINE-rich heterochromatin also detaches from the NE 

and accumulates around fused chromocenters, whereas SINE-rich EC becomes more 
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peripheral and partially underlies the NE. Thus, such nuclei have an inverted nuclear 

arrangement in comparison to all other conventional nuclei. Natural nuclear inversion has 

been described only in nuclei of rod photoreceptor cells from nocturnal mammals. Nuclei of 

nocturnal rods are lacking both A- and B-tethers and accumulate all heterochromatin in the 

nuclear center, where it forms a very dense optically active structure, functioning as a 

condensing microlense reducing light scattering in the retina (Sullivan et al., 1999; Solovei et 

al., 2009; 2013). 

 

Notably, ectopic expression of LBR but not lamin C rescues the conventional nuclear 

architecture in mouse rod nuclei by maintenance of the peripheral heterochromatin. Thus 

LBR, which directly binds chromatin and is connected to B-type lamins (Makatsori et al., 

2004; Olins et al., 2010; Hirano et al., 2012) appears to be sufficient for 

HETEROCHROMATIN tethering. In contrast, chromatin binding by LA/C is not sufficient to 

mediate its peripheral maintenance and therefore considered indirect and likely mediated by 

INM proteins, by LEM-D (LAP2 (lamina-associated polypeptide 2)/emerin/MAN1 domain) 

proteins in particular (Brachner and Foisner, 2011). LEM-D proteins bind both lamins and 

LINE-rich heterochromatin overlapping with lamina associated domains (LADs) (Gonzalez-

Aguilera et al., 2014; Ikegami et al., 2010; Guelen et al., 2008). Moreover, apart from being 

causative for human nuclear envelopathies, recent evidence suggest a role of LEM-D 

proteins in maintenance of tissue homeostasis and cellular differentiation (Barton et al., 

2015) making them likely candidates for peripheral heterochromatin tethering. 

 

In this study, we attempted to identify the missing component of the A-tether by screening 

WT and Lmna-deficient mouse cells and tissues. Based on the comprehensive analysis of 

both cells and tissues, we demonstrate that LEM2 is synchronously expressed together with 

LA/C, is either absent or mislocalized in Lmna-deficient mouse cells and tissues, and 

selectively missing from rod cells at all developmental stages. Taken together, we reveal 

LEM2 as a likely candidate to mediate chromatin anchorage in LA/C dependent tethering, a 

hypothesis which are currently testing by transgenic coexpression of both LA/C and LEM2 in 

murine rods.  

 

Materials and methods 

 

Cell culture and immunostaining of cells. Lmna KO cells were cultured in Dulbecco’s 

modified Eagle’s medium supplemented with 20% fetal bovine serum (Biochrom) and1% 

penicillin/streptomycin. For immunostaining, cells cultured on coverslips were fixed with 4% 

paraformaldehyde for 10min, washed with PBST (PBS, 0.01% Tween20) and permeabilized 

with 0.5% Triton X-100. Both primary and secondary antibodies were diluted in blocking 

solution (PBST, 4% bovine serum albumin). Coverslips with cells were incubated with 

primary and secondary antibody solutions for 1h at room temperature, respectively, in dark 

humid chambers. Washings following primary and secondary antibody incubation were 

performed with PBST. For nuclear DNA counterstaining, DAPI was added to the secondary 

antibody solution (final concentration 2mg/ml). Coverslips were mounted in Vectashield 

antifade medium (Vector Laboratories) and sealed with colorless nail polish. The primary 

antibodies used in this study are listed in Table 1. Secondary antibodies were the same as 

used for cryosections (see below). 

 

Animals, tissue fixation, and preparation of cryosections. Mice of inbred strain C57Bl6 

were killed by cervical dislocation after anesthesia with isoflurane (Baxter) according to the 



Manuscript in preparation 

56 

standard protocol approved by the Animal Ethic Committee of Ludwig Maximilian University 

of Munich (LMU). Tissues were dissected and fixed with 4% formaldehyde in PBS for approx. 

20-24 h, washed thoroughly in PBS for a few hours, infiltrated with a series of sucrose in 

PBS with increasing concentration (10%, 20%, 30%), and transferred into molds (Peel-A-

Way® Disposable Embedding Molds, Polysciences Inc., USA) filled with Jung freezing 

medium (Leica Microsystems). Frozen blocks were prepared by immersion of molds with 

tissues in freezing medium into ethanol bath chilled to -80°C. After freezing, blocks were 

transferred to dry ice and stored at -80°C. Cryosections with thickness of 14-20 µm were cut 

using Leica Cryostat (Leica Microsystems) and collected on SuperFrost microscopic slides 

(SuperFrost Ultra Plus, Roth, Germany). Sections were immediately frozen and stored at -

80°C until use (for detailed protocol see (Solovei, 2010)). 

 

Immunostaining of cryosections. The immunostaining procedure was described in detail 

elsewhere (Eberhart et al., 2012; Song et al., 2014). In brief, slides with cryosections were 

air-dried at room temperature for 30 min, re-hydrated in 10 mM sodium citrate buffer for 5 

min. Antigen retrieval was performed by heating up to 80ºC in 10 mM sodium citrate buffer 

for 20-30 min. After brief rinsing in PBS, the slides were incubated with 0.5% Triton X-100 in 

PBS for 1 h. The primary antibodies used in this study are listed in Table 1. All antibodies 

were first tested on cultured mouse somatic cells, primary fibroblasts or C2C12 myoblast 

cells. Secondary antibodies were anti-mouse conjugated to Alexa 488 / 555 / 594  (Invitrogen, 

A21202 / A31570 / A21203), anti-rabbit conjugated to DyLight 488 / 549 / 594 (Jackson 

ImmunoResearch, 711-485-152 / 711-505-152 / 711-516-152), anti-guinea pig conjugated to 

DyLight 488 (ImmunoResearch, 706-486-148), anti-goat conjugated to DyLight 488 / Cy3 

(ImmunoResearch, 705-486-147 / 705-166-147) or to Alexa 647 (Invitrogen, A21447). Both 

primary and secondary antibodies were diluted in blocking solution (PBS with 0.1 % Triton 

X100, 1% bovine serum albumin, and 0.1 % Saponin); slides with applied antibodies were 

incubated in dark humid chambers for 12-24 h. DAPI for the nuclear counterstaining was 

added to the secondary antibody to the final concentration of 2 μg/ml. Washings between 

and after antibody incubations were performed with 0.01% Triton X 100 in PBS at 37°C, 3 x 

30 min. Stained sections were mounted under coverslips in Vectashield antifade medium 

(Vector) and sealed with colorless nail polish. 

 
Microscopy.  Single optical sections or image stacks were collected using a Leica 
TCS SP5 confocal microscope equipped with Plan Apo 63x/1.4 NA oil immersion 
objective and lasers for blue (405 nm), green (488 nm), orange (561 nm), red (594 
nm), and far red (647 nm) fluorescence. Dedicated StackGroom plug-ins of ImageJ 
were used for axial chromatic shift correction and generation of TIFF RGB stacks, 
montages, and projections (Walter et al., 2006). 
 
Generation and genotyping of emerin-2A-laminC-, LEM2-, and LEM2-2A-laminC-TER 

mice. The mouse coding sequences for Lemd2 (Gene bank accession number 

NM_146075.2, base 21 to 1556) and Emn (Gene bank accession number NM_007927.3, 

base 266 to 1045) were amplified by polymerase chain reaction (PCR) using Phusion™ High-

Fidelity DNA Polymerase (New England Biolabs) (Table 2) and cloned into the Nrl-LamC 

(Solovei et al., 2013) construct, comprising a 2.5-kb mouse Nrl promoter segment for rod-

specific expression (Akimoto et al., 2006). Nrl-Emn-2A-LamC and Nrl-Lemd2-2A-LamC were 

generated by inserting Emn and Lemd2, respectively, into Nrl-LamC (Solovei et al., 2013) 

and in-frame linking by T2A (GSGEGRGSLLTCGDVEENPGP) (Szymczak et al., 2004; de 

Felipe et al., 2006) to generate a single ORF. To generate Nrl-Lemd2, LamC in Nrl-LamC 
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was replaced by Lemd2. Transgenes were excised from plasmid DNA using EcoRI-NotI for 

Nrl-Emn-2A-LamC and NdeI-NheI for Nrl-Lemd2 and Nrl-Lemd2-2A-LamC. Preparation of 

DNA for microinjection and generation of transgenic mice were performed according to 

standard protocol (Nagy et al., 2003). Transgenic founder animals and their offspring were 

identified using standard PCR (MyTaq, Bioline). Genomic DNA was extracted from tail snips 

using QIAamp DNA Mini Kit (QIAGEN). Primers: for Nrl-Lemd2 and Nrl-Lemd2-2A-LamC are 

listed below. Lemd2-For: 5’ TGGACAAAGTGGTCTGCCTG 3’and Lemd2-Rev: 5’ 

GGATTAGACTGTCCCGCACG 3’ (Annealing temperature: 60°C, wild-type fragment: 0.3kb, 

transgene construct: 1kb); Emd-For: 5’ CAGTGCCTACCAGAGCATCG 3’and LamC-Rev: 5’ 

CGCTGTGACGGGGTCTCCAT 3’ (Annealing temperature: 57°C, transgene construct: 

0.5kb). 

 

Results and Discussion 

 

The set of INM proteins is highly cell-type specific 

 

We recently uncovered that the temporal coordination of LBR and LA/C expression governs 

peripheral heterochromatin tethering and oppositely controls gene expression (Solovei et al., 

2013). LBR is usually expressed first and either persists, is joined or replaced by LA/C. Loss 

of LBR triggers muscle specific gene expression, whereas depletion of peripheral LA/C 

causes downregulation. Moreover, transcriptomic and proteomic studies revealed that the 

NE composition is distinct for different tissues and cell types (Solovei et al., 2013; Su et al., 

2002; Schirmer et al., 2003; Korfali et al., 2010; 2012; Wilkie et al., 2011). Considering the 

high variability of the NE composition, it is likely that other INM proteins might similarly to 

LBR and LA/C affect the epigenetic regulation of the nuclear architecture. However, a 

comprehensive characterization of NE composition for different cell types at different 

developmental stages within the native tissue context is still lacking. Therefore, we 

performed expression analysis for a set of twelve NE proteins using immunostainings in 

more than ten different mouse tissues (Table 3, Fig.1, SFig.1).  

 

Indeed, the majority of studied cell types revealed a distinct signature of NE proteins. While 

all cell types constitutively express B-type lamins, expression of A-type lamins and other INM 

proteins, such as LBR, LAP2beta, MAN1, LEM2, emerin, LAP1B, and SAMP1, as well as 

nucleoplasmic LAP2alpha varied significantly between different cell types (Table 3, see also 

(Dechat et al., 2010; Solovei et al., 2013)). Only one cell type, smooth muscle cells, 

expressed the whole set of proteins studied. Many other cell types, such as endothelial cells 

or fibroblasts, expressed a subset of proteins (Table 3, SFig. 1G-I,). Emerin, which is 

considered ubiquitously expressed (Tunnah et al., 2005), was present in all studied cell types 

except for hepatocytes. Similarly, MAN1 was not found in crypt cells of the thin intestine 

(Table 3, SFig. 1A,J). Other proteins were more restricted in their tissue specific expression. 

In particular, spindle-associated membrane protein 1 (SAMP1) was selectively expressed in 

neuronal and muscle tissues. Nuclei of rod photoreceptors and other neurons in the retina 

and the cerebellum, as well as nuclei of smooth, skeletal and heart muscle cells exhibited a 

strong Samp1 staining, while nuclei of neighboring cells, such as glial, endothelial, or 

fibroblasts were negative for Samp1 (Table3, Fig.2). In retinal neurons, expression of Samp1 

is especially pronounced in rod nuclei (Fig. 2B,C). To test whether expression of Samp1 is 

connected to rod inversion in nocturnal mammals, we tested retinas of nocturnal (dog, fox) 

and diurnal (macaque, vervet monkey) species, possessing inverted or conventional rod 

nuclei respectively. The NE of all rods, irrespective of their chromatin arrangement, was 
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strongly enriched in Samp1 (Fig. 2B,C). Moreover, we also noticed a striking increase in 

Samp1 expression during mouse retina differentiation (Fig. 2D). These results are in 

accordance with previous analysis of tissue-specific expression profiles, revealing that 

SAMP1, besides high expression in oocytes, is predominant in brain and skeletal muscles 

(Figueroa et al., 2010). Taken together this indicates that SAMP1 plays a role in early 

development and postmitotic cells, but not in rod inversion.  

 

Notably, temporal expression depending on developmental and cellular differentiation state is 

common to many INM proteins, in particular LEM-D proteins. This is clearly demonstrated by 

their gradual staining in constantly renewing tissues, such as the intestine or the skin 

epithelium, where successive stages of differentiating cells are spatially segregated in the 

tissue. For instance, undifferentiated and highly proliferative cells, such as tissue stem cells 

found in the crypts of the thin intestine, or cells in the basal layer of the epidermis have high 

levels of the nucleoplasmic LEM-D protein LAP2alpha, which gradually diminishes with 

progressing differentiation (Fig.3, SFig.2), a pattern similar to LBR expression we described 

previously (Solovei et al., 2013). Instead, other NE-associated proteins reveal an opposite 

expression pattern. In differentiating cells, the levels of peripheral LA/C, MAN1, LEM2 and 

LAP1B constantly increase (Table 3, Fig. 1). Interestingly, the observed temporal expression 

patterns are in accordance with recent studies implicating LEM-D proteins in maintenance of 

tissue homeostasis as well as regulation of proliferation and differentiation, including gradual 

loss of LAP2alpha upon differentiation. In complex with nucleoplasmic lamins, LAP2alpha 

directly binds retinoblastoma protein (pRb), thereby affecting pRb/E2F signaling and 

regulating the proliferation of adult stem cells and progenitors of renewing tissues such as 

the intestine, skeletal muscle and hematopoietic cells (Naetar et al., 2008; Gotic et al., 2010). 

Downregulation of LAP2alpha might be implicated in loss of nucleoplasmic LA/C triggering 

the transition from proliferation to differentiation (Naetar et al., 2008; Gotic et al., 2010). 

