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1 Introduction 

Atherosclerosis is a maladaptive inflammatory response that occurs at susceptible sites in the 

walls of major conduit arteries to disturbed flow and increased plasma cholesterol
1-3

. The 

process which is initiated by lipid retention in the intima and subsequent oxidation, promotes 

a chronic inflammatory response and ultimately forming advanced lesions that can cause 

stenosis or rupture and cause thrombosis
4, 5

. Ischemic heart disease and cerebrovascular 

disease, two clinical consequences of atherosclerosis, are the leading causes of death in high-

income countries as well as low and middle-income countries
6
. Micro-ribonucleic acids 

(miRNAs/microRNAs/miRs), a class of small endogenous non-coding RNAs that regulate 

gene expression play important roles in several physiological and pathological processes
7, 8

. 

MicroRNAs are also implicated in various functions in different cell types and stages 

involved in atherogenesis
9
. The use of these small RNAs either as diagnostic markers or 

therapeutic measures presents a promising solution in the fight against atherosclerosis, its 

clinical complications and contribution to disease burden and mortality.  

 

1.1 Atherosclerosis 

The process of atherosclerosis develops over a long period of time and is initiated by the 

accumulation of lipoproteins which triggers the recruitment and differentiation of monocytes 

into macrophages and over time, inability of the immune cells to resolve this inflammatory 

response results in the deposition of lipid-laden macrophages (foam cells)
10, 11

. In early 

atherosclerosis, apoptosis of the macrophages coupled with effective efferocytosis prevents 

further progression of the lesion but in late stages however, defective efferocytosis and 

increased inflammatory response lead to the formation of a necrotic core and more advanced 

lesions
12

. Advanced lesions can grow through the increased accumulation of apoptotic debris 

and macrophages which may block the vessel, but also of clinical concern is the calcification, 

ulceration at the luminal surface, and haemorrhage from small vessels that grow into the 

lesion leading to thrombus resulting in ischemic heart disease (IHD) or stroke
13

.  

IHD and stroke, the main cardiovascular diseases (CVD) constitute the leading cause of death 

worldwide
14

. Approximately 17 million people constituting 30%, died of CVD in 2010 

worldwide
15

. Even as these statistics already present a great challenge and burden, it is 

projected to keep increasing due to rapid urbanization and higher prevalence of risk factors
16

. 

An estimate of the number of deaths due to IHD shows 80% and 100% increase in women 

and men respectively, whereas a 78% and 106% increase due to cerebrovascular disease in 

women and men respectively is projected by the year 2020
16

. This increase in the prevalence 

and mortality due CVDs according to Yusuf et al,
17

 are mainly due to; (1) the decrease in 

infant mortality; (2) rapid urbanization of low and middle income countries; (3) increasing 

life expectancy and a more ageing population and (4) increasing use of tobacco worldwide. 
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In spite of the extensive research into atherosclerosis, there are presently few therapeutic 

drugs to prevent or slow down the progression of atherosclerotic lesions and this mainly 

involves the use of statins to reduce blood cholesterol levels
18

. Although significant benefits 

are being achieved by statin therapy, a significant number of events still take place 

necessitating the need for more effective and new therapies
19

.  

 

1.1.1 Cellular processes in atherosclerosis 

In humans, the earliest form of atherosclerosis called the ‘fatty streak’ consists of the 

accumulation of cholesterol-engorged macrophages (foam cells) in the subendothelial space 

and can be found in the aorta within the first decade of life, the coronary arteries in the second 

decade, and the cerebral arteries in the third or fourth decades
20

. Though fatty streaks are not 

clinically significant, they are the precursors of more advanced lesions
13

. Lesions form 

preferably at regions of the arteries in which laminar flow is disturbed by bends or branch 

point
21-23

. From the decades of studies into atherosclerosis, three main hypotheses supporting 

its initiation have been postulated and these include the response-to-injury hypothesis, the 

response-to-retention hypothesis and the oxidative modification hypothesis
24

.  

According to the response-to-injury theory, atherosclerosis is initiated by the focal denudation 

of endothelial cells as a result of an “injury” to these endothelial cells
25

. This is followed by 

the aggregation of platelets and the release of factors that enhances smooth muscle cell 

proliferation and advancement of lesion formation
25

. It was later postulated that endothelial 

injury alone was not enough to initiate atherosclerosis, but the injury results in the initiation of 

functional modifications key to atherogenesis. These modifications include the attachment 

and activation of monocytes which enter the vessel wall early in atherogenesis and 

differentiate into macrophages
20

 and the chemical modification of low density lipoprotein 

(LDL) by the endothelial cells  through a free radical oxidation process thereby actively 

participating in foam cell formation
26

. 

The response-to-retention hypothesis states that the subendothelial retention of apolipoprotein 

B (apoB)–containing lipoproteins in focal areas of arteries as opposed to endothelial injury is 

the key pathological event in atherogenesis
24

 and following the rapid induction of 

hypercholesterolemia, accumulation of LDL in the vessel wall is one of the earliest detectable 

changes
27

. Modification of retained lipoproteins likely triggers inflammatory response leading 

to activation of endothelial and vascular smooth muscle cells (SMCs), recruitment of 

monocytes and accumulation of monocyte-derived macrophages, T-cells, B-cells, and 

dendritic cells in the subendothelial space
5
. 

Evidence supporting the oxidative modification hypothesis suggests that native LDL does not 

enhance atherogenesis since it is not taken up by macrophages rapidly enough to generate 

foam cells, and so it was proposed that LDL is somehow ‘modified’ in the vessel wall
28

.  
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LDL diffuses passively through endothelial cell to cell junctions and its retention involves 

interactions with negatively charged proteoglycans
29

. LDL undergoes oxidation
30

 making it 

susceptible to macrophage uptake through the scavenger receptor pathway, producing 

cholesterol ester-laden foam cells
31

. It is the accumulation of foam cells that forms the nest for 

the development of atherosclerotic lesions. Putting the evidence together, irrespective of the 

initiating event during atherogenesis and the subsequent cellular involvement, macrophage 

function seems to be central in the progression and formation of atherosclerotic lesions. 

Therapeutic targeting of macrophages and their functions in the arterial wall is therefore likely 

to provide several novel therapeutic solutions and possibilities.   

 

1.1.2 Macrophages: apoptosis and efferocytosis 

Even though atherosclerosis was for many years believed to be merely the passive 

accumulation of cholesterol in the vessel wall, it is considered today more as a chronic 

inflammatory disease
32

. The accumulation of oxidatively-modified low-density lipoprotein 

(oxLDL) in the vessel wall activates endothelial cells which send inflammatory molecular 

signals leading to the recruitment of cells responsible for innate immune response such as 

dendritic cells and monocyte-derived macrophages
33, 34

. Macrophages infiltrate the 

subendothelial space as a response to inflammation with the purpose of engulfing oxLDL and 

to remove them
35

. However, phagocytosis of oxLDL leads to the formation foam cells and 

further the progression of atherosclerosis when they persist in the subendothelial space
13, 34, 36

.  

Macrophage clearance of lipoproteins is thought to be beneficial at the initial stages of the 

immune response in atherosclerosis, but according to Moore et al there is little negative 

feedback following uptake
34

 and thus the cells over time become grossly engorged with lipids 

thereby reducing their ability to emigrate from the subendothelial space resulting in failure to 

resolve the inflammation
37

. The uptake of oxLDL mediated by the scavenger receptor A (SR-

A) does not only lead to persistence of macrophages in lesions but more importantly to 

increased proliferation, a key factor that drives macrophage accumulation and 

atherosclerosis
38

.  

Persistence of macrophage foam cells in the lesion eventually leads to increased oxidative 

stress and endoplasmic reticulum (ER) stress
39

. Activation of ER stress in lesional 

macrophages due to the accumulation of free cholesterol and saturated fatty acids triggers 

apoptosis through the cluster of differentiation 36 (CD36) and toll-like receptor 2 (TLR2) 

receptors
40

. Prolonged ER stress activates the unfolded protein response (UPR) which triggers 

a second pathway of apoptosis through the activation of CEBP-homologous protein (CHOP) 

and subsequently the production of reactive oxygen species
41

. CHOP decreases the expression 

of the cell survival protein B-cell lymphoma 2 (Bcl2) leading to macrophage cell death in 

advanced atherosclerotic lesions
5
.  
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The central role played by macrophages in atherogenesis makes the number of macrophages 

in lesions a very important measure of atherosclerotic burden
42

. According to Tabas
42

, there 

are two factors that control lesional macrophage numbers namely factors that determine 

cellularity and factors that lead to macrophage depletion. Macrophage cellularity is 

determined by monocyte infiltration and macrophage proliferation whereas macrophage 

depletion is determined by apoptosis and removal of apoptotic macrophages, suggesting that 

altering macrophage content by reducing recruitment to atherosclerotic plaques or by 

promoting macrophage apoptosis may have therapeutic effects. However, this therapeutic 

effect may depend on the stage of atherogenesis that macrophage death occurs
43

. In early 

lesions, blocking apoptosis in macrophages enhances atherosclerotic lesion formation
44, 45

, 

indicating that macrophage apoptosis in the early stages of atherogenesis is beneficial. 

However, in advanced lesions, increased apoptosis combined with defective clearance of 

apoptotic macrophages (efferocytosis), leads to the formation of a necrotic core
46

, which 

makes the lesion more vulnerable and dangerous by contributing further to inflammation, 

thrombosis and rupture
47

. 

To resolve inflammation, apoptotic cells are usually engulfed by macrophages through 

phagocytosis and removed from the sight of injury
48

. In early lesions, efferocytosis is 

effective and apoptotic cells are removed, thus preventing lesion development; however, 

efferocytosis in advanced lesions is not efficient enough to clear apoptotic macrophages, 

leading to the accumulation of apoptotic cell debris and consequently necrotic core formation 

and increased atherogenesis
12

. In LDL receptor  knock-out (Ldlr
-/-

) mice, increased 

macrophage survival in already existing lesions reduces necrotic core formation and the 

progression of atherosclerosis, indicating that macrophage apoptosis is pro-atherogenic in late 

atherosclerosis due to the defect in clearing apoptotic cells
49

. The above discussed data 

implies an effective efferocytosis in early lesions, whereas in late atherogenesis, reduced 

efferocytosis may be an important promoter of necrotic core formation and atherogenesis
46

. 

Efficient efferocytosis prevents the cytotoxic exposure of apoptotic bodies, triggers anti-

inflammatory response and promotes survival of the efferocytes
39

. These findings suggest 

possible therapeutic targets worthy of attention maybe to: (1) promote or increase macrophage 

apoptosis in early atherosclerosis, (2) enhance macrophage survival in late atherosclerosis and 

(3) to enhance efferocytosis in lesions. 

Efferocytosis of apoptotic macrophages is mediated by the expression phagocytic receptors 

and apoptotic ligands that enhance recognition and uptake
50, 51

. For example, targeting of 

MER proto-oncogene, tyrosine kinase (MERTK), a tyrosine kinase and low-density 

lipoprotein receptor-related protein 1 (LRP-1) in mouse atherosclerotic lesions increases the 

presence of apoptotic macrophages
46

 suggesting that MERTK and LRP-1 mediate apoptotic 

clearance. The processes that lead to defective clearance of apoptotic macrophages during 

atherogenesis therefore need to be investigated and targeted as possible therapeutic pathways. 

Previous data suggestes that not all lesional macrophages are transformed into foam cells, but 

some macrophages are responsible for the production of cytokines like interleukin-1 beta (IL-

1β) and tumour necrosis factor alpha (TNFα) and are involved in enhancing inflammation in 
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atherosclerotic lesions
52

. Macrophages were then later shown to exhibit plasticity and 

different phenotypes based on available signals and cytokines
53

. Classical activation of 

macrophages (M1) which is pro-inflammatory, results in the presence of lipopolysaccharide 

(LPS) and interferon gamma (IFN-γ) whereas the alternative activation of macrophages (M2) 

occurs in response to interleukin-4 (IL-4)
53

. Both M1 and M2 macrophage phenotypes, do 

exist in atherosclerotic plaques
54

 and the activation and polarization of macrophages have 

significant effects on atherosclerosis
53

. 

 

1.2 MicroRNAs and atherosclerosis 

MicroRNAs are a large family of small (~22 nucleotides) non-coding RNA molecules that are 

responsible for post-transcriptional regulation of gene expression
7
. The regulation of the 

expression of target genes occurs through imperfect base pairing to the 3’ untranslated region 

(3’ UTR) of messenger RNAs (mRNAs) thereby repressing mRNA expression. MicroRNAs 

are involved in several physiological processes including development, differentiation, 

metabolism, growth, proliferation and apoptosis
8, 55-57

. Furthermore, several microRNAs 

expressed in various cells can regulate mechanisms including inflammation, cell proliferation, 

apoptosis and lipid metabolism, thereby playing important roles in atherosclerosis
58, 59

. 

MicroRNAs therefore present several possibilities in the developing of therapeutic strategies 

to inhibit atherosclerosis. 

 

1.2.1 Biogenesis of microRNAs 

MicroRNA biogenesis is an evolutionary conserved mechanism which involves transcription 

of the primary microRNA (pri-miRNA) by RNA polymerase II (RNA pol II) from introns of 

protein coding genes or from non-coding regions
60, 61

 (Figure 1). Following transcription, the 

pri-miRNA is further processed by Drosha into a 60 – 100 nucleotide precursor namely the 

pre-miRNA
62

. This pre-miRNA is then recognized by Exportin-5 and Ran-GTP and 

transported from the nucleus to the cytoplasm
63

 where it under goes further cleavage by the 

RNase III enzyme Dicer into the 22 nucleotide mature guide strand microRNA and 

microRNA* its passenger strand
64

. The guide strand is then loaded into the RNA-induced 

silencing complex (RISC) whiles the passenger strand is degraded
60, 65

.  

The strand selection and loading into the RISC is determined by their thermodynamic 

stability, abundance of microRNA target transcripts and tissue-specific regulatory 

mecahnisms
64, 66

. Contrary to earlier assertions that only the guide strand is loaded into the 

RISC complex, it is now known that both the guide strand and passenger strand can be 

functional
67

. In certain cases, the two strands may target and inhibit similar mRNAs as is the 
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case for miR-126-3p and miR-126-5p in breast cancer
68

 or may have different targets and 

functions in the case of miR-28-3p and miR-28-5p in colorectal cancer cells
69

. 

 

Figure 1: Biogenesis of microRNAs. RNA pol II transcribes the capped and polyadenylated pri-

miRNAs. Pri-miRNAs are processed by Drosha to generate pre-miRNAs which are then translocated 

into the cytoplasm by exportin-5 in a RAN-GTP dependent manner where they are further processed 

by Dicer to give the mature microRNA/microRNA* duplex. After final processing, the guide strands 

of microRNAs are assembled into the RISC and where repression of mRNA through an imperfect 

binding to a complementary sequence within the 3'UTR of the mRNA occurs (Ref #60).  

 

1.2.2  MicroRNAs in macrophage function during atherosclerosis 

The microRNA expression profile in human atherosclerosis is differentially regulated 

compared to normal arteries with miR-21, miR-34a, miR-146a, miR-146b-5p, and miR-210 

being significantly upregulated
70

. This dysregulation of microRNAs in atherosclerotic lesion 

suggests they play some important roles during atherogenesis. In endothelial cells for 

example, miR-19a is upregulated by laminar shear stress and regulates cell cycle by targeting 

cyclin D1
71

 and in the athero-susceptible inner aortic arch, miR-10a is downregulated and the 

knock-down of miR-10a in human aortic endothelial cells results in the upregulation of 
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nuclear factor-kappaB (NF-κB) mediated inflammation
72

. In addition, miR-126-5p inhibits 

lesion formation at predilection sites by maintaining a proliferative reserve in endothelial cells 

by inhibiting delta-like homolog 1 (Dlk1)
22

. 

In macrophages, microRNAs are also involved in the modulation of various functions during 

atherogenesis. Upon oxLDL treatment of human primary monocytes, several microRNAs 

including miR-125a-5p, miR-9, miR-146a, miR-146b-5p, and miR-155 are significantly 

upregulated suggesting they may be involved in lipid uptake or metabolism by 

macrophages
73

. miR-155 is highly expressed in atherosclerotic lesions and in vitro, 

stimulation of macrophages with mildly oxidized LDL and IFN-γ upregulates miR-155
74

 

through the toll-like receptor (TLR) pathway
75

. This upregulation through the TLR pathway 

indicates that miR-155 mediates inflammatory response in macrophages. Furthermore, 

deficiency of miR-155 in apolipoprotein E knock-out (Apoe
-/-

) mice reduces atherosclerotic 

plaques and macrophage accumulation after partial ligation of the carotid artery
74

. 

Atherosclerotic lesions and activated macrophages are characterised by the presence of 

enzymes that produce reactive oxygen species (ROS) 
76, 77

 and the treatment of angiogenic 

progenitor cells with a nitric oxide synthase inhibitor upregulates miR-21 leading to the 

enhanced extracellular signal-regulated kinase/mitogen-activated protein kinase-dependent 

(ERK/MAPK) reactive oxygen species formation
78

. Moreover, macrophage activation in 

lesions through TLRs leads to the production of inflammatory cytokines as well as mediates 

foam cell formation
79

, supporting the importance of macrophage activation during 

atherogenesis.  

As mentioned earlier, uptake of modified lipoproteins by macrophages leads to inflammatory 

activation and this enhances atherosclerosis. In line with this, the metabolism of cholesterol 

and removal of cholesterol from the site of atherosclerotic lesion formation may be important 

in reducing lesion formation
80

. Cholesterol enrichment of macrophages downregulates miR-

33
81

 and the inhibition of miR-33 in LDL receptor (Ldlr
-/-

) mice increases circulating high 

density lipoprotein (HDL) levels, enhances reverse cholesterol transport to the plasma, liver, 

and faeces and subsequently reduces plaque formation
82

. These data indicate that microRNAs 

are critical in lipid uptake and metabolism in macrophages as well as inflammatory activation 

of macrophages during atherosclerosis. In addition to the previously outlined roles of 

microRNAs in macrophages during atherogenesis, several studies have also shown functional 

involvement in macrophage apoptosis and survival
83-85

.    

 

1.2.3 miR-21-3p and miR-21-5p in atherosclerosis 

MicroRNA-21 (miR-21) one of the first mammalian microRNA to be identified
86

 is strongly 

conserved throughout evolution and is highly expressed in the cardiovascular system
87

. miR-

21 is involved in the development of several cardiovascular diseases including myocardial 

disease
88

, neointimal lesion formation
89

, aortic aneurysm
90

 and obesity
91

. Shear stress in 
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endothelial cells leads to overexpression of miR-21 and decreased phosphate and tensin 

homolog (PTEN) expression and further increases endothelial nitric oxide synthase 

phosphorylation and nitric oxide production
92

. In vascular smooth muscle cells (VSMC), miR-

21 has anti-apoptotic and proliferative roles and this enhances neointimal formation in 

rodents
87

. 

