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Summary

In this thesis new insights and developments on resampling approaches are provided.

While the first two parts provide new developments on the resampling method random

forests, the third and fourth parts investigate bootstrap-based approaches in which either

hypothesis testing or model selection are performed on each bootstrap sample.

Random forests are an ensemble of classification or regression trees with each tree

being built from a sample drawn either with or without replacement from the original

data. While classification and regression problems using random forest methodology

have been extensively investigated in the past, there seems to be a lack of literature on

handling ordinal regression problems, that is, if response categories have an inherent or-

dering. In the first part, this thesis investigates if incorporating the ordering information

in random forests improves prediction and variable selection. The second part focuses

on the identification of relevant variables in high-dimensional settings through the use

of random forest’s variable importance measures. When using random forest’s variable

importance measures, the researcher faces the problem that there is no natural cutoff for

importance scores that can be used to differentiate between important and non-important

variables. Several approaches, such as approaches based on hypothesis testing through

permutation-based procedures, have been developed for addressing this problem. While

for low-dimensional settings the existing permutation-based approaches might be com-

putationally tractable, for high-dimensional settings typically including several thou-

sands of variables, computing time is enormous. This thesis introduces a computationally

fast heuristic variable importance test for high-dimensional data settings.

Other resampling approaches, which are based on the bootstrap, are investigated in the

third and fourth parts of this thesis. These address for example stability investigations.

Repeating the same analysis on a large number of data samples from the same data gen-

erating process allows one to draw conclusions on how stable the results are against data

perturbations. Since in practical applications the data generating process is unknown,

several authors proposed using the bootstrap instead. However, applying the data anal-

ysis on bootstrap samples as if they were samples drawn from the true distribution might

be misleading if the data analysis includes hypothesis testing or model selection steps us-

ing information criteria or data splitting approaches. This is addressed in the third and

fourth parts of this thesis, respectively, and promising solutions are investigated.





Zusammenfassung

In dieser Arbeit werden im ersten und zweiten Teil neue Entwicklungen der Resam-

pling Methode Random Forests vorgestellt, während der dritte und vierte Teil Bootstrap-

basierte Verfahren behandelt, in denen Hypothesentests oder Modellselektionsverfahren

auf Bootstrap-Stichproben angewendet werden.

Bei der Random Forests Methode handelt es sich um ein Ensemble von Klassifikati-

ons- oder Regressionsbäumen, die auf Bootstrap-Stichproben angepasst werden. Wäh-

rend Random Forests sich als beliebtes Verfahren für Klassifikations- und Regressions-

probleme etabliert hat, ist dessen Verwendung in Datensituationen, in denen die Zielgrö-

ße ordinal ist, bislang noch nicht hinreichend untersucht. Inwiefern die Information über

die Reihenfolge der Response-Kategorien die Güte der Prädiktion und Variablenselek-

tion zu verbessern vermag, wird im ersten Teil dieser Arbeit untersucht. Eine beson-

dere Herausforderung stellt die Identifizierung relevanter Variablen über die in Random

Forests integrierten Variablenwichtigkeitsmaße dar. Anhand dieser Maße kann für jede

Variable ein Score berechnet werden, der die Wichtigkeit der Variable reflektiert und eine

Anordnung der Variablen nach Relevanz ermöglicht. Jedoch existiert kein Richtwert,

der die Trennung von relevanten und nicht-relevanten Variablen anhand ihrer Scores er-

laubt. Verschiedene Lösungsansätze wie Hypothesentest-basierte Ansätze, die Gebrauch

von computational aufwändigen Permutations-Verfahren machen, wurden in der Lit-

eratur vorgeschlagen. Während die existierenden Permutations-basierten Testansätze

für niedrigdimensionale Daten computational zu bewältigen sind, ist die Rechenzeit bei

hochdimensionalen Daten, die nicht selten mehrere tausend Variablen umfassen, enorm.

Im zweiten Teil dieser Arbeit wird ein heuristisches, computational effizientes Testver-

fahren für die Variablenwichtigkeit vorgeschlagen, das für hochdimensionale Daten ge-

eignet ist.

Im dritten und vierten Teil der Arbeit werden spezielle Bootstrap-basierte Verfahren

untersucht bei denen Hypothesentests, Informationskriterien oder Kreuzvalidierung auf

Bootstrap-Stichproben zur Anwendung kommen. Über die wiederholte Durchführung

von statistischen Analysen auf Bootstrap-Stichproben können beispielsweise Kenntnisse

über die Stabilität der Ergebnisse gewonnen werden. Jedoch ist einigen Studien nach

die Anwendung von Hypothesentests oder Modellselektion über Informationskriterien

oder Kreuzvalidierung auf Bootstrap-Stichproben problematisch. Ob und inwiefern die
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Ergebnisse spezieller Bootstrap-basierter Verfahren beeinflusst sind, sowie die Ursachen

und vielversprechende Lösungsansätze werden im dritten und vierten Teil dieser Arbeit

untersucht.
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1. Introduction

Bootstrap and bootstrap aggregating

The bootstrap method proposed by Efron and Tibshirani (1993) has become a popular

tool that is applied in diverse areas and for different purposes. In the case of the non-

parametric bootstrap one draws with replacement from the original data to obtain a boot-

strap sample. Repeating this sampling procedure B times results in B bootstrap samples

that arise from the original data. On each bootstrap sample the statistic of interest can be

computed. Having realizations of the statistic one can for example compute the variabil-

ity of the statistic, a quantile of interest, a confidence interval or simply approximate the

whole underlying distribution of the statistic.

The bootstrap has also been used in completely different contexts. A popular applica-

tion field of the bootstrap is the combination of multiple classifiers with each classifier

being built on a bootstrap sample. This procedure is termed “bagging”, short for boot-

strap aggregating, where the word “aggregating” refers to the fact that the predictions by

the B classifiers are aggregated in some way to obtain a more precise prediction (Breiman;

1996a). In the most simple case when the response is numeric, the predictions are aver-

aged. Bagging has been shown to achieve better prediction accuracies than single classi-

fiers in some cases, particularly if the method for constructing classifiers is unstable (see,

e.g., Dietterich; 2000). An example for unstable classifiers are decision trees. Decision

trees were often used for bagging. Such procedures have lead to the development of the

famous random forests method (Breiman; 2001) which is nowadays widely applied.

Random forests

In contrast to bagging trees, in random forests only a random subset of the predictor

variables is considered for each split in a tree. This makes the trees more diverse and

leads to better predictions. Random forests can be applied for classification (in the case of

a nominal response) as well as for regression tasks (in the case of a numeric response). In

contrast to many classical statistical methods, they can even be applied in the statistically

challenging high-dimensional data setting in which the number of variables, p, is larger
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than the number of observations, n. This makes random forests especially attractive for

complex high-dimensional molecular data applications. A further advantage of random

forests is that they offer so-called variable importance measures that can be used to rank

variables according to their predictive abilities.

For nominal and numeric response the application of random forests has been well in-

vestigated. However, in some applications the response is neither nominal nor numeric,

but something in between; such variables are termed ordinal as their categories have an

inherent ordering but the distances between categories cannot be quantified. Examples

of ordinal responses in biometrical applications are tumor stages I - IV, disease severity,

for example from mild to moderate to severe disease state, and artificially created scores

combining several single measurements into one summary measure, like the Apgar score,

which is used to assess the health of a newborn. In the case of ordinal response there is

no standard random forests procedure. While in the classical random forest algorithm of

Breiman (2001) the ordering of a predictor is taken into account by allowing splits only

between adjacent categories, the ordering information in the response is ignored (i.e., the

response is treated as a nominal variable), and an ensemble of classification trees is con-

structed. However, ignoring the ordering information results in a loss of information. The

question which needs to be addressed is whether predictions by random forests improve

by using this information, or not. In the context of variable ranking by random forest’s

variable importance measures, the question arises of whether variable rankings are more

accurate if taking the ordering of the response levels into account when computing the

variables’ importance scores. Both questions have not been addressed in the literature so

far.

The second issue which is investigated in this thesis is on the use of variable impor-

tance measures for identifying relevant variables from high-dimensional data. In high-

dimensional genomic data often the identification of relevant genes is of interest to gain

valuable insights into the functionality and mechanisms that lead to a specific disorder.

Moreover, the identification of relevant genes aids in the diagnosis of certain disorders.

The random forest method and their implemented variable importance measures have

often been used for the identification of biomarkers (e.g., Reif et al.; 2009; Wang-Sattler

et al.; 2012; Yatsunenko et al.; 2012). A drawback of the variable importance measures is

that there is no natural cutoff for the importance score that can be used to select variables

which are likely relevant. Every researcher working with random forest’s variable im-

portance measures thus faces the problem where to set this cutoff. Several approaches,

for example approaches based on hypothesis testing, have been developed for address-

ing this problem. The existing testing approaches are permutation-based and require the

repeated computation of forests. While for low-dimensional settings those permutation-
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based approaches might be computationally tractable, for high-dimensional settings typ-

ically including thousands of genes, computing time is enormous and a fast implementa-

tion of a variable importance test might be desirable.

Problems related to the bootstrap

Despite its wide applicability, there are situations in which the application of the boot-

strap is problematic; Andrews (2000) and Abadie and Imbens (2008) for example show

the failure of the bootstrap in two specific situations, and Chernick (2008) (Chapter 9) and

Bickel and Freedman (1981) give a more broad overview of a range of problems encoun-

tered with the bootstrap. This thesis focuses on two specific problems related to the boot-

strap, which deserve further attention: the application of hypothesis tests on bootstrap

samples and the application of model selection strategies through the use of information

criteria or cross-validation performed on bootstrap samples.

Hypothesis testing on bootstrap samples

Recently some approaches have been proposed in the biometrical field where hypothesis

testing is performed on a bootstrap sample as if it were the original sample. In the statis-

tics and bioinformatics literature the p-values computed from bootstrap samples have

been used for example for ranking genes with respect to their differential expression

(Mukherjee et al.; 2003), for estimating the variability of p-values (Boos and Stefanski;

2011) and for model stability investigations (Chen and George; 1985; Altman and An-

dersen; 1989; Sauerbrei and Schumacher; 1992). For the likelihood ratio test (Bollen and

Stine; 1992) and for the χ2-test (Strobl et al.; 2007) it was shown that p-values computed

on bootstrap samples do not represent what would be obtained on the original data or

new data drawn from the overall population. Other tests might be similarly affected. The

consequences for random forests, for example, was a biased split selection (Strobl et al.;

2007). However, the practical impact on many other bootstrap-based procedures relevant

to biometrical applications has not yet been studied.

Strobl et al. (2007) recommended using subsampling instead of bootstrapping in ran-

dom forests to avoid biased split selection. The subsampling procedure, also known as

delete-d jackknife (Wu; 1986), is closely related to the bootstrap, but in contrast to the

bootstrap, a subsample is created by drawing m observations, with m < n, without re-

placement from the original sample. The subsampling technique has been investigated

in the literature and also compared to the bootstrap (Shao and Wu; 1989; Politis and Ro-

mano; 1994; Politis et al.; 1999; Hartigan; 1969). It shows asymptotic consistency in cases

where the bootstrap fails (Davison et al.; 2003; Chernick; 2008). In particular the type I
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error is not increased for test statistics computed on subsamples. For many of the existing

bootstrap-based procedures it has not been investigated so far whether subsampling is a

useful alternative to the bootstrap.

Error estimation of a prediction modeling strategy by the bootstrap

Bootstrapping is commonly used for the estimation of the error of a prediction modeling

strategy as an alternative to, say, cross-validation. For a large number of bootstrap sam-

ples drawn from the original data set, a prediction model is fit to the bootstrap sample

using the considered strategy and is then used to make predictions for the observations

which were not included in this bootstrap sample and are thus considered test data. This

yields an estimate for the prediction error of the model and the estimates from all boot-

strap samples are averaged.

Many statistical methods involve tuning parameters that must be chosen. An example

are gradient boosting methods. These methods combine weak learners in an iterative

fashion to obtain a strong learner with high prediction accuracy. The prediction accu-

racy depends highly on the number of iterations, also called the number of boosting

steps. With too many boosting steps, many weak learners are created and the result-

ing strong learner might be overfit to the data and thus have poor prediction accuracy

on new data. If the number of boosting steps is too small, the number of weak learners

might be too small to appropriately model the relationship between the covariates and

the response. Thus the number of boosting steps has to be carefully chosen, for exam-

ple through internal cross-validation performed on the bootstrap sample. Binder and

Schumacher (2008), however, showed that the resulting error estimate is biased, and that

subsampling yields less biased error estimates. The reasons for this bias are unknown

and remain to be investigated to aid the development of alternative strategies for avoid-

ing this bias. Alternatively, instead of cross-validation, information criteria may be used

for selecting optimal values for tuning parameters. In different contexts Wagenmakers

et al. (2004) and Steck and Jaakkola (2003) showed that information criteria derived from

bootstrap samples systematically deviate from information criteria derived from original

samples. The practical consequences of this systematic deviation on prediction modeling

strategies have not yet been explored, and promising alternatives, such as subsampling,

remain to be investigated.

Guideline through the thesis

The main part of this thesis consists of five chapters which are related to each other, but

are kept self-contained. A background on the random forest methodology is given in
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Chapter 2. This chapter mostly surveys current random forest methodology and might be

consulted for technical details on tree construction. Chapters 3 and 4 deal with improve-

ments and new methods for random forests. While Chapter 3 shows extensive studies on

the appropriate handling of ordinal responses using existing and new approaches, Chap-

ter 4 investigates the performance of a new computationally fast test for random forest’s

variable importance. Chapters 5 and 6 investigate problems related to the bootstrap from

a theoretical and practical point of view. These problems relate to hypothesis testing or

model selection through information criteria or data splitting approaches performed on

bootstrap samples. A special emphasis is laid on the consequences in biometrical appli-

cations, and the use of subsampling is investigated as an alternative. Summaries of the

chapters are given in the following.

Chapter 2: Trees, bagging and random forests

In this chapter, the concepts of recursive partitioning and of two popular ensem-

ble methods, bagging and random forests, are briefly described. Impurity-based

and test-based split criteria for partitioning the feature space, are reviewed. The

bootstrap method on which the ensemble method bagging builds upon, is briefly

described. The basic principles of the random forest method which is deeply rooted

in the bagging algorithm, are outlined. A special emphasis is put on random for-

est’s out-of-bag observations and its variable importance measures. An application

example of random forests in medicine is given at the end.

Chapter 3: Random forests for ordinal responses

This chapter investigates the use of ordinal regression trees developed by Hothorn,

Hornik and Zeileis (2006) as base classifiers in the random forest algorithm. In con-

trast to classification trees, ordinal regression trees make use of the ordering of the

response levels. Moreover, two novel permutation variable importance measures

are presented which take the ordering of the response levels into account. Extensive

simulations and real data-based studies are conducted to investigate whether taking

the ordering of the response levels into account leads to more accurate predictions

and predictor rankings by random forests.

Chapter 4: A variable importance test for high-dimensional data

In this chapter, a novel heuristic variable importance test is presented that is par-

ticularly suitable for high-dimensional molecular data where typically a small sub-

set of the variables carries most or all of the information. In contrast to existing

approaches, the test is not permutation-based and thus computationally very fast.
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Studies with high-dimensional data are performed to investigate the properties of

the test. Moreover, the performance of the new test is compared to the performance

of a popular permutation-based testing approach.

Chapter 5: Hypothesis testing on bootstrap samples

In this chapter, it is theoretically and empirically shown that the type I error is in-

creased when performing a Z-test on bootstrap samples. Empirical evidence for an

increased type I error is also given for the likelihood ratio test. Further, the distri-

butions of bootstrapped p-values are studied for both the Z-test and the likelihood

ratio test. For three bootstrap-based approaches the consequences of the increased

type I error are illustrated using a real data application. The use of subsampling is

investigated as possible solution.

Chapter 6: Model selection through information criteria and data splitting

approaches on bootstrap samples

This chapter splits up into two parts: tuning parameter selection through infor-

mation criteria on bootstrap samples is studied in the first part, while the second

part deals with tuning parameter selection through cross-validation performed on

bootstrap samples. In both parts simulations and real data studies are performed

to investigate and compare the prediction accuracy and the complexity of gradient

boosting models fit on bootstrap samples to those of models fit on original samples.

Promising alternatives, such as subsampling, are also investigated.

Publications and contributing manuscripts

Large parts of this dissertation are based on publications where I am the main contributor.

The works were supervised by Anne-Laure Boulesteix and were prepared in cooperation

with Gerhard Tutz from the Department of Statistics of the University of Munich, Ender

Celik who is a graduate student of biostatistics and Harald Binder from the University

Medical Center Mainz. The works are named in the following:

• Janitza S., Tutz G. and Boulesteix A.-L. (2016). Random forest for ordinal responses:

Prediction and variable selection. Journal of Computational Statistics & Data Anal-

ysis 96:57–73. (Chapter 3)

• Janitza S., Celik E. and Boulesteix A.-L. (2015). A computationally fast variable

importance test for random forests for high-dimensional data. Technical Report

185, University of Munich. (Chapter 4)
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For this paper I received the “Student/Postdoctoral Fellow Paper Competition and

Travel Award 2015” by the IFCS and I was invited to submit the paper for possible

publication in Advances in Data Analysis and Classification.

• Janitza S., Binder H. and Boulesteix A.-L. (2016). Pitfalls of hypothesis tests and

model selection on bootstrap samples: Causes and consequences in biometrical ap-

plications. Biometrical Journal 58(3):447–473. (Chapter 5 and the first part of Chap-

ter 6)

I also contributed to further publications on random forests or other resampling ap-

proaches. In Chapters 2 and 5 I refer to these works and give a brief summary of some of

their results. The publications are outlined in the following.

• Dolch M.E.∗, Janitza S.∗, Boulesteix A.-L., Grassmann C., Praun S., Denzer W., Schelling

G. and Schubert S. (2016). Gram-negative and -positive bacteria differentiation in

blood culture samples by headspace volatile compound analysis. Journal of Biolog-

ical Research-Thessaloniki 23:3. (∗ joint first co-authorship)

This practical work was in close collaboration with medical doctors from the Uni-

versity Hospital Munich. A random forests prediction rule was derived which

shows good differentiation between gram-negative and -positive bacteria.

• Boulesteix A.-L., Janitza S., Kruppa J. and König I.R. (2012). Overview of random

forest methodology and practical guidance with emphasis on computational biol-

ogy and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowl-

edge Discovery 2(6):49–507.

This review paper on random forests was in collaboration with Inke König and

Jochen Kruppa from the University Hospital Lübeck.

• Boulesteix A.-L., Janitza S., Hapfelmeier A., van Steen K. and Strobl C. (2015). Let-

ter to the Editor: On the term “interaction” and related phrases in the literature on

random forests. Briefings in Bioinformatics 16(2):338–345.

This letter to the Editor was written in response to the random forests review of

Touw et al. (2012), an often cited article recently published in the high-impact jour-

nal Briefings in Bioinformatics. The letter aims at the clarification of the imprecise

statements made by Touw et al. (2012).

• Rospleszcz S.∗, Janitza S.∗ and Boulesteix A.-L. (2016). Categorical variables with

many categories are preferentially selected in model selection procedures for mul-

tivariable regression models on bootstrap samples. Biometrical Journal 58(3):652–

673. (∗ joint first co-authorship).
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This work is the result of a master thesis which I supervised. It addresses a specific

problem related to the use of the bootstrap in model building procedures.

• De Bin R., Janitza S., Sauerbrei W. and Boulesteix A.-L. (2016). Subsampling versus

bootstrap in resampling-based model selection for multivariable regression. Bio-

metrics 72(1):272–280.

This work resulted from a collaboration of our working group with Willi Sauer-

brei from the University Medical Center Freiburg. It compares subsampling with

bootstrapping for the use in model building procedures.

Software

All computations were carried out using the statistical software R (R Core Team; 2013)

and related packages. Chapters 3 and 4 are mainly based on the libraries party (Hothorn,

Hornik and Zeileis; 2006) and randomForest (Liaw and Wiener; 2002), respectively. Fur-

ther packages are indicated in the respective chapters. The new variable importance mea-

sures for ordinal responses (Chapter 3) were implemented in the statistical software R and

are available from the website http://www.ibe.med.uni-muenchen.de/organisation/

mitarbeiter/070_drittmittel/janitza/rf_ordinal/index.html. These functions make

use of the library party (Hothorn, Hornik and Zeileis; 2006). The new computationally

fast variable importance test (Chapter 4) is implemented in the R package vita (written

by Ender Celik).

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/rf_ordinal/index.html
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/rf_ordinal/index.html


2. Trees, bagging and random forests

The first part of this chapter introduces the concept of decision trees which build the

basis for bagging and the ensemble method random forests (RF). Different tree building

algorithms exist, such as classification and regression trees, in brief CART (Breiman et al.;

1984), conditional inference trees (Hothorn, Hornik and Zeileis; 2006), C4.5 (Quinlan;

1986) and ID3 (Quinlan; 1993), to name just a few (see Loh; 2014, for a recent overview).

In this chapter, two versions of binary decision trees are described, namely CART that are

used in the original RF version of Breiman (2001) and conditional inference trees that are

used in the RF version of Hothorn, Hornik and Zeileis (2006). In the second part of this

chapter, a brief review of bagging and RF is given. A special emphasis is put on RF’s out-

of-bag based variable importance measures since some modifications of these measures

are presented in Chapters 3 and 4. The chapter closes with an application example of RF

in medicine described in Dolch et al. (2016). This paper is a result of a close cooperation

with Michael Dolch and his colleagues from the Department of Anesthesiology of the

University Hospital Munich.

2.1. Trees

Decision trees are a non-parametric method for predicting the response Y from the predic-

tor variables X1, . . . , Xp. If the response variable is metric, the trees are termed regression

trees, and in the case of a categorical response one speaks of classification trees. The idea of

decision tree methodology consists in recursively partitioning the data into subsets which

are more homogeneous with respect to the response variable. The recursive splitting pro-

cess is illustrated in the tree diagram in Figure 2.1. The root node of the decision tree

contains all observations i = 1, . . . , n. Starting at the root node, the observations are re-

cursively partitioned into two daughter nodes based on their predictor values xi1, . . . , xip.

In the tree diagram in Figure 2.1 there are two metric or ordinal variables, X1 and X2 (i.e.,

p = 2). The first split is implemented using variable X1. The root node is partitioned

into two disjoint subsets {i|xi1 ≤ c1} and {i|xi1 > c1} based on the variable X1 and the

cutpoint c1. Note that if X1 was a categorical variable with levels {1, . . . , m} without any

natural order, the partition would result in the subsets {i|xi1 ∈ S1} and {i|xi1 /∈ S1}, with
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Figure 2.1.: Illustration of a decision tree in which the data is recursively partitioned based on
the variables X1 and X2.

S1 ⊂ {1, . . . , m}. The resulting subsets are referred to as the daughter nodes which are

then again split into two daughter nodes. Let us consider as an example the daughter

node containing the observations {i|xi1 ≤ c1}. The observations of this daughter node

are further partitioned using the variable X2 and the cutpoint c2. This results in daughter

nodes containing the observations {i|xi1 ≤ c1 ∧ xi2 ≤ c2} and {i|xi1 ≤ c1 ∧ xi2 > c2},
respectively. The splitting process is continued in each daughter node until either the

daughter node cannot be split any more or a stopping criterion is fulfilled. The nodes of

the tree that are not partitioned further are termed terminal nodes or leaves. In Figure 2.1

the terminal nodes correspond to the subsets A1, . . . , A5. All other nodes of the tree are

referred to as inner or internal nodes.

The tree prediction for a new observation is obtained by tracking the observation down

the tree until it arrives at a terminal node. The prediction for the new observation is

established based on the observations contained in the terminal node. In the case of

a regression tree, the prediction usually corresponds to the mean response value. The

prediction for a new observation falling into the terminal node Al is then given by

Ŷ =
1
|Al| ∑

i∈Al

yi, (2.1)

with |Al| denoting the cardinality of Al.

In the case of classification trees, the terminal nodes predict probabilities for the re-

sponse classes r = 1, . . . , k. The probability for class r which is predicted for a new obser-

vation falling into the terminal node Al is defined as

π̂r =
1
|Al| ∑

i∈Al

I(yi = r), (2.2)
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where I(·) denotes the indicator function. The predicted class can then be obtained as the

class for which the predicted probability is maximal:

Ŷ = arg max
r=1,...,k

π̂r. (2.3)

The selection of variables and cutpoints for splitting the nodes in a tree are based on

certain splitting criteria. Two specific split selection strategies used in CART and in con-

ditional inference trees are outlined in the following two sections.

2.1.1. Split selection in classification and regression trees

In classification and regression trees (CART), splits are implemented based on so-called

impurity measures. For classification trees impurity refers to the distribution of response

classes observed for the observations contained in a node. If many of the observations

in a node have the same response class, the node is considered pure. It is purest when

all observations have the same response class. In contrast to that, when a node contains

an equal amount of observations from all classes, the node impurity is largest. There are

different measures which are used to quantify node impurity. The most popular measures

for classification trees are the Gini index and the Shannon entropy. The empirical version

of the Gini index for a node A is defined as

IG(A) = 1−
k

∑
i=1

(
ni(A)

n(A)

)2

,

where nr(A) is the number of observations from class r ∈ {1, . . . , k} that are contained

in the node A and n(A) denotes the total number of observations in the node A. The

Gini index is smallest and takes value 0 in the case where one of the class frequencies

n1(A)/n(A), n2(A)/n(A), . . . , nk(A)/n(A) equals 1. In this case, all observations in the

node belong to the same class. Thus the smaller the Gini index, the purer the node, and

the node is purest if the Gini index is 0. The Gini index is maximal for n1(A)/n(A) =

n2(A)/n(A) = . . . = nk(A)/n(A), that is, all classes are represented by an equal number

of observations in the node.

An alternative impurity measure is the Shannon entropy. Its empirical version for a

node A is given by

IE(A) = −
k

∑
i=1

ni(A)

n(A)
log2

(
ni(A)

n(A)

)
.

The Shannon entropy is 0 if all observations in the node belong to the same class and has

larger values with an increasing balance between the classes.

In regression trees the nodes with smaller variability in the response values are consid-
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ered more pure. A natural measure for node impurity in regression trees is thus the mean

squared error.

When constructing trees the impurity of a node is reduced by splitting the node into

two more homogeneous daughter nodes. The variable and the cutpoint that yield the

maximal reduction in node impurity according to a pre-defined impurity measure are

chosen for the split. If IM(A) denotes the impurity of node A which is measured through

an arbitrary impurity measure M, and IM(Ale f t) and IM(Aright) denote the impurities of

the left and right daughter nodes, the decrease in node impurity by splitting the node A

into the two daughter nodes Ale f t and Aright is given by

∆M(A|Ale f t, Aright) = IM(A)−
(

n(Ale f t)

n(A)
IM(Ale f t) +

n(Aright)

n(A)
IM(Aright)

)
.

In CART the split among all possible splits is selected for which the decrease in node

impurity is largest. This involves a search through all variables and through all possible

split points of a variable. Note that some variables offer more split points than others.

A nominal variable with m levels offers 2m−1 − 1 possible splits, while a metric variable

with n distinct values has n− 1 possible splits, and an ordinal variable with m levels has

only m− 1 possible splits. Thus when variables of different scales are considered, there is

a preferential selection of variables which have many possible splits because the chance

that the optimal split is found in these variables is higher. For example, a nominal vari-

able with many categories is preferentially selected for a split over nominal categorical

variables with fewer categories or over metric or ordinal variables.

Moreover, there is a preferential selection of categorical variables with balanced cate-

gories over categorical variables with unbalanced categories (Nicodemus; 2011; Boulesteix,

Bender, Bermejo and Strobl; 2012), and variables with many missing values are preferen-

tially selected over variables with fewer or no missing values (Kim and Loh; 2001). Alter-

native strategies for selecting the optimal split variable and cutpoint which prevent these

issues are based on hypothesis testing. There are some tree methods which make use of

hypothesis tests for split selection (Loh and Shih; 1997; Kim and Loh; 2001). A specific

tree methodology which makes use of permutation testing procedures is outlined in the

following section.

2.1.2. Split selection in conditional inference trees

In the conditional inference trees of Hothorn, Hornik and Zeileis (2006), conditional in-

ference tests are performed for selecting the best split in an unbiased way. In contrast

to CART, the variable selection is separated from the split point selection when selecting

the optimal split. For each split in a tree, each variable is tested for its association with
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the response, yielding a p-value. The variable with the smallest p-value is selected for a

split. In the next step the best split point within the variable is chosen. The selection of a

split variable based on its p-value has the advantage that there is no preference for certain

types of variables.

The algorithm of Hothorn, Hornik and Zeileis (2006) implements the following steps

which are recursively repeated in all daughter nodes:

1. Stopping criterion: Test the global null hypothesis which states that none of the vari-

ables is associated with the response. If the p-value falls below a prespecified sig-

nificance level α, the global null hypothesis of independence is rejected and the next

step is performed, otherwise the recursion is stopped.

2. Split variable selection: Perform a test of independence between each variable and

the response and select the variable Xj∗ with the smallest p-value to implement the

split.

3. Split point selection: Perform a special two-sample-test for all possible binary split

points within the variable Xj∗ and choose the split point that yields the smallest

p-value.

The methodology of Hothorn, Hornik and Zeileis (2006) utilizes a permutation test frame-

work and is thus applicable to problems where both predictors and response are mea-

sured on arbitrary scales, including nominal, ordinal, discrete and continuous variables.

Moreover, the methodology even applies to multivariate responses.

Steps 1 and 2 make use of the same test statistics computed for tests of independence

between each of the variables and the response. In step 1 the p-values corresponding to

the test statistics are adjusted for multiple testing and are subsequently compared to the

significance level α. The computation of the linear statistics which are the basis for the

test statistics from which p-values are derived, is outlined in the following.

The statistic that is used for testing the association between the response Y and a pre-

dictor variable Xj based on observations i = 1, . . . , n is defined as

Tj = vec

(
n

∑
i=1

gj(Xij)h(Yi, (Y1, . . . , Yn))
>
)

(2.4)

with gj : Xj → Rpj being a non-random transformation of the predictor variable, and

h : Y × Yn → Rq being a function that depends on the response vector (Y1, . . . , Yn)> in a

permutation symmetric way 1. Permutation symmetry means that h does only depend on

1In contrast to the statistic given in Hothorn, Hornik and Zeileis (2006), all observations i = 1, . . . , n are
used for deriving the test statistic (thus omitting observation weights).
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the order statistics Y(1), Y(2), . . . , Y(n), with Y(j) being the j-th smallest value of the sample,

but not on the sequential order of the data (see also Strasser; 2000).

The specification of the functions h and gj depends on the scale of the response and pre-

dictor variables, respectively (see also Hothorn, Hornik and Zeileis; 2006, for examples).

For a nominal response taking levels in 1, . . . , q, the function h transforms the response to

the unit vector of length q. For the computation of the statistic, this vector is multiplied

with gj(Xij) which is a pj-dimensional vector – the result being a matrix of dimension

pj × q. The vec operator then converts the pj × q matrix into a pjq column vector, so that

the statistic Tj is itself an pjq-dimensional vector. The statistic is then mapped onto the

real line, for example by taking the component that has maximal absolute standardized

value; see Hothorn, Hornik and Zeileis (2006). For numeric responses h might simply be

chosen as the identity function such that h(Yi, (Y1, . . . , Yn)) = Yi and q = 1.

The specification of the functions gj is similar to the specification of h. For a numeric

predictor variable the transformation is usually the identity function such that gj(Xij) =

Xij and pj = 1. For a nominal predictor variable taking levels in 1, . . . , m, gj transforms

the predictor variable to the unit vector of length m and pj = m. For an ordinal predictor

variable the levels are transformed to a metric scale through attributing scores to the

levels of the variable. The transformed variable is then handled in the same way as a

metric predictor variable.

In the case of an ordinal response the response is transformed to a metric scale by

attributing scores – but now scores are attributed to the levels of the response variable.

If s(r) ∈ R denotes the score for category r ∈ {1, 2, . . . , k} and Yi denotes the ordinal

response of observation i with covariates Xij, j = 1, . . . , p, the statistic simplifies to

Tj =
n

∑
i=1

gj(Xij)s(Yi). (2.5)

Trees that are constructed based on the statistic (2.5) are denoted by ordinal regression trees.

