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Zusammenfassung
Die Boltzmanngleichung beschreibt den Transport von Teilchen und Energie. Der Boltzmann-
formalismus erreicht jedoch dann seine Grenzen, wenn Teilchen mischen, d.h. falls Teilchen mit
unterschiedlichen Quantenzahlen wie Spin und Flavor Korrelationen entwickeln. Zur expliziten
Berücksichtigung dieser Korrelationen verwenden wir den Dichtematrixformalismus, welcher
Phasenraumdichten zu Matrizen erweitert. Diese Matrizen enthalten auf den Nebendiagonalen
Informationen über die relativen Phasen von verschiedenen Zuständen. Die vorliegende Doktor-
arbeit wendet diesen Dichtematrixformalismus auf drei astrophysikalische und kosmologische
Systeme an.

Zunächst studieren wir die Mischung von Photonen und axion-ähnlichen Teilchen in extra-
galaktischen Magnetfeldern. Dieses System enthält zwei Längenskalen: Die Kohärenzlänge der
Magnetfelder und die Oszillationslänge. Für GeV–TeV Photonenenergien, welche in Blazaren
erzeugt werden, wurde die Oszillationslänge bisher größer als die Kohärenzlänge eingeschätzt.
Diese Annahme wurde benutzt, um Längenskalen, die bei der Photonpropagation auftreten, zu
trennen. Wir werden jedoch zeigen, dass ein weiterer Beitrag zur Photondispersion, der vor Kur-
zem hergeleitet wurde, eine klare Skalentrennung verhindert. Die Oszillationslänge verringert
sich durch diesen neuen Effekt proportional zur Photonenenergie und kann für TeV-Energien die
gleiche Größenordnung wie die Kohärenzlänge der Magnetfelder annehmen. Wir zeigen, dass in
diesem Regime der traditionelle Ansatz seine Gültigkeit verliert. Man benötigt weitere Informa-
tionen über die Magnetfeldstruktur, um die Transferfunktion des Photons genau berechnen zu
können. Diese Beobachtung ist vor allem für das künftige Cherenkov Telescope Array wichtig,
da dieses TeV-Photonen mit großer Sensitivität messen wird.

Anschließend beschäftigen wir uns mit Neutrinooszillationen in kompakten astrophysikali-
schen Objekten. Es wurde kürzlich nachgewiesen, dass neben Flavoroszillationen eine Mischung
von verschieden Helizitäten auf dem refraktiven Niveau stattfindet. Außerdem wurde gezeigt,
dass Korrelationen zwischen Teilchen und Antiteilchen (Paarkorrelationen) entstehen. Wir leiten
die Dichtematrixgleichungen, die diese beiden Phänomene beschreiben, her. Dabei bestätigen
und erweitern wir vorangegangene Ergebnisse. Außerdem diskutieren wir phänomenologische
Implikationen dieser Korrelationen. In typischen kompakten astrophysikalischen Objekten sind
beide Effekte klein. Wir zeigen, dass Paarkorrelationen zu konzeptionellen Problemen führen,
da Teilchenzahl keine lorentzinvariante Größe mehr darstellt. Wir unterbreiten Vorschläge, wie
dieses Problem gelöst werden könnte.

Schließlich wird die Dichtematrixgleichung häufig in der resonanten Leptogenese angewen-
det. Sie kann aus dem Schwinger-Keldysh-Formalismus im Heisenbergbild für quasi-entartete
Teilchen hergeleitet werden. Es wurde vor Kurzem im Interaktionsbildansatz und im starken
Verwaschungsregime gezeigt, dass die Leptonenasymmetrie im Dichtematrixformalismus un-
terschätzt wird. Eine direkte Gegenüberstellung war jedoch nicht möglich, da unterschiedliche
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Annahmen in die Ergebnisse einflossen. Wir werden in dieser Arbeit einen Vergleich zwischen
dem Heisenberg- und Interaktionsbild zeigen, der in einem Spielzeugmodell und im schwachen
Verwaschungsregime vollzogen wird. Wir finden identische Ergebnisse und identifizieren drei
Quellen, die zur Asymmetrie beitragen: konventionelles Mischen, Oszillationen und eine de-
struktive Interferenz zwischen diesen beiden. Diese Interferenz wurde in vorhergehenden Arbei-
ten nicht berücksichtigt. Sie kann aber unterschiedliche Ergebnisse in der Literatur erklären, falls
die Interferenz auch im starken Verwaschungsregime bestehen bleibt.



Abstract
The Boltzmann equation is a convenient tool to describe transport of particles and energy, but it
is not without limitations. It cannot be applied directly if particles mix, i.e., if particles with dif-
ferent quantum numbers like flavor or spin develop correlations. To capture this effect explicitly,
we promote phase space densities to matrices in spin and flavor space with the phase information
stored on the off-diagonals. This thesis explores this density matrix formalism and applies it to
three different astrophysical and cosmological systems.

First, we study mixing between photons and axion-like particles in extragalactic magnetic
fields. This system contains two length scales, the coherence length of the magnetic fields and
the oscillation length. The oscillation length was believed to be much larger than the coherence
length for GeV–TeV energy photons that are emitted from blazars. This hierarchy was used to
justify the separation of different length scales that enter photon propagation. However, we show
how a new contribution to the photon dispersion, which was recently derived, prevents a clear
separation of scales. The oscillation length shrinks with increasing energy and can be of the
same order as the coherence length of the magnetic field for TeV energies. We demonstrate that
in this regime the traditional approach breaks down and one requires more detailed information
about the magnetic field structure to compute the photon transfer function. This observation is
important for the upcoming Cherenkov Telescope Array that will probe TeV-energy photons with
unprecedented sensitivity.

We then turn to neutrino oscillations in compact astrophysical objects. Besides flavor oscilla-
tions, it was recently shown that different helicity eigenstates mix on the refractive level and that
correlations between particles and antiparticles (pair correlations) can build up. We derive the
density matrix equations associated with these two phenomena confirming and extending earlier
results, and we discuss phenomenological implications. Both effects are small in typical compact
astrophysical objects. We find that pair correlations lead to the conceptual problem that particle
numbers appear to be non-invariant under Lorentz transformations, and we provide some ideas
on how this issue may be resolved.

Finally, the density matrix equation is often applied to resonant leptogenesis. Here, this
equation may be obtained from the Heisenberg-picture Schwinger-Keldysh formalism for quasi-
degenerate particles. Recently, it was shown in an interaction-picture approach and for strong
washout that in the density matrix formalism the lepton asymmetry was underestimated. A di-
rect comparison was, however, not possible because of different types of approximations. We
present a consistent comparison between the Heisenberg and interaction-picture approaches in a
toy model of resonant leptogenesis and for weak washout. We find identical results and identify
three sources to the asymmetry: mixing, oscillations, and a destructive interference term between
them. This interference term has been missed in previous works. It may reconcile the conflicting
results of previous studies if the interference contribution persists in the strong-washout regime.
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Chapter 1

Introduction

Transport phenomena in astrophysics and cosmology
The evolution of a macroscopic object is determined by the small-scale interactions of its con-
stituents. Kinetic transport equations establish the connection between the two by determining
for all times the distribution in coordinate and momentum space of the particles in the object.
This distribution may be aggregated to obtain macroscopic observables. A good understanding
of the transport equations allows us to check the consistency of our model of particle physics
with astrophysical and cosmological observations. A possible mismatch hints towards either an
incomplete particle theory or an insufficient description of transport phenomena. It is therefore of
paramount importance to identify for a given particle content all relevant contributions to kinetic
transport.

The rich phenomenology of stars, black holes and the cosmos results from an interplay of
disruptive and balancing forces that rearrange the phase space distributions of particles in co-
ordinate and momentum space. Examples can be found on all astrophysical and cosmological
scales. Galaxies and galaxy clusters are formed by gravitational collapse in the potential wells
of dark matter over-densities [6]. Dark matter is often thought to decouple from the primordial
plasma in the early universe, thereby obtaining a relic density that is set by its cross section to
Standard Model (SM) particles [7, 8]. In a similar way, the observed baryon asymmetry of the
universe [9, 10] must be created by out-of-equilibrium processes [11, 12]. When the plasma
cooled down to keV temperatures, big-bang nucleosynthesis started fusing protons and neutrons
to helium [13, 14]. More massive nuclei are still created today in stars and supernovae.

Stellar objects contain a plethora of different transport channels [15, 16] with varying impor-
tance. Photons are emitted from ionized gas and lead to a net energy flow from hotter to cooler
regions (radiative transport). This is the most important channel for the interior of the Sun where
macroscopic matter movement, i.e., energy transport through convective currents is small. Stars
also produce neutrinos in nuclear reactions. For the Sun, the emitted neutrinos are an energy
sink because their weak interactions allow them to leave unimpeded. In supernovae or neutron
star mergers, the densities are so large that the mean free path of neutrinos becomes of the same
order as the typical dimensions of these compact objects. This coincidence of scales renders the
neutrinos the most relevant particles for energy and lepton number transport. Radiative transport
is suppressed due to the tiny mean free path of photons. Graviton emission may be treated as a
small energy sink.

We derive information about distant objects by detecting the radiation they emit, which has to
be transported through the intergalactic medium [17, 18]. Photon spectra allow us to extract the
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temperature and chemical composition of the surface of these objects, but the signal is altered
by scattering on background media and birefringence due to magnetic fields (Faraday rotation).
The signal may also be lost due to pair creation on background light. The propagation of charged
particles like cosmic rays is even more complex because they are deflected by magnetic fields
that pervade the universe. The propagation in these backgrounds have to be taken into account
if we want to infer properties of astrophysical objects from data. Gravitational waves, on the
other hand, are almost unaware of these backgrounds and propagate freely. This is also true for
neutrinos, although here one has to take into account flavor and spin oscillations.

A convenient tool to study transport phenomena is the Boltzmann equation [19]. Its original
formulation applies to non-relativistic classical gases. It tracks the evolution of phase space
densities f(t,x,p) for the different gas components, which are modeled as hard spheres with
corresponding collisions. Correlations between these spheres that are caused by collisions are
assumed to be forgotten between encounters (molecular chaos assumption [20]). The Boltzmann
equation takes the form

ḟ =
(
ḟ
)

force
+
(
ḟ
)

diff
+
(
ḟ
)

coll
, (1.1)

which means that the evolution of the phase-space densities is determined by external forces,
diffusion, and collisions between gas constituents.

This formalism can be extended from classical gases to quantum states: while the uncertainty
principle prohibits phase space densities with simultaneously defined coordinates and momenta,
f(t,x,p) may be replaced by Wigner functions [21], which are smeared over a few ~ in phase
space [20]. The evolution equation for the Wigner functions (Moyal’s equation [22]) reduces to
the classical Boltzmann equation in the limit ~ → 0, and we may often treat coordinates and
momenta as continuous classical variables if the system varies on scales large compared with the
de Broglie wavelength of the field quanta.

The Boltzmann equation is useful to describe the transport of elementary particles when gen-
eralized to relativistic propagation [23, 24]. Quantum statistics and particle collisions may be
accounted for in a semi-classical fashion. The resulting equation is suitable for many of the sys-
tems mentioned above but it fails to account for particle oscillations during propagation. The
Boltzmann equation does not capture Faraday rotation nor neutrino flavor oscillations because
it discards correlations between discrete quantum numbers of particles. While neglecting corre-
lations between momenta and/or coordinates of particles is often justified for astrophysical and
cosmological systems, correlations that involve discrete quantum numbers like spin or flavor are
crucial to understand particle transport of, e.g., neutrinos, and should not be discarded.

This thesis will be devoted to some phenomenological and theoretical aspects of a generaliza-
tion of the Boltzmann equation that takes into account the mixing of particles with different dis-
crete quantum numbers: the density matrix equation (see Refs. [25, 26] and references therein).

The density matrix equation

When we talk about particles like electrons or photons we have in mind a field with properties
that are determined by discrete quantum numbers. These are, e.g., the spins and the charges
they carry with respect to gauge groups. It is convenient to further assign baryon and lepton
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numbers to each field in order to describe apparent conservation laws of the SM Lagrangian. We
may subdivide these classes further by distinguishing three lepton flavors (e, µ, τ ) and six quark
flavors (u, d, s, c, b, t) that are conserved under the strong and electromagnetic interactions.
A consequence is that pair production from a photon always creates a particle-antiparticle pair
of the same type (e.g. e+e−) and that the quarks that enter a gluon vertex are required to have
identical flavor.

This flavor conservation is broken by the misalignment of the weak interaction and the Yukawa
bases: W -bosons that scatter with quarks do not produce an eigenstate of the strong interaction
but a coherent combination thereof. For the leptonic sector, production of, e.g., an electron
neutrino may be described by a coherent superposition of different neutrino mass eigenstates. In
other words, a state that is prepared with an electron neutrino has non-trivial correlations when
written in the mass basis. These correlations are the reason for neutrino oscillations and have to
be taken into account in a kinetic description of neutrino transport [26].

Particle number densities are proportional to an expectation value of the form 〈a†iai〉, where ai
is an annihilation operator and a†i a creation operator for a particle of type i. The brackets 〈. . .〉
denote the ensemble expectation value, which is defined as the trace over the quantum-statistical
density operator that contains the information about the initial preparation of a system. Similarly,
we define off-diagonal number densities by taking the expectation value of creation/annihilation
operators of different types, i.e., 〈a†jai〉 with i 6= j. These terms contain phase information.
Together, we may define the matrix of densities ρij via [26]

(2π)3δ(3)(p− k)ρij(t,p) = 〈a†j(t,p)ai(t,k)〉 ,
(2π)3δ(3)(p− k)ρ̄ij(t,p) = 〈b†i (t,−p)bj(t,−k)〉 ,

(1.2)

for particles (ρ) and antiparticles (ρ̄).
These matrices of densities follow an evolution equation that is commonly called the “density

matrix equation”. Note that some confusion might arise because the quantum statistical den-
sity operator is sometimes referred to as a “density matrix” as well. This operator has to be
distinguished from the matrix of densities ρij and the density matrix equation.

The density matrix equation can be obtained by considering the expectation values of the
Heisenberg equation for the particle number operators. The right-hand side will contain a com-
mutator term 〈[Ĥ, a†jai]〉. For two-particle interactions this commutator does not reduce to a
matrix of densities but contains higher order correlations [27], i.e., expectation values of four
creation/annihilation operators. This four-operator expectation value will be a dynamical quan-
tity which in turn depends on higher order correlations. This is the famous Bogolyubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy of correlation functions [28–31]: in a multi-body
system one-particle distributions implicitly depend on all multi-particle correlations.

We need additional approximations to close the resulting system of evolution equations. We
will be mainly interested in propagation in media where refraction is more important than col-
lisions. In this case, it is suitable to apply the mean-field limit [32]: the Hamiltonian operator
reduces to a one-particle operator by replacing pairs of creation/annihilation operators by their
expectation value. Stated differently: quantum fluctuations are ignored and expectation values
reduce to classical mean-fields. This approach discards collisions, which are encoded in higher
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order correlations.
The mean-field approach is similar to the molecular chaos assumption in the way that it de-

composes multi-particle expectation values into one-particle expectation values. But while the
mean-field approximation a priori discards collisions, molecular chaos is imposed at a later stage
to simplify collision terms.

In general, the density matrix equation may be expressed as:

ρ̇ = (ρ̇)refr + (ρ̇)force + (ρ̇)diff + (ρ̇)coll , (1.3)

where the refractive contribution is a commutator −i[H, ρ] between the matrix of densities and
a matrix of oscillation frequencies H (Hamiltonian matrix). The Hamiltonian matrix has to be
determined from the Hamiltonian operator. In general, the commutator [H, ρ] does not vanish
and the correlations on the off-diagonals of ρ contribute to the evolution of the number densities.
This confluence of correlations and number densities is the crucial difference when compared to
the Boltzmann formalism.

Note that flavor oscillations are not confined to the Faraday effect, conventional neutrinos or
heavy meson systems. Misalignment between interaction and propagation eigenstates appears
regularly in theories beyond the SM as well. Extended Higgs sectors which can be found in two-
Higgs doublet models [33] or in supersymmetric theories [34], often contain explicit mixing of,
e.g., CP -even and CP -odd states. Sterile neutrinos [35, 36], which are a good dark matter can-
didate, may obtain significant number densities via mixing with the active neutrino flavors. Sim-
ilarly, if an additional U(1) gauge symmetry is added to the SM, the conventional photon mixes
kinetically with the new gauge boson [37]. In this thesis, we will present three systems for which
the misalignment between interaction and propagation eigenstates generates interesting phenom-
ena: mixing between photons and axion-like particles (chapter 3), helicity oscillations and pair
correlations of neutrinos in supernovae (chapter 4), and resonant leptogenesis (chapter 5).

Mixing between photons and axion-like particles
First, we study the propagation of axion-like particles (ALPs) in extragalactic magnetic fields.
The QCD axion [38–41] is a pseudoscalar whose defining property is that it solves the strong
CP -problem, i.e., the fine-tuning problem associated with the non-detection of the neutron’s
electric dipole moment [42, 43]. A coupling of the axion to the chiral anomaly dynamically
drives the CP -violation in the SM to zero (see e.g. Ref. [44]). The axion mixes with the π0,
which induces an axion mass and an axion coupling to two photons. The mixing also relates the
mass and coupling strength of the axion. Axion-like particles generalize the concept of the QCD
axion. An effective coupling to two photons is assumed similar to the one of the axion but the
mass scale is set independently.

Explicitly, the ALP a couples to two photons via the term

Laγγ = −gaγγ4 aF µνF̃µν = gaγγaE ·B , (1.4)

where gaγγ is the coupling constant, F µν the photon field strength tensor and F̃ µν its dual. This
term can be rewritten as a scalar product of an electric and a magnetic field. This means that
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an ALP in a magnetic field background may be converted into an oscillating electric field that is
aligned with the magnetic field, i.e., ALPs mix with linearly polarized photons.

This mixing is used by experiments [45] like ADMX [46], ALPS [47, 48], CAST [49],
IAXO [50], and MADMAX [51] to discover axions and axion-like particles. They use strong
magnetic fields in which ALPs and photons may interconvert. The conversion probability de-
pends on the magnetic field strength and the exposure time to a coherent magnetic field. Lab-
oratory experiments therefore usually require strong magnetic fields. On the other hand, weak
magnetic fields that are coherent over distances of several megaparsecs may be found in extra-
galactic space [52, 53]. Here, ALP-photon oscillations may be observed in the energy spectra of
blazars. The propagation of photons and ALPs will be the topic of chapter 3.

The mixing may be treated within the density matrix formalism. Assuming that Faraday ro-
tation may be neglected and that the magnetic field direction is constant, the density matrix is a
2× 2 Hermitean matrix

ρ =
(
ρ ρ a

ρa ρa

)
, (1.5)

with the photon number density ρ , ALP number density ρa and coherences ρ a = ρ†a . For a
magnetic field that is transversal to the direction of motion, the Hamiltonian matrix reads

H =
∆γ − iΓγ

2 gaγ|B|
gaγ|B| ∆a

 . (1.6)

The off-diagonals contain the mixing due to the magnetic field. The ALP dispersion ∆a is de-
termined by its mass ma, the photon dispersion ∆γ is due to forward scattering on background
media. Most importantly, photons are absorbed by pair creation with the extragalactic back-
ground light (EBL), which is indicated by the absorption rate Γγ . To leading order the ALP is
not absorbed by background media because its coupling strength gaγ is tiny [54].

This asymmetry in the absorption signifies the relevance of ALP-photon mixing — photons
that oscillate into ALPs are shielded from absorption [55]. The ALPs freely propagate and pho-
tons may regenerate in the magnetic field of our galaxy for us to be detected. The number of
photons with GeV–TeV energies may be enhanced by orders of magnitude through this mecha-
nism because these energetic photons are usually absorbed very efficiently.

In general, oscillations between mixing states are suppressed if their dispersive phase veloc-
ities are very different. For ALPs, dispersion is controlled by a mass term and for photons,
background media induce non-zero indices of refraction. Previous works [56–58] assumed that
the only contributions to the photon refraction were from background electrons and background
magnetic fields. For gamma rays in the GeV–TeV range, the photon refraction from these two
contributions is orders of magnitude smaller than the mixing induced by typical magnetic fields.
This means that for small ALP masses the Hamiltonian matrix is dominated by its off-diagonals
such that the mixing angle is maximal and ALP-photon conversion is very efficient. Moreover,
the length scale that is associated with the conversions (oscillation length) was found to be large
compared to typical coherence lengths of magnetic fields of a few megaparsec [52, 53]. Thus, the
ALP-photon system was not able to probe the exact structure of the magnetic field, and the mag-
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netic field was often approximated by a domain-like grid with constant lattice spacing and con-
stant absolute value of the magnetic field strength [56–58]. The orientation of the magnetic field
was taken to vary instantly at the boundaries of each domain assuming a new random direction.

In chapter 3, we show that these simplifications for the structure of the magnetic field cannot be
justified once we include a recently derived [59] contribution to the refraction from the cosmic
microwave background (CMB). Photons undergo forward scattering on the CMB through the
effective four-photon vertex that is generated by a box diagram with charged fermions in the
loop [60]. The refraction is dominated by those background particles with the highest energy
density; a quantity that is very large for CMB photons.

This new refractive term dominates the components of the Hamiltonian matrix for TeV ener-
gies. This has a number of consequences as we will demonstrate. The mixing angle becomes
suppressed and the oscillation length losc ∼ 78.5 Mpc (E [TeV])−1 becomes comparable to lc.
The ALP-photon system is now able to resolve the structure of the magnetic field. It becomes
sensitive to the underlying probability distributions of the magnetic field strength and of the co-
herence length. If losc is smaller than lc the propagation of the photons becomes quasi-adiabatic:
the photon survival probability becomes only sensitive to the initial and final magnetic field con-
figurations and to the mean absorption length of ALPs, which is induced by back-conversions
into photons.

Pair correlations
Chapter 4 takes a closer look at the evolution equations of neutrinos in core-collapse supernovae.
Neutrinos dominate the transport of energy and lepton number. In our current understanding of
core-collapse supernovae, this transport is crucial to enable stellar explosions (see e.g. Ref. [61]).
A shock wave is formed when matter bounces off the stiff core of a gravitationally collapsing
star. It propagates outwards but loses most of its energy dissociating iron. The initial energy
of the shock wave is not enough to shed the outer layers of the star. Neutrinos that are emitted
from the supernova core sustain the shock wave with their energy deposition. This picture is
confirmed by numerical simulations, which are however very sensitive to the approximations in
the neutrino transport (see e.g. Ref. [62]).

Note that flavor oscillations may be crucial for neutrino energy transport. The flavor content
of the neutrino stream determines the efficiency of the energy transport since electron neutrinos
can be absorbed thereby providing all their energy to the shock wave. The other neutrino flavors
only lose energies through scattering, which is not as efficient. Moreover, the heavy lepton neu-
trinos typically possess larger energies because they decouple from hotter areas of the supernova
core [63]. If these neutrinos oscillate into electron neutrinos, their larger energy is combined
with the more efficient absorption.

To date, neutrino flavor oscillations are neglected in supernova simulations and neutrino trans-
port is described by Boltzmann equations [61]. The reason is that very dense matter suppresses
oscillations because interaction and propagation eigenstates are almost aligned [64, 65]. While
this argument applies to, e.g., the core of the Sun, it is not so clear-cut for supernovae: the neu-
trinos themselves are an irreducible background and lead to non-linear density matrix equations
already on the refractive level. It is an open research question, whether these non-linearities lead
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to significant flavor conversions [66–84].
Because of these non-linearities, one may wonder about other seemingly small contributions

to the neutrino propagation that might become important in dense objects. Recently, the con-
ventional picture of flavor oscillations has been extended to include helicity oscillations and pair
correlations [85–90]. Helicity oscillations describe transitions between different neutrino he-
licities. Neutrino transport is sensitive to the neutrino helicity for the following reasons. For
Dirac neutrinos the “wrong-helicity states” correspond to sterile components that leave a super-
nova without energy deposition. For Majorana neutrinos a helicity flip changes a neutrino to
an antineutrino with altered cross section and lepton number. In collisions, these helicity flips
are usually suppressed by [m/(2E)]2 with neutrino mass m and energy E. The novelty in the
approaches of Vlasenko, Cirigliano and Fuller [85–87] was that helicity transitions are obtained
already at linear order in the mass insertion m/(2E), if the background medium induces helicity
off-diagonal refractive indices. Such refractive indices may be generated by background currents
and electromagnetic fields that provide the angular momentum needed for helicity flips. While
helicity transitions remain small even at the refractive level, resonant enhancement of helicity
transitions may be obtained [87], albeit a significant amount of tuning is necessary.

While helicity oscillations may not be important for supernova dynamics, their conceptual
meaning is well-understood. The physical interpretation of pair correlations however is more
elusive and they are best understood if we take a look at the corresponding correlators in the den-
sity matrix equation. This equation has been generalized [88–90] to include helicity oscillations
and pair correlations on the refractive level and in the mean-field approximation by Volpe and
collaborators. Helicity oscillations are described with correlators of the form 〈a†j,hai,s〉with helic-
ity indices s, h,∈ {+,−}. Pair correlations on the other hand are introduced by terms of the type
〈a†b†〉, i.e., expectation values of a neutrino and an antineutrino operator. Pair correlations have
been discarded previously [26] on the grounds that they should oscillate fast with a frequency 2E
and therefore average out to zero. Volpe and collaborators argued [88–90] that such correlations
are an important concept in nuclear physics and should be included in the most general treatment
of neutrino transport. Even if they oscillated quickly their average may not vanish.

Large parts of chapter 4 will be devoted to the puzzling pair correlations. We will re-derive
the most general density matrix equations in the mean-field approximations, explicitly showing
the terms of the Hamiltonian matrix up to first order in the mass insertion m/(2E). For Dirac
neutrinos we confirm previous results. For Majorana neutrinos we demonstrate that some lepton-
number violating correlators have been missed in previous works [90]. Moreover, we interpret
pair correlations physically finding that these correspond to spontaneous pair creation of back-
to-back neutrino/antineutrino pairs with zero total momentum. Their contribution to the kinetic
equations is usually small and of the same order as helicity oscillations. In contrast to helicity os-
cillations, pair correlations cannot be resonantly enhanced in supernovae since such a resonance
requires number densities orders of magnitude above those of astrophysical objects.

We also discuss a conceptual issue that pertains to the constraint that the neutrino/antineutrino
pair is created back-to-back and with zero total momentum. This condition holds in every ref-
erence frame, which leads to the issue that particle number ceases to be a Lorentz covariant
quantity once pair correlations are included. This problem remains open but we discuss some
ideas how to restore physical particle numbers.
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Sources of leptogenesis

To actually use the density matrix equation (1.3) for practical purposes, a few approximations
have to be introduced. These include, e.g., using a perturbative approximation scheme [26]
or the mean-field approximation [88–90]. In systems far from equilibrium, the density matrix
equation simplified this way may not capture all relevant effects. An alternative way of describ-
ing out-of-equilibrium phenomena is the closed-time-path (CTP) formalism (Schwinger-Keldysh
formalism [91, 92]). Ensemble expectation values may be written as a path integral with a closed
time contour that first leads forward and then backwards in time. Out of equilibrium, the two
time directions are not equivalent and the information stored in the different evolutions of these
two time directions is used to derive the so-called Kadanoff-Baym equations [93, 94]. These
equations may be decomposed into a kinetic equation, which gives the time-evolution of field
excitations, and a constraint equation, which stores the information about what the dynamical
excitations actually are. Especially far from equilibrium, these excitations may not be associated
with quasi-free particles. This distinction will be of relevance in chapter 5, where we study the
generation of lepton-number asymmetry in a toy model of baryogenesis via leptogenesis.

Baryogenesis refers to the process of creating the apparent asymmetry between baryons and
antibaryons. This baryon asymmetry cannot be realized for the particle content of the SM and
a standard cosmology because the combined amount of CP violation, baryon number violation
and departure from equilibrium (the Sakharov conditions [11]) is too small [12, 95, 96]. An
attractive scenario beyond the SM is baryogenesis via leptogenesis introduced by Fukugita and
Yanagida [97]. This class of models introduces heavy Majorana neutrinos which may gener-
ate a lepton asymmetry through lepton-number violating out-of-equilibrium decays. The decays
proceed through CP -violating complex Yukawa couplings, and therefore all three Sakharov con-
ditions are fulfilled. The excess lepton number is converted to baryon number via B+L-violating
sphaleron processes [98]. This scenario is attractive because heavy Majorana neutrinos may mix
with the three conventional neutrinos, thereby generating small neutrino masses via the seesaw
mechanism [99–102].

A hierarchical mass spectrum of the heavy Majorana neutrinos is problematic because these
models require in general large masses of the order 107–108 GeV [103], which are out of reach
of collider experiments and this mechanism is ruled out if the reheating temperature is too low to
generate a sufficient amount of these massive neutrinos [96, 104]. An alternative scenario [105–
107] relies on quasi-degenerate masses of two heavy neutrinos, which resonantly enhances CP -
violation. This resonant leptogenesis allows the masses to be in the TeV-range; potentially in
reach of current and future colliders.

The lepton asymmetry from resonant leptogenesis is dominantly generated by two different
sources. The first contribution is conventionally called the mixing source. It describes the CP -
violation that arises through the interference of the tree level decay and the absorptive part of
one-loop corrections. The second contribution is called the oscillation source. It describes the
build-up of correlations during propagation and the subsequent flavor-violating oscillations.

Recently, resonant leptogenesis has been approached by two different methods. In a series of
works, Dev, Millington, Pilaftsis, and Teresi [108–111] derived the generated lepton asymmetry
in the interaction picture representation of non-equilibrium field theory and in the strong-washout
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regime. They identified the oscillation source and incorporated mixing with effective Yukawa
couplings, finding that both sources contribute additively to the asymmetry. They also comment
that a density matrix approximation discards the contribution from mixing [110]. The reason is
that the density matrix formalism assumes the mixing particles to have approximately equal en-
ergies, i.e., they are approximated to lie on the same energy shell where shell is to be understood
as the pole of a delta function. Such an approach would underestimate the generated asymmetry.
This ansatz is used by Garbrecht and collaborations [112, 113] who compute the asymmetry in
the Heisenberg representation of non-equilibrium field theory. The resulting kinetic equation is
akin to the neutrino transport equations in the density matrix approach.

A comparison between these two different approaches is difficult to obtain because of the
different approximation schemes that are applied. While the Heisenberg picture and interaction
picture are equivalent in quantum mechanics, in non-equilibrium field theory it was believed that
the interaction picture approach fails due to ill-defined products of Dirac delta functions (pinch
singularities [114–117]). In a recent publication by Millington and Pilaftsis [118], it was shown
that this pathology can be cured if finite-time effects are consistently taken into account. A direct
comparison between results obtained in the interaction picture and the conventional Heisenberg
picture approach has never been performed.

In chapter 5, we provide such a comparison in a scalar toy model of leptogenesis in the weak-
washout regime. We derive the asymmetry in both approaches demonstrating their equivalence.
In this computation, we find the dynamical field excitations analytically without resorting to a
quasi-particle ansatz. We show that the lepton asymmetry contains three delta functions with
different energies, i.e., three different energy shells. Two of these shells correspond to the quasi-
particle poles of the two heavy neutrinos and the asymmetry that is generated on these shells is
the conventional mixing contribution. The third shell has an energy that is given by the average
thermal energy of the two heavy neutrinos. This shell contains two contributions to the asym-
metry: one term is the oscillation source, and the second term may be interpreted as destructive
interference between mixing and oscillations. This interference has been missed in previous stud-
ies but may also help to reconcile the discrepant results of different groups. We show that the
interference may approximately cancel the mixing contribution in the quasi-degenerate regime
such that oscillations alone can be a good approximation. On the other hand, for larger mass
differences both mixing and oscillations contribute additively and must be included for a correct
result as argued in Ref. [110].

Outline
In chapter 2, we will familiarize the reader with different approaches to kinetic theory. Starting
with the Boltzmann equation, we introduce the density matrix formalism. We show the derivation
in the interaction picture approach following Ref. [26] with a special emphasis on the approxima-
tions that are needed in the derivation. As a preparation for later chapters, we also introduce the
closed-time path formalism that leads to the Kadanoff-Baym equations. We demonstrate how the
Boltzmann and density matrix equations may be obtained as limiting expressions. The density
matrix equation is applied in chapter 3 in a phenomenological way to ALP-photon mixing. This
is followed in chapter 4 by a study of pair correlations in compact astrophysical objects. The first
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part of this chapter contains a technical derivation of the extended density matrix equations. In
the second part we estimate the typical magnitude of pair correlations and their contribution to
supernova dynamics. We also discuss conceptual problems of pair correlations. In chapter 5, we
use the closed-time path formalism to derive the asymmetry in the Heisenberg and interaction
pictures. We find that the asymmetry obtained in both approach is identical. We also compare
with previously obtained results. The overall conclusion of this thesis will be drawn in chapter 6.



Chapter 2

Kinetic equations

Kinetic equations track the microscopic dynamics of non-equilibrium systems. Depending on
the properties of the constituents and the system, different types of equations yield the most con-
venient approach. The original Boltzmann equation (see Ref. [19] and Sec. 2.2) was derived
to describe classical gases by considering the evolution of one-particle distribution functions
f(t,x,p) (phase space densities). This formalism can be extended to include (general) relativis-
tic corrections. Quantum statistics and particle interactions may be incorporated semi-classically.

On the other hand, to allow for coherence of spins and flavors requires promoting the single-
valued phase space densities to matrices of densities in spin and flavor space. These matrices are
defined as the ensemble expectation values of field operators, and their diagonal entries are the
usual phase space densities, i.e., they are measurable quantities.

The dynamics of these densities are described by the equations of motions. Typically, these
equations are complicated to solve and need to be simplified. In this thesis, we will use two
different formalisms to arrive at the equations of motion. The first approach, which is applied
extensively, is the density matrix formalism described in Sec. 2.4, which uses the expectation
value of the Liouville equation. We will show two ways to simplify the equations: the mean-
field approximation and the perturbative expansion.

The second approach to extract kinetic equations relies on the closed-time-path (CTP) formal-
ism. This method allows us to obtain relations between Green’s functions for which we can solve
with a consistent truncation in terms of self-energies. Unfortunately, the resulting equations are
hard to solve. A short introduction to this approach will be given in Sec. 2.5, where we will also
show that the CTP formalism contains the Boltzmann and density matrix equations as limiting
cases.

2.1 Expectation values
Before we start with the kinetic equations, let us define what we mean by expectation values. In
the study of transport phenomena, we are interested in the expectation values of operators at a
given time, which take the form

〈•〉 (t) ≡ Z−1trρ̂(t)• , (2.1)

where the bullet point is to be replaced by some operator, ρ̂(t) is the quantum-statistical density
operator, which contains the information about how the system is prepared, and Z = tr ρ̂ is the
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partition function. To describe classical systems, ρ̂ in Eq. (2.1) has to be replaced by a classical
distribution function ρ̃, the bullet becomes a function and the trace yields an integration over
phase-space.

Note that Eq. (2.1) is in stark contrast to scattering-matrix theory, where we are instead in-
terested in the overlap of states evaluated at different times: specifically, in and out asymptotic
states. On the other hand, ensemble expectation values contain the overlap of states evaluated
at the same time, i.e., two in-states. In this thesis, we will be mostly concerned with this in-in
formalism.

2.2 The Boltzmann equation
In this thesis, we are predominantly concerned with coherence that cannot be treated with single-
valued phase-space densities. Nevertheless, it is useful to take a look at the derivation of the
classical Boltzmann equation and the approximations required to obtain a closed kinetic equa-
tion. The interested reader may find an excellent introduction to the Boltzmann equations in
Ref. [20].

Consider a gas ofN identical particles with a distribution function ρ̃[t, (x1,p1), · · ·, (xN ,pN)],
which is the classical analogue to the density operator ρ̂ in Eq. (2.1). The classical distribution
function ρ̃ tracks the positions xi and momenta pi at a time t of all N particles. If the dynamics
of the system is governed by a classical Hamiltonian function Hcl, the time evolution of ρ̃ is
given by the Liouville equation

∂ρ̃

∂t
= −{Hcl, ρ̃}Poisson , (2.2)

and the right-hand side contains the Poisson-bracket, which is defined as

{f, g}Poisson ≡
N∑
i=1

(
∂f

∂pi
∂g

∂xi
− ∂g

∂pi
∂f

∂xi

)
. (2.3)

Given ρ̃, we may ask for the one-particle distribution function f1(y1,k1) at a phase-space point
(y1,k1). This function is determined by the expectation value of Dirac delta functions

f1(t,y1,k1) =
N∑
i=1
〈δ(3)(xi − y1)δ(3)(pi − k1)〉

=
N∑
i=1

∫ N∏
j=1

d3xj d3pj ρ̃[t, (x1,p1), . . . , (xN ,pN)] δ(3)(xi − y1)δ(3)(pi − k1) ,

(2.4)
which for identical particles evaluates to

f1(t,y1,k1) = N
∫ N∏

j=2
d3xj d3pj ρ̃[t, (y1,k1), (x2,p2), . . . , (xN ,pN)] . (2.5)
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Similarly, we can define a two-particle distribution function by taking the expectation values
of products of Dirac delta functions, thereby describing the correlations between two different
particles

f2[t, (y1,k1), (y2,k2)] = N !
(N − 2)!

∫ N∏
j=3

d3xj d3pj ρ̃[t, (y1,k1), (y2,k2), . . . , (xN ,pN)] .

(2.6)
The dynamics of these distribution functions are given by the expectation value of the Liouville
equation (2.2) (see e.g. Ref. [20])

∂

∂t
f1(t,y,k) = − k

m

∂f1

∂y
+ ∂

∂k

∫
d3x2 d3p2

∂

∂y
[
V (|y− x2|)

]
f2[t, (y,k), (x2,p2)] , (2.7)

where we assumed a classical Hamiltonian Hcl = ∑
i k

2
i /(2m) + ∑

i<j V (|xj − xi|) with a
symmetric two-body potential V .

The first term on the right-hand side describes spatial fluxes into the phase-space volume of
f1. The second term is due to interactions in the gas and describes scattering between the gas
constituents. It is called the collision term and often abbreviated with C[f ]. Equation (2.7) is
not closed and we see that the dynamics of the one-particle distribution function depends on
the two-particle distribution function. Similarly, the dynamics of f2 depends on a suitably gen-
eralized three-particle distribution function f3, which in turn derives its dynamics from higher-
order distribution functions. This system ofN equations is the famous Bogolyubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy [28–31].

In typical many-body systems, the number of coupled equations corresponds to the number of
particles, which is of the order of Avogadro’s number. This number is so huge that solving the
BBGKY hierarchy exactly for general potentials becomes impossible. We are forced to impose
simplifications. One possibility is to truncate the BBGKY hierarchy, i.e., neglect higher order
correlations. This truncation can be justified by noting that f1 depends on fi via i−1 products of
the potential V , which will be small for perturbative coupling strengths. In other words, higher
order correlations can be safely neglected when the probability for 3-body interactions are much
smaller than those for 2-body scatterings. Retaining only the first order in V , we are left with
two coupled equations of motion, one for f1 and one for f2.

The resulting expression can be further simplified by imposing the so-called molecular chaos
hypothesis, which states that before each collision two particles are uncorrelated, i.e., correlations
are forgotten and the two-particle distribution function decomposes into a product of statistically
independent one-particle distribution functions

f2[t, (x1,p1), (x2,p2)] ≈ f1(t,x1,p1)f1(t,x2,p2) . (2.8)

After a collision these particles are correlated. However, the decomposition into one-particle
distributions can still be applied: the phase space densities are conserved (Liouville’s theorem)
and so they may be expressed in terms of initially independent states.

Using these approximations and the equation of motion for f2 (see Ref. [20] for the detailed
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calculation), one arrives at the usual form of the classical Boltzmann equation for a dilute gas

∂

∂t
f1(k) + k

m

∂

∂y
f1(k) =

∫
d3p2 d3p3 d3p4 T (k,p2,p3,p4)[f1(p3)f1(p4)− f1(k)f1(p2)] ,

(2.9)
where the right-hand side shows the usual gain and loss terms, and T is the transfer matrix that
contains the details of the interaction, i.e., it picks the combinations of the momenta p2,p3 and
p4 that lead to scattering into and out of the mode k. All distribution functions implicitly depend
on the same coordinates (t,y); an approximation that is justified if the range of the potential is
much smaller than the typical scale of inhomogeneities (see Ref. [119] page 207).

The classical Boltzmann equation (2.9) can be generalized in a number of ways. We may
include quantum-statistics by expanding the gain and loss terms with Pauli blocking or Bose
stimulation functions. For quantum fields, the collision term may be further generalized by in-
terpreting the transfer matrix T as the usual squared matrix element. The extension to relativistic
systems may be performed by applying Liouville’s theorem to relativistic phase space includ-
ing non-Minkowski metrics [23, 24]. The derivative of a distribution function along an affine
connection is given by [7]

L̂[f ] =
(
pµ

∂

∂xµ
− Γµαβpαpβ

∂

∂xµ

)
f = C[f ] , (2.10)

where L̂ is the Liouville operator, the information about the metric is contained in the Christoffel
symbols Γµαβ , and the details of the collisions are hidden in C[f ]. In a Friedmann-Lemaı̂tre-
Robertson-Walker background, the distribution function is homogeneous and isotropic, and the
relativistic Boltzmann equation (2.10) simplifies to [7]

p0 ∂

∂t
f − ȧ

a
p2 ∂

∂p0f = C[f ] , (2.11)

where a is the cosmological scale factor.

Let us comment on some applications of the Boltzmann equation in astrophysics and cosmol-
ogy. The most prominent variation of the Boltzmann equation is arguably the Lee-Weinberg
equation [8]. By integrating the Boltzmann equation in an expanding background over relativis-
tic phase space, we obtain a rate equation for the total number density. For example one may
study how dark matter particles reach and fall out of equilibrium, and compute their relic abun-
dance. We have used a similar method to compute the energy density in a hidden sector [4] (see
Ref. [120] for a summary). The system of equations studied there has been obtained by weighing
the distribution functions by energy before integrating over phase space. Besides thermalization,
another important application is the generation of nuclei in the early universe. This fusion pro-
cess is described with a set of coupled Boltzmann equations (see Ref. [121] for a popular code).
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2.3 Intermission: Schrödinger, Heisenberg, and interaction
pictures

Before we continue with the derivation of generalized kinetic equations, we would like to re-
mind the reader of basic properties of the Schrödinger, Heisenberg and interaction picture. In
the following chapters, we will often switch between these different descriptions of quantum
mechanics.

Let us assume that we wanted to calculate the expectation value of an operator 〈Â〉; an object
which might be time-dependent. If the operator is assumed to be time-independent whereas the
states that enter the expectation value, or equivalently the density matrix of the system ρ̂S(t),
track the evolution, we are in the so-called Schrödinger picture. States are usually written in the
bra-ket formalism, in which the density matrix reads

ρ̂S(t) =
∑
n

pn|n(t)〉〈n(t)| , (2.12)

where |n〉 is a normalized pure state in the Schrödinger picture. The pn are probabilities, which
represent how the system is prepared initially. They have to fulfill a normalization condition∑
pn = 1. We call ρ̂ a pure state if also

∑
n p

2
n = 1. Mixed states are characterized by

∑
n p

2
n < 1.

The density matrix in Eq. (2.12) appears to be diagonal. This statement is basis dependent. Since
the superposition of pure states yields again a pure state, off-diagonal entries in the density matrix
can be obtained after a change of basis. For example, if a photon is in a pure, circular polarized
state, Eq. (2.12) will be diagonal in the basis of circular polarizations. We may however describe
circular polarization as a properly normalized superposition of linear polarizations. In this basis,
Eq. (2.12) will not be diagonal anymore.

The evolution of the state |n(t)〉 in Eq. (2.12) is given by the Schrödinger equation

i
∂

∂t
|n(t)〉 = Ĥ|n(t)〉 , (2.13)

with the Hamiltonian operator Ĥ . The Schrödinger equation may be solved by

|n(t)〉 = U(t, ti)|n(ti)〉 , (2.14)

where the unitary time-evolution operator U(t, ti) with initial time ti takes the form

U(t, ti) = T
exp

(
−i
∫ t

ti
dt′ Ĥ(t′)

) , (2.15)

with the time ordering operator T . This general solution can be simplified to give U(t, ti) =
exp

[
−iĤ (t− ti)

]
if the Hamiltonian is time-independent, as we will assume in the following

if not otherwise stated. Note that the solution (2.15) will still be useful for our treatment of the
interaction picture where the Hamiltonian is in general time-dependent.
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For a static Hamiltonian, we can immediately derive the von-Neumann equation, which is the
quantum-mechanical analogue of the Liouville equation (2.2):

i
∂

∂t
ρ̂S = [Ĥ, ρ̂S] . (2.16)

When the Hamiltonian can be written as a square matrix, e.g., when the Hamiltonian effectively
reduces to a sum of field bilinears, we can solve the Schrödinger equation (2.13) directly. We
will find that refraction is of this form in Chapter 3. If the interactions in the Hamiltonian
become more complicated and go beyond simple two-particle vertices, it becomes difficult to
find a simple matrix representation, and we will resort to different approaches.

The Heisenberg picture is an alternative to the Schrödinger picture approach. Here, we con-
sider the density matrix ρ̂H to be time-independent while the operator evolves with time ÂH(t).
We can switch from one picture to the other by applying the time-evolution operator. For exam-
ple, a Heisenberg field operator evolves according to

φH(t,x; ti) = eiĤ (t−ti)φH(ti,x; ti)e−iĤ (t−ti) , (2.17)

where again ti denotes the initial time at which the time evolution operator equals zero. We have
separated this initial time surface from the other variables with a semicolon in anticipation of our
treatment of the interaction picture in Sec. 5.5 (see also Ref. [118]). Taking the time-derivative
of Eq. (2.17), we obtain the Heisenberg equation of motion

i
∂

∂t
φH = −[Ĥ, φH] . (2.18)

Although the Schrödinger and Heisenberg pictures are conceptually simple, it is not so easy to
actually calculate expectation values of field operators, like two-point functions, for arbitrary
times. If we know how to diagonalize the Hamiltonian in Eq. (2.17), the exponentials can be
computed straight-forwardly and we are able to obtain an explicit representation of the field φ in
terms of creation and annihilation operators. These are eigenmodes of the Hamiltonian (see e.g.
Ref. [122]),

φH(t,x; ti) =
∫

dΠp
[
aH,p(ti; ti)e−ip·x + a†H,p(ti; ti)eip·x

]
, (2.19)

where for simplicity we have assumed a real scalar field. We have also written x0 = t − ti
and have introduced the abbreviation dΠp = d3p/[(2π)32Ep] for the relativistic momentum
integration. The operators aH and a†H are the familiar annihilation and creation operators. The
excitations that are created by a†H are eigenstates of the Hamiltonian, and thus have well-defined
energies. They can be interpreted as particles, as usual. Their number in a given state can be
determined by taking the expectation value 〈a†a〉, and it is the evolution of these operators that
we aim to describe.

If the Hamiltonian incorporates interactions which cannot be diagonalized, the representation
of the field φ in Eq. (2.19) in terms of eigenstates of the Hamiltonian breaks down. However, we
can split the Hamiltonian into a diagonalizable part Ĥ0 and an interaction piece Ĥint that contains
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the non-diagonalizable parts. If the product Ĥint (t − ti) � 1, we can expand the non-diagonal
part of Eq. (2.17). This approach leads to the interaction picture in which we define the fields

φI(t,x; ti) = eiĤ0 (t−ti)φH(ti,x; ti)e−iĤ0 (t−ti) . (2.20)

The important difference to Eq. (2.17) is that the time evolution of the interaction picture field is
only due to the diagonalizable part of the Hamiltonian. Heisenberg and interaction picture fields
at equal time can be connected through

φH(t,x; ti) = U †I,int(t, ti)φI(t,x; ti)UI,int(t, ti) , (2.21)

where UI,int is analogous to Eq. (2.15) but with the Hamiltonian replaced by its interaction part
written in the interaction picture. Given this evolution relation, the interaction picture density
matrix also fulfills [118]

ρ̂I(t; ti) = UI,int(t; ti)ρ̂I(ti; ti)U †I,int(t; ti) . (2.22)

The density matrices of all three pictures are prepared identically at the initial time ti:

ρ̂H(; ti) = ρ̂I(ti; ti) = ρ̂S(ti; ti) , (2.23)

where the Heisenberg picture density matrix is time-independent. In the interaction picture, both
the field and density operators are time-dependent.

