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ABSTRACT 

 

Using a key to open a door, a pen to write a letter or a fork for eating are actions we perform during our 

daily life. A wide range of different processes take place enabling us to perform these actions and to use 

objects as tools: We have to recognize the object, understand its functional purpose, know how to use it 

as a tool, grasp it and control the movement in order to achieve the intended goal. Analysis of the neural 

correlates of these processes in real actions with the help of functional magnetic resonance imaging 

(fMRI) is a challenging task considering the methodological circumstances, but can give a valuable insight 

into a brain process of an essential element of human daily life. The development of a new device suitable 

for the MRI environment, called “Tool-Carousel”, made it possible to introduce real objects in the MRI 

scanner and measure brain responses during the planning and execution of real actions. The main goal of 

this thesis is to characterize the brain network responsible for processing real object manipulations and 

tool use. This includes not only the analysis of young adults, but also elderly individuals to evaluate age-

related changes in the brain network responsible for actions with tools. Additional insight into the neural 

processes of tool use is given through a literature review. The latter covers fMRI studies of healthy adults 

and lesion analyses of patients with left brain damage suffering from apraxia. The connection of results 

from experimental studies on young and elderly individuals and the literature review lead to several 

conclusions characterizing the brain network responsible for tool use actions: The tool-specific network 

which processes tool use actions and the conceptual understanding of tool use is mainly left-lateralized, 

independent of both the hand used in the action and of age. Brain areas recruited during planning and 

execution overlap and include the ventral stream, parietal and frontal areas which are also shown to be 

affected in patients with tool use impairments. Both ventral and dorsal processing streams are involved in 

actions. The latter can be subdivided into two functionally separated pathways dependent on the 

involvement of semantical information involved in the action. Furthermore, it can be stated that age-

related neural changes also affect the neural network processing real actions and mainly lead to activation 

increases during action planning and a compensatory mechanism in elderly individuals. Such aging effects 

in the tool use network should be considered in the analysis of patients with brain damage and tool use 

impairments that are in the same age group. Overall, this thesis provides new insights of brain function 

and an enhanced understanding of real actions, especially tool use, linking experimental studies with 

different age groups and a literature review of healthy adults and patients with impairments in tool use 

actions. 
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OVERVIEW 

 

This thesis is divided into five chapters. The first chapter gives a general introduction into the main topic 

including the neural correlates of different aspects of tool use, neural changes in aging and tool use 

impairments in brain damaged patients with apraxia. A summary of the main goals of this thesis can be 

found at the end of the first chapter.  

The next three chapters contain the reports of two experimental fMRI studies (chapter two and three) 

and a literature review (chapter four) in the form of research articles. The articles in chapter two and four 

are published and included in the format they were published in the journals. The research report in 

chapter three is so far unpublished and presented as a manuscript. A short introduction to all studies and 

the contribution of the author of this thesis are given in the beginning of each chapter. 

The article presented in chapter two reports an fMRI study with healthy young participants measuring the 

neural correlates of real functional and transport actions with known tools and neutral unknown objects. 

The second manuscript included in chapter three uses the same method as the previous article and 

focusses on age-related changes in the neural correlates of real actions and compares the results from 

young and elderly adults. The last article in this thesis is presented in chapter four and contains a 

literature review on the impairments in actions of daily living in patients with brain damage. Furthermore, 

it summarizes results from fMRI studies of healthy adults and lesion analyses of patients to get a further 

understanding on the neural correlates of tool use and actions of daily living. 

The last and fifth chapter of this thesis covers a general discussion of the findings from the experimental 

projects and the review. It aims to connect all three studies to draw general conclusions about the neural 

correlates of tool use which are then related to the current literature. Methodological limitations, potential 

improvements, future research possibilities as well as a general conclusion are also discussed. 
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Introduction – Tool Use in the young, 
elderly and damaged Brain 

 

Human tool use is an important part of our daily life, with a widespread neural basis which can be influenced by healthy 

aging and brain damage. 

 

Human tool making and tool use dates back around 2.5 million years and included the handling of 

hammering stones to produce sharp-edged stones for cutting and modifying other materials like bones or 

wood (Semaw, 2000). These simple tools enabled our ancestors to extend the selection of reachable food 

and possibly increased the access to food resources with higher quality (Ambrose, 2001). Along with the 

development and improvement of stone tools the increase of brain size was part of human evolution 

(Ambrose, 2001; Stout, Toth, Schick, & Chaminade, 2008; Wynn, 2003). Even though tool use is not a 

unique ability of the human being and has been reported in monkeys and more animal groups including 

other mammals, birds and even insects (Bentley-Condit, 2010), it can be clearly stated that no animal has 

trained, developed and improved this skill like the human being has done it. Enhanced hand-eye 

coordination, the development of handedness for improved fine-motor precision in the dominant hand 

and increased executive control of actions enabled the human being to perform complex object 

manipulations. Additionally, the development of causal reasoning, the formation of representations for 

object functions as well as social learning and teaching are some relevant abilities the human being 

developed in comparison to other animals which made it possible to establish the skill of using an object 

as a functional tool (Vaesen, 2012). Today, tool use is much more than using a stone for hammering. We 

open doors with a key, eat with fork and knife or sign a letter with a pen. These actions are performed 

during our daily life naturally without conscious thoughts on each part of the movement. Nearly 

intuitively we form our hand and fingers to grasp a certain object, lift and move it in order to help us to 

achieve our intended goal. In the end the object becomes a functional tool. Even though most of the 

common actions of daily living and tool use seem simple to us, the underlying processes behind such 

actions are multifaceted and include a variety of different steps. In order to illustrate the complexity of 

tool use, an introduction to the elements of such complex actions and their neural basis will be given in 

this chapter. Additionally, the neural and behavioral changes during healthy aging but also the 

neuroanatomical correlates of tool use in patients suffering from apraxia will be presented. Furthermore, 

the given information is put into context with the goal of this thesis. 

1 
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The basic elements of Tool Use and their neural underpinnings 

Using a tool is a complex action and includes a variety of sub-actions and processes. One crucial part of 

tool use is the recognition of an object as a tool and therefore associating it with a meaning, functionality 

and usage (Menz, Blangero, Kunze, & Binkofski, 2010; van Elk, van Schie, & Bekkering, 2014). 

Furthermore, the accurate motor plan has to be created and the proper hand and arm posture formed in 

order to be able to reach for and grasp the tool properly (Randerath, Goldenberg, Spijkers, Li, & 

Hermsdörfer, 2010; Vingerhoets, Nys, Honoré, Vandekerckhove, & Vandemaele, 2013; Vingerhoets, 

2014). Next, the motor plan has to be actually executed including the tool specific movements which 

during the execution have to be monitored and potentially corrected (Gaveau et al., 2014; Rizzolatti & 

Matelli, 2003). These are essential components of goal directed actions with tools and these processes will 

be referred to as elements of tool use in this thesis. 

On a neural level these elements can be separated in and attributed to specific neural circuits. Several 

scientific methods can be used for this purpose including functional and structural MRI, transcranial 

magnetic stimulation (TMS) and lesion analyses with brain damaged patients. MRI is a valuable method 

to acquire insight into the brain’s structure and function with a high spatial resolution. While structural 

MRI gives information about anatomical composition of the brain, fMRI can give further insight into 

dynamic processes and task dependent brain mechanisms. FMRI makes it possible to associate an 

anatomic location of the brain to function and helps to characterize networks responsible for certain 

processes and behavior (Friston, 2009; Raichle, 2009). It is an indirect measure of neural activity and is 

based on haemodynamic changes in brain areas. The blood-oxygen-level-dependent (BOLD) response is 

the signal measured and depends on the effect that neural activity causes a regional increase in the 

cerebral blood flow, over-compensating decreases in oxygen and leading to increased supply of 

oxygenated blood. Contrasting the measured signal of different tasks makes it possible to map the brain 

locations which are responsible for a certain function (Logothetis, 2008). FMRI is a non-invasive method 

which measures heamodynamic processes in relation to cellular activity, other methods like TMS or 

lesion analyses are based on selective magnetic stimulation of the brain or the analyses of damaged brain 

tissue due to neurological incidents, respectively. Both TMS and lesion analyses use the approach to 

analyze behavioral changes caused by alterations or stimulations of particular brain areas and therefore 

conclude links between brain areas and specific functions (Miniussi & Ruzzoli, 2013; Rorden & Karnath, 

2004). Despite the different approaches, all methods provide information about the brain’s function and 

can help to characterize the neural network responsible for tool use. 

In the following paragraphs the elements of tool use are presented and associated with different brain 

areas based on different methodological approaches described above. This includes the topics of object 
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recognition, knowledge of function and manipulation, reaching, grasping and the online control of 

actions. Additionally, different experimental methods and studies that aim to study tool use as a whole 

process are summarized. The final two paragraphs take all elements of tool use together and show 

possible connections to present a model characterizing the tool use and action network. Figure 1 

visualizes the reported findings and assumptions summarized below.  

The ventral stream and object recognition 

Clearly, before an object can be used as a tool it has to be seen and recognized. The neural pathway 

generally believed to have a central role in this process is the ventral stream (Goodale & Milner, 1992; 

Milner & Goodale, 2008). It is a functionally specialized and hierarchically organized structure, analyzing 

basic visual stimuli and integrating this information for the recognition of several different object 

categories (Grill-Spector & Malach, 2004). On a neuroanatomical level, the ventral stream reaches from 

the striate cortex including the primary visual areas to the temporal cortices, covering also the fusiform 

gyrus and structures like the lateral occipital complex (LOC) (Grill-spector, Kourtzi, & Kanwisher, 2001; 

Grill-Spector & Malach, 2004). With respect to the functionality of the mentioned brain areas of the 

ventral stream, they seem to be specialized for the recognition of specific stimuli. The occipital and 

fusiform face area show a specificity for faces (Kanwisher, Tong, & Nakayama, 1998), the 

parahippocampal area for places (Epstein, Harris, Stanley, & Kanwisher, 1999), the extrastriate and 

fusiform body area for bodies (Downing, Jiang, Shuman, & Kanwisher, 2001; Peelen & Downing, 2007), 

the LOC for objects (Grill-spector et al., 1999) and the posterior middle temporal gyrus (pMTG) 

specifically for tools (Lewis, 2006). Considering the specification of the LOC and pMTG it is clear that 

both brain areas play a key role in the process of using a tool. Brain imaging studies have shown that 

across different tasks, which require the retrieval of semantic object information and object properties, 

temporal brain areas (especially the pMTG) (Chao & Martin, 2000; Chao, Haxby, & Martin, 1999) as well 

as the LOC (Monaco et al., 2011; Vingerhoets, 2008) are recruited.  

Object function and knowledge of object manipulation 

The recognition of an object does not directly enable us to use it as a tool. In addition to the object 

identity functionality also has to be associated with the seen object. Furthermore, an individual has to 

know how the object is used. After knowing that the object in front of us is called “hammer” we have to 

recall that a hammer is used to push a nail into a wall. Additionally, we have to know that the hammer 

has to be moved forward and backward hitting the nail to achieve the intended goal. The first mentioned 

aspect is often referred to as “function knowledge”, while the knowledge of the accurate movement is 

called “manipulation knowledge” (Buxbaum & Saffran, 2002; van Elk et al., 2014) and for simplification 

these terms will be used further on. Once we have learned the function of a certain object we associate it 
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with this specific purpose or goal. This formed association leads to a phenomenon known as functional 

fixedness (German & Defeyter, 2000; German & Barrett, 2005; German & Leslie, 2001) a term that 

describes the assumption that acquired function knowledge makes it harder to detect other possible 

functions to achieve a certain goal not directly associated with the object. German and Leslie (2001) 

showed that functional fixedness is based on experience and learning. Younger children are able to use an 

object in an uncommon way to solve a problem, while older children with more experience and object-

function associations struggle to overcome the effects of functional fixedness to use an object in an 

uncommon way (German & Leslie, 2001). When the association between object and function is made, 

the knowledge of how the tool is manipulated is an additional aspect which is essential for proper tool 

use. The embodied cognition hypothesis argues that the conceptual understanding of an object (including 

function knowledge) is inseparable of the sensory-motor system and the manipulation knowledge of an 

object (Gallese & Lakoff, 2005). It claims that the neural simulation of action is necessary to comprehend 

knowledge about function. Considering the large set of neural imaging studies showing co-activated brain 

patterns of perceptual, associative and also sensory-motor related brain areas during viewing, naming and 

imagining tool use actions (Lewis, 2006), the embodied cognition hypothesis seems plausible. On the 

other hand, the assumption that the function knowledge and manipulation knowledge are actually two 

separate elements of tool use and are associated with different neural networks has been proposed in a 

variety of studies also (Buxbaum & Saffran, 2002; Garcea & Mahon, 2012; Negri et al., 2007; Sirigu, 

Duhamel, & Poncet, 1991). A dissociation of the two information types was shown through 

neurophysiological observations in patients suffering from apraxia and fronto-parietal lesions after a 

stroke. In those patients, manipulation knowledge was impaired, while function knowledge was 

preserved. In the same study a group of stroke patients not being diagnosed with apraxia on the other 

hand showed impaired function knowledge (Buxbaum & Saffran, 2002). A behavioral study with healthy 

individuals confirmed the assumption that function knowledge and manipulation knowledge of objects 

are two distinct types of object information, showing that judgments about object functions do not need 

the simulation of object manipulation (Garcea & Mahon, 2012). In functional imaging studies this idea of 

separating function and manipulation knowledge is analyzed also with respect to the neural correlates for 

each concept. While the representation of manipulation knowledge of an object was found to be 

associated with activations in inferior parietal lobe, specific brain areas coding function knowledge could 

not be identified in the studies of Boronat et al. (2005) and Kellenbach, Brett, and Patterson (2003). 

Another study by Canessa et al. (2008) verifies the assumption and shows, next to parietal activations and 

additional frontal activations representing manipulation knowledge, a relevance of temporal regions for 

processing function knowledge. Equivalent results were reported by different TMS studies which 

demonstrate that stimulation of the inferior parietal cortex affects decisions about manipulations, while 

decisions about functions are not derogated. Stimulation of the temporal cortex on the other hand had 
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the opposite effect (Ishibashi, Lambon Ralph, Saito, & Pobric, 2011; Pelgrims, Olivier, & Andres, 2011; 

Pobric, Jefferies, & Ralph, 2010).  

In summary, function knowledge and manipulation knowledge and their neural correlates seem to be 

separable and represent two distinct types of object information. Function knowledge is mostly 

associated to the temporal cortex, while manipulation knowledge is connected with inferior frontal and 

parietal recruitment. Especially the characterization of manipulation knowledge in tool use and its form 

of representation in the brain is debated and will be a topic of discussion in chapter 5 of this thesis.   

Reaching and grasping  

In the case of manually used tools the functional object has to be reached for and grasped, in order to be 

moved and manipulated. The arm and hand have to be moved towards a target and the hand position 

and shape has to be adjusted dependent on the objects form and function. Reach-to-grasp movements 

are based on visuomotor integrations and the neural brain regions include a variety of mainly parietal 

brain areas. Evidence for the localization of reach-related brain areas can be provided by neurological 

observations of patients suffering from optic ataxia, a component of the Balint`s syndrome (Bálint, 1909). 

These patients show impaired reaching movements and are not able to move arm and hands properly to 

reach an attended goal. Generally these observations cannot be explained simply by primary sensory or 

motor impairments. Lesions in the posterior part of the parietal lobe are usually the reason for the 

mentioned deficits (Andersen, Andersen, Hwang, & Hauschild, 2014). Different studies overlapping the 

lesion sites of patients with impaired reaching movements show the strongest lesion overlap in the 

superior parietal lobe (SPL), the intraparietal sulcus (IPS) and also at the junction between the SPL and 

parts of the occipital cortex extending to the precuneus (Karnath & Perenin, 2005; Perenin & Vighetto, 

1988). Research using fMRI focused on reach-related brain activation as well and found similar results 

emphasizing the importance of the posterior parietal cortex in reach-to-grasp actions. Overall the 

activations are detected in both hemispheres and include a variety of brain sites like the posterior part of 

the intraparietal sulcus as well as more anterior sites of the IPS (midIPS) (Gallivan, McLean, Valyear, 

Pettypiece, & Culham, 2011). An area located at the border between the parietal and occipital lobe 

around the parieto-occipital sulcus called the superior parieto-occipital cortex (SPOC) also close to the 

parieto-occipital sulcus (POS) (Gallivan, Cavina-Pratesi, & Culham, 2009) is of importance, too. TMS 

studies can verify such findings and demonstrate an effect on reaching after stimulating parts of the 

posterior parietal lobe and especially SPOC and IPS (Desmurget et al., 1999; Vesia, Prime, Yan, Sergio, & 

Crawford, 2010). Brain areas relevant for processing grasping movement are located in close proximity of 

the reach-related sites and also include similar structures like the IPS. Especially the anterior part of the 

intraparietal area (AIP) (Borra et al., 2008; Jacobs, Danielmeier, & Frey, 2010; Rice, Tunik, & Grafton, 
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2006) has often been reported as being relevant for grasping. While in monkeys reaching and grasping 

seem to be processed in two different pathways, a dorsomedial one for reaching and a dorsolateral one 

for grasping, there does not seem to be the same clear separation in humans (Turella & Lingnau, 2014). 

Gallivan et al. (2011) demonstrated that brain areas which can be associated with the dorsomedial 

reaching circuit (SPOC and midIPS) show relevance for planning grasping movements compared to 

touch movements (including reaching movements only). Additionally, the aIPS, as well as the dorsal and 

ventral premotor areas, show a similar relevance in this study. Therefore, the location of reach- and 

grasp-related brain areas are not only limited to the parietal lobe. Frontal areas like the dorsal and ventral 

premotor cortex (PMd and PMv) also show involvement in visually guided reaching and grasping. The 

PMv seems to be more relevant for pre-shaping the hand for grasping and the PMd for simpler lifting 

tasks (Davare, Andres, Cosnard, Thonnard, & Olivier, 2006). It also has to be noted that the described 

brain network processing reaching and grasping seems not only important for planning such movements 

but also monitors the online control of the action (Gaveau et al., 2014). Therefore another possible 

hypothesis argues that mistakes during reaching and grasping movements after posterior parietal lesions 

occur because of an inability to correct and adjust movement errors (Andersen et al., 2014). Healthy 

individuals can adjust their reaching behavior when the intended target is moved during the reaching act, 

while a patient with the lesions described previously is not able to modify the movement (Gréa et al., 

2002; Milner et al., 2001; Pisella et al., 2000). 

Looking at studies on reaching and grasping movements in object manipulations and tool use, a similar 

pattern of activations can be observed. Especially the anterior part of the IPS is not only important for 

grasping objects in general, but seems to be of great relevance for grasping tools in particular. The 

activation level in this area is higher for tools than for graspable objects (Valyear, Cavina-Pratesi, Stiglick, 

& Culham, 2007) and is also associated with representation of the use-specific object goals during object 

grasping (Vingerhoets et al., 2010). Next to the aIPS, the PMv also seems to be particularly important for 

grasping usable objects (Jacobs et al., 2010) and for matching the position of the hand and fingers in 

relation to the objects’ properties and function (Vingerhoets et al., 2013). 

In summary, the superior and posterior parietal cortices are strongly involved in reaching and grasping 

movements as well as the online control of actions. Premotor areas are additionally relevant for the 

selection of correct hand shapes and postures. A special relevance in grasping tools for their functional 

use lies in the anterior IPS and the PMv.  

Multiple ways to analyze Tool Use 

Due to the relevance of object manipulation in our daily routine it is reasonable that the execution of tool 

use as a whole action and not only the aspect of recognition, recalling function, reaching and grasping is 
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of interest in brain imaging studies. Caused by the specific methodological conditions in an MRI scanner, 

the analysis of real actions and tool use is rather difficult: The bore of an MRI scanner is large enough to 

lie in for an average sized adult, but not to perform large far-reaching arm movements. Additionally, all 

movements have to be restricted to a minimum in order to avoid head motion which can lead to artifacts 

in the acquired fMRI data. A lot of tools in daily life contain metal parts and therefore cannot be used in 

the MRI. Furthermore, the presentation of real objects, which are in reach and usable for a participant 

during an experiment, cannot be arranged in the scanner room easily while participants are lying in the 

MRI. Therefore, not many studies confront these difficulties and experiments including real tools and 

movements are rare.  

Very prominent paradigms to study the brain areas related to tool use in an alternative way are the 

imagination, observation and imitation of real actions, because it can be assumed that the engagement of 

tool-related actions without tools show similar brain activations as the real action with tools. Even 

though manipulating an object with the hands is a motor task, the neural resources needed for the 

execution usually activate during the observation or imagination of actions without any movement 

involved. As expected, the observation and the imagination of tool use recruit brain areas similar to the 

ones described before, but the results of both tasks do not overlap and show variations (Wadsworth & 

Kana, 2011). Imitating an action instead of just imagining or observing it represents a closer substitute of 

real tool use (Manthey, Schubotz, & Cramon, 2003; Niessen, Fink, & Weiss, 2014; Weiss et al., 2006). A 

meta-analysis summarizing literature of fMRI studies focusing on observed and imitated actions revealed 

that while the known fronto-parieto-temporal network is associated with both tasks, some other brain 

areas like the left ventral premotor cortex and right ventral stream areas, frontal and sensorimotor 

cortices are increasingly relevant in the imitation tasks compared to the observation tasks (Caspers, Zilles, 

Laird, & Eickhoff, 2010). Additionally, the imitation of hand actions with an object compared to actions 

without an object (for example, imitation of meaningless finger and hand movements) recruit similar 

frontal and parietal areas, while ventral stream areas additionally associated with the imitation of object 

related actions.  

The imitation of object manipulations can also be referred to as pantomime of tool use. Brain imaging 

studies analyzing pantomime of tool use often compare tool use gestures with meaningless hand gestures 

or hand movements and usually find a brain network including most of the brain areas described 

previously (Choi et al., 2001; Johnson-Frey, Newman-Norlund, & Grafton, 2005; Moll et al., 2000; 

Rumiati et al., 2004): Ventral stream areas like the pMTG and lateral occipital areas processing semantic 

and visual object properties, parietal areas including the SPL and IPS associated with monitoring action 

related hand and arm movements for reaching and grasping (in case of the aIPS especially for tools) as 

well as the supramarginal gyrus (SMG), which is also shown to be activated during tool observation and 
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is related to processing action semantics (Chao & Martin, 2000; Peeters, Rizzolatti, & Orban, 2013). 

Frontal brain activations including the ventral and dorsal premotor area for motor representations of tool 

related actions are also detected during the pantomime of tool use gestures. Even though the pantomime 

of object manipulation is a valuable method for analyzing tool use, it is clear that there are differences 

between both tasks. Obviously, tool use pantomime misses one major aspect of tool use: the tool in the 

hand. It can be assumed that the missing sensory feedback has an influence on the neural process of the 

action. Without perception of the actual intended goal and its achievement, the online control mechanism 

of an action will not be recruited as it would during real actions. It can be assumed that a pantomimed 

tool use gestures will never be as accurate and natural as an action with real tools and intended goals. 

Differences between the neural correlates of the pantomime of actions and real actions have been 

observed in a study on grasping movements, showing that the key area in this task is significantly stronger 

activated during real actions (Króliczak, Cavina-Pratesi, Goodman, & Culham, 2007). In another study 

comparing tool use pantomime and the real use of tools, major differences can be found mainly during 

the execution, including the expected primary sensorimotor cortices as well as temporal, posterior parietal 

and frontal lobe areas which are all part of higher cognitive aspects of motor control (Hermsdörfer, 

Terlinden, Mühlau, Goldenberg, & Wohlschläger, 2007). The preparation of tool use acts and pantomime 

on the other hand showed very similar activation patterns.  

As a result of these studies, covering different paradigms related to tool use actions, it seems that while all 

of them produce valuable information characterizing the tool use network, there are still variations in the 

results and differences compared to real actions. Only a few studies focused on the manipulation of real 

objects in the scanner environment and included for example the use of tongs as a tool to grasp a small 

object (Inoue et al., 2001), the imitation of tool acts with small sized tools (Valyear, Gallivan, McLean, & 

Culham, 2012), the manipulation of tools and objects including the adequate recipient (Hermsdörfer et 

al., 2007) and the use of a pair of reverse tongs for grasping (Gallivan, McLean, Valyear, & Culham, 

2013). The latter study used a multi-voxel pattern analysis in order to decode the preparatory brain 

activations in a variety of relevant brain areas and detect if early brain responses can predict the 

upcoming action. The actions included reaching or grasping an object either with the hand or a tool 

(reverse tongs). The results strengthen many of the previously mentioned findings and associate the 

different brain areas with hand and tool actions. SPOC, for example, mainly codes actions with the hand, 

while the SMG and MTG are selective for actions with tools. The aIPS shows predictive activation for 

both tool and hand actions, but with distinguishable neural activation patterns. The pIPS, PMd and PMv, 

on the other hand, also code for both action types, but with similar neural activations. The authors 

subdivide the group of regions in two separate networks: One represents the fronto-parietal hand action 

network with reaching and grasping circuits including the more dorsal located brain regions associated 
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with hand actions. The other network is located more ventral and is defined as the tool network including 

the MTG, SMG and PMv which are associated with tool actions (Gallivan et al., 2013). The studies 

including real actions and objects give the most accurate view on the neural correlates of tool use, but 

either miss visual feedback (Hermsdörfer et al., 2007), real sized tools (Valyear et al., 2012) or a variety of 

familiar goal-related actions with tools (Gallivan et al., 2013). Therefore, the previous body of research is 

missing the analysis of actual tool use with a variety of familiar tools known from daily life and the 

corresponding target object with visual feedback of the action. 

One very common finding in the presented studies is the strong left-sided lateralization of the network 

relevant for tool use actions. It cannot be completely ruled out that the left-sided lateralization could also 

be associated with left-lateralized language-related activations especially during the imagination of tool 

use and pantomime. It is therefore important to analyze real actions and not only substitutes. Those 

studies including actual movements (Gallivan et al., 2013; Imazu, Sugio, Tanaka, & Inui, 2007; Johnson-

Frey et al., 2005; Vingerhoets, Vandekerckhove, Honoré, Vandemaele, & Achten, 2011) observe the 

neural correlates while subjects use their dominant right hand. Left-sided activations cannot solely be 

traced back to the lateralization of the tool use network, but also to contralateral motor control. This bias 

can be avoided by using both hands (Hermsdörfer et al., 2007; Gregory Króliczak & Frey, 2009; Martin, 

Jacobs, & Frey, 2011; Moll et al., 2000). The structure and lateralization of the tool network during actual 

tool use dependent of the hand used in the action is not yet fully analyzed.  

As it was shown in this paragraph, there are several studies aiming to analyze the neural correlates of tool 

use by including tasks similar to tool use. The results show overlapping results, but also variations in the 

activation pattern dependent on the used paradigm. Real actions with tools and actions of daily life 

routines in the MRI environment are still rare, but give the most accurate insight into the brain process of 

real tool use.  

Summary of the elements of Tool Use 

Taking together the presented literature we see that the manipulation and use of a known functional 

object includes a wide neural network with different separable processes which can be located in different 

functional subnetworks in the brain. The relevant brain locations and a brief description of their role 

during tool use are visualized in Figure 1. A basic principle underlying the neural organization of these 

goal directed actions with objects is the model of the two visual information processing pathways: The 

ventral stream, important for the recognition of objects and their features for planning behavior and the 

dorsal stream, relevant for controlling the manipulation of an object in space to execute actions (Milner & 

Goodale, 2008). Further analyses of organization of the dorsal stream lead to the hypothesis that the 

dorsal stream can be further subdivided in two action related streams on for acting on and the other for 
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actin with objects (Binkofski & Buxbaum, 2013; Johnson & Grafton, 2003): The dorso-dorsal stream 

seems to be necessary for the online control of reaching and grasping movements and monitor an object 

manipulation dependent on the objects’ orientation and structure (Gallivan et al., 2011; Milner et al., 

2001; Pisella et al., 2000; Turella & Lingnau, 2014). The ventro-dorsal stream seems to be more relevant 

for the semantics of an action and learned object manipulations like tool use (Buxbaum, Kyle, Tang, & 

Detre, 2006; Frey, 2008; Kalénine, Buxbaum, & Coslett, 2010).  

 

 

Figure 1: A model of the organization of the network relevant for tool use and actions. Shown are the dorso-dorsal stream in 
green, the ventro-dorsal stream in red and the ventral stream in blue on a rendered left hemisphere of the brain. 

The separation of these two processing stream seems plausible, but further evidence is needed to see if 

this theory can be applied to real actions with objects and tools.  

Connecting all elements of Tool Use 

Most of the discussed studies focused on separating the functional subnetworks and attributing different 

brain locations to specific functions in the complete act of recognizing, understanding and performing 

the use of tools. An additional question is how all this different information, which has to be processed 

during the use of a tool, is integrated in order to use a tool in a functionally appropriate way. Clearly, it is 

not enough to recognize an object, its physical properties and function and to associate it with a 

functional movement. This information has to be passed on to another system which can integrate and 

transform it to shape the appropriate hand and arm movements. This means that tool use is not only 

dependent on local processes and the functionality in the grey matter of the brain, but also on the white 
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matter fiber tracts which connect the different brain areas. This assumption can be strengthened by 

observations of patients with apraxia which show that flawless tool use does not only depend on the 

integrity of the grey matter tissue, but also on intact white matter (Randerath et al., 2010). With the help 

of structural connectivity analysis it is possible to get an insight into the connection of the subnetworks 

within the tool use network presented and show how the different information can be passed on.  

On a structural level the connectivity of different brain areas can be analyzed with diffusion tensor 

imaging (DTI), a method which characterizes white matter tracks based on the direction of diffusing 

water molecules (Le Bihan et al., 2001). After characterizing brain areas sensitive to correct hand postures 

as well as semantically appropriate tool use, Hoeren et al. (2013) demonstrated that the connections of 

the functionally separated parietal and frontal areas are based on two dorsal fiber tracks. This result 

underlines the existence of strong connections for the integration of action relevant information. Such 

parieto-frontal connections are also found in a different connectivity analysis on object grasping. Here, 

information about the object and grasping movement is processed along the two dorsal streams from a 

visual region to parietal centers ending in two premotor areas (PMv and PMd) (Grol et al., 2007).  With 

regions of interest based on the study of Frey et al. (2005) on tool use pantomime, Ramayya, Glasser, & 

Rilling (2010) also analyzed the structural connections within the tool use network. They found different 

left-lateralized pathways connecting the MTG with the posterior SMG/angular gyrus, the MTG with the 

anterior SMG as well as the anterior SMG with the frontal cortex (premotor area). The authors argue that 

connections from the MTG to the SMG are relevant for the integration of conceptual and semantic 

object properties with visuospatial information of the environment to create a plan to grasp a tool for its 

functional use. The connection from these parietal regions to the frontal lobe is thought to process the 

transformation of the conceptual plan of tool use into a real motor action (Ramayya et al., 2010).  

In summary, these studies show that the brain areas which are active during tasks related to tool use are 

also connected on a structural level forming a linked fronto-parieto-temporal network. Within such a 

connected network information about an object and the related manipulations can be integrated and 

connected in order to grasp and use an object as a functional tool to achieve an intended goal.  

The Impacts of Healthy Aging on Tool Use 

The research on the elements of tool use and their neural representations give a valuable insight into a 

relevant process of our daily life routine. One aspect and possible influence was not taken into 

consideration so far: the factor aging. We start to learn how to use tools when we are very young. Already 

infants start to pay attention to properties of tools and their causal effects, connect functions to objects 

by observing actions by others and imitate meaningful tool actions (Hernik & Csibra, 2009). We increase 

our fine motor skills and our tool use expertise during our development when we become adults and the 
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act of using a fork and knife or turning a key in a lock becomes a natural action we do not control and 

monitor consciously. It happens intuitively and in healthy adults usually without problems and 

disturbances. But what happens to our ability to use objects as functional tools to interact in our 

environment when we get older?  