In macrophages, miR-21 is upregulated after stimulation with LPS through the adapter protein 

myeloid differentiation primary response protein (MyD88) and NF-κB
93

. This upregulation 

consequently regulates NF-κB by targeting programmed cell death protein 4 (Pdcd4) thereby 

reducing inflammation. Furthermore, the suppression of miR-21 increases tumor necrosis 

factor-α (TNF-α) and interleukin 6 (IL-6) whiles decreasing interleukin 10 (IL-10) levels after 

LPS stimulation
94

.  These data suggests a role for miR-21 in inhibiting inflammatory 

polarization (M1) of macrophages and hence may play very important roles in macrophages 

during atherogenesis. The effect of suppressing miR-21 on IL-10 indicates an anti-

inflammatory role by miR-21 and contribution to resolution of inflammation
95, 96

. 

In human atherosclerotic plaques, both strands of the pre-miR-21, miR-21-5p (miR-21) and 

miR-21-3p (miR-21*) are highly expressed
70

. In addition, miR-21-3p is one of the highly 

upregulated microRNAs in early atherosclerotic lesions compared to healthy arteries
97

. Both 

miR-21-5p and miR-21-3p are upregulated in flow-induced atherosclerotic lesions after 

carotid artery partial ligation of Apoe
-/-

 mice and miR-21-3p is upregulated in diet induced 

atherosclerosis
74, 98

. Moreover, miR-21-3p is selectively upregulated in macrophages in 

response to oxidative stress
99

 whereas miR-21-5p is downregulated upon oxLDL 

stimulation
100

. These data suggests that both strands of miR-21 are functional and may play 

specific roles macrophages during atherosclerosis. 

 

1.3 The Circadian rhythm and atherosclerosis 

Light sensitive organisms have developed an internal time-sensing process, known as the 

circadian clock, that allow them to anticipate daytime and night-time in order to prepare the 

body for each period
101, 102

. Metabolic processes therefore exhibit a 24-hour diurnal cycle 

which may have evolved as a way for the cell to optimize metabolic events according to 

physiological needs and the environment
103

. In mammals, specialized neurons in the 

suprachiasmatic nuclei (SCN) receive light photons through the retina via synaptic 

transmission, converts this information into chemical information and that alters the 

expression of so-called clock genes
104

. The neurons generate a rhythm and soon synchronize 

other neurons and transmit this to peripheral organs like the liver, pancreas, heart, kidney and 

skeletal muscles. The SCN cells therefore serve as the master pacemaker, directing all the 

other clocks within the organism to realign to the new light/dark cycle
105

.  
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Even though the SCN acts as the master pacemaker, peripheral organs also exhibit a circadian 

rhythm that regulates their functions at the cellular level
106

. In mammalian cells, the 

mechanism of the circadian clock is autonomous, involving an auto-regulatory negative-

feedback transcriptional network where two core clock genes, circadian locomotor output 

cycles kaput (Clock) and aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) 

or neuronal PAS domain-containing protein 2 (Npas2) encode proteins that are members of 

the basic helix-loop-helix (bHLH)-PAS (Period-Arnt-Single-minded) transcription factor 

family
107, 108

. The proteins CLOCK or NPAS2 heterodimerize with ARNTL in the cytoplasm, 

translocate to the nucleus and activate the transcription of Period genes (Per1, Per2, and 

Per3), as well as Cryptochrome genes (Cry1 and Cry2)
109-111

. PER proteins form heterodimers 

with CRY, translocate into the nucleus and inhibits the ARNTL/CLOCK complex and thus 

forms a negative feedback loop to regulate its own transcription. As PER and CRY proteins 

are gradually degraded, the repression on ARNTL and CLOCK is suppressed thereby 

releasing them to begin a new 24-hr cycle
112

 (Figure 2A, Loop 1).  

Moreover, ARNTL induces the expression of RAR-related orphan receptor alpha (RORα) and 

nuclear receptor subfamily 1, group D, member 1 (NR1D1; also known as REV-ERBα), 

which in turn regulates the expression of ARNTL. In addition, the transcriptional activator 

albumin D-box binding protein (DBP), also regulated by ARNTL, and the repressor nuclear 

factor interleukin 3 (NFIL3), regulated by RORα and REV-ERBα, both synergistically 

regulate the Period genes (Figure 2A, Loop 3) 
112

. The heterodimerization of ARNTL with 

NPAS2 or CLOCK occurs during the day and leads to high levels of PER and CRY 

expression in the day whereas at night the PER-CRY repressor complex is degraded
113

.  
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Figure 2: Circadian rhythm pathway. (A) Shows the auto-regulatory feedback loops of the 

circadian pathway consisting of three mechanisms of transcriptional regulation and control of 

molecular clock signaling (Ref #94). (B) Shows the different ways that the circadian clock could be 

disrupted and the stimulants that drive this disruption (Ref #97).   

 

The circadian cycle is intimately connected to metabolism in humans and evidence supports 

the fact that several clock genes are involved in metabolic homeostasis
114, 115

. This 

relationship between circadian clock and metabolism suggests that the circadian clock is 

sensitive to food and drugs
116

 and in mRNA microarray analysis of mice with disrupted clock 

in the liver, the expression of several transcripts are also disrupted
117

. These results together 

suggest that disruption of the circadian clock in peripheral tissues may affect their function 

and lead to disorders. Disruption of the circadian rhythm which can be manifested as changes 

in the period, phase and amplitude of the pathway can be brought about through high fat diet 

(HFD) consumption, shift work and night eating (Figure 2B)
115

. In experimental animal 

models of jet-lag, disrupted circadian clock leads to faster tumour growth
118

, increased 

mortality
119

 and lowered survival rate in the presence of cardiomyopathy
120

.  

The cardiovascular system exhibits rhythmic oscillations in function within the 24-hour 

period, for example blood pressure is highest mid-morning and progressively falls through the 

day
121, 122

. Furthermore, cardiovascular events such as myocardial infarction, stroke, sudden 

cardiac death and unstable angina occur more frequently in the morning suggesting the 

involvement of circadian pathway in the function and physiology of the cardiovascular 

system
123, 124

. Dysfunctional circadian rhythm is associated with cardiovascular diseases in 

humans and this leads to increased cardiovascular risk in shift workers especially night and 

early morning workers
125, 126

. In several mouse models of dysregulated circadian rhythms, 

various pathways and mechanisms that lead to atherosclerosis are affected. Bmal1 knock-out 

and Clock mutant mice exhibit increased pathological vascular remodelling, injury and 

endothelial dysfunction
127

 and age-related decrease in nitric oxide (NO) production could lead 
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to dysregulated circadian rhythm suggesting that not only shift work but NO can affect the 

circadian rhythm
128

. 

Clock mutant gene in mice enhances hypercholesterolemia due to increased intestinal 

absorption of cholesterol and further increases atherosclerosis
130

. Bone marrow (BM) knock-

down of another circadian gene Rev-Erbα increases atherosclerosis in Ldlr
-/-

 mice after 

regular chow diet
131

. The cell specific expression of circadian oscillation also exists in 

macrophages and dendritic cells
132

 and upon LPS stimulation, the expression of the cytokines 

IL-6, IL-12(p40), CXCL1, CCL5, and CCL2 show significant circadian-dependent 

upregulation via Rev-Erbα activity
133

. Moreover, macrophages with disrupted circadian 

rhythm exhibit increased uptake of modified LDL due to increased expression of the 

scavenger receptors CD36 and SR-A1
130

 and overexpression of Rev-Erbα in BM mononuclear 

cells decreases M1 markers whiles increasing M2 markers
131

. These data provides evidence 

for a role of macrophage circadian clock in atherosclerosis.  

1.4 Role of Xaf1 and Mbl2 in atherosclerosis 

XIAP- associated factor 1 (XAF1) a protein that increases caspase-3 activation by inhibiting 

the activities of X-linked inhibitor of apoptosis (XIAP) is ubiquitously expressed in normal 

tissues but has lowered expression in several cancer cell lines
134, 135

. Over-expression of 

XAF1 activates the transcription factor p53 via post-translational modification and enhances 

apoptosis in vitro
136

. XAF1 also inhibits proliferation and induces apoptosis of cancer cells 

thereby improving the survival times of tumour-bearing mice
137

.  

In human coronary vascular SMCs, Xaf1 is regulated in a signal transducer and activator of 

transcription (STAT3)-dependent manner by IFN-γ
138

 and in endothelial cells, the 

upregulation of miR-513a-5p via LPS/TNF-α stimulation is associated with the inhibition of 

XIAP and increase in caspase-3 expression
139

. This effect on XIAP with the subsequent 

increase in caspase-3 expression indicates that miR-513a-5p may increase XAF1 in 

endothelial cells. These results suggest that Xaf1 could play important roles in various 

vascular cells during atherosclerosis and that Xaf1-induced apoptosis could be a potential 

therapeutic target and should be further investigated.  

Mannose-binding lectin (MBL) is a secreted pattern recognition receptor from the collectin 

family that binds to late apoptotic and necrotic cells and enhances their engulfment by 

macrophages by binding to exposed DNA fragments and apoptotic blebs
140-142

. In a study that 

provided early evidence for the possible association of MBL deficiency and atherosclerosis, 

13% of patients with severe coronary artery atherosclerosis were observed to be homozygous 

defective for Mbl, compared with 3% of control healthy donors
143

. This homozygous defect 

tended to occur in younger patients whereas older patients carried one or two copies of the 

normal. Genetic variations in the Mbl gene resulting in lowered expression of the protein is 

now known to be associated with coronary artery disease (CAD)
144

 and high MBL decreases 

the likelihood of myocardial infarction
145

.  
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MBL is highly expressed in mouse atherosclerotic lesions and is decreased in late lesions, 

whereas MBL deposition in human atherosclerotic lesions occurs in ruptured plaques around 

necrotic debris
146

. In addition, Ldlr
-/-

 mice transplanted with BM cells deficient of an Mbl 

transcript show increased atherosclerosis after HFD
146

. Moreover, in human monocytes and 

macrophages, MBL enhances macrophage binding and clearance of modified LDL but not 

native LDL
147

. These data taken together suggest the importance of MBL in macrophage 

clearance of oxLDL and apoptotic cells in atherosclerotic lesions. Xaf1 and Mbl function in 

macrophages may therefore combine to mediate apoptosis and efferocytosis and inhibit 

atherosclerosis. 

 

1.5 Aim of study 

Macrophages play a central role in atherosclerosis and the persistence of macrophages in 

lesions lead to increased accumulation and chronic inflammatory response thereby enhancing 

the development of advanced lesions. Macrophage apoptosis and efferocytosis are therefore 

critical in inhibiting lesion development and it has been suggested that altering macrophage 

content by reducing macrophage recruitment to atherosclerotic plaques or by promoting 

macrophage apoptosis may have therapeutic effects. miR-21 a member of a family of small 

(~22 nucleotide) non-coding RNA molecules that regulate post-transcriptional gene 

expression and highly expressed in the cardiovascular system has been shown to inhibit 

apoptosis and enhance proliferation of cells. Moreover, miR-21 is upregulated in macrophages 

upon LPS stimulation and mediates inflammatory response. The hypothesis was therefore 

tested that miR-21 plays a role in macrophage phenotypes and function during atherogenesis 

in the current study. The study aimed at studying the effect of miR-21 in macrophages on the 

development of atherosclerosis by knocking out Mir21 in bone marrow cells of Apoe
-/-

 mice 

and feeding them with HFD for 12 weeks. The study also aimed at identifying possible novel 

mRNA targets of miR-21 in lesional macrophages by performing gene expression profiling 

studies in mice transplanted with Mir21 knock-out bone marrow cells.  

Both strands of the pre-miR-21, miR-21-5p (miR-21) and miR-21-3p (miR-21*) are highly 

upregulated in human atherosclerotic plaques as well as in different mouse models for 

atherosclerosis. However, their role in macrophages during atherosclerosis remains unclear. It 

was hypothesized in this study that the miR-21/miR-21* pair may play specific roles in 

macrophages by either targeting same or different mechanisms during atherosclerosis. The 

cell specific expression of miR-21-5p and miR-21-3p in lesions was studied. Several studies 

focused on miR-21-5p strand and identified various targets in macrophages but the targets of 

miR-21-3p in macrophages during atherosclerosis have not received much attention. The 

study therefore investigated the effect of upregulation of both strands in macrophages during 

atherosclerosis. 

  



Materials and methods 

17 

 

2 Materials and methods 

All solutions were prepared with millipore water (Milli-Q Integral 3/5/10/15, Millipore, 

Billerica, USA). The reagents were purchased from Sigma-Aldrich (Steinheim, Germany), 

Carl Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), and Fluka (Buchs, 

Switzerland) unless stated otherwise in the text. 

 

2.1 General equipment 

Balance - Precisa 92SM-202A (Sartorius mechatronics, Göttingen, Germany) 

Centrifuges - Heraeus Pico 17 (Thermoscientific, Massachusetts, USA), Heraeus 

Megafuge 1.0R (Thermoscientific, Massachusetts, USA), 

Eppendorf 5430R and Eppendorf 5415D (Eppendorf AG, 

Hamburg, Germany),  

Microscopes - Leica M60, Leica DM6000B, Leica LMD7000 (Leica-

Microsystems, Wetzlar, Germany) and Olympus IX50 (Olympus 

optical, Hamburg, Germany) 

Laminar flow hood - Herasafe (Heraeus, Osterode, Germany) and Maxisafe 

(Thermoscientific, Massachusetts, USA),  

pH-meter - WTW ph 526 (Weilheim, Germany) 

Spectrophotometer - Nanodrop 1000 (PeqLab, Erlangen, Germany) 

PCR thermocyclers - Master Cycler Nexus (Eppendorf AG, Hamburg, Germany), 

Thermal Cycler 2720 and 7900HT fast real-time PCR system 

(Applied Biosystems, Darmstadt, Germany) 

Tissue homogenizer - TissueLyserLT (Qiagen, Hilden, Germany) 

Autoclave - systec VX-95 (systec, Wettenberg, Germany) 

Microtome - Leica RM2235 (Leica Biosystems, Nussloch, Germany) 

Plate reader - microplate reader SpectraFluor Plus (Tecan, Crailsheim, Germany) 

Imaging system - LAS AF (Leica Biosystems, Nussloch, Germany) 
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Thermoblocks - Thermostat Plus (Eppendorf AG, Hamburg, Germany) 

Tissue processor- MTM I/II (SLEE medical GmbH, Mainz, Germany) 

Embedding center- Leica EG1160 (Leica-Microsystems) 

Syringes- BD Discardit II (Becton, Dickinson and Company, NJ, USA), 

Omnican F (B. Braun AG, Melsungen, Germany) 

X-ray irradiation system- Faxitron CP-160 (Faxitron, Arizona, USA) 

CO2 Incubator- Galaxy S (RS Biotech, Irvine, UK) 

  

2.2 Chemicals 

β-Mercaptoethanol (Sigma-Aldrich, Steinheim, Germany) 

Dimethyl sulfoxide (DMSO) (Carl Roth, Karlsruhe, Germany) 

Dithiothreitol (DTT) (Carl Roth, Karlsruhe, Germany) 

Horse serum (Vector Laboratories, California, USA) 

Ketamin Hydrochloride (Bela-pharm GmBH and Co. KG, Vechta, Germany) 

Lipofectamin, Invitrogen (ThermoFisher Scientific, California, USA) 

Mounting medium with DAPI (Vector Laboratories, California, USA) 

NP-40 alternative (Merck, Darmstadt, Germany) 

Paraformaldehyde (PFA) (Carl Roth, Karlsruhe, Germany) 

Paxgene tissue container (PreAnalytiX, Hombrechtikon, Switzerland)  

Phosphate-buffered saline (PBS), Dulbecco (Biochrom AG, Berlin, Germany) 

RNaseZap® decontamination solution (ThermoFisher Scientific, California, USA) 

RNAlater® Ambion, (ThermoFisher Scientific, California, USA) 

Triton X-100 (Sigma-Aldrich, Steinheim, Germany) 
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Tween® 20 (Merck, Darmstadt, Germany) 

Vitro Clud® (R. Langenbrinck, Emmendingen, Germany) 

Borgal solution 24% (Virac, Carros, France) 

 

2.3 Antibodies 

2.3.1 Primary antibodies 

Monoclonal mouse anti-human smooth muscle actin (SMA) (Dako, California, USA) 

Monoclonal anti-mouse MAC2 (Cedarlane, Ontario, Canada) 

Monoclonal rat anti-human CD3 (AbD Serotec, Puchheim, Germany) 

Normal mouse IgG (Santa Cruz Biotechnology, California, USA) 

Normal rat IgG (Santa Cruz Biotechnology, California, USA) 

Normal mouse IgG (Santa Cruz Biotechnology, California, USA) 

Normal goat IgG (Santa Cruz Biotechnology, California, USA) 

Normal rabbit IgG (Santa Cruz Biotechnology, California, USA) 

Polyclonal rabbit anti-mouse perilipin-2 (Novus Biologicals, Colorado, USA) 

Rabbit anti-mouse collagen type I (Cedarlane, Ontario, Canada) 

Rabbit polyclonal anti-XAF1 antibody (Abcam, Cambridge, UK) 

 

2.3.2 Secondary antibodies  

Cy3-AffiniPure donkey anti-rat IgG (Jackson ImmunoResearch, Pennsylvania, USA) 

Cy3-AffiniPure goat anti-rabbit IgG (Jackson ImmunoResearch, Pennsylvania, USA) 

Cy3-AffiniPure donkey anti-mouse IgG (Jackson ImmunoResearch, Pennsylvania, USA) 

Cy3-AffiniPure donkey anti-goat IgG (Jackson ImmunoResearch, Pennsylvania, USA) 
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Cy5-AffiniPure donkey anti-rat IgG (Jackson ImmunoResearch, Pennsylvania, USA) 

Cy5-AffiniPure donkey anti-goat IgG (Jackson ImmunoResearch, Pennsylvania, USA) 

Fluorescein (FITC)-conjugated AffiniPure donkey anti-mouse IgG (Jackson 

ImmunoResearch, Pennsylvania, USA) 

Fluorescein (FITC)-conjugated AffiniPure donkey anti-rat IgG (Jackson ImmunoResearch, 

Pennsylvania, USA) 

Fluorescein (FITC)-conjugated AffiniPure donkey anti-goat IgG (Jackson ImmunoResearch, 

Pennsylvania, USA) 

Fluorescein (FITC)-conjugated AffiniPure donkey anti-rabbit IgG (Jackson ImmunoResearch, 

Pennsylvania, USA) 

Dylight 549 labelled Streptavidin (KPL, Gaithersburg, USA) 

 

2.4 Buffers and solutions 

20× SSC buffer: 3 M NaCl, 0.3 M Na citrate (pH 7.0). 

Tris/EDTA buffer: 100 mM Tris (pH 7.4), 10 mM EDTA 

 (pH 8.0). 

Ago2-IP lysis buffer: 100 mM KCl, 5 mM MgCl2, 10 mM HEPES (pH 7.0), 0.5% NP40, 5 

mM DTT, 250 U/ml RNase OUT (Invitrogen), 400 μM vanadyl ribonucleoside complexes 

(New England Biolabs), and protease inhibitors (Complete Protease Inhibitor Cocktail 

Tablets; Roche). 

Citrate buffer: 630 ml UP water, 12.6 ml solution A (2.101 g citric acid in 100 ml UP water), 

57.4 ml solution B (14.70 g sodium citrate in 500 ml UP water), 320 μl Tween 20, pH 6. 