2.4 Density matrix equations
The different pictures provide us with a toolbox to compute the time evolution of expectation
values. In the Heisenberg and interaction pictures, we will now derive a quantum generalization
of the Boltzmann equation for Dirac neutrinos that has the power to account for quantum statis-
tics, collisions, and coherences between spins and flavors consistently. Our object of interest will
be the expectation value of bilinears of creation/annihilation operators. In this formalism, the
evolution of each momentum mode will be described by a square matrix, whose dimensions are
determined by the number of discrete degrees of freedom. Conventional number densities will
be given by the diagonal entries and coherences naturally appear as the off-diagonal entries. The
kinetic equation that pertains to this matrix is usually referred to as the density matrix equation;
a convention we will pursue in the following as well. Note however that the described object is
actually a matrix of number densities that is fundamentally different from the density matrices in
Sec. 2.3. Despite our naming scheme, the distinction between the two will always be made clear
by calling the object of Sec. 2.3 the “density matrix operator”.

The derivation of the density matrix equation for neutrinos has been performed before in
Ref. [26], which we will follow in this section. Additionally, we will keep track of helicity
as has been done before in Refs. [85, 90, 123]. We follow through in some detail in order to
familiarize the reader with intermediate steps and to facilitate the understanding of the more in-
volved calculations in Chapter 4. We will omit the subscript H for the Heisenberg picture and
unless otherwise stated, all quantities are to be understood in this picture.
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The plane-wave decomposition of the Dirac neutrino field ψ can be written as

ψi(x) =
∫ d3p

(2π)3

∑
s

[
ai,s(t,p)ui,s(p)eip·x + b†i,s(t,p)vi,s(p)e−ip·x

]
. (2.24)

Here, ai,s(t,p) is again an annihilation operator: it removes a neutrino of flavor i with helicity
s and momentum p from a given state. In the same way, b†i,s(t,p) is an antineutrino creation
operator. It produces an excitation of flavor i with momentum p and the opposite helicity −s.
The bispinors u, v carry the properties of the field under Lorentz boosts.

The field defined in Eq. (2.24) has various important properties. For a free field Lagrangian,
ψ fulfills the free Klein-Gordon equation and, being a fermion, the Dirac equation

(�+m2
i )ψi = 0 ,

(i/∂ −mi)ψi = 0 ,
(2.25)

where � = ∂µ∂µ, mi is a neutrino mass eigenvalue with i ∈ 1, 2, 3 and /∂ = γµ∂µ is the contrac-
tion of the four-derivative with the Dirac matrices (see Appendix A.3). From these equations it
follows that also ui fulfills

(/p−mi)ui(p) = 0 . (2.26)

We will choose a chiral representation for the bispinors (see Appendix A.3). In the presence of
interactions a source term might be added on the right-hand side of Eq. (2.25).

Finally, we need the equal-time anticommutation relations for the creation/annihilation opera-
tors:

{ai,s(t,p), a†j,h(t,k)} = {bi,s(t,p), b†j,h(t,k)} = (2π)3δijδshδ
(3)(p− k) . (2.27)

All other anticommutators vanish.
We are now able to define the main object of this section, the density matrices ρ for neutrinos

and ρ̄ for antineutrinos

〈a†j,h(t,k)ai,s(t,p)〉 ≡ (2π)3δ(3)(p− k)ρij,sh(t,p) , (2.28)

〈b†i,s(t,−k)bj,h(t,−p)〉 ≡ (2π)3δ(3)(p− k)ρ̄ij,sh(t,p) . (2.29)

The density matrices can be very large. Indeed, for the three usual neutrino flavors and two pos-
sible helicity states, these matrices have 36 complex-valued entries. Hermiticity of ρ reduces the
number of parameters: the diagonals are real-valued and the off-diagonals are related through
complex conjugation. The diagonals can therefore safely be interpreted as occupation numbers
akin to the Boltzmann distribution functions. The crucial difference to the latter formalism are
the off-diagonals, which now carry non-trivial phase information. They express coherence be-
tween different neutrino flavors and helicities. Although we refer to the indices i, j as “flavor”,
the above definition is actually basis covariant. The chosen sequence of indices in Eqs. (2.28)
makes the matrices for neutrinos and antineutrinos transform in the same way under flavor ro-
tations [26]. Finally, note that the Dirac delta functions in Eqs. (2.28) are a consequence of an
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infinite quantization volume [26]. Physically, they correspond to the simple statement that a fi-
nite number density in an infinite space leads to an infinite amount of particles. This volume will
always drop out of our calculations, and we will omit it in the following.

The bilinears chosen in Eqs. (2.28) are not the only possible combinations; in Chapter 4, we
will study more exotic bilinears. For now, let us note that the off-diagonals of the density matrices
violate energy conservation slightly because neutrinos have different masses. This energy non-
conservation will have to be compensated by the background medium.

To find the time evolution of the density matrices, we define

Dij(t,p) = a†j(t,p)ai(t,p) ,
Dij(t,p) = b†i (t,p)bj(t,p) ,

(2.30)

where for simplicity we omitted the helicity index. These operators follow the Heisenberg equa-
tion of motion (2.18). Splitting the Hamiltonian into free Ĥ0 and interaction Ĥint parts, we obtain

Ḋij(t,p) = i[Ĥ0(t),D(t,p)]ij + i[Ĥint(t),D(t,p)]ij . (2.31)

Taking the expectation value on both sides, we can pull the time derivative out of the expectation
value

ρ̇ij(t,p) = i〈[Ĥ0(t),D(t,p)]〉ij + i〈[Ĥint(t),D(t,p)]〉ij . (2.32)

This differential equation contains on the left-hand side the required time derivative of the matrix
of densities. On the right-hand side we encounter a number of commutators, which involve D
instead of ρ. Let us inspect the free part of the Hamiltonian first. In the mass basis, we expect
Ĥ0 to be diagonal and to yield ωi,p = (p2 + m2

i )1/2 when acting on a single-particle free state.
In an arbitrary basis, the Hamiltonian will cease to be diagonal and read

Ĥ0(t) =
∑
i,j

∫ d3p
(2π)3

[
a†i (t,p)Ωij(p)aj(t,p) + b†i (t,p)Ωij(p)bj(t,p)

]
, (2.33)

where Ω denotes vacuum energy matrices with eigenvalues ωi. By using the bilinear form of
Eq. (2.33), the first commutator in Eq.(2.32) is evaluated straight-forwardly by rewriting the
commutator as a sum of two anticommutators

[ab, cd] = a[b, cd] + [a, cd]b , (2.34)
[ab, c] = a{b, c} − {a, c} , (2.35)

which can be evaluated easily with the usual anticommutation relations (2.27).
Hence, we see from the anticommutation relations (2.27) that each time we evaluate the com-

mutator, a pair of creation/annihilation operators vanishes. Evaluating the free part, we obtain

iρ̇ij(t,p) = [Ω, ρ(t,p)]ij − 〈[Ĥint(t),D(t,p)]〉ij , (2.36)

where a minus sign appears during the reordering of the operators.
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If the second term in Eq. (2.36) was in a bilinear form, we could proceed in the same way for
both the interaction term as for the free Hamiltonian. However, in general the interaction term is
more complicated, and we need to apply some approximation scheme for its evaluation. There
are two ways to proceed. In Chapter 4, we will use the mean-field approximation to rewrite the
interaction in a bilinear form. The mean-field approximation assumes that particles propagate
in a mean classical background that can be pulled out of expectation values. This treatment
is similar to the molecular chaos hypothesis we used in the Boltzmann approach; higher order
correlations are split up into two-field correlators.

A more general approach that goes beyond the mean-field approximation was used in Ref. [26]
and makes use of a perturbation series of the Heisenberg fields. For weak interactions, we can
truncate the perturbation series of the operator ξ after the first order so that

ξ(t) = ξI(t) + i
∫ t

ti
dt′[ĤI,int(t− t′), ξI(t)] , (2.37)

where ĤI,int is the interaction picture representation of the interaction Hamiltonian. With this
expression, Eq. (2.36) may be written as

ρ̇ij(t,p) = −i[Ω, ρ(t,p)]ij + i〈[ĤI,int(t),DI(t,p)]〉ij

−
∫ t

ti
dt′ 〈[ĤI,int(t− t′), [ĤI,int(t),DI(t,p)]]〉ij .

(2.38)

We may see that neglecting higher order terms in Eq. (2.37) and conversely in the evolution equa-
tion of ρ is similar to the truncation of the BBGKY-hierarchy in the derivation of the Boltzmann
equation. Higher order correlations that would appear in the next orders of perturbation theory
are set to zero. Equation (2.38) still contains two insertions of the Hamiltonian in the second
line. This corresponds to six creation/annihilation operators after the commutators have been
evaluated. Assuming molecular chaos, these six-point correlators decompose into expectation
values of bilinears.

Equation (2.38) still mixes Heisenberg picture and interaction picture operators, and we have
to impose further approximations to close it. We approximate the last term, which gives the
collisions, by separating different time scales. First of all, we assume that the time scale of a
single interaction, or equivalently the inverse energy scale of a collision, is short compared to
the overall evolution of the system and of ρ. This allows us to extend the time integration to
infinity since the interaction will have stopped after a short time so the error we introduce is
small. Moreover, for small coupling constants, D will not evolve drastically during a single
interaction, and we set DI ≈ D. If the system is Markovian, i.e., it does not have any memory of
past interactions, we can use this approximation for every interaction, so that DI ≈ D holds for
all times. Moreover, we set the interaction picture Hamiltonian equal to their Heisenberg picture
counterparts to leading order.

With these approximations, the density matrix equation simplifies to

iρ̇ij(t,p) =[Ω, ρ(t,p)]ij − 〈[Ĥint(t),D(t,p)]〉ij

−i12〈
∫

dt′ [Ĥint(t− t′), [Ĥint(t),D(t,p)]]〉ij ,
(2.39)
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where we restored energy conservations by extending the time integral to minus infinity using
the identity for the Heaviside step-function:

θ(x) = 1
2

∫
ds e2πs

(
δ(s)− i

π
P 1
s

)
. (2.40)

The principal value term P(1/s) gives a correction to the dispersion relation and is usually
neglected [26].

With Eq. (2.39) we now have a kinetic equation that consistently treats refraction and colli-
sions. A great advantage of this equation over the Boltzmann equation is that we may consistently
derive the quantum mechanical collision term from the interaction Hamiltonian.

2.5 Closed-time-path formalism and Kadanoff-Baym
equations

The derivation of the density matrix equation in Eq. (2.39) required a substantial number of
approximations. Especially, we identified the fields in the Heisenberg and interaction pictures to
close the density matrix equation, i.e., we assumed very weak interactions so that our degrees of
freedom are almost free-streaming particles. If the environment is very dense or if the interactions
are strong, we do not know what the physical degrees of freedom are and this approximation will
fail; we have to adopt a different approach. A rigorous treatment of non-equilibrium systems
may be performed with the closed-time-path (Schwinger-Keldysh [91, 92]) formalism, which
relies on the first principles of quantum field theory and statistical physics. We will show that
the Boltzmann and the density matrix formalism can be obtained in limiting cases. This section
will be helpful to understand Chapter 5, where we will compare the lepton asymmetry obtained
within the Boltzmann, density matrix and Schwinger-Keldysh formalism.

The idea behind the following approach is that number densities are two-point functions,
which contain two field operators. Alternatively, these two-point functions may be viewed as
propagators or Green’s functions. In scattering theory we have a powerful machinery to calculate
such Green’s functions in the form of the path integral formalism: Green’s functions are given by
derivatives of the partition function with respect to an external source. While in scattering theory
the expectation values are with an in-state, i.e., infinitely in the past, from the right-hand side
and an out-state from the left, the expectation values we are interested in are taken at equal time.
Following the ansatz by Schwinger [91] (see also [92, 118, 124–128]), we can still write such an
expectation value as a path integral. To show this we will restrict ourselves to the simpler scalar
fields in the following.

Starting from
Z = 〈in|in〉 , (2.41)

we may insert unity in the form of a complete eigenbasis at time tf of the Heisenberg field ΦH(x)

1 =
∫
DΦ |Φ(x), tf ; ti〉〈Φ(x), tf ; ti| . (2.42)
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The product 〈Φ(x), tf ; ti|in〉 is just a path integral with Φ(x) as the boundary condition at time
tf . The other expectation value reads 〈in|Φ(x), tf ; ti〉, which propagates back in time. If we
assume for now that this propagation is driven by an external source J(x), which is different for
the forward and backward time directions, the partition function becomes

Z[Ja] =
∫
DΦa exp

[
i
∫ tf

ti
dt′
∫

d3xL[Φa] + i
∫ tf

ti
dt′
∫

d3x Ja(x)Φa(x)
]
, (2.43)

where the index a = {1, 2} tracks the different time directions via the metric gab = diag(1,−1).
Note that paths forward and backward in time are connected through the boundary condition at
tf . However, the exact condition is integrated over. Due to this time path, this method is often
referred to as the closed-time-path (CTP) technique.

In order to describe two-point functions, we introduce another bilocal sourceKab(x, z), which
adds a term (1/2)

∫
d4xd4z Kab(x, z)Φa(x)Φb(z) to the exponent of Eq. (2.43) [128]. If we

wanted to describe higher order correlations, we would need a higher number of sources. In this
thesis, we will however restrict ourselves to two-point functions. Neglecting higher order corre-
lations can be justified by Gaussian initial conditions [118] or by a truncation scheme reminiscent
of the BBGKY procedure. This truncation would then lead to dissipation [125].

Having introduced the sourceKab(x, z), the connected two-point functionGab may be defined
via the following relations [128]

δW [J,K]
δJa(x) = 〈Φa(x)〉 ≡ ϕa,

δW [J,K]
δKab(x, z)

= 1
2
[
〈Φa(x)〉〈Φb(z)〉+Gab(x, z)

]
, (2.44)

where W = −iln(Z) is the generating functional of connected Green’s functions. Here, we
defined the full propagator as a fluctuation around the classical field, which will later be set to
zero, ϕ→ 0. We obtain the desired effective action Γ by performing a Legendre transformation
with new variables ϕ and G

Γ[ϕ,G] =W [J,K]−
∫

d4x
δW [J,K]
δJa(x) Ja(x)−

∫
d4xd4y

δW [J,K]
δKab(x, z)

Kab(x, z) , (2.45)

Additionally, Γ fulfills the stationarity conditions

δΓ[ϕ,G]
δϕa(x) = −Ja(x)−

∫
d4z Kab(x, z)ϕb(z) , (2.46a)

δΓ[ϕ,G]
δGab(x, z)

= −1
2Kab(x, z) . (2.46b)

The physical limit corresponds to vanishing sources, and we see that Eq. (2.46) provides equa-
tions of motion for the classical field ϕ and the connected Green’s function G. If we find an
explicit expression for the effective action, we may use these equations of motion to compute the
propagator.

The two-particle irreducible (2PI) effective action has been computed by Cornwall, Jackiw
and Tomboulis in Ref. [129]. It reads

Γ[ϕ,G] = S[ϕ] + i

2Tr lnG−1 + i

2Tr
(
G−1

0 [ϕ]G
)

+ Γ2[ϕ,G] + const . (2.47)
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Figure 2.1: 2PI-diagram and the corresponding self-energies for the toy model of leptogenesis of Chapter 5. There
the coupling between the real scalar ψi and the complex scalar b are of the form hiψ

ibb+ h∗iψ
ib∗b∗.

Here, S[ϕ] is the tree-level action, iG−1
0 = δ2S[ϕ]/(δϕaδϕb) is the inverse of the tree-level

propagator, and Γ2[ϕ,G] is the contribution from all two-particle irreducible (2PI) diagrams, i.e.,
all diagrams that cannot be separated by cutting two-lines. Note that the propagators in the loops
are the full propagators G [128], which will be important to obtain self-consistent equations of
motion.

The equations of motion can now be obtained by plugging the explicit expression (2.47) into
Eq. (2.46). We obtain the Schwinger-Dyson equation

G−1
ab (x, z) = G−1

0,ab(x, z)− Πab(x, z) , (2.48)

where the self-energy Πab(x, z) is given by [128]

Πab(x, z) ≡ 2i δΓ2[ϕ,G]
δGab(x, z)

. (2.49)

Diagrammatically, this prescription corresponds to cutting one propagator in the 2PI-diagrams.
Usually it is sufficient to approximate these diagrams as one-loop self-energies. Note that the
self-energy in Eq. (2.48) is sometimes defined with a relative minus sign [130]. For the toy
model of leptogenesis we use in Chapter 5, the two-loop diagrams and the corresponding one-
loop self-energies are shown in Fig. 2.1.

We invert Eq. (2.48) by multiplying with G(z, y) from the right and integrating over interme-
diate momenta. We will also need the tree-level propagator

G−1
0,ab(x, y) = i

(
�x +m2

)
δ(4)(x− y)gab , (2.50)

which is diagonal, i.e., it does not mix fields propagating forward and backward in time. With
this expression, the inverted Schwinger-Dyson equation reads

i
(
�x +m2

)
Gab(x, y) = δ(4)(x− y)δab +

∫
d4zΠac(x, z)Gc

b(z, y) . (2.51)

We have come a long way from rewriting the partition function into a closed time path to find
a relation for the fully dressed propagators. Our original goal was to find kinetic equations for
physical quantities like number densities. How does the CTP propagator relate to observables?

First note, that as soon as ϕ→ 0 the Green’s functions are just the second functional derivative
with respect to the external source Ja, which corresponds to the usual definition of the propagator.
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Hence, G11 = 〈T φ(x)φ(y)〉 ≡ GFM is just the time-ordered or Feynman propagator. G22 =
〈T̃ φ(x)φ(y)〉 ≡ GD on the other hand is the expectation value of two field operators with anti-
time ordering T̃ . This propagator is sometimes referred to as the Dyson propagator [20]. We are
led to write

G(x, y) =
(
GFM(x, y) G<(x, y)
G>(x, y) GD(x, y)

)
, (2.52)

with the positive (G>) and negative (G<) frequency Wightman propagators

G>(x, y) = 〈φ(x)φ(y)〉 ,
G<(x, y) = 〈φ(y)φ(x)〉 .

(2.53)

The Wightman propagators will be crucial for our further computations. We will also see that
they carry kinetic information. For now, let us note that the expressions in the matrix of Eq. (2.52)
are related: only two are independent, so we only need to track two of these propagators to obtain
all the information:

GFM(x, y) = θ(x0 − y0)G>(x, y) + θ(y0 − x0)G<(x, y) , (2.54a)
GD(x, y) = θ(x0 − y0)G<(x, y) + θ(y0 − x0)G>(x, y) . (2.54b)

Moreover, it is useful to define the statistical (Hadamard) propagator GF (not be confused with
the Feynman propagator GFM), and the spectral function (or Jordan propagator) Gρ:

GF(x, y) = 1
2
[
G>(x, y) +G<(x, y)

]
= 1

2〈{φ(x), φ(y)}〉 , (2.55a)

Gρ(x, y) = i
[
G>(x, y)−G<(x, y)

]
= i〈[φ(x), φ(y)]〉 . (2.55b)

The naming scheme for these two propagators is in line with their physical meaning. We will
see that the spectral function will tell us what the relevant excitations of the system are, while
the statistical propagator contains the statistical or kinetic information. In equilibrium, these two
functions are degenerate and we only have one degree of freedom. In non-equilibrium systems,
both functions contain complimentary information. The CTP formalism naturally introduces
these two degrees of freedom because each field might either live on the time path running
forward or the time path backward in time. These two paths give different information because
in non-equilibrium situations time translation invariance is broken.

Finally, we define the retarded and advanced propagators

GR(x, y) = θ(x0 − y0)Gρ(x, y) , (2.56a)
GA(x, y) = −θ(y0 − x0)Gρ(x, y) , (2.56b)

which, however, do not carry all the information of the system in contrast to the sets GF, Gρ or
G<, G>.

The evolution equations for the Wightman propagators are the off-diagonals of Eq (2.51).
These equations are called the Kadanoff-Baym equations and they read

i
(
�x +m2

)
G≷ + i

∫
d4zΠhG≷ + i

∫
d4zΠ≷Gh = 1

2

∫
d4z

[
Π≷G≶ − Π≶G≷

]
, (2.57)
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where we omitted the arguments, and defined the Hermitean parts of the self-energies and prop-
agators as

Gh(x, y) ≡ 1
2 (GR +GA) = 1

2sign(x0 − y0)Gρ(x, y) , (2.58)

Πh(x, y) ≡ 1
2 (ΠR + ΠA) = 1

2sign(x0 − y0)Πρ(x, y) . (2.59)

The signum function arises from Eq. (2.56).
The terms in Eq. (2.57) can be understood in the following way: the right-hand side contains

all the collisional information. The ΠhG≷ terms are corrections to the mass; they play a role
when refraction is considered. Finally, the Π≷Gh introduces off-shell effects to the dispersion
relation of the particle. We have seen similar terms in the density matrix formalism where we
discarded a principal value term.

The Kadanoff-Baym equations (2.57) may be restated in terms of the statistical propagators
and the spectral function [128]

(
�x +m2

)
GF(x, y) =

∫ y0

−∞
d4zΠF(x, z)Gρ(z, y)−

∫ x0

−∞
d4zΠρ(x, z)GF(z, y) , (2.60)

(
�x +m2

)
Gρ(x, y) = −

∫ x0

y0
d4zΠρ(x, z)Gρ(z, y) , (2.61)

where we would like to emphasize the arguments of the time integration.

2.5.1 Time scale separation and the Wigner transform
For typical out-of-equilibrium systems, we can introduce further approximations. As we have
assumed in the derivation for the density matrix equations, microscopic time scales of individual
interactions are much faster than the macroscopic evolution of the full system so that we may
separate the physics related to these scales. It is useful to express the propagator in terms of
center (X) and relative (r) coordinates

Xµ = xµ + yµ

2 , rµ = xµ − yµ , (2.62)

and the corresponding center (Q) and relative (q) momenta

Qµ = pµ + kµ

2 , qµ = pµ − kµ . (2.63)

In equilibrium, all propagators are only functions of the relative coordinates rµ due to time-
translation invariance and homogeneity. Close to equilibrium any dependence on the center
coordinates will be slow. We may make this manifest by taking the Fourier transform with
respect to the relative coordinates, which extracts the fast dynamics. This transform is called a
Wigner transform G(X,Q) and is defined as

G(X,Q) ≡
∫ ∞
−∞

d4r eiQ·rG(X, r) . (2.64)
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We would like to obtain the Kadanoff-Baym equations (2.57) in terms of the Wigner transform.
A useful identity is∫

d4r eiQ·r
∫

d4z A(x, z)B(z, y) = e−i�
[
A(X,Q) ·B(X,Q)

]
, (2.65)

with the diamond operator defined as

� (A ·B) = 1
2

(
∂A

∂Xµ

∂B

∂Qµ

− ∂A

∂Qµ

∂B

∂Xµ

)
. (2.66)

Note that this definition is reminiscent of the Poisson bracket (2.3). The Kadanoff-Baym equa-
tions now become

i

(
1
4∂

2
X −Q2 − iQµ∂Xµ +m2

)
G≷ = e−i�

(
−iΠhG≷ − iΠ≷Gh + 1

2Π≷G≶ −
1
2Π≶G≷

)
.

(2.67)
A complementary equation can be derived by inverting the Schwinger-Dyson equation (2.48) not
from the right-hand side as done before but multiplying with the propagator from the left-hand
side. Adding and subtracting these equations, we obtain the constraint and kinetic equations(

2Q2 − 1
2∂

2
X

)
G≷ =

{
m2, G≷

}
+ e−i�

(
{Πh, G≷}+ {Π≷, Gh}+ i

2[Π>, G<] + i

2[Π<, G>]
)
,

(2.68a)

2Qµ∂XµG≷ = −i
[
m2, G≷

]
+ e−i�

(
−i[Πh, G≷]− i[Π≷, Gh] + 1

2{Π>, G<} −
1
2{Π<, G>}

)
.

(2.68b)

Especially the kinetic equation (2.68b) will be used in the following to derive the Boltzmann
equation and the density matrix equation. However, both equations have to be fulfilled for a
physical solution of the kinetic equation. Note that although we have performed a Wigner trans-
formation, the only further approximation we have introduced is that the mass m is constant in
space and time. We have also kept the commutators of the self-energy and the mass with the
Wightman propagators in expressions (2.68). The reason is that later on we will consider Π,m
and G to be matrices in flavor space. For the propagators and self-energies, this notation is un-
ambiguous and the equations generalize straight-forwardly. For matrix-valued masses, we will
use sans-serif symbols M in the following. Single-valued physical masses are denoted by the
expressions m and M .

2.5.2 Boltzmann limit
To obtain the Boltzmann limit, let us start by examining equilibrium solutions of the Kadanoff-
Baym equations. This study will also shed light on the physical information contained in the
propagators. The intuition obtained in this way may then be used to derive the Boltzmann equa-
tion. We will see that this equation is applicable close to equilibrium.
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First note that the Wigner transform of the spectral function obeys the spectral sum rule [130]

∫ dQ0

2π Q0Gρ(X,Q) = i , (2.69)

which can be derived from the canonical commutation relations of the field φ. Moreover, the
Kubo-Martin-Schwinger (KMS) relation provides us with the equilibrium solution [94]

G>,eq(X,Q) = e
Q0
T G<,eq(X,Q) , (2.70)

where T is the temperature of the system.
Equilibrium is characterized by time-independence and homogeneity. Any derivative must

vanish and the kinetic equations (2.68b) therefore reads

2Qµ∂XµGeq,≷ = 0 . (2.71)

For the constraint equations (2.68a), we approximate to lowest order in self-energies(
Q2 −m2

)
Geq,≷ = 0 , (2.72)

which is just the on-shell dispersion relation in Fourier space for a Klein-Gordon field. To this
order, the constraint equation, tells us that our degrees of freedom are just free fields. To the next
order the dispersion relation is altered to give a Breit-Wigner shaped function [130].

In equilibrium, the conditions (2.69–2.72) are simultaneously solved by the following ansatz

G<,eq = 2π sign(Q0)δ(Q2 −m2)neq(Q0) , (2.73a)
G>,eq = 2π sign(Q0)δ(Q2 −m2)[1 + neq(Q0)] , (2.73b)

where neq = 1/[exp(Q0/T ) − 1] is the Bose-Einstein distribution. This definition is consistent
with the intuition that the spectral functions provide us with information about the particle con-
tent of the theory; it reads Gρ = i2π sign(Q0)δ(Q2 −m2). We see that G≷ are proportional to
Gρ in this case. Imposing such a proportionality is called a Kadanoff-Baym ansatz.

If we now imagine an out-of-equilibrium system, we should expect that our solution close to
equilibrium resembles the solutions of Eqs. (2.73). We will therefore make a Kadanoff-Baym
ansatz, in which we replace neq by the out-of equilibrium distribution function f(X0, Q0). For
non-trivial dynamics, we have to find suitable approximations for the right-hand side of the ki-
netic equations (2.68b). First, we will apply the so called gradient expansion to lowest order, i.e.
we expand exp(−i�) in derivatives and neglect higher order derivatives. We will only retain the
lowest order exp(−i�) = 1. This approximation is justified when the time scale associated with
changes in the macroscopic system, which is given by ∂−1

X , is large compared to the time scale of
interactions ∂Q. The diamond operator may be seen as the ratio of the two time-scales and will
therefore be small [131]. From a different perspective, one could interpret an expansion of the
diamond operator as an expansion with respect to couplings. The evolution of the macroscopic
system is driven by interactions between fields in and out of equilibrium. Hence, any non-zero
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derivative ∂X corresponds to an additional dependence on coupling constants. Since the right-
hand side of Eq. (2.68b) is already proportional to the self-energies, higher orders of the diamond
operator correspond to greater powers of the coupling constant.

For the Boltzmann equation, we assume a one-flavor system. Then all commutators vanish
and our kinetic equation reads

2Qµ∂XµG≷ = Π>G< − Π<G> . (2.74)

Inserting our ansatz for the Wightman propagators and assuming a homogeneous system, we
obtain for the time derivative of f(X0, Q0)

∂X0f(X0, Q0) = Π>

2Q0
f(X0, Q0)− Π<

2Q0
[1 + f(X0, Q0)] . (2.75)

This equation already starts to look like the Boltzmann equation with a gain and a loss term on the
right-hand side. To proceed further, we have to specify the model to compute the self-energies.
In Chapter 5, we will consider a model where a real scalar may decay into two complex scalars.
In a C-symmetric medium and with one flavor of the real scalar, the self-energies read

Π>(Q) = −|h|2
∫

dΠpdΠk (2π)4δ(4)(Q− p− k)[1 + neq(p)][1 + neq(k)] , (2.76)

Π<(Q) = −|h|2
∫

dΠpdΠk (2π)4δ(4)(Q− p− k)neq(p)neq(k) , (2.77)

where h is the coupling constant, and the Bose-Einstein distributions arise from the equilibrium
Wightman propagators of the complex scalars that form the background medium. We see that
these self-energies together with Eq. (2.75) yield the expected Boltzmann equation.

2.5.3 Density matrix limit
We may equally derive the density matrix equation from the Kadanoff-Baym formalism. In order
to obtain coherence, we need a system of at least two flavors, and in anticipation of Chapter 5 we
will show here the derivation for two real scalars.

All the propagators and self-energies we have shown further above are now matrices, and the
products of self-energies and propagators are generalized to matrix multiplications in a straight-
forward way. For matrix-valued Wightman propagators, the commutators in Eq. (2.68) do not
vanish identically, and they will give us the oscillations between the two scalar flavors. For a
solution of the constraint equations, we will neglect again any terms proportional to the self-
energies. Moreover, we will assume that both scalars are almost mass-degenerate. If we approx-
imate m2

1 +m2
2 = 2m2

1 = 2m2
2 = 2m̄2, the constraint equation (2.68a) reads(

Q2 − m̄2
)
Gij
≷ = 0 , (2.78)

which states that all components of the Wightman propagators lie on the same shell δ(Q2− m̄2).
Writing all equations for a single shell like this is referred to as the middle-shell[ or single-
shell approximation. We will compare results from the full Kadanoff-Baym equations to this
approximations in Chapter 5.
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Close to equilibrium, we may again make the ansatz (see Eqs. (2.73) and Ref. [132])

Gij
< = 2π sign(Q0)δ(Q2 − m̄2)ρij(Q0) , (2.79a)

Gij
> = 2π sign(Q0)δ(Q2 − m̄2)

[
δij + ρij(Q0)

]
. (2.79b)

Inserting these expressions into the kinetic equations, integrating over the mass shells and per-
forming the gradient expansion to leading order, we obtain

iρ̇ = 1
2Q0

[
M2 + Πh, ρ

]
+ i

(
1

4Q0
{Π>, ρ} −

1
4Q0
{Π<,1 + ρ}

)
. (2.80)

Here, we have neglected the commutator [Π≷, Gh] since the self-energies are already propor-
tional to the coupling, and a tree-level Gh is diagonal [132]; this commutator is consequently
suppressed by another factor of ∆m2.

For a comparison with Eq. (2.36), note that the first term in Eq. (2.80) can be brought to
leading order into the standard form by writing ∆m2/(2Q0) ≈ ∆ω, which is true for a quasi-
degenerate spectrum. The Πh can be viewed as medium corrections to the particle masses and
hence modifies the oscillation term. The anticommutator terms on the right-hand side are the
usual collision terms, which exhibit the anticipated form of gain and loss terms. The exact form
of these terms will again depend on the model in question.
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Chapter 3

Separation of scales in ALP-photon
oscillations

Photons that propagate through extragalactic space are attenuated by pair creation on the extragalactic
background light. We study oscillations between photons and axion-like particles (ALPs) that may occur
in the extragalactic magnetic fields and shield the photons from this absorption. The ALP-photon system
may be readily described within the density matrix formalism, which takes into account the different
contributions to the dispersion, mixing, and absorption. In contrast to previous works we concentrate
on the non-maximal mixing regime, which is inevitably obtained for GeV–TeV photon energies due to a
recently discovered contribution to the photon dispersion from forward-scattering on CMB photons. The
refraction on the CMB suppresses the oscillation length of the ALP-photon system to typically assumed
coherence lengths of the magnetic field. Previously, extragalactic magnetic fields were modeled to have a
grid-like domain structure and discontinuous magnetic fields at the domain borders. We show that these
assumptions have to be discarded when the oscillation length and coherence length become similar. For
very high energies the propagation of the photon-ALP system becomes quasi-adiabatic and resolves the
inhomogeneities of the magnetic field. We present numerical and analytical results.1

3.1 Introduction: transparency problem of the universe
When black holes accrete matter from surrounding gas clouds, large amounts of energy are emit-
ted. These active galactic nuclei (AGNs) generate photons with GeV–TeV energies in jets, and
the object is called a blazar if the jet points towards Earth. Photons that are emitted from AGNs
propagate enormous distances through space which is filled with infrared dust emission and
starlight; the extragalactic background light (EBL). The gamma rays from blazars undergo pair
creation on this background light and therefore some signal is lost. Cherenkov telescopes have
to correct their measured energy spectra for this absorption if they want to infer the spectrum of
sources. A precise knowledge of the absorption rate is required.

The energy density of the EBL that determines this absorption rate is however only poorly
known: direct measurements are difficult to obtain because of foreground pollution from sur-
rounding stars and dust, lower bounds have been obtained by counting known galaxies [133],
and upper limits can be obtained from constraining the maximal absorption on well-understood

1This chapter is based on the manuscript “Separation of scales in ALP-photon oscillations,” [1] which is currently
prepared for publication by A. Kartavtsev, G. Raffelt and myself.
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sources. These upper limits have come suspiciously close [134–141] to the strict lower limit
from galaxy counts even conflicting direct EBL measurements like those from Ref. [142]. This
low power in the EBL is called the transparency problem of the universe. It has led to several
findings of hard blazar spectra which are difficult to explain within astrophysical models [143–
147]; although not without controversy [148, 149]. Especially in a publication by Meyer and
Horns [150], it was claimed that there is a pair production anomaly that calls for non-standard
mechanisms.

Such a mechanism might be present if axion-like particles (ALPs) exist (see e.g. Ref. [56]
and Refs. [151–154] for alternatives). Axion-like particles derive their name from the QCD
axion [38–41] as they possess the same type of interactions with two photons: they couple to the
product of electric and magnetic field E · B with a coupling strength gaγ . This means that in a
magnetic field, ALPs mix with photons, i.e., magnetic fields instigate conversions from photon
into ALPs and vice versa. In contrast to axions, the mass ma and coupling constant gaγ of ALPs
are unrelated so that for a given mass the coupling gaγ for ALPs may be larger than for axions
permitting more efficient conversions.

The ALP-photon coupling allows for the following mechanism. Photons convert to ALPs in
the magnetic fields of our galaxy [155], in the source itself [156–162], in clusters [163–165]
and/or in extragalactic space [57, 162]. The power transferred to ALPs is protected from ab-
sorption because ALPs typically interact much more weakly than photons [54]. The ALPs freely
propagate. Naı̈vely this would lead to a dimming of TeV sources. However, photons may be
regenerated from back conversions in the magnetic field of our galaxy or in the magnetic field
close to it, thereby enhancing the signal of TeV sources and leading to an apparently more trans-
parent universe. This mechanism has been successfully applied to individual sources [56, 166],
but it has also been used to constrain some of the parameters space [167, 168]. The upcoming
Cherenkov Telescope Array (CTA) will enable us to test this mechanism [169].

In this chapter, we are concerned with ALP-photon conversion in extragalactic magnetic fields,
which typically contain very weak magnetic fields B . 10−9 G [53]. The propagation of the
photon-ALP system may be described within the density matrix formalism with photon and
ALP number densities on the diagonals of the matrix of densities and their coherence on the
off-diagonals [170].

A maximal mixing angle is crucial to obtain a sufficiently transparent universe [56, 57]. The
mixing angle depends on the ratio of the off-diagonal entries of the Hamiltonian matrix to the
diagonal entries. For a simplified mixing of ALPs with one photon polarization with energy ω
the 2× 2 mixing matrix reads

H =
 ∆γ

gaγBT
2

gaγBT
2 −m2

a

2ω

 , (3.1)

where BT is the magnetic field transversal to the direction of motion. The photon dispersion ∆γ

was thought to obtain contributions from background magnetic fields and forward scattering on
free electrons; both of which are small compared to gaγBT/2 for GeV–TeV energies leading to a
large mixing angle.

However, a crucial contribution to the dispersion has been missed in previous works: photons
undergo forward scattering on CMB photons [59]. Since the energy density of the CMB photons
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is huge, this dispersion is sizable. It grows linearly with energy and dominates the entries of the
Hamiltonian matrix for ω & 1 TeV and maximal extragalactic magnetic fields B . 10−9 G [53].
Previously, for every mass ma, there was an energy for which the off-diagonals dominated H and
the mixing became maximal. This statement does not hold anymore due to the CMB refraction:
the mixing angle is suppressed for TeV energies. As we will show in this chapter, this sup-
pression leads to quantitatively and qualitatively modified results for ALP-photon propagation in
extragalactic magnetic fields.

If we knew the exact magnetic field structure on the line of sight from Earth to the source,
we could compute the number of photons and ALPs that are expected at Earth by inserting
the functional structure of the magnetic field into the density matrix equation. However, this
structure is not known and we only have some rough ideas about the typical scales of galactic
and extragalactic magnetic fields. From Faraday rotation measurements, it was inferred that
typical magnetic fields in galaxies are of the order of 10µG with coherence length of several
tens of kpc [171]. Coherent magnetic fields in clusters spread over distances up to a Mpc with
field strength below 1µG. Magnetic fields with the largest coherence lengths can be found in
extragalactic space, but so far only lower limits B > 10−18 G from time delays of cascade
radiation [172] and upper limits on, e.g., primordial magnetic fields B < 10−9 G [173] have
been found (see Ref. [53] and references therein). Their coherence scale is bounded only by the
current Hubble horizon [53]. Realistic models with magnetic fields generated by quasar outflows
may be found in Ref. [52], which predicts B ∼ 10−9 G and coherence lengths of several Mpc.
For numerically simulated magnetic field distributions see Refs. [174, 175].

Although exact computations for individual sources are not possible, we may obtain predic-
tions for an ensemble of blazar spectra, if we assume statistical properties for the extragalactic
magnetic field. From this statistical distribution we may draw a large number of different mag-
netic field configurations and compute the exact evolution for each of these magnetic fields.
Statistical information about the photon and ALP transfer functions could then be extracted.
This Monte-Carlo method [176, 177] has been readily applied in the literature. It will be called
“simulations” in the following.

Simulations are computationally demanding. A different approach was adopted by Mirizzi
and Montanino [178]. They demonstrated that the mean and variances of the transfer functions
could be computed with a set of coupled differential equations that are much easier to apply than
simulations. These equations were derived for a maximal mixing angle and special assumptions
about the magnetic field structure: the magnetic field was assumed to be grid-like with constant
domain size, constant absolute value of the magnetic field strength, but sudden changes of the
magnetic field direction at the borders of the domains. These assumptions for the magnetic
field are identical to those that are usually assumed in simulations and agree well with the result
obtained with the Monte-Carlo method [178].

Due to the refraction on the CMB, these assumptions have to be reexamined. In extragalactic
space, maximal mixing is only a good approximations for photon energies up to 100 GeV. For
larger energies, the mixing angle is suppressed and the differential equation approach by Mirizzi
and Montanino [178] cannot be applied naı̈vely anymore. We will show however that their
formalism can be extended straight-forwardly to non-maximal mixing as well.

A more serious concern pertains to the magnetic field structure with constant domain size
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and discontinuous magnetic fields at the boundaries (“hard edges”). The CMB refraction sup-
presses the oscillation length of the ALP-photon system, which now decreases with energy:
losc ≈ 78.5(TeV/ω) Mpc. If we assume a domain size of the magnetic field of the order of
lc = 10 Mpc, which has been applied in Ref. [58], we see that losc ≈ lc for photon energies of the
order of ω ≈ 10 TeV. At this energy scale the ALP-photon system is able to probe the magnetic
field structure in more detail.

Domains with hard edges lead to unphysical resonances when the two lengths scales becomes
of similar size. The reason is that in one domain the ALP-photon system oscillates by approx-
imately 2π, i.e., the conversion probability is close to zero. Since the domain size is assumed
to be identical for every domain, this statement holds true in every domain, and oscillations into
ALPs are strongly suppressed. This resonant behavior can be mended by introducing fluctuations
in the domain sizes. We will show that the ALP-photon system becomes sensitive to the exact
probability distribution of the domain sizes already before losc ≈ lc, i.e., a constant domain size
has to be discarded once losc approaches lc.

When losc & lc, the ALP-photon evolution becomes not only quantitatively but also qualita-
tively different. The oscillations in the ALP-photon system are so fast that changes in the mag-
netic field structure are probed, i.e., the boundary between two domains cannot be assumed to be
discontinuous anymore but more physical continuous transitions have to be modeled. We show
analytically and numerically that in this regime the photon evolution becomes quasi-adiabatic:
the transfer function is sensitive to the initial and final configurations of the magnetic field and
to the absorption of ALPs due to back-reactions into photons.

The importance of the structure of the magnetic field has been mentioned in a recent paper
by Wang and Lai [179]. They find that the photon transfer function depends on the structure of
the magnetic field. We believe, however, that their approach is misleading because they do not
compare magnetic field structures that are equivalent in the maximal mixing regime. Here, the
oscillation length is much larger than the typical scale of variation and the ALP-photon system
should not be able to see the magnetic field structure. We will comment on their findings in the
main part of this chapter.

Although we neglect redshift in the following and although the parameters for the magnetic
fields and the EBL are only semi-realistic, our arguments are of principle nature: for a given
distribution of magnetic field strengths and coherence lengths, non-maximal mixing and quasi-
adiabaticity will be qualitatively and quantitatively important for large energies or large ALP
masses.

Note that the refraction on the CMB is only important for propagation in extragalactic space.
In laboratory experiments [46, 49, 51, 180, 181], typical magnetic fields are much larger than
in extragalactic space. With magnetic fields of several Tesla that are homogeneous over several
meters, the mixing angle is maximal and the conversion probability is still proportional to B2l2

where l is the spatial extent of the magnetic field.
This chapter has the following structure: in the next section 3.2 we take a look at the Hamil-

tonian matrix that describes ALP-photon oscillations. We present the entries of this matrix,
their numerical values and parametrical dependencies. These values will be used to discuss the
physical implications of CMB refraction, i.e., non-maximal mixing and a suppressed oscilla-
tion length in Sec. 3.3. We will see that maximal mixing cannot be obtained for large energies
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Figure 3.1: Origin of the Euler-Heisenberg term in the Lagrangian (3.2). The electron loop is integrated out to an
effective four-photon vertex.

which motivates us to adopt the formalism of Mirizzi and Montanino to non-maximal mixing
in Sec. 3.4. This is followed by numerical results in Sec. 3.5 that show the unnatural resonance
between oscillation length and coherence length of the magnetic field when hard edges are as-
sumed. Noticing that the magnetic field structure is resolved by the ALP-photon system, we
study analytically and numerically the mean photon and ALP transfer functions for continuous
magnetic field distributions (Sec. 3.6). We conclude in Sec. 3.7.

3.2 The Hamiltonian matrix of ALP-photon conversion
Let us consider the propagation of photons and ALPs with energy ω in a background of a mag-
netic field. The effective Lagrange density of these two particles reads

LALP =1
2
(
∂µa∂

µa−m2
aa

2
)
− 1

4F
µνFµν −

gaγ
4 aF µνF̃µν

+ α2

90m4
e

[(
FµνF

µν
)2

+ 7
4
(
FµνF̃

µν
)2
]
,

(3.2)

with the ALP field a, its mass ma, the photon field strength tensor F µν and its dual F̃ µν , and the
ALP-photon coupling constant gaγ . The term −gaγ

4 aF
µνF̃µν = gaγaE · B induces the mixing

between ALPs and photons with a polarization parallel to a background magnetic field. The last
term in Eq. (3.2) is the Euler-Heisenberg coupling [60] of four photons via an electron loop,
which contains the fine structure constant α and the electron mass me (see Fig. 3.1).

From this Lagrangian we may derive the equations of motion. For propagation in z-direction
we obtain (

∂2
t − ∂2

z

)
A + M2

effA = 0 , (3.3)

where A is the three-component wave function

A ≡

AxAy
a

 , (3.4)

with the linear photon polarizations Ax and Ay in the x and y-direction respectively. The ALP
is contained in the third component, again denoted by a. M2

eff is the effective mass matrix that
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takes into account refraction on the background medium. In vacuum this matrix reads M2
vac =

diag
(
0, 0,m2

a

)
. In the extragalactic medium the effective mass matrix squared depends on the

choice of the reference frame for the photon polarizations because refraction and mixing depend
on the relative alignment with the background magnetic field.

If we choose Ax = A⊥ and Ay = A relative to the magnetic field, M2
eff takes the form

M2
eff =

Q⊥ QR 0
QR Q Qaγ

0 Qaγ m2
a

 , (3.5)

with complex mass parameters to account for absorption on the background. Here, Q⊥, =
2ω2(n⊥,refr − 1) are related to the index of refraction, QR is the contribution from Faraday rotation
and Qaγ is the mixing between photons and ALPs.

Before we give explicit expressions for the masses and mixings let us reduce the second order
differential equation (3.3) to first order, using the small wavelength approximation [170]. In
momentum space, the derivatives may be rewritten as (ω − kz)(ω + kz). If the effective masses
are small compared to the energy, the momentum kz and ω will be approximately equal: (ω −
kz)(ω + kz) ≈ 2ω(ω − kz). The crucial dynamics is contained in the difference between the
energy and the momentum of both photons and ALPs.

Dividing by 2ω, we may take the partial Fourier transform of the z-direction to obtain the
evolution equation [170, 182]

i∂zA = (Hdis − iHabs) A , (3.6)

where Hdis is a Hermitian matrix that contains the dispersion, and Habs is Hermitian and contains
the absorption. Both of these matrices are derived from the Hamiltonian of the system and will
be called Hamiltonian matrices in the following. In Eq. (3.6) we discarded a term proportional
to ω because it describes phase oscillations that are identical for all photon polarizations and the
ALP: it cancels out in the calculation of actual particle numbers.

If we assume that the EBL is isotropic, the absorptive Hamiltonian matrix reads

Habs =

Γγ/2 0 0
0 Γγ/2 0
0 0 0

 . (3.7)

Note that we have neglected a direct absorption of ALPs which is proportional to the square
of the small coupling gaγ . Nevertheless, absorption will be translated to the ALP sector once
we take into account the mixing and the corresponding misalignment between interaction and
propagation eigenstates.

For high-energy photons, the main source of absorption is due to the pair creation process
γγbkg → e+e−. The absorption rate is given by [178]

Γγ(ω) =
∫ ∞
m2
e/ω

dεdnγ,bkg

dε

∫ 1− 2m2
e

ωε

−1
dξ 1− ξ

2 σγγ(β) , (3.8a)

σγγ(β) = σ0 · (1− β2)
[
2β(β2 − 2) + (3− β4) log 1 + β

1− β

]
, (3.8b)
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where [183] σ0 = 3σT/16 ≈ 1.25 × 10−25 cm2 with the Thomson cross section σT , ε is the
background photon energy, ξ is the cosine of the angle between the incident and the background
photon, and β = [1− 4m2

e/s]
1
2 with s = 2ωε(1− ξ) is the electron velocity in the center of mass

frame. To obtain the optical depth, the absorption rate has to be integrated over the distance or,
equivalently, redshift. To date, blazars are observed at redshifts of maximally z ≈ 0.944 [184]
for which the redshift dependence of energies, densities and magnetic fields have to be taken into
account. Nevertheless, we will neglect redshift in the following since our goal is a conceptual
one that is merely clouded by this additional layer of complication. For our purposes, the optical
depth is just the average absorption rate times the distance to the source.