Note that the test statistic for an ordinal response coincides with a test statistic for a

numeric response with values s(Y1), . . . , s(Yn). This leads to the selection of the same

variables and cutpoints in ordinal regression trees and regression trees. Though ordinal

regression trees and regression trees have the same tree structure, predictions by the trees

are different. Ordinal regression trees provide predicted classes or estimates for class

probabilities (cf. Eq. (2.3) and (2.2)), while regression trees give real-valued predictions

(cf. Eq. (2.1)). The tree construction of ordinal regression trees thus corresponds to that of

regression trees, while predictions are obtained in the same way as for classification trees.

The statistics of the form (2.4) are standardized to obtain test statistics. From the test

statistics p-values can be derived (see Hothorn, Hornik, Van De Wiel and Zeileis; 2006;
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Hothorn, Hornik and Zeileis; 2006, for detailed information). The variable with the small-

est p-value is then selected for splitting a node in step 2 of the algorithm (cf. p. 13).

For implementing a split in step 3 the optimal cutpoint within the selected variable has

to be chosen. All possible cutpoints within the variable which partition the data into two

subsets are considered. In conditional inference trees the cutpoint is chosen that max-

imizes the discrepancy in the response values between the two groups of observations

which are defined by the binary split. For each possible split of the sample space S into

the disjoint subsets S1 and S2, with S = S1 ∪ S2, a two-sample statistic is used which

measures the discrepancy in the response between observations {i|xij ∈ S1} and obser-

vations {i|xij ∈ S2}. This two-sample statistic emerges as a special case of Eq. (2.4), in

which the function gj is the indicator function which takes value 1 if xij is contained in

S1, and 0 otherwise. Among all possible splits the split which maximizes the two-sample

test statistic is chosen.

Note that the term “conditional” in the name “conditional inference trees” refers to the

property of the tests used as splitting criterion for split selection. This has led to confusion

in the literature; for example, Touw et al. (2012) incorrectly lead the term “conditional” in

the term conditional inference trees back to the conditional variable importance proposed

by Strobl et al. (2008) and to interactions between variables. A clarification was given by

Boulesteix et al. (2015) in a letter to the Editor.

2.2. Bagging and forests

2.2.1. Bootstrap and bootstrap aggregating (“Bagging”)

The bootstrap method proposed by Efron and Tibshirani (1993) has become a popular

tool that is applied in diverse areas. In brief, the main idea of the bootstrap procedure is

that the sample is treated as the population and the estimates of the sample are treated as

the true population parameters. Instead of sampling from the true distribution, with the

non-parametric bootstrap (considered in this thesis) one randomly draws n observations

with replacement from the observed data x = (x1, . . . , xn)>. The resulting bootstrap

sample x∗ = (x∗1 , . . . , x∗n)> contains as many observations as the original sample. By

drawing from the original sample with replacement, some observations are contained

several times in the bootstrap sample while other observations are not at all contained

in the sample. If n is chosen large enough the probability that an observation is not

contained in the bootstrap sample can be approximated as

lim
n→∞

(
1− 1

n

)n
= e−1 ≈ 0.368.
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Hence 63.2% of the observations from the original data are contained in a bootstrap

sample at least once. If we observe pairs of observations zi := (yi, x>i )
>, with xi =

(xi1, . . . , xip)
> as the covariate vector and yi as the response for observations i = 1, . . . , n,

the covariates and the response are sampled together, that is, the bootstrap sample z∗ =

(z∗1 , z∗2 , . . . , z∗n)> is obtained.

Bootstrapping involves drawing a large number B of bootstrap samples from the origi-

nal data. It is used for different purposes, usually to derive standard errors or confidence

intervals when it is difficult or problematic to derive these based on asymptotic theory.

Further, it is often used for the estimation of the error of a prediction modeling strategy.

This is also addressed in Chapter 6. An explanation of the various applications of the

bootstrap is beyond the scope of this thesis. The interested reader is referred to the book

by Efron and Tibshirani (1993) which gives an extensive overview. In this chapter, the fo-

cus is laid on bootstrap aggregating, in brief bagging. Bagging is a special application of

the bootstrap that aims at improving the prediction performance of a learning algorithm.

It was developed by Breiman (1996a) and combines the predictions which are obtained

from prediction rules constructed on bootstrap samples. More precisely, B prediction

rules are constructed, with the b-th prediction rule being based on bootstrap sample z∗b.

If the response is numeric, the prediction of the bagged predictor is obtained by averaging

the predicted values over the B prediction rules. If the response is categorical, the bagged

predictor predicts the class which is most often predicted by the B prediction rules. This

is often referred to as the majority vote or plurality vote.

Depending on the considered method, the prediction rules may also give probabilities

for the response classes. Two different approaches for obtaining the class predictions of

a bagged predictor were considered by Breiman (1996a). One approach transforms the

predicted class probabilities that are obtained by a prediction rule into predicted classes

by using the class with the largest predicted probability. Then the aggregated prediction

of the bagged predictors is obtained through majority voting. The other approach aggre-

gates the class probabilities over the B prediction rules and then decides for the class with

the largest averaged probability. If π̂b
r denotes the probability of an observation belong-

ing to class r that is predicted by the b-th prediction rule, the prediction by the bagged

predictor is

Ŷ = arg max
l=1,...,k

{
1
B

B

∑
b=1

π̂b
l

}
. (2.6)

In the studies of Breiman (1996a) the misclassification rate of the bagged predictor was

almost identical for both approaches.

Through aggregation, bagging considerably reduces the variance of unstable proce-

dures without changing the bias (see, e.g., Hastie et al.; 2001, for a proof). This results in
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prediction accuracies of bagged predictors which are better than those of single predic-

tion models, as shown by several authors (Kohavi and Kunz; 1997; Bauer and Kohavi;

1999; Maclin and Opitz; 1997; Dietterich; 2000). Trees have often been used as base learn-

ers in the bagging procedure. The bagged predictor reduces the large variance exhibited

by single decision trees while benefiting from their low bias. However, the better ac-

curacy comes at a cost of the good interpretability of trees which is lost in the bagging

process. The accuracy of more stable procedures such as nearest neighbors, in contrast,

was shown to be hardly improved by bagging (Hastie et al.; 2001).

As will be seen in the next section, the RF method which is nowadays widely applied

is rooted in the bagging procedure.

2.2.2. Random forests

The random forest (RF) method (Breiman; 2001) is a modification of bagging trees, that

enforces diversity between base classifiers. In bagged trees each tree is build based on a

different sample randomly drawn with replacement from the data. It is clear that bagged

trees differ in their structure because each tree is based on a different random sample

of the observations. In addition to this, RF further encourages diversity by considering

only a subset of the variables for implementing a split, whereby for each split in a tree

the subset is randomly drawn from all p variables. This random subset selection leads to

trees that are more different to each other than bagged trees are. Breiman (2001) shows

that by introducing diversity between trees, the resulting ensemble might have better

prediction performance as the ensemble accuracy depends on two factors: the accuracy

of the single trees and the dependence between the trees.

The number of randomly drawn variables that are considered for a split is referred

to as mtry in the RF literature. Which values for mtry are appropriate depends on the

considered problem. The parameter mtry should therefore ideally be tuned in practical

applications. Extreme values for mtry, such as mtry close 1 or p, are, however, not rec-

ommended. With an mtry value chosen too small, trees are more diverse but important

variables might not be selected for splitting and the resulting RF might have poor pre-

dictive power. If mtry is chosen too large, predictors with strong effects are often selected

for a split but it hinders the selection of predictors with small effects. In addition, large

values for mtry lead to trees that are less diverse. In the extreme case in which mtry is

chosen as the total number of predictors p, RF corresponds to bagging trees.

Like bagging, RF do not suffer from overfitting and thus trees in RF do not have to be

pruned (Breiman; 2001). That is why trees are grown to full size in all methodological

studies presented in this thesis. In practical applications, trees might be pruned in order

to optimize prediction accuracy. In this case, parameters have to be tuned that control
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the size of trees, such as the minimal number of observations that are required in a node.

Parameter tuning for controlling tree size was also performed in the medical application

example at the end of this chapter. More information on tuning parameters that con-

trol the size of trees and recommendations about their choice are given, for example, in

Boulesteix, Janitza, Kruppa and König (2012).

The aggregation of individual classification tree predictions differs for the two RF ver-

sions considered in this thesis. The classical RF version of Breiman (2001) uses the trees’

predicted classes and derives the ensemble prediction as the majority vote, that is the

class which is predicted most often by the trees. In contrast to that, the RF version of

Hothorn, Hornik and Zeileis (2006) uses the predicted class probabilities and derives the

ensemble prediction based on the average of class probabilities (Eq. (2.6)). In contrast to

many other prediction methods, RF allows using the same data for constructing the RF

and evaluating its prediction performance. This is outlined in the following.

Out-of-bag observations

Since each tree is built from a random sample of the data, there are some observations in

the data which were not used in its construction. These observations are denoted by out-

of-bag (OOB) observations. If bootstrap samples are used to construct trees, about 63.2%

of the observations from the original data are contained in the bootstrap sample at least

once. It follows that approximately 36.8% of the observations are not contained in the

sample and are thus OOB observations (see Section 2.2.1). If subsampling is used, the

user specifies the proportion of OOB observations. The OOB observations are often used

for assessing the prediction performance of a RF. The idea is to derive the prediction for

an observation from only those trees which were not constructed based on this observa-

tion (i.e., the trees for which the observation is OOB). In this way, the predictions for all

observations are obtained, and one can estimate the RF’s prediction error using, for ex-

ample, the error rate in the case of a categorical response, or the mean squared error in the

case of a metric response. Since the error is computed based on the OOB observations, it

is then referred to as the OOB error (Breiman; 1996b). The OOB error is often considered

as a good estimator of the error which is expected for independent data, although some

studies suggest that this might not be the case (Mitchell; 2011; Bylander; 2002).

The OOB observations have not only proven useful for estimating the prediction error

of a RF but also for computing the RF’s permutation variable importance as outlined in

the following section.
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Variable importance measures

RF provides measures that can be used for obtaining a ranking of predictors. The ranking

reflects the importance of these variables in the prediction of the response and it might

be used to select the variables with the best predictive ability. The two standard variable

importance measures (VIMs) implemented in the RF version of Breiman (2001) are the

permutation VIM (also referred to as the mean decrease in accuracy) and the Gini VIM.

The latter prefers certain types of predictors (Strobl et al.; 2007; Nicodemus and Malley;

2009; Nicodemus; 2011; Boulesteix, Bender, Bermejo and Strobl; 2012) and therefore its

predictor rankings should be treated with caution (see Boulesteix, Janitza, Kruppa and

König; 2012, for an overview). This thesis focuses on the permutation VIM which gives

essentially unbiased predictor rankings. A general definition of the permutation VIM is

used, in which the trees’ prediction error is measured by an arbitrary error measure M

(e.g., the error rate).

According to the permutation VIM, the variable importance of variable Xj is then

VIM
j =

1
ntree

ntree

∑
t=1

(MPtj −Mtj), (2.7)

where

• ntree denotes the number of trees in the forest,

• Mtj denotes the error of tree t when obtaining predictions for all OOB observations

before permuting the values of predictor variable Xj, and

• MPtj denotes the error of tree t when obtaining predictions for all OOB observations

after randomly permuting the values of predictor variable Xj.

The idea underlying this VIM is the following: if the predictor is not associated with the

response, the permutation of its values has no influence on the classification, and thus

no influence on the trees’ performance. Then the error of the trees is not substantially

affected by the permutation and the importance score of the predictor takes a value close

to zero, indicating that there is no association between the predictor and the response.

In contrast, if response and predictor are associated, the permutation of the predictor’s

values destroys this association. “Knocking out” this predictor by permuting its values

results in worse prediction. The difference in errors after and before randomly permuting

the predictor takes a positive value, reflecting the high importance of this predictor.

The two established permutation VIMs for RF arise when using the error rate (for clas-

sification trees) or the mean squared error (for regression trees) as the performance mea-

sure M in Eq. (2.7). Throughout this thesis these measures will be termed the error rate
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based (permutation) VIM and the MSE-based (permutation) VIM, respectively. These VIMs

have been explored in the literature in the context of classification and regression tasks,

respectively, and are often applied in the literature (e.g., Steidl et al.; 2010; Karamanian

et al.; 2014; Harrington et al.; 2014).

Unsolved problems

RF are often claimed to incorporate complex interactions between predictors. This makes

RF especially attractive for high-dimensional complex genetic data. There is no question

that the structure of classification and regression trees can advantageously take interac-

tion effects into account. If a node A is split by predictor variable X1 into the daughter

nodes Ale f t and Aright, then the effect of another predictor variable X2 may be substan-

tially different in the two daughter nodes. This would indicate that there is an interaction

effect between X1 and X2. In contrast to that, if there was no interaction effect, then one

would ideally expect that the same split variable and the same split point is chosen for the

two child nodes (Boulesteix et al.; 2015). However this situation rarely occurs in practice.

Firstly because there are random variations in the data, which is especially pronounced

in small samples. And since the data is recursively split, the number of observations in

the nodes gradually decreases until there are only few observations in each leaf; so even

for data with large observation numbers one cannot rule out that random variations lead

to the selection of different splits. Secondly, in RF the splitting variable is selected from

a subset of the variables. The subset of mtry variables which is considered for a split is

drawn anew for each node, and thus it can happen that a variable X2 which was selected

for node Ale f t is not among the mtry variables for the node Aright. Due to these two rea-

sons it is extremely rare that a tree selects the same predictor variable and the same split

points for both nodes. Thus, in practice a tree almost always looks as if there were interac-

tions. But such patterns will also be seen in the absence of interactions due to the reasons

mentioned above. The question is thus whether these patterns are just the result of ran-

dom variations (with respect to the sample or with respect to the set of mtry candidate

predictors) or of true interactions. This question is far from trivial and to date there ex-

ists no standard approach to answering it from looking at the trees’ structure (Boulesteix

et al.; 2015).

An application example

The occurrence of infectious complications in critically ill patients greatly affects patient

outcome and leads to increased mortality rates. A fast identification of the causative

organism is of highest priority as this allows the early administration of antibiotic treat-

ment. The first step in this process is the detection of microorganism growth in blood cul-
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ture broth bottles. This has achieved high reliability and works on a semi-automatic basis.

However, the subsequent process of microorganism identification is time-consuming and

requires staff presence. There is an urgent need of rapid and reliable diagnostic methods

facilitating the identification of the causative microorganisms. Dolch et al. (2016) applied

ion-molecule reaction mass spectrometry analysis of headspace gas volatile compound

composition to differentiate between microorganisms by using blood culture broth sam-

ples. An RF classifier was found which achieved high accuracy in differentiating between

Gram-positive and Gram-negative bacteria and might be promising for rapid diagnosis

which allows for prompt antibiotic treatment.

In the studies several prediction methods were considered for differentiating between

Gram-positive and Gram-negative bacteria, such as boosting, RF, support vector ma-

chines, penalized logistic regression, k nearest neighbors, feed forward and probabilistic

neural networks, discriminant analysis, elastic net and lasso-type methods. Where appli-

cable, methods were also applied after variable selection and/or dimension reduction. A

complete list of the considered classifiers is given in Appendix A. To reliably assess the

performance of the prediction rules and avoid over-optimism, a random split validation

procedure was adopted (Daumer et al.; 2008; Boulesteix and Strobl; 2009). This means

that prior to analysis the data was randomly split into two non-overlapping sets (ratio

2:1). Stratified splitting was conducted to preserve the distribution of Gram-positive and

-negative bacteria in both sets. The larger set (denoted by training set) was used for train-

ing the candidate prediction rules and for selecting the best one. The smaller set (denoted

by validation set) was used for the validation of the best prediction rule in order to obtain

a reliable estimate of the expected performance of the prediction rule on future indepen-

dent data.

The error rate of the candidate prediction rules in the training set was assessed based on

5-fold cross-validation. To obtain more stable estimates for the error rate 100 repetitions

of 5-fold cross-validation were conducted. The prediction rule with the smallest cross-

validated error rate was regarded as the best. A RF classifier based on the 10 variables

with the highest Gini variable importance achieved the smallest cross-validated error

rate (9.1%), and was thus considered the best prediction rule (see Appendix A for details

on the computations and further results). Majority vote was used to classify bacteria as

either Gram-positive or Gram-negative. The portion of Gram-positive bacteria correctly

classified as Gram-positive (defined as sensitivity) was 97.5% in the training set. The

portion of Gram-negative bacteria correctly classified as Gram-negative (specificity) was

74.8%, and the area under the curve was 0.93. The higher portion of correctly classified

Gram-positive bacteria is likely to be due to the tendency of RF for predicting the larger

class (i.e., the Gram-positive bacteria) (see Janitza et al.; 2013, and references therein).
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Training set Validation set
(n = 86) (n = 42)

Error rate 0.091 0.167
Sensitivity 0.975 0.933
Specificity 0.748 0.583
Area under the curve 0.93 0.89

Table 2.1.: Performance of the RF prediction rule on the training and validation sets.

The RF prediction rule was applied to the validation set and achieved good perfor-

mance also for the validation set (see Table 2.1). The performance measured by the er-

ror rate, the frequency of Gram-positive bacteria correctly classified (sensitivity), the fre-

quency of Gram-negative bacteria correctly classified (specificity) and the area under the

curve, was better on the training set than on the validation set. Such a result is also ob-

tained in settings where no associations between the predictor variables and the response

exist if the best prediction rule is chosen out of a large number of candidate prediction

rules (Boulesteix and Strobl; 2009). One can, however, assume that the good performance

of the RF classifier on the training set is not a result of an optimization procedure since

the RF prediction rule showed good performance also on the validation set, with an error

rate of 16.7% and an area under the curve of 0.89. Figure 2.2 shows the ROC curve for the

RF prediction rule applied to the validation set. The practical utility of the RF prediction

rule as a diagnostic tool has to be assessed by clinicians.
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Figure 2.2.: ROC curve for the RF prediction rule evaluated on the validation set.
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responses: prediction and variable

selection

This chapter is based on Janitza, Tutz and Boulesteix (2016). It investigates the use of RF

for prediction and variable selection purposes in cases where the response has an inherent

ordering. After a general introduction the methods are introduced in Section 3.2. The

first part of the methods section reviews established performance measures that can be

used to assess the ability of a classifier to predict an ordinal response. The second part

outlines novel VIMs that are proposed for predictor rankings through RF and ordinal

response data. In Sections 3.3 and 3.4 studies on simulated and real data, respectively,

are presented. In both sections the studies of prediction performance are first reported.

Here the prediction performance of a RF constructed from classification trees is compared

with that of a RF constructed from ordinal regression trees. Subsequently the studies on

VIM performance are shown in which the performance of the standard error rate based

VIM is compared to those of the three alternative permutation VIMs when computed on

classification and ordinal regression trees. In Section 3.5 the findings are summarized and

recommendations to applied researchers working with RF and ordinal response data are

given.

3.1. Introduction

In many applications where the aim is to predict the response or to identify important

predictors, the response has an inherent ordering. Examples of ordinal responses in bio-

metrical applications are tumor stages I - IV, disease severity, for example from mild to

moderate to severe disease state, and artificially created scores combining several single

measurements into one summary measure, like the Apgar score, which is used to assess

the health of a newborn child. Appropriate handling of ordinal response data for class

prediction as well as for feature selection is essential to efficiently exploit the informa-

tion in the data. A study concerning stroke prevention showed that statistical efficiency
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was much higher when using an ordinal response such as fatal/nonfatal/no stroke com-

pared to a binary outcome providing only the information of whether a patient had a

stroke or not (Bath et al.; 2008). Statistical models for ordinal response data such as the

proportional odds, the continuation ratio and the adjacent category model have been in-

vestigated extensively in the literature (see Agresti; 2002). However, these methods are

not suitable for applications where the association between predictors and the response

is of a complex nature, including higher-order interactions and correlations between pre-

dictors. Moreover, the models rely on assumptions (such as proportional odds) that are

frequently not realistic in practical applications. Further, parameter estimation typically

faces the problem of numerical instability if the number of predictors is high compared

to the number of observations.

For nominal and numeric response the application of RF has been well investigated.

However, in the case of ordinal response there is no standard procedure and literature

is scarce. While in the classical RF algorithm by Breiman (2001) the ordering of a pre-

dictor is taken into account by allowing splits only between adjacent categories, the or-

dering information in the response is ignored (i.e., the response is treated as a nominal

variable), and an ensemble of classification trees is constructed. However, ignoring the

ordering information results in a loss of information. For single classification and re-

gression trees (CART) several approaches for predicting an ordinal response have been

developed. These are based on alternative impurity measures to the Gini index. Promi-

nent examples are the ordinal impurity function suggested by Piccarreta (2001) and the

generalized Gini criterion introduced by Breiman et al. (1984). With these measures a

higher penalty is put on misclassification into a category that is more distant to the true

class than on misclassification into a category that is close to the true class, thus taking

into account the ordinal nature of the response. The ordered twoing criterion by Breiman

et al. (1984, p. 38) is another popular measure that does not rely on misclassification costs

but rather on reducing the k-class classification problem to k− 1 two-class classification

problems where a split that divides the k classes into two classes is only made between

adjacent categories (see Breiman et al.; 1984, for a detailed description). Archer and Mas

(2009) investigated the prediction accuracy of bagged trees constructed through the or-

dered twoing method (Breiman et al.; 1984) and the ordinal impurity function (Piccarreta;

2001) for classifying an ordinal response. Using simulation studies they showed that the

ordered twoing method and the ordinal impurity function are reasonable alternatives to

the Gini index in tree construction. However, in their real data application these mea-

sures did not perform better than the Gini index. Except for the study of Archer and Mas

(2009), approaches for ordinal regression problems have only been discussed for CART

and have not been extended to RF.
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The unbiased RF version of Hothorn, Hornik and Zeileis (2006) is a promising tool for

constructing trees with ordinal response data because, in contrast to the standard RF im-

plementation by Breiman (2001), where splitting is based on the Gini index, it provides

the possibility of taking the ordering information into account when constructing a tree.

The resulting trees are denoted by ordinal regression trees. For constructing ordinal regres-

sion trees one has to attach scores to each category of the ordinal response. These scores

reflect the distances between the levels of the response. When the response is derived

from an underlying continuous variable, the scores can be chosen as the midpoints of the

intervals defining the levels. For example, when creating categories for different smoking

levels, Mantel (1963) suggested defining the scores as the average number of cigarettes

per day or week. Note that when defining scores only the relative spacing of the scores

is important, not the absolute; for example the scores 1, 2, 3 reflect the same relative dis-

tance between categories as the scores 1, 3, 5. The advantage of using the ordering of a

variable is that tests which take the ordering into account have higher power compared

to tests which ignore the underlying ordering because some degrees of freedom are saved

by restricting the possible parameter space (Agresti; 2002, p. 98).

A further issue which is investigated is the appropriate handling of the ordering infor-

mation in the response when computing VIMs. The importance score for each predictor

is derived from the difference in prediction performance of the single trees resulting from

the random permutation of this predictor. For numeric responses the mean squared error

of the predicted and the true values is used as the prediction performance measure to

compute the importance. For categorical responses (nominal and ordinal) the standard

is to use the error rate. An appropriate prediction performance measure is essential for a

good VIM performance, as demonstrated by Janitza et al. (2013), who showed that in the

case of two response classes which differ in their class sizes the area under the curve is a

more appropriate performance measure for computing the importance score of a predic-

tor than the commonly used error rate.

The design of an appropriate VIM in the common case of ordinal response variables,

however, has not been addressed in the literature. The currently used VIM based on

the error rate as a prediction accuracy measure does not seem suitable in the case of an

ordinal response because the error rate does not differentiate between different kinds

of misclassification. A classification of a healthy person as badly ill and a classification

of a healthy person as slightly ill are regarded to be equally bad, though the latter is

obviously a much better classification than the first. In the case of an ordinal response

not all misclassifications can be regarded as equally poor and one might think about

replacing the error rate by a more appropriate performance measure when computing

the importance score of a predictor.
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In this chapter, it is investigated whether incorporating the ordering information con-

tained in the response improves RF’s prediction performance and predictor ranking through

RF. To improve predictor ranking for ordinal responses, the use of three alternative per-

mutation VIMs is investigated, which are based on the mean squared error, the mean

absolute error and the ranked probability score, respectively, that all take the ordering

information into account. While the VIM based on the mean squared error is an estab-

lished VIM that is frequently used for RF in the context of regression problems, the latter

two VIMs are novel and have not been considered elsewhere. Finally, the impact of the

choice of scores on prediction performance and on predictor rankings is explored. These

issues are investigated using the RF version of Hothorn, Hornik and Zeileis (2006) as it is

suitable for various kinds of regression problems, including ordinal regression.

3.2. Methods

3.2.1. Performance measures

In the following definitions of established performance measures are given. The perfor-

mance measures are used in the studies for two purposes: i) to evaluate the prediction

accuracy of RF for predicting an ordinal response and ii) for use in the proposed alterna-

tive permutation VIMs.

Error rate (ER) The error rate for the classification of observations i = 1, . . . , n with true

classes Yi into predicted classes Ŷi is given by

ER =
1
n

n

∑
i=1

I(Ŷi 6= Yi), (3.1)

where I(·) denotes the indicator function. The error rate does not take the ordering of the

classes into account since it only distinguishes between a correct classification (Ŷ = Y)

and an incorrect classification (Ŷ 6= Y).

Mean squared error (MSE) With the mean squared error not all misclassifications are

regarded as equally bad as is the case for the error rate. A higher penalty is put on a clas-

sification into a class which is more distant from the true class Y than on a classification

into a class which is closer to Y. Let Y be an ordinal response that falls into ordered cate-

gories arbitrarily coded as r = 1, . . . , k. To measure the distance between ordinal response

classes scores s(r) ∈ R are used, with s(1) < s(2) < . . . < s(k). The distance between

the true class Y and the predicted class Ŷ is then computed from the difference in the

corresponding scores, s(Ŷ)− s(Y). Treating an ordinal variable as interval scaled by at-
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tributing scores might be problematic. However, it has the advantage that loss functions

for interval scaled variables like the mean squared error in the form

MSE =
1
n

n

∑
i=1

(s(Ŷi)− s(Yi))
2 (3.2)

might be used (see e.g. Tutz (2011) p. 474, Fürnkranz and Hüllermeier (2010) p. 134, and

Hechenbichler and Schliep (2004)). When using the simple scores s(r) = r, Eq. (3.2) yields
1
n ∑n

i=1 (Ŷi −Yi)
2.

Mean absolute error (MAE) The mean absolute error used for the studies on ordinal

regression problems is very similar to the mean squared error, with the difference that

classification into a distant class is not penalized as much. Using the same notation as

before, the mean absolute error for ordinal regression problems is given by

MAE =
1
n

n

∑
i=1
|s(Ŷi)− s(Yi)|. (3.3)

For metric response Y the mean absolute error takes the form 1
n ∑n

i=1 |Ŷi −Yi| which di-

rectly results from Eq. (3.3) when using the simple scores s(r) = r.

Ranked probability score (RPS) The ranked probability score originally introduced

by Epstein (1969), is a generalization of the Brier score to multiple categories. It can be

computed as the sum of Brier scores for all two-class problems that arise when splitting

the sample on all possible thresholds made between two adjacent categories. The RPS

has been shown to be particularly appropriate for the evaluation of probability forecasts

of ordinal variables (Murphy; 1970). It is defined as

RPS =
1
n

n

∑
i=1

k

∑
r=1

(π̂i(r)− I(Yi ≤ r))2, (3.4)

where k denotes the number of response classes and π̂i(r) denotes the predicted proba-

bility of observation i belonging to classes {1, . . . , r}. The RPS measures the discrepancy

between the predicted cumulative distribution function and the true cumulative distri-

bution function (Murphy; 1970). The predicted cumulative distribution function can be

computed from class probabilities that are predicted by a model, that is the estimated

probabilities of an observation belonging to classes r = 1, . . . , k. The true cumulative dis-

tribution function simplifies to a step function with a step from 0 to 1 at the true value Yi

for observation i. A graphical illustration of the RPS is given in Figure 3.1 for an observa-

tion i with observed category yi = 6. Figure 3.1 shows the true cumulative distribution
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Figure 3.1.: Predicted (solid black line) and true (solid gray line) cumulative distribution func-
tions for an individual with observed category yi = 6 for two different models. Dashed lines
indicate the difference between the predicted and the true cumulative distribution functions,
that is |π̂i(r)− I(yi ≤ r)|, for r = 1, . . . , k and yi = 6.

function (solid gray line) with step from 0 to 1 at the true value yi = 6 and the cumu-

lative distribution function (solid black line) that is obtained from class predictions of a

model. Predicted distribution functions are given for two different models. The dashed

lines correspond to the distance between the predicted and the true cumulative distri-

bution functions (i.e., π̂i(r) − I(6 ≤ r)) for a specific category r. These distances are

squared when computing the RPS as in Eq. (3.4). The predicted cumulative distribution

function in the left panel indicates that Model 1 does not seem to be very accurate in pre-

dicting the value for observation i. Here distances between the true and the predicted

cumulative distribution functions are large and the RPS for observation i takes the value

0.212 + 0.412 + 0.522 + 0.612 + 0.642 + (0.69− 1)2 + (0.77− 1)2 + (0.89− 1)2 + (1− 1)2 =

1.4254. A much better prediction is obtained when using Model 2. This model assigns

the greatest probabilities for values of or around the true value yi = 6. Accordingly, the

distances between the true and the predicted cumulative distribution functions are rather

small, which is reflected by an RPS of 0.022 + 0.022 + 0.092 + 0.182 + 0.322 + (0.61− 1)2 +

(0.85− 1)2 + (0.96− 1)2 + (1− 1)2 = 0.3199. It is clear from this illustration that the RPS

is smaller (indicating a better prediction) if the predicted probabilities are concentrated

near the observed class and is minimal if the predicted probability for the observed class

is 1. From its definition it is clear that the RPS uses solely the ordering of the categories

and does not require information on the distances between categories.
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3.2.2. Novel variable importance measures for ordinal response

In the R package party (Hothorn et al.; 2012), the VIM for ordinal regression trees is the

error rate based VIM. However, there are no studies that have shown that the error rate

based VIM is suitable in the case of ordinal response and that it should be preferred over,

for example, the MSE-based VIM. Two novel permutation VIMs are introduced which

might be, in addition to the MSE-based VIM, promising for ordinal response data. These

VIMs are based on the performance measures introduced in Section 3.2.1. More precisely,

VIMs of the form (2.7) are proposed, where the ranked probability score (cf. Eq. (3.4))

or the mean absolute error (cf. Eq. (3.3)) are used as the error measure M. These VIMs

will be termed the RPS-based VIM and the MAE-based VIM. While the error rate based

VIM does not take the ordering information of the response levels into account, the three

other VIMs do. In the studies the performances of the four VIMs are investigated and

compared.

The implementation available at the website http://www.ibe.med.uni-muenchen.de/

organisation/mitarbeiter/070_drittmittel/janitza/rf_ordinal/index.html allows

the computation of the novel VIMs from either ordinal regression or classification trees,

if constructed using the R package party. In addition to the RPS- and MAE-based VIMs,

an implementation of the MSE-based VIM is provided that enables one to compute the

MSE-based VIM from ordinal regression trees and from classification trees as well, a fea-

ture which is not currently possible using the R package party.

The computation of VIMs involves obtaining tree predictions for the OOB observations.

The computational complexity for computing the predictions for a tree is directly related

to the tree’s depth. Louppe (2014) shows that in the worst case this is O(n2), which cor-

responds to a tree where all splits put a single training observation in one daughter node,

while all other training observations are put in the other daughter node. In the best case

always half of the training observations are put in each daughter node, so that time com-

plexity for obtaining tree predictions is at best O(n log(n)). According to Louppe (2014)

“the analysis of the average case shows however that pathological cases are not dominant

and that, on average, complexity behaves once again as in the best case.” The computa-

tional complexity of the computation of the RPS isO(nk), so that for the average case the

total time complexity for computing the RPS-based VIM amounts to O(n log(n) + nk).

Since the number of response classes k is usually much smaller than log(n), computing

the RPS-based VIM is of order n log(n). The three other VIMs are of the same time com-

plexity.

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/rf_ordinal/index.html
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/rf_ordinal/index.html
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3.3. Simulation studies

3.3.1. Studies on prediction accuracy

Using the RF version based on conditional inference trees two RF variants were compared

with respect to their ability to predict an ordinal response:

1. RF ordinal. RF consisting of ordinal regression trees. Simulations were performed

using default scores (i.e., s(r) = r, r = 1, . . . , k). Additional studies with quadratic

scores s(r) = r2, r = 1, . . . , k, were also performed.