EVG staining solutions: 

Solution A: 10 g of hematoxylin was dissolved in 100 ml of 96% ethanol 

Solution B: 29% Iron (III)-Chloride solution (145 g of Iron (III)-Chloride was dissolved in 

500 ml of UP water) and 7.5 ml of 37% HCL was added to 950 ml of UP water. 
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4% PFA: 

16 g of PFA was added to 184 ml of Millipore water and dissolved by adding 5 ml of 10 M 

NaOH during heating at 100°C. The pH was decreased to 7.4-8 by adding 25% HCl. 

Subsequently, an equal volume of 2×PBS was added and the solution was filtered through a 

filter paper. 

Immunofluorescence staining: 

Blocking solution A: 5.4 ml PBS, 600 μl 10% BSA (SERVA Electrophoresis GmbH, 

Heidelberg, Germany) 3 drops 2.5% normal horse serum (Vector laboratories, INC., 

Burlingame, USA) 

Oil red O stock solution: 

1 g Oil red O powder (Sigma-Aldrich, St. Louis, USA) was dissolved in 200 ml 99% 

isopropanol 

Oil red O working solution: 

160 ml Oil-Red-O stock solution was mixed with 120 ml UP water and stored at room 

temperature for 1 h. The solution was filtered through a filter paper. 

Weigert solution A and B 

100 ml Weigert A + 100 ml Weigert B 

Tris-NaCl blocking (TNB) buffer 

7.88g Tris-HCl was dissolved in 500ml water and pH adjusted to 7.5 using NaOH. NaCl 

(4.383g) and 2.5g Blocking reagent were added and the solution heated up to 55°C for about 

30minutes. 

Tris-NaCl Tween (TNT) buffer 

This was prepared by adding 250µl of Tween 20 to Tris-NaCl solution. 

 

2.5 Kits Used 

High capacity cDNA reverse transcription kit (Applied Biosystems, Massachusetts, USA) 
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Taqman® microRNA reverse transcription kit (Applied Biosystems, Massachusetts, USA) 

Nucleospin® miRNA kit (Macherey-Nagel, Düren, Germany) 

In situ cell death detection kit TMR red (Roche, Basel, Switzerland) 

GoTaq® qPCR mastermix (Promega, Wisconsin, USA) 

mirVana
TM

 miRNA Isolation kit (ThermoFisher Scientific, California, USA) 

2.6 Mouse husbandry 

All mice were housed in a barrier facility and were maintained on a 12 hour light-dark cycle 

within the animal laboratory facility of the University, the Zentrale Versuchstierhaltung 

(ZVH), Klinikum Universität München. Mice had free access to water and mouse chow. The 

animal experiments were reviewed and approved by the government of upper Bavaria 

(Regierung von Oberbayern) in accordance with the German animal protection law. 

 

2.7 Mouse strains 

Mir21
-/-

 mice (courtesy provided by Eric Olson, University of Texas Southwestern Medical 

Center, Department of Molecular Biology, Dallas, USA)
148

 were obtained and crossed with 

Apoe
-/-

 mice to obtain Mir21
-/- 

Apoe
-/- 

mice. Mir21
+/+ 

Apoe
-/- 

littermate mice served as control 

in this study.   

 

2.8 Animal models of atherosclerosis 

2.8.1 Atherosclerosis in whole body knock-out mice 

Mir21
-/- 

Apoe
-/- 

and Mir21
+/+ 

Apoe
-/- 

mice (6-8 weeks old), were fed a high fat diet (HFD) 

(21.2% crude fat, 0.15% cholesterol and 17.3% crude protein, ssniff-Spezialdiaeten GmbH; 

Soest, Germany) for 12 weeks to induce atherosclerosis. The mice were then anesthetized 

with ketamine hydrochloride (80 mg/kg, IP) and xylazine (5 mg/kg, IP) and blood was taken 

from the mice by the orbital vein for blood cell count and serum lipid measurements. The 

mice tissues were perfused with cold sterile PBS to remove any remaining blood cells. The 

aortic roots were then quickly dissected and fixed in PAXgene® tissue fix for 2 hours and 

then placed in PAXgene® tissue stabilizer both found in the PAXgene® tissue container. On 

the following day, the samples were dehydrated and paraffin embedded (see also section 
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2.10.1.1). The aortic roots were sectioned and in situ PCR performed on the sections to study 

the expression of miR-21-3p and miR-21-5p in atherosclerotic lesions. 

2.8.2 Atherosclerosis in bone marrow transplanted mice  

To study the effect of Mir21 deficiency in bone marrow (BM) cells in atherosclerosis, BM 

cells from donor animals were transplanted into female recipient mice (8-10 weeks). The BM 

of Mir21
+/+

Apoe
-/-

 mice was reconstituted with BM cells from either Mir21
+/+

Apoe
-/-

 

(Mir21
+/+

/ BM Mir21
+/+

) or Mir21
-/-

Apoe
-/-

 (Mir21
+/+

/ BM Mir21
-/-

). The BM of Mir21
-/-

Apoe
-

/-
 mice was as well reconstituted with BM cells from Mir21

-/-
Apoe

-/-
(Mir21

-/-
/ BM Mir21

-/-
) 

mice. Recipient mice were first subjected to an ablative dose (5 Gy) of whole body irradiation 

(2 times, 5 Gy, 4 hours apart, Faxitron CP-160). After the irradiation, the mice were then 

transferred into fresh cages and placed on normal chow diet and antibiotic water (200ml 

water, 250µl Borgal Solution 24% diluted 1:10 with sterile water). The mice were kept on the 

normal chow and antibiotic water for a period of 3 weeks after the irradiation and BM 

transplantation. 24 hours following the irradiation, femurs and tibias were removed 

aseptically from donor mice and the marrow cavities were flushed with sterile PBS and a 

single cell suspension prepared by pipetting the cells up and down repeatedly followed by 

passing the cells through a cell strainer (40 μm, BD Falcon) to remove any large pieces of 

tissue or bone which may be present. BM cells (5 million cells/mouse) were injected via the 

tail vein into recipient mice, which were fixed in a mouse strainer.  

After monitoring mice consistently for 3 weeks, they were then placed on HFD for 12 weeks 

to induce atherosclerosis, after which they were sacrificed and their tissues harvested. The 

mice were anesthetized with ketamine hydrochloride (80 mg/kg, IP) and xylazine (5 mg/kg, 

IP) and blood was taken from the mice orbital vein for blood cell count and serum lipid 

measurements. They were then perfused with sterile PBS to remove any remaining blood in 

the tissues. The thoraco-abdominal aorta and aortic root were harvested for processing, 

staining and atherosclerosis quantification. Aortic roots were fixed in PAXgene whiles 

thoraco-abdominal aorta fixed overnight in 4% PFA. Tissues from BM transplanted mice that 

were to be used for RNA isolation for microarray experiment were quickly perfused with 

RNAlater (Ambion) and the aortic root as well as thoraco-abdominal aorta were harvested and 

kept in RNAlater for RNA isolation.  

 

2.8.3 Fixation of tissues 

Mouse tissues were flushed always with sterile PBS to clear the blood and thereafter tissues 

harvested and fixed. Tissues to be used for RNA isolation and microarray were first perfused 

with RNA stabilization solution, RNAlater before harvesting. After anesthetizing the mice 

and drawing blood, the abdominal and chest cavities were then opened and PBS (5ml) or 

RNAlater (1 ml) perfused slowly using a syringe (30G x ½”, Omnican F, B. Braun) for 5-10 
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min through the left ventricle whiles the solution was allowed to flow out through an incision 

in the right atrium. The aortic roots and thoraco-abdominal aorta were harvested and kept in 

PAXgene Tissue Fix and stabilizer or 4% PFA respectively. The aortic root samples after 

fixation were dehydrated and embedded in paraffin whereas thoraco-abdominal aorta were 

fixed overnight after which en face preparation and Oil red O staining were performed. 

PAXgene Tissue Fix fixes tissues without nucleic acid crosslinking and degradation and 

therefore, preserves morphology as well as nucleic acids. It includes 2 components: the 

PAXgene® Tissue Fix solution which rapidly penetrates and fixes the tissue, and PAXgene® 

Tissue stabilizer in which nucleic acids and morphology of the tissue are stable for up to 7 

days at room temperature and for longer periods at 2-8°C or -20°C. After 2hours of fixation, 

tissues were removed from the PAXgene Tissue Fix solution and transferred to the PAXgene 

Tissue Stabilizer solution. Stabilized samples were embedded in paraffin for histological 

studies. To stabilize RNA, the vascular tree was flushed with 0.5-1 ml RNAlater solution. 

After this perfusion, tissues were dissected and placed in RNAlater solution. Samples were 

stored in RNAlater solution for 1-21 days at 4ºC before the RNA was isolated for qRT-PCR 

analysis. All instruments used during organ dissection were first treated with RNaseZap® 

(Ambion, Austin, TX, USA) to remove RNAses according to the manufacturer’s instructions.  

 

2.8.4 Serum analysis and blood cell count 

After anesthetizing the animals, approximately 500-700 μl of blood from the orbital veins was 

collected in serum separating tubes (SST, Sarstedt) and allowed to clot at room temperature 

for 2 h. Subsequently, the tubes were centrifuged at 2000 x g for 20 min and the serum in the 

supernatant was collected and stored at -20
o
C.  

About 100-200µl of blood was also collected in EDTA tubes (SST, Sarstedt, Nümbrecht, 

Germany) and kept on ice. The different blood cells were counted using animal blood counter.  

 

2.9 Laser capture microdissection (LCM) 

Aortic root tissues from Mir21
+/+

Apoe
-/-

 mice lethally irradiated (see section 2.8.2) and 

transplanted with BM cells from either Mir21
+/+

Apoe
-/-

 (BM Mir21
+/+

) mice or Mir21
-/-

Apoe
-/-

 

(BM Mir21
-/-

) mice, were used for this experiment. All equipments used for sectioning, such 

as microtome and knife, forceps, and water bath were first treated with RNaseZap® (Ambion, 

Austin, TX, USA). Serial sections (10 μm thick) of the aortic roots were mounted on 

membrane-mounted metal frame slides (POL frameslides, Leica Microsystems). Sections 

were deparaffinized under RNase-free conditions according to the following procedure: 
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1. Xylene for 3 minutes.  

2. 100% ethanol for 3 minutes. 

After deparaffinization, the sections were left standing to completely dry up. Laser capture 

microdissection was performed using a laser microdissection system (CTR6000, Leica 

Microsystems) attached to an inverted microscope (LMD7000, Leica Microsystems). At least 

20-30 sections of plaque tissue without the endothelial cells or medial cells were collected 

from each mouse into a buffer (TM1) belonging to the RNA isolation kit. RNA was isolated 

using the PAXgene Tissue miRNA kit (PreAnalytix, Switzerland) according to the 

manufacturer’s instructions. The lesion area without the endothelial cells and medial cells to 

be cut from the section is first demarcated with a selection tool from the software interface 

(Figure 3), after which the command is entered for the cut to be made. 

 

 

Figure 3: Laser capture-microdissection of aortic root lesions. Sections of aortic root with lesions 

on membrane-mounted metal frame slides were deparaffinized and left to dry under RNase-free 

environment. Lesion area excluding the endothelial and medial cells are marked with a selection tool 

and then cut with the laser. The lesions were then collected in TM1 buffer and RNA isolated later.  

 

2.10 Lesion characterization  

2.10.1 Histology 
2.10.1.1 Paraffin embedding, sectioning, and deparaffinization 

To quantify the lesion size, aortic roots were harvested from mice after they were sacrificed 

and fixed in PAXgene. Next, tissues were dehydrated using tissue processor and embedded in 

liquid paraffin (approximate temperature 60ºC) according to the following protocol: 

1. 70% Ethanol, 30 min, 20ºC 
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2. 70% Ethanol, 30 min, 20ºC 

3. 96% Ethanol, 30 min, 20ºC 

4. 96% Ethanol, 30 min, 20ºC 

5. 100% Ethanol, 30 min, 20ºC 

6. 100% Ethanol, 30 min, 20ºC 

7. 100% Ethanol, 30 min, 20ºC 

8. Xylene, 30 min, 45ºC 

9. Xylene, 30 min, 45ºC 

10. Xylene, 30 min 45ºC 

11. Paraffin, 30 min, 62ºC 

12. Paraffin, 30 min, 62ºC 

13. Paraffin, overnight, 62ºC 

The tissues were then blocked in paraffin and allowed to harden at 0°C (Leica EG1160) 

before sectioning using a microtome. Serial sections (5 μm thick) from the aortic root were 

collected on glass slides (Superfrost plus glass slides, ThermoFisher Scientific, California, 

USA) within from the point that the 3 aortic valves appear until the valves disappear. After 

sectioning, the slides were incubated in a 37ºC incubator for 5-6 h or at room temperature 

overnight to reduce detachment of the tissue during staining. To measure lesion size, 3-5 

serial sections containing all three aortic valves and 50-100µm apart were selected and EVG 

(Elastic Van Gieson) staining was performed. Deparaffinization and rehydration of the 

sections was performed according to the following protocol before staining: 

 

1. Xylene, 10 min. 

2. Xylene, 10 min. 

3. 100% ethanol, 5 min 

4. 100% ethanol, 5 min 

5. 96% ethanol, 5 min 

6. 70% ethanol, 5 min 

2.10.1.2 EVG staining  

1. Resorcin-fuchsin solution (Roth, X877.1), 20 min  

2. Tap water (bath in fluent water), 1 min. 

3. 80% ethanol 

4. Weigert Solution A+B [100 ml solution A and 100 ml solution B, freshly prepared 

(see also section 2.4)],  15 min 

5. 1% HCl-alcohol, 5 seconds (quick dive in solution) 

6. Bath in fluent tap water, 10 min 

7. Millipore water, 5 seconds (quick dive in solution) 

8. Van Gieson Picrofuchsin (Merck, 1.15974/4) for 30 seconds  
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9. Tap water  

10. 96% ethanol, 4 min 

11. Isopropanol, 2 min  

12. Xylene, 5 min 

13. Xylene, 5 min 

14. Sections were mounted in Vitro clud 

2.10.1.3 Image acquisition and lesion area quantification 

Images were taken using a bright-field microscope (Leica DM6000B, Leica microsystems) 

connected to a camera (Leica DFC295, Leica Microsystems). The lesion area was quantified 

using the java based image processing software Image J (1.46r National Institutes of Health, 

Maryland, USA).  

 

2.11 En face preparation and oil red o staining 

The lipid deposition area in the thoraco-abdominal aorta was detected and quantified using 

Oil red O staining of en face prepared tissues. The entire aorta including the aortic arch and 

the abdominal aorta were dissected using a dissection microscope and pinned with needles 

onto a rubber slide for fixation in 4% PFA over night at 4°C. The aortas were then cut open 

longitudinally and the adventitia removed carefully. The cut aortas were then pinned down 

with the luminal surface upside on the rubber slides. The pinned aortas were dipped in 60% 

isopropanol for 15 to 20 seconds followed by incubation in Oil red working solution for 15 

min. The aortas were then immersed in 60% isopropanol for 10 to 15 seconds, rinsed with tap 

water and afterwards mounted in glycerol gelatin (diluted 3:7 with tap water, Sigma).  

To mount the stained en face prepared tissue, the pins were removed and the tissue moved 

onto a glass slide and covered using a cover slip and mounting gelatin. The images were taken 

with a bright-field microscope (Leica DM6000B, Leica microsystems) connected to a camera 

(Leica DFC295, Leica Microsystems) and using LAS software (Leica Microsystems). The 

area of lipid deposition in the stained aortic wall were quantified using Adobe Photoshop CS6 

(Adobe Systems, California, USA) and ImageJ (1.46r, NIH, USA). The percentage area of 

lesion was calculated using the area of lipid deposition and total area of the thoraco-

abdominal aorta. 

 

2.12 Immunofluorescence staining 

To study the cellular composition of the lesions, immunostaining was performed in 

deparaffinized sections (5 μm thick) using antibodies against SMA, MAC2, CD3, and 
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collagen type I. In addition, double immunofluorescence stainings for XAF1 and PLIN2 were 

performed. Aortic root sections from Mir21
+/+

Apoe
-/-

 mice whose BM were reconstituted with 

BM cells from either Mir21
+/+

Apoe
-/-

 (BM Mir21
+/+

) or Mir21
-/-

Apoe
-/-

 (BM Mir21
-/-

) were 

selected for the immunostaining. 2–3 sections/mouse with 50 – 100 μm distances between 

sections were selected and deparaffinised using graded Xylene and alcohol and antigen 

retrieval performed by cooking the sections in citrate buffer (see section 2.4) for 20 minutes. 

The tissues were then blocked with Blocking Solution A for 30 minutes and then incubated 

over night with the primary antibody at 4°C. The sections were then washed several times and 

incubated with the specific secondary antibody for 30 minutes, washed and mounted with 

Vectashield mounting medium with DAPI (4',6-diamidino-2-phenylindole) (Table 1). Double 

staining was performed by making a cocktail of the antibodies and incubating them together 

on the tissues. 

 

The percentage of the positively stained area or cell number was quantified using image 

analysis software (ImageJ). The background of negative control staining was used to adjust 

the threshold. In addition, the number of immunostained cells in the plaques was determined 

by counting DAPI positive nuclei within the immunostained area. The number of the 

immunostained cells was expressed as the absolute cell number in the plaques or as the 

percentage of total plaque cells. 

 

Antigen 
Antigen 

retrieval 
Blocking Primary Ab Detection system 

SMA none 
Blocking solution 

A*, 30 min 
1:200, 4ºC, ON 

donkey-anti-mouse IgG, 

FITC-conjugated, 1:100, 

30 min 

MAC2 none 
Blocking solution 

A*, 30 min 
1:400, 4ºC, ON 

donkey-anti-rat IgG-FITC-

conjugated, 1:100, 30 min 

Collagen 

type I 

CB*, 20 min 

at 100ºC 

Blocking solution 

A*, 30 min 
1:400, 4ºC, ON 

anti-rabbit Cy3-

conjugated, 1:300, 30 min 

CD3 
CB*, 20 min 

at 100ºC 

10% goat serum, 30 

min 
1:100, 4ºC, ON 

goat-anti-rabbit IgG-

Dylight549-conjugated, 

1:400, 30 min 

Table 1: Immunostaining protocols: CB = Citrate buffer; Ab = antibody details are provided in 

sections 2.3; * see section 2.4 for more details. 

 

2.12.1 TUNEL and MAC2 staining 

Combined TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) assay 

and MAC2 staining was performed in some of the aortic root sections to quantify macrophage 

apoptosis. TUNEL staining was done according to the kit protocol (In situ cell death detection 

kit, TMR red, Roche). The TUNEL assay detects and quantifies the apoptosis at the single 

cell level, based on non-radioactive labeling of DNA strand breaks. The sections were first 
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deparaffinized and permeabilized by cooking in 0.1 M citrate buffer (pH 6) for 20 min. Then, 

the sections were incubated with the freshly prepared TUNEL reaction mixture (containing 

label and enzyme solution) in a humidified chamber in the dark at 37°C for 15 min. Following 

TUNEL staining, the sections were used for Mac 2 immunostaining. The percentage of 

TUNEL positive macrophages were analyzed by counting TUNEL positive and MAC2 

positive cells (DAPI) and expressing as a percentage of total number of macrophages (MAC2 

positive cells).  