LEM2 and MAN1, which constantly increase during differentiation, have been reported to be 

required for myogenesis in vitro (Huber et al., 2009). In mice, depletion of MAN1 is 

embryonic lethal and impairs both vasculogenesis and heart morphogenesis (Ishimura et al., 

2006; Cohen et al., 2007; Ishimura et al., 2008). Mutations in MAN1 lead to bone and skin 

impairments in humans (Brachner and Foisner, 2014). While emerin mutations cause Emery 

Dreifuss muscular dystrophy (EDMD) in humans (Bione et al., 1994), emerin null mice 

practically normal except for defects in the muscles (Ozawa et al., 2006; Melcon et al., 2006; 

Frock et al., 2006; Barton et al., 2013). However, we do not observe a tissue or 

developmental-dependent expressoin of emerin, except for rods (see below, (Solovei et al., 

2013)). In all other cell types, emerin appears to be ubiquitously expressed.  

 

Besides differentiation-dependent changes, we noted an age-dependent effect on NE 

composition. For instance, LAP2ß is expressed in maturating myoblasts and cardiomyoblasts 

within the first two weeks of mouse development, but is absent in nuclei of differentiated 

skeletal muscles and cardiomyocytes in adult mice (Fig. 4, Table 3). Moreover, a similar 

dynamics of expression was observed for LAP1b, which is very weakly expressed in fully 

differentiated retinal neurons (Table 3).  

 

LEMD2 is selectively missing in rod photoreceptors 

 

We focused our interest on rod photoreceptor nuclei. In difference to all other cell types, rod 

photoreceptor nuclei are missing the developmental switch from LBR to LA/C expression. 

Upon downregulation of LBR during rod maturation, LA/C expression is not initiated resulting 
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in gradual nuclear inversion (Solovei et al., 2013). Transgenic expression of the INM protein 

LBR causes heterochromatin retention at the nuclear periphery in rods and thus counteracts 

nuclear inversion. In contrast, ectopic expression of Lamin C has no effect on nuclear 

inversion leading to the hypothesis, that at least one additional component is required to 

mediate LA/C-dependent tethering. Given that chromatin is considered to be primarily bound 

by INM proteins but not lamins (Zullo et al., 2012; Brachner and Foisner, 2011; Demmerle et 

al., 2012), we were prompted to assess the rod-specific set of NE proteins. 

 

Based on immunostainings, we demonstrate that in rods, the NE proteins LAP2ß, MAN1 and 

SAMP1 are always present, whereas expression of emerin and LAP1b gradually diminishes 

during rod differentiation to very low levels weakly detected by antibodies (SFig. 1K, Table 3). 

Importantly, LEM2 is completely missing in rods and was not detected in this cell type at any 

stages of retina development (SFig.1K, Table 3). In addition to rods, we noticed that LEM2 is 

also absent in other cells devoid of LA/C, such as proliferating crypt cells and matrix 

keratinocytes. Vice versa, presence of LEM2 coincides with LA/C expression in all studied 

cell types except for neuroretina and hepatocytes (Table 3). 

 

Being underrepresented in inverted mouse rod nuclei, all three proteins - LEM2, emerin, and 

LAP1b - could potentially mediate peripheral heterochromatin binding within the LA/C-

dependent tether. However, the expression patterns of both LAP1b and emerin do not 

always correspond to LA/C. In particular, LAP1b is absent from cell types highly enriched in 

in A-type lamins, such as cerebellar neurons (SFig.1L, Table 3). Emerin, which is almost 

ubiquitously expressed, is also found in LA/C-negative cells, such as crypt cells and matrix 

keratinocytes of dermal papilla  (Fig.1, SFig.1A, Table 3). Moreover, in our previous study of 

Emd-null mice, we revealed that emerin ablation neither caused inversion, nor triggered 

ecchronic LBR expression, arguing that emerin alone is dispensable for heterochromatin 

maintenance. At least in one case, in fibroblast of the dermal papilla, depletion of emerin was 

compensated by LAP2b expression pointing towards a potential role of these two proteins in 

heterochromatin tethering but probably not in rods (Solovei et al., 2013). Indeed, Lap2ß and 

emerin have been previously implicated in heterochromatin binding and repression at the 

nuclear periphery (Zullo et al., 2012; Demmerle et al., 2012). Both LEM-D proteins directly 

bind heterochromatin and repression is mediated by the recruitment and stimulation of 

HDAC3. In case of LAP2ß, sequences enriched for GAGA-repeats direct lamina association 

and are bound and silenced by Lap2ß in complex with the transcriptional repressor cKrox 

and HDAC3 (Zullo et al., 2012). Notably, the activity of the complex appears to be cell-type 

and developmental-stage dependent. Similarly, emerin recruits HDAC3 together with other 

components of the nuclear co-repressor complex (Demmerle et al., 2012). Accordingly, 

depletion of emerin interferes with heterochromatinization leading to a more open chromatin 

state (Mewborn et al., 2010; Meaburn et al., 2007; Ognibene et al., 1999; Demmerle et al., 

2012), a phenotype similar HDAC3 null cells (Bhaskara et al., 2010). Moreover, the nuclear 

architecture in cells obtained from patients with X-linked EDMD, where Emd is mutated, has 

been shown to be severely compromised (Fidziańska et al., 1998; Meaburn et al., 2007). 

Taken together, we conclude that LEM2 but not emerin or LAP1b, is the most likely 

candidate as as the missing component of the LA/C-dependent tether. 

 

LEMD2 is mislocalized or absent in LA-deficient tissues and cells 

 

Based on our observation that LEM2 expression appears to be synchronized with LA/C and 

is selectively missing in rod cells, we were prompted to study cells and tissues derived from 
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LA/C deficient mice (Sullivan et al., 1999; Solovei et al., 2013). First, we assessed the 

distribution of various NE proteins in cultured cells derived from two different Lmna mutant 

mice, namely myoblasts originating from a global Lmna-KO (Solovei et al., 2013) and 

fibroblasts derived from mice with incomplete targeted disruption of the Lmna resulting in 

truncated gene missing 3.5 exons (Sullivan et al., 1999). Although in the incomplete KO, 

truncated LA/C still correctly localizes to the NE (Fig.5A, see also (Jahn et al., 2012)), cell 

types expressing only LA/C and no (or weak) LBR in WT tissues reveal the same elevated 

expression of LBR as observed for the global KO (Fig.5B). Irrespective of the genotype, 

cultured cells show a similar phenotype and are thus referred to as Lmna deficient cells. 

 

Due to the impaired NE, Lmna deficient cells exhibit a range of defects specifically affecting 

the nuclear morphology. In particular, the cells frequently have abnormal nuclear membrane 

bulgings, called herniations, missing NE components such as lamins, LAP2b, and nuclear 

pore complexes (NPCs) (Sullivan et al., 1999). At the ultrastructural level, herniations 

correspond to areas with separated outer and inner nuclear membrane and show a thinning 

or lack of heterochromatin adjacent to the NE (Sullivan et al., 1999; Burke and Stewart, 

2002; Fidziańska et al., 1998; Gupta et al., 2010). In Lmna-deficient cell cultures, we observe 

that only a fraction of cells possess herniations. Within herniations, heterochromatin is locally 

detached from the NE and chromocenters show pronounced clustering (Fig.5A, 6).  

 

We have performed a comprehensive immunostaining analysis of Lmna-deficient cells with 

antibodies against the basic set of NE proteins, including lamins and LEM-D proteins, other 

inner and outer membrane proteins, and NPC (Fig.6). We confirm that herniations are devoid 

of lamins, LAP2b and NPCs (Sullivan et al., 1999). Moreover, seven additional proteins, LBR, 

MAN1, as well as members of the LINC complex including SUN1 and 2, nesprins 1 and 3, 

appear to be abolished from herniations (Fig.6). Distribution of emerin also follows this rule. 

In a proportion of nuclei, however, emerin was observed not only in the normal but also in the 

bulged part of the NE. In striking contrast to all other studied proteins, LEM2 is missing from 

Lmna-deficient cells and only a small proportion of the cells still express LEM2. In all cases, 

where LEM2 is expressed, it localizes selectively to herniations (Fig.6A). 

 

Although mostly intact, nuclei of Lmna deficient cells appear to be mechanically instable and 

prone to rupture (Vigouroux et al., 2001; De Vos et al., 2011; Funkhouser et al., 2013). This 

was noticed especially in tissues where cells are under high tension, such as in muscles 

(Fidziańska et al., 1998; Gupta et al., 2010). Therefore we assessed the distribution of LEM2 

on tissue cryosections of Lmna deficient mice: (i) global Lmna-KO at P13 and P16, and (ii) 

1.5 month old mice with where LA/C is ablated by truncation. In total, we assessed 12 

different tissues with antibodies against the LEM-D proteins emerin, MAN1, LAP2b, and 

LEM2. Overall, tissues of both mice showed similar changes in the nuclear morphology and 

the composition of the NE (SFig.3). While distribution of the first three LEMD proteins was 

not affected in Lmna deficient cells, LEM2 was either absent or barely detectable. Strikingly, 

in a subset of cells, such as skeletal and smooth muscles, as well as in some neurons and 

epithelial cells of epidermis and intestine, LEM2 was still expressed but prominently 

mislocalized (Fig.7). In skeletal muscle, nuclei still expressing LEM2 were distorted, 

resembling the nuclear herniations observed in cultured cells or having long extensions 

connecting the two separated parts of the distorted nuclei. Importantly, both herniations and 

extensions were marked by patchy accumulating of LEM2, generally absent from the 

apparently unaffected part of the NE (Fig.7; SFig.5). A very similar phenotype was observed 

in cardiomyocyte nuclei (Fig.7; SFig.5). In contrast to skeletal and heart muscles, nuclei of 
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smooth muscle cells were unaffected in shape but revealed selective polar accumulations of 

LEM2, which formed cap-like structures (Fig.7; SFig.5). Notably, bipolar enrichments, yet no 

accumulation, was also observed in the respective WT cells leaving the overall LEM2 

distribution over the entire NE unaffected (Fig.7). Nuclear shape of epithelial cells in skin and 

intestine was not affected in Lmna deficient mice. However, a fraction of epithelial cells still 

expressing LEM2 showed a patchy NE accumulations of LEM2 (Fig.7; SFig.3). In tissue-

specific KO mice, which have normal life span, K14-driven (2 month old) and villin-driven (3 

month old), the skin and intestine epithelia showed the same patterns of LEM2 distribution as 

in 2 week old global KO mice, indicating that LEM2 absence or mislocalization is not age-

dependent (SFig.6). Taken together, these results clearly demonstrate that the dynamics of 

LA/C and LEM2 are not only synchronized but that proper NE localization of LEM2 appears 

to be dependent on LA/C. 

 

Apart from lack of Lamin B1, Nup153 and Lap2 (Sullivan et al., 1999) and partial 

mislocalization of emerin to the endoplasmatic reticulum (Burke and Stewart, 2002), which 

we confirm, we revealed that almost all components of the nuclear envelope, namely LBR, 

MAN1, as well as members of the LINC complex including SUN1 and 2, nesprins 1 and 3, 

appear to be abolished from herniations (Fig.6). Interestingly, only two inner nuclear 

membrane proteins appear to localize to the herniations in cultured cells, emerin and LEM2 

(Fig.6A). Observations on LEM2 distribution in Lmna-deficient tissues confirm mislocalization 

of LEM2 to the herniations, and thus render this protein a likely candidate for the missing 

component of the LA/C-dependent tether. Moreover, as herniations are diminished in 

heterochromatin it is plausible that LEM2 alone is unable to anchor heterochromatin at the 

periphery. This is also conformed by the notion, that nuclear herniations, forming upon lamin 

B1 depletion, are enriched in gene-rich euchromatin (Shimi et al., 2008). Interestingly, mouse 

embryonic fibroblasts deficient in lamin B1 reveal strongly misshaped nuclei and a 

mislocalization of LAP2 to NE blebs (Vergnes et al., 2004).  

 

To test our hypothesis that LEMD2 mediates heterochromatin binding, we are currently 

generating transgenic mice, ectopically expressing either LEM2 alone or LEM2 together with 

lamin C under the control of the rod-specific neural retina leucine zipper (Nrl) promoter 

(Akimoto et al., 2006). Restoration of the conventional nuclear architecture in transgenic rods 

will be a positive read-out of these experiments. 
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Tables 
 

 

Table 1. List of primary antibodies used in the study. 

 

Proteins Source (Cat No) Host 
Working dilutions 

cells sections

sddd 

Sections/ 

sections/ 

 

Lamin B1 Santa Crutz (SC-6217) goat 1:100 1:50 

Lamin A/C Harald Herrmann, German Cancer Research 

Center 

mouse 1:10 undiluted 

LBR Harald Herrmann, German Cancer Research 

Center 

guinea pig 1:50 1:50 

Emerin Santa Crutz (SC-15378) rabbit 1:100 1:50 

Lem2 Atlas (HPA017340) rabbit 1:100 1:50 

Lap2α Roland Roisner, Medical University of Vienna rabbit 1:250 1:250 

Lap2β Roland Roisner, Medical University of Vienna mouse undiluted undiluted 

Man1 Santa Crutz (SC-50548) rabbit 1:100 1:50 

Lap1B William Dauer, University of Michigan 

Medical School  

rabbit 1:300 1:300 

Samp1 Einar Hallberg, Stockholm University rabbit 1:500 1:250 

 

 

Table 2. Primers used for amplification of Lemd2 coding sequences. The mouse coding 

sequence (CDS) for Lemd2 (Gene bank accession number NM_146075.2, base 21 to 1556) 

was amplified by polymerase chain reaction (PCR) with Phusion™ High-Fidelity DNA 

Polymerase (New England Biolabs) in two separate PCR reactions (F1-R1 and F2-R2, 

respectively), which were joined in a third PCR reaction (F1-R2). Cardiac muscle DNA was 

used as a template. Due to the high GC content, the first 70bp of Lemd2 were synthesized 

(Eurofins, Ebersberg, Germany) and incorporated by ligation.  

 

Protein Forward primer (5’ → 3’) Reverse primer (5’ → 3’) 

LEM2  
GGAACGTCTACCGCAACAAGC (F1) GCCTGGCAGAACTCATCTGT (R1) 

TGCCGGTCGACTGTGAGAGA (F2) AAAGGTCTGTGTCCTTGCCC (R2) 
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Table 3. Expression of studied proteins in adult mouse tissues. Blue fields indicate 

expression detected by immunostaining; white fields with "-" indicate absence of positive 

immunostaining; light-blue fields with "-/+" indicate very weak immunostaining. 