For definiteness2, we approximate the number density at z = 0 through [187]

dnγ,bkg(ε)
dε ≈ 10−3

(
ε

1 eV

)−2.55
cm−3 eV−1 , (3.9)

which leads to an absorption coefficient [178]

Γγ(ω) ≈ 1.1× 10−3
(
ω

TeV

)1.55
Mpc−1 . (3.10)

The dispersive part of the Hamiltonian matrix contains the refraction of photons, the mass of the
ALPs and the mixing between ALPs and photons. If we again choose the reference frame such
that Ax = A⊥ and Ay = A , the dispersive Hamiltonian reads

Hdis =

∆⊥ ∆R 0
∆R ∆ ∆aγ

0 ∆aγ ∆a

 , (3.11)

where ∆a = −m2
a/(2ω) is the dispersion caused by the ALP mass (see Tab. 3.1 for numerical

values). Photon-ALP mixing is induced by the magnetic field B through

∆aγ = gaγ
2 B sin θ ≈ 1.5× 10−2 sin θ

(
gaγ

10−11 GeV−1

)(
B

nG

)
Mpc−1 , (3.12)

whereB = |B|, and θ is the angle between the magnetic field and the z-direction. This shows that
magnetic fields that are parallel to the direction of motion do not contribute. Only the projection
of the magnetic field that is perpendicular to the direction of motion mixes photons and ALPs.

We will assume that the ALP-photon coupling constant is gaγ = 10−11 GeV−1 in the following;
a value still close to the upper bound< 8.8×10−11 GeV−1 from CAST [49]. For ultralight ALPs
ma < 4.4 × 10−10 eV, this coupling strength is excluded by gamma-ray limits from SN1987a,
gaγ < 5.3× 10−12 GeV−1 [188].

2Note that this model for the absorption rate, which is also approximately found in Ref. [185], is observationally
disfavored [136] and a useful alternative is given, e.g., in Ref. [183]. We thank Marco Roncadelli for pointing
this out. Despite this, we will still use the formulas of Mirizzi and Montanino [178] to obtain the qualitative
features. Thereby, we underestimate the strength of absorption compared to Ref. [183] where the spectral index
is probably closer to −1.85 [186].



38 3. Separation of scales in ALP-photon oscillations

Contributions to H Numerical value [Mpc−1]

∆CMB 8× 10−2
(

ω
TeV

)
Γγ/2 5.5× 10−4

(
ω

TeV

)1.55

∆a −7.8× 10−2
(

ma
10−9 eV

)2 (TeV
ω

)
∆aγ 1.5× 10−2 sin θ

(
gaγ

10−11 GeV−1

) (
B
nG

)
∆B 4.1× 10−9 sin2 θ

(
ω

TeV

) (
B
nG

)2

∆pl −1.1× 10−11
(

TeV
ω

) (
ne

10−7 cm−3

)
∆R −2.2× 10−34 cos θ

(
TeV
ω

)2 (
B
nG

) (
ne

10−7 cm−3

)
Table 3.1: Numerical values for the various contributions to the Hamiltonian matrix H: refraction on the CMB

(∆CMB), inverse absorption length Γγ/2, the axion mass dispersion (∆a), ALP-photon mixing (∆aγ),
birefringence through a magnetic field (∆B), coherent scattering on the electron plasma (∆pl), and Fara-
day rotation (∆R).

The other off-diagonals come from Faraday rotation. They read [17]

∆R = −
ω2

plωg

ω2 cos θ ≈ 2.2× 10−34 cos θ
(

TeV
ω

)2 (
B

nG

)(
ne

10−7 cm−3

)
Mpc−1 , (3.13)

with the plasma frequency squared ω2
pl = 4παne/me and the gyrofrequency ωg = eB/(γme)

with the usual Lorentz transformation parameter γ = E/me ≈ 1 for non-relativistic electrons.
We see that Faraday rotation is completely negligible and we will discard any contribution from
the Faraday effect in the following.

The photon dispersions ∆⊥ and ∆ can be decomposed into three physically different contri-
butions

∆⊥ = 2∆B + ∆pl + ∆CMB , (3.14a)
∆ = 7

2∆B + ∆pl + ∆CMB , (3.14b)

where, see e.g. Ref. [178],

∆B = αω

45π

(
e|B| sin θ

m2
e

)2

≈ 4.1× 10−9 sin2 θ
(
ω

TeV

)(
B

nG

)2

Mpc−1 , (3.15)

∆pl = −2παne
ωme

≈ −1.1× 10−11
(
ω

TeV

)−1 ( ne
10−7 cm−3

)
Mpc−1 , (3.16)

are the birefringence induced by a background magnetic field (∆B) and the dispersion induced by
coherent scattering on the background electrons (∆pl) with density ne. This density is bounded
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by the baryon number density of the universe to be ne < 2.7 × 10−7 cm−3, if one takes the
cosmological parameters of PLANCK [189] and conservatively assumes that all baryons are free
protons.

Another contribution that was found recently [59] comes from coherent scattering on the cos-
mic microwave background. The index of refraction induced by an electromagnetic background
field δnrefr = Re(nrefr − 1) is proportional to the energy density %EM of that field [190–194]

δnrefr = 44α2

135
%EM

m4
e

. (3.17)

In the extragalactic medium, the strongest contribution comes from the CMB with %CMB ≈
2×10−15 eV4, which induces a shift δnCMB

refr ≈ 5.1×10−43. This shift is reflected in the dispersive
Hamiltonian matrix via

∆CMB = ω δnCMB
refr ≈ 8× 10−2

(
ω

TeV

)
Mpc−1 , (3.18)

which is larger than all the other contributions to the dispersion of both photon polarizations
for realistic magnetic fields and energies ω & 10 MeV. We are interested in gamma rays with
energies in the GeV–TeV range where ∆B and ∆pl may be neglected and ∆⊥ = ∆ to a good
approximation. The dominance of the CMB refraction is the most important result of this section
and will lead to all the modifications presented further below.

The direction of the magnetic field is not constant along a line of sight. It is therefore conve-
nient to express the dispersive Hamiltonian matrix in a fixed coordinate system with an arbitrary
azimuth angle φ which gives the orientation of the magnetic field in the x-y-plane. In this frame,
the dispersive Hamiltonian matrix reads

Hdis =

 ∆11 ∆12 sφ ∆aγ

∆21 ∆22 cφ ∆aγ

sφ ∆aγ cφ ∆aγ ∆a

 , (3.19)

which can be obtained from Eq. (3.11) by a rotation with angle φ. Here, we defined sφ ≡ sinφ
and cφ ≡ cosφ. The diagonal photonic components of the dispersive Hamiltonian are ∆11 =
∆⊥ c2

φ + ∆ s2
φ and ∆22 = ∆ c2

φ + ∆⊥ s2
φ. The off-diagonal components ∆12 = ∆21 = (∆ −

∆⊥) cφsφ ≈ 0, where the approximation follows because we only consider CMB refraction.

3.3 Physical impact of large dispersion
Mixing between different particle species is inefficient if the dispersion-induced phase veloc-
ity difference of the two species is large. This suppression may be compensated by large off-
diagonal entries of the Hamiltonian matrix. The ALP dispersion is controlled by the ALP mass.
It becomes large for very massive ALPs and small photon energies. On the other hand, the
photon dispersion on the CMB grows linearly with energy. For a given energy range, the ALP
contribution can always artificially be argued away by considering small ALP masses. The CMB
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dispersion ∆CMB, on the other hand, inevitably dominates the photon dispersions ∆⊥ and ∆ for
ω around 100 GeV, and the realistic magnetic field strengths and coupling constants presented in
Tab. 3.1.

Note that also absorption may lead to a suppression of mixing if the absorption rate dominates
the Hamiltonian matrix. With the parametrization of the absorption in Eq. (3.10), the absorption
rate grows more than linear but will not be larger than the CMB dispersion for energies up
to 20 TeV that are considered here. We will now take a look how the different terms of the
dispersive Hamiltonian affect the mixing angle and the oscillation lengths.

3.3.1 Impact on the mixing angle
The strength of the photon-ALP mixing depends on the magnitude of ∆aγ relative to the diagonal
components of the Hamiltonian matrix. Let us choose a coordinate system in which φ = 0 such
that the Hamiltonian simplifies to

H =

∆⊥ − iΓ
2 0 0

0 ∆ − iΓ
2 ∆aγ

0 ∆aγ ∆a

 . (3.20)

In general, this matrix may be diagonalized with a unitary transformation. We would like to
comment on the limiting case: if the absolute value of the absorption can be neglected compared
to the dispersive terms, the unitary matrix becomes effectively an orthogonal matrix with one
mixing angle ϕ. This angle reads

ϕ = 1
2 arctan 2∆aγ

∆ −∆a

. (3.21)

Note that because ∆a < 0 and ∆ > 0 the contributions of the ALP mass and that of the
CMB always add up. They cannot cancel each other and must be separately small to achieve
large mixing. If this is the case and ∆aγ � ∆ − ∆a then the photon-ALP mixing is close to
maximal, ϕ→ π/4. In previous works, e.g., Refs [56–58] where the CMB refraction was absent
and dispersion on the background magnetic field was neglected, the expression (3.21) lead to a
critical energy [178]

ωc = ω
|∆a −∆pl|

2∆aγ

≈ 2.5× 10−2 |m
2
a − ω2

pl|
(10−10 eV)2

(
nG
BT

)(
10−11 GeV

gaγ

)
TeV . (3.22)

For higher energies than ωc the mixing was assumed to be maximal and dispersion is neglected
altogether. This is the regime studied by Mirizzi and Montanino [178]. Note however, that this
approximation is only valid if the mixing angle that is induced by absorption can be neglected
simultaneously. This is not the case for ω > 10 TeV if CMB dispersion is absent.

On the other hand, if ∆aγ � ∆ −∆a the photon-ALP mixing is close to zero. For sizable ALP
masses, this condition is fulfilled at low photon energies because the ∆a term becomes large. For
energies in the GeV–TeV range, the mixing becomes small because the CMB refraction in ∆
dominates over ∆aγ , see Eqs. (3.14b) and (3.18).
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3.3.2 Impact on the oscillation length

Large dispersion also modifies the oscillation length. To quantify this statement, let us compute
the probability of creating an ALP from an initially pure photon state with polarization along the
magnetic field direction A = (0, 1, 0). Assuming H = const. and Habs = 0, we can integrate
Eq. (3.6) to obtain A(z) = Udis(z)A . The evolution operator Udis is Hermitian and it can be
evaluated by diagonalizing the Hamiltonian matrix:

Udis(z) = exp (−iHdisz)

=e−i
(∆a+∆ )z

2

e
−i(δ−∆aγ/2)z 0 0

0 c2
ϕe
−i∆oscz/2 + s2

ϕe
i∆oscz/2 is2ϕ sin ∆oscz

2
0 is2ϕ sin ∆oscz

2 c2
ϕe

i∆oscz/2 + s2
ϕe
−i∆oscz/2

 ,

(3.23)
where we use sϕ ≡ sinϕ and cϕ ≡ cosϕ, and define for later convenience δ and ∆osc,

∆osc = [(∆ −∆a)2 + 4∆2
aγ]

1
2 , (3.24)

δ = ∆⊥ − 1
2(∆ + ∆a) + 1

2∆aγ . (3.25)

Here, the oscillations frequency ∆osc is the energy difference between the propagation eigenstates
of the ALP and A . This frequency is associated with the rapidness of mixing between ALPs
and photons.

Projecting A(z) on the ALP state Aa = (0, 0, 1), we find the standard transition probability

Paγ = |A†aU(z)A |2 = sin2(2ϕ) sin2
(

∆oscz

2

)
. (3.26)

From this expression we see that we may define the oscillation length in terms of the oscillation
frequency as:

losc = 2π
∆osc

= 2π
[(∆ −∆a)2 + 4∆2

aγ]
1
2
. (3.27)

In the regime where the photon dispersion on the CMB dominates, ∆ − ∆a grows with the
photon energy, and the oscillation length decreases as the photon energy increases. At GeV–TeV
energies it becomes inversely proportional to the energy, losc ≈ 2π/(ωδnCMB

refr ) . For ω = 1 TeV,
the oscillation length is losc ≈ 78.5 Mpc and reduces to losc ≈ 7.85 Mpc for ω = 10 TeV.
We see that the oscillation length becomes comparable to the coherence lengths of extragalactic
magnetic fields that can be obtained from, e.g., quasar outflow [52]. If the oscillation length
becomes smaller than the coherence length of the magnetic field, the ALP-photon system starts
probing the detailed structure of the magnetic field. Incorrect results will be obtained if the
assumptions about the structure of the magnetic field are too simplistic as we will demonstrate
in the following.
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3.4 Generalization: non-maximal mixing
An ALP mass and refraction on the cosmic microwave background suppress the mixing angle
and the oscillation length. Although related, these two effects are different phenomena. Here,
we will take a look at non-maximal mixing and how the differential equation approach of Mi-
rizzi and Montanino [178] generalizes to arbitrary mixing angles. This analysis will be useful
for the generalization of the assumption that the coherence length is always smaller than the os-
cillation length (see Sec. 3.5). For now we will adopt a simple model for the magnetic field: it
consists of domains with length lc and magnetic field strength B. The magnetic field changes
discontinuously on the border of each domain (“hard edges”).

3.4.1 Evolution equation
The magnetic field structure has to be inserted into the evolution equation. Instead of using
Eq. (3.6) directly, it is more convenient to work in the formalism of density matrices because we
directly get rid of irrelevant phases. Here, the density matrix is given by

ρ = A⊗A† =

ρ11 ρ12 ρ1a
ρ21 ρ22 ρ2a
ρa1 ρa2 ρaa

 . (3.28)

Using Eq. (3.6) one can show that it satisfies the equation

i∂zρ = H ρ− ρH† , (3.29)

where we have to distinguish between the Hamiltonian and its conjugate because of the photon
absorption.

For high energy photons we do not measure the polarization but just count photon numbers.
The total transfer function for the photons is obtained from Eq. (3.29) by adding the two polar-
izations Tγ ≡ ρ11 + ρ22. The ALP transfer function is just Ta ≡ ρaa.

3.4.2 Differential equation description for hard edges
The original result by Mirizzi and Montanino [178] for the evolution of the transfer functions
Ta,γ reads

lc
d
dzTγ = −〈P̃aγ〉θ

(
1
2Tγ − Ta

)
− Γγlc Tγ , (3.30a)

lc
d
dzTa = +〈P̃aγ〉θ

(
1
2Tγ − Ta

)
, (3.30b)

where 〈P̃aγ〉θ is the conversion probability for maximal mixing P̃aγ = ∆2
aγl

2
c averaged over

the polar angle of the magnetic field θ. We see that 〈P̃aγ〉θ determines the mixing between
ALPs and photons, and only photons suffer absorption, which is described through the term
Γγlc. Equation (3.30) can be solved analytically with a solution given in Ref. [178].
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The set of differential equations (3.30) has been obtained via a perturbative expansion in the
absorption Γγlc � 1 and mixing ∆osclc � 1 while neglecting any terms on the diagonals of the
dispersive Hamiltonian. Once we take into account dispersion from CMB refraction, ∆osclc � 1
is not a valid approximation anymore and Eq. (3.30) cannot be applied.

If the absorption rate is small compared to the domain size, Γγlc � 1, we may still perform a
perturbative expansion in this parameter and resum purely dispersive terms taking into account
non-maximal mixing. As we will demonstrate now, a differential equation similar to Eq. (3.30)
can be obtained.

In each domain n of length lc, the Hamiltonian is constant so that the solution of the Schrö-
dinger equation, A(lc) = U(lc)A(0), can be used to relate density matrices in two neighboring
domains,

ρn+1 = Un(lc)ρnU†n(lc) . (3.31)

The evolution operator U for a constant Hamiltonian is defined as

U(lc) = exp
[
−i(Hdis − iHabs)lc

]
. (3.32)

An expansion of Eq. (3.32) would contain three different contributions: a purely dispersive term,
a term only containing absorption and an interference between dispersion and absorption. The
purely dispersive term has been resummed in Eq. (3.23). Assuming Γγlc � 1, we can perform
a perturbative expansion in the absorption while retaining the exact dispersion, which we know
how to diagonalize. The evolution operator can be rewritten as

U(lc) = exp [−iHdislc] exp [iHdislc] exp
[
−i (Hdis − iHabs) lc

]
= exp [−iHdislc] Ũ(lc) , (3.33)

where for Ũ(lc) we have a perturbative expansion (see page 84 of Ref. [122])

Ũ(lc) = 1 + (−i)
∫ lc

0
dl′ HI(l′) +O

[
H2

I (l′)
]
, (3.34)

with the interaction picture Hamiltonian matrix

HI(l′) ≡ exp
[
iHdisl

′
]

(−iHabs) exp
[
−iHdisl

′
]
. (3.35)

For small absorption per domain Γγlc, Eq. (3.34) is meaningful. Note that the expansion has been
performed solely in the absorption, whereas purely dispersive terms are fully taken into account.
This is the main difference compared to the previous derivation of Ref. [178].

With this expansion, the evolution operator reads to first order

U(lc) ≈ exp [−iHdislc]− iexp [−iHdisl]
∫ lc

0
dl′ HI(l′) , (3.36)

and all the exponential functions can be straight-forwardly calculated by diagonalizing the Her-
mitian matrix Hdis. In the coordinate frame where φ = 0, the expression has been shown in
Eq. (3.23). For a general magnetic field, Eq. (3.23) has to be rotated with an orthogonal matrix

O =

cφ −sφ 0
sφ cφ 0
0 0 1

 . (3.37)



44 3. Separation of scales in ALP-photon oscillations

Following this approach, we obtain an analytical expression for the time evolution of the ALP-
photon system in one domain and an arbitrary rotated coordinate system.

As shown by Ref. [178], a differential equation can be obtained by taking the limit

ρn+1 − ρn ≈ lc∂zρn , (3.38)

which is well motivated if the rate of change is small and becomes exact if ρ varies in a linear
fashion. Equation (3.31) can now be cast into

lc∂zρn ≈ Un(lc)ρnU†n(lc)− ρn . (3.39)

In order to predict the photon transfer functions after propagation through many domains, we
have to fix a magnetic field distribution. The exact realization of the magnetic field along the
line of sight to a single source is unknown such that model predictions are hard to obtain (see
however Refs. [195, 196]). If we observe multiple sources we may compare the observed mean
photon transfer function and its variance with theoretical predictions from the statistical proper-
ties of the extragalactic magnetic field. Previous works [56–58, 178] relied on the hard-edges
approximation with constant domain size. If the oscillation length is much larger than the coher-
ence length, hard edges are a justified approximation because the ALP-photon system is not able
to adapt to the sudden changes of the magnetic field. The propagation is non-adiabatic.

To obtain the mean transfer functions we take the expectation value of Eq. (3.39) with respect
to the properties of the magnetic field distribution. Previously [56–58, 178], it was assumed
that along the line of sight, the angle φ is randomly distributed in [0, 2π) and cos θ is randomly
distributed in [−1, 1], while the absolute value of the magnetic field strength B and the domain
length lc was held constant.

We may generalize these assumptions by including the expectation values with respect to the
magnetic field B and the domain size lc, i.e., B and lc now fluctuate from domain to domain. If
we finally assume that the photon crosses sufficiently many domains such that the average over
these variables is justified, the differential equation for an ensemble-averaged density matrix ρ̄
reads

〈lc〉lc∂zρ̄ ≈ 〈U ρ̄U†〉lc,B − ρ̄ , (3.40)

where 〈•〉lc,B =
∫

d3BP (B)
∫∞

0 dlc P (lc) •, with appropriately normalized probability densities
P , and where ρ̄ denotes the density matrix for the mean.

The calculation of the expectation value in Eq. (3.40) is lengthy but straightforward if we as-
sume that the probability distribution for the magnetic field is isotropic in the plane perpendicular
to the direction of propagation, i.e., 〈•〉B =

∫
d2BP ′(B)

∫ 2π
0 dφ/(2π) •, with a new probability

distribution P ′. With this assumption the coherences on the off-diagonals of ρ̄ decouple from the
diagonal number densities. Introducing the mean transfer functions Tγ ≡ ρ̄11 + ρ̄22 and Ta ≡ ρ̄aa
the system of 9 equations (3.40) reduces to two coupled equations:

〈lc〉lc
d
dzTγ = −〈Paγ〉lc,B

(
1
2Tγ − Ta

)
− Γγ〈lc〉lc Tγ , (3.41a)

〈lc〉lc
d
dzTa = +〈Paγ〉lc,B

(
1
2Tγ − Ta

)
, (3.41b)
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Figure 3.2: Typical photon and ALP transfer functions as a function of the distance from the source for a pure
photon initial condition (left) and a pure ALP initial condition (right). The photon transfer function is
shown in blue and the ALP transfer function in orange. Qualitatively different behavior is separated
with red dashed lines.

where 〈Paγ〉lc,B is the photon-ALP oscillation probability shown in Eq. (3.26), which has been
further averaged over lc and B. For an example of one term in the derivation see Appendix D.

The absorptive term has been derived similarly to the dispersive terms using Eq. (3.36). For
zero mixing angle ϕ → 0, this gives exactly Γγlc. By taking this limit, we neglect some terms
that describe the interference between absorption and dispersion and that are proportional to the
mixing angle ϕ.

The similarity between the differential equation (3.41) derived here and the differential equa-
tion (3.30) by Mirizzi and Montanino is striking. Indeed, we see that Eq. (3.30) may be obtained
from Eq. (3.41) in the limit of constant domain sizes and maximal mixing Paγ → P̃aγ . Further-
more, the analytical solution shown in Ref. [178] also applies to our Eq. (3.41).

Typical results for Ta,γ as a function of the distance are shown in Fig. 3.2 for an initial photon
state (left) and an initial ALP state (right). If we start with photons, these are absorbed efficiently
while producing a population of ALPs. At some distance the number of photons will be less
than the number of ALPs and the system starts to be ALP dominated, i.e., the hierarchy between
photons and ALPs is inverted. Finally, the decline of the number of photons is halted because of
back-reactions from ALPs to photons. The system then propagates in this quasi-static state with
a small power loss from ALPs converting into photons with subsequent absorption.

In the right plot of Fig. 3.2, the initial population consists of ALPs only. After a number
of photons are produced, we enter the propagation phase again: the ALP and photon transfer
functions run parallel to each other and slowly decrease because of power loss in the photonic
sector.

3.5 Generalization: varying domain lengths
In the last section, we have seen that the assumption of maximal mixing may be relaxed straight-
forwardly. The mixing between the photon and ALP system is controlled by Paγ which should be
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Figure 3.3: Average conversion probabilities 〈Paγ〉 per domain for a constant domain size l = 10 Mpc (orange)
and for a domain size drawn from an exponential distribution (green).

appropriately averaged. With Paγ given in Eq. (3.26), and using the definition of the oscillation
length (3.27), we see that the conversion probability in one domain is

Paγ = sin2(2ϕ) sin2
(
π
lc
losc

)
, (3.42)

which becomes formally zero for lc = losc. The reason is that the coherence length permits
one full cycle of photon-ALP-photon conversion inside its domain, i.e., we obtain a resonant
suppression of photon-ALP oscillations. Since lc is assumed to be constant, a vanishing Paγ
holds in every domain. This will inevitably happen for a certain energy given the numerical
values in Tab. 3.1. Averaging over the magnetic field does not change this picture very much
because losc is dominated by ∆CMB and almost independent of the magnetic field.

In reality, such resonances are not expected to occur because not every domain should have
the same size, and domains will not always be crossed to their full extent. This variation may be
taken into account by giving the domain lengths a probability distribution. In the maximal mixing
regime, the ALP-photon system will only be sensitive to the first two moments of the magnetic
field structure (see the differential equation in Ref. [178]). This will help us to normalize different
magnetic field distributions such that the photon transfer functions are equal for low energies.
For large energies this approach is expected to lead to different transfer functions because the
conversion probability (3.26) is sensitive to higher moments of the probability distribution.

We choose two extreme probability distributions for the magnetic field coherence length. Be-
sides the constant length scale discussed above, we study an exponential distribution with prob-
ability density function p(lc) = (1/l̄)exp[−lc/l̄], with expectation value l̄ and variance (l̄)2. This
distribution for the length scale corresponds to a Poisson distribution for the number of domains.

The average conversion probabilities for constant domain length lc = 10 Mpc and a domain
size drawn from an exponential distribution with 〈lc〉 = 5 Mpc is shown in Fig. 3.3. We see that
〈Paγ〉 becomes tiny at energies ω ≈ 8 and 16 TeV for lc = const. The reason is that at ω ≈ 8 TeV
the oscillation length losc ≈ 10 Mpc = lc for the first time. As argued above, the sine function in
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Figure 3.4: Numerical results for the mean photon transfer function for 1000 realizations of magnetic fields with
hard edges for a pure photon initial state (left) and a pure ALP initial state (right). The distance to the
source is assumed to be 1 Gpc and redshift is neglected. Blue lines show the results that are obtained
when ∆CMB is set to zero and for constant domain sizes. Orange and green lines contain the refraction
on the CMB but assume different probability distributions for the domain lengths of the magnetic field:
the orange curve assumes constant lc = 10 Mpc, and for the green curve lc is drawn from an exponential
distribution with 〈lc〉 = 5 Mpc. The black dotted line indicates photon absorption without ALPs.

Eq. (3.26) goes through zero and 〈Paγ〉 vanishes. The next zero of the sine is then encountered
at ω ≈ 16 TeV.

For the conversion probability using an exponential distribution with 〈lc〉 = 5 Mpc, we do
not see a suppression. In contrast to the constant domain length we assumed above, a resonant
suppression may be obtained in one domain but will in general not be obtained in the domains that
follow. This is why the averaged transition probability with lc being weighted by an exponential
distribution does not show any suppression at ω = 8 or 16 TeV.

For ω → 0 we see that the conversion probabilities of both distributions coincide as we have
enforced by choosing 〈lc〉 = 5 Mpc for the exponential distribution and lc = 10 Mpc for the
constant domain length.

Besides the coherence length, we will also relax the assumption about a constant absolute value
of the magnetic field, which introduces relations between different components of the magnetic
field, i.e., Bx and By are not independent. We choose a Gaussian distribution for all magnetic
field directions with zero mean and variance (2/3) nG2, which yields an expectation value for
the absolute value of the magnetic field similar to the upper limit of 1 nG.

3.5.1 Numerical results for hard edges

Using the evolution equation (3.29) we compute numerically the mean photon transfer function
Tγ with and without refraction on the CMB for a source with a distance d = 1 Gpc from us
(see Fig. 3.4). We use two different probability distributions for the domain sizes, i.e., a constant
length lc = 10 Mpc and domain sizes drawn from an exponential distribution with 〈lc〉 = 5 Mpc.
The components of the magnetic field Bx and By are drawn from a Gaussian distribution with
zero mean and variance (2/3) nG2. The two different figures correspond to extreme initial con-
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ditions: on the left we assume that a pure photon state is created in the source and on the right a
pure ALP state is assumed. Each curve is an interpolation of a grid of mean transfer functions ob-
tained with different photon energies. The mean has been evaluated by generating 1000 different
magnetic field configurations. The configurations are identical within each curve of Fig. 3.4.

Special care has to be taken when we draw the domain lengths from an exponential distribution
because we have to fulfill the boundary condition

∑
n ln = d. This is done by resizing the

last domain of every configuration to this condition. We have checked numerically that this
cutting procedure does not change the statistical distribution of this last domain significantly.
Nevertheless, we reshuffle the order of the domains for every configuration to further minimize
the effect of this boundary condition.

In Fig. 3.4 we show in blue the result that is obtained with ∆CMB = 0 and a constant domain
size lc = 10 Mpc. This line should be compared with the black dashed line that indicates pure
photon absorption, i.e., the fraction of photons that survives traversing the extragalactic space
without ALP-photon oscillations. We see that for an initial state consisting of photons only
(left) and for photon energies ω & 4 TeV a possible photon signal is enhanced by many orders
of magnitude. The reason for this enhancement is that some photons convert into ALPs while
propagating (see “ALP production” in Fig. 3.2 left). After some time all the initial photons are
either absorbed or have oscillated into ALPs which contain all the energy density. The ALPs
propagate unimpeded by the EBL but some of their energy leaks back into the photonic sector,
which gives the large photon population indicated by the blue line (“Propagation” in Fig. 3.2 left).

This picture is confirmed by the right-hand sides of Figs. 3.4 and 3.2. The ALPs dominate the
number density from the start and transport their energy safely from the source to our detector.
The initial loss of energy we observed on the left-hand side of Fig. 3.4 is prevented from the start.
The expected number of photons is enhanced by two orders of magnitude.

Note that for ∆CMB = 0 we have checked that the exact structure of the magnetic field proba-
bility distribution is of minor importance as long as we normalize 〈Paγ〉 to be equal for low ener-
gies ω ≈ 0. For example, if we compare the results with a constant domain lengths lc = 10 Mpc
with those results that are obtained with domains drawn from an exponential distribution with
〈lc〉 = 5 Mpc, we find for small energies consistent results on the 3% level as expected from 1000
different magnetic field configurations. For large energies, the transfer functions start to depend
on the distribution because corrections of higher order in Γγlc become important. At ω = 20 TeV
this amounts to deviations of approximately 25%.

While the probability distribution only has a minor effect when ∆CMB = 0, it becomes of
paramount importance when the CMB refraction is included. This is shown by the orange and
green curves in Fig. 3.4. The orange curve is the result that is obtained with a constant domain
size. It has an oscillatory feature which can be understood when looking at Fig. 3.3, i.e., we see
the expected suppression of the mean ALP and photon transfer functions because the average
conversion probability approaches zero. Similarly, we do not see any suppression for the curve
with an exponential distribution for the domain size because the conversion probability is smooth.
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3.6 Generalization: soft edges
In the preceding section we have studied magnetic fields with hard edges. We have seen that
〈Paγ〉 plays an extraordinary role in explaining the behavior of the transfer functions. Realistic
magnetic fields should not have hard edges, i.e., discontinuous magnetic field distributions but
there will be some degree of continuous transition from one domain to the next (“soft edges”).
We expect hard edges to be a poor approximation as soon as losc < lc such that the oscillations
start to probe the magnetic field structure. In this limit the ALP-photon system should be able
to adapt to the changing magnetic field adiabatically. We will now replace these hard edges by
continuous soft edges.

Recently, the impact of soft edges was noticed as well in Ref. [179]. They observe that dif-
ferent functional dependencies of the magnetic fields lead to different photon transfer functions
even without the CMB refraction. Their result is however due to not normalizing the magnetic
field distribution. They compare in the maximal mixing regime magnetic field distributions with
different 〈B2l2c〉, i.e., different conversion probabilities Paγ . We will show that a correct normal-
ization leads to results independent of the functional form of the magnetic fields in the maximal
mixing regime; as expected from non-adiabatic propagation.

3.6.1 Magnetic field construction procedure
Our goal is to compare the hard edges approximation with a magnetic field that is smooth. In
order to do this, we need a procedure to replace hard edges by soft edges, i.e., for a given mag-
netic field configuration with hard edges we want to find a smooth function that interpolates the
structure. Depending on the interpolation function, we introduce additional degrees of freedom
that we have to fix.

Extragalactic magnetic fields that have a coherent structure extending over several megaparsec
may have been formed by quasar outflows, which means that magnetic fields are transported out
of the center of galaxies by magnetized winds [52]. The structure of such magnetic fields is
not known and we have to adopt additional assumptions. It seem reasonable that the inner part
of a domain contains a magnetic field with approximately constant magnitude. Further outside,
the magnetic field decreases or interacts with outflows from other quasars forming a continuous
profile. The fractional volume of the constant inner part compared to the volume of each domain
is unknown. This filling factor may vary from 1, which corresponds to a constant magnetic field
in each domain with discontinuous transition, to 0, which indicates no constant magnetic field in
the inner part of each domain.

For a given filling factor and magnetic field structure, we use the following procedure to con-
struct continuous magnetic fields. In the center of each domain we place a constant subdomain
with a size that is given by the filling factor. We want the boundaries between each subdomain
and the outer magnetic field structure to be reasonably smooth, which we enforce by setting the
first and second derivatives at the boundary to zero. This provides us with six conditions for
each interpolation between two subdomains. We choose a fifth order polynomial between each
subdomain. For example plots see Fig. 3.5.

This procedure does not fix the overall normalization of the magnetic field. In Ref. [179],
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Figure 3.5: Examples for continuous magnetic fields that were obtained from the procedure described in the main
text. On the left-hand side we show the interpolation of a magnetic field with constant domain size
lc = 10 Mpc. The filling factor is zero. On the right-hand side, we assume a probability distribution for
the domain size with 〈lc〉 = 5 Mpc. The filling factor is 0.2.

the maximal values of the magnetic fields of the domain structure and the interpolation func-
tions were set equal, which lead to different conversion probabilities in each domain even for
the non-adiabatic ∆CMB = 0 scenario. We proceed in a different way and set the conversion
probabilities in the non-adiabatic limit, ω → 0, independent from the magnetic field structure.
For a continuous magnetic field, the conversion probability is

Paγ ∝
∣∣∣∣∣
∫ lc

0
dzBT(z)

∣∣∣∣∣
2

, (3.43)

for a domain with length lc. If this integral is equal in each domain for a constant magnetic field
and for the interpolating field, we obtain identical results for Paγ in the ω → 0 limit. We will use
this condition to fix the normalization in every domain.

3.6.2 Analytical estimates in the quasi-adiabatic limit
A state evolves adiabatically if an eigenstate of the Hamiltonian remains an eigenstate during
propagation. Adiabaticity is obtained when the background varies so slowly that it cannot induce
a transition from one state into another, i.e., transitions may be neglected once the first derivative
of the background is small compared to the energy difference of two states.

If we apply this picture to ALP-photon oscillations, we expect a photon propagation eigen-
state to stay a propagation eigenstate if the background magnetic field varies slowly enough.
Especially, for the continuous magnetic fields we constructed above, adiabaticity may be ex-
pected once lc/losc > 1. However, this picture breaks down when we consider absorption. To
understand this, let us consider an initial photon state with no magnetic background field, i.e.,
interaction and propagation eigenstates coincide. If no magnetic field develops during propaga-
tion, the photon propagation will be completely adiabatic and a detector will observe a photon
state at a distance d, albeit with exponentially reduced intensity due to absorption.
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If the photon encounters a magnetic field during propagation, the magnetic field has to ramp
up to a non-zero value. The derivatives of the magnetic field structure will generate a small
population of ALPs: we obtain a tiny deviation the propagation eigenstate. This deviation may
usually be neglected if the first derivative of the magnetic field is small enough. Neglecting the
small ALP population is however problematic if absorption is sufficiently strong. The intensity
of photons decreases exponentially, and if the distance to the detector is large enough, there will
be a smaller number of photons than of ALPs no matter how slowly the magnetic field increased
and decreased. The ALPs that were generated by quasi-adiabatic changes of the background will
dominate the propagation after a certain distance from the source (see Fig. 3.2).

With this picture in mind, we derive now an expression for the predicted photon and ALP
population if the background varies extremely slowly. For this discussion, we assume for now
that the azimuthal angle of the magnetic field is zero (φ = 0) so that we only have to consider one
photon polarization. The system then reduces to a 2 × 2 matrix equation. We will also assume
that the magnetic field is zero at the beginning and in the end of the propagation.

The Hamiltonian is a complex symmetric matrix so that the eigenbasis contains two orthogonal
complex propagation eigenvectors: a photon-like eigenvector pγ and an ALP-like eigenvector pa.
The photon-like propagation eigenvector is a photon interaction eigenstate in the absence of a
magnetic field. It contains an admixture of ALP interaction eigenstates when a magnetic field is
present; the difference between propagation and interaction eigenstates is however usually small
for the magnetic fields and energy ranges we consider. Conversely, the propagation eigenstates
pa is a pure ALP interaction eigenstate BT = 0 and contains a photonic part for BT 6= 0.

In the strictly adiabatic case, pγ is never converted into pa and vice versa. The initial condi-
tions and the magnetic field at the position of the detector is enough to completely predict the
abundance of photons and ALPs.

To next order, we allow small changes in the magnetic field that translate into small conver-
sions of pγ to pa. The standard conversion formula reads (see p. 329–331 of Ref. [197])

∂z
[
cj(z)e−iγj(z)

]
= ck(z)

〈pj(z)|∂H
∂z
|pk(z)〉

ωjk(z) ei
∫ z

0 dz′ ωjk(z′)ei[γk(z)−γj(z)] , (3.44)

where ck is explained through the solution of the Schrödinger equation |ψ〉,

|ψ(z)〉 =
∑
n=γ,a

cn(z)e−i
∫ z

0 dz′ En(z′)|pn(z)〉 , (3.45)

with the normalized eigenvector |pn(z)〉, which also appears in Eq. (3.44), and the energy eigen-
values En

Eγ ≈ Tr H ≈ (∆ − i
2Γγ) , (3.46a)

Ea ≈
det H
Tr H ≈ (−∆ − i

2Γγ) (∆aγ/∆ )2 , (3.46b)

which enter Eq. (3.44) via ωjk = Ej−Ek. Finally, γn = 〈pn(z)|ṗn(z)〉 is the Berry phase. Equa-
tion (3.44) is completely general [197] and for a given magnetic field configuration allows one
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to exactly compute the photon and ALP densities. Unfortunately, this method is computationally
demanding.

Let us assume that we start with a pure photon state with no magnetic field background. During
the propagation a magnetic field will be encountered and some ALPs will be produced. Hence,
we look at Eq. (3.44) with j = a and k = γ. The solution of Eq. (3.44) can be simplified by using
the first-order adiabatic approximation which amounts to setting cγ(z) = cγ(0) [197]. Note that
absorption is not contained in cγ(z) because it has been factored out into the complex energy
eigenvalue En in Eq. (3.45). This allows us to set cγ(z) = cγ(0) as long as ca(z) is small so
that the back-reactions can be neglected, which is the case for the initial evolution of the system.
Due to the exponential decay of photons, the first-order adiabatic approximation breaks down
when the number in ALPs equals the number of photons. At this point the hierarchy of the ALP
and photon transfer functions is inverted and the photon transfer function is dominated by the
oscillation of ALPs into photons. As seen before, the ALP transfer function slowly decreases
because of back-reactions into photons.

Let us now estimate the number of ALPs that are produced in the initial part of the evolution
before the hierarchy between photon and ALP numbers is inverted. We write the off-diagonals
of the Hamiltonian ∆aγ(z) as a Fourier transform

∆aγ(z) =
∫ ∞
−∞

dk f(k)eikz , (3.47)

and plug this into Eq. (3.44). Neglecting the Berry phases and using cγ(z) = cγ(0) = 1, the
solution of the differential equation reads

ca(z) =
∫ z

0
dz′

∫∞
−∞ dk ikf(k)eikz′

ωaγ(z′)
ei
∫ z′

0 dz′′ ωaγ(z′′) . (3.48)

For large energies, ∆CMB dominates the energy difference between photons and ALPs, while the
contribution from ∆aγ may be neglected. Then:

ωaγ ≈ −∆osc + i
Γγ
2 , (3.49)

with ∆osc given in Eq. (3.24). It follows that

ca(z) =−
∫ ∞
−∞

dk
∫ z

0
dz′ ikf(k)eikz′

∆osc − iΓγ/2
e−i∆oscz′−Γγz′/2

=−
∫ ∞
−∞

dk ikf(k)
[∆osc − iΓγ/2][i(∆osc − k) + Γγ/2]

[
1− e−i(∆osc−k)z−Γγz/2

]
≈−

∫ ∞
−∞

dk ikf(k)
[∆osc − iΓγ/2][i(∆osc − k) + Γγ/2] ,

(3.50)

where the last step is justified for sufficiently strong absorption and a large distance to the source.
Adiabaticity now means that f(k) for high frequency modes falls off sufficiently fast such that

the integral is dominated by |k| � ∆osc. The solution then reads

|ca(z)|2 =
(
∂z∆aγ(z)

∆2
osc

)2 ∣∣∣∣∣
z=0

, (3.51)
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which is valid until the inversion of the ALP-photon hierarchy. This result indicates that the num-
ber of ALPs that are produced initially is given by the derivative of the magnetic field structure
at the initial point.

After the inversion of the ALP-photon hierarchy, the number of photons will be much smaller
than the number of ALPs. This amounts to ∂zca(z) ≈ 0, i.e., back reactions can be neglected, and
the ALP propagation proceeds solely through the evolution of the complex phase e−i

∫
dz′ Ea(z′)

[see Eq. (3.45)]. Since we are in the regime of small mixing angles, an ALP propagation eigen-
vector is almost purely an ALP interaction eigenstate such that the number of ALPs at distance
d from the initial preparation of the system is

Ta(d) =
(
∂z∆aγ(0)

∆2

)2

e
−
∫ d

0 dz′ Γγ
(

∆aγ (z′)
∆

)2

, (3.52)

where we used Eq. (3.46) for the eigenenergies. The photon transfer function can be obtained
from Eq. (3.52) by noting that if the magnetic field at the detector is zero, the only photons at the
detector are those generated by quasi-adiabatic production similar to the ALP production from
the initial photons. The solution reads

Tγ(d) =
(
∂z∆aγ(d)

∆2

)2 (
∂z∆aγ(0)

∆2

)2

e
−
∫ d

0 dz′ Γγ
(

∆aγ (z′)
∆

)2

, (3.53)

which is proportional to the derivative of the magnetic field at distance d. If there is a residual
magnetic field at the detector, this field will also generate photon interaction eigenstates because
of the misalignment of ALP interaction and propagation eigenstates.

From Eq. (3.53) one can see how the MSW-intuition of adiabaticity is generalized in the pres-
ence of absorption. The photon transfer function still depends on the initial and final magnetic
field configuration but this is not the only contribution: the background magnetic field during
propagation is important as well because it determines the strength of the absorption of ALPs.
The ALP absorption in this case has a different parametrical structure than for non-adiabatic
absorption (cf. Ref. [178]).

We can extend this result to two polarizations if we assume that the initial azimuthal rotation
of the magnetic field is so adiabatic that it can be neglected. If we prepare an unpolarized mixed
state

ρ0 =


1
2 0 0
0 1

2 0
0 0 0

 , (3.54)

the ALP transfer function will be an incoherent sum of the ALPs produced from each photon
polarization

Ta(d) = 1
2 |〈a|γ1(d)〉|2 + 1

2 |〈a|γ2(d)〉|2 , (3.55)

with |γ1(0)〉 = (1, 0, 0) and |γ2(0)〉 = (0, 1, 0), and |a〉 = (0, 0, 1). We see that the result is just
the incoherent sum of the transfer function for each magnetic field direction, i.e., using Eq. (3.52)

Ta(d) = 1
2

(∂z∆aγ,x(0)
∆2

osc

)2

+
(
∂z∆aγ,y(0)

∆2
osc

)2
 e− ∫ z0 dz′ Γγ

(
∆aγ (z′)

∆osc

)2

, (3.56)
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where ∆aγ,x contains the magnetic field in the x-direction ∆aγ,y contains the magnetic field in
the y-direction. Note that the sum in the square parenthesis may be written as (∂z∆aγ(0)/∆2)2

with the total magnetic field instead of its components. Our result in Eq. (3.56) is just half of the
result in Eq. (3.52). This can be directly understood by noting that only the polarization parallel
to the magnetic field contributes. With the initial condition Eq. (3.54) the number of photons
with the parallel polarization is however only half of the number assumed in Eq. (3.52) and the
number of ALPs is halved.

The factor of two suppression directly translates into the photon transfer function, which now
reads

Ta(d) = 1
2∆8

osc

[
∂z∆aγ(0)

]2 [
∂z∆aγ(d)

]2
e
−
∫ z

0 dz′ Γγ
(

∆aγ (z′)
∆osc

)2

, (3.57)

Equations (3.52), (3.56), (3.57) and (3.53) hold for one magnetic field configuration. Since,
we do not know this field, it is desirable to obtain the expectation value for the transfer functions
in the adiabatic case. The mean can be obtained by assuming that spatially separated magnetic
fields are not correlated. This allows us to take the individual expectation values for every piece
in Eqs. (3.52), (3.56), (3.57) and (3.53).

Ta(d) ≈ 1
2∆4

osc

〈[
∂z∆aγ(0)

]2〉
B

exp
[
− Γγ

∆2
osc

〈
∆2
aγ

〉
l,B
d

]
, (3.58)

Tγ(d) ≈ 1
2∆8

osc

〈[
∂t∆aγ(0)

]2〉
B

〈[
∂z∆aγ(d)

]2〉
B

exp
[
− Γγ

∆2
osc

〈
∆2
aγ

〉
l,B
d

]
, (3.59)

where we pulled the expectation value inside the argument of the exponential, which is justified
as long as absorption is small and the linear order in the Taylor expansion of the exponential
dominates.

3.6.3 Numerical results for soft edges

Now that we have an analytical expectations for the photon and ALP transfer function, we may
compare our expectations with numerical simulations. In order to compare the approximations
with hard and soft edges, we generate 1000 different magnetic field structures with hard edges
and interpolate these with the procedure described in Sec. 3.6.1 and with a filling factor equal
to zero. We obtain a continuous magnetic field for every one of the 1000 realizations, which we
may directly insert into the evolution equation (3.29).

The numerical results for the mean photon and ALP transfer functions are displayed in Fig. 3.6.
Here, we plot the mean photon (left) and ALP (right) transfer function for an initial state consist-
ing of unpolarized photons. We generated 1000 magnetic field configurations with hard edges
and interpolated those with polynomials. The results for hard edges are shown in orange. The
results for soft edges are shown in red. For ω → 0 the results for hard edges and soft edges are
consistent with more than 0.1% accuracy. This confirms our suspicion that the transfer function
do not depend on the exact structure of the magnetic field in the non-adiabatic regime, if the
continuous magnetic field is normalized appropriately.
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Figure 3.6: Numerical results for the mean photon transfer function (left) and mean ALP transfer function (right)
for 1000 realizations of magnetic fields with 〈lc〉 = 10 Mpc with hard edges in orange and soft edges
in red. Initially, the photons are in a mixed unpolarized state. The black dashed line is the analytical
prediction Eq. (3.58). The distance to the source is assumed to be 1 Gpc and redshift is neglected.

The results with soft edges starts deviating significantly from the one with hard edges at around
ω = 8 TeV. This can be understood from the fact that the oscillation length and magnetic field
coherence length become equal at approximately 8 TeV, i.e., the ALP-photon systems starts
probing the magnetic field structure considerably.

The black, dashed line in Fig. 3.6 indicates our expectation from the numerical treatment with
results in Eq. (3.58). In the shown range, the analytical curve deviates from the numerical result
by up to a factor 3. For much larger energies, however, we have checked that the analytical results
reproduce numerical results on the 10% level for photons and on the 5% level for ALPs. We are
therefore led to interpret the deviations of the black, dashed line and the red line in Fig. 3.6 as
non-adiabatic contributions that are not captured in our analytical estimate.

3.7 Conclusions
Gamma rays that propagate through extragalactic space are attenuated by pair creation on the
extragalactic background light. The absorption rate of gamma rays from far-away sources is
altered considerably if ALPs exist. In the presence of extragalactic magnetic fields some pho-
tons oscillate into ALPs, which are absorbed much more weakly than photons, and may convert
back to photons close to our galaxy. The ALPs hence shield the power of gamma rays from ab-
sorption on the EBL. Because this mechanism increases the number of gamma rays observed by
Cherenkov telescopes like MAGIC, H.E.S.S., and VERITAS, it might resolve the transparency
problem of the universe, i.e., that the current Cherenkov telescopes observe more energetic pho-
tons than previously expected from estimates of the EBL energy density. While the current status
of this transparency problem is unclear, next generation Cherenkov telescopes like CTA might
illuminate this issue further.