2. RF classification. RF consisting of classification trees. The ordinal response is treated

as nominal, meaning that the information regarding the natural ordering of the lev-

els of the response is ignored.

Prediction accuracy of a RF variant was assessed using the ranked probability score (RPS;

see Eq. (3.4)) and the error rate (see Eq. (3.1)) computed for a large independent test data

set of size n = 10000 that followed the same distribution as the training set on which

the RFs were fit. Note that the RPS and the error rate do not necessarily come to the

same conclusion, meaning that the error rate might be lower for one RF variant than for

the other but its RPS is higher. Since the error rate does not consider how “severe” a

misclassification is, the RPS is considered to be a more appropriate performance measure

for evaluating a model that predicts an ordinal response. Thus the focus is on the results

that are obtained when using the RPS for assessing prediction accuracy.

3.3.2. Studies on variable importance

Permutation VIMs based on the different performance measures described in Section 3.2.2

were applied to see which VIMs are most appropriate in the case of ordinal response. The

four different VIMs were computed for RF constructed from ordinal regression trees (RF

ordinal) as well as for RF using classification trees (RF classification; see Section 3.3.1).

VIMs give a ranking of the predictors according to their association with the response.

To evaluate the quality of the rankings of the VIMs, the area under the curve (AUC) was

used. Let the predictor variable indices B = {1, . . . , p} be partitioned into two disjoint

sets B = B0 ∪ B1, where B0 represents the noise predictors (without any effect) and B1

represents the signal predictors (with effect). The AUC is computed as follows:

AUC =
1

|B0| |B1| ∑
i∈B0

∑
j∈B1

I(VIi < VIj) + 0.5I(VIi = VIj) (3.5)

where |Bl| denotes the cardinality of Bl with l ∈ {0, 1}, and I(·) denotes the indicator

function (see, e.g., Pepe; 2004). Note that the AUC is often used for evaluating the abil-
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ity of a method (which may be for example a diagnostic test or a prediction model) to

correctly discriminate between observations with binary outcomes (often diseased ver-

sus healthy). In the studies, in contrast, the AUC is computed considering the predictor

variables X1, . . . , Xp as the units to be predicted (as noise or signal variables) rather than

the observations i = 1, . . . , n. The AUC here corresponds to an estimate of the probability

that a randomly drawn signal predictor has a higher importance score than a randomly

drawn noise predictor. Thus the AUC was computed in the studies to assess the abil-

ity of a VIM to differentiate between signal and noise predictors. An AUC value of 1

means that each of these signal predictors receives a higher importance score than any

noise predictor, thus indicating perfect discrimination by the VIM. An AUC value of 0.5

means that a randomly drawn signal predictor receives a higher importance score than

a randomly drawn noise predictor in only half of the cases, indicating no discriminative

ability by the VIM.

3.3.3. Data simulation

The data were simulated from a mixture of two proportional odds models. Let P(Y ≤ r|x)
denote the cumulative probability for the occurrence of a response category equal to or

less than r for an individual with covariate vector x. This probability is derived from a

mixture of two proportional odds models

P(Y ≤ r|x) = ζP1(Y ≤ r|x) + (1− ζ)P2(Y ≤ r|x), (3.6)

where ζ is the mixture proportion and P1(Y ≤ r|x) and P2(Y ≤ r|x) are the cumulative

probabilities that arise from two independent proportional odds models. The propor-

tional odds model for mixture component g ∈ {1, 2} has the form

Pg(Y ≤ r|x) =
exp(γ0rg + x>γg)

1 + exp(γ0rg + x>γg)
, r = 1, . . . , k, (3.7)

where the category-specific intercepts satisfy the condition γ01g ≤ . . . ≤ γ0kg = ∞.

In contrast to the intercepts, the coefficients γg do not vary over categories. In this

case the comparison of two individuals with respect to their cumulative odds Pg(Y ≤
r|x)/Pg(Y > r|x) for mixture component g does not depend on the category r, giving the

model its name, “proportional odds model” (see e.g., Tutz; 2011).

In the studies, the intercepts do not differ between the two mixture components; that

is γ0r1 = γ0r2 = γ0r. The intercepts for the categories were chosen such that the differ-

ence between the intercepts of adjacent categories is larger for more extreme categories.

Concrete values for the intercepts are provided in Table 3.1.
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Number of re- γ01 γ02 γ03 γ04 γ05 γ06 γ07 γ08 γ09
sponse levels
k = 3 −1.80 1.80 ∞ - - - - - -
k = 6 −4.50 −1.50 0.00 1.50 4.50 ∞ - - -
k = 9 −5.90 −3.41 −1.55 −0.31 0.31 1.55 3.41 5.90 ∞

Table 3.1.: Intercepts for the proportional odds model (3.7) with γ0rg = γ0r.

The simulation setting comprises both predictors not associated with the response

(noise predictors) and associated predictors (signal predictors). Predictors X1, . . . , X15

had an effect on the cumulative odds of the first mixture component. The first five pre-

dictors each had a large effect, with corresponding parameter coefficients γ1j = 1 for

j = 1, . . . , 5; the second set of five predictors each had a moderate effect, with coeffi-

cients γ1j = 0.75 for j = 6, . . . , 10; and the last set of five signal predictors each had

a small effect, with coefficients γ1j = 0.5 for j = 11, . . . , 15. The remaining predictors

X16, . . . , X65 had no effect on the cumulative odds of the first mixture component and

their respective coefficients were zero. For the second mixture component fewer predic-

tors had an effect but all effects were large (coefficient of either 1 or −1). Almost all pre-

dictors which had an effect for the first component, had an effect for the second – with the

exceptions of X5, X10 and X15, which had no effect for the second component. For predic-

tors X5, X10, X15, X16, X17, . . . , X65 the corresponding coefficients were set to zero, while

for the other predictors the parameter coefficients were γ2j = 1 for j ∈ {1, 2, 6, 7, 11, 12}
and γ2j = −1 for j ∈ {3, 4, 8, 9, 13, 14}. Table 3.2 shows the coefficients for both mixture

components. To summarize, there are predictors that have no effect at all, predictors that

have an effect for both mixture components and predictors that have an effect for only

one mixture component.

Mixture Coefficient vector
component γ>g = (γg1, . . . , γg,65)

g = 1 (1, 1, 1, 1, 1, 0.75, 0.75, 0.75, 0.75, 0.75, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, . . . , 0)
g = 2 (1, 1,−1,−1, 0, 1, 1, −1, −1, 0, 1, 1, −1, −1, 0, 0, 0, . . . , 0)

Table 3.2.: Effects of predictors on the cumulative odds of the proportional odds model (3.7) for
mixture components g = 1, 2.

Data was generated for sample sizes n = 200 and n = 400. Let x>i = (xi1, . . . , xi,65)

denote the covariate vector for the observation i. For the generation of the response value

yi the cumulative probability for the occurrence of a response category equal to or less

than r was computed according to (3.6). Probabilities for classes r = 1, . . . , k were derived

and a multinomial experiment was performed for each observation using its response

class probabilities.

For each setting (specified in the following) 100 data sets were generated.
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A further study was conducted to see if results differ in high-dimensional data settings.

This study is shown in Appendix C.1.

Simulation settings

Various settings were simulated that differed in

• the value for the mixture proportion ζ. Settings were simulated for ζ = 0.6 (data

generation based on a mixture of two proportional odds models), ζ = 1 (data gener-

ation based on the proportional odds model specified by mixture component g = 1)

and ζ = 0 (data generation based on the proportional odds model specified by mix-

ture component g = 2),

• the number of ordered response levels, chosen as k = 3, k = 6 and k = 9, and,

• the generation of predictor variables. For settings without correlations, xi, i =

1, . . . , n, were drawn from N(0p, Ip), with Ip denoting the identity matrix of dimen-

sion p× p and p denoting the number of predictors. For settings with correlations,

xi, i = 1, . . . , n, were drawn from N(0p, Σp) with block diagonal covariance matrix

Σp =



Asignal 0 0 0 0 0

0 Anoise1 0 0 0 0

0 0 Anoise2 0 0 0

0 0 0 Anoise3 0 0

0 0 0 0 Anoise4 0

0 0 0 0 0 Anoise5


.

The first block matrix Asignal ∈ R(15×15) determined the correlations among the

signal predictors X1, . . . , X15. It was defined as Asignal = (aij) with

aij =


1, i = j

0.8, i 6= j; i, j ∈ {1, 3, 6, 8, 11, 13}
0, otherwise

in this way generating uncorrelated and also strongly correlated signal predictors.

The matrices Anoisej ∈ R(10×10) for j = 1, . . . , 5 were given by

Anoisej =


1 ρj . . . ρj

ρj 1 . . . ...
... . . . . . . ρj

ρj . . . ρj 1

 ,
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and determined correlations among a set of 10 noise predictor variables with ρ1 =

0.8, ρ2 = 0.6, ρ3 = 0.4, ρ4 = 0.2 and ρ5 = 0.

Random forests parameter setting

Simulation studies were performed using the unbiased RF version based on conditional

inference trees which is implemented in the R package party (Hothorn et al.; 2012). For the

studies, the setting for unbiased tree construction was used as suggested by Strobl et al.

(2007). In this setting subsamples of size 0.632n are used instead of bootstrap samples in

order to avoid possible biases induced by the bootstrap. Further, no p-value threshold

is applied when implementing a split (i.e., the significance threshold α is set to 1 in step

1 of the algorithm; see p. 13). No other stopping criteria such as a minimum number

of observations in a terminal node or a minimum number of observations required for a

node to be split were applied. The number of randomly drawn predictors mtry was set

to the default value b√pc, where p denotes the total number of predictors (here p = 65).

The number of trees ntree was set to 1000.

3.3.4. Results

In the following the results of the simulation studies for the sample size of n = 200 are

shown. The results for n = 400 are similar and thus not shown.

Prediction accuracy

Figure 3.2 shows the results of the simulation studies on the comparison of RF ordinal and

RF classification with respect to their predictive accuracy (measured in terms of RPS). For a

direct comparison, the ratio of the RPS for RF ordinal to that for RF classification is shown.

Values of the RPS ratio below 1 mean that the prediction error as measured by RPS is

smaller for RF ordinal and thus are in favor of RF ordinal. Conversely, values above 1 mean

that the prediction error as measured by RPS is larger for RF ordinal and advocate the use

of RF classification for prediction purposes. For values close to 1 prediction accuracies of

RF ordinal and RF classification are comparable. In all settings the ratio of RPS is in the

range [0.92; 1.04] and thus is very close to 1, so there are no large differences between

the prediction accuracies of the forest types in the simulation studies. However, one can

observe a trend toward better performance of RF ordinal for a larger number of response

levels. Overall, the performance is better for RF ordinal in most of the settings, except

for k = 3, in which the performance of RF classification is better in two of six settings.

Similar results were obtained when performance was measured in terms of the error rate.

Further, the results generalize to high-dimensional data settings, as shown by simulations
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Figure 3.2.: Performance ratio for RF ordinal versus RF classification for simulated data. A ratio of
the ranked probability scores (RPS) below 1 indicates a better prediction accuracy of RF ordinal
and a ratio above 1 indicates a better prediction accuracy of RF classification. Data was generated
for n = 200 from a mixture of proportional odds models (3.6) with mixture proportions ζ = 0.6
(upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row), and ζ = 0
giving weight 1 to the second mixture component g = 2 (lower row). Data was generated for
k ∈ {3, 6, 9} ordered response levels and for settings in which predictors correlate (left column)
and in which all predictors are uncorrelated (right column).

in which the number of candidate predictors is larger than the number of observations

(see Appendix C.1). Note that the results presented here were obtained by using equally

spaced scores. The results are very similar when using quadratic scores, which suggests

that the conclusions do not depend on the specific choice of scores for RF ordinal.

Performance of variable importance measures

Figures 3.3 - 3.5 show the results of the simulation studies on the performance of VIMs

when using the four VIMs outlined in Sections 3.2.2 and 2.2.2, computed for both RF

ordinal and RF classification. Here only the results are shown when using default (i.e.,

equally spaced) scores for tree construction and MSE- and MAE-based VIM computation.

Very similar results were obtained when specifying quadratic scores.
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Figure 3.3.: Performance of different VIMs for RF ordinal and RF classification: settings for a 9-
category ordinal response. VIMs are computed using the error rate (ER), the ranked probability
score (RPS), the mean squared error (MSE) and the mean absolute error (MAE). Data was gen-
erated for n = 200 using a mixture of proportional odds models (3.6) with mixture proportions
ζ = 0.6 (upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row),
and ζ = 0 giving weight 1 to the second mixture component g = 2 (lower row).
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Figure 3.4.: Performance of different VIMs for RF ordinal and RF classification: settings for a 6-
category ordinal response. VIMs are computed using the error rate (ER), the ranked probability
score (RPS), the mean squared error (MSE) and the mean absolute error (MAE). Data was gen-
erated for n = 200 using a mixture of proportional odds models (3.6) with mixture proportions
ζ = 0.6 (upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row),
and ζ = 0 giving weight 1 to the second mixture component g = 2 (lower row).

In the settings with 9 response levels (Figure 3.3) the performances of the MSE-based

VIM and the two novel permutation VIMs are consistently better than that of the error

rate based VIM, independent of the type of trees used (ordinal regression or classifica-

tion trees). Obviously, making use of the ordering is advantageous when deriving the

importance of variables for these settings. Interestingly, in some settings the difference

is rather small and in others it is more pronounced. Similar results are obtained for the

setting with 6 response levels (Figure 3.4). However, the difference between the error rate

based VIM and the other VIMs is less pronounced than for the settings with a 9-category

response variable. In all settings in which the response has only 3 levels, the differences

between the VIMs are marginal (Figure 3.5), though overall the novel VIMs and the MSE-

based VIM remain superior. In the studies the RPS-based, MSE-based and MAE-based

VIM show comparable performances.

The results suggest that the performances of all VIMs can in some settings be further

improved by making use of the ordering in the construction of trees, through the applica-

tion of ordinal regression trees. If used in combination with ordinal regression trees, the

novel VIMs and the MSE-based VIM achieved the most accurate predictor rankings. The
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Figure 3.5.: Performance of different VIMs for RF ordinal and RF classification: settings for a 3-
category ordinal response. VIMs are computed using the error rate (ER), the ranked probability
score (RPS), the mean squared error (MSE) and the mean absolute error (MAE). Data was gen-
erated for n = 200 using a mixture of proportional odds models (3.6) with mixture proportions
ζ = 0.6 (upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row),
and ζ = 0 giving weight 1 to the second mixture component g = 2 (lower row).

worst rankings in contrast were obtained for the classical error rate based permutation

VIM (which is currently in use for ordinal responses in the R package party) computed

from classification trees. This indicates that predictor rankings are worst when making no

use of the ordering at all, neither in tree construction nor in the computation of the vari-

ables’ importance scores. Similar results were obtained for the high-dimensional data

setting shown in Appendix C.1.

A plausible explanation for the improvement in the ranking by using ordinal regres-

sion trees is that in ordinal regression trees it is more likely that a predictor associated

with the response is selected for a split. A predictor that is often selected in a tree and

occurs close to the root node of the tree is likely to receive a high importance score. The

advantage when applying ordinal regression trees is that the power of the statistical test

to correctly detect an association between a predictor and the ordinal response is higher.

It is thus less likely that a noise predictor yields a lower p-value just by chance and is

selected for the split. Results obtained for the described simulation studies provide evi-

dence for this. One can, for example, inspect the trees of a forest and compute the number

of trees for which an influential predictor was chosen for the first split. If the fraction of
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Figure 3.6.: Fraction of trees in RF ordinal and RF classification where an influential predictor
was selected for the first split. Distributions arise from 500 replications of the simulation setting
described in Section 3.3.1 with k = 3 response levels, k = 6 and k = 9. Data was generated for
n = 200 using a mixture of proportional odds models (3.6) with mixture proportions ζ = 0.6
(upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row), and ζ = 0
giving weight 1 to the second mixture component g = 2 (lower row).

trees is significantly higher for the forest consisting of ordinal regression trees, this is an

indication that ordinal regression trees are more accurate in selecting predictors for a split

compared to classification trees. For the simulation studies the fraction of trees where a

signal predictor was selected for the first split was calculated for both RF ordinal and RF

classification; the results are displayed in Figure 3.6. The results confirm the hypothesis

that RF ordinal is more accurate in selecting important predictors for a split than RF clas-

sification. Since the power of a test that takes into account the ordering increases with the

number of ordered categories, the discrepancy between RF ordinal and RF classification is

most pronounced for k = 9 and least pronounced for k = 3.

3.4. Real data applications

In the studies five publicly available real data sets with an ordinal response were consid-

ered. Note that the results for all data sets that were analyzed are reported, so there was

no selection of the data sets depending on the obtained results.
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3.4.1. Data

The Very Low Birth Weight data was analyzed by O’Shea et al. (1998) for identifying

perinatal events from sonographical and echodensity measurements. The data can be ob-

tained from the website http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets. In

the analyses the Apgar score (a score for the physical health status of a newborn mea-

sured on a 9-point scale) was supposed to be predicted from diverse factors such as med-

ication the mother took during pregnancy, weight and sex of the newborn and the type

of delivery.

The Wine Quality data is available from the UCI repository (http://archive.ics.uci.

edu/ml/datasets.html); see also Cortez et al. (2009) for details on the data. The response

to be predicted from physicochemical measurements (like alcohol concentration or resid-

ual sugar) was the quality of a wine, measured on a scale from 0 (poorest quality) to 10

(highest quality). There were no observations with the highest quality (i.e., a score of 10)

and very poor quality (score from 0 - 2). Due to their small number (n = 5), observations

with a score of 9 were removed from the data.

The National Health and Nutrition Examination Survey (NHANES) is a series of cross-

sectional surveys of the US population (National Center for Health Statistics; 2012). The

data can be obtained from the institution’s homepage. An overview of the considered

data is given in Appendix B. The self-reported general health status was considered as

the outcome variable to be predicted from demographical and health-related factors. The

response is categorized into five categories (1: excellent, 2: very good, 3: good, 4: fair, 5:

poor).

The data for the SUPPORT Study can be obtained from the website http://biostat.

mc.vanderbilt.edu/wiki/Main/DataSets. The considered data set is a random sample

of 1000 patients from phases I & II of the Study to Understand Prognoses and Preferences

for Outcomes and Risks of Treatment (SUPPORT) (Knaus et al.; 1995). Several outcomes

in seriously ill hospitalized adults have been considered. A focus was on the prediction of

functional disability, which is categorized into 5 ordered categories from slight to severe

(see Table 3.3 for details).

The Mammography Experience data was analyzed by Hosmer Jr and Lemeshow (2004)

(p. 264), who studied the relationship between mammography experience (have never

had a mammography, have had one within the last year, last mammography greater than

one year ago) and the attitude toward mammography based on a study questionnaire.

The data is part of the R package TH.data.

For all data sets (except for the Very Low Birth Weight data) covariates for which more

than 10% of the observations had missing values, were excluded. Observations with

missing values in any of the included covariates were deleted. An overview of the num-

http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
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Data Considered re- Levels
sponse variable

Very Low Apgar score 1 (life-threatening) (n = 33)
Birth Weight 2 (n = 16)

3 (n = 19)
4 (n = 15)
5 (n = 25)
6 (n = 27)
7 (n = 35)
8 (n = 36)
9 (optimal physical condition) (n = 12)

Wine Qual- Wine quality score# 3 (moderate quality) (n = 20)
ity 4 (n = 163)

5 (n = 1457)
6 (n = 2198)
7 (n = 880)
8 (high quality) (n = 175)

NHANES Self-reported health 1 – excellent (n = 198)
status 2 – very good (n = 565)

3 – good (n = 722)
4 – fair (n = 346)
5 – poor (n = 83)

SUPPORT
Study

Functional disability 1 – patient lived 2 months, and from an interview
(taking place 2 months after study entry) there were
no signs of moderate to severe functional disability
(n = 310)
2 – patient was unable to do 4 or more activities of
daily living 2 months after study entry; if the pa-
tient was not interviewed but the patient’s surrogate
was, the cutoff for disability was 5 or more activities
(n = 104)
3 – Sickness Impact Profile total score is at least 30 2
months after study entry (n = 57)
4 – patient intubated or in coma 2 months after
study entry (n = 7)
5 – patient died before 2 months after study entry
(n = 320)

MammographyLast mammography 1 – never (n = 234)
Experience visits 2 – within a year (n = 104)

3 – over a year (n = 74)

Table 3.3.: Response variables of the five real data sets and their frequency in the analyzed data.
# There were no observations with categories 0, 1, 2, 9, 10 in the analyzed data set.
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Data No. response levels No. predictors No. observations
k p n

Very Low Birth Weight 9 10 218
Wine Quality 6 11 1599
NHANES 5 26 1914
SUPPORT Study 5 16 798
Mammography Experience 3 5 412

Table 3.4.: Number of response levels, predictor variables and observations for the considered
data sets.

ber of response levels, predictor variables and observations for the data sets (as used

for the analysis) is given in Table 3.4. Table 3.3 gives an overview of the response vari-

ables. Note that there were types of responses ranging from different scoring systems

(Wine Quality data, NHANES data and Very Low Birth Weight data), to categorizations

of functional disability (SUPPORT Study), to the recentness of events, as grouped into 3

categories (Mammography Experience data).

All RF parameters were defined as described for the simulated data in Section 3.3 (mtry

= b√pc, ntree = 1000, no early stopping). Default (i.e., equally spaced) scores were used

in the analysis.

3.4.2. Studies on prediction accuracy

The ranked probability score (RPS; see Eq. (3.4)) and the error rate (see Eq. (3.1)) were

used to assess prediction accuracies by RF ordinal and RF classification. Prediction accura-

cies were assessed using 10-fold cross-validation. The cross-validation was repeated 500

times to obtain more stable results.

3.4.3. Studies on variable importance

When using real data one usually faces the problem that it is unknown which of the

variables are important and which are not. As is known from further investigations (not

shown), for all five data sets there are at least some variables which improve response

prediction since the predictions by the constructed forests were always more accurate

than the predictions by the null model (i.e., that without covariates). If we assume that

there was an additional set of variables which are not associated with the response, one

would be able to investigate and compare the discriminative abilities of the VIMs: a well-

performing VIM is namely expected to attribute higher importance scores to the original

(and potentially important) predictors than to the noise predictors.

The following steps were implemented to study the performance of VIMs:

• The original data was augmented by a set of noise predictors. This was done by
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duplicating the set of original predictor variables and then randomly permuting the

rows of this duplicated predictor set. This ensured that each predictor within this

duplicated predictor set was unrelated to the response variable, while preserving

realistic correlation structures within the duplicated predictor set.

• RF ordinal and RF classification were fit to this augmented data and the variables’

importance scores were derived using each of the four permutation VIMs described

in Sections 2.2.2 and 3.2.2.

• The area under the curve (AUC) was used to measure the performance of VIMs.

The AUC is an estimate of the probability that a randomly drawn predictor from

the original (i.e., unpermuted) set of predictors would obtain a higher importance

score than a randomly drawn predictor from the permuted set of predictors (see

Section 3.3.2).

This process was repeated 500 times. Note that while in Section 3.3.2 an AUC value of 1

indicated perfect discrimination between signal and noise predictors, here it is expected

that perfect discrimination can already be obtained for AUC values lower than 1: since it

is likely that not all of the original variables are truly influential predictors, some of them

actually should be regarded as noise predictors instead. However, this does not pose a

problem for the studies because the aim is to compare the VIMs with respect to discrimi-

native ability, so their absolute AUC values are not of interest but only the differences in

the AUC values.

3.4.4. Results

Prediction accuracy

The results on prediction accuracy of RF ordinal and RF classification based on the five real

data sets are shown in Figure 3.7. For a direct comparison of RF ordinal and RF classifica-

tion the RPS ratio (left panel) and the error rate ratio (right panel) were computed. The

results shown in Figure 3.7 are in line with the results obtained from the simulation stud-

ies in Section 3.3.4; overall the differences in prediction accuracies are rather small. The

ratios are even closer to 1 than the ratios obtained for the simulated data (cf. Figure 3.2).

In contrast to the simulated data, there is no trend with respect to the number of response

levels. Instead, which RF variant performs better seems to depend highly on the consid-

ered data set as well as on which performance measure is used; when using the RPS as

the performance measure (which is considered to be more appropriate than the error rate)

for three of the data sets (Wine Quality data, NHANES data, Mammography Experience

data) an at least marginally better predictive accuracy was obtained by RF ordinal, while
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Figure 3.7.: Performance ratio for RF ordinal versus RF classification for the five real data sets.
Values below 1 indicate a better performance of RF ordinal and values above 1 indicate a better
performance of RF classification. Prediction accuracy was measured by ranked probability score
(left) and error rate (right) using 10-fold cross-validation repeated for 500 random splits.

for the other two data sets (the Very Low Birth Weight data and the SUPPORT Study) RF

classification gave slightly more accurate predictions. In contrast, RF ordinal is for all data

sets at least as good as RF classification when the error rate is used as the performance

measure.

Performance of variable importance measures

Figure 3.8 shows the AUC values over the 500 repetitions. Very marginal differences in

performance can be observed when the importance scores of variables are derived from

ordinal regression trees compared to classification trees. The performance of a VIM seems

to depend highly on the nature of the response variable since results differ between the

data sets. While for the Very Low Birth Weight data and for the NHANES data all three

VIMs that take into account the ordering in response levels have better discriminative

ability than the error rate based VIM, there is hardly any difference between the error rate

based VIM and the two novel VIMs (based on the RPS and MAE) for the other three data

sets. Note that for the Wine Quality data perfect discrimination for all VIMs is obtained,

which indicates that all variables in the original data set are associated with the quality of

a wine. Interestingly, in these studies, compared to the two novel VIMs based on the RPS

and the MAE, the MSE-based VIM always performs worse or has equal performance at

best.
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Figure 3.8.: Performance of different VIMs for five real data sets when computed on RF ordinal
and RF classification. VIMs are computed using the error rate (ER), the ranked probability score
(RPS), the mean squared error (MSE) and the mean absolute error (MAE). The performance of
VIMs is measured in terms of the area under the curve (AUC), which corresponds to the proba-
bility that a randomly drawn potentially important predictor has a higher importance value than
a randomly drawn noise predictor.
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3.5. Discussion

The use of the ordering of the levels of an ordinal response variable in tree construction is

not supported by the classical RF version of Breiman (2001). In practice, data with ordinal

responses have often been handled using classification or regression trees. However, the

former fully ignores the ordering and the latter assumes the response to be measured on

a metric scale and yields metric values instead of class predictions. The RF implemen-

tation of Hothorn, Hornik and Zeileis (2006) in contrast, allows the modeling of various

kinds of regression problems, including nominal, ordinal, numeric, and censored, as well

as multivariate response variables and arbitrary measurement scales of the covariates. It

is thus promising for applications in which the response has an inherent ordering. More-

over, this version is based on a conditional inference framework and, in contrast to the

classical RF version of Breiman (2001), implements unbiased split selection. For these

reasons the studies are based on the RF version of Hothorn, Hornik and Zeileis (2006).

In this chapter, it was investigated whether prediction accuracy improves when mak-

ing use of the ordering of the levels of the response variable. For this purpose, using

simulated and real data, the prediction accuracy of RF composed of classification trees

was compared to that of RF composed of ordinal regression trees (i.e., trees for ordinal re-

sponses as implemented in the R package party; Hothorn, Hornik and Zeileis; 2006). The

studies indicate that there are only small differences in prediction accuracy. For 16 of 18

studies based on simulated data and for 3 of 5 studies based on real data, more accurate

class predictions were obtained for RF consisting of ordinal regression trees, suggesting

that ordinal regression trees are a reasonable alternative to classification trees if the re-

sponse is ordinal. However, the differences were only small and their practical relevance

is questionable.

Prediction accuracy was primarily assessed by using the ranked probability score. The

results were also investigated when prediction accuracy was evaluated based on the error

rate and two alternative measures which are described in Appendix C.1. The results

obtained with the error rate and the two alternative measures were consistent with the

findings. Thus the conclusions do not depend on the choice of the accuracy measure.

In addition to prediction accuracy, it was also investigated if making use of the or-

dering for the computation of VIMs leads to more accurate predictor rankings. In the

presence of an ordinal response the current RF implementation of Hothorn, Hornik and

Zeileis (2006) uses the error rate based permutation VIM. Two novel permutation VIMs

for RF that are promising in settings in which the response has an inherent ordering were

introduced. The results on simulated and on real data showed that a VIM which makes

use of the ordering in the levels of the response yields in many cases an at least slightly

more accurate predictor ranking than the classical error rate based VIM, and thus should



3.5 Discussion 47

be used when analyzing ordinal response data. The studies suggest that by using ordinal

regression trees a further improvement in the predictor rankings might be obtained. This

is most likely related to the fact that ordinal regression trees more often select relevant

predictors for a split than classification trees since hypothesis tests used for split selection

in conditional inference trees have higher statistical power for the detection of relevant

effects if making use of the ordering of the response levels. In data settings where the re-

sponse variable is ordinal it is thus recommended using a permutation VIM which makes

use of the ordering in combination with ordinal regression trees if the aim is to obtain a

predictor ranking or to select important variables. Among the VIMs that make use of

the ordering, the two novel VIMs outperformed the well-known MSE-based VIM on real

data.

Though in the studies on the performance of VIMs the RF version of Hothorn, Hornik

and Zeileis (2006) was exclusively used, it is expected that VIMs that make use of the

ordering, like the RPS-based VIM, give more accurate rankings also when using the clas-

sical RF version of Breiman (2001).

Note that the MSE-based VIM was developed for regression trees but had not been

considered for ordinal responses to this point. While the RPS-based VIM relies only on

the ordering of the levels, the MAE- and MSE-based VIMs require the specification of

distances between the response levels. The two specific choices of the scores (reflecting

distances in response levels) did not impact the results on the performance of variable

importance measures or on prediction accuracies of the ordinal regression trees. This

suggests that specific values for the scores do not seem to have a significant impact as

long as the scores reflect the correct ordering of the levels. Though in the simulation

studies different scores did not lead to different results, one cannot be sure that this also

applies to other settings. Thus it is recommended to use the RPS-based VIM – which does

not make any assumptions on the distance between response levels – over the MAE- and

MSE-based VIMs.

Note that the incorporation of the ordering of the response levels was investigated

when constructing trees and when computing the importance of variables. The ordering

of the response levels in the context of another stage could also be considered in future

studies, namely when aggregating tree predictions to obtain a final prediction of a class

(see, e.g., Tutz; 2011, Section 15.9); in the context of k-nearest-neighbors it has for example

been shown that such a procedure might give more accurate predictions (Hechenbichler

and Schliep; 2004).





4. A variable importance test for

high-dimensional data

This chapter presents a new heuristic method for testing RF’s permutation VIM in high-

dimensional data settings. This method was introduced in the paper of Janitza et al.

(2015), for which I received the “Student Postdoctoral Fellow Paper Competition and

Travel Award” by the IFCS. The current chapter is based on Janitza et al. (2015) and is

structured as follows: After an introduction to the use of VIM tests in the medical liter-

ature, the heuristic testing approach of Altmann et al. (2010) is briefly reviewed in Sec-

tion 4.2. The new heuristic testing idea is subsequently introduced. As will be shown,

the testing idea is based on presumptions which are not met by the classical permutation

VIM. Therefore a modified version of the permutation VIM is developed which fulfills

the criteria and might be used in the testing procedure. Finally, the design of simulation

studies is described, in which the novel testing approach is compared to the approach of

Altmann et al. (2010) and to a naive approach which consists in applying the testing idea

to the classical permutation VIM. Section 4.3 shows the results of the simulation studies

and Section 4.4 gives a brief summary and discussion of the results.

4.1. Introduction

Often, identifying relevant genes is of high interest to gain valuable insights into the func-

tionality and mechanisms that lead to a specific disorder. Moreover, the identification of

relevant genes aids in the diagnosis of certain disorders. The RF method and its imple-

mented VIMs have often been used for the identification of such biomarkers (e.g., Reif

et al.; 2009; Wang-Sattler et al.; 2012; Yatsunenko et al.; 2012). There are two commonly

used VIMs, the Gini VIM and the permutation VIM. While the Gini VIM has undesir-

able properties, the permutation VIM is essentially unbiased (see Section 2.2.2). The per-

mutation VIM reflects the average decrease in accuracy when destroying the association

between a variable and the response by permuting the values of the variable. It is clear

that predictor variables whose importance score is negative or zero are likely to have no

predictive ability. However, for the predictor variables with positive importance score
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it is difficult to say which importance scores are large enough so that it is unlikely that

these have occurred by chance. The VIM depends on several different factors, including

factors related to the data, such as correlations between the data, the signal-to-noise ratio

or the total number of variables, and including RF specific factors, such as the choice of

the number of randomly drawn candidate predictor variables for each split. Therefore

there is no universally applicable threshold that can be used to determine what really

high importance scores are.