 

 

  



Manuscript in preparation 

68 

Figures 

 
Figure 1. Expression of nuclear envelope protein subset in different cell types exemplified by 

immunostaining of the hair follicle. Dermal papilla fibroblasts and matrix keratinocytes demonstrate 

clearly different expression signatures. For each immunostained protein, upper panel shows positive 

(+) or negative (-) immunostaining and low panel shows DAPI counterstain of the nuclei. Red line 

depicts border of a dermal papillae (dp) and green line separats matrix keratinocytes (mk) from 

connective tissue sheath.  All images are single confocal sections.    
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Figure 2. Selective expression of SAMP1 in muscle and neurons. A, staining of SAMP1 in three 

types of muscles (heart, skeletal and smooth) and in Purkinje neurons of the cerebellum. B,C, staining 

of SAMP1 in retinas of nocturnal (mouse, dog) and diurnal (vervet monkey) species. Note a particular 

strong staining of photoreceptors in the outer nuclear layer (ONL) and less prominent staining of cells 

in the inner nuclear layer (INL) and the ganglion cell layer (GCL). D, increasing expression of SAMP1 

during mouse retina differentiation; retina neurons show much weaker expression of SAMP1 in two 

and three week (P15, P21) old pups in comparison to retina of adult (2.5 months) mouse. All images 

are single confocal sections. 
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Figure 3. Expression of LAP2alpha has a clear gradient in renewing epithelium of thin intestine 

with spatial separation of proliferating and differentiated cells. A, dividing and differentiating cells 

in crypts and villi bases (arrowhead) are strongly positive after anti-LAP2alpha staining whereas 

differentiated absorptive and goblet cells on villi (arrows) show weak staining. B, a close up of a crypt 

showing intensely stained nucleoplasm of proliferating crypt cells in a clear difference to weak nuclear 

staining of differentiated Paneth cells (empty arrowhead); asterisk marks crypt lumen. All images are 

single confocal sections. 
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Figure 4. Age dependent expression of LAP2beta in myotube nuclei of skeletal muscles (A) and 

cardiomyocytes (B). LAP2beta is expressed in both muscle cell types at early postnatal development 

stages (e.g., P9) but not in adult mice. A, perpendicular sections through myotubes; empty 

arrowheads point at myotube nuclei. B, perpendicular sections through heart muscles; solid 

arrowheads point at cardiomyocyte nuclei. Arrows in both A and B point at fibroblast nuclei which are 

LAP2beta-positive at all developmental stages. All images are single confocal sections. 
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Figure 5. Compensatory expression of LBR in cells from LA/C-deficient mice with truncated 

Lmna gene. A, cultured primary fibroblast with typical NE herniation after immunostaining of lamins 

and LBR. Seemingly normal part of the NE, possessing A- and B-type lamins and LBR, is marked by 

solid arrowhead; empty arrowhead point at herniation, which is lacking lamins and LBR. Note 

chromocenter fusion (red arrow) in this nucleus and weak staining of the herniation with DAPI, 

indicating lost of the heterochromatin by this part of the nucleus. Single confocal sections or maximum 

intensity projections. B, multilayer epithelium of lip epidermis from WT (B1) and LA/C-deficient (B2) 

mice. B1, in WT skin, basal keratinocytes (solid arrowheads) express both LBR and LA/C; suprabasal 

keratinocytes (arrows) as well as dermal fibroblasts (empty arrowhead) express only LA/C. B2, in 

LA/C-deficient skin, all three cell types express LBR very strongly, in addition to a weak LA/C 

expression. Single confocal sections. 
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Figure 6. Immunostaining of lamin B and LEM-D (A) and other NE proteins (B) in cultured 

primary myoblasts derived from LA/C-KO mouse . Exemplified are nuclei possessing herniations 

(empty arrowheads). Most of NE proteins tested are expressed in LA/C-KO cells, correctly localize to 

the seemingly normal part of the nucleus (solid arrowhead) and are lacking in herniations. LEM2 is 

usually not expressed at the detectable by immunostaining level, however, when it is expressed, it is 

found in the herniations. Note chromocenter fusion (red arrow) and lack of heterochromatin in the 

herniation in the most of the cells. Maximum intensity projections (left columns) and single confocal 

sections (right columns) from the same cells are shown. 

Figure 6A
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Figure 6B 
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Figure 7. Mislocalization of LEM2 in the nuclei of native tissues from LA/C-KO mouse. 

Immunostaining of LEM2 in various cell types in tissues from WT (left column) and LA/C-KO (right 

column) mice. In WT cells, LEM2 is distributed over the entire NE. In KO cells, LEM2 is either absent 

or has pronouncedly aberrant localization (arrows). All images are maximum intensity projections of 

confocal stacks through 2-5 µm. 
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Supplementary figures 
 

 

 

Supplementary Figure 1. Expression of emerin, LEM2, LAP2beta, MAN1, LAP2alpha, 

and LAP1B in different cell types: Immunostaining of mouse tissue cryosections. 

 

A, duodenum epithelium 

B, colon epithelium 

C, skin 

D, hair follicle 

E, skeletal muscles 

F, heart muscles 

G, smooth muscles (colon) 

H, fibroblasts (skin derma) 

I, endothelial cells (retinal capillaries) 

J, hepatocytes (liver) 

K, neurons in retina 

L, neurons in cerebellum 

M, glial cells in peripheral nervous system 

 

Positive or negative staining is indicated by green "+" or red "-" on the most right panels. All 

images are single confocal sections. 
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Supplementary Figure 2. Expression of LAP2alpha has a clear gradient in renewing 

epithelia of colon (A) and skin epidermis (B). A1, colon epithelium cells have stronger 

LAP2alpha staining of their nuclei in the areas of cell proliferation, that is at the bottom and in 

the mid-part of the crypts; nuclei of differentiated goblet and absorptive cells in the upper 

crypt regions and colon surface have a weak staining. A2, a close up of the bottom parts of 

the crypts. B1, in the thin trunk skin, nuclei of proliferating basal keratinocytes (b) have more 

intense staining than nuclei of differentiated suprabasal keratinocytes (sb). B2,3, in thick skin 

of lower leg the gradient from bottom up is more clear due to multiple suprabasal layers of 

differentiated keratinocytes. ks, keratinized squames with degenerated nuclei; d, derma. All 

images are single confocal sections. 
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Supplementary Figure 3. Similar mislocalization of LEM2 in the nuclear envelope of 

keratinocytes in skin from A/C-KO mouse and mouse with truncated LA/C. Compare an 

even distribution of LEM2 over entire NE of suprabasal keratinocytes expressing high level of 

LA/C in WT mouse (empty arrowheads) versus patchy accumulations of LEM2 in LA/C-

deficient cells of both mutated mice (solid arrowheads). All images are maximum intensity 

projections of confocal stacks through 2 µm. 
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Supplementary Figure 4. Examples of LEM2 mislocalization in the nuclei of muscle 

tissues from LA/C-KO mouse. Immunostaining of LEM2 in limb skeletal muscles (upper 

raw), heart muscles (middle raw), and smooth muscles of colon (bottom raw) from WT and 

LA/C-KO mice. In WT cells, LEM2 is distributed over the entire NE. In KO cells of myotubes 

and cardiomyocytes, LEM2 is either absent or has pronouncedly aberrant localization to 

herniations or long NE extensions. In smooth muscles, LEM2 accumulates in patches at one 

or both poles of the elongated nuclei. All images are maximum intensity projections of 

confocal stacks through 2-5 µm. 
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Supplementary Figure 5. LEM2 mislocalization in epithelial cells from mice with villin-

driven (A;B) and keratin 14 (K14)-driven (C) LA/C-KO. Nuclei of epithelial cells depleted of 

LA/C do not express or have abnormal patchy NE accumulation of LEM2 (empty 

arrowheads), similarly to cells from global LA/C-KO (compare to Fig.7 and SFig.3,4). 

Asterisks mark crypt lumens in duodenum and colon. Red arrows point at LA/C-positive 

smooth muscles (in intestine) or fibroblasts (in skin derma). Note that in contrast to epithelial 

cells of villi (solid arrowheads), crypt cells in duodenum (asterisk) do not express LA/C and 

LEM2 in WT mice and therefore are lacking aberrant LEM2 patches. All images are 

maximum intensity projections of confocal stacks through 2 µm. 
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Abstract To improve light propagation through the reti-
na, the rod nuclei of nocturnal mammals are uniquely
changed compared to the nuclei of other cells. In particular,
the main classes of chromatin are segregated in them and
form regular concentric shells in order; inverted in com-
parison to conventional nuclei. A broad study of the epi-
genetic landscape of the inverted and conventional mouse
retinal nuclei indicated several differences between them
and several features of general interest for the organiza-
tion of the mammalian nuclei. In difference to nuclei
with conventional architecture, the packing density of

pericentromeric satellites and LINE-rich chromatin is
similar in inverted rod nuclei; euchromatin has a lower
packing density in both cases. A high global chromatin
condensation in rod nuclei minimizes the structural differ-
ence between active and inactive X chromosome homo-
logues. DNA methylation is observed primarily in the
chromocenter, Dnmt1 is primarily associated with the
euchromatic shell. Heterochromatin proteins HP1-alpha
andHP1-beta localize in heterochromatic shells, whereas
HP1-gamma is associated with euchromatin. For most of
the 25 studied histone modifications, we observed
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predominant colocalization with a certain main chroma-
tin class. Both inversions in rod nuclei and maintenance of
peripheral heterochromatin in conventional nuclei are not
affected by a loss or depletion of the major silencing core
histonemodifications in respective knock-out mice, but for
different reasons. Maintenance of peripheral heterochro-
matin appears to be ensured by redundancy both at the
level of enzymes setting the epigenetic code (wri-
ters) and the code itself, whereas inversion in rods rely
on the absence of the peripheral heterochromatin tethers
(absence of code readers).

Keywords Spatial organization of the nucleus .

Epigenetic code .Core histones .Histonemodifications .

Peripheral heterochromatin . LINE-rich chromatin . SINE-
rich chromatin .X chromosome .Retina . Chromocenters .

DNMT1 .HP1

Abbreviations
B1 Abundant mouse SINE repeat

family
CKO Conditional knockout
DAPI 4′,6-diamidino-2-phenylindole
DNMT1 DNA (cytosine-5)-

methyltransferase 1
DOP-PCR Degenerate oligonucleotide-

primed PCR
ES cells Embryonic stem cells
FISH Fluorescence in situ

hybridization
G9a H3K9 methyltransferase
GCL Ganglion cell layer
HP1 Heterochromatin binding protein 1
INL Inner nuclear layer
KMTase Histone-lysine

N-methyltransferase
L1 Abundant mouse LINE repeat

family
LBR Lamin B receptor
LINE Long interspersed nuclear

elements
5mc 5-methylcytosine
5hmc 5-hydroxymethylcytosine
MSR Major satellite repeat
RNA Pol-II CTDx non-phosphorylated

carboxy-terminal domain
of RNA polymerase II

RNA Pol-II Ser2ph Phosphorylated serine 2
of heptapeptide repeat on

carboxy-terminal domain
of RNA, polymerase II

RNA Pol-II Ser5ph Phosphorylated serine
5 of heptapeptide repeat on
carboxy-terminal domain of
RNA, polymerase II

SEM Scanning electron
microscopy

SINE Short interspersed
nuclear elements

TEM Transmission electron
microscopy

Xa X active chromosome
Xi X inactive chromosome
Xist X inactive specific transcript

Introduction

The vast majority of eukaryotic nuclei adopt the same
“conventional” pattern of chromatin distribution: hetero-
chromatin lines the nuclear envelope and the border of the
nucleoli, whereas euchromatin is situated between the two
heterochromatic domains (Fig. 1, middle). In mammals,
this pattern is based on distinct nuclear locations of the
main chromatin classes marked by enrichment in specific
repeats (Korenberg and Rykowski 1988; Chen 1989). In
brief, satellite repeats form pericentromeric C-bands in
mitotic chromosomes; they cluster to foci adjoining the
nuclear border or the border of the nucleoli in interphase
and postmitotic nuclei. In humans, pericentromeric satel-
lites are built of alphoid DNA. In mice, pericentromeric
satellites are comprised of major satellite repeat (MSR)
which is very abundant; mouse pericentromeric chromo-
some regions fuse to prominent spherical bodies, so-called
chromocenters in interphase and differentiated cells. The
rest of the nuclear periphery and the margins of the
nucleoli are lined by heterochromatin forming G-bands
of mitotic chromosomes; its hallmark is enrichment in
long interspersed repeats (LINEs). Euchromatin corre-
sponds to R-bands of mitotic chromosomes; it is situated
in the nuclear interior, gene-rich, and enriched in short
interspersed repeats (SINEs). The above mentioned main
chromatin classes (Solovei et al. 2009) bear distinctly
different epigenetic marks and the distribution of histone
modifications largely corresponds to R/G-banding in mi-
totic chromosomes; most prominently, the distribution of
active marks, such as H3K4me3, H3K9ac, and H3K27ac,
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correlates with the density of genes and SINEs (Terrenoire
et al. 2010).

The correspondence between chromosomal bands
and chromatin type appears to have a key importance
for the functional spatial organization on the nuclei.
Early fluorescence in situ hybridization (FISH) studies
demonstrated that euchromatin preferably localizes in
the nuclear interior, whereas heterochromatin abuts the
nuclear envelope and the border of nucleoli (Croft et al.
1999; Boyle et al. 2001; review: Joffe et al. 2010).
Recent studies using chromosome conformation
capture-based methods confirmed that this condition
is faithfully observed in mammalian nuclei (Gibcus
and Dekker 2013). In mammals (in human, in the first
place, but also in mouse) there is a correlation between
the size and gene-richness (respectively, GC-content
and repeat composition) of chromosomes. The internal
nuclear positioning of euchromatin in human nuclei
correlates with preferable association of small chromo-
somes with the nucleolus (Carvalho et al. 2001),
whereas larger, gene-poorer chromosomes more often
bind to the nuclear envelope. Remarkably, this feature
is possibly controlled by G-bands situated close to
chromocenters, while the positions of chromosomes
in the nucleus depend on, and can be experimentally
changed by, modification of heterochromatin interac-
tions with nuclear envelop proteins (Mehta et al. 2010).

The nuclei of rod photoreceptors from nocturnal
mammals are a unique example of a nuclear architecture
different from the conventional pattern described in the
previous paragraph. These nuclei actually function as
microlenses that help reduce photon loss in the retina,
which is crucial for vision at very low light intensities
(Solovei et al. 2009). The lensing properties are due to
the dramatic reorganization of the nuclear architecture.
Mouse rod nuclei are small, spherically symmetrical,
and consist of three concentric shells (Fig. 1, right)
corresponding to the main chromatin classes. The center

of the nucleus is occupied by the single chromocenter. It
is encircled by a shell of LINE-rich chromatin, whereas
SINE-rich euchromatin forms the outermost shell. Thus,
relative positions of the three main chromatin classes are
actually inverted compared to the conventional nuclei
(Fig. 1). Remarkably, inverted nuclei of rod photorecep-
tors are fully functionally active and even have a very
high overall transcriptional level (Siegert et al. 2012),
which justifies using them as a model for studying the
functional organization of the nucleus.