On a behavioral level, several aspects in the motor performance of an action seem to be affected by age-

related changes. In general, elderly individuals above 60 years of age show an overall deficit in the 

coordination of movements and the alterations are seen in bimanual actions including multi-joint 

movements especially (Seidler, Alberts, & Stelmach, 2002). Furthermore they show higher variability of 

movements (Contreras-Vidal, Teulings, & Stelmach, 1998), a decreased speed of actions and movements 

(Ren & Wu, 2013) and a general deficit in the visuomotor control system avoiding errors (Heenan, 

Scheidt, Member, Beardsley, & Member, 2014). Elderly adults, 65 years of age and older, are also affected 

in the temporal and spatial coordination of motor actions with both hands (Stelmach, Amrhein, & 

Goggin, 1988; Wishart, Lee, Murdoch, & Hodges, 2000). Concerning simple grasping movements, elderly 

individuals show differences in kinematic aspects of a movement including significantly lower grip force 

than younger adults (Lin et al., 2014) and higher variability in the control of force especially during grip 

release (Voelcker-Rehage & Alberts, 2005). The analysis of grasping usable objects known from daily life 

is more closely related to tool use. Cicerale, Ambron, Lingnau, and Rumiati (2014) compared several 

kinematic parameters of young (19 - 25 years old) and elderly adults (65 - 75 years old) while they had to 

plan and execute grasping movements. Participants had to grasp usable objects dependent on the action 

goal, meaning either grasping the object for transportation or for use. Additionally, the object´s 

properties including size, orientation in space and location in the visual field was altered. Elderly did not 

show longer movements, but several other parameters differed between the groups. The general pattern 

of movement characteristics including an increased time for approaching the target, an increased grip 

aperture and less wrist rotation, was altered in the elderly. The accuracy of grasping was impaired also, 

but only with decreased visual feedback when the object was not in the central visual field. A possible 

reason for these behavioral changes is neural atrophy causing alterations in the neural network processing 

these actions.  

Age-related brain volume decline during healthy aging has been reported multiple times (Courchesne et 

al., 2000; Good et al., 2001) and relates to behavioral changes in different cognitive and motor processes 

(Seidler et al., 2010). The loss of grey matter volume is most strongly examined bilateral in the parietal 

lobe, post- and precentral gyrus, the insula cortex and anterior cingulate cortex (Good et al., 2001). In the 

same study grey matter volume decline is also found in the left middle frontal gyrus and parts of the 

temporal lobe in both hemispheres. Less atrophy was measured in subcortical areas. Other studies find 

the strongest grey matter decline in the prefrontal cortex including dorsolateral prefrontal cortex and 
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orbitofrontal cortices (Raz et al., 2004; Salat et al., 2004). Temporal and occipital brain areas seem to be 

less affected by age-related neural atrophy (Good et al., 2001; Resnick, Pham, Kraut, Zonderman, & 

Davatzikos, 2003). Next to the grey matter decline, also white matter volume declines during aging, but at 

a later time point at age 70 - 80 years (Courchesne et al., 2000; Ge et al., 2002). Again, prefrontal areas 

show the highest decline in volume compared to the rest of the brain (Salat et al., 2005). Therefore, 

several brain regions belonging to the tool use network are affected by age-related atrophy. With this in 

mind, changes in the different aspects of tool use and motor performances seem to be reasonable. 

Overall, we see several behavioral age-related changes which go along with alterations of the neural 

processing in the brain. Previous neuroimaging research on different cognitive domains in healthy elderly 

adults showed that activation patterns are usually more bilateral and widespread in elderly compared to 

young adults (Cabeza, 2002; Grady, 2012). A meta-analysis comparing the neural changes due to healthy 

aging in different cognitive tasks demonstrated that the strongest differences between young and elderly 

can be found in anterior brain regions including parts of the prefrontal cortex which mainly show higher 

activations in elderly individuals (Spreng, Wojtowicz, & Grady, 2010). The authors also note that the 

pattern of over-activated brain areas in the elderly is strongly dependent on the performance and differs, 

if the performance of elderly in the tested task is the same or worse compared to the young participants 

(Grady, 2012).  

Looking at neural changes in visual or semantic tasks due to aging, alterations in face processing with 

neural changes in the fusiform face area (Lee, Grady, Habak, Wilson, & Moscovitch, 2011) and also 

during object processing with changes in neural responses in the LOC can be reported in elderly adults 

(Chee et al., 2006; Goh et al., 2007). Another study on semantic processing of objects, evaluating age-

related changes in the neural representations of object concepts and knowledge of visual properties of the 

object, found activations of temporal and frontal brain areas in young and old adults during the task 

(Peelle, Chandrasekaran, Powers, Smith, & Grossman, 2013). Differences were found after separating the 

elderly cohort in two groups based on their performance in the task. Elderly individuals who performed 

well showed an increase in activation strength in the premotor cortex in both hemispheres and the left 

LOC. Those older participants with decreased activity in the anatomic locations mentioned above also 

showed decreased performance.  

In the motor domain research also found that elderly show an overall increase of brain activation and 

recruit additional brain areas compared to young adults to perform a motor task (Heuninckx, Wenderoth, 

Debaere, Peeters, & Swinnen, 2005; Heuninckx, Wenderoth, & Swinnen, 2008; Mattay et al., 2002; 

Noble, Eng, Kokotilo, & Boyd, 2011; Ward, 2003; Ward, Swayne, & Newton, 2008). Heuninckx et al. 

(2008) showed that during flexion-extensions of hands and feet elderly participants recruited an extended 
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network compared to young adults including stronger activations in inferior frontal, superior temporal 

region, the SMG and fusiform gyrus. Studies performed by Ward et al. (2003, 2008) show a comparable 

effect during a simple isometric grasping movement with the dominant and non-dominant hand. 

Additional recruitment was found especially in the left hemisphere independent of the used hand. Other 

studies observing grasping actions in elderly adults underline these findings and also show an increased 

activation level for example in the PMv (Noble et al., 2011). A structural age-related change in the 

organization of brain networks during grasping movements was also found in particular during actions 

with the non-dominant hand (Park, Boudrias, Rossiter, & Ward, 2012). Another prominent effect of 

healthy aging is the reduction of selectivity in the elderly brain. Especially the visual system activates less 

differentiated for different stimuli in the elderly compared to young adults (Grady et al., 1994; Grady, 

2002). Park et al. (2004) showed that ventral stream areas, which are selectively active for the different 

stimuli in young adults, are less specified in elderly adults. Similar results can be found in other cognitive 

domains during explicit and implicit learning tasks (Dennis & Cabeza, 2011) but also in the motor 

domain during a finger tapping task (Carp, Park, Hebrank, Park, & Polk, 2011). 

Taken together, two major findings can be observed in the neural process of aging in general: One is 

characterized by an over recruitment of brain areas, while the other is connected to decreased selectivity 

of brain areas dependent on different tasks or stimuli. In order to explain this age-related phenomenon, 

two theories developed: The compensatory theory attributes the age-related changes and increased brain 

activations to a compensatory mechanism ensuring good performance in elderly (Grady, 2012; 

Heuninckx et al., 2008; Ward, 2006). The other theory believes that unspecific brain activations in elderly 

are due to a general dedifferentiation in the neural system and are associated with a decreased connection 

between function and location of specific brain areas (Carp et al., 2011; Dennis & Cabeza, 2011; Grady, 

2012). If a compensatory mechanism is present in the neural processes of tool use, or if the tool use 

network shows dedifferentiation effects is not yet clear. While the findings about age-related neural 

alterations and the theories help to get a better understanding about what happens in the aging brain, 

research on aging effects on the process of tool use and object manipulation is still missing. Apart from 

increasing the general understanding of the age-related changes of the tool use network in elderly adults it 

also enables a closer comparison to clinical observations of patients with lesions which are of higher 

incidence in higher age.  

Tool Use and Apraxia 

Impaired tool use is closely linked with the term apraxia. It describes a variety of symptoms and is caused 

by brain lesions mainly in the left hemisphere. These particular lesions result in deficits in executing 

motor actions including the imitations of meaningless gestures, communicative gestures, the pantomime 
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of tool use and actual tool use (Buxbaum, Giovannetti, & Libon, 2000; Goldenberg & Hagmann, 1997; 

Goldenberg & Spatt, 2009; Goldenberg, 2008; Hermsdörfer, Li, Randerath, Roby-Brami, & Goldenberg, 

2013; Randerath et al., 2010; Weiss, Rahbari, Hesse, & Fink, 2008). Originally the concept of apraxia has 

been formulated by Hugo Liepmann in 1908, who believed that apraxia is a movement disorder in which 

the plan and idea to conduct an action and its actual motor execution is disconnected, leading to impaired 

motor actions. In general apraxia can be characterized by impairments of skilled movements including 

gestures and tool use but which are not based on a disorder of the primary sensory or motor system 

(Rothi & Heilman, 1997).  

As mentioned above, apraxia is associated with deficits in the execution of specific actions. The exact 

pattern of behavioral impairments vary across patients including different performance levels in the 

actions (gesture production, pantomime, actual tool use) usually impaired in apraxia (Goldenberg, 2014). 

Based on these differences already Hugo Liepmann characterized different types of apraxia: “Ideational 

apraxia” is usually associated with impaired tool use actions and the inability to use the correct tool for a 

certain goal. The term “Ideo-kinetic apraxia” which is also referred to as ideomotor apraxia, is mainly 

associated with an impaired ability to pantomime tool use and imitate meaningful and meaningless 

gestures. While these patients are not able to pantomime, for example, the use of a spoon properly they 

show less impairment with the real objects in their hand. Patients with “Limb-kinetic apraxia” on the 

other hand are usually able to perform tool use actions in a conceptual correct way but are not able to 

conduct smooth and precise movements as healthy individuals would do (Bieńkiewicz, Brandi, 

Goldenberg, Hughes, & Hermsdörfer, 2014; Goldenberg, 2008). In relation to the elements of tool use 

described previously it can be seen that all of these, including conceptual and semantic aspects like 

function knowledge and knowledge of object manipulation as well as action related elements like 

reaching, grasping, execution and the online control of actions, can be impaired in apraxia and depend on 

the integrity of different segregated brain regions.  

The diversity of behavioral deficits in apraxia is similar to the diversity in the lesion location observed in 

patients. In general, lesions of the left brain are associated with symptoms related to apraxia and the areas 

affected can cover the parietal, frontal and temporal lobe (Goldenberg, 2014). Which lesion locations lead 

to which behavioral pattern of apraxia, is not jet fully understood. Voxel based symptom lesion mapping 

(VSLM) is a method which can give further insight into associations between the location of a lesion and 

the behavioral deficit which is caused (Rorden, Karnath, & Bonilha, 2007; Rorden & Karnath, 2004). 

Such analysis with anatomical data of patients with apraxia is therefore another possibility to characterize 

the brain areas relevant for tool related actions. Lesion analyses on impaired gesture imitation revealed an 

association between damages in the inferior parietal and frontal lobe of the left hemisphere and deficits in 

creating correct hand and finger positions (Goldenberg & Hagmann, 1997; Goldenberg, 1996; 
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Goldenberg, 2014; Buxbaum, & Moll, 2006; Weiss et al., 2001; Weiss et al., 2014).  Right brain damages 

can lead to similar impairments also, but less severe and less frequently (Goldenberg, 1996; Weiss et al., 

2001). The imitation of meaningless gestures in particular is found to be caused by lesions of the parietal 

lobe including posterior parietal regions (Hoeren et al., 2014) as well as inferior parietal lobe which lead 

to the conclusion that the spatio-temporal organization of movements is strongly dependent on the 

parietal cortex especially with increased action complexity (Weiss et al., 2001). Lesion analyses of tool use 

pantomime showed different findings concerning the most relevant lesion sites. In some studies the 

integrity of the inferior frontal gyrus and insula seems to be of most relevance for intact performance 

(Goldenberg, Hermsdörfer, Glindemann, Rorden, & Karnath, 2007; Hermsdörfer et al., 2013; Manuel et 

al., 2013), others show additional relevance of parietal and temporal brain locations for tool use 

pantomime performance and recognition (Buxbaum, Kyle, & Menon, 2005; Buxbaum, Sirigu, Schwartz, 

& Klatzky, 2003; Hoeren et al., 2014; Kalénine et al., 2010; Niessen et al., 2014). The impairment of real 

tool use is associated with similar frontal (Hermsdörfer et al., 2013) and parietal (Goldenberg & Spatt, 

2009) regions while the retrieval of functional knowledge of tools can be related to temporal areas 

(Goldenberg & Spatt, 2009).  

Overall, the lesion analyses with patients demonstrate that correct performance of different hand and 

tool related actions are dependent on a fronto-parieto-temporal network. It has to be stated though that 

the findings and exact lesion patterns vary across studies and that the neuroanatomical basis of apraxia is 

therefore not fully clear yet.  

Aim of the Thesis 

The main goal of this thesis is to investigate the neural underpinnings of real tool use under utmost 

realistic conditions. The method of fMRI is used because it provides a non-invasive method to study 

brain function during an action or task in healthy individuals and enables the association of 

neuroanatomical locations to a specific function. With this method, the analysis and characterization of 

the neural network responsible for tool use in healthy young adults as well as age-related changes in 

elderly adults is of main interest. A link to the neuroanatomical correlates of apraxia and tool use 

impairments is addressed additionally. As presented in this introduction, a variety of studies have focused 

on different aspects of tool use, age-related changes in simple motor tasks or on the neural basis of 

apraxia with the help of lesion analyses, but several research questions are still not fully addressed. 

The neural basis of planning and executing actual tool use with real objects is not yet fully understood.  

Based on the literature, it is expected that the knowledge about an object, the type of manipulation and 

the hand used should influence the neural network of real actions. Furthermore, the organization of the 

action-related dorsal stream into two processing pathways has so far been hypothesized but not shown in 



Aim of the Thesis 
 

17 
 

real object-manipulating actions. Considering studies and research on age-related neural changes during 

actions in elderly adults, it is clear that an investigation of possible alterations of the tool use and action 

network is currently missing. For the characterization of the tool use network based on lesion analyses of 

patients with apraxia, it is necessary to consider neural changes in the related brain areas in an age 

matched group of healthy individuals. This creates a much-needed link between both lines of research. 

Such comparisons, including neural and behavioral observations in patients with tool use impairments 

and neural correlates of object manipulations in healthy adults, contributes to a fuller understanding of 

the neural basis of tool use. 

Considering the current gaps in research and possibilities for a more complete overview of the neural 

basis of tool use, this thesis focuses on the following research goals: 

A. The first goal is to analyze the neural correlates of tool use in healthy young adults with the help 

of fMRI including real objects and actions. A new experimental set up allowing real object 

manipulations during the measurement is developed to achieve this goal. Of most interest are the 

effect of the object type, the type of object manipulation and the influence of the hand used on 

the neural network responsible for actions. Additionally, the structure of the network with 

respect to its lateralization and separation of functionally specialized processing streams is 

focused on. 

B. The second goal is the evaluation of age-related changes in the brain network responsible for 

processing tool use actions. The main focus is the comparison between behavioral and neural 

findings of young and elderly adults and the characterization of altered brain processes in the 

elderly.  

C. Finally, a literature review covers the comparison of findings from fMRI studies and lesion 

analyses of patients suffering from apraxia. Of main importance are three aspects often impaired 

in patients: The conceptual understanding of tool use, the spatio-temporal monitoring of tool 

manipulations, and the sequencing of multi-step activities of daily living (ADL). The review 

provides a link between the fMRI analyses in healthy adults and clinical observations and extends 

the view on the neural correlates of tool use.  

Taking all these points together, this thesis provides an enhanced insight into the neural correlates of real 

human tool use in different stages of life and offers a connection to clinical observations to gain a better 

understanding of brain processes underlying an elemental aspect of our daily lives, as well as 

neuroanatomical principles of apraxia.  
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The Neural Correlates of  Planning 
and Executing Actual Tool Use 

 

Planning and executing real tool use actions recruits a left -lateralized network which can be 

subdivided based on the type of action and the object used.  

 

This chapter includes the fMRI study with healthy young participants with the title „The neural correlates 

of planning and executing actual tool use“. It was published in the Journal of Neuroscience in 2014 by 

Marie-Luise Brandi, Afra Wohlschläger, Chrisitan Sorg and Joachim Hermsdörfer. This article presents a 

new method to measure the neural underpinnings of real object manipulations and tool use in an event 

related design with the help of the “Tool-Carousel”. Different experimental factors were analyzed which 

prove to have an influence on the neural tool use network during real action planning and execution.  

Contributions:  

The author of this thesis is the first author of the manuscript. M.L.B., A.W., C.S. and J.H. designed 

research; M.L.B. performed research; M.L.B. and A.W. analyzed research; M.L.B., A.W., C.S. and J.H. 

wrote the paper. 
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The Neural Correlates of Planning and Executing Actual Tool
Use

Marie-Luise Brandi,1,2,3 Afra Wohlschläger,1,3 Christian Sorg,1,3 and Joachim Hermsdörfer2

1TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany, 2Department of Sport and Health

Sciences, Institute of Movement Science, Technische Universität München, 80992 Munich, Germany, and 3Graduate School of Systemic Neurosciences,

Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany

Human tool use is complex, and underlying neural mechanisms seem to be widely distributed across several brain systems; however,

neuroimaging studies of actual tool use are rare because of experimental challenges hindering detailed analysis within one acting subject.

We developed a “Tool-Carousel” that enabled us to test actual manipulation of different objects during fMRI and investigate the planning

and execution of goal-directed actions. Particularly, we focused on the effects of three factors on object manipulations: the type of object

manipulated, the type of manipulation, and the hand to be used. The main focus lay on the question of how complex object use compared

with unspecific actions are processed and especially how such representations interact with the knowledge about the object in the

action-related dorsal stream. We found that object manipulations with both right and left hand recruit a common network strongly

lateralized to the left hemisphere especially during planning but also action execution. Specifically, while activity in the ventral stream

was involved in processing semantic information and object properties, a dorso-dorsal pathway (i.e., superior occipital gyrus, superior

parietal lobule, and dorsal premotor area) was relevant for monitoring the online control of objects and also a ventro-dorsal pathway (i.e.,

middle occipital gyrus, inferior parietal lobule, and ventral premotor area) was specifically involved in processing known object manip-

ulations, such as tool use. Data further indicate an interaction of ventral stream areas, such as middle temporal gyrus and lateral occipital

complex, with both dorsal pathways. These results provide evidence for left-lateralized occipito-temporo-parieto-frontal network of

everyday tool use, which may help to characterize specific deficits in patients suffering from apraxia.

Key words: action execution; action planning; fMRI; tool use

Introduction
Using a tool is a natural action we as humans know by heart from
our everyday life to interact with our environment. Studies have
focused on viewing, recognizing (Beauchamp et al., 2002;
Johnson-Frey et al., 2003; Vingerhoets, 2008), imagining (Grèzes
et al., 2003; Boronat et al., 2005; Vingerhoets et al., 2009; Wads-
worth and Kana, 2011; van Elk et al., 2012), and pantomime tool
use (Moll et al., 2000; Johnson-Frey et al., 2005; Hermsdörfer et
al., 2007; Króliczak and Frey, 2009; Vingerhoets et al., 2011).
Because of the variety of tasks, the neural activation patterns vary,
but several brain areas show consistency. The middle temporal
gyrus (MTG) for coding semantic information, the supramar-
ginal gyrus (SMG), the anterior intraparietal area (AIP), and su-
perior parietal lobule (SPL) for processing tool use knowledge for
grasping and manipulating tools plus the ventral and dorsal pre-

motor areas (PMv, PMd) for executing motor plans, seem to be
core regions for conducting actions with objects and tools (for
review, see Lewis, 2006). To understand the neural principles of
tool use, we think it is necessary to analyze object manipulation as
realistically as possible. A few studies have analyzed actual tool
use but did not include visual feedback (Hermsdörfer et al., 2007)
or were restricted to only a small selection of tools not reflecting
the variety of tools known from daily life with familiar size and
corresponding object (Inoue et al., 2001; Imazu et al., 2007; Va-
lyear et al., 2012; Gallivan et al., 2013a). Prior knowledge about
the manipulated objects (Vingerhoets, 2008), the task (Valyear et
al., 2012; Gallivan et al., 2013a), and which hand is used to per-
form the action (Hermsdörfer et al., 2007; Króliczak and Frey,
2009) seems to influence the mentioned neural network, but how
exactly the network is affected by these three factors during plan-
ning and executing real actions with objects and especially real
tools is yet not fully understood.

To address this gap, the main goal of this study was to analyze
the action network under utmost realistic conditions, by investi-
gating planning and executing actual object manipulation. Three
factors influencing the network recruited for processing goal di-
rected actions were addressed: the type of object being manipu-
lated, the type of manipulation performed on the object, and the
hand used. First, we aimed to define the neural network that is
more relevant for planning and executing actions with tools com-
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pared with neutral objects. Second, the neural correlates for the
online control of complex functional actions with objects com-
pared with nonfunctional actions were of interest. A special focus
laid on the neural underpinnings selective for known tool use.
Third, we looked at the structure of the action network while
using the dominant compared with nondominant hand and also
described the networks with respect to its laterality. The applica-
tion of a so-called “Tool-Carousel” made it possible to present a
variety of actual objects with spatial and temporal precision in the
MRI scanner and measure functional images while participants
performed real actions.

Materials and Methods
Participants. Twenty healthy participants (9 males) participated in the
fMRI experiment. Three had to be excluded (1 male and 2 female) from
further statistical analysis because of strong head movements (head mo-
tions exceeded 3 mm in translation and 3° in rotation). The group of
participants who were included in the analyses had a mean age of 25 years
(age range, 21–28 years). All had normal or corrected-to-normal vision,
no history of neurological or psychiatric disorders, and were right-
handed, as measured by the Edinburgh Handedness Inventory (Oldfield,
1971). The study was approved by the local ethics committee.

Experimental setup and design. To present the experimental stimuli, a
so-called “Tool-Carousel” (Fig. 1A) was installed above the hips of the
participants while lying in the MRI scanner. This setup is comparable
with the “Grasparatus” from Culham et al. (2003), a device for fMRI

experiments, which makes it possible to present real reachable and grasp-
able objects in the MRI scanner.

The “Tool-Carousel” had a diameter of 65 cm and six compartments,
which could hold exchangeable mountings for a variety of objects and
could be turned around its central axis. It was placed on a table with
adjustable height. It was ensured that all participants lay comfortably and
could easily reach for the stimuli in the compartments with both right
and left hand. The upper arms of the participants were placed on cush-
ions and fixated with a belt to allow easy access to the “Tool-Carousel”
while preventing movements of the upper arm and shoulder. The heads
of the participants were fixated in the MRI coil with a special set of pads
minimizing head motion. A two-mirror system was placed on top of the
head coil, which enabled the participants to see the “Tool-Carousel” and
their hands (Fig. 1B). The mirror system provided a clear image of the
whole compartment with the object. Each compartment of the “Tool-
Carousel” was separated by a partition, so only one compartment at a
time could be seen by the participant. A mirror system was used to view
the workspace because tilting the coil and providing a direct view on the
“Tool-Carousel” was not possible in our experimental setup. Addition-
ally, keeping a tilted head position for the whole experiment (i.e., �90
min) seemed to be very uncomfortable for the participants. We consider
any bias on the resulting task comparisons due to the visual transforma-
tions negligible because all conditions included these transformations
and any constant effects should be canceled out.

In general, the experiment comprised three different experimental
manipulations with two possible variations each. The first two included
the object type and the type of action done with the object. The resulting

Figure 1. A, The “Tool-Carousel” with six compartments and mountings to hold the tools. B, The experimental setup: a, “Tool-Carousel”; b, adjustable table; c, two-mirror system attached to the

head coil; d, visual path to field of vision; e, shoulder belt; f, arm rest. C, Illustration of the four experimental conditions: tool use, tool transport, bar use, and bar transport. All four conditions are

performed with the right hand in one and with the left hand in the other run. D, Time course of a trial. Each trial consists of a planning phase (2– 6 s long), an execution phase (4 s long), and a return

phase (2 s long). In no-action trials, no green light appears; and in action trials, a green light triggers the start of the action. The return phase started when the green light was turned off. No-action

trials were used to analyze the planning phase and action trials for the execution phase. E, An exemplary selection of the used stimuli in the experiment; shown are the pen, screwdriver, and spoon

and the matched bars.
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experimental conditions were randomized on a trial-by-trial basis within
subject. The hand used to do the tasks was the third experimental ma-
nipulation and did not vary within both of the two runs the participants
had to perform. The order regarding which hand was the first to be used
during the experiment was randomized across participants. A more de-
tailed description of the different experimental conditions is presented in
the following paragraphs.

Two different categories of stimuli were presented during the experi-
ment: tools and neutral objects. The tool set comprised 10 different tools
regularly used in daily life (hammer, pen, tweezers, scissor, knife, spoon,
screwdriver, key, lighter and bottle opener). The other set of stimuli
included 10 differently colored and shaped neutral objects. The neutral
objects were mainly bar-shaped; for simplicity, we hereinafter call the
neutral objects “bars.” To reduce visual and tactile differences between
the two stimuli sets, the bars were designed to match the different tools
from the first stimulus set as much as possible. The handle of the bars had
different shapes (e.g., a small diameter matching the pen or a flat shape
matching the nonfunctional part of the spoon and knife). Additionally,
the handles of the bars were colored to match the tools. Figure 1E shows
examples of three tools and the matched neutral bar-shaped object. One
side of each bar was marked in blue. All tools had matching mountings to
hold the tool and a tool-specific recipient (nail for the hammer, paper for
the pen, cotton ball for the tweezers, string for the scissor to cut, piece of
bread for the knife, cup for the spoon, rotatable screw for the screwdriver,
keyhole for the key, candle for the lighter, and a bottle with crown seal for
the bottle opener). All tools were fully functional with respect to the
manipulation (e.g., the screw was placed in a winding and could
be turned by the screwdriver, the key fit in the keyhole and was rotatable).
Goal attainment was functional in some but not in all actions (e.g., the
pen left a trace on the sheet of paper, but the nail did not move into
the material during hammering and the lighter did not produce a flame
due to security reasons). Therefore, our study addresses the neural cor-
relates of actual tool manipulation but does not intend to reflect repre-
sentations of goal attainment. In case of the bars, a blue marked opening
was placed at the bottom of the mounting, in which the blue end of the
bar was to be inserted. All components of the “Tool-Carousel,” as well as
all objects, were made of plastics. fMRI compatibility was verified in test
scans.

The task was to either use the different objects or to transport them, the
latter meaning to grab and lift the object and return it to the mounting.
The participants had to perform two runs of functional MRI: one in
which they had to use the dominant right hand and the other in which
they had to use the nondominant left hand. The order in which the hands
were tested was randomized across subjects. In case of the tools, the
action typical for the tool should be performed by the participant (e.g.,
hit the nail with the hammer, write with the pen on paper). To be used
comfortably, each of the tools required a different tool-specific func-
tional grip and movement (e.g., grasping the hammer at the handle and
move it up and down to hit the nail). The tools were placed in a way that
the action could be performed promptly without additional adjustments
of the grip (the handle of the tool was placed to the right while the
participants used the right hand and left while they used the left hand,
respectively). To use the bars, the participants had to put the blue marked
end of the bar into the blue opening on the bottom of the mounting (Fig.
1C). Dependent on the placement of the marked end in the mounting
(medial or lateral) and the hand used, the participants had to grasp the
bar with an overhand (pronated) or underhand grip (supinated) to place
the blue end into the opening comfortably (Rosenbaum and Jorgensen,
1992; Marangon et al., 2011). In half of the trials the marked end of the
bar was placed to the left, the other half to the right. Therefore, as for
the tools, the grip to comfortably use the bar had to be adjusted
according to the demands of the task. The order of orientation was
randomized across the experiment. A small sign at the top of the
mounting showing either the letters “B” (for “benutzen,” the German
word for “use”) or “T” (“transportieren” for “transport”) indicated
which task the participants had to perform. This setup resulted in four
different main conditions: (1) tool use, a functional grip and movement
of a known object; (2) tool transport, a nonfunctional grip and move-
ment of a known object; (3) bar use, a functional grip and movement of

a neutral object; and (4) bar transport, a nonfunctional grip, and move-
ment of a neutral object.

The experiment had a rapid event-related design with 200 trials per
run. Each of the four conditions was comprised of 40 trials (four repeti-
tions for each tool or each bar), resulting in 160 condition trials and 40
control trials. During the control trials, an empty compartment of the
tool carousel was shown, these trials served as a control condition for the
comparison in the statistical analysis. To ensure an optimal trial order,
the Genetic Algorithm toolbox (Wager and Nichols, 2003) for event-
related designs was used to create a randomized trial order for each run.
The order of objects was randomized across subjects.

Each trial consisted of a planning phase with a duration of 2– 6 s in
which the object and the cue for the action was presented, followed by an
execution phase in which a green light triggered the start and the dura-
tion of the cued action. When light was turned off after 4 s, the partici-
pants had to stop the action and to return the object to the mounting in
maximum 2 s time (return phase) (Fig. 1D). During the intertrial interval
(varying equally between 1 and 2 s), the “Tool-Carousel” was turned to
present the next stimulus. In half of the trials of each condition, no green
light appeared, resulting in 80 action and 80 no-action trials. The order of
trials with and without the green light and also the time of the onset of the
green light (2– 6 s) varied randomly across the run, making it impossible
for the participants to predict, if a trial is an action or no-action trial.

Procedure. Before the fMRI measurement, all participants had to an-
swer a questionnaire, checking their knowledge about the objects used in
the experiment and how familiar they are with the usage. Here the par-
ticipants had to name the object, state if they know the function of the
object (scale ranging from 0 � not at all to 3 � yes, very well), how to use
it (scale ranging from 0 � not at all to 3 � yes, very well), how often they
have used it (scale ranging from 0 � never to 3 � often), how regularly
they use it (scale ranging from 0 � never to 4 � daily), how often they
have to use it during their job or studies (scale ranging from 0 � never to
4 � very often), if it is an essential object for their daily life (0 � not at all
to 2 � very much) and if they own the object.

Experimental procedures and tasks were explained to the subjects via a
video instruction on how the different objects are thought to be used and
transported followed by a training of all tasks while already laying com-
fortably in the scanner. The position of the “Tool-Carousel” was adjusted
according to the participants’ individual size and arm length to ensure
that all objects could be used comfortably and according to the instruc-
tions. No instance was observed when an object could not be properly
grasped or used due to the mounting of the object acting as an obstacle.
Participants were asked to do the actions at least once and perform the
task carefully without rushing, to avoid short and quick movements,
which could disturb data acquisition. The manipulation of all experi-
mental conditions was trained with all objects until participants were
able to perform all tasks accurately with both left and right hand in the
given time of the execution phase. During the fMRI measurement,
Presentation Software (Neurobehavioral Systems) was used to give
acoustic instructions via headphones on timing of trials to an opera-
tor within the scanner room. The operator exchanged task cues and
objects for each trial and turned the “Tool-Carousel” on the acoustic
cueing. The subjects received no acoustic simulation. A camera placed
at one end of the MRI scanner recorded the hand movements and
workspace of the participants.

Video analysis. The recordings of the camera were used to rate the
participants’ performance and to evaluate the accuracy of the onset of
trials and the duration of hand movements. For the performance rating,
the number of errors was counted per participant. One type of error
included general task errors and was rated with the scale 0 –1: a score of 1
meaning the task was performed according to the cue. For the use con-
ditions, the grip and movement errors were counted. Grasping errors
were also rated with the scale 0 –1: a score of 1 was given if a functional
grip was used to manipulate the object. In case of the tools, the object had
to be held on the nonfunctional end with a hand position, enabling the
participant to manipulate the tool as usual (e.g., grasp the handle of the
hammer or hold the pen in the learned writing position). The correct grip
was shown to the participants in the introduction video before the test-
ing. If a subject held the tool in an uncommon way not according to the
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instructions, the trial was scored with a 0. In the condition bar use, a
functional grip was achieved if the participants discriminated between an
overhand or underhand grip dependent on whether the blue marked end
of the bar was on the medial or lateral side (Rosenbaum and Jorgensen,
1992; Marangon et al., 2011). Another scored aspect of the task was the
correct movement performed with the object (scale 0 –1). If the subjects
moved the object according to its function and how it was shown to them
in the instruction, the trial was scored with 1. On the other hand, if the
movement was not executed correctly or incomplete (e.g., only moving a
tool to the target without the function specific movement or not placing
the marked end of the bar in the opening), the trial was scored with 0.
Additional to the use condition, also the transport condition was rated.
This condition was performed correctly if the object was grasped, lifted,
and returned as instructed before the experiment. It was evaluated if a
functional grip (as in the use condition) or a nonfunctional transport
grip was used. The latter was shown in the introduction video and in-
cluded grasping the tool in the middle to lift it, but no further tool-
specific grip adjustment. In the end, the observations of both runs were
averaged for all subjects for each error category.