 

2.13 In situ PCR 

In situ PCR for mature microRNAs was performed on aortic root sections to show expression 

of miR-21-3p and miR-21-5p strands in the different cells in aortic root lesions of mice 

maintained on HFD for 12 weeks. 4µm thick aortic root sections obtained from Mir21
-/- 

Apoe
-

/- 
and Mir21

+/+ 
Apoe

-/- 
mice fed HFD for 12 weeks were fixed in Paxgene and used for this 

experiment. The processes included removing of paraffin wax from the sections, protease 

digestion, DNase digestion, ultramer extension, stringency wash, microRNA cDNA labelling 

and detection. The experiment was done under a hood to minimize as much as possible any 

RNase contamination. All containers were autoclaved and others wiped with RNase zap. 

Deparaffinization: The sections were bathed in xylene and graded alcohol to remove the 

paraffin wax from the sections. 

Protease Digestion: The sections were then treated with 60 µl of pepsin solution (13mg of 

Dako pepsin powder, S3002 dissolved in 9.5ml DEPC water and 0.5ml of 0.2M HCl) for 10 - 

20 minutes at room temperature. Protease digestion was then stopped by washing sections 

shortly with DEPC water and followed by washing three times in RNase-free 100% ethanol. 

Sections were then left to dry. 

DNase digestion: Tissue chambers (SecureSeal™ hybridization chamber, Applied 

Biosystems, Massachusetts, USA) were then placed on each tissue to ensure the DNase does 

not evaporate or flow away during the overnight incubation period. RNase-free DNase 

(Roche, Switzerland) was diluted 1:10 with the buffer. 50µl of the DNase was added to each 

section and the chambers covered. The slides were then incubated at 37°C overnight. DNase 

was removed the next day by first removing the tissue chambers from the sections and 

washing 3 times with DEPC water and finally RNase free 100% ethanol and allowed to dry. 

Ultramer extension with amplification: GeneAmp® EZ rTth RNA PCR Kit (Applied 

Biosystems, Massachusetts, USA) was used for this step. Reaction mix (50µl per section) 

containing 25µl of 2x Reaction mix buffer, 1.6 µl of 2% BSA solution, 0.6µl of 1mM 

digoxigenin dUTP (Roche, Switzerland), 1.4µl RNase inhibitor (Roche), 1 µl of rTth DNA 

polymerase, 3 µl of the Taq-insitu-Primers(100 µM)(RT primer 1.2ul, Forward primer 0.9ul, 
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Reverse primer 0.9ul) and 17.4µl RNase free water. There were 2 sections on each slide. One 

section was always used as a negative control. The reaction mix for the control therefore had 

only negative control primers and no miR-21 primers. 

The tissues were covered with SecureSeal™ hybridization chamber and 50μl reaction mixture 

pipetted unto each section via the holes of the chamber. The slides were then placed in a 

thermal cycler (Eppendorf Master Cycler Nexus) and reverse transcription and amplification 

was performed with the follwing cycle: 

50°C – 30 minutes  

94°C – 3 minutes 

94°C – 15 seconds 

56°C – 30 seconds 

72°C – 20 seconds 

72°C – 5 minutes 

Number of cycles for amplification was 25. Slides were afterwards rinsed in xylene and 100% 

ethanol 3 minutes each and air-dried. 

Stringency wash: 1x SSC (Saline-sodium citrate) with 2% BSA and 0.2x SSC with 2% BSA 

were used for the stringency washing steps. The solutions were pre-heated at 60°C in an oven. 

Washing in 1x SSC with 2% BSA was for 5minutes and 0.2x SSC with 2% BSA was for 

10minutes. 

Labelling of digoxigenin labelled microRNA cDNA with secondary antibody: This step 

included blocking of the tissues with Tris-NaCl blocking (TNB) buffer (section 2.4) for 30 

minutes, followed by Avidin for 10 minutes and then with Biotin for another 10minutes all at 

room temperature. HRP labelled secondary anti-body; DIG-anti-POD was diluted 1:150 with 

TNB buffer and incubated with the tissues at room temperature for 1 hour. The tissues were 

then washed 3times for 5 minutes in Tris-NaCl Tween (TNT) buffer. Finally the tissues were 

incubated for 5 minutes with TSA (Tyramide Signal Amplification) Plus Biotin amplification 

reagent (Diluted stock solution 1:50 with 1x Plus Amplification Diluent). They were then 

washed three times in TNT (5 minutes) and incubated for 30 minutes with Dylight 549 

labeled Streptavidin (dilute with PBS 1:200). 
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2.13.1 MAC2 immunostaining after in situ PCR 

In order to detect the expression of miR-21-3p and miR-21-5p in lesional macrophages, the 

sections were then immunostained with MAC2 antibody after in situ PCR. One drop of 1% 

BSA blocking solution was added to each section and incubated for 30 minutes. After which 

the blocking solution was removed from the sections and 50µl of the primary antibody MAC2 

(supernatant of cultured M3/38.1.2.8 HL2 cells) was added to each of the sections. Negative 

control sections on each slide however were incubated with 50µl of Isotyp normal rat IgG 

(diluted with antibody solution 1:160). After an overnight incubation period, the sections were 

washed 3 times with PBS and a secondary antibody anti-rat FITC (diluted 1:100 in PBS) was 

added on each section and incubated again for 30 minutes. The sections were washed gently 

with PBS three times and then were then mounted with coverslips using Vectashield 

fluorescent mounting medium with DAPI. Micrograghs were taken using a Leica DM 6000B 

microscope. 

 

2.14 Global gene expression analysis by microarray 

To determine the targets of miR-21-3p and miR-21-5p as well study effect of Mir21 knockout 

in BM cells on mRNA expression in atherosclerotic lesions, a global gene expression analysis 

was performed with samples isolated from aortic arch containing atherosclerotic lesions. 

Recipient mice Mir21
+/+

Apoe
-/-

 were irradiated twice with a lethal dose of X-ray (5 Gy) 4 

hours apart and their BM reconstituted with BM cells from either Mir21
+/+

Apoe
-/-

 (BM 

Mir21
+/+

) or Mir21
-/-

Apoe
-/-

 (BM Mir21
-/-

). After monitoring the the health and well-being of 

the mice for 3 weeks, they were then placed on HFD for 12 weeks to induce atherosclerosis, 

after which they were sacrificed and their tissues harvested. The mice were sacrificed as 

previously described in section 2.8.2 and then perfused with RNAlater. The aortic arch 

containing atherosclerotic lesions, were then carefully dissected out and kept in RNAlater 

until RNA isolation at -80°C.  

Tissues were lysed and RNA isolation was performed using a mirVana
TM

 miRNA Isolation 

kit according to the manufacturer’s instructions. The samples were then sent to a private 

company IMGM Laboratories (Martinsried, Germany) where RNA purity, integrity and 

concentration were determined and microarray performed. RNA samples were spiked with in 

vitro synthesized polyadenylated transcripts (One-Color RNA Spike-In Mix, 

AgilentTechnologies, Carlifornia, USA), which serve as an internal labeling control for 

linearity, sensitivity and accuracy. The spiked total RNA was reverse transcribed into cDNA 

and then converted into Cyanine-3 labeled cRNA (Low Input Quick-Amp Labeling Kit One-

Color, Agilent Technologies). All steps were carried out according to the manufacturer’s 

instructions.  
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cRNA concentration (ng/μl), RNA absorbance ratio (A260nm/A280nm) and Cyanine-3 dye 

concentration (pmol/μl) were recorded for all cRNA samples using NanoDrop ND-1000 

UV/VIS spectrophotometer. Yield and specific activity of each reaction were determined and 

samples with a yield of cRNA above 825 ng and a specific activity above 6.0 pmol Cyanine-3 

per μg cRNA were processed to the hybridization step. However, samples with a cRNA yield 

less than 825 ng and a specific activity higher than 6.0 pmol Cyanine-3 per μg cRNA were 

considered still sufficient for microarray analysis as long as the amount of cRNA was 

sufficient for hybridization. Following cRNA clean-up and quantification 550 to 600 ng of 

each Cyanine-3-labeled cRNA sample was fragmented and prepared for one-color-based 

hybridization (Gene Expression Hybridization Kit, Agilent Technologies). Labeled cRNA 

samples were hybridized at 65°C for 17 hrs on separate Agilent SurePrint G3 Mouse Gene 

Expression 8x60K Microarrays (AMADID 028005). Afterwards, microarrays were washed 

with increasing stringency using Gene Expression Wash Buffers (Agilent Technologies) 

followed by drying with acetonitrile (Sigma). Fluorescent signal intensities were detected 

with Scan Control A.8.4.1 software (Agilent Technologies) on the Agilent DNA Microarray 

Scanner and extracted from the images using Feature Extraction 10.7.3.1 software (Agilent 

Technologies). Feature Extraction 10.7.3.1 (Agilent Technologies), GeneSpring GX 12.6 

(Agilent Technologies) and Marfin 1.9 (IMGM Laboratories) were used for quality control, 

statistical data analysis, RNA annotation and visualization. 

 

2.15 In vitro experiments 

2.15.1 Cell culture of BM-derived macrophages (BMDMs) 

To study the specific targets of the different strands of Mir21 in macrophages, as well as the 

role Mir21 plays in the circadian rhythm in macrophages, bone marrow-derived macrophages 

(BMDMs) were cultured by seeding and incubating BM cells in a macrophage differentiation 

medium for 6 – 7 days and used for various experiments. To isolate BM cells, the mice 

(Mir21
+/+

Apoe
-/-

 mice or Mir21
-/-

Apoe
-/-

 mice) were sacrificed by cervical dislocation and 

their blood drawn from the left ventricle of the heart. The femur and tibia were then harvested 

and kept in cold PBS and moved to a sterile chamber for the isolation of the BM cells. The 

BM is then flushed out of the bones with sterile Gibco® DMEM/F12 medium (ThermoFisher 

Scientific, California, USA) using a syringe.  

The cell suspension was then pipetted up and down several times to achieve a single cell 

suspension which was then passed through a 40µm cell strainer (Becton, Dickinson and 

Company, NJ, USA) to remove foreign tissues like bones. The cells were then washed by 

centrifuging and resuspending in new amount of medium. The cells were then counted and 

seeded at a density of 5 x 10
5
/ml in macrophage cell differentiation medium. The components 

of the macrophage cell differentiation medium were as follows: 
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DMEM/F12 medium (ThermoFisher Scientific, California, USA) 

10% Fetal bovine serum (Sigma-Aldrich, Steinheim, Germany) 

10% L929 cell medium  

1‰ Gentamicin (ThermoFisher Scientific, California, USA) 

BM cells are kept in CO2 incubator at 37°C for 7 days with the medium changed on the 3
rd

 

day.   

  

2.15.2 Synchronisation of BMDMs 

In order to study the role of Mir21 in the circadian rhythm of macrophages, BMDMs are 

synchronised by incubating the cells with horse serum medium for 2 hours and then replaced 

with serum-free medium. After synchronising the cells, the expression of clock genes was 

assessed using qRT-PCR after every 4 hours over a 24 hour period. The horse serum medium 

constituted DMEM/F12 medium, 50% horse serum, heat inactivated (ThermoFisher 

Scientific, California, USA) and 10% L929 cell medium.  

 

2.15.3 Treatment of BMDMs with mimics 

In order to study the role of miR-21-3p and miR-21-5p strands on circadian rhythm in 

macrophages and to study the targets of each specific strand, BMDMs were cultured from 

BM cells isolated from Mir21
-/-

Apoe
-/-

 mice and transfected with either miR-21-3p mimic or 

miR-21-5p mimic. The cells were then synchronised 24 hours after transfection and cells 

harvested 8 hours after synchronisation and the expression of clock genes, Mbl2 and Xaf1 

assessed using qRT-PCR.  

 

2.15.4 Stimulation of BMDMs to M1 and M2 macrophages 

To examine the role of Mir21 in the polarization of macrophages to either M1 (pro-

inflammatory) or M2 (anti-inflammatory) macrophages, BM cells isolated from 

Mir21
+/+

Apoe
-/-

 mice or Mir21
-/-

Apoe
-/-

 mice and cultured in macrophage differentiation 

medium were stimulated to generate M1 and M2 macrophages. The expressions of mRNA in 

these cells were then quantified using qRT-PCR. M1 stimulation was performed by treating 

the cells with 50 ng/ml lipopolysaccharide (LPS) for 8hours and afterwards treating the cells 
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with 20 ng/ml interferon gamma (IFN-γ) for 6 hours. The cells were then lysed and RNA 

isolated using the mirVana miRNA isolation kit (Applied Biosystems). M2 stimulated was 

done by treating the cells with 20 ng/ml interleukin 4 (IL-4) for 6 hours. 

 

2.16 Quantitative real time polymerase chain reactiom 

(qRT-PCR) 

Total RNA was either isolated using the mirVana miRNA isolation kit (Applied Biosystems) 

or Nucleospin miRNA kit (Macherey-Nagel). The RNA concentration was determined by 

measuring the absorbance at 260 nm (A260) in a spectrophotometer. The absorbance at 280 

nm was also measured to determine the RNA purity. RNA with an A260/A280 ratio of 1.8-

2.0 was used for qRT-PCR. Total RNA was reverse transcribed to cDNA using Taqman 

microRNA RT kit or high capacity cDNA reverse transcription kit both from Applied 

Biosystems with 2 ng RNA and 300 – 500 ng RNA for the microRNA and high capacity 

cDNA reverse transcription respectively. 

MiR expression levels were quantified using Taqman universal PCR master mix (Applied 

Biosystems) whereas qRT-PCR for mRNAs was performed using Taqman universal PCR 

master mix (Applied Biosystems) or gene specific primers and SYBR Green master mix 

(Promega). All real-time PCR experiments were run on a 7900HT thermocycler (Applied 

Biosystems). Relative expression levels were normalized to a single or to multiple reference 

genes (snoRNA135 and U6 for miR; Gapdh and B2m, mRNA), scaled to the sample with the 

lowest expression (qbase+ software; Biogazelle), and logarithmically transformed (Log2 or 

Log10).  

2.17 Statistical analysis 

The differences between two groups were compared using unpaired, 2-tailed Student’s t-test. 

More than two groups were compared using one-way or two-way analysis of variance 

(ANOVA) followed by a Newman-Keuls post-test (Prism 5.0; GraphPad). All data except the 

microarray data represent mean ± s.e.m. P value < 0.05 was always considered significant.  
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3 Results 

3.1 Role of Mir21 in macrophages during atherogenesis 

3.1.1 miR-21-3p and miR-21-5p expression in atherosclerotic 

lesions 

To study the expression of both miR-21-5p and miR-21-3p strands in atherosclerotic lesions, 

in situ PCR combined with MAC2 double staining was performed on aortic root lesions of 

Mir21
+/+

Apoe
-/-

 mice fed on a high fat diet (HFD) for 12 weeks. The expression of miR-21-5p 

was detected in lesional macrophages as well as luminal cells of the lesion, most likely 

endothelial cells (Figure 4A). The expression of miR-21-3p was detectable only in lesional 

macrophages but not in luminal cells (Figure 4B). Neither miR-21-5p nor miR-21-3p was 

detected in lesions from Mir21
-/-

Apoe
-/-

 mice after performing in situ PCR.  

 

Figure 4: Expression of miR-21-5p and miR-21-3p strands in mouse atherosclerotic lesions. 

Expression and localization of miR-21-5p (A) and miR-21-3p (B) in aortic root lesions of 

Mir21
+/+

Apoe
-/-

 mice fed HFD for 12 weeks using in situ PCR. Expression of miR-21-5p and miR-21-

3p (red) by lesional macrophages is shown by MAC2 immunostaining (green). The expression of miR-

21-5p was detected also in luminal cells but miR-21-3p expression was localized with only lesional 

macrophages. Negative control staining was performed in sections obtained from Mir21
-/-

Apoe
-/-

 mice 

fed HFD for 12 weeks. Nuclei were counterstained with DAPI (blue). Scale bars: 100µm. 
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3.1.2 Role of Mir21 in macrophage polarization 
3.1.2.1 Regulation of Mir21 during macrophage polarization 

To determine the role of Mir21 expression in macrophage polarization and function during 

atherosclerosis, the expression and regulation of miR-21-3p and miR-21-5p strands in 

different macrophage phenotypes were assessed. BMDMs were cultured and stimulated with 

either LPS and IFN-γ (M1 stimulation, see also section 2.15.4) or IL-4 (M2 stimulation). M0 

macrophages were not stimulated. The expression level of miR-21-3p and miR-21-5p in M0, 

M1 and M2 macrophages was quantified using qRT-PCR.  

There were no significant differences in the expressions of miR-21-3p (Figure 5A) and miR-

21-5p (Figure 5B)  between M0, M1 and M2 macrophages. These results indicate that Mir21 

expression may not be involved in macrophage polarization and that both pro-inflammatory 

and anti-inflammatory stimulation of macrophages do not differentially regulate miR-21-3p 

and miR-21-5p.  

 

 

Figure 5: Expression of miR-21-3p and miR-21-5p in M0, M1 and M2 macrophages. BMDMs 

were treated with LPS and IFN-γ (M1 stimulation), IL-4 (M2 stimulation) or not stimulated at all 

(M0) and afterwards the expression of miR-21-3p and miR-21-5p in these cells quantified using 

qRT-PCR. The expression of miR-21-3p (A) and miR-21-5p (B) between M0, M1 and M2 showed 

no significant difference. n = 3 samples per group. Results were analysed using two-way ANOVA. 

The means ± s.e.m. are shown.  
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3.1.2.2 Effect of oxLDL on Mir21 expression in macrophages 

To further examine the regulation of miR-21-3p and miR-21-5p expression, the effect of 

oxLDL on their expression was assessed. BMDMs were treated with oxLDL (200µg/ml) for 

24 hours and 72 hours. The expressions of miR-21-3p and miR-21-5p were measured using 

qRT-PCR. Stimulation with oxLDL significantly increased the expressions of miR-21-3p and 

miR-21-5p after 72 hours compared to cells treated with 200µg/ml of native LDL (nLDL) 

(Figure 6). There were no significant differences in the expressions of both strands at 24 hours 

between oxLDL and nLDL.  

 

Figure 6: Differential expression of miR-21-5p and miR-21-3p after oxLDL. BMDMs were treated 

with either 200µg/ml oxLDL or nLDL for 24 and 72 hours. Cells were then lysed and expression of 

miR-21-5p (A) and miR-21-3p (B) were assessed by qRT-PCR. n = 3-4 samples per group. Results 

were analysed using two-way ANOVA. The means ± s.e.m. are shown. 

 

3.1.2.3 Effect of Mir21 on cytokine expression in M0, M1 and M2 macrophages 

To investigate the role of Mir21 expression in the different macrophage phenotypes, the effect 

of Mir21 deficiency in BMDMs on the expression of cytokines was assessed after M1 and M2 

stimulation. Pro-inflammatory (M1) and anti-inflammatory (M2) markers were quantified in 

M0, M1 and M2 macrophages using qRT-PCR. BM cells were isolated from Mir21
+/+

Apoe
-/-

 

mice and Mir21
-/-

 Apoe
-/-

  mice and cultured for 7 days without any stimulation (M0) and the 

relative expression levels of M1 markers; Ccl2, Il-6, iNos, Tnf-α, Il-1β and M2 markers; Arg1 

and Mrc1 were quantified in the cells using qRT-PCR. There were no significant differences 

in M1 and M2 markers in unstimulated BMDMs from Mir21
+/+

Apoe
-/-

 mice and Mir21
-/-
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Apoe
-/-

 mice (Figure 7). This result indicates that in unstimulated macrophages Mir21 

deficiency may not affect the production of M1 and M2 cytokines.  