In mouse development, inversion occurs by slow
remodeling of the conventional nuclear architecture dur-
ing postnatal differentiation of rod cells. The two main
components of the remodeling are (1) separation of
heterochromatin from the nuclear envelope and its con-
centration around chromocenters accompanied by (2)
chromocenter fusion (Solovei et al. 2009). We have
recently shown that in mammalian cells, peripheral het-
erochromatin is maintained by two nuclear envelope-
associated tethers (Solovei et al. 2013). One of them is
formed by the inner nuclear membrane protein lamin B
receptor (LBR) which is both necessary and sufficient
for peripheral heterochromatin tethering. The other
needs lamin A/C and a chromatin-binding mediator,
probably, a protein complex including LEM-domain
proteins. Rods of mice and other nocturnal mammals
express neither LBR, nor lamin A/C which leads to
inversion. Peripheral heterochromatin can be restored
in mouse rod nuclei by transgenic expression of LBR
(LBR-TER mice).

The findings described above raise the question what
marks chromatin for binding by the tethers and recruit-
ment to the nuclear periphery. LBR includes a Tudor
domain which binds to chromatin with a range of silenc-
ing histone modifications in vitro (Hirano et al. 2012;
Makatsori et al. 2004), suggesting that peripheral hetero-
chromatin tethers read silencing histone modifications.
Epigenetic factors play a pivotal role in heterochromatin

Fig. 1 Conventional and inverted nuclear architecture. Schematic of the positions of the main chromatin classes in mouse mitotic
chromosome bands (left), conventional (middle), and inverted (right) nuclei. n, nucleolus

Epigenetics of eu- and heterochromatin 537



formation (Almouzni and Probst 2011; Black et al. 2012;
Dambacher et al. 2010). They also contribute to the
peripheral location of heterochromatin in the nuclei with
conventional nuclear architecture (Kind et al. 2013;
Towbin et al. 2012; Zullo et al. 2012). The distribution
of several histone modification marks has recently been
studied in the retina at the light microscopy (Helmlinger
et al. 2006; Nasonkin et al. 2011; Popova et al. 2012,
2013; Rao et al. 2010) and electron microscopy levels
(Kizilyaprak et al. 2010, 2011), but systematic testing of
epigenetic marks has not been carried out.We undertook
an extensive study of the epigenetic chromatin land-
scape in rods compared to retinal nuclei with conven-
tional nuclear architecture and found several differences
between them and several features of general interest for
the organization of the mammalian nuclei.

Materials and methods

Animals, tissue fixation, and retina cryosections Wild
type retinas from ICR/CD1 and C57Bl/6 mice were
studied as wild type. Mice with combined deletions of
Suv3-9 and Suv4-20 were bred from lines with single
gene deletions described earlier (Peters et al. 2001;
Schotta et al. 2008). Mice with Dkk3-driven G9a
(Ehmt2) conditional knockout were bred as described
earlier (Katoh et al. 2012).

Retinas were excised frommice killed by cervical disloca-
tion according to the standard protocol. Eyes were enucle-
ated immediately after death; retinas were dissected and
fixed with 4 % formaldehyde in PBS for different time
intervals (see below). Infiltration with sucrose, embedding
in freezing medium and cryosection preparation were
performed as described previously (Eberhart et al. 2012;
Solovei 2010). Importantly, retina samples after various
fixation times (15, 30 min, 1, 3 h, and in some
cases—24 h) were arranged in the respective order in the
same block to assure that each cryosection contains all five
retinas.

Immunostaining of cryosections Immunostaining was
performed according to the protocol described in detail
earlier (Eberhart et al. 2012). This method allows quick
testing of a wide range of fixation and antigen retrieval
times and detection of the range in which the results of
staining are robust. In brief, for every antibody, four
pretreatments of cryosections were used: without antigen

retrieval and with antigen retrieval by heating in 10-mM
sodium citrate buffer (up to 80 °C; She et al.1997, 2001)
for 5, 10, or 20 min. In a few cases, a longer (30 min)
heating was applied. Sections containing retina samples
after four different fixation times were subjected to antigen
retrieval and consequent immunostaining together. Thus,
for each antibody we were able to compare 16 (in some
cases 25) different variants of conditions and find the range
of conditions under which staining results were robust to
variation in fixation and antigen retrieval times (Fig. S1).
Images of rod nuclei, inner nuclear layer (INL) cell nuclei
(usually, bipolar cells) and, when needed, ganglion cells
and cones were acquired.

The primary antibodies used in this study are listed in
Table 1. Most of the antibodies against histone modifica-
tions were mouse monoclonal produced in the laboratory
of H. Kimura (Chandra et al. 2012; Hayashi-Takanaka
et al. 2011; Kimura et al. 2008). Secondary antibodies
were anti-mouse conjugated to Alexa555 (Invitrogen
A31570) or Alexa488 (Invitrogen A21202) and anti-
rabbit conjugated to DyLight549 (Jackson Immuno-
Research 711-505-152) or DyLight488 (Jackson
ImmunoResearch 711-485-152). After staining, sec-
tions were mounted under a coverslip in Vectashield,
(Vector).

FISH Paint probe for mouse X chromosome (MMU X)
was a kind gift of J. Wienberg (University of Cambridge,
UK). MMU X was amplified and labeled with biotin
using DOP-PCR (Cremer et al. 2008). For Xist RNA
detection, Xist exon 6 was amplified by PCR frommouse
genomic DNA and labeled with digoxigenin by nick-
translation. Retina fixation, preparation, cryosections pre-
treatment, and FISH were carried out as described else-
where (Solovei 2010). All FISH experiments were
performed on denatured sections, so that both DNA/
DNA and DNA/RNA hybrids were detected. At these
conditions, Xist probe hybridized to both Xist RNA dec-
orating X inactive (Xi) chromosome and Xist genes; Xist-
RNA signal is readily distinguishable from the dot-like
signals of Xist genes.

Light microscopy Single optical sections or stacks of
optical sections were collected using a Leica TCS SP5
confocalmicroscope equippedwith PlanApo ×63/1.4NA
oil immersion objective and lasers with excitation lines
405, 488, 561, 594, and 633 nm. Dedicated plug-ins in
ImageJ program were used to compensate for axial chro-
matic shift between fluorochromes in confocal stacks, to
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create RGB stacks/images, and to arrange them into gal-
leries (Ronneberger et al. 2008; Walter et al. 2006).

Transmission electron microscopy Whole eye-balls
were fixed using the so-called phase-partition fixation
(Kiseleva et al. 2001; Zalokar and Erk 1977) first for
5 min and then after puncturing with a needle for 12 h at
4 °C. Fixative was prepared by mixing and shaking of
10 ml 15 % glutaraldehyde in water with 7 ml n-heptane,
which yielded a two-phase solution; the upper phase
consisting of heptane saturated with glutaraldehyde was
used for tissue fixation. After fixation, eye-balls were cut
equatorially in two halves and the corneas with the vitre-
ous were removed. The remaining eye-cups with retinas
were then washed with 0.1-M cacodylate buffer and cut
into smaller pieces (2×8 mm). Samples were postfixed
with 1 % OsO4 and 0.8 % potassium ferrocyanide in the
same buffer for 1 h at room temperature. After washings
in distilled water, samples were incubated in 1 % aqueous
solution of uranyl acetate (Serva) for 1 h at 4 °C,
dehydrated in ethanol series and acetone, and embedded
in Agar 100 Resin (Agar Scientific Ltd.). Ultra-thin sec-
tions were stained with uranyl acetate and Reynolds lead
citrate and were examined with a transmission electron
microscope (JEM 100 SX, JEOL) at 60 kV.

Scanning electron microscopy Retinas were fixed with
2.5 % glutaraldehyde in buffer (50-mM cacaodylate,
2-mMMgCl2, and 100-mMNaCl pH 7.0) for 2 h, washed
in buffer, postfixed with 1 % OsO4 in buffer for 90 min,
incubated in 30 % dimethylformamide in buffer, frozen in
liquid nitrogen, fractured with razor blades, washed in
buffer, and dehydrated in a graded series of acetone. The
pieces were critical point dried from liquid CO2, mounted
with Tempfix onto aluminum stubs and ca. 5 nm sputter-
coated with platinum. Specimens were examined with a
Zeiss AURIGA CrossBeam Workstation. Micrographs
were taken at an accelerating voltage of 1 kV with the
chamber SE-detector.

Results and discussion

Freeze-fractured scanning EM shows little difference
between the MSR- and LINE-rich heterochromatin
shells of rod nuclei

Scanning electron microscopy (EM) of freeze-fractured
retina samples revealed that the two central (hetero-
chromatic) shells of rod nuclei are homogenously dense,
whereas the narrow outer (euchromatic) shell has a much

Table 1 List of used antibodies

Antibodies against 5-methylcytidine

Antigen Antibody source

5mC Eurogentec (MMS-900P-B)

List of antibodies against histone modifications

Residue Modification Antibody source

H3K9 acetyl HK (CMA310)

me1 HK (CMA316)

me2 HK (CMA317)

me2 Abcam (ab1220)

me3 HK (CMA318)

H3K56 me3 S.Hake lab (Jack et al. 2013)

H4K20 acetyl HK (CMA420)

me1 HK (CMA421)

me2 HK (CMA422)

me3 HK (CMA423)

H3K27 acetyl HK (CMA309)

me1 HK (4C4)

me2 Abcam (ab24684)

me3 HK (CMA323)

me3 Abcam (ab6002)

H3K4 acetyl Active motif (#39382)

me1 HK (CMA302)

me2 HK (CMA303)

me3 Abcam (ab8580)

H3K36 acetyl Active motif (#39380)

me1 HK (CMA331)

me2 HK (CMA332)

me3 HK (CMA333)

H4K5 acetyl HK (CMA405)

H4K8 acetyl HK (CMA408)

H4K12 acetyl HK (CMA412)

H4K16 acetyl HK (CMA416)

List of antibodies against nuclear proteins

Antigen Antibody source

Pol-II CTD HK (CMA601)

Ser 2 ph HK (CMA602)

Ser 5 ph HK (CMA603)

HP1alpha Euromedex (2HP-1H5-AS)

HP1beta Euromedex (1MOD-1A9-AS)

HP1gamma Euromedex (2MOD-1G6-AS)

DNMT1 Abnova (PAB15590)

B23 Sigma (B 0556)
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lower density, due to which a fibrous structure becomes
apparent (Fig. 2d,e). In rods, chromocenters proper (built
ofMSR) are indistinguishable from the LINE-richmaterial
in freeze-fracture SEM images. Usually, they also remain

indistinguishable in conventional TEM images, but un-
der appropriate conditions, the chromocenters can be
distinguished as more electron-dense round profiles. We
observed this difference both in adult rod nuclei

Fig. 2 Ultrastructure of nuclei in mouse and rat. a–c Transmis-
sion electron micrographs of ultrathin sections. a Rod cell from a
P13 mouse. Note the large heterochromatic domains (arrow-
heads) with more electron dense chromocenters (arrows) in the
middle. b Rod cell from adult mouse. Note the single hetero-
chromatic domain (arrowheads) with more electron dense chro-
mocenter (arrow) in the center of the nucleus. c Nucleus of
mouse INL cell contains mostly decondensed chromatin and

possesses multiple small chromocenters (arrows). d–i Scanning
electron micrographs of freeze-fractured retinas. d–g Rod pho-
toreceptor nuclei from adult mouse (d, e) and rat (f, g). Note the
dense chromatin filling of most of the nucleus and the peripheral
zone of less condensed chromatin (empty arrows). h, i Mouse
nuclei from INL (h) and liver (i) cells. Note chromocenters
(arrows) and a thick layer of peripheral heterochromatin (empty
arrowhead) Scale bars a-c, e, g–i 1 μm; d, f, 2 μm
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(Fig. 2b) and in rod nuclei from P13 mice (Fig. 2a)
which still have several chromocenters surrounded by
clouds of LINE-rich heterochromatin. In the nuclei of
other neurons, small much less electron-dense chromo-
centers can be readily seen (Fig. 2c).Most of the volume
of nuclei with a conventional architecture is filled with
chromatin of lower density than that of chromocenters.
In TEM images of neurons, very little electron-dense
material is observed close to the nuclear envelope (c.f.
P13 and adult rods). Indeed, after freeze-fracturing, the
layer of dense heterochromatin along the nuclear enve-
lope is thin in most neurons (Fig. 2h) but much thicker
and more prominent in other cell types, e.g., hepatocytes
(Fig. 2i). In difference to mouse, the blocks of peri-
centric heterochromatin are small in rats and do not form
chromocenters. Nevertheless, rat rod cells have an
appearance very similar to that of mouse (Fig. 2f,g).
Thus, in difference to nuclei with conventional architec-
ture, packing of pericentromeric satellites and LINE-
rich chromatin is similar in inverted rod nuclei irres-
pective of the presence (mouse) or absence (rat) of large
blocks of pericentromeric satellite DNA.

Inactive X chromosome does not form Barr body in rod
nuclei

The highly symmetric organization of rods, with three
radially symmetrical shells (Fig. 1) raises the question
about the state of the inactive X chromosome (Xi). X
chromosome inactivation does take place in rods. It occurs
at an early stage of retina formation and was initially used
to selectively mark clones of retinal cells in which one or
the other of the two X chromosomes was inactivated
(Reese and Tan 1998; Zheng et al. 2009). In conventional
nuclei, Xi usually forms the so-called Barr body that can be
distinguished due to strong staining byDNA-specific dyes,
e.g., DAPI. It is a cluster of condensed chromatin situated
at the nuclear periphery or, less often, associated with the
nucleolus. The difference typically observed between Xa
and Xi after FISH with a whole chromosome paint
probe can be exemplified by retinal ganglion cells
(Fig. 3a). Xa is usually flat and spread along the nuclear
envelope, whereas Xi is smaller, has a more spherical
shape, and much less contact with the nuclear envelope.
In rod nuclei, Xi and Xa have similar shape. FISH with
X-paint probe reveals two similar chromosome terri-
tories extending in radial direction from the central
chromocenter (Fig. 3b). In rods, as in all cell types with
conventional architecture (Pinter et al. 2012), Xi is

extensively decorated by H3K27me3 (Fig. 3c). At early
stages of rod differentiation, XIST RNA can be readily
demonstrated on Xi (Fig. 3d) but, despite numer-
ous efforts, we failed to reveal XISTRNA in rod nuclei at
P21 or elder. The absence of staining, however, might
depend on increased chromatin density in rods that masks
XIST RNA, rather than its real dislocation from Xi in
adult rod nuclei. The unusual shape, position, and orien-
tation of Xi in rods well conforms to the demand of
symmetry set by the optical function of these nuclei.
One can think that Xi is “seamlessly” integrated in the
layer of L1-rich heterochromatin because it is highly
condensed in rod nuclei.