Even though the participants were asked to perform the movement
during the execution phase while the green light was on and return the
object when the light was turned off, it cannot be guaranteed that the
durations of the hand movements are exactly the same in all trials and
participants across the experiment. Therefore, next to the general task
performance, also the timing of each individual participant was deter-
mined in a video analysis. A motion detection analysis was done with a
MATLAB (Release 2012a, MathWorks) based script. One search area and
one reference area were selected in each video. The search field included
the pixels covering the workspace and hands of the participant, and the
reference field included a part of the bore of the MRI scanner where no
hand or any other movement occurred. The videos were converted to
single picture frames (12.5 frames per second); and to detect motion, the
pixels of the search and reference fields of one picture frame were sub-
tracted from the pixels from the following picture frame. The mean
across all pixels of these differences was saved as a vector representing a
time course of changes in the search and reference field, respectively, for
each subject. A movement was detected if the value exceeded a certain
threshold. This threshold was calculated for each subject individually and
represented a mean value of a time period of 4 s from the beginning of
each run in which no hand movement occurred. The results from the
motion detection from the reference field only show peaks when the
action signal (green light) was turned on and off. This information was
used to confirm that the detected hand movements in the search field
were related to the task and represent the action in the execution phase.
Correct performance of the automatized motion detection was verified
by visual inspection. In general, subjects’ movements filled the 4 s execu-
tion time in all conditions. Quantitative analysis revealed that the mean
time across subjects needed for the tool condition was 4.2 s, for bar 4.0 s,
for use 4.4 s and for transport 3.8 s. These results led to a significant ( p �

0.05, Bonferroni corrected for two comparisons) difference in duration
of 0.2 s for the comparison of objects and 0.6 s for the comparison of the
task. The periods of each subject’s hand movements were introduced into
the first-level analysis to ensure an accurate modeling of events and to
control for the variance in duration across conditions (this process is
explained in more detail in fMRI analysis).

MRI measurement. All fMRI measurements were performed on a Sie-
mens 3 Tesla Verio MRI scanner. T1-weighted anatomical images were
acquired with the MP-RAGE sequence, whereas the BOLD echo-planar
images were measured using a T2*-weighted gradient echo sequence
with the repetition time TR � 2000 ms, echo time TE � 30 ms, field of
view � 192 mm, flip angle � � 90°, matrix � 64 � 64, slices � 35, slice
thickness � 3 mm and voxel size � 3 mm � 3 mm � 3 mm.

fMRI data analysis. The entire data analysis was performed with SPM8
(Statistical Parametric Mapping software; Wellcome Department of Im-
aging Neuroscience, London; http://www.fil.ion.ucl.ac.uk). Before en-
tering the statistical analysis, the fMRI data were preprocessed by using a
slice time correction, realigning the images to correct for movement
artifacts, coregistering the anatomical, and normalizing all images to
standard space (Montreal Neurological Institute, see SPM software).

Thereafter, the functional datasets were smoothed with a Gaussian kernel

of 8 mm for group analysis.

The statistical analysis was performed at two levels. At the first level for

each subject, the onsets of each condition were modeled in a GLM as

events, which are represented as stick functions and convolved with the

hemodynamic response function. The design matrix comprised two ses-

sions, representing the runs in which the subjects used the right or the left

hand, respectively. The design matrix for one run was composed of 15

regressors representing the experimental conditions and six regressors

comprising the realignment parameters. The 15 condition regressors in-

cluded a separate regressor for the planning phases of each condition for

the no-action trials as well as the action trials (two times: tool use, tool

transport, bar use, bar transport). Four additional regressors modeled

the execution phase of the action trials of all conditions as events. The

13th regressor represents the control condition. The 14th modeled the

individual trials in which the subjects made errors. The last regressor

included the duration of hand movement, which was detected for each

subject individually by the motion detection analysis of the video record-

ing. This regressor, therefore, covers the hand movement during the

execution phase and return phase of all conditions in one. Because this

study does not aim to analyze the basic sensorimotor processing of move-

ments, the purpose of this regressor is to explain the variance in the data,

which is caused by the duration of hand movements the subjects need to

perform the different tasks and to return the objects. To verify that this

regressor explains mainly basic sensorimotor processes as during the

period of hand movement, a second-level one-sample t test of this regres-

sor was performed.

At the second level for the main activation analysis, contrast images of

each participant were entered into a 2 � 2 � 2 factorial design with the
factors object (level: tool or bar), task (level: use or transport), and hand
(level: right or left). Separate second-level analyses were performed for
the main effects and interactions of the planning and execution phase,
respectively. The contrast images which entered the factorial design in-
cluded the comparisons of each condition separately to the control con-
dition. The second-level analysis of the planning phase comprised the
contrast images of the no-action trials only, which eliminates the influ-
ence of actual movement in this data analysis. The analysis for the exe-
cution phase includes the contrast images of the action trials only. A
brain mask was created for action planning and execution and applied
to the second-level analysis, including the added activations of all
conditions compared with the control condition at a threshold of p �

0.001. The anatomical labeling of the results was done with the Anat-
omy Toolbox (Eickhoff et al., 2005) and the graphical display of the
statistical maps with the BrainNet Toolbox (Xia et al., 2013). Bar plots
showing the contrast estimates of peak activations of clusters at a
threshold of p � 0.05 (and family-wise error [FWE] correction) were
constructed to display activations toward the control condition for all
four conditions separately.

Laterality index (LI). To evaluate the laterality of the tool use and
action network the LI was calculated with the LI toolbox (Wilke and
Lidzba, 2007) for each condition and each subject on a first-level basis to
test the laterality across the group. Additionally, the LIs of the activation
maps of the second-level analysis were estimated. Because the LI is
strongly dependent on the threshold used for the images in the analysis,
the bootstrap method was used as recommended by the developers of the
toolbox (Wilke and Schmithorst, 2006; Seghier, 2008). The bootstrap
method creates 10,000 LIs, which are calculated at a range of different
thresholds. Taking the results from the different thresholds into account,
a weighted LI is calculated. These values range from �1 (right sided
lateralization) to 1 (left-sided lateralization). To analyze the laterality of
the network in more detail and ensure that the calculated LIs are not
biased by contralateral motor-sensory processing, the calculation for the
individual images was performed for the occipital, temporal, parietal,
and frontal lobe, whereas the primary sensorimotor cortices were ex-
cluded and analyzed separately.

To test for significant difference of LI from zero (zero corresponds to
symmetrical activation), a t test of the subjects’ LIs was performed for
each condition separately. Additionally, the individual LIs were entered
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into a three-way ANOVA with the three factors object, task, and hand to
evaluate significant main effects for each factor.

Results
Behavioral data: questionnaire
The questionnaire, which was filled out by the participants before
the start of the experiment aimed at measuring if the participants
knew the objects used in the experiment and how familiar they
are with using them. The median score of the questions testing for
tool knowledge (naming the tool, knowing function, and how to
use it) was 70 points (range, 66 –70 points). The possible maxi-
mum score was 70 points, showing that all participants knew all
tools (one scored only 66 because this participant did not clearly
recognize one object on the given photo but knew it after clarifi-
cation). Regarding the bars, the median score was 0 (range, 0 –3
points), showing that participants, as expected, had no prior
knowledge of the bar’s function or use. Concerning the familiar-
ity of objects, the participants scored a median of 75 points
(range, 54 –98 points) for the tools and 0 for the bars. The possi-
ble maximum score was 130 points per participant, which would
mean that all included tools had to be used on a daily basis during
the participants job and daily routine. The minimum score was 0,
which would indicate that the object has never been used by the
participant before and its usage is not familiar to him or her.
All participants owned all of the tools but not the bars, except for
two participants, who did not own a lighter. All in all, the results
of the questionnaire show that all participants knew the tools and
were familiar with using them but did not do so for the bars.

Behavioral data: video analysis
Performance of the participants was evaluated by scoring the
video recordings of their hands and the workspace. This evalua-
tion was performed to ensure correct performance according to
the cues and instructions and to assess whether functional grips
and movements were used. For all conditions, it was evaluated
whether the correct action according to the cued experimental
condition was performed. In total, the median number of errors
was one error (range, 0 –2 errors) per participant (during a total
of 400 trials). In the following, only trials in which the correct
cued task was performed will be considered. During the tool use
condition, the median error score regarding the use of a func-
tional grip was 1 (range, 0 –5 errors), and for mistakes concerning
the movement of the tool was 0 (range, 0 – 4 errors). There was no
significant difference of the number of mistakes made between
the two runs. In all trials of the condition tool transport, a non-
functional grip was used to transport the tool by all participants.
The condition bar use was performed correctly by all participants
in all trials. The participants made an overhand grip in all possible
20 trials, which required this type of grip. In the 20 trials in which
an underhand grip was appropriate, the median number of un-
derhand grips was 19 (range, 20 –13). In the remaining trials, an
overhand grip was used. This shows subjects adjusted the grip
dependent on the objects properties (is the marked end on the
medial or lateral side). The participants made no movement er-
rors in the bar use condition. In the bar transport condition, the
same lifting grip was used as in the tool transport condition in all
trials.

All in all, the behavioral results showed that the task was
mostly performed correctly and that the condition tool use and
bar use were performed using a functional grip and movement
for each object relative to the goal of the action. On the other
hand, during both the condition tool transport and bar transport,
a nonfunctional transport grip and movement was used.

Movement duration
To clarify which brain regions are sensitive to possible variations
of the movement duration, a second-level analysis was performed.
The anatomical location of the peak voxels and the corresponding p
values are given in Table 1. Results are shown with a threshold of p �

0.05 and an FWE correction. The results of this analysis revealed
mainly the sensorimotor cortices of both hemispheres and an
occipito-temporo-parieto-frontal network of right, but none of the
left, side brain areas involved in tool use as reported below.

fMRI activation analysis
The following section reports the neural responses for the manip-
ulation of tools and neutral objects during action planning and
execution and the main effects of the factors object, task, and
hand. As a first step, activation caused by all task conditions
versus the control condition during action planning was calcu-
lated to determine the brain areas necessary for processing the
planning of object related manipulations independent of specific
functions and object semantics. The activity maps are shown at a
threshold of p � 0.05 with an FWE correction. This analysis
showed a left-sided network (Fig. 2A, top), including clusters in
the temporal lobe, such as the fusiform gyrus (FG) and lateral
occipital complex (LOC), MTG, clusters in the parietal lobe (SPL,
SMG), including anterior and posterior parts of the intraparietal
area, frontal activation, including PMv, PMd, insula lobule, and a
cluster in the middle frontal gyrus (MFG). The LI for this contrast
is 0.64 for frontal, 0.92 for parietal, 0.69 for temporal, and 0.58 for
the occipital lobe, whereas the LI for the sensorimotor cortex is
0.99. The same analysis was performed for the execution phase
(Fig. 2A, bottom) showing a wider bilateral network with addi-
tional activations in primary sensory and motor cortex in both
hemispheres. The calculated LI for this contrast is 0.45 for frontal,
0.34 for parietal, 0.06 for temporal, and �0.091 for the occipital
lobe, whereas the LI for the sensorimotor cortex is 0.58.

The tool network during actual action planning
and execution
To statistically determine the brain regions that are more active
for planning actions with known objects (tools) compared with
neutral objects (bars), the contrast tool versus bar was calculated

Table 1. Anatomical locations and the p values of peak voxels of the one-sample t

test results for the subjects’ individual period of hand movementsa

Brain area p

Left hemisphere

Precentral gyrus 0.0381

Superior parietal lobule, SPL 5A 0.0010

Inferior occipital gyrus 0.0090

Postcentral gyrus 0.0005

Right hemisphere

Inferior frontal gyrus ( pars opercularis) 0.0001

Inferior frontal gyrus ( pars triangularis) 0.0010

Middle frontal gyrus 0.0031

Superior frontal gyrus 0.0008

Superior medial gyrus 0.0450

Insula 0.0037

Lingual gyrus 0.0071

Postcentral gyrus 0.0000

Precuneus 0.0000

Supramarginal gyrus 0.0000

Inferior temporal gyrus 0.0042

Superior temporal gyrus 0.0000
aData are the p values of the peak voxel of a cluster in an anatomical area. Only clusters are reported, which survive
a threshold of p � 0.05 (FWE).
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and is shown in Figure 2B (top) at p � 0.05 (FWE corrected). The
results showed an overall mainly left-sided activation pattern (LI
frontal lobe, 0.75; LI parietal lobe, 0.83; LI temporal lobe, 0.49; LI
occipital lobe, �0.38; LI sensorimotor cortex, 0.84). Additional
to clusters in inferior occipital gyrus, the LOC, MTG, and FG
were activated. In the parietal cortex, the SPL, SMG, and the
inferior parietal lobe, including the AIP, showed a specification
for the tool conditions compared with bars. A frontal cluster was
located in the PMd and is listed in Table 2 with the other results.
No specific region was activated for the opposite contrast bars
versus tools during action planning.

The execution phase was analyzed in the same way (Fig. 2B,
bottom). The contrast tool versus bar revealed activation differ-
ences in the same temporal, parietal, and frontal regions as during
the planning phase, but to a larger extent and with additional
clusters in the PMv, PMd, insula, MFG, primary sensory, and
motor cortex. The network is still lateralized to the left, although
to a lesser extent due to the recruitment of the right-sided areas
while executing actions with the left hand. Because the condition
bar also required hand movements, contrast differences in pri-
mary motor activation were however not significant. The ana-
tomical locations of the clusters and the statistical values of the
peak voxel in all clusters of both contrasts can be found in Table
2. The reverse contrast bar versus tool for execution phase did not
show significant clusters surviving at this threshold.

Neural correlates of using objects and the knowledge of how
to use a tool
To study the influence of the manipulation type on the action
network, we focused on the factor task in this part of the analysis.
To define the brain regions engaged in functional tool use and
object manipulation independent of the specific object type, the
contrast use versus transport was calculated. This analysis was
performed for both planning phase and execution phase. For the
planning phase, two clusters were found only at a threshold of
p � 0.001 (uncorrected). One was located in left SPL and the
other in the left PMd. The uncorrected activation map of the

planning phase is shown in blue as an overlay on the activation
map of the execution phase in Figure 3A. The corresponding
uncorrected p values of the peak voxels are listed in Table 2. The
activation map of the execution phase is shown at p � 0.05 with
an FWE correction (red color scale). The network involved in
controlling a functional grip and the manipulation of an object
included the left LOC, a cluster in the left lateral part of the
superior occipital gyrus (SOG) close to the parietal-occipital sul-
cus, SPL, and left PMd, the latter two matched the areas also
described for the planning phase. Additionally, primary sensory
and motor cortices were more active during the use than during
the transport of an object. This network for functional use, in-
cluding the grip and specific movements, was mainly lateralized
to the left hemisphere, except for a cluster in the right SPL result-
ing in the following LIs: LI frontal lobe, 0.76; LI parietal lobe,
0.76; LI temporal lobe, 0.81; LI occipital lobe, 0.85; LI sensorimo-
tor cortex, 0.68. The contrast estimates and 90% CI of each of the
four experimental conditions versus control condition were plot-
ted for regions of interest (Fig. 3A). Compared with the control
condition, all regions were activated in all separate task condi-
tions, but the responses were higher for the condition use com-
pared with transport independent of which object was used.
However, the use of tools in all regions produced a higher re-
sponse than the condition bar use.

To define the brain regions coding function-specific tool
knowledge during execution, the interaction between the factors
object and task was calculated ((tool use � tool transport) vs (bar
use � bar transport)). To restrict the analysis to regions with the
highest sensitivity to tool use, but not to the other three condi-
tions, the interaction was masked with the intersection of the
three contrasts: tool use versus tool transport, tool use versus bar
use, and tool use versus bar transport (threshold for the masking
contrasts was p � 0.001 uncorrected). These regions therefore
showed the highest sensitivity for the use of tools compared with
goal-directed manipulation of neutral objects and do not reveal
object-specific activations for nonfunctional transport actions.
The other three conditions (tool transport, bar use, and bar trans-

Figure 2. Whole-brain results for the action network in A and the main contrast for the factor object in B. A, The activity maps of the contrast all conditions versus control condition shown for the

planning phase in the top and for the execution phase on the bottom. B, The activity map of the contrast tool versus bar is shown for the planning phase in the top and for the execution phase in the

bottom. All results of Figure 2 are shown at a threshold of p � 0.05 (FWE corrected) on a rendered brain. The color scale under the brain images indicates the range of the T values from low values

in dark red to high values in white. IOG, Inferior occipital gyrus; MOG, middle occipital gyrus.
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port) were not significantly different from each other. The statis-
tical map is shown in Figure 3B at p � 0.05 (FWE corrected). In
addition to a cluster in the posterior MTG clusters were detected
in the middle occipital gyrus close to V5, PMv, in a posterior part

of the SMG, and the medial part of the SOG. Additionally, a
cluster in the left postcentral gyrus showed an interaction. This
network included exclusively left-sided clusters, which are listed
in Table 2. The contrast estimate and 90% CI of each of the four

Table 2. Anatomical locations and the p values of peak voxels for all calculated contrastsa

Planning phase Execution phase

Brain area
All versus
baseline Tool versus bar

Use versus
transport

All versus
baseline

Tool versus
bar

Use versus
transport

Interaction
of task � object

Left versus
right

Right versus
left

Left hemisphere
Frontal lobe

Inferior frontal gyrus, PMv 0.0000 0.0000 0.0000 0.0001
Inferior frontal gyrus ( pars orbitalis) 0.0000
Inferior frontal gyrus ( pars triangularis) 0.0035
Middle cingulate cortex 0.0000 0.0000
Middle frontal gyrus 0.0000 0.0000 0.0000 0.0107
Precentral gyrus 0.0000 0.0001 0.0065 0.0227
SMA 0.0000 0.0010
Superior frontal gyrus 0.0000
Superior frontal gyrus, PMd 0.0000 0.0088 0.0001* 0.0007

Insula lobe
Insula 0.0000 0.0000 0.0000

Occipital lobe
Cuneus 0.0003
Inferior occipital gyrus 0.0000 0.0000 0.0000 0.0000
LOC 0.0000 0.0000 0.0040 0.0017
Middle occipital gyrus 0.0000 0.0242 0.0000 0.0010 0.0001
Superior occipital gyrus 0.0000 0.0160 0.0025 0.0003
Superior occipital lobule 0.0003

Parietal lobe
Anterior intraparietal area 0.0000 0.0048 0.0347
Inferior parietal lobule 0.0000 0.0130
Inferior temporal gyrus 0.0000
Postcentral gyrus 0.0000 0.0000 0.0000 0.0141 0.0015 0.0034
Precuneus 0.0000
Superior parietal lobule 0.0000
Superior parietal lobule, SPL 7A 0.0000 0.0004* 0.0000 0.0000 0.0370
Supramarginal gyrus 0.0000 0.0000 0.0025

Temporal lobe
Fusiform gyrus 0.0000 0.0006 0.0003 0.0020
Inferior temporal gyrus 0.0000 0.0178
Middle temporal gyrus 0.0000 0.0161 0.0131
Superior temporal gyrus 0.0000 0.0003
Temporal pole 0.0383

Right hemisphere
Frontal lobe

Inferior frontal gyrus, PMv 0.0000 0.0010
Inferior frontal gyrus ( pars triangularis) 0.0000
Inferior frontal gyrus ( pars orbitalis) 0.0000
Middle cingulate cortex 0.0000 0.0000
Middle frontal gyrus 0.0040
Precentral gyrus 0.0000 0.0000
SMA 0.0020

Insula lobe
Insula 0.0180 0.0000 0.0010

Occipital lobe
Calcarine gyrus 0.0252
Inferior occipital gyrus 0.0000 0.0000 0.0000 0.0000
LOC 0.0000

Parietal lobe
Postcentral gyrus 0.0000 0.0000
Precentral gyrus 0.0000
Precuneus 0.0000 0.0000 0.0000
Superior parietal lobule 0.0000 0.0015
Superior parietal lobule, SPL 7A 0.0000

Temporal lobe
Fusiform gyrus 0.0000 0.0009 0.0000
Middle temporal gyrus 0.0000
Temporal pole 0.0160

aData are the p values of the peak voxel of a cluster in an anatomical area. Mainly clusters are reported, which survive a threshold of p � 0.05 (FWE).

*Uncorrected p values.
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experimental conditions versus control condition were plotted
for the regions of interest (Fig. 3B). The LIs for the interaction are
0.31 for the frontal lobe, 0.65 for the occipital lobe, 0.77 for the
parietal lobe, 0.035 for the sensorimotor cortex, and 0.52 for the
temporal lobe. The same analysis for the planning phase or any
other interaction between the factors object and task revealed no
significant clusters surviving a threshold of p � 0.05 with an FWE
correction.

Handling tools with the dominant and nondominant hand
The results above for the combined data of the right and left hand
showed a left-lateralized tool network for action planning and
execution independent of the used hand. To compare the struc-
ture of the action network for the dominant and the nondomi-
nant hand (in our case right and left hand, respectively), the
contrasts right versus left and left versus right were calculated. No
significant differences were found in the planning phase at a
threshold of p � 0.05 (FWE corrected) for both contrasts. The
direct comparison of both conditions for the execution phase
revealed for the contrast right versus left, as could be expected, a
cluster in the left motor cortex (Fig. 4). The calculation of the LIs
revealed a value of 0.94 for frontal lobe, �0.47 for occipital lobe,
0.18 for parietal lobe, 0.96 for sensorimotor cortex, and 0 for
temporal lobe. The reverse contrast (left vs right) revealed a left-
sided activation pattern next to a strong cluster in the right motor
cortex and SMA; the activations include temporal (superior tem-
poral gyrus, MTG, ITG), inferior parietal (SMG, AIP), and sev-

eral frontal areas (MFG, PMd, PMv). The following LIs were
calculated for this contrast: 0.80 for frontal lobe, 0.89 for occipital
lobe, 0.93 for parietal lobe, �0.43 for sensorimotor cortex, and
0.95 for temporal lobe.

The interactions between the factors hand and object or task
did not reveal significant clusters surviving a threshold of p �

0.05 with an FWE correction.

LI
To verify the lateralization of the network relevant for planning
and execution actions with tools and neutral objects across sub-
jects, the LI for all lobes and conditions was calculated separately,
tested for significance, and compared for the factors object, task,
and hand. The mean LI and p value for all conditions and lobes
are shown in Table 3 for action planning and execution. The
mean LI, p value, and F value of main effects for each factor are
shown in Table 4 for the planning phase and execution phase.
The results indicate a significant left-sided lateralization during
action planning in the parietal lobe, temporal lobe, and sensori-
motor cortex in almost all conditions. During action execution, a
significant left-sided lateralization is obvious for all use condi-
tions in the frontal lobe and for tool use right and left and bar use
left in the parietal lobe. A right-sided lateralization could be
found for the right-hand conditions in the temporal lobe. In the
sensorimotor cortex, a clear left-sided lateralization can be found
in the right-hand condition, whereas the left-hand condition
shows a weak right-sided lateralization, which is only significant

Figure 3. Results showing the influence of the factor task on the action network. A, Activity map of the contrast use versus transport is shown for the execution phase. Bar plots represent the

contrast estimates of the peak voxel and 90% CI in the labeled cluster for all four conditions. TU, Tool use; TT, tool transport; BU, bar use; BT, bar transport. The uncorrected activations during the

planning phase that did not survive the correction for multiple testing are shown as a blue overlay. B, Activity maps of the interaction between the factor object and task ((tool use vs tool transport)�

(bar use vs bar transport)) is superimposed onto a rendered brain for the execution phase. All results of Figure 3 are shown at a threshold of p � 0.05 (FWE corrected). *The three lines across the bar

plots indicate that the contrast estimates of the condition tool use is significantly higher than in the other conditions with a threshold of p � 0.001. The color scale under the brain images indicates

the range of the T values from low values in dark red to high values in white. MOG, Middle occipital gyrus; PoG, postcentral gyrus.
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for the condition bar transport left. The comparison of factors
show for the planning phase a significant main effect for the
factor object with a higher left-sided lateralization for tool than
bar in the frontal, parietal, and temporal lobe as well as in the
sensorimotor cortex. During action execution, a stronger left-
sided lateralization is found in the parietal lobe for the condition
tool compared with bar and in all areas for use compared with
transport. A significant main effect for the factor hand can be
found in the temporal lobe (stronger left-sided lateralization for
left than right), occipital lobe (stronger left-sided lateralization
for left than right), and the sensorimotor cortex (stronger left-
sided lateralization for right than left). In summary, this analysis
shows that especially the process of action planning, but also the
execution of object use, is left-lateralized.

Discussion
The current study aimed to describe the neural bases of actual
tool use by investigating planning and executing actions with
known tools and neutral objects for the dominant and nondomi-
nant hand. A wide strongly left-lateralized network was identi-
fied, including parietal and frontal areas and areas of the ventral
stream in addition to the obligatory primary sensorimotor areas
as related studies have reported (Inoue et al., 2001; Hermsdörfer
et al., 2007; Gallivan et al., 2013a). More specifically, we are able
to extend the characterization of three previously reported posterior
streams (Milner and Goodale, 2008; Binkofski and Buxbaum, 2013)
with distinctive functions in real tool use: the ventral stream that is
relevant for processing semantic tool information and object prop-
erties, a dorso-dorsal pathway that is relevant for online monitoring
the grip and movements of objects during complex actions, and,
additionally, a ventro-dorsal pathway that is specifically involved in
processing known object manipulations, such as tool use.

Direct evidence for the separation of the dorsal stream in two
processing pathways
By looking at complex goal-directed actions irrespective of object
identity compared with simpler actions, we are able to define
areas that are increasingly recruited for monitoring the online
control of demanding object manipulations. The comparison of
the condition use and transport showed higher activations in left
SPL, PMd, SOG, and LOC. In previous research, Martin et al.
(2011) noted that additional to other areas left- and right-
handers show activity in SPL, reaching from the posterior parietal
sulcus to the parietal-occipital sulcus and in PMd during grip
selection and grasp planning. The cluster in the SOG of our re-
sults is close to the superior parietal occipital complex, which
several studies have described as an important cerebral region in
reach-to-grasp actions in humans (Cavina-Pratesi et al., 2010;
Gallivan et al., 2011; Monaco et al., 2011). A stronger recruitment
of these “grip regions” could be based on the fact that the selec-
tion of a functional grip is more demanding and complex than a
simpler transport grip (Verhagen et al., 2013). Furthermore, it
might not only be the complexity and the intended goal of the
performed action, which is specific for each of the two condi-
tions, but also the process of action selection. Because the same
action was performed during the transport condition for all trials
but a variety of different actions during the use condition, we can
assume that the found neuronal circuit might also be involved in
the action selection process. Additionally, it is important to say
that all stated regions have been mentioned as being part of the
dorso-dorsal pathway described by Binkofski and Buxbaum
(2013). The dorso-dorsal pathway is running from the visual area
V6 to the SPL ending in the PMd (Rizzolatti and Matelli, 2003). It
is necessary for monitoring correct reaching and grasping move-
ments to handle an object dependent on the object’s properties
(Grol et al., 2007). The increased load of online control and nec-
essary movement adjustments during the use condition, irrespec-
tive of object type compared with the transport, could be the
reason that the pathway along the SOG, SPL, and PMd is re-
cruited stronger (Glover et al., 2005, 2012; Striemer et al., 2011).
As our results show, SPL and PMd are not only relevant for the
online control of monitoring actions but possibly also for plan-
ning demanding actions. Even though the comparison of plan-
ning the use and transport of actions did not survive the
correction for multiple testing, it is interesting to see that a similar
activation pattern can be found for planning and executing com-
plex actions. Interestingly, next to these dorsal stream areas, also
the LOC of the ventral stream is sensitive for using known but
also neutral objects. Its involvement in object recognition and
therefore in tool-related tasks is known (Grill-Spector and Mal-
ach, 2004; Vingerhoets, 2008; Wurm et al., 2012). Additionally, it
seems to be relevant for processing the dimensions of neutral
objects, which are relevant for grasping (Monaco et al., 2014) and
also when viewing unfamiliar or infrequently used tools com-
pared with familiar tools (Vingerhoets, 2008). LOC coactivation
with the dorso-dorsal stream in the use condition indicates its
relevance for calculating object properties necessary to manipu-
late objects independent of their identity or familiarity and mon-
itor the online control of actions with these objects.

With the analysis of the interaction of object and task, we are
able to isolate a network specifically relevant for tool use. This
network includes the middle occipital gyrus close to V5 and clus-
ters covering parts of the SMG, postcentral gyrus, and PMv of the
left hemisphere. The areas are in line with the description of the
ventro-dorsal stream (Binkofski and Buxbaum, 2013), which is
suggested to run from the medial superior temporal area (MT/

Figure 4. Results showing the influence of the factor hand on the action network. Activation

maps of the contrast right hand versus left hand on the top and left hand versus right hand on

the bottom for the execution phase. All results of Figure 4 are shown at a threshold of p � 0.05

(FWE corrected) on a rendered brain. The color scale under the brain images indicates the range

of the T values from low values in dark red to high values in white. IOG, Inferior occipital gyrus;

STG, superior temporal gyrus; PrG, precentral gyrus; PoG, postcentral gyrus.
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MST) to the inferior parietal lobule and the PMv (Rizzolatti and
Matelli, 2003; Buxbaum and Kalénine, 2010; Binkofski and Bux-
baum, 2013). It is thought to be important for processing the
knowledge of specific learned object manipulations, such as tool
use (Frey, 2008; Buxbaum and Kalénine, 2010). Especially pari-
etal structures show strong influence in coding actions particu-
larly related to tools (Valyear et al., 2007, 2012; Vingerhoets et al.,
2009; Verhagen et al., 2012; Peeters et al., 2013). This also seems
to be true for the PMv, which is suggested to monitor the hand
posture relevant for actions with a tool (Vingerhoets et al., 2013).
Patients suffering from apraxia, with difficulties in grasping and
using tools or performing pantomime of use, usually have lesions
in inferior parietal cortex and additionally inferior frontal areas
(Goldenberg and Spatt, 2009; Kalénine et al., 2010; Randerath et
al., 2010). Our results underline these findings and support the
relevance of the ventro-dorsal pathway in tool use. Additionally,
we show that it is coactivated with MTG, a ventral stream area. Its
role in processing semantic information suggests a strong con-
nection to the ventro-dorsal stream during goal-directed actions
with known objects. All in all, we can show that both the dorso-

dorsal but also the ventro-dorsal stream are activated with differ-
ent ventral stream areas during actual object manipulations and
tool use, which indicates that information from both ventral and
dorsal stream has to be integrated for complex actions. A func-
tional connection seems to be probable because structural con-
nections between MTG and SMG have been found in a Diffusion
Tensor Imaging study, which aimed to find structural connec-
tions between regions relevant for tool use pantomime (Ramayya
et al., 2010). Further connectivity analysis would be needed to
prove and investigate the influence of ventral stream areas on the
dorsal pathway, especially during tool use.

The tool network during actual action planning and
execution is largely common for dominant and nondominant
hand
In our study, we are able to measure brain areas more active
during planning and executing tool actions compared with per-
forming goal-directed movements with neutral objects. The spe-
cific planning of tool manipulations recruits a mainly left-sided
parietal and occipitotemporal network. Ventral stream activa-

Table 3. Group mean LIs for all conditions and brain lobes and p values of statistical test for significant laterality

Frontal lobule Parietal lobule Temporal lobule Occipital lobule
Sensorimotor
cortex

Condition LI p LI p LI p LI p LI p

Planning phase
Tool use right 0.253 0.097 0.736 0.000* 0.533 0.000* 0.249 0.008* 0.740 0.000*
Tool transport right 0.589 0.000* 0.743 0.000* 0.454 0.001* 0.187 0.117 0.801 0.000*
Bar use right 0.396 0.000* 0.526 0.001* 0.282 0.019* 0.364 0.003* 0.623 0.000*
Bar transport right 0.124 0.328 0.519 0.000* 0.372 0.002* 0.318 0.013* 0.295 0.081
Tool use left 0.363 0.003* 0.574 0.000* 0.335 0.012* 0.074 0.549 0.603 0.000*
Tool transport left 0.436 0.001* 0.453 0.005* 0.273 0.065* 0.037 0.772 0.469 0.006*
Bar use left 0.179 0.123 0.344 0.001* 0.223 0.103 0.297 0.005* 0.413 0.005*
Bar transport left 0.301 0.009* 0.355 0.014* 0.262 0.050* 0.101 0.481 0.375 0.013*

Execution phase
Tool use right 0.414 0.000* 0.288 0.009* �0.323 0.004* �0.073 0.543 0.543 0.000*
Tool transport right 0.172 0.181 0.134 0.276 �0.446 0.000* �0.140 0.219 0.509 0.000*
Bar use right 0.511 0.000* 0.215 0.139 �0.263 0.024* 0.062 0.631 0.758 0.000*
Bar transport right 0.129 0.302 0.144 0.090 �0.338 0.003* �0.055 0.654 0.430 0.000*
Tool use left 0.420 0.001* 0.561 0.000* 0.573 0.002* 0.604 0.001* �0.064 0.664
Tool transport left 0.078 0.488 0.289 0.116 0.254 0.177 0.214 0.232 �0.144 0.247
Bar use left 0.263 0.032* 0.447 0.002* 0.462 0.011* 0.490 0.001* �0.164 0.154
Bar transport left �0.050 0.632 0.125 0.415 0.011 0.949 �0.090 0.584 �0.374 0.001*

*The mean LI value is significantly different from zero at a threshold of p � 0.05.