 

Figure 7. Effect of Mir21 on the expression of M1 and M2 markers. BM cells were isolated from 

Mir21
+/+

Apoe
-/-

 mice and Mir21
-/-

 Apoe
-/-

 mice and cultured in macrophage differentiation medium for 

7 days and RNA from unstimulated cells were isolated.  Expression levels of M1 and M2 markers 

were quantified in Mir21
+/+

Apoe
-/-

 and Mir21
-/-

 Apoe
-/-

 BMDMs using qRT-PCR. n = 3 samples per 

group. Results were analysed using two-way ANOVA. The means ± s.e.m. are shown. 

 

To determine the effect of Mir21 deficiency on the expression of M1 and M2 cytokines after 

stimulation, BMDMs from Mir21
+/+

Apoe
-/-

 mice and Mir21
-/-

 Apoe
-/-

 mice were either 

stimulated with LPS and IFN-γ (M1 stimulation) or IL-4 (M2 stimulation) after 6 days of 

culturing the cells. The relative expression levels of M1 and M2 markers were quantified in 

the stimulated cells using qRT-PCR. IL-4 treatment increased the expression of Il-6 in Mir21
-

/-
 Apoe

-/-
 BMDMs compared to Mir21

+/+
Apoe

-/-
 BMDMs (Figure 8A). Il-1β expression was 

increased in Mir21
-/-

 Apoe
-/-

 BMDMs after M1 stimulation compared to BMDMs isolated 

from Mir21
+/+

Apoe
-/-

 mice (Figure 8B). This suggests that under pro-inflammatory 

conditions, Mir21 deficiency may lead to the increased production of Il-1β in macrophages. In 

addition, Mir21 deficiency in BMDMs may increase Il-6 production upon anti-inflammatory 

stimulation.  
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Figure 8: Expression of M1 and M2 markers in stimulated BMDMs. BM cells were isolated from 

Mir21
+/+

Apoe
-/-

 mice and Mir21
-/-

 Apoe
-/-

 mice and cultured. Expression levels of M1 and M2 markers 

were quantified in Mir21
+/+

Apoe
-/-

 and Mir21
-/-

 Apoe
-/-

 BMDMs after stimulation with IL-4 (A) or LPS 

and IFN-γ (B) using qRT-PCR. n = 3 samples per group. * P < 0.05. P values were obtained using a 

two-way ANOVA. The means ± s.e.m. are shown.  

 

3.1.3 The effect of hematopoietic deficiency of Mir21 on lesion 

formation 

To assess the role of Mir21 expression in macrophages during atherogenesis, the BM of 

Mir21
+/+

Apoe
-/-

 mice was reconstituted with BM cells from either Mir21
+/+

Apoe
-/-

 mice 

(Mir21
+/+

/ BM Mir21
+/+

) or Mir21
-/-

Apoe
-/-

 mice (Mir21
+/+

/ BM Mir21
-/-

). In addition, the BM 

of Mir21
-/-

Apoe
-/-

 mice was also reconstituted with BM cells from Mir21
-/-

Apoe
-/-

 mice 

(Mir21
-/-

/ BM Mir21
-/-

) mice. The mice were then fed HFD for 12 weeks and afterwards 

sacrificed, tissues harvested and atherosclerosis quantified. 

3.1.3.1 Blood cell data of BM transplanted mice 

After 12 weeks of HFD, the mice were sacrificed and blood samples were collected for blood 

cell count and serum cholesterol levels analysis. In addition, the aortic root and thoraco-

abdominal aorta were perfused and harvested for the quantification of atherosclerosis. Serum 

cholesterol levels were measured using the Cayman’s Cholesterol Fluorometric Assay kit 

according to the manufacturer’s instructions. There was no significant difference in serum 

cholesterol levels in all three groups of mice after 12 weeks of HFD (Figure 9), indicating that 

the genotype of the BM cells transplanted into the mice did not affect serum cholesterol 

levels. 
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Figure 9: Serum cholesterol levels of BM transplanted mice. Mice were anaesthetized and blood 

from the orbital vein collected after 12 weeks of HFD. The blood was allowed to clot at room 

temperature and centrifuged at 2000 x g. The supernatant (serum) was collected and the level of 

cholesterol measured for each mouse using a Cholesterol Fluorometric Assay kit (Cayman Chemical, 

MI, USA) according the manufacturer’s instructions. One-way ANOVA and Newman-Keuls multiple 

comparison test were performed to determine any difference between the groups. The means ± s.e.m. 

are shown. 

 

Whole blood was also collected from each mouse via the orbital vein after the mouse had 

been anesthetized in EDTA tubes (Sarstedt, Nümbrecht, Germany). The different blood cells 

were then quantified using an automated veterinary Animal Blood Counter. The white blood 

cell (WBC) count, red blood cell (RBC) count, haemoglobin levels (Hgb), haematocrit 

(HCT), platelet count (PLT) and the percentages of lymphocytes, monocytes and granulocytes 

were all quantified and analysed to determine any differences between the groups (Figure 10). 

There were no significant differences among the groups for all of the cellular components of 

the blood. This data indicates that the bone marrow transplantation was successful and also 

the observed differences in atherosclerosis were not due to difference in circulating blood 

cells.  
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Figure 10: Blood composition and cell count of BM transplant recipient mice. Blood samples 

from each mouse were collected from the orbital vein into EDTA tubes and gently agitated to mix the 

blood and EDTA well so as to prevent the blood from clotting. The blood cell count was then 

performed with an automated veterinary animal blood counter. The white blood cell (WBC), red blood 

cell (RBC), haemoglobin levels (Hgb), haematocrit (HCT), platelet count (PLT) and the percentages 

of lymphocytes, monocytes and granulocytes were analysed. One-way ANOVA and Newman-Keuls 

multiple comparison test were performed to determine any difference between the groups. The means 

± s.e.m. are shown. 

  

3.1.3.2 Quantification of atherosclerosis in BM transplanted mice 

Atherosclerosis in BM transplanted mice was assessed after 12 weeks of HFD by Oil red O 

staining of en face prepared thoraco-abdominal aortas and in EVG stained sections of aortic 

roots by morphometry. Lesion formation was significantly reduced in thoraco-abdominal 

aortas of Mir21
+/+

/ BM Mir21
-/- 

mice and Mir21
-/-

/ BM Mir21
-/- 

mice compared to Mir21
+/+

/ 

BM Mir21
+/+

 mice after 12 weeks HFD (Figure 11). The difference in lesion area of Mir21
+/+

/ 

BM Mir21
-/- 

mice and Mir21
-/-

/ BM Mir21
-/- 

mice was not statistically significant. These 

results suggest that Mir21 knock-out in BM cells reduces atherosclerosis.  
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Figure 11: BM deficiency of Mir21 and atherosclerosis in thoraco-abdominal aorta. 

Atherosclerotic lesions were analysed in Mir21
+/+

Apoe
-/-

 mice transplanted with Mir21
+/+

Apoe
-/-

 

(Mir21
+/+

/ BM Mir21
+/+

) or Mir21
-/-

Apoe
-/-

 (Mir21
+/+

/ BM Mir21
-/-

) BM cells as well as Mir21
-/-

Apoe
-/-

 

transplanted with Mir21
-/-

Apoe
-/-

 BM cells (Mir21
-/-

/ BM Mir21
-/-

) after 12 weeks of HFD. Lesions 

were quantified in Oil red O stained en face prepared aortas (n = 7-8 mice per group). * P < 0.05. P 

values were obtained using One-way ANOVA and Newman-Keuls multiple comparison test. The 

means ± s.e.m. are shown.  

 

Atherosclerotic lesion area and necrotic core area were quantified in aortic root sections from 

Mir21
+/+

/ BM Mir21
+/+

 mice, Mir21
+/+

/ BM Mir21
-/-

 mice and Mir21
-/-

/ BM Mir21
-/-

 mice. 

Lesion area and necrotic core area were significantly reduced in Mir21
+/+

/ BM Mir21
-/- 

mice 

compared to Mir21
+/+

/ BM Mir21
+/+

 mice (Figure 12B and C). There was however no change 

in aortic root lesion area and necrotic core area of Mir21
-/-

/ BM Mir21
-/-

 mice compared to 

Mir21
+/+

/ BM Mir21
+/+

 mice (Figure 12B and C). Put together, these data indicate that Mir21 

deficiency in BM-derived cells reduces atherosclerotic lesion area and necrotic core area in 

mice. However, Mir21 knock-out in BM cells as well as other vascular cells resulted in 

reversal of the beneficial effect of the knock-out in only BM cells. Mir21 expression may 

therefore have different roles in different cells during atherogenesis and in other vascular cells 

Mir21 expression could have an opposing effect as compared to Mir21 in BM cells.  
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Figure 12: BM deficiency of Mir21 and atherosclerosis in the aortic root. Atherosclerotic lesions 

were quantified in Mir21
+/+

Apoe
-/-

 mice transplanted with Mir21
+/+

Apoe
-/-

 (Mir21
+/+

/ BM Mir21
+/+

) or 

Mir21
-/-

Apoe
-/-

 (Mir21
+/+

/ BM Mir21
-/-

) BM cells and Mir21
-/-

Apoe
-/-

 mice transplanted with Mir21
-/-

Apoe
-/-

 BM cells (Mir21
-/-

/ BM Mir21
-/-

) after 12 weeks of HFD. Lesion area and necrotic core area 

were analysed in cross-sections of aortic root stained with EVG stain (n = 7-8 mice per group).  * P < 

0.05. P values were obtained using One-way ANOVA and Newman-Keuls multiple comparison test. 

The means ± s.e.m. are shown. Scale bars; 250 µm. 

 

3.1.4 The effect of Mir21 deficiency on cellular content of 

atherosclerotic lesions 

To study the effect of Mir21 knockout in BM cells on the cellular content of atherosclerotic 

lesions, the smooth muscle, macrophage, collagen type I and T-cell contents were assessed 

using immunostaining performed on aortic root sections from Mir21
+/+

Apoe
-/-

 mice 

transplanted with Mir21
+/+

Apoe
-/-

 (BM Mir21
+/+

) or Mir-21
-/-

Apoe
-/-

 (BM Mir21
-/-

) BM cells. 

To quantify macrophage accumulation in atherosclerotic lesions, MAC2 immunostaining was 

performed and the nuclei counter stained with DAPI. The number of MAC2 positive cells in 

atherosclerotic lesions from BM Mir21
-/- 

mice was significantly lower than that of BM 

Mir21
+/+

 mice (Figure 13A). SMA and Collagen type I immunostaining were also performed 

and analysis of the SMA area or Collagen area showed no significant difference between BM 

Mir21
+/+ 

mice and BM Mir21
-/-

 mice (Figure 13B and C). This result suggests that Mir21 
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knockout in BM cells reduces macrophage cell content in atherosclerotic lesions but may not 

have any effect on smooth muscle content and collagen type I content. 

 

Figure 13: Effect of BM deficiency of Mir21 on lesional cellular content. Aortic root sections from 

BM Mir21
+/+

 mice and BM Mir21
-/-

 mice fed HFD for 12 weeks were stained with MAC2, SMA and 

Collagen type I antibodies. MAC2 positive cell number in atherosclerotic lesions was determined by 

counting MAC2 positive and DAPI positive cells (A). SMA (B) and Collagen (C) area were analysed 

and expressed as a percentage of the whole lesion area. * P < 0.05. P values were obtained using two-

tailed student’s t-test. The means ± s.e.m. are shown. Scale bars: 100µm. 

 

The T-cell content of atherosclerotic lesions in there aortic root was assessed by performing 

CD3 immunostaining and analysis done by counting CD3 positive cells and normalizing to 

the total lesional cells. The percentage of CD3 positive cells in aortic root lesions of BM 
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Mir21
-/-

 mice was significantly higher than that of BM Mir21
+/+

 mice (Figure 14). This 

suggests that Mir21 deficiency in BM cells increases recruitment of T-cells in atherosclerotic 

lesions.  

 

Figure 14: Effect of BM deficiency of Mir21 on T-cell content in atherosclerotic lesions. CD3 

immunostaining was performed on atherosclerotic lesions in aortic root sections from BM Mir21
+/+

 

and BM Mir21
-/-

 mice fed HFD for 12 weeks. CD3 cell count was analysed using DAPI nuclei counter 

stained images. * P < 0.05. P values were obtained using two-tailed student’s t-test. The means ± 

s.e.m. are shown. Scale bars: 50µm. 

 

3.1.5 The effect of Mir21 deficiency on lipid content in 

macrophages 

To study the role of Mir21 expression on the accumulation of lipid droplets in lesional 

macrophages, aortic root sections were double stained with MAC2 and Perilipin 2 antibodies. 

Perilipin positive area normalised to total MAC2 area was analysed in sections obtained from 

BM Mir21
+/+

 and BM Mir21
-/-

 mice after 12 weeks of HFD. Even though perilipin area in 

atherosclerotic lesions of mice transplanted with Mir21
-/-

Apoe
-/-

 BM cells (BM Mir21
-/-

) 

tended to increase compared to mice transplanted with Mir21
+/+

Apoe
-/-

 BM cells (BM 

Mir21
+/+

), the difference between the two groups was not statistically significant (Figure 15). 

This data suggests that Mir21 deficiency in BM cells may not play a significant role in lipid 

accumulation in macrophages during atherogenesis.  
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Figure 15: Effect of BM deficiency of Mir21 on lipid accumulation in macrophages. Perilipin 2 

and MAC2 double staining were performed on aortic root sections from BM Mir21
+/+

 and BM Mir21
-/-

 

mice fed HFD for 12 weeks. There was no significant difference between BM Mir21
-/-

 mice and BM 

Mir21
+/+

 mice after a two-tailed student’s t-test analysis was performed. The means ± s.e.m. are 

shown. Scale bars: 100µm. 

 

3.1.6 The effect of Mir21 deficiency on macrophage apoptosis in 

atherosclerosis 

To determine the mechanism leading to the reduction in macrophage cell number, necrotic 

core area and atherosclerotic lesion area of BM Mir21
-/-

 mice after 12 weeks HFD, TUNEL 

assay was performed using aortic root sections and double stained with MAC2 to determine 

the number of apoptotic macrophages in the lesions in BM Mir21
+/+

 mice and BM Mir21
-/-

 

mice. TUNEL positive macrophages were analysed and the percentage of TUNEL positive 

macrophages to the total number of macrophages in each section was determined. The 

percentage of apoptotic macrophages (TUNEL positive MAC2 cells) in the atherosclerotic 

lesions of BM Mir21
-/-

 mice after 12 weeks HFD when compared with that of BM Mir21
+/+ 

mice was significantly higher (Figure 16). This effect on macrophage apoptosis suggests that 

Mir21 deficiency in BM cells may lead to increased macrophage apoptosis during 

atherosclerosis and this may reduce macrophage accumulation and hence atherosclerotic 

lesion formation. 
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Figure 16: Effect of Mir21 deficiency on lesional macrophage apoptosis. TUNEL staining was 

performed on aortic root sections from BM Mir21
+/+

 and BM Mir21
-/-

 mice fed HFD for 12 weeks. 

Sections were then counter stained with MAC2 antibody and TUNEL positive MAC2 positive cells 

were counted and expressed as a percentage of total MAC2 positive cells. * P < 0.05. P values were 

obtained using two-tailed student’s t-test. The means ± s.e.m. are shown. Scale bars: 50µm. 

 

3.2 Targets of Mir21 in macrophages during atherogenesis 

3.2.1 Effect of Mir21 deficiency on mRNA expression in 

atherosclerotic lesions 

To study the molecular mechanisms through which Mir21 deficiency in BM cells leads to 

reduced atherosclerosis, as well as to determine possible targets of the different strands (miR-

21-3p and miR-21-5p), a global gene expression analysis was performed with samples 

isolated from the aortic arch of Mir21
+/+

 Apoe
-/-

 mice transplanted with either Mir21
+/+

 Apoe
-/-

 

(BM Mir21
+/+

) or Mir21
-/-

 Apoe
-/-

 (BM Mir21
-/-

) BM cells and fed a HFD for 12 weeks. The 

global gene expression analysis revealed a total number of 500 upregulated and 585 

downregulated gene transcripts (fold change ≥ 1.5; P ≤ 0.05, n = 3 mice per group) in the 

aortic arch atherosclerotic lesions of BM Mir21
-/- 

versus BM Mir21
+/+

 mice (Figure 17).  

The most significantly upregulated genes in atherosclerotic lesions from BM Mir21
-/-

 (KO) 

mice compared to BM Mir21
+/+

 (WT) mice were Xaf1, Arntl, Npas2, Nfil3, Foxs1, Adamts4, 

Ier5 and Tmem82. In addition, Mbl2 (highlighted in red in Figure 17) which is expressed in 

lesions and plays a role in atherosclerosis
146

 was also highly upregulated in the microarray. 

Some of the most significantly downregulated genes included Chrono, Dbp, Tef, Dec1, 

Bpifa1, Scgb3a1, Elovl3, Nr1d2, Olfr734 and Stox1. Notable among the differentially 

regulated genes is that, several differentially regulated genes are involved in the circadian 

rhythm pathway. The circadian rhythm pathway genes are highlighted in orange and the most 

highly upregulated gene Xaf1 as well as Mbl2 are highlighted in red (Figure 17). 
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Figure 17: Differentially regulated genes in aortic arch atherosclerotic lesion. Genome wide 

expression profiling (Agilent SurePrint G3 Mouse Gene Expression Microarray) was performed with 

RNA samples isolated from the aortic arch of BM Mir21
+/+ 

and BM Mir21
-/-

 mice after 12 weeks 

HFD. The plot shows Log10 of fold change and in blue dots upregulated and downregulated gene 

transcripts (fold change ≥ 1.5; P ≤ 0.05, n = 3 mice per group) in atherosclerotic lesions from BM 

Mir21
-/-

 mice (KO) compared to BM Mir21
+/+

 mice (WT). The most highly upregulated gene Xaf1 is 

shown in red as well as Mbl2 which plays a role in atherosclerosis. Some of the highly upregulated 

and downregulated genes which are involved in the circadian rhythm are highlighted in orange. 

 

To identify the pathways that the differentially regulated genes may be involved in during 

atherosclerosis, a pathway analysis using Ingenuity Pathway Analysis (IPA, Qiagen) was 

performed using the results of the microarray analysis. IPA was used to determine the 

molecular pathway which was highly upregulated in atherosclerotic lesions of BM Mir21
-/-

 

mice compared to BM Mir21
+/+

 mice. The circadian rhythm signalling pathway was the most 

significantly upregulated pathway (Table 2). Genes that positively regulate the circadian 

pathway were significantly upregulated, whereas negative regulators that modulate circadian 

rhythm through a negative feedback mechanism were downregulated in the microarray. For 

example a main regulator of the circadian rhythm Arntl1 was upregulated, whereas 

downstream genes Per1, Per2, Per3, Cry2 and Nr1d2 were downregulated in atherosclerotic 

lesions in the aortic arch of BM Mir21
-/-

 mice compared to BM Mir21
+/+

 mice (Table 2).  