If we consider the ALP-photon mixing scenario, we would like to predict the spectra of indi-
vidual sources. If we knew the structure of the magnetic field along the line of sight to the source,
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predictions for the photon and ALP transfer functions could be obtained straightforwardly. This
magnetic field is however not known, and from measurements and simulations we may only say
that the extragalactic magnetic field is probably homogeneous over several megaparsec with field
strengths below 1 nG.

In order to still obtain predictions for the ALP-photon mixing scenario, previous publications
often adopted a statistical approach: one may compare the mean photon transfer functions to the
spectra of an ensemble of blazars if one assumes some theoretically motivated statistical prop-
erties of the extragalactic magnetic fields. The usual ansatz consisted of magnetic field domains
with a constant comoving length and a constant magnetic field that changes abruptly at the border
between two domains. By generating a large number of such magnetic field configurations and
computing the ALP and photon transfer functions for each of these, one was able to estimate the
mean photon and ALP transfer functions.

The differential equation of Mirizzi and Montanino simplifies this computationally demand-
ing approach. It consists of a system of coupled differential equations that directly yield the
mean and variance of the photon and ALP transfer functions. These equations were also de-
rived for maximal mixing and the same approximations for the structure of the magnetic field in
extragalactic space.

We have shown that the aforementioned computational methods must be reexamined once
we include a recently derived contribution to the photon dispersion from CMB photons. This
dispersion grows linearly with energy and becomes the largest entry of the Hamiltonian matrix
for GeV–TeV photon energies. The refraction on the CMB therefore suppresses the mixing and
it reduces the oscillations length of the photon-ALP system. This brings into question three
of the main assumptions of previous methods: maximal mixing, constant domain sizes, and
discontinuous changes of the magnetic fields at the domain borders (hard edges).

First, we have shown that the mixing angle is not maximal anymore once we include refrac-
tion on the CMB. Since maximal mixing is one of the assumptions of Mirizzi and Montanino,
their differential equations cannot be used naı̈vely for GeV–TeV energies. We extended their
formalism to non-maximal mixing in a straight-forward way: their equations may be used in the
non-maximal mixing regime if the approximate conversion probability P̃aγ = B2

Tl
2
c is replaced

by the average of the exact conversion probability per domain 〈Paγ〉. For non-maximal mixing,
Paγ is suppressed. This means that the probability for photons to oscillate into ALPs is reduced,
and photons are not efficiently shielded from the EBL. Correspondingly for realistic distances
to the source, the photon transfer function is orders of magnitude smaller in the non-maximal
mixing regime than in the maximal mixing scenario.

We have shown that the assumption of constant domain sizes proved to be problematic in the
non-maximal mixing regime. The conversion probability Paγ becomes zero in a domain where
the oscillation length is equal to the domain size because the ALP-photon system undergoes one
oscillation cycle and returns to its initial condition at the end of the domain. If the domain size
is identical for every domain, this resonant suppression is sustained over large distances. We
demonstrated that this resonance can indeed be seen in numerical simulations with a constant
domain length. We discussed how this unphysical behavior can be mended by letting the domain
sizes fluctuate. The resonant behavior vanished when we performed simulations with the domain
lengths drawn from an exponential distribution. In the maximal mixing regime, the photon and
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ALP transfer functions are not sensitive to the exact structure of the magnetic field if the field
is appropriately normalized because the oscillation length is much larger than the magnetic field
domain size. In this regime, we obtained consistent results for the two different probability
distributions of the domain lengths. For non-maximal mixing, i.e., larger energies, the exact
probability distribution becomes important because the conversion probability per domain Paγ is
a nontrivial function of the domain length. Here, the average conversion probability is sensitive
to higher moments of the probability distributions. These corrections become important even
before losc ∼ lc.

The third assumption concerns hard edges, i.e., discontinuous transitions between two do-
mains. When the oscillation length and the coherence length of the magnetic field become of
similar order, we confirmed the expectation that it is important to know the functional form of
the magnetic field at the transition between two domains. To show this, we interpolated with
a continuous function several magnetic field configurations that were generated with a constant
domain size and hard edges. For small energies, ω → 0, the oscillation length is much larger
than the average domain size. As expected, the mean photon and ALP transfer functions were
agnostic to the exact structure in this limit. Significant deviations from the results obtained with
hard edges were obtained for losc & lc. Here, the reason is that the photon-ALP system starts
probing the exact structure of the magnetic field. The evolution becomes quasi-adiabatic.

In this quasi-adiabatic limit, we performed analytical estimates for the mean photon and ALP
transfer functions finding that they could be reasonably well understood from the initial and final
magnetic field configurations and the mean absorption in extragalactic space. In particular for
zero initial and final magnetic fields, the transfer functions are determined by the mean square of
the magnetic field’s derivatives.

Our findings indicate that previous results based on propagation in the extragalactic space have
to be judged with a critical eye. The assumption of maximal mixing has to be discarded for GeV–
TeV energies, and the corresponding results should be reexamined. Special care has to be taken
if the coherence length of the magnetic field becomes of the same order as the oscillation length.
In this case, one requires a realistic magnetic field configuration to make accurate predictions.

Such predictions would be helpful for current and upcoming Cherenkov telescopes. Espe-
cially the Cherenkov Telescope Array will be able to measure the spectra of distant blazars with
unprecedented accuracy while at the same time being sensitive to energies up to several TeV. A
significant hardening of blazar spectra would be a strong indication for the existence of axion-like
particles.
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Chapter 4

Pair correlations in core-collapse
supernovae

Neutrinos undergo flavor oscillations because the weak-interaction and propagation eigenstates are mis-
aligned. Similarly, helicity oscillations are induced by matter currents and electromagnetic fields that
compensate for the angular momentum change. Such background media can also produce pair corre-
lations, which are between a neutrino-antineutrino pair with opposite momentum. In this chapter, we
derive the density matrix equations that unify flavor, helicity and pair correlations in one formalism.
Following earlier approaches, we limit ourselves to the mean-field approximation for homogeneous yet
anisotropic background media, and we explicitly show the evolution equation to first order in the neutrino
mass. For Majorana neutrinos, we find contributions from lepton-number violating correlators that have
been missed in previous works. We also provide a phenomenological discussion of pair correlations in
comparison with helicity correlations.1

4.1 Introduction: the importance of neutrino transport
Neutrinos play an important role in compact astrophysical systems like core-collapse supernovae
and neutron star mergers. The large densities of the order 104 MeV3 of these objects suppress
the mean free path of neutrinos to lengths scales that are comparable to the dimensions of stars.
All other particles are either trapped efficiently (e.g. photons, electrons) or leave unimpeded
(graviton) carrying away energy. Neutrinos are therefore the most relevant vessel to transport
energy and lepton number in these systems.

Indeed, our current understanding of the supernova explosion mechanism relies on neutrino
energy transport to accelerate the shock wave that would otherwise be stalled by infalling matter.
Computer simulations of exploding stars (see Ref. [61] for a review) confirm this picture but they
also find that whether a star explodes or not depends sensitively on the approximations that are
introduced into the computer code. One of these approximations is to neglect neutrino flavor
oscillations.

One might argue that flavor oscillations [64, 65, 199–204] are indeed negligible because inter-
action and propagation eigenstates are almost aligned in dense media. In a supernova, however,
neutrinos are so abundant that ν-ν-refraction contributes substantially to the evolution equations,

1This chapter is based on my paper “Neutrino propagation in media: Flavor, helicity, and pair correlations” [2]
with A. Kartavtsev and G. Raffelt. See also the proceeding [198] for a summary.
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which as a result become non-linear [66–84]. These non-linearities might significantly enhance
flavor conversion. If flavor oscillations were to happen close to the shock wave, neutrino trans-
port would be altered greatly since νe’s are absorbed and their full energy is transmitted while
the other flavors only engage in scatterings with a less efficient energy deposition. Flavor oscil-
lations also alter the energy spectrum of neutrinos because the muon and tau neutrino flavors are
typically more energetic since they decouple at hotter, more dense areas of the supernova core.

The sensitivity of supernova simulations to neutrino physics highlights the importance of fully
understanding the transport equations. A significant step towards this goal was taken by Sigl and
Raffelt in Ref. [26], where the authors derived kinetic equations in the density matrix formalism
that accounted for flavor oscillations and collisions. The equations described the dynamics of
matrices of one-particle correlators ρij ∝ 〈a†jai〉 with number densities on the diagonals and
flavor coherence on the off-diagonals (see Sec. 2.4). These authors discarded other possible
combinations of creation/annihilations operators: helicity flips, i.e, correlators between particles
with different helicity, e.g., 〈a†j,+ai,−〉, were neglected because they would appear to the order
[m/(2E)]2 in the collision term, which is of the tiny order ∼ 10−18 for typical neutrino masses
m and energies E. Moreover, they argued that correlators between neutrinos and antineutrinos,
κ ∝ 〈a†b†〉, feature fast oscillations with a frequency ∼ 2E and would average out to zero.
Recently, the interest in these two types of correlators was renewed in the community [85–90,
205, 206], and also our paper [2] contributed to this discussion.

In a detailed quantum kinetic calculation using the closed-time path formalism [85, 86],
Vlasenko, Cirigliano and Fuller found that helicity flips occur already at the refractive level
and are therefore only suppressed by one mass insertion, m/(2E). While this value is still small,
they showed that a resonant enhancement through an adiabatic branch crossing is conceivable
(although a substantial amount of tuning is necessary [87]). The impact of helicity flips on
supernovae might be significant but depends on the mass type, i.e., if neutrinos have Dirac or
Majorana masses. When the neutrinos are of Dirac type, a helicity flip converts an active into
a sterile neutrino. This sterile partner interacts even more feebly than the active neutrino such
that it streams out of the supernova core unimpeded and its energy is not dumped into the shock
wave. If neutrinos are of Majorana type, a helicity flip converts a neutrino into an antineutrino.
Besides an altered energy transport, such conversions affect the proton-neutron ratio in the outer
parts of the supernova.

Similarly to flavor oscillations, refractive helicity oscillations occur when the background
medium is able to mix different helicity states. Because of angular momentum conservation,
possible candidates for these background media are matter (axial-)vector currents as well as
electromagnetic fields [207–212]. All of the above currents may induce flavor conversions at the
same time.

Helicity flips are clear both conceptually and physically. They feature in this chapter because
they help us to answer questions pertaining to the second type of correlations mentioned above:
the pair correlations denoted by κ. These correlations that were discarded in Ref. [26] reap-
peared in the works of Volpe and collaborators [88–90]. They argued that pair correlations are
an important concept in nuclear physics and that even if they oscillated fast, the average does not
necessarily vanish. In order to treat these correlators on the same footing as flavor oscillations,
they derived [90] the neutrino density matrix equations in the mean-field limit that included he-
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licity flips and pair correlations, explicitly calculating the contributions to first order in m/(2E).
The resulting equations have some perplexing characteristics. The evolution equation for the

pair correlators κ contain a source term that is non-zero even if the system does not contain
neutrinos, i.e., non-zero coherence is inevitable. Moreover, it is not obvious how the naı̈ve
expectation that the pair correlators oscillate with a large frequency is reflected in the kinetic
equations.

Besides these technical issues, the physical interpretation of the concept of pair correlations
has never been discussed in the works [88–90] and their importance for neutrino propagation in
supernovae remained unclear. With these formal and phenomenological questions in mind, we
study pair correlations in the mean-field density matrix formalism in this chapter. We re-derive
the kinetic equations including flavor, helicity and pair correlations for neutrinos of Dirac and
Majorana type. We confirm the previously derived equations for Dirac neutrinos, but find pre-
viously missed [90] additional lepton-number violating contributions in the Majorana case. In
order to arrive at a physical interpretation, we extract a minimal working model of pair correla-
tions by restricting the equations to a one-generation Weyl neutrino propagating in an anisotropic
background; a system that resembles the simplest model of helicity flips (one-flavor Dirac neu-
trino in anisotropic media) in many regards. We show that pair correlations are equivalent to a
coherence between the vacuum and a state that is filled with a neutrino-antineutrino pair with
opposite momentum. Hence, non-zero pair correlations lead to spontaneous pair creation. We
confirm that the oscillation frequency between these two states is given by the energy difference
2E, as naı̈vely expected. On the other hand, the average value for κ is indeed non-vanishing but
typically negligibly small for supernova environments. Finally, we comment on our finding that
Lorentz covariance is not obtained for pair correlations; a problem that still remains open.

Note that our results have been applied recently [205] to argue that efficient flavor conversion
may be triggered by the fast temporal variations inherent to pair correlations. It remains to be
seen if the conversions can be sustained long enough to be of relevance [206].

This chapter is be ordered in the following way: in the next section we will motivate our ap-
proximations and show how flavor and pair correlations can be unified in a single density matrix
equation. As a warm-up, we will parallel Ref. [90] in the derivation of the kinetic equations for
Dirac neutrinos in Sec. 4.3, which will be followed (Sec. 4.4) by the corresponding derivation
for Majorana neutrinos. Here, we will also find the lepton-number violating contributions that
were absent in Ref. [90]. Section 4.5 is devoted to the massless neutrino for two reasons: first, it
will elucidate the perplexing feature that the lepton-number violating correlators of the Majorana
neutrino do not vanish in the zero-mass limit. Second, the Weyl neutrino is a simple toy model
to understand pair correlations. The derived equations will therefore be used in the less tech-
nical sections. For completeness, we show how to include electromagnetic fields to the kinetic
equations in Sec. 4.6. The physical aspects of helicity and pair correlations will be discussed in
Secs. 4.7 and 4.8. There, helicity oscillations are discussed in great detail to facilitate the under-
standing of the physical interpretation of pair correlations. We conclude this chapter in Sec. 4.9.
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4.2 Formalism
Standard Model neutrinos couple via the weak interaction only. For typical core-collapse su-
pernovae neutrinos have a maximal energy of 200 MeV (for degenerate νe), which is below the
mass scale of the weak gauge bosons. Their cross sections are strongly suppressed by the inter-
mediate propagators of W - and Z-bosons, which may be integrated out. In this Fermi limit the
interactions with charged leptons read

Lcc = GF√
2

[¯̀αγµ(1− γ5)να][ν̄βγµ(1− γ5)`β] , (4.1)

where GF =
√

2g2
W/(8m2

W) ≈ 1.17×10−5 GeV−2 [10] is the Fermi constant, which contains the
weak coupling constant gW and the W -boson mass mW. The indices α and β are flavor indices.
Measurements of the width of the Z-boson resonance suggest that there are three light neutrino
flavors [213]; a result which is consistent with cosmological observations of the number of light
degrees of freedom [189].

To describe flavor oscillations in the density matrix formalism, Ref. [26] did not need to dis-
tinguish between Dirac and Majorana neutrinos because neutrinos and antineutrinos propagated
separately. As soon as we want to describe helicity and pair correlations, the distinction becomes
important: for Majorana neutrinos a helicity flip corresponds to a conversion of a particle to an
antiparticle, which is not the case for a Dirac neutrino. Pair correlations, on the other hand, cou-
ple the propagation of neutrinos and antineutrinos for both Dirac and Majorana neutrinos, but
additional consistency relations apply for Majorana neutrinos because of the reduced number of
degrees of freedom.

As described in Sec. 2.4 for Dirac neutrinos, we may describe the evolution in terms of the
following density matrices and pair correlations that take into account flavor and helicity coher-
ence [26, 85, 90, 123, 214]. The matrices that only include either particles or antiparticles read

(2π)3δ(3)(p− k)ρij,sh(t,p) = 〈a†j,h(t,+k)ai,s(t,+p)〉 , (4.2a)

(2π)3δ(3)(p− k)ρ̄ij,sh(t,p) = 〈b†i,s(t,−p)bj,h(t,−k)〉 , (4.2b)

with flavor-basis indices i, j, which we choose to represent mass eigenstates in the following
while flavor eigenstates will be denoted with Greek letters α, β, and helicity indices s, h ∈
{+,−}. We stress that we use a convention where the density matrix for antineutrinos ρ̄ij,sh(t,p)
with momentum p actually corresponds to the occupation numbers of antineutrinos with phys-
ical momentum −p. This convention is necessary to combine ρ and ρ̄ in one matrix equation
together with the pair correlations, which are defined as [89, 90]

(2π)3δ(3)(p− k)κij,sh(t,p) = 〈bj,h(t,−k)ai,s(t,+p)〉 , (4.3a)

(2π)3δ(3)(p− k)κ†ij,sh(t,p) = 〈a†j,h(t,+p)b†i,s(t,−k)〉 , (4.3b)

and which involve opposite-momentum modes. We argued before in Sec. 2.4 that the expectation
value of two operators with different flavor in Eq. (4.2) violate energy conservation slightly. This
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offset then leads to slow oscillations of the off-diagonal density matrix elements with a frequency
that is proportional to the amount of energy violation. Similarly, we see that the κ-correlators
violate energy conservation by a large amount. We therefore expect them to oscillate fast as we
will confirm further below.

Following the earlier literature [88–90], we unify the Dirac expressions (4.2) and (4.3) in an
extended density matrix

R =
(
ρ κ
κ† 1− ρ̄

)
, (4.4)

which obeys an equation of motion of the form [88–90]

iṘ = [H,R] . (4.5)

Here, H is a matrix of oscillation frequencies that are derived from the Hamiltonian. Hence, we
will call H the Hamiltonian matrix. It contains the dynamical information, e.g. the usual vacuum
oscillations are contained in a submatrix M2/2E, where M2 is the matrix of squared neutrino
masses. Large parts of the following sections will be devoted to deriving its components. In or-
der to obtain a matrix of oscillation frequencies, we will apply the mean-field approximation (see
e.g. Ref. [32]). This means that we will replace pairs of creation and/or annihilation operators by
their expectation value until we obtain a bilinear Hamiltonian. The frequencies associated with
these bilinears will be the entries of the Hamiltonian matrix. Physically, this approximation cor-
responds to studying single-particle dynamics in a classical background. Note that this splitting
is akin to the molecular chaos hypothesis that we applied to obtain the Boltzmann equation in
Sec. 2.2. We will always assume that the background is homogeneous such that the Hamiltonian
matrix describes forward-scattering and couples objects of equal momenta.

In order to structure the components of the Hamiltonian matrix, we decompose the Hamilto-
nian matrix into four matrix-valued entries [88]

H =
(

Hνν Hνν̄

Hν̄ν Hν̄ν̄

)
. (4.6)

The sub-matrices Hνν , Hνν̄ etc. as well as ρ, κ and ρ̄ are 6×6 matrices in helicity and flavor
space. The product between such matrices in the commutator is defined in the obvious way
(A ·B)ij,sh ≡ Ain,srBnj,rh with a summation over repeated indices. In the following we write
the matrix structure in the form of 2×2 matrices in helicity space,

 −− ij
−+

ij

+−
ij

++
ij

 , (4.7)

where each entry is itself a 3×3 matrix in flavor space.
For Majorana neutrinos, we have half as many degrees of freedom as for Dirac neutrinos. The
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components of the extended density matrix R are now defined as

(2π)3δ(3)(p− k)ρij,sh(p) = 〈a†j,h(+k)ai,s(+p)〉 , (4.8a)

(2π)3δ(3)(p− k)ρ̄ij,sh(p) = 〈a†i,s(−p)aj,h(−k)〉 , (4.8b)

(2π)3δ(3)(p− k)κij,sh(p) = 〈aj,h(−k)ai,s(+p)〉 , (4.8c)

(2π)3δ(3)(p− k)κ†ij,sh(p) = 〈a†j,h(+p)a†i,s(−k)〉 , (4.8d)

where all operators are taken at the same time t. In the Dirac case, κ† did not have additional
information relative to κ. In the Majorana case, we have additional redundancies

ρ̄ij,sh(t,p) = ρji,hs(t,−p) , (4.9a)
κij,sh(t,p) = −κji,hs(t,−p) , (4.9b)

which reflect the reduction of degrees of freedom. Note that in the Majorana case, the pair
correlations may violate total lepton number if the helicities are aligned.

4.3 Dirac neutrino
Our first goal is to derive for Dirac neutrinos the components of the Hamiltonian matrix H which
govern the evolution equation (4.5) for the extended density matrix R including flavor, helicity,
and pair correlations. Here, helicity correlations involve the sterile components of the neutrino
field, which otherwise are completely decoupled. This technical section shows in some detail the
necessary calculations which might be helpful for the understanding of the later computations
for Majorana and Weyl neutrinos.

4.3.1 Two-point correlators and kinetic equations
The kinetic equations for the density matrices Eqs. (4.2) and (4.3) are obtained with the Heisen-
berg equation of motion as shown in Sec. 2.4. Here, we will employ the mean-field approxima-
tion, i.e., we decompose all terms in the Hamiltonian into a product of two creation/annihilation
operators and a mean background field. Assuming spatial homogeneity, the interaction Hamilto-
nian may be written in the compact form

Hmf =
∫

d3x ν̄i(t,x)Γijνj(t,x) , (4.10)

where the summation over repeated indices is implied. The operators are carried by the neutrino
field

νi(t,x) ≡
∑
s

∫ d3p
(2π)3 e

ip·xνi,s(t,p) , (4.11)

νi,s(t,p) ≡ ai,s(t,p)ui,s(p) + b†i,s(t,−p)vi,s(−p) . (4.12)
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The operators a, b satisfy the usual anticommutation relations (2.27). We decompose the kernel
Γij into Dirac matrices and a potential, which are both specific for the background medium and
type of interaction. For a left-chiral interaction with a background medium, it reads

Γij = γµPLV
µ
ij , (4.13)

where PL = (1 − γ5)/2 is the usual left-chiral projector. The current of background matter V µ
ij

will be defined in Eq. (4.34).
Note that Eq. (4.10) contains products of operators that lead to particle-antiparticle correlators,

i.e., ab and b†a†. We want to extract the dynamics of the different operator combinations, which
are given by the kernels Γij . Motivated by these operator combinations and following [90], we
define the matrices

Γννij,sh(p) ≡ ūi,s(+p)Γijuj,h(+p) , (4.14a)

Γνν̄ij,sh(p) ≡ ūi,s(+p)Γijvj,h(−p) , (4.14b)

Γν̄νij,sh(p) ≡ v̄i,s(−p)Γijuj,h(+p) , (4.14c)

Γν̄ν̄ij,sh(p) ≡ v̄i,s(−p)Γijvj,h(−p) , (4.14d)

in component form. We can now bring Eq. (4.10) to the desired form bilinear in the creation and
annihilation operators

Hmf =
∫ d3p

(2π)3

[
a†i,s(+p)Γννij,sh(p)aj,h(+p)

+a†i,s(+p)Γνν̄ij,sh(p)b†j,h(−p)
+bi,s(−p)Γν̄νij,sh(p)aj,h(+p)
+bi,s(−p)Γν̄ν̄ij,sh(p)b†j,h(−p)

]
,

(4.15)

where we have omitted the time arguments to shorten the notation. Here again, summation over
repeated indices is implied. From Eq. (4.15), we see that the Hamiltonian matrix is obtained by
identifying Hνν

ij,sh = Γννij,sh, Hνν̄
ij,sh = Γνν̄ij,sh etc.

4.3.2 Mean-field limit of the Dirac Hamiltonian
After having established the overall structure of the kinetic equations, we now turn to computing
the mean-field limit of the various interactions that appear in the Hamiltonian. In this subsection,
we only consider charged and neutral current neutrino interactions, whereas the analysis of the
electromagnetic interactions is postponed to Sec. 4.6.

Charged-current interaction

We begin with charged-current (cc) interactions with charged leptons, which will form a classical
background after applying the mean-field approximation. In the Fermi limit, the interaction
Hamiltonian of the cc-current reads

Hcc =
∑
α,β

∫
d3x 2

√
2GF[¯̀αγµPLνα][ν̄βγµPL`β] , (4.16)
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where ` denotes the spinors of charged leptons with lepton flavor given by α, β ∈ {e, µ, τ}.
Expression (4.16) can be rearranged such that charged leptons are grouped in one spinor product
and the neutrinos in another. The corresponding Fierz transformation reads [215]

[¯̀αγµPLνα][ν̄βγµPL`β] = [¯̀αγµPL`β][ν̄βγµPLνα] , (4.17)

and the charged current Hamiltonian density is thus:

Hcc =
√

2GF
∑
α,β

[
ν̄αγ

µPLνβ
][

¯̀
βγµ(1− γ5)`α

]
. (4.18)

In order to obtain the neutrino mean-field Hamiltonian density, we replace the second bracket
by its expectation value. In the supernova environment, the temperature is too low to support a
substantial density of muons or tauons, and we use only the electron background. Then we find
in the mass basis

Hcc
mf =

√
2GF

∑
i,j

[
ν̄iγ

µPLνj
][
U †ieI

µ
ccUej

]
, (4.19)

where U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. We have introduced a linear
combination of vector and axial-vector charged electron currents,

Iµcc ≡ cV 〈ēγµe〉 − cA〈ēγµγ5e〉 , (4.20)

where cV = cA = 1. Because electrons are the only background particles contributing to charged
current interactions and to simplify the notation, an “e” index is implied in Iµcc. If the electrons
are not polarized, the axial current vanishes and Iµcc = Jµe , the “convective” electron current.

Neutral-current interaction with matter

The neutral-current (nc) interactions with matter are described in the mass basis by the Hamilto-
nian density

Hnc =
√

2GF
∑
i,f

[
ν̄iγµPLνi

][
ψ̄fγ

µ(cfV−c
f
Aγ

5)ψf ] , (4.21)

where f denotes electrons, protons, and neutrons. The resulting contribution to the mean-field
Hamiltonian density can be divided into three parts

Hnc
mf =

√
2GF

∑
i

[
ν̄iγµPLνi

][
Iµnc + Iµp + Iµn ] , (4.22)

where Iµnc denotes the electron neutral current (index e implied), whereas the other contributions
refer to protons and neutrons as explicitly indicated.

These currents are defined in analogy to Eq. (4.20) with the appropriate coupling constants.
For electrons, they are given by cV = −1

2 +2 sin2 θW (weak mixing angle θW) and cA = −1
2 . For

protons, cV = 1
2 − 2 sin2 θW, i.e., the same as for electrons with opposite sign, and for neutrons
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cV = −1
2 . For the nucleon axial vector one often uses cA = ±1.26/2 in analogy to their charged

current. However, the strange-quark contribution to the nucleon spin as well as modifications
in a dense nuclear medium leave the exact values somewhat open [216, 217], and might lead to
successful supernova simulations [62].

In an unpolarized and electrically neutral environment, the axial currents disappear and the
electron and proton contributions to the convective neutral current cancel such that in Eq. (4.22)
we have Iµnc + Iµp + Iµn = −1

2J
µ
n , where Jµn is the neutron convective current. Neutrino refraction

in such a medium depends only on the charged electron current and the neutral neutron current.

Neutrino-neutrino interaction

The most complicated interaction term is the neutral-current neutrino-neutrino scattering. In the
mass basis, it is described by the Hamiltonian density

Hνν = 1√
2

GF
∑
ij

[
ν̄iγµPLνi

][
ν̄jγ

µPLνj
]
. (4.23)

To obtain the mean-field Hamiltonian bilinear in the neutrino fields, we need to replace products
of two of the four neutrino fields in this expression by their expectation value.

To decompose Eq. (4.23), it is convenient to go to the two-component spinor representation of
Ref. [218] (see also appendix A.3 in this thesis). In our convention

γ0γµ
1− γ5

2 =
(
σ̄µ 0
0 0

)
, (4.24)

with the vector of Pauli-matrices

σ̄µ =
(
σ0

−σi
)
. (4.25)

We see that only a 2 × 2 submatrix of the 4 × 4 Dirac matrices contribute, which allows us to
write the Hamiltonian density of Eq. (4.23) in the form

Hνν = GF√
2
∑
i,j

[ν†i,α̇σ̄µ,α̇βνi,β][ν†
j,ζ̇
σ̄ζ̇ξµ νj,ξ] , (4.26)

where α̇, β, ζ̇, ξ ∈ {1, 2} and να is the (1/2, 0)-part of the four-spinor ν (see appendix A.3). The
second two-spinor does not appear in this expression due to the chiral projections.

If we take the expectation value and group all possible combinations of spinors, we obtain four
different kinds of terms

Hνν
mf = GF√

2
∑
ij

[
2ν†i,α̇σ̄µ,α̇βνi,β〈ν

†
j,ζ̇
σ̄ζ̇ξµ νj,ξ〉+ 2ν†i,α̇σ̄µ,α̇β〈νi,βν

†
j,ζ̇
〉σ̄ζ̇ξµ νj,ξ

−ναi σ
µ

αβ̇
〈ν†,β̇i ν†

j,ζ̇
〉σ̄ζ̇ξµ νj,ξ − ν

†
i,α̇σ̄

µ,α̇β〈νi,βνξj 〉σµ,ξζ̇ν
ζ̇
j

]
,

(4.27)
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where in the last two terms we anticommuted two neutrino fields and applied the identity (Eq.
2.30 in Ref. [218])

σµαα̇ = εαβεα̇β̇σ̄
µ,β̇β . (4.28)

The last two terms in Eq. (4.27) are lepton-number violating and will be discarded in this Dirac
treatment. They will reappear in the computation for the Majorana neutrinos.

The second term of Eq. (4.27) may be brought into a more convenient form by virtue of the
Fierz identity2

σ̄µ,α̇ασ̄β̇βµ = −σ̄µ,α̇βσ̄β̇αµ . (4.29)

Anticommuting again, the expression for the Dirac neutrinos reads

Hνν
mf =
√

2GF
∑
ij

[
ν†i,α̇σ̄

µ,α̇βνi,β〈ν†j,ζ̇ σ̄
ζ̇ξ
µ νj,ξ〉+ ν†i,α̇σ̄

µ,α̇βνj,β〈ν†j,ζ̇ σ̄
ζ̇ξ
µ νi,ξ〉

]
=
√

2GF
∑
ij

[
ν̄†i γ

µPLνi〈ν̄†jγµPLνj〉+ ν̄iγ
µPLνj〈ν̄jγµPLνi〉

]
,

(4.30)

In line with our previous notation, we denote the mean-field as

Iµij ≡ 〈ν̄jγµPLνi〉 . (4.31)

For simplicity, we avoid an explicit “neutrino” and “nc” index, i.e., expressions of the type Iµij
always refer to the neutral neutrino current for the mass states i and j. An explicit expression in
terms of the density matrices and pair correlators will be given in Eq. (4.36) below. Altogether,
we obtain

Hνν
mf =

√
2GF

∑
ij

[
ν̄iγµPLνj

][
Iµij + δij

∑
kI

µ
kk

]
(4.32)

for the neutrino-neutrino mean-field Hamiltonian.

4.3.3 Components of the Hamiltonian matrix: Dirac neutrino

We may now derive the explicit form of the components of the Hamiltonian matrix. Adding up
Eqs. (4.19), (4.22), and (4.32) and using the spinor contractions defined in Eq. (4.14), we find
that the components of the Hamiltonian matrix H are of the form

Hνν
ij,sh = (γµPL)ννij,shV

µ
ij + δshδijEi , (4.33a)

Hνν̄
ij,sh = (γµPL)νν̄ij,shV

µ
ij , (4.33b)

Hν̄ν
ij,sh = (γµPL)ν̄νij,shV

µ
ij , (4.33c)

Hν̄ν̄
ij,sh = (γµPL)ν̄ν̄ij,shV

µ
ij − δshδijEi , (4.33d)

2The identity can be found in Eq. B.1.31 in Ref. [218]. Note, however, that there is a typo and the σ-matrices on
the right-hand side have to be replaced by σ̄ as follows for example from Eq. B.1.34 of Ref. [218].
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where Ei = (p2 + m2
i )

1
2 is the neutrino energy, and we have identified Hνν = Γνν , Hνν̄ = Γνν̄ ,

etc.3. The currents V µ
i is given by

V µ
ij =

√
2GF

[
U †ieI

µ
ccUej + δij(Iµnc + Iµp + Iµn ) + Iµij + δij

∑
kI

µ
kk

]
, (4.34)

and we have used the compact notation

(γµPL)ννij,sh ≡ ūi,s(+p)γµPLuj,h(+p) , (4.35a)

(γµPL)νν̄ij,sh ≡ ūi,s(+p)γµPLvj,h(−p) , (4.35b)

(γµPL)ν̄νij,sh ≡ v̄i,s(−p)γµPLuj,h(+p) , (4.35c)

(γµPL)ν̄ν̄ij,sh ≡ v̄i,s(−p)γµPLvj,h(−p) . (4.35d)

Later we will use similar expressions for contractions with other Dirac structures. The neu-
trino mean-field current itself contains spinor contractions of the type of Eq. (4.35) and can be
expressed in terms of the density matrices and pair correlations as

Iµij =
∑
s,h

∫ d3p
(2π)3

[
(γµPL)ννji,hsρij,sh + (γµPL)ν̄ν̄ji,hs(δijδsh − ρ̄ij,sh)

+(γµPL)ν̄νji,hsκij,sh + (γµPL)νν̄ji,hsκ
†
ij,sh

]
.

(4.36)

Note that in this case there is no implied summation over i and j. The second term on the
right-hand side contains a divergent vacuum contribution that must be renormalized.

In order to evaluate the spinor contractions explicitly to lowest order in neutrino masses, we
introduce

nµ =
(

1
p̂

)
, n̄µ =

(
1
−p̂

)
, εµ =

(
0
ε̂

)
, (4.37)

where p̂ is a unit vector in the momentum direction and the complex polarization vectors ε̂ and
ε̂∗ span the plane orthogonal to p (see Appendix A.3 for more details). We also use φ to denote
the polar angle of p in spherical coordinates. To lowest order in mi, the spinor contractions are
found to be (see Appendix A.3)

(γµPL)ννij,sh ≈
 nµ −e+iφmj

2p ε
∗
µ

−e−iφmi2p εµ 0

 , (4.38a)

(γµPL)νν̄ij,sh ≈
−e+iφmj

2p nµ ε∗µ
0 −e−iφmi2p n̄µ

 , (4.38b)

(γµPL)ν̄νij,sh ≈
−e−iφmi2p nµ 0

εµ −e+iφmj
2p n̄µ

 , (4.38c)

(γµPL)ν̄ν̄ij,sh ≈
 0 −e−iφmi2p ε

∗
µ

−e+iφmj
2p εµ n̄µ

 , (4.38d)

3This distinction between Γ and H may seem rather superfluous at this point. It will be of importance for the
Majorana case, however.
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where in the denominator we identify p = |p|, and we use the notation introduced in Eq. (4.7).
As an example, the νν term, Eq. (4.38a), reads explicitly

−− νν

ij
=

1 1 1
1 1 1
1 1 1

 nµ , (4.39a)

−+ νν

ij
= − 1

2p

m1 m2 m3
m1 m2 m3
m1 m2 m3

 e+iφε∗µ , (4.39b)

+− νν

ij
= − 1

2p

m1 m1 m1
m2 m2 m2
m3 m3 m3

 e−iφεµ , (4.39c)

++ νν

ij
= 0 . (4.39d)

These results agree with those obtained by Serreau and Volpe [90].

4.4 Majorana neutrino
From a theoretical perspective, it is quite natural for neutrino masses to be of Majorana type
because this allows them to be created via a type I seesaw mechanism that may also lead to
successful Leptogenesis (see chapter 5). In this case, the total number of degrees of freedom
is reduced. In the massless limit, the two helicity states of a given family can be identified
with neutrino and antineutrino states. A mass term allows mixing between the helicity states and
therefore violates lepton number conservation. There are no sterile degrees of freedom. We work
out the modifications of the results of the previous section for the Majorana case, concentrating
again on technical issues.

4.4.1 Mean-field limit of the Majorana Hamiltonian
In the Majorana case, the momentum decomposition of the neutrino field looks the same as for
the Dirac case Eq. (4.11). However, because there are no independent antiparticle degrees of
freedom, the field mode p has the simpler form

νi,s(t,p) = ai,s(t,p)ui,s(p) + a†i,s(t,−p)vi,s(−p) . (4.40)

The creation and annihilation operators satisfy the anticommutation relations Eq. (2.27) and the
bispinors are the same as in the Dirac case.

The mean-field Hamiltonian, bilinear in the neutrino creation and annihilation operators, is
identically formed as the Dirac mean-field Hamiltonian Eq. (4.10). However, because of the
lepton-number violating terms we discarded in Eq. (4.27), the kernel has a more general structure
as we will demonstrate below,

Γij = γµPLV
µ
ij + PLV

R
ij + PRV

L
ij . (4.41)
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The first piece, V µ
ij , is defined as in Eq. (4.34). In addition, there are two scalar pieces

V L,R
ij =

√
2GFI

L,R
ij , (4.42)

depending, as we will see, on the left-chiral and right-chiral neutrino mean-field scalar back-
ground

IL,Rij = 〈ν̄jPL,Rνi〉 . (4.43)

These scalar pieces are missing in the previous literature [90], and are one of the main result
of this chapter. Their explicit form in terms of the density matrices and pair correlators will be
given in Eq. (4.55).

The mean-field Hamiltonian can be written in a form similar to Eq. (4.15),

Hmf =
∑
s,h

∫ d3p
(2π)3

[
a†i,s(+p)Γννij,sh(p)aj,h(+p)

+a†i,s(+p)Γνν̄ij,sh(p)a†j,h(−p)
+ai,s(−p)Γν̄νij,sh(p)aj,h(+p)
+ai,s(−p)Γν̄ν̄ij,sh(p)a†j,h(−p)

]
,

(4.44)

where the matrices Γνν , Γνν̄ , etc. are the spinor contractions defined in Eq. (4.14). Using the
Heisenberg equation of motion with the Hamiltonian Eq. (4.44) one recovers the equation of
motion iṘ = [H,R], where R and H have the same structure as in Eq. (4.6). The components of
the effective Hamiltonian now read [90]

Hνν
ij,sh(p) = Γννij,sh(p)− Γν̄ν̄ji,hs(−p) , (4.45a)

Hνν̄
ij,sh(p) = Γνν̄ij,sh(p)− Γνν̄ji,hs(−p) , (4.45b)

Hν̄ν
ij,sh(p) = Γν̄νij,sh(p)− Γν̄νji,hs(−p) , (4.45c)

Hν̄ν̄
ij,sh(p) = Γν̄ν̄ij,sh(p)− Γννji,hs(−p) . (4.45d)

Not all of these components are independent. In particular

Hν̄ν̄
ij,sh(p) = −Hνν

ji,hs(−p) , (4.46a)

Hνν̄
ij,sh(p) = −Hνν̄

ji,hs(−p) , (4.46b)

and together with the Hermiticity of the Hamiltonian, only two of the four sub-matrices of H are
independent.

Neutrino-neutrino mean-field Hamiltonian

The Majorana neutrino interaction with matter is described by the same charged- and neutral-
current Hamiltonian densities Eqs. (4.18) and (4.21) which lead to the same mean-field currents
of electrons and nucleons [see Eqs. (4.19) and (4.22)].
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The neutrino-neutrino interaction in the Majorana case is also described by Eq. (4.23). How-
ever, Majorana neutrinos violate lepton-number conservation, so we should not discard the pre-
viously neglected lepton-number violating combinations 〈νiνj〉 and 〈ν̄iν̄j〉. Let us therefore take
a look at the lepton-violating terms:

Hνν
mf,/l = −GF√

2
∑
ij

[
ναi σ

µ

αβ̇
〈ν†,β̇i ν†

j,ζ̇
〉σ̄ζ̇ξµ νj,ξ + ν†i,α̇σ̄

µ,α̇β〈νi,βνξj 〉σµ,ξζ̇ν
ζ̇
j

]
. (4.47)

The Pauli matrices can be rewritten using the identity (Eq. B.1.32 of Ref. [218])

σµαα̇σ̄
β̇β
µ = 2δ βα δ

β̇
α̇ . (4.48)

With the resulting identity matrices and after anticommuting two spinors, we obtain

Hνν
mf,/l =

√
2GF

∑
ij

[
ναi νj,α〈ν

†
j,β̇
ν†,β̇i 〉+ ν†i,α̇ν

†,α̇
j 〈ν

β
j νi,β〉

]
. (4.49)

The contractions may be rewritten in bispinor language by noting that for Majorana fields

ν̄ν =
(
να, ν†α̇

)( να
ν†,α̇

)
= νανα + ν†α̇ν

†,α̇ , (4.50)

and
νανα = ν̄PLν ,

ν†α̇ν
†,α̇ = ν̄PRν .

(4.51)

Hence, the contractions are just products of two bispinors with a chirality projection. Writing the
expectation values as ILij and IRij , we obtain for the new contribution to the mean-field Hamilto-
nian density

Hνν
mf =

√
2GF

∑
ij

([
ν̄iPRνj

]
ILij +

[
ν̄iPLνj

]
IRij

)
. (4.52)

These new terms supplement the expression for the effective Majorana Hamiltonian obtained in
the previous literature [90].

An alternative way to write the above equation is in terms of charged conjugates. Equa-
tion (4.47) reads

Hνν
mf =

√
2GF

∑([
ν̄νc

]
IL +

[
νcν

]
IR
)
, (4.53)

with the definitions of appendix A.3 and

IL = 〈νcν〉 and IR = 〈ν̄νc〉 . (4.54)

But νcν is a component of a Majorana mass term. Hence, we see again that these terms are
indeed lepton-number violating.
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4.4.2 Components of the Hamiltonian matrix: Majorana neutrino
The new contributions stemming from neutrino-neutrino interactions can be expressed in terms
of the (anti)particle densities and pair correlators,

ILij =
∑
s,h

∫ d3p
(2π)3

[
(PL)ννji,hsρij,sh + (PL)ν̄ν̄ji,hs(δijδsh − ρ̄ij,sh)

+(PL)ν̄νji,hsκij,hs + (PL)νν̄ji,hsκ
†
ij,sh

]
,

(4.55)

where we have again suppressed the common arguments (t,p). The notation for the scalar
contractions (PL)ννij,sh etc. is analogous to Eq. (4.35), except that now there is no γµ included.

To lowest order in the small neutrino masses we find, using the explicit form of the chiral
spinors of Appendix A.3,

(PL)ννij,sh ≈
mi

2p 0
0 mj

2p

 , (4.56a)

(PL)νν̄ij,sh ≈
(

0 0
0 −e−iφ

)
, (4.56b)

(PL)ν̄νij,sh ≈
(
e−iφ 0

0 0

)
, (4.56c)

(PL)ν̄ν̄ij,sh ≈
−mj

2p 0
0 −mi

2p

 . (4.56d)

The components of (PR) can be obtained from these results using the relations (PR)ννij,sh =
[(PL)ννji,hs]∗ and (PR)νν̄ij,sh = [(PL)ν̄νji,hs]∗, as well as similar relations for the remaining two com-
ponents.

Using the definitions Eq. (4.45) combined with Eq. (4.38) and the corresponding definition for
the scalar case, we obtain for the νν component of H

Hνν
ij,sh(p) = δshδijEi + (γµPL)ννij,sh(p)V µ

ij − (γµPL)ν̄ν̄ji,hs(−p)V µ
ji

+ (PL)ννij,sh(p)V R
ij − (PL)ν̄ν̄ji,hs(−p)V R

ji

+ (PR)ννij,sh(p)V L
ij − (PR)ν̄ν̄ji,hs(−p)V L

ji .

(4.57)

The first line generalizes the Dirac result of Eq. (4.33a) to the Majorana case and has been
obtained in Ref. [90]. The second and third lines stem from the the contractions Eq. (4.52) and
supplement the previous results.

The ν̄ν̄ term follows from the identity Eq. (4.46). For the νν̄ component we find

Hνν̄
ij,sh(p) = (γµPL)νν̄ij,sh(p)V µ

ij − (γµPL)νν̄ji,hs(−p)V µ
ji

+ (PL)νν̄ij,sh(p)V R
ij − (PL)νν̄ji,hs(−p)V R

ji

+ (PR)νν̄ij,sh(p)V L
ij − (PR)νν̄ji,hs(−p)V L

ji . (4.58)
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The ν̄ν component follows from replacing νν̄ with ν̄ν everywhere in this result.
Inspection of Eqs. (4.55) and (4.56) shows that the last two lines of Eq. (4.57) contain terms

proportional to κ and κ† that are linear in the neutrino masses, and additionally terms quadratic
in the neutrino masses which we neglect here.

A peculiar feature of Eq. (4.58) is that its last two lines contain terms proportional to κ and
κ† that are not suppressed by the neutrino masses and therefore do not vanish when we set the
masses to zero. This is somewhat surprising because we expect that Dirac and Majorana neutri-
nos are equivalent for mν → 0. Therefore, the components of H must coincide in this limit. We
return to this questions in Sec. 4.5, where we study the case of massless two-component neutri-
nos and demonstrate that in the massless limit these additional terms, which are proportional to
the lepton-number violating correlators, are not produced if they are zero initially.

On the other hand, one important finding of this section is that for a Majorana neutrino with
an arbitrary small mass, lepton-number violating correlators are automatically produced and,
in turn, induce the additional scalar background terms of the mean-field Hamiltonian which
then affect the dynamics of the density matrices. Lepton-number violating correlators cannot be
avoided.

4.5 Weyl neutrino
In the previous section we have found that the additional scalar contributions to the mean-field
Hamiltonian, that naturally arise for Majorana neutrinos, do not vanish in the massless limit. This
is somewhat surprising because we expect no difference between Dirac and Majorana neutrinos
in this case. In order to clarify this paradox, we study a single generation of massless neutri-
nos. The equations presented in this section will also be used later to study particle-antiparticle
coherence.

4.5.1 Standard two-point correlators and kinetic equations
In the Weyl case, the momentum decomposition of the neutrino field looks the same as for the
Dirac case Eq. (4.11). However, because a Weyl fermion has only two degrees of freedom the
field mode p does not carry a spin index,

ν(t,p) = a(t,p)u−(p) + b†(t,−p)v+(−p) . (4.59)

It is automatically left-chiral because the right-chiral components of the chiral spinors u−(p) and
v+(−p) vanish in the massless limit, see Appendix A.3.

If we require lepton-number conservation then the only correlators that do not vanish are

(2π)3δ(3)(p− k)ρ--(p) = 〈a†(+k)a(+p)〉 , (4.60a)

(2π)3δ(3)(p− k)ρ̄++(p) = 〈b†(−k)b(−p)〉 , (4.60b)

(2π)3δ(3)(p− k)κ-+(p) = 〈b(−k)a(+p)〉 , (4.60c)

(2π)3δ(3)(p− k)κ†+-(p) = 〈a†(+p)b†(−k)〉 . (4.60d)
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Note that we keep helicity indices in the definitions of the density matrices to distinguish the
lepton-number conserving correlators from the lepton-number violating ones, which we intro-
duce below in Sec. 4.5.2.

We can extract the explicit form of the kinetic equations for these correlators from Eq. (4.5),

iρ̇-- = Hνν
-- ρ-- − ρ--Hνν

-- + Hνν̄
-+κ
†
+- − κ-+Hν̄ν

+- , (4.61a)

i ˙̄ρ++ = Hν̄ν̄
++ρ̄++ − ρ̄++Hν̄ν̄

++ − Hν̄ν
+-κ-+ + κ†+-Hνν̄

-+ , (4.61b)
iκ̇-+ = Hνν

-- κ-+ − κ-+Hν̄ν̄
++ − Hνν̄

-+ ρ̄++ − ρ--Hνν̄
-+ + Hνν̄

-+ , (4.61c)

where we omit the arguments (t,p), which are common to all the functions, to shorten the
notation. Note that for a single neutrino generation the first two terms in Eqs. (4.61a) and (4.61b)
cancel each other and we have retained them only to keep the resemblance with the general form
of the kinetic equations.

A peculiar feature of (4.61c) is that κ, i.e., coherence between |00〉 and |11〉 states, is automat-
ically induced provided that the mean-field Hamiltonian matrix Hmf has nonzero off-diagonals
because of the last term on the right-hand side. The off-diagonals are non-zero even if all neu-
trino two-point functions are zero initially if the background medium contains, for instance, a
transverse neutron current [cf. Eq. (4.33) with Eq. (4.34)].