Often, in practical applications, a certain percentage of the highest ranked variables are

selected; Reif et al. (2009) for example filtered out the 10% of variables with the highest

importance scores and used them for further considerations. However, one should be

careful when selecting a prespecified number of highest ranked variables and considering

these as relevant because one would always identify some variables as relevant even in

the absence of any associations between the variables and the response.

An ad-hoc approach consists in using the absolute value of the smallest observed neg-

ative importance score as a threshold for determining which variables are likely to be

relevant, because one can be sure that the smallest observed negative importance score

must have been occurred due purely to chance (Strobl et al.; 2009). However, this ap-

proach has several disadvantages, two of them being that the threshold depends on one

single observed importance score and that it becomes more extreme the more variables

there are. It is thus clear that more elaborated approaches are needed.

Testing procedures are a sensible strategy for deciding which variables are likely to be

relevant (Huynh-Thu et al.; 2012). In a statistical test one aims to draw conclusions about

the value of a population parameter through the use of the observed sample. In the con-

text of VIMs it is not clear what this population parameter refers to and if it even exists.

Thus the testing approaches that were proposed for RF’s VIMs, should rather be regarded

as heuristic methods that enable the selection of variables, instead of real statistical tests

in the strict mathematical sense. However, for simplicity and to be consistent with the

literature, such approaches will be referred to as statistical tests, although it should be

kept in mind that in the strict mathematical sense these are not statistical tests.

A statistical test based on the supposed normality of a scaled version of the permu-

tation VIM was proposed by Breiman and Cutler (2004). However, the procedure of

Breiman and Cutler (2004) has been shown to have alarming statistical properties, and

should not be used (Strobl and Zeileis; 2008). During the last years, more and more ap-

proaches have been developed that test which variables are related to the response (see

Hapfelmeier and Ulm; 2013, and references therein). Since the true null distribution of

variable importance depends on various factors, it becomes difficult – if not impossi-

ble – to theoretically derive the null distribution. This is the reason for the frequent use
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of permutation strategies in the existing testing approaches (Tang et al.; 2009; Altmann

et al.; 2010; Hapfelmeier and Ulm; 2013). However, such procedures are computation-

ally demanding. Very recently Hapfelmeier and Ulm (2013) published a comprehensive

comparison study of different permutation-based testing approaches. They conclude that

their novel approach has higher statistical power than many of the existing approaches

and controls the type I error. Their approach works as follows: For each variable that is

tested for its association with the response, a large number of RFs (Hapfelmeier and Ulm

(2013) used 400 in their studies) has to be computed. Each RF is constructed based on a

different permuted version of the variable and the importance score of the permuted ver-

sion is computed. The p-value for the variable is then computed as the fraction of variable

importance scores (obtained for the permuted versions), that are greater than the variable

importance of the original (i.e., unpermuted) version of the variable. The computation of

p-values for all variables thus requires computing as many RFs as predictor variables

multiplied by the number of permutation runs. This approach has been developed and

investigated for the low-dimensional setting which typically includes not more than a

dozen covariates. It is obvious that with high-dimensional data such permutation-based

approaches become very computationally demanding, and might even become practi-

cally unfeasible.

A heuristic variable importance test for high-dimensional data is presented in this

chapter that is computationally very fast and particularly suitable for high-dimensional

genomic data. This test is based on a slightly modified version of the permutation VIM.

Note that the permutation VIM is the method of first choice for a VIM since it is almost

unbiased. In contrast to the existing approaches, the novel testing procedure is not based

on permutations. The idea of this novel testing procedure is to use the information of

observed non-positive variable importance scores to reconstruct the null distribution of

variable importance. This null distribution is then used to compute p-values. Results of

several studies are shown that explore if the new testing approach controls the type I error

and investigate its power in settings with binary response. The power of the novel test-

ing approach is also compared to the power of the permutation-based testing approach

of Altmann et al. (2010). The approach of Altmann et al. (2010) has often been used since

its introduction in 2010 (e.g., Polak et al.; 2015; Prosperi et al.; 2014). It is very com-

putationally demanding, especially for high-dimensional data settings. But compared

to the approach of Hapfelmeier and Ulm (2013) it is computationally feasible for high-

dimensional data settings. Therefore only the testing approach of Altmann et al. (2010) is

considered as a competing method.
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4.2. Methods

In the first part of this section, existing and new testing procedures are described which

can be used to select relevant variables. A variable is termed as relevant if the trees’

prediction errors significantly increase after the random permutation, or equivalently,

if the variable significantly improves the prediction accuracy. It is important to note that

this definition of relevant predictor variables also includes variables that do not have their

“own” effect on the response, but are associated with the response due to their correlation

with truly influential predictor variables. From the definition of the VIM, it is clear that

negative values or values of zero indicate that the variable does not improve the trees’

predictive abilities, because on average the error rates are similar or even larger when

using the original, that is, unpermuted version of the variable. Thus it is concluded that

the variable is likely to not be relevant. A positive value for the variable importance, in

contrast, reflects that the variable at least slightly improves the trees’ predictive abilities

since the error rates are smaller on average when using the original version of the variable

for deriving tree predictions. However, one cannot infer that a positive value for the

variable importance indicates a relevant variable since one does not know if the change

in prediction errors is solely due to chance. Testing procedures are required to assess if

the change in error rates is significantly larger than zero. If it is the case one can infer that

the variable is likely relevant.

4.2.1. Permutation-based testing approach of Altmann et al. (2010)

The testing approach of Altmann et al. (2010) has originally been proposed as heuristic

for correcting biased VIMs, such as the Gini VIM. However, it is applicable to all kinds of

VIMs of RF. Besides its ability to correct biased VIMs, it outputs p-values which are com-

puted from importance scores. This feature enables the user to select relevant variables

based on the p-values.

In the first step of the method of Altmann et al. (2010), the variable importance scores

are obtained for all variables. Any arbitrary VIM may be used for computing the impor-

tance scores – it may even be biased. In the second step, importance scores for settings in

which the variable is not associated with the response are computed. Altmann et al. (2010)

generate these settings by randomly permuting the response variable to break any asso-

ciations between the response variable and all predictor variables. The data generated in

this way is then used to construct a new RF and to compute the importance scores for the

predictor variables. The importance scores can be regarded as realizations drawn from

the unknown null distribution. The procedure, which involves the steps of randomly

permuting the response vector, constructing a RF and computing the importance scores,
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is repeated S times. For each variable there are S importance scores that can be regarded

as realizations from the unknown null distribution. Finally, in the last step of the method

of Altmann et al. (2010), the S importance scores are used to compute the p-value for the

variable. One possibility for deriving the p-value consists in computing the fraction of S

importance scores that are greater than the original importance score. This approach is

referred to as the non-parametric approach since no assumptions are made on the distribu-

tion of importance scores of unrelated predictor variables. Alternatively, one can assume

a parametric distribution such as the Gaussian, Log-normal or Gamma-distribution for

the importance scores of unrelated predictor variables. The parameters for the respective

distribution are replaced by their maximum likelihood estimates, which are computed

based on the S importance scores of the considered variable. Having defined a specific

distribution for the variable’s null importance, the p-value is computed as the probability

of observing an importance score that is higher than the original importance score, given

this distribution. This approach is referred to as parametric approach.

4.2.2. Naive testing approach

From its definition, the importance scores computed based on the classical permutation

VIM (Eq. (2.7)) are expected to randomly vary around the value zero if variables are not

associated with the response. A new heuristic approach is investigated which consists

in approximating the null distribution based on the observed non-positive importance

scores. More precisely, the variable importance null distribution is reconstructed by mir-

roring the empirical distribution of the observed negative and zero importance scores on

the y-axis. This results in a distribution which is symmetric around zero (see Figure 4.1).

Let M1 = {VIj|VIj < 0; j = 1, . . . , p} denote the observed negative variable importance

scores, and M2 = {VIj|VIj = 0; j = 1, . . . , p} is the set of importance scores which are

zero, with p denoting the number of candidate predictors. The hypothetical importance

scores M3 = {−VIj|VIj < 0; j = 1, . . . , p} = −M1 are defined, which arise from multi-

plying the negative importance scores by −1. The null distribution F̂0 is computed as the

empirical cumulative distribution function of M = M1 ∪M2 ∪M3. Based on F̂0 a p-value

for variable Xj is derived as

pj = 1− F̂0(VIj).

It is clear that this testing approach is not suitable for all types of data. The data must

contain a large number of variables without any effect so that the approximation of the

null distribution is precise enough. A high number of variables without any effect is

typically present with genetic data, such as microarray or SNP data, so that the novel

testing approach is primarily of relevance to high-dimensional genomic data settings.
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Variable importance

0

Empirical distribution
 based on negative and

  zero importance scores
Reflection

Figure 4.1.: Reconstruction of the null distribution based on variables that are likely non-relevant
(i.e., with negative or zero importance scores). The negative part of the null distribution (solid
line) is approximated based on the observed negative and zero importance scores. The positive
part (dashed line) is obtained from reflection about the y-axis.

4.2.3. Novel variable importance measure based on

cross-validation

The novel VIM is not based on the out-of-bag observations but uses a similar strategy,

which is inspired by the cross-validation procedure. In brief the idea is as follows: The

data is first split into k sets of equal size. Then k RFs are constructed, where the l-th RF is

constructed based on observations that are not part of the l-th set. For each RF observa-

tions are used for variable importance computation that were not used for constructing

the RF.

Let Sl contain the indices of observations from the l-th set, and |Sl| denotes the car-

dinality of Sl. For categorical response the fold-specific variable importance for predictor

variable Xj is defined by

VICV(l)
j =

1
ntree

ntree

∑
t=1

1
|Sl| ∑

i∈Sl

{I(yi 6= ŷ∗it)− I(yi 6= ŷit)}, (4.1)

with ntree denoting the number of trees in a RF, I(·) denoting the indicator function and

ŷit and ŷ∗it denoting the predictions by the t-th tree before and after permuting the values

of Xj, respectively. Note that the predictions ŷit and ŷ∗it, t = 1, . . . , ntree, are obtained from

the RF, which is constructed based on observations {1, 2, . . . , n} \ Sl, and thus does not

use the observations i ∈ Sl in tree construction.

The cross-validated variable importance for predictor variable Xj is then defined by

VICV
j =

1
k

k

∑
l=1

VICV(l)
j . (4.2)

The most simple version of cross-validation results for k = 2, so that each of the two sets

is once used for creating the RF and once for deriving importance scores. In general, this
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method is also known as 2-fold cross-validation or the hold-out method. To differentiate

it from cross-validation with k ≥ 3, from now on it will be referred to as the hold-out

method. The corresponding hold-out variable importance for variable Xj is given by

VIHO
j =

1
2

2

∑
l=1

VICV(l)
j , (4.3)

and directly results from setting k to 2 in Eq. (4.2). Thus it is a special case of the cross-

validated VIM defined in Eq. (4.2).

4.2.4. Novel testing approach

The new testing approach solely differs from the naive testing approach in the fact that it

uses the hold-out VIM (Eq. (4.3)) instead of the classical out-of-bag-based VIM (Eq. (2.7)).

The hold-out VIM is preferred over the classical VIM in the new testing approach because

it has desirable properties as will be shown. Based on the hold-out VIM, the p-values are

derived in exactly the same manner as for the naive approach. The basic steps of the

novel testing approach are sketched in the following.

A novel variable importance test for high-dimensional data

Step 1 The data is randomly partitioned into two sets of equal size. Each set is used to

create a RF. The two RFs are used to compute the hold-out variable importance

VIHO
j (see Eq. (4.3)) for variables Xj, j = 1, . . . , p.

Step 2 The null distribution of the hold-out variable importance is approximated based on

the observed non-positive importance scores. For this purpose the following sets

are defined:

M1 = {VIHO
j |VIHO

j < 0; j = 1, . . . , p} (i.e., all negative importance scores),

M2 = {VIHO
j |VIHO

j = 0; j = 1, . . . , p} (i.e., all importance scores of zero) and

M3 = {−VIHO
j |VIHO

j < 0; j = 1, . . . , p} = −M1 (i.e., all negative importance

scores multiplied by −1),

and the empirical cumulative distribution function F̂0 of M = M1 ∪ M2 ∪ M3 is

considered.

Step 3 The p-value corresponding to the variable importance score of predictor variable Xj

is computed as

pj = 1− F̂0(VIHO
j ).
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Note that the hold-out version of the classical permutation VIM is used, which uses the

difference in error rates before and after randomly permuting the values of the consid-

ered variable. The proposed testing procedure is very general in the sense that hold-out

versions of different permutation-based VIMs might be used, such as the conditional

permutation VIM of Strobl et al. (2008), the AUC-based permutation VIM of Janitza et al.

(2013), or the VIMs for ordinal responses considered in Chapter 3. It is important to note

that if one wants to use a different measure, say, the conditional importance of Strobl et al.

(2008), the hold-out version of this measure should be computed, that is, the variable im-

portance should be computed using the splitting procedure described in Section 4.2.3.

The new testing approach is implemented in the R package vita, which is based on the

R package randomForest (Liaw and Wiener; 2002). Currently, only the hold-out version

of the classical VIM is implemented. The R package vita also contains an implementation

of the testing approach of Altmann et al. (2010).

4.2.5. Simulation studies

Since the new testing approach is suitable for high-dimensional genomic data, only set-

tings with large numbers of predictor variables and high signal-to-noise ratios are con-

sidered. There is common consensus in the literature that it is very difficult – if not im-

possible – to simulate realistic complex data structures which capture all the patterns and

sources of variability that are generated by a real biological system. Therefore the studies

are based on five high-dimensional genomic data sets from real world applications (see

Table 4.1 for an overview). These data sets were often used by various authors for binary

classification purposes (e.g., Dı́az-Uriarte and De Andres; 2006; Dettling and Bühlmann;

2003; Tan and Gilbert; 2003). Note that no pre-selection of data sets based on the results

was done, instead the results of all data sets that were analyzed are reported, as has been

recommended by Boulesteix (2015).

Data No. predictors No. observations Source
p n

Prostate Cancer 6033 102 Singh et al. (2002)
Breast Cancer 4869 77 van’t Veer et al. (2002)
Leukemia 7129 72 Golub et al. (1999)
Colon Cancer 2000 62 Alon et al. (1999)
Embryonal Tumor 7129 60 Pomeroy et al. (2002)

Table 4.1.: Overview of high-dimensional genomic data sets used for the investigations.

To study the properties of the novel test, one has to know which of the variables are

truly relevant and which are not. In other words, one has to know the truth, which we can

never know from real world data. Therefore the design matrix of the real world data sets

was used, but the response vector was generated anew according to a specified relation.
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Three different studies were performed. Table 4.2 gives an overview of the three studies.

In Study I none of the predictor variables of a data set has an effect on the response

and there are correlations between predictor variables. In Studies II and III some of the

predictor variables have an effect. While Study II includes correlated variables, in Study

III all predictor variables are independent of each other.

Predictor variables Correlations between
with effect predictor variables

Study I no yes
Study II yes yes
Study III yes no

Table 4.2.: Overview of performed studies which differ in the inclusion of predictor variables
with effect and in the presence of correlations between predictor variables.

All three described testing procedures were applied in Studies I, II and III. A variable

was selected by a testing procedure if its p-value was below α = 0.05. To obtain stable

results the computations were performed for 500 repetitions of each study. Due to com-

putational reasons, only 200 repetitions of each study were performed for the approach of

Altmann et al. (2010). The permutation VIM defined in Eq. (2.7) was used for computing

p-values according to the approach of Altmann et al. (2010). This enables a fair compar-

ison of the approach of Altmann et al. (2010) and the novel approach, which is based on

the permutation VIM. The p-values for both approaches (non-parametric and parametric)

were always computed. Altmann et al. (2010) point out that a Kolmogorov-Smirnov test

might be used to choose the most appropriate distribution for the parametric approach.

In the present studies, algorithm 1 (outlined in the Supplement to Altmann et al.; 2010)

was adhered to, which uses a Gaussian distribution with mean and variance estimated

by the arithmetic mean and sample variance, respectively. The parameter S should be

chosen so that it is large enough. For the parametric approach the recommendation of

Altmann et al. (2010) is a value S between 50 and 100. No recommendations were given

for the non-parametric method. A large value S = 500 was always used in the studies to

exclude the possibility that the performance of Altmann’s approach may be related to a

suboptimal choice of parameters. In the following each study is described in more detail.

Study I The first study reflects scenarios where all predictor variables are pure noise.

The original design matrix and the original response vector of the real data applications

were used. To destroy associations between the response vector and the design matrix

the elements of the response vector were permuted. In this modified data, associations

between predictor variables and the response are only due to chance. Note that the design

matrix was not modified and correlations between predictor variables were preserved.
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Study II In the second study a scenario was simulated in which 100 variables have an

effect on the response and the other variables have no effect. The original design matrix

reflecting realistic correlation patterns was again used, but the response vector was gen-

erated anew. This allows for a complex data scenario, but at the same time one knows

which of the variables are relevant.

The binary response Y for an observation with covariate vector x> = (x1, . . . , xp) was

generated from a logistic regression model with success probability

P(Y = 1|x) =
exp(x1β1 + x2β2 + . . . + xpβp)

1 + exp(x1β1 + x2β2 + . . . + xpβp)
,

with p denoting the total number of predictor variables in the considered data set. The co-

efficients β1, . . . , βp were chosen as follows: First j1, . . . , j100 were randomly drawn with-

out replacement from the set {1, . . . , p} to define which of the variables have an effect

on the response and should therefore be selected by a variable importance testing proce-

dure. The corresponding coefficients β j1 , . . . , β j100 were subsequently drawn from the set

{−3,−2,−1,−0.5, 0.5, 1, 2, 3}, while ensuring that all elements contained in the set are

drawn equally often. All other coefficients were set to zero.

Although standardization is not necessary for the application of RF in general, the de-

sign matrix was standardized before generating the response in order to make effects

comparable across variables of different scales.

Study III This study includes only uncorrelated predictor variables. The design ma-

trix of the real data sets was used and the values within each variable were permuted

independently to create uncorrelated variables. As with Study II, 100 variables were sup-

posed to have an effect on the response. The approach for deciding which variables have

an effect and for generating the response is exactly the same as described for Study II.

Parameter settings

Analyses under different parameter settings were performed to see if the choice of pa-

rameters affects the results. All studies (Studies I, II, III) were performed

• for two different values for the parameter mtry: mtry =
√

p and mtry = p
5 , with p

denoting the total number of predictor variables.

• for two different total numbers of predictor variables. Either a very large number

of candidate predictors was used, namely that from the original design matrices

(see Table 4.1), or a subset of p = 100 predictor variables randomly drawn from the

original design matrices. In the studies with large predictor numbers 100 variables
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had an effect, and in the studies with a subset of p = 100 predictor variables only

20 variables had an effect (only relevant to Study II and III).

• for two different sets that both determine the effects of relevant predictor vari-

ables (only relevant to Study II and III). One set was chosen as {−3,−2,−1,−0.5,

0.5, 1, 2, 3}. The other effect set contained smaller effects; this was chosen as {−1,

−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8, 1}. Since results were very similar for the two

different sets, only those for the effect set {−3,−2,−1,−0.5, 0.5, 1, 2, 3} are shown.

Random forest parameter setting

The classical RF version of Breiman (2001) implemented in the R package randomForest

(Liaw and Wiener; 2002) was used for the studies shown in this chapter. Though this

version implements a biased split selection, it was chosen for implementing the studies

because of its computational speed. With respect to computing time, the RF implementa-

tion of Breiman (2001) by far outperforms the (unbiased) RF implementation of Hothorn,

Hornik and Zeileis (2006). Since settings with a very large number of predictor variables

are considered and RF were repeatedly fit, the unbiased RF version of Hothorn, Hornik

and Zeileis (2006) is not applicable due to its high computational effort. However, only

data settings with continuous predictor variables were chosen to avoid affecting the re-

sults by the biased split selection. Thus it is not expected that a split selection bias would

occur in the studies. Moreover, subsampling was used instead of bootstrapping in order

to avoid possible biases induced by the bootstrap (Strobl et al.; 2007). Subsamples were of

size d0.632ne, with n denoting the total number of observations (Strobl et al.; 2007). The

number of trees in the RF was always set to 5000. All other parameters not mentioned

here were set to the default values so that trees were grown to maximal depth.

Evaluation criteria

One important aspect that was investigated in the studies is the statistical power of the

testing approaches. The statistical power is generally defined as the probability of reject-

ing the null hypothesis, given that the null hypothesis is false. In the current context the

null hypothesis states that the trees’ prediction accuracy does not worsen when permut-

ing the values of a predictor variable. If the null hypothesis is rejected (i.e., prediction

accuracy worsens), there is evidence that the variable is relevant. The statistical power of

the testing approaches was explored by computing the fraction of selected variables (i.e.,

variables with p-value below α = 0.05) of those that have an effect. Note that in Studies

II and III there are predictor variables with different effect strengths; the absolute effect

strengths are 0.5, 1, 2, 3, or 0.2, 0.4, 0.6, 0.8, 1 in the alternative setting. For power consider-
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ations the proportion of selected variables among variables with the same absolute effect

was computed.

The second important aspect concerns the validity of the testing approaches. The type

I error of a test is defined as the probability of rejecting the null hypothesis, given that the

null hypothesis is true. A test is valid if its type I error does not exceed the significance

level α. In the studies it was investigated if the testing procedures control the type I

error by computing the fraction of variables with p-value below α = 0.05 among those

variables that are not relevant. For this purpose one has to know which variables are

not relevant. In Study I none of the variables has an effect and thus none is relevant.

In Study III exactly those variables whose regression coefficient is zero are not relevant.

In Study II, however, due to the correlation between the variables, it is difficult to assess

which variables are not relevant: Predictor variables that do not have an “own” effect (i.e.,

those with coefficient of zero) but are correlated with variables that have an effect, might

significantly improve the trees’ predictive abilities. Therefore in Study II, the regression

coefficients cannot be used to judge which variables are not relevant, because variables

with coefficients of zero can also be relevant. Thus only Study I and III can be used for

investigating the type I error.

In addition to type I error and power investigations, two further related issues were

inspected. The first issue concerns the assumption of the new testing procedure that

under the null hypothesis the variable importance distribution is symmetric around zero.

It was empirically assessed if this is the case for the classical VIM (Eq. 2.7) and the novel

VIM introduced in Section 4.2.3 by plotting the distribution of variable importance scores

observed in Study I, where none of the variables is relevant. If an asymmetric distribution

or a distribution which is shifted along the x-axis is observed, the testing procedure is

expected to have a too high or too low type I error.

The second issue concerns the discrimination between relevant and non-relevant vari-

ables by their importance scores. A testing procedure will have low statistical power if it

is based on a VIM that does not discriminate well between relevant and non-relevant vari-

ables. Thus the discriminative ability was inspected to see if the novel hold-out VIM may

be used in a testing procedure. The classical permutation VIM was considered as “gold

standard”. Its discriminative ability was compared to that of the hold-out VIM. The area

under the curve (AUC) was used as a measure for discriminative ability. It here corre-

sponds to an estimate of the probability that a randomly drawn relevant variable has a

higher importance score than a randomly drawn non-relevant variable (cf. Section 3.3.2).

An AUC value of 1 means that each of the relevant variables receives a higher importance

score than any non-relevant variable, thus indicating perfect discrimination by the VIM.

An AUC value of 0.5 means that a randomly drawn relevant variable receives a higher
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importance score than a randomly drawn non-relevant variable in only half of the cases,

indicating no discriminative ability of the VIM.

4.3. Results

4.3.1. Properties of the classical and novel variable importance

Null distribution

Figure 4.2 shows the null variable importance distributions for the novel hold-out VIM

and the classical VIM for the settings with large predictor space and mtry set to
√

p. Re-

sults are very similar for mtry = p
5 and are shown in Figure C.9.

The null distribution of the hold-out variable importance seems to be symmetric around

zero, and thus seems to satisfy the presumption of a symmetric null distribution. In con-

trast to that, the null distribution of the classical variable importance is not totally sym-

metric. In the studies with p = 100, this asymmetry is much more apparent (Figure C.15):

All distributions are clearly positively skewed showing that a large fraction of variables

have small negative importance scores, while smaller fractions of variables have large

positive importance scores. The null distribution of the cross-validated variable impor-

tance looks very similar for k ≥ 3 (see Figures C.9, C.15). In contrast, the null distri-

bution of the fold-specific variable importance is nearly symmetric around zero (results

not shown). This seems to be contradictory since the cross-validated variable importance

is the average of fold-specific variable importances. Further inspection of the simulation

results reveals that this effect is possibly due to the overlap of RFs. For k ≥ 3 the same ob-

servations are used for creating the RFs of several folds. For example, in the case of three

sets, S1, S2, S3, the first RF is constructed using S2 and S3, the second RF is constructed

using S1 and S3, and the third RF is based on S1 and S2. Each pair of RFs have some part

of the observations in common. For example, the first and the second RFs are both based

on observations from set S3. The variables have similar predictive abilities for the sets

S2 ∪ S3 (on which the first RF is trained) and S1 ∪ S3 (on which the second RF is trained).

If high values for a variable Xj speak in favor of class 1 in the subset S2 ∪ S3, then in the

subset S1 ∪ S3 high values for Xj will also speak in favor of class 1 – even if there is, in

truth, no association between Xj and the class membership. Even in settings without any

associations, the two RFs then often select the same predictor variables for a split. Thus

for k ≥ 3 the same few variables will always obtain high fold-specific importance scores,

as also seen from empirical studies. In Figure 4.3 the fold-specific variable importance

scores for the first two folds (for the Colon Cancer data) are plotted against each other for

different values of k. The fold-specific variable importance computed for 500 repetitions
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Figure 4.2.: Variable importance null distribution when using the classical VIM and the novel
hold-out VIM in settings with large numbers of predictor variables and mtry =

√
p. Distributions

are shown for 500 repetitions of Study I.
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of Study I (no relevant variables) are shown; similar results are obtained for the other data

sets and when using only a subset of p = 100 predictor variables (not shown). For k ≥ 3

the phenomenon just described is clearly observed: There are some variables which have

large positive fold-specific variable importance scores for both folds resulting in a large

cross-validated variable importance score. In contrast, there are not as many variables

with negative fold-specific variable importances for both folds. From that it is clear that

the cross-validated variable importance has a skewed null distribution.

mtry =
√

p

mtry = p/5

Figure 4.3.: Fold-specific variable importance for the first fold plotted against fold-specific vari-
able importance for the second fold for Study I of the Colon Cancer data with k = 2, k = 3, k = 5
and k = 10. Results are shown for settings with large predictor numbers and mtry =

√
p (upper

row) and mtry = p
5 (lower row).

It is expected that similar mechanisms occur with the classical VIM which is based on

the out-of-bag observations, as the classical VIM is similar to the cross-validated VIM in

which k is set to the total number of observations, n. But more research is needed to

fully understand the behavior of the classical VIM. The hold-out VIM, in contrast, is not

affected in the same manner. Here the data is partitioned into the sets S1 and S2. Each

set – and correspondingly each observation within the set – is used for the construction

of one RF. The first RF uses S2 and the second RF uses S1, resulting in two RFs which are

completely independent of each other. The selection of variables for a split in the second

RF is thus independent of which variables have been selected in the first RF. Therefore
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the mechanisms described for k ≥ 3 do not apply for k = 2. This is also supported by the

results in Figure 4.3 (first column) where an equal amount of variables with negative fold-

specific variable importance scores is observed for both folds as variables with positive

fold-specific importance scores for both folds. Although, there is a substantially higher

number of variables with both negative or positive fold-specific importance scores than

variables with one negative and one positive fold-specific importance score. This might

be explained by the fact that the variable importance for the first RF is computed using

observations from set S1, that have been used for the construction of the second RF, and

vice versa. A positive correlation might therefore be expected between the fold-specific

importance scores. However, this has no effect on the symmetry of the null distribution

of the hold-out variable importance.

To conclude, it was empirically shown that the hold-out variable importance has a sym-

metric null distribution, while the classical importance and the cross-validated variable

importance do not have a symmetric distribution. From the studies it is expected that the

novel testing approach controls the type I error exactly, while the naive testing approach

does not.

Discriminative ability

Figure 4.4 shows the discriminative ability of the classical and the hold-out VIMs for

Study II and Study III. Results are shown for the settings with large predictor space and

mtry set to
√

p. The novel hold-out VIM and the classical VIM had very similar discrimi-

nation ability. For Study III the performance of the hold-out VIM was slightly better than

the performance of the classical permutation VIM. The results with mtry = p
5 are very

similar (Figure C.8), and a slightly better performance of the hold-out VIM can be ob-

served in both, Study II and III. The results for the predictor number reduced to p = 100

are in line with these findings and are shown in Figures C.17 and C.18. Therefore the

novel hold-out VIM is considered a good measure to reflect the relevance of variables.

The cross-validated VIM with k ≥ 3 has similar discriminative ability, too (results not

shown). As with the classical VIM, when using the hold-out and cross-validated VIMs

each observation is used for tree construction and for variable importance computation.

In contrast to that, the fold-specific VIM, defined in Eq. (4.1) uses one part of the observa-

tions only for tree construction and the other part for variable importance computation.

By building an average of fold-specific importances one makes sure that all information

is used for tree construction and for variable importance computation.

To summarize, the studies indicate that the hold-out VIM does not have a worse dis-

criminative ability than the classical VIM and thus might be used as an alternative to the

classical VIM. The distribution of hold-out importance scores, in addition, is symmetric
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Figure 4.4.: Discriminative ability of the novel hold-out VIM and the classical VIM for Study II
(left) and Study III (right) in settings with large predictor numbers and mtry =

√
p. Discrimina-

tive ability is measured by the area under the curve (AUC). Values of 0.5 indicate no discrimina-
tive ability (horizontal dotted line).

around zero for variables not associated with the response – a criterion that is not fulfilled

for the classical and the cross-validated VIMs. This motivates the use of the hold-out VIM

in the proposed testing procedure.

4.3.2. Type I error

The type I errors of the three testing approaches were investigated using Study I and are

depicted in Figures 4.5 and 4.6. The type I errors of the novel testing procedure were

always close to the significance level α = 0.05, indicating that the test does not reject

the null hypothesis too often or too rare. These findings are in line with the results in

Section 4.3.1 where it was shown that the null distribution of the hold-out variable im-

portance is nearly symmetric around zero. The results for the naive approach are also

in line with the findings from Section 4.3.1. As expected, the type I error of the naive

approach is systematically different from 0.05. In the studies with large predictor num-

bers, the naive approach always gave slightly too large type I errors if mtry was set to the

default value
√

p, and too small type I errors if mtry was p
5 (Figure 4.5). In the studies

with the predictor number reduced to p = 100, the type I errors were always close to 0.1

for both large and small mtry values, as seen in Figure 4.6. Therefore the naive approach

should only be used with caution.

The non-parametric approach of Altmann et al. (2010) always gave type I errors close

to 0.05 for both the studies with large and smaller (p = 100) predictor numbers. The
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Figure 4.5.: Type I error in Study I for settings with large numbers of predictor variables. Results
are shown for the new testing approach, the naive testing approach and the approach of Altmann
et al. (2010) (non-parametric and parametric). Hypothesis tests were performed at significance
level α = 0.05 (dotted horizontal line).
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type I error for the parametric approach of Altmann et al. (2010) was always consider-

ably smaller than 0.05 in the studies with large predictor numbers, indicating that the

parametric approach is too conservative in settings with large predictor numbers. In the

studies with p = 100, in contrast, the type I error was much closer to 0.05. The vari-

ability in type I errors was smaller for the approach of Altmann et al. (2010) than for the

novel and the naive testing procedures. In settings with the predictor number reduced to

p = 100, the variability was larger for all testing approaches.
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Figure 4.6.: Type I error in Study I for settings with a subset of p = 100 predictor variables.
Results are shown for the new testing approach, the naive testing approach and the approach
of Altmann et al. (2010) (non-parametric and parametric). Hypothesis tests were performed at
significance level α = 0.05 (dotted horizontal line).