The pathway analysis (Table 2) also showed several pathways and their genes that were 

highly upregulated in the microarray. Pathways including axonal guidance signalling, 

Calcium transport, Wnt/β-catenin, basal cell carcinoma signalling, sonic hedgehog signalling 
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and mTOR signalling are involved in cell growth, proliferation and cell motility and they may 

contribute to macrophage survival and removal of apoptotic cells during atherogenesis. 

Moreover, TR/LXR activation, Stearate biosynthesis I and Triacylglycerol biosynthesis are 

known to be involved in metabolism. These pathways may also contribute important roles in 

vascular cells during atherosclerosis. 

 

Pathway p-value Genes 

Circadian rhythm 

signalling 

5.83109E-06 Arntl, Cry2, Vipr2, Per1, Per2, Bhlhe41, Per3, 

Nr1d1, Bhlhe40 

Stearate 

biosynthesis I 

(animals) 

0.0026 Acsl3, Acot2, Fasn, Dbt, Acot4, Elovl6 

Axonal guidance 

signalling 

 

0.0031 Enpeo, Rnd1, Rgs3, Sema6a, Plxna2, Adamts2, 

Ntn1, Nfat5, Sufu, Adam24, Ntrk1, Adam23, 

Adamts5, Adamts4, Gng4, Itgb1, Sema3g, Pappa, 

Stk36, Wnt9b, Kalrn, Arhgef15, Ptch1, Vegfc, 

Fzd9, Adam20, Hhip, Gnao1, Fzd5, Sema4b 

Calcium transport I 0.0064 Atp2a2, Atp2b4, Atp2b2 

Basal cell 

carcinoma 

signalling 

0.0091 Stk36, Wnt9b, Sufu, Ptch1, Fzd5, Fzd9, Hhip, 

Tcf7 

Wnt/β-catenin 

signalling 

0.0098 Axin2, Tgfbr1, Wnt9b, Lrp6, Fzd9, Kremen1, 

Tcf7, Sox17, Wif1, Gnao1, Rarb, Cd44, Fzd5, 

Ppp2r1b 

Eicosanoid 

signaling 

0.0134 Pla2g16, Ltb4r2, Tbxa2r, Pla2g3, PnpLa3, 

Alox12, Hpgds 

TR/RXR activation 0.0215 F10, Mtor, Adrb1, Fasn, Dio1, Thra, ME1, Nrgn 

Aryl hydrocarbon 

receptor signalling 

0.0269 Ctsd, Aldh1l1, Nfix, Mgst2, Tp73, Rarb, Cdkn1a, 

Hsp90aa1, Nrip1, Nfkb1, Esr1 

Sonic hedgehog 

signalling 

0.0316 Stk36, Sufu, Ptch1, Hhip 

Thyroid hormone 

metabolism II  

0.0389 Ugt3a2, Ugt2b7, Dio1, Sult1b1 

mTOR signalling 0.0470 Mtor, Vegfc, Ppp2r1b 

Triacylglycerol 

biosynthesis 

0.0471 Mogat1, Lpin1, Dbt, Elovl6 

Table 2: Most significantly upregulated pathways in atherosclerosis after Mir21 knockout in 

BM cells. Using the data generated from microarray results performed in atherosclerotic lesions of 

BM Mir21
-/-

 mice and BM Mir21
+/+

 mice, pathway analysis was performed with the Ingenuity 

Pathway Analysis (IPA, Qiagen) software and this generated a list of most upregulated molecular 

pathways based on the highly upregulated genes and downregulated genes involved in a pathway. 
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3.2.2 Differentially regulated circadian clock genes in aortic root 

lesions  

To investigate the role of the circadian rhythm in atherosclerosis, the expression levels of 

Arntl1, Nfil3, Npas2, Per1, Per2, Per3, Nr1d2 and Dbp were quantified in atherosclerotic 

lesion isolated from the aortic root of BM Mir21
+/+ 

mice and BM Mir21
-/-

 mice after 12 weeks 

HFD using qRT-PCR. Arntl1, Nfil3 and Npas2 were upregulated in atherosclerotic lesions of 

BM Mir21
-/-

 mice compared to BM Mir21
+/+ 

mice. Per2, and Nr1d2 in atherosclerotic lesions 

of BM Mir21
-/-

 mice were downregulated compared to BM Mir21
+/+ 

mice (Figure 18). Even 

though Per1 was downregulated in BM Mir21
-/-

 mice, the difference was not statistically 

significant. This data indicate that Mir21 deficiency in BM cells may upregulate the circadian 

pathway and this may play an important role in reducing atherosclerotic lesion formation.    

 

 

Figure 18: Differentially regulated circadian clock genes in atherosclerotic lesions. Expression 

level of circadian clock genes were quantified in atherosclerotic lesions isolated from the aortic root 

of Mir21
+/+

 Apoe
-/-

 transplanted with either Mir21
+/+

 Apoe
-/-

 (BM Mir21
+/+

) or Mir21
-/-

 Apoe
-/-

 (BM 

Mir21
-/-

) BM cells and fed HFD for 12 weeks. n = 3-4 per group. * P < 0.05. P values were obtained 

using two-tailed student’s t-test. The means ± s.e.m. are shown. 
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3.2.3 Effect of BM deficiency of Mir21 on circadian clock genes in 

lesional macrophages 

To further study the effect of BM deficiency of Mir21 on the circadian clock genes in lesional 

macrophages, atherosclerotic lesional cells without endothelial cells were isolated from 

sections of the aortic root using laser capture microdissection. qRT-PCR was performed in 

laser-microdissected samples from BM Mir21
+/+

 mice and BM Mir21
-/-

 mice after 12 weeks 

of HFD. Arntl1 and Nfil3 were significantly upregulated in BM Mir21
-/-

 mice compared with 

BM Mir21
+/+

 mice in laser-microdissected lesional macrophages (Figure 19). Npas2 was 

upregulated in BM Mir21
-/- 

mice compared to BM Mir21
+/+

 mice samples but the difference 

was not statistically significant. There was also a significant downregulation of Per2 in 

lesional macrophages of BM Mir21
-/-

 mice compared to BM Mir21
+/+

 mice. The cells isolated 

from the atherosclerotic lesions were microdissected without the endothelial cells and medial 

cells and therefore consisted predominantly of lesional macrophages and the data suggest that 

Mir21 deficiency in BM cells may lead to upregulation of the circadian pathway in lesional 

macrophages and this may play a role in reducing atherosclerosis.  

 

Figure 19: Expression of circadian clock genes in lesional macrophages. The relative expression 

levels of circadian clock genes were quantified in laser-microdissected lesional cells from aortic root 

sections of BM Mir21
+/+

 mice and BM Mir21
-/-

 mice after 12 weeks of HFD using qRT-PCR (n = 3-4 

mice per group). * P < 0.05. P values were obtained using two-tailed student’s t-test. The means ± 

s.e.m. are shown. 
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3.2.4 Effect of bone marrow deficiency of Mir21 on Xaf1 and Mbl2 

expression in lesional macrophages 

In order to study the mechanism behind the increased macrophage apoptosis, decreased 

macrophage cell number and necrotic core area in atherosclerotic lesions in BM Mir21
-/-

 mice 

compared to BM Mir21
+/+

 mice after 12 weeks HFD, qRT-PCR using laser-microdissected 

lesional cells was performed to quantify the expression of Xaf1 and Mbl2. The lesional cells 

were dissected without the endothelial and medial cells and must be mainly consisting of 

macrophages. Both Xaf1 and Mbl2 were upregulated in BM Mir21
-/-

 mice compared to BM 

Mir21
+/+

 mice (Figure 20). Xaf1 was the most highly upregulated gene in the microarray 

analysis. The upregulation of Xaf1 and Mbl2 in lesional macrophages may play a role in 

increasing apoptosis and efferocytosis of dead cells thereby leading to reduced necrotic core 

area and atherosclerotic lesion sizes in mice transplanted with BM cells deficient of Mir21 

(BM Mir21
-/-

) compared to mice transplanted with wildtype BM cells (BM Mir21
+/+

).  

 

Figure 20: Expression of Xaf1 and Mbl2 in lesional macrophages. The relative expression levels 

of Xaf1 and Mbl2 were assessed in laser-microdissected lesional cells isolated from aortic root 

sections of BM Mir21
+/+

 mice and BM Mir21
-/-

 mice after 12 weeks of HFD using qRT-PCR (n = 3-4 

mice per group). * P < 0.05. P values were obtained using two-tailed student’s t-test. The means ± 

s.e.m. are shown. 
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To study the functional relevance of the upregulation of Xaf1 gene in lesional macrophages, 

XAF1 immunostaining was performed in aortic root sections. The sections were counter 

stained with MAC2 antibody and XAF1 positive, MAC2 positive cells were analysed. The 

percentage of macrophages expressing XAF1 was significantly higher in BM Mir21
-/-

 mice as 

compared to BM Mir21
+/+

 (Figure 21). This result indicates that Mir21 knockout in BM cells 

leads to the increased expression of XAF1 protein in lesional macrophages.  

 

 

Figure 21: XAF1 expression in lesional macrophages. XAF1 and MAC2 immunostaining were 

performed on aortic root sections from BM Mir21
+/+

 mice and BM Mir21
-/-

 mice after 12 weeks of 

HFD. XAF1 expressing macrophages were counted and expressed as a percentage of the total lesional 

macrophages. n = 4 mice per group * P < 0.05. P values were obtained using two-tailed student’s t-

test. The means ± s.e.m. are shown. 

 

3.3 Effect of Mir21 on circadian clock in macrophages  

3.3.1 Circadian rhythmic expression of miR-21-3p and miR-21-5p  

To study the individual roles of the different strands of Mir21, the 24-hour circadian 

expression pattern of both miR-21-3p and miR-21-5p in BMDMs were examined after the 

cells were synchronised. BM cells isolated from Mir21
+/+

Apoe
-/-

 mice were cultured and 

incubated for seven days and RNA isolated every 4 hours after synchronisation over a 24-

hour period. The relative expression for each time point was quantified by qRT-PCR. There 

was no rhythmic expression of the miR-21-5p strand observed in BMDM within the 24-hour 

period; however, miR-21-3p showed a rhythmic expression over the 24-hour period shown 

(Figure 22). The expression level of miR-21-3p differed at different time points within the 24-

hour circadian period. This observation indicates that at different time points in a circadian 

period, the effect and function miR-21-3p strand changes and may have more significant role 
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to play in the circadian rhythm of macrophages. The results also suggests that miR-21-5p may 

have a longer half-life and more stable than miR-21-3p. 

 

 

Figure 22: Circadian expression of miR-21-3p and miR-21-5p in BMDMs. Relative expression 

levels of miR-21-3p and miR-21-5p strands were quantified in BMDMs over a 24-hour period after 

synchronisation using qRT-PCR.  BM cells isolated from Mir21
+/+

Apoe
-/-

 mice were cultured for 7 

days and synchronised. qRT-PCR was performed by harvesting samples every 4 hours over a period of 

24 hours. miR-21-3p (A) strand showed a rhythmic expression over a 24-hour period but the 24-hour 

expression pattern of miR-21-5p (B) did not show a rhythmic pattern. 

 

3.3.2 Effect of Mir21 deficiency on circadian clock genes in 

BMDMs  

To study the role of Mir21 expression in the regulation of circadian clock genes, we 

quantified the expression of circadian clocks genes in BMDMs isolated from Mir21
+/+

Apoe
-/-

 

mice and Mir21
-/-

 Apoe
-/-

 mice after synchronisation. The cells were cultured for 7 days and 

afterwards synchronised and then samples were harvested every 4 hours over 24 hours. The 

relative expression levels of Arntl1, Nfil3, Npas2, Per2 and Per3 in Mir21
-/-

 Apoe
-/-

 BMDMs 

were quantified using qRT-PCR and compared with the expression of Mir21
+/+

Apoe
-/-

 

BMDMs.  The expression levels of Arntl1 in Mir21
-/-

 Apoe
-/-

 cells as compared to 

Mir21
+/+

Apoe
-/-

 cells over the 24-hour period were significantly higher for all time points 

(Figure 23A). This shows that Mir21 deficiency in macrophages results in increased 

amplitude of Arntl1 expression and hence an upregulation of the circadian rhythm. Similarly, 

Nfil3 expression was increased in Mir21
-/-

 Apoe
-/-

 BMDMs compared to Mir21
+/+

Apoe
-/-

 

BMDMs, however the differences were only significant at T8 and T24 (Figure 23B). The 

expression levels of Npas2 were also increased in Mir21
-/-

 Apoe
-/-

 BMDMs at certain time 

points (T4, T8 and T12) compared to the expression in Mir21
+/+

Apoe
-/-

 BMDMs (Figure 23C) 

but reduced from T16 to T24. This indicates a shift in the phase and also amplitude of Npas2 
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expression. These results put together suggest that in BMDMs the Knock-out of Mir21 leads 

to the upregulation of genes that positively regulate the circadian rhythm.  

 

Figure 23: Expression of upstream circadian clock genes in BMDMs. Relative expression levels of 

Arntl1, Nfil3 and Npas2 in synchronised BMDMs isolated from Mir21
+/+

Apoe
-/-

 mice and Mir21
-/-

 

Apoe
-/-

 mice were quantified over a 24-hour period using qRT-PCR after synchronisation. The 

expression of Arntl1 in Mir21
-/-

 Apoe
-/-

 as compared to Mir21
+/+

Apoe
-/-

 BMDMs is shown in A. The 

expression pattern of Nfil3 and Npas2 in Mir21
-/-

 Apoe
-/-

 BMDMs and Mir21
+/+

Apoe
-/-

 BMDMs are 

shown in B and C. n = 2-4 samples per group. * P < 0.05. P values were obtained using a two-way 

ANOVA. The means ± s.e.m. are shown. 

 

To further examine the effect of Mir21 knock-out on the downstream circadian clock genes, 

the expression levels of Per 2 and Per 3 were quantified in synchronised BMDMs isolated 

from Mir21
+/+

Apoe
-/-

 and Mir21
-/-

 Apoe
-/-

 mice over 24 hours. The expression of Per 2 was 

significantly higher in Mir21
-/-

 Apoe
-/-

 compared to Mir21
+/+

Apoe
-/-

 BMDMs at T4 but also 

lower at T12 (Figure 24A), indicating a shift in the phase of its expression. Per3 expression in 

Mir21
-/-

 Apoe
-/-

 BMDMs were significantly lower at T8 and T12 but higher at T4 compared to 

Mir21
+/+

Apoe
-/-

 BMDMs (Figure 24B). This shows a shift in the phase of Per3 and lowered 

amplitude from T8 to T24. These results suggest that BM deficiency of Mir21 leads to 

changes and shifts in the expression of Per2 and Per3 genes.  
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Figure 24: Expression of downstream circadian genes in BMDMs. Relative expression level of 

Per2, and Per3 in synchronised BMDMs isolated from Mir21
+/+

Apoe
-/-

 mice and Mir21
-/-

 Apoe
-/-

 mice 

were quantified using qRT-PCR. The expression level of Per 2 in Mir21
-/-

 Apoe
-/-

 BMDMs and 

Mir21
+/+

Apoe
-/-

 BMDMs over 24 hours is shown in A. Per 3 (B) expression shows reduced amplitude 

from T4 in Mir21
-/-

 Apoe
-/-

 compared to Mir21
+/+

Apoe
-/-

 BMDMs. n = 2-4 samples per group for each 

time point. * P < 0.05. P values were obtained using a two-way ANOVA. The means ± s.e.m. are 

shown. 

 

3.3.3 Circadian expression of Xaf1 and Mbl2 

To study the circadian role of Mir21 expression in the regulation of Xaf1 and Mbl2 and in 

macrophage apoptosis during atherosclerosis, the expression of Xaf1 and Mbl2 in BMDM 

over 24 hours after synchronisation were assessed in BMDMs obtained from Mir21
+/+

Apoe
-/-

 

mice.  Xaf1 showed a circadian rhythmic expression in contrast to Mbl2 expression (Figure 

25). 
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Figure 25: Circadian expression of Xaf1 and Mbl2 in BMDMs. Relative expression level of Xaf1 

and Mbl2 were quantified in BMDMs over a 24-hour period after synchronisation using qRT-PCR. 

BM cells isolated from Mir21
+/+

Apoe
-/-

 mice were cultured for 7 days and synchronised and qRT-PCR 

was performed by harvesting samples every 4 hours over a period of 24 hours. The circadian 

expression of Xaf1 (A) and Mbl2 (B) are shown.  

 

3.3.4 Effect of miR-21-3p and miR-21-5p on circadian clock genes 

in macrophages 

To study the individual roles played by the different strands of Mir21 in the circadian rhythm 

signalling, apoptosis and efferocytosis, experiments to determine which specific strand targets 

or regulates circadian clock genes, Xaf1 and Mbl2 were conducted. The relative expression 

levels of Arntl1, Nfil3, Npas2, Xaf1 and Mbl2 were quantified in Mir21
-/-

 Apoe
-/-

 BMDMs 

after synchronising and transfecting the cells with either miR-21-3p or miR-21-5p mimic. 

BMDMs were isolated from Mir21
-/-

 Apoe
-/-

 mice and cultured for 6 days and transfected with 

the mimic, the cells were then synchronised 24 hours after transfection and qRT-PCR 

performed 8 hours after synchronisation. Increasing the expression of miR-21-5p by 

transfecting Mir21
-/-

 Apoe
-/-

 BMDMs with mimic led to the downregulation of Mbl2 but not 

Arntl1, Nfil3, Npas2 and Xaf1compared to cells transfected with control mimic (Figure 26). 

The down regulation of Mbl2 upon increased expression of miR-21-5p indicates that miR-21-

5p may regulate Mbl2 expression in macrophages but not the clock genes Arntl1, Nfil3 and 

Npas2 as well as Xaf1.  
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Figure 26: Expression of circadian clock genes, Xaf1 and Mbl2 in Mir21
-/-

 Apoe
-/-

 BMDMs after 

miR-21-5p mimic transfection. BMDMs from Mir21
-/-

 Apoe
-/-

 mice were cultured till confluent at day 

6 in macrophage differentiation medium and then transfected with either miR-21-5p mimic or control 

mimic. The cells were then synchronised 24 hours after transfection and samples harvested 8 hours 

after synchronisation. The expression of clock genes, Xaf1 and Mbl2 were quantified by qRT-PCR. n 

= 3-4 samples per group. * P < 0.05. P values were obtained using a two-way ANOVA. The means ± 

s.e.m. are shown. 