DNA methylation and DNMT1 are differently
distributed in retinal neurons

DNA methylation was observed using antibody to
5-methylcytosine in the pericentromeric heterochroma-
tin and, at a lower level, in the L1-zone of rod cells
(Fig. 4a). Recently it was shown that DNA methyl-
transferase (DNMT1)-dependent DNA methylation
plays a crucial role in the expansion of the retinal pro-
genitors and rod cell differentiation (Nasonkin et al.
2013; Rhee et al. 2012). We found that DNMT1 is
present in the euchromatic zone of both rod and other
retinal neurons (Fig. 4b). DNMTs are actually highly
expressed in differentiated neurons (review: Kadriu
et al. 2012). Recent results suggest that also demethyl-
ation of 5mC leading to its replacement by 5hmC has a
critical cell-type-specific effect on gene expression in
differentiating neurons (Mellén et al. 2012). In this
connection, one can tentatively suggest that, even in
differentiated neurons, the methylation status of a pro-
portion of genes is dynamically supported by demeth-
ylation and remethylation. This notion corresponds well
to euchromatic localization of DNMT1 found by us in
retinal neurons, whereas DNAmethylation itself is most
prominent in the rod chromocenters, the least active part
of rod nuclei.

In both photoreceptors and neuroretinal cells we
also observed very bright signal in the nucleoli visual-
ized with antibody against nucleophosmin (B23). This
is in agreement with the previously demonstrated role
of DNMT1 in silencing inactive ribosomal genes
(Majumder et al. 2006). Remarkably, in rod cells, the
signal from silenced rDNA is always situated at the
side of the nucleolus looking to the L1-rich shell,
which corresponds to the general gradient of
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transcriptional activity and chromatin density in rod
nuclei (Fig. 4b,c).

Core histone modifications mostly mark the same
chromatin classes in conventional and inverted nuclei

Reliability of the results of an immunocytochemical
study on tissue sections depends on two factors. Firstly,
as with all immunocytochemical studies, it is the sen-
sitivity and specificity of the antibodies used. For this
study, we used antibodies generated and extensively
tested earlier (Egelhofer et al. 2011; Kimura et al.
2008). Secondly, immunostaining on sections after
formaldehyde fixation usually demands antigen retrieval
(antigen de-masking after fixation), and the observations
should be robust to variation in fixation time and antigen
retrieval duration. To this end, we used the approach
(Eberhart et al. 2012) which allows quick testing a wide
range of fixation and retrieval times and defining an inter-
val in which staining produces robust results (see a brief
explanation in Fig. S1).

The results of mapping 25 histone modifications are
illustrated in Fig. 5 and summarized in Fig. 6. Due to the
clear spatial separation of the main chromatin classes in
inverted nuclei, our data highlight prevailing (though not
exclusive) association of histone modifications with cer-
tain chromatin classes (see also Kizilyaprak et al. 2010

for TEM study of histone modification distribution, in-
cluding several not covered in our study). Histone

Fig. 3 Inactive X chromosome in retinal neurons. a FISH with
X-chromosome paint and probe for Xist RNA in a ganglion cell of
the retina. Note that Xa is spread along the nuclear border (arrow-
head), while Xi (marked by Xist, arrow) is smaller and has a
more spherical shape. In the shown cell, Xi is attached to a large
central chromocenter associated with the nucleolus, but even
more often, Xi abuts the nuclear envelope. b FISH with
X-chromosome paint in a rod cell. Both X-chromosome terri-
tories, Xa and Xi, look similarly. c H3K27me3 mark in retinal
neurons. In all three shown adult cell types (a ganglion cell, an
INL cell and rod cells) X inactive is decorated by H3K27me3
(arrows). Note that while in neuroretina cells Barr body is visible
after DAPI staining, in rod cells it is incorporated into strongly
DAPI-positive L1-zone and cannot be discerned. d Xist visual-
ized using FISH in a ganglion cell, an INL cell, a cone cell (top
row) and in rods from retinas of different age (bottom row). With
the protocol used, Xist genes are also visualized: they look as
small dots clearly different from the extended Xist-RNA signals.
In rods, Xist RNA is readily detectable until P13; lack of signal
in elder mice might depend either on Xist RNA absence (note the
two Xist genes in the same nucleus), or on masking of Xist RNA
due to increased chromatin density. a, c, d, single confocal
sections; b, maximum intensity projections of 5–8 confocal
sections with axial distance 200 nm. Scale bars a, c, d, 2 μm;
b 5 μm

�
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Fig. 4 5-methylcytosine (5mC) and DNMT1. a 5mC in gangli-
on, INL, cone and rod cells. Note the bright signal in the chro-
mocenters and much lower florescence in L1 zone of rod nuclei.
DNA staining is not shown because tissue digestion using HCl
and DNase, both needed for 5mC immunodetection, prevented
normal staining with DAPI. bDNMT1 in ganglion, INL, and rod
cells. Note diffuse weak signal throughout the nucleoplasm of
the ganglion and INL cells. A spot of bright signal

(corresponding to inactive rDNA) is situated in the nucleolus
marked by anti-pB23 staining (arrows); chromocenters adjacent
to nucleoli are marked by solid arrowheads. In rods, the signal is
relatively bright and restricted to B1 shell (empty arrowhead) the
rod nucleolus also bears a bright spot-like signal. c DNMT1
focus always occupies the inner (L1) side of the nucleolus
marked by B23. Single confocal sections. Scale bars: 5 μm
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modifications marking transcriptionally active chroma-
tin or chromatin poised for transcription are associated
with euchromatin and their abundance is below the
detection level in heterochromatic shells (Fig. 5a). In
particular, histone acetylation with a single exception
among the studied modifications (for H3K4ac, see be-
low) is associated with the euchromatic shell.
Conforming to this distribution of active histone modi-
fication marks, all forms of RNA Pol-II have been
observed exclusively in the euchromatic shell
(Fig. S2): we have not found any differences between
the distributions of RNA Pol II in general (anti-CTD,
generated against non-phosphorylated peptide), the
pausing form (anti-phosphorylated serine 5) and the
elongating form (anti-phosphorylated serine 2). H3K27
monomethylation is also abundant in the euchromatic
shell, whereas H3K27me2 and me3 show an unusual
distribution pattern being common in both euchromatin
and LINE-rich heterochromatin (but not in chromocen-
ters, c.f. Kizilyaprak et al. 2010). The same distribution
was observed for acetylated H3K4. The latter distribu-
tion pattern conforms to involvement of H3K4ac in
heterochromatin formation (Xhemalce and Kouzarides
2010). In the case of H3K27 methylation, this pattern
is actually rather surprising because these marks are
primarily involved in gene silencing via Polycomb path-
way and X-chromosome inactivation; they are separated
from H3K9 and H4K20 methylation marks and, at least
in Xi, are actually depleted in LINE-rich regions (Pauler
et al. 2009; Pinter et al. 2012). In bipolar neurons,
exemplifying nuclei with a conventional architecture, we
found increased abundance of H3K27me2 at the nuclear
periphery and around nucleoli, whereas H3K27me3 was
rather associated with euchromatin (Fig. 5b).

All histone modifications abundant in pericentromeric
heterochromatin are also abundant in LINE-rich chroma-
tin. In contrast, the LINE-rich shell shows some modifi-
cations not found in chromocenters. Silencing histone
modifications play a pivotal role in heterochromatin for-
mation and several studies indicate the special importance
of H3K9 and H4K20 methylation (Dambacher et al.
2010). In particular, H3K9me3 and H4K20me3 are hall-
marks of pericentromeric heterochromatin and H3K9-
me2,3 play an essential role in heterochromatin formation
and positioning in Caenorhabditis elegans (Towbin et al.
2012). H3K9me2 has been ascribed a crucial role in
transition from pluripotent state (Tachibana et al.
2002, 2008). Written primarily by histone methyl
transferase G9a, this epigenetic mark is already very

abundant in ES cells (Lienert et al. 2011) and affects
numerous genes, including e.g., the pivotal pluripotency
determinantsOct3/4 and Nanog (Yamamizu et al. 2012).
H3K9 dimethylation by G9a has also been ascribed a
cardinal role in peripheral targeting of lamina-associated
DNA (which forms a proportion of AT- and LINE-rich
DNA) to the nuclear periphery (Kind et al. 2013).

Given the importance of heterochromatin for the
spatial organization of the nucleus, in addition to reti-
na, we studied the distribution of silencing histone
modifications in several other cell types. We focused
attention on the distribution of H4K20me3, H3K9me3,
and H3K9me2. To visualize the latter histone modifi-
cation we used two antisera (Table S1). One was gen-
erated in H. Kimura laboratory (CMA317), the other
one, was available from Abcam (Ab1220) and was
used in the majority of the earlier studies. Both pub-
lished (Egelhofer et al. 2011; Hayashi-Takanaka et al.
2011) and our data showed that there is no difference in
specificity between the two antibodies; CMA317 anti-
body produced a brighter signal on sections but the
results obtained with the two antibodies were essentially
identical (Fig. S3). All three histone modifications men-
tioned above were abundant in peripheral heterochroma-
tin of other studied cell types. The other typical locations
were chromocenters, the layer of LINE-rich chromatin at
the periphery of chromocenters, and the periphery of the
nucleolus; some positive foci in the nucleoplasm were
also regularly observed. A similar distribution of Suv3-
9 h1 was observed in rat cells in vivo using Suv3-9 h1-
GFP (Bancaud et al. 2009). We found only one notewor-
thy difference in the distribution of H4K20me3,
H3K9me3, and H3K9me2 between the studied cell
types. H3K9me2 is undetectable in rod chromocenters,
even though it is abundant in chromocenters of other
neurons, including cones. More so, H3K9me2 was ab-
sent from chromocenters of all studied non-neuronal cell
types: skin keratinocytes, colon epithelium, pancreas ac-
inar cells, smooth muscle cells (Fig. 7). The distribution
of H3K56me3 followed that of H3K9me3 in tissues, as it
did in cultured cells (Jack et al. 2013).

Remarkably, in the rat, which lacks large blocks of
pericentromeric satellite repeats and hence chromocenters,
the distribution of histone marks in rod nuclei is very
similar to that in mouse. We exemplify this by a staining
of H4K20 modifications in rat rods (Fig. S4). This simi-
larity conforms to the similar packing density along the
radius of rod nuclei observed at the EM level (Fig. 2). Of
course, the absence of chromocenters in species without
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Fig. 5 Histone modifications staining in retinal cells with conventional (INL) and inverted (rods) nuclear architecture. Single confocal
sections. Scale bars 5 μm
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Fig. 5 (continued)
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large pericentromeric satellites, like rat or human, makes
a notable difference from mouse in cells with a conven-
tional nuclear architecture.

HP1-alpha and HP1-beta are associated
with heterochromatin, HP1-gamma predominantly
resides in the euchromatin

Data on heterochromatin protein 1 (HP1), a protein hall-
mark of silent chromatin, conform to the observations on

Fig. 6 The distribution of histone modifications and selected
nuclear proteins in rods and cells with the conventional architec-
ture: a summary. H3K9me2 was detected in chromocenters of
neurons with conventional nuclei but not in the chromocenter of
rod cells. 1 H3K27me3 also intensely stains inactive X chromo-
some. 2 DNMT1 also produces bright focal staining in nucleoli
where it marks silent ribosomal genes. CC, chromocenters; L1,
LINE-rich chromatin; B1, SINE-rich chromatin. For nuclear
distribution of these three chromatin classes see Fig. 1

Fig. 7 Distribution of histone modification marks characteristic of
heterochromatin in nuclei of some non-retinal mouse cells: colon
epithelial cells, skin keratinocytes and pancreatic acinar cells.
H3K9me2 is associated with LINE-rich heterochromatin chromatin
lining nuclear periphery and surrounding nucleoli and chromocen-
ters. This histone modification is lacking in chromocenters of non-
neuronal cells. H3K9me3 is found predominantly in the chromocen-
ters formed by satellite DNA (major satellite repeat). H4K20me3 is a
marker of both chromocenter heterochromatin and heterochromatin
at the nuclear, nucleoli and chromocenter periphery. Single confocal
sections. Scale bars 5 μm
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silencing histone marks. HP1-alpha and HP1-beta silence
repeat-rich heterochromatin (Cheutin et al. 2003; Schotta
et al. 2004); the former binds to LINEs but not to SINEs
(Vogel et al. 2006) which wholly conforms to the distribu-
tion observed by us.We detected HP1-alpha andHP1-beta
in chromocenters of both inverted and conventional nuclei
(Figs. 6 and 8). The level ofHP1-alpha decreases inmature
rod nuclei (Popova et al. 2013), which corresponds to the
notion that HP1-beta is specifically important for chromo-
center formation (Probst et al. 2010), whereas HP1-alpha
appears to play a special role at the initial stages of HP1
recruitment to satellite heterochromatin (Maison et al.
2011). In contrast to HP1-alpha and HP1-beta, HP1-
gamma colocalizes with euchromatin (Figs. 6 and 8).
Interestingly, its level in photoreceptor cells is 2–3 times
upregulated in rods compared to neuroretinal cells (Siegert
et al. 2012). There is a growing body of evidence that HP1-
gamma is associated with transcription in gene-rich chro-
matin regions and is involved in regulation of alternative
splicing (Saint-Andre et al. 2011; Vakoc et al. 2005).
Similarly to H3K27me3, HP1-gamma is dispensable for
chromocenter formation (Abe et al. 2011).