Table 4. Mean LIs for the levels of all factors and statistics for the test of main effects of factorsa

Frontal lobule Parietal lobule Temporal lobule Occipital lobule
Sensorimotor
cortex

Factor Level Mean LI Statistics Mean LI Statistics Mean LI Statistics Mean LI Statistics Mean LI Statistics

Planning phase
Object Tool 0.410 p � 0.011* 0.626 p � 0.001* 0.399 p � 0.014* 0.137 p � 0.018* 0.653 p � 0.004*

Bar 0.250 F � 8.46 0.436 F � 18.49 0.285 F � 7.66 0.270 F � 7.01 0.426 F � 11.51
Task Use 0.298 p � 0.327 0.545 p � 0.605 0.343 p � 0.945 0.246 p � 0.062 0.594 p � 0.051*

Transport 0.363 F � 1.02 0.517 F � 0.28 0.340 F � 0.00 0.161 F � 4.06 0.485 F � 4.50
Hand Right 0.340 p � 0.853 0.631 p � 0.135 0.410 p � 0.374 0.280 p � 0.248 0.615 p � 0.253

Left 0.320 F � 0.03 0.431 F � 2.49 0.273 F � 0.83 0.127 F � 1.44 0.465 F � 1.41
Execution phase

Object Tool 0.271 p � 0.133 0.318 p � 0.025* 0.014 p � 0.534 0.151 p � 0.354 0.211 p � 0.232
Bar 0.213 F � 2.52 0.233 F � 6.17 �0.032 F � 0.40 0.102 F � 0.91 0.263 F � 1.55

Task Use 0.402 p � 0.008* 0.378 p � 0.001* 0.112 p � 0.011* 0.271 p � 0.002* 0.268 p � 0.021*
Transport 0.082 F � 9.42 0.173 F � 16.23 �0.129 F � 8.46 �0.018 F � 13.21 0.105 F � 16.63

Hand Right 0.306 p � 0.257 0.195 p � 0.432 �0.342 p � 0.001* �0.051 p � 0.036* 0.560 p � 0.001*
Left 0.178 F � 1.38 0.356 F � 0.65 0.325 F � 16.50 0.305 F � 5.32 �0.186 F � 52.85

aMean group laterality indices for levels of all factors and the p values and F values (df � 16) of the main effect of each factor.

*Significant main effect at a threshold of p � 0.05.
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tions in the LOC, MTG, and FG are relevant for object recogni-
tion and processing semantic knowledge of a tool (Milner and
Goodale, 2008; Valyear and Culham, 2010). The left parietal cor-
tex is known to be almost invariably involved in tool actions
(Lewis, 2006). We show here that core regions of the parietal
cortex (SPL, AIP, and SMG), essential for tool manipulations, are
already recruited during preparation of actual execution. The
relevance of the parietal cortex in action planning of grasping and
using was emphasized by studies of Gallivan et al. (2011, 2013a, b)
using pattern classification to decode movement intentions, as
well as other literature focusing on planning of tool use panto-
mime (Johnson-Frey et al., 2005; Króliczak and Frey, 2009;
Vingerhoets et al., 2011).

The execution of tool manipulations recruits a larger network
with additional involvement of frontal areas, such as PMv, MFG,
and insula. Frontal areas are known to be relevant for realizing
motor plans, including grasping movements (Cavina-Pratesi et
al., 2010; Gallivan et al., 2013a, 2013b) and executing tool use
pantomime (Johnson-Frey et al., 2005; Króliczak and Frey, 2009;
Vingerhoets et al., 2011).

A feature of the action network seems to be its left-sided asym-
metry. Our results strongly support the finding that, in right-
handers, planning and executing object manipulations is mainly
processed by the left hemisphere, independent of the used hand.
Interestingly, the lateralization is stronger while planning actions
with tools than bars and for using compared with transporting
during execution, which indicates a changing network structure
during the time course of an action. Different from other studies
(Moll et al., 2000; Choi et al., 2001; Króliczak and Frey, 2009;
Jacobs et al., 2010), we found stronger activations during action
execution with the nondominant hand compared with the dom-
inant one. We assume that stronger left-sided activations are
caused by an increase of recruitment of the action network in
order for the untrained hand to perform as skilled and as dexter-
ous as the right hand. Additionally, the unfamiliarity of left-hand
actions might result in higher activations.

A new device to study neuronal processes of real actions
Our results provide direct evidence for the multifaceted nature of
neural mechanisms underlying complex actions, such as tool use.
This analysis was enabled by the use of a new device, the “Tool-
Carousel,” which allows studying the influence of different fac-
tors on real actions. The use of a mirror system in this study and
the therefore added visual transformations create a limitation to
the application, which should be avoided if the scanner environ-
ment allows it.

In conclusion, we successfully investigated actual tool and ob-
ject manipulation using the “Tool-Carousel.” We can identify
activation patterns representing tool knowledge, goal-directed
actions, object grasping, and manipulation of tools and objects,
including frontal, parietal, and temporal centers. Preparatory ac-
tivations were strongly lateralized to the left brain and remained
active during actual task execution. Handling tools versus neutral
bars and using an object versus transportation strengthen the
lateralization of the action network toward the left brain. The
results support the assumption that the dorso-dorsal pathway is
relevant for monitoring the manipulated objects independent of
prior knowledge about the object. On the other hand, regions of
the ventro-dorsal pathway code the specific knowledge of how a
known object (e.g., a tool) has to be used. Additionally, our study
brings about the question of how exactly the ventral areas LOC
and MTG connect with the two dorsal pathways during real ac-
tions and especially tool use.
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Age-related Changes in the Neural 
Correlates of  Complex Object  
Manipulations. 

 

The tool use network is mainly stable across age, but age -related neural changes have an 

influence on neural patterns of planning and executing tool use in elderly  adults. 

 

The manuscript included in this chapter is titled “Age-related changes in the neural correlates of complex 

object manipulations.” and was written by Marie-Luise Brandi, Joachim Hermsdörfer, Chrisitan Sorg and 

Afra Wohlschläger. It describes another experimental study on actual tool use with mainly the same 

methodological procedure as described in chapter 2, but focusses on the neural underpinnings of real 

actions in elderly compared to young adults. It is currently unpublished and was submitted to the Journal 

of Neuroscience on December 31st 2014. 

Contributions:  

The author of this thesis is the first author of the manuscript. M.L.B., A.W., C.S. and J.H. designed 

research; M.L.B. performed research; M.L.B. and A.W. analyzed research; M.L.B., A.W., C.S. and J.H. 

wrote the paper. 
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Wohlschläger (2, 3, 4) 

(1) Department for Sport and Health Science, Institute of Human Movement Science, Technische 

Universität München, 80992 Munich, Germany (2) Neuroradiology, Klinikum rechts der Isar, Technische 

Universität München, 81675 Munich, Germany (3) TUM-Neuroimaging Center, Klinikum rechts der 
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Abstract 
 

Aging affects motor cognition such as complex actions like using objects as tools. However, neural aging 

effects on tool use are not yet understood. This study aims to analyze age-related changes of the neural 

correlates of planning and executing actions with known tools and neutral objects in a functional MRI 

experiment. Our analysis revealed three major findings describing complex actions in the aging brain: 

Major characteristics of the brain network involved in object manipulations remain stable in aging 

including its left-sided laterality and activations in temporal, parietal and frontal centers. Second, we find 

an age-related increase of neural activations during action planning – as expected - but unexpectedly 

activation decrease during action execution. Moreover, we demonstrate compensatory effects in the 

middle and inferior frontal gyrus as well as in the superior parietal occipital complex in elderly individuals. 

The Results provide evidence that while the action related network stays stable across age, the level of 

activation strength during the time course of an action is shifted towards the planning phase in elderly. 

Data suggest further a fronto-parietal compensatory mechanism in the aging brain to retain our ability to 

plan and control complex actions.  
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Introduction 
 

We learn to use objects as tools very early in life and exercise this skill during our whole lifespan. Not 

being able to use tools properly, strongly constrains daily life routines. Due to common grey matter 

volume decline in aging (Courchesne et al., 2000; Good et al., 2001), but also because of neurological 

damages after a stroke (Goldenberg and Spatt, 2009), conducting complex actions can be impaired. In 

order to understand such behavioral changes, it is important to know and understand the neural basis of 

object manipulations in elderly adults. 

Previous neuroimaging research on different cognitive processes in elderly showed that activation 

patterns are usually more bilateral and widespread compared to young adults (Cabeza, 2002). For the 

motor domain, elderly show an overall increase of brain activations and recruit additional brain areas 

compared to young adults to perform motor tasks (Mattay et al., 2002; Ward, 2003; Heuninckx et al., 

2005, 2008; Ward et al., 2008; Noble et al., 2011). Another prominent effect of healthy aging is the 

reduction of selectivity in the elderly brain (Grady, 2002; Park et al., 2004). In order to explain the effect 

of stronger and less specified activation patters in the elderly two different theories exist. One describes 

the increased activation as a compensatory effect in which higher activations in elderly are necessary to 

perform as good as young adults (Mattay et al., 2002; Heuninckx et al., 2008; Spreng et al., 2010). On the 

other hand, the dedifferentiation theory argues that during aging specific brain functions are less bound 

to specific structures and that brain areas become less selective for different stimuli (Li et al., 2001; Logan 

et al., 2002; Carp et al., 2011; Park et al., 2011).  

Based on previous findings on the aging brain we hypothesize that the neural process of complex object 

manipulation also underlies age-related changes. This target network relevant for object manipulation 

includes a robust pattern of brain regions including ventral stream, parietal and frontal areas (Johnson-

frey et al., 2005; Lewis, 2006; Hermsdörfer et al., 2007; Vingerhoets et al., 2009; Valyear et al., 2012; 

Gallivan et al., 2013; Brandi et al., 2014). No study so far has investigated how the tool use network 

changes during healthy aging and whether possible mechanisms like dedifferentiation or compensation 

apply. 

Therefore, the aim of this study was to investigate age-related changes in the brain network responsible 

for processing planning and execution of complex actions and analyze if underlying reasons for 

alterations can be explained by the existing theories. With the “Tool-Carousel” (Brandi et al., 2014), an 

apparatus used for the presentation of real objects during an fMRI experiment, we tested actual object 

manipulations in young and elderly adults. Of main interest were age-related differences during planning 

and execution of real actions. We expected more widespread and stronger brain activations in elderly 
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adults. By including performance scores and a region of interest analysis we analyzed further, whether 

observed age-related changes were more compatible with the theories of compensation or 

dedifferentiation during actual object manipulations. 

Methods 
 

The basic experimental set up, procedure and data analysis methods in this study have been used and 

presented before in a previous study investigating the neural correlates of tool use in healthy young adults 

(Brandi et al., 2014). A short summary of these methods will be given here, but for detailed information 

see the previous article by Brandi et al. (2014). All changes and new analysis performed in this study will 

be described fully in the following sections. 

Subjects 

Twenty healthy elderly adults (8 female) and twenty healthy young adults (11 female) participated in the 

fMRI experiment. Before the experiment all subjects provided informed consent for the study, which was 

approved by the local ethical committee. Due to strong head movements, four elderly (2 female and 2 

male) and three young adults (1 male and 2 female) had to be excluded from further statistical analysis. In 

order to have a balanced number of participants in both age groups one random young participant was 

excluded from the analysis, so both age groups included 16 participants. The data-set of young 

participants is partly overlapping with the data already presented in the previous study by Brandi et al. 

(2014) (overlap of 17 young adults). The mean age of included elderly participants was 67 years (age range 

55 to 74 years) and 25 years (age range 21 to 28 years) of the young participants. All had normal or 

corrected-to-normal vision and no history of neurological or psychiatric disorders. The participants were 

all right-handed, as measured by the Edinburgh Handedness Inventory (Oldfield, 1971). 

Experimental set up and design 

The so-called “Tool-Carousel” was used to present real reachable and usable stimuli to the participants. 

In this study three different experimental factors were of interest: the type of object the participants had 

to manipulate, the type of manipulation done with the object and the age of the participants. The stimuli 

included ten different tools known from daily life and ten neutral objects. The color and shape of the 

neutral objects handles was chosen to match the different tools. The neutral objects were bar-shaped and 

for simplification, we refer to this stimuli set as “bars”. The manipulation the participants had to perform 

was to either use the objects or to transport (meaning to grasp, lift and to return) them. The bars were 

marked in blue on one end and in order to use the bars, the blue end of the object had to be placed in a 
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blue marked hole on the workspace. The tools had to be used as known from daily life experience. This 

resulted in 4 main conditions for both groups: 1) tool use; 2) tool transport; 3) bar use; 4) bar transport. 

The experiment consisted of 200 trials which included 40 control trials (no stimulus or task cue was 

presented) and 160 condition trials. The time-course of a trial was separated in two different action 

phases: The planning phase, starting when the object and the cue for the task were visible to the 

participant; on the other hand the execution phase, which covered the actual movement of the action. 

The start of the execution phase was signaled with a green light, starting 2-6 sec after the planning phase 

and had a duration of 4 sec. Participants were asked to perform the task only when and while the green 

light was on. This action signal turned on only in half of the trials. The trials in which no green light was 

turned on were used to analyze the planning phase of an action. In these trials no movement occurred, 

which enabled us to analyze the planning of an action without any movement related activations. The 

analysis of the execution phase included the period in which the green light was turned on and the actual 

movement occurred. Because the onset of the green light varied, the participants could not predict if they 

would have to perform the action or not when they saw the stimuli.  

We conducted one experimental run in which the participants had to use their non-dominant left hand to 

perform the task. Choosing only the non-dominant hand had two reasons: First, testing two runs, one 

with right-hand actions the other with left-hand actions, occurred to be too uncomfortable and 

exhausting for the elderly participants. Second, in our previous study we showed that real actions 

performed with the non-dominant left hand recruit the very same network as actions with the dominant 

right hand (except for the sensorimotor cortices). The only difference lies in the strength of activation, 

which is increased during actions with the non-dominant hand (Brandi et al., 2014). So the left hand was 

chosen to better differentiate between brain activity involved in planning and execution of object 

manipulations expected primarily in the left brain and primary motor activity in the contralateral right 

brain. In addition, the findings about the neural basis of real object manipulations in elderly can better be 

related to research on patients suffering from apraxia, who mostly use their non-paretic ipsi-lesional hand 

for actions of daily living.  

Procedure 

All participants had to answer a questionnaire before the start of the experiment. The questionnaire was 

used to check the participants’ knowledge about the objects in the experiment and their familiarity with 

the usage. The maximum score testing the tool knowledge was 70 points (max. 7 points for each object). 

The maximum score of the questions testing the tool familiarity was 130 (max. 13 points for each object), 

which would indicate that all tools were used daily during the participant’s job and daily routines. A score 

of 0 would mean that the object has never been used before by the participant and that the usage is not 
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familiar to them. Two sample t-tests were calculated to measure possible differences in the scores 

between groups. 

The tasks and cues of the experiment were explained to the participants with video instructions. All 

conditions were trained in the fMRI scanner until the participants were familiar with the tasks and 

capable to perform them. The Presentation Software (Neurobehavioral Systems, Inc.) was used to give 

acoustic instructions via headphones to the operator in the scanner room. The task cues and stimuli were 

exchanged by the operator for each trial and the “Tool-Carousel” was turned on the acoustic cues. 

A camera recorded the workspace and hands of the participants during the whole experiment for 

behavioral evaluations. 

Video analysis 

The captured performance of the participants was rated by counting the errors made by the participants. 

We differentiated between three error types: 1) general task errors in which the task was not performed 

according to the cue; 2) grip errors - the objects were not grasped as shown in the instruction or known 

from daily routines; 3) movement errors - the movement of the action was not performed fully or 

according to the instructions. 

Additionally the videos were analyzed with a motion detector (MATLAB based; Release 2012a, The 

MathWorks, Inc., Natick, Massachusetts, United States) to evaluate the duration of each movement of 

the participants from both age groups and the reaction times between the onset of the green light and the 

start of movement. 

Of main interest were differences between the age groups, therefore two sample t-tests were calculated to 

measure possible differences. 

MRI measurement 

The MRI measurements were performed on a Siemens (Erlangen, Germany) 3 Tesla Verio MRI scanner. 

T1-weighted anatomical images were acquired with the MP-RAGE (magnetization-prepared rapid 

acquisition gradient echo) sequence. The blood oxygenation-level-dependent (BOLD) echo-planar 

images were measured using a T2*-weighted gradient echo sequence with the repetition time TR = 2000 

ms, echo time TE = 30 ms, Field of View FoV = 192 mm, flip angle α = 90°, matrix = 64 × 64, slices = 

35, slice thickness = 3 mm and voxel size = 3mm × 3mm × 3mm.  

 fMRI Data Analysis 

The entire data analysis was performed with SPM8 (Statistical Parametric Mapping software; The 
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Wellcome Department of Imaging Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk). The fMRI 

data was preprocessed by using a slice time correction, realigning the images to correct for movement 

artifacts, coregistering the anatomical and normalizing all images to standard space (Montreal 

Neurological Institute, see SPM software). Thereafter, the functional data sets were smoothed with a 

Gaussian kernel of 8 mm for group analysis.  

The statistical analysis was done first on a single subject first level and then at group level in a second 

level factorial analysis. A general linear model (GLM) was calculated for each subject with 15 regressors 

including a separate regressor for all planning phases and the execution phases of the trials which 

included the action signal (green light) of all 4 condition respectively (12 regressors in total), a regressor 

for the control condition, one covering the duration of all movements and one regressor modeling the 

individual errors of the participants. Additionally the realignment movement parameters were entered 

into the model to correct for any motion related artifacts in both groups.  

The second level was analyzed separately for the planning and execution phase in a 2 x 2 x 2 factorial 

design with the factors object (tool and bar), task (use and transport) and group (elderly and young) in 

which the main effects of the factors object and task for each group separately and the main effect for the 

factor group are of most interest. The interactions object*group and task*group were also calculated to 

test dedifferentiation effects as it is described below. 

The Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) was used to label the 

activated brain areas. The graphical display was realized with the BrainNet toolbox (Xia et al., 2013) to 

show the statistical maps on 3D rendered brain models and with MRIcron (Rorden et al., 2007) to show 

them on a selection of 2D brain slices. 

Voxel based morphometry  

Brain atrophy is well-known in healthy aging and leads to decreased grey and white matter volumes. To 

review any structural changes in our sample and to control all functional results for structural alterations 

we conducted a voxel based morphometry analysis (VBM). To get the individual tissue volumes, the 

structural images of all participants were segmented into the three tissue types (grey matter, white matter 

and cerebral spinal fluid (CSF)) and the volumes were estimated with the help of the VBM 8 toolbox 

(Ashburner and Friston, 2000). The default options for a basic VBM analysis were chosen as suggested 

by the developers of the toolbox. The created grey matter segments, which were modulated for non-

linear components, were smoothed with an 8 mm kernel FWHM to enter the second level analysis. To 

find the brain areas in which the grey matter volume is related with age, a regression analysis with the 

covariate “age” was conducted.  
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In order to control for age-related structural differences in the functional analysis, a voxel-wise regression 

with the participants individual grey matter maps and the contrast images for the factorial analysis was 

conducted before the images entered the previously mentioned factorial second level analysis (Bäuml et 

al., 2014). Therefore any group effects in the analysis of the functional data are corrected for effects of 

atrophy on the grey matter activation due to healthy aging.  

Testing compensatory effects in the elderly – A multiple regression analysis 

Previous studies (Heuninckx et al., 2008) showed that good performance in a simple motor task 

positively correlates with the level of brain activation in elderly individuals and interpret this as a 

compensatory mechanism. To test, if this theory can also be applied to complex actions including object 

manipulations, we used a within-group multiple regression following the approach of Heuninckx et al. 

(2008). The subjects individual contrast images comparing all conditions versus the control condition 

entered the multiple regression analysis. The behavioral measure describing the performance and the age 

of the participants (the latter as a covariate of no interest) entered the analysis. The performance score 

comprised the total amount of errors of the different error types each participant made. This total error 

score yielded a sufficiently broad distribution varying between 0 and 7 errors within the group of elderly 

subjects. Therefore a negative correlation between the performance score and the activation strength 

indicates an increased brain activity with better performance, which can be interpreted as a compensatory 

mechanism. The multiple regression analysis was done for the planning and execution phase separately in 

a whole brain analysis. To illustrate the relation of behavior and brain activity, the activation data of the 

brain areas resulting from the multiple regression analysis of the elderly were extracted with the Marsbar 

toolbox as 6 mm spheres around the MNI coordinate of the peak voxels (Brett et al. 2002) and plotted in 

relation to the performance. In order to compare these findings with the young adults the activation data 

of the same brain areas was also extracted and plotted from the young adults. Pearson correlation 

coefficients were calculated for all brain areas for both groups, to conduct a statistical comparison. A 

Fisher`s Z-transformation of the correlation coefficients was performed to calculate the Z-difference and 

evaluate statistical differences of the correlation coefficient between groups. 

Testing dedifferentiation effects in the elderly – A region of interest analysis  

In order to test if brain areas in the elderly are less selective for a given task, the interaction object*group 

and task*group were calculated. A significant interaction could result, if the young adults show a higher 

activation difference between the levels of different factors, than the elderly adults. Such finding can be 

interpreted as a dedifferentiation effect (Grady, 2012). Because a whole brain analysis is not a sensitive 

method to test these effects, we additionally conducted a region of interest (ROI) analysis which reduces 

the number of voxels tested and limits the analysis to relevant brain areas. We chose to examine 
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dedifferentiation effects in regions that were shown before to be selective for the manipulation of tools 

and bars and the task use and transport in a whole brain analysis in healthy young adults. The exact 

anatomical locations of the ROIs were selected from our previous work and included the lateral occipital 

complex (LOC; MNI coordinates: x = -42, y = -70, z = 7 ), middle temporal gyrus (MTG; MNI 

coordinates: x = -60, y = -61, z = 10 ), supramarginal gyrus (SMG; MNI coordinates: x = -60, y = -25, z 

= 46 ), superior parietal lobe (SPL; MNI coordinates: x = -18, y = -67, z = 52 ), superior parietal occipital 

complex (SPOC; MNI coordinates: x = -9, y = -76, z = 34 ), middle occipital gyrus (MOG; MNI 

coordinates: x = -36, y = -85, z = 25 ), IPL (MNI coordinates: x = -57, y = -31, z = 52 ), dorsal premotor 

cortex (PMd; MNI coordinates: x = -21, y = 8, z = 64 ), ventral premotor cortex (PMv; MNI 

coordinates: x = -48, y = 5, z = 28) and the insula (MNI coordinates: x = -30, y = 20, z = 4 ) (Brandi et 

al., 2014). Several other studies have reported these brain areas to be distinctively active for different 

types of actions in young adults (Culham et al., 2003; Vingerhoets et al., 2010; Gallivan et al., 2013; 

Monaco et al., 2013). In our previous study the chosen ROIs showed higher activations for actions with 

tools compared to bars and a subset of regions (SPL, PMd, SPOC, LOC) also showed higher activity for 

the condition use compared to transport in young adults. To extract the data from these brain areas, 

ROI-masks were creates as 6 mm spheres around the given MNI coordinate with the toolbox Marsbar 

(Brett et al., 2002). Marsbar was also used to extract the data from each individual participant, which then 

entered a factorial analysis (IBM SPSS Statistics; IBM Corp. Released 2012. IBM SPSS Statistics for 

Windows, Version 21.0. Armonk, NY: IBM Corp) including the factors object and task as within-subject 

and the factor group as a between-subject variable and tested for object*group and task*group 

interactions (comparable to the analysis by Park et al., 2004).  

Laterality Index 

In order to measure and test the lateralization of the analyzed networks, the laterality index (LI) was 

calculated with the LI toolbox (Wilke and Lidzba, 2007) for each subject and all conditions, separately. A 

t-test was performed for each group to evaluate if the LIs of all conditions are significantly different form 

0 (a LI of zero would indicate a symmetrical activation pattern). The analysis was performed for the 

frontal, parietal, temporal, occipital and sensorimotor cortices separately. Additionally two-sample t-tests 

were conducted to evaluate possible group differences in the lateralization of brain networks. 

 



43 
 

 

Results 
 

Behavioral results: Questionnaire – Tools are comparably known across groups 

The questionnaire aimed to measure the participants object knowledge and their familiarity of object 

usage to make sure all tools, but not the bars, were known by the participants. Additionally, it was of 

interest if the scores of the two groups differ. The scores of the questionnaire and p-values of the group 

comparisons are listed in Table 1. The data demonstrate that both age groups knew all tools and were 

similarly familiar with their usage, while both groups did not know nor were familiar with the bars.  

Table 1: Behavioral scores and statistics of the comparisons between groups 

 

Tool 

Knowledge 

Tool 

Familiarity 

Score neutral 

Object 
Mistakes Grip 

Mistakes 

Movement 
Task error Mistakes total 

Movement 

Duration 
Reaction Time 

  median 

p-

value median 

p-

value median 

p-

value median 

p-

value median 

p-

value median 

p-

value median 

p-

value 

mean 

[sec] 

p-

value 

mean 

[sec] 

p-

value 

Elderly 

70  

(66-70)  0.434 

98  

(68-125) 0.108 

0  

(0-2) 0.8 

1.5  

(0-3) 0.012* 

1  

(0-3) 0.115 

1 

(0-6) 0.018* 

4  

(0-7) 0.0005* 

4.144 

(±0.453)  0.648 

0.557 

(±0.192) 0.158 

Young 

70  

(66-70)  

 

94  

(73-111) 

 

0  

(0-3) 

 

0  

(0-3) 

 

0  

(0-3) 

 

0 

(0-2) 

 

1  

(0-5) 

 

4.105 

(±0.485)  

 

0.517 

(±0.098) 

 The range of all scores is given in parentheses behind the mean value. Indicated with a star (*) are significant p-values. 

Behavioral results: Video analysis – More grip and task errors in elderly adults 

In the video analysis the performance of the participants and the movement duration and reaction times 

were measured and tested for group differences. The median error scores of the grip errors, movement 

errors, task errors and the total amount of errors are listed in Table 1 together with the p-value of the 

group comparison. The elderly individuals made significantly more grip and task errors compared to the 

young adults which also resulted in a significant difference in the total error score.  

The results of the motion detection analysis are also listed in Table 1 and show that both groups showed 

similar reaction times and took a similar amount of time to perform the actions.  

Voxel Based Morphometry – A typical atrophy pattern in elderly adults 

In order to measure differences in the grey matter volume between the groups, a VBM analysis and a 

regression analysis were calculated. This analysis evaluates the differences in brain structure and detects 

those brain areas in which decreased grey matter volume is associated with higher age. Figure 1 shows the 

tissue volumes of white, grey matter and the CSF of both groups. Two sample t-tests revealed that the 

grey matter volume is significantly smaller (p = 0.0003) and that the CSF is significantly larger (p < 
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0.0001) in the elderly adults. The results of the regression analysis are shown in Figure 2 at a threshold of 

p < 0.05 including a FWE correction for multiple comparisons. Table 2 lists all brain areas which grey 

matter volume show a significant negative relation with age, meaning a decreased volume with increased 

age (Good et al., 2001).  

Brain areas with the highest age dependent grey matter volume decrease are the insula cortex, inferior 

frontal gyrus (pars. orbitalis), inferior frontal gyrus (pars. triangularis) and the SMG in the left hemisphere 

and the putamen and insula in the right hemisphere. In general, a correlation can be seen in all brain 

lobes in both hemispheres also in brain areas which are known to be relevant in object manipulations. 

Because the differences in grey matter volume could confound the functional activation analysis, the 

effects of varying grey matter volumes are regressed out as described in the methods section. Therefore, 

the following results are not confounded with effects of the age-related grey matter volume decreases.  

 

Figure 1: Tissue volume of elderly (blue) and young (red) for grey matter (GM), white matter (WM), cerebral spinal 

fluid (CSF) and total volume. The star (*) indicates a significant difference between the group. 
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Figure 2: Statistical map of the VBM regression analysis shown on transversal brain slices (z = -40, -30, -20, -10, 0, 

10, 20, 30, 40, 50 and 60). Shown are brain areas which decreased grey matter volume correlates with increasing age 

at a threshold of p < 0.05 (FWE corrected). 

Table 2: Results of the VBM regression analysis including the anatomical locations and p-values of the peak voxels. 

Reported are only brain areas with p < 0.05 (FWE corrected). 

 

Brain Areas - Left Hemisphere p-value Brain Areas - Right Hemisphere p-value 

 

Frontal Lobe 

  

Frontal Lobe  

  

Anterior Cingulate Cortex 0.0082 

  

Anterior Cingulate Cortex 0.0234 

  

Inferior Frontal Gyrus 0.0022 

  

Inferior Frontal Gyrus - PMv 0.0146 

  

Inferior Frontal Gyrus - PMv 0.0124 

  

Inferior Frontal Gyrus (pars. Orbitalis) 0.0084 

  

Inferior Frontal Gyrus (pars. Orbitalis) 0.0178 

  

Midcingulate Cortex 0.0010 

  

Midcingulate Cortex 0.0313 

  

Orbital Gyrus 0.0019 

  

Middle Frontal Gyrus 0.0337 

  

Rolandic Operculum 0.0050 

  

Orbital Gyrus 0.0027 

  

Superior Frontal Gyrus 0.0104 

  

Superior Frontal Gyrus 0.0049 

 

Insula Cortex 

 

 

Insula Cortex 

   

Insula 0.0054 

  

Insula 0.0030 

 

Occipital Lobe 

 

 

Parietal Lobe 

   

Middle Occipital Gyrus 0.0006 

  

Inferior Parietal Lobe 0.0186 

 

Parietal Lobe 

 

  

Postcentral Gyrus 0.0005 

  

Angular Gyrus 0.0026 

  

SupraMarginal Gyrus 0.0038 

  

Inferior Parietal Lobe 0.0016 

 

Temporal Lobe 

   

Postcentral Gyrus 0.0195 

  

Fusiform 0.0279 

  

Precuneus 0.0007 

  

Middle Temporal Gyrus 0.0160 

  

SupraMarginal Gyrus 0.0100 

  

Superior Temporal Gyrus 0.0297 

 

Temporal Lobe 

 

  

Superior Temporal Pole 0.0155 

  

Fusiform 0.0169 

      

Middle Temporal Gyrus 0.0029 

      

Superior Temporal Gyrus 0.0001 

      

Superior Temporal Pole 0.0068 

     

Subcortical 

 

      

Putamen 0.0023 
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Within-subject analysis for factor object and task in elderly and young during planning and execution  

To characterize those brain areas relevant for planning and executing complex actions with objects for 

both age groups, the main effects for the factors object and task were calculated by comparing the 

conditions tool vs. bar and use vs. transport, respectively. This was done for both groups and for 

planning and execution phase separately. First presented are the results of the planning phase in elderly 

and young adults. Figure 3 A shows the brain maps of the elderly on the left and the young adults on the 

right for the two mentioned contrasts. Results are shown at a threshold of p < 0.05 including a FWE 

correction at the cluster-level. The calculated contrast tool vs. bar shows a left lateralized activation 

pattern for both age groups including occipital, temporal and parietal regions. The LOC, MOG, SMG 

and parts of the anterior intraparietal area (AIP) show a significant difference in the activation strength in 

both elderly and young adults. The left and right SPL survive the threshold only in young adults. 

Comparing the conditions use vs. transport resulted in a significant difference only in the left PMd in the 

elderly adults. In the young adults no significant voxels survived the applied threshold of p < 0.05 

including a FWE correction at the cluster-level (Figure 3 A lower panel on the right). A list of the 

anatomical locations of the peak voxels are given in Table 3 together with the p-values.  