 

The upregulation of miR-21-3p in Mir21
-/-

 Apoe
-/-

 BMDMs downregulated Nfil3, Npas2 and 

Xaf1 after transfection with the mimic compared to BMDMs transfected with control mimic 

(Figure 27). There were no significant differences in expression level of Arntl1 and Mbl2 in 

Mir21
-/-

 Apoe
-/-

 BMDMs transfected with miR-21-3p mimic compared to control mimic, 

suggesting that increased expression of miR-21-3p in macrophages may lead to 

downregulation of circadian clock genes Nfil3 and Npas2 as well as the downregulation of 

pro-apoptotic gene Xaf1. Taken together, these results suggest that miR-21-3p may regulate 

the clock genes as well as Xaf1 in macrophages whereas miR-21-5p regulates Mbl2 

expression.  
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Figure 27: Expression of circadian clock genes, Xaf1 and Mbl2 in Mir21
-/-

 Apoe
-/-

 BMDMs after 

miR-21-3p mimic transfection. BM cells were isolated from Mir21
-/-

 Apoe
-/-

 mice and cultured in 

macrophage differentiation medium for 6 days and then transfected with either miR-21-3p mimic or 

control mimic. The cells were then synchronised 24 hours after transfection and samples harvested 8 

hours after synchronisation and the expression of genes quantified by qRT-PCR. n = 3-4 samples per 

group. * P < 0.05. P values were obtained using a two-way ANOVA. The means ± s.e.m. are shown. 

 

To determine whether the regulation of the clock genes by miR-21-3p, occurs through direct 

targeting, microRNA target prediction tool RNAhybrid was used to predict possible binding 

sites for miR-21-3p in the 3’ UTR of clock genes Arntl1, Nfil3 and Npas2
149

. The target 

prediction analysis showed binding sites for miR-21-3p seed sequence in the 3’ UTR of 

Arntl1, Nfil3 and Npas2 in mice and in humans (Figure 28), but no possible binding sites for 

Xaf1 was predicted by the tool. The presence of possible binding sites suggests that miR-21-

3p may directly target Arntl1, Nfil3 and Npas2 but may regulate the expression of Xaf1 

indirectly. 
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Figure 28: Predicted binding sites for miR-21-3p. Predicted binding sites for miR-21-3p analysis 

were performed for human and mouse Arntl1, Nfil3 and Npas2 using RNAhybrid 

(http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/), ref # 142. 

 

RNAhybrid target sites prediction tool was also used to search for possible binding sites for 

miR-21-5p in the 3’UTR of Mbl2. A possible binding site was predicted in mice but not in 

humans (Figure 29).  

http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
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Figure 29: Predicted binding sites for miR-21-5p. Prediction of binding sites in the 3’UTR of 

human and mouse Mbl2 for  miR-21-5p was performed using RNAhybrid (http://bibiserv.techfak.uni-

bielefeld.de/rnahybrid/) , ref # 142. 

 

To further study the regulation of Arntl, Nfil3, Npas2 and Xaf1 by miR-21-3p, an 

immunoprecipitation assay was performed using BMDMs isolated from Apoe
-/-

 mice that has 

its Argonuate protein (AGO2) epitope tagged with MYC. After culturing the cells, they were 

transfected with miR-21-3p mimic using lipofectamin and the cells lysed 24 hours after 

transfection. The tagged AGO2 protein was then precipitated using antibody anti-C-MYC 

conjugated to magnetic beads as previously shown by He et al (2012)
150

. The enrichment of 

Arntl, Nfil3, Npas2 and Xaf1 was then assessed by qRT-PCR. Nfil3 and Xaf1 were enriched in 

the immunoprecipitated samples (Figure 29), suggesting that miR-21-3p may directly target 

Nfil3 and Xaf1 in macrophages. 

 

 

Figure 30: Enrichment of miR-21-3p and its targets. BMDMs were cultured from Apoe
-/-

 mice 

with Argonuate protein (AGO2) epitope tagged with MYC and GFP. The cells were then transfected 

with miR-21-3p mimic using lipofectamin. After 24 hours, cells were lysed and incubated with 

magnetic beads conjugated with C-MYC antibody. The immunoprecipitated RNA-protein complex 

was dissociated from the beads and the enrichment of targets assessed using qRT-PCR. 

  

http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
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4 Discussion 

4.1 Role of Mir21 in macrophages and atherosclerosis 

4.1.1  miR-21 and macrophage polarization 

MicroRNAs play crucial roles in the innate immune response and are dysfunctionally 

regulated in unresolved inflammation
151

. In M1 macrophages, microRNAs such as miR-155-

5p and miR-147-5p, miR-181a, miR-204-5p and miR-451 are significantly upregulated, 

whereas let-7c, miR-27a and miR-222 are upregulated in M2 macrophages
74, 152-154

, suggesting 

a functional role for different microRNAs in macrophage polarization. Moreover, colony-

stimulating factor 1 receptor (CSF-1R) suppresses M1 polarization but enhances M2 

polarization by inducing the expression of miR-21-5p
155

. However, the expression level of 

both miR-21-5p and miR-21-3p was not differentially regulated in macrophages after 

stimulation with either LPS/IFN-γ (M1) or IL-4 (M2), suggesting that both strands of Mir21 

may not play roles in the polarization of macrophages. In previous reports, LPS stimulation 

upregulated miR-21-5p expression in mouse macrophages, but not in human macrophages
93

. 

The difference in the results could be due to the fact that macrophages in the current study 

were stimulated with LPS and IFN-γ as compared to using only LPS. Another reason may be 

because different cells were used in this study as compared to the earlier report.  

To study the role of miR-21-3p and miR-21-5p in macrophage polarization, the effect of 

Mir21 gene knockout on M1 and M2 marker gene expression was determined. In contrast to 

previous studies, which showed that miR-21-5p expression skewed the macrophage 

phenotype towards the M1 subtype
93, 156

, in the current study deletion of the Mir21 gene 

slighty increased the mRNA expression of Il-1ß and IL-6 after LPS/IFN-g and IL-4 treatment 

respectively. The difference between the results of the current study and the previous reports, 

which mainly studied the role of miR-21-5p, may be partly explained by the use of Mir21 

knock-out macrophages which lack the expression of both miR-21-5p and miR-21-3p in the 

current study
93

. Moreover, Mir21 expression also suppressed Il-6 and enhanced Il-10 

expression in other studies
93, 157

, whereas in yet another study Mir21 expression inhibited both 

Il-10 and Il-6
156

. The different effects on Il-6 in the various studies can be attributed to the cell 

types used; while the current study used mouse BMDMs, Wang et al
156

 used thioglycollate 

induced peritoneal macrophages. Il-6 is a pro-inflammatory cytokine expressed in human 

plaques
158

 and promotes atherosclerosis in aged mice but prevents atherosclerosis progression 

in young mice
159-161

. In the current study, however, the role of Il-6 in atherosclerosis in vivo 

could not be determined, because it was not significantly upregulated in the microarray 

performed with aortic arch lesions of mice. Overall, Mir21 gene expression did not play a role 

in macrophage polarization, even though there was a mild effect of Mir21 gene expression on 

the level of the two cytokines. 

MiR-33a and MiR-33b are upregulated in response to hypercholesterolemia
162

 suggesting that 

the expression of microRNAs could be regulated by the production of oxLDL which is a 
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feature of dyslipidemia
163

. MiR-21-3p and miR-21-5p were significantly upregulated in 

BMDMs after being exposed to oxLDL and this is in line with a previous study that miR-21-

5p is upregulated in human mammary epithelial cells in response to oxLDL
163

.   

4.1.2 The role of Mir21 on atherosclerosis 

MiR-21 is significantly upregulated in disease states like cancer
164, 165

 and atherosclerotic 

lesions
166

 and together with miR-155 are  among a small number of selectively upregulated 

microRNAs in atherosclerotic lesions
167

. MiR-155 enhances atherosclerosis by enhancing pro-

inflammatory responses in leukocytes
167

 and the upregulation of miR-21 in several cells, 

enhances atherosclerosis related processes
88, 89

 indicating that microRNAs may contribute to 

atherosclerotic related processes in a cell specific manner. Mir21 expression in hematopoietic 

cells increased atherosclerotic lesion size in the aortic sinus as well as in the throraco-

abdominal aorta in Apoe
-/-

 mice, suggesting that Mir21 expression in hematopoietic cells may 

be pro-atherogenic. In situ PCR combined with MAC2 immunostaining showed miR-21-5p 

was expressed by lesional macrophages as well as luminal cells that may likely be endothelial 

cells and miR-21-3p expression was localized only with MAC2 positive cells. This indicates 

that miR-21-5p may be upregulated in macrophages and possibly endothelial cells during 

atherosclerosis, whereas miR-21-3p may be expressed only in macrophages. The expression 

of both strands of Mir21 in lesional macrophages suggests that the effect of Mir21 gene 

expression in hematopoietic cells on lesion formation maybe attributable to the role played by 

the two strands in macrophages as against other cells of hematopoietic origin. The differential 

expression pattern also suggests that the role each strand plays during atherogenesis may be 

different. The miR-21-5p strand may modulate pathways in macrophages as well as in 

endothelial cells, whereas miR-21-3p may modulate pathways only in lesional macrophages. 

Moreover, these results taken together suggest that both strands may occur as a functional 

miR-21-5p/miR-21-3p pair in macrophages during atherogenesis.   

Deleting Mir21 from hematopoietic cells as well from other vascular cells reduced lesion area 

in thoraco-abdominal aorta but not in the aortic sinus. The reduction of lesion formation in 

thoraco-abdominal aorta and increased lesion area in the aortic sinus may be because lesions 

in the aortic sinus are more advanced
172, 173

 and also suggest that Mir21 gene expression may 

have different effect in macrophages and other vascular cells like endothelial and smooth 

muscle cells. Mir21 expression in macrophages maybe detrimental in atherosclerosis but in 

endothelial cells, it may be beneficial depending on the part of the vasculature and the stage of 

the lesions. Advanced lesion formation occurs through enhanced macrophage number and 

altered function whereas early lesions may develop due to changes in smooth muscle and 

endothelial cells
174

. The pathogenic conditions that exist in the aortic root may be different 

from the whole aorta
175

 and therefore the stage and extent of lesion development may be 

different. The results from this study suggest that the role of Mir21 gene expression in 

endothelial and smooth muscle cells during atherosclerosis may depend on the part of the 

aorta, pathogenic factors that exist at that part and possibly the stage of atherosclerosis. The 
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effect of gene expression and cellular contributions to the different stages of lesion 

development in the aortic root compared to the whole aorta may require further studies. The 

differential expression of Mir21 strands in macrophages and endothelial cells during 

atherosclerosis may also explain the different effect of Mir21 gene expression in the different 

cells. In endothelial cells In situ PCR showed only the miR-21-5p expression, whereas miR-

21-5p and miR-21-3p were both expressed in lesional macrophages. Taking these results 

together, the expression of both strands in macrophages may enhance atherosclerosis whereas 

the expression of miR-21-5p in endothelial cells may be beneficial and this is in line with a 

previous report in which the expression of Mir21 in endothelial cells reduced endothelial 

dysfunction, an atherosclerosis related process in vitro
92

.  

 

4.1.3 The mechanism of Mir21 in macrophages on atherosclerosis 
4.1.3.1 Effect on lesion composition 

Although macrophages play a central role in atherosclerosis, other myeloid cells including 

neutrophils and dendritic cells are found in lesions and contribute to specific processes during 

atherogenesis
184

. Neutrophils are detected in human and murine atherosclerotic lesions 

suggesting a functional role during lesion formation
185

. Circulating neutrophils are associated 

with the occurrence of cardiovascular events in humans
186

 and lesion size in mice
187

. 

Neutrophil recruitment precedes the infiltration of monocytes into lesions and depletion of 

circulating neutrophils lead to reduced diet-induced lesion formation and advancement
188, 189

. 

Neutrophils are recruited in response to endothelial dysfunction and in turn secrete granule 

proteins that aggravate endothelial dysfunction and recruit monocytes as well as enhance 

inflammatory polarization of macrophages
185

. Neutrophils respond transiently to 

inflammation and therefore apoptosis play a crucial role in the regulation of their function 

during immune response
188, 190

. The anti-apoptotic role of miR-21 expression
191

 could 

suppress apoptosis and depletion of neutrophils thereby enhancing macrophage accumulation 

and lesion development. Even though the contribution of neutrophils and other hematopoietic 

cells to atherogenesis is possible, in situ PCR showed the expression of miR-21 strands co-

localized mainly in lesional macrophages suggesting that the observed effects may be due to 

the effect of miR-21 in macrophages. Atherosclerosis was enhanced due to reduced apoptosis 

of lesional macrophages and increased necrotic core formation in the aortic sinus. Reduced 

macrophage apoptosis also led to increased lesional macrophage accumulation thereby 

contributing to increased lesion sizes
176-178

. In the early atherosclerosis, monocytes derived 

from BM progenitor cells infiltrate the lesion and differentiate into macrophages through the 

function of macrophage colony-stimulating factor (M-CSF)
39, 179, 180

. Evidence on the sources 

of increased lesional macrophage number has been a contested subject. Though earlier studies 

suggested that this was mainly due to infiltration of circulating monocytes
181, 182

, it is now 

known that increased lesional macrophage number occurs largely due to increased 

proliferation of recruited cells
38

 and this study supports this finding that reduced apoptosis 
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and removal of lesional macrophages contributes to increased lesion formation. This also 

suggests that Mir21 expression in hematopoietic cells may regulate macrophage accumulation 

in lesions by reducing apoptosis. The anti-apoptotic function of Mir21 expression in 

macrophages during atherosclerosis in the current study is in line with previous studies and 

occurs in vascular smooth muscle cells, endothelial cells and in cancer cells as well
89, 90, 183

.  

The normal arterial intima is principally composed of endothelial cells and smooth muscle 

cells with collagen playing a role in the attachment of the endothelial cells to the 

subendothelial matrix
192

. During atherosclerosis, the morphology and cellular component of 

the intima is significantly altered and each stage is distinctively characterised by specific 

cellular content
193

. In early stages of atherosclerosis, smooth muscle cells migrate from the 

media into the intima and change from their contractile phenotype and begin proliferating
194

 

resulting in increased deposition of smooth muscle cells
195

. In the advanced stage, smooth 

muscle cells secrete and deposit collagen
196, 197

. Mir21 gene expression in hematopoietic cells 

did not have any significant effect on the smooth muscle and collagen content of aortic root 

lesions. The Mir21 gene was knocked out only in BM cells and hence was expressed in other 

vascular cells as smooth muscle cells, this may account for the similar levels of smooth 

muscle cell content suggesting that processes regulated by Mir21 expression were not 

differentially regulated.  

T lymphocytes are present in human atherosclerotic lesions
198-200

 as well as in murine 

atherosclerotic lesions
201

, pointing to a role of the adaptive immune cells in atherogenesis. In 

the current study, T cell population in lesions was assessed by quantifying CD3 positive cells. 

The CD3 complex consists of cell surface molecules that are associated with the T cell 

receptor (TCR) and involved in the assembly of TCR and activation of T cells
202

. Generally, 

T cell population in the lesions was very low with the average cell percentage below 1%. In 

contrast to previous reports, in which increased T cell number in lesions was associated with 

increased lesion formation, Mir21 expression in hematopoietic cells was associated with 

decreased T cell population but increased atherosclerosis
200, 203

. Moreover, in both reports by 

Hansson et al
203

 and Emeson et al
200

, T cells and macrophage accumulation were associated 

but in the current study, reduced macrophage accumulation was associated with increased T 

cell number. Different T cell subsets may play opposing roles in atherosclerosis and during 

atherogenesis a dynamic equilibrium may exist between the various subsets
189

, with subtypes 

like CD4
+
, CD8

+
 and TH1 driving the progression of atherosclerosis by increasing, whereas 

Treg cells and TH2 cells suppress atherosclerosis
32, 177, 189, 204, 205

. The current study did not 

examine the specific subtype of T cell located within the lesions, but the data taken together 

indicates the T cell subtype maybe different from the previous reports discussed. Mir21 

expression in hematopoietic cells may inhibit recruitment of Treg cells and TH2 cells. Mir21 

expression level in T cells is highly upregulated upon activation of CD4
+
 cells and suppresses 

apoptosis of activated T cells thereby enhancing inflammation
206

. Moreover, miR-21 is 

differentially expressed between memory cells compared to naive cells in a microRNA 

expression profile between naive and central memory CD4
+
 and CD8

+
 cells

207
 suggesting that 
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Mir21 expression may either have resulted in the increased CD4
+
, CD8

+
 and TH1 subtypes or 

suppressed Treg and TH2 subtypes. 

The uptake of lipids by macrophage receptor CD36 leads to the formation of foam cells, a 

characteristic feature in early atherosclerosis 
208-210

. The formation of foam cells is due to the 

dysregulation of lipid metabolism and defective cholesterol efflux
211

 indicating that  factors 

that affect lipid accumulation and metabolism could increase the development of 

atherosclerosis. Mir21 gene expression in macrophages had no effect on the expression of 

Adipose differentiation-related protein (ADFP) or Perilipin 2(PLIN2) a lipid droplet-

associated protein that regulates lipid turnover and is expressed in macrophages
212-214

, in 

contrast to previous report that ADFP is highly expressed in advanced lesions
215

. The result of 

the current study suggests that Mir21 expression in macrophages does not affect lipid uptake. 

4.1.3.2 Macrophage Mir21 expression and apoptosis  

Even though atherosclerosis has been looked at as a condition arising from chronic 

inflammatory response, emerging evidence points more to the problem of failed resolution of 

inflammation and inability of immune cells to switch from pro-inflammatory to a resolution 

state
11

. Resolution of inflammation involves the reduction of immune cell recruitment, 

removal of inflammatory cells through apoptosis and phagocytic clearance and a switch from 

M1 to M2 macrophage phenotype
216

. Macrophage apoptosis is critical in clearance and 

resolution of inflammation
217

 and occurs in both early and advanced lesions
218

. However, the 

effects of macrophage apoptosis are different at each stage
171

. In early lesions when a necrotic 

core has not yet developed, increased macrophage apoptosis is benefical and inhibits lesion 

development
44, 45

. In accordance with previous studies that showed anti-apoptotic role of 

Mir21 expression
219, 220

, apoptosis of lesional macrophages was inhibited by the expression of 

Mir21.  

In accordance with these observations, Xaf1 was  upregulated  in microarray analysis of 

lesions from mice in which Mir21 gene was knocked out in hematpoietic cells, suggesting 

that Mir21 expression in macrophages reduced Xaf1 expression. X-linked inhibitor of 

apoptosis (XIAP) associated factor 1 (XAF1) is a pro-apoptotic nuclear protein that interacts 

and sequestrates XIAP thereby inhibiting the anti-caspase activity of XIAP
134

 and is 

downregulated in several cancer cell lines
221-224

. Interestingly, Mir21 is the single gene that is 

upregulated in all solid cancer tumours
165

 suggesting that the increased expression of Mir21 

downregulates Xaf1 and hence decreases apoptosis. Put together, these data suggest that 

Mir21 expression may regulate macrophage apoptosis through targeting of Xaf1. 

Immunohistochemistry showed decreased expression of XAF1 in lesional macrophages of 

mice expressing Mir21 gene in hematopoietic cells, suggesting that downregulation of the 

mRNA also reduced protein expression. Reduced macrophage apoptosis resulted in increased 

macrophage accumulation in the aortic root and lesion formation in accordance with previous 

report, that prolonged survival of macrophages lead to enhanced lesion development
225

. 
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Taken together, these data suggest that Mir21 mediated regulation of Xaf1 and apoptosis, 

increases macrophage survival and is pro-atherogenic.   