H3K9me2,3 and H4K20me3 are dispensable
for nuclear inversion in rods, in conventional nuclei
their role is more complicated

As differentiating rod nuclei loose peripheral hetero-
chromatin, we used appropriate knockout mice to test
whether the hallmarks of peripheral heterochromatin,
H3K9me2,3 and H4K20me3 are necessary for nuclear
inversion in rods. We studied retinas from mice lacking
H4K20me3 due to deletion of Suv4-20h2 and mice lack-
ing both H4K20me3 and H3K9me3 due to deletion of
Suv4-20 and Suv3-9h1,2 KMTases. In mice of both geno-
types, rod nuclei underwent inversion and were not differ-
ent from the rod nuclei in the wild-type littermate controls
(Fig. 9a). Remarkably, peripheral heterochromatin layer
and peripheral chromocenters were also retained by other
retinal cells, showing that these histone marks were
dispensable for maintenance of the conventional nuclear
architecture as well (Fig. 9b). Although we have found no
influence of Suv3-9 and Suv4-20 loss on the spatial orga-
nization of the nucleus, their deletion affects chromatin
organization in some other aspects. In particular, the num-
ber of chromocenters in Suv4-20h double knockoutmouse
fibroblasts strongly increases (Hahn et al. 2013). This
effect, however, does not take place in the native tissue
cells (retinal neurons) studied by us. It remains unknown

whether the effect of Suv4-20h on chromocenter fusion
is specific for cultured fibroblasts or the absence of
Suv4-20h is compensated in native tissues by some
mechanism not available in cultured fibroblasts.

The main enzyme depositing H3K9me2 mark is G9a;
its deletion is lethal in utero about E12. We studied retinas
of mice with conditional G9a knockout (CKO) driven by
Dkk3 expressed in the retina. Mice were studied at postna-
tal day 14when LINE-rich chromatin starts to release from

Fig. 8 Nuclear distribution of the three variants of heterochroma-
tin protein 1 (HP1-alpha, HP1-beta, and HP1-gamma) in retinal
cells with conventional (INL) and inverted (rod) nuclear organiza-
tion. HP1-alpha andHP1-beta are associated with heterochromatin
of chromocenters and, to lesser degree, L1-zone. HP1-gamma
clearly marks euchromatin in the outer shall in rods and nuclear
interior in INL cells Single confocal sections. Scale bar 2 μm
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the nuclear envelope and to cluster around chromocenters,
the number of which is already reduced (Solovei et al.
2009). In wild type rods, in which H3K9me2 is absent in
chromocenters, LINE-rich chromatin was brightly stained
(Fig. 9c). In CKO rods, the phenotype is very strong, only
residual sparse dot-like H3K9me2 signals were observed
in LINE-rich chromatin. The progress of inversion was not
different betweenCKOandwild type rods (Fig. 9c, bottom
row), showing that H3K9me2 is dispensable for inversion.
In difference to rods, the chromocenters of neuroretinal
cells were clearly H3K9m2-positive in the CKO retina,
and small areas of LINE-rich heterochromatin close to
chromocenters and nuclear envelope were also positive.
Chromocenters actually retain H3K9me2 also in ES cells
with global G9a knockout, which was tentatively explai-
ned by methylation by Suv3-9 KMTases to about 1/8 of
the wild type level (Shinkai and Tachibana 2011;
Tachibana et al. 2002). It is noteworthy that the reduction
in H3K9me2 level in Dkk3-driven conditional knockout
is sufficient for major changes in the organization of the
retina (Katoh et al. 2012). Thus, the nuclei of the
neuroretinal cells in CKO do not show apparent
differences from wild type when H3K9me2 is strongly
depleted. However, due to residual H3K9 dimethylation, it
remains unknown if H3K9me2 is dispensable for the
maintenance of the conventional nuclear architecture in
mouse neurons.

The studied silencing histone modifications appear to
be dispensable for maintenance of peripheral heterochro-
matin in nuclei with conventional nuclear architecture.
These data confirm for tissues the results obtained earlier

using cultured cells (Peters et al. 2001; Schotta et al. 2004).
Even though mice with deleted Suv3-9 and/or Suv4-20
have distinctly low viability and loss of G9a is lethal, their
absence/depletion had no apparent effect on the global
organization of the studied nuclei. Although the same
epigenetic modifications can be generated by a number
of different enzymes (Black et al. 2012), loss of Suv3-9
and Suv4-20 indeed decreases the abundance of the
respective modifications below the detection level (Peters
et al. 2001; Schotta et al. 2004); our data) or significantly
reduces it (Tachibana et al. 2002). The fact, that the
absence of the important silencing epigenetic marks does
not affect nuclear architecture has rather to be explained by
the high degree of redundancy in epigenetic code itself,

Fig. 9 Organization of retinal nuclei from mice with deleted
H3K9me3 and H4K20me3 and with depleted H3K9me2 in the
retina. a Rod nuclei from retina of wild type (left column), Suv 4-
20h2 single knockout (middle column) and Suv 4-20h2, Suv 3-
9h1,2 triple knockout (right column) mice have the same architec-
ture. In particular, absence of corresponding histone modifications
does not interfere with formation of single central chromocenter
surrounded by L1-rich heterochromatin. b Nuclear architecture of
neuroretinal cells (GCL and INL) is also not affected by deletion of
H3K9 and H4K20 trimethylation. DAPI staining. c Deletion of G9a
strongly reduces the abundance of H3K9me2 in L1-rich chromatin
but does not prevent its clustering around chromocenters in devel-
oping rods. Note that nuclei of P14 rods in both wild type and Dkk3
G9a CKO in particular, possess only a few chromocenters and L1-
rich chromatin is clustered around them. Tri-methylation of H3K9
in chromocenters and L1-chromatin is not affected in G9a
CKO mice (middle and bottom rows), H3K9me3 is abun-
dant in chromocenters and L1-rich chromatin close to them,
which conforms to the possible role of Suv3-9 in H3K2me2
deposition: note the similarity in H3K9me2 and H3K9me3 distri-
bution in ganglion cells. Single confocal sections. Scale bar 5 μm

b
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meaning that different modifications can provide the same
functional signal. By now nearly 70 different histone mod-
ifications are known (Tan et al. 2011), but they form only
3–4 groups with correlated occupancy and, supposedly,
functions (Wang et al. 2008; Zhu et al. 2013). A charac-
teristic example is H3K56me3. This epigenetic mark
phenocopies H3K9me3, with the exception that it is not
masked by phosphorylation of the neighboring serine
(H3S10ph) in mitotic chromosomes (Jack et al. 2013).
Also, in rod nuclei and neuroretinal cells with conventional
nuclear architecture, H3K56me3 has the same global
distribution, as H3K9me3. In C. elegans, integrated
arrays of gene promoters acquire silencing epigenetic
marks and are sequestrated to the nuclear periphery
(Gonzalez-Sandoval et al. 2013; Meister et al. 2010;
Towbin et al. 2010). Although peripheral targeting is
affected by deletion of H3K9 thrimethylase set-25,
mono- and dimethylase met-2 should also be deleted for
the complete release of peripheral heterochromatin, show-
ing that in C. elegans absence of H3K9me3 is compensat-
ed by H3K9me1,2 marks. Remarkably, a crucial role of
H3K9 monomethylases for chromatin formation has

recently been shown also for cultured human cells
(Pinheiro et al. 2012). Furthermore, in cultured human
cells dimethylase G9a affected peripheral position of at
least a proportion of LINE-rich heterochromatin, lamina-
associated domains (Kind et al. 2013). Our results show
for the first time that the major silencing epigenetic marks
(H3K9me3 and H4K20me3, in the first place) are dispens-
able for maintenance of peripheral heterochromatin not
only in cultured cells, but also in tissues in vivo. Taken
together, our results well conform to the notion that this
redundancy depends both on redundant depositing of epi-
genetic marks by different enzymes (H3K9me2)
and redundancy of epigenetic code itself (H3K9me3,
H4K20me3).

Our results also show that nuclear inversion in rods
does not need H3K9me3 and H4K20me3, separately or
together, and takes place despite strong depletion of
H3K9me2. It is noteworthy that nuclear inversion results
from absence of two peripheral heterochromatin tethers,
LBR- and lamin A/C-dependent, which are in fact readers
of epigenetic code (Solovei et al. 2013). LBR directly
includes a Tudor domain, a known reader of silencing

Fig. 10 Distribution of his-
tone modification marks in
chromosome bands and in
eu- and heterochromatin of
conventional and inverted
nuclei. Histone modifica-
tions in LINE-rich hetero-
chromatin (red) are the
same in the layers under
the nuclear envelope,
around chromocenters and
around nucleoli. H3K9me2 is
marked in red to emphasize
its absence in the chromo-
centers of inverted rod nuclei
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histone modifications (Hirano et al. 2012; Makatsori
et al. 2004). Lamin A/C, although it binds chromatin
directly, is a scaffold protein in the first place, and forms
complexes with numerous proteins, reading epigenetic
code or modifying it (reviewed in Solovei et al. 2013).
In particular, progeric mutations of lamin A/C and
inhibition of farnesyltransferase (involved in lamin A/C
maturation) appear to directly affect chromosome and
heterochromatin positioning in the nucleus (Mehta
et al. 2010). In summary, epigenetic marking typical
for peripheral heterochromatin does not prevent inver-
sion in absence of the both peripheral heterochromatin
tethers, that is nuclear envelope-bounded readers of
epigenetic code. These facts suggest that inversion in
rod photoreceptor nuclei simply relies on complete loss
of tethers in differentiating rod nuclei which takes place
in mouse by the age of about 2 weeks.

Conclusions

A broad study of the epigenetic landscape of the
inverted mouse rod nuclei and nuclei with conventional
nuclear architecture indicated several differences be-
tween them and several features of general interest for
the organization of the mammalian nuclei:

– Packing density of pericentromeric satellites and
LINE-rich chromatin is more similar in inverted rod
nuclei, than in the nuclei with a conventional archi-
tecture; euchromatin has a lower packing density in
both cases.

– A high global chromatin condensation in rod nuclei
minimizes the structural difference between Xi
and Xa.

– DNA methylation is observed primarily in the
chromocenter, DNMT1 is primarily associated
with the euchromatic shell.

– Heterochromatin proteins HP1-alpha and HP1-
beta localize in heterochromatic shells, whereas
HP1-gamma is associated with euchromatin.

– For most of the 25 studied histone modifications,
we observed predominant colocalization with a
certain main chromatin class (Fig. 10).

– Both inversion in rod nuclei and maintenance of
peripheral heterochromatin in conventional nuclei
are not affected by a loss or depletion of the major
silencing core histone modifications, but for different
reasons. Maintenance of peripheral heterochromatin

appears to be ensured by redundancy both at the
level of enzymes setting the code (writers) and the
code itself, whereas inversion in rods relies on ab-
sence of the peripheral heterochromatin tethers (ab-
sence of code readers).
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Figure S1. Explanation of the method to obtain robust immunostaining 
 
a Iimmunostaining of H3K4me2 in rod nuclei after different fixation and antigen retrieval 
times. Single optical sections are shown as gray scale images.  
 
b Depending on fixation and antigen retrieval times (shown in panel a) staining varies 
from very strong (“+++” on green background) to absence of a signal (“-“ at white 
background). Note similarity in the general character of staining and a satisfactorily wide 
range of conditions assuring optimal staining. 
 
c False-colored overlay of H3K4me2 immunostaining and DAPI for rod nuclei using one 
of the optimal conditions, as used to illustrate the distribution of immunostaining in the 
main text. 
 
Scale bars:  2 µm in a; 5 µm in c 
 
 

 



Figure S2. The distribution of RNA-polymerase II (Pol-II) in conventional nuclei 
of retinal neurons (INL) and inverted nuclei of rod cells 
 
Note that all forms of Pol-II – inactive (top raw), elongating (mid raw), and pausing 
(bottom raw) – are found at the peripheral euchromatic nuclear shell of rods (B1-rich 
shell). 
 
Single confocal sections. Scale bars:  5 µm 
 
 

 
 
 



Figure S3. Comparison of the staining patterns of two antibodies against 
H3K9me2 in retinal cells with conventional (INL) and inverted (rods) nuclear 
architecture 
 
The two antibodies produce practically identical staining patterns. Abcam, 
commercially available monoclonal antibody from Abcam  (ab1220); HK, monoclonal 
antibody produced in the laboratory of H.Kimura (clone 6D11) 
 
Single confocal sections. Scale bar: 5 µm 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S4. Several histone marks visualized in rod nuclei from adult rat retina.  
 
The distribution of all marks is the same as in mouse rod nuclei (c.f. Figure 5b). 
 
Single confocal sections. Scale bar: 5 µm 
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3  Discussion  

3.1 Roles of epigenetic factors in nuclear inversion 

Murine rod photoreceptors are terminally differentiated cells possessing a unique inverted 

nuclear architecture. The nucleus of rod cells contains highly condensed constitutive 

heterochromatin at the nuclear centre, which is surrounded by a layer of facultative 

heterochromatin and a layer of euchromatin (Solovei et al., 2009). Epigenetic properties of 

chromatin defining its peripheral or internal positioning remained unknown. Particularly, we 

were interested to know which histone modifications mark heterochromatin to be released 

from the nuclear periphery and/or accumulated in the nuclear interior. To answer this 

question, I and coauthors carried out extensive analysis of several epigenetic factors which 

might be involved in the nuclear inversion. We mapped the distribution of a major reader of 

DNA methylation, MECP2 and main histone marks, including methylation and acetylation in 

rod cells with inverted nuclear architecture and other retinal neuron cell types with 

conventional nuclear architecture (Eberhart et al., 2013; Song et al., 2014). No obvious 

differences were found in the distribution of epigenetic marks in the same chromatin classes 

between nuclei with conventional and inverted nuclear architecture. In both case of nuclear 

architecture, histone modifications marking transcriptional active/silencing chromatin are 

associated with euchromatin/heterochromatin, their abundance is below the detection level in 

the opposite chromatin class (Figure 9). Exclusive distribution of all forms of RNA Pol-II in the 

euchromatin shell conforms to the euchromatin distribution of active histone modification 

marks (Eberhart et al., 2013). 

 

Figure 9. Distribution of major histone modification marks and selected nuclear proteins in 

chromosome bands and in eu- and heterochromatin of rods and cells with the conventional 

nuclear architecture. Core histone modifications mostly mark the same chromatin classes in 

conventional and inverted nuclei. H3K9me2 is marked in red to emphasize its absence in the 

chromocenters of inverted rod nuclei. MECP2 is marked in red in conventional and in light grey in 

inverted nuclei to emphasize its pronounced presence in the chromocenters of the former and 

absence in the chromocenters of the latter.  
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    Zooming in to different histone modification types, histone acetylation is associated with 

euchromatin shell, the only exception among the studied modifications is H3K4ac. H3K4ac is 

distributed in both euchromatin and LINE-rich heterochromatin. The unusual distribution 

conforms to the involvement of H3K4ac in heterochromatin assembly (Xhemalce and 

Kouzarides, 2010). Histone methylation distribution differs depending on which histones are 

modified as well as the methylation type: mono-, di- or trimethylation. For both H3K4 and 

H3K36, the signals of all three types of methylation were observed exclusively in the 

euchromatin shell (Song et al., 2014).  