The same analysis was performed for the execution phase and is shown in Figure 3 B also at a threshold 

of p < 0.05 including a FWE correction at the cluster-level. The comparison tool vs. bar reveals a similar 

pattern of activation in both groups with significant differences in clusters mainly of the left occipital, 

temporal, parietal, frontal and insula cortex. As also obvious for the planning phase, elderly show fewer 

activated areas at the given threshold. The MOG, parts of the SPL, PMd and the middle frontal gyrus 

(MFG) do not show a significant difference between the manipulations of tools compared to bars in 

elderly above threshold. The comparison use vs. transport for action execution shows no significant 

difference for the elderly individuals but activations in the LOC, SPL, poscentral gyrus (PoG), precentral 

gyrus (PrG), aIPA and PMd in the young adults (Fig 3 B lower panel on the right). The anatomical 

locations of these results are listed in Table 3 together with the p-values. 
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Figure 3: Whole brain results for the main contrast of the factor object and task for both age groups separately. A) 

The activation map of the planning phase for the contrast tool vs. bar is shown in the upper panel for the elderly on 

the left and for the young adults on the right side. In the lower panel the activation map for the contrast use vs. 

transport is shown for the elderly on the left side. The young adults show no significant voxels at the given 

threshold. B) The activation map of the execution phase for the contrast tool vs. bar is shown in the upper panel 

for the elderly on the left and the young adults on the right side. In the lower panel the activation map for the 
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contrast use vs. transport is shown for the young adults on the right side. The elderly adults show no significant 

voxels at the given threshold. All results of Figure 3 are shown at a threshold of p < 0.05 (FWE corrected at the 

cluster-level). The color scale under the brain images indicates the range of the T-values from low values in dark red 

to high values in white. Abbreviations: inferior parietal lobe (IPL), lateral occipital complex (LOC), middle frontal 

gyrus (MFG), middle temporal gyrus (MTG), middle occipital gyrus (MOG), superior parietal occipital complex 

(SPOC), dorsal premotor cortex (PMd), ventral premotor cortex (PMv), supramarginal gyrus (SMG), superior 

parietal gyrus (SPL). 

Table 3: Results of the factorial analysis for both groups during planning and execution phase including the 

anatomical locations and p-values of the peak voxels. Reported are only those brain areas with p < 0.05 (FWE 

corrected at a cluster-level). 

   
Planning Phase Execution Phase 

   
Tool vs. Bar 

Use vs. 

Transport 
Tool vs. Bar 

Use vs. 

Transport 

  
Brain Areas Elderly Young Elderly Elderly Young Young 

 Left Hemisphere  
      

 
 Frontal Lobe  

      

  
 Inferior Frontal Gyrus - PMv  

   
0.0000 0.0000 

 

  
 Inferior Frontal Gyrus (pars. Triangularis)  

   
0.0000 0.0025 

 

  
 Midcingulate Cortex  

    
0.0001 

 

  
 Middle Frontal Gyrus  

    
0.0025 

 

  
 Precentral Gyrus  

    
0.0000 0.0020 

  
 Rolandic Operculum  

   
0.0000 

  

  
 Superior Frontal Gyrus  

    
0.0001 

 

  
 Superior Frontal Gyrus - PMd  

  
0.0094 

 
0.0001 0.0020 

  
 Supplementary Motor Area  

  
0.0094 

 
0.0001 

 

 
 Insula Cortex  

      

  
 Insula  

   
0.0000 0.0000 

 

 
 Occipital Lobe  

      

  
 Inferior Occipital Gyrus  0.0000 

  
0.0001 0.0010 0.0136 

  
 Inferior Occipital Gyrus - LOC  0.0000 0.0000 

  
0.0010 0.0136 

  
 Lingual Gyrus  0.0000 0.0000 

    

  
 Middle Occipital Gyrus  0.0000 0.0000 

 
0.0001 0.0010 0.0136 

 
 Parietal Lobe  

      

  
 Anterior Intraparietal Area  

 
0.0000 

 
0.0000 

  

  
 Inferior Parietal Lobe  0.0057 0.0000 

 
0.0000 0.0000 0.0004 

  
 Postcentral  

    
0.0000 

 

  
 Postcentral Gyrus  

   
0.0000 

  

  
 Precuneus  

   
0.0000 0.0000 0.0004 

  
 Superior Parietal Gyrus  

 
0.0000 

 
0.0000 0.0000 

 

  
 Superior Parietal Lobe  

 
0.0000 

   
0.0004 

  
 Superior Parietal Lobe - SPOC  

 
0.0000 

 
0.0000 0.0000 0.0004 
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Planning Phase Execution Phase 

   
Tool vs. Bar 

Use vs. 

Transport 
Tool vs. Bar 

Use vs. 

Transport 

  
Brain Areas Elderly Young Elderly Elderly Young Young 

  
 SupraMarginal Gyrus  0.0057 

  
0.0000 0.0000 

 

 
 Temporal Lobe  

      

  
 Fusiform Gyrus  0.0000 0.0000 

    

  
 Inferior Temporal Gyrus  0.0000 

  
0.0001 

  

  
 Middle Temporal Gyrus  0.0000 0.0000 

 
0.0001 0.0010 0.0136 

  
 Superior Temporal Gyrus  

   
0.0000 

  

  
 Superior Temporal Pole  

    
0.0000 

 

 
 Subcortical  

      

  
 Amygdala  

   
0.0000 

  

  
 Hippocampus  

   
0.0000 

  

  
 Pallidum  

   
0.0000 

  

  
 Putamen  

   
0.0000 

  

  
 Thalamus  

   
0.0000 

  

 Right Hemisphere  
      

 
 Frontal Lobe  

      

  
 Supplementary Motor Area  

    
0.0001 

 

 
 Occipital Lobe  

      

  
 Calcarine Gyrus  

 
0.0002 

 
0.0465 

  

  
 Inferior Occipital Gyrus  

   
0.0465 

  

  
 Middle Occipital Gyrus  0.0007 

  
0.0465 

  

 
 Parietal Lobe  

      

  
 Superior Parietal Lobe  

 
0.0120 

    

  
 Superior Parietal Lobe - SPOC  

 
0.0120 

    

 
 Temporal Lobe  

      

  
 Fusiform Gyrus  

 
0.0198 

    

 

Group comparison of object manipulations during planning and execution – Differences in activation 

strength for both phases between groups 

One main focus of this study was to evaluate possible age-related difference between the groups. 

Therefore we also conducted a direct comparison of the elderly and young adults including all 

experimental conditions during action planning and execution, respectively. Figure 4 A shows the 

activation maps of those brain regions with higher activation strengths in elderly compared to the young 

adults during action planning in the upper panel on the left. These brain areas include the left prefrontal 

cortex (in the MFG), left and right inferior frontal gyrus (IFG, PMv) in the PMv, PrG, IPL, SMG, SPOC, 

MTG and LOC. The reverse contrast did not reveal any significant results at the given threshold (p < 

0.05, FWE corrected at cluster-level) as indicated in Figure 4 A on the right upper panel.  
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The same was analyzed for the execution phase and resulted in significant activation differences only in 

the comparison young vs. elderly (Figure 4 A lower panel on the right). Mainly frontal brain areas, the 

cingulate gyrus, sensorimotor cortices and SPL showed higher activations in young adults during action 

execution compared to the elderly. The reverse contrast did not reveal any significant results as indicated 

in Figure 4 A in the lower panel on the left. The location of the peak voxels including the p-values of the 

group comparisons are listed in Table 4. 

 

Figure 4: Results of the group comparison for both planning and execution phase and the comparison between 

phases within the group. A) Activation maps for the group comparisons elderly vs. young and young vs. elderly for 

the planning phase in the upper panel and the execution phase in the lower panel. The activation maps are shown 

on sagittal, coronal and transversal brain slices. The slice numbers (in MNI space) are indicated below the brain 

slice. B) Activation maps for the comparison between phases (planning phase vs. execution phase on the left side 

and execution phase vs. planning phase on the right side) within each age group. The results of the elderly are 
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shown in the upper and the results of the young adults in the lower panel. All results of Figure 4 are shown at a 

threshold of p < 0.05 (FWE corrected at the cluster-level). The color scale under the brain images indicates the 

range of the T-values from low values in dark red to high values in white. 

In order to evaluate possible reasons for these group differences for planning and execution, we 

conducted another factorial analysis with the factor phase (including the level planning phase and 

execution phase) and the factor group. This analysis enabled us to examine differences between phases 

within the groups which might be related to the presented group comparison results. The activation maps 

of the comparisons planning phase vs. execution phase and the reverse contrast for the elderly adults are 

shown in Figure 4 B in the upper panel at p < 0.05 FWE corrected at the cluster-level. Only the contrast 

planning phase vs. execution phase revealed significant results at the given threshold in elderly adults. As 

in the previously described result of the comparison young vs. elderly, during action execution frontal 

brain areas, the cingulate gyrus, sensorimotor cortices and SPL showed a significant difference in the 

comparison planning phase vs. execution phase. Therefore, a possible reason for higher activations in the 

young adults during action execution is that elderly reduce the strength of activation during this phase 

compared to action planning. The same comparisons were done for the young adults and revealed 

significant differences only in the comparison execution phase vs. planning phase. The sensorimotor 

cortex, SMA and the basal ganglia show a significant difference in activation strength at p < 0.05 (FWE 

corrected at a cluster level) in Figure 4 B in the lower panel. A list of the anatomical location of all 

significant brain areas and the p-values are given in Table 4. 

Table 4: Results of group comparison during planning and execution phase, the multiple regression analysis and the 

comparison of phases within the groups. Included are the anatomical locations and p-values of the peak voxels. 

Reported are only those brain areas with p < 0.05 (FWE corrected at a cluster-level). 

   

Planning 

Phase 

Execution 

Phase 
Planning Phase 

Execution 

Phase 
Elderly Young 

Brain Areas 

Elderly 

vs. 

Young 

Young vs. 

Elderly 

Compensation 

Effect 

Compensation 

Effect 

Planning 

Phase vs. 

Execution 

Phase 

Execution 

Phase vs. 

Planning 

Phase 

 Left Hemisphere  
      

 
 Frontal Lobe  

      

  
 Anterior Cingulate Cortex  

 
0.0000 

  
0.0000 

 

  
 Inferior Frontal Gyrus - PMv  

 
0.0000 

  
0.0000 

 

  
Inferior Frontal Gyrus (pars. Orbitalis) 

   
0.0000 

 

  
Inferior Frontal Gyrus (pars. Triangularis) 0.0000 

  
0.0000 

 

  
 Midcingulate Cortex  

 
0.0000 

  
0.0000 0.0000 

  
 Middle Frontal Gyrus  0.0041 0.0000 0.0006 

 
0.0000 

 

  
 Orbital Gyrus  

    
0.0000 

 

  
 Posterior Cingulate Cortex  0.0000 

   
0.0000 

 

  
 Precentral Gyrus  0.0014 0.0000 

 
0.0466 0.0000 0.0000 

  
 Rolandic Operculum  

     
0.0000 
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Planning 

Phase 

Execution 

Phase 
Planning Phase 

Execution 

Phase 
Elderly Young 

Brain Areas 

Elderly 

vs. 

Young 

Young vs. 

Elderly 

Compensation 

Effect 

Compensation 

Effect 

Planning 

Phase vs. 

Execution 

Phase 

Execution 

Phase vs. 

Planning 

Phase 

  
 Superior Frontal Gyrus  0.0041 0.0000 

  
0.0000 

 

  
 Superior Frontal Gyrus (medial)  

 
0.0000 

  
0.0000 

 

  
 Supplementary Motor Area  

 
0.0000 

  
0.0000 0.0000 

 
 Insula Cortex  

      

  
 Insula  

    
0.0000 

 

 
 Occipital Lobe  

      

  
 Calcarine Gyrus  0.0000 

   
0.0000 

 

  
 Cuneus  0.0000 

     

  
 Inferior Occipital Gyrus  0.0000 

     

  
 Inferior Occipital Gyrus - LOC  0.0000 

     

  
 Lingual Gyrus  0.0000 

   
0.0000 

 

  
 Middle Occipital Gyrus  0.0000 

   
0.0000 

 

  
 Superior Occipital Gyrus  

    
0.0000 

 

 
 Parietal Lobe  

      

  
 Angular Gyrus  0.0000 

   
0.0000 

 

  
 Inferior Parietal Lobe  0.0000 0.0000 

  
0.0000 0.0000 

  
 Postcentral Gyrus  

 
0.0000 

  
0.0000 0.0000 

  
 Precuneus  0.0000 0.0000 

  
0.0000 

 

  
 Superior Parietal Lobe  0.0000 0.0000 

  
0.0000 

 

  
 Superior Parietal Lobe - pIPS  

  
0.0257 

   

  
 Superior Parietal Lobe - SPOC  

  
0.0261 

   

  
 SupraMarginal Gyrus  0.0000 

   
0.0000 0.0000 

 
 Temporal Lobe  

      

  
 Fusiform Gyrus  0.0000 

   
0.0000 

 

  
 Inferior Temporal Gyrus  0.0000 

     

  
 Middle Temporal Gyrus  0.0000 

     

  
 Superior Temporal Gyrus  0.0000 

    
0.0000 

 
 Subcortical  

      

  
 Caudate  

 
0.0000 0.0438 

 
0.0000 

 

  
 Putamen  

 
0.0000 

  
0.0000 

 

  
 Thalamus  0.0000 0.0000 

  
0.0000 

 

 Right Hemisphere  
      

 
 Frontal Lobe  

      

  
 Anterior Cingulate Cortex  

 
0.0000 

  
0.0000 

 

  
 Inferior Frontal Gyrus - PMv  0.0017 0.0000 

  
0.0000 

 

  
Inferior Frontal Gyrus (pars. Orbitalis) 0.0000 

  
0.0000 

 

  
Inferior Frontal Gyrus (pars. Triangularis) 0.0000 

  
0.0000 

 

  
 Midcingulate Cortex  

 
0.0000 

 
0.0012 0.0000 0.0000 
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Planning 

Phase 

Execution 

Phase 
Planning Phase 

Execution 

Phase 
Elderly Young 

Brain Areas 

Elderly 

vs. 

Young 

Young vs. 

Elderly 

Compensation 

Effect 

Compensation 

Effect 

Planning 

Phase vs. 

Execution 

Phase 

Execution 

Phase vs. 

Planning 

Phase 

  
 Middle Frontal Gyrus  0.0017 0.0000 0.0044 

 
0.0000 

 

  
 Orbital Gyrus  

    
0.0000 

 

  
 Posterior Cingulate Cortex  0.0000 0.0000 

  
0.0000 

 

  
 Precentral Gyrus  0.0017 0.0000 

 
0.0060 0.0000 0.0000 

  
 Rolandic Operculum  

 
0.0095 

  
0.0000 0.0303 

  
 Superior Frontal Gyrus  

 
0.0000 

  
0.0000 

 

  
 Superior Frontal Gyrus (medial)  

 
0.0000 

  
0.0000 

 

  
 Supplementary Motor Area  

 
0.0000 

  
0.0000 

 

 
 Insula Cortex  

      

  
 Insula  

 
0.0095 

  
0.0000 

 

 
 Occipital Lobe  

      

  
 Calcarine Gyrus  0.0000 

     

  
 Cuneus  0.0000 

  
0.0003 

  

  
 Inferior Occipital Gyrus  

    
0.0000 

 

  
 Lingual Gyrus  0.0000 0.0000 

 
0.0409 0.0000 

 

  
 Middle Occipital Gyrus  0.0000 

  
0.0248 

  

  
 Superior Occipital Gyrus  0.0000 

   
0.0000 

 

 
 Parietal Lobe  

      

  
 Angular Gyrus  0.0000 

   
0.0001 

 

  
 Inferior Parietal Lobe  0.0000 0.0000 

  
0.0001 

 

  
 Postcentral Gyrus  

 
0.0000 

  
0.0000 

 

  
 Precuneus  0.0000 0.0000 

 
0.0101 0.0000 

 

  
 Superior Parietal Lobe  0.0000 0.0000 

  
0.0000 0.0303 

  
 Superior Parietal Lobe - SPOC  

   
0.0004 

  

  
 SupraMarginal Gyrus  

 
0.0000 

  
0.0001 

 

 
 Temporal Lobe  

      

  
 Fusiform Gyrus  0.0000 

   
0.0000 

 

  
 Inferior Temporal Gyrus  0.0000 

   
0.0000 

 

  
 Middle Temporal Gyrus  0.0000 

   
0.0000 

 

  
 Middle Temporal Pole  

    
0.0000 

 

  
 Superior Temporal Gyrus  0.0000 0.0095 

  
0.0000 

 

  
 Superior Temporal Pole  

 
0.0095 

  
0.0000 

 

 
 Subcortical  

      

  
 Caudate  

 
0.0000 

  
0.0000 

 

  
 Putamen  

 
0.0000 

  
0.0000 

 

  
 Thalamus  

 
0.0000 

  
0.0000 
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Multiple regression analysis - Compensatory effects in the elderly 

To test possible age related compensators effects a multiple regression analysis was performed for the 

elderly which tests if performance is related to activation strength. This analysis was done for both 

planning and execution phase. The brain areas showing a significant negative correlation (meaning 

increased activation while performing fewer errors) are depicted in Figure 5 for the planning phase. A 

cluster in both the left and right middle frontal gyrus (MFG) reaching to the inferior frontal gyrus and 

PMv was found, as well as a small cluster in the area of the left parieto-occipital junction at the SPOC 

and the posterior part of the intraparietal sulcus (pIPS). The same analysis in the execution phase showed 

a significant negative correlation in the right SPOC, precuneus, posterior cingulate cortex and the right 

and left PrG (Figure 5). A list of the anatomical locations and p-values are given in Table 4. The graphs in 

Figure 5 C and D plot the number of errors in relation to the activation strength and illustrate the 

negative correlation in the elderly. The comparison of the correlation coefficients between groups 

revealed a significant difference between correlations of elderly and young adults (p < 0.05) for all brain 

regions during action planning (right MFG: p = 0.004; left MFG: p = 0.013 ; left SPOC: p = 0.025 ; left 

pIPS: p = 0.007), but not for action execution (right precuneus: p = 0.432; right posterior cingulate 

cortex: p = 0.946; right SPOC: p = 0.886; left precentral gyrus: p = 0.372; right precentral gyrus: p = 

0.988;).   

Region of interest analysis – Fine dedifferentiation effects in the elderly  

In order to test the dedifferentiation hypothesis for the whole brain, interactions between the factors 

group with object or task were calculated. Interactions in brain areas showing a higher difference between 

conditions in the young compared to the elderly were of interest. No significant interactions were found 

in the whole brain analysis for both action planning and execution. The ROI-analysis on the other hand, 

which included those areas, showing significant differences between conditions in the young adults in our 

previous study, revealed a dedifferentiation effect during action planning in the left SPL for the 

interaction object*group (F(1, 30) = 5.502; p = 0.026). In exact, this interaction is characterized by a 

higher activation difference between the condition tool and bar in the young (activation strength of 2.59 

[range 1.65 – 3.5] for the condition tool and 0.55 [range -0.33 – 1.43] for the condition bar) compared to 

the elderly (activation strength of 2.92 [range 1.98 – 3.87] for the condition tool and 1.95 [range 1.07 – 

2.84] for the condition bar). There was no significant interaction found in any of the other tested ROIs. 
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Figure 5: Results of the multiple regression analysis testing for compensatory effects in the elderly. A) Activation 

map showing significant negative correlations between the number of errors made and the activation strength 

during action planning in elderly adults at p < 0.05 (FWE corrected). B) Activation map showing significant 

negative correlations between the number of errors made and the activation strength during action execution in 

elderly adults at p < 0.05 (FWE corrected). C) The graphics plot the participant’s activation strength on the y-axis 

and the individual errors on the x-axis in red for the elderly and in blue for the young adults. Shown are the 

correlations between behavior and activation during action planning of the left and right MFG (labeled with 

number 1 and 2), the left SPOC (number 3) and the posterior part of intraparietal sulcus (number 4) D) The 

graphics plot the participant’s activation strength and the individual errors in red for the elderly and in blue for the 
young adults. Shown are the correlations between behavior and activation during action execution in the precuneus 

(number 5), the right SPOC (number 6), posterior cingulate cortex (number 9) and the left and right precentral 

gyrus (number 7 and 8). 

Laterality index - Similar left-sided lateralization in both groups 

To evaluate possible age related differences in the laterality of activated brain patters, the LI was 

calculated for each group and frontal, occipital, parietal, temporal and the sensorimotor cortex separately 

for each condition. The mean LI of both groups and the p–value of the t-test testing significant 

differences compared to zero are listed in Table 5. Similarly, as it already had been reported in young 
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adults (Brandi et al., 2014), the elderly show a significant left-sided lateralization in most conditions 

during the planning phase in the frontal, parietal, temporal and sensorimotor cortex. During action 

executions it is mostly the use conditions, which show a significant left sided lateralization in the frontal, 

occipital, parietal and temporal cortex. The two sample t-test testing for group differences did reveal a 

significant difference in lateralization between elderly and young only in the condition bar use in the 

occipital lobe during action planning with a stronger left-sided lateralization in the young adults (p = 

0.030) and bar use in the sensorimotor cortex during action execution with a stronger left-sided 

lateralization in the elderly (p = 0.048).  

Table 5: The mean LIs for all conditions, lobes and both groups for planning and execution phase including the p-

values of the t-test measuring the significance of laterality. 

   
Frontal Lobule   Parietal Lobule   

Temporal 

Lobule 
  Occipital Lobule   

Sensorimotor 

Cortex 
  

    Condition LI 
p-

value 
  LI 

p-

value 
  LI 

p-

value 
  LI 

p-

value 
  LI 

p-

value 
  

Planning 

Phase 
                                

 
Elderly Tool Use 0.390 0.001 * 0.557 0.000 * 0.318 0.007 * 0.039 0.744   0.308 0.038 * 

  
Tool Transport 0.508 0.000 * 0.622 0.000 * 0.480 0.000 * 0.133 0.232   0.533 0.000 * 

  
Bar Use 0.246 0.037 * 0.459 0.000 * 0.124 0.283   -0.028 0.820   0.127 0.364   

  
Bar Transport 0.406 0.000 * 0.371 0.006 * 0.296 0.012 * 0.012 0.914   0.173 0.276   

  
                                

 
Young Tool Use 0.331 0.002 * 0.562 0.000 * 0.370 0.003 * 0.095 0.434   0.585 0.000 * 

  
Tool Transport 0.454 0.000 * 0.436 0.003 * 0.297 0.036 * 0.056 0.653   0.440 0.004 * 

  
Bar Use 0.184 0.104   0.333 0.000 * 0.259 0.045 * 0.277 0.004 * 0.399 0.003 * 

  
Bar Transport 0.271 0.008 * 0.322 0.014 * 0.236 0.058 

 
0.070 0.613   0.340 0.013 * 

Execution 
Phase                 

 
Elderly Tool Use 0.242 0.017 * 0.360 0.033 * 0.546 0.000 * 0.476 0.005 * 0.125 0.455 

 

  
Tool Transport 0.010 0.940   0.331 0.056   0.236 0.152   0.243 0.156   0.249 0.093 

 

  
Bar Use 0.100 0.400   0.410 0.011 * 0.443 0.001 * 0.364 0.004 * 0.223 0.185 

 

 
 

Bar Transport -0.044 0.767   0.237 0.210   0.180 0.287   0.224 0.140   -0.101 0.526 
 

 
 

                                

 
Young Tool Use 0.472 0.000 * 0.561 0.000 * 0.602 0.000 * 0.691 0.000 * -0.103 0.464   

  
Tool Transport 0.139 0.138   0.357 0.033 * 0.330 0.051 

 
0.287 0.073   -0.117 0.322   

  
Bar Use 0.318 0.003 * 0.480 0.000 * 0.499 0.000 * 0.519 0.000 * -0.190 0.084   

  
Bar Transport -0.006 0.948   0.176 0.218   0.058 0.730   -0.046 0.767   -0.362 0.000 * 

Indicated with a star (*) are significant p-values. 
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Discussion 
 

Our current study aimed to compare the neural network of young and elderly adults which is responsible 

for processing the planning and execution of complex object manipulations and investigate possible 

underlying mechanisms. The neural basis of tool use has been studied before with the help of the “Tool-

Carousel” in young individuals (Brandi et al., 2014) and here we are able to show consistencies and 

alterations of this basic network in elderly adults to expand the understanding of neural processes in 

healthy aging but also to provide a close link to the neuroanatomical correlates of patients suffering from 

apraxia. 

Overall our results show that the main activation pattern for tool manipulations compared to 

manipulations of neutral objects is stable across age and includes the same activations in the IPL and 

ventral stream areas during action planning and additional activations in the SPL, PMv and insula cortex 

during action execution. Additionally, it can be stated that this network is strongly left lateralized in both 

age groups. Therefore the loss in lateralization as it is described in the HAROLD model (hemispheric 

asymmetry reduction in older adults) in the domains of episodic memory, working memory, perception 

and inhibitory control (Cabeza, 2002) cannot be directly applied to the process of tool use. Behaviorally 

we found no overall differences in the reaction time or the duration of movement between groups, 

showing that aging is not necessarily associated with slower task performances (Cicerale et al., 2014) and 

that the experimental timing was suitable for both groups.  

Next to these similarities we also found differences between groups on a structural, behavioral and neural 

level. As it has been shown in existing studies, we furthermore find a decreased grey matter volume and 

increased CSF volume in the elderly (Good et al., 2001; Seidler et al., 2010). Behaviorally, the strongest 

difference between groups can be found in the amount of errors made. Even though the elderly were 

able to perform the task in the given timeframe, they showed greater difficulties in performing the tasks 

correctly. They mainly showed problems in switching between conditions and performing the task as it is 

cued and in executing precise and accurate grip movements. Decreased task performance of the elderly 

has been reported before (Spreng et al., 2010) and is also known for different aspects of grasping actions 

(Diermayr et al., 2011; Noble et al., 2011; Vieluf et al., 2012). On the neural level we showed two major 

age-related findings: (i) The activation strength of several brain areas differ between the age groups for all 

conditions and between action phases (ii) the elderly show compensation effects in both planning and 

execution phase.  
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Age related differences in activation strength during planning and executing actions 

The difference in activation strength is seen both in action planning and execution as a result of the 

group comparison, but interestingly with a different direction in both phases. During action planning the 

elderly recruit a wider network including several brain areas which are relevant for actions with objects 

including clusters in the IPL, SMG, SPOC, MTG, LOC and also inferior frontal areas (PMv). 

Interestingly, looking at overall differences between groups in this comparison, we see a more bilateral 

activation pattern as it is described in the HAROLD model (Cabeza, 2002). This leads to the conclusion 

that task specific neural processes related to tool manipulations retain their laterality in elderly, but that 

the overall level of activation strength during planning of actions is bilaterally increased in aging.  

To our knowledge, not many age-related neuroimaging studies separated planning phases (without the 

movement) and execution phases (including the movement) and looked at both phases individually. 

Berchicci et al. (2012) conducted an EEG study on movement planning and also found prefrontal 

hyperactivity in elderly. Additionally, studies on motor imagery show an age-related increase in the overall 

brain activity (Saimpont et al., 2013). Interestingly, elderly adults recruit less resources during action 

execution compared to young, which is surprising considering several studies which find increased 

activation during motor acts in the elderly (Mattay et al., 2002; Heuninckx et al., 2008; Ward et al., 2008; 

Seidler et al., 2010). In general, decreased activation strength is no new finding in age studies and had 

been reported before in other cognitive domains (Spreng et al., 2010) but not for the processes of 

monitoring action execution. One possible reason for this discrepancy with the existing literature could 

be that previous studies looking at difference in motor tasks do not separate between both action phases 

and analyze simpler actions. To our understanding, the planning and execution of actions recruit similar 

brain areas, but process different elements of an action. During action planning the object and goal has to 

be recognized and the motor plan has to be created and prepared, while during the execution phase this 

plan is actually carried out, monitored and controlled to achieve a goal-directed movement. As measured 

in the control analysis comparing the activation strength of both phases within the two groups, we see 

that elderly show reduced activations during action execution. We hypothesize that in the elderly the 

neural recruitment of relevant resources is strongly shifted to the planning phase in order to prepare the 

execution of complex actions. This indicates that the planning phase of an action is highly important for 

elderly adults to perform object manipulations and it is therefore very interesting, that similar areas which 

have an increased activation also show a relation to behavioral scores, as it will be discussed in the 

following section.  
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Compensatory effects in the elderly during action planning and execution 

The often found increase of activations in the elderly has been explained by a compensatory effect in 

both the cognitive (Reuter-Lorenz et al., 2000; Vallesi et al., 2011) and the motor domain (Ward, 2006; 

Heuninckx et al., 2008) and results in a positive relation between good performance and increased 

activity. We also find this outcome in our study selectively for elderly during action planning. Here the 

left pIPS, SPOC and both left and right MFG/IFG all indicate a compensatory effect and also show 

close proximity and overlap with those regions with increased brain activations mentioned earlier. 

Especially bilateral compensatory effects in the frontal lobe have been reported before in perception, 

executive functions (Spreng et al., 2010) but also in motor tasks (Heuninckx et al., 2008) and its activation 

seems to have a strong influence on the performance of the elderly. An increased activity associated with 

fewer errors is also seen in the SPOC, which is known to be a brain region related to reaching and 

grasping actions (Gallivan et al., 2009) which often show age-related changes in the elderly (Gilles and 

Wing, 2003; Diermayr et al., 2008; Noble et al., 2011; Vieluf et al., 2012). It seems that the MFG, IFG 

and SPOC are crucial brain areas with compensatory abilities that have a strong relation to behavioral 

performance in elderly and might have a key role in aging-related cognitive and movement impairments.  

Fine Dedifferentiation effects in elderly adults 

Dedifferentiation is mainly characterized by decreased distinctiveness in brain activations for tasks in 

which young adults show selective activations in specific brain areas. It is hypothesized that different 

neural processes rely on the same structures in elderly while they are differentiated in the neural activation 

patterns in young adults (Li et al., 2001; Park et al., 2004; Carp et al., 2011). We tested this hypothesis by 

looking at the interactions of the two experimental factors object and task with the factor age to see if the 

activation differences between conditions are significantly lower in the elderly. The whole brain analysis 

showed no significant interaction effects and we can speculate that in our case the concept 

dedifferentiation is of minor importance concerning object manipulations. Only a more sensitive analysis 

revealed neural dedifferentiation for the factor object in the superior parietal lobe which is a region 

relevant for reaching and grasping movements as well as the online control of object manipulations 

(Karnath and Perenin, 2005; Heim et al., 2012; Brandi et al., 2014). Object-identity related 

dedifferentiation in SPL during action planning might lead to a limited ability in elderly to form object 

specific reaching and grasping plans which might lead to an altered grasping behavior (Cicerale et al., 

2014).  

 

Taken together we see that neural age-related differences during object manipulations include a difference 

in the general activation strength, with a higher level of recruitment in action planning and lower 

activations during the execution of actions in the elderly. Age-related compensatory mechanisms are 
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present and especially structures of the inferior frontal lobe and the superior parietal occipital complex 

show increased activations during action planning and also a correlation between performance and 

activation strength. It can be speculated, that atrophy in these brain areas or other severe incidences like 

stroke, could have a severe impact on behavior due to a decreased ability to compensate for age-related 

deficits in those individuals.  
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The Tool in the Brain: Apraxia in 
ADL. Behavioral and Neurological 
Correlates of  Apraxia in Daily Living 

 

The conceptual understanding, sequencing and spatio -temporal processing of tool use are 

represented by characteristic brain networks which are affected by lesions in patients with left 

brain damage.  

 

A literature review of the behavioral deficits and neural basis in activities of daily living (ADL) in patients 

with apraxia and action disorganization syndrome titled “The tool in the brain: apraxia in ADL. 

Behavioral and neurological correlates of apraxia in daily living.”, written by Marta Bieńkiewicz, Marie-

Luise Brandi, Georg Goldenberg, Charmayne Hughes and Joachim Hermsdörfer, was published in the 

journal Frontiers in psychology in 2014. The review covers behavioral studies on patients with brain 

damage and differentiates three aspects of actions and activities which are impaired in brain damaged 

patients. The impairments include the conceptual understanding of tool use, the sequencing of multi-step 

actions and the spatio-temporal organization of tool use. The neural basis of these aspects in healthy 

individuals and the lesions associated with erroneous tool use actions in patients are summarized as well 

in this review. The latter aspect was reviewed and written by the author of this thesis and is therefore of 

main interest in the later discussion. 

Contributions:  

The author of this thesis is a coauthor of the review. M.B., M.L.B., G.G., C.H. and J.H. formulated the 

concept and focus of the review. M.B., M.L.B., G.G., and J.H. wrote the review.  

M.L.B. wrote part of the review including the sections “The Neural Basis of ADL”, “Healthy Adult 

Studies” “Action Sequencing” “Conceptual Knowledge of Tool Use”, “Spatiotemporal Organization of 

Movements”, “Summary of the functional Imaging Healthy Adults section” and “Lesion Analysis in 

Patients with Brain Damage”.   
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Humans differ from other animals in the way they can skilfully and precisely operate or

invent tools to facilitate their everyday life. Tools have dominated our home, travel and

work environment, becoming an integral step for our motor skills development. What

happens when the part of the brain responsible for tool use is damaged in our adult

life due to a cerebrovascular accident? How does daily life change when we lose the

previously mastered ability to make use of the objects around us? How do patients suffering

from compromised tool use cope with food preparation, personal hygiene, grooming,

housework, or use of home appliances? In this literature review we present a state of the art

for single and multiple tool use research, with a focus on the impact that apraxia (impaired

ability to perform tool-based actions) and action disorganization syndrome (ADS; impaired

ability to carry out multi-step actions) have on activities of daily living (ADL). Firstly, we

summarize the behavioral studies investigating the impact of apraxia and other comorbidity

syndromes, such as neglect or visual extinction, on ADL. We discuss the hallmarks of

the compromised tool use in terms of the sequencing of action steps, conceptual errors

committed, spatial motor control, and temporal organization of the movement. In addition,

we present an up-to-date overview of the neuroimaging and lesion analyses studies that

provide an insight into neural correlates of tool use in the human brain and functional

changes in the neural organization following a stroke, in the context of ADL. Finally we

discuss the current practice in neurorehabilitation of ADL in apraxia and ADS aiming at

increasing patients’ independence.