4.3.3. Statistical power

Study III Figure 4.7 shows the proportion of selected variables (i.e., variables with p-

value below 0.05) averaged over 500 (200 for the approach of Altmann et al. (2010), resp.)

repetitions of Study III for settings with large numbers of variables. The proportions were
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computed among variables with the same absolute effect size of 0.5, 1, 2 and 3, respec-

tively. In addition, the proportion of selected variables among variables without effect

(i.e., those variables Xj for which β j = 0) are shown. For all testing procedures the pro-

portion of selected variables increases with increasing absolute effect size suggesting that

variables with larger effects are more easily identified than variables with smaller effects.

The parametric approach of Altmann et al. (2010) consistently has the smallest power.

The non-parametric approach of Altmann et al. (2010) and the new and the naive testing

approaches have similar performance. However, the novel approach has slightly higher

statistical power than the non-parametric approach of Altmann et al. (2010), especially in

settings with mtry = p
5 . For mtry =

√
p a slightly higher number of variables was selected

with the naive approach than with the other two approaches for both, non-relevant vari-

ables (i.e., variables Xj with β j = 0) and relevant variables (Xj with β j 6= 0). In contrast,

for mtry = p
5 fewer variables were selected with the naive approach. The results are in

line with the results in Section 4.3.2, where it was shown that the type I error was smallest

for the non-parametric approach of Altmann et al. (2010), and was higher (lower) for the

naive approach than for the novel approach if mtry was set to the default value
√

p (the

value p
5 ).

To conclude, the novel testing approach showed the best performance in the settings

with large numbers of variables because it consistently had the highest power while pre-

serving the type I error.

However, the statistical power of all testing procedures was low. In the studies with a

subset of p = 100 predictor variables, much higher statistical power for all approaches

is observed (Figure 4.8). The naive approach did not preserve the type I error in the

settings with reduced predictor space. This can be seen when inspecting the proportion

of rejections among predictor variables Xj with β j = 0 in Figure 4.8. The same was seen

from the results of Study I (Figure 4.6). The novel testing approach has similar – and on

average even slightly higher – statistical power than the non-parametric and parametric

approaches of Altmann et al. (2010).

Note that the results presented so far are averaged over all repetitions of Study III.

Thus, there is no information on the variability in the selected number of variables with

effect. Further inspection reveals, however, that the variabilities for the naive approach,

the novel approach and the non-parametric approach of Altmann et al. (2010) are similar

(see Figures C.10 - C.14, C.19 - C.23). The variability for the parametric approach of

Altmann et al. (2010), in contrast, was smaller, which is due to the fact that the approach

was very conservative and selected only few variables.

Study II The results for Study II with large variable numbers are shown in Figure 4.9.

The proportion of selected variables was always largest when using the novel testing ap-
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Figure 4.7.: Proportion of rejected null hypothesis among predictor variables Xj with specified
absolute effect size |β j| ∈ {0, 0.5, 1, 2, 3} in settings with large predictor numbers. The mean
proportions over 500 (200 for the approach of Altmann et al. (2010), resp.) repetitions of Study
III are shown when using the novel approach, the naive approach and the approach of Altmann
et al. (2010), with mtry set to

√
p (upper panel) and p

5 (lower panel). The red horizontal line
represents the 5% significance level.
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Figure 4.8.: Proportion of rejected null hypothesis among predictor variables Xj with specified
absolute effect size |β j| ∈ {0, 0.5, 1, 2, 3} in settings with a subset of p = 100 predictor variables.
The mean proportions over 500 (200 for the approach of Altmann et al. (2010), resp.) repetitions
of Study III are shown when using the novel approach, the naive approach and the approach
of Altmann et al. (2010), with mtry set to

√
100 (upper panel) and 100

5 (lower panel). The red
horizontal line represents the 5% significance level.
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Figure 4.9.: Proportion of rejected null hypothesis among predictor variables Xj with specified
absolute effect size |β j| ∈ {0, 0.5, 1, 2, 3} in settings with large predictor numbers. The mean
proportions over 500 (200 for the approach of Altmann et al. (2010), resp.) repetitions of Study
III are shown when using the novel approach, the naive approach and the approach of Altmann
et al. (2010), with mtry set to

√
p (upper panel) and p

5 (lower panel). The red horizontal line
represents the 5% significance level.

proach. Thereafter, the proportion decreases bit by bit for the naive testing approach,

the non-parametric approach of Altmann et al. (2010) and the parametric approach of

Altmann et al. (2010). The approaches of Altmann et al. (2010) identified far fewer vari-

ables as relevant than the naive and the novel testing procedures. With the parametric

approach, the proportion of selected variables was very low, especially if the predictor

numbers were large and mtry was set to
√

p. It was even lower than 0.05, indicating that

the parametric approach of Altmann et al. (2010) is too conservative. This was not the

case for the non-parametric approach of Altmann et al. (2010).

The results for settings with p = 100 are shown in Figure C.16. As with Study III,

more variables were selected by all testing approaches in these settings. In contrast to the

results shown in Figure 4.9 for settings with large variable numbers, the proportion of

selected variables was always largest when using the naive approach.

Overall, the proportion of identified variables Xj with β j = 0 was very large and greatly

exceeds 0.05 in many of the settings. This is attributable to the correlations between the

variables. From the construction of the naive and the novel testing approach, variables

which do not have an “own” effect, but are correlated with variables with effect, may be
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considered as relevant as long as they improve the trees’ prediction accuracies. Therefore,

even variables that do not have a direct influence are very often identified by the naive

and novel testing approaches – but still not as often as variables with direct influence. In

contrast to that, it is not clear if the approach of Altmann et al. (2010) is also supposed to

select variables that do not have a direct influence but correlate with variables that have

an effect. Therefore in settings with correlated predictor variables it is not possible to

evaluate which testing approach has better performance. When based on the conditional

importance of Strobl et al. (2008), the testing procedures would possibly not as often

select variables that are only associated with the response through their correlation to

truly influential variables.

4.4. Discussion

During the last years, several approaches have been developed for hypothesis testing

based on RF’s VIMs (see Hapfelmeier and Ulm; 2013, and references therein). The exist-

ing approaches are computationally demanding and require the repeated computation of

forests. In this chapter, a computationally fast heuristic approach for a variable impor-

tance test was presented, that tests if a predictor variable significantly improves the trees’

predictive abilities. The new testing procedure is based on a slightly modified version of

the permutation VIM, whose null distribution was shown to be symmetric around zero.

The classical permutation variable importance, in contrast, has a skewed null distribution

and thus seems inappropriate for the application of the testing procedure. The testing ap-

proach based on the classical permutation VIM worked quite well for settings with huge

predictor numbers, but did not preserve the type I error in settings with fewer (p = 100)

predictor variables. It should therefore be used with caution. The use of the testing pro-

cedure which is based on a modified version of the permutation VIM, is strongly recom-

mend. This approach has consistently been shown to precisely preserve the type I error

in the considered studies with categorical response. Moreover, it successfully identified

at least as many relevant predictor variables as the testing approach of Altmann et al.

(2010).

The novel testing procedure focuses on the identification of predictor variables which

significantly improve the trees’ predictive abilities. The permutation VIM, by its defi-

nition, reflects the improvement in predictive abilities if a variable is used for making

the prediction. Thus, there is a monotone relationship between the value of the variable

importance and the p-value derived from the new testing approach: predictor variables

with higher importance scores obtain smaller p-values. This must not necessarily be the

case with permutation-based approaches. This is obvious as Altmann et al. (2010) state
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that their approach corrects for the bias in the Gini VIM which ranks, for example, vari-

ables with many categories higher than variables with fewer categories. In this case a

re-sorting of variables occurs when computing p-values from the Gini importance based

on the proposed permutation procedure. If using a parametric function for the null dis-

tribution the permutation-based approach of Altmann et al. (2010) was very conserva-

tive in the studies presented in this chapter and had much smaller statistical power than

the novel approach. When deriving p-values in a non-parametric way, that is without

making any distributional assumptions, the testing approach of Altmann et al. (2010)

showed almost the same statistical power as the novel approach. This suggests that the

poor performance is related to the assumed parametric distribution of the importance

scores of unrelated variables. In the studies the normal distribution was used for model-

ing the variable importance distribution of unrelated variables. Studies indicate that the

assumption of a normal distribution is not reasonable due to the skewness of the distri-

bution of null importance scores (data not shown). Researchers who apply the approach

of Altmann et al. (2010) to high-dimensional data should therefore consider alternative

distributions or approximate the null distribution in a non-parametric way.

Overall, the statistical power of all testing procedures was low in studies including

more than 2000 predictor variables. The power of the VIMs to discriminate between rel-

evant and non-relevant variables was poor, too. The approach of Altmann et al. (2010),

which showed high statistical power in other studies (Molinaro et al.; 2011; Hapfelmeier

and Ulm; 2013), also had very low power. This discrepancy is likely related to the fact

that the existing studies included only a few variables, while the studies presented in this

chapter are based on several thousands of variables. Molinaro et al. (2011) for example fo-

cused on candidate-gene studies and considered only a few dozens of the features. When

performing the studies with a subset of 100 variables the statistical power substantially

increased, and the VIMs discriminated much better between relevant and non-relevant

variables. This suggests that the issue of detecting relevant features by VIMs is much

more difficult for genome-wide association studies, including hundreds of thousands to

millions of features, than for candidate-gene studies, that include only a few hundreds of

features.

The novel testing approach is, however, not applicable to any high-dimensional data

set. It is expected that it may perform poorly if only a few non-positive importance scores

are observed. If there are only a few variables with negative importance score or im-

portance score of zero, the approximation of the variable importance null distribution

might be too imprecise and might lead to inaccurate p-values. In the most extreme set-

ting (100 predictor variables in total and correlations between predictor variables), on

average about 70 non-positive importance scores were observed (for the Prostate Cancer
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data even only 40). However, the novel approach still worked surprisingly well. Never-

theless, in settings (i) with small predictor numbers (below 200), or (ii) with very strong

correlations between predictor variables, or (iii) with high expected signal-to-noise ra-

tio, it is recommended that users look closely at the number of non-positive importance

scores. If this number is small, it is recommended that users be careful when applying

the novel testing approach because it is not clear if a small number of non-positive im-

portance scores is sufficient to derive p-values. In such cases one should consider the

computationally more demanding alternatives, such as the approach by Altmann et al.

(2010), which had very similar performance in the studies presented in this chapter.



5. Hypothesis testing on bootstrap

samples

Some approaches have been proposed in the biometrical field where hypothesis testing is

performed on a bootstrap sample as if it were the original sample. However, the resulting

p-values do not represent what would be obtained on the original data. This chapter

explores the reasons for this and assesses the practical impact on procedures relevant to

biometrical applications. It is mainly based on Janitza, Binder and Boulesteix (2016) but

also contains some results which were presented in Rospleszcz et al. (2016), in which I am

the joint first co-author. The work of Rospleszcz et al. (2016) is a result of a master thesis

which was supervised by myself.

The structure of this chapter is as follows: Section 5.1 outlines the problem which is

addressed in this chapter. In Section 5.2 it is shown through theoretical and empirical

results that there is increased type I error for both the Z-test and the likelihood ratio

(LR) test when using bootstrapped p-values. The distribution of bootstrapped p-values

is subsequently explored in this section. In Sections 5.3, 5.4 and 5.5 the consequences for

three practices are investigated, namely, bootstrapping p-values for multivariable model

building (Application 1; Rospleszcz et al. (2016)), for variable ranking (Application 2) and

for assessing the variability of p-values (Application 3).

5.1. Introduction

Bootstrap procedures are becoming more and more widely used, as indicated by the now

large number of reference textbooks on the subject (Chernick; 2008; Manly; 2006; Good;

2005; Davison; 1997). Bootstrapped estimates can be used to derive for example the vari-

ance of an estimator, a quantile of interest or a confidence interval (Davison; 1997). This

chapter deals with cases where a p-value of a standard statistical test (such as, e.g., the

Z-test or the LR test) takes the role of the estimator which is being bootstrapped. More

precisely, p-values are meant that result from statistical tests performed using a bootstrap

sample as the data set as if it were the original data set, ignoring that it has actually

been drawn with replacement from another sample. It is important to note that such pro-
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cedures are fundamentally different from obtaining p-values by the so-called bootstrap

tests (Efron and Tibshirani; 1993). Bootstrap tests are an alternative to inference based

on parametric assumptions when these assumptions are questionable or when such a

method simply does not exist. Bootstrap tests as well as their pitfalls and some potential

solutions have been extensively discussed in the literature in recent decades; see Efron

and Tibshirani (1993) for an overview. In this thesis p-values obtained by these boot-

strap tests are not referred to when speaking of bootstrapped p-values. Instead p-values

are meant that are obtained from performing any statistical test using a bootstrap sam-

ple as the data set as if it were the original, which is a completely different approach.

Such bootstrapped p-values have been far less investigated than the famous bootstrap

tests that are described for example in Efron and Tibshirani (1993). However, procedures

based on bootstrapped p-values are not uncommon in the literature, especially in bio-

metrical applications. They have been used in the statistics and bioinformatics literature

for investigating the stability of stepwise model selection procedures (Chen and George;

1985; Altman and Andersen; 1989; Sauerbrei and Schumacher; 1992), for ranking genes

with respect to their differential expression (Mukherjee et al.; 2003), for estimating the

variability of p-values which one would observe when repeating an experiment multi-

ple times (Boos and Stefanski; 2011) or, in a completely different context, for deciding

which variable should be selected for splitting in random forests (Hothorn, Hornik and

Zeileis; 2006). In all these applications it is essential that quantities such as p-values com-

puted on bootstrap samples represent what would be obtained on the original data or

new data drawn from the overall population. Some articles suggest that this might often

not be the case (Bollen and Stine; 1992; Strobl et al.; 2007). These handle very specific

cases and a simple general theory to explain the problem is lacking. Further, the practi-

cal consequences for biometrical applications are to date largely unknown. This chapter

addresses these problems. It gives new theoretical insights and investigates the practical

consequences of three specific applications proposed in the literature which are based on

bootstrapped p-values.

5.2. Bootstrapping p-values

5.2.1. Type I error

This section outlines the computation of p-values based on a bootstrap sample when

ignoring that the sample was drawn from the empirical distribution and not from the

true distribution, and shows that the type I error of the corresponding tests is increased.

The Z-test and the LR test are used as examples.
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Z-test

Let x = (x1, . . . , xn)> be realizations drawn from N(µ, σ2) and let F̂ denote the corre-

sponding empirical distribution with known σ2. The test statistic for testing the null

hypothesis H0 : µ = µ0 against the alternative hypothesis H1 : µ 6= µ0 is given by

Z =
√

n(x̄ − µ0)/σ, with x̄ denoting the sample mean. Then Z follows a normal distri-

bution with E(Z) =
√

n(µ− µ0)/σ and Var(Z) = 1.

Now let x∗ = (x∗1 , . . . , x∗n)> denote the realizations of a bootstrap sample that was

drawn from F̂ with replacement. The bootstrapped test statistic from a Z-test with hy-

potheses H0 : µ = µ0 and H1 : µ 6= µ0 is defined as

Z∗ =
√

n
x̄∗ − µ0

σ
, (5.1)

with x̄∗ = 1
n ∑n

i=1 x∗i . If incorrectly assuming that Z∗ follows a standard normal distri-

bution, the corresponding bootstrapped p-value for an observed test statistic Z∗ is com-

puted as

p∗ = 2 · (1−Φ(|Z∗|)), (5.2)

with Φ denoting the cumulative distribution function of the standard normal distribu-

tion. The following theorem is used to show that Z-tests for the test statistic Z∗ have

increased type I error, or equivalently, that decisions made on bootstrapped p-values, p∗,

lead to systematically too many false positive findings.

Theorem 1

Let the bootstrapped test statistic for a Z-test with H0 : µ = µ0 and H1 : µ 6= µ0 be

defined as in Eq. (5.1). The unconditional expectation of this bootstrapped Z-test statistic

Z∗ is E(Z∗) = E(Z), while the unconditional variance of Z∗ is Var(Z∗) = 2.

Proof

The expectation of Z∗ is derived as

E(Z∗) = E(E(Z∗|F̂)) = E(Z).

The variance of Z∗ can be split into two parts,

Var(Z∗) = Var(E(Z∗|F̂)) + E(Var(Z∗|F̂)). (5.3)

The first term reduces to

Var(E(Z∗|F̂)) = Var(Z) = 1. (5.4)
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Hypotheses Sign. threshold Type I error
for Z for Z∗

H0 : µ = µ0, H1 : µ 6= µ0 z0.95 = 1.64 0.10 0.24
(two-sided test) z0.975 = 1.96 0.05 0.17

z0.995 = 2.58 0.01 0.07
H0 : µ ≤ µ0, H1 : µ > µ0 z0.90 = 1.28 0.10 0.18

(one-sided test) z0.95 = 1.64 0.05 0.12
z0.99 = 2.33 0.01 0.05

Table 5.1.: Type I error when performing two-sided and one-sided upper Z-tests with pre-

defined significance thresholds for test statistic Z =
√

n( 1
n ∑ Xi − µ0)/σ with X1, . . . , Xn

iid∼
N(µ, σ2), and for a bootstrapped test statistic Z∗ =

√
n( 1

n ∑ X∗i − µ0)/σ.

As far as the second term in (5.3) is concerned, the basic assumption underlying bootstrap

estimation of the variance, which can be easily shown in the present simple case (Davison;

1997), is that Var(Z∗|F̂) approximates Var(Z). Using this result one obtains for the second

term

E(Var(Z∗|F̂)) = E(Var(Z)) = 1. (5.5)

Summing (5.4) and (5.5), Eq. (5.3) results in Var(Z∗) = 2.

�

According to Theorem 1, the unconditional variance of the bootstrapped statistic Z∗ is

twice the variance of Z. Thus under the null hypothesis that H0 : µ = µ0 (or H0 : µ ≤ µ0;

H0 : µ ≥ µ0 for one-sided tests), the marginal distribution of the bootstrapped statistic

Z∗ is not the standard normal distribution (see also Appendix C.3 for empirical results).

Using the significance threshold z1− α
2
, the (1− α

2 )-quantile of the standard normal dis-

tribution, the type I error is 2 · (1−Φ( 1√
2
z1− α

2
)), where Φ is the standard normal distri-

bution function. For a one-sided lower (upper) test with null hypothesis H0 : µ ≥ µ0

(H0 : µ ≤ µ0), the significance threshold zα (z1−α) is used and the type I error is Φ( 1√
2
zα)

(and 1− Φ( 1√
2
z1−α), respectively). Table 5.1 shows examples for the type I error when

performing Z-tests for test statistics Z and Z∗. It can be seen that the type I error is sub-

stantially increased when performing Z-tests on bootstrap samples as if they were the

original samples.

Likelihood Ratio test

The likelihood ratio (LR) test is used for example when comparing the fit of two nested

models, where one model contains restrictions that are not imposed in the other. The

likelihood of the restricted model, called the submodel in the following, is termed L0,

while L1 corresponds to the likelihood of the unrestricted model. The test statistic for the
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LR test is defined as twice the difference in log-likelihoods:

T = −2(log(L0)− log(L1)). (5.6)

The test statistic T asymptotically follows a non-central χ2-distribution with d f degrees of

freedom, which is calculated as the difference in degrees of freedom of the two models,

and with non-centrality parameter κ. The asymptotic expectation of the test statistic is

given by AE(T) = d f + κ and the asymptotic variance is AVar(T) = 2d f + 4κ. Under the

null hypothesis which states that the submodel is true, the non-centrality parameter is

zero and thus T asymptotically follows a central χ2(d f )-distribution and has asymptotic

expectation AE(T) = d f and asymptotic variance AVar(T) = 2d f .

The corresponding bootstrapped test statistic for the LR test is

T∗ = −2(log(L∗0)− log(L∗1)), (5.7)

with L∗0 and L∗1 denoting the likelihoods for the submodel and the unrestricted model,

respectively, both evaluated on a bootstrap sample. The bootstrapped p-value for an

observed T∗ is defined as

p∗ = P(Λ ≥ T∗|H0), (5.8)

with Λ ∼ χ2(d f ).

Bollen and Stine (1992) gave an approximation for the unconditional asymptotic ex-

pectation of the test statistic T∗. They report it as being twice as large as the asymptotic

expectation of T in the original sample. They also report the unconditional asymptotic

variance of T∗ to be larger than the asymptotic variance of T. However, their derivations

seem to lack in theoretical foundations, since it is not clear that the asymptotic conditional

variance of T∗ equals 2d f + 4T. Empirical results shown in Janitza, Binder and Boulesteix

(2016) (for the LR test with 1 degree of freedom) and Rospleszcz et al. (2016) (for the LR

test with varying degrees of freedom) are in line with the theoretical results of Bollen and

Stine (1992). The empirical results of Rospleszcz et al. (2016) are shown in Figure 5.1; the

LR test statistic was computed based on 10000 bootstrap samples for the comparison of

two nested models: the intercept model and the model including a categorical predictor

variable – not associated with the response – with 2, 3, 4, 5, 6 and 7 categories. Each

bootstrap sample was generated from a different original sample including n = 1000 ob-

servations. The results of Rospleszcz et al. (2016) in Figure 5.1 clearly show a discrepancy

between the distribution of T and that of T∗. The probability mass in the tail of the dis-

tribution of T∗ is larger than that of T, which leads to increased type I error for LR tests

performed on bootstrap samples. Moreover, the discrepancy between the distributions
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for T and T∗ is greater for tests with more degrees of freedom. This leads to type I errors

which are more increased for tests with larger degrees of freedom. Note that, in contrast

to the Z-test, there is no straightforward derivation of the type I error for the LR test be-

cause the marginal distribution of T∗ is unknown. Therefore empirical results are shown

in the following. Table 5.2 presented in Rospleszcz et al. (2016) shows the empirical type

I errors for LR tests performed with significance thresholds χ2
d f ,0.95 (i.e., the 95% quantile

of the χ2-distribution with d f degrees of freedom) for bootstrapped test statistics T∗. The

empirical type I errors are also shown when using the test statistics T. There is a large

increase in type I error in the empirical studies, especially for LR tests with many degrees

of freedom. While for 1 degree of freedom the type I error is increased by factor 3, for 6

degrees of freedom it is increased by factor 8.
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Figure 5.1.: Empirical density functions for LR test statistics T (solid lines) and T∗ (dashed lines)
for the comparison of the linear regression model with only the intercept to the model including
the intercept and one categorical predictor variable with 2, 3, 4, 5, 6 and 7 categories (Rospleszcz
et al.; 2016).

d f = 1 d f = 2 d f = 3 d f = 4 d f = 5 d f = 6
χ2

d f ,0.95 3.84 5.99 7.81 9.49 11.07 12.59
Empirical type I error for T 0.055 0.051 0.0483 0.052 0.049 0.049

for T∗ 0.169 0.223 0.272 0.320 0.353 0.393

Table 5.2.: Empirical type I errors when performing LR tests with significance thresholds χ2
d f ,0.95

for test statistics T and T∗. Bootstrapped and original test statistics, T and T∗, were obtained from
LR tests with varying degrees of freedom (d f ) (Rospleszcz et al.; 2016).

In contrast to the studies of Rospleszcz et al. (2016), the studies in Janitza, Binder and

Boulesteix (2016) assess the increase in type I error in a real data application, in which
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some of the predictors might be associated with the response. For this purpose the

NHANES data was used; see Appendix B for a description of the NHANES data. In

addition to the setting with associations, settings with realistic data were investigated

where none of the predictors was associated with the response. To obtain data sets with-

out any associations the response of the NHANES data was randomly permuted to break

any potential association between the 28 covariates and the response. This was repeated

1000 times to obtain a total of 1000 data sets in which no associations are present. The

resulting data sets are called “permuted NHANES data” to distinguish them from the

original NHANES data with unpermuted response.

The association between CRP level and each of the 28 covariates was univariately tested

by means of an LR test. The LR test was performed to test if the full model contain-

ing the intercept and covariate Xj, j ∈ {1, 2, . . . , 28} gives a better fit than the submodel

containing only the intercept. An association was considered significant if the p-value

was equal to or less than 0.05. The association between the response and each variable

Xj, j = 1, . . . , 28, was tested in the original NHANES data sets and in bootstrap sam-

ples drawn from the original NHANES data sets. For the unpermuted NHANES data

the associations were tested in B = 10000 bootstrap samples, and for the 1000 permuted

NHANES data sets tests were performed in 1000× B bootstrap samples. Figure 5.2 shows

the relative frequencies of significant associations in the bootstrap samples for the unper-

muted (left panel) and the permuted (right panel) NHANES data. For bootstrap samples

drawn from the unpermuted NHANES data on average (taken over B = 10000 boot-

strap samples) there were 18.4 significant associations, while in the original unpermuted

NHANES data 17 of the 28 associations were significant. For the bootstrap samples of the

permuted NHANES data the average number (taken over all 1000× B bootstrap samples)

of significant associations according to bootstrapped p-values was 6.12. For the original

permuted NHANES data in contrast, there were on average 1.36 significant associations

(over 1000 original samples).

The same computations were performed using subsamples instead of bootstrap sam-

ples, with results shown in Figure 5.3. From theory it is clear that p-values obtained from

subsamples systematically deviate from p-values obtained for the original sample due to

the smaller sample size and the decreased power to detect associations in subsamples:

this is clearly seen in Figure 5.3. On average 14.7 of the 28 covariates were significantly

associated with the CRP level in subsamples compared to 17 significant associations in

the original sample.

In the case where no associations exist – the NHANES data with permuted response –

a comparable number of significant findings can be observed in subsamples and in the

1000 original samples: there were on average 1.40 significant associations in subsamples



82 5. Hypothesis testing on bootstrap samples

11 13 15 17 19 21 23 25

NHANES data

Number of significant associations

R
el

at
iv

e 
fr

eq
ue

nc
y

0.
00

0.
05

0.
10

0.
15

0.
20

0 2 4 6 8 10 13 16 19

NHANES data
 with permuted response

Number of significant associations

R
el

at
iv

e 
fr

eq
ue

nc
y

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 5.2.: Relative frequency of bootstrap samples with specified number of significant results
when univariately testing the association between CRP level and 28 covariates. The total number
of bootstrap samples was 10000 for the unpermuted NHANES data, and 10000× 1000 for the
permuted NHANES data. The dark gray bar indicates the number of significant associations in
the unpermuted NHANES data (left) and the average number of significant associations in the
1000 permuted NHANES data sets (right).
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Figure 5.3.: Relative frequency of subsamples with specified number of significant results when
univariately testing the association between CRP level and 28 covariates. The total number of
bootstrap samples was 10000 for the unpermuted NHANES data, and 10000× 1000 for the per-
muted NHANES data. The dark gray bars indicate the number of significant associations in the
unpermuted NHANES data (left) and the average number of significant associations in the 1000
permuted NHANES data sets (right).

compared to 1.36 significant findings in the 1000 original samples. This is in line with

the fact that tests performed on subsamples – in contrast to tests performed on bootstrap

samples – do not have increased type I error, as shown for example by Sauerbrei et al.

(2011). Accordingly, p-values derived on subsamples may be used for testing a specific

hypothesis.



5.2 Bootstrapping p-values 83

5.2.2. Distribution of bootstrapped p-values

Note that in Section 5.2.1 the marginal distribution of the bootstrapped test statistic was

considered to prove that the type I error is increased when using bootstrapped p-values.

However, a marginal representation does not give any information on the distribution of

bootstrapped p-values for a specific sample x. Moreover, it does not provide any infor-

mation on whether the bootstrapped p-value can be expected to be similar to the p-value

of an observed sample x. These issues are addressed in the following for both the Z-test

and the LR test.

Z-test

Let us consider the setting of normally distributed variables and the null hypothesis

which states that the population mean equals µ0. Now let Z be the test statistic com-

puted based on the observed sample x, and let Z∗ be the bootstrapped test statistic which

follows a N(Z, 1) distribution conditional on x (cf. Section 5.2.1). Figure 5.4 shows dis-

tributions for Z∗|x, i.e., the distributions are conditional on the sample x. Conditional

distributions are shown for three realizations of x with corresponding absolute Z values,

namely (a) a large absolute Z value, (b) a small absolute Z value and (c) an intermediate

absolute Z value. From this illustration it can be seen that the distribution of bootstrapped

p-values – and with that, the discrepancy between bootstrapped p-values and the original

p-value – depends on the realized sample and the respective test statistic Z:

(a) If the observed |Z| is large (upper panel of Figure 5.4), there is approximately a 50%

chance of having a bootstrapped p-value, p∗, which is larger than p, the observed

p-value based on x (indicated by the dark gray area), and a 50% chance of having

a smaller p∗ (light gray area). In this scenario p∗ would be considered to be a good

approximation of p.

(b) If the observed value for |Z| is close to 0 (middle panel), Z∗ follows approximately

a standard normal distribution, and the bootstrapped p-values are uniformly dis-

tributed on [0, 1]. Thus a p∗ of 0.5 (i.e., the expectation or median of a variable

U ∼ U[0, 1]) is expected. However, p is 1. In cases where Z is close to 0, the boot-

strapped p-value is obviously not a good approximation of the p-value of the origi-

nal sample.

(c) If |Z| takes an intermediate value, say, 1 (lower panel), the situation is similar to (a).

However, in contrast to (a), there is a moderate probability for negative Z∗ values

smaller than −|Z|, or, in mathematical terms, P(Z∗ < −|Z||x) is much larger than

0 and cannot be ignored. Therefore, the probability of obtaining p∗ < p is greater
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Figure 5.4.: Conditional distribution of Z∗ for a fixed sample x with observed test statistic Z.
Three different scenarios are considered: (a) |Z| is large, (b) |Z| is small, and (c) |Z| is interme-
diate. The standard normal distribution is indicated by the solid black line. The light (dark)
gray area represents the bootstrapped test statistics Z∗ with corresponding bootstrapped p-value
smaller (larger) than the p-value derived for the observed test statistic Z.

than obtaining p∗ > p. This shows that bootstrapped p-values are not a good ap-

proximation of the p-value of the original sample if |Z| takes an intermediate value:

in over 50% of the bootstrap samples one would expect p∗ smaller than p.

To summarize, the smaller the |Z| (or, the larger the p), the greater the difference between

the median bootstrapped p-value and p. As |Z| tends to infinity (or, p tending to 0), the
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difference becomes smaller. Empirical studies support these findings (not shown).

Note, however, that these considerations are for the more commonly used two-sided

test, but do not generalize to the one-sided Z-test. In the following the one-sided Z-test

with null hypothesis H0 : µ ≤ µ0 and alternative hypothesis H1 : µ > µ0 is considered.

Three hypothetical scenarios are considered: in scenario (a) a positive value for the test

statistic Z is observed, in (b) a negative Z value is observed, and in (c) Z is close to 0. The

respective conditional distributions of bootstrapped test statistics are shown in Figure 5.5.

The light (dark) gray area represents the bootstrapped test statistics Z∗ with correspond-

ing bootstrapped p-value smaller (larger) than the p-value derived for the observed test

statistic Z. For all scenarios exactly 50% of the bootstrapped p-values are expected to be

larger and 50% smaller than the p-value based on the original sample (i.e., the median

bootstrapped p-value is close to the p-value computed from Z). To conclude, for the one-

sided Z-test bootstrapped p-values give a good approximation of the p-values computed

from the original data.

One might argue that it was already shown in Section 5.2.1 that bootstrapped p-values

do not approximate the original p-values very well. It is important to note that the in-

creased type I error does not imply that bootstrapped p-values are a poor approxima-

tion of original p-values. For the one-sided Z-test for example, tests performed using

bootstrapped p-values have increased type I error, but bootstrapped p-values are a good

approximation of the originals.

Likelihood Ratio test

The considerations made for the two-sided Z-test apply to the LR test in a similar way. Let

us assume for the moment that the null hypothesis (that the submodel is true) holds and

that the LR test statistic T equals zero for an observed sample, which means that in this

observed sample the derived likelihood of the submodel is exactly equal to the likelihood

of the unrestricted model. Then the bootstrap samples are drawn from a distribution

in which H0 is true. Accordingly, the bootstrapped test statistic T∗ follows a central χ2-

distribution and the bootstrapped p-value is uniformly distributed on [0, 1]. As with the

two-sided Z-test, the median and expectation of the bootstrapped p-value is 0.5, while

the p-value for the original sample is 1. Bootstrapped p-values for the LR test thus cannot

be expected to be close to p-values computed on the original data.