    The finding that H3K27me3 is associated with euchromatin shell in nuclei of bipolar and 

rod cells is actually rather surprising, since this mark is generally considered as repressive 

histone marks and to be primarily involved in gene silencing and X-chromosome inactivation 

(Pauler et al., 2009; Pinter et al., 2012). Moreover, H3K27me3 was found to be enriched at 

the borders of developmentally regulated variable LADs (Guelen et al., 2008; Harr et al., 

2015), its enrichment is necessary and directly involved in the repositioning and targeting 

ectopic integrated sequences to the nuclear lamina.  

    The pivotal roles that silencing histone modifications play in heterochromatin formation led 

us to investigate the effect of H3K9me3, H4K20me3 deficiency in chromosome organization. 

Loss of single H4K20me3 and combination loss with H3K9me3 affects neither the inversion 

of rod nuclei nor the retaining of peripheral heterochromatin layer as well as peripheral 

chromocenters in other retinal cells with conventional nuclear architecture. Taken together, 

our results indicate that the redundancy of histone modifications depends both on the 

enzymes depositing of epigenetic marks and redundancy of epigenetic code itself (Eberhart 

et al., 2013). 

    H3K27me3 and H3K9me3 are hallmarks of facultative and constitutive heterochromatin, 

respectively. The two chromatin types generally mutually exclusive from each other and do 

not coexist at the same loci. The absence of H3K9me3 allows BEND3 to recruit H3K27me3, 

and thus results in a redundant pathway to generate repressive chromatin (Saksouk et al., 

2014). Taken these into consideration, it would be interesting in the future to investigate the 

involvement of H3K27me3 in the inversion of nuclear architecture during the process to 

maturation in mouse rod photoreceptors.  

    Supporting evidence of the involvement of H3K9me2 in chromosome organization comes 

from the finding that H3K9me2 has been reported to be enriched in the LADs (Guelen et al., 

2008; Towbin et al., 2012; Wen et al., 2009) and it is required for targeting an ectopic site to 

the nuclear lamina (Harr et al., 2015). In C. elegans, elimination of two histone 

methyltransferase MET-2 (mediates H3K9 mono- and dimethylation) and SET-25 (mediates 

H3K9me3) abrogates the perinuclear attachment of native chromosomal arms rich in 

methylated H3K9, implying the role of histone methylation in perinuclear heterochromatic 
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distribution (Towbin et al., 2012). This effect, however, doesn’t take place in the native tissue 

cells (retinal neurons) studied by us. Interestingly, H3K9me2 was detected in the 

chromocenter of retinal neurons with conventional nuclei but not in the chromocenter of rod 

cells. Bright H3K9me2 signals were only observed in LINE-rich chromatin in wild type rods. 

Conditional knockout (CKO) of H3K9me2 driven by Dkk3 expressed in the retina results in 

only residual sparse dot-like H3K9me2 signals in LINE-rich chromatin. With the absence of 

H3K9me2 in the chromocenter and only sparse spot-like distribution in LINE-rich chromatin, 

the progress of inversion was not affected in CKO when compared to wild type rods. The 

unaffected nucleus organization in CKO rods shows that H3K9me2 is dispensable for 

inversion. The overall morphology of conventional nuclei was also not affected (Eberhart et 

al., 2013). It is of special note that our studies were performed by microscopic, which might 

risk missing the detection of small scale chromosome reorgananization. Consistent with our 

study, in another two studies the authors were unable to detect loss of association with the 

nuclear lamina when H3K9me2 was down-regulated by treating cells with 5 μM BIX-01924. 

Their assays were designed to detect the association with lamina within 0.5 μm, and 

therefore, a subtle loss of association might be missed (Bian et al., 2013; Harr et al., 2015).  

    During retina maturation, the mouse rod nucleus undergoes extensive reorganization 

(Solovei et al., 2009) which is accompanied by extensive and specific methylation (Merbs et 

al., 2012). Epigenetic control of retinal development in general is poorly understood. It is 

known that DNMT1 plays an important role in mammalian retinal development. Although in 

hypomethylated Dnmt1-mutant mice, the commitment of Dnmt1-deficient progenitor towards 

the photoreceptor fate is not affected, the retinal progenitor cells continue to proliferate. The 

photoreceptor progenitors do not differentiate and massively die together with other retinal 

neurons (Rhee et al., 2012). Surprisingly, complete deletion of MECP2 does not cause 

apparent defects in the morphology and development of the retina. The nuclear architecture 

of retinal neurons is also unaffected: the degree of chromocenter fusion and the distribution 

of major histone modifications do not differ between Mecp2−/y and Mecp2 WT mice.  

    We found that mammalian rods have low expression of MECP2, although it is a protein 

especially abundant in neurons (Gabel et al., 2015; Kinde et al., 2015). Particularly, a 

prominent difference was observed between rods and other retinal and non-retinal cells with 

conventional nuclear organization. We relate this phenomenon with an unusually high level 

of histone H1c demonstrated recently in mouse rod cells (Siegert et al., 2012). It is known 

that both proteins compete for DNA binding, and in brain neurons MECP2 replaces almost 

half of H1 (Skene et al., 2010). Therefore, we speculate that high level of H1c might be 

crucial for extremely dense heterochromatin packaging in the rod nuclear center. This idea is 

supported by partial heterochromatin decompaction in rods from triple-KO mice deficient for 

H1 linker histone variants (Popova et al., 2013) and by increasing MECP2 expression in rods 
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of SCA7 mice (Song et al., 2014), which lose heterochromatin compaction and reduce 

histone H1 expression (Kizilyaprak et al., 2011). Importantly and in agreement with 

accumulated knowledge about neuron differentiation (Young, 1985), the onset of MECP2 

expression during normal retina development coincides with massive synapse formation. 

Surprisingly, I did not find the compensatory expression of any other methyl-CpG binding 

proteins in cultured cells and several tissues upon MECP2 deletion (Song et al., 2014). 

    In addition, the distribution of MECP2 in 60 cell types of 16 mouse neuronal as well as 

non-neuronal tissues shows that MECP2 is almost universally expressed in all studied cell 

types with few exceptions, e.g., microglia. Absence of MECP2 in microglia cells is especially 

intriguing in view of recent data on the involvement of microglia cells in the Rett phenotype 

and questions the role of these cells in neuropathologic consequences of MECP2 deficiency 

(Derecki et al., 2013; Derecki et al., 2012). Our results are supported by the recent study 

shown that genetic reconstitution of Mecp2 in microglia does not rescue Mecp2-null mice 

(Wang et al., 2015). MECP2 is also lacking in the renewed cells, e.g., intestine epithelial 

cells, erythropoietic cells and hair matrix keratinocytes. Combining with the observation that 

MECP2 expression initiates at late differentiation stage and increases during tissue 

development and terminal cell differentiation, we conclude that MECP2 serves as a marker 

of the differentiated state. Our study reveals the significance of MECP2 function in cell 

differentiation and sets the basis for future investigations in this direction (Song et al., 2014). 

3.2 Roles of LBR- and Lamin A/C-dependent tethers in nuclear inversion 

Immunostaining of wild type mouse tissues shows that presence of at least one of the 

heterochromatin tethers, Lamin A/C-dependent tether (A-tether) or LBR-dependent tether (B-

tether), is sufficient for maintenance of the conventional nuclear organization. Absence of 

both tethers results in loss of peripheral heterochromatin, thereby causing inversion of the 

nuclear architecture. Inversion is observed in nuclei of rod photoreceptors of wild type mice 

and other nocturnal mammals. All studied so far nocturnal mammals express neither LBR 

nor Lamin A/C in their rod cells. Ectopic expression of LBR in mouse rods was shown to be 

sufficient to counteract inversion in these cells and restore a conventional nuclear 

organization with heterochromatin abutting the nuclear envelope (Solovei et al., 2013). 

    LBR interacts selectively with heterochromatin via its Tudor domain (Hirano et al., 2012; 

Makatsori et al., 2004; Olins et al., 2010a; Olins et al., 2010b). LBR also preferentially binds 

to B-type lamins (Worman et al., 1988). Thus B-type lamins, INM and LBR build a 

heterochromatin tether to maintain the peripheral heterochromatin. It is still on debate 

whether the B-type lamins are indispensable in the chromatin binding, since cells from mice 

lacking both Lmnb1 and Lmnb2 have the conventional nuclear architecture in the absence of 

Lamin A/C (Kim et al., 2011; Yang et al., 2011).  
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    The mechanism of how LBR mediates heterochromatin formation and repression remains 

elusive. One proposed model is that LBR binds to histone H4 with dimethylated lysine 20. 

After binding to chromatin, LBR tethers those chromatin regions together to form a stable 

LBR-chromatin complex, so-called primitive heterochromatin. The primitive heterochromatin 

serves as a structural framework to recruit transcriptional repressors, including HP1, MECP2 

(Guarda et al., 2009) and Lamin B (Worman et al., 1988) to form mature heterochromatin. 

The transcription repressors may corporately reduce transcription (Hirano et al., 2012). 

Further work has to be done to confirm the hypothesis. 

    Expression of LBR and Lamin A/C was shown to be temporarily coordinated to maintain 

peripheral heterochromatin. On early developmental stages embryonic cells express only 

LBR, later the LBR expression is replaced by Lamin A/C expression in many different 

tissues. In the developing retina, Lamin A/C appears and replaces LBR ca. 10-14 days after 

the last division of the retinal neuronal progenitor cells. The only exception is rod 

photoreceptors where LBR expression ceases at P14 without an onset of the Lamin A/C 

expression. Several other cell types, such as muscle and endothelial cells, express both 

proteins constantly. 

    Spatial changes related to cellular differentiation can result in spatial changes in 

LBR/Lamin A/C expression. This could be observed in tissues where differentiation is 

spatially ordered, e.g., in epithelium of small intestine with cells proliferating in the crypts and 

differentiating while moving along the villi. Crypt cells do not express Lamin A/C but LBR, 

while differentiating and differentiated absorptive and goblet cells co-express both proteins. 

Similar expression pattern was observed in the mouse multilayer skin: basal keratinocytes 

express both proteins, whereas differentiating cells move away from the basal membrane 

and gradually stop LBR expression but increase Lamin A/C expression. The precede 

expression of LBR and its constant expression in the renewed cell types imply that LBR is 

correlated with the undifferentiation status (Solovei et al., 2013).  

    The important roles of A-type lamins in proper chromatin organization are supported by 

data on diverse laminopathies (reviewed in (Luo et al., 2014). In particular, progeric mutation 

forms of Lamin A/C and inhibition of farnesyltransferase (involved in the first step of 

posttranslational modifications of preLamin A) appear to directly affect heterochromatin 

positioning in the nucleus (Mehta et al., 2010). Moreover, in C. elegans loss of 

heterochromatin and occurrence of developmental defects were found when lamin was 

mutated (Liu et al., 2000). A-type lamins serve as the scaffold proteins at the first place and 

mainly interact with chromatin indirectly through bridging proteins. This is consistent with the 

results that expression of Lamin C in mouse rod cells is not sufficient to tether 

heterochromatin to the periphery of the nucleus (Solovei et al., 2013). This view is also 
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supported by recent observations that in cells deficient in B- and/or A-type lamins, lamina 

associated domains are fully preserved (Amendola and van Steensel, 2015).  

    Lamin C together with bridging proteins is already sufficient to maintain peripheral 

heterochromatin, correspondingly, mice which express only Lamin C and no Lamin A are 

viable and the nuclei organization are similar with WT mice (Fong et al., 2006). Moreover, 

recent studies showed that contrary to the common opinion about functional redundancy 

between Lamin A and C, Lamin C may be specifically involved in instructing peripheral 

positioning of chromatin (Harr et al., 2015). These findings rule out the inability of Lamin C to 

mediate the heterochromatin positioning in rod cells in transgenic mice. Another equally 

important subject is the difference in binding properties between Lamin A, Lamin C and 

transmembrane proteins (Al-Saaidi and Bross, 2015). For example, Sakaki and co-authors 

found that the interaction of emerin is stronger with Lamin A than with Lamin C (Sakaki et al., 

2001), and the localization of SUN2 has been demonstrated to be restored by the rescued 

expression of Lamin A but not Lamin C (Liang et al., 2011). Further work has to be done to 

confirm the binding affinities of Lamin C to the studied INM proteins, especially the identified 

candidate mediators for A-type tethers.  

    Intriguingly, although the laminopathies are caused by the missense mutation and/or 

deletions throughout the LMNA gene, it is the mislocalization of Lamin A/C interaction 

proteins that are progeric. Golgi accumulation of Sun1 is pathogenic in Lmna null and 

progeroid mice, in Sun1-/-Lmna-/- mice the tissue pathologies are ameliorated (Chen et al., 

2012). DYT1 dystonia is due to the perinuclear space accumulation of pathogenic torsinA 

variant, which is typically located to the lumen of the endoplasmic reticulum (Gonzalez-

Alegre and Paulson, 2004; Goodchild and Dauer, 2004). LAP1 serves as the nuclear 

envelope torsinA interaction protein (Goodchild and Dauer, 2005). In the laminapathies the 

cardiac and skeletal muscle are commonly affected. Taken these into consideration, one 

would deduce it is the interruption of interaction between Lamin A/C and the partners in the 

skeletal or cardiac muscle, which might lead to the mislocalization of the interaction partner, 

that causes the pathologies. Moreover, one proposed model to explain the laminopathies is 

that the mutated LMNA disrupts the lamina integrity, leading to mechanical weakening of the 

nucleus and making it more vulnerable to mechanical stress (Burke et al., 2001; Burke and 

Stewart, 2002, 2006; Chi et al., 2009; Worman and Courvalin, 2004). Therefore, the 

aforementioned interaction partners might be also involved in the mechanical response.  

3.3 INM proteins as candidates for missing mediators of heterochromatin 

binding in A-tether 

Lamin A/C interact with chromatin perhaps via a complex with INM proteins, LEM-D proteins 

in particular. First of all, all identified LEM-D proteins bind either A- or B-type lamins, or both, 
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directly (Brachner et al., 2005; Clements et al., 2000; Lee et al., 2001; Mansharamani and 

Wilson, 2005; Sakaki et al., 2001). Second, published data suggest that LEM-D proteins are 

implicated in heterochromatin anchoring to the nuclear envelope, which suggests their 

involvement in the A-type tethers. Indeed, in C. elegans, a complex of Lamin and any of the 

two LEM domain proteins is formed to target the heterochromatic chromosome arms to the 

nuclear lamina (Ikegami et al., 2010; Mattout et al., 2011).  