The explicit form of the mean-field Hamiltonian can be obtained from Eq. (4.38) by setting
the masses to zero,

Hνν
-- (p) = E + V 0 − p̂ ·V , (4.62a)

Hνν̄
-+(p) = −ε̂∗ ·V , (4.62b)

Hν̄ν
+-(p) = −ε̂ ·V , (4.62c)

Hν̄ν̄
++(p) = −E + V 0 + p̂ ·V , (4.62d)

where E = |p|. Note that the p̂ · V term in Eq. (4.62a) accounts for the enhancement (sup-
pression) of the mean-field potential for the matter flowing antiparallel (parallel) to the neutrino
momentum. This point has been observed in Ref. [208].

It remains to express the neutrino current Iµ in terms of the density matrices and pair correla-
tions. For its zero component we obtain from Eq. (4.36), I0 =

∫
d3p/(2π)3 `, where `(t,p) ≡

ρ(t,p)− ρ̄(t,−p) has the meaning of lepton number in mode p. For the spatial components we
find

I =
∫ d3p

(2π)3

(
p̂ `+ ε̂κ+ ε̂∗κ†

)
, (4.63)

which is identical to the result of Ref. [90].

4.5.2 Lepton-number violating correlators and kinetic equations
Without lepton-number violating correlators we reproduced the standard result. If we allow for
〈νν〉 and 〈ν̄ν̄〉 contractions then, similarly to the Majorana case, the mean-field Hamiltonian
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receives contributions of the type (4.49). For Weyl spinors, we may again rewrite this term as

Hνν
mf =

√
2GF

∑([
ν̄νc

]
IL +

[
νcν

]
IR
)
, (4.64)

and

IL = 〈νcν〉 and IR = 〈ν̄νc〉 . (4.65)

As has been mentioned above νcν and ν̄νc have the structure of the Majorana mass term, which
is known to violate lepton number. Therefore, we expect that also here the Hamiltonian (4.64)
leads to lepton-number violation. However, for Weyl neutrinos the inclusion of these additional
terms is somewhat artificial because, as we will show below, these correlations are not produced
if they are zero initially. They are considered here to better understand the Majorana case, where
they are naturally produced by the lepton-number violating interactions.

The contribution of Eq. (4.64) to the mean-field Hamiltonian is given by

Hmf ⊃
∫ d3p

(2π)3

[
a†(+p)Γνν̄-- (p)a†(−p) + b(−p)Γν̄ν++(p)b(+p)

+b†(+p)Γνν̄++(p)b†(−p)
+a(−p)Γν̄ν-- (p)a(+p)

]
,

(4.66)

and strongly resembles the mean-field Hamiltonian of Majorana neutrinos Eq. (4.44). From the
structure of Eq. (4.66) it is evident that, as expected, it leads to the violation of lepton number.
We are also forced to introduce the following lepton-number violating correlators,

(2π)3δ(3)(p− k)κ--(p) = 〈a(−k)a(+p)〉 , (4.67a)

(2π)3δ(3)(p− k)κ++(p) = 〈b(−k)b(+p)〉 , (4.67b)

(2π)3δ(3)(p− k)κ†--(p) = 〈a†(+p)a†(−k)〉 , (4.67c)

(2π)3δ(3)(p− k)κ†++(p) = 〈b†(+p)b†(−k)〉 , (4.67d)

which also resemble the Majorana definitions Eq. (4.8). These correlators are dictated by the
structure of the Hamiltonian Eq. (4.66) and are the only lepton-number violating correlators we
consider in this section.

The lepton-number violating correlators contribute to the dynamics of the lepton number con-
serving ones,

iρ̇--(p) ⊃ +
(
Γνν̄-- (p)− [Γνν̄-- (−p)]T

)
κ†--(p)− κ--(p)

(
Γν̄ν-- (p)− [Γν̄ν-- (p)]T

)
, (4.68a)

i ˙̄ρ++(p) ⊃ −
(
Γν̄ν++(p)− [Γν̄ν++(−p)]T

)
κ++(p) + κ†++(p)

(
Γνν̄++(p)− [Γνν̄++(−p)]T

)
, (4.68b)

where terms that already appeared in Eq. (4.61) have been omitted and the superscript T stands
for transposition of the flavor and helicity indices. Comparing Eq. (4.68) with Eqs. (4.45b)
and (4.45c) we see that we automatically recover the ‘Majorana’ definitions of the Hamiltonian
matrix. Note that to avoid confusion with the definitions of the elements of the mean-field Hamil-
tonian matrix Hsh, which are different for Dirac and Majorana neutrinos, we write the right-hand
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side of Eq. (4.68) directly in terms of the spinor contractions Γsh defined in Eq. (4.14). The
dynamics of κ-+, see Eq. (4.61c), does not obtain additional terms from lepton-number violating
correlators. The reason is that the components of the mean-field Hamiltonian that are needed in
Eq. (4.61c) to form the right spin combination with the lepton-number violating correlators (4.67)
vanish for Weyl neutrinos. The kinetic equations for the lepton-number violating pair correla-
tions read

iκ̇--(p) =
[
Γνν-- (p) + [Γνν-- (−p)]T

]
κ--(p)−

[
Γνν̄-- (p)− [Γνν̄-- (−p)]T

]
ρ--(p)

−
[
Γνν̄-- (p)− [Γνν̄-- (−p)]T

]
[ρ--(−p)]T +

[
Γνν̄-- (p)− [Γνν̄-- (−p)]T

]
,

(4.69a)

iκ̇++(p) =−
[
Γν̄ν̄++(p) + [Γν̄ν̄++(−p)]T

]
κ++(p)−

[
Γνν̄++(p)− [Γνν̄++(−p)]T

]
ρ̄++(p)

−
[
Γνν̄++(p)− [Γνν̄++(−p)]T

]
[ρ̄++(−p)]T +

[
Γνν̄++(p)− [Γνν̄++(−p)]T

]
.

(4.69b)

Their form can be guessed from Eq. (4.61c) by replacing components of the mean-field Hamilto-
nian with their ‘Majorana’ counterparts, taking into account that Γν̄ν̄-- = Γνν++ = 0, and replacing
ρ̄--(p) by [ρ--(−p)]T as well as ρ++(p) by [ρ̄++(−p)]T .

Using the explicit form of the chiral spinors, see appendix A.3, we obtain

Γνν̄-- (p) = +e+iφV L , Γνν̄++(p) = −e−iφV R , (4.70a)

Γν̄ν-- (p) = +e−iφV R , Γν̄ν++(p) = −e+iφV L , (4.70b)

where V L(R) =
√

2GFI
L(R) are defined analogously to Eq. (4.42). Let us now recall that IL

and IR are produced only by neutrino self-interactions and are proportional to the lepton number
violating pair correlations [cf. Eqs. (4.67)],

IL =
∫ d3p

(2π)3 e
−iφ
[
κ-- − κ†++

]
, (4.71)

and a similar expression for IR. Thus, if the lepton-number violating correlators are zero initially,
then the components in Eqs. (4.70) are zero, and κ-- and κ++ remain zero in the course of the
system’s evolution. For this reason the inclusion of lepton-number violating correlators for Weyl
neutrinos is rather artificial because they could only exist if they were put in by hand initially.

This observation explains why similar contributions did not vanish for Majorana neutrinos in
the limit of zero neutrino masses in Sec. 4.4.2. These correlators might still evolve dynamically
for vanishing Majorana mass, but only if the initial conditions allow them to deviate from zero.
If they vanish at the beginning, they may only deviate from zero if there is a Majorana mass.

4.6 Electromagnetic background fields
A supernova environment is characterized not only by matter currents, but also by strong mag-
netic fields. Electromagnetic (EM) fields polarize both background media and the vacuum. Al-
though neutrinos do not couple directly to the electromagnetic fields, they feel the induced po-
larization through quantum loops of charged particles. The coupling to a polarized background
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medium has been treated in the previous sections. We now turn to the interaction with the vacuum
polarization.

The effect of vacuum polarization is described by electromagnetic form factors. The most
prominent examples, the magnetic and electric dipole moments, are inevitable for massive neu-
trinos and have to be included to obtain consistent evolution equations linear in the neutrino
mass. The main effects of electromagnetic fields are spin and spin-flavor oscillations, which can
be significant. We treat Dirac and Majorana neutrinos separately.

4.6.1 General vertex structure

The coupling of neutrinos to an external vector potential Aµ can be written as an effective ver-
tex Hem = Aµν̄Γµν, where Γµ contains all irreducible combinations of Lorentz vectors and
pseudovectors generated by external momenta and Dirac matrices. Neglecting a hypothetical
minicharge, in coordinate space the most general Hamiltonian density can be reduced to

Hem = 1
2Fµν ν̄i

(
f ijMσ

µν + if ijE σ
µνγ5

)
νj + ∂νFµν ν̄i

(
f ijQ γ

µ + f ijA γ
µγ5

)
νj , (4.72)

where the electromagnetic field strength tensor is defined as usual, F µν = ∂µAν − ∂νAµ, and
σµν = i

2 [γµ, γν ]. The form factors are fM (magnetic), fE (electric), fQ (reduced charge [219]),
and fA (anapole). The form factors carry generation indices. Diagonal elements describe the
usual electromagnetic properties of a neutrino in the mass basis, and reduce to electromagnetic
moments in the static limit. The off-diagonal elements describe transitions between neutrinos of
different masses.

Maxwell’s equations tell us that ∂νF µν = −Jµem, where Jµem is some charged matter background
that sources electromagnetic fields. In supernovae, the sources are electrons and protons. In the
Standard Model with massless neutrinos, the value for the anapole moment has to be fA =
−fQ to reproduce the left-chiral form of the interaction. For models with neutrino masses, the
Hamiltonian matrix might obtain contributions that are not purely left-chiral, but we assume that
these are always small so that we can neglect them. The charge and anapole form factors then
only yield radiative corrections to the left-chiral tree level coupling in Eq. (4.18). We neglect
these moments because we are not interested in corrections to leading order effects.

4.6.2 Dipole moments of Dirac neutrinos

To study the dipole moments, we first turn to the somewhat simpler case of Dirac neutrinos.
Because we assume neutrinos to carry no charge, µ = fM(0) is defined as the magnetic moment
and ε = fE(0) as the electric dipole moment [219]. In the minimal extension of the Standard
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Model, the magnetic moments are found to be [220]

µij = 3e
√

2GF(mi +mj)
2(4π)2

(
δij −

m2
τ

2m2
W

Fij
)
, (4.73a)

iεij = −3e
√

2GF

2(4π)2 (mi −mj)
(
m2
τ

2m2
W

)
Fij , (4.73b)

Fij =
∑

α=e,µ,τ
U †iα

(
mα

mτ

)2

Uαj , (4.73c)

where mτ is the tau mass. The electric dipole moment does not have a diagonal component
because it would violate CP [219], and the transition electric dipole moment carries a phase
relative to the transition magnetic dipole moment.

Note that the appearance of the masses in Eq. (4.73) is such that the sum of magnetic and
electric dipole transition moments are always proportional to the mass of the “wrong-helicity”
neutrino [221]. This is in agreement with our results in Sec. 4.3.2 about spin flips from convective
media, where the corresponding mass appears in the Hamiltonian matrix.

Numerically, the above expressions yield for the diagonal magnetic moments

µii ' 3.2× 10−19
(
mi

eV

)
µB , (4.74)

where µB is the Bohr magneton. The transition moments are

µij ' −3.9× 10−23Fij
(
mi +mj

eV

)
µB , (4.75a)

εij ' 3.9 i× 10−23Fij
(
mi −mj

eV

)
µB . (4.75b)

Note that the transition moments are much smaller than the diagonal moments due to GIM sup-
pression.

4.6.3 Hamiltonian matrix for Dirac neutrinos
We treat electromagnetic effects on the same footing as background matter. To this end, we have
to evaluate the components of the Hamiltonian matrix, which for Dirac neutrinos are equal to
the spinor contractions in Eq. (4.14). For these contractions we need to evaluate the Lorentz
structure of the vertex in Eq. (4.72).

Considering only magnetic and electric form factors, the Hamiltonian reduces to

1
2Fµν ν̄i

(
f ijMσ

µν + if ijE σ
µνγ5

)
νj , (4.76)

which depends on the electric and magnetic fields, E and B, through F µν . The Lorentz struc-
ture can be decomposed into the contractions

(
iγ0γ

)
ij,sh

and
(
γ0γγ5

)
ij,sh

, the latter appearing
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through the identity εabcγ0γcγ
5 = σab with spatial indices a, b, c = 1, 2 or 3, and the asymmetric

tensor εabc. These contractions are three-vectors that are multiplied by the electric and magnetic
fields. We calculate the resulting expressions in momentum space.

Explicitly, the coupling of the magnetic field through the magnetic form factor, superscript
µB, has the structures

HµBνν
ij,sh = −

(
γ0γγ5

)νν
ij,sh

f ijM(q2)B , HµBνν̄
ij,sh = −

(
γ0γγ5

)νν̄
ij,sh

f ijM(l2)B , (4.77a)

HµBν̄ν
ij,sh = −

(
γ0γγ5

)ν̄ν
ij,sh

f ijM(l2)B , HµBν̄ν̄
ij,sh = −

(
γ0γγ5

)ν̄ν̄
ij,sh

f ijM(q2)B , (4.77b)

where we identify Hνν = Γνν , Hνν̄ = Γνν̄ , etc., and the minus sign in the metric gµν =
diag(1,−1,−1,−1) has already been taken care of. In Eq. (4.77), the form factors still depend on
the momentum transfer. For the νν and ν̄ν̄ components, the form factors contain qµ = pµout−pµin,
where qµ → 0 in the forward scattering limit. These components are then proportional to the
dipole moments. For the neutrino-antineutrino components of the H matrices, the argument of the
form factor contains l2 with lµ = pµout + pµin, the sum of neutrino and antineutrino four-momenta.

The coupling of the magnetic field to the electric form factor, superscript εB, is

HεBνν
ij,sh = −

(
iγ0γ

)νν
ij,sh

f ijE (q2)B , HεBνν̄
ij,sh = −

(
iγ0γ

)νν̄
ij,sh

f ijE (l2)B , (4.78a)

HεBν̄ν
ij,sh = −

(
iγ0γ

)ν̄ν
ij,sh

f ijE (l2)B , HεBν̄ν̄
ij,sh = −

(
iγ0γ

)ν̄ν̄
ij,sh

f ijE (q2)B . (4.78b)

The coupling of an electric field to the magnetic form factor is

HµEνν
ij,sh =

(
iγ0γ

)νν
ij,sh

f ijM(q2)E , HµEνν̄
ij,sh =

(
iγ0γ

)νν̄
ij,sh

f ijM(l2)E , (4.79a)

HµEν̄ν
ij,sh =

(
iγ0γ

)ν̄ν
ij,sh

f ijM(l2)E , HµEν̄ν̄
ij,sh =

(
iγ0γ

)ν̄ν̄
ij,sh

f ijM(q2)E , (4.79b)

which is indicated by µE, and to the electric form factor, εE,

HεEνν
ij,sh = −

(
γ0γγ5

)νν
ij,sh

f ijE (q2)E , HεEν̄ν̄
ij,sh = −

(
γ0γγ5

)ν̄ν̄
ij,sh

f ijE (q2)E , (4.80a)

HεEν̄ν
ij,sh = −

(
γ0γγ5

)ν̄ν
ij,sh

f ijE (l2)E , HεEνν̄
ij,sh = −

(
γ0γγ5

)νν̄
ij,sh

f ijE (l2)E . (4.80b)

One can see that a magnetic field couples to both, the electric and the magnetic form factor. Also
electric fields couple to both form factors. This can be understood as follows. In the neutrino
rest frame, the magnetic field only couples to the magnetic dipole moment, and the electric field
only couples to the electric dipole moment (if any), as suggested by the nomenclature. Lorentz
covariance then demands that both electric and magnetic fields couple to the magnetic form factor
in a system where the neutrino moves with non-zero velocity. A moving neutrino also exhibits
spin precession in a pure electric field through its magnetic moment [222].

The Lorentz structure of Eqs. (4.77)–(4.80) can now be readily calculated. In contrast to the
previous sections, we neglect all contributions proportional to the mass since the magnetic and
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electric form factors are small and, in the models considered here, proportional to the neutrino
mass already. The (γ0γγ5) components are

(
γ0γγ5

)νν
ij,sh
≈
(

0 e+iφε̂∗

e−iφε̂ 0

)
, (4.81a)

(
γ0γγ5

)νν̄
ij,sh
≈
(
−e+iφp̂ 0

0 −e−iφp̂

)
, (4.81b)

(
γ0γγ5

)ν̄ν
ij,sh
≈
(
−e−iφp̂ 0

0 −e+iφp̂

)
, (4.81c)

(
γ0γγ5

)ν̄ν̄
ij,sh
≈
(

0 −e−iφε̂∗
−e+iφε̂ 0

)
. (4.81d)

The remaining Lorentz structures are of the form
(
iγ0γ

)
. They read

(
iγ0γ

)νν
ij,sh
≈
(

0 ie+iφε̂∗

−ie−iφε̂ 0

)
. (4.82a)

(
iγ0γ

)νν̄
ij,sh
≈
(
−ie+iφp̂ 0

0 ie−iφp̂

)
, (4.82b)

(
iγ0γ

)ν̄ν
ij,sh
≈
(
ie−iφp̂ 0

0 −ie+iφp̂

)
, (4.82c)

(
iγ0γ

)ν̄ν̄
ij,sh
≈
(

0 ie−iφε̂∗

−ie+iφε̂ 0

)
. (4.82d)

To this level of approximation, the νν̄ and ν̄ν components are diagonal in helicity space, i.e.,
electric and magnetic fields mainly couple spin-0 neutrino-antineutrino pairs. The νν and ν̄ν̄
components are off-diagonal in helicity space. The dominant effect of magnetic and electric
fields on neutrinos and antineutrinos is spin precession.

4.6.4 Dipole moments of Majorana neutrinos
For Majorana neutrinos, electromagnetic transitions always contain two contributions, e.g.,

〈νpout |Hem|νpin〉 = Aµ
(
ūpoutΓµupin − v̄pinΓµvpout

)
. (4.83)

This difference of two amplitudes leads to the cancellation of all the diagonal moments except
for the anapole moment [219]. This can also be understood by noting that the last two terms
(including the minus sign) in Eq. (4.83) are charge conjugates of each other. Because the Lorentz
structure of the magnetic, electric, and charge form factor are C-odd the combination vanishes.
The Lorentz structure of the anapole moment is C-even and does not cancel.

Because the magnetic moment of the Majorana neutrino vanishes, it does not couple directly
to a magnetic field. However, magnetic fields polarize the background medium, and this effect
does lead to helicity oscillations, see Sec. 4.4.
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Electromagnetic moments of neutrinos depend on the details of the mechanism that creates the
neutrino mass. When neglecting the model-dependent amplitudes, one can compare the moments
of Dirac and Majorana neutrinos. The main differences are that the Majorana amplitudes contain
Majorana PMNS-matrices, which may contain more phases than Dirac PMNS-matrices, and that
Eq. (4.83) has to be taken into account for Majorana neutrinos.

After these adjustments, the off-diagonal form factors of Majorana neutrinos can be obtained
from Eq. (4.73a). They depend on the relative CP-phases of two neutrino species [223]. This
phase can either be equal or opposite, i.e., the ratio is±1. For neutrinos with equal CP-phases, the
magnetic transition moments vanish [223], while for opposite CP-phase the magnetic transition
moments are non-zero and can be obtained from Eq. (4.73a) by substituting Fij with 2i ImFij .

For electric dipole moments, the role of the CP-phases is inverted. Opposite CP-phases force
the electric transition moments to vanish, while for equal CP-phases the electric transition mo-
ments are non-zero and are obtained by substituting Fij with 2 ReFij [223] in Eq. (4.73b).

4.6.5 Hamiltonian matrix for Majorana neutrinos
The density matrix formalism naturally reproduces the results for the electromagnetic moments
discussed in the last section. Similarly to Eq. (4.83), each component of the Hamiltonian ma-
trix has two contributions from Γ contractions, e.g., Hνν

ij,sh(p) = Γννij,sh(p) − Γν̄ν̄ji,hs(−p), see
Eq. (4.45). The spinor contractions Γνν and Γν̄ν̄ have the same structure as for Dirac neutrinos,
see Eq. (4.14). Again neglecting the model dependence, the only difference is that the Dirac
PMNS-matrix have to be replaced by Majorana PMNS-matrix. For example, a magnetic field
coupling to a Majorana neutrino through the magnetic form factor yields

Hνν
ij,-+ =−

[
f ijM(q2)− c.c.

]
e+iφε̂∗ ·B

=− 2i Im[f ijM(q2)]e+iφε̂∗ ·B ,
(4.84)

where we have used the Hermiticity of the form factors. In the static limit, 2i Im[f ijM] is the
magnetic moment of Majorana neutrinos [220]. It is zero for equal CP-phases since Fij becomes
real. It is non-vanishing for opposite CP-phases because Fij becomes imaginary. An analogous
argument holds for the electric dipole moment.

4.7 Helicity coherence
In this section we neglect pair correlations and discuss helicity coherence effects. To separate
the latter from the usual flavor coherence effects, we consider only one neutrino generation.
Furthermore, for definiteness we assume that neutrinos are Dirac particles.

4.7.1 Order of magnitude estimate
Two different mean-field backgrounds cause spin oscillations and create spin coherence: matter
and neutrino currents, and electromagnetic fields. However, it is not clear which of these is
dominant in a supernova. In the following we perform a crude estimate.
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For Dirac neutrinos without pair correlations, the kinetic equations of neutrinos and antineutri-
nos decouple, iρ̇ = [Hνν , ρ] and i ˙̄ρ = [Hν̄ν̄ , ρ̄], and, for one family, we only have to look at a 2×2
subsystem of the full evolution equation. We start with a matter background with non-relativistic
velocity β, which flows orthogonal to the neutrino’s momentum. The Hamiltonian matrix reads

Hνν ≈ V

 1 m
2pβ

m
2pβ 0

 , (4.85)

where V is the usual matter potential. For instance for νµ or ντ it is given by V = GFnn/
√

2,
where nn is the neutron density. We have omitted the neutrino kinetic energy because it is
diagonal in helicity space, and for a single generation trivially cancels in the commutator. In the
same way we obtain the 2× 2 subsystem of the Hamiltonian matrix for a neutrino in a transverse
magnetic field

Hνν ≈ −µB
(

0 1
1 0

)
, (4.86)

see Sec. 4.6 for more details. Spin coherence is instigated by the off-diagonals of Eqs. (4.85)
and (4.86), and to find the relative importance of the matter and magnetic contributions it is
sufficient to estimate their relative size. Typical magnetic fields in a supernova are of order
1012 G and much larger in magnetars. Using the standard value for the magnetic moment given in
Eq. (4.74), and assuming a neutrino mass of 0.1 eV, we find for the contribution of the magnetic
field µB ∼ 10−16 eV. For a typical neutron mass density 1012 g/cm3, which corresponds to
a number density nn ∼ 104 MeV3, the matter potential is of the order of the neutrino mass,
V ∼ 0.1 eV. Thus, for a typical momentum p ∼ 30 MeV we obtain V βm/(2p) ∼ 10−10β eV.
For maximal background velocities of 3000 km/s, β ∼ 0.01, the matter contribution dominates.
Surprisingly, the magnetic field is only important if the background moves very slowly, if the
matter density has decreased sufficiently, or if the magnetic moment is enhanced.

Turning now to the density matrix, the size of the off-diagonal elements depends on the initial
conditions and history of the evolution. To obtain a rough estimate, we can assume that the
system has reached equilibrium and, hence, its previous evolution is irrelevant. In equilibrium,
the system is in an eigenstate of the Hamiltonian, i.e., Hνν and ρ commute. This condition
alone allows us to express the off-diagonals of the density matrix in terms of the diagonals and
components of the Hamiltonian matrix,

ρ-+ = Hνν
-+

Hνν-- − Hνν
++

(ρ-- − ρ++) . (4.87)

Keeping only the (dominant) matter contribution, Eq. (4.85), we find ρ-+ = (ρ--−ρ++)mβ/2p ∼
mβ/2p. Form ∼ 0.1 eV and a typical momentum p ∼ 30 MeV this results in ρ-+ ∼ 10−11, where
we have used β ∼ 0.01.

The same result can be obtained by noting that if ρ and Hνν commute, they can be simulta-
neously diagonalized by a rotation that mixes positive and negative helicity states. The rotation
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angle is tan 2ϑ = mβ/p. Considering e.g. the ρ-- = 1 eigenstate of the diagonalized Hamil-
tonian and rotating back to the basis where the Hamiltonian has the form Eq. (4.85) we find to
leading order

ρ ∼

 1 m
2pβ

m
2pβ 0

 ∼ ( 1 10−11

10−11 0

)
. (4.88)

The corrections to the diagonals are not included in Eq. (4.88) because they are of the order of
δρ-- ∼ δρ̄++ ∼ ρ2

-+ ∼ 10−22 and are therefore negligibly small.

4.7.2 Resonant enhancement

For a magnetic field, the diagonal elements of the Hamiltonian matrix, Eq. (4.86), are zero for
very relativistic neutrinos. This allows for the magnetic fields to completely flip the spin of a
population of neutrinos. On the other hand, the diagonals of Eq. (4.85) are in general non-zero
and suppress a complete conversion. In general, the matter contribution is given by

Hνν ≈

V 0 − V m
2pV⊥

m
2pV⊥ 0

 , (4.89)

see Eq. (4.57), where V ≡ p̂ · V and V⊥ ≡ ε̂ · V are components of the matter flux parallel
and orthogonal to the neutrino momentum. Thus, if there are relativistic currents parallel to the
momentum of the neutrino such that the diagonals vanish, Eq. (4.87) implies that a resonant en-
hancement of the spin conversion is possible. For vanishing diagonals, Eq. (4.89) can be rotated
into its diagonal form with a rotation angle ϑ = π/4. In other words, mixing of the helicity states
becomes maximal, similarly to the MSW resonance mixing, and hence in equilibrium

ρ ∼

1/2 1/2
1/2 1/2

 , (4.90)

where we have again assumed that the system is in an eigenstate of the diagonalized Hamiltonian.
Making use of Eq. (4.34), we can re-write the resonance condition, Hνν

-- −Hνν
++ = V 0−V = 0,

in the form [87]

Ye + 4
3

(
Yν −

V

2nB

)
= 1

3 , (4.91)

where Ye ≡ ne/nB and Yν = (nν − nν̄)/nB are the electron and neutrino asymmetry fractions
respectively and nB is the baryon number density, The resonance condition can potentially be
fulfilled in or near the proto-neutron star in a core collapse supernova, or near the central region
of a compact object merger, see Ref. [87] and references therein.
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4.7.3 Lorentz covariance
Helicity coherence builds up only if the off-diagonal elements of the Hamiltonian matrix differ
from zero. On the other hand, because the off-diagonals are proportional to the component of
the matter flow orthogonal to the neutrino momentum, one can always find a frame where the
off-diagonals vanish and no helicity coherence builds up. In other words, at first sight physical
results seem to depend on the frame. This seeming contradiction raises the question of Lorentz-
covariance of the kinetic equations.

To be specific, let us consider the following simple example. We have two identical observers
moving with velocity β with respect to each other. In the frame of the first observer, the neutrino
has momentum p along the z axis and the matter is at rest, i.e., V = V⊥ = 0,

Hνν ≈ V

(
1 0
0 0

)
. (4.92)

Thus no helicity coherence builds up. In the frame of the second observer which moves with
velocity β along the x axis the Hamiltonian is no longer diagonal,

Hνν ≈ V

γ

 1 m
2pβ

m
2pβ 0

 , (4.93)

and we expect helicity coherence to build up. Here γ is the usual Lorentz factor and V and p
denote the potential and neutrino momentum in the frame of the first observer.

Do the Hamiltonian matrices Eqs. (4.92) and (4.93) lead to different physical results? The
answer is no, but to demonstrate this point we need to take into account that a helicity state is
also not Lorentz-invariant. Let the neutrino be in a state of definite helicity in the frame of the
first observer, e.g. |pẑ,-〉, where ẑ is the unit vector along the z axis. The corresponding density
matrix reads

ρ = Tr{|pẑ,-〉〈pẑ,-|} =
(

1 0
0 0

)
. (4.94)

The Hamiltonian matrix Eq. (4.92) and the density matrix commute and therefore the state is
constant in time. A boost to the frame of the second observer transforms |pẑ,-〉 into a mixed
helicity state with momentum q,

|ψ〉 = cθ/2|q,-〉 − sθ/2|q,+〉 , (4.95)

where θ is a rotation angle defined through tan θ = −mβ/p. Note that the angle vanishes in the
limit of zero neutrino mass which reflects chirality conservation. The density matrix develops
off-diagonal elements,

ρ = Tr{|ψ〉〈ψ|} = 1
2

1 + cθ −sθ
−sθ 1− cθ

 . (4.96)
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The Hamiltonian matrix and the density matrix again commute. In other words, the second
observer sees a mixed helicity state which, as expected, is also time independent. This result
reflects Lorentz covariance of the kinetic equations, the lesson being that one has to transform
the initial conditions consistently to obtain covariant results.

Let us now consider this result from a slightly different viewpoint. In each frame, we can
diagonalize the effective Hamiltonian by performing a Bogolyubov transformation that mixes
annihilation (creation) operators of the positive and negative helicity states, as → cϑ as + sϑ a−s.
In particular Eq. (4.93) is diagonalized by a Bogolyubov transformation with the angle tan 2ϑ =
mβ/p. This transformation brings the density matrix Eq. (4.96) back to the form Eq. (4.94).
In other words, there is a connection between the Lorentz and Bogolyubov transformations. In
particular, if in every frame we diagonalize the Hamiltonian then the transformed density matrix
remains invariant under the boosts, i.e., the information about the frame is then carried by the
Bogolyubov angle which appears in the transformed Hamiltonian.

To summarize, as far as helicity coherence is concerned, both the Hamiltonian and the density
matrix transform under Lorentz boosts in such a way that the kinetic equation is Lorentz covari-
ant. We will rely on this result in the discussion of particle-antiparticle coherence whose Lorentz
transformation properties are not as evident as for the helicity coherence.

4.8 Particle-antiparticle coherence

In contrast to helicity coherence, particle-antiparticle coherence arises already for a single mass-
less neutrino generation. For a massless neutrino the only ‘natural’ correlators are ρ--, ρ++ and
κ-+. To shorten the notation in this section we suppress the spin indices.

4.8.1 Quantum-mechanical example

To clarify the interpretation of the particle-antiparticle coherence, let us first study a simple
quantum-mechanical example. We consider a system that can be in a linear combination of
one of four pure states. These are i) the empty state |00〉 without particles; ii) the paired state
|11〉 = a†(p)b†(-p)|00〉, which contains a neutrino with momentum p and an antineutrino with
momentum -p; iii) the one neutrino state |10〉; and iv) the one antineutrino state |01〉. Note that
in all these states the antineutrinos stream in the direction opposite to that of neutrinos. A general
state can be expressed in terms of these four states, |ψ〉 = A00|00〉+A11|11〉+A10|10〉+A01|01〉,
where the coefficients Aij are time-dependent and normalized to unity, |A00|2 + |A11|2 + |A10|2 +
|A01|2 = 1.

In analogy to Eq. (4.15) we write the Hamiltonian in the form

H = a†(p)Hννa(p) + a†(p)Hνν̄b†(-p) + b(-p)Hν̄νa(p)− b†(-p)Hν̄ν̄b(-p) . (4.97)
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The Schrödinger equation for the coefficients Aij then splits into three independent equations,

i∂t

(
A00
A11

)
=
(

0 Hν̄ν

Hνν̄ Hνν − Hν̄ν̄

)(
A00
A11

)
, (4.98a)

i∂tA10 = HννA10 , (4.98b)
i∂tA01 = −Hν̄ν̄A01 . (4.98c)

Thus the evolution of the single particle states completely decouples because a homogeneous
background medium cannot mix states of different total momentum. They simply suffer the usual
energy shift by the weak potential of the medium, i.e., i∂t|10〉 = (E + V )|10〉 and i∂t|01〉 =
(E − V )|01〉. On the other hand, the |00〉 and |11〉 states have zero momenta and therefore
can be mixed by a homogeneous medium through the Hν̄ν term of the Hamiltonian. However,
the |00〉 and |11〉 states have different angular momentum. Hence, an anisotropic background
medium, e.g. a transverse matter flux, is needed to absorb the angular momentum and to mix the
two states. Note that in the presence of such fluxes, the true ground state of our system is not
|00〉, but a suitable combination of |00〉 and |11〉 which follows from diagonalizing the matrix in
Eq. (4.98a).

To make the connection to the density matrix equations, we note that the number of neutrinos
and antineutrinos is given by ρ = |A11|2 + |A10|2 and ρ̄ = |A11|2 + |A01|2 respectively. Their
time-evolution can be derived from Eq. (4.98) and takes the form expected from the density
matrix equations (4.61),

ρ̇ = −2 Im
(

Hν̄νκ
)
, (4.99a)

˙̄ρ = −2 Im
(

Hν̄νκ
)
, (4.99b)

if we identify κ = A∗00A11. Equation (4.98) also leads to an evolution equation for κ

iκ̇ =
(

Hνν − Hν̄ν̄
)
κ+ Hνν̄ (1− ρ− ρ̄) , (4.100)

which can be obtained by using the normalization of the state |ψ〉. Equation (4.100) is again
consistent with Eq. (4.61) and coincides with the result of Ref. [90] in the one-flavor limit.

From these kinetic equations we infer that while ρ and ρ̄ are not separately conserved in the
presence of nonzero κ, their difference is conserved [90]. Because ρ(t,p) describes neutrinos
with momentum p whereas ρ̄(t,p) antineutrinos with momentum −p, the conservation of ρ− ρ̄
implies that κ induces the production of neutrino-antineutrino pairs with opposite momentum.

The kinetic equation for κ describes a driven harmonic oscillator with frequency Hνν −Hν̄ν̄ ∼
2E. Hence κ oscillates with a frequency that is twice the neutrino energy as expected. From the
definition κ = A∗00A11 we see that nonzero particle-antiparticle coherence means that the system
is not in an eigenstate of the unperturbed Hamiltonian, but instead in a mixture of the |00〉 and
|11〉 states. Such states do not have a definite particle number. This observation clarifies the
physical interpretation of particle-antiparticle coherence.
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4.8.2 Order of magnitude estimate
As a next step we perform an order of magnitude estimate of κ. For a single neutrino generation
the extended density matrix reduces to a 2×2 matrix of the form, see Eq. (4.4),

R =
(
ρ κ
κ† 1− ρ̄

)
, (4.101)

where now ρ and ρ̄ are real numbers and κ is a complex number. We again start with an example
of a matter background with non-relativistic velocity β, which flows orthogonal to the neutrino’s
momentum. Then, as follows from Eq. (4.62), the Hamiltonian matrix reads,

H = E

(
1 0
0 −1

)
+ V

(
1 −β
−β 1

)
. (4.102)

Unlike for helicity coherence, the neutrino kinetic energy E no longer cancels out in the com-
mutator.

Similarly to the case of spin coherence we can get a crude estimate of the κ magnitude by
assuming that the system has reached equilibrium and hence κ̇ = 0. Eq. (4.100) then gives

κ = − Hνν̄

Hνν − Hν̄ν̄
(1− ρ− ρ̄) . (4.103)

If we insert this result into Eq. (4.99) and use the Hermiticity of the Hamiltonian matrix, we see
that indeed ρ̇ = ˙̄ρ = 0.

Let us assume for a moment that the neutrino-neutrino interactions are small compared to the
neutrino interaction with matter. For typical supernova parameters V ∼ 0.1 eV and E ∼ 30 MeV
and we then find V/E ∼ 10−9. Thus to a good approximation Hνν̄/(Hνν − Hν̄ν̄) ∼ V β/2E ∼
10−11, where we have used β ∼ 0.01. Because typically |1 − ρ − ρ̄| ∼ 1 we conclude that the
‘natural’ size of the particle-antiparticle coherence is κ ∼ 10−11.

The same result can be obtained by noting that in equilibrium R and H commute and can be
simultaneously diagonalized by a Bogolyubov transformation that mixes neutrinos of momentum
p with antineutrinos of momentum −p. Under this transformation the creation and annihilation
operators transform as

a(p)→ e−iφ/2cϑ a(p) + eiφ/2sϑb
†(−p) ,

b†(−p)→ eiφ/2cϑ b
†(−p)− e−iφ/2sϑ a(p) ,

(4.104)

respectively, where the rotation angle is tan 2ϑ = 2|Hνν̄ |/(Hνν − Hν̄ν̄) ∼ V β/E and the phase
φ = arg Hνν̄ . In the basis where the Hamiltonian is diagonal, the system is described by
(anti)neutrino densities, which we denote by % and %̄ respectively, and pairing correlator, which
we denote by κ. From the transformation properties of the creation/annihilation operators, we
can infer the following relations

ρ = c2
ϑ%− cϑsϑκ − cϑsϑκ† + s2

ϑ(1− %̄) , (4.105a)

ρ̄ = c2
ϑ%̄− cϑsϑκ − cϑsϑκ† + s2

ϑ(1− %) , (4.105b)

κ = eiφ
[
c2
ϑκ + cϑsϑ%− cϑsϑ(1− %̄)− s2

ϑκ†
]
, (4.105c)
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see Ref. [89] for a detailed discussion. Eigenstates of the diagonalized Hamiltonian are char-
acterized by κ = 0. Assuming, e.g., that the system is in an eigenstate of the diagonalized
Hamiltonian with some % and %̄, and rotating back to the basis where the Hamiltonian has the
form Eq. (4.102), we find to leading order

R ∼
 ρ V β

2E
V β
2E 1− ρ̄

 ∼
 ρ 10−11

10−11 1− ρ̄

 , (4.106)

which again leads to the tiny κ ∼ sϑ ∼ 10−11.
Pair correlations themselves are not measurable, and only their effect on the number densities

can be observed. A quick inspection of Eq. (4.105) shows that in equilibrium the difference
between e.g. ρ and % is of the order of s2

ϑ ∼ κ2. In other words, the induced corrections to ρ and
ρ̄ are quadratic in κ.

This can also be understood from Eq. (4.100). If the system has not yet reached equilibrium,
then κ oscillates around its stationary value Eq. (4.103), provided that the components of the
Hamiltonian matrix only vary slowly with time compared to Hνν−Hν̄ν̄ . This assumptions allows
us to approximate the evolution of κ as a driven harmonic oscillator with an amplitude that
depends on the initial conditions. Assuming that pairing correlations are not created during
neutrino production, the amplitude is of the order of the equilibrium value, Eq. (4.103). We then
find again that the mean number density created by pairing correlations is ∼ κ2. Therefore, the
inclusion of the particle-antiparticle coherence leads to a negligibly small perturbation of the
number densities δρ ∼ δρ̄ ∼ κ2 ∼ 10−22.

Including neutrino-neutrino interactions

Until now we have neglected neutrino-neutrino interactions in our order of magnitude estimate.
However, in a supernova the neutrino density is very large and the neutrino background may
play an important role. These additional interactions complicate the estimate of κ because Hνν̄

in Eq. (4.103) itself depends on κ once we include neutrino-neutrino interactions,

Hνν̄ = −V β − 2
√

2GF ε̂∗ ·
∫ d3q

(2π)3 [q̂`+ ε̂κ+ ε̂∗κ†] , (4.107)

see Eqs. (4.62) and (4.63). Furthermore, the stationary value for κ of one momentum mode
p depends on the pair correlations of all other momentum modes q. Note also that the phase
space integral in Eq. (4.107) is unbounded. Pairing correlations with a momentum typical for
the supernova environment couple to pairing correlations of arbitrary high momentum. This
coupling pushes us beyond the limitations of the Fermi approximation, and in principle a fully
renormalizable theory has to be studied to make sense of these high momentum modes. To
stay within the realm of applicability of the effective theory, we use a phenomenological cutoff
|q| = MW in the phase space integrals.

To estimate the contribution of the κ terms to the integral in Eq. (4.107), we take into account
that pair correlators of different momentum modes oscillate incoherently such that we can replace
κ by its approximate mean value in every mode, κ ≈ −Hνν̄/2E, where we use that V � E and
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assume ρ + ρ̄ � 1 in Eq. (4.103). To proceed we recall that Hνν̄ = −ε̂∗ · V, see Eq. (4.62),
where V is the total potential that includes matter and neutrino contributions. Note further that
V is momentum-independent. With these substitutions, the integrals involving κ in Eq. (4.107)
read

Re
∫ d3q

(2π)3 ε̂κ ∼ Re
∫ d3q

(2π)3 ε̂
ε̂∗ ·V
2E =

√
2

2
GFM

2
W

3π2 V , (4.108)

where we have integrated up to the cut-off |q| = MW . Let us introduce the notation

Hνν̄
0 = −V β − 2

√
2GF ε̂∗ ·

∫ d3q
(2π)3 q̂` . (4.109)

Then using Eq. (4.108) we can write Eq. (4.107) as

Hνν̄ ≈ Hνν̄
0

(
1−
√

2GFM
2
W

3π2

)−1

. (4.110)

In other words the κ terms in Eq. (4.107) effectively lead to a renormalization of the total po-
tential produced by the matter and neutrino backgrounds. Numerically, the correction is small,√

2GFM
2
W/(3π2) ≈ 3× 10−3, and can be neglected.

In a supernova the neutrino density is comparable to that of matter. Whereas each individual
neutrino is relativistic, the bulk velocity of the neutrino background is also comparable to the
matter velocity. Thus, the neutrino density contribution to Eq. (4.109) is not expected to be larger
than the matter contribution. Furthermore, because the direction of the neutrino background
flux is more likely to be parallel to the momenta of individual neutrinos, whereas the build up
of the particle-antiparticle coherence requires a current component orthogonal to the neutrino
momentum, there is an additional suppression as compared to the matter effect. All in all, the
estimates of κ presented above remain essentially unaltered by the inclusion of the neutrino-
neutrino interactions.

4.8.3 Resonance condition
As follows from Eq. (4.103), particle-antiparticle coherence can be resonantly enhanced if Hνν =
Hν̄ν̄ . In general for a relativistic matter flow that also includes the neutrino flux, the Hamiltonian
matrix reads [see Eq. (4.62)]

H = E

(
1 0
0 −1

)
+
(
V 0 − V −V⊥
−V⊥ V 0 + V

)
, (4.111)

where, as before, V ≡ p̂ · V and V⊥ ≡ ε̂ · V are components of the matter flux parallel and
orthogonal to the neutrino momentum. The resonance condition then translates into E = V .
Even assuming a relativistic matter flow, for typical supernova parameters V /E ∼ 10−9. In
other words, the resonance condition cannot be fulfilled in a supernova and there is no reason to
expect κ to be larger than the estimate presented above.

Note also that for V ∼ E not only the Fermi approximation breaks down, but also the pertur-
bative description is no longer applicable. In other words it is in principle not possible to hit the
resonance without rendering the developed formalism meaningless.
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4.8.4 Initial conditions
All physical processes in which neutrinos are created have time scales much larger than the time
scale of κ oscillation. Hence, even during the production process neutrinos would adiabatically
adapt to the propagation basis with respect to pair correlations. On the other hand, the time
scales of flavor and helicity oscillation are much larger than those associated with production
and detection. This separation of time scales is crucial for the idea that neutrinos are produced
in eigenstate of interaction, i.e., in a coherent superposition of propagation eigenstates. For the
same physical reason, as neutrinos stream away from the supernova, they have enough time to
adiabatically adapt to the external background. Thus, κ does not oscillate but instead closely
tracks its equilibrium value. This makes dynamical equations for κ essentially superfluous. As
the neutrinos leave the supernova, the mean pair correlations approach zero adiabatically and
decouple from the evolution of ρ and ρ̄.

4.8.5 Lorentz covariance
In the early Universe, the rest frame of the plasma is the only natural reference frame and the
question of Lorentz transformation properties of the pair correlators does not arise [224]. In a
supernova environment the situation is more complicated. In particular, the comoving frame of
the matter can in some cases be more convenient than the rest frame of a distant observer. Sim-
ilarly to helicity coherence, the particle-antiparticle coherence builds up only if the off-diagonal
components of the Hamiltonian matrix are not zero. However, because the off-diagonals are pro-
portional to the component of the matter flow orthogonal to the neutrino momentum, their value
depends on the frame. In particular, one can find a frame where the off-diagonals vanish and no
particle-antiparticle coherence builds up.

Let us consider the same example as in Sec. 4.7. We have two identical observers moving
with velocity β with respect to each other. In the frame of the first observer, the neutrino has
momentum p along the z axis and the matter is at rest, i.e., V = V⊥ = 0,

H = E

(
1 0
0 −1

)
+ V

(
1 0
0 1

)
. (4.112)

Thus no particle-antiparticle coherence builds up. In the frame of the second observer which
moves with velocity β along the x axis the Hamiltonian is no longer diagonal,

H = γE

(
1 0
0 −1

)
+ V

(
1/γ −β
−β 1/γ

)
, (4.113)

and we expect helicity coherence to build up. In other words, physical results seem to depend on
the frame.

As we have learned from the analysis of an analogous problem for helicity coherence, the
kinetic equations are covariant only if the initial conditions also transform under the boost. Pair
correlations ‘couple’ neutrinos of opposite momenta. The notion of opposite momenta is not
Lorentz invariant and is violated by, e.g., a boost orthogonal to the neutrino momentum. This
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point alone implies that the initial conditions, which include specifying κ for all momentum
modes, are not Lorentz covariant.

We have argued in the previous subsection that neutrinos are produced and propagate in an
eigenstate with respect to particle-antiparticle coherence. In Sec. 4.7 we have observed that
if in every frame we diagonalize the Hamiltonian then the transformed density matrix remains
invariant under the boosts. Here we assume that the same holds true also for particle-antiparticle
coherence. As a particularly interesting example let us assume that in the frame of the first
observer the system is in the vacuum state of the interacting Hamiltonian, i.e., ρ = ρ̄ = κ = 0,

R =
(

0 0
0 1

)
. (4.114)

The Hamiltonian matrix Eq. (4.112) and the extended density matrix Eq. (4.114) commute
and therefore the latter is constant in time. According to our assumption, after diagonalizing
Eq. (4.113) by a Bogolyubov transformation, the transformed R takes the form Eq. (4.114).
Transforming back to the initial basis we obtain,

R = 1
2

(
1− cϑ sϑ
sϑ 1 + cϑ

)
, (4.115)

where ϑ is the angle of the Bogolyubov transformation that diagonalizes Eq. (4.113), tan 2ϑ =
(βV/γE)/[1− β2(V/E)]. By construction the Hamiltonian matrix Eq. (4.113) and the extended
density matrix Eq. (4.115) commute and the latter is time-independent as well.

A perplexing feature of Eq. (4.115) is that it seems to describe a state with a nonzero number
of particles and antiparticles. Whereas the first observer would see neither neutrinos nor an-
tineutrinos, the second observer that moves with respect to the first one with a constant velocity
β seems to observe a nonzero density of neutrinos and antineutrinos. Put in other words, the
empty space perceived by the first observer appears to be filled with neutrino-antineutrino pairs
in the frame of the second observer. However, it is not entirely clear if the (anti)particle densi-
ties in Eq. (4.115) describe electroweak interaction eigenstates and thus would actually manifest
themselves via, e.g., particle production or momentum transfer to nuclei in scattering processes.

4.8.6 Interpretation of Bogolyubov transformation
To better understand the meaning of the Bogolyubov transformation, we solve the equation of
motion for a massless neutrino field coupled to a constant classical current V µ, and demonstrate
that this solution reproduces the results obtained using the Bogolyubov transformation.

In the Fermi limit L = ν†α̇σ̄
µ,α̇α(i∂µ − Vµ)να. Varying the Lagrangian with respect to the neu-

trino field, we obtain the equation of motion, σ̄µ,α̇α(i∂µ − Vµ)να = 0. Its solution can be written
in a form similar to Eq. (4.59),

ν(t,p) = a(t,p)χ−(p̂V) + b†(t,−p)χ+(p̂V) , (4.116)

where we emphasize the different arguments of the operators a, b† and the spinors χ∓: p̂V is the
unit vector in the direction of p −V. The creation/annihilation operators a(t,p) = a(p)e−iω+t



4.9 Summary and conclusions 93

and b†(t,−p) = b†(−p)eiω−t satisfy the usual anticommutation relations, with the energy spec-
trum given by ω± ≡ |p−V| ± V 0.