It is difficult to explore the distribution of bootstrapped p-values dependent on differ-

ent values of the LR test statistic T by theoretical arguments, as it was done for the Z-test,

since the conditional distribution of T∗ given the observed sample is unknown. There-

fore, the discrepancy between bootstrapped p-values and original p-values was further

investigated using empirical studies of the NHANES data. LR tests for each of the 28
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Figure 5.5.: Conditional distribution of Z∗ for a fixed sample x with observed test statistic Z
when performing a one-sided test with hypotheses H0 : µ ≤ µ0 and H1 : µ > µ0. Three sce-
narios are considered: (a) Z is positive, (b) Z is negative, and (c) Z is close to 0. The standard
normal distribution is indicated by the gray solid line. The light (dark) gray area represents the
bootstrapped test statistics Z∗ with corresponding bootstrapped p-value smaller (larger) than the
p-value derived for the observed test statistic Z.

variables were performed to test the null hypothesis (the submodel containing only the

intercept is true) against the alternative hypothesis (the model containing the intercept

plus the respective variable is true). This was done for the original data as well as for

10000 bootstrap samples and 10000 subsamples drawn from each original data set. As

original data sets both the unpermuted NHANES data and 1000 permuted NHANES

data sets were used. Figure 5.6 (left panel) shows the median bootstrapped p-values for

each of the 28 variables plotted against the p-values obtained for the original sample.
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Black points represent the p-values for LR tests with 1 degree of freedom (performed for

metric and binary variables), while the gray points correspond to tests with 3 or more

degrees of freedom (for categorical variables with 4, 5, 6 or 12 categories). For the sake

of clarity the results are shown only for the first 10 permuted NHANES data sets (right

panel). Note that since there are 10 data sets, 10 × 28 points are plotted. For LR tests

with 1 degree of freedom a similar situation to that for the Z-test is observed: when the

p-value is small, it is approximated well by the median bootstrapped p-value; however,

for large p-values the approximation is not good. For LR tests with 3 or more degrees of

freedom it seems bootstrapped p-values are never a good approximation, independent of

whether the original p-values are small or large.
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Figure 5.6.: Median p-values obtained for testing the association between CRP level and each of
the 28 covariates in 10000 bootstrap samples, plotted against the p-values of the original sample,
for the NHANES data. Black points represent the p-values for LR tests with 1 degree of freedom,
and gray points correspond to LR tests with 3 or more degrees of freedom. Points lying on the
diagonal line would indicate agreement between p-values derived on the original NHANES data
and bootstrapped p-values. Left: Results obtained for the unpermuted NHANES data. Right:
Results obtained for 10 permuted NHANES data sets in which there are no true associations
between covariates and the CRP level (via permuting values for CRP level).

Figure 5.7 shows the median subsampled p-values plotted against the p-values ob-

tained for the original sample. It can be observed that subsampled p-values were larger

than p-values for the original sample if the latter were in the range [0, 0.6]. If p-values

obtained for the original sample were above 0.6, subsampled p-values were smaller. It is

clear that due to a different sample size subsampled p-values are not a good approxima-

tion of p-values for original samples.
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Figure 5.7.: Median p-values obtained for testing the association between CRP level and each
of the 28 covariates in 10000 subsamples, plotted against the p-value of the original sample, for
the NHANES data. Black points represent the p-values for LR tests with 1 degree of freedom,
and gray points correspond to LR tests with 3 or more degrees of freedom. Points lying on
the diagonal line would indicate agreement between p-values derived on the original NHANES
data and p-values derived on subsamples. Left: Results obtained for the unpermuted NHANES
data. Right: Results obtained for 10 permuted NHANES data sets in which there are no true
associations between covariates and the CRP level (via permuting values for CRP level).

5.3. Application 1: Bootstrapped p-values for

multivariable model building

Multivariable regression is commonly used in biometrical applications to model the as-

sociation between an outcome and candidate predictor variables. Automated selection

procedures such as stepwise selection, forward selection or backward elimination, are of-

ten used in this context. These methods are usually based on information criteria such

as the Akaike Information Criterion (AIC; Akaike; 1973), or on hypothesis tests such as

the LR test. However, such model selection strategies are known to be highly unstable

since small changes in the data might lead to a substantially different model. A popular

bootstrap-based method which is often applied in biometrical applications investigates

the stability of stepwise model selection procedures. This procedure makes use of the

bootstrap to generate pseudo-samples, and model selection is performed on each boot-

strap sample, where p-values of the LR test are used to decide on the inclusion of vari-

ables in the model (Chen and George; 1985; Altman and Andersen; 1989; Sauerbrei and

Schumacher; 1992). The resulting “bootstrap models” can then be examined. Moreover,

the importance of variables might be assessed from their occurrence in the models (see,
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e.g., Sauerbrei and Schumacher; 1992). The proportion of bootstrap samples for which

a variable is selected is often referred to as the variable’s inclusion frequency. In addition

to their use in assessing the importance of variables, the variables’ inclusion frequencies

also provide useful information on the model stability (see, e.g., De Bin et al.; 2016).

Rospleszcz et al. (2016) investigated models that were obtained when applying back-

ward elimination based on the LR test on bootstrap samples. Their data settings included

both metric and categorical predictor variables with different numbers of categories. In

the backward elimination procedure a categorical predictor variable was eliminated from

a model as a whole. This means that all parameters related to a categorical variable are ei-

ther in a model or not in a model. The decision on the elimination of categorical variables

from a model was made based on LR tests that test if the model including all the param-

eters related to a variable gives a better fit than the submodel which does not contain any

of the parameters related to the variable. This global testing approach has the advantage

of avoiding the possibility that categorical predictor variables with more categories are

included more often in a model due to multiple testing.

Some of the results which were presented in Rospleszcz et al. (2016) are described in

the following. The NHANES data was used for their investigations. Note that in con-

trast to the studies presented in Section 5.2, only the original, that is, unpermuted version

of the NHANES data was considered. Models were obtained for the original NHANES

data and for 5000 bootstrap samples and 5000 subsamples of the NHANES data. The full

model from which variables were successively excluded contained all 28 variables which

are potentially associated with the CRP level (see Appendix B for details on the NHANES

data). For the original NHANES data a model was selected which included the 11 pre-

dictor variables WBCcount, waistcircum, Cholesterol, age, BMI, alcohol, sex, AcuteIllness, race,

HealthStatus and ToothCond (see Table B.1 for a description of the variables).

The percentages of bootstrap and subsample models that include a specific number

of predictor variables are shown in Figure 5.8. On average more predictor variables are

included in models when using the bootstrap than with subsampling. Often more than

11 variables (which is the number of variables in the model for the original NHANES

data) are included if models were derived from bootstrap samples. Thus models are se-

lected on bootstrap samples which are systematically more complex (in terms of included

variables) compared to models based on the original data. For subsampling in contrast,

fewer variables are included in the models than in the model for the original sample. Ac-

cordingly, models derived from subsamples are less complex than models based on the

original data. This is due to the smaller statistical power with subsampling. The com-

plexity of models fit on subsamples thus does not represent the complexity of models fit

on original samples, either.
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Figure 5.8.: Percentage of models with specified number of included predictor variables in sub-
samples and bootstrap samples (Rospleszcz et al.; 2016).

Further, the type of variables included in models derived from bootstrap samples and

subsamples was compared. The simulation studies of Rospleszcz et al. (2016) showed

that inclusion frequencies obtained by subsamples reliably reflect the relative importance

of variables. Thus the inclusion frequencies obtained from subsamples might be con-

sidered as “gold standard” and were compared to inclusion frequencies obtained from

bootstrap samples. The inclusion frequencies obtained from bootstrap samples and sub-

samples are shown in Table 5.3. Due to the larger number of variables in a model based

on bootstrap samples, it is clear that, overall, the inclusion frequencies are higher if com-

puted based on bootstrap samples. However, much more interesting is the finding that

there are a few cases in which a binary variable has higher inclusion frequencies than

a categorical variable with more than two categories for subsamples but the categorical

variable with more than two categories is more frequently included than the binary for

the bootstrap samples. Although the binary variable is possibly more important (since

subsamples reliably reflect the relative importance of variables), the bootstrap suggests

that the categorical variable with more than two categories is more important than the

binary. This is due to the fact that on bootstrap samples the increase in type I error is

more extreme for LR tests with many degrees of freedom (e.g., when testing a categori-

cal variable with many categories; see Section 5.2.1). Therefore categorical variables with

many categories are preferentially included in models derived from bootstrap samples.

Consider as an example the binary variable stroke whose inclusion frequency is 17.86%

for subsamples. Inclusion frequencies for the 4-category variable depression and the 5-

category variable sleepTrouble are 7.60% and 12.46%, respectively, and are thus lower.

Since inclusion frequencies obtained by subsampling have been shown to reliably re-

flect the relative importance of variables, it is assumed that the variable stroke is more

strongly associated with CRP than the variables depression and sleepTrouble. For bootstrap
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Variable Scale d f Inclusion frequency (in %)
Subsample Bootstrap

age metric 1 30.12 51.08
alcohol metric 1 0.00 4.88
BMI metric 1 99.98 99.90
BPdias metric 1 7.46 22.36
BPsys metric 1 20.12 45.38
Cholesterol metric 1 4.46 21.56
waistcircum metric 1 6.98 17.06
WBCcount metric 1 100.00 99.96

categorical with
100cig 2 categories 1 12.36 28.68
AcuteIllness 2 categories 1 82.58 87.10
asthma 2 categories 1 6.46 17.94
chronicBronchitis 2 categories 1 0.68 11.96
diabetes 2 categories 1 9.24 35.60
heartFailure 2 categories 1 0.08 4.02
heavyDrinker 2 categories 1 0.48 5.84
sex 2 categories 1 72.54 71.12
stroke 2 categories 1 17.86 30.86
country of birth 4 categories 3 0.48 16.70
depression 4 categories 3 7.60 45.98
education 5 categories 4 2.28 31.26
HealthStatus 5 categories 4 41.56 69.50
medicalPlaceToGo 5 categories 4 0.02 7.56
race 5 categories 4 39.62 73.78
sleepTrouble 5 categories 4 12.46 41.20
ToothCond 5 categories 4 32.86 68.72
wakeUp 5 categories 4 38.26 68.38
marital status 6 categories 5 51.98 74.90
income 12 categories 11 46.00 87.52

Table 5.3.: Inclusion frequencies for the predictor variables in the NHANES data for 5000 sub-
samples and 5000 bootstrap samples. The scale of the variables and the degrees of freedom (d f )
of the corresponding LR test are also shown.

samples, however, the inclusion frequency for stroke is 30.86% (which is higher than that

for the subsamples, as one would expect) but the inclusion frequencies for depression and

sleepTrouble are even higher, with 45.98% and 41.2%, respectively. In other words, if the

importances of these variables were to be assessed based on bootstrap samples, the asso-

ciation between CRP level and the predictor variables depression and sleepTrouble would

be incorrectly estimated to be higher than the association between CRP level and the

predictor variable stroke.

There is a number of other examples in which a binary variable yields higher inclusion

frequencies than a categorical variable with m > 2 categories for subsamples but the cate-

gorical variable with m > 2 is more frequently included than the binary for the bootstrap

samples. All cases are specified in the following:
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• 100cig (m = 2) and depression (m = 4),

and education (m = 5),

• sex (m = 2) and race (m = 5),

and marital status (m = 6),

and income (m = 12),

• stroke (m = 2) and depression (m = 4),

and education (m = 5),

and sleepTrouble (m = 5),

• AcuteIllness (m = 2) and income (m = 12),

• asthma (m = 2) and education (m = 5),

• diabetes (m = 2) and depression (m = 4).

In contrast to that, there is no case where a categorical variable with more than two

categories has a higher inclusion frequency than a binary or metric variable for the sub-

samples, but is less frequently included than the binary or metric variable on bootstrap

samples. Overall, these findings show that depending on the number of categories the

effect of categorical variables might be considerably overestimated when applying auto-

mated selection procedures on bootstrap samples.

5.4. Application 2: Bootstrapped p-values for variable

ranking

This section investigates the consequences when using bootstrapped p-values for rank-

ing variables. Such an approach has been proposed by Mukherjee et al. (2003) for rank-

ing genes with respect to their differential expression. For each variable, bootstrapped

p-values are computed for testing the null hypothesis that the variable is not associated

with the response. A ranking is obtained by sorting the variables by their mean or median

bootstrapped p-value. Such resampling-based strategies might be helpful in minimizing

the influence of some extreme observations which may greatly affect a variable ranking.

Mukherjee et al. (2003) proposed their variable ranking approach in the context of rank-

ing genes in small samples, where influential points are likely to have a huge impact.

In the following this approach is applied to the NHANES data to obtain a ranking of

the 28 considered variables. For each variable a LR test was performed to test the null

hypothesis that the variable is not associated with the CRP level. Both the unpermuted

NHANES data and 1000 permuted NHANES data sets were considered. The ranks were

made based on the median bootstrapped p-value. Figure 5.9 shows the variable rankings

for the unpermuted NHANES data. The upper left panel corresponds to the rankings
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according to the p-values from the original NHANES sample and the upper right panel

corresponds to rankings by the median bootstrapped p-values (i.e., the median of 10000

bootstrapped p-values). In addition, results are shown when using the median p-value

obtained from 10000 subsamples (lower panel). On the whole, the rankings are similar,

especially among those variables with strong evidence for association. However, close in-

spection reveals some differences between the rankings based on the original sample and

those based on bootstrap samples. These differences are likely attributable to the fact that

categorical variables with many categories obtain systematically smaller bootstrapped p-

values than metric variables or categorical variables with fewer categories. This leads to a

ranking in which variables with many categories gain ranking positions closer to the top

when ranked by the median bootstrapped p-value. Table 5.4 shows the ranking positions

for each variable separately. There are many cases in which categorical variables with

four or more categories gain ranking positions closer to the top when ranked by boot-

strapped p-values. Conversely, the binary and metric variables are located at positions

at the bottom of the ranking when the ranking is according to bootstrapped p-values. In

contrast, when using subsamples there are only minor differences in the ranking, with

seemingly no effect of a variable’s scale on its ranking position.

The observed mechanisms are even more extreme for the permuted NHANES data sets;

see Table C.1, which shows the result for the first permuted data set. For the permuted

data sets there are very large differences in the variable ranking – with variables with

many categories ranked at top positions and binary or metric variables at much lower

positions when p-values are derived from bootstrap samples.

To conclude, the studies show that, though resampling procedures might be promising

methods for obtaining stable variable ranking lists, bootstrapped p-values should not be

compared with significance thresholds for making decisions on the significance of vari-

ables. In particular, care needs to be taken when the interest lies in ranking variables of

different scales, which often occurs in epidemiological studies. An example of further rel-

evance is gene ranking when single nucleotide polymorphisms are considered, which for

some genes are represented by a categorical variable with three categories but for others

only two categories. Moreover, associations between genes and a phenotype are usually

weak or non-existent, which is expected to be especially problematic as suggested by

the results of the permuted NHANES data. Thus, bootstrapped p-values should not be

applied for obtaining variable rankings in settings including categorical variables. Sub-

sampling may be a reasonable alternative to the bootstrap for variable ranking: In the

studies there were only minor differences between the rankings that were obtained by

sorting variables by p-values obtained from the original sample and from subsamples.

This might indicate that in the considered NHANES data there are not many influential
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Figure 5.9.: Variable ranking by p-values obtained for the original unpermuted NHANES sample
(upper left) and by the p-value obtained from the median over 10000 bootstrapped p-values
(upper right) and the median p-value from subsamples (lower). The parameter m denotes the
number of categories of a categorical variable.

points that have a large impact on the results, but more research is needed on this topic.

To conclude, subsampling should be preferred over bootstrapping for obtaining variable

rankings if variables are of different scales. However, in settings with very small sam-
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Scale Variable Original Bootstrap Subsample
rank rank (diff.) rank (diff.)

metric or m = 2 BMI 1 1 (0) 1 (0)
waistcircum 2 2 (0) 2 (0)
WBCcount 3 3 (0) 3 (0)
AcuteIllness 6 6 (0) 5 (+1)
sex 8 9 (−1) 7 (+1)
diabetes 12 13 (−1) 10 (+2)
asthma 14 14 (0) 14 (0)
stroke 15 15 (0) 15 (0)
100cig 16 18 (−2) 16 (0)
chronicBronchitis 18 19 (−1) 18 (0)
age 19 21 (−2) 19 (0)
alcohol 21 22 (−1) 21 (0)
heartFailure 22 23 (−1) 22 (0)
BPsys 24 26 (−2) 24 (0)
heavyDrinker 25 27 (−2) 25 (0)
Cholesterol 26 25 (+1) 26 (0)
BPdias 27 28 (−1) 27 (0)

m = 4 depression 17 16 (+1) 17 (0)
country of birth 23 20 (+3) 23 (0)

m = 5 HealthStatus 4 4 (0) 4 (0)
wakeUp 7 7 (0) 8 (−1)
ToothCond 9 8 (+1) 9 (0)
race 10 12 (−2) 12 (−2)
sleepTrouble 11 11 (0) 11 (0)
education 20 17 (+3) 20 (0)
medicalPlaceToGo 28 24 (+4) 28 (0)

m = 6 marital status 13 10 (+3) 13 (0)
m = 12 income 5 5 (0) 6 (−1)

Table 5.4.: Variable ranking for the unpermuted NHANES data. Variable rankings are obtained
from p-values obtained for the original NHANES sample (“Original rank”), from the median
bootstrapped p-value (“Bootstrap rank”), and from the median p-value from subsamples (“Sub-
sample rank”). The difference to the “Original rank” is given in brackets for each variable. The
parameter m denotes the number of categories of a categorical variable.

ple sizes – for which the ranking approach was originally proposed (Mukherjee et al.;

2003) – subsampling from a data set that consists of only a few observations may not be

advisable.

5.5. Application 3: Bootstrapped p-values for assessing

the variability of p-values

In their paper, Boos and Stefanski (2011) propose reporting the variability of p-values

conjointly with the p-value in real data applications to gain a better understanding of the

variability of p-values if one were to replicate this study. They propose approximating

the variance of p-values, or preferably the variance of −log10(p-value), based on boot-

strapped p-values. If the standard deviation is a large fraction of the p-value, there is



96 5. Hypothesis testing on bootstrap samples

high variability, which may explain the fact that identical experiments may lead to rather

distinct p-values. The question arises of whether the variance of bootstrapped p-values

can be used to approximate the variability of p-values that would be observed if the same

experiment was repeatedly performed. To investigate this issue simulation studies were

performed, which allow drawing multiple times from the true distribution.

Simulation studies were performed for both the Z-test and the LR test, and two settings

were considered: a setting, in which the null hypothesis is true and a setting, in which

the alternative hypothesis is true. The simulation studies are outlined in the following:

Z-test: In the setting, in which the null hypothesis is true, xi, i = 1, . . . , 1000 were in-

dependently drawn from N(0, 1). The null hypothesis H0 : µ = 0 was tested

against the alternative hypothesis H1 : µ 6= 0. A total of 10000 bootstrap samples

were generated by drawing from this sample with replacement. A Z-test was

performed for the original sample and for each bootstrap sample. Subsequently

the standard deviation of the 10000 bootstrapped p-values and the standard de-

viation of the negative logarithm of the bootstrapped p-values were computed.

This process was repeated 10000 times and the standard deviation of the p-values

and that of the negative logarithm of the p-values for the 10000 original data sets

were computed. The same analysis was performed for a setting where the alter-

native hypothesis is true; in this setting xi, i = 1, . . . , 1000 were independently

drawn from N(0.08, 1).

LR test: In this study xi1, . . . , xi,10 were independently drawn for i = 1, . . . , 1000 from

a multivariate normal distribution with expectation µ = (0, . . . , 0)> ∈ R10 and

covariance matrix I10, corresponding to the identity matrix of dimension 10× 10.

The response variable Yi was generated according to the linear regression model

Yi = β0 + β1xi1 + . . . + β10xi,10 + εi,

with εi ∼ N(0, 1) for i = 1, . . . , 1000. The global null hypothesis is that none of

the predictor variables is associated with the response, that is H0 : β1 = β2 =

. . . = β10 = 0. The alternative hypothesis is that at least one of them is asso-

ciated, that is H1 : β j 6= 0 for at least one j ∈ {1, . . . , 10}. The corresponding

LR test compares the likelihood of the submodel L0 which contains only the in-

tercept, to the likelihood L1 of the model which includes all predictor variables

X1, . . . , X10. If the null hypothesis is true the LR test statistic (5.6) follows a cen-

tral χ2-distribution with 10 degrees of freedom. In the first setting the null hy-

pothesis is true, that is β j = 0 for all j = 1, . . . , 10. In the second setting, the

alternative hypothesis is true and the coefficients were β j = 0.02 for j = 1, . . . , 10.
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The derivation of the standard deviations of p-values and standard deviations

of −log10(p-value) based on original samples and bootstrap samples was exactly

the same as described for the Z-test.
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Figure 5.10.: Standard deviations (sd) of bootstrapped and subsampled p-values or −log10(p-
value) for the Z-test (left two columns) and the LR test with 10 degrees of freedom (right two
columns). The dotted line represents the standard deviation of the p-values or negative logarithm
of the p-values, respectively, computed from the 10000 original samples. Each original sample
gave rise to 10000 bootstrap samples and 10000 subsamples.

Figure 5.10 shows the distributions of the standard deviations of the bootstrapped

p-values and the standard deviations of the negative logarithm of the bootstrapped p-

values for the Z-test and the LR test. The dotted line represents the standard deviation of

the p-values or negative logarithm of the p-values computed from the 10000 original sam-

ples. Results are also shown for subsampling. For the Z-test under H0 a systematic but

probably negligible difference is observed between the standard deviations of p-values

for the original data and those of bootstrapped p-values (or −log10(p-value)). Under H1,

in contrast, the standard deviation of bootstrapped p-values (or −log10(p-value)) seems

to be a good approximation of the true p-value variability. For the LR test with 10 de-

grees of freedom the standard deviations of the p-value (or −log10(p-value)) computed

on bootstrap samples do not reflect the true p-value variability in the studies, neither un-

der the null hypothesis nor under the alternative hypothesis. This result was expected
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in the light of the empirical results presented in Section 5.2.2, which showed that for

LR tests with 3 or more degrees of freedom the distribution of bootstrapped p-values is

always different from the true p-value distribution. Subsampling is not a reasonable al-

ternative here since tests performed on subsamples do not reflect the p-value variability

of the original samples either, as seen in Figure 5.10.

5.6. Discussion

In this chapter, it was shown through theoretical and empirical results that when using

bootstrapped p-values there is increased type I error for both the Z-test and the LR test,

and that the increase in type I error also depends on the degrees of freedom of the LR test.

Similar results are expected for other statistical tests. Investigations on the conditional

distribution of bootstrapped p-values showed that for the one-sided Z-test bootstrapped

p-values give a good approximation of the p-values computed from the original data, but

that this is generally not the case for the two-sided Z-test and the LR test. This shows

that despite the fact that the type I error is increased when using bootstrapped p-values,

bootstrapped p-values might be a good approximation of the originals.

Three practices making use of bootstrapped p-values were investigated: bootstrapping

p-values for multivariable model building, for variable ranking and for assessing the

variability of p-values. The three approaches were applied on simulated data or on a large

real data set from a population-based study, respectively, to investigate whether results

are affected by the problems mentioned above. When backward elimination based on

the LR tests was performed using bootstrap samples, the resulting models included more

parameters than the model which was obtained for the original sample. This is likely due

to the increased type I error in bootstrap samples. However, other characteristics of the

bootstrap may also play an important role, such as the replication of possible influential

points or outliers in bootstrap samples. Further research is needed to address this issue.

Moreover, the studies presented in this chapter showed that bootstrapped p-values

should not be used for multivariable model building if there are variables of different

scales because categorical variables with more categories are favored over variables with

fewer categories and over metric variables. This is related to the fact that on bootstrap

samples the increase in type I error is more extreme for LR tests with many degrees of

freedom. The same problem applies when ranking variables by bootstrapped p-values

obtained from LR tests: In settings without any associations, variables with many cat-

egories were ranked at top positions and binary or metric variables at much lower po-

sitions when p-values were derived from bootstrap samples. The studies suggest that

this problem is especially pronounced in settings with weak associations, and is less pro-



5.6 Discussion 99

nounced in settings with very strong associations. Finally, the variability of bootstrapped

p-values was shown not to reflect the variability of p-values for the LR test when re-

peating the same experiment several times, thus making the reliability of the approach

suggested by Boos and Stefanski (2011) questionable.

The use of subsampling was investigated as a promising alternative strategy to cir-

cumvent problems induced by the bootstrap. The properties of subsampling have been

theoretically investigated in the literature; it has been shown that subsampling has desir-

able properties even in situations where the bootstrap fails. A recent approach to stability

selection based on subsampling was introduced by Meinshausen and Bühlmann (2010).

Their studies impressively show that subsampling is a powerful tool in investigating the

stability of models, such as penalized likelihood models and graphical models. Further,

Strobl et al. (2007) proposed the use of subsampling instead of bootstrapping in the con-

text of random forests to circumvent the problem of preferential selection of certain types

of predictors for a split, and Rospleszcz et al. (2016) showed that the inclusion frequencies

obtained from subsamples reliably reflect the relative importance of variables and should

thus be preferred over bootstrap inclusion frequencies.

However, the results in this chapter show that subsampling should not be regarded as

an universally applicable alternative to the bootstrap. For investigating the variability

of p-values, for example, subsampling is not appropriate. These investigations make it

clear that subsampling is not a reliable alternative to the bootstrap for all types of appli-

cations, even if it has shown important advantages in some situations (Strobl et al.; 2007;

Rospleszcz et al.; 2016; De Bin et al.; 2016).





6. Model selection through information

criteria and data splitting

approaches on bootstrap samples

Fitting a prediction model and evaluating its prediction error on the same data is not a

trivial task, especially if the model involves one or several tuning parameters. To avoid

overoptimism a data splitting procedure should be applied in which the model is fit on

one part of the data and evaluated on the other part of the data (see, e.g., Boulesteix

et al.; 2008). One option is to use a bootstrap sample to fit the model (model building

step) and to use the remaining observations which were not part of the bootstrap sample

(out-of-bag observations) to compute the model’s prediction error (model evaluation step).

This process is usually repeated a large number of times and the average error over the

replications is obtained. If the statistical model integrates tuning parameters such as the

number of boosting steps for gradient boosting algorithms (Friedman; 2001; Bühlmann

and Hothorn; 2007), the optimal value for a tuning parameter is often determined by us-

ing information criteria or through application of an internal cross-validation procedure.

However, it was shown that information criteria derived from bootstrap samples system-

atically deviate from information criteria derived from original samples (Wagenmakers

et al.; 2004; Steck and Jaakkola; 2003). But the practical consequences of this systematic

deviation are largely unknown. It is also unknown if cross-validation procedures applied

on bootstrap samples are useful for selecting appropriate values for tuning parameters.

Practical consequences can relate to several different aspects. For example, they may re-

late to structural differences in the models obtained from bootstrap samples and models

obtained from original samples, where the differences are due to the selection of different

optimal values for the tuning parameter. Differences in the models’ structure may lead to

wrong conclusions regarding, for example, the complexity of the considered relationship,

the effect of single predictor variables or the predictive value of the combination of vari-

ables included in a model. This chapter addresses the practical consequences with focus

on model complexity and model accuracy. Section 6.1 deals with tuning parameter se-

lection through information criteria. This part is based on Janitza, Binder and Boulesteix
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(2016) but also shows simulation studies not presented therein. Smaller parts of the sim-

ulation studies were shown in the former version of the article which is available as a

technical report (Janitza et al.; 2014). In Section 6.2 the use of cross-validation procedures

for tuning parameter selection is addressed. Some results of the simulation studies of

this section were described in Janitza et al. (2014). In both sections gradient boosting al-

gorithms are considered as an example. Promising alternatives to the bootstrap, such as

subsampling, are also considered.

6.1. Tuning parameter selection through information

criteria

Information criteria are often used for the comparison of non-nested models. These mea-

sures compare models based on their goodness-of-fit to the data while penalizing the

complexity of the model (see also Burnham and Anderson; 2002). Akaike’s information

criterion (AIC) is a widely used measure for model selection. It is defined as

AIC = −2log(L) + 2p, (6.1)

where L denotes the likelihood and p denotes the number of parameters included in

the model. It has been shown that minimizing the AIC is approximately equivalent to

minimizing the expected Kullback-Leibler distance between the true and the estimated

density (Akaike; 1973).

The bootstrapped AIC is given by

AIC∗ = −2log(L∗) + 2p, (6.2)

with L∗ denoting the likelihood computed for a model that was fit on a bootstrap sample.

To prove that the bootstrapped AIC is not a good approximation of the AIC defined in

(6.1), two nested models differing in the inclusion of only one parameter will be compared
1. If AIC1 denotes the AIC of the unrestricted model that includes p parameters and

AIC0 denotes the AIC of the submodel that includes p− 1 parameters, then the LR test

statistic on one degree of freedom can be expressed in terms of AIC0 and AIC1 as follows

(cf. Chapter 6.9.3 in Burnham and Anderson; 2002):

T = AIC0 −AIC1 + 2. (6.3)

1Similar considerations can be made in the case of nested models differing by the inclusion of more than
one parameter.
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From Eq. (6.3) one can see that if both models fit the data equally well according to the

AIC (i.e., AIC0 = AIC1), one has T = 2. Further, the unrestricted model is chosen over

the submodel if its AIC is smaller, corresponding to AIC0 −AIC1 > 0 and, according to

Eq. (6.3), T > 2. In contrast, the submodel is chosen if AIC0 −AIC1 < 0, corresponding

to T < 2. These considerations show that in the case of two nested models one can also

use the value of the LR test statistic to decide which of the models is better in terms of

the AIC; if the two models differ only in the inclusion of one parameter, values for the

LR test statistic below 2 indicate the superiority of the submodel, values above 2 indicate

that the unrestricted model is better, and both models are considered equally good if the

LR test statistic takes the value 2. As shown in Section 5.2, bootstrapped LR test statistics

systematically deviate from LR test statistics derived from the original data. Due to the

correspondence between the LR test statistic and the AIC in the specific setting of nested

models it follows that bootstrapped information criteria like the AIC are thus not valid

either. These considerations were also made by Wagenmakers et al. (2004). In the context

of graphical models, Steck and Jaakkola (2003) proved that bootstrapped information

criteria systematically deviate from information criteria derived from original samples.

Although the bootstrapped AIC (6.2) deviates from the AIC (6.1), it is unknown if this

discrepancy impacts the decision for a model. One might argue that the discrepancy is

not of any practical interest if it does not affect the model choice. To investigate if model

choice is affected some experiments using the NHANES data were performed (see Ap-

pendix B for information on the NHANES data). With 28 covariates in the NHANES

data there are 228 = 268, 435, 456 candidate models and, due to computational effort it is

not practicable to consider all. One usually considers models that include more than one

covariate. But for ease of illustration only 28 models, each arising from the inclusion of

exactly one of the variables, are considered. It is investigated which of the models pro-

vides the best fit according to the AIC and bootstrapped AIC. Bootstrapped AIC values

were computed for 10000 bootstrap samples and an average AIC value was computed.

Figure 6.1 shows the difference between the AIC values computed on the original

NHANES sample and the average bootstrapped AIC value. The difference seems to be

bigger for models that include more parameters. Though all models have a systemat-

ically smaller bootstrapped AIC value, those models incorporating larger numbers of

parameters have an exceedingly small AIC value. There are three exceptions: the model

featuring WBCcount, that for BMI and that for waistcircum. Note that these are the models

with the best model fit according to the AIC. The phenomenon that models incorporating

larger numbers of parameters have an exceedingly small AIC value leads to a preferential

selection of more complex models. This can be seen when ranking the models according

to their average bootstrapped AIC and the AIC obtained for the original sample.
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Figure 6.1.: Difference between the AIC value computed on the original sample and the AIC
value obtained from averaging over 10000 bootstrapped AIC values for 28 univariate models.
The parameter k denotes the number of parameters included in the model for the respective
variable.