    LEM-D proteins tether peripheral chromatin through different mechanisms. The shared 

LEM domain binds to chromatin interacting protein BAF (Margalit et al., 2007). Moreover, 

some LEM-D proteins have additional domains that directly bind DNA, or chromatin proteins. 

For example, LAP2 contains a second LEM-like domain that binds directly to DNA (Cai et al., 

2001; Laguri et al., 2001); MAN1 and probably LEM2 bind DNA directly via the C-terminal 

winged helix MAN1/Scr1p/C-terminal domain (Caputo et al., 2006). LAP2β also binds 

chromatin protein HA95 (Martins et al., 2003).  

    LEM-D proteins might function redundantly in chromatin organization, since loss of 

function of any single LEM gene studied so far does not grossly disrupt chromatin 

organization. Moreover, the tissue-selective disease phenotypes caused by mutations of the 

ubiquitously expressed genes encoding LEM-D proteins support the LEM-D protein function 

redundancy in the unaffected tissues (Table 3). The functional redundancy might be partially 

explained by the ability of LEMD proteins to bind to the same interaction partners. For 

example, LAP2ß, emerin and MAN1 bind the transcriptional repressor GCL (Holaska et al., 

2003; Mansharamani et al., 2001; Nili et al., 2001). The other shared partners include Btf, to 

which both emerin (Haraguchi et al., 2004) and MAN1 bind (Wagner and Krohne, 2007). 

Despite the functional redundancy, none of the studied INM proteins are present in all cell 

types not expressing LBR, and therefore, no individual protein could be universal cofactor of 

the A-type tethers. The previously published results show that the INM proteins involved in 

NE-chromatin interactions are ubiquitously expressed proteins (Mattout-Drubezki and 

Gruenbaum, 2003) mediating interaction with heterochromatin (Brown et al., 2008; Capelson 

et al., 2010; Kalverda and Fornerod, 2010; Makatsori et al., 2004; Pickersgill et al., 2006). 
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Table 3. Knock out phenotypes in mice and associated human diseases caused by mutations 

in genes encoding studied integral proteins of the INM and LAP2α. 

Protein Knock-out phenotype (mice) Key 

references 

Associated human 

disease 

Key 

references 

LBR severe skeletal abnormality, 

utero/perinatal lethality, 

absence of hair, and scaly 

skin  

(Hoffmann 

et al., 

2002) 

Pelger-Hue¨t anomaly 

(heterozygous) 

Greenberg skeletal 

dysplasia (homozygous) 

(Hoffmann 

et al., 2002; 

Waterham 

et al., 2003) 

LEM2 die by E11.5, most tissues 

are reduced in size, 

overactivation of multiple 

MAP kinases and AKT 

(Tapia et 

al., 2015) 

Not known   

MAN1 die by E11.5, with a defect in 

vasculogenesis associated 

with overactive TGF-β 

(Cohen et 

al., 2007; 

Ishimura 

et al., 

2006) 

sclerosing bone 

dysplasias 

osteopoikilosis, non-

sporadic melorheostosis, 

and Buschke- Ollendorf 

syndrome 

(Hellemans 

et al., 2004) 

emerin phenotypically normal, except 

for subtle muscle 

abnormalities 

(Melcon et 

al., 2006; 

Ozawa et 

al., 2006) 

X-linked recessive 

Emery–Dreifuss muscular 

dystrophy (EDMD) 

(Bione et 

al., 1994) 

LAP2β Not known  Not known   

LAP1B die perinatally, typically by 

E18 or P0 

(Shin et 

al., 2013) 

Muscular dystrophy (Goodchild 

and Dauer, 

2005) 

SAMP1 Not known   Not known   

LAP2α viable and morphologically 

normal, while epidermal, 

erythroid progenitor 

hyperproliferate in 

regenerative tissues 

(Naetar et 

al., 2008) 

dilated cardiomyopathy 

(DCM) 

(Taylor et 

al., 2005) 
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    The thorough immunostaining-based screening of WT mouse tissues with antibodies 

against a large set of INM proteins allowed me to obtain the cell-type specific signature of the 

INM proteins expression for more than 20 cell types. In contrast to the published data, our 

results show that the expression patterns of LEM-D proteins, LAP1B and SAMP1 are cell-

type specific. The most prominent example is SAMP1 which is exclusively expressed in 

neurons and muscle cells (our unpublished data). Consistent with our results, in certain cell 

types, different INM proteins, or the combinations of these INM proteins, are involved in the 

localization of chromosome to and from the nuclear periphery (Zuleger et al., 2008). 

Correspondingly, the localization of certain chromosomes exhibits tissue-specific pattern. 

Patterns of chromosome positioning in the nucleus differ in different cell types, such as 

LAP2β was implicated in gene silencing and heterochromatin localization at the nuclear 

periphery in mammals (Zullo et al., 2012) . It forms a protein complex with HDAC3 and cKrox 

which can recognize extended GAGA motif of lamina-associated sequences (LAS). LAS 

serve as the primary basis by which chromatin is targeted to the nuclear lamina. HDAC3 

promotes heterochromatinization via the deacetylase activitities, LAP2β binds the whole 

complex to the NE (Zullo et al., 2012). Notably, the complex activity is cell-type- and 

developmental-stage-specific.  

    Apart from LAP2β, other INM proteins also mediate heterochromatin tethering to the 

nuclear periphery, cell-type- and developmental-stage-specifically (Worman and Schirmer, 

2015; Zuleger et al., 2013). Emerin also binds and recruits HDAC3 to the nuclear envelope 

and contribute to deacetylation of targeted genes (Demmerle et al., 2012; Zullo et al., 2012). 

Recent studies show that LADs organization originated by Lamin B1 expression is in 

conjunction with LAP2β and HDAC (Zullo et al., 2012), LBR is involved in tethering 

heterochromatin to the nuclear periphery (Solovei et al., 2013). Therefore, we propose that 

instead of initiating chromatin tethering, lamins might reinforce a chromosome arrangement 

initially established by a tissue-specific INM proteins. 

    Data received in my study strongly indicate that chromatin-binding components of the A-

tether are indeed tissue- and cell type-specific. In mouse rod nuclei MAN1, LAP2β, SAMP1 

are expressed at all developmental stages (unpublished data), which rules out the possibility 

of these proteins as cofactors in A-type tethers. Intriguingly, I found that rod cells lack one of 

the LEM-D proteins, LEM2. Moreover, absence of LEM2 in other cell types coincides with 

lack of Lamin A/C, and vice versa, presence of LEM2 coincides with expression of Lamin A/C 

in all cells studied. Screening of Lmna-KO mouse tissues confirmed the above observation: 

in cell types which express both Lamin A/C and LEM2 in WT mice, LEM2 is either absent 

from the nuclear envelope, or prominently mislocalized upon Lmna deficiency. Additionally, 

absence or mislocalization of LEM2 was also found in nuclei of myoblasts derived from 

muscles of Lmna-KO mice. These data strongly suggest LEM2 as a promising candidate to 
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mediate heterochromatin binding in the Lamin A/C-dependent tether. The Lamin A/C 

dependent LEM2 localization is supported by the diffusion-retention trafficking model on the 

journey from the ER to the INM (Katta et al., 2014; Ungricht and Kutay, 2015). The newly 

synthesized LEM2 trafficks through the continuous ER system and accumulates in the INM 

relying on removal of molecules from a diffusive pool by binding to nuclear interaction 

partners, most probably Lamin A/C. 

    To test our hypothesis, both components of the A-tether, Lamin A/C and LEM2, have to be 

transgenically expressed in rod photoreceptors. Re-establishing of conventional nuclear 

architecture in transgenic mice would confirm our hypothesis. Therefore, I have cloned the 

two LEM-D proteins, LEM2 and emerin, together with Lamin C under the rod cell specific Nrl 

promoter (Akimoto et al., 2006). Though emerin is not mislocalized in Lmna-KO cells, it is 

weakly expressed in rods (Solovei et al., 2013) and has been implemented in strong 

chromatin binding (Berk et al., 2013b). The transgenic mice expressing both Lamin C and 

LEM-D proteins, LEM2+LaminC and emerin+LaminC, in rod photoreceptors are currently 

under preparation. 
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4.2 Abbreviations  

3C chromatin conformation capture 

3D three-dimensional 

4C circularized chromosome conformation capture or 3C-on-chip 

5C carbon copy chromosome conformation capture 

5caC 5-carboxycytocine  

5fC 5-formylcytocine 

5hmC 5-hydroxymethylcytosine 

5mC 5-methylcytosine 

A adenine 

aa amino acid 

Ankle ankyrin and LEM-D-containing protein 

ATP adenosine triphosphate 

B1 abundant mouse SINE repeat family 

B23 nucleophosmin 

BAC bacterial artificial chromosome 

BAF Barrier-to-autointegration factor 

BAF Barrier-to-autointegration factor 

BDNF brain-derived neurotrophic factor 

bp base pairs 

C  cytosine 

CC chromocenter 

CD  chromatin domain 

cHC  constitutive heterochromatin 

CKO conditional knockout 

cLADs  constitutive LADs 

CT  chromosome territory 

CTCF  CCCTC-binding factor 

CTD  C-terminal domain 

C-terminal carboxy-terminal 

D day of embryonic development 

Dam  DNA adenine methyltransferase 

DamID  DNA adenine methyltransferase identification 

DAPI  4',6-diamindino-2-phenylindole 

DNA  Deoxyribonucleic acid 

DNMT DNA methyltranferase 

DNMT1  DNA methyltransferase 1 

DNMT3a  DNA methyltransferase 3a 

DNMT3b  DNA methyltransferase 3b 

DNMT3L DNA methyltransferase 3-like 

DOP-PCR degenerate oligonucleotide primed PCR 

DSB  double strand break 

EC  euchromatin 

EDMD Emery-Dreifuss muscular dystrophy 

ER  endoplasmatic reticulum 

ESC  embryonic stem cells 
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fHC  facultative heterochromatin 

FISH  fluorescence in situ hybridisation 

fLADs  facultative LADs 

G guanine 

G1 Gap 1 phase of the cell cycle 

G2 Gap 2 phase of the cell cycle 

G9a  histone methyltransferase for H3K9 

GCL ganglion cell layer 

GCL germ-cell-less 

GFP  green fluorescent protein 

h  hours 

H3  histone 3 

H3K27me3  lysine 27 trimethylated histone 3, repressive mark 

H3K36me3  lysine 36 trimethylated histone 3, euchromatic mark 

H3K4me3  lysine 4 trimethylated histone 3, euchromatic mark 

H3K9me2  lysine 9 dimethylated histone 3, repressive mark 

H3K9me3  lysine 9 trimethylated histone 3, repressive mark 

H3S10P  histone 3 serine 10 phosphorylation 

H4  histone 4 

H4K20m3 lysine 24 trimethylated histone 4, repressive mark 

HAT  histone acetyltransferase 

HC  heterochromatin 

HDAC  histone deacetylase 

HeH helix-extension-helix 

HGPS  Hutchinson-Gilford progeria syndrome 

HMT  histone methyltransferase 

HP1  heterochromatin protein 1 

Ig  Immunoglobulin 

INL  inner nuclear layer 

INM  inner nuclear membrane 

IPL inner plexiform layer 

KASH Klarsicht/ANC-1/SYNE homology 

kb  kilo base 

kDa  kilo Dalton 

KMTase histone lysine methyltransferase 

KO  knock-out 

L1 abundant mouse LINE repeat family 

LAD Lamina-associating domain 

LAP  Lamina-associated polypeptide 

LAP2 Lamina-associated polypeptide 2 

LB1  Lamin B1 

LBR  Lamin B receptor 

LEM  LAP/emerin/MAN1 

LINC linker of nucleoskeleton and cytoskeleton 

LINE  long interspersed nuclear element 

LmA  Lamin A 

LmA/C  Lamin A/C 



                                                                                                                                                                         Annex 

155 

LmC  Lamin C 

m6A  adenine methylated at position C6 

Mb  mega base 

MBD  methylcytosine binding domain 

MeCP2  methyl-CpG binding protein 2 

min  minutes 

MSC MAN1/Src1p/C-terminal 

MSR major satellite repeat 

NAD  Nucleolus-associated domain 

NE nuclear envelope 

NET  nuclear envelope transmembrane protein 

NL  nuclear lamina 

NLS  nuclear localization signal 

nm  nano meter 

NPC nuclear pore complex 

NTD  N-terminal domain 

N-terminal amino-terminal 

ONM  outer nuclear membrane 

OPL Outer plexiform layer 

OR  olfactory receptor 

OSN  olfactory senory neuron 

P  day of postembryonic development 

PCR  polymerase chain reaction 

PMT  post translational modification 

rDNA  ribosomal DNA 

RFP  red fluorescent protein 

RNA  ribonucleic acid 

RNA Pol-II CTDx non-phosphorylated carboxy-terminal domain of RNA polymerase II 
RNA Pol-II Ser2ph phosphorylated serine 2 of heptapeptide repeat on carboxy-terminal 

domain of RNA polymerase II 
RNA Pol-II Ser5ph phosphorylated serine 5 of heptapeptide repeat on carboxy-terminal 

domain of RNA polymerase II 

RPOII  RNA polymerase II 

RRM RNA recognition motif 

RT-PCR  real time PCR 

SAMP1 spindle associated membrane protein 1 

SCA-7 spinocerebellar ataxia type 7 

SEM scanning electron microscopy 

SINE  short interspersed nuclear element 

S-Phase  synthesis phase of the cell cycle 

SUN Sad1p, Unc-84 

Suv  suppressor of variegation 

Suv39h1  histone methyltransferase for H3K9me3 

Suv39h2  histone methyltransferase for H3K9me3 

Suv40h1 histone methyltransferase for H4K20me3 

Suv40h2  histone methyltransferase for H4K20me3 

T  thymidine 
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TAD  topologically associated domain 

TEM transmission electron microscopy 

Tet  ten eleven translocation 

TF  transcritpion factor 

TGF β transforming growth factor β 

TM  transmembrane 

TMD  transmembrane domain 

TSS  transcriptional start site 

Xa X active chromosome 

Xi X inactive chromosome 

Xist X inactive specific transcript 

ZF  zinc finger 

ZFP  zinc finger proteins 

μm  micro meter 
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