Keywords: apraxia, action disorganization syndrome (ADS), activities of daily living (ADL), tool use, cerebrovascular

accident (CVA), quality of life, stroke patients

INTRODUCTION

Left brain damage caused by ischemic or hemorrhagic stroke

is the most frequent neurological correlate of apraxia (Golden-

berg, 2013). However, features of apraxic behavior can be also

observed in numerous other neurodegenerative disorders (such

as Parkinson’s disease, Alzheimer’s disease or posterior cortical

atrophy; Bohlhalter and Osiurak, 2013) or occur as an effect of

anoxia (Sirigu et al., 1995) and herpes encephalitis (Sirigu et al.,

1991). Apraxic behavior in tool use is primarily attributed to the

impaired or lost access to the tool related knowledge, concepts of

use and problem solving (Goldenberg, 2013). Patients frequently

show compromised ability to carry on everyday activities and often

show action disturbances leading to safety hazards after dismissal

from hospital units (Hanna-Pladdy et al., 2003). Such slips might

involve attempts to use a knife in a wrong orientation to cut a

slice of bread, bite a toothbrush instead of applying a brushing

movement inside the mouth, toy with boiled water or tear the

teabag to make a cup of tea. Problems with sequential tasks, con-

cepts of use and smooth execution on the spatiotemporal level

cannot be attributed to the deficit of function on the ipsilesional

hand of patients. Patients are not able to perform the task even

with the contralesional limb which might have preserved motor

functionality.

The purpose of this review is to present a comprehensive sum-

mary of the research investigating apraxia syndrome following a

cerebrovascular accident (CVA) and its influence on independence

during activities of daily living (ADL). First, we provide a system-

atic overview of the behavioral research investigating impact of

apraxia on three basic areas of object and action related abilities:

sequencing of action, tool and gesture knowledge and spatiotem-

poral features of the movement, in the context of basic needs

of independence. A particular focus is placed on research inves-

tigating the influence of those functions on ADL such as food

preparation, personal hygiene, grooming and use of household

appliances, or housework tools. The second part of this review is

dedicated to the cut-edge neuroimaging research, demonstrating

how multi-faceted the neural basis of tool use and ADL is as well

as the current state of the art.

DEFINITION OF APRAXIA

The most commonly used definition of apraxia was coined by

Rothi and Heilman (1997) which states: “Apraxia is a neurological
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disorder of skilled movement that is not explained by deficits of

elemental motor or sensory system.” In other words, apraxia is

considered as being independent from other stroke comorbid-

ity symptoms such as hemiplegia (loss of proprioception and

motor control over limb on one side) or visual deficits such as

hemianopia or neglect. However, as discussed in the penulti-

mate section of this review, comorbidity symptoms occurring

as a consequence of CVA contribute to overall ADL in a sub-

stantial manner and might even be difficult to disentangle with

apraxic features. Until recently, a vast number of clinicians and

researchers used the original postulation by Hugo Liepmann (a

German pioneer in apraxia research) and distinguished three sep-

arate types of apraxia: ideational, ideo-kinetic (or ideomotor),

and limb-kinetic (Goldenberg, 2003, 2013). Ideational apraxia

refers to an inability to use familiar tools that were previously

handled in an effective and purposeful manner; choosing the

right object for a required action goal and carrying out multi-

step naturalistic action (Goldenberg, 2013). The second category,

namely ideo-kinetic apraxia, described compromised ability to

pantomime actions; mimicking tool use without holding object,

and/or difficulty with gesture production. In the literature, ges-

ture production is usually divided into transitive and intransitive

acts. Transitive gestures relate to object use, showing how one

would use an object, whereas intransitive gestures refer to non-tool

related movements, such as waving goodbye or giving someone the

thumbs up. Thus, patients were reported to be unable to produce

gestures that would mirror the relevant semantic representation

they wished to convey (Hogrefe et al., 2012). Interestingly, even if

apraxic patients attempt to operate the tool in a goal-directed fash-

ion, they might do it in a spatiotemporally erratic manner (Poizner

et al., 1995; Hermsdörfer et al., 1999; Laimgruber et al., 2005; Ran-

derath et al., 2010). These errors are reminiscent of “limb-kinetic

apraxia,” which was introduced to describe hesitation and dis-

rupted smoothness of the movement when operating tools (both

multiple and single) or disruptions of fine and precise movements,

but affects only the limb opposite to the lesion (Heilman et al.,

2000). To summarize, the main cognitive domains affected by

apraxia comprise of the use of tools (multiple and single) and

gesture production.

DISAMBIGUATION AND COMMON GROUND BETWEEN

APRAXIA AND ACTION DISORGANIZATION SYNDROME

As previously mentioned, apraxia, since the work of Hugo Liep-

mann, is usually linked to left brain damage (Goldenberg, 2013).

Original descriptions (i.e., by Pick) of ideational apraxia were

inclusive of disturbances in multi-step action performance (Gold-

enberg, 2013). A plethora of research demonstrates that patients

suffering from right brain lesions also show disruption in terms

of naturalistic action organization, referred to as action disorga-

nization syndrome (ADS; Schwartz et al., 1999; Forde et al., 2004;

Hartmann et al., 2005). ADS is a term used to describe compro-

mised ability to sequence fixed chains of actions in an appropriate

manner in relation to any naturalistic action (Humphreys and

Forde, 1998). However, the differentiation between ADS and

apraxia (especially ideational) is disputed. Therefore apraxia and

ADS can be described under the umbrella term“apraxia and action

disorganization syndrome” (AADS; Humphreys and Forde, 1998).

Therefore in this review we incorporate studies investigating ADS,

especially since patients with left brain damage also show diffi-

culties with sequencing of action subtasks (Goldenberg, 2013).

Probably the most puzzling element in the investigation of AADS

is the lack of consistent evidence as to which brain lesions are

related to the designated action problems.

EPIDEMIOLOGY

The epidemiology of AADS was most recently reported by Bick-

erton et al. (2012). Approximately 46% of patients, who suffered

from a first CVA were identified as symptomatic of AADS (within

6 weeks from CVA, 231 participants) based on the neuropsycho-

logical assessment (Birmingham Cognitive Screen). The criterion

was impairment on one of four praxis tasks: pantomime, tool use

during multi-step actions, gesture recognition or imitation. Fur-

thermore, in the same study around 52% of those patients have

shown persistent signs of AADS that did not diminish with the

course of neurorehabilitation (24% of the initial sample). Previous

reports, which solely focused on left hemisphere stroke survivors,

estimated a rate of ideo-kinetic apraxia occurrence at approxi-

mately 30% (De Renzi, 1989). Donkervoort et al. (2001) had found

that around 28% of all CVA survivors in the Dutch rehabilita-

tion centers and 37% of nursing homes, show persistent signs

of apraxia and therefore compromised ADL independence. In a

later study, Donkervoort et al. (2006) stated that 88% of patients

diagnosed clinically, in the acute stage with features of apraxia,

were still apraxic 20 weeks post first measurement (100 days after

CVA). Importantly, greater improvement over the course of reha-

bilitation was observed in patients that initially have had more

severe deficits, whereas those with mild impairments tended to

improve to a (clinically) less significant extent (measured with

Barthel Index; Mahoney, 1965). Donkervoort et al. (2006) con-

cluded that apraxia is a persistent impairment and has a negative

effect on ADL. In a similar vein, Smania et al. (2006) demonstrated

that apraxia is negatively correlated with the ADL independence,

based on responses from patients and caregivers. On the con-

trary, De Renzi (1986) reported that in natural setting apraxic

features are less salient due to the contextual cueing. In other

words, if a patient in the hospital or lab setting has a difficulty

with a simple gesture production, the same individual might still

be able to perform the gesture whenever prompted by the environ-

ment (for example, to wave goodbye). Environmental information

therefore has the potential to provide additional cues to promote

selection of an appropriate motor program (Hermsdörfer et al.,

2006). Although there is a lot of theoretical evidence supporting

this view, there is no scientific ground yet to support this stance.

USE OF ADL SCALES IN AADS

Several scales are commonly used by the clinical professionals for

the assessment of ADL independence in neurological patients.

Such scales are usually based on self-report or questionnaire

(Barthel Index of ADL or Bristol ADL Scale; Mahoney, 1965; Bucks

et al., 1996) or observation of action performed during clinical

assessment (e.g., E-ADL, TULIA, NE-ADL; Gladman et al., 1993;

Graessel et al., 2009; Vanbellingen et al., 2010). Those assessment

tools are used not only to aid the clinical diagnosis of patients’

impairments, but also, if not primarily, to monitor efficacy of
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interventions to foster independence in cohort studies or clinical

trials for example. Therefore the application of those scales in the

clinical setting is common. Moreover, some studies have attempted

to predict the speed and extent of patients’ recovery based on the

overall score. For instance, Barthel Index scores measured within

the approximately 3 weeks of CVA were found to be accurate pre-

dictors of compromised ADL independence in 6 months post CVA

(Nakao et al., 2010). Similarly, a recent study by Bickerton et al.

(2012) has noted a correlation between a multi-step action task

execution and Barthel Index. Nonetheless, the assessment scales

and neuropsychological batteries do not capture fully the apraxic

problems patients might encounter during their daily life. Hence,

relevant behavioral studies were selected for the purpose of this

review to shed a light on the spectrum of difficulties that can be

observed in those patients during ADL.

BEHAVIORAL STUDIES

Most of the behavioral studies investigating apraxia following

CVA focus on behavioral data with qualitative error categoriza-

tion (Foundas et al., 1995; Schwartz et al., 1999). As such, the most

predominant methodology includes video recordings of patients’

performance and then arbitrary classification of action errors. Set-

ting aside the original descriptions and attempts to classify apraxia,

for the purpose of this review, we can distinguish three major

dimensions of action performance where apraxic features can be

identified. The first one refers to sequencing problems during ADL

and links to the description of ADS, compromised ability to per-

form subsequent actions in the correct temporal order with spatial

constraints, in order to achieve an action goal (pack a lunchbox;

Humphreys and Forde, 1998). For example, if one attempts to

make a cup of tea, common error would involve putting cold water,

not previously heated in a kettle, straight into the mug (omission

error). The second area that will be discussed in this review refers

to conceptual errors that might lead to the selection of the inappro-

priate motor plan. For example, with reference to the previously

used example of tea making, one can use coffee grains instead of

tea bags (substitution error; Goldenberg, 2013). In a similar fash-

ion, communicative gestures might be misused or misunderstood.

Finally, other mistakes might occur on the spatiotemporal dimen-

sion, even if the right tool is selected for action. The handling of

the tool might not be adequate in terms of movement orientation,

applied speed of the movement or grasp (Laimgruber et al., 2005;

Randerath et al., 2010). For example, an apraxic individual might

be unable to open the kettle lid during an attempt to make a cup

of tea.

SEQUENCING PROBLEMS

Daily activities rarely rely on single tool actions which require

only one tool-object interaction. The majority of the actions we

perform involve multistep actions leading to an action goal. The

achievement of the action is comprised of the different action

subgoals, constituting to chains of different activities (Golden-

berg, 2013). To perform a coherent action (i.e., make a sandwich),

different steps need to be organized within certain constraints of

time and space (Goldenberg et al., 2001). For example, even if

the individual action step is performed in a correct manner, the

temporal position in the sequence chain might be out of place,

in effect, leading to failure in achieving the action goal. Referring

again to making a cup of tea, a person might put the kettle on, hav-

ing not previously put the water inside or using another example:

brush their teeth having not put the toothpaste on. Usually those

errors refer to the temporal organization of the action sequence,

but are not related to the personal context of actions. The overall

execution of specific sequences during ADL varies interperson-

ally and relies on personal abilities and preferences (Land, 2006;

Goldenberg, 2013; Hughes et al., 2013). Therefore, the scientific

investigation of ADLs is inherently burdened with a high level of

complexity of analysis and must permit a certain level of homo-

geneity between examined subjects. For example, healthy adults

might perform an action of making a cup of tea in a variety of

ways and preferences (i.e., time of the tea bag being dipped in the

mug, number of sugar cubes inside) with some other sequences

being constant (i.e., heating the water in a kettle before pouring it

in the mug), in order to achieve an action goal (make a cup of tea).

Hence certain sequences are always fixed, whereas others show a

high level of inter-subject variability (Hughes et al., 2013). If the

error occurs in the fixed chain of sequences, it leads to the failure to

achieve the task goal and is not recoverable until the next attempt

(pouring cold water into the mug with teabag inside). If however

the error occurs in the “not-fixed” chain of activities, it might be

recoverable.

The most frequent sequencing error in terms of action perfor-

mance is the omission error, which refers to omitting a step before

another one (Schwartz et al., 1999). For example, a patient might

put a piece of paper into an arch file before using the hole-punch.

In addition, more general sequence errors are when the patients

perform something in the wrong order. Such an instance would

be putting or adding an extra sequence or ingredient (addition)

that is not needed or that is repeated (perseveration error; Rumiati

et al., 2001). In another scenario, a subtask might be performed too

early in the chain of sequences (anticipation error). An example of

sequence addition error would be folding a piece of paper before

putting it into the arch file in a document filing task. Another type

of addition, based on the use of additional objects or ingredients

(in food related tasks) would be (using the previously mentioned

example) putting a piece of scotch tape on the top of the paper. In

sum, CVA subjects might engage in sparse subtasks that are not rel-

evant in the context of achieving the action goal. In the same task,

a perseveration error would describe repetition of the previously

accomplished subtask, such as making more punch holes than

necessary. There is a plethora of research that has attempted to

capture the most common error occurrences in naturalistic action

performance with different types of error patterns. However, the

results show some incongruence between the terminology used

and the classification of errors (see Goldenberg, 2013, Chap. 9, for

review on this issue). Previously mentioned omission errors reach

an approximate ratio of 40–50% for all action errors (Schwartz

et al., 1999; Bickerton et al., 2007). Importantly, the tendency to

skip a step that is necessary for achieving the action goal seems to

be linked to the level of familiarity with the object. Novel object,

which are not familiar to patients seem to elicit the highest num-

ber of those errors (Bickerton et al., 2007). Other authors also

point out the prevalence of these types of action errors, but they

use different terminology to describe it, namely sequence error
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(De Renzi and Lucchelli, 1988) or action anticipation (Rumiati

et al., 2001). Table 1 presents an overview of research describ-

ing the sequencing errors related to the ADL in stroke survivors

studies.

As reported in Table 1, there is a substantial body of research

attempting to capture problems with sequencing of ADL in CVA

patients. Different classifications are proposed by many research

groups, but not all of them fit to every ADL, due to the vari-

ation in the fixed or not fixed action chains. However, most

authors agree that problems with the organization of partic-

ular subtasks should be referred to as sequence errors, with

subclasses, such as addition errors or anticipation, or without

(De Renzi and Lucchelli, 1988; Schwartz et al., 1999; Rumiati

et al., 2001; Goldenberg, 2013). In the seminal study by Foundas

et al. (1995) conducted on 10 patients with unilateral left hemi-

sphere CVA no error classification was used. Authors observed the

lunchtime behavior (via video taping) on the hospital ward and

divided the overall meal organization into three phases: prepara-

tory, eating and clean up. Only 20% of CVA patients proceeded

with all three phases of the meal and only 40% demonstrated

preparatory behavior. In comparison to all healthy age-matched

controls engaged in preparation of the meal, and 80% in the

clean-up phase. In addition, patients used fewer tools (cutlery)

than controls and shown different pattern of food consumption

(consuming one ingredient in a sequential fashion or drink a

glass of refreshment at once) in comparison to controls (who

preferred to mix different ingredients and take small sips of

drink).

CONCEPTS OF USE AND GESTURE KNOWLEDGE

On the cognitive level, the knowledge about concepts of use

can be referred to as both functional knowledge (Sirigu et al.,

1995) and the ability for mechanical problem solving (Gold-

enberg and Hagmann, 1998; Osiurak et al., 2009). Functional

knowledge specifies the typical purpose, recipients, and man-

ner of using distinct types of tools (Sirigu et al., 1991; Hodges

et al., 2000; Rumiati et al., 2001). This type of expertise embraces

global motor concepts, inclusive of the recipient of the action,

relevant manipulation, and tool selection for the desired action

goal (Goldenberg, 2013). For example, a hammer can be used

to put a nail into a block of wood through forceful strokes.

The knowledge necessary to achieve this goal includes: choos-

ing the right tool from the toolbox (hammer); knowing how

to position the nail in the block of wood and knowing what

Table 1 | Summary of studies on sequencing errors related to the ADL in AADS.

Source Participants Task Main results

Bickerton et al. (2007) ADS patient (N = 1); patients with

brain lesions (N = 4); age- and sex

matched controls (N = 5)

Making a cup of

tea/coffee/toast/sandwich, wrapping a

gift, write and post a letter, packing a

lunchbox, putting an article from a

magazine into a file

ADS patient made more omission

steps with unfamiliar than familiar

objects compared to controls (2 and 0.5

errors, respectively)

Bickerton et al. (2012) RBD and LBD (N = 635), age- and

sex matched controls (N = 100)

Mounting a torch and switching on

light (MOT task)

No differences between LBD and RBD

in MOT score, low but consistent

correlation between MOT and Barthel

Index (r = 0.29) and Nottingham

Extended ADL scale (r = 0.32)

Buxbaum (1998) Patients with LBD (N = 16) Wrapping a gift, making toast, packing

a lunchbox

Ratio of errors: omissions (44%),

sequence errors (27%)

Humphreys and Forde (1998) ADS patient (N = 2) Wrapping a gift, posting a letter,

making toast/sandwich/cup of coffee,

preparing cereal, tooth brushing,

shaving, painting wood

Omissions (24%), sequence errors

(40%); patients better with shorter than

with longer tasks

Schwartz et al. (1999) Patients with RBD (N = 30) Wrapping a gift, making toast, packing

a lunchbox

Omissions (47%), sequence errors

(19%)

Sunderland et al. (2006) Patients with right and left

hemisphere stroke (N = 8), five

RBD, four LBD

Dressing 76% LBD demonstrated a planning

problem (dressing first the non-paretic

arm), RBD attentional and spatial

problems (e.g., finding sleeve opening),

16% of RBD did not push sleeve over

the paretic elbow

LBD – left brain damage, RBD – right brain damage.
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movement to apply. There is, however, controversy whether the

kinematics of actions and the formation of adequate hand pos-

tures are stored in a separate compartment of semantic memory

as “manipulation knowledge” or are derived from structural prop-

erties of tools by mechanical problem solving (Goldenberg and

Spatt, 2009; Osiurak et al., 2009; Kalénine et al., 2010). Patients

with loss of functional tool use knowledge may be able to infer

the function of the object from their structure (Goldenberg,

2009). In the modern type of devices however, such as techni-

cally advanced coffee machines with capsules, patients are not

able to deduce (use mechanical problem solving) how to oper-

ate the device based on its physical structure. Therefore those

types of the devices (such as tablets or smart TV) might be almost

impossible to operate for apraxic individuals (Hartmann et al.,

2005).

In principle, ADL can be divided into multiple tool use and

single tool use actions (Goldenberg, 1996, 2013). For example,

making a cup of tea would be an example of complex and mul-

tiple tool based action. On the contrary, fixing a loose screw

would be based on single tool use, namely a screwdriver. One

of the common errors noted in the literature is mislocation or

misplacing of the tool (De Renzi and Lucchelli, 1988; Schwartz

et al., 1999) or spatial error as described by Humphreys and Forde

(1998). De Renzi and Lucchelli (1988) tested 20 patients in the

tool use and pantomime paradigm. Among other errors, author’s

differentiated mislocation as appropriate action carried out in

the spatially inadequate place. For instance, patients were able

to strike a match, but tried to lit the wrong side of the can-

dle. Misuse of the tool has also been identified by De Renzi

and Lucchelli (1988) and Rumiati et al. (2001). Misuse can be

defined as use of object in conceptually inappropriate way, i.e.,

rubbing candle onto the table, or handling object by the wrong

end (De Renzi and Lucchelli, 1988). All of the error classifi-

cations mentioned refer to the impaired ability to handle the

tool in a relevant manner (i.e., also include uncomfortable grasp

of the tool). Other research also reports wrong object selection

(Humphreys and Forde, 1998; Goldenberg, 2009) or object sub-

stitution (Schwartz et al., 1999). Humphreys and Forde (1998)

tested two patients with features of AADS on ten ADL tasks (see

Table 1). In the tea making task, one of the patient demon-

strated repetitive errors of pouring milk into the teapot rather

the mug. Authors referred to it as semantic error, specific for

object selection. Schwartz et al. (1999) tested 30 patients with

right hemisphere lesions following CVA on three ADL tasks (mak-

ing a toast, wrapping present, and packing lunchbox). Object

substitution was defined as correct movement performed with

wrong object, i.e., putting a slice of bread on a hot plate instead

inside the toaster. In addition, misestimation errors, i.e., too lit-

tle or too much of one ingredient, were introduced in studies

looking into food related behavior (Foundas et al., 1995). For

example, patients were reported to put too little food on their

plate and fork during daily lunchtime behavior or making a toast

(Foundas et al., 1995; Schwartz et al., 1999). Importantly, the dif-

ferences within classification of the errors are arbitrary and do

not have a consequence on the overall understanding of the dif-

ficulties patients exhibit with ADL. Patients might choose the

wrong tool for an action, for example, picking up a screwdriver

to connect two sheets of paper together. In many occasions the

difficulties with access to the adequate motor concepts do not

manifest themselves directly but are observable as perplexity or

toying behavior. Those errors are not explicitly categorized sep-

arately by all researchers (e.g., Schwartz et al., 1999). Perplexity

refers to pauses in movement, or inefficient manipulation. For

example, the patient might pick up objects and then set them

back on the work surface and cease further trials to accomplish

the task goal. Toying, on the other hand describes handling

an object in a non-purposeful fashion. One measure that can

capture those behaviors, aside from video scoring of concep-

tual errors committed by patient, is movement time for the task

completion.

SPATIOTEMPORAL FEATURES OF APRAXIA

A seminal study by Foundas et al. (1995) on meal preparation,

has revealed that left brain damaged patients were less success-

ful in the overall organization of the preparation of meals and

that the “correct tool actions” measure significantly correlated

with the apraxia score (Florida Apraxia Battery, Rothi et al., 1992).

The overall time difference between patients (slightly prolonged)

and healthy controls was however not statistically significant. Spa-

tiotemporal errors of movement execution have been documented

mostly during pantomime of tool us but have also been found

during real tool use (Hermsdörfer et al., 2006). Spatiotemporal

errors in the task performance can have a discrete demonstration

when the individual is performing an action in a kinematically

incongruent manner, which might or might not be observable

with the naked eye even for a non-expert viewer. Poizner et al.

(1995) and Clark et al. (1994) have demonstrated that apraxic

patients with left brain damage suffer from impaired joint coordi-

nation and imprecise plane of motion, along with trajectory shape

in a bread slicing task. In addition, impaired coupling between

the hand speed and trajectory shape was identified. However, it

remains open whether these kinematic irregularities reflect deficits

of motor-coordination directly or are due to slow and hesitating

movement execution due to conceptual problems with planning

the action (Hermsdörfer et al., 2006). In other words, impaired

movement on the spatiotemporal dimension might be a reflec-

tion of compromised movement planning, but not be a feature of

limb apraxia. In a seminal study by Laimgruber et al. (2005) left

brain damaged patients were found to demonstrate a prolonged

adjustment phase before grasping a glass of water, whereas right

brain damaged patients showed a decreased velocity of the move-

ment. Speed deficits were also found in the sawing tasks in left

brain patients in comparison to age-matched controls (Herms-

dörfer et al., 2006). Other variables such as prolonged reaction

times and reduced amplitude of the movement were reported

for the hammering and scooping movement actions in left brain

damaged patients (Hermsdörfer et al., 2006, 2012). Deficits of spa-

tiotemporal aspects of movement execution may be directly or

indirectly related to apraxia as indicated above, but also may be

indirectly related to spatial deficits such as neglect or they may also

be independent consequences of damage to the motor-dominant

hemisphere (Hermsdörfer et al., 2012). Randerath et al. (2010)

has found that left brain damage patients show impairment in

the grasping movements during single tool use. In comparison to
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healthy age-matched controls, patients demonstrated significantly

higher percentage of non-functional grasps of the tools’ han-

dles. The impaired grasp was predominately followed by erratic

demonstration of the tool use. In the real life scenario, those spa-

tiotemporal deficits might result in mishandling of the object,

leading to safety hazards, or frustration (Hanna-Pladdy et al.,

2003). In the next section we will present an overview of the neural

underpinnings of ADL and apraxia, which will shed more light on

the complex organization of human tool use.

THE NEURAL BASIS OF ADL

This section of the review is organized in a similar fashion to the

behavioral part, with division of the studies to the sequencing of

subgoals of ADL, then conceptual understanding and finally spa-

tiotemporal features of ADL. To provide an insight into the neural

correlates of ADL and apraxia, we present neuroimaging stud-

ies with healthy subjects followed by lesion analyses with apraxic

patients.

HEALTHY ADULT STUDIES

We aim to discuss the neural basis of ADL by including functional

neuroimaging studies on viewing, understanding, imagining, pan-

tomiming and executing ADL and single tool use in healthy adults.

Furthermore only studies on sequencing actions, tool knowledge

and the spatiotemporal features of actions with tools are summa-

rized and visualized here. For the visualization of the neural corre-

lates of these three aspects of ADL, we used the GingerALE toolbox

(Eickhoff et al., 2009, 2012) for conducting a meta-analysis. The

relevant peak coordinates (in Talairach space) from whole brain

analysis were entered separately for the three aspects of ADL. The

main aim of this analysis was to provide a descriptive visualization

of the activation patterns found in the relevant studies. Therefore

a relatively low threshold (p < 0.05 FDR corrected) was used to

create the ALE images (Laird et al., 2005). The toolbox Mango

(Designed and developed by Jack L. Lancaster and Michael J. Mar-

tinez) was used to map these thresholded ALE images of all three

categories on a rendered brain and to locate the visualized brain

areas.

ACTION SEQUENCING

As described previously, patients suffering from AADS show dif-

ficulties with sequencing multi-step actions and single tool use.

The neural underpinnings of action sequencing in ADL are not

yet fully understood. Only a few studies have so far investigated

brain regions relevant for sequencing sub-actions of ADL. The

most seminal studies in the area were conducted by Schubotz et al.

(2012) and Zacks et al. (2001). In these studies subjects had to

watch videos depicting different ADL with multiple sequences (for

example washing the dishes or ironing a shirt) and had to detect

the time borders when each of the sub-actions had commenced. In

addition, Weiss et al. (2006) has analyzed the processing of errors

in the sequential structure of ADL. Here, subjects had to watch

videos of ADL including, for example, pouring a glass of water and

drinking it, lighting a candle with matches or affixing a stamp on

a letter. These videos were either correct or included errors in the

order of sub-actions, which the subjects had to detect. In summary

the brain areas relevant for processing the separation and ordering

of sequences in ADL cover areas of the frontal, parietal, temporal

and occipital cortex. More precisely, these areas were pinpointed to

the inferior and middle frontal gyrus, angular gyrus and adjacent

precuneus, middle temporal gyrus, fusiform gyrus, and middle

occipital gyrus of the left hemisphere. Additional clusters can be

seen in the right middle frontal gyrus, middle occipital gyrus, pre-

cuneus, inferior and superior temporal gyrus, and fusiform gyrus.

The ALE image depicting results from those studies is shown in

the Figure 1 in red.

CONCEPTUAL KNOWLEDGE OF TOOL USE

To get an overview of the neural basis of the conceptual knowl-

edge in the context of ADL and single tool use, we summarized

studies investigating how the knowledge of tools and their func-

tion is coded in the brain. We included studies comparing correct

versus incorrect use of a tool dependent on the context (Mizelle

and Wheaton, 2010; Wurm et al., 2012) and studies comparing

tool actions of familiar compared to unfamiliar tools (Menz et al.,

2010). Exemplary stimuli used in these studies were videos show-

ing actions like punching holes in paper (Wurm et al., 2012) or

images and animations of using a hammer (Menz et al., 2010;

Mizelle and Wheaton, 2010). In addition, two other studies were

included (Manthey et al., 2003; Hoeren et al., 2013), which eval-

uated both the conceptual understanding of ADL and also the

processing of the spatial organization of actions separately. The

latter aspect will be discussed in the next paragraph. In the study

of Manthey et al. (2003) subjects had to watch videos with ADL

and detect object related errors (for example: pour coffee in a glass

instead of a cup), or movement errors in the viewed actions (for

example: open a bicycle lock but holding the key transverse to

the lock). In the Hoeren et al.’s (2013) study subjects were asked

to decide, if the object used in an action fits to the context (for

example: a cake lifter is used for cake not for a steak in a pan), or

if the hand position is correct to perform the known action with

the object. In all studies subjects had to show a conceptual under-

standing of ADL to perform the different tasks. More specifically,

the participants had to know the purpose of the actions they saw

and the function of the tool used in the actions. Findings from

these studies have demonstrated that understanding and tool use

function in ADL recruits a wide (mostly left lateralized) network

covering frontal, parietal, temporal and occipital centers. Main

activation sites were reported on the left hemisphere in the frontal

cortex and include inferior, middle and superior frontal gyrus; in

the parietal cortex clusters covering anterior to posterior part of

the intraparietal area, angular and supramarginal gyrus, and supe-

rior parietal lobule activations were reported. Activations in the

middle and superior occipital gyrus were found in the occipital

cortex. In the temporal lobule, activation patters mainly covered

the posterior part of the middle and inferior temporal gyrus and

the fusiform gyrus. In the right hemisphere, activation was pin-

pointed to the middle, superior and inferior frontal gyrus in the

superior parietal lobule and anterior part of the intraparietal area,

as well as in middle temporal, inferior occipital, and fusiform

gyrus. The activation in the right hemisphere is partly homolo-

gous to the left areas, but the overall activation pattern comprises

less brain areas. A summary of brain network recruitment reported

in the mentioned studies is shown in Figure 1 in blue.
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FIGURE 1 | ALE images for studies focusing on action sequencing in red,

conceptual understanding of ADL in blue, and spatial orientation of ADL

in green; Overlays are depicted in purple (blue + red), light blue

(blue + green), and white (all three). Images are produced with the

GingerALE toolbox (Eickhoff et al., 2009) and have a threshold of p < 0.05

with FDR correction.

SPATIOTEMPORAL ORGANIZATION OF MOVEMENTS

As mentioned in the previous sections of this review, the third

component of ADL (following the sequencing of the actions and

conceptual knowledge) concerns the tool manipulation necessary

to achieve the intended goal and incorporates spatiotemporal

features of the movement. This includes grasping the tool in

a correct way and moving it accordingly across space. Func-

tional imaging studies have analyzed the brain areas relevant for

selecting the correct grip for tool usage during ADL (Valyear

and Culham, 2010; Vingerhoets et al., 2010; Hoeren et al., 2013)

or the spatial organization of the movement (Manthey et al.,

2003; Weiss et al., 2006; Yoon et al., 2012). The neural corre-

lates of this component are more bilateral and mainly include

parietal, frontal and occipital areas of both hemispheres. These

include the superior and inferior parietal regions, the area

close to the posterior part of the intraparietal area and the

parieto-occipital sulcus (parieto-occipital junction), premotor

cortex and the middle occipital gyrus in both hemispheres. In

addition, studies mentioned above have found that the ven-

tral premotor area is relevant in the right hemisphere and the

anterior insula in the left. In general, it can be mentioned

that most clusters relevant for grip selection and the spatial

monitoring of tool use mainly cover regions related to the

dorso-dorsal pathway as described by Binkofski and Buxbaum

(2012).