Figure 6.2 shows the ranking of models by AIC value obtained for the original sample

(upper left) and the ranking by the average bootstrapped AIC (upper right). While the

top and the bottom of the ranking lists are nearly identical, a number of differences can

be observed in the middle: The model which includes k = 5 parameters coding marital

status is ranked at the 12th position based on the original NHANES sample, while based

on bootstrap samples it is ranked 9th (see also Table 6.1). Conversely, the model which

includes the variable sex (k = 1) is ranked 9th based on the original sample but only 12th

when AICs were derived from bootstrap samples. Considerable differences in the rank-

ing position can also be observed for the model which includes educational background

(k = 4). For the original sample this model is ranked only 22nd, while for bootstrap sam-

ples it is ranked 17th. Overall, when looking at both rankings, one can see that models

which include more parameters seem to obtain higher rankings when ranked by boot-

strapped AICs. This applies for the models based on the covariates wakeUp, sleepTrouble,

marital status, depression, education, or country of birth. Models which include only one

parameter (in addition to the intercept) have lower rankings for bootstrapped AICs (for

covariates: sex, AcuteIllness, 100cig, chronicBronchitis, age, alcohol, heartFailure, BPsys, heavy-

Drinker). There are only two exceptions where it is reverse (Cholesterol and race). These
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results strongly suggest that there is a preferential selection of more complex models –

i.e., those that include more parameters – when using bootstrapped AICs.

3300 3350 3400 3450 3500

Original

AIC (original sample)

medicalPlaceToGo (k = 4)
BPdias (k = 1)

Cholesterol (k = 1)
heavyDrinker (k = 1)

country_of_birth (k = 3)
BPsys (k = 1)

education (k = 4)
heartFailure (k = 1)

alcohol (k = 1)
age (k = 1)

chronicBronchitis (k = 1)
depression (k = 3)

100cig (k = 1)
stroke (k = 1)

asthma (k = 1)
diabetes (k = 1)

marital_status (k = 5)
sleepTrouble (k = 4)

race (k = 4)
sex (k = 1)

ToothCond (k = 4)
wakeUp (k = 4)

AcuteIllness (k = 1)
income (k = 11)

HealthStatus (k = 4)
WBCcount (k = 1)

waistcircum (k = 1)
BMI (k = 1)

3300 3350 3400 3450 3500

Bootstrap

Bootstrapped AIC (averaged value)

medicalPlaceToGo (k = 4)
BPdias (k = 1)

heavyDrinker (k = 1)
BPsys (k = 1)

Cholesterol (k = 1)
alcohol (k = 1)

heartFailure (k = 1)
country_of_birth (k = 3)

age (k = 1)
chronicBronchitis (k = 1)

100cig (k = 1)
education (k = 4)

depression (k = 3)
stroke (k = 1)

asthma (k = 1)
diabetes (k = 1)

sex (k = 1)
race (k = 4)

sleepTrouble (k = 4)
marital_status (k = 5)

ToothCond (k = 4)
AcuteIllness (k = 1)

wakeUp (k = 4)
income (k = 11)

HealthStatus (k = 4)
WBCcount (k = 1)

waistcircum (k = 1)
BMI (k = 1)

2100 2140 2180 2220

Subsample

Subsampled AIC (averaged value)

medicalPlaceToGo (k = 4)
country_of_birth (k = 3)

education (k = 4)
BPdias (k = 1)

heavyDrinker (k = 1)
Cholesterol (k = 1)

BPsys (k = 1)
alcohol (k = 1)

heartFailure (k = 1)
age (k = 1)

depression (k = 3)
chronicBronchitis (k = 1)

100cig (k = 1)
stroke (k = 1)

asthma (k = 1)
marital_status (k = 5)

diabetes (k = 1)
race (k = 4)

sleepTrouble (k = 4)
ToothCond (k = 4)

sex (k = 1)
wakeUp (k = 4)
income (k = 11)

AcuteIllness (k = 1)
HealthStatus (k = 4)

WBCcount (k = 1)
waistcircum (k = 1)

BMI (k = 1)

Figure 6.2.: AIC values (in ascending order from top to bottom) obtained for the 28 models (each
including exactly one covariate). The parameter k denotes the number of parameters included in
the model for the respective variable. Upper left: AIC values derived on the original NHANES
sample. Upper right: AIC values obtained from averaging over 10000 bootstrapped AIC val-
ues. Lower: AIC values obtained from averaging over 10000 AIC values computed based on
subsamples.
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Results were also obtained when using subsamples instead of bootstrap samples. Since

subsamples contain fewer observations, AIC values obtained for models on subsamples

are not comparable to those obtained for the original sample. However, it is interesting

to explore if the decision for or against a model is different when the AIC is computed

on subsamples instead of the original sample. This can again be seen when sorting the

models according to their AIC values (Figure 6.2, lower panel). Indeed there are some

characteristic changes in the ordering of the models according to the average AIC ob-

tained from subsamples. But in contrast to the bootstrap, it seems that more complex

models (in terms of included parameters) are rather disfavored (see also Table 6.1 and

Figure 6.3). This can be explained as follows: From the definition of the AIC in Eq. (6.1)

one can see that the AIC is dominated by the penalty term 2p (which penalizes the com-

plexity of the model) if the first term −2log(L) is small, or equivalently, if the likelihood

is large. Conversely, the AIC is dominated by the first term, −2log(L) (which is a mea-

sure of the model fit to the data), if the likelihood is small. The likelihood, as a product of

n probabilities, becomes automatically smaller with increasing n. As a consequence the

likelihood derived from a subsample is larger than the likelihood of the original sample.

From these considerations it is clear that for subsamples the AIC is more driven by the

penalty term than for the original sample, which leads to the observed phenomenon that

more complex models are more disfavored in subsamples than in the original sample. To

conclude, AICs obtained from subsamples and original samples do not lead to the same

conclusion regarding the choice of optimal models as well.

Application: Gradient boosting

In this section, it is investigated whether there is a preference for more complex models (in

terms of included parameters) when constructing models based on bootstrap samples in

the special context of gradient boosting (Friedman; 2001; Hothorn et al.; 2010). Gradient

boosting has become a popular method in biometrical applications to find sparse models

by only making use of relevant predictor variables, which greatly facilitates model inter-

pretation. Briefly, the idea of gradient boosting algorithms is to combine weak learners

in an iterative fashion to obtain a strong learner with high prediction accuracy. The pre-

diction accuracy depends highly on the number of iterations, also called the number of

boosting steps. With too many boosting steps, many weak learners are constructed and

the resulting strong learner might be overfit to the data and thus have poor prediction

accuracy on new data. If the number of boosting steps is too small, the number of weak

learners might be too small to appropriately model the relationship between the covari-

ates and the response. Thus the number of boosting steps has to be carefully chosen,

for example through application of information criteria or internal cross-validation. For
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Model com- Included Rank for the Bootstrap Subsample
plexity variable original sample rank (diff.) rank (diff.)
k = 1 BMI 1 1 (0) 1 (0)

waistcircum 2 2 (0) 2 (0)
WBCcount 3 3 (0) 3 (0)
AcuteIllness 6 7 (−1) 5 (+1)
sex 9 12 (−3) 8 (+1)
diabetes 13 13 (0) 12 (+1)
asthma 14 14 (0) 14 (0)
stroke 15 15 (0) 15 (0)
100cig 16 18 (−2) 16 (0)
chronicBronchitis 18 19 (−1) 17 (+1)
age 19 20 (−1) 19 (0)
alcohol 20 23 (−3) 21 (−1)
heartFailure 21 22 (−1) 20 (+1)
BPsys 23 25 (−2) 22 (+1)
heavyDrinker 25 26 (−1) 24 (+1)
Cholesterol 26 24 (+2) 23 (+3)
BPdias 27 27 (0) 25 (+2)

k = 3 depression 17 16 (+1) 18 (−1)
country of birth 24 21 (+3) 27 (−3)

k = 4 HealthStatus 4 4 (0) 4 (0)
wakeUp 7 6 (+1) 7 (0)
ToothCond 8 8 (0) 9 (−1)
race 10 11 (−1) 11 (−1)
sleepTrouble 11 10 (+1) 10 (+1)
education 22 17 (+5) 26 (−4)
medicalPlaceToGo 28 28 (0) 28 (0)

k = 5 marital status 12 9 (+3) 13 (−1)
k = 11 income 5 5 (0) 6 (−1)

Table 6.1.: Model rank by AIC computed for the original sample, by the average bootstrapped
AIC, and by the average subsampled AIC. The difference to the rank for original sample is given
in brackets for each model. The parameter k denotes the number of parameters included in the
model for the respective variable.

more information on gradient boosting algorithms see, for example, Friedman (2001) and

Hothorn et al. (2010). The R package mboost was used in all studies presented in this

chapter (Hothorn et al.; 2013; Hofner et al.; 2014).

Real data study

The CRP level was the response variable and the 28 variables presented in Table B.1 were

considered as candidate predictors in gradient boosting models. Note that, in contrast to

the earlier analysis, the association between CRP level and the covariates is now modeled

in a multivariate fashion. The AIC was used for choosing the number of boosting steps.

Model selection was performed on

• the original NHANES data with n = 1914 observations,

• 1000 bootstrap samples, and

• 1000 subsamples.
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Difference in AIC (original sample) and averaged subsampled AIC
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Figure 6.3.: Difference between the AIC value computed on the original sample and the AIC
value obtained from averaging over 10000 subsampled AIC values for 28 univariate models. The
parameter k denotes the number of parameters included in the model for the respective variable.

For the original NHANES sample, the number of boosting steps for the model with

the smallest AIC was 309, the result being a model of 42 parameters (not including the

intercept term). When performing tuning parameter selection on bootstrap samples sys-

tematically larger values for the number of boosting steps were obtained: in almost all

(978 of 1000) bootstrap samples the chosen number of boosting steps was greater than 309

(see left boxplot in Figure 6.4). The mean number of boosting steps in bootstrap samples

was 468. The resulting models included a larger number of parameters on average: the

average number was 44.3, two parameters more than the model which was obtained for

the original NHANES sample. The left panel of Figure 6.5 shows the relative frequency

of models with a specific number of parameters. In 68.3% of the bootstrap samples the

model included more than 42 parameters, in 24.7% the number of parameters was lower

and in 7% the models included exactly 42 parameters.

The same calculations were performed using subsamples instead of bootstrap samples.

As expected, sparser models were selected (on average 34.7 parameters) than for the orig-

inal sample or bootstrap samples (right panel of Figure 6.5). The number of boosting steps

(254 on average) was smaller for subsamples, seen in Figure 6.4 (right boxplot).

The models were also evaluated with respect to their predictive accuracy, using the

observations that were not drawn into the bootstrap sample and subsample, respectively.
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Figure 6.4.: Optimal number of boosting steps selected via AIC in 1000 bootstrap samples and
1000 subsamples of the NHANES data. The dotted horizontal line indicates the chosen number
of boosting steps in the original NHANES sample.
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Figure 6.5.: Relative frequency of boosting models (out of 1000) fit on bootstrap samples (left) and
on subsamples (right) with specified number of parameters (not including the intercept term).
The dark gray bars indicate the number of parameters in the model that was fit on the original
NHANES sample.

Although models constructed on subsamples included fewer parameters, their predictive

accuracy was comparable to the accuracy of models constructed on bootstrap samples.

On average, even a marginally smaller mean squared error was obtained for models fit

on subsamples (0.32 compared to 0.33 when using bootstrap samples). This suggests that

the additional parameters in the models derived from bootstrap samples do not have any

additional predictive value.
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Simulation study

Simulation studies with binary response and large numbers of candidate predictors were

performed to see if the results differ to those of the NHANES data. The data generating

process is the same as that described by Binder and Schumacher (2008) for their simula-

tion study on binary response gradient boosting. Data was simulated for the uncorrelated

setting, where p ∈ {200, 1000, 5000} predictors were independently drawn from a stan-

dard normal distribution for n = 100 observations. The covariate effects are defined as

follows:

β j =


ce, if j · 200/p ∈ {1, 3, 5, 7, 9}
−ce, if j · 200/p ∈ {2, 4, 5, 6, 10}

0, otherwise

where ce = 1 (setting with weak effects) and ce = 2 (setting with moderate effects),

as per Binder and Schumacher (2008). The binary response, Yi, for an observation i

with covariates xi was simulated from a Bernoulli distribution with success probability

πi = exp(x>i β)/(1 + exp(x>i β)), with β = (β1, . . . , βp)>. The AIC was again used to de-

termine the optimal number of boosting steps. The optimal number of boosting steps, the

number of included parameters and the accuracy of models were computed on the origi-

nal data, a bootstrap sample and a subsample. This was repeated 1000 times. Note that,

in contrast to the studies with the NHANES data, each bootstrap sample or subsample

was drawn from a different original sample.

The accuracy of models was measured on an independent test set of size n = 10000 in

terms of the Brier score which is defined as

BS =
1
n

n

∑
i=1

(π̂i −Yi)
2,

with π̂i denoting the predicted probability that Yi equals 1 for an observation i with co-

variates xi.

Figure 6.6 shows the results on the optimal number of boosting steps (upper row),

on the number of parameters included in the respective model (middle row), and on

prediction accuracy (lower row). The results are shown for the setting with weak effects;

those for the setting with moderate effects are comparable and thus not shown. Overall,

the prediction accuracies of models derived from subsamples and bootstrap samples are

very similar. As with the real data study, the prediction accuracy of models derived

from subsamples was even marginally better, although models fit on bootstrap samples

included slightly more parameters.

As far as the selection of optimal numbers of boosting steps is concerned, a marginally

higher number of boosting steps was chosen in bootstrap samples than in original sam-
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Figure 6.6.: Optimal number of boosting steps (upper row), the number of parameters in the
corresponding model (middle row), and the prediction accuracy measured by the Brier score
(lower row). Results are shown for models selected via AIC for binary response gradient boosting
in 1000 original samples, bootstrap samples and subsamples.

ples. In subsamples in contrast, a substantially smaller number of boosting steps was

chosen than for original samples. The difference in the optimal number of boosting steps

was much larger between original samples and subsamples than between original sam-

ples and bootstrap samples. However, the marginally larger number of boosting steps

chosen in bootstrap samples did not lead to the inclusion of more parameters in the re-

sulting models. In fact, the models fit on original samples included more parameters.

Further inspection revealed that the relationship between the number of boosting steps

and the number of parameters included in a model is a different one in original samples

and in bootstrap samples or subsamples. Figure 6.7 shows the average number of param-

eters included in a model (over 1000 original samples, 1000 bootstrap samples and 1000

subsamples, resp.) for a specified number of boosting steps. For bootstrap samples and

subsamples the relationship between the number of boosting steps and the number of pa-

rameters seems to be very similar. For numbers of boosting steps above 100 the models

fit on bootstrap samples or subsamples include fewer parameters compared to models

fit on original samples. The largest differences are seen in the setting with the largest

number of candidate predictors (p = 5000; right column). For numbers of boosting steps

below 100 all methods include an approximately equal number of parameters. Note that



112
6. Model selection through information criteria and data splitting approaches on

bootstrap samples

in each boosting step, either a new variable enters the boosting model, or a parameter of a

variable which is already in the model, is updated. In the present studies it was seen that

in original samples a new parameter entered the boosting models more frequently than

in bootstrap samples or subsamples. In bootstrap samples and subsamples, in contrast,

the parameters of variables that were already included in a model, were updated more

frequently than in original samples. Further research is needed to understand the rea-

sons. However, these findings explain why the larger number of boosting steps chosen

based on the AIC on bootstrap samples does not necessarily lead to a larger number of

parameters contained in the respective model.

0 200 400 600 800 1000

0
10

20
30

40
50

p = 200

Boosting steps

N
um

be
r 

of
 s

el
ec

te
d 

pa
ra

m
et

er
s

0 200 400 600 800 1000

0
10

20
30

40
50

60
70

p = 1000

Boosting steps

0 200 400 600 800 1000

0
20

40
60

80

p = 5000

Boosting steps

original
bootstrap
subsample

Figure 6.7.: Relationship between the number of boosting steps and the number of parameters
contained in a model for settings with n = 100 observations and p = 200 (left), p = 1000 (mid-
dle) and p = 5000 (right) candidate predictors. The average number of parameters for a specific
number of boosting steps was derived from 1000 original samples, bootstrap samples and sub-
samples, respectively.

The simulation results seem to contradict the results obtained for the real data set,

where a larger number of boosting steps resulted in overcomplex models on bootstrap

samples. Note that the real data set included 1914 observations and 67 parameters (from

28 candidate predictors). The real data study is thus very different from the considered

simulated scenarios, in which the number of candidate predictors is much larger than the

number of observations. When performing additional simulation studies, in which the

number of observations exceeds the number of candidate predictors, the results are in line

with those for the real data set. Figure 6.8 shows the average number of parameters in-

cluded in a model for a specific number of boosting steps in settings with p = 50, n = 100

(left panel), p = 100, n = 500 (middle panel) and p = 50, n = 1000 (right panel). The

larger the number of observations and the smaller the number of candidate predictors,

the more similar the relationship between the number of boosting steps and the num-

ber of selected parameters is for the different sampling schemes. In these settings, again,
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larger numbers of boosting steps were chosen based on bootstrap samples. In contrast to

the earlier simulation studies, the resulting models included more parameters than the

models which were fit on original samples (results not shown).
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Figure 6.8.: Relationship between the number of boosting steps and the number of parameters
contained in a model for settings with p = 50, n = 100 (left), p = 100, n = 500 (middle) and
p = 50, n = 1000 (right). The average number of parameters for a specific number of boosting
steps was derived from 1000 original samples, bootstrap samples and subsamples, respectively.

To conclude, neither models derived from bootstrap samples nor models derived from

subsamples are of similar complexity as models derived from original samples. Whether

models derived from bootstrap samples are either more complex than models derived

from original samples or less complex depends on the considered data setting. For gra-

dient boosting methods the theory that models fit on bootstrap models are always more

complex does thus not apply. Subsampling often resulted in models that included far

fewer parameters than the models derived from original samples. Therefore they do not

reflect the complexity of models fit on the original data. However, if one aims at find-

ing models that have a good predictive ability, then subsampling might be preferable

over bootstrapping as models had marginally better predictive ability if they were fit on

subsamples.

6.2. Tuning parameter selection through data splitting

approaches

An alternative strategy to the use of the AIC is choosing a value for the tuning parameter

that yields models which have high predictive ability. The predictive ability of models

has to be assessed on an independent test data set for a grid of candidate values. To

obtain unbiased estimates of the models’ predictive accuracies, data splitting approaches
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in which the data is split into a training set and a test set have to be applied. Note that the

data splitting approaches are now applied within the model building step and not within the

model evaluation step. There are different data splitting procedures such as the bootstrap

which is handled in this thesis. Note that, after having found an optimal value for the

tuning parameter, the bootstrap is used for the model evaluation step. But for tuning

parameter selection within the model building step, cross-validation is considered in this

section.

The steps for selecting an optimal value for a tuning parameter through the use of

k-fold cross-validation are outlined in the following:

1. Initialization: Set l to 1.

2. Data splitting: Randomly split the observations of a sample into k sets of equal size.

3. Tuning model building: Let Sl contain the indices of observations from the l-th set.

Use all observations except for those in Sl (training set) to fit models for each con-

sidered value of a tuning parameter.

4. Tuning model evaluation: Use the observations in Sl (test set) to measure the models’

accuracies using a pre-defined evaluation criterion (e.g., the mean squared error in

the case of metric responses).

5. Iteration: If l < k increment l and repeat steps 3 to 5.

6. Tuning parameter selection: Average the accuracies of all models which are based

on the same value for the tuning parameter, and select the value for the tuning

parameter which yields the largest mean prediction accuracy.

It is recommended to repeat the steps 1 to 5 several times to obtain more stable results

(see, e.g., Braga-Neto and Dougherty; 2004).

Note that in this section the sample on which cross-validation is performed is either an

original sample (i.e., a sample drawn from the true distribution), a bootstrap sample or

a subsample. The same observation can be contained several times in a bootstrap sam-

ple. Thus when performing cross-validation on a bootstrap sample, the same observation

may be present in the training set and in the test set. If a model is evaluated on observa-

tions that were already used for fitting the model, more complex models show a better

prediction accuracy on these data. However, these have poor predictive accuracy on new

data. The use of subsampling might solve this problem since each observation of the orig-

inal data is contained in a subsample no more than once. A different solution might be to

prevent an overlap of training and test sets. Hothorn et al. (2005), for example, propose

deleting the observations from the test set that are also present in the training set. In this

chapter a different approach for preventing an overlap is considered, in which all dupli-

cations of the same observation in a bootstrap sample are regarded as one unit, and the
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units – instead of the observations – are randomly split into k sets, in which each set con-

tains an equal number of units. Note that the k sets are then not necessarily of the same

size. Gradient boosting methods are an example where data splitting approaches, such

as cross-validation, are performed on bootstrap samples for selecting tuning parameters.

Application: Gradient boosting

Binder and Schumacher (2008) investigated cross-validation on bootstrap samples to se-

lect the optimal number of boosting steps. Their simulation results consistently show

that the number of boosting steps is considerably larger when performing tuning param-

eter selection on bootstrap samples compared to original samples. The consequence of

the considerably high number of boosting steps was overcomplex models with decreased

accuracy. However, it was not clear what exactly has led to this overcomplexity in their

studies. The real data based study and the simulation study presented in this section (i)

investigate if the preference for overcomplex models is induced by the overlap between

training and test set or has a different cause, (ii) quantify the extent of overcomplexity,

and (iii) give hints which method(s) most closely resemble the models obtained from

original data and should thus be used.

Real data study

The studies based on the NHANES data in Section 6.1, where the effect of various factors

on the CRP level was modeled, were replicated, but this time using cross-validation to

select an optimal number of boosting steps. The number of boosting steps which mini-

mizes the cross-validated mean squared error was considered optimal. Model selection

was performed on

• the original NHANES data with n = 1914 observations,

• 1000 bootstrap samples allowing training and test sets to overlap,

• 1000 bootstrap samples not allowing training and test sets to overlap, and

• 1000 subsamples.

In the studies 10 runs of 5-fold cross-validation were performed.

For the original NHANES sample the chosen number of boosting steps was 104. The

corresponding model (fit on the whole NHANES data) included 19 parameters plus the

intercept term.

The numbers of boosting steps chosen in bootstrap samples (with and without allow-

ing training and test sets from 5-fold cross-validation to overlap) and in subsamples are

shown in Figure 6.9. In 89.5% of the bootstrap samples where training and test sets may
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overlap, the chosen number of boosting steps was greater than 104; the average number

of boosting steps was 227.2, and thus is much larger than the number of boosting steps

selected in the original NHANES sample. The numbers of parameters included in the

corresponding bootstrap models are shown in Figure 6.10 (upper left panel). Models de-

rived from bootstrap samples included systematically more parameters than the original

model, and the average number of included parameters was 30.3 (compared to only 19

parameters for the NHANES sample). As already seen in the studies of Binder and Schu-

macher (2008), a considerably higher model complexity – in terms of parameters included

in a model – is obtained when performing cross-validation on bootstrap samples (where

training and test sets may overlap) compared to original samples.
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Figure 6.9.: Optimal number of boosting steps selected via 5-fold cross-validation in 1000 boot-
strap samples (with and without allowing training and test sets from repeated 5-fold cross-
validation to overlap) and 1000 subsamples of the NHANES data. The dotted horizontal line
indicates the chosen number of boosting steps in the original NHANES data.

In contrast to that, there is no tendency toward more complex models when performing

cross-validation on bootstrap samples with the restriction that training and test sets do

not overlap. The contrary is the case: both the number of boosting steps and the number

of parameters included in the models are systematically smaller than for the original sam-

ple (see Figures 6.9 and 6.10). This is also seen from Table 6.2 which shows the average

and median numbers of boosting steps and included parameters. The average number of

boosting steps was 72.1 (compared to 104 in the original sample) and the average number

of included parameters was 13.8 (compared to 19) for the bootstrap approach in which

training and test sets do not overlap.

The results obtained from bootstrap samples in which training and test sets do not

overlap, come close to the results obtained for subsamples. Since subsamples are drawn

such that the number of unique observations is approximately the same as for bootstrap
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Figure 6.10.: Relative frequency of boosting models (out of 1000) fitted on bootstrap samples
(with and without allowing training and test sets from 5-fold cross-validation to overlap) and on
subsamples with specified number of parameters (not including the intercept term). The dark
gray bars indicate the number of parameters in the model that was fit on the original NHANES
sample.

samples (i.e., 63.2% of the original sample), one might hypothesize that the information

content in a bootstrap sample and in a subsample is approximately the same, thus lead-

ing to similar models. There are, though, some differences between the two approaches.

While for subsamples the model complexity is very close to that of the original NHANES

sample, the models for bootstrap samples (with restriction that training and test sets do

not overlap) are less complex. The duplication of single observations in a sample obvi-

ously affects boosting algorithms to some extent. Alternatively, the observed differences

are not due to the duplicated observations, but to the ratio of training and test set sizes,

which is not constant over all k training and test set splits. Further studies are needed

to investigate the reasons which lead to the differences. However, the studies make it

clear that the higher complexity of gradient boosting models results from the overlap of
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Optimal no. of No. of included
boosting steps parameters

Original 104 19
Mean Median Mean Median

Bootstrap (overlap) 227.185 201 30.253 30
Bootstrap (no overlap) 72.075 69 13.758 14
Subsample 96.071 93 17.867 18

Table 6.2.: Mean and median numbers of boosting steps and parameters included in the resulting
boosting models fit on 1000 bootstrap samples (with and without allowing training and test sets
from 5-fold cross-validation to overlap) and on 1000 subsamples. The numbers for the original
sample are also shown.

training and tests sets when performing cross-validation on bootstrap samples.

Although models derived from bootstrap samples where training and test sets may

overlap, included far more parameters than models derived from the other two sampling

approaches, there was hardly any difference regarding the models’ predictive accuracy.

The average mean squared error was 0.32 for subsamples and 0.33 for both bootstrap

approaches.

To conclude, the subsampling procedure yielded the best results in the considered real

data application. The models derived from subsamples included almost as many param-

eters as the model obtained from the original sample, thus reflecting the complexity of the

original model, and, in addition, they had a similar, and even marginally smaller mean

squared error than models fit on bootstrap samples.

Simulation study

The simulation design is adopted from Binder and Schumacher (2008) who first encoun-

tered the overcomplexity of models built from bootstrap samples when parameter tuning

is performed using cross-validation. Their simulation design with binary response has

been described in Section 6.1. Model selection was performed on

• 1000 original samples, each including n = 100 observations,

• 1000 bootstrap samples allowing training and test sets to overlap,

• 1000 bootstrap samples not allowing training and test sets to overlap, and

• 1000 subsamples.

Note that each bootstrap sample or subsample was drawn from a different original sam-

ple. Ten runs of 5-fold cross-validation were performed.

The results for the setting with weak effects (ce = 1) are shown in Figure 6.11. Those for

the setting with moderate effects (ce = 2) were comparable and are thus not shown. The

studies show that with the classical bootstrap approach (where training and test sets may
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overlap) too complex models are promoted. As seen in the upper row of Figure 6.11, the

number of selected boosting steps is much larger than that obtained for original samples.

The number of parameters in a model is substantially larger, too, and the difference be-

tween the numbers for original and bootstrap samples increases with increasing numbers

of candidate predictors (middle row). Performing cross-validation on bootstrap samples

for choosing the optimal number of boosting steps is thus not recommended because the

resulting models are much more complex than models fit on original samples, especially

in settings with large numbers of candidate predictors.
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Figure 6.11.: Optimal number of boosting steps (upper row), the number of parameters in the
corresponding model (middle row), and the prediction accuracy which was measured through
the Brier score (lower row). Results are shown for models selected via 5-fold cross-validation for
binary response gradient boosting in 1000 original samples, bootstrap samples (with and without
allowing training and test sets from repeated 5-fold cross-validation to overlap), and subsamples.

The results obtained for subsampling and those obtained for the bootstrap approach, in

which training and test sets do not overlap, are similar. This is in line with the findings of

the real data study. With subsampling and the bootstrap approach that prevents an over-

lap, sparser models are chosen compared to models derived on original samples. Both

the number of boosting steps and the number of parameters are smaller for these two

sampling approaches than for original samples. The difference is smaller for the settings

with larger numbers of candidate predictors. In the settings with p = 5000, the model

complexities for the modified bootstrap approach and for subsampling approximate the
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complexity of models fit on original samples well. However, in the settings with p = 200,

models fit on original samples are much more complex.

The prediction accuracy is worst for models fit on bootstrap samples in which training

and test sets overlap (cf. Figure 6.11, lower row). The accuracy of models fit on bootstrap

samples without overlap and subsamples is better. In the setting with p = 200 the predic-

tion accuracies of models obtained through subsampling and both bootstrap approaches

are comparable. In the other two settings, subsampling and the bootstrap approach that

prevents an overlap of training and test sets distinctly outperform the classical bootstrap

approach, especially in the setting with p = 5000. This suggests that the overcomplex-

ity induced by the bootstrap might result in models that are less accurate. Further, the

studies suggest that this problem becomes more relevant in settings with large numbers

of predictor variables.

6.3. Discussion

Based on the results presented in Chapter 5 it was shown that bootstrapped informa-

tion criteria do not represent what would be obtained on the original data. Models of

different complexity are the consequence, as seen in studies with gradient boosting mod-

els. In settings where the number of predictor variables exceeded the number of ob-

servations, boosting models were less complex when fit on bootstrap samples, while in

low-dimensional settings boosting models were more complex. Future theoretical inves-

tigations on the bootstrapped AIC in gradient boosting models are needed to study the

reasons for this.

The studies in this chapter suggest that using cross-validation for tuning parameter

selection in bootstrap samples is much more problematic than using information crite-

ria since the respective boosting models included a substantially larger number of pa-

rameters than boosting models derived for original samples. The overcomplexity was

shown to be likely attributable to the overlap between training and test sets when cross-

validation was performed on bootstrap samples. Subsampling might be used to avoid

this problem. However, the models derived from subsamples included fewer parame-

ters than models derived from original samples and thus do not reflect the complexity

of models obtained for the original samples, either. A modified bootstrap strategy in

which training and test sets do not overlap, was investigated. The results of this modi-

fied bootstrap strategy were similar to those obtained for subsampling, and the modified

bootstrap strategy also yielded models which are systematically less complex than mod-

els derived from original samples. Future research might aim at developing alternative

strategies that provide models which are similar to models obtained for original sam-
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ples. If the aim is to obtain accurate prediction models, however, the studies suggest that

subsampling should be preferred over the bootstrap.

Another interesting finding was that the numbers of boosting steps chosen in original

samples and in bootstrap samples cannot be compared. In some studies presented in this

chapter, the number of boosting steps was larger for bootstrap samples than for original

samples but the respective bootstrap models included less parameters than the models

derived from the original samples. Thus one cannot use the selected number of boosting

steps as a substitute for the number of parameters in a model, for comparing models on

original samples with models on bootstrap samples (or subsamples, resp.). If it is used

wrong conclusions regarding the models’ complexity might be obtained.

Finally, it should be noted that the chosen boosting model depends highly on the

method for tuning parameter selection (cross-validation or AIC). The studies show that

boosting models for original samples are much more complex if the AIC is used. The

AIC is computed from the degrees of freedom which are unknown for gradient boosting

models and have to be estimated. The available AIC estimates, however, underestimate

the degrees of freedom (Hastie; 2007). The consequence is that systematically too many

boosting steps are chosen when using the AIC as a criterion. In the considered studies,

the numbers of parameters included in models for original samples were always sub-

stantially different for the two tuning parameter selection strategies. The difference in-

creased with increasing numbers of candidate predictors. While in the (low-dimensional)

real data set there was no difference in the models’ prediction accuracies, in the (high-

dimensional) simulation study the models selected based on AIC had worse performance

than the models selected based on cross-validation, which were much less complex. In

light of the results from the simulation studies, the general recommendation to prefer

cross-validation over the AIC for tuning parameter selection in gradient boosting mod-

els, can be approved (see Mayr et al.; 2012, for recommendations on the selection of the

optimal number of boosting steps).





7. Conclusion and outlook

This thesis focused on resampling approaches with special emphasis on bootstrap-based

procedures. The first and second parts of this thesis dealt with one specific bootstrap-

based procedure, namely random forests (RF).