4.1.3.3 Macrophage Mir21 expression and efferocytosis  

The Mir21 mediated suppression of macrophage apoptosis, coupled with increased lesional 

macrophage number and increased necrotic core formation, suggest a defective efferocytosis 

in lesions. Apoptotic lesional macrophages, must be quickly removed by efferocytosis else 

will trigger secondary necrosis and the development of a necrotic core which is characteristic 

of advanced leions
226

. Even though previous studies show that efferocytosis declines during 

later stages of atherosclerosis, leading to increased necrotic core formation and making 

macrophage apoptosis detrimental in atherosclerosis
42, 227-229

, in the current  study where 

lesions were examined after 12 weeks of HFD, efferocytosis may have been defective 

resulting in increased necrotic core area. Efferocytosis occurs through the recognition of 

phagocytic receptors and molecules such as tyrosine kinase Mertk, Fas, transglutaminase-2, 

complement protein C1q, and lactadherin
230-232

. MiR-155 inhibits efferocytosis in advanced 

lesions by targeting B-cell lymphoma 6 (Bcl6) and the deficiency of miR-155 reduces necrotic 

core formation and deposition of apoptotic cell bodies
233

 and this supports the results from the 

current study that Mir21 expression may target pathways involving the expression or 

signaling of phagocytic receptors and reduce efferocytosis.  

Interestingly, results from microarray analysis also showed significant upregulation of Mbl2 

in atherosclerotic lesions when Mir21 gene was knocked out in hematopoietic cells. Mannose 

binding lectin (MBL) is a Ca
2+

-dependent lectin that is known to opsonize pathogens and 

activate the complement system  by recognizing specific carbohydrate molecules and binding 

to them
234

 as well as promotes the phagocytosis and clearance of pathogens during an 

inflammatory response
145

. In line with the current study, decreased expression of MBL  which 

is associated with early onset and progression of atherosclerosis in humans
143-145, 235-237

was 

associated with increased necrotic core area and lesion size. Expression of MBL in early 

atherogenesis may be beneficial by increasing the rapid phagocytosis and clearance of 

apoptotic cells thereby limiting necrotic core formation as well as inflammation
142, 238

. Taken 

together, these data suggest that Mir21 deficiency in hematopoietic cells may reduce 

atherosclerosis by increasing apoptosis of lesional macrophages through elevated Xaf1 and 

efferocytosis through upregulation of Mbl2 in lesions.  Targeting macrophage apoptosis, and 

efferocytosis therefore may present a therapeutic potential for suppressing atherosclerosis
225, 

239-245
. 

MicroRNAs exhibit tissue-specific and cell-specific expression pattern
248

, and this pattern can 

be differentially regulated by inflammation, laminar shear stress, hypoxia and cardiovascular 

risk factors
59

. The tissue and cell-specific expression leads to microRNAs regulating different 

molecular pathways in different cells leading to varying functions and contributions to disease 

states in different cells
7
. In human plaques miR-21-3p and miR-21-5p are differentially 

expressed in different artery beds during atherosclerosis
70

. Even though recent studies suggest 



Discussion 

68 

 

that relative miR-5p/miR-3p (microRNA/microRNA*) expression between various tissues are 

conserved
249

, miR-21-3p is selectively upregulated in macrophages in response to oxidative 

stress
99

, whereas miR-21-5p is upregulated in response to LPS stimulation
93

. This indicates 

that miR-21-3p and miR-21-5p may be regulated by different stimuli in different cells and 

hence play different roles in certain pathways.  

 

4.2 Regulation of the macrophage clock by Mir21 in 

atherosclerosis  

4.2.1  Mir-21 expression and circadian rhythm 

In Apoe
-/-

 mice, hyperlipidemia disrupts the circadian rhythm and affects apoptosis-related 

genes thereby contributing to the process of lesion development
255, 256

 and in the current 

study, both strands of the Mir21 gene were upregulated in response to oxLDL suggesting that 

uptake of oxLDL disrupts the circadian rhythm in macrophages by upregulating Mir21. The 

mRNA expression profile showed  differential regulation of key circadian clock genes in 

atherosclerotic lesions after knock-out of Mir21 gene from BM cells. The upregulation of 

upstream regulators of the circadian rhythm Arntl, Npas2 and Nfil3 and downregulation of 

Per1, Per2, Per3, Nr1d1, Nr1d2, Chrono and Dbp suggests that Mir21 expression regulates 

the circadian rhythm of BM-derived cells and this plays a critical role in atherosclerosis. In 

wildtype hematopoietic cells, Mir21 targets Arntl, Nfil3 and Npas2 and hence dampening or 

inhibiting the circadian pathways. The downregulation of the circadian rhythm may lead to 

dysregulation of pathways like the metabolism, inflammation, apoptosis and survival of 

hematopoietic cells and thereby enhancing atherosclerosis. Also, a possible mechanism may 

be the loss of circadian control of other downstream genes and thus enhance atherosclerosis. 

In knock-out mice, the circadian rhythm is then restored and therefore reduces the risk of 

lesion development. The result of the current study is in line with previous report that knock-

down of Rev-erbα (Nr1d1) in BM cells of Ldlr
-/-

 mice increases atherosclerotic lesions in the 

aorta with associated increase in M1 macrophages suggesting that disrupted circadian rhythm 

in macrophages leads to increased inflammation and atherosclerosis
131

. Moreover, human 

plaque-derived VSMCs exhibit different circadian oscillation from that of normal carotid 

VSMCs
129

, suggesting that dysregulation of the circadian rhythm in cells enhances 

atherosclerosis. 

Moreover, a pathway analysis using the IPA software showed that the circadian pathway was 

the most highly upregulated pathway in lesions from mice with BM knock-out of Mir21. 

Several other molecular pathways also upregulated are known to be associated with 

metabolism (TR/LXR activation, Stearate biosynthesis I, Triacylglycerol biosynthesis and 

Thyroid hormone metabolism II), cell proliferation and growth (Wnt/β-catenin, basal cell 

carcinoma signalling, sonic hedgehog signalling and mTOR signalling) as well as with cell 

motility (axonal guidance signalling and Calcium transport). These pathways may play a 
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synergistic role with the circadian rhythm signalling in atherosclerosis or they may either be 

regulated by the circadian pathway or vice versa. Functional circadian pathway exists in 

splenic and peritoneal macrophages and play important roles in regulating various functions 

such as cytokine expression and phagocytosis in the macrophage
132, 257, 258

. Immune response 

to LPS involves the targeting of Bmal1 via miR-155 upregulation and increased production of 

inflammatory cytokines and in mice lacking Bmal1 in their myeloid cells, there is increased 

risk of sepsis upon LPS treatment
259

. The Mir21 regulation of the circadian rhythm in myeloid 

cells may therefore  enhance atherosclerosis by reducing apoptosis of macrophages.  

More recent studies have shown that the rhythmic oscillations of certain microRNAs play 

crucial roles in certain disease conditions. One such study showed that rhythmic expression of 

miR-96-5p in mouse midbrain is involved in the regulation of Gluthathione, which plays a 

role in neurodegenerative diseases
260

. Studies that identified direct targeting of circadian clock 

genes show a direct interaction and regulation of the circadian rhythm by microRNAs. For 

example, miR-124 and Clock has been identified as a microRNA-mRNA target pair that exist 

in human glioma cell lines and is involved in the regulation of NF-κB activity and 

proliferation
261

. Furthermore, miR-185 controls the expression of Cry1, providing evidence 

for the involvement of microRNAs in fine tuning the circadian rhythm of cells
262

. 

 

4.2.2  Role of the clock genes in miR-21-3p and 5p –regulated Mbl2 

and Xaf1 expression 

 MiR-291 and miR-132 exhibit circadian rhythm of expression in the SCN and act as down 

stream effectors of the pacemaker activity via post-transcriptional regulation of targets, 

indicating a possible role of microRNAs in modulating the circadian rhythm
263, 264

. In retinal 

cells also, microRNAs play crucial roles in the circadian rhythm of the retina suggesting that 

an important aspect of entrainment and circadian control involves microRNAs
265

. In line with 

the previous reports,  miR-21-3p in the current study showed  a rhythmic expression over 24 

hours whereas miR-21-5p did not. This suggests a role of miR-21-3p in regulating the 

circadian rhythm in macrophages but miR-21-5p may not be involved in circadian rhythm 

regulation. It is not clear in this study how the circadian pattern of miR-21-3p is regulated or 

controlled and although this could possibly be through rhythmic expression of regulators of 

Mir21 transcription, further study is required to understand it better. The circadian expression 

miR-21-3p  but not miR-21-5p suggests that this regulation may not be at the level of 

transcription but post-transcriptional. The expression of the clock genes in BMDMs isolated 

from Mir21
-/-

 mice (KO) was compared with that of Mir21
+/+

 mice (WT). The amplitude of 

Bmal1 (Arntl1) was significantly higher at all time points in KO macrophages. Nfil3 and 

Npas2 expression level showed higher amplitude at certain time points as well as shift. The 

difference in amplitude and phase of Arntl1, Nfil3 and Npas2 expression suggest that Mir21 

expression regulates the circadian rhythm in macrophages. In the absence of Mir21 gene in 
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macrophages, increased expression of clock genes leads to a more robust circadian pathway 

and this may affect down stream regulation of various cellular functions. Consequently, the 

expression level of downstream and negative regulator of the circadian pathway Per2, was 

reduced when the Mir21 gene was knocked out. Moreover, the expression pattern of Per2 had 

an opposite pattern to that of Nfil3, suggesting the regulation of Per2 transcription by Nfil3 

and this result is in line with previous reports that Per2 is regulated by Nfil3
266, 267

. 

Xaf1 and Mbl2 which respectively enhance apoptosis and efferocytosis were highly expressed 

in atherosclerotic lesions after Mir21 knock-out in hematopoietic cells along with the 

upregulation of clock genes. Xaf1 showed a circadian expression over the 24-hour period in 

macrophages and a comparison with the expression pattern of miR-21-3p shows they both 

have opposite circadian patterns, suggesting that miR-21-3p and Xaf1 may be a microRNA-

mRNA target pair. The circadian oscillation of Xaf1 may be regulated by the passenger strand 

thereby reducing apoptosis of macrophages during atherogenesis. Mbl2 on the other hand did 

not show an oscillating pattern in macrophages. The expression level was continually 

increasing over the 24-hour period and that also coincided with the non-oscillatory expression 

pattern of miR-21-5p which was also consistently decreasing. Put together, these data suggest 

that both strands of Mir21 contribute to atherosclerosis by reducing apoptosis via the 

circadian regulation of Xaf1 by miR-21-3p and inhibiting phagocytic clearance by miR-21-5p 

targeting of Mbl2. A circadian microRNA–mRNA target pair is defined as one in which both 

elements show rhythmic expression and a sequence-based target relationship can been 

established
268

. Putative target binding sites of  miR-21-3p and miR-21-5p in the 3’UTR of the 

circadian clock genes Arntl1, Nfil3, Npas2 as well as Xaf1 and Mbl2 using the target 

prediction tool RNAhybrid showed no predicted binding sites for  the miR-21-5p seed 

sequence for any of the clock genes in both mice and humans. Binding sites were predicted 

for the miR-21-3p seed sequence in the 3’UTR of Arntl, Nfil3 and Npas2 in both humans and 

mice suggesting that miR-21-3p may regulate  the circadian rhythm pathway by targeting and 

inhibiting the expression of clock genes in macrophages during atherosclerosis.  

Further in vitro studies showed that miR-21-3p expression led to decreased expression of 

Nfil3 and Npas2 but not Arntl1. MicroRNA targeting of mRNA has been shown not only to 

be dependent on the presence of binding sites but also varies based on the concentrations of 

the targets
269

. This may explain why even though binding sites were predicted for three 

mRNA, miR-21-3p upregulation in macrophages showed reduction of Nfil3 and Npas2 but not 

Arntl1 expression compared to control samples. Taken together, these results suggest that 

miR-21-3p may regulate the expression of Xaf1 through the circadian pathway in 

macrophages and hence apoptosis. Moreover, miR-21-5p expression in macrophages reduced 

the expression level of Mbl2 and in accordance with this result, binding sites for the seed 

sequence were predicted for Mbl2 in mice but not in humans. Mbl2 expression in lesional 

macrophages may therefore be directly regulated by miR-21-5p during atherosclerosis and 

this may inhibit efferocytosis and lead to the formation of a necrotic core. The results of the 

current study suggest that the two strands of Mir21 gene in macrophages may regulate 

apoptosis and efferocytosis during atherosclerosis. It is unclear from the current study how the 
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regulation of the circadian rhythm interacts with the regulation of Xaf1 and hence apoptosis. 

One possibility is that the circadian expression of miR-21-3p directly targets and regulates the 

expression of Xaf1 in a circadian manner thereby regulating apoptosis and  inhibiting miR-21-

3p results in high expression of Xaf1 and hence increased apoptosis and reduced accumulation 

of lesional macrophages. Another possibility is that the deregulation of the circadian rhythm 

through the targeting of Nfil3 by miR-21-3p results in the cells being resistant or less sensitive 

to the apoptotic pathway. Cell cycle and apoptosis are controlled in part by the circadian 

rhythm and in tumours, the peripheral circadian rhythm is found to be deregulated
270

. In 

Period mutant (mPer) mice for example, cells are resistant to apoptosis and the expression of 

genes that control cell cycle like Cyclin D1, Cyclin A, Mdm-2, and Gadd45α are suppressed 

and these mice are prone to tumourigenesis
271, 272

.  The expression of circadian clock genes 

may therefore be associated to cell cycle regulation and sensitivity to apoptosis. Therefore, 

the deregulation of the circadian clock in macrophages may result in  decreased response of 

macrophages to apoptotic pathways suggesting a combinatory effect of Xaf1 regulation and 

the circadian rhythm. The mechanism through which the circadian rhythm regulates apoptosis 

however, needs to be further investigated.  

 

4.3 Clinical relevance 

MicroRNAs are involved in the development of several human diseases and the evidence 

supporting therapeutic potential has caused them to receive much attention. Mir21 expression 

is known to contribute to myocardial disease by increasing growth and survival of cardiac 

fibroblasts, increase fibrosis during heart transplant, and enhance atherosclerosis and 

neointimal lesion formation after balloon injury in carotid arteries. However, Mir21 

expression also improves endothelial function by increasing nitric oxide production in 

response to shear stress suggesting that, Mir21 may have different roles and effects in 

different cell types during atherosclerosis. The current study investigated the role of Mir21 

expression in macrophages during atherosclerosis and indicated a possible combinatory role 

of both the guide and passenger strands in enhancing atherosclerosis. The expression of the 

passenger strand (miR-21-3p) in macrophages regulated the circadian clock and apoptosis, 

whereas the guide strand (miR-21-5p) regulated efferocytosis of lesional macrophages. Mir21 

is highly conserved in humans and mouse and therefore, translating results in mice models of 

atherosclerosis to humans could present promising therapeutic measures.  

Potentially, miR-21-3p and miR-21-5p can be inhibited using antisense oligonucleotides (anti-

miRs), in order to increase apoptosis and phagocytic removal of macrophages and hence 

inhibit atherogenesis. However, because Mir21 expression plays different roles in other cells, 

there could be off-target effects of using anti-miRs that can inhibit the function of both miR-

21-3p and miR-21-5p strands in different cells. Thus identifying the functional role of Mir21 

strands and their targets in a cell specific manner provides therapeutic targets for more 

effective and specific therapies, for instance by blocking the interaction between the Mir21 
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strands and their targets in macrophages during atherosclerosis. This may be achieved by 

using antisense oligonucleotides that bind to the microRNA target site of an mRNA known as 

target site blockers, which will prevent the microRNAs loaded RISC from targeting and 

repressing the mRNA. Therefore the result of the current study can be used to develop novel 

therapeutic strategies for improving macrophage function and resolution of inflammation 

during atherosclerosis. 
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5 Summary 

Macrophages play a central role in the progression of atherosclerosis through the formation of 

foam cells, necrotic core and enhancement of inflammation. On the other hand, lesional 

macrophages could also contribute to the resolution of inflammation and lesional regression 

through cholesterol efflux and efferocytosis. MicroRNAs are a family of small (~22 

nucleotide) noncoding RNA molecules that are responsible for post-transcriptional regulation 

of gene expression and are involved in several physiological processes including 

development, differentiation, metabolism, growth, proliferation and apoptosis. In 

atherosclerosis, microRNAs are expressed in various cells and regulate inflammation, cell 

proliferation, apoptosis and lipid metabolism. Mir21 expression is involved in apoptosis, 

proliferation and inflammation in various cells during disease progression. Moreover, both 

strands of the pre-miR-21, miR-21-5p and miR-21-3p are highly upregulated in human 

atherosclerotic plaques. miR-21-3p is selectively upregulated in macrophages in response to 

oxidative stress and miR-21-5p is upregulated upon LPS stimulation. However, the role of 

miR-21-5p and miR-21-3p strands in macrophages during atherosclerosis is not known.  

The current study indicates that miR-21-5p and miR-21-3p strands were expressed in 

atherosclerotic lesional macrophages. Moreover, the expression of both miR-21-3p and -5p 

strands were upregulated upon oxLDL stimulation in BMDMs suggesting a regulatory role of 

both miR-21 strands in macrophages during atherosclerosis. Notably, Mir21 defficiency in 

hematopoetic cells reduced atherosclerosis due to reduced lesional macrophage content and 

necrotic core area albeit macrophage apoptosis was increased. These data suggest that Mir21 

deficiency in macrophages may improve efferocytosis during lesion formation. Therefore, the 

expression of miR-21 strands in macrophages exacerbates atherosclerosis. 

Hematopoetic defficiency of Mir21 significantly altered circadian clock gene expression in 

atherosclerotic arteries. The current study suggests that miR-21-3p in macrophages suppressed 

the circadian clock by directly targeting Nfil3 and this dysregulation of the circadian rhythm 

may in turn have reduced the sensitivity of macrophages to the apoptotic pathway and hence 

increased accumulation and inflammation (Figure 31). Interestingly, miR-21-3p may also 

directly target pro-apoptotic Xaf1 in lesional macrophages. What is not clear from this data is 

how the circadian rhythm is interconnected with the reduction of Xaf1 expression and 

apoptosis and hence further studies will be needed. miR-21-5p also regulated Mbl2 expression 

in macrophages and this may have led to decreased efferocytosis and hence increased necrotic 

core area (Figure 31). Both strands may therefore regulate apoptosis and efferocytosis in 

macrophages during atherosclerosis. Mir21 expression in other vascular cells may have 

different effects on atherosclerosis as compared to macrophages and hence the effect of Mir21 

in endothelial cells need further studies. The results from this study suggests that specifically 

targeting Mir21 in macrophages may be beneficial in atherosclerosis. However, to prevent the 

off-target effects of chronic deficiency of Mir21, blocking the interaction between the 

microRNAs with Xaf1 and Nfil3 may give stronger beneficial effects.  
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Figure 31: Mechanism by which Mir21 in macrophages enhance atherosclerosis. Both miR-21-5p 

and miR-21-3p are upregulated by the uptake of oxLDL due to high fat diet intake. miR-21-3p targets 

Nfil3 and Xaf1 thereby suppressing the circadian rhythm and apoptosis respectively. This leads to 

increased accumulation of macrophages and atherosclerosis. miR-21-5p targets Mbl2 and may inhibit 

efferocytosis which results in secondary necrosis and formation of necrotic core area.  
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