Using the orthogonal vectors p̂ and ε̂ we can write the energy eigenvalues ω± in the form
ω± =

√
(E − p̂ ·V)2 + |ε̂ ·V|2 ± V 0. The spinor contractions in Eq. (4.14) now include the

spinors with the new argument χ∓(p̂V). By construction, the Hamiltonian becomes diagonal,
i.e., Γνν̄ and Γν̄ν vanish, once we use the solution of the equations of motion. The diagonal
elements can be expanded in terms of χ∓(p̂). For example for Γνν we obtain

χ†−(p̂V)σ̄µχ−(p̂V) = c1n
µ(p̂) + Re[c2ε

µ(p̂)] . (4.117)

Multiplied by Vµ, Eq. (4.117) reproduces the interaction part of the Hνν element of the diagonal-
ized Hamiltonian matrix. The decomposition coefficients

c1 ≡
E − p̂ ·V
|p−V|

and c2 ≡ −
ε̂∗ ·V
|p−V|

, (4.118)

are related to the angle of the Bogolyubov transformation by c1 = cos 2ϑ and |c2| = sin 2ϑ
respectively. In other words, diagonalizing the Hamiltonian matrix by a Bogolyubov transfor-
mation in every frame is equivalent to using the equation of motion. This equivalence suggests
to interpret physical particle densities as propagation eigenstates of the full Hamiltonian in line
with the discussion in Sec. 4.8.4.

4.9 Summary and conclusions
Neutrino flavor conversion is an important phenomenon to correctly describe neutrino transport
in supernovae. This description is complicated by the fact that the evolution equations are non-
linear because of neutrino-neutrino refraction, which may lead to efficient flavor conversion.
However, flavor oscillations alone might not be enough to fully incorporate all effects relevant
for neutrino propagation.

Motivated by these concerns, we have studied extended kinetic equations that treat flavor cor-
relations on the same footing as helicity and pair correlations. We have limited ourselves to
the mean-field approximation in which all the interactions of the Hamiltonian are reduced to
refraction. We have classified the contributions to the mean-field Hamiltonian matrix in terms
of the Lorentz structures that appear for the chiral interactions of the neutrinos. These spinor
contractions are shown explicitly to first order in the neutrino mass, similar to previous studies
in the literature. For Dirac neutrinos, we confirm previous results. For Majorana neutrinos, we
find a small correction to the mean-field Hamiltonian which arises from lepton-number violating
contractions. To analyze the behavior of these additional terms in the limit of vanishing neutrino
masses, we have studied extended kinetic equations for Weyl neutrinos.

We also supplemented the kinetic equations by helicity- and flavor-changing effects due to
electromagnetic background fields. Because electric and magnetic fields were studied in the
same formalism as matter effects, we were able to judge their relative importance. For typi-
cal parameters of core-collapse supernovae and SM-like electromagnetic moments of neutrinos,
matter currents dominate over magnetic fields.
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Flavor and helicity oscillations can be complicated in detail, but they are conceptually straight-
forward. Their importance arises because charged-current interactions produce neutrinos in fla-
vor eigenstates, and all interactions create almost perfect helicity states. The generated interac-
tion eigenstate is a coherent superposition of propagation eigenstates because the energy uncer-
tainty of the neutrino production is much larger than the energy difference of the propagation
eigenstates. This coherence leads to the various flavor and helicity oscillation phenomena.

Taken at face-value, pair correlations lead to similar oscillations. In the simplest case of
massless neutrinos, the pair correlations are between neutrinos and antineutrinos of opposite
momentum, and the oscillations are between the empty state and the one filled with a neu-
trino/antineutrino pair, i.e., we obtain spontaneous pair creation.

While such fluctuations are physically conceivable, they lead to a number of puzzling ques-
tions about how we define physical particle numbers: if we include pair correlations two ob-
servers with relative velocities seem to observe inconsistent particle numbers. We have shown
that this problem may be solved by defining particles as eigenstates of the in-medium Dirac equa-
tion. When we include pair correlations, there is no preferred basis as to which we could define
particles. Different definitions can be related via mixing particle and antiparticle operators via
Bogolyubov transformations. Invoking the Dirac equation projects the space of possible particle
definitions onto physical degrees of freedom. Unfortunately, such a treatment is in general not
viable since we already approximate neutrinos to be quasi-free particles by invoking the mean-
field approximation or by expanding the equations of motion perturbatively, i.e., we usually
define particles as solutions to the free Dirac equation which leads to the mentioned problems.

For practical considerations, it may be best to discard pair correlations altogether and to in-
terpret particles as eigenstates of pair correlations, i.e., to remove the Hνν̄ submatrix from the
Hamiltonian matrix. Firstly, this treatment resembles invoking the Dirac equation, which would
send the discarded terms to zero. Secondly, the terms discarded this way induce very small cor-
relations of the order κ ∼ 10−11, which seem to be irrelevant compared toO(1) number densities
in any case. Note however that this small number for κ is a crude estimate and especially the
treatment of UV-modes of κ might be improved. Finally, even if pair correlations are included
in the evolution equations, their numerical value will probably be very close to its equilibrium
value for which the density matrices and pair correlations decouple. The reason is that in con-
trast to flavor and helicity oscillations, there is no separation of scales in the dynamics of pair
correlations. The oscillation frequency is here given by twice the neutrino energy which is of the
same order as typical neutrino production time scales. We therefore expect a neutrino to relax to
the equilibrium state of pair correlations during the production process.

If one wants to continue using pair correlations in the kinetic equations, one may try to pro-
ceed in the two following ways to resolve the existing issues. First, one may attempt to abstain
from the assumption of homogeneity of the pair correlations to remove the problematic back-to-
back condition of the pair correlations. This would allow us to track the momentum modes for
different frames consistently and may prevent inconsistent particle numbers. Alternatively, one
may try to use a full non-equilibrium treatment like the closed-time path formalism to obtain a
constraint equation. Similarly to invoking the in-medium Dirac equation, the constraint equation
filters for the correct excitations. Solving the kinetic and the constraint equation simultaneously
may lead to consistent physical solutions.



Chapter 5

Lepton asymmetry from mixing and
oscillations
We study a toy model of leptogenesis in the closed-time-path formalism and compare the generated lep-
ton asymmetry in two conceptually different formalisms, i.e., the Heisenberg- and interaction-picture
Kadanoff-Baym equations, demonstrating for the first time their equivalence in the weak-washout regime.
Three energy shells emerge and we identify two of these shells as resonant mixing whereas the third shell
contains oscillations. In contrast to earlier works, we find that the third shell also features a destructive
interference between mixing and oscillations. We compare our results to the density-matrix approach for
which we confirm that the asymmetry is underestimated, in line with previous discussions. We also find
that the effective Yukawa approach often used to describe resonant mixing has to be supplemented by the
interference contribution in the resonant and weak-washout regimes.1

5.1 Introduction: kinetic equations and resonant leptogenesis
Our universe is not symmetric with respect to baryons and antibaryons [9]. The amount of an-
tiprotons that are observed in cosmic rays is about four orders of magnitude smaller than the
amount of protons [225] and consistent with purely secondary production through pair produc-
tion from high energy particles [226]. Moreover, no heavy antinuclei have been observed [227],
which could have pointed towards fusion of antimatter nuclei in antimatter stars. In cosmology,
the baryon-asymmetry is reflected in the present baryon-to-photon ratio [10]

η = nb
nγ

= 6.05± 0.07× 10−10 , (5.1)

with baryon number density nb and photon number density nγ . This quantity would be vanish-
ingly small if the universe was completely symmetric with respect to baryon symmetry, since
protons and antiprotons would annihilate in pairs and suppress nb.

In order to generate this baryon asymmetry in the early universe, we require processes that vi-
olate baryon number, C and CP -symmetry, and that occur sufficiently far from equilibrium [11].
In principle, all of these ingredients can be found in the Standard Model and for a standard cos-
mology [12, 95, 96] but the resulting baryon asymmetry is too small to explain the observed
value in Eq. (5.1).

1The detailed computations that are shown in this chapter have been presented before in “Lepton asymmetry from
mixing and oscillations” [3] by A. Kartavtsev, P. Millington and the present author.
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ε′

ε

Figure 5.1: Feynman diagrams for the decay of a heavy Majorana neutrino. The tree-level diagram is shown on
the left. The one-loop vertex correction is depicted in the middle. This diagram gives rise to the ε′-type
CP -violations. ε-type CP-violation is shown on the right-hand side. Here, a self-energy was inserted
on the external leg.

The failure to explain the baryon asymmetry has to be mended by new physics, for which
several approaches exist in the literature (see [12, 96]). In this chapter, we focus on resonant lep-
togenesis which generates an asymmetry in the lepton number from decays of quasi-degenerate
heavy Majorana neutrinos. Lepton-number conservation is broken explicitly by the Majorana
masses, and complex Yukawa couplings provide CP -violation. The asymmetry is then gener-
ated in out-of-equilibrium decays and converted to a baryon asymmetry through the sphaleron
processes [98, 228].

In contrast to the original leptogenesis scenario by Fukugita and Yanagida [97], resonant lep-
togenesis [106, 107, 229, 230] relies on resonant mixing in the decay of Majorana neutrinos.
CP-violation in the decay of Majorana neutrinos arises at leading order through the interference
of the tree level decay and the absorptive part of one-loop corrections (see Fig.5.1). In Ref. [97],
only the loop at the vertex was considered to interfere (ε′-type CP-violation). An additional
source of CP-violation (ε-type) arises however through the interference of the tree-level decay
with the self-energy correction to the external neutrino leg (see Fig. 5.1). While for a hierarchical
spectrum this mixing contribution is of the same order as ε′-type CP-violation [231], for quasi-
degenerate Majorana neutrinos the ε-type CP-violation dominates over the ε′- effect [229, 230],
which then may be neglected.

The asymmetry for a hierarchical mass spectrum can be readily calculated using a system of
Boltzmann equations (see e.g. Refs [232–236]). The Boltzmann approach has also been used
for quasi-degenerate spectra [237, 238], and resonant mixing may be treated semi-classically by
defining effective Yukawa couplings [106, 107] that contain all contributions from mixing.

For quasi-degenerate mass spectra, one has to worry about the build-up of correlations be-
tween the Majorana neutrinos; an effect that is not captured by the Boltzmann formalism. In
the density matrix formalism, one finds indeed that the correlations are important and that flavor
oscillations of heavy neutrinos give an additional contribution to the CP-violation besides the
mixing source [239–245]. Whereas it is widely accepted that the mixing source is important for
all mass spectra of the heavy neutrinos, the relative importance of the oscillation source is still
under debate, and it is one goal of this chapter to compare the oscillation to the traditional mixing
in a simplified model of leptogenesis.

For this comparison we have to start from first principles of statistical mechanics and quan-
tum field theory (see Sec. 2.5). In the Schwinger-Keldysh [91, 92] closed-time-path formalism
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of non-equilibrium thermal field theory (see also Refs. [125, 246, 247]) one may obtain cou-
pled quantum transport equations that are well-suited to describe non-equilibrium dynamics; the
Kadanoff-Baym equations [93, 94] (for a review, see Ref. [128]). The closed-time-path formal-
ism has the advantage that all quantum-mechanical effects are in principle accounted for consis-
tently and systematically. In the literature a huge effort in deriving and solving the Kadanoff-
Baym equations has been made [110, 112, 113, 130, 132, 248–266]. Nevertheless, it remains
an extraordinarily difficult task to obtain tractable solutions and to extract physically meaningful
observables. The quantum transport equations have to be simplified using suitable approxima-
tions, but different approaches make it often difficult to compare directly the results of different
analyses or to ascertain to what extent relevant physical effects are accounted for.

In this chapter, we will be mainly concerned with the works of Garbrecht and collabora-
tors [112, 113] and those of Dev and collaborators [108–110]. Both approaches highlight the
physical relevance of the oscillation source in leptogenesis but with differing approaches. The
works of Garbrecht and collaborators [112, 113] use the Heisenberg-picture Kadanoff-Baym
equations to compute the asymmetry. The advantage of these equations is that they contain all
information about plasma excitations and memory effects. On the downside, one has to solve a
system of coupled integro-differential equations to obtain a solution: this is a difficult task both
analytically and numerically. Garbrecht and collaborators [112, 113] use a quasi-particle ansatz
to simplify the resulting equations, i.e., they approximate the Wightman propagators of all Ma-
jorana neutrinos to be proportional to a single delta function (density matrix approach). While
this forces the Majorana neutrinos to have the same energies in the spectral function, the kinetic
equation still contains mass and energy differences that may lead to flavor oscillations. This
approximation will be called the single-shell approximation, where shell is to be understood as
the energy for which a delta function in the spectral function becomes non-zero (on-shell). The
resulting kinetic equation is a density matrix equation which contains flavor oscillations. These
oscillations then contribute to the asymmetry. Nevertheless, it is a priori not clear to what extent
this kinetic equation correctly reflects the full asymmetry.

Indeed, it was argued by Dev, Millington, Pilaftsis, and Teresi [110] that such an approach
would discard the effect of mixing and underestimate the generated asymmetry. To show this,
they use the interaction-picture description to non-equilibrium quantum field theory [118]. There,
one starts by defining particles as free vacuum excitations and reconstructs non-equilibrium ef-
fects by a perturbation series or by resuming vacuum propagators into interacting (dressed) prop-
agators. The interaction-picture treatment may be viewed as a bottom-up approach in contrast to
the top-down approach of the Heisenberg picture. While in the Heisenberg approach one had to
guess what the physical excitations are by imposing a single-shell approximation, the advantage
of the interaction picture is that the degrees of freedom come out of the vacuum propagators.

Dev and collaborators [108–110] applied the interaction picture to a model of leptogenesis
in the strong-washout regime observing that both resonant mixing and oscillations are of equal
magnitude and contribute additively to the asymmetry (for a summary, see Ref. [111]). This
leads to a factor of two enhancement in the final lepton asymmetry, when both sources, rather
than only one, are included.

An independent cross-check of these results is difficult to obtain because of different approx-
imations that go into competing approaches. In this chapter, we will compare non-equilibrium
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field theoretic results in the Heisenberg and interaction pictures in a simplified model of leptoge-
nesis and in the weak-washout regime. We find exact agreement between these two formulations,
illustrating for the first time the self-consistency and complementarity of these two approaches.
We will demonstrate that mixing and oscillations persist, and we will illustrate how the mix-
ing and oscillation sources can be identified in the Kadanoff-Baym formalism by means of the
shell structure of the resumed heavy neutrino propagators. We will show that there are three
distinct shells. Two of these shells correspond to resonant mixing and can be associated with
the quasi-particle mass shells, whereas the third, which can be identified with oscillations, lies at
an intermediate energy. In addition, we identify terms lying on the oscillation shell that can be
interpreted as the interference between oscillation and mixing; a phenomenon not accounted for
in Refs. [108–110].

Most significantly, we find that this interference is destructive. With respect to the “bench-
mark” of the Boltzmann approximation, this destructive interference can be viewed as a suppres-
sion of the oscillation source. Conversely, with respect to the “benchmark” of the density matrix
approximation, this destructive interference can be viewed as a suppression of the mixing source.
This observation may in part account for apparent discrepancies between competing approaches.
Nevertheless, in spite of this destructive interference, we find that both oscillation and mixing
sources can be of equal magnitude and contribute additively to the final asymmetry in agreement
with the conclusions of Refs. [108–110].

Note however that our results were obtained in the weak-washout regime, where some approx-
imations of Refs. [108–110, 112, 113] cannot be made, and it remains to be seen how the result
generalizes to the strong-washout regime.

The remainder of this chapter is organized in the following way. In Sec. 5.2 we introduce our
toy model. We focus on a scalar theory which embodies all relevant features for a cosmological
asymmetry generation. Some basic concepts of non-equilibrium quantum field theory are sum-
marized in Sec. 5.3, before we move on to explicitly calculate the asymmetry in the Heisenberg
picture in Sec. 5.4. Here, we identify the three different shells and interpret them as mixing, os-
cillations, and interference. This result is then confirmed in Sec. 5.5 using the interaction picture
approach. We also make a comparison to the density matrix approach at this point. The com-
parison to the effective Yukawa coupling approach is performed in Sec. 5.6. Numerical studies
are then shown in Sec. 5.7, where we show that both mixing and oscillations contribute and may
lead to a factor of two enhancement compared to just one of these sources. The relevance of
interference will be highlighted. We conclude this chapter in Sec. 5.8.

5.2 A model for leptogenesis
We are interested in resonant leptogenesis where the baryon asymmetry is generated by a pair of
quasi-degenerate heavy neutrinos. However, calculations in the CTP-formalism are technically
demanding and the notation clouds the physical meaning of the results. In order to minimize this
notational clutter, we resort to a simple toy model, which nevertheless contains all features nec-
essary for successful leptogenesis. This toy model contains two real scalar fields ψi that mimic
the heavy neutrinos. Somewhat inaccurately, we will call these real scalars “heavy neutrinos”
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in the following. Additionally, we introduce one complex scalar background field b that mimics
charged leptons to which the heavy neutrinos decay. The Lagrangian reads

L = 1
2∂

µψi ∂µψi −
1
2ψiM

2
ijψj + ∂µb∗ ∂µb−m2 b∗b

− λ

4 (b∗b)2 − hi
2 ψibb−

h∗i
2 ψib

∗b∗ .

(5.2)

The first line contains the kinetic and mass terms. While the kinetic terms of the heavy neutrinos
are flavor-diagonal, the mass term contains a general mass matrix Mij that can be non-diagonal.
The second line contains the interaction of the complex scalar that keeps the background bath in
equilibrium with itself as well as the terms that describe the decay of the heavy neutrinos into
complex scalars with coupling strengths hi.

Our model Lagrangian takes the Sakharov conditions [11] into account in the following way.
In the absence of the decay of the heavy neutrino, the model would exhibit a U(1) global sym-
metry that corresponds to lepton number of the complex scalars. This symmetry is explicitly
broken by the decay terms. The decays also violate C and CP-invariance if the couplings hi are
not chosen in a special way (see appendix B). Finally, departure from equilibrium is realized
through out-of-equilibrium decays.

5.3 Propagators and self-energies

Our aim is to study the asymmetry of the lepton number which is carried by the complex scalar
field. In Sec. 5.4 we will show that this asymmetry may be expressed in terms of two-point
functions of this complex scalar and calculated using Kadanoff-Baym equations (2.57). Before
we dive into the computation let us summarize the key quantities that go into the derivation.

The lepton number is carried by the complex scalar field. Its propagators are therefore tied to
the produced lepton asymmetry. We will need the Wightman propagators

S>(x, y) = 〈b(x)b∗(y)〉 , S<(x, y) = 〈b∗(y)b(x)〉 . (5.3)

These propagators exchange their arguments under complex conjugation

S∗>(x, y) = S>(y, x) , S∗<(x, y) = S<(y, x) , (5.4)

and they are in general complex valued functions. They can be decomposed into statistical and
spectral propagators SF,ρ

S≷(x, y) = SF(x, y)∓ i

2Sρ(x, y) , (5.5)

which in turn are defined via commutators and anticommutators of the fields b(x), b∗(y),

SF(x, y) = 1
2〈{b(x), b∗(y)}〉 , Sρ(x, y) = i〈[b(x), b∗(y)]〉 . (5.6)
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In a C-symmetric configuration, these propagators are real-valued [264], which will be important
later on to distinguish source and washout terms in the asymmetry. Also they possess definite
transformations under complex conjugation

S∗F(x, y) = SF(y, x) , S∗ρ(x, y) = −Sρ(y, x) . (5.7)

CP-violation is generated through interference between tree level and one-loop decay ampli-
tudes. Hence, we also need expressions for the one-loop self-energies. They can be derived by
taking the functional derivative of the 2PI effective action with respect to the complex scalars’
propagators. The 2PI part of the effective action reads [254]

iΓ2 = −1
4hih

∗
j

∫
d4xd4y Gij(x, y)S2(x, y)

−1
4h
∗
ihj

∫
d4xd4y Gij(x, y)S2(y, x) ,

(5.8)

The effective action contains the propagator of the real scalar Gij with flavor indices i, j. The
real scalars’ Wightman propagators are (see Sec. 2.5)

Gij
>(x, y) = 〈ψi(x)ψj(y)〉 , (5.9)

Gij
<(x, y) = 〈ψj(y)ψi(x)〉 , (5.10)

and the statistical (spectral) propagators of the real scalars Gij
F(ρ) are defined as

Gij
F (x, y) = 1

2〈{ψ
i(x), ψj(y)}〉 , Gij

ρ (x, y) = i〈[ψi(x), ψj(y)]〉 . (5.11)

These matrices are real-valued [264] as can again be seen from the representation of the expec-
tation value in terms of the Hermitian density matrix. Under the exchange of the arguments and
indices, the statistical propagator is symmetric, while the spectral function is antisymmetric

Gij
F (x, y) = Gji

F (y, x) , Gij
ρ (x, y) = −Gji

ρ (y, x) . (5.12)

With these definitions, the statistical and spectral parts of the one-loop self-energies, which for
the complex scalars will be denoted by Σ, are given by

ΣF(x, y) = −H∗ij
[
Gij

F (x, y)SF(y, x) + 1
4G

ij
ρ (x, y)Sρ(y, x)

]
, (5.13)

Σρ(x, y) = −H∗ij
[
Gij

F (x, y)Sρ(y, x)−Gij
ρ (x, y)SF(y, x)

]
, (5.14)

where we have introduced the dyadic product Hij ≡ hih
∗
j and summation over the indices is

implied.
The self-energies of the real scalar ΠF,ρ are obtained from the functional derivative of the 2PI

effective action with respect to the real scalars’ propagators [254], which now has two complex
scalars running in the loop

Πij
F (x, y) = −ReH ij

[
S2

F(y, x)− 1
4S

2
ρ(y, x)

]
≡ ReH ijΠF(y, x) , (5.15)

Πij
ρ (x, y) = 2 ReH ijSF(y, x)Sρ(y, x) ≡ ReH ijΠρ(y, x) , (5.16)



5.3 Propagators and self-energies 101

where the equivalence serves as a definition for the amputated self-energies ΠF,ρ for which the
coupling has been factored out. We have used assumed that the complex scalars’ propagators are
real-valued. Finally, it is convenient to also define

Π≷ = ΠF ∓
i

2Πρ , (5.17)

in analogy to the definition of the Wightman propagators of the scalar fields.
Explicitly, we will only need the Wigner transform of the retarded and advanced self-energies

ΠR,A(X,Q). They may be decomposed into a Hermitian and an skew-Hermitian matrix:

Πij
R(A) = Πij

h ±
i

2Π̃ij
ρ . (5.18)

For the model in Eq. (5.2) and in the MS renormalization scheme, the self-energies have been
calculated explicitly in Ref. [264]. Note that their convention, denoted here with a tilde, for
the time-component Wigner transform of the spectral functions includes another factor of i:
Π̃ρ = −iΠρ. For an equilibrium system, the spectral part gives

Π̃ij
ρ (X,Q) ≡ −ReHij

8π Lρ(X,Q) = −ReHij

8π

θ(Q2) + 2T
|Q|

ln
1− e−(Q0+|Q|)/(2T )

1− e−(Q0−|Q|)/(2T )


 .

(5.19)
for Q0 > |Q|. The Hermitian part Πh may be decomposed into a vacuum and a medium contri-
bution

Πij
h (X,Q) = Πij

vac(Q) + Πij
med(X,Q) . (5.20)

The renormalized vacuum part reads [264]

Πii
vac(Q) = Hii

16π2 ln |Q
2|

µ2 , (5.21a)

Πi/i
vac(Q) = ReHi/i

16π2 ln |Q
2|

µ2 , (5.21b)

where µ is the renormalization scale and we have employed the notation i, /i to distinguish be-
tween the two flavors [110]:

/i ≡

2 , for i = 1
1 , for i = 2 .

(5.22)

The medium contribution is

Πij
med(X,Q) = −ReHij

T

8π2|Q|

∫ ∞
0

dz neq(z) ln
∣∣∣∣∣(2z + |Q|/T )2 −Q2

0/T
2

(2z − |Q|/T )2 −Q2
0/T

2

∣∣∣∣∣ , (5.23)

which holds for a C-symmetric medium.
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5.4 Shell structure in the Heisenberg picture
In general, the calculation of the asymmetry is challenging and analytical insights are hard to
achieve. For the model presented in Eq. (5.2), an analytical solution of the Kadanoff-Baym
equations in the Heisenberg picture has been obtained in Ref. [264]. Using this solution, which
will be motivated below, we show that mixing and oscillations between flavors provide two
distinct sources of the asymmetry, in agreement with arguments presented in Refs. [108–110].
Whereas the standard mixing contributions [105, 107] are associated with the mass shells ωi
(i = 1, 2) of the corresponding quasi-particles, the oscillation contribution is associated with a
shell at ω̄ = (ω1 + ω2)/2, which we refer to as the oscillation shell.

5.4.1 Asymmetry

The asymmetry can be derived from the Noether current of the complex scalar,

jµ = i

b∗(x)
(
∂

∂xµ
b(x)

)
− b(x)

(
∂

∂xµ
b∗(x)

)
= i lim

y→x

( ∂

∂xµ
b∗(y)b(x)

)
−
(
∂

∂yµ
b(x)b∗(y)

) ,
(5.24)

which would be conserved in the absence of the CP -violating interactions. This current can be
expressed in terms of propagators by taking the expectation value

Jµ(x) = 〈jµ(x)〉 = i lim
y→x

[
∂

∂xµ
S<(x, y)− ∂

∂yµ
S>(x, y)

]
. (5.25)

With the decomposition into statistical and spectral parts [Eq. (5.5)], the Noether current in
Eq. (5.25) reads

Jµ(x) = i lim
y→x

(
∂

∂xµ
− ∂

∂yµ

)
SF(x, y)− lim

y→x

(
∂

∂xµ
+ ∂

∂yµ

)
Sρ(x, y) . (5.26)

The contribution from the spectral function vanishes as can be seen as follows: Sρ is defined via
the commutator [see Eq. (5.6)], and only the equal-time commutator with a time-derivative does
not vanish trivially, but gives

[b(x), ḃ∗(y)] = [ḃ(x), b∗(y)] = iδ(3)(x− y) . (5.27)

Since the commutator is antisymmetric, the contributions from the derivative with respect to x0

and y0 cancel. We are left with

Jµ(x) = i lim
y→x

(
∂

∂xµ
− ∂

∂yµ

)
SF(x, y) . (5.28)
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Taking the divergence of this current, we obtain

∂µJ
µ(x) = i lim

y→x

(
∂

∂xµ
+ ∂

∂yµ

)(
∂

∂xµ
− ∂

∂yµ

)
SF(x, y) = i lim

y→x

(
�x −�y

)
SF(x, y) . (5.29)

The right-hand side can be evaluated using the Kadanoff-Baym equations for the complex scalar,
which have been derived in Ref. [253] for Gaussian initial conditions. They read

(
�x +m2

)
SF(x, y) =

∫ y0

t0
d4zΣF(x, z)Sρ(z, y)−

∫ x0

t0
d4zΣρ(x, z)SF(z, y) , (5.30)

(
�x +m2

)
Sρ(x, y) =

∫ y0

x0
d4zΣρ(x, z)Sρ(z, y) , (5.31)

where t0 is the initial time. The equations depend on the propagators of the real scalars through
the self-energies ΣF(ρ). These propagators also contain the deviation from equilibrium.

Using the symmetry properties of the statistical and spectral propagators [Eq. (5.7)], we may
derive equations that are similar to Eq. (5.30) but with the derivative acting on the second ar-
gument of the propagator. Inserting these Kadanoff-Baym equations into Eq. (5.29) , the four-
divergence of the lepton-number current is

∂µJ
µ(x) = 2 Im

∫ x0

t0
d4z

[
Σρ(x, z)SF(z, x)− ΣF(x, z)Sρ(z, x)

]
. (5.32)

In the absence of CP -violation or in equilibrium, this current would vanish.
We would like to find the expectation value for the lepton-number density, which is given by

η(t) = 1
V

∫
d3x 〈j0〉 , (5.33)

where V is the volume of space, which will cancel later on. Integrating Eq. (5.32) over the
coordinate space and normalizing by the three-volume V , we obtain in the frame where the
medium is homogeneous

η̇(x0) = 2
V

Im
∫ x0

t0
d4z

∫
d3x

[
Σρ(x, z)SF(z, x)− ΣF(x, z)Sρ(z, x)

]
. (5.34)

This equation can be manipulated and interpreted more easily if we substitute the propagators by
their Wigner transforms

SF(t′, t′′,x, z) =
∫ d3Q

(2π)3 e
iQ(x−z)SF(t′, t′′,Q) . (5.35)

The lepton charge density [Eq. (5.34)] then simplifies to

η̇(x0) = 2 Im
∫ x0

t0
dz0

∫ d3Q
(2π)3

[
Σρ(x0, z0,Q)SF(z0, x0,Q)− ΣF(x0, z0,Q)Sρ(z0, x0,Q)

]
,

(5.36)
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where the volume has canceled with a spatial integration over the central coordinate.
The asymmetry can be further decomposed by identifying the source and washout terms.

While source terms generate an asymmetry even in a C-symmetric configuration, the washout
terms only contribute if the bath of complex scalars is not C-symmetric. Since in a C-symmetric
configuration, the propagators of the complex scalars are real-valued, the washout terms are de-
fined to be proportional to the imaginary part of SF,ρ. Hence [264],

η̇(x0) ≡ S(x0)−W (x0) , (5.37)

with the source term S(x) and the washout term W (x), which read

S(x) ≡ 2
∫ x0

t0
dz0 d3Q

(2π)3

[
Im Σρ(x0, z0) ReSF(z0, x0)− Im ΣF(x0, z0) ReSρ(z0, x0)

]
,

(5.38)

W (x) ≡ −2
∫ x0

t0
dz0 d3Q

(2π)3

[
Re Σρ(x0, z0) ImSF(z0, x0)− Re ΣF(x0, z0) ImSρ(z0, x0)

]
.

(5.39)

Here and in the following we omit the common dependence on Q.
In phenomenological analyses, the washout terms are important since they asymptotically lead

the system back to its equilibrium state. In this work, however, we concentrate on the source term
and neglect the back-reactions in order to obtain analytical insights.

Integrating Eq. (5.37) over time x0, we obtain the produced asymmetry

η(t) =
∫ t

t0
dx0

∫ t

t0
dz0 d3Q

(2π)3

{
Im

[
Σρ(x0, z0)

]
SF(z0, x0)

− Im
[
ΣF(x0, z0)

]
Sρ(z0, x0)

}
.

(5.40)

Here we assumed that the initial asymmetry η(t0) = 0, and we used the identity

∫ t

t0
dt′
∫ t′

t0
dt′′

[
f(t′, t′′) + f(t′′, t′)

]
=
∫ t

t0
dt′
∫ t

t0
dt′′ f(t′, t′′) , (5.41)

which can be derived from noting that the limits on the t′′-integral can be extended by inserting
a Heaviside step function

∫ t

t0
dt′
∫ t′

t0
dt′′ f(t′, t′′) =

∫ t

t0
dt′
∫ t

t0
dt′′ θ(t′ − t′′)f(t′, t′′) . (5.42)

This trick will be used regularly in the following since it allows us to extend the bounds of
integration to infinity.

For the C-symmetric medium we consider here, the self-energies Σ contain only real-valued
propagators, and the only imaginary quantities are the off-diagonals of Hij . Using the relations
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between the Wightman functions and the statistical and spectral functions [Secs. 2.5 and 5.3],
the produced asymmetry reduces to

η(t) = −2 ImH12

t∫
−∞

dx0
t∫

−∞

dy0
∫ d3Q

(2π)3

× i
[
G12
< (x0, y0)Π>(y0, x0)−G12

> (x0, y0)Π<(y0, x0)
]
,

(5.43)

where following Refs. [261, 264], we assumed that the system begins its evolution at t0 = −∞
with both the complex and the real scalars in an equilibrium state. This expression obtained with
the Noether current is entirely equivalent to the one obtained via the definition of the number
densities used in the interaction-picture approach to the Kadanoff-Baym formalism, developed
in Ref. [118].

5.4.2 Analytical solution of the Kadanoff-Baym equations
The Wightman propagators in Eq. (5.43) are solutions to the Kadanoff-Baym equations for the
mixing fields ψi. In equilibrium, no asymmetry will be produced. Since we do not consider
expansion of the universe in this chapter, we emulate departure from equilibrium with an external
source at t = 0. This source takes the real scalars out of equilibrium, thereby fulfilling the third
Sakharov condition. An asymmetry between the number densities of b and b∗ is then produced.

Let us first look at equilibrium to obtain some insights for the non-equilibrium case. In the
absence of external sources, the transport equations read [254]

[�x1 + M2]ikGkj
≷ (x, y) =

y0∫
−∞

d4zΠik
≷ (x, z)Gkj

ρ (z, y)−
x0∫
−∞

d4zΠik
ρ (x, z)Gkj

≷ (z, y) , (5.44)

where M is the mass matrix of the renormalized Lagrangian. Using the definitions of the retarded
and advanced propagators and self-energies (2.56), we can rewrite Eq. (5.44) in a form more
convenient for the analysis that follows:

[�x1 + M2]ikGkj
≷ (x, y) =−

∫
dz4

[
Πik

R (x, z)Gkj
≷ (z, y) + Πik

≷ (x, z)Gkj
A (z, y)

]
, (5.45)

Here, we have used Heaviside step functions to extend the z0-domain of integration to infinity.
The Kadanoff-Baym equations for the retarded and advanced propagators can be derived from
Eq. (5.44):

[�x1 + M2]ikGkj
R(A)(x, y) = δ(x− y)δij −

∫
d4zΠik

R(A)(x, z)G
kj
R(A)(z, y) . (5.46)

At the one-loop level to which we limit ourselves here, the self-energies of the real scalar fields
only contains propagators of the complex scalars [see Eqs. (5.15)]. Since they are assumed to be
in equilibrium, they are translationally invariant. This invariance implies that Eq. (5.46) admits a
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translationally-invariant solution, which can be seen by writing the right-hand side of Eq. (5.46)
in terms of Fourier transforms. Using Eq. (5.46), one can readily check that

Gij
≷,eq(x, y) ≡ −

∫
d4ud4v Gim

R (x, u)Πmn
≷ (u, v)Gnj

A (v, y) (5.47)

is a solution to Eq. (5.45). Since the self-energies as well as the retarded and advanced prop-
agators on the right-hand side of Eq. (5.47) are translationally invariant, the left-hand side of
Eq. (5.47) is also translationally invariant. In other words, Eq. (5.47) is an equilibrium solution
for the Wightman propagators, which is denoted by the subscript “eq”.

An external source at t = 0 brings the system instantaneously out of equilibrium. Fol-
lowing refs. [261, 264], we consider an external bi-local source that perturbs both Wightman
self-energies in the same way Πij

≷(x, y) → Πij
≷(x, y) − Kij(x, y) and, thus, leaves the spec-

tral function, the retarded propagator and the advanced propagator unperturbed. Here, we take
Kij(x, y) = δ(x0)δ(y0)Kij(x−y), which renders the renders the Kadanoff-Baym equations lin-
ear at one loop, i.e. a sum of two solutions is also a solution. Using this linearity, we obtain the
following equation for the non-equilibrium partGij

≷δ ≡ Gij
≷−G

ij
≷,eq of the Wightman propagators

induced by the external source:

[�x1 + M2]ikGkj
≷δ(x, y) =−

∫
d4z

[
Πik

R (x, z)Gkj
δ≷(z, y)−Kik(x, z)Gkj

A (z, y)
]
. (5.48)

This equation can be fulfilled [261, 264] by

Gij
≷δ(x, y) =

∫
d4ud4v Gim

R (x, u)Kmn(u, v)Gnj
A (v, y) . (5.49)

We are only interested in this non-equilibrium part of the resummed Wightman propagators
because in the absence of expansion the equilibrium solution is static and does not contribute
to the asymmetry [264]. Because of the form of the external source, the non-equilibrium parts
of the positive and negative frequency Wightman propagators are equal, Gij

>δ = Gij
<δ ≡ Gij

δ ,
and we only have to consider one deviation Gij

δ . At the same time, the spectral functions stays
unperturbed and the out-of-equilibrium part fulfills Gij

ρδ = 0 [264].

5.4.3 Shell structure of the non-equilibrium solution
In order to unravel the shell structure of the non-equilibrium solution in Eq. (5.49), we perform a
Wigner transformation (see appendix 2.64) and also write the argument of Eq. (5.49) in Wigner
space. We obtain

Gij
δ (t, Q0) =

∞∫
0

dp0

2π

∞∫
0

dp′0
[
δ
(
Q0 − 1

2(p0 + p′0)
)
e−i(p0−p′0)tGim

R (p0)KmnGnj
A (p′0)

+δ
(
Q0 − 1

2(p0 − p′0)
)
e−i(p0+p′0)tGim

R (p0)KmnGnj
A (−p′0)

+δ
(
Q0 − 1

2(−p0 + p′0)
)
ei(p0+p′0)tGim

R (−p0)KmnGnj
A (p′0)

+δ
(
Q0 + 1

2(p0 + p′0)
)
ei(p0−p′0)tGim

R (−p0)KmnGnj
A (−p′0)

]
,

(5.50)
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which contains the four shells. Note that in this expression p0 and p′0 are positive. We see
that the contributions in the second and third lines oscillate fast reminiscent of the κ-correlators
in Chapter 4. We will discard these terms in the following and concentrate on the Q0 > 0
contribution only:

Gij
δ (t, Q0 > 0) ≈

∞∫
0

dp0

2π

∞∫
0

dp′0 δ
(
Q0 − 1

2(p0 + p′0)
)
e−i(p0−p′0)tGim

R (p0)KmnGnj
A (p′0) . (5.51)

The advantage of the Wigner space representation of the retarded and advanced propagators is
their simple explicit structure. They can be inferred from Eq. (5.46) using the translational-
invariance of the self-energies:

Gij
R(A)(Q0) = −

adjDij
R(A)(Q0)

detDR(A)(Q0) , (5.52)

where

Dij
R(A)(Q

0) ≡ Q2δij − [M2]ij − Πij
R(A)(Q0) , (5.53)

and adjDij
R(A) denotes the adjugate matrix:

adjDR =
(

(Q0)2 −Q2 −M2
2 − Π22

R Π12
R

Π21
R (Q0)2 −Q2 −M2

1 − Π11
R

)
, (5.54)

which is written in the mass basis. This basis will also be used in the rest of this chapter.
The propagator in Eq. (5.52) has four poles that are given by the zeros of detDR(A)(Q0).

The imaginary parts of the retarded (advanced) self-energies are odd under Q0 → −Q0, i.e.,
Im ΠR(A)(Q0) = − Im ΠR(A)(−Q0), such that all poles of Gij

R(A)(Q0) lie below (above) the real
axis at Q0 = Ωi and Q0 = −Ω∗i . We write these points as

Ωi = ωi −
i

2Γi , (5.55)

with the in-medium frequency ωi and width Γi. Having not needed to employ the gradient
expansion (Sec. 2.5), the shifts of the poles in the real and imaginary directions of the non-
equilibrium propagators have been taken into account (see Refs. [131, 224]).

In the vicinity of the poles with ReQ0 > 0, we can approximate the determinant as [3, 264]

detDR(q0) ≈ (Q2
0 − Ω2

1)(Q2
0 − Ω2

2) . (5.56)

Using the residue theorem to evaluate the integrals in Eq. (5.51) approximately, we arrive at the
advertised three-shell structure

Gij
δ (t, Q0 > 0) ≈ 1

|∆Ω2|2

 2∑
i=1

(2π)δ(Q0 − ωi)e−Γit adjDim
R (ωi)

2ωi
Kmn adjDnj

A (ωi)
2ωi

− (2π)δ(Q0 − ω̄)e−i(ω1−ω2)te−Γ̄t adjDim
R (ω1)

2ω1
Kmn adjDnj

A (ω2)
2ω2

− (2π)δ(Q0 − ω̄)e−i(ω2−ω1)te−Γ̄t adjDim
R (ω2)

2ω2
Kmn adjDnj

A (ω1)
2ω1

 ,
(5.57)
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where we have defined the average in-medium decay width and the frequency difference squared

Γ̄ = 1
2(Γ1 + Γ2) , (5.58)

∆Ω2 ≡ Ω2
2 − Ω2

1 . (5.59)

In Eq. (5.57), the three distinct shells are identified by the frequencies Q0 = ωi (i = 1, 2) and
Q0 = ω̄ ≡ 1

2(ω1 + ω2). The shells with frequencies Q0 = ωi lie at the two poles of the retarded
propagator, which can be associated with quasi-particle degrees of freedom. As such, these
terms correspond to the contribution from mixing. On the other hand, the intermediate shell with
frequency Q0 = ω̄ corresponds to the contribution from oscillations and, as we will see, the
interference between mixing and oscillations. This three-shell structure matches that obtained
in Ref. [224], which makes use of a gradient expansion of the KB equations. The authors also
find an additional fourth shell with frequency Q0 = ω1 − ω2 corresponding to the second and
third lines that we neglected in Eq. (5.51).

In order to gain a better understanding of the shell structure, we will now expand Eq. (5.57) to
first order in the self-energies. As observed in Eq. (5.43), the produced asymmetry only depends
on the off-diagonal components of the non-equilibrium part of the propagator. These components
read

Gi/i
δ (t, Q0 > 0) ≈ (2π)δ(q0 − ωi)

1
2ωi

e−Γitδnii(0) Πi/i
A(ωi)Ri/i

− (2π)δ(q0 − ω/i)
1

2ω/i
e−Γ/i tδn/i/i(0) Πi/i

R (ω/i)Ri/i

+ (2π)δ(q0 − ω̄) 1
(2ωi)

1
2 (2ω/i)

1
2
e−i(ωi−ω/i )te−Γ̄t

[
δni/i(0) ∆M2

i/i

− δnii(0)Πi/i
A(ω/i) + δn/i/i(0)Πi/i

R (ωi)
]
Ri/i .

(5.60)

In Eq. (5.60), ∆M2
i/i ≡M2

i −M2
/i is the mass splitting.

In addition, we have introduced the following notation for the initial deviation of “particle
number densities” from equilibrium:

δnij(0) ≡ Kij

(2ωi)
1
2 (2ωj)

1
2
. (5.61)

This definition anticipates the definition of the number densities in the interaction picture further
below [see Sec. 5.5]. Finally,

Ri/i ≡
∆M2

i/i

(∆M2
i/i

)2 + (ωiΓi − ω/iΓ/i)2 (5.62)

is a regulator, which makes the asymmetry vanish in the degenerate limit. However, special care
has to be taken in the doubly-degenerate limit where M2 →M1 and Γ2 → Γ1 [108, 261]
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The first and second lines of Eq. (5.60) live on the mass shells and are proportional to the
off-diagonals of the self-energies. Therefore they describe the standard mixing contributions to
the asymmetry [105, 107]. On the other hand, the contribution from the third line lies on a third
shell. Its contribution to the asymmetry is proportional to the initial coherence δni/i between
the two different flavors and the difference of the square of the masses. These features are
reminiscent of neutrino flavor conversion, and it will contribute to the generation of asymmetry
through oscillations [108–110]. However, off-diagonal number densities will also be created
dynamically; a feature that will become apparent once we introduce physical number densities in
the interaction picture approach below [see Sec. 5.5]. The fourth line mixes characteristics from
mixing and oscillations. These contributions lie on the oscillation shell while at the same time
being proportional to the self-energy of the “wrong” shell compared to the mixing contribution.
They have a structure similar to those of the i-th and /i-th mass shell terms but with opposite
signs. Therefore, there is a partial cancellation of these contributions, an effect that becomes
important when approaching the resonant regime.

5.4.4 Mixing and oscillation sources of CP asymmetry

It remains for us to study how each term of Eq. (5.60) contributes to the asymmetry. This can
be done by substituting Eq. (5.60) into Eq. (5.43). As identified earlier, our choice of the source
K render the non-equilibrium part of the Wightman functions equal Gij

>δ = Gij
<δ = Gij

δ . The
expression for the produced asymmetry then simplifies to

η(t) = −2 ImH12

t∫
0

dx0
t∫

0

dy0
∫ d3Q

(2π)3 G
12
δ (x0, y0)Πρ(y0, x0) , (5.63)

where we have taken into account that the system is brought out of equilibrium at ti = 0 in
the lower limits of the time integration. Next, we trade x0 and y0 for the central and relative
coordinates X0 ≡ 1

2(x0 + y0) and r0 ≡ x0 − y0, write G12
δ (x0, y0) and Πρ(y0, x0) in terms of

their Wigner transform and use the Markovian approximation

2X0∫
−2X0

dr0 sin
(
r0Q0

)
cos

(
r0P0

)
= 0 ,

2X0∫
−2X0

dr0 sin(r0Q0) sin(r0P0) ≈ π δ(Q0 − P0) ,

(5.64)

to integrate out the relative time coordinate. The X0 integral runs from 0 to the time of observa-
tions t. Taking the derivative with respect to this time of observation, we obtain

dη
dt = 4 ImH12

∫ d4Q

(2π)4 θ(Q
0) Im

[
G12
δ (t, Q0,Q)

]
Π̃ρ(Q0,Q) , (5.65)

where Π̃ρ = Lρ/(8π) and we have restored the common momentum Q. Substituting the expres-
sion for G12

δ from Eq. (5.60) and the self-energies from Eq. (5.19) into Eq. (5.65), we obtain the
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following expression for the time-derivative of the asymmetry:

dη
dt ≈ 2

∑
i

∫ d3Q
(2π)3

Mi

ωi
e−Γit δnii(0,Q)Γmed

i (ωi,Q)εmed
i (ωi,Q)

+ 2 ImH12 Im
∫ d3Q

(2π)3
1

(ω1ω2) 1
2
e−i(ω1−ω2)te−Γ̄t Π̃ρ(ω̄,Q)

[
δn12(0,Q) ∆M2

12

− δn11(0,Q)Π12
A (ω2,Q) + δn22(0,Q)Π12

R (ω1,Q)
]
R12 .

(5.66)

Here, we introduced the in-medium decay probability Γmed
i (ωi,Q) = Γi Lρ(ωi,Q) and in-

medium asymmetry

εmed
i = Im

(
Hi/i

H∗
i/i

) (M2
i −M2

/i )M/iΓ/i
(M2

i −M2
/i
)2 + (ωiΓi − ω/iΓ/i)2Lρ(ωi,Q) , (5.67)

which are the standard expressions for the mixing contribution [105, 107] augmented by medium
corrections through the function Lρ [253, 254].

As before, the first line of Eq. (5.66) originates from terms of Eq. (5.60) on the quasi-particle
mass shells and describes the mixing source of the lepton asymmetry. The second and third
lines stem from the oscillation-shell of Eq. (5.60) and contain the oscillation source and the
interference between mixing and oscillations. We will now show that this simple structure can
be equally obtained in the interaction picture.

5.5 Shell structure in the interaction picture
The interaction picture takes a different approach to non-equilibrium field theory. The central ob-
ject is the tree-level propagator in vacuum, for which we know the fundamental field excitations.
The interaction-picture description introduced in Ref. [118, 126] enables one to work in a per-
turbative fashion by retaining finite time effects [267, 268] without encountering so-called pinch
singularities [114–117] previously thought to spoil such approaches to non-equilibrium field the-
ory. The origin of these singularities can be understood in terms of the Fermi golden rule: for
systems in which time-translational invariance is broken, the relevant expansion parameter is the
product of the coupling, h, and the time t over which the interactions have been permitted to take
place. Thus, for t > 1/h, the perturbation series will not converge. To evade these problems,
we will resum the perturbation series to directly promote the tree-level propagator to the full
(dressed) propagator. We therefore begin with the tree-level Wightman propagators in the next
section to build up an expression for the full propagator.

5.5.1 Tree-level Wightman propagator
The tree-level Wightman propagator is given by the expectation value of two fields. This ex-
pectation value is most easily evaluated in momentum space, where we know how creation and
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annihilation operators act on states. Taking the Fourier transform of the field ψI [see Eq. (2.20)],
we obtain

ψI(p; t̃i) =
∫

d4xeip·xψI(x; t̃i)

=(2π)δ(p2 −M2)
[
θ(p0)aI,p(t̃i; t̃i)eip0 t̃i + θ(−p0)a†I,−p(t̃i; t̃i)e−ip0 t̃i

]
.

(5.68)

Note that in the interaction picture fields and states are time dependent, and even Fourier trans-
forms depend on the initial time surface. As shown in Ref. [118], we need for consistent calcula-
tions in the interaction picture to distinguish between microscopic times, which will be denoted
with a tilde, and macroscopic times. In particular, we introduce the initial time t̃i, where the
boundary conditions is fixed and which will be set to zero in accordance with our treatment in
the Heisenberg picture, and the final time of our CPT contour t̃f which is related to the macro-
scopic time of observation t via t = t̃f − t̃i. This final time enters because the density matrix
in the interaction picture is time dependent and develops a phase when we evaluate it at t̃f . In
the end of our calculations, the dependence on microscopic times will drop out, and the physi-
cal limit will be obtained for t̃f = t = X0. In particular, the expectation values at the time of
observation t read

〈a†I,p′(t̃f ; t̃i)aI,p(t̃f ; t̃i)〉t = 2
√
E(p)E(p′)f(t,p,p′)

〈aI,p′(t̃f ; t̃i)aI,p(t̃f ; t̃i)〉t = 2
√
E(p)E(p′)g(t,p,p′) .

(5.69)

Our lack of knowledge about the state ρ(t) is encoded in the statistical distribution functions f
and g. The Wigner transform of f(t,p,p′) can be interpreted as the usual number density. The
function g is non-zero when ρ(t) allows for particle number and energy violation. This term is
oscillating fast and will be neglected in the following [see Chapter 4].

Using these relations, we obtain an expression for the tree-level Wightman propagator G0,ij
< ,

G0,ij
< (p, p′, t̃f ; t̃i) = 2π

[
2 sign(p0)p0

] 1
2 δ(p2 −M2

i ) ei(p0−p′0)t̃f

×
[
θ(p0)θ(p′0)nij(t,p) + θ(−p0)θ(−p′0)

(
δij + nij∗(t,−p)

)]
× 2π

[
2sign(p′0)p′0

] 1
2 δ(p′2 −M2

j )(2π)3δ(3)(p− p′) ,

(5.70)

where in the following the superscript 0 denotes tree-level quantities. We differ from the corre-
sponding equation in Ref. [118] by assuming homogeneity, which allows us to write Eq. (5.70)
in terms of the number densities nij(t,p) = f(t,p,p′)δ(3)(p− p′) that only depend on one mo-
mentum. We also assume isotropy such that the momentum dependence of the number densities
reduces to nij(t, |p|) and nij(t,−p) = nij(t,p).

Note that, in Eq. (5.70) the phase of the exponential seems to have the wrong sign compared
to Eq. (5.68). The reason is that the density matrix is evaluated at t̃f and the interaction picture
operators have to be evolved from t̃i until the final time t̃f . This phase is actually crucial to
cancel the phase of a Wigner transform that will be carried out later on (see also Ref. [118]).
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5.5.2 Dressed Wightman propagator

The free propagator is related to the dressed propagator through the Schwinger-Dyson equa-
tion (2.48). With the explicit representation of the free propagator in Eq. (5.70), we can try to
find an approximate expression for the dressed propagator. While the Schwinger-Dyson equation
in vacuum can be expanded perturbatively, inside a medium finite time effects lead to products
of Dirac delta functions with identical arguments, which are not well defined. As we will see
now, this problem only arises because of a truncation of the perturbation series.

Inverting the Schwinger-Dyson equation (2.48) by multiplying with the tree-level propaga-
tor from the left and with the full propagator from the right, we obtain the Feynman-Dyson
series (see Ref.[118] for details)

Gij
<(p, p′, t̃f ; t̃i) = G0,ij

< (p, p′, t̃f ; t̃i)

−
∫ d4u

(2π)4
d4v

(2π)4

[
G0,ik

R (p, u)Πkl
<(u, v, t̃f ; t̃i)Glj

A(v, p′)

+G0,ik
R (p, u)Πkl

R (u, v, t̃f ; t̃i)Glj
<(p, p′, t̃f ; t̃i)

+G0,ik
< (p, p′, t̃f ; t̃i)Πkl

A (u, v, t̃f ; t̃i)Glj
A(v, p′)

]
.

(5.71)

Similarly to Sec. 5.4, we restrict ourselves to one-loop self-energies of the real scalar, which
are translation invariant when the complex scalar is in thermal equilibrium. To this order, the
retarded and advanced propagators become translation invariant as well. This invariance allows
us to factor out the corresponding four-momentum conservation

Gij
R(A)(p, p

′, t̃f ; t̃i) = Gij
R(A)(p, t)(2π)4δ(4)(p− p′) , (5.72)

and similarly for the self-energies

Πij(p, p′, t̃f ; t̃i) = Πij(p, t)(2π)4δ(4)(p− p′) . (5.73)

Note that the replacement in Eq. (5.73) is very non-trivial, since the self-energies contain in-
teractions that can spoil the perturbation series when the time integral is extended to infinity, or
equivalently when energy conservation is restored (see Ref. [118]). We will not rely on an expan-
sion of the perturbation series but fully resum it. Equation (5.73) is then a good approximation.

With these approximations, the integrals over the intermediate momenta u, v can be performed,
and the Feynman-Dyson series (5.71) of the Wightman propagator reduces to

Gij
<(p, p′, t̃f ; t̃i) = G0,ij

< (p, p′, t̃f ; t̃i)−G0,ik
R (p)Πkl

<(p)(2π)4δ4(p− p′)Glj
A(p′)

−G0,ik
R (p)Πkl

R (p)Glj
<(p, p′, t̃f ; t̃i)−G0,ik

< (p, p′, t̃f ; t̃i)Πkl
A (p′)Glj

A(p′) .
(5.74)

The corresponding equations for the retarded and advanced propagators read

Gij
R(A)(p) = G0,ij

R(A)(p)−G
0,ik
R(A)(p)Π

kl
R(A)(p)G

lj
R(A)(p) . (5.75)
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Equation (5.75) only depends on propagators of the same type. Solving this equation itera-
tively [110], a representation for the resummed retarded and advanced propagators can be ob-
tained by the series

Gij
R(A) =

∞∑
n=0

[
(−G0

R(A)ΠR(A))nG0
R(A)

]ij
. (5.76)

This solution allows us to find in an analogous way [110] an expression for the dressed Wight-
man propagator. In terms of the tree-level Wightman propagator and the dressed retarded and
advanced propagators, we obtain

Gij
<(p, p′, t̃f ; t̃i) = F ik

R (p)G0, kl
< (p, p′, t̃)F lj

A (p′)−Gik
R (p) Πkl

<(p)(2π)4δ4(p− p′)Glj
A(p′) , (5.77)

where we have defined

F ij
R ≡

∞∑
n=0

[(
−G0

RΠR
)n]ij

= −Gik
R D

0, kj
R = δij −Gik

R Πkj
R , (5.78a)

F ij
A ≡

∞∑
n=0

[(
− ΠAG

0
A

)n]ij
= −D0, ik

A Gkj
A = δij − Πik

A G
kj
A . (5.78b)

The second term on the right-hand side of Eq. (5.77) is an equilibrium piece [cf. (5.47)]. We
are, however, interested in the out-of-equilibrium decays that are contained in the first part. In
the interaction picture, we have the advantage that we can directly formulate departure from
equilibrium in terms of number densities defined via the free propagator (5.70). Writing these
number densities nij(t,p) = nijeq(t,p) + δnij(t,p) in terms of their equilibrium and out-of-
equilibrium pieces, the non-equilibrium partGδ of Eq. (5.77) for positive energies p0, p

′
0 becomes

Gij
δ (p, p′, t̃f ; t̃i)

∣∣∣
p0,p′0>0

= F ik
R (p) 2π (2p0) 1

2 θ(p0)δ(p2 −M2
k )ei(p0−p′0)t̃f δnkl(t,p)

× (2π)3δ(3)(p− p′) 2π (2p′0) 1
2 θ(p0)δ(p′2 −M2

l )F lj
A (p′) .

(5.79)

5.5.3 Wrong poles of the dressed Wightman propagator
The dressed Wightman propagator in Eq. (5.79) contains Dirac delta functions that seem to give
the dominant contribution. The resulting energy modes would then be interpreted as on-shell
particles with mass Mi. Unfortunately, on first sight FR,A contain tree-level propagators that
diverge on these tree-level poles reminiscent of pinch singularities. We will now show explicitly
that these apparent poles do not contribute and the Wigner transform of the dressed Wightman
propagator is a well-defined distribution.

After the Wigner transform and in terms of the central and relative momenta (Q0, q0), the
non-equilibrium part of the dressed Wightman propagator reads

Gij
δ (Q0 > 0, X, t̃f ; t̃i) =

∫
dq0 e

−iq0(X0−t̃f )F ik
R
(
Q0 + q0/2

)
2π(2Ek)

1
2 δ+

[
(Q0 + q0/2)2 − E2

k

]
× δnkl(t,Q)2π(2El)

1
2 δ+

[
(Q0 − q0/2)2 − E2

l

]
F lj
A (Q0 − q0/2) ,

(5.80)
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where we introduced δ+(p2−M2
i ) ≡ θ(p0)δ(p2−M2

i ), the trivial Q integral has been performed
and the energies are set on shell E2

i = p2 +M2
i .

We will now proceed by evaluating the q0 integral as if the only poles were given by the Dirac
delta functions. Performing the integration, we obtain

Gij
δ (Q0 > 0, X, t̃f ; t̃i) = e−i∆Ekl(X0−t̃f )(2π)δ(Q0 − Ekl)F ik

R (Ek)
δnkl(t,Q)

(2Ek)
1
2 (2El)

1
2
F lj
A (El) ,

(5.81)

where Ekl ≡ (Ek + El)/2. During this integration, we did not encounter pinch singularities
despite of the two Dirac deltas in Eq. (5.80). However, we still have to make sure to not have
introduced any singularities in FR(A).

The terms in Eq. (5.78) can be simplified by writing the full retarded propagator in terms of
its adjunct [see Eq. (5.52)]

F ik
R (Ek) = δik −Gim

R (Ek) Πmk
R (Ek) = δik −

∆M2
/ikδ

im + [adj ΠR(Ek)]im

detDR(Ek)
Πmk

R (Ek) . (5.82)

The determinant in the denominator can be decomposed into

detDR(Ek) = ∆M2
/kk Πkk

R (Ek) + det ΠR(Ek) , (5.83)

which allows us to write Eq. (5.82) as

F ik
R (Ek) = δij −

∆M2
/ik Πik

R (Ek) + δik det ΠR(Ek)
∆M2

/kk Πkk
R (Ek) + det ΠR(Ek)

, (5.84)

by invoking the definition of the adjugate for the self-energies:

[adj ΠR(Ek)]im Πmk
R (Ek) = δik det ΠR(Ek) . (5.85)

It follows that i = k and that F ik
R (Ek) as well as F kj

A (Ek) are identically zero.
By virtue of this calculation, it appears to be the case that the non-equilibrium part of the

dressed Wightman propagator is identically zero. This observation clearly yields the wrong
result. Moreover, it is in stark contrast to our initial expectation that the poles of the Dirac deltas
should actually lead to ill-defined terms and exhibit singularities. It is only by resumming the
whole series in Eq. (5.78) that we are safe to evaluate FR(A) at the on-shell energies. However,
at the pole of the delta function, the resummation actually breaks down because we multiply by
zero in the form of D0

R. FR,(A) is therefore meromorphic at the on-shell poles and its product
with the Dirac distribution is not defined. We will now show that a careful treatment leads
to a resummation of the poles and a shift of the on-shell poles in the complex plane, i.e., the
quasi-particle obtains a finite width [131] that can be integrated approximately using the residue
theorem. In this way, we will obtain meaningful quantities.
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5.5.4 Correct pole structure
The tree-level retarded (advanced) propagator has the form

G0,ij
R(A)(p) = − δij

p2 −M2
i ± i sign(p0)ε = −P δij

p2 −M2
i

± iπδijsign(p0)δ(p2 −M2
i ) , (5.86)

where we have used the identity

1
x± iε

= P 1
x
∓ iπδ(x) , (5.87)

in which P denotes the Cauchy principal value, which is defined to yield zero, when its argument
encounters a pole. The identity follows from the limit representations

δ(x) = lim
ε→ 0+

1
π

ε

x2 + ε2
, P 1

x
= lim

ε→ 0+

x

x2 + ε2
, (5.88)

from which partial fractioning leads to Eq. (5.87). As expected, this representation of the propa-
gator extracts the poles that at finite order of resummation lead to the dreaded pinch singularities
that would render this approach useless.

In order to understand how to resum the series of tree-level propagators, we first take a look
at the single-flavor case. If we insert the product sign(p0) sign(p′0), which is unity in the present
calculation, we can write the first half of Eq. (5.77) as

IR ≡
∞∑
n=0

(
−G0

R · ΠR
)n

(2π)sign(p0)δ(p2 −M2)

=
∞∑
n=0

(
ΠR

p2 −M2 + i sign(p0)ε

)n
(2π)sign(p0)δ(p2 −M2) . (5.89)

We proceed by writing the Dirac delta in a representation that is consistent with complex inte-
gration contours:

2π sign(p0)δ(p2 −M2) = i

p2 −M2 + i sign(p0)ε −
i

p2 −M2 − i sign(p0)ε , (5.90)

where the ε has the effect of forcing us to choose the right pole. We then decompose this expres-
sion in two parts that differ by the sign in front of the ε in Eq. (5.90)

IR ≡ I+
R − I−R , (5.91)

where

I±R = i
∞∑
n=0

(
ΠR

p2 −M2 + i sign(p0)ε

)n 1
p2 −M2 ± i sign(p0)ε . (5.92)

By employing the distributional identity (see pp. 48–50 of Ref. [269])(
1

x± iε

)n
= P 1

xn
∓ (−1)n−1

(n− 1)! iπ∂
n−1[δ(x)] , (5.93)
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where ∂n[δ(x)] is the n-th derivative of the Dirac delta function, we are able to separate the
principal values and the Dirac delta functions:

I+
R = i

∞∑
n=0
P
(

1
p2 −M2

)n+1

(ΠR)n +
∞∑
n=0

(−ΠR)n
n! π sign(p0)∂n

[
δ(p2 −M2)

]
. (5.94)

We may also show directly that

P 1
xn

= (−1)n−1

(n− 1)!∂
n−1

[
P 1
x

]
, (5.95)

where ∂n[P(x)] is the n-th derivative of the Cauchy principal value. We obtain

I+
R = i

∞∑
n=0

(−ΠR)n
n! ∂n

[
P 1
p2 −M2

]
+
∞∑
n=0

(−ΠR)n
n! π sign(p0)∂n

[
δ(p2 −M2)

]
. (5.96)

Hence, the infinite sums contain increasing orders of derivatives suppressed by a factorial of n.
We may interpret this sum as the Taylor series representation of the translation operator with
the shift being ΠR. Indeed, if we insert the tree-level propagator from Eq. (5.86), we obtain the
resummed retarded propagator:

I+
R = i

∞∑
n=0

(−ΠR)n
n!

∂n

∂(p2)n
[
−G0

R(p)
]

= −iGR(p) . (5.97)

We now turn to I−R . Here, we have

I−R = i
∞∑
n=0

(
ΠR

p2 −M2 + i sign(p0)ε

)n 1
p2 −M2 − i sign(p0)ε , (5.98)

where the difference to Eq. (5.96) lies in the sign in front of ε in the last factor. This term
contains at finite order of summation the pinch singularities, i.e., the product of poles at p2 =
M2 + i sign(p0)ε and p2 = M2− i sign(p0)ε. Moreover, these singularities cannot be resummed
straight-forwardly. Note however that the ε prescription becomes irrelevant, when we perform
the summation over n:

∞∑
n=0

(
ΠR

p2 −M2 + i sign(p0)ε

)n
=
∞∑
n=0

(
ΠR

p2 −M2 − i sign(p0)ε

)n
= p2 −M2

p2 −M2 − ΠR
. (5.99)

We may resum this expression as well which yields

I−R = i
∞∑
n=0

(
ΠR

p2 −M2 − i sign(p0)ε

)n 1
p2 −M2 − i sign(p0)ε

= i
∞∑
n=0

(−ΠR)n
n! ∂n

[
P 1
p2 −M2

]
−
∞∑
n=0

(−ΠR)n
n! π sign(p0) ∂n

[
δ(p2 −M2)

]
. (5.100)
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We see that I−R differs from I+
R in Eq. (5.96) by the sign of the second term. The Principal part

therefore cancels and we obtain

IR =
∞∑
n=0

(−ΠR)n
n! 2π sign(p0) ∂n

[
δ(p2 −M2)

]
. (5.101)

Following our earlier interpretation in terms of the translation operator, Eq. (5.101) contains a
Dirac delta function shifted into the complex plane, p2−M2 → p2−M2−ΠR . Physically this
corresponds to having an unstable quasi-particle. In order to make sense of this object and the
description of such a particle, we have to analytically continue the delta function consistently.
This problem of analytically continuing real eigenvalues of the Hamiltonian to complex eigen-
values has been considered before in, e.g., Refs. [270, 271]. In the spirit of their treatment, we
first write

2π sign(p0)δ(p2 −M2) ≡ i

(p2 −M2)+ −
i

(p2 −M2)− , (5.102)

replacing the explicit ε by an explicit prescription for deforming the contour in the complex
plane. The + and − indicate that we are to deform the contour of integration in p0 away from
the real axis such that we pass always above (+) or below (−) the poles at p2 −M2 = 0. When
we now shift the poles into the complex plane, the contour of integration has to be deformed in
the same way, and we obtain

IR = i

(p2 −M2 − ΠR)+ −
i

(p2 −M2 − ΠR)− . (5.103)

This expression is the complex delta function [270] such that

IR = (2π)δ(p2 −M2 − ΠR) , (5.104)

which corresponds to the contribution from the poles of i/(p2 −M2 − ΠR). The imaginary part
of ΠR is positive corresponding to an unstable particle. Since it is also odd under p0 → − p0, all
of the poles lie in the lower half of the complex plane. Following Ref. [270], we therefore write
the Dirac delta as

(2π)δ(p2 −M2 − ΠR) = if(p0)
p2 −M2 − ΠR

, (5.105)

where f(p0) is an analytic function which forces us to close the contour of integration in the
lower-half complex plane. Specifically, we require [270]: (i) f(p0) ≈ 1 in the vicinity of the
poles, (ii) f(p0) ≈ 0, effectively, on the real axis far away from the poles, (iii) f(p0) regular near
the real axis, and (iv) f(p0) vanishing far away in the lower-half complex plane.

Now, that we have seen how to proceed in the one-flavor case, we may proceed analogously
for two flavors:

I iR = I iiR + I i
/i

R ≡
∞∑
n=0

[(
−G0

R · ΠR
)n]ij

2π sign(p0)δ(p2 −M2
j ) , (5.106)

where the propagators and self-energies are now matrices, and a summation over both mass shells
is performed. Let us first focus on I iiR . Because the tree-level propagatorG0,ii

R is diagonal in flavor



118 5. Lepton asymmetry from mixing and oscillations

space, matrix elements at the ii-position can be generated in two ways. The simplest component
consists of the product of an arbitrary number of G0,ii

R Πii
R. Another possibility is the insertion of

a Πi/i
R self-energy, which mixes the two flavors, followed by the self-energy Π/ii

R that leads us back
to flavor i. In between these two non-diagonal self-energies, we can insert an arbitrary number of
G0,/i/i

R Π/i/i
R . These components form a geometric series which we can resum. The I iiR component

can, hence, be written as

I iiR =
∞∑
n=0

[
1

p2 −M2
i + i sign(p0)ε

(
Πii

R + Πi/i
RΠ/ii

R

p2 −M2
/i
− Π/i/i

R

)]n
2π sign(p0)δ(p2 −M2

i ) .

(5.107)

The potential pinch singularities in Eq. (5.107) are resummed in the same way as for the single-
flavor case, yielding

I iiR =
∞∑
n=0

1
n!

−Πii
R −

Πi/i
RΠ/ii

R

p2 −M2
/i
− Π/i/i

R


n

2π sign(p0) ∂n
[
δ(n)(p2 −M2

i )
]

= (2π)δ(−[G−1
R ]ii) ,

(5.108)

where δ is understood to be the complex delta function, giving the contribution from the poles of

i

p2 −M2
i − Πii

R −
Πi/i

RΠ/ii
R

p2 −M2
/i
− Π/i/i

R

−1

. (5.109)

This is equal to the contribution from the poles of

i[adjDR]ii/detDR , (5.110)

which occur at detDR = 0. Hence, we have

I iiR = 2π[adjDR]iiδ(detDR) . (5.111)

We now continue with the series I i/iR . We proceed similarly to before, and note that we need
an insertion of G0,ii

R Πi/i
R , to which we can attach on both sides the one-flavor series used before in

I iiR . We are then able to write

I i
/i

R = Πi/i
R

p2 −M2
i − Πii

R

×
∞∑
n=0

[
1

p2 −M2
/i

+ i sign(p0)ε

(
Π/i/i

R + Π/ii
RΠi/i

R
p2 −M2

i − Πii
R

)]n
2π sign(p0)δ(p2 −M2

/i )

= Πi/i
R

p2 −M2
i − Πii

R

∞∑
n=0

1
n!

(
− Π/i/i

R −
Π/ii

RΠi/i
R

p2 −M2
i − Πii

R

)n
2π sign(p0) ∂n

[
δ(n)(p2 −M2

/i )
]

= Πi/i
R

p2 −M2
i − Πii

R
(2π)δ(− [G−1

R ]/i/i) . (5.112)
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Equation (5.112) corresponds to the contribution from the poles of

−Gi/i
R = Πi/i

R

(p2 −M2
i − Πii

R)(p2 −M2
/i
− Π/i/i

R )− Πi/i
RΠ/ii

R
= [adjDR]i/i/detDR , (5.113)

which again occur at detDR = 0. Hence, we have

I i
/i

R = 2π[adjDR]i/iδ(detDR) . (5.114)

Continuing similarly for the remaining components and the corresponding advanced series
(IA = I∗R), we obtain the complete expression for the non-equilibrium part of the resummed
propagator:

Gij
δ (p, p′, t̃; t̃i)

∣∣∣
p0,p′0>0

= 2π (2p0)
1
2 [adjDR(p)]ikδ[detDR(p)]

× δnkl(t,p)(2π)3δ3(p− p′)ei(p0−p′0)t̃f

× 2π
(
2p′0

) 1
2 [adjDA(p′)]ljδ[detDA(p′)] .

(5.115)

In order to compare this result directly with the Heisenberg picture, we make use of the pole
approximation in Eq. (5.56). For p0 > 0, the complex delta function δ(detDR) corresponds to
the contribution from the poles at p0 = Ωi. Following the prescription in Eq. (5.105), we can
express these two occurring poles as

(2π)δ
(
detDR(p)

)
≈ i

∆Ω2

[
1

2Ω1

f1(p0)
p0 − Ω1

− 1
2Ω2

f2(p0)
p0 − Ω2

]
, (5.116)

where the relative sign between the poles at Ω1 and Ω2 arises from the partial fractioning of
1/(p2

0 − Ω2
1)(p2

0 − Ω2
2), and where the fi(p0) satisfy the properties highlighted above.

The pole approach in Eq. (5.56) differs from the Yukawa resummation technique [107] applied
in Ref. [110]. However, the approximations in Ref. [110] are only valid in the strong-washout
regime, where off-diagonal number densities are generated dynamically and are therefore of
higher order in the coupling constants. In the weak-washout regime that is considered in this
work, we cannot guarantee the suppression of these off-diagonals.

As in the calculation in the Heisenberg picture 5.4, we now perform a Wigner transform of
Eq. (5.115). The physical limit is obtained at equal times, x0 = y0 = t̃f = X0 such that the
exponential in Eq. (5.115) is canceled by the exponential of the Wigner transform, and we obtain
the shell structure:

Gij
δ (t, Q0 > 0) = (2π)δ(Q0 − Ωab) [adjDR(Ωa)]ik

gabδn
kl(t,Q)

(2Ωa)
1
2 (2Ω∗b)

1
2 |∆Ω2|2

[adjDA(Ω∗b)]lj ,

(5.117)
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where the sum over a, b = 1, 2 has been left implicit, Ωab ≡ (Ωa + Ω∗b)/2, and gab is the metric
defined in Sec. 2.5. Finally, performing the summations over a and b, we find

Gij
δ (t, Q0 > 0) = (2π)δ(Q0 − ω1) [adjDR(Ω1)]ik δnkl(t,Q)

|2Ω1||∆Ω2|2
[adjDA(Ω∗1)]lj

+ (2π)δ(Q0 − ω2) [adjDR(Ω2)]ik δnkl(t,Q)
|2Ω2||∆Ω2|2

[adjDA(Ω∗2)]lj

− (2π)δ(Q0 − Ω̄) [adjDR(Ω1)]ik δnkl(t,Q)
(2Ω1) 1

2 (2Ω∗2) 1
2 |∆Ω2|2

[adjDA(Ω∗2)]lj

− (2π)δ(Q0 − Ω̄∗) [adjDR(Ω2)]ik δnkl(t,Q)
(2Ω∗1) 1

2 (2Ω2) 1
2 |∆Ω2|2

[adjDA(Ω∗1)]lj ,

(5.118)
where Ω̄ =

(
Ω1 + Ω∗2

)
/2.

Like in Sec. 5.4, we now expand the interaction-picture result in Eq. (5.118) above to first
order in ΠR(A). This gives the following result for the off-diagonal components:

Gi/i
δ (t, Q0 > 0) ≈ (2π)δ(Q0 − ωi)

1
2ωi

δnii(t) Πi/i
A(ωi)Ri/i

− (2π)δ(Q0 − ω/i)
1

2ω/i
δn/i/i(t) Πi/i

R (ω/i)Ri/i

+ (2π)δ(Q0 − ω̄) 1
(2ωi)

1
2 (2ω/i)

1
2

[
δni/i(t) ∆M2

i/i

− δnii(t) Πi/i
A(ω/i) + δn/i/i(t) Πi/i

R (ωi)
]
Ri/i .

(5.119)

We are now in a position to find an explicit expression for the asymmetry. Inserting Eq. (5.119)
into time-derivative of the asymmetry, we obtain

dη
dt ≈ 2

∑
i

∫ d3Q
(2π)3

Mi

ωi
δnii(t,Q) Γmed

i (ωi,Q) εmed
i (ωi,Q)

+ 2 ImH12 Im
∫ d3Q

(2π)3
Π̃ρ(ω̄,Q)
(ω1ω2) 1

2

[
δn12(t,Q) ∆M2

12

− δn11(t,Q)Π12
A (ω2,Q) + δn22(t,Q)Π12

R (ω1,Q)
]
R12 .

(5.120)

This closely resembles the final result for the asymmetry in Eq. (5.66) in the Heisenberg pic-
ture. Especially, mixing, oscillations and interference can be uniquely identified. The oscillation
contributions lies on the middle shell and is proportional to the time-dependent coherence δn12,
while the interference is proportional to the time-dependent number densities. This time depen-
dence is the key difference to Eq. (5.66), which was written in terms of the initial conditions at
t = 0. We would like to stress that the interpretation of nij or equivalently Kij in Eq. (5.66) is
not immediately clear. In the interaction picture, however, δnij can be directly interpreted as the
number density of free particles, which count excitations with energy Ei.
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To convince ourselves that our interpretation of K is correct, and that also the phases of the
result in Eq. (5.66) can be obtained, we have to solve for the time-dependence of the number
densities nij(t) in the interaction picture and write it in term of the initial conditions. This
calculation will be done in Sec. 5.5.5.

Before fully establishing the equivalence of the two approaches, we would like to comment
on the role of the interference in Eq. (5.120). We expand all but the regulator R12 and the Dirac
delta functions in Eq. (5.119) around ∆ωi/i = ωi − ω/i = 0 in ∆M2

i/i . At zeroth order, we find the
pure oscillation contribution

Gi/i
δ (t, Q0 > 0) ⊃ (2π)δ(Q0 − ω̄) 1

2ω̄ δn
i/i(t)∆M2

i/iRi/i . (5.121)

The mixing contributions have canceled which confirms the destructive nature of the interference.
This interference guarantees that the asymmetry vanishes in the degenerate regime ∆M2

i/i → 0,
as it should.

In Eq. (5.121), mixing is absent and only oscillations persist. As shown in Ref. [110], on-shell
(Kadanoff-Baym) ansaetze like those applied in Sec. 5.5.3 would replicate only oscillations and
no mixing in accordance with this result. One could therefore be tempted to argue that these
on-shell ansaetze are sufficient in the quasi-degenerate regime and that including terms from
mixing and oscillations like in Refs. [108–110] would lead to double-counting in the asymmetry.
However, this is not the case, as we can observe by continuing to the next order in the expansion.
It reads

Gi/i
δ (t, Q0) ≈ (2π)δ(Q0 − ω̄) 1

2ω̄ δn
i/i(t)∆M2

i/iRi/i

− (2π)δ(Q0 − ω̄) 1
2ω̄

δnii(t)Πi/i
A(ω̄)
4ω̄2 + δn/i/i(t)Πi/i

R (ω̄)
4ω̄2

∆M2
i/iRi/i ,

(5.122)

where the mixing terms are present but are now suppressed by an additional factor of ∆M2
i/i .

Here, we have neglected terms proportional to the derivative of the self-energy Πi/i ′(ω̄), which
contribute sub-dominantly to the asymmetry under the assumption that the self-energies are
slowly varying functions of Q0 for Q0 ∼ ω̄. The same assumption underlies the pole approxima-
tions in Eqs. (5.56), which have been verified numerically [264] to yield decent approximations.

The asymmetry now takes the form

dη
dt ≈ 2

∑
i

∫ d3Q
(2π)3

Mi

ω̄
δnii(t,Q)Γmed

i (ω̄,Q)ε̃med
i (ω̄,Q)

+ 2 ImH12

∫ d3Q
(2π)3

Π̃ρ(ω̄,Q)
ω̄

Im δn12(t,Q) ∆M2
12R12 , (5.123)

where the usual CP-violating parameter εmed
i (ω̄,Q) has been modified:

ε̃med
i (ω̄,Q) =

∆M2
/ii

ω̄2 εmed
i (ω̄,Q) . (5.124)
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We see that to first order in ∆M2
/ii/ω̄

2 both mixing and oscillation contributions persist in the
single-shell approximation in agreement with the results of Refs. [108–110]. In contrast to
Eq. (5.120), the two shells now contribute with opposite sign, and the mixing contribution is
suppressed for similar mass eigenvalues and initial conditions of the two flavors. Nevertheless,
the pre-factors of the oscillation and the mixing contributions possess exactly the same paramet-
ric dependence on the Yukawa couplings and mass splittings: ∼ ∆M2

12R12, which is of order
unity in the weakly-resonant regime Γi � ∆M � M̄ . The relation between the mixing and
oscillations therefore depends on the configuration of the initial conditions as well.

5.5.5 Explicit time dependence of the number densities
We now return to Eq. (5.119) with the aim of finding the explicit solution for the deviations from
equilibrium δnij(t). We will make use of the shell-structure derived before for the Wightman
propagators. Note that a similar result could also be obtained in the single-shell or density matrix
approximation [see appendix C].

The dressed number densities are related to the negative frequency Wightman propagator
through [see Sec. 2.5.3]

nijdr(t) =
∫ dQ0

π
Q0Gij

< . (5.125)

Using the Kadanoff-Baym equation for the Wightman propagator and taking only the non-
equilibrium part, the transport equation for δndr(t) in the interaction picture reads [110]

dδnijdr(t)
dt =

∫ dp0

2π

∫ dp′0
2π e−i(p0−p′0)t̃f θ(p0)θ(p′0)

×
(
−i
[
M2 + Πh, Gδ]ij? − 1

2

{
Π<, Gδ

}ij
?

+ 1
2

{
Π>, Gδ

}ij
?

)
.

(5.126)

where the commutators and anti-commutators appearing in Eq. (5.126) are defined as

[A,B]? ≡
∫

dk
(
A(p, k) ·B(k, p′)−B(p, k) · A(k, p′)

)
, (5.127a)

{A,B}? ≡
∫

dk
(
A(p, k) ·B(k, p′) +B(p, k) · A(k, p′)

)
. (5.127b)

In Eq. (5.126), the first term on the right-hand side corresponds to oscillations due to mis-
matches of the thermal mass squared M2 + Πh. The other terms correspond to production and
annihilation through scattering.

From this transport equation, we would like to find the time-evolution of the free number
densities that go into Eq. (5.120). These number densities can be obtained, if we only retain
the leading order terms in the couplings hi. For the diagonal elements of δnij(t), it suffices to
substitute Gδ by its tree-level G0

δ expression (5.80) with FR(A) = 1, since the off-diagonals of
the Wightman propagator are of higher order in the self-energies. We obtain for the diagonal
elements

dδnii
dt = −Γiδnii , (5.128)
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with solution
δnii(t) = e−Γitδnii(0) . (5.129)

For the off-diagonals δni/i(t), the tree-level propagator G0
δ suffices for terms that are already

proportional to self-energies. These terms are

dδni/i(t)
dt ⊃

∫ dp0

2π

∫ dp′0
2π e−i(p0−p′0)t̃θ(p0)θ(p′0)

×
(
−i
[
Πh, G

0
δ ]i
/i
? − 1

2

{
Π<, G

0
δ

}i/i
?

+ 1
2

{
Π>, G

0
δ

}i/i
?

)
.

(5.130)

On the other hand, the difference of the two mass eigenvalues plays a role when off-diagonal
elements of the dressed propagator Gδ are taken into account:

dδni/i(t)
dt ⊃ − i

∫ dp0

2π

∫ dp′0
2π e−i(p0−p′0)t̃θ(p0)θ(p′0)

[
M2, Gδ

]i/i
?
, (5.131)

The time-evolution of the off-diagonal free number densities is now

dδni/i
dt = − i(ωi − ω/i)δni/i − Γ̄δni/i − i

2ω̄
(
Πi/i

R (ωi)δn/i/i − Πi/i
A(ω/i)δnii

)
, (5.132)

in which we have used the approximation ωiω/i ≈ ω̄2.
Note that the origin of the order ΠR(A) terms in Eq. (5.132) is non-trivial. Would we retain

only the terms from the diagonal elements of the tree-level propagator G0
δ in Eq. (5.130), we

would obtain
dδni/i

dt ⊃ −
i

2ω̄ δn
/i/i Πi/i

R (ω/i) + i

2ω̄ δn
ii Πi/i

A(ωi) . (5.133)

When compared to Eq. (5.132), we see that the arguments of the self-energies are permuted. On
the other hand, the off-diagonal element of the dressed propagator Gδ used in the commutator in
Eq. (5.131) yields the following terms

dδni/i
dt ⊃ −

i

2ω̄ δn
ii
[
Πi/i

A(ωi)− Πi/i
A(ω/i)

]
+ i

2ω̄ δn
/i/i
[
Πi/i

R (ω/i)− Πi/i
R (ωi)

]
, (5.134)

which correspond to mixing and interference of the two mixing shells. When combined with
Eq. (5.133) the argument of the self-energies is swapped to yield the expression in Eq. (5.132).

The leading-order solutions to the off-diagonal equations in Eq. (5.132) have the form

δni/i(t) = e−i(ωi−ω/i )te−Γ̄tδni
/i

0 (0) + Πi/i
A(ω/i)

∆M2
i/i

e−Γitδnii(0)− Πi/i
R (ωi)

∆M2
i/i

e−Γ/i tδn/i/i(0) , (5.135)

where δni/i0 is the initial condition when back-reactions from the diagonal number densities are
neglected. If we define the full initial condition for the off-diagonals δni/i(0)

δni/i(0) = δni
/i

0 (0) + Πi/i
A(ω/i)

∆M2
i/i

δnii(0)− Πi/i
R (ωi)

∆M2
i/i

δn/i/i(0) . (5.136)
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and substitute δnij0 (0) in Eq. (5.135), we obtain the final form of the solution

δni/i(t) = e−i(ωi−ω/i )te−Γ̄tδni/i(0)

+ Πi/i
A(ω/i)

∆M2
i/i

(
e−Γit − e−i(ωi−ω/i )te−Γ̄t

)
δnii(0)

− Πi/i
R (ωi)

∆M2
i/i

(
e−Γ/i t − e−i(ωi−ω/i )te−Γ̄t

)
δn/i/i(0) . (5.137)

Substituting Eq. (5.137) into Eq. (5.119) for the off-diagonal components of Gδ, we obtain pre-
cisely the asymmetry in the Heisenberg picture Eq. (5.60). This is one of the main result of
this chapter. The agreement of the results in the Heisenberg and interaction approaches shows
that both approaches are a viable way to obtain the correct asymmetry. This is not immediately
obvious because of the usual problems of a perturbative expansion in non-equilibrium systems,
and one has to carefully undo the damage that is done by starting from free particles in order
to obtain the correct result. Nevertheless, both approaches have their advantages and this result
shows that they might complement each other.

5.6 Comparison with the effective Yukawa approach
Having established the equivalence of the results in the Heisenberg and interaction pictures, we
will now compare these results with the effective Yukawa approach [106, 107], which has also
been applied in Ref. [108–110] to account for the mixing contribution. The effect of oscillations
on the other hand is accounted for by flavor coherences, i.e., non-vanishing off-diagonal elements
of the number density. We will show that this method does not correctly treat the interference
contribution and therefore becomes inaccurate in the quasi-degenerate regime.

Let us start by briefly reviewing the derivation of these effective Yukawa couplings for the
present toy model, following Ref. [254]. The real scalars are unstable, and hence they cannot
be written as non-zero asymptotic in or out states of S-matrix elements. Unitarity then requires
us to define these particles via scattering of the stable particles b and b∗ with intermediate real
scalars [272].

The amplitude of the s-channel two-body scattering process bb → b∗b∗ can be expressed
as [107]

Mbb→b∗b∗ =
∑
i,j

ΓAi Gij(s)ΓBj , (5.138)

where ΓAi and ΓBj represent the vertices ψibb and ψjb∗b∗, including the wave functions of the
initial and final complex scalars, andGij are the (time-ordered) Feynman propagators. In analogy
to scattering theory, all these expressions are functions of the center of mass energy

√
s. The two

poles in the determinant of the inverse propagator in terms of s are

si 'M2
i − iMiΓi , (5.139)
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where Γi = Hii/(16πMi) is the tree-level decay width of ψi. Expanding Gij around the poles
and using the symmetry of the time-ordered self-energies Πi/i

T = Π/ii
T , we rewrite Eq. (5.138) in

analogy to Ref. [107]

Mbb→b∗b∗ '
∑
i

V A
i (s) 1

s− si
V B
i (s) , (5.140)

where the non-trivial parts of the propagator are being absorbed into the vertices:

V
A(B)
i (s) ≡ ΓA(B)

i − [G−1]i/i(s)
[G−1]/i/i(s)

ΓA(B)
/i

= ΓA(B)
i + Πi/i

T (s)
s−M2

/i
− Π/i/i

T (s)
ΓA(B)
/i

. (5.141)

Equation (5.141) can be used to define effective one-loop Yukawa couplings h̃(c)
i . Taking into

account that the couplings in the vertices ψibb and ψib
∗b∗ differ by complex conjugation, we

obtain

h̃i ≡ hi + Πi/i
T (s)

s−M2
/i
− Π/i/i

T (s)
h/i , (5.142a)

h̃c∗i ≡ h∗i + Πi/i
T (s)

s−M2
/i
− Π/i/i

T (s)
h∗/i . (5.142b)

Note that these two couplings are not complex conjugates of each other due to the imaginary
part of the self-energies. The subscript i indicates that these couplings are to be evaluated on the
mass shell of the i-th quasi-particle [107]. In vacuum and for positive energies, the time-ordered
self-energies equal the retarded self-energies shown in Eq. (5.21). Using the tree-level relation
Hii = 16πMiΓi, we obtain

Πi/i
T (M2

i ) = −iReH i/i

16π , (5.143a)

Π/i/i
T (M2

i ) = M/iΓ/i
 1
π

ln
(
M2

i

µ2

)
− i

 . (5.143b)

Note that if we choose µ = Mi, the real part of Eq. (5.143b) vanishes, and it only grows logarith-
mically if we evaluate it on the second mass shell. For simplicity, we keep only the imaginary
part of Eq. (5.143b), i.e. use Π/i/i

T (M2
i ) ≈ −iM/iΓ/i . In this way we arrive at the effective Yukawa

couplings

h̃
(c)
i = hi

[
1− (+)i H/i/i

32π

(
1 +

H∗i/i
Hi/i

)
1

∆M2
i/i

+ (−)iM/iΓ/i

]
. (5.144)

The vacuum self-energy contribution to the asymmetry in terms of decay widths takes the form

εvac
i ≡

Γψi→bb − Γψi→b∗b∗
Γψi→bb + Γψi→b∗b∗

, (5.145)
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which can be evaluated directly within this method to give

εvac
i = Im

(
Hi/i

H∗
i/i

) (M2
i −M2

/i )M/iΓ/i
(M2

i −M2
/i
)2 + (M/iΓ/i)2 , (5.146)

which has been derived before in medium in Eq. (5.67).
Following Ref. [110], the time derivative of the asymmetry can be written in terms of the

effective Yukawa couplings as

dη
dt ≈

∫ d4Q

(2π)4 θ(Q0)
[
h̃ih̃
∗
jG

0, ij
δ (t, Q)− h̃c∗i h̃cjG

0, ij
δ (t, Q)

]
Π̃ρ(Q) , (5.147)

where G0, ij
δ (t, Q) is the tree-level Green’s function. In the single-shell density matrix approxi-

mation, this propagator reads

G0, ij
δ (t, Q0 > 0) = (2π)δ(Q0 − ω̄) 1

2ω̄ δn
ij(t,Q) . (5.148)

The time derivative of the asymmetry in this effective Yukawa approach is then found to be

dη
dt ≈ 2

∑
i

∫ d3Q
(2π)3

Mi

ω̄
δnii(t,Q)Γi(ω̄,Q)εvac

i (ω̄,Q)

+ 2 ImH12

∫ d3Q
(2π)3

Π̃ρ(ω̄,Q)
ω̄

Im δn12(t,Q) .
(5.149)

The oscillation contribution in this approach resembles the expressions derived in Eqs. (5.66)
and (5.120) but lacks a factor ∆M2

12R12, which is of order unity in the weakly-resonant regime.
Similarly, the mixing contribution in the effective Yukawa approach equals the pure mixing terms
in Eqs. (5.66) and (5.120) but fails to correct the produced asymmetry for the interference be-
tween mixing and oscillations. Hence, the approach of Refs. [108–110], although accounting
for both mixing and oscillations, seems not to yield the correct result when the degenerate-mass
limit is approached. However, as we mentioned before, one has to be careful in comparing these
results because Refs. [108–110] used approximations that are only valid in the strong-washout
regime (see appendix A.1 of Ref. [110]). For future work it would be interesting to study the
interference effects in the strong-washout regime as well.

5.7 Phenomenological implications

We now proceed to evaluate the asymmetry numerically. We keep track of the different contri-
butions from the shells in order to compare their relative size. This will also allow us to study
the accuracy of different approximation schemes, namely the Boltzmann and the density matrix
approaches.



5.7 Phenomenological implications 127

We evaluate the asymmetry directly without an expansion in self-energies. By substituting the
non-equilibrium Wightman propagator in Eq. (5.57) into Eq. (5.65), the total asymmetry takes
the form

η = 4 ImH12

∫ ∞
0

dt
∫ d3Q

(2π)3
gab
|∆Ω2|2

Π̃ρ

[
(ωa + ωb)/2,Q

]
× Im

[
[adjDR(ωa,Q)]1m

2Ωa

Kmn(Q) [adjDA(ωb,Q)]n2

2Ω∗b
e−i(Ωa−Ω∗b )t

]
,

(5.150)

where we have restored the common momentum Q and performed the integral over Q0. The
contributions from mixing, oscillations and inference are then separated by their shells and by
making use of Eq. (5.137). Although this separation was derived for ΠR(A)/(∆M2) � 1, we
will also attempt to apply this separation for smaller mass differences and obtain good results.

For our numerical examples below, we have to choose values for the free parameters and
the initial conditions. Following Ref. [264], we choose the temperature T and the mass of the
lighter scalar M1 to equal the MS renormalization scale, T = µ and M1 = µ. The second mass
parameter M2 can be expressed in terms of the degeneracy parameter

R ≡ M2
2 −M2

1
M1Γ1 +M2Γ2

. (5.151)

This definition is motivated in Ref. [261], where it is shown thatR = 1 corresponds to a maximal
enhancement of the asymmetry. We will vary this parameter to study how the total asymmetry
and its various contributions behave.

Besides the masses, we also have to choose the coupling constants. The mixing contributions
are proportional to ImH12 ReH12 such that they vanish if the Lagrangian is C-symmetric (5.2).
For the oscillation contribution we only observe a proportionality to ImH12, but we will show
below that the dependency on ReH12 is hidden in C-symmetric initial conditions. For non-trivial
dynamics we see that a relative phase between h1 and h2 has to be chosen such that ReH12 6= 0
and ImH12 6= 0. We will show numerical results for the following combinations of couplings

Set 1 : h1 = 0.5µ, h2 = 0.8 ei 2
3µ ,

Set 2 : h1 = 1.0µ, h2 = 1.6 ei 2
3µ .

(5.152)

We will also choose µ = 1 in arbitrary units. The eigenfrequencies and the decay widths are
found numerically with a three-point fit to the determinant of the retarded and advanced propa-
gators [264].

With the parameters fixed, we have to specify the initial conditions, represented by the source
term Kmn. Since we are working here in the weak-washout regime, the total asymmetry will be
sensitive to the initial asymmetry. If we want to make sure that the asymmetry is only generated
dynamically, we have to find suitable initial conditions. In the Heisenberg picture, these con-
ditions corresponds to choosing the correct Gij

δ (0, 0) (see appendix B.2.1). For non-degenerate
spectra and for real scalars that transform equally under C-transformations, we are free to spec-
ify any initial condition, and K12 = 0 is a suitable choice. For C-transformations that act like
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Figure 5.2: Numerical evaluation of Eq. (5.150) as functions of the degeneracy parameter R interpreted in terms
of the Boltzmann “benchmark” (ηmix) plus corrections (|ηres|), which contain both oscillations and
interference. In between the panels we choose different C-conserving initial conditions indicated in the
upper left corner of each panel. The Yukawa couplings are h1 = 0.5µ and h2 = 0.8 exp(2i/3)µ.

reflections, we have to be more careful to fulfill Eq. (B.12) such that in generalK12 6= 0. We will
show numerical results for both variants of initial values for K12.

In Fig. 5.2 we plot the total asymmetry in black. The red dashed line gives the pure mix-
ing contribution and the orange dotted line is the combination of oscillation and interference
terms. This picture corresponds to one of two ways of interpreting the sources of the asymmetry:
Here, we have plotted the benchmark that the Boltzmann equation approximates the asymmetry
whereas the oscillation source and the interference are viewed as corrections. In agreement with
expectations, this scheme works well for hierarchical mass spectra, R > 3, and the chosen pa-
rameters. It is also rather accurate for small R < 1. For R = 1 we see an overestimate in the
asymmetry by roughly a factor of 2.