SUMMARY OF THE FUNCTIONAL IMAGINING HEALTHY

ADULTS SECTION

Investigation of main cortical activation sites of all three aspects

of ADL yields the involvement of a wide neural network including

frontal, parietal and temporal centers (Figure 1). Overlaps were

found between the different maps for regions processing concep-

tual and spatial information of tool use and ADL including frontal

clusters in the dorsal and ventral premotor areas, in the anterior

cingulate cortex, in the parietal lobe along the intraparietal area,

the superior parietal lobule, the supramarginal gyrus, around the

parieto-occipital sulcus and in the inferior temporal gyrus of the

temporal lobe of the left hemisphere. We have found less over-

laps in the right hemisphere, which comprise parts of the parietal

lobule, precentral gyrus and inferior temporal gyrus. In addition,

we report a partial congruency between clusters from sequencing

studies and studies focusing on knowledge of tool use. These are

associated with activation in the dorsal premotor area, posterior

part of the intraparietal area, middle occipital gyrus and fusiform

gyrus of the left hemisphere. In summary, ADL and single tool

use are complex tasks with multiple aspects to be processed which

recruit wide brain networks. Importantly it has to be stated that the

neural bases of the three aspects discussed here cannot be clearly

separated in actual tool use but need to be integrated to perform

ADL. Evidence supporting the importance of the mentioned net-

work is also provided by studies focusing on the neuronal basis
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of actual tool manipulation, which covered more general or other

aspects of tool use (Hermsdörfer et al., 2007; Imazu et al., 2007;

Gallivan et al., 2013). In addition, studies on pantomime of tool

use also support the present findings (Moll et al., 2000; Inoue

et al., 2001; Johnson-Frey et al., 2005; Króliczak and Frey, 2009;

Vingerhoets et al., 2011).

LESION ANALYSIS IN PATIENT WITH BRAIN DAMAGE

Another method that sheds light on the neuroanatomical corre-

lates of tool use is a lesion symptom analysis in CVA patients. In

those studies, behavioral measures are correlated with lesion sites

to create statistical brain maps showing the location of lesions

closely linked to a behavioral deficit. Compared to the studies with

healthy subjects, studies including lesion analysis focusing on exe-

cuting or recognizing ADL are relatively rare (Pazzaglia et al., 2008;

Goldenberg and Spatt, 2009; Randerath et al., 2010; Hermsdörfer

et al., 2013; Kalénine et al., 2013). Therefore, a differentiation of

action sequencing, conceptual understanding and spatiotempo-

ral aspects of tool use, to the same extent as in healthy subjects or

purely behavioral clinical studies, is limited. Hence, we aim to con-

centrate on studies including tasks testing performance of actual

tool use and understanding or recognition of goal directed actions

(Pazzaglia et al., 2008; Goldenberg and Spatt, 2009; Hermsdörfer

et al., 2013; Kalénine et al., 2013). Additional information is given

on the neuronal correlates of tool grasping next to tool usage (Ran-

derath et al., 2010) and to increase the scope on the neural basis of

sequencing ADL in patients, a study focussing on the sequencing

of pantomime tool use (Weiss et al., 2008) will also be mentioned

here.

In a study by Goldenberg and Spatt (2009), 38 patients with left

sided brain lesions, were tested to assess possible deficits in func-

tional knowledge of tools and objects, mechanical problem solving

(which was tested with the use of novel tools), and additionally the

selection and usage of common tools. Impairments in these tasks

were related to two major lesions sites, one around the middle

frontal gyrus reaching to the inferior frontal gyrus, which was

related to deficits in all three tasks, and a second lesion site in the

parietal cortex, reaching from the supramarginal gyrus through

the inferior parietal lobule to the superior parietal cortex. The sec-

ond lesion site mainly impaired the selection and use of common

and novel tools. After looking at a subset of patients with deficits in

the functional knowledge of tools (but not in mechanical problem

solving) Goldenberg and Spatt (2009) found an association of this

selective impairment to lesions in the middle temporal gyrus.

The relation of performance in tool use and lesions of patients

with left sided brain damage was also analyzed by Hermsdörfer

et al. (2013). Next to pantomime and imitation tasks, the correct

performance of real tool use was measured and put in relation

to the patients’ lesions. In this study, low performance was also

associated with parts of the inferior frontal gyrus including pars

opercularis, triangularis, and insula.

As well as these two studies, which analyzed actual tool use,

there are other studies focussing more on the understanding or

recognition of actions. Kalénine et al. (2013) distinguish two parts

of goal directed actions: action means and action outcome. The

first component – dealing with “what” has to be done to achieve a

goal (spatiotemporal features of the tool use) and the latter one –

representing the actual outcome of the action (conceptual knowl-

edge). Patients with left sided brain lesions, were asked to evaluate

if two actions they saw in a video, were the same or different.

These videos differed either in their action means or outcome. The

performance of this detection task was combined with informa-

tion from the patients’ lesions, demonstrating a specific relation

between lesions in the inferior parietal lobe with action means

but not outcome. This underlines previously mentioned findings,

stating the relevance of the inferior parietal lobe in processing the

knowledge of what has to be done with a certain object or tool to

achieve a goal.

The recognition of action related sounds and the execution

of these actions was analyzed in a study from Pazzaglia et al.

(2008) linking to the conceptual knowledge of tool use. Sounds

of buccofacial-related or limb-related actions known from daily

life had to be recognized by the patients and also executed.

The lesion analysis revealed that impairment of action recog-

nition and execution of buccofacial-related sound was mainly

correlated with lesions in the inferior frontal gyrus and insula.

Impaired limb-related action recognition and execution on the

other side was associated with lesions in the inferior parietal lobe,

supramarginal gyrus, angular gyrus, and also the inferior frontal

gyrus. A stronger involvement of tool related parietal regions in

limb-related action recognition, compared to buccofacial-related

actions can be due to the fact that limb-related action sounds

and executed actions included more tool actions, than the other

condition.

Another lesion analysis including the analysis of actual tool use

in patients with left sided brain damage was performed by Ran-

derath et al. (2010). Patients had to grasp a tool and demonstrate

its use for various tools with handles oriented toward or away

from their body. In this study, the type of grasp (functional or

non-functional) and the correct demonstration of tool use were

evaluated and correlated with patients’ lesions. The main findings

related an impaired grip of tools to the lesions in the parieto-

occipital junction, the angular gyrus, and especially in the inferior

frontal gyrus, in particular the pars orbitalis, opercularis and tri-

angularis. An incorrect demonstration of tool use on the other side

was most closely linked to lesions in the supramarginal gyrus of

the inferior parietal cortex and the gyrus postcentralis. An overlap

between impaired grip and incorrect demonstration of tool use

was found mainly in the inferior parietal cortex. As discussed by

the authors, these findings are in line with the assumptions that

the function specific manipulation of tools is mainly processed in

the ventro-dorsal part of the dorsal stream (Rizzolatti and Matelli,

2003; for review see Binkofski and Buxbaum, 2012). According

to this theory, reaching and grasping movements are related to

dorso-dorsal regions like the superior parietal lobe, caudal parts

of the intraparietal sulcus, parietal-occipital sulcus and the adja-

cent parietal-occipital junction (Karnath and Perenin, 2005; Prado

et al., 2005). The findings of Randerath et al. (2010) underline the

relevance of the parietal-occipital junction for correct grasping,

especially for using tools.

To our knowledge, so far, only one study has performed a lesion

analysis including sequencing of actions of daily living. In a study

of Weiss et al. (2008) patients had to detect sequential and spatial

errors in object related actions with or without the object. The
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main focus of the lesion analysis in this study was sequential error

detection in actions without an object (pantomime of action). This

analysis revealed that patients with severe problems in recognizing

the correct timing sequence of an action had a common lesion site

in the left angular gyrus of the parietal lobe.

In summary, the impairment in the recognition or performance

of ADL including tool use was reported by many studies to be

related to frontal lesions, especially the inferior frontal gyrus, infe-

rior parietal lesions including supramarginal and angular gyrus

and the neighboring parieto-occipital junction and lesions in the

middle temporal gyrus. An overview of the affected regions and

the associated tasks which were impaired, after lesions in these

areas, is shown in Figure 2. Further evidence of the relevance of

these brain regions in apraxia can be derived from lesion analyses

focusing on pantomime of tool use. Again the ability to recognize

pantomime of daily actions (Kalénine et al., 2010) or the execution

of it (Buxbaum and Saffran, 2002; Buxbaum et al., 2005; Golden-

berg et al., 2007; Hermsdörfer et al., 2013; Manuel et al., 2013) is

strongly related to the already described lesion sites.

Considering the functional imaging studies on tool use and

actions of daily living of healthy adults, we see a substantial over-

lap with the results of the lesion studies. For action sequencing,

both imaging studies and lesion analysis show that the left angu-

lar gyrus plays a critical role. The conceptual understanding of

tool use in ADL, on the other hand, comprises a larger network

with core centers in the inferior frontal gyrus, the inferior parietal

lobe and middle temporal gyrus. The neuronal processes of the

spatiotemporal organization of actions in both healthy adults and

also in patients were related to the posterior part of the parietal

lobe including the angular gyrus, the parieto-occipital junction

and the inferior frontal gyrus.

COMORBIDITY SYMPTOMS

As mentioned before, AADS syndrome might be enhanced by

other comorbidity syndromes following a stroke (Goldenberg,

2013). The research that attempts to link different types of errors

to other deficits that are co-morbid to apraxia in the CVA patients

is partially unfruitful. One of the problems is that it is difficult

to untwine which of the symptoms contribute the most to the

difficulty with task execution. Around 30% of ischemic stroke

survivors suffer from cognitive impairments apart from the motor

disability, affecting speech ability, vision, memory and attention

(Katz et al., 1999). For example, Walker et al. (2012) has demon-

strated that dressing problems in the right brain damaged patients

are mostly attributed to visuospatial deficits. In a similar vein,

other studies have reported that visuospatial neglect (impairment

of spatial attention) is a stable predictor for the functional outcome

of the rehabilitation in the post hospitalization period (Denes et al.,

1982; Edmans and Lincoln, 1991; Katz et al., 1999; Jehkonen et al.,

2000). Other symptoms, such as hemiparesis, amnesia, visual con-

struction problems and language deficits were reported to lack

predictive power (Jehkonen et al., 2000). Importantly, this was

contested by research conducted by Wade and Hewer (1987) pin-

pointing hemianopia (loss of side of visual field) as a second factor

for functional recovery in post-acute phase of stroke. More recent

work by Paolucci et al. (1998) has stated that absence of neglect is

FIGURE 2 | Schematic illustration of left hemisphere associations with performance in tool use and ADL based on the reviewed studies; middle

frontal gyrus (MFG); inferior frontal gyrus (IFG); inferior parietal lobe (IPL); supramarginal gyrus (SMG); angular gyrus (ANG); parietal-occipital

junction (POJ); middle temporal gyrus (MTG).
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the most important prerequisite for the promising prognosis for

ADL independence. In addition, Pedersen et al. (1997) identified

within the group of neglect patients that anosognosia (compro-

mised self-awareness of own mental and physical state) is in fact a

more powerful predictor of recovery in those patients. Therefore,

many of the therapeutic approaches are targeted at broadening the

visual field in patients suffering from hemianopia or hemineglect,

through multisensory stimulations (Làdavas, 2008) or spatiomo-

tor cueing (Kalra et al., 1997). The underlying assumption is that

an effective rehabilitation plan needs to incorporate multicompo-

nent factors and, in order to regain independence during ADL,

a multifaceted approach is recommended – targeted at different

neuropsychological symptoms (Katz et al., 1999). However, until

now, there is no conclusive scientific evidence linking the severity

of AADS with other neuropsychological symptoms, in particular,

neglect. It is however clear that each of these symptoms has its

own neural representation and a lesion will affect an aspect of

ADL. These considerations reflect the difficulty to define a cir-

cumscribed neural network related to ADL. Rather, the network

will be widespread with soft boundaries between areas directly and

indirectly involved in action planning and tool use.

CONSEQUENCES OF APRAXIA AND AADS ON ADL,

RECOVERY RATE, REHABILITATION

Although the incidence of apraxia is relatively high, the com-

mon view was that apraxia recovers spontaneously (Basso et al.,

1987). However, this outlook is contested by the previous work

of Hanna-Pladdy et al. (2003) and Smania et al. (2006) report-

ing that CVA patients struggle with ADL, due to residual traits of

apraxia. Therefore, rehabilitation of apraxia maintains a signifi-

cant challenge for the clinicians and occupational therapy workers.

The research in this matter is inconsistent and limited in com-

parison to the number of studies investigating behavioral and

neural correlates of apraxia (Goldenberg, 2013). According to

Buxbaum et al. (2008) the common treatment approach is focused

on teaching compensatory techniques for ADL tasks, which allow

fostering independence despite the presence of apraxia. This

strategy training comprises of the errorless training and high

number of repetitions for particular task or verbalisation tech-

niques (Goldenberg, 2013). In errorless approach the therapist

guides the patient through the correct sequence of ADL and pre-

vents the occurrence of action errors. In a similar vein, Buxbaum

et al. (2008) reported that committing errors during training is

disruptive for the outcome of retraining, thus compensatory

strategies should be based on errorless approach. Goldenberg

et al. (2001) states that intensive training improves specific task

performance but cannot be generalized to other activities. In

other words, training has to be task specific and does not trans-

fer to other non-trained tasks (Goldenberg and Hagmann, 1998).

Interestingly, in this report the majority of patients showed a

deterioration of independence during ADL when therapy was

withheld (2–5 weeks training period, daily 20–40 min). Explo-

ration training, pointing out critical features of objects, without

guidance how to use them did not bring improvement in patients

(Goldenberg et al., 2001). Donkervoort et al. (2001) argues that

strategy training may bring a short term benefit for patients and

improve the global ADL functioning, but is the most effective

in conjunction with standard occupation therapy. In their study

intervention was based on verbalisation techniques comprised of

providing narrative to guide through the task performance. Fur-

thermore, another approach with evidenced efficacy is based on

gesture training, which is more related to pantomime function

(Buxbaum et al., 2008). This training is dedicated to practicing

gestures associated with tool use. Smania et al. (2000) reported

significant reduction in praxis errors and gesture comprehen-

sion after 35 training sessions (50 min each). In a subsequent

study Smania et al. (2006) showed retention of gains 2 months

post treatment after 30 training sessions of the same length as

in previous report. In both studies, limited generalization to

other tasks was found, but no impact on the overall ADL inde-

pendence was noted. In addition, the home environment for

training was pointed out to be important factor of recovery in

8 week intervention study (Geusgens et al., 2007). Tasks should

be important for daily routine and meaningful for the patient.

As summarized by Goldenberg (2013) AADS is not a homoge-

nous disorder thus therapy approaches are usually adjusted to

the core manifestations. Another aspect is that even if efficacy of

training is maintained, it addresses primarily the ability to use

compensatory strategies promoting independence during ADL,

but does not affect the “concepts of use” (Goldenberg, 2013).

Furthermore, the generalisability of training one task to global

impact on ADL independence is often not assessed or not found,

along with limited evidence for follow-up effectiveness (Maher

et al., 1991; Pilgrim and Humphreys, 1994; Ochipa et al., 1995;

Goldenberg et al., 2001). Consequently there is lack of clear guide-

lines what period of time is the optimal for treatment of AADS,

which intensity of training is recommended and how to prolong

the effects of therapy. Study by Goldenberg and Hagmann (1998)

suggests that effects of the intervention can be only sustained if

patient continues at home training of ADL independence. Train-

ing over the period of a few weeks is feasible if outpatient clinics

or day clinics are in place. This, however, is increasingly chal-

lenged in the current economic climate, due to restricted funding

for the post hospitalization phase. Therefore technology driven

solutions might be soon developed to provide continuity for ADL

training. In addition, if restoration of the function is impossi-

ble, rapidly developing technologies might soon provide a real

time “crutch” for independence for stroke survivors. Use of the

assistive devices in the home environment could provide addi-

tional contextual information for the patient in the ecologically

valid setting. Contextual cueing was demonstrated by Maher et al.

(1991) to improve performance of a chronic patient with ideo-

kinetic apraxia (case study), within 2 weeks of therapy, based on

the shaping (slow withdrawal of cues) paradigm. A similar idea

was posited by Buxbaum et al. (2008) discussing the possibility of

using robot-assisted devices.

Current projects, which aim to provide autonomous systems

of guidance for patients struggling with ADL, are primarily tai-

lored for subjects with dementia and use the concepts of domotics

(intelligent home environment). One of the projects currently

under development is the COACH system, which is designed to

provide assistance in hand washing action to residents of nursing

home for people with dementia (Mihailidis et al., 2008). Based on

computer vision the system is capable of recognizing problems
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with task performance. The interface provides prompts based

on verbal and visual information, with the prompts adjusted

to the needs of patients (for example video or auditory cues).

Another project, based on similar type of modeling and solu-

tions is TEBRA, dedicated to aid tooth brushing performance in

people with dementia in the home setting (Peters et al., 2013).

Finally CogWatch (www.cogwatch.eu) is a system that is cur-

rently under development, which is tailored to the needs of AADS

patients. The aim is to create fully automatised computer–human

interface that provides cues or prompts errors during the perfor-

mance of ADL (i.e., tea making and tooth brushing). Creating

an autonomous system that could aid rehabilitation of ADL in

AADS group is a technological and theoretical challenge, which

surely will be pursued in the further research developments and

projects.

CONCLUSION

The review summarized the most significant research conducted

on the impact of AADS on the ADL in stroke survivors. Behav-

ioral, neuroimaging and lesion studies were presented to give

an overview of the current state-of-art. Taken together, CVA

resulting in lesions in the left or/and right hemisphere has pro-

found consequences on the daily independence of patients during

everyday tasks such as food and drink preparation, groom-

ing, personal hygiene, and use of everyday objects. A new

approach was adopted to provide a comprehensive description

of the unique features of apraxic and action disorganization dis-

order. The difficulties with execution of ADL were categorized

arbitrarily into three components: problems with sequencing

of the multi-step actions, conceptual knowledge about tool use

and spatiotemporal aspects of the movement. This classification

is novel in comparison to the original descriptions of AADS.

However, the aim of this approach was to provide a com-

prehensive insight into the global picture of difficulties CVA

patients might experience. Although these themes were pre-

sented separately, the evidence suggests those deficits are often

intertwined on the behavioral level and also share the neu-

ral substrates. In the neural correlates section of this review,

the critical role of the left angular gyrus was pinpointed in

the sequencing of the multi-step actions. The neural under-

pinnings of conceptual knowledge were located in the inferior

frontal gyrus, the inferior parietal lobe, and middle tempo-

ral gyrus. The spatiotemporal features of the execution of the

ADL have been linked to the integrity of posterior part of the

parietal lobe including the angular gyrus, the parieto-occipital

junction and the inferior frontal gyrus. In addition, other areas

that were also identified as linked to the ADL performance

were discussed, with a conclusion that a wide neural network

is involved in cognitive and motor aspects of action planning

and execution. In the final section of this review, a strategy

training approach was identified as the most efficient and com-

mon therapeutic strategy currently used in the rehabilitation of

AADS.
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Bieńkiewicz et al. Apraxia in daily life

Mizelle, J. C., and Wheaton, L. A. (2010). Why is that hammer in my coffee? A mul-

timodal imaging investigation of contextually based tool understanding. Front.

Hum. Neurosci. 4:233. doi: 10.3389/fnhum.2010.00233

Moll, J., de Oliveira-Souza, R., Passman, L. J., Cunha, F. C., Souza-Lima, F., and

Andreiuolo, P. A. (2000). Functional MRI correlates of real and imagined tool-use

pantomimes. Neurology 54, 1331–1336. doi: 10.1212/WNL.54.6.1331

Nakao, S., Takata, S., Uemura, H., Kashihara, M., Osawa, T., Komatsu, K., et al.

(2010). Relationship between Barthel Index scores during the acute phase of

rehabilitation and subsequent ADL in stroke patients. J. Med. Invest. 57, 81–88.

doi: 10.2152/jmi.57.81

Ochipa, C., Maher, L. M., and Rothi, L. J. G. (1995). Treatment of ideomotor apraxia.

J. Int. Neuropsychol. Soc. 2, 149.

Osiurak, F., Jarry, C., Allain, P., Aubin, G., Etcharry-bouyx, F., Richard,

I., et al. (2009). Unusual use of objects after unilateral brain damage. The

technical reasoning model. Cortex 45, 769–783. doi: 10.1016/j.cortex.2008.

06.013

Paolucci, S., Antonucci, G., Pratesi, L., Traballesi, M., Lubich, S., and Grasso, M. G.

(1998). Functional outcome in stroke inpatient rehabilitation: predicting no, low

and high response patients. Cerebrovasc. Dis. 8, 228–234. doi: 10.1159/000015856

Pazzaglia, M., Pizzamiglio, L., Pes, E., and Aglioti, S. M. (2008). The sound of actions

in apraxia. Curr. Biol. 18, 1766–1772. doi: 10.1016/j.cub.2008.09.061

Pedersen, P. M., Jørgensen, H. S., Nakayama, H., Raaschou, H. O., and Olsen, T.

S. (1997). Hemineglect in acute stroke – incidence and prognostic implications.

The Copenhagen Stroke Study. Am. J. Phys. Med. Rehabil. 76, 122–127. doi:

10.1097/00002060-199703000-00007

Peters, C., Hermann, T., and Wachsmuth, S. (2013). “TEBRA – An automatic

prompting system for persons with cognitive disabilities in brushing teeth,” in

Proceedings of the 6th International Conference on Health Informatics (Barcelona:

HealthInf), 12–23.

Pilgrim, E., and Humphreys, G. W. (1994). “Rehabilitation of a case of ideomo-

tor apraxia,” in Cognitive Neuropsychology and Cognitive Rehabilitation, eds G.

Humphreys and J. Riddoch (London: Erlbaum), 271–285.

Poizner, H., Clark, M. A., Merians, A. S., Macauley, B., Gonzalez Rothi, L. J., and

Heilman, K. M. (1995). Joint coordination deficits in limb apraxia. Brain 118,

227–242. doi: 10.1093/brain/118.1.227

Prado, J., Clavagnier, S., Otzenberger, H., Scheiber, C., Kennedy, H., and Perenin,

M.-T. (2005). Two cortical systems for reaching in central and peripheral vision.

Neuron 48, 849–858. doi: 10.1016/j.neuron.2005.10.010

Randerath, J., Goldenberg, G., Spijkers, W., Li, Y., and Hermsdörfer, J. (2010).

Different left brain regions are essential for grasping a tool compared with its

subsequent use. Neuroimage 53, 171–180. doi: 10.1016/j.neuroimage.2010.06.038

Rizzolatti, G., and Matelli, M. (2003). Two different streams form the dorsal visual

system: anatomy and functions. Exp. Brain Res. 153, 146–57. doi: 10.1007/s00221-

003-1588-0

Rothi, L. J., and Heilman, K. M. (1997). Apraxia: The Neuropsychology of Action.

Hove: Psychology Press.

Rothi, L. J. G., Raymer, A. M., Ochipa, C., Maher, L. M., Greenwald, M. L., and

Heilman, K. M. (1992). Florida Apraxia Battery, Experimental Edition. Gainesville:

University of Florida College of Medicine.

Rumiati, R. I., Zanini, S., Vorano, L., and Shallice, T. (2001). A form of ideational

apraxia as a delective deficit of contention scheduling. Cogn. Neuropsychol. 18,

617–642. doi: 10.1080/02643290126375

Schubotz, R. I., Korb, F. M., Schiffer, A.-M., Stadler, W., and von Cramon,

D. Y. (2012). The fraction of an action is more than a movement: neu-

ral signatures of event segmentation in fMRI. Neuroimage 61, 1195–205. doi:

10.1016/j.neuroimage.2012.04.008

Schwartz, M. F., Buxbaum, L. J., Montgomery, M. W., Fitzpatrick-DeSalme, E., Hart,

T., Ferraro, M., et al. (1999). Naturalistic action production following right hemi-

sphere stroke. Neuropsychologia 37, 51–66. doi: 10.1016/S0028-3932(98)00066-9

Sirigu, A., Cohen, L., Duhamel, J.-R., Pillon, B., Dubois, B., and Agid, Y. (1995).

A selective impairment of hand posture for object utilization in apraxia. Cortex

31, 41–55. doi: 10.1016/S0010-9452(13)80104-9

Sirigu, A., Duhamel, J.-R., and Poncet, M. (1991). The role of sensorimotor experi-

ence in object recognition. Brain 114, 2555–2573. doi: 10.1093/brain/114.6.2555

Smania, N., Aglioti, S. M., Girardi, F., Tinazzi, M., Fiaschi, A., Cosentino, A., et al.

(2006). Rehabilitation of limb apraxia improves daily life activities in patients

with stroke. Neurology 67, 2050–2052. doi: 10.1212/01.wnl.0000247279.63483.1f

Smania, N., Girardi, F., Domenicali, C., Lora, E., and Aglioti, S. (2000). The rehabil-

itation of limb apraxia: a study in left-brain-damaged patients. Arch. Phys. Med.

Rehabil. 81, 379–88. doi: 10.1053/mr.2000.6921

Sunderland, A., Walker, C. M., and Walker, M. F. (2006). Action errors and

dressing disability after stroke: an ecological approach to neuropsychologi-

cal assessment and intervention. Neuropsychol. Rehabil. 16, 666–683. doi:

10.1080/09602010500204385

Valyear, K. F., and Culham, J. C. (2010). Observing learned object-specific functional

grasps preferentially activates the ventral stream. J. Cogn. Neurosci. 22, 970–984.

doi: 10.1162/jocn.2009.21256

Vanbellingen, T., Kersten, B., Van Hemelrijk, B., Van de Winckel, A., Bertschi, M.,

Müri, R., et al. (2010). Comprehensive assessment of gesture production: a new

test of upper limb apraxia (TULIA). Eur. J. Neurol. 17, 59–66. doi: 10.1111/j.1468-

1331.2009.02741.x

Vingerhoets, G., Honoré, P., Vandekerckhove, E., Nys, J., Vandemaele, P., and

Achten, E. (2010). Multifocal intraparietal activation during discrimination of

action intention in observed tool grasping. Neuroscience 169, 1158–1167. doi:

10.1016/j.neuroscience.2010.05.080

Vingerhoets, G., Vandekerckhove, E., Honoré, P., Vandemaele, P., and Achten, E.

(2011). Neural correlates of pantomiming familiar and unfamiliar tools: action

semantics versus mechanical problem solving? Hum. Brain Mapp. 32, 905–918.

doi: 10.1002/hbm.21078

Wade, D. T., and Hewer, R. L. (1987). Functional abilities after stroke: measurement,

natural history and prognosis. J. Neurol. Neurosurg. Psychiatry 50, 177–182. doi:

10.1136/jnnp.50.2.177

Walker, M. F., Sunderland, A., Fletcher-Smith, J., Drummond, A., Logan, P., Edmans,

J. A., et al. (2012). The DRESS trial: a feasibility randomized controlled trial of

a neuropsychological approach to dressing therapy for stroke inpatients. Clin.

Rehabil. 26, 675–685. doi: 10.1177/0269215511431089

Weiss, P. H., Rahbari, N. N., Hesse, M. D., and Fink, G. R. (2008). Defi-

cient sequencing of pantomimes in apraxia. Neurology 70, 834–840. doi:

10.1212/01.wnl.0000297513.78593.dc

Weiss, P. H., Rahbari, N. N., Lux, S., Pietrzyk, U., Noth, J., and Fink, G. R. (2006).

Processing the spatial configuration of complex actions involves right posterior

parietal cortex: an fMRI study with clinical implications. Hum. Brain Mapp. 27,

1004–1014. doi: 10.1002/hbm.20239

Wurm, M. F., Cramon, D. Y., and Schubotz, R. I. (2012). The context-object-

manipulation triad: cross talk during action perception revealed by fMRI. J. Cogn.

Neurosci. 24, 1548–1559. doi: 10.1162/jocn_a_00232

Yoon, E. Y., Humphreys, G. W., Kumar, S., and Rotshtein, P. (2012). The neural

selection and integration of actions and objects: an fMRI study. J. Cogn. Neurosci.

24, 2268–2279. doi: 10.1162/jocn_a_00256

Zacks, J. M., Braver, T. S., Sheridan, M. A., Donaldson, D. I., Snyder, A. Z., Ollinger,

J. M., et al. (2001). Human brain activity time-locked. Nat. Neurosci. 4, 651–655.

Conflict of Interest Statement: The authors declare that the research was conducted

in the absence of any commercial or financial relationships that could be construed

as a potential conflict of interest.

Received: 31 January 2014; accepted: 04 April 2014; published online: 23 April 2014.
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General Discussion – The 
Characteristics of  the Tool Use 
Network 

 

The Tool Use Network is left-lateralized, covers the ventral stream, parietal and frontal areas, shows a dorsal-to-ventral 

organization and is partly influenced by age. 

 

The aim of this general discussion is to connect the different studies of this thesis and put them into 

context with theories and findings in the current literature. This discussion and comparisons are focused 

on conclusions that can be drawn considering the results and findings from the experimental and 

theoretical works included in this thesis. After a short summary of all three studies, common conclusions 

and main findings are discussed and compared to the current body of literature and theories. These 

include four major topics: (1) The lateralization of the tool use network; (2) brain areas included in this 

network and their associated function; (3) the organization of the dorsal and ventral processing stream 

and their role in tool use; (4) age-related changes of the tool use network with links to findings of patients 

with apraxia. An additional section emphasizes methodological advances and limitations of the 

experimental studies. The final section summarizes main messages and conclusions that can be drawn 

from this thesis and work of research. 

Summary  

Chapter two of this thesis includes the original research article “The neural correlates of planning and 

executing actual tool use” (Brandi, Wohlschläger, Sorg, & Hermsdörfer, 2014) and covers the fMRI study 

on the neural basis of real tool manipulations in young healthy adults. One major methodological goal of 

this study was to measure the planning and execution of real actions and object manipulations with fMRI. 

A method and apparatus, which allows analyzing the use of multiple tools known from daily life and a 

variety of unknown neutral objects in the MRI environment, was aimed to be established. Additionally, 

this study addressed questions about the brain’s function and the neural underpinnings of tool use: The 

main focus laid on the question how the factor object (known tool or neutral objects), task (functional 

use or transport) or hand (dominant or non-dominant hand) influences the neural pattern and structure 

of the brain network which is responsible for processing tool use actions. Furthermore, one important 

element was to look on the phase of planning an action as well as the real execution. The results showed 
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that the manipulation of tools recruits a left-lateralized network with ventral stream activations (pMTG 

and LOC), parietal lobe activations (posterior parietal cortex, SMG and AIP) and frontal activations. 

Both action planning and execution recruited similar brain areas, but action execution included stronger 

frontal brain involvement (PMv, PMd, MFG, insular cortex). The comparison between task types, 

showing those areas responsive to increased online control of actions and higher demands on movement 

monitoring, revealed that regions of the dorso-dorsal stream as well as LOC are involved. Areas showing 

the highest selectivity for known object manipulations like tool use are associated with the ventro-dorsal 

stream described previously. A ventral stream area (MTG) was co-activated with the dorsal stream in this 

analysis, too. The analysis of the hand used revealed that actions done with the non-dominant hand 

increase the recruitment of the whole left-lateralized network necessary for tool use actions. Five main 

conclusions can be drawn from this study: (1) The “Tool-Carousel” is a suitable apparatus and method to 

measure real actions with fMRI; (2) the tool use and action network is strongly left-lateralized; (3) action 

planning and execution of tool manipulations recruit a similar network including temporal, occipital, 

parietal and frontal brain areas; (4) the division of the dorsal stream (Binkofski & Buxbaum, 2013) can be 

seen in real actions with neutral objects and tools; (5) ventral stream brain areas are co-activated with the 

dorsal stream, suggesting connections and interactions of both streams while performing real actions. 

The second research manuscript “Age-related changes in the neural correlates of complex object 

manipulations” included in this thesis (Brandi, Hermsdörfer, Sorg, & Wohlschläger, unpublished) also 

covers the analysis of real actions in the MRI scanner, but added the examination of elderly adults. The 

main research aim of this study was to compare the neural structure and pattern of the tool use and 

action network between young and healthy adults and evaluate age-related neural changes. Furthermore, 

it was tested if two existing theories on possible mechanisms in the aging brain could be applied to the 

neural processes of object manipulation in the elderly brain. The analysis revealed that both young and 

elderly show a similar left-lateralized brain pattern during actions with tools compared to neutral objects 

and during using compared to transporting actions. Elderly show an increased neural recruitment during 

action planning but decreased activations during execution compared to healthy young individuals. 

Elderly show a similar selectivity for objects and tasks in the brain areas of the tool use network like 

young adults, but increased brain activation in the frontal lobe and posterior parietal lobe in relation to 

their behavioral performance. Overall, the results of the study lead to four main conclusions: (1) The tool 

use and action network described before is mainly stable across age; (2) the activation strength in elderly 

compared to young individuals shifts to the planning phase of an action; (3) compensatory mechanisms 

could be found, while dedifferentiation effects could not be clearly detected; (4) due to the age-related 

differences found in healthy elderly individuals, comparisons of fMRI studies of healthy participants with 
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apractic patients should include an age-matched sample to get a more accurate understanding of tool use 

and the neuroanatomical correlates of apraxia. 