RF are well investigated for classification and regression tasks. However, there is a lack

of studies dealing with the application of RF for ordinal regression. Chapter 3 addressed

this issue. Existing and new approaches were investigated for both prediction and vari-

able selection. The studies were based on the RF methodology of Hothorn, Hornik and

Zeileis (2006). Besides classification and regression trees, this RF version implements so-

called ordinal regression trees. When constructing ordinal regression trees, the ordinal

response is treated like a metric response, but contrary to regression trees, ordinal regres-

sion trees provide class predictions instead of real-valued predictions. Ordinal regression

trees have not been tested so far. Extensive studies shown in Chapter 3 indicate that

prediction performance of RF consisting of ordinal regression trees and RF consisting of

classification trees is very similar, and that there is hardly any improvement in predic-

tion performance when making use of the ordering of the response levels. In contrast to

that, variable ranking can be improved when using novel variable importance measures

(VIMs) which make use of the ordering. These new VIMs are special types of permu-

tation VIMs. They are computed from the out-of-bag ranked probability score or from

the out-of-bag mean absolute error, respectively. Studies show that variable rankings are

most reliable when using the novel VIMs in combination with ordinal regression trees.

A drawback of VIMs is that there is no natural cutoff for importance scores that can

be used to differentiate between important and non-important variables. When using

RF’s VIMs every researcher thus faces the problem which variables to select from the

ranking list. Permutation-testing approaches have been developed for addressing this

problem. While for low-dimensional settings approaches based on permutation tests can

be applied, for high-dimensional settings these approaches are computationally very de-

manding – if not infeasible. In Chapter 4 a computationally fast heuristic testing proce-

dure for high-dimensional data was proposed. This testing procedure makes use of the

observed non-positive importance scores to approximate the distribution of importance

scores for non-relevant variables (null distribution). For each variable a p-value can then

easily be derived based on this approximation of the null distribution. The new test-
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ing approach is based on the assumption of a null distribution symmetric around zero.

This assumption is, however, not met when deriving the importance scores based on the

classical permutation VIM. Therefore, a modified version of the permutation VIM was

developed. This modified version is not computed from the out-of-bag observations but

is based on cross-validation procedures. The null distribution based on this modified

VIM was empirically shown to be symmetric around zero and thus fulfills the require-

ments of the novel testing procedure. In the studies with high-dimensional data the new

testing approach controlled the type I error and had at least the same statistical power as

the permutation-test-based approach of Altmann et al. (2010).

In some studies the modified VIM had a slightly better discriminative ability than the

classical VIM. The reasons for this are unknown and future studies are needed to inves-

tigate if at all – or in which settings – the modified VIM is superior to the classical VIM.

Such studies are valuable in that they detect deficiencies of the classical VIM and aid the

development of improved VIMs.

In the studies presented in Chapter 4 only settings with categorical response were con-

sidered. Further studies are needed to examine the performance of the novel approach

in settings with metric response or in settings with ordinal response considered in Chap-

ter 3. The performance of the novel testing approach for metric response was studied by

Celik (2015) in his master thesis which was initiated and supervised by myself. Overall,

the novel approach showed good performance in the studies of Celik (2015). In some

studies the type I error was marginally increased, but the increase in type I error ob-

served in the studies may possibly not be regarded as relevant in practice. However,

from theoretical considerations it is expected that the testing approach might fail in spe-

cific settings. In the studies of Nicodemus et al. (2010), it was shown that, even if none of

the correlated variables is associated with the response, the importance score distribution

of highly correlated predictor variables lies in the positive range. This cannot be repaired

through the use of the novel permutation VIM: As indicated in the studies of Celik (2015),

the null distribution for the novel VIM is in the positive range, too. This could result

in increased type I error of the novel testing approach. However, for high-dimensional

settings the distribution was far less shifted on the x-axis in positive direction than for

low-dimensional data settings (Celik; 2015). This might explain that the testing approach

(almost) preserved the type I error in the studies of Celik (2015). But one cannot exclude

the possibility of increased type I error in future settings including highly correlated pre-

dictor variables. Nicodemus et al. (2010) showed that the null distribution is not shifted

in the positive range when using the conditional VIM of Strobl et al. (2008) in combina-

tion with conditional inference trees. Therefore, a promising solution to the problem is to

derive the novel cross-validation based VIM from the conditional VIM and not from the
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classical VIM. This derivation is straightforward as the cross-validation based VIM can be

derived from any arbitrary VIM that makes use of out-of-bag observations for evaluating

the trees’ performance. It is expected that there is no increased type I error when using a

cross-validation based VIM which is derived from the conditional VIM.

However, an important problem persists when using RF’s VIMs for variable selec-

tion. This problem concerns the interpretation of the selected variables. Due to the non-

parametric nature of RF there is no easy interpretation of the variables in RF. In compari-

son with model-based approaches, which allow for an easy – but simplistic – interpreta-

tion of the effect of variables through the use of regression coefficients, the interpretation

of the effect of variables in RF is awkward. Approaches, such as partial dependence

plots, have been developed and might be a good starting point. Future work is needed to

address this challenging problem.

Besides its use in ensemble methods, such as RF, the bootstrap is widely used in biom-

etry to solve problems that are difficult to address based on asymptotic theory. With

the introduction of the bootstrap in 1979 more and more approaches which are based

on the bootstrap have been developed. Recently some approaches have been suggested

where hypothesis tests or model selection through information criteria or data splitting

approaches are performed on bootstrap samples as if they were original samples. The

third and forth part of this thesis dealt with problems related to the use of hypothesis

testing or model selection strategies on bootstrap samples.

In Chapter 5 it was shown that the p-values of tests performed on bootstrap samples

as if they were the original samples do not represent what would be obtained on the

original data, and that there is increased type I error for tests performed on bootstrap

samples. These findings were based on theoretical and empirical investigations using

the Z-test and the likelihood ratio test as examples. The practical impact on three pro-

cedures was assessed and promising alternative strategies, such as subsampling, were

considered. The first application makes use of the bootstrap for investigating the sta-

bility of the results obtained from stepwise model selection procedures that implement

hypothesis testing for deciding which variables to include in a model or eliminate from a

model (Chen and George; 1985; Altman and Andersen; 1989; Sauerbrei and Schumacher;

1992). It was shown that performing stepwise procedures on bootstrap samples results in

models that include more parameters compared to models obtained from original sam-

ples. Moreover, categorical variables with many categories are preferentially selected in

a model. The second considered procedure aims to generate stable variable ranking lists

based on bootstrapped p-values (Mukherjee et al.; 2003). It was shown that these proce-

dures fail if there are variables of different scales for the same reason. In the third applica-

tion bootstrapped p-values are used for assessing the variability of p-values (Bollen and
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Stine; 1992). In most of the considered simulation settings the variability estimated from

bootstrapped p-values was systematically too large or too small and thus did not reflect

the p-value variability of original samples.

Bootstrapping is commonly used for the estimation of the error of a prediction mod-

eling strategy. Many statistical methods involve tuning parameters. Optimal values for

these parameters are usually found through the application of information criteria or

cross-validation procedures. Chapter 6 investigated the use of bootstrapped information

criteria and cross-validation for tuning parameter selection in bootstrap samples with

a focus on gradient boosting models. When using the AIC for tuning parameter selec-

tion in gradient boosting models, studies showed that it depends on the specific data

setting, whether boosting models fit on bootstrap samples are either more complex or

less complex than boosting models fit on original samples. In low-dimensional data

settings, boosting models fit on bootstrap samples were rather more complex, while in

high-dimensional settings they were less complex. In contrast, boosting models fit on

bootstrap samples were always more complex when cross-validation was used for tun-

ing parameter selection. It was shown that the higher complexity of boosting models

results from the overlap of training and tests sets when performing cross-validation on

bootstrap samples.

Subsampling resulted in boosting models which were less complex than models fit on

original samples. This was the case for both tuning parameter selection through AIC

and cross-validation. The complexity of boosting models fit on subsamples thus does not

represent the complexity of boosting models fit on original samples, either. However, if

the aim is to find sparse boosting models that have high predictive accuracy, subsam-

pling should be preferred over the bootstrap. In all studies, models fit on subsamples

had slightly better prediction accuracies than models fit on bootstrap samples, although

the differences were marginal. This suggests that the additional parameters included in

models constructed based on bootstrap samples do not have any additional predictive

value.

The studies presented in this thesis showed that one cannot directly apply any pro-

cedure to bootstrap samples as if they were the original sample. The list of bootstrap

approaches mentioned in this thesis is with certainty not complete. Applied researchers

should be careful when using approaches to problems in which hypothesis tests or model

selection through information criteria or data splitting approaches are performed based

on a bootstrap sample. Depending on the considered method and on the aim of a study,

the bootstrap might be very useful or it might lead to wrong conclusions. If no investi-

gations exist that indicate the reliability of a bootstrap approach, simulation studies are a

helpful investigative tool.



A. Steps for deriving the random

forests prediction rule

Step 1: Deriving prediction rules on the training data

This section gives details on classifiers that were fit on the training data in the anaerobic

blood culture samples. The analyses were performed using Bioconductor package CMA

(Slawski et al.; 2008).

Parameter tuning was done using internal 3-fold cross-validation. The grids of candidate

parameter values were chosen as the default grids in CMA version 1.10.0. Parameters

that were not tuned were chosen as the default values in CMA version 1.10.0 if not ex-

plicitly specified here.

Variable selection was performed before fitting classifiers using the following methods:

• ranking of variables by their p-values using a t-test,

• ranking of variables by their p-values using Limma (Smyth; 2005), or

• ranking of variables by their variable importance score via random forest’s Gini

importance measure (RF VIM).

Dimension reduction was performed before fitting classifiers using partial least squares

(PLS).

Table A.1 gives an overview of the fitted classifiers.

Step 2: Selecting the best prediction rule

The accuracies of the prediction rules were computed in an unbiased way using 5-fold

cross-validation (repeated 100 times), while preserving response class distributions within

all folds (stratified sampling). The prediction rules were compared with respect to their

cross-validated prediction errors. Figures A.1 and A.2 show the distribution of error rates

over the 100× 5 repetitions (prediction rules are in the same order as in Table A.1). The
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minimal error rate is obtained for the random forests prediction rule when using only the

10 highest ranked variables according to the RF VIM. This prediction rule was considered

the best.

Step 3: Fitting the random forests prediction rule on the whole

training data

The next step was to build the random forests prediction rule with the 10 top ranked

variables (by RF VIM) using the whole training data. This prediction rule might be used

for predicting future independent data. First the 10 top ranked variables by the Gini VIM

were identified from the whole training data. These variables are H2, 34, 35, 35*, 36, 64,

64*, 66, 76*, 80*, whereas the asterisk indicates that compounds were measured by chem-

ical ionization using xenon instead of mercury as primary ion. The tuning parameters

(i.e., the number of randomly selected variables at each split and the minimal number of

observations in a node) were selected through 3-fold cross-validation performed on the

training data. The optimal value for the number of randomly selected variables at each

split was 3 and the optimal number for the minimum size of nodes was 7. These values

were used to build the final random forests prediction rule consisting of 1000 trees based

on the whole training data.

Step 4: Validating the random forests prediction rule

The random forests prediction rule was validated using an independent validation data

that arose from randomly splitting the original data into a training and a validation set

(ratio 2:1). The error rate, sensitivity and specificity, the ROC and the area under the curve

are shown in Section 2.2.2.
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Figure A.1.: Comparison of prediction rules constructed based on the training data. Parameter p
denotes the number of preselected variables. RF: random forests; SVM: support vector machines,
k n.n.: k nearest neighbors; p. k n.n.: probabilistic k nearest neighbors; LDA: linear discriminant
analysis.
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Figure A.2.: Comparison of prediction rules constructed based on the training data (cont.). Pa-
rameter p denotes the number of preselected variables. DLDA: diagonal linear discriminant
analysis; QDA: quadratic discriminant analysis.



B. NHANES data

The data considered in Chapters 3, 5 and 6 is from the 2007-2008 cycle of the National
Health and Nutrition Examination Survey (NHANES) (National Center for Health Statis-
tics; 2012) which is maintained by the Centers for Disease Control and Prevention.
NHANES is designed as a series of cross-sectional surveys conducted in the US popula-
tion. The data are freely available from the institution’s homepage or from the Interuni-
versity Consortium for Political and Social Research. The considered data set comprises a
total of n = 1914 subjects. For the studies in Chapters 5 and 6, the level of high-sensitive
C-reactive protein (CRP) was used as the response. The CRP is a plasma protein involved
in the acute phase response during inflammatory states (Black et al.; 2004). Besides CRP
there are 28 variables that include information on the medical facility to which the subject
most often goes, the subject’s sex, age, body mass index, waist circumference, race, coun-
try of birth, education, marital status, income, smoking history, information on alcohol
consumption, as well as laboratory values (white blood cell counts, systolic and diastolic
blood pressure, cholesterol level) and health-related conditions including asthma, dia-
betes, history of stroke, history of heart failure, history of chronic bronchitis, history of
any acute illnesses, history of alcohol abuse, self-rated general health, tooth condition, de-
pressive mood, sleeping abnormalities (consisting of items on falling asleep and waking
during the night). Many of the variables were obtained from interviews with the study
persons. The corresponding interview questions, the abbreviations for the variables used
in Chapters 5 and 6, and the measurement units of the variables are given in Table B.1.
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Abbreviation Interview question / description Categories / units

race Recode of reported race and ethnicity information Mexican American
Other Hispanic
Non-Hispanic
White
Non-Hispanic
Black
Other Race, includ-
ing Multi-Racial

country of birth In what country (were you/was sample person) born? 50 US States or
Washington, DC
Mexico
Other Spanish
Speaking Country
Other Non-
Spanish Speaking
Country

education What is the highest grade or level of school (you have/sample
person has) completed or the highest degree (you have/she/he
has) received?

less than 9th
up to 11th
high school
some college
graduate

marital status Marital status married
widowed
divorced
separated
never married
living with partner

HealthStatus Would you say (your/sample person’s) health in general is . . . excellent
very good
good
fair
poor

depression Over the last 2 weeks, how often have you been bothered by the
following problems: little interest or pleasure in doing things?
Would you say . . .

not at all
several days
over half the days
nearly every day

ToothCond Now I have some questions about the condition of your
teeth and gums. How would you describe the condition of
(your/sample person’s) teeth? Would you say . . .

excellent
very good
good
fair
poor

sleepTrouble In the past month, how often did (you/sample person) have
trouble falling asleep?

never
rarely
sometimes
often
almost always

Continued on next page
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wakeUp In the past month, how often did (you/sample person) wake
up during the night and had trouble getting back to sleep?

never
rarely
sometimes
often
almost always

medicalPlaceToGoWhat kind of place (do you/does sample person) go to most
often: is it a clinic, doctor’s office, emergency room, or some
other place?

clinic
doctor’s office
hospital emer-
gency
hospital outpatient
other

income Total household income (reported as a range value in dollars) under $5k
$5k - under $10k
$10k - under $15k
$15k - under $20k
$20k - under $25k
$25k - under $35k
$35k - under $45k
$45k - under $55k
$55k - under $65k
$65k - under $75k
$75k - under $100k
over $100k

AcuteIllness Did (you/sample person) have a head cold or chest cold that
started during the last 30 days? or Did (you/sample person)
have flu, pneumonia, or ear infections that started during those
30 days? or Did (you/sample person) have a stomach or intesti-
nal illness with vomiting or diarrhea that started during those
30 days?

yes
no

100cig (Have you/Has sample person) smoked at least 100 cigarettes
in (your/his/her) entire life?

yes
no

diabetes (Have you/Has sample person) ever been told by a doctor
or health professional that (you have/(he/she/sample person)
has) diabetes or sugar diabetes?

yes
no

asthma Has a doctor or other health professional ever told
(you/sample person) that (you/she/he) have/has asthma?

yes
no

heartFailure Has a doctor or other health professional ever told
(you/sample person) that (you/she/he) had congestive
heart failure?

yes
no

stroke Has a doctor or other health professional ever told
(you/sample person) that (you/she/he) had a stroke?

yes
no

chronicBronchitis Has a doctor or other health professional ever told
(you/sample person) that (you/she/he) had chronic bronchi-
tis?

yes
no

Continued on next page
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Continued from previous page

heavyDrinker Was there ever a time or times in (your/sample person’s) life
when (you/he/she) drank 5 or more drinks of any kind of al-
coholic beverage almost every day?

yes
no

waistcircum Circumference of waist cm

Cholesterol Cholesterol level mg/dL

WBCcount White blood cell count 1k cells/µL

BPsys Systolic blood pressure mmHg

BPdias Diastolic blood pressure mmHg

age Age years

BMI Body mass index kg/m2

alcohol Alcohol consume units

Table B.1.: Variables and corresponding interview questions or descriptions for the NHANES
data.



C. Additional results

C.1. Random forests for ordinal responses

Simulation settings

Additional studies were conducted, in which the number of variables was increased to
p = 1015. The number of observations was n = 200. The response was generated accord-
ing to a mixture of two proportional odds models as described in Section 3.3.3. Among
the 1015 variables X1, . . . , X15 had an effect on at least one mixture component (see Sec-
tion 3.3.3 for their coefficient values), while the remaining 1000 variables had no effect
and their coefficients for both mixture components were zero. Model parameters and
simulation settings were the same as for the simulations described in Chapter 3.

For settings with correlations, xi, i = 1, . . . , 200, were drawn from N(0p, Σp) (now p =

1015) with block diagonal covariance matrix

Σp =



Asignal 0 0 0 0 0 0 0
0 Anoise1,1 0 0 0 0 0 0
0 0 Anoise1,2 0 0 0 0 0

0 0 0 . . . 0 0 0 0
0 0 0 0 Anoise1,20 0 0 0
0 0 0 0 0 Anoise2,1 0 0

0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 0 Anoise5,20


.

The first block matrix Asignal ∈ R(15×15) determined the correlations among the signal
predictors X1, . . . , X15. It was defined as Asignal = (aij) with

aij =


1, i = j

0.8, i 6= j; i, j ∈ {1, 3, 6, 8, 11, 13}
0, otherwise

in this way generating uncorrelated and also strongly correlated signal predictors. The
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matrices Anoisei,j ∈ R(10×10) for i = 1, . . . , 5 and j = 1, . . . , 20 were given by

Anoisei,j =


1 ρi . . . ρi

ρi 1 . . . ...
... . . . . . . ρi

ρi . . . ρi 1


and determined correlations among a set of 10 noise predictor variables with ρ1 = 0.8,
ρ2 = 0.6, ρ3 = 0.4, ρ4 = 0.2 and ρ5 = 0.

The RF parameter setting described in Section 3.3.3 was chosen. However, since at
most 15 of 1015 predictor variables had an effect, a large mtry value of 100 was chosen for
the present studies.

Results

Figures C.1 – C.4 show the performance ratio for RF ordinal versus RF classification. Pre-
diction accuracy was evaluated using the ranked probability score (Figure C.1), the error
rate (Figure C.2), the class-specific error rates averaged over all classes (Figure C.3) and
a generalization of the area under the curve to multiple ordered classes (Figure C.4). The
latter is the average over k − 1 area under the curves; the l-th area under the curve is
given by

AUCl =
1

∑l
i=1 ni ∑k

j=l+1 nj
∑

Yi≤l
∑

Yj>l
I(Ŷi < Ŷj) + 0.5I(Ŷi = Ŷj),

with nr denoting the number of observations in classes r = 1, . . . , k, Yi and Ŷi denoting
the observed and predicted responses, respectively, for observations i = 1, . . . , n, and
l ∈ {1, . . . , k− 1} (see, e.g., Waegeman et al.; 2008).

In contrast to the ranked probability score and the classical error rate, the class-specific
error rate and the area under the curve do not give the same weight to each observation,
but they account for the fact that response classes may be unbalanced.

The results are similar for all considered prediction accuracy measures. Overall, the
prediction performance of RF ordinal is slightly better than that of RF classification.

The performance of the four considered VIMs is shown in Figures C.5, C.6 and C.7
for the simulation settings with 9, 6 and 3 ordered response classes. The VIMs based
on the ranked probability score, mean absolute error and mean squared error are clearly
better than the VIM based on the error rate, especially in settings with larger numbers
of response classes. The best predictor rankings were obtained when using these VIMs
in combination with ordinal regression trees, although in most settings the differences to
rankings obtained from classification trees were marginal.



C.1 Random forests for ordinal responses 139

●

●

k = 3

k = 6

k = 9

ζ 
 =

 0
.6

With correlations

●● ●

●●●●●●

Without correlations

●●●

● ●

k = 3

k = 6

k = 9

ζ 
 =

 1

●

●

●

k = 3

k = 6

k = 9

ζ 
 =

 0

0.90 0.95 1.00 1.05

                RF ordinal      RF classifi−
                        better      cation better

RPS ratio

●●

RPS ratio

0.95 1.00 1.05

               RF ordinal      RF classifi−
                       better      cation better

RPS ratio

Figure C.1.: Performance ratio for RF ordinal versus RF classification for simulated data with p =
1015 predictor variables for n = 200 observations. A ratio of the ranked probability scores (RPS)
below 1 indicates a better prediction accuracy of RF ordinal and a ratio above 1 indicates a better
prediction accuracy of RF classification. Data was generated from a mixture of proportional odds
models with mixture proportions ζ = 0.6 (upper row), ζ = 1 giving weight 1 to the first mixture
component g = 1 (middle row), and ζ = 0 giving weight 1 to the second mixture component
g = 2 (lower row). Data was generated for k ∈ {3, 6, 9} ordered response levels and for settings
in which predictors correlate (left column) and in which all predictors are uncorrelated (right
column).
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Figure C.2.: Performance ratio for RF ordinal versus RF classification for simulated data with
p = 1015 predictor variables for n = 200 observations. A ratio of the error rate below 1 indicates
a better prediction accuracy of RF ordinal and a ratio above 1 indicates a better prediction accuracy
of RF classification. Data was generated from a mixture of proportional odds models with mixture
proportions ζ = 0.6 (upper row), ζ = 1 giving weight 1 to the first mixture component g = 1
(middle row), and ζ = 0 giving weight 1 to the second mixture component g = 2 (lower row).
Data was generated for k ∈ {3, 6, 9} ordered response levels and for settings in which predictors
correlate (left column) and in which all predictors are uncorrelated (right column).
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Figure C.3.: Performance ratio for RF ordinal versus RF classification for simulated data with
p = 1015 predictor variables for n = 200 observations. A ratio of the average over class-specific
error rates (ER∗) below 1 indicates a better prediction accuracy of RF ordinal and a ratio above 1
indicates a better prediction accuracy of RF classification. Data was generated from a mixture of
proportional odds models with mixture proportions ζ = 0.6 (upper row), ζ = 1 giving weight
1 to the first mixture component g = 1 (middle row), and ζ = 0 giving weight 1 to the second
mixture component g = 2 (lower row). Data was generated for k ∈ {3, 6, 9} ordered response
levels and for settings in which predictors correlate (left column) and in which all predictors are
uncorrelated (right column).
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Figure C.4.: Performance ratio for RF classification versus RF ordinal for simulated data with
p = 1015 predictor variables for n = 200 observations. A ratio of the area under the curve (AUC)
below 1 indicates a better prediction accuracy of RF ordinal and a ratio above 1 indicates a better
prediction accuracy of RF classification. Data was generated from a mixture of proportional odds
models with mixture proportions ζ = 0.6 (upper row), ζ = 1 giving weight 1 to the first mixture
component g = 1 (middle row), and ζ = 0 giving weight 1 to the second mixture component
g = 2 (lower row). Data was generated for k ∈ {3, 6, 9} ordered response levels and for settings
in which predictors correlate (left column) and in which all predictors are uncorrelated (right
column).
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Figure C.5.: Performance of different VIMs for RF ordinal and RF classification: settings for a 9-
category ordinal response. VIMs are computed using the error rate (ER), the ranked probability
score (RPS), the mean squared error (MSE) and the mean absolute error (MAE). Data was gener-
ated for n = 200 using a mixture of proportional odds models with mixture proportions ζ = 0.6
(upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row), and ζ = 0
giving weight 1 to the second mixture component g = 2 (lower row).
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Figure C.6.: Performance of different VIMs for RF ordinal and RF classification: settings for a 6-
category ordinal response. VIMs are computed using the error rate (ER), the ranked probability
score (RPS), the mean squared error (MSE) and the mean absolute error (MAE). Data was gener-
ated for n = 200 using a mixture of proportional odds models with mixture proportions ζ = 0.6
(upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row), and ζ = 0
giving weight 1 to the second mixture component g = 2 (lower row).
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Figure C.7.: Performance of different VIMs for RF ordinal and RF classification: settings for a 3-
category ordinal response. VIMs are computed using the error rate (ER), the ranked probability
score (RPS), the mean squared error (MSE) and the mean absolute error (MAE). Data was gener-
ated for n = 200 using a mixture of proportional odds models with mixture proportions ζ = 0.6
(upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row), and ζ = 0
giving weight 1 to the second mixture component g = 2 (lower row).
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Figure C.8.: Discriminative ability of the novel hold-out VIM and the classical VIM for Study II
(left) and Study III (right) with mtry = p
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Figure C.9.: Variable importance null distribution when using the hold-out VIM, the cross-
validated VIM with k = 3, k = 5, and k = 10 and the classical VIM and setting mtry to

√
p

(upper) and p
5 (lower). Distributions are shown for 500 repetitions of Study I.
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Figure C.10.: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions
are shown for variables with specified absolute effect size and when using the new approach,
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with mtry set to
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Figure C.11.: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions
are shown for variables with specified absolute effect size and when using the new approach,
the naive approach and the approach of Altmann et al. (2010) (non-parametric and parametric),
with mtry set to

√
p (upper) and p

5 (lower).
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Figure C.12.: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions
are shown for variables with specified absolute effect size and when using the new approach,
the naive approach and the approach of Altmann et al. (2010) (non-parametric and parametric),
with mtry set to

√
p (upper) and p

5 (lower).
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Figure C.13.: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions
are shown for variables with specified absolute effect size and when using the new approach,
the naive approach and the approach of Altmann et al. (2010) (non-parametric and parametric),
with mtry set to

√
p (upper) and p

5 (lower).
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Figure C.14.: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions
are shown for variables with specified absolute effect size and when using the new approach,
the naive approach and the approach of Altmann et al. (2010) (non-parametric and parametric),
with mtry set to

√
p (upper) and p

5 (lower).
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C.2.2. Studies with reduced predictor space (p = 100)
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Figure C.15.: Variable importance null distribution when using the hold-out VIM, the cross-
validated VIM with k = 3, k = 5, and k = 10 and the classical VIM and setting mtry to

√
100

(upper) and 100
5 (lower). Distributions are shown for 500 repetitions of Study I.
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Figure C.16.: Proportion of rejected null hypothesis among predictor variables Xj with specified
absolute effect size |β j| ∈ {0, 0.5, 1, 2, 3}. The mean proportions over 500 (200 for the approach of
Altmann et al. (2010), resp.) repetitions of Study III are shown when using the novel approach,
the naive approach and the approach of Altmann et al. (2010), with mtry set to

√
100 (upper

panel) and 100
5 (lower panel). The red horizontal line represents the 5% significance level.
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Figure C.17.: Discriminative ability of the novel hold-out VIM and the classical VIM with mtry
set to

√
100 (left) and 100

5 (right). Discriminative ability is measured by the area under the curve
(AUC). Values of 0.5 indicate no discriminative ability (horizontal dotted line).
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Study III

● ●

●

●●

●

●

●
●

●

●●● ●
●

●

●

●

●

●●●

●

●

●

0.
5

0.
6

0.
7

0.
8

0.
9

mtry = 100

A
U

C

P
ro

st
at

e 
C

an
ce

r

B
re

as
t C

an
ce

r

Le
uk

em
ia

C
ol

on
 C

an
ce

r

E
m

br
yo

na
l T

um
or

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.
5

0.
6

0.
7

0.
8

0.
9

mtry = 100 5

A
U

C

P
ro

st
at

e 
C

an
ce

r

B
re

as
t C

an
ce

r

Le
uk

em
ia

C
ol

on
 C

an
ce

r

E
m

br
yo

na
l T

um
or

hold−out
classical

Figure C.18.: Discriminative ability of the novel hold-out VIM and the classical VIM with mtry
set to

√
100 (left) and 100

5 (right). Discriminative ability is measured by the area under the curve
(AUC). Values of 0.5 indicate no discriminative ability (horizontal dotted line).
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Figure C.19.: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions
are shown for variables with specified absolute effect size and when using the new approach,
the naive approach and the approach of Altmann et al. (2010) (non-parametric and parametric),
with mtry set to

√
100 (upper) and 100

5 (lower).
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Figure C.20.: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions
are shown for variables with specified absolute effect size and when using the new approach,
the naive approach and the approach of Altmann et al. (2010) (non-parametric and parametric),
with mtry set to

√
100 (upper) and 100

5 (lower).
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Figure C.21.: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions
are shown for variables with specified absolute effect size and when using the new approach,
the naive approach and the approach of Altmann et al. (2010) (non-parametric and parametric),
with mtry set to

√
100 (upper) and 100

5 (lower).
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Figure C.22.: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions
are shown for variables with specified absolute effect size and when using the new approach,
the naive approach and the approach of Altmann et al. (2010) (non-parametric and parametric),
with mtry set to

√
100 (upper) and 100

5 (lower).
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Figure C.23.: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions
are shown for variables with specified absolute effect size and when using the new approach,
the naive approach and the approach of Altmann et al. (2010) (non-parametric and parametric),
with mtry set to

√
100 (upper) and 100

5 (lower).
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C.3. Hypothesis tests on bootstrap samples

C.3.1. Empirical studies on the marginal distribution of a
bootstrapped Z-test statistic

For computing Z and Z∗, n = 1000 independent observations are drawn from the stan-
dard normal distribution. Then a bootstrap sample is drawn out of this original sample
and the test statistic for a Z-test with null hypothesis H0 : µ = 0 is computed from both
original and bootstrap samples. This procedure is repeated 500000 times, yielding 500000
values of both Z and Z∗. Figure C.24 shows the resulting empirical density functions of
Z and Z∗. As expected from theory the distribution of the test statistic Z coincides with
the standard normal distribution: the two lines in Figure C.24 completely overlap. The
distribution of the test statistic Z∗ in contrast systematically deviates from the standard
normal distribution. There is a remarkable difference in variances of the test statistics Z
and Z∗, while the expected values seem to be equal. The empirical expectation of Z and
Z∗ are both close to zero with values −0.0010 and 0.0018, respectively. In contrast, the
empirical variance of Z∗ is, at 2.0011, larger by a factor of 2 than the variance of Z, which
is, at 1.0009, very close to the variance of the standard normal distribution.

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Empirical density functions for Z−test

Test statistic

D
en

si
ty

Z
Z*
N(0, 1)

Figure C.24.: Empirical density functions for test statistics Z (dotted black line) and Z∗ (dashed
black line) of the Z-test. The density of the standard normal distribution is indicated by the solid
gray line.
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C.3.2. Additional results of the real data application

Scale Variable Original Bootstrap Subsample
rank rank (diff.) rank (diff.)

metric or m = 2 diabetes 3 5 (−2) 2 (+1)
asthma 4 7 (−3) 4 0
heartFailure 6 8 (−2) 5 (+1)
AcuteIllness 8 11 (−3) 8 0
BPsys 10 12 (−2) 10 0
age 11 13 (−2) 11 0
alcohol 12 19 (−7) 12 0
BPdias 13 18 (−5) 13 0
stroke 14 21 (−7) 14 0
heavyDrinker 15 22 (−7) 16 (−1)
sex 16 20 (−4) 15 (+1)
chronicBronchitis 18 17 (+1) 18 0
WBCcount 19 28 (−9) 24 (−5)
waistcircum 22 23 (−1) 19 (+3)
BMI 23 26 (−3) 23 0
Cholesterol 25 24 (+1) 20 (+5)
100cig 27 25 (+2) 22 5

m = 4 depression 20 16 (+4) 25 (−5)
country of birth 28 27 (+1) 28 0

m = 5 sleepTrouble 1 2 (−1) 1 0
medicalPlaceToGo 5 4 (+1) 6 (−1)
wakeUp 9 6 (+3) 9 0
race 17 9 (+8) 17 0
education 21 10 (+11) 21 0
HealthStatus 24 14 (+10) 26 (−2)
ToothCond 26 15 (+11) 27 (−1)

m = 6 marital status 7 3 (+4) 7 0
m = 12 income 2 1 (+1) 3 (−1)

Table C.1.: Variable ranking for the first of the 1000 permuted NHANES data sets (modification
consisted of permuting the response variable). Variable rankings are determined by p-values ob-
tained for the original sample (“Original rank”), by the median bootstrapped p-value (“Bootstrap
rank”), and by the median p-value from subsamples (“Subsample rank”). The difference to the
“Original rank” is given in brackets for each variable. The parameter m denotes the number of
levels for the categorical predictor variables.
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