This scenario should be compared with Fig.5.3, where we show the same asymmetry (black
line) interpreted in terms of the density-matrix benchmark, i.e., the oscillation source (light-blue
dashed) contributes the most to the asymmetry, and the mixing and interference constitute cor-
rections (orange, dotted). In this case, we see that the density matrix approximation agrees well
with the total asymmetry when the number densities of the two flavors are of similar magnitudes
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Figure 5.3: Numerical evaluation of Eq. (5.150) as functions of the degeneracy parameter R interpreted in terms of
the density matrix “benchmark” (ηosc) plus corrections (|ηres|), which contain both mixing and interfer-
ence. In between the panels we choose different C-conserving initial conditions indicated in the upper
left corner of each panel. The Yukawa couplings are h1 = 0.5µ and h2 = 0.8 exp(2i/3)µ.

and there is no off-diagonal source (upper left panel of Fig. 5.3). When the off-diagonal source
is non-zero (upper right panel), we still see a very good agreement between the total asymmetry
and the oscillations source until R ∼ 10. At this point the correction from mixing and interfer-
ence becomes of the same magnitude. On the other hand, when the number densities of the two
flavors are not similar because of K11 6= K22 (lower left panels of Fig. 5.3), we see that the den-
sity matrix approximation underestimates the total asymmetry for smaller R. This observation
can be understood from the analytic results given in Eqs. (5.123) and (5.124) for the effective
CP-violating parameter. Specifically, with the density matrix approximation as the benchmark,
the interference terms can be seen as a modification to the mixing source. This modification in-
troduces a relative sign between the contribution to the asymmetry from the two flavors. Hence,
when the deviations from equilibrium of the two flavors are similar, the mixing contribution is
strongly suppressed. On the other hand, when this is not the case, the cancellation is no longer
exact and both the oscillation and mixing sources contribute additively to the asymmetry, leading
to an underestimate of the asymmetry in the density-matrix approach.

The interference was not included in the analysis of Refs. [108–110]. Nevertheless, we see
that including only oscillations or mixing could underestimate the asymmetry by a factor of 2 in
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Figure 5.4: Numerical evaluation of Eq. (5.150) for the single-shell approximation as functions of the degeneracy
parameterR. The asymmetry in the single-shell approximation η̃ is given by a black line, and its compo-
nents are depicted in dashed blue (oscillation source) and dotted orange (mixing plus interference). The
asymmetry that would have been obtained if all three shells were distinguished is shown with a dashed
black line. In between the panels we choose different C-conserving initial conditions indicated in the
upper left corner of each panel. The Yukawa couplings are h1 = 0.5µ and h2 = 0.8µ exp(2i/3).

accordance with their claim. It remains to be seen to which extent the interference terms modify
the final asymmetry for more realistic, phenomenological models in the strong-washout regime
and for an expanding background.

To wrap up this section, we compare in Fig. 5.4 the total asymmetry including all three shells
with the asymmetry calculated in the single-shell approximation ω1 = ω2 = ω (see appendix C)

G≷ ∝ δ(Q2 − M̄2) , (5.153)

which was employed in Refs. [112, 113, 132]. We see that this approximation agrees well for
R < 1 with the result that takes into account all three shells separately. For hierarchical mass
spectra, however, the results differ by orders of magnitude since this approach discards the mix-
ing contribution [110]. The oscillation contribution even vanishes completely and changes its
sign if K12 6= 0. The reason is that for quasi-degenerate spectra the oscillations are mainly
sourced by the diagonal number densities [see Eqs. (5.137)]. However, these contributions fall
of fast enough to allow the off-diagonal number densities sourced by K12 to take over for hierar-
chical spectra.
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5.8 Concluding remarks
Baryogenesis via leptogenesis is an attractive scenario to explain the baryon asymmetry of the
universe. Lepton asymmetry is generated by out-of-equilibrium decays of heavy Majorana neu-
trinos that violate lepton number and CP -symmetry. This asymmetry is later transferred to the
baryonic sector via sphaleron processes.

Traditionally, the asymmetry has been calculated using Boltzmann equations. This formalism
accounts for the CP -violation that is generated by the mixing source, i.e., the asymmetry that
it created due to interference of tree-level and one-loop decay amplitudes. For quasi-degenerate
spectra one has to worry about another source to the asymmetry. Correlations between different
heavy-neutrino flavors build up and lead to flavor-violating oscillations. The density matrix
formalism is capable of tracking these correlations and yields the asymmetry generated from
these oscillations.

It was argued by Dev, Millington, Pilaftsis, and Teresi that the mixing and oscillation sources
both contribute additively to the asymmetry. For their analysis they used the interaction-picture
representation of non-equilibrium field theory in the strong-washout regime. Moreover, they
showed that the density matrix formalism discards the mixing source by giving all heavy Majo-
rana neutrinos approximately the same energy. A density matrix ansatz might therefore under-
estimate the total asymmetry by a factor two. This result has to be compared to recent works of
Garbrecht and collaborators who use a density matrix approach to compute the asymmetry. How-
ever, their results are obtained in the Heisenberg representation of non-equilibrium field theory.
A direct comparison between the Heisenberg and interaction picture approach in non-equilibrium
quantum field theory has never been performed.

Such a comparison has been presented in this chapter. Using Kadanoff-Baym equations, we
derived analytically the expression for the asymmetry that is generated in the weak-washout
regime for both the Heisenberg and interaction picture approaches. We obtained identical results
in both pictures demonstrating their equivalence and consistency. We confirmed that mixing and
oscillations provide two distinct sources to the lepton asymmetry, and identified three different
shells that contribute to the asymmetry. The mixing contribution corresponds to the two quasi-
particle shells with energy ωi; the middle shell ω̄ = (ω1 + ω2)/2 corresponds to the oscillation
source and an additional interference term between mixing and oscillations.

We find that the mixing and oscillation sources can be of the same sign and magnitude, con-
tributing additively to the final asymmetry, in agreement with the conclusions of Refs. [108–110].
Moreover, we have taken a look at the single-shell approximation where energy differences are
neglected everywhere but in the commutator of the mass matrix. We have shown that this ap-
proximation may underestimate the total asymmetry significantly because it discards the mixing
source, in line with the argument in Ref. [110]. However, we also find that this argument is not
so clear-cut because the destructive interference terms suppresses the mixing contribution in the
quasi-degenerate limit.

To illustrate these cancellations, we computed the asymmetry numerically and compared to
each other different approaches (Boltzmann, density matrix, Kadanoff-Baym) for different mass
spectra from degenerate through to hierarchical. From the perspective of the Boltzmann equa-
tion, the mixing source is the dominant contribution and the sum of oscillations and interference
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constitutes the corrections. We find that this approximation works well for hierarchical mass
spectra, whereas the corrections become sizable when the mass splitting is of the same order as
the sum of the decay widths.

If one views the oscillation source as the dominant contribution, i.e., one uses a density ma-
trix approach, the sum of mixing and interference constitutes the correction. This perspective
captures the asymmetry well when the number densities of the two flavors are of similar size.
On the other hand, when the number densities of the two flavors are not similar, the correction
becomes sizable even for quasi-degenerate mass spectra, i.e., in the parameter range where the
density matrix approach was believed to yield reliable results.

Since it is not clear to what extent our results generalize to the strong-washout regime, it
would be of interest to perform an equivalent analysis for a realistic phenomenological model in
the strong-washout regime and for an expanding background.



Chapter 6

Conclusions and outlook

Throughout this thesis, we have studied applications of the density matrix formalism to astro-
physical and cosmological systems. The density matrix equation tracks the evolution of particle
number densities taking into account correlations between particles with different discrete quan-
tum numbers like flavor or helicity. It is able to describe particle transport in systems where
different particle species mix, i.e., correlations between particles develop. These correlations
lead to the typical oscillations of particles species into each other, e.g., neutrino flavor oscilla-
tions or the magnetic field-induced Faraday rotation. This makes the density matrix equations
more general than the semi-classical Boltzmann equations that discards any correlations.

The dynamical object in the density matrix equation is a matrix of densities ρ with particle
number densities on the diagonals and correlations between particle species on the off-diagonals.
The density matrix equation obtains contributions from external forces, diffusion, and collisions,
similar to the Boltzmann equation, as well as a refractive source term. In this thesis we were
mainly concerned with this refractive term, which describes particle oscillations in media. Its
functional form is determined by the commutator [H, ρ], where H denotes the Hamiltonian ma-
trix, i.e., the matrix of oscillation frequencies. Large parts of this thesis were devoted to deriving
this Hamiltonian matrix and studying its impact on particle oscillations. In particular, we have
applied the density matrix formalism to three systems.

♦

Axion-like particles couple to the scalar product of electric and magnetic field E ·B. If ALPs
propagate in a background filled with a magnetic field, this coupling allows the ALPs to mix
with photons. Laboratory experiments like ADMX, ALPS, CAST, and MADMAX are using
this property to search for ALPs that convert into photons in small scale magnetic fields. If ALPs
exist, these conversions will happen in the large scale magnetic fields of the galaxy or extra-
galactic space as well. Since ALPs are absorbed much more weakly than photons, ALP-photon
oscillations make the universe appear less opaque: the power in high energy photons that oscil-
late into ALPs is protected from absorption on the extragalactic background light. If the ALPs
convert back to photons close to our galaxy, the absorption rate in extragalactic space seems to
be smaller or equivalently the power of the EBL seems to be weaker. This mechanism helps to
explain a surprisingly low absorption rate that has been observed by Cherenkov telescopes and
to alleviate the corresponding transparency problem of the universe.

Because the magnetic field along the line of sight to a source is unknown, ALP-photon mixing
was simulated using assumptions about the statistical distribution and structure of the magnetic
field that fills the extragalactic space. Previously, the magnetic field was considered to consist
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of a grid of magnetic field domains with a constant comoving domain length and a constant
magnetic field strength in each domain. The magnetic field was assumed to vary discontinuously
at the borders of each domain (“hard edges”). By generating a large number of magnetic field
configurations and computing the photon and ALP transfer functions for each of these, one could
extract the statistical properties of the transfer functions. The same approximations were also
used by Mirizzi and Montanino, who derived a simple system of differential equations that could
substitute the more demanding Monte-Carlo approach in the maximal mixing regime.

In this thesis, we studied in detail the different refractive and absorptive terms that contribute
to ALP-photon propagation in extragalactic magnetic fields. In contrast to previous works, we
included the recently derived refraction of GeV–TeV photons on the CMB. This refraction in-
creases linearly with energy becoming the most important entry of the Hamiltonian matrix for the
GeV–TeV energy range. We have shown that this new dispersive term impacts three assumptions
that have been adopted in previous works.

First, the mixing angle between ALPs and photons was assumed to be maximal for energies
larger than a critical scale. This scale depends on the ALP mass but usually lies in the GeV-energy
range. We showed that maximal mixing cannot be achieved for this energy range if refraction
on the CMB is included. This refractive contribution grows linearly with energy and becomes
the largest entry of the Hamiltonian matrix around 1 TeV. We demonstrated that the differential
equation formalism of Mirizzi and Montanino can be extended in a straight-forward manner.

The energy range where the differential equation may be applied is limited because the refrac-
tion on the CMB also impacts the modeling of the extragalactic magnetic field. Previously, it
was assumed that the oscillation length of the ALP-photon system is much larger than a typical
domain size. Large dispersive terms are, however, concomitant with smaller oscillation lengths
losc. If this length scale becomes of similar size as the domain size lc, the two length scales inter-
fere and lead to an unphysical suppression of ALP-photon conversions. We showed that letting
the domain size of the magnetic field fluctuate removes this resonant behavior. However, when
losc approaches lc the exact probability distribution of the domain sizes became important.

As soon as losc � lc, not only constant domain lengths have to be discarded, also the third
assumption of previous works which pertains to discontinuous magnetic fields at the domain
borders has to be reexamined. As soon as the oscillation length is much smaller than the typical
domain size, the description of the ALP-photon propagation becomes fundamentally different:
the oscillations are now fast with respect to changes of the magnetic field so that the ALP-
photon system probes the detailed structure of the magnetic field. This brings into question the
assumption of hard edges. By interpolating magnetic field configurations with hard edges using
a continuous function, we have demonstrated that ALP-photon propagation enters the quasi-
adiabatic regime when losc � lc. For zero initial and final magnetic field, the photon and ALP
transfer functions depend on the derivative of the magnetic field at the source and at the detector,
as well as the mean absorption of ALPs in extragalactic space.

In the future it will be interesting to study photon propagation for more phenomenological
models of magnetic fields. This task requires a realistic simulation of the magnetic field structure
coming from, e.g., galactic outflows. Additionally, our computations did not include redshift.
Magnetic fields and the CMB energy density grow strongly with redshift such that this effect
has to be taken into account for phenomenological predictions of the photon transport function.
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With all these ingredients it might be possible to predict how the spectra of blazars are modi-
fied when ALPs are included. Such predictions are crucial not only for current air-Cherenkov
telescopes (MAGIC, VERITAS, H.E.S.S.) that are measuring blazar spectra up to TeV photons,
the sensitivity to these high energies will improve tremendously with the upcoming Cherenkov
Telescope Array. A precise measurement of far-away blazars might ultimately shed light on the
transparency problem of the universe and its possible resolution with ALP-photon mixing.

♦
In the second part of this thesis, we have looked at neutrino oscillations in compact astrophysi-

cal objects. Flavor oscillations are well described within the density matrix formalism. Recently,
this formalism was extended to include correlations between different neutrino helicities and be-
tween neutrinos and antineutrinos (pair correlations). We have derived the corresponding kinetic
equations confirming and extending previous results.

Helicity coherence describes helicity flips on the refractive level. These might be important
for supernova physics because different helicity eigenstates of neutrinos interact with matter in
qualitatively and quantitatively different ways. We estimated the numerical magnitude of such
helicity flips confirming that these are usually negligible.

We also discussed pair correlations in detail. For this task, we simplified the kinetic equa-
tions to the simplest working toy model which consisted of one generation of massless neutri-
nos. By reformulating the corresponding kinetic equation in the Schrödinger picture, we were
able to interpret pair correlations as coherence between the empty vacuum state and a neu-
trino/antineutrino pair with zero total momentum. Non-zero values for these correlators then
lead to spontaneous pair creation with an oscillation frequency of the order twice the energy,
i.e., approximately 1013 GHz for typical neutrino energies in supernovae. The amount of pair
creation was found to be small with typical correlators of the order κ ∼ 10−11. Together with the
fast oscillations, this smallness led us to speculate that pair correlations are negligible.

Even if pair correlations are not negligible, one has to solve the conceptual problem that the
neutrino/antineutrino pairs that are created from pair correlations are required to be back-to-back.
This requirement is independent of the reference frame which leads to the apparent problem that
two observers measure incompatible neutrino momenta and particle numbers.

To resolve this issue, it might be useful to proceed in the following ways. One possibility is
to lift the requirement of homogeneity for the mean-fields thereby considering more momentum
modes and their interactions. The homogeneity assumption is problematic because it is forces the
neutrino pairs to be back-to-back in every frame. Lifting this requirement might help to reconcile
the particle numbers seen by different observers.

A different and in our opinion more promising approach is to compute the full non-equilibrium
equations for the neutrino propagation. In particular, the constraint equation contains the infor-
mation on what our physical degrees of freedom actually are. The fact that particle numbers
seem to depend on the frame indicate that we have not identified the correct degrees of freedom.
This interpretation is favored by our finding that in the simplified model for the pair correlations
different observations of particle numbers can be reconciled if we invoke the in-medium Dirac
equation. Such a procedure projects vacuum neutrinos onto the physical in-medium degrees of
freedom. Since the typical size of the pair correlations is tiny, the difference between the free
and in-medium states is small. It is therefore likely that the added layer of complication from
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solving the constraint equations does not justify the outcome, and it seems best to discard pair
correlations for practical computations altogether.

♦
Finally, we touched upon density matrix equations in the chapter about resonant leptogenesis.

We compared for the first time two methods to compute the asymmetry: the top-down Heisenberg
picture and the bottom-up interaction picture approaches. For this comparison we used a toy
model of leptogenesis with scalar “heavy neutrinos” and complex Yukawa couplings. In the
weak-washout regime we obtained an analytical result for the generated asymmetry. This result
was identical in both approaches demonstrating their consistency and complementarity.

This result contributes to the resolution of a seeming discrepancy between the amount of asym-
metry that is produced in the interaction and Heisenberg picture approaches. Dev and collabo-
rators identified in the interaction picture approach two different sources to the asymmetry. The
conventional mixing source describesCP -violation from the interference of tree-level decay am-
plitudes with the one-loop corrections. Here, especially the self-energy correction to the outer
leg of the decaying particle is important because of a resonant enhancement for quasi-degenerate
Majorana neutrinos. The second source describes lepton-number violating oscillations due to
correlations that build up during propagation. Dev and collaborators argued that a density ma-
trix approach that is used by Garbrecht and collaborators would underestimate the asymmetry
because this approach discards the mixing source.

In our analytical results we confirmed the existence of both sources. Moreover, we found a
third contribution to the lepton asymmetry which we identified as destructive interference be-
tween the mixing and oscillation sources. This interference term has not been identified in previ-
ous computations and it suggests that previous results in the interaction and Heisenberg picture
may not be in conflict with each other. Both the mixing and oscillation sources contribute addi-
tively to the asymmetry as suggested by Dev and collaborators, but the mixing source might be
canceled in the quasi-degenerate regime where the density matrix approach used by Garbrecht
and collaborators can be well applicable. Note that our result is not without caveat: we used here
the weak-washout regime while most results in the literature are in the strong-washout regime
where back-reactions of the plasma are important.

There are two aspects that deserve future attention. First, it is desirable to study if the three
sources to the asymmetry persist in the strong-washout regime. Second, the heavy Majorana
neutrinos are fermions that have a different propagator structure than scalars. A more realistic
model should take the resulting Dirac structure into account.

♦
In summary, mixing between particles with different discrete quantum numbers is crucial to

describe transport phenomena in astrophysical and cosmological systems. The density matrix
generalization of the Boltzmann equation is a powerful tool that is able to account for corre-
lations and corresponding oscillations. Moreover, the density matrix formalism is flexible and
can be applied to many different systems and particle species as we have demonstrated. Far
away from equilibrium, however, it becomes tricky to extract correct physical results and a full
non-equilibrium treatment like the closed-time-path formalism is more convenient, albeit much
tougher to apply in practice.



Appendix A

Conventions

A.1 Units and metric
Throughout this thesis we work in natural (Lorentz-Heaviside) units where the speed of light c,
Planck’s reduced constant ~, and the Boltzmann constant kB all equal unity. All calculations in
this thesis are performed in Minkowski space and we choose the metric gµν = diag(+,−,−,−).

A.2 Coordinate conventions
Coordinate-space variables are denoted by the lower-case Roman characters x, y, . . . ; and their
Fourier-conjugates by the four-momenta p, p′, . . . . The spatial components of these four-vectors
are shown in bold-face. The central and relative coordinates are denoted by the Roman characters
X and r, respectively, where

Xµ = (xµ + yµ)/2 rµ = xµ − yµ . (A.1)

Finally, the characters Q and q are reserved for the central and relative momenta

Qµ = (pµ + pµ′)/2 , qµ = pµ − pµ′ . (A.2)

A.3 Dirac matrices and spinors
For fermionic fields we require a convention for the Dirac matrices for which we will follow the
extensive work of Ref. [218]. The Dirac matrices in four dimensions are defined through their
anticommutation relation

{γµ, γν} = 2gµν1 . (A.3)

We will choose a chiral representation, in which γ5 is diagonal:

γµ =
(

0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
, (A.4)

where every entry is a 2× 2 submatrix. The vector of Pauli matrices are defined as

σµ =
(

1
σi

)
, σ̄µ =

(
1
−σi

)
. (A.5)
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With this convention we may write down our bispinor notation. A Dirac spinor has four compo-
nents which may be written in the following way:

ψ(x) =
(
ξα(x)
η†,α̇(x)

)
, (A.6)

where ξ and η are two-component spinors with the same mass. They transform differently under
the Lorentz group as indicated by dotted and undotted indices, i.e., ξα transforms as (1/2, 0) and
η†,α̇ transforms as (0, 1/2). Hermitian conjugation switches between the two representations

(ξα)† = ξ†,α̇ . (A.7)

Indices can be raised and lowered with the 2× 2 ε-tensor

ξα = εαβξ
β, ξα = εαβξβ, ξ†α̇ = εα̇β̇ξ

†β̇, ξ†,α̇ = εα̇β̇ξ†
β̇
, (A.8)

which is zero on the diagonals and

ε12 = −ε21 = ε21 = −ε12 = 1 . (A.9)

In the two-component spinor notation the Dirac matrices read

γµ =
 0 σµ

αβ̇

σ̄µ,α̇β 0

 , γ5 =
−δ βα 0

0 δα̇
β̇

 . (A.10)

For a Lorentz invariant Lagrangian we are only allowed to form Lorentz invariant spinor combi-
nations. These can be obtained by contracting indices of the same type, i.e., ξαξα or ηα̇ηα̇, where
the order of the indices is important. Lorentz invariant contractions are obtained by the product
ψ̄ψ, with

ψ̄(x) = ψ†(x)γ0 =
(
ηα(x) ξ†α̇(x)

)
. (A.11)

For Majorana neutrinos the two-component spinors that enter the bispinor are not independent.
Indeed, we may impose the Majorana condition ψC = ψ, i.e., the Majorana spinor is equal to its
charge-conjugate. Charge conjugation is defined as

ψC(x) ≡ Cψ̄T (x) =
(
ηα(x)
ξ†,α̇(x)

)
, (A.12)

with the charge conjugation matrix
C = iγ0γ2 . (A.13)

With these definitions, the Majorana condition leads to ηα(x) = ξα(x), and the Majorana bispinor
yields

ψM(x) =
(
ξα(x)
ξ†,α̇(x)

)
. (A.14)
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The two-component spinor formalism is well-suited for massless particles. Since they possess
a definite chirality, we may define a left-chiral Weyl field by PLψ = ψ, and similarly for the
right-chiral field. Hence, a representation reads

ψW,L(x) =
(
ξα(x)

0

)
, ψW,R(x) =

(
0

ξ†,α̇(x)

)
. (A.15)

With our conventions for the Dirac matrices, we may write down the explicit solutions to the free
Dirac equation:

ui(p, s) =
 N i

p,s χs(p̂)
N i
p,−s χs(p̂)

 , (A.16a)

vi(p, s) = s

−N i
p,−s χ−s(p̂)
N i
p,s χ−s(p̂)

 , (A.16b)

where p̂ is the unit vector in the direction of p, s = ± a helicity index, and

N i
p,s =

√
Ei − s|p|

2Ei
≈ δs− + mi

2|p|δs+ , (A.17)

with Ei = (p2 +m2
i )1/2, the energy of a neutrino with mass mi.

We may describe the modes of the neutrino field in spherical coordinates where the momentum
components are p̂ = (sin θ cosφ, sin θ sinφ, cos θ). In this case the standard two-component
helicity spinors are explicitly

χ+(p̂) =
(

cos θ
2

eiφ sin θ
2

)
, (A.18a)

χ−(p̂) =
(
−e−iφ sin θ

2
cos θ

2

)
. (A.18b)

They satisfy the orthogonality condition χ†s(p̂)χh(p̂) = δsh.
The matrix elements of σ̄µ are found by direct evaluation to be

χ†−(p̂)σ̄µχ−(p̂) = nµ = (1, p̂) , (A.19a)

χ†+(p̂)σ̄µχ+(p̂) = n̄µ = (1,−p̂) , (A.19b)

χ†+(p̂)σ̄µχ−(p̂) = −e−iφεµ = −e−iφ(0, ε̂) , (A.19c)

χ†−(p̂)σ̄µχ+(p̂) = −eiφεµ∗ = −eiφ(0, ε̂∗) , (A.19d)

where εµ is a polarization vector orthogonal to nµ. The explicit components in spherical coordi-
nates are

ε̂ =


eiφ cos2 θ

2 − e
−iφ sin2 θ

2

−i
(
eiφ cos2 θ

2 + e−iφ sin2 θ
2

)
− sin θ

 . (A.20)

Note that the vectors nµ and εµ depend on p̂, but we do not show this dependence explicitly to
simplify the notation.
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A.4 Double Fourier and Wigner transforms
The double Fourier transform f(p, p′) of a function f(x, y) is defined as follows:

f(p, p′) ≡ Fy[Fx[f(x, y)](p)](−p′) ≡ Fx[Fy[f(x, y)](−p′)](p)

≡
∫ +∞

−∞
d4x

∫ +∞

−∞
d4y e−ip·x eip

′·y f(x, y) .
(A.21)

We emphasize the relative sign in the exponent of the right-most y-dependent kernel. This is
chosen such that translational invariance f(x, y) = f(x− y) corresponds to the conservation of
four-momentum p = p′.

The Wigner transform f(X,Q) of a function f(x, y) is defined as follows:

f(X,Q) ≡ FR[f(x, y)](Q) ≡
∫ +∞

−∞
d4ReiQ·R f(x, y) . (A.22)

It may also be written in terms of an inverse transform of the double-momentum representation
f(p, p′):

f(X,Q) ≡ F−1
q [f(p, p′)](X) ≡

∫ +∞

−∞

d4q

(2π)4 e
−iq·X f(p, p′) . (A.23)

A.5 Propagator conventions

A.5.1 CTP propagators
The conventions for the CTP propagators differ in the literature. In the present thesis, we denote
by the upper-case Roman character G the conventions of Ref. [264] which are used throughout
the body of this thesis. Those denoted by the upper-case Greek character ∆ follow the conven-
tions of Refs. [110, 118], which we will show explicitly as well in order to allow for comparisons.
Parenthesized names correspond to the nomenclature of Refs. [110, 118] and are placed in the
text immediately following the corresponding nomenclature of Ref. [264].

The CTP propagator of the scalar neutrinos of the model in Eq. (5.2) is defined as

G
[0,]ij
C (x, y[, t̃]) ≡ 〈TC[ψiH[I](x)ψjH[I](y)]〉

0[t]
, (A.24)

where objects appearing in brackets ([]) correspond to the interaction-picture definitions. The
operator TC denotes path ordering, i.e., time ordering on the positive time branch and anti-time
ordering on the negative time branch. Also fields on the negative time branch are always consid-
ered to be later than those on the positive time branch. For times x0 and y0 on the time-ordered
branch, G[0,]ij

C (x, y[, t̃]) is equal to the time-ordered (Feynman) propagator G[0]ij
T (x, y[, t̃]). For

times x0 and y0 on the anti-time-ordered branch, G[0,]ij
C (x, y[, t̃]) is equal to the anti-time-ordered

(Dyson) propagator G[0,]ij
T (x, y[, t̃]). When x0 is on the time-ordered branch and y0 is on the

anti-time-ordered branch, G[0,]ij
C (x, y[, t̃]) is equal to the negative-frequency Wightman propaga-

tor G[0,]ij
< (x, y[, t̃]). On the other hand, when x0 is on the anti-time-ordered branch and y0 is on

the time-ordered branch, G[0,]ij
C (x, y[, t̃]) is equal to the positive-frequency Wightman propagator

G
[0,]ij
> (x, y[, t̃]).
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A.5.2 (Anti-)Commutator functions
The spectral (Pauli-Jordan) function and the statistical (Hadamard) propagator are defined as
follows:

G[0,]ij
ρ (x, y[, t̃]) = i 〈[ψiH[I](x), ψjH[I](y)]〉

0[t]
≡ −∆[0,]ij(x, y) , (A.25a)

G
[0,]ij
F (x, y[, t̃]) = 1

2 〈{ψ
i
H[I](x), ψjH[I](y)}〉

0[t]
≡ 1

2 i∆
[0,]ij
1 (x, y[, t̃]) . (A.25b)

The subscript F, indicating the statistical propagator, should not be confused with the same
subscript used in Refs. [110, 118] to indicate the time-ordered (Feynman) propagator.

Note that the expectation value is redundant in the definition of the spectral function in the
interaction picture, since the commutator is a c-number. In addition, we draw attention to the
fact that the Wigner transform of the spectral (Pauli-Jordan) function Gρ(X,Q) differs from the
object G̃ρ(X,Q) appearing in Ref. [273] by an overall factor of i. Specifically, we have

Gij
ρ (X,Q[, t̃]) = FR[Gij

ρ (x, y[, t̃])](Q) ≡ i G̃ij
ρ (X,Q[, t̃]) . (A.26)

A.5.3 Causal functions
The retarded and advanced propagators are defined in terms of the spectral function as follows:

Gij
R(x, y[, t̃]) = θ(x0 − y0)Gij

ρ (x, y[, t̃]) ≡ −∆ij
R(x, y[, t̃]) , (A.27a)

Gij
A(x, y[, t̃]) = − θ(y0 − x0)Gij

ρ (x, y[, t̃]) ≡ −∆ij
A(x, y[, t̃]) , (A.27b)

from which we may obtain the identity

Gij
ρ (x, y[, t̃]) = Gij

R(x, y[, t̃])−Gij
A(x, y[, t̃]) . (A.28)

In addition, the Hermitian (principal-part) propagator is defined via

Gij
h (x, y[, t̃]) = 1

2

(
Gij

R(x, y[, t̃]) +Gij
A(x, y[, t̃])

)
= 1

2 sign(x0 − y0)Gij
ρ (x, y[, t̃]) ≡ −∆ij

P(x, y[, t̃]) . (A.29)

Note that the superscript 0 does not appear in the interaction-picture cases, since the above iden-
tities hold at any order in perturbation theory.

A.5.4 Wightman propagators
The absolutely-ordered Wightman propagators are defined as follows:

G
[0,]ij
> (x, y[, t̃]) = 〈ψiH[I](x)ψjH[I](y)〉 ≡ i∆[0,]ij

> (x, y[, t̃]) , (A.30a)

G
[0,]ij
< (x, y[, t̃]) = 〈ψjH[I](y)ψiH[I](x)〉 ≡ i∆[0,]ij

< (x, y[, t̃]) . (A.30b)
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Statistical/Hadamard Gij
F ≡ 1

2i∆
ij
1

Spectral/Pauli-Jordan Gij
ρ ≡ −∆ij

Retarded (Advanced) Gij
R(A) ≡ −∆ij

R(A)
Wightman Gij

≷ ≡ i∆ij
≷

Hermitian (Principal-part) Gij
h ≡ −∆ij

P

Self-energies
Πij
≷ ←→ iΠij

≷

Πij
F ←→ 1

2iΠ
ij
1

Πij
R(A) ←→ −Πij

R(A)

Table A.1: Comparison of the notations for the various two-point functions and self-energies used in Ref. [264]
(left-hand side) versus Refs. [110, 118] (right-hand side).

These may also be written in terms of the spectral function and statistical propagator:

Gij
≷(x, y[, t̃]) = Gij

F (x, y[, t̃])∓ i

2 G
ij
ρ (x, y[, t̃]) , (A.31)

yielding the identities

Gij
ρ (x, y[, t̃]) = iGij

>(x, y[, t̃])− iGij
<(x, y[, t̃]) , (A.32a)

Gij
F (x, y[, t̃]) = 1

2

[
Gij
>(x, y[, t̃]) +Gij

<(x, y[, t̃])
]
. (A.32b)

A.5.5 Time-ordered propagators
The time-ordered (Feynman) and anti-time-ordered (Dyson) propagators are defined as

Gij

T(T)(x, y[, t̃]) = θ(x0 − y0)Gij
>(<)(x, y[, t̃]) + θ(y0 − x0)Gij

<(>)(x, y[, t̃]) . (A.33)

A.5.6 Self-energies
We follow the sign convention of Ref. [264] for the definition of the self-energies, such that a
positive dispersive self-energy correction corresponds to a positive shift in the mass-squared. For
example, we denote the inverse of the momentum-space resummed retarded (advanced) propa-
gator by

Dij
R(A)(p) ≡ p2δij − [M2]ij − Πij

R(A)(p) , (A.34)

where we have adopted the notationDij
R(A)(p) from Ref. [110]. This inverse appears in Ref. [264]

as Ωij
R(A)(p) and in Refs. [110, 118] as ∆−1

R(A)(p).
The various self-energies satisfy identities analogous to those identified above for the two-

point functions. In the case of the spectral function,

Πij
ρ (x, y[, t̃]) = iΠij

>(x, y[, t̃])− iΠij
<(x, y[, t̃]) , (A.35)

we have introduced the real-valued distribution

Π̃ρ(p, p′[, t̃]) ≡ − iΠρ(p, p′[, t̃]) = − iFy[Fx[Πρ(x, y[, t̃])](p)](−p′) . (A.36)



Appendix B

C, P, and T symmetries

For successful leptogenesis we require the Lagrangian in Eq. (5.2) to transform non-trivially
under charge conjugation C-, parity transformation P -, and time-reversal T such that the lepton
asymmetry can be generated dynamically. In contrast to this dynamical component, we want the
asymmetry from the initial conditions to vanish, which is not automatically guaranteed in the
weak-washout regime (see Ref. [264]).

B.1 CPT-transformations
The usual transformations have to be generalized in the presence of flavor mixing by including
transformations in flavor space [108]. The reason is that we define the symmetry operations to
leave the kinetic terms of the Lagrangian invariant. During renormalization, however, counter-
terms mix the real scalar field with a real symmetric matrix which has to be diagonalized by a
transformation U [274]. Under this condition, for the model in Eq. (5.2), we have the following
transformation properties under the generalized parity P , time-reversal T and charge-conjugation
C transformations:

a) Parity. Under the linear transformation P , the scalar fields transform as

b(x0,x)P = ηP b(x0,−x) , (B.1a)

b∗(x0,x)P = η∗P b(x0,−x) , (B.1b)

ψi(x0,x)P = ±ψi(x0,−x) , (B.1c)

where the complex phase ηP satisfies |ηP |2 = 1.

b) Time-reversal. Under the anti-linear transformation T , the scalar fields transform as

b(x0,x)T = ηT b(−x0,x) , (B.2a)

b∗(x0,x)T = η∗T b
∗(−x0,x) , (B.2b)

ψi(x0,x)T = Uijψj(−x0,x) , (B.2c)

where the complex phase ηT satisfies |ηT |2 = 1 and U is an orthogonal transformation in
flavor space, i.e., UikUjk = UkiUkj = δij .
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c) Charge-conjugation. Under the linear charge conjugation C, the scalar fields transform as

b(x)C = ηCb
∗(x) , (B.3a)

b∗(x)C = η∗Cb(x) , (B.3b)

ψi(x)C = Uijψj(x) , (B.3c)

where the complex phase ηC satisfies |ηC |2 = 1. In order for the Lagrangian to be invariant
under CPT , the same orthogonal transformation U must appear in both the generalized T
transformation in Eq. (B.2c) and the generalized C transformation in eq. (B.3c). This
orthogonal transformation U may be either a rotation [det(U+) = 1] in flavor space or a
combination of a rotation and a reflection [det(U−) = −1], having the general form

U+ =
(

cos(α) − sin(α)
sin(α) cos(α)

)
or U− =

(
cos(α) sin(α)
sin(α) − cos(α)

)
. (B.4)

The Lagrangian in Eq. (5.2) is invariant under C so long as we can find a phase ηC and transfor-
mation U such that the mass matrix M2 and Yukawa couplings hi satisfy

UmiM2
mnUnj = M2

ij , (B.5a)

η2
C Uki hk = h∗i . (B.5b)

In order to analyze the constraint on the Yukawa couplings provided by Eq. (B.5b), it is conve-
nient to introduce the dyadic product Hij ≡ hih

∗
j . The second condition Eq. (B.5b) may then

be recast in the more convenient form

UmiHmnUnj = H∗ij , (B.6)

in which the phase ηC of the complex scalar field has been eliminated.
In the mass eigenbasis and if the two mass eigenvalues of the mass matrix are different, M2

1 6=
M2

2 , the angle α has to be α = 0 or π for both U+ and U− to fulfill Eq. (B.5a). This implies that
for rotations the two flavors must transform with equal phases under C, i.e.,

ψ1(x)C = ±ψ1(x) , ψ2(x)C = ±ψ2(x) , (B.7)

and correspondingly equal phases under T . C-invariance follows from Eq. (B.5b) if H12 = H∗12,
i.e., ImH12 = 0.

On the other hand, for reflections we see that the two flavors must transform with opposite
phases under C:

ψ1(x)C = ±ψ1(x) , ψ2(x)C = ∓ψ2(x) , (B.8)

and correspondingly opposite phases under T . On the other hand, if U = U−, C-invariance
follows if H12 = −H∗12, i.e., ReH12 = 0. Hence, for a C-conserving Lagrangian for non-
degenerate masses, either the real part or the imaginary part of H12 has to vanish.
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B.2 Initial conditions
In order to obtain C-symmetric dynamics, we also need to specify the initial conditions. They
are of particular importance if the scalar field transforms like a reflection because ImH12 is not
automatically zero and the produced asymmetry from the oscillations term depends on the initial
conditions.

B.2.1 Heisenberg picture
For the initial conditions in the Heisenberg picture, we have to derive the properties of the Wight-
man propagators under C-conjugation. These properties can be obtained from their definition in
the form

Gij
>(x, y) = Tr[P ψi(x)ψj(y)] , (B.9a)

Gij
<(x, y) = Tr[P ψj(y)ψi(x)] , (B.9b)

where P is the density matrix. For a C-symmetric background medium, the density matrix will
transform trivially under C-transformation. The Wightman propagators then transform under
generalized C-conjugation as

Gij
≷(x, y) C−→

[
UG≷(x, y)UT

]ij
. (B.10)

For the case of flavor rotations in the mass eigenbasis, U+ is proportional to the identity ma-
trix and the propagators are automatically C-symmetric. This is consistent with the fact that if
ImH12 = 0 then no asymmetry can be produced irrespective of the value of the propagators at
the initial time surface.

On the other hand, for the case of flavor rotations with α = 0 or π the propagators are C-
symmetric only if their off-diagonals vanish at the initial time surface. Inserting this requirement
into Eq. (5.49) yields

G12
δ (0, 0) = −

∫
d4ud4v

[
GR(0, u)K(u, v)GA(v, 0)

]12 = 0 , (B.11)

and consequently

K12 = K21 = − K
11G11

R (0)G12
A (0) +K22G12

R (0)G22
A (0)

G11
R (0)G22

A (0) +G12
R (0)G12

A (0) , (B.12)

where 0 = 0+ for the retarded and 0 = 0− for the advanced propagator, and we used that the
external source has the same properties as the one-loop self-energies, i.e., K12 = K21 [118].

The properties of the propagators imply Gij
A(0) = Gji

R(0), and therefore it is sufficient to
consider only the retarded propagator to evaluate Eq. (B.12). Integrating the explicit form of the
Wigner transform in Eq. (5.56), the retarded propagator takes the form

Gij
R(0) = 2

∫ ∞
0

dQ0

2π ReGij
R(Q0) ≈ −2 Im 1

∆Ω2

2∑
k= 1

(−1)k
2ωk

[adjDR(ωk)]ij , (B.13)
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where we used the residue theorem to evaluate the integral approximately. Since [adjDR(ωk)]ij
is proportional to Π12

R ∝ ReH12, it follows from this expression that G12
R ∝ ReH12. Thus, we

find K12 = K21 ∝ ReH12, such that, a C-symmetric choice of the initial conditions corresponds
to choosing ReH12 = 0. All in all, we conclude that either ImH12 = 0 or ReH12 = 0 is
sufficient for C-conserving dynamics if the initial conditions are C-symmetric.

B.2.2 Interaction picture
In the interaction picture, we may begin by fixing the transformation properties of the free field
operators under generalized discrete symmetry transformations in Fock space directly [108]. The
matrix of number densities is defined by

nij = 〈a†jai〉 = Tr(Pa†jai) . (B.14)

As follows from Eq. (B.7), under rotations a1
C−→ ±a1 and a2

C−→ ±a2. The additional phase
cancels in Eq. (B.14) and therefore the matrix of number densities is automatically C-symmetric.
This is in agreement with the observation that once ImH12 = 0 no asymmetry can be generated
irrespective of the choice of the initial conditions. On the other hand, for reflections a1

C−→ ±a1

and a2
C−→ ∓a2 such that the off-diagonals of nij acquire a relative sign. The condition of C-

invariance therefore implies that the matrix of number densities must be diagonal at the initial
time surface.



Appendix C

Asymmetry in the single-shell
approximation

In Secs. 5.4 and 5.5, we have paid particular attention to the shell structure of the propagators of
the real scalar. We found that in the calculation of the asymmetry one has to carefully keep track
of all shells. Moreover, the consistency of the results in the Heisenberg and the interaction picture
was reached after finding the temporal evolution of the number densities in Sec. 5.5.5, where we
resorted again to the same shell structure. In this Appendix, we will show that in contrast to the
calculation of the asymmetry, this distinction of different shells is not necessary for the solution
of the transport equation in the quasi-degenerate regime. This single-shell approximation is
commonly referred to as the density matrix approximation, where the approximation [112, 132]

G<(t, Q) = n(t,Q) 2π δ(Q2 − M̄2) , (C.1)

is introduced, i.e., all components of the Whightman propagator are evaluated at one common
shell.

Performing a Wigner-transform of the Kadanoff-Baym equations [Eq. (5.44)] and neglecting
gradients of the central spatial coordinate, one arrives at the following equation for the Wigner
transform of the Wightman propagators [112]:

2Q0∂tG< + i
[
M2

th, G<

]
= 1

2 {Π>, G<} − 1
2 {Π<, G>} , (C.2)

where the term Re ΠR [see Eq. (5.126)] has been absorbed into the thermal mass matrix M2
th.

Substituting Eq. (C.1) into Eq. (C.2) and integrating over Q0, we arrive at

∂tn+ i

2ω̄
[
M2, n

]
= 1

4ω̄
{

Π>, n
}
− 1

4ω̄
{

Π<,1 + n
}
. (C.3)

This equation holds for the total number density, which still contains contributions from equilib-
rium. The static equilibrium solution fulfills

2i
[
M2, neq

]
=
{

Π>, neq
}
−
{

Π<,1 + neq
}
, (C.4)

which can be solved by invoking the Kubo-Martin-Schwinger relation (see e.g. Ref. [275]),
which relates the equilibrium Wightman propagators

G>(p) = eβp0G<(p) . (C.5)
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A similar relation holds for the self-energies Π< = nBEΠ̃ρ [276], where nBE is the Bose-Einstein
distribution function. Taking into account that Π̃ρ = Π> − Π<, we obtain that neq = 1 · nBE
and the right-hand side of Eq. (C.4) vanishes because of detailed balance. The left-hand side
automatically vanishes for diagonal number densities. Hence, the equilibrium solution is the
expected equally distributed Bose-Einstein distribution.

The non-equilibrium part is δn = n− neq, and it obeys the kinetic equation

∂tδn+ i

2ω̄
[
M2, δn

]
= 1

4ω̄
{

Π̃ρ, δn
}
. (C.6)

Linearizing the mass dependence M2
ii → 2ω̄Ω with the matrix of energies Ω and using that the

spectral self-energies may be interpreted as effective decay widths

Γ ≡ − Π̃ρ

2ω̄ = iΠρ

2ω̄ , (C.7)

equation (C.6) becomes (cf. Ref. [112])

∂tδn+ i
[
Ω, δn

]
= − 1

2

{
Γ, δn

}
. (C.8)

It can readily be checked by substitution that the solution to Eq. (C.8) for time-independent
energies and self-energies is [112]

δn(t) = e
−i
(

Ω− i2 Γ
)
t
δn(0) ei

(
Ω+ i

2 Γ
)
t
. (C.9)

For general initial conditions and to first order in Γ12, Eq. (C.9) yields

δni/i(t) ≈ δni/i(0) e−i(ωi−ω/i )t e−Γ̄t

+ i

2
Γi/i

(ωi − ω/i) + i
2(Γi − Γ/i)

δnii(0)
(
e−Γit − e−i(ωi−ω/i )te−Γ̄t

)

+ i

2
Γi/i

(ωi − ω/i) + i
2(Γ/i − Γi)

δn/i/i(0)
(
e−Γ/i t − e−i(ωi−ω/i )te−Γ̄t

)
. (C.10)

Neglecting the decay width in the denominator and using the definition of the decay widths in
Eq. (C.7), we arrive at

δni/i(t) ≈ δni/i(0) e−i(ωi−ω/i )t e−Γ̄t

− i

2
Π̃i/i
ρ

∆M2
i/i

δnii(0)
(
e−Γit − e−i(ωi−ω/i )te−Γ̄t

)

− i

2
Π̃i/i
ρ

∆M2
i/i

δn/i/i(0)
(
e−Γ/i t − e−i(ωi−ω/i )te−Γ̄t

)
. (C.11)

which is identical to Eq. (5.137) with the shells approximated by the middle shell. For an almost
degenerate mass spectrum, we therefore find that one can safely use the density matrix equations
to compute the number density of the real scalars.



Appendix D

Mean transfer function: an example
To illustrate Eq. (3.40), we show the calculation of the first diagonal term of the purely dispersive
contribution to the matrix 〈U ρ̄U†〉φ,θ − ρ̄ in detail. The dispersive contribution reads

lc∂zρ̄ = 〈OTUdisOρ̄OTUdisO〉 − ρ̄ (dispersion only) (D.1)

where Udis is defined in the φ = 0 frame (cf. Eq. (3.23))

Udis(lc) = exp
(
−iHdislc

)

=e−i
(∆a+∆ )lc

2


e−i(δ−∆aγ/2)lc 0 0

0 c2
ϕe
−i∆osclc

2 + s2
ϕe

i∆osclc
2 is2ϕ sin ∆osclc

2
0 is2ϕ sin ∆osclc

2 c2
ϕe

i∆osclc
2 + s2

ϕe
−i∆osclc

2

 ,

(D.2)
which is then rotated to a general frame by O

O =

cφ −sφ 0
sφ cφ 0
0 0 1

 . (D.3)

As an example we show the first diagonal entry order according to their dependence on φ before
the averaging is performed

(OTUdisOρ̄OTUdisO)11 =c4
φρ11 + 2c2

φs
2
φf1 + s4

φf2 + c3
φsφf3 − c2

φs
2
φf4

+2s3
φf5 + 2c2

φsφf6 + cφs
3
φf7 + cφs

2
φ + 2s2

φf9 ,
(D.4)

where after averaging over φ only the following functions f survive:

f1 = ρ11

cos
[

1
2 lc(∆osc + δ1)

]
c2
ϕ + cos

[
1
2 lc(−∆osc + δ1)

]
s2
ϕ

 ,

f2 = ρ11
(
c4
ϕ + 2 cos[lc∆osc]c2

ϕs
2
ϕ + s4

ϕ

)
,

f4 =
(
−1 + 2 cos

[
1
2 l(∆osc + δ1)

]
c2
ϕ − c4

ϕ

+ 2
cos

[
1
2 l(−∆osc + δ1)

]
− cos[l∆osc]c2

ϕ

 s2
ϕ − s4

ϕ

)
ρ22 ,

f9 = (1− cos[l∆osc])c2
ϕs

2
ϕρ33 ,

(D.5)
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with δ1 = ∆a + ∆ − 2∆⊥. We obtain

(OTUdisOρ̄OTUdisO)11 =

3
8ρ11 + 1

4

cos
[

1
2 lc(∆osc + δ1)

]
c2
ϕ + cos

[
1
2 lc(−∆osc + δ1)

]
s2
ϕ

 ρ11

+3
8
(
c4
ϕ + 2 cos[lc∆osc]c2

ϕs
2
ϕ + s4

ϕ

)
ρ11 + (1− cos[lc∆osc])c2

ϕs
2
ϕρ33

+ρ22

{
7 + c4ϕ

32 − 1
4 cos

[
1
2 lc(∆osc + δ1)

]
c2
ϕ

− 1
4

cos
[

1
2 lc(−∆osc + δ1)

]
− cos[lc∆osc]c2

ϕ

 s2
ϕ

}
.

(D.6)

The 22 component will look identical when ρ11 ↔ ρ22. Adding these contributions and subtract-
ing ρ11 + ρ22, we obtain

lc∂z (ρ11 + ρ22) = −1
2 (ρ11 + ρ22 − 2ρ33) sin (2ϕ)2 sin

(
∆osclc

2

)2

(dispersion only)

= −Paγ
(
Tγ
2 − Ta

)
,

(D.7)
which has to be averaged over the residual degrees of freedom of the magnetic field to give the
dispersive part of Eq. (3.40).
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