The third article included is called “The tool in the brain: apraxia in ADL. Behavioral and neurological 

correlates of apraxia in daily living.” (Bieńkiewicz et al., 2014) and contains a literature review on 

behavioral studies on apraxia and the action disorganization syndrome. Additionally, it covers a review on 

the neural basis of tool use, focusing on fMRI studies from healthy adults and lesion analyses from stroke 

patients with apraxia. The main goal of this review was to provide an overview of the current literature 

on behavioral and neuroanatomical findings about apraxia, especially focusing on three essential error 

types observed in patients: Sequencing errors in multi-step actions, conceptual errors and spatio-temporal 

errors in tool use. Based on this categorization of error types, brain imaging studies of healthy subjects 

dealing with the sequencing of multi-step actions, the conceptual understanding and spatio-temporal 

processing of tool use were summarized and visualized. Additionally, lesion analyses with patients 

suffering from apraxia and impairments in tool use were discussed and also compared to the findings of 

healthy adults. Because the contribution to this review by the author of this thesis comprised the 

summary and comparisons of the neural correlates of sequencing, conceptual understanding and spatio-

temporal processing of tool use in healthy adults and the lesion analyses, only this part can be regarded 

part of this thesis. Therefore, the focus of the summary and discussion will mainly lay on these aspects. 

Considering the review on findings of healthy participants and patients three main conclusions can be 

made: (1) Three different networks can be defined which code the sequencing of actions, the conceptual 

understanding and the spatio-temporal processing of tool use after summarizing neuroimaging studies of 

healthy adults analyzing those aspects of tool use; (2) patients with apraxia show lesion sites in relation to 

tool use impairments in several locations of the brain including the parietal cortex, the MTG, the inferior 

and middle frontal gyrus and the insular cortex; (3) taking both findings together it can be stated that the 

spatio-temporal processing of tool use is associated with the posterior part of the parietal lobe, while the 

conceptual understanding of tool use is related to a more widespread network with temporal, parietal and 

frontal contributions. Sequencing errors in patients and activations in healthy adults are mostly related to 

the angular gyrus of the parietal cortex.  

Common conclusions from all studies and associations to current literature  

Taking together all findings and conclusions resulting from the two experimental studies (Brandi et al., 

2014; unpublished) and the literature review (Bieńkiewicz et al., 2014), several general statements can be 

made about the tool use network: (1) The tool use network is clearly left-lateralized in real actions 

independent of the hand used to do the action and independent of age. This finding is further 

strengthened by the lesion studies including patients with left-sided brain damage and symptoms of 
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apraxia; (2) the brain regions found to be relevant for planning and executing real tool use and actual 

object manipulations overlap and are in line with the neural network found in previous research on tasks 

related to tool use and with observations of brain damaged patients and tool use impairments; (3) the 

general pattern of brain activations during actual tool use seen in the two experimental studies but also in 

the studies presented in the review, show a gradient from overall spatio-temporal control of hand and 

arm coordination processed in the dorsal brain to processes with a stronger semantical influence in the 

ventral brain; (4) age-related mechanisms and changes in the tool use network have to be considered for 

comparisons with cases of apraxia to get a more accurate view on the neural underpinnings of such tool 

use and action impairments. The next paragraphs discuss all four points in more detail and relate the 

findings of the experimental work and the review to each other and to further current literature. 

Lateralization  

As depicted in the experimental studies and the review, the network related to real actions with known 

tools and objects is mainly lateralized to the left hemisphere. This result is strongest and most consistent 

for tool actions compared to actions with unknown objects and also stable in age. Additionally, it was 

shown in young adults that this lateralization is also independent of the hand used (Brandi et al., 2014, 

unpublished). This can be confirmed by studies on the neural correlates of pantomime of tool use 

performed with both the dominant and the non-dominant hand (Johnson-Frey et al., 2005). In the 

literature review the left-sided lateralization was strongest in the analysis of the conceptual understanding 

of tool actions in healthy adults (Bieńkiewicz et al., 2014). Clearly, the importance of the left brain in tool 

use actions, but also in pantomime and gesture production is further strengthened by clinical 

observations apractic patients who mainly suffer from symptoms after left-sided brain damage 

(Goldenberg, 2014).  

Lateralization is not a phenomenon that is only found in tool use actions. The neural processing of 

language, a characteristic human ability, is lateralized to the left side of the brain and probably the most 

common example of hemispheric lateralization. Since the research performed by Paul Broca, it is known 

that those brain areas relevant for speech production are located on the left side of the brain (Broca, 

1861). The fact that both the development of complex language and tool use are defining abilities of the 

human species and both lateralized to the left hemisphere, is in favor of the hypothesis that the 

evolutionary development of both abilities are connected (Corballis, 2012; Steele, Ferrari, & Fogassi, 

2012). Corballis assumes that the connection between actions with hands and language is caused by the 

fact that language originated from hand gestures. It is believed that language evolved from the primate 

mirror system which is originally relevant for the recognition and performance of grasping movements 

(Corballis, 2012). Later in development communication was not based on gestures anymore but included 
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vocals which led to the advantage of freeing the hands for actions, tool use and for teaching and 

demonstration (Corballis, 2003). Considering the parallel development of tool use and language it is 

plausible that the general brain structures of both processes also evolved similarly and show the same 

lateralization, but it does not explain why the process is lateralized. Still the answer to the question why 

the brain develops asymmetries for certain functions is not fully clear. One prominent theory is that the 

lateralization of one function to one side of the brain increases the neural capacity. This means, if the 

neural process of one specific task or purpose is related to only one hemisphere, the other hemisphere 

can specialize on further other functions (Levy, 1977). This would reduce unnecessary duplication of 

functional specified brain location in both hemispheres and increase the brains efficiency and capacity to 

allow simultaneous processing (Halpern, Güntürkün, Hopkins, & Rogers, 2005; Vallortigara & Rogers, 

2005). 

Alterations of brain lateralization are often found in the aging brain. In the study on elderly individuals in 

chapter three the age-related changes in the lateralization are dependent on which brain network is 

looked at. As mentioned before, the pattern of brain areas active for tool actions compared to actions 

with unknown objects as well as those brain areas active for using objects compared to transporting them 

are clearly left-lateralized in age. On the other hand, a comparison of the brain activations during action 

planning of any actions in elderly to young adults results in a clear bilateral pattern including the same 

areas known to be relevant for tool use and other object manipulations. This result is in line with a wide 

range of literature showing an age-related over-recruitment of brain activation on both hemispheres 

(Cabeza, 2002; Grady, 2012). This phenomenon of decreased lateralization is either interpreted as a loss 

in efficiency or as a mechanism recruiting additional resources to compensate for age related structural 

changes in the aging brain (Grady, 2012). This topic will be discussed further in the section “Elderly and 

Apraxia”. 

Another interesting factor related to the brains’ lateralization in tool use actions is handedness. The 

development of having a dominant hand lead to an increase of motor skills and movement precision in 

one hand, which therefore is specialized for complex manual actions. The development of right hand 

dominance in most humans to perform actions, which is based on the control of the contra lateral brain, 

is assumed to be connected to the development of the left-sided lateralization in language and tool use 

(Frey, 2008; Steele et al., 2012). As it was shown in the study with healthy young adults and elderly in 

chapter two and three, the left-sided lateralization is also present during non-dominant hand use in right 

handers. This emphasizes the essential role of the left hemisphere in tool use independent on the hand 

used in right handed participants (Brandi et al., 2014, unpublished). Studies including left-handers are rare 

and the question if hand dominance has an impact on lateralization is not clear. Planning grasping actions 

with the hand and a tool (Martin et al., 2011) as well as the pantomime of tool use (Vingerhoets et al., 
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2012) is less lateralized to the left side with more bilateral activations in left handers independent of the 

hand used. Bilateral activations were seen in the IPL and SPL for tool use pantomime and aIPS and PMv 

during grasp planning. In general it can be said that independent of handedness both tasks (but especially 

pantomime) show a left-sided lateralization but reduced in left-handers (Martin et al., 2011; Vingerhoets 

et al., 2012).   

In respect to apraxia, the side of the brain lesion connected to impairments of imitation, single tool use 

and pantomime of tool use is the left and this finding is also referred to as one of the “core 

manifestations” of apraxia (Goldenberg, 2014). Impairments in the production of communicative 

gestures and pantomime with a strong left-sided lateralization of brain lesions can be assumed to be 

connected to the close relation to language and brain damage in the language dominant hemisphere (Frey, 

2008). But not only lesion of the left brain can cause symptoms related to apraxia (Bieńkiewicz et al., 

2014), also right brain damaged patients show impairments in actions of daily living related to tool use 

(Hartmann, Goldenberg, Daumüller, & Hermsdörfer, 2005). These impairments are mainly related to 

actions with multiple steps, the use of novel tools and the imitation of gestures (Goldenberg & Hagmann, 

1998; Goldenberg, 1996; Hartmann et al., 2005). In more detail this means, right brain damaged patients 

seem to be most impaired in sequencing action steps (Hartmann et al., 2005) and also in the visuospatial 

evaluation of demonstrated gestures (Goldenberg, 1996). This leads to the conclusion that sequencing 

and also spatial processing of actions are not only related to the left but also to the right hemisphere. This 

assumption is in line with the literature review of healthy adults in chapter four which shows bilateral 

activations in fMRI studies on sequencing and spatio-temporal features of actions.  

Considering these findings and the patient studies mentioned above, it seems that action processes like 

sequencing action steps and the spatio-temporal control of objects have additional right brain 

involvement compared to language-related tool gestures and tool use actions, which are strongly left-

lateralized. 

The Tool Use Network 

As described in chapter one the act of using a tool can be subdivided in different elements which are 

processed by a distinct network of brain areas. These elements include the process of object recognition, 

recalling the knowledge of object function and how to manipulate it, reaching, grasping and the execution 

and online control of the action. The neural basis of these elements has previously been analyzed by 

different approaches, for example viewing, imagining or pantomime of tool use actions and found a 

variety of different brain circuits which process information relevant for tool related tasks. The two 

experimental studies presented in chapter two and three, support and extend these findings to 

characterize the network during actual tool use for young and elderly adults. Importantly, here the 
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network was not only described at the time point of execution, but also during action planning. A similar 

network was found for both action phases underlining the importance of the recruited brain areas for the 

whole time course of an action and tool use (Brandi et al., 2014, unpublished).  

Object recognition and processing concerning object properties were found to be located in temporal 

and occipital areas as well as the fusiform gyrus in the ventral stream (Grill-Spector & Malach, 2004; 

Milner & Goodale, 2008). Similar results are also shown in the experimental study with healthy 

participants for planning and executing real tool related actions (Brandi et al., 2014, unpublished). LOC, 

MTG and a cluster in the fusiform gyrus are recruited during planning tool use actions in both elderly 

and young adults and underline previous articles which show the selectivity for object properties and 

tools in these areas (Chao et al., 1999; Grill-spector et al., 2001). Studies looking at preparatory brain 

activations show that occipito-temporal brain areas are relevant for processing object properties in order 

to conduct real goal-directed object manipulations also and extend the role of the ventral stream from 

processing perceptual information to a high influence in planning actions with objects (Gallivan et al., 

2013; Gallivan, Johnsrude, & Randall Flanagan, 2015).  

The neural basis of the conceptual understanding of tool use summarized in the literature review included 

studies testing context dependent tool use, tool familiarity, conceptual understanding and correctness of 

tool use in actions of daily living (Bieńkiewicz et al., 2014). A high involvement of the anterior parietal 

cortex, premotor areas and the MTG of the left next to fewer clusters in the right hemisphere can be 

seen. In the fMRI study with healthy young adults similar results are shown for those regions mostly 

selective for goal directed actions with tools. These include the MTG, anterior SMG of the inferior 

parietal lobe and the PMv (Brandi et al., 2014). In comparison to the literature this circuits overlap with 

those brain areas coding the knowledge about the objects function (Chen, Garcea, & Mahon, 2015) as 

well as those processing the knowledge of how to use a tool (Buxbaum & Saffran, 2002). Especially the 

latter aspect of tool use is a topic of discussion: The knowledge of how to use a tool, which was referred 

to as manipulation knowledge previously, is often described as an “gesture engrams” and it is assumed to 

be a form of semantic memory coded mainly in the parietal lobe and disrupted in patient with apraxia 

(Boronat et al., 2005; Buxbaum & Saffran, 2002; Pelgrims et al., 2011). It is questionable if manipulation 

knowledge is a coded memory in the brain and this assumption is challenged by another possible theory 

(Goldenberg, 2009; Osiurak, Jarry, & Le Gall, 2011; Sunderland, Wilkins, Dineen, & Dawson, 2013). It 

hypothesizes that those brain areas, which have been found to be closely connected to known object 

manipulations, like the inferior parietal lobe, do not represent an engram, but are rather essential for 

mechanical problem solving and integrating information about the functional relevant parts and 

properties of objects for goal directed manipulations (Goldenberg, 2014). The results mentioned 

previously and presented in chapter 2 are showing those brain areas most selective for tool use. This 
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activation pattern could represent coded manipulation knowledge but also increased demands on 

mechanical problem solving. Due to the fact that the condition tool use in the fMRI study is the most 

complex action in terms of the included object properties and chain of mechanical problems, it can be 

argued that increased demands on mechanical problem solving causes the brain activation. Considering 

this discussion in the current literature it can be said that even though the exact function of the inferior 

parietal lobe in tool use is not fully clear, it is for certain that flawless performance of goal directed 

actions with tools depends on it. 

The brain networks processing spatial coordination of arm, hand and fingers for reaching, grasping and 

monitoring object manipulations was of relevance in all three included articles. Both planning and 

executing actions with higher demands on reaching, grasping and monitoring recruited posterior parietal 

and dorsal premotor areas in both experimental studies. Additionally, the literature review underlines 

these findings in the summary of spatio-temporal processing of tool use in healthy subjects. Here, the 

superior and inferior parietal lobe, pIPS, POJ/SPOC, dorsal premotor cortex and the middle occipital 

gyrus in both hemispheres are related to correct grasping and spatial control of movements in tool use 

actions (Bieńkiewicz et al., 2014). In comparison to the lesion data of patients with apraxia erroneous tool 

grasping is also related to the POJ and inferior frontal gyrus (Bieńkiewicz et al., 2014; Randerath et al., 

2010). Overall, these results are in line with the presented literature in chapter one and further 

characterize the functional relevance of the neural circuit including the posterior parietal lobe and 

premotor areas responsible for planning and executing the correct arm, hand and finger postures for 

interactions with objects as well as the control of use-related movements. 

In summary, it can be concluded that actual tool use in young and elderly adults goes along with the 

recruitment of ventral stream areas for visual processes, inferior parietal and frontal activations related to 

tool use actions in particular and posterior parietal and PMd activations associated with the control of 

complex reaching and grasping movements. Figure 2 summarizes and visualizes the results and gives an 

updated model of the tool use and action network described in chapter one, which is relevant for the 

young and elderly brain, as well as both planning and executing actions.  

Dorsal-to-ventral organization of the tool use and action network 

The previous section discussed the experimental and reviewed results covering different brain areas 

relevant for specific functions related to tool use. When not focusing on individual locations and 

functions of brain areas only, but describing the organization of the action and tool use network as a 

whole, additional conclusions can be drawn. The results of the fMRI analysis show that the online 

control of complex actions independent of object type is processed in a dorso-dorsal processing stream, 

while ventro-dorsal areas process known tool use in real actions (Brandi et al., 2014). Importantly, ventral 
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stream areas are co-activated with these pathways. The literature review shows a similar pattern, with 

strong dorsal involvement in spatio-temporal processes and increased ventral activation and lesion sites 

related to the conceptual understanding of tool use (Bieńkiewicz et al., 2014). Overall, these findings and 

the current literature show that the pattern of brain areas relevant for an action show a “dorsal-to-

ventral” organization dependent on the amount of semantic processing involved in the action. This 

means in detail: An action which is only related to the spatial control of objects independent of identity is 

processed in a rather dorsal location of the brain, while increased semantical meaning in an action also 

increases the involvement of additional ventral brain areas recruited. This assumption extends the view of 

two separated streams, one for action processing, the other for perception and recognition (Goodale & 

Milner, 1992). It is rather a dorsal-to-ventral gradient which describes interconnected subnetworks 

relevant to perform different kinds of actions. This assumption is based on the hypothesis that the dorsal 

processing stream can be divided into two pathways as mentioned before. A dorso-dorsal route is 

relevant for the control of online actions and the monitoring of objects in space, while the ventro-dorsal 

route is connected to action semantics and known object manipulation connected to a certain meaning 

(Buxbaum & Kalénine, 2010; Buxbaum et al., 2006; Kalénine et al., 2010; Rizzolatti & Matelli, 2003). A 

lesion analysis with patients suffering from apraxia underlines this assumption and also emphasizes the 

role of the ventral stream in actions (Hoeren et al., 2014). The imitation of meaningless gestures is 

associated with lesions in dorsal brain, while the pantomime of tool use is related to lesions in the ventro-

dorsal stream and also the ventral stream, in this study. Additional fMRI and DTI analysis on imitation 

and pantomime show similar findings concerning the dorsal-to-ventral organization in healthy individuals 

on a structural brain level and underline the interconnection of IFG, MTG and IPL by ventral fibers 

relevant for semantical actions like pantomime (Vry et al., 2014). Further insight can be given by another 

type of connectivity analysis focusing on functional co-activations of brain regions during rest. The 

analysis is based on the assumption that brain areas which share a common function show a coherent 

activation pattern during rest and are therefore connected (van den Heuvel & Hulshoff Pol, 2010). The 

functional connectivity pattern of the MTG with the rest of the brain shows that it is highly linked with 

the anterior inferior parietal lobe as shown in the DTI study mentioned above, but also with other brain 

areas like the middle-to-anterior IPS, postcentral gyrus, POS, precuneus, SPL, insular cortex, middle 

frontal gyrus, the inferior frontal gyrus and the dorsal and ventral premotor cortices (Hutchison, Culham, 

Everling, Flanagan, & Gallivan, 2014). In this study another ventral stream area was revealed to have 

connections to other dorsal stream areas. The left LOC shows a functional connectivity with the POS 

and the posterior IPS, two brain regions previously reported to be relevant for the control of objects in 

space. Considering the LOCs involvement in processing grasping relevant object related properties 

(Monaco et al., 2011), this functional connection seems plausible. The connection between ventral and 

dorsal stream areas was also tested with functional task-related activity including tools as visual stimuli 
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(Almeida, Fintzi, & Mahon, 2013). The authors argue that the access of tool manipulation knowledge, 

which is related to the inferior parietal cortex, strongly dependents on retrieving semantic or identity 

information of objects via the ventral stream. Dynamic causal modelling (DCM) provides another 

connectivity analysis which can be used to analyze connections in the action network (Friston, Harrison, 

& Penny, 2003). A DCM study on grip-selection of useable objects from daily life showed that the 

demands of grip-selection alters the dynamics of a network including AIP, pMTG and PMv as important 

nodes (Makuuchi, Someya, Ogawa, & Takayama, 2012). The connection from pMTG to AIP is altered 

with increased load on the selection of grip type as well as the converging interactions from pMTG and 

AIP to the PMv. The authors emphasize the interaction of ventral and dorsal stream for the process of 

grasping usable objects and the integrating role of the PMv for the selection of the correct hand shape for 

grasping.  

 

Figure 2: An updated model of the organization of the network relevant for tool use and actions. Shown are the dorso-dorsal 
stream in green, the ventro-dorsal stream in red and the ventral stream in blue on a rendered left hemisphere of the brain. This 
model is applicable for elderly individuals and the visualized brain network is relevant for both planning and executing actions. 

To conclude, the reported results and current literature lead not only to the assumption that the pattern 

of processing streams is dependent on the semantic involvement of an action, but also that these 

processing streams described previously are not strictly separated during tool use, but  are interconnected. 

Semantic information, which is associated with ventral brain areas, has to be coupled to those processing 

streams relevant for action. This means that ventral stream areas like the MTG and LOC are not only 

involved in perception but also in actions and are therefore co-activated with the dorsal stream during 
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real actions or action-related processes with tools. This is shown to be the case in real actions in the 

experimental study with healthy young and elderly adults (Brandi et al., 2014, unpublished) as well as in 

the literature review (Bieńkiewicz et al., 2014). The hypothesis that information from the ventral stream 

has to be transferred to the dorsal stream is also included in the updated model of the tool use and action 

network in Figure 2. Further connectivity analyses could confirm whether the found co-activation goes 

along with an increased coupling between the proposed connections during actual action planning and 

execution.  

Elderly and Apraxia 

Healthy aging has an effect on the neural process of different cognitive and motor functions and 

therefore also on behavior. How the brain network necessary for conducting actions with tools is altered 

due to age-related brain atrophy had not been analyzed before until now. As it was presented in chapter 

one, several aspects of tool use like semantic processes, reaching, grasping, fine motor skills and precise 

movement control are influenced on a behavioral and neural level. The fMRI analysis on healthy elderly 

adults supports these findings and gives new insights into the alterations that affect the neural correlates 

of tool use and general object manipulations (Brandi et al., unpublished). The strongest change that could 

be observed was an increased activation during action planning in elderly adults compared to young 

adults, which covered a wide bilateral network including the anterior and posterior parietal lobe, ventral 

stream areas like MTG and LOC as well as premotor areas of the frontal cortex. Therefore, key areas in 

the neural tool use and action network seem to show an altered activation pattern in elderly adults during 

the preparation of actions in general. The relative difference of activation strength between the tested 

actions was not accompanied by age-related changes. Therefore, a dedifferentiation or decrease in 

selectivity within the tool use and action network could not be detected in the elderly brain. Interestingly, 

the effect of over-activation is restricted to the planning phase which leads to the conclusion that this 

phase of an action needs stronger resources in the elderly brain in order to perform a task. One 

explanation as described before is that the increased activity in elderly is necessary to ensure accurate or 

correct performance (Grady, 2012; Ward, 2006) and represents a compensatory mechanism. In general, 

compensatory mechanisms are usually assumed if the increased activity is associated with similar 

performance like in young adults or if the activity strength of elderly is correlated with better 

performance while there is no such correlation in young individuals (Grady, 2012; Heuninckx et al., 

2008). The latter was the case in the fMRI study included in this thesis and mainly showed a relationship 

between good performance and increased activation strength in the frontal cortex (bilateral MFG 

reaching to IFG) and two left-sided posterior parietal regions (SPOC and pIPS). The existence of such a 

mechanism is questioned, especially due to inconsistencies in the results and the relations between 

behavioral scores and brain activity. Some researchers argue that increased recruitment with similar 
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performance is rather a sign of inefficiency of activated resources than a compensatory mechanism 

(Grady, 2012; Spreng et al., 2010; Zarahn, Rakitin, Abela, Flynn, & Stern, 2007). Other studies even 

found that over-recruitment in frontal areas is related to worse or slower performance in elderly 

compared to younger adults in different memory or visual tasks (de Chastelaine, Wang, Minton, Muftuler, 

& Rugg, 2011; Grady, 2012; Grady et al., 2010). It seems that there is no clear relation between brain 

activity and task performance in the elderly brain that can explain alterations in the aging brain across 

cognitive domains and tasks. One model, which tries to explain compensatory activation as they were 

found in the fMRI study with elderly adults in chapter two, is called CRUNCH (“compensation-related 

utilization of neural circuits hypothesis”) (Reuter-Lorenz & Cappell, 2008). It also takes the level of 

cognitive load of a task into account and assumes that at lower load elderly need more neural resources 

for a task than young adults while at higher load such a compensatory mechanism is not efficient any 

more. This results in similar or even lower activation strength in elderly individuals. Such activation 

patterns have been found to be present in frontal and parietal areas during a working memory task 

(Cappell, Gmeindl, & Reuter-Lorenz, 2010; Schneider-Garces et al., 2010) and this theory therefore 

provides a possible explanation for increased and decreased activations in elderly compared to young 

adults. Based on this theory, the decreased activation strength during the execution of an action in elderly 

compared to young adults, reported in chapter three, could be explained by an inefficient compensatory 

mechanism due to increased demands on action control. Another possible explanation could be that the 

elderly show differences in kinematic parameters of the hand movement. Decreased grip force, 

movement speed and dynamics could also lead to lower activations compared to young adults. A detailed 

kinematic analysis of hand actions in the current experimental design was not possible, but would 

enhance the understanding of age-related changes in the neural processing of action execution (Brandi et 

al. unpublished).  

Even though the study presented in chapter three could not provide detailed information about 

movement kinematics, still behavioral changes in tool related actions were detected (Brandi et al., 

unpublished). While some of the errors made by the elderly are not directly related to object 

manipulations but rather to possible attention deficits resulting in incorrect actions in relation to the 

experimental cue, others are clearly associated with incorrect object grasping and movements for correct 

use. Additional to the data presented here, also other studies found impairments in elderly related to tool 

use actions. Pantomime of tool use, which is known to be impaired in apraxia, is also affected by aging. 

Elderly adults often show body-part-as-object errors during pantomime, which means shaping the own 

hand as the acting tool and not creating a hand posture to grasp it (Peigneux & van der Linden, 1999; 

Rodrigues Cavalcante & Caramelli, 2009; Ska & Nespoulous, 1987). Also the recognition of transitive 

(object related movements like tool use) and intransitive (movements not related to tools like waving) 
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hand postures is shown to be reduced in elderly adults (Mozaz, Crucian, & Heilman, 2009). This does not 

mean that elderly individuals have a form of apraxia, but it shows that age-related changes can lead to 

impairments in an aspect of tool use similar to what is seen in the symptoms of patients with apraxia 

(Mizelle & Wheaton, 2010). 

The observation of impairments in behavior in brain damaged patients and the association of those 

deficits to lesion locations help to understand the neural network responsible for that particular behavior. 

Considering that the age of patients with brain damage, for example after stroke, is similar to an elderly 

population, it has to be taken into account that the damaged brain network analyzed might also been 

affected by age-related changes. Therefore, when analyzing the neuroanatomical basics of apraxia and 

tool use, it has to be deliberated that the neural correlates of planning and executing tool use might be 

affected by age in these patients as well. The role of compensatory mechanisms, the bilateral increase of 

activation during action planning and additionally the shift to stronger activations in the planning 

compared to the execution phase of an action should be considered in the connection of lesion locations 

and the role in tool use of the affected brain area. In the literature review of lesion analyses in chapter 

four, several brain areas were associated with erroneous tool use actions like the middle temporal gyrus, 

middle and inferior frontal cortex, the inferior parietal lobe as well as a few posterior parietal areas 

(Bieńkiewicz et al., 2014). As reported, these areas are essential for gestures, tool use or tool related 

actions, but also include regions that have been shown to represent a compensatory mechanism ensuring 

accurate performance of object manipulations in this thesis (Brandi et al. unpublished). Additionally, the 

phenomenon of increased bilateral recruitment of brain areas for compensation during action planning 

might also attribute to the fact that errors in multi-step actions are also related to damages in the right 

brain. While these assumptions present some additional explanations to the neural basics leading to the 

symptoms of apraxia, further research is needed to prove that age-related neural changes play a role in the 

behavioral deficits of patients with the symptoms of apraxia. 

Methodological advances and limitations 

The methods developed and presented in this thesis provide the possibility to characterize the neural 

correlates of real hand-object interactions and therefore enable further insight into the brain processes of 

a variety of object manipulations and in specific tool use across age (Brandi et al., 2014, unpublished). 

This section aims to summarize the advantages of the materials and experimental design used in the 

included experimental studies, discuss possible limitations, improvements and perspectives.  

The “Tool-Carousel” is a suited apparatus to present a variety of different stimuli which can be grasped 

and manipulated by participants during an fMRI measurement. Previous studies have used similar devices 

to include objects in the MRI environment (Culham et al., 2003; Gallivan et al., 2013; Valyear et al., 
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2012), but none of these enables the experimenter to present a variety of different real sized objects in a 

short period of time with accurate onsets in a controlled visual field. Furthermore, the inclusion of an 

unpredictable go-cue for action induces the participant to plan an action in every trial even though the 

real action is only cued in a subset of trails. Therefore, these methods allow analyzing the neural 

correlated of action planning without movement artefacts confounding the activations and confirm the 

findings that preparatory brain activations are similar to those necessary for the actual movement. One 

possible extension of this analysis would be to use these planning signals and detect if these preparatory 

activations can predict an upcoming action and in which areas this is the case. This can be achieved with 

multi-voxel pattern classification which is very sensitive to detect the selectivity of brain activations for 

different upcoming tasks and has been used before to analyze preparatory activations of real actions 

(Gallivan et al., 2013; Gallivan et al., 2015, 2011).  

One limitation of the method presented here, which also has to be considered, is the use of a mirror 

system on the head coil to provide visual feedback for the participants. It can be argued that this fact 

adds an additional visuospatial transformation to the task, because the participants do not have a direct 

view on their hands as it is possible with a tilted head coil (Culham et al., 2003). Under the circumstances 

of the MRI scanner used, a tilted head coil or simply tilting the head in the existing coil, was not possible. 

The limitations emerging from this technical constraint can be minimized by the fact that such 

transformations are present in all experimental conditions and should be cancelled out in the comparison 

analysis. 

As shown in the study with elderly participants, the “Tool-Carousel” also allows measuring different 

subject groups and not only healthy young adults. The development of the tool use network across the 

whole lifespan as well as the analysis of tool use difficulties in different mild impaired patient groups 

would be possible. Functional and structural age-related neural alterations, which lead to the previous 

described changes in grasping, transitive gestures and tool use, could be defined and compared to patients 

with the same impairment in equal tasks to investigate different brain modifications which lead to 

equivalent behavioral deficits. The inclusion of behavioral scores, which were gathered with a video 

camera and a motion detection analysis, extended the possibility to analyze the participants’ actions and 

set their performance in relation to the brain activations. This is a valuable approach which was of special 

interest in case of the elderly study and the analysis of compensatory mechanisms (Brandi et al. 

unpublished). Such analysis could be further improved with more accurate and detailed video recordings 

and motion capturing cameras tracking more movement parameters of hand actions. This could enhance 

future analyses of real hand actions and, for example, make the detection and characterization of errors 

and movement impairments in elderly individuals or patient groups more precise. 
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Taken together, the “Tool-Carousel” and the experimental design represent an adequate approach to 

study the neural correlates of tool use in young and elderly adults and provide a good method for future 

research on the neural basics of different actions across age. 

Conclusion  

The use of objects as tools is an ability that humans developed millions of years ago and that has 

developed to become an essential element of our lives. The brain network responsible for these actions 

has been of interest to several researchers but is still not fully understood. The characterization of this 

network, responsible for using a spoon, a pen or a hammer, during fMRI measurements is a 

methodological challenge which was met in the experimental studies included in this thesis and extended 

by a literature review. The main goals of this thesis were to gain a better understanding of the 

composition of the tool use network, its hemispheric organization, the location of different functional 

pathways, and its age-related alterations as well as a comparison of fMRI results of healthy individuals 

and lesion analyses of patients with apraxia and impairments of tool use actions. The measurement of 

planning and executing real tool use with fMRI, the examination of the same in an elderly group and the 

review of clinical observations of tool use impairments after brain damage provide new insights for the 

understanding of the neural process underlying human tool use: The tool use network is left-lateralized, 

independent of the dominant or non-dominant hand used, and the network’s lateralization is stable in 

age. An overall bilateral over-recruitment of brain areas in the elderly is present in action planning and 

should be considered in the discussion of possible reasons for impairments in activities of daily living and 

right brain damaged patients. Brain areas found for planning and executing real actions with tools and 

neutral objects overlap with previous fMRI and lesion studies of patients suffering from apraxia and are 

also recruited in elderly. These include areas of the ventral stream for semantic processes, posterior 

parietal regions for monitoring the spatial online control of an object, inferior parietal areas for 

processing complex object manipulations like tool use and dorsal and ventral premotor areas responsible 

for the appropriate motor plan and selection of correct hand shape and movements for the action. The 

pattern of the functionally specialized circuits processing actions shows a dorsal-to-ventral gradient with 

enhanced involvement of ventral brain areas with increased semantic aspects of an action. While the 

general control of objects in space recruits brain areas of the dorso-dorsal stream, actions involving more 

semantic information like the function-specific manipulation of tools, are processed in the ventro-dorsal 

stream. Importantly, ventral stream areas are not only essential for perception, but also have a key role in 

action, and interact with the two dorsal pathways. Age-related changes can influence brain processes 

during real object manipulation. Elderly individuals show over-activations in frontal, parietal and 

temporal brain areas and compensatory mechanisms in frontal and posterior parietal areas. Such age-
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related changes in brain networks relevant for actions should be considered in lesion analysis of patients 

suffering from apraxia. 
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