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Zusammenfassung

In der vorliegenden Arbeit werden zwei verschiedene Forschungsprojekte vorgestellt, die bei-

de von komplizierten Multienzymkomplexen, auch Cellulosome genannt, inspiriert wurden.

Cellulosome sind extrazelluläre Maschinen, die von manchen Bakterien zur Zersetzung von

Polysacchariden aus den Zellwänden von Pflanzen eingesetzt werden. Zu diesem Zweck ver-

wenden sie eine Vielzahl von spezialisierten Enzymen, die mittels nicht-kovalenter Rezeptor

Ligand Wechselwirkungen auf hierarchisch aufgebauten Protein Gerüsten angeordnet werden.

Durch eine Reihe evolutionärer Anpassungen wie gezielter Substratanbindung, substratspe-

zifischer Enzym Zusammensetzungen, effizienter Assemblierungsmechanismen, enzymatischer

Synergieeffekte und hochangepassten mechanischen Eigenschaften sind Cellulosome hochef-

fektive Werkzeuge für den Celluloseabbau.

In ersten Teil dieser Arbeit wird die Entwicklung eines neuartigen Assays zur Bestimmung

der cellulytischen Aktivität von mehrkomponentigen Enzym Mischungen auf lignocellulosi-

schen Substraten beschrieben. Das Kernelement dieses Assays ist ein polymerisationsbasier-

ter Amplifikationsmechanismus der das Signal mittels eines unlöslichen Hydrogels integriert

und lokalisert. Dabei wird eine quantitative Auslese des produzierten Polymers für Makro-

wie Mikroimplementationen erreicht. Dabei werden unter anderem Fluoreszenzmikroskopie,

Trübungsmessungen und Rastersondenmikroskopie verwendet. Für Ensemble Auslesemetho-

den ermöglicht das Assay den Einsatz natürlicher Biomasse als Substrat und greift damit eine

der Schwächen herkömmlicher Methoden auf. Weiter wird ein zusätzlicher Erkenntnisgewinn

über die Zersetzungen von Celluolse auf der Mikroskala durch die Kombination des Assays

mit Bildgebungsverfahren wie Totalreflexionsfluoreszenzmikroskopie (TIRF) ermöglicht.

Der zweite Teil der Arbeit beschäftigt sich mit den einzigartigen mechanischen Eigenschaf-

ten cellulosomaler Komponenten. Insbesondere werden hochspezifische Proteinkomplexe, die

für die Assemblierung von Cellulosomen verantwortlich sind, untersucht. Diese Komplexe for-

men eine nicht-kovalente Brücke zwischen bakteriellen Wirtszellen und deren cellulosischen

Kohlenstoffquellen. Durch die turbulenten Umbgebungen, in denen diese Bakterien zu finden

sind, unterliegen diese Bindungen in vivo hohen externen Kräften. Im Rahmen dieser Arbeit

wird eine der stärksten bekannten Rezeptor Ligand Wechselwirkungen beschrieben. Zunächst

wird der Komplex mittels Einzelmolekülkraftspektroskopie charakterisiert. Dazu wird ein ver-

bessertes experimentelles Protokoll vorgestellt. Anschließend werden die zugrunde liegenden

Mechanismen für die extreme mechanische Stabilität der Wechselwirkung mittels atomarer

Moleküldynamik Simulationen im Rahmen einem Kollaboration mit der Gruppe von Prof.

Klaus Schulten von der University of Illinois, USA beleuchtet. Dabei wird ein netzwerkba-

siertes Analyseverfahren der Simulationen zur Visualisierung von Kraftpropagationspfaden

durch Proteinkomplexe entwickelt.
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Summary

The work presented in this thesis consists of two lines of research, both inspired by the in-

tricate multi-enzyme complexes called cellulosomes. Cellulosomes are extracellular machines

produced by anaerobic bacteria to efficiently degrade plant cell wall polysaccharides. To this

end they employ an arsenal of specialized enzymes arranged on hierarchal, multi-domain pro-

tein scaffolds by means of non-covalent receptor-ligand interactions. Cellulosomes are highly

effective tools for cellulose degradation due to a range of evolutionary adaptations, includ-

ing targeted substrate adhesion, intelligent substrate-adjusted enzyme composition, efficient

assembly mechanisms, and enhanced mechanical properties.

The first part of this thesis describes development of the novel assay for the determination of

cellulolytic activity of multi-component enzyme mixtures on lignocellulosic substrates. The

crucial feature of the assay is a polymerization-based amplification scheme that effectively

integrates and localizes the signal in the form of an insoluble hydrogel. Quantitative readout

of the amount of polymer formed is achieved in both bulk and microscale implementations,

including fluorescence microscopy, turbidity measurements and scanning microscopy. When

bulk readout modalities are employed, the assay enables the use of natural biomass substrates

in screening applications, addressing a shortcoming of the currently used methods. Insight

into cellulose degradation at the microscale is enabled by combining the assay with time-

resolved imaging techniques, specifically TIRF microscopy.

The second part of the work concentrates on the unique mechanical properties of cellulo-

somal components. Particularly, highly specific protein-protein complexes responsible for the

assembly of cellulosomes are investigated. These cohesion-dockerin non-covalent links bridge

bacterial host cell and cellulosic carbon sources in turbulent environments, and therefore are

subject to mechanical forces in vivo. One of the strongest known receptor-ligand pairs is

reported as part of this thesis. First, the complex is characterized using single molecule force

spectroscopy. To this end, an improved experimental protocol was developed and imple-

mented. Next, the mechanisms behind the exceptional mechanostability of the interaction

were elucidated employing full-atom steered molecular dynamic simulations, in collaboration

with the group of prof. Klaus Schulten from University of Illinois, USA. A new network-

based analysis of simulation trajectories is developed to visualize the force propagation paths

through the protein complexes.
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Introduction

In the last years, many questions posed by the biological research were successfully answered

using interdisciplinary approaches envisioned in novel fields of molecular biology, biochem-

istry, biophysics, bioinformatics and nanotechnology. On the one hand, the use of theories,

mathematical and computational methods traditionally reserved for the physical sciences en-

abled a strict quantitative approach to understanding complex phenomena that earlier relied

on the phenomenological description. On the other hand, technological advances provided

access to bottom-up approaches in constructing biological systems. This empowered “under-

standing by building” on length scales raging many orders of magnitude, from single-molecules

to artificial cells to tissue engineering.

Proteins, as essential building blocks of life, are central in modern biophysical research.

They participate in virtually every process within the living cell including metabolism, tran-

scription and translation, stimuli responses and molecular transport. Particularly enzymes,

specialized biological catalysts, are indispensable for any type of function that requires chem-

ical transformation of involved molecules. A prime example is the animal digestive system,

where enzymes break down large macromolecules into smaller ones that can be absorbed by

the intestines and provide organism with energy and building material to sustain growth.

Enzymes produced by symbiotic gut microbiota often succor host digestion by collecting the

energy from otherwise unutilized substrates, mostly complex carbohydrates. Notably, all

cellulose-digesting animals culture bacteria and fungi that possess specialized enzymatic cas-

cades to crack recalcitrant lignocellulose complexes and ultimately feed from the fatty acids

and proteins that those microbes produce.

Projects that comprise this thesis were inspired by the complex protein systems responsible

for lignocellulose decomposition by bacteria. Those multi-enzyme organelles called cellulo-

somes rely on serial and synergistic modes of action performed by a variety of enzymes with

divergent activities. Those enzymes are arranged on extracellular scaffolds by the means of

non-covalent receptor-ligand interactions. The Lego-like arrangement of subunits in cellulo-

somes enables the microbe to engineer designer complexes targeted to specific biomass types

or for use at different stages of biomass deconstruction. Precise control of enzyme arrange-

ment and modularity lead to excellent hydrolytic efficiency of cellulosomes that is interesting

from the point of view of biofuel production for environmentally sustainable energy. One goal

of this thesis was to develop a novel assay for studying the effectiveness of multi-component

enzyme mixtures on complex lignocellulosic substrates.

In nature cellulosomes function in conditions where hydrodynamic shear forces mechanically

stress cells adhered to biomass. This evolutionary pressure led to unique mechanical properties

of cellulosomal protein domains and extreme stability of involved receptor-ligand interactions
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under external force. Investigation of the mechanostability of non-covalent protein-protein

interactions that hold cellulosomal components together, namely cohesin-dockerin complexes,

is the second topic discussed in this thesis.

This dissertation comprises three parts: the scientific context is given first, followed by

results of the two main lines of research (i.e., cellulase assay development and mechanical

characterization of receptor-ligands). In Chapter 1, the structure of lignocellulosic biomass is

laid out, followed by a detailed description of the structure and function of cellulosomes and

free cellulase systems. Next, current methods of assaying cellulose decomposition are summa-

rized together with opportunities for improvement. The role of mechanical forces in cellulose

decomposition by multi-enzyme complexes is furthermore discussed. Finally the physical

principles behind methods used in this thesis are given, with emphasis on single molecule

force spectroscopy, fluorescence microscopy and molecular dynamics simulations. Chapter 2

summarizes the development of a novel polymerization-based assay for cellulose hydrolysis

that tackles the challenges of the hydrolytic activity on complex biomass substrates. The

molecular origins behind the exceptional mechanical stability of protein-protein interactions

within the cellulosome are discussed in Chapter 3. Research results are presented as a col-

lection of six peered-reviewed publications, three related to each of the two main research

lines.
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1 Scientific context

1.1 Biomass

Plant cell consist of polymeric carbohydrates (i.e. cellulose and hemicellulose) and lignin,

a complex cross-linked phenolic polymer. Those components are synthesized from easily

accessible chemicals, namely carbon dioxide and water, using sun energy harvested during

photosynthesis. At the regions of plant growth, where new cells are formed, thin and extensible

primary cell walls consisting of cellulose, hemicellulose and pectin are present. After cell

growth is completed, thick and robust secondary cell walls are produced by adding additional

layers of carbohydrates embedded in lignin.1 This polymeric material, known together as

lignocellulose, provides plants both with structural robustness and resistance to attack from

pathogens.2

Structural stability necessary to support plant growth is achieved by using this natural fiber-

composite with multi-scale and multiphasic organization.3 Cellulose nanocrystals, cross-linked

by amorphous cellulose and branched hemicellulose, form fibers that provide high tensile

strength, stiffness and toughness. The size of this crystals is optimized to prevent fractures at

interfaces of amorphous and crystalline domains, and to prevent crystal breakage.4 Cellulose

fibers are embedded in an amorphous matrix of pectin (in primary cell walls) or lignin (in

secondary cell walls) both of which contribute to flexibility and resistance to compression

(Fig. 1.1). Macroscopic arrangement of hollow prismatic cells in columns of circular layers

further increases the mechanical strength of wood.5

As a main ingredient of the plant cell wall, cellulose is the most abundant renewable or-

ganic resource on Earth, present in higher plants as well in algae, bacteria and even some

animals.7 Plant biomass consists of approximately 30–50% cellulose, 20–35% hemicelluloses

and 10–30% lignin, with proportions depending largely on its source.8;9. Cellulose from

green plant biomass is by far the largest lignocellulosic feedstock, readily available in the

form of agricultural residues and forestry wastes. It is therefore a substrate of choice for the

carbohydrate-based biofuels production. In order to harness the energy stored in plant fibers,

however, the problems caused by biomass recalcitrance need to be overcome.

Biomass resistance to hydrolysis originates from the chemical stability of its polymeric

components, the heterogeneity of chemical structures present, the arrangement of crystalline

and amorphous regions, and the high degree of lignification. In crystalline cellulose linear

polymers, β (1 → 4)-linked D-glucose units interact with each other via a network of inter-

and intra-chain hydrogen-bonds, resulting in the formation of cellulose sheets. Those are

stacked onto each other thanks to hydrophobic interactions, forming cellulose nanocrystals

(Fig. 1.2). This hierarchically organized structure results in high resistance to chemical as
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compared to that of teosinte. Some of the most rapid increases have
occurred in the past 40 years, both from advances in agronomic
practices and, importantly, from the application of modern genetics.
The optimization of bioenergy crops as feedstocks for transportation
fuels is in its infancy, but already genomic information and resources
are being developed that will be essential for accelerating their
domestication. Many of the traits targeted for optimization in poten-
tial cellulosic energy crops are those that would improve growth on
poor agricultural lands, to minimize competition with food crops
over land use.

Populus trichocarpa (poplar), the first tree and potential bioenergy
crop to have its genome sequenced (Table 1)9, illustrates some of the
issues and potential of applying genomics to the challenge of optim-
izing energy crops. The traits for which the genetic underpinnings
will be sought in the genomes of bioenergy-relevant plants, such as
poplar, include those affecting growth rates, response to competition
for light, branching habit, stem thickness and cell wall chemistry.
Significant effort will go into maximizing biomass yield per unit land
area, because this more than any other factor will minimize the
impact on overall land use. One can imagine trees optimized to have
short stature to increase light access and enable dense growth, large
stem diameter, and reduced branch count to maximize energy den-
sity for transport and processing. Trees have evolved with highly rigid
and stable cell walls due to heavy selective pressure for long life and an
upright habit. Plants domesticated for energy production, with a

crop cycle time of only a few years, would have less need for a rigid
cell wall than wild plants with lifetimes of a hundred years or more.
Alterations in the ratios and structures of the various macromole-
cules forming the cell wall are a major target in energy crop domest-
ication to facilitate post-harvest deconstruction at the cost of a less
rigid plant.

Already, by comparing several of the presently available plant gen-
omes (poplar9, rice10,11, Arabidopsis12; see Table 1) coupled with large-
scale plant gene function and expression studies, a number of can-
didate genes for domestication traits have been identified13,14. These
include many genes involved in cellulose and hemicellulose synthesis
as well as those believed to influence various morphological growth
characteristics such as height, branch number and stem thickness15.
In addition to homology-based strategies, other genome-enabled
strategies for identifying domestication candidate genes are being
used. These include quantitative trait analysis of natural variation
and genome-wide mutagenesis coupled with phenotypic screens
for traits such as recalcitrance to sugar release, acid digestibility
and general cell wall composition. The availability of high-through-
put transgenesis in several plant systems16 will facilitate functional
studies to determine the in vivo activities of the large number of
domestication candidate genes. Using these strategies, genes affecting
features such as plant height, stem elongation and trunk radial
growth, drought tolerance, and cell wall stability are but a few of
the features that are likely to be identified as targets for domestication
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Figure 2 | Structure of lignocellulose. The main component of
lignocellulose is cellulose, a b(1–4)-linked chain of glucose molecules.
Hydrogen bonds between different layers of the polysaccharides contribute
to the resistance of crystalline cellulose to degradation. Hemicellulose, the
second most abundant component of lignocellulose, is composed of various
5- and 6-carbon sugars such as arabinose, galactose, glucose, mannose and
xylose. Lignin is composed of three major phenolic components, namely

p-coumaryl alcohol (H), coniferyl alcohol (G) and sinapyl alcohol (S). Lignin
is synthesized by polymerization of these components and their ratio within
the polymer varies between different plants, wood tissues and cell wall layers.
Cellulose, hemicellulose and lignin form structures called microfibrils,
which are organized into macrofibrils that mediate structural stability in the
plant cell wall.
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Figure 1.1: The secondary plant cell wall is composed of micro-crystalline cellulose cross-linked with
branched hemicellulose and embedded in a polymeric network of lignin. Hierarchical
fibril structure and complex composition result in structural stability of green plants.
Reproduced from6.

well as enzymatic hydrolysis compared to amorphous cellulose and hemicellulose.

Although hemicelluloses are strictly amorphous, their chemical diversity is much larger

than that of cellulose. They contain a multitude carbohydrate units, mainly xylose, mannose,

arabinose, galactose and glucuronic acid, present in varying proportions. Hemicellulose poly-

mers are connected via β (1 → 4)-glycosidic bonds in main chains and β (1 → 2), β (1 → 3)

and β (1 → 6)-glycosidic bonds between side chains.7 Consequently, though hemicelluloses are

easily disrupted by treatment in acidic media, an assortment of enzymatic activities is neces-

sary to achieve their full biohydrolysis. That’s why hemicelluloses are commonly solubilized

during chemical biomass pretreatment.10

Lignin is an inhomogeneous polymer consisting of phenylpropane units, mainly coumaryl

alcohol, coniferyl alcohol, and sinapyl alcohol, which are nonlinearly and randomly linked by

a variety bonds (Fig. 1.1).7 It forms a three-dimensional network bound to cellulose and

hemicellulose and represents a major barrier to extracting soluble sugars from biomass. As

an intractable polymer it has to be physically disrupted and chemically modified during pre-

treatment to improve access of the enzymes to the sugar components of lignocellulose during

biohydrolysis.8 In nature, fungi and some bacteria posses an arsenal of specialized enzymes
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a)

b)

Figure 1.2: a) Chemical structure of cellulose chain. b) Idealized schematics of cellulose nanocrystal
cross-sections showing crystal structure (m = monoclinic) for wood elementary fibril (left)
and tunicate (marine invertebrate animal, right). Reproduced from11.

(mostly co-factor dependent oxidoreductases) that allow for oxidative lignin conversion and

depolymerization.12

1.2 Cellulases and cellulosomes

Many organisms use cellulose as an energy source and have evolved enzymatic machinery

to extract soluble carbohydrates from plant cell walls. Due to the chemical and structural

complexity of the substrate, enzymes with different activities and modes of action are em-

ployed. Enzymatic units are often accompanied by non-catalytic carbohydrate binding mod-

ules (CBMs) with high affinity to various forms of cellulose cellulose. This helps them to

target specific substrates.13 Cellulose decomposing enzymes (cellulases) can be expressed as

single catalytic domains (CDs), possibly accompanied by CBMs, freely defusing outside the

host cell (Fig. 1.3). This so called “free enzyme” paradigm is widely spread in fungal king-

dom.14 On the contrary, some bacteria produce multi-enzyme complexes called cellulosomes,

where enzymatic units with diverse activities are arranged on multi-domain protein scaffolds

by means of non-covalent receptor-ligand interactions (Fig. 1.3). Cellulosomes can be simple,

consisting of one, usually free-floating, scaffold with bound enzymes domains, or form intri-

cate systems comprising a multitude of primary, secondary and adaptor scaffolds tethered to

the cell wall.15;16

1.2.1 “Free enzyme” systems

Fungi are responsible for the vast majority the biomass degradation on earth and to this

end they employ two major approaches. Brown-rot fungi disrupt plant cell walls via radical

oxidation reactions utilizing Fenton chemistry. Filamentous fungi (soft rot and white rot) use

mainly enzymatic approaches to decompose lignocellulose. In particular, since its isolation in
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Figure 1.3: Illustration of two paradigms of cellulose hydrolysis. (left) Enzymes with various modes
of action diffuse freely. Some of them are attached to CBM by flexible linkers. (right) In
cellulosome enzymatic units are arranged along multi-domain scaffoldin via non-covalent
cohesin:dockerin interaction. Cellulosome might be anchored to cell wall by secondary
scaffoldin. Example shows CipC - a primary scaffoldin of Clostridium thermocellum.

1940s, Trichoderma reesei, a mesophilic filamentous fungus became an archetypal microor-

ganism in studies on cellulose digestion.14 The main component of fungal enzymatic cocktails

are cellulases, the vast majority of which are glycoside hydrolases (GHs) that either hydrolyze

the glucosidic bonds randomly within the polysaccharide chain (endo-acting) or degrade cel-

lulose from chain ends in a processive manner (exo-acting).17 Recently, lytic polysaccharide

monooxygenases (LPMOs) were shown to contribute to filamentous fungi cellulolysis by ox-

idatively cleaving cellulose.18

The hallmark of cellulase efficiency is a synergistic action of three main activities: exo-

acting cellobiohydrolases (CBHs), endo-cleaving endoglucanases (EGs), and β-glucosidases

(βGLs) that cleave short-chain oligoglucosaccharides into glucose (Fig. 1.3). Processive

CBHs hydrolyze preferentially either amorphous or crystalline cellulose and usually act from

one distinct end of the polysaccharide chain (i.e. reducing or non-reducing end).19 CBHs are

responsible for the majority of hydrolytic turnover producing mainly cellobiose, however, they

need the polysaccharide end chains to be accessible in order to work. EGs do not produce a

large quantity of soluble oligosaccharides, but they generate the free cellulose chains for CBHs

to attach to and initiate hydrolysis.20 They can be active on cellulose crystals, or on amor-

phous regions. Furthermore, activity of CBHs with high affinity to crystalline substrate, like

Cel7A from T. reesei, is largely increased in presence of CBHs with preference for amorphous

substrate regions, as T. reesei Cel6A, leading to so called exo-exo cooperation.21;22 βGLs

hydrolyze small oligosaccharides, primarily cellobiose, to glucose, the fungi primary energy

source, which mitigates the product inhibition of CBHs.

A majority of biomass degrading enzymes work on solid-liquid interface. Efficient substrate

turnover is therefore limited by the ability of catalytic domains to target and remain bound to

an appropriate substrate. For this reason cellulases are commonly expressed as multidomain

proteins with a CD accompanied by one or more non-catalytic CBMs connected by flexible

linkers.13;23 It was shown that CBMs can boost the action of the adjacent CDs toward their

respective polysaccharide target through the recognition of this specific substrate as well other
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nonsubstrate polysaccharides present in proximity.24 It was also suggested that mixture of

enzyme variants that differ only in their binding targets (that means, posses the same CD but

different CBM) can show higher activities than single enzymes.25 The specificity of CBMs

is determined by the structure of a binding site. While the presence of aromatic amino

acid residues in the binding site seems universal, CBMs specific to the crystalline cellulose

are characterized by a flat binding interface. Meanwhile, CBMs with high affinity to single

glycan chains posses grooves or clefts.23 Apart from targeting functions, some CBMs were also

shown to cause non-hydrolytic substrate disruption, the effect of this disruption on catalytic

activity of the entire enzyme cocktail remains unclear.26

1.2.2 Cellulosomes

In contrast to the soluble ’free enzyme’ systems of aerobic fungi, a selection of anaerobic

bacteria have developed an intricate machinery for biomass degradation that relies on the

assembly of multi-protein enzyme complexes known as cellulosomes. To this end, cellulolytic

enzymes, expressed together with a dockerin domain (Doc), are arranged on non-catalytic

protein scaffolds consisting of multiple cohesin domains (Coh). Enzymes dock onto the scaf-

folds by means of a non-covalent cohesin-dockerin interaction. The so called cellulosomal

scaffoldin can also incorporate other functional subunits such as CBMs, Docs with specificity

towards other scaffoldins and stabilizing X-modules (Xmods). (Fig. 1.3).27;28;29;30

Cellulosomal enzymes are modular proteins, consisting of at least one CD connected to a

dockerin, both of which are structurally and functionally distinct. The cellulosomal enzymatic

domains are mostly GHs with the same main exo-endo activities as free fungal cellulases, but

incorporation of the other carbohydrate active subunits such as carbohydrate esterases and

lyases is not uncommon.31 Domains with different specificities altogether were also found

in the cellulosomal complexes. Those include protease and peptidase inhibitors, transglu-

taminases, lipases that are hypothesized to protect the microbe and the cellulosome from an

external attack, e.g. via proteolysis.32;33 Some of the cellulosomal enzymes have more complex

multi-domain structures consisting of the additional CBMs, multiple CDs and Xmods.34;35

Cellulosome systems of some bacteria are relatively simple, with a single scaffoldin contain-

ing 6 to 9 cohesins with identical specificities, a N-terminal CBM and a few hydrophilic X2

domains. These are so called primary scaffoldins, that incorporate the dockerin-bearing en-

zymes into the complex. Examples of bacteria producing simple cellulosomes include Clostrid-

ium cellulovorans,30 Clostridium cellulolyticum,36 Clostridium josui,37 and solvent-producing

Clostridium acetobutylicum.38 Majority of the simple cellulosomes do not contain any do-

mains with known cell-surface binding function and are freely diffusing. One exception is the

cellulosome of C. cellulolyticum, which was shown to be associated with the bacterial cell via

an unknown mechanism.34

Other bacteria produce highly complex cellulosome architectures with multiple scaffoldins,

cohesin-dockerin pairs with different specificities and cell-anchoring mechanisms. The flagship

example is Clostridium thermocellum whose cellulosome was the first one to be discovered

in 1983 and is since used as a model system for understanding cellulosome structure and
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Figure 1.4: Schematic representation of the C. thermocellum cellulosome. A primary scaffoldin, CipA
(yellow) incorporates nine enzymatic subunits (blue) via type I cohesin-dockerin interac-
tion. It is itself attached to one of the secondary scaffoldins via type II dockerin domain
located C-terminally. Most of the secondary scaffoldins (green) contain a S-layer homology
(SLH) module that acts as an anchor, attaching the entire cellulosome to the bacterial
cell. The 7CohII scaffoldin is, however, free-diffusing. While the most of the scaffoldins
bear type II-cohesins, OlpA contains a type I cohesin and serves to bind a single enzyme
to the cell surface.

function.39 The main difference in comparison to the simple cellulosomes is the presence of so

called secondary scaffoldins. Those serve to anchor one or more primary scaffoldins creating

the branching architecture and allowing for combining a multitude of the cellulolytic enzymes

into one complex. Secondary scaffoldins often function as the anchors to the bacterial cell,

either via S-layer homology (SLH) modules or via sortase motifs. The schematics of the

C. thermocellum cellulosomal system representing a typical complex architecture with the

primary and the secondary scaffoldins is presented in Figure 1.4. Other complex cellulosomes

are expressed by Acetivibrio cellulolyticus 40, Bacteroides cellulosolvens 41 and Ruminococcus

flavefaciens.42;43;44

The existence of fungal cellulosomes was also postulated based on the presence of the con-

served noncatalytic docking domains (NCDDs) linked to the enzymatic domains.45;46 How-

ever, NCDDs show no sequence homology to the bacterial dockerins and no scaffoldin protein

has thus far been isolated from an anaerobic fungus.47;48

Cellulosomes were shown to be more efficient in cellulose degradation than the free enzyme

systems. For example, the cellulosome of C. thermocellum is reported to have a 50-fold higher

specific activity against crystalline cellulose that the enzyme system of T. reesei.49 Indeed,

the cellulosomal systems do not only benefit from the synergy and targeting effects in the

same way as the free enzyme systems do, but an arrangement of the CDs onto the scaffoldins
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brings yet additional benefits. The spatial proximity between the cellulases arranged on the

primary scaffoldin potentiates their synergistic interactions and the correct enzymes ratio

within the complex might further increase synergism. Indeed, the composition of the C.

thermocellum cellulosome is affected by the presence of specific extracellular polysaccharides.

It was shown that cellulosomal genes are regulated via a unique extracellular biomass-sensing

mechanism that involves alternative sigma factors and extracellular carbohydrate-binding

modules attached to intracellular anti-sigma domains.50;51 Competitiveness in binding and

a non-productive adsorption are avoided in cellulosomes by targeting the whole complex to

the substrate through a single CBM with a high affinity and a low specificity.52 Flexible

protein linkers within the scaffoldin and the dockerin-bearing enzymes allow the cellulosomes

to adopt to a global geometric requirements of the substrate.53 Anchoring of the cellulosome

complex to the cell wall is undoubtedly beneficial for the host organism, as soluble sugars are

produced in the close proximity of the cell wall which facilitates their uptake. Also, diffusion

of an attached cellulosome away from the host is prevented, possibly decreasing expression

levels of the cellulosomal components necessary for an efficient feeding.54 However, the role

of the postulated cellulosome-cell synergy in hydrolysis efficiency remains unclear.55

1.2.3 Cohesin-dockern interaction

A specific, high-affinity cohesin-dockerin interaction is a key element of the cellulosome archi-

tecture that brings all the functional domains and scaffoldins together in a hierarchal manner.

Enzyme-scaffoldin interactions in the most cellulosomal systems are carried out by so called

type-I Coh:Doc pairs while more complex type II and III interactions tend to anchor the

primary scaffoldins to the adaptor or anchoring scaffoldins. One exception is B. cellulosol-

vens where roles of the cohesin types are reversed.56 Structurally, all cohesins are 9-stranded

β-sandwiches with the jelly-roll topology and an extensive hydrophobic core, with the type-I

structures being the simplest (see Figure 1.5). The type-II cohesins posses additional features

such as a crowning α-helix between the β-strands 6 and 7, and two β-flaps that disrupt the

β-strands 4 and 8.57. An additional extensive N-terminal loop, a β-flap and a prominent α-

helix are characteristic of the type-III cohesins.58 A flat dockerin binding surface is located on

the 8-3-6-5 front face of the jelly-roll, though in type-II and III cohesins additional structural

components also take part in the binding.

Dockerin modules have an unique, highly conserved fold consisting of two Ca2+-binding

loop-α-helix motifs connected by a short α-helical linker. Calcium is necessary for the dock-

erin folding and function, and the Ca2+-binding loops seem to play a crucial role in dockerin

stability.62 All dockerins are highly symmetric in sequence and structure within the binding-

helices region (see Figure 1.6). Some show a near-perfect 2-fold structural symmetry that

allows for binding to the cohesin in two orientations upon 180◦ rotation. An existence of this

so called dual binding mode was experimentally proven for the type I Coh:Doc pairs from C.

thermocellum and C. cellulolyticum, and is postulated for many other systems.63;64;65 Type

I dockerins are small domains of approximately 8 kDa connected to the respective enzymatic

domains by highly flexible protein linkers. As is the case for the cohesins, type II and III
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A B C

Figure 1.5: Comparison of the crystal structures of the cellulosomal cohesin domains: A type-I co-
hesin from a primary CipA scaffoldin of C. thermocellum, 1OHZ59, B type-II cohesin
from a secondary SdbA scaffoldin of C. thermocellum, 2B5960, C type-III cohesin from a
secondary scaffoldin ScaE of R. flavefaciens, 4IU358. The flat dockerin binding interface
is pointing upwards. Structures were rendered using VMD61.

A

B

C

Figure 1.6: Comparison of the crystal structures of the cellulosomal dockerin domains: A type-I
dockerin from a xylanase 10B of C. thermocellum, 1OHZ59, B type-II X-module dockerin
dyad from s primary CipA scaffoldin of C. thermocellum, 2B5960, C type-III X-module
dockerin dyad from a cellulose-binding protein CttA of R. flavefaciens, 4IU358. X-module
domains are highlighted in grey. Structures were rendered using VMD61.
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dockerins have a more intricate structure than type I dockerins. Some of them are accompa-

nied by an adjacent X-module domain. The only crystallized type III dockerin comes from a

cellulose-binding protein CttA of R. flavefaciens. It is a particularly elaborate dockerin, with

an atypical second calcium-binding loop and three inserts interacting with the X-module.58

Mechanical stability of a type III cohesin-dockerin interaction was investigated as a part of

this thesis using single-molecule methods and molecular dynamics (see Section and associated

publications P4 and P5).

The hierarchal architecture of complex cellulosomes requires high specificity of cohesin-

dockerin pairs taking part in the assembly process. Cohesins will generally only interact

with the dockerins of the same type and within those classes interaction is usually species-

specific, though cross-specificity is not uncommon. For example, the enzyme-borne dockerin

from C. thermocellum recognizes scaffoldin cohesins from the same bacteria but not cohesins

from C. cellulolyticum and vice versa. Affinity profiles are obtained with ELISA-like binding

assays and microarray methods that allow for screening inter- and intra-species interaction

libraries.66;67;68. It was recently demonstrated that two cohesins from R. flavefaciens have

different affinities to the same dockerin that they bind in opposing orientation. This makes

competitive displacement possible, a mechanism enabling one of the cohesins to serve as a

molecular shuttle for delivery of scaffoldins to the bacterial cell surface.69

Cohesin-dockerin interactions are of high affinity, allowing cellulosomal components to re-

main bound for extended periods of time. For example, the off rate of the type II complex from

A. cellulolyticus was measured to be 3.5× 10−5 s−1, which translates to the bonded lifetime of

approximately 8 hours.70 At the same time, dissociation constants of cohesin-dockerin pairs

are typically in a range from 1× 10−7 to 1× 10−11m,71;72;73;58 far from the extremely high

affinity avidin-biotin interaction (KD =10−15m)74. Interestingly, stability of some cohesin-

dockerin complexes under force is higher than that of avidin-biotin (see Publications P5 and

P6).75;76

1.2.4 Cellulsome paradigm in recombinant systems

Current biomass conversion technology comprises four major processes: (1) feedstock har-

vest, transport and storage, (2) mechanical, thermochemical or chemical pretreatment, (3)

enzymatic hydrolysis, and (4) fermentation of sugars into ethanol. The main aim of the

pretreatment is reduction of the lignocellulose recalcitrance by solubilization hemicellulose

and disruption of the cell wall structure. This increases the efficiency of the enzymatic cel-

lulose decomposition which remains the bottleneck of the whole process.17 The cellulosome

paradigm is extremely efficient in cellulose degradation and thus attractive in the context of

the industrial conversion of lignocellulosic biomass to biofuel. However, T. reesei remains the

main source for cellulases and hemicellulases for the biofuel industry thus far as it is easier to

culture and produces more hydrolytic enzymes than the cellulosome-producing bacteria.19

Several approaches in the literature bring the cellulosome paradigm from the natural hosts

into selected bacterial or fungal strains for recombinant expression purposes or to create or-

ganisms with new metabolic capabilities. In particular, engineering microorganisms able to
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perform single-step biomass fermentation into products (consolidated bioprocessing) would

render biofuels much more cost-effective.77 For example, minicellulosomes containing enzymes

and truncated scaffoldins from C. cellulolyticum and C. thermocellum were successfully cloned

into solventogenic C. acetobutylicum as a step towards improved fermentative butanol pro-

duction.78;79 Efforts have been made to display cellulosomes on the yeast surface for cellulosic

ethanol production.80;81 However, efficient recombinant cellulase expression and secretion of

designer systems are still challenging tasks unlikely to be overcome in near future82.

Regardless of difficulties in industrial implementation, recombinant systems serve as an

important tool for understanding the expectational properties and unmatched cellulolytic

efficiency of bacterial cellulosomes. Contributions of synergistic, targeting and proximity

effects as well as complex plasticity brought by cohesin-dockerin interactions were extensively

investigated.83;84;85;86 Contribution of scaffolding to cellulose hydrolysis was studied by C.

thermocellum knockout mutants.54 Biotechnological approaches can also be used to introduce

new activities into cellulosome enzymatic suite. For example, inclusion of LPMOs, found

exclusively in aerobic organisms, into designer cellulosomes from anaerobic T. fusca was

shown to enhance cellulose degradation.87 A similar effect was obtained by incorporating

a β-glucosidase into the C. thermocellum cellulosome.88 Bifunctional complexes based on

the cohesin-dockerin interaction designed specifically for the hemicellulose hydrolysis were

nicknamed xylanosomes.89

1.3 Assaying cellulose decomposition

The improvements in enzymatic cellulose hydrolysis are made possible by a set of biochemical

tools for quantifying the effectiveness of enzyme formulations. This is a complicated task that

needs to take into account an array of hydrolytic activities represented by cellulolytic enzymes

together with a wide range of substrates possessing variable composition, morphology, degrees

of crystallinity, and lignin content. There is a need for assays quantifying the total amount

of soluble sugars released as well as for the ones measuring only endo- or exo- activities.

Sometimes, information about the exact composition of the sugar mix released is desirable

or a correlation between the substrate topology and digestibility needs to be established. On

top of that, cellulase assays need to be rapid, highly sensitive, reproducible, cost-effective and

straightforward to implement in the high throughput applications. Most of the commonly

used methods fail to fulfill one or more of those criteria, underlining the need for further

research in this area.

A majority of the cellulase assays quantify the total amount of glucose produced during

saccharification. The most commonly used is the IUPAC-standardized colorimetric filter pa-

per assay (FPA). It relies on a reaction of redox-sensitive 3,5-dinitrosalicylic acid (DNS) with

free carbonyl group of reducing sugar resulting in a colored product.90 Though widely ap-

plied, FPA suffers from several substantial issues. For example, it can only be used as an

endpoint measurement, because of alkaline conditions, vigorous boiling and often substrate

dilution necessary to promote full color development. Moreover, FPA has low specificity due
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to many side reactions and stoichiometric relationship between cellodextrins and the glucose

standard is poor.91 To this end, β-glucosidase activity needs to be supplemented to hydrolyze

cellobiose to glucose in order to obtain reliable results, as is the case for any assay relying on

reducing properties of sugars.92 Several improvements to the IUPAC protocol have been pro-

posed in the literature, such as miniaturization and automation of FPA for use in a microtiter

plate format,93;94 use of lignocellulosic substrates instead of filter paper95 and development

of small-scale solid fugal cultivation method suitable for integration with quantitative high

throughput assays.96 Although necessary, those developments can not address the intrinsic

shortcomings of the FPA and thus assays relying on different principles are gaining attention

in the filed.

Bio-enzymatic cascades that generate fluorescent or colorimetric signal in the presence of

cellulose decomposition products are another popular approach for assaying biomass degrada-

tion efficiency. They are sensitive and straightforward to use, and their selectivity for glucose

or monosaccharides depends on the specificity of the enzymatic catalyst used. The prime

example of bio-enzymatic assays are kits employing the glucose oxidase (GOx)/horseradish

peroxidase (HRP) system where glucose is oxidized by GOx, directly producing hydrogen per-

oxide. Subsequently, HRP catalyzes oxidation a fluorogenic substrate and H2O2 reoxidizes

an iron ion within the heme group in the enzyme active site.97 An increase of fluorescence

intensity is measured.98;90. Another applicable enzymatic cascade is the hexokinase/glucose-

6-phosphate dehydrogenase system based on nicotinamide adenine dinucleotide absorbance in

the near-UV.99;95 For assaying total sugar production of the enzyme cocktails, β-glucosidase

needs to be supplemented in order to assure total conversion of the short oligosaccharides to

glucose in a similar manner as in FPA.

Sometimes detailed information about the composition of hydrolysis products is needed,

for example to understand the mechanism of action of cellulolytic enzymes. To this end, high-

performance liquid chromatography (HPLC) can quantify proportions of glucose and short

oligosaccharides such as cellobiose and cellotriose at different time points of cellulose hydroly-

sis.100;20 Yet the more precise information about chemical structure of hydrolysis products can

be obtained using electrospray ionization mass spectrometry (ESI-MS). Its ability to identify

chemical modifications of sugars is used to validate biomass pretreatment methods.101.

More recently, methods for observing the spatial localization of cellulolytic activity have

gained interest. For example, imaging substrate locations susceptible to enzymatic hydrol-

ysis could allow correlation of digestibility with substrate features such as fiber bundle size,

degree of fiber branching, and/or crystal orientation. Conventional high-resolution imaging

methods (e.g., TEM, SEM) were initially used to study cell wall degradation by rumen bacte-

ria102, but they are not suitable for monitoring enzymatic digestibility under biocompatible

conditions. AFM imaging in liquid has been used to observe disintegration of microtomed

substrates.103;104 Time-resolution using AFM imaging is limited by scan times of up to several

minutes and substrate choice is constrained to ultraflat artificial cellulose surfaces. Stimulated

Raman spectroscopy provides adequate spatial and temporal resolution to monitor biomass

degradation in real time and can be used on natural biomass substrates. However, it requires a
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technically involved setup that hinders widespread usage.105 Single-molecule fluorescence has

shown potential for providing insights into cellulolytic enzyme function, but, so far, studies

have mostly focused on CBMs and their cooperativity.106;25 Relations between the substrate

topology and enzyme adsorption was also performed using fluorescence methods, but the

hydrolysis process was only detected indirectly by monitoring substrate loss.107;108 Direct

imaging of cellulolytic activity was not achieved so far with fluorescence methods, as soluble

fluorescent substrates diffuse away too quickly to allow signal localization.

High-throughput screening (HTS) is a method that allows automated processing of multiple

samples in parallel. It is commonly used in drug discovery, genetic tests and biochemical

research.109 It is also a key tool in directed evolution studies, where a library of protein

mutants (or variants) is generated and proteins with desirable function are selected from

within that library.110 Directed evolution, together with rational design methods such as site-

directed mutagenesis, is a substantial method for the development of synthetic enzymes and

enzyme cocktails for industrial applications.111;112;113;114

The key testing vessel of HTS is the microtiter plate: a standardized container that features

a grid of 96, 384, 1536, or 3456 small, open wells where samples are placed. This limits assay

volume to the range of 1 to 100 µL. Standardization of microtiter plate allows for automation

of HTS process by use of liquid handling systems and robots. This increases reproducibility of

performed assays, but generally does not allow for centrifugation, separation, or wash steps in

the protocol. Due to the high-throughput requirement measurement time is limited to minutes

up to hours with endpoint measurements being preferred. It is also important for HTS assays

to be simple, with a limited number of pipetting steps, as every step adds variability and

reduces reproducibility. Absorbance, fluorescence and luminescence are detection methods of

choice for HTS, while FRET and fluorescence polarization readouts are also possible using

platereaders. Cell-based assay technologies use fluorescence and confocal imaging platforms

integrated with microtiter plates.109

HTS was in the past used to screen for efficient cellulases for biomass saccharification

with properties such as decreased product inhibition and higher thermal stability.115;116;117

However, effective screening for improved biomass-degrading ability is difficult to achieve us-

ing currently available cellulase activity assays (see Section 1.3). The majority of common

assays rely on non-natural and/or soluble substrates despite the known fact that using nat-

ural biomass is crucial for selecting for high fitness mutants that perform well on real world

substrates.91;111

This shortcoming of existing HTS approaches is addressed by the polymerization-based

cellulase assay developed as a part of this thesis (see Section 2). The novel method re-

ported here relies on an enzymatic cascade coupled with polymerization-based amplification

that integrates signal at the spot of glucose production in the form of an insoluble hydrogel

(see Figure 1.7). Compatibility with arbitrary (ligno)cellulose sources including pretreated

biomass, simplicity and ease of automation establishes the newly developed assay as a valu-

able alternative for cellulolytic enzymes screening. Depending on experimentation needs, the

assay can be used in a microtiter plate format for high-throughput screening applications119
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Figure 1.7: Overview of the HyReS system for detection and imaging the degradation of cellulosic
substrates. Cellulose saccharification products are converted into H2O2 via reaction with
β-glucosidase and glucose oxidase. H2O2 proceeds with an Fe2+-Fenton reagent to produce
hydroxyl radicals that initiate poly(ethylene glycol) diacrylate crosslinking. Reproduced
from Publication P1.118

or in conjugation with high-resolution imaging methods (see associated publications P1 and

P2, respectively). Employing TIRF microscopy or AFM-imaging allows time and spatially

resolved readout of the hydrolytic activity in an imaging modality. This can provide new

insights to enzymatic activity and synergy on topologically complex substrates.

1.4 Forces in biomass decomposition

Lignocellulose is a sturdy material (see Section 1.1) and its initial comminution is crucial for

the speed of hydrolysis as it increases the surface area available for cellulolytic enzymes to

bind. In nature, herbivores achieve mechanical fragmentation by repetitive mastication while

termites use the mandibles and the gizzard. Purely enzymatic lignocellulose decomposition

of intact substrates, as is the case for white and brown rot, is a lengthy process that can

take years.120 In a biotechnological setting, physical pretreatment in the form of chipping,

grinding, milling, steam explosion, ammonia fiber explosion, or pyrolysis is a prerequisite for

further chemical or biochemical processing.121

There are several clues that mechanical forces play a role in biomass decomposition also at

the nanoscale, though evidence is indirect. For example, the cellulosomal complex effectively

bridges the host cell and lignocellulose particles, and thus can be subjected to high sheer forces,

especially in turbulent environments such as the rumen or geothermal features. Hydrodynamic

shear forces would result in mechanical force acting on cellulose fibrils and bacterial cells

connected via CBM domains on the scaffoldins. The strength of the cellulose-CBM interaction

is not well characterized in the literature and depends both on the substrate characteristics

and on the CBM type. In a recent study, King et al. used AFM-based force spectroscopy

to measure the rupture forces between a single CBM3a domain from C. cellulolyticum and
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cellulose nanocrystals spin coated on silicon. They observed rupture forces of approximately

50 pN at a loading rate of 0.4 nN s−1.122 Previously, Zhang et al. reported the most probable

rupture force between the same CBM and extracted single cellulose microfibrils to be approx.

20 pN at similar loading rates, and up to 60 pN at 500 nN s−1.123 The results of those two

studies seem to place the most probable rupture force of the CBM-cellulose interaction in the

range of a few tens of pN, but discrepancies in obtained values underline the need for more

thorough studies. Also, the loading rate to which CBMs and other cellulosomal domains are

subjected in nature is unknown.

Non-cellulosomal CBMs, along with different proteins such as expansins and swollenins,

have also been suggested to loosen or disrupt the packaging of the cellulose fibril network

through an unknown non-catalytic mechanism.124 For example, dockerin bearing expansins

from C. clariflavum were shown to have a loosening effect on filter paper and to significantly

enhance enzymatic hydrolysis of cellulose.125 The same effect was postulated for X1-modules

from CbhA of C. thermocellum, though other studies suggest they act as mechanical and

thermal stabilizers, or simply as spacers between the other modules.126;127

1.4.1 Mechanical stablity of the cellulosomal components

When a receptor and ligand are both tethered, the bond between them can be subjected to

mechanical forces in presence of fluid flow. That is a case for cohesin-dockerin complexes

in anchored cellulosomes, where one side of the complex is attached to bacterial surface

and the other adheres to cellulose particles through enzymatic domains and CBMs. There

are numerous pieces of evidence suggesting that cellulosomal components posses high me-

chanical stability. The first clues were given by electron microscopy studies indicating that

hydrodynamic flow could mechanically disrupt the integrity of cellulosomes, releasing the

bound cellulases.128 Afterwards, a series of single molecule force spectroscopy129;62;130;131;65

and molecular dynamic simulation129;132;133;134 studies investigated forced unfolding and un-

binding of cellulosomal components. One of the strongest protein receptor-ligand interactions

ever measured comes from R. flavifaciens cellulosome and was characterized as a part of this

thesis.75;76

Valbuena et al. were the first to measure the forces necessary to unfold type I cohesin

domains of the CipA scaffoldin from C. thermocellum and CipC from C. cellulolyticum using

AFM-based force spectroscopy.129 They made an important distinction between the “bridg-

ing” cohesins located in the scaffoldin region between the anchoring points to the bacterium

(via SLH module) and to the substrate (via CBM), and the “hanging” ones located N-

terminally from CBM (See Figure 1.8). They hypothesized that under native conditions

the bridging domains are subjected to a more intense mechanical stress than the hanging

ones - an evolutionary pressure that should be represented by mechanical properties. In-

deed, the resistance of the bridging cohesins against unfolding was remarkable, as they could

withstand up to 562 pN for c7A and 430 pN for c1C at a pulling speed of 0.4 nmms−1. The

mechanical stability of hanging cohesin c2A was much lower, with mean unfolding force of

285 pN comparable to those of I27 domain.
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Figure 1.8: A Cartoon representation of the architecture of the CipA scaffoldin from C. thermocellum
(top) and the CipC scaffoldin from C. cellulolyticum (bottom) with the cohesin modules
analyzed by Valbuena et al. indicated by colored asterisks: c7A (red), c2A (orange) and
c1C (pink). The bridging region of the scaffoldings located between the cell anchoring point
and a CBM is indicated by a black line.B Mechanical topology of c7A cohesin module
from C. thermocellum and of the I27 module from human cardiac titin. Mechanical clamp
motofs are highlighted in blue. C Normalized unflding force histograms of c7A (red),
c2A (orange), c1C (pink) and I27 (black) obtained at a pulling speed of 0.4 nm s−1 (left).
Representative force-distance traces from cohesin I modules with the unfolding force peak
events from the I27 fingerprint highlighted in black (right). Figure adapted from Valbuena
et al..129

Structurally, cohesins have a β-sandwich topology with a mechanical clamp motif: two

parallel β strands at the N- and C-termini of the domain interacting via a multitude of

backbone hydrogen bonds that are loaded simultaneously by force. Parallel breakage of these

hydrogen bonds most probably represents the main mechanical barrier to unfolding. Indeed,

the greatest sequence variability between hanging and bridging cohesins in C. thermocellum

CipC was found within the mechanical clamp motif, while areas responsible for dockerin

binding were highly conserved. Although the forces that are held by the connecting and

hanging regions of cellulosome in vivo have never been measured, comparison of cohesin

stability against forced unfolding and the strength of the CBM-cellulose interaction123;122 lead

to the conclusion that cohesin domains are most probably never unfolded under physiological

conditions. This conclusion holds also for an unfolding of CBM from C. thermocellum CipA

scaffoldin, which was shown to rupture at forces in a range of 150 pN in similar loading rate

range.62;130;131;75

The first mechanical study on cohesin-dockerin pair unbinding was performed using CipA

cohesin 2 (c2A) and Cel48S dockerin from C. thermocellum by Stahl et al. This study demon-

strated high mechanical strength of the complex with most probable rupture forces in range

from 100 to 150 nN at loading rates from 0.6 to 20 nN s−1 (see Figure 1.9). Furthermore, it

was observed that the cohesin-dockerin interface ruptures either in one (single event) or in

two steps (double event), with the dockerin undergoing substantial conformational changes

which were reversible in the presence of calcium ions.62 The mechanism behind single and
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Figure 1.9: Force spectroscopy of the type I cohesin-dockerin interaction from C. thermocellum. A
Schematic of the pulling geometry in an AFM experiment. B Typical unfolding patterns of
the CBM-cohesin:xylanase-dockerin complex showing stretching of the PEG and protein
linker regions, a series of up to three sudden drops in force corresponding to xylanase
(Xyn) unfolding and the cohesin-dockerin interface rupture in a single step (Single), or
in a two-step process (Double). C Loading rate dependency of cohesin-dockerin rupture
forces. Figure adapted from Stahl et al.62

double rupture events was further investigated by Jobst et al., who associated them with

binding mode duality.65

XMod-Doc tandem dyads are a common feature in cellulosomal networks, however, the

role of X-modules long remained unclear and several hypothesis were put forward. Bulk

biochemical assays have demonstrated that XMods improve Doc solubility and increase the

biochemical affinity of Doc:Coh complex formation135. In our experience, dockerin domains

that natively come with an X-module do not express or fold correctly upon Xmod deletion. It

was also shown that XDoc type II from C. thermocellum forms homo-dimers upon crystalliza-

tion as well as in solution in presence of calcium ions, but the dimers readily dissociate upon

addition of a SdbA type II cohesin binding partner.135;136 Two available crystal structures

of XMod-Doc dyads show a multitude of direct contacts between XMods and their adjacent

Docs58;60 An interesting molecular dynamic study by Xu et al. suggests that bulky and

hydrophobic residues at the Xmod-Doc interface in the type II system of C. thermocellum

may play essential roles in retaining a rigid cohesin-dockerin interface. The dynamical cross-

correlation analysis indicates that the X-module is required for the dynamical integrity of the

binding interface.132 As a part of this thesis it was shown that the X-module from the type III

dockerin of the R. flavefaciens CttA scaffoldin indeed serves as a mechanical stabilizer and

force-shielding effector subdomain contributing to high mechanostability of cohesin-dockerin

complex (see Publication P4).75
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1.4.2 Catch bonds

Bonds between adhesion molecules are often mechanically stressed. Tensile force can trigger

environmentally responsive regulation mechanisms. These so called “catch bonds” provide

a mechanism by which tighter cell attachments are formed at high shear forces. A catch

bond is defined as a bond whose lifetime increases with applied force. This is in contrast to

a typical “slip bond” where force exponentially shortens the bound lifetime.137 Existence of

catch bonds was first suggested by Kishino et al. in 1988138 and only experientially proven

15 years later by single-molecule methods.139

A quantitative description of slip and catch bond behavior can be derived from changes

in the energy landscape of biological bonds under force, as developed by Evans et al.140 and

based on Kramers reaction rate theory.141 The molecular energy landscape is defined by the

free energy differences between the bound and transition states (∆G) and the distance from

the bound state to the barrier (∆x). In absence of external force, the escape rate koff is

described as:

koff = k0 exp

(
− ∆G

kBT

)
(1.1)

where k0 is the microscopic attempt frequency, kB is Boltzmann’s constant, and T is temper-

ature. With application of a force F , this energy landscape is tilted, the free energy difference

to the bound state decreases, and the off-rate increases exponentially:

koff (F ) = k0 exp

(
−∆G− F∆x

kBT

)
= koff exp

(
F∆x

kBT

)
(1.2)

The bond lifetime is described as:

τ(F ) =
1

koff (F )
(1.3)

If the transition state lies in the direction of applied force (∆x > 0) this leads to an exponential

decrease of the bonded lifetime under force, as is typical for slip bonds (Fig. 1.10a,b). In the

case of ∆x < 0, the energy barrier will grow with force and the bond lifetime will increase, as

is a case for a catch bond. If there is also a second classic slip unbinding pathway available,

then the bond has two competing pathways to unbind. To form a catch bond, the catch

pathway must dominate at lower forces with slip pathway becoming more probable when

force increases. If kC(F ) and kS(F ) are the force-dependent rate constants for the catch and

slip pathways respectively, then the bond has a single rate constant koff (F ) = kC(F )+kS(F ).

This decay rate will first decrease and then increase with force, resulting in biphasic response

of bond lifetime to external force (see Figure 1.10c,d).

Catch bonds were experimentally observed in a multitude of biological systems, mostly in

the context of cell adhesion. For example, blood cell adhesion proteins P- and L-selectin bind

to other cells via adhesion proteins called selectins that from force-activated catch bonds. As

a result leukocytes roll on the adhesion surface at higher flow rates, but detach and move

freely with the fluid below a shear threshold.143;139;144;145 A similar phenomenon was observed
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Figure 1.10: A One-dimensional projection of the energy landscape of the slip bond onto the direction
of force and B the predicted survival over time at low, medium, and high force. The
average bond lifetimes are shown in the inset. C The energy landscape projection of a
one-state, two-path catch bond and D its unbinding profile and mean lifetime. Figure
adapted from Thomas et al.142

for Escherichia coli bacteria, where the catch bond-forming protein FimH allows switching

between rolling adhesion at low shear and stationary adhesion at high shear.146;147;148 Binding

of the motor protein myosin to filamentous actin was also shown to exhibit an even more

complex catch bond behavior with the dissociation rate of the actomyosin bond being a

function not only of instantaneous load but also of loading history.149 Other examples of catch-

bond systems are von Willebrand factor tethering platelet surface receptors,150;151 dyneins

binding to microtubules,152;153 integrin binding its ligand fibronectin,154 calcium-dependent

cadherins mediating cell-cell adhesion,155 and human cell-surface sulfatase interacting with

its physiological target.156

Several structural models of catch bond formation were proposed using experimental evi-

dence combined with steered molecular dynamics (SMD) simulations. In order to prolong the

bond lifetime, stabilizing interactions at the receptor-ligand binding interface have to increase

under force. This stabilizing conformational change occurs through rearrangements of protein

domains and amino acid side chains under tensile stress. The exact nature of this structural
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reorganization can be very different for the various catch-bond systems. For example FimH

has an allosteric regulatory site in the interdomain region that extends under external force,

initiating a series of structural changes. As a result, the β-sandwich fold of the lectin domain

untwists and an activated binding site clamps around the ligand like a finger-trap toy.157 A

very different mechanism is at work in cadherin X-dimers formation. Here, tensile force flexes

the interacting domains such that they slide into registry and form long-lived, force-induced

hydrogen bonds that lock them into tighter contact.155

As a part of this thesis a combination of AFM-based single molecule force spectroscopy and

steered molecule dynamics simulations were used to investigate the mechanics of an ultra-

stable type III cohesin-dockerin complex (see Publication P5). We found that force-induced

rearrangement of amino acid side chains at the binding interface leads to increased contact

area between the binding partners. This suggests a novel type of catch bond mechanism in

action. We also visualized the force-propagation path through the protein and found that

external stress is directed toward an unfavorable angle of attack at the binding interface,

contributing to complex mechanostability (see Publication P6).

1.5 Methods

1.5.1 AFM-based single molecule force spectroscopy

Since its development in 1986158, the atomic force microscope (AFM) has been widely used

for surface imaging at the nanoscale as well as for mechanical manipulations at the single-

molecule level. One of the influential techniques that allows access to molecular mechanics

on the nanometer scale with piconewton force resolution is AFM-based single molecule force

spectroscopy (SMFS). First implemented in 1988 on single actin filaments using glass nee-

dles,138 SMFS developed rapidly when combined with an ease of access to the nanoscale

granted by AFM-tips. In this implementation, a molecule or molecular complex of inter-

est is stretched between the sample surface and the tip of AFM cantilever in a controlled

manner using a piezo-based nano-positioning system. The tip-sample distance and deflection

of cantilever are monitored, allowing for measurement of mechanical forces exerted on the

biomolecule under the assumption that the lever has Hookean spring characteristics. A typi-

cal SMFS experimental result is a so called force-distance curve exhibiting sawtooth pattern

representing unfolding or unbinding of the consecutive domains and interactions (see Fig. 1.8

and 1.9). Using various experimental protocols such as constant-velocity,159 force-ramp,160

and force-clamp,161 a variety of information about the molecular system can be obtained.

A wide range of intermolecular interactions have been measured with SMFS, including

hybridized DNA strands,162 receptor-ligand and antibody-antigen systems163;164;165;166 along

with unfolding mechanics of single protein domains.167;168;169;170 The rupture forces of non-

covalent bio-interactions were determined to be on the order of tens to hundreds of piconew-

tons for varying loading rates and thermodynamical parameters such as barrier location and

force-free off-rate. At the same time, rupture forces of a variety of covalent bonds were deter-

mined to be in range of 2-5 nN depending on their chemical nature171;172;173 and dependence
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Figure 1.11: On of the home-bulid atomic force microscopes on which SMFS measurements described
in Chapter 3 were performed. Reproduced from the master thesis of C. Schöler.180

of covalent bond strength on chemical potential of the environment was investigated.174;175

SMFS in combination with single-molecule fluorescence was used to trigger and observe ac-

tivity of mechanosensitive enzymes.176;177;178 In this thesis, constant-velocity SMFS was per-

formed using a home-build instrument.179;180

Theory of Single Molecule Force Spectroscopy

The theoretical framework for analyzing SMFS data was established independently by Evans

and Ritchie181;140 and Schulten et al.182 basing on the earlier work of Bell.183 In this simple

picture, pulling on a receptor ligand interface or unfolding a single protein domain is described

by stretching two elastic components, an investigated molecule and an AFM cantilever, in

series. For a soft spring, the 1D energy profile can be characterized by the free energy

difference between bound and transition states ∆G and the distance from the bound state to

the barrier ∆x. In the absence of external force, the escape rate is described by equation 1.1.

With application of force, this energy landscape is tilted (Fig. 1.12), the free energy dif-

ference to the bound state decreases, and an off-rate increases exponentially (see equation

1.2). During a force-ramp SMFS experiment, force increases at a constant loading rate Ḟ

and, assuming first-order kinetics, the probability for a bond to rupture at a give force p(F )

is given by:

p(F ) =
koff (F )

Ḟ
exp

(
−
∫ F

0
df

koff (f)

ḟ

)
=

[
koff

Ḟ
exp

(
F∆x

kBT

)]
exp

{
kBTkoff

Ḟ

[
1− exp

(
F

kBT

)]} (1.4)
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Figure 1.12: One-dimensional projection of the free energy landscape of a receptor ligand bond onto
the reaction coordinate x. In the absence of force, the profile is characterized by the height
of the potential barrier ∆G and the distance from the bound state to the transition state
∆x along the reaction coordinate. When force is applied, the landscape tilts and the
height of the potential barrier is decreased by F∆x.

This yields an expression for the most probable force at which the bond ruptures 〈F 〉:

〈F 〉 = kBT

∆x
ln

(
Ḟ∆x

kBT · koff

)
(1.5)

Equation 1.5, commonly refereed to as the Bell-Evans formula, states that in an experiment

where the loading rate is kept constant, the most probable rupture force is a linear function

of the logarithm of Ḟ . By measuring the rupture force distribution at varying loading rates,

information about the investigated system such as the off-rate and distance to transition state

can be extracted.

Derivation of the Bell-Evans formula relies on an assumption that force inhibits rebinding

and that the timescale at which the force increases is much longer than the timescale of

molecular diffusion across the landscape.184 Both of those conditions are met in the typical

SMFS experiment. However, the assumption that a distance to the barrier remains constant

as the free energy landscape is tilted is only an approximation and in reality ∆x is a function

of the applied force. Dudko et al. expanded the theoretical framework to include force

dependence of ∆x in the so called Dudko-Hummer-Szabo model,185;186 introducing parameter

ν specifying the shape of the interaction potential:

〈F (Ḟ )〉 = ∆G

ν∆x

{
1−

[
kBT

∆G
ln

(
kBTk0

∆xḞ
e

∆G
kBT

+γ
)]ν}

(1.6)

In constant-velocity experiments, where no feedback loop is applied, the loading rate Ḟ is

not constant for a given pulling speed due to cantilever bending and elastic contributions of
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polymer linkers in the system. As those linkers, namely poly-ethylene glycol (PEG) spacers

and unfolded protein chains, stretch non-linearly, the loading rate becomes a function of the

force Ḟ (F ). Several polymer elasticity models exists that describe the stretching response of

polymers and they can be used to calculate the above-mentioned force dependent loading rate

behavior in various force regimes. The most commonly used models are the freely jointed

chain (FJC) model187, the worm-like chain (WLC) model188, and the freely rotating chain

(FRC) model189. For forces up to 500 pN, relevant in most constant-speed SMFS experiments,

the WLC model describing the polymer as an isotropic flexible rod reproduces the stretching

behavior well enough. Separating worm-like chain ends by a distance x results in an entropic

restoring force that is described by a following interpolation formula:

FWLC(x) =
kBT

p

(
1

4
(
1− x

L

)2 +
x

L
− 1

4

)
(1.7)

where p is the persistence length and L is the contour length. From the above equation an

expression for the force dependent loading rate in a constant speed experiment in the presence

of flexible linker molecules was derived by Dudko et al.186:

Ḟ (F ) = ν

(
1

f
+

2βLp (1 + βFp)

3 + 5βFp+ 8 (βFp)
5
2

)−1

(1.8)

At higher forces where the WLC model diverges from experimental data, the freely rotating

chain (FRC) model proposed by Livadaru et al. is more appropriate.189 It describes different

elastic behaviors of the polymer chain in three force regimes and can be additionally refined

using a quantum-mechanical correction (QM-FRC) at forces > 500pN.190

Under a set of physically relevant constraints these elasticity models provide one-to-one

mappings from force-extension space into force-contour length space. Transformation of force-

extension traces into contour length space allows them to be aligned and averaged to precisely

locate energy barriers along the unfolding pathway. Details of polymer elasticity models

application to SMFS data analysis and of contour-length transformation were first described

Puchner et al.191 and later published in detailed SMFS-protocol as a part of this thesis (see

Section 3 and Associated Publication P4). Numerous SMFS studies62;65;131;192 as well as

associated publications P5 and P6 rely on a transformation into the contour length space.

Fingerprinting & protein conjugation

One important aspect of SMFS data analysis is a distinction between signal and noise. Specific

signal originates from unfolding of a single protein domain of interest or from unbinding of

a single receptor-ligand complex, while noise arises from non-specific interactions or from

multiple molecular interactions between the cantilever and surface. Multiple interactions

tend to be hard to interpret and thus are best removed from the data set prior to analysis. To

ensure that predominantly single interactions occur, the density of a surface-bound molecules

is typically kept low. In this case, a majority of curves (80 − 99%) contain no interaction.
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Those empty traces can be easily identified and disregarded at an early stage of data analysis,

leaving the experimenter with a high confidence that the remaining signal comes indeed from

single molecule events.130;193

Even such pre-filtered data might contain unspecific adhesion events, measurement arti-

facts, and sporadic multiple interactions. To filter the data efficiently, so called fingerprint

domains are often employed. Those are proteins with known unfolding characteristics (e.g.

unfolding patterns, most probable rupture force and contour length gain) co-expressed with he

domain of interest as a fusion protein. Presence of the fingerprint in a force-extension trace

confirms the specific pulling geometry.194;193 The choice of fingerprint domains is made so

that the length increments and unfolding forces are easily distinguished from the interaction

of interest. Additionally, fingerprints expressed as fusion domains with the domain of inter-

est provide site-specific attachment points through engineered cysteine residues or peptide

ligation tags that allow covalent linkage to the surface and/or cantilever. This way potential

interference of immobilization methodology with the domain of interest is avoided through

spatial separation.

Natural and engineered polyproteins are popular internal molecular controls for SMFS

measurements and are usually immobilized on the surface by non-specific adsorption. How-

ever, site-specific conjugation methods provide a series of advantages are gaining popularity.

They can be used to investigate receptor-ligand interactions, where covalent immobilization

is required, while strict control over the pulling geometry results in high precision and re-

producibility. Several established surface chemistry and bioconjugation strategies for SMFS

were recently reviewed by Ott et al.193 For example, cysteine can be incorporated at the a

protein’s terminus or internally within the fingerprint domain to provide specific linkage sites.

If this approach is used, one should take care that no other cysteine residues within protein

sequence are present. Engineered cysteines will spontaneously react with maleimide leaving

groups creating a covalent attachment to PEG coated surfaces. The ybbR-tag is a short pep-

tide sequence added N- or C-terminally that is enzymatically linked to coenzyme A (CoA)

by a 40-phosphopantetheinyl transferase (SFP).195;196 In this thesis both cysteine chemistry

and the ybbR/SFP system were used for protein immobilization in associated publications

P4, P5 and P6.

1.5.2 Optical methods

Fluorescence microscopy

Optical microscopy is a well established method in biological research with fluorescence tech-

niques leading the way in high-resolution and single-molecule imaging. In contrast to trans-

illuminated light microscopy, in fluorescence techniques the sample is illuminated with a

narrow set of wavelengths chosen to interact with fluorophores present in the specimen. A

photon excites orbital electrons of the fluorophore to one of the various vibrational states

in the excited electronic state S1. After non-radiative relaxation to the ground vibrational

state, the system relaxes to the ground electronic state S0 by emitting a photon of longer
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wavelength. The emitted light can be separated from the much stronger illuminating light

by a spectral emission filter, leading to a high signal-to-noise ratio. A common configura-

tion includes a monochromator followed by a photomultiplier tube which is typically used

for detection as a detector in fluorometers. CCD cameras are usually employed in imaging

applications.197

Fluorescence offers a sensitive, non-destructive way of tracking and quantifying biological

molecules as long as they can be specifically conjugated to fluorescent labels. Biomolecules

of interest are labeled in vitro or in vivo using fluorescent dyes, quantum dots or fluorescent

proteins. For example, in immunofluorescence tissues, cells, and subcellular structures are

stained using antibodies with a fluorophore attached. DNA and RNA fragments can also

be labeled with fluorescent hybridization probes. Fusing a green fluorescent protein (GFP)

marker to the gene of interest and measuring the developing fluorescent signal allows gene

expression levels to be directly quantified in live cells.198;199 Analyte recognition in enzyme-

linked immunosorbent assay (ELISA) works by using antibodies immobilized on a microtiter

plate to capture proteins of interest. A detection antibody conjugated to an enzyme or

fluorophore creates signal that can be accurately measured by fluorometric or colorimetric

detection.200;201

The simplest implementation of fluorescence microscopy is an epifluorescence microscope,

where excitation light is focused on the specimen through an objective lens and the same

objective serves to focus the fluorescence emitted by the specimen on the detector. It means

that the entire specimen is illuminated evenly and the resulting fluorescence includes a large

unfocused background signal. To limit background contribution, various techniques such

as confocal microscopy and total internal reflection fluorescence (TIRF) microscopy were

developed. A confocal microscope achieves optical sectioning by means of a spatial pinhole

placed at the confocal plane of the lens which eliminates out-of-focus light. The increased

resolution is achieved at the cost of decreased signal intensity. Consequently, long exposure

times are often required. In typical modern confocal laser scanning microscopes only one

point in the sample is illuminated at a time, and 2D or 3D imaging requires rater scanning

the specimen.202

TIRF microscopy is a surface-confined implementation of fluorescence microscopy where

only an area of the sample adjacent to the glass surface is excited and imaged. An evanescent

field generated when the incident light is totally internally reflected at the glass-water interface

is used to selectively illuminate and excite fluorophores in a restricted region of the sample.203

Typical penetration depths are in a range of 100 nm. This way the surface of the sample can

be observed while background fluorescence from fluorophores in the bulk liquid is kept low.

This allows imaging molecular events such as cell adhesion, membrane association, secretion

of neurotransmitters, and membrane dynamics at physiological concentrations of fluorophore-

bearing specimens. Many differently colored labels can be used on a multicolor-excitation and

-emission microscope allowing simultaneous observation of more than one molecular species.

Such a home-built multicolor TIRF setup179;204 was used in this thesis to visualize cellulase

activity on cellulose fibers in real-time (see Publication P1).
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1.5.3 Molecular dynamics simulations

Molecular dynamics (MD) is a computer simulation method for studying the physical move-

ments of atoms and molecules, giving a view of the dynamical evolution of the system. Tra-

jectories of the atoms are determined by numerically solving Newton’s equations of motion

for a system of interacting particles:

mir̈i = − ∂

∂ri
Utot (r1, r2 . . . rN ) , i = 1, 2 . . . N (1.9)

where mi and ri are the mass and the position of atom i and Utot is the total potential energy

of the system. Utot depends on the positions of all the particles in the system and thereby

couples their motion. This potential energy is represented as the so called force field and must

be simple enough to enable efficient calculation and at the same time faithfully represent the

interatomic interactions in order to accurately calculate the forces between particles.

Force fields can be defined at many levels of physical accuracy, but the most commonly used

are those based on the molecular mechanics. Such a classical treatment of the particle-particle

interactions allows to reproduce structural and conformational changes within the molecules

but is insufficient to describe chemical reactions. The total energy of the system is calculated

as a sum of bonded and non-bonded terms. There are three bonded terms, namely bond

stretches, angle bends and torsional rotations (dihedrals).205 Non-bonded potential terms

include the Van der Waals and the electrostatic interactions:

Utot = Ubend + Uangle + Udihedral + UvdW + UCoulomb (1.10)

Bonded terms are defined as followed:

Ubend =
∑

bonds i

kbendi (ri − r0,i)
2 (1.11)

Uangle =
∑

angles i

kanglej (θi − θ0,i)
2 (1.12)

Udihedral =
∑

dihedrals i

kdihej [1 + cos (niφij)] (1.13)

where ri is the distance between atoms, θi is the angle between two bonds, φij is the dihedral

angle, kbendi , kanglej and kdihej are the bond stretching, bending and torsional force constants

in the harmonic approximation, respectively. One of the most commonly used force fields,

CHARMM, has two additional terms: the Urey-Bradley terminat which describes an inter-

action between atoms separated by two bonds (1,3 interaction), and the improper dihedral

term which is used to maintain bond chirality and planarity.206

The energy terms representing the contribution of non-bonded interactions are the follow-
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ing:

UvdW =
∑
i

∑
j>i

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(1.14)

UCoulomb =
∑
i

∑
j>i

qiqj
4πε0rij

(1.15)

As the van der Waals and electrostatic interactions exist between every non-bonded pair of

atoms in the system, a cutoff distance is used to make calculations feasible.

Molecular dynamics is commonly used to study biomolecules and larger biological systems,

and connecting simulation with structural data from diverse experimental sources permits

the exploration of biological phenomena in unparalleled detail.207 Both thermodynamic and

kinetic properties of the system can be predicted from the MD simulation as the positions

and velocities of all the particles are known at each simulation step. Important applications

of MD to understand biological systems include protein-folding in coarse-grained represen-

tation208 as well as in full atomic detail,209 structure-function mechanisms of an insect an-

tifreeze protein,210 simulations of complete ribosome structures at 13 intermediate states of

the translation process,211 and description of the chromatophore from the purple photosyn-

thetic bacteria by MD simulations combined with quantum-dynamics calculations.212. Many

health-related biomolecular complexes were also investigated with MD, such as antibiotics

interacting with ribosomes,213 structure and dynamics of viral capsids of Satellite Tobacco

Mosaic Virus214 and HIV-1,215 and an outer envelope of an influenza virion.216

Steered molecular dynamics (SMD) simulations extend the use of MD by applying external

forces to a simulated biomolecule. Structural changes in a molecular conformation under

tensile stress can be revealed at the atomic level. SMD is often used to simulate events such as

mechanical unfolding, stretching, and forced unbinding and is thus a valuable computational

tool complementary to SMFS. Some examples of SMD employed to biological systems include

studies on conformational changes of immunoglobulin domains217, resolving the molecular

mechanism of cadherin catch bond formation,155 sugar transport across membrane protein

lactose permease218 and investigating a mechanism of phosphate release by actin.219 In this

thesis SMD simulations are used to elucidate molecular mechanisms behind an ultrastable

type III cohesin-dockerin interaction (see Section 3 and Publication P5).

A combination of equilibrium and steered MD simulations with principal component and

correlation analyses was used to probe the mechanisms of allosteric regulation in glutamine

amidotransferase220 and later in tRNA:protein complexes.221 This network-based correlation

method relies on the fact that the existence of certain communication pathways leads to coor-

dinated motion between functionally important and distant regions of the molecular structure.

SMD was also used to study tension propagation through the protein scaffolds, a question

important for understanding mechano-transduction, -sensing and -activation.222;223;224. Pub-

lication P6 demonstrates a new network-based correlation analysis algorithm for analysis for

SMD data, that allows to visualize stiff paths through the protein complex along which force

is transmitted.
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2 Novel polymerization-based assay for

cellulose hydrolysis

Understanding the process of biomass degradation by cellulolytic enzymes is of urgent impor-

tance for biofuel and chemical production. However, due to the complex composition of cel-

lulosic substrates and a variety of cellulolytic enzymes, identifying superior enzyme mixtures

for biomass degradation remains an ongoing challenge. The same factors make it challenging

to establish a standardized assay to monitor enzymatic activity during the degradation of

recalcitrant biomass samples. Currently there is no efficient high-throughput activity assay

relating enzymes and substrates that would be applicable to screening and pretreatment stud-

ies. This constitutes a bottleneck to advancing research on enzymes involved in the hydrolysis

of plant-derived polysaccharides.

The goal of this project was to develop a novel assay for studying the effectiveness of multi-

component enzyme mixtures on lignocellulosic substrates. Ideally, the assay should meet the

following requirements:

1. Compatibility with insoluble biomass substrates.

2. Possibility of automation and use in high-throughput format.

3. High sensitivity in relevant glucose concentration range.

4. Time-resolved readout to extract information about enzyme kinetics.

5. Spatial signal localization to identify hot-spots of cellulose hydrolysis on complex

substrates at the micro- and nanoscale.

To meet those criteria, a hydrogel reagent signaling (HyReS) system was developed, which

converts oligosaccharides produced during biomass hydrolysis into a hydrogel using poly-

merization-based amplification. In various implementations this system serves as a versatile

platform for assaying cellulolytic activity on both soluble and insoluble substrates. When

combined with copolymerizing fluorescent labels and TIRF microscopy, it provides a spa-

tially resolved method for chemical imaging of biomass degradation in real time, as presented

in associated publication P1. When implemented in a microtiter plate format, the HyReS sys-

tem relies on monitoring the attenuation of cellulose autofluorescence. In this implementation

the HyReS system is applicable to enzyme screening, as described in associated publication

P2. A patent application for the HyReS assay technology was granted in 2015 (International

patent application WO2015091772 A1).225

The HyReS system relies on the glucose oxidase (GOx)-mediated polymerization as a

signal amplification mechanism, as multiple monomers are incorporated into the growing

polymer chain for each released glucose molecule. Enzyme-mediated polymerization and
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polymerization-based amplification are two closely related methods that were recently applied

in various branches of nanobiosciences such as biosensing and nanomaterial synthesis. A fo-

cused review on recent progress on polymerization systems mediated by biological molecules

is given in associated publication P3.
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2.1 Associated publication P1

Redox-initiated hydrogel system for detection and real-time

imaging of cellulolytic enzyme activity

Summary

Associated publication P1 introduces working principle of HyReS system and its’ uses for

assaying cellulolytic activity of enzyme mixtures. Detailed characterization of the assay is

performed alongside with calibration to glucose standards. The central finding of the paper

is demonstration of spatially-resolved, real-time imaging of cellulose degradation using time-

lapse TIRF microscopy and AFM imaging.

Most cellulolytic enzyme formulations incorporate the synergistic endo- and exoglucanase

activities acting cooperatively on long polysaccharide chains together with cellobiase activity.

Cellobiohydrolases are supplemented to promote full conversion of cellobiose, main product of

exo- and endoglucanases, to glucose and therefore avoid product inhibition. The HyReS sys-

tem contains GOx, that selectively oxidizes glucose and starts a downstream reaction cascade

by producing hydrogen peroxide. H2O2 proceeds with an Fe2+-Fenton reagent to produce

hydroxyl radicals that initiate cross-linking of PEG diacrylate, forming an insoluble hydro-

gel. Radical polymerization serves as a signal amplification step since multiple monomers are

incorporated into the hydrogel network for each released glucose molecule.

For soluble substrates, build-up of the opaque hydrogel can be monitored by absorbance/

scattering at 550 nm. This turbidity measurement was used to determine that the HyReS

assay sensitivity lies in a range from 0.05 to 50 µm. Using this approach we were able to

follow endoglucanase activity on a soluble cellulose analog carboxymethyl cellulose (CMC)

in time. To monitor hydrolysis of insoluble substrates, a fluorescent co-polymerizing dye was

added to HyReS mixture and epifluorescence of the gel formed at the substrate surface was

measured. This method, however, requires sample rinsing before readout and is thus not

suitable for continuous time measurements.

Fluorescent hydrogel build up can be used to image cellulose degradation in real-time, as

presented in a proof-of-principle experiment on micropatterned cellulose fibers. Fluorescein-

labeled fibers were treated with a T. reesei enzyme cocktail and fluorescent HyReS assay

mixture. Build up of hydrogel was observed in time using multicolor TIRF microscopy. The

areas of hydrogel accumulation were co-localized with locations of micropatterned cellulose

stripes. Those results were confirmed by AFM-imaging of gel formation. Together, in pub-

lication P1 we demonstrated successful time-resolved imaging of cellulose hydrolysis on the

micrometer scale.
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Introduction

Multistep bioconversion processes for production of liquid
fuels and other chemical commodities from biomass are

poised to alter our energy future. One step on the route to

biomass-derived fuels is the enzy-
matic hydrolysis of cellulosic ma-

terials into fermentable sugars,
a keystone in the overall process.

Cellulolytic enzymes are used in
large quantities to depolymerize

cellulose chains into energy-

dense glucose monomers and
other short chain cellodextrins
prior to fermentation.[1] In order
to achieve high conversion rates
in practice, enzymatic saccharifi-
cation requires high enzyme load-
ings (e.g. , 20 mg enzy-
me gsubstrate

�1) and can be costly
and inefficient.[2] To make the pro-

cess more efficient and affordable, pretreatment methods that
render the substrate more susceptible to enzymatic degrada-

tion have been developed.[3] Additionally, enzyme cocktails se-
creted from the aerobic fungus Trichoderma reesei (Tr) are

being steadily improved to exhibit synergism among compo-

nents for industrial processes.[4] This continued improvement
has meanwhile drawn attention to a major challenge in the

field, namely that of assaying and quantifying the effectiveness
of cellulolytic enzyme formulations on a range of substrates

possessing variable composition, morphology, degrees of crys-
tallinity, and/or lignin content.

In the past, cellulase assays have been performed using

a suite of bulk biochemical methods.[5–13] These include a varie-
ty of assays which measure the content of reducing polysac-

charide chain ends using redox-sensitive absorbing dyes [e.g. ,
3,5-dinitrosalicylic acid (DNS)] . Other methods include the glu-

cose oxidase (GOx)/horseradish peroxidase system (HRP)[14]

which provides a fluorescent readout, or HPLC combined with

quantitative mass spectrometry,[15] which reports on the quan-
tity and size distribution of hydrolyzed chains. Electrochemical
biosensors have also been employed to detect cellulase activi-
ty.[16]

More recently, methods for observing the spatial localization
of cellulolytic activity have garnered interest as well. Imaging
substrate locations susceptible to enzymatic hydrolysis could
allow correlation of digestibility with substrate features such as
fiber bundle size, degree of fiber branching, and/or crystal ori-
entation. Conventional high-resolution imaging methods (e.g. ,
TEM, SEM) are performed under vacuum and therefore are not
suitable for monitoring enzymatic digestibility under biocom-

patible conditions. AFM imaging in liquid has shown promise,
and has been used to observe disintegration of ultraflat micro-
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tomed substrates.[17, 18] Time-resolution using AFM
imaging is limited by scan times of up to several mi-
nutes and substrates are limited to ultraflat artificial
cellulose surfaces (i.e. , no native fibrils). Stimulated
Raman spectroscopy has also been shown to provide
adequate spatial and temporal resolution[19] and can
be used on natural biomass substrates, however it is
technically involved, requiring synchronization of
multiple lasers at different wavelengths with modula-
tion in the MHz range. Single-molecule fluorescence
has shown potential for providing insights into cellu-
lolytic enzyme function, but, so far, studies have only
focused on carbohydrate binding modules and their
cooperativity,[20–22] and the method has not been
used to directly detect cellulolytic enzyme activity.
Typically, soluble fluorescent enzyme substrates will
diffuse away too quickly to allow for localization of
activity. A fluorescent reagent system that could be
used to directly read hydrolysis activity in an imaging
modality could provide new insights to enzymatic ac-

tivity and synergy.
Since its discovery in the late 19th century, hydrox-

yl radicals produced via Fenton chemistry have found

use in many industrial applications, ranging from re-
moval of organics from contaminated wastewater,[23]

to redox-initiated free radical polymerization.[24, 25]

More recently in the biomaterials field, FeII Fenton re-

agents have been combined with GOx to achieve
spatially controlled release of hydroxyl radicals from

pre-existent poly(ethylene glycol) (PEG) hydrogels.

For example, spatial confinement of radical genera-
tion at an interface was used to prepare multilayer

particles.[26] Fluorescent gels could also be produced
in response to immuno-recognition events.[27–29]

Here we extend the use of FeII Fenton reagents,
and demonstrate their application in a cellulase-
mediated polymerization system capable of monitoring cellu-

lose hydrolysis in real time. The hydrogel reagent signaling
system (HyReS system) described here detects cellulolytic

enzyme activity with good sensitivity and is compatible with
a variety of readout formats, including bulk turbidity and fluo-
rescence as well as spatially-resolved total internal reflection
fluorescence (TIRF) and AFM imaging, as depicted in Figure 1 d.
The HyReS system relies on an FeII Fenton reagent that is oxi-
dized by hydrogen peroxide with concomitant production of
a reactive hydroxyl radical.

Results and Discussion

An overview of the HyReS system is shown in Figure 1 a. We
used enzyme formulations that incorporated the synergistic
endo- and exoglucanase activities of cellulolytic enzymes to-
gether with the cellobiase activity of b-glucosidase. b-glucosi-
dase is frequently supplemented into cellulolytic enzyme for-
mulations to convert cellobiose to glucose, thereby removing
a primary inhibitor of exoglucanases in the cocktail.[30] In our
system, b-glucosidase is responsible for production of glucose,

which is further oxidized by GOx, directly producing H2O2, a re-

actant in the Fenton reaction. Gel formation proceeded via hy-
droxyl radical initiated polymerization of PEG diacrylate in the

mixture, as depicted in Figure 1 c. Figure 1 b shows a represen-
tative gel film that polymerized onto a piece of filter paper
upon partial submersion into the HyReS system containing
1 mg mL�1 Tr enzyme cocktail for 30 min. The composition of

the HyReS mixture can be found in Table 1.

Figure 1. Overview of hydrogel reagent signaling (HyReS) system for detecting and imag-
ing the degradation of cellulosic substrates. a) Saccharification products are converted
into H2O2 via reaction with b-glucosidase and GOx. H2O2 proceeds with an Fe2+-Fenton
reagent to produce hydroxyl radicals that initiate hydrogel crosslinking. b) Photograph of
filter paper partially submerged in the HyReS mixture for 30 min. c) Scheme showing
structures of Rhod dye and gel cross-linker PEG diacrylate. d) Detection of the hydrogel
using bulk measurements and spatially resolved imaging. Left : Bulk measurements in
a parallel 96-well format provide a method for screening substrate pretreatment condi-
tions or optimizing enzyme formulations on soluble and solid substrates. Right: High-res-
olution imaging methods such as TIRF microscopy and AFM-imaging allow detection of
gel formation locally on fiber surfaces.

Table 1. Composition of the HyReS system.

Component Concentration

glucose oxidase 1 mg mL�1

FeSO4 250 mm

ascorbic acid 250 mm

PEG diacrylate (Mn 575) 15 wt %
acetate buffer, pH 4.5 20 mm

rhodamine B methacrylate 3.5 mm (epifluorescence)/35 nm (TIRF)/
none (turbidity, AFM)

cellulolytic enzymes 0–2 mg mL�1
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Initially, we tested the sensitivity of the HyReS system in de-
tecting glucose directly added to sample wells of a 96-well
plate. Since the PEG hydrogel turned the solution turbid as it
polymerized, the absorbance signal at 550 nm increased with
the amount of glucose in the solution. The results from a glu-

cose standard curve measured after 30 min reaction time are

shown in Figure 2 a. A glucose detection limit in the low micro-
molar range was found. This sensitivity is similar to

that found for microtiter plate DNS assays[31] and is
generally sufficient for assaying cellulases involved in

biomass conversion. Improvement in sensitivity was
achieved by rotary shaking of the plate during the re-

action. Inclusion of ascorbic acid in a 1:1 molar ratio

with FeSO4 also improved the sensitivity by serving
as a weak reducing agent in the HyReS system, re-

ducing FeIII back to FeII, thereby regenerating the
Fenton catalyst in situ.[32] When using the standard

HyReS system (Table 1) for detecting glucose, the dy-
namic range of detection was from 0.05 to 5 mm

(Figure 2 a).

Figure 2 b shows an endoglucanase assay per-
formed on the soluble cellulose analog carboxymeth-

yl cellulose (CMC). Varying amounts of b-1,4-endoglu-
canase from the thermophilic fungus Talaromyces
emersonii were added to 30 mm solutions of CMC
and the HyReS system at 37 8C (without ascorbic acid
in this case). Turbidity increased with CMCase activity
in a concentration dependent manner. Interestingly,
the final absorbance values achieved by different en-
doglucanase concentrations were not the same, sug-
gesting the kinetics of polymerization affect the final
absorbance signal generated. This result was likely at-
tributable to differences in gel density which led to

different optical extinction properties, or alternatively
due to entrapment of the endoglucanase during hy-
drogel polymerization that restricted access to the

CMC substrate.
Although CMC is commonly used for screening en-

doglucanase activity, it is a poor predictor of hydroly-
sis performance on pretreated natural biomass in the

context of biofuel production.
For this purpose, solid substrates
are typically more informative.
To demonstrate the capabilities
of the HyReS system on relevant
solid substrates, hydrolysis on
a variety of solid substrates was
measured using fluorescence de-
tection. Initially, Whatman #1
filter paper (FP) was used as the
source of glucose. FP was cut
into 6 mm disks and placed into
the wells of a 96-well plate. The
HyReS system including a fluores-
cent rhodamine monomer
(Rhod) was added to the FP
disks, along with 1 mg mL�1 of Tr

enzymes. At given time points, the wells were washed to
remove unreacted dye molecules, and the fluorescence was
measured (Figure 3 A). The result after 120 min was a pink-col-

ored gel that conformally coated the filter paper, observable
by eye with macroscopic dimensions (several mm thick). When

the reagent system was added in the absence of the hydrolytic

enzymes, background fluorescence remained low, indicating

Figure 2. Detection of hydrogel polymerization by turbidity measurements on soluble substrates. a) Glucose
standards were added to the HyReS system in a 96-well plate format. Absorbance at 600 nm due to light scatter-
ing by the polymerized hydrogel was measured after 30 min. Fits were performed using the Hill equation. b) Vary-
ing amounts of endoglucanase were added to CMC and the HyReS system. Turbidity was monitored over time.
Gel polymerization proceeded proportional to CMCase activity of the enzyme and could be followed continuously
in real time.

Figure 3. Detection of polymerization by Rhod fluorescence on solid substrates. a) Rhod
fluorescence intensity vs. time for HyReS system/Tr enzyme cocktail on filter paper. Sam-
ples were rinsed and fluorescence signal read at given time points (dark blue circle, lack-
ing Tr enzymes). Hill equation fits serve as a guide for the eye. b) Fluorescence intensity
vs. Tr enzyme concentration measured on filter paper after 120 min. c) Glucose standard
for solid substrate. Small volumes of glucose standards were applied onto the filter
paper to ensure similar diffusion geometry as during enzymatic hydrolysis of the sub-
strate. HyReS system without cellulases was applied and fluorescence intensity was mea-
sured after 60 min. d) HyReS system/Tr enzymes were applied to cellulosic substrates for
2 h. Normalized signal was robust in comparison with negative controls. CMC: carboxy-
methyl cellulose; Avicel: m-crystalline cellulose; Sigma: m-crystalline cellulose powder;
Hay: dilute acid pretreated hay; FP: filter paper; Clad. : pretreated algal Cladophora cellu-
lose.
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that the hydrogel assay was specific. Figure 3 b shows the fluo-
rescence signal after 120 min exposure of the HyReS system
with varying concentration of Tr cellulases to the filter paper.
These data show that our detection method discriminates be-
tween different levels of cellulolytic activity, with a linear dy-
namic range for Tr enzyme cocktails from 0.05 to 0.3 mg mL�1.
The assay precision ranged from 2.0 % at 0.3 mg mL�1 Tr en-
zymes to 52 % at 0.05 mg mL�1 Tr enzymes.

To assay the absolute amount of glucose produced by cellu-
lolytic enzymes on FP and not only the relative changes in ac-
tivity, we calibrated the assay to glucose standards. To mimic
the geometry of sugar release, FP disks were soaked with small
volumes of concentrated glucose solutions in varying concen-
trations. The HyReS system including Rhod but lacking Tr en-
zymes was then added and samples were incubated for 1 h.
Following rinsing, the fluorescence was measured (Figure 3 c).
The dynamic range of this standardization assay on glucose
was found to be from 0.1 to 2 mm. We attribute the decrease
of the sensitivity in comparison with turbidity assay to nonspe-
cific binding of Rhod to FP. The decreased sensitivity in the

high concentration range can be attributed to the readout
method. While the turbidity assay intrinsically integrates the

signal from full volume of hydrogel, fluorescence signal might

only be read from a limited volume close to the gel surface,
also dependent on gel density. Once this critical optical thick-

ness of the gel is exceeded, the same signal will be measured
for varying hydrogel coating thicknesses.

A small amount of nonspecific binding of Rhod to the solid
substrates was observable, but in general was not problematic.

Nonspecific binding is likely to be dependent on the type of

substrate, its charge properties, and pretreatment conditions.
Therefore, the performance of the HyReS system on a range of

cellulose substrates was tested to determine its substrate com-
patibility profile. As shown in Figure 3 c, the HyReS system

with fluorescence detection was found to provide high signal-
to-noise ratios on every substrate tested, including CMC,

Avicel, Sigma m-crystalline cellulose powder, dilute acid pre-

treated hay, filter paper, and pretreated algal Cladophora cellu-
lose. Non-specific binding was not found to be a limitation, as

indicated by the negative controls lacking the cellulolytic en-
zymes. The selectivity ratios of specific to non-specific signal

ranged from 4.4 for Avicel to 751.9 for Sigma m-crystalline cel-
lulose powder. All results were statistically significant using

a one-sided t-test to P<0.025. The system therefore has
a wide applicability and seems to provide high signal-to-noise
ratios on nearly any cellulose substrate susceptible to enzymat-

ic degradation.
The pH-dependence of the assay was investigated by pre-

paring the HyReS system at various pH values from 4.5 to 7.5
(see the Supporting Information). A pH of 5.0 or below was
necessary for the reaction due to base catalyzed oxidation of

FeII to FeIII at higher pH values and consequent quenching of
the reaction.[33] This low pH requirement might be limiting for
this system for some applications as fungal cellulases have pH
optima in the range of 4 to 6.5.[34] However, the HyReS system

pH range (<pH 5) matches optimal conditions for many cellu-
lolytic enzyme formulations (e.g. , Tr and A. niger cocktails).[35, 36]

Developing systems for real-time imaging of cellulose degra-
dation is an important step towards improved enzyme formu-
lations for biofuel development. In order to facilitate real-time
imaging we used TIRF microscopy, which only samples mole-
cules within an evanescent field extending away from the
glass surface to a distance of a few hundred nanometers. This
method restricts the excitation volume in a similar manner to
confocal microscopy.[37] We were able to use nM quantities of
the Rhod dye while simultaneously rejecting the fluorescent
background and imaging the buildup of gel on the cellulose
fibers. This setup eliminated the need to rinse away any un-
reacted Rhod before readout, significantly improving time res-
olution. The refractive index of the hydrogel is less than that of
glass, therefore the critical angle requirement for TIRF was
maintained and excitation light did not penetrate into the bulk
even as the gel formed at the surface.

Figure 4 shows time-lapse TIRF imaging with the HyReS
system. Cladophora cellulose was covalently labeled with a fluo-
rescein derivative[38] (5-(4,6-dichlorotriazinyl) aminofluorescein,
DTAF), and patterned in lines onto a cover slip (see Experimen-
tal Section). The sample was then imaged under liquid in the
TIRF microscope. Under blue illumination (See “TIRF-cellulose”,

Figure 4 a and e), patterned bands of labeled cellulose fibers

were clearly visible at the top and bottom of the image, and
reproduced the fibrous structure of the Cladophora cellulose in

the TIRF image. The cellulose-free band forms the black stripe
in the center of the image. Next, Tr enzymes and HyReS

system including Rhod dye at 35 nm were added to the liquid,
and images were collected over time under green illumination

(Figure 4 b–d). At time t = 0, the gel had not yet formed and

no Rhod signal was observable in the TIRF image (Figure 4 B).
By time t = 60 min. , HyReS polymerization had incorporated

Rhod into the hydrogel and the signal became observable in
the TIRF image, mainly at locations where the cellulose was de-

posited, reproducing the substrate pattern with high fidelity
(Figure 4 d). This result indicated that reaction of the oligosac-

charide hydrolysis products with the HyReS system compo-

nents and initiation of polymerization occurred quickly enough
to be localized to their site of production before the compo-
nents could diffuse away from the fiber surface. Negative con-
trol experiments lacking the Tr enzyme mixtures (Figure 4 e–h)
showed only low non-specific signal that did not co-localize
with the patterned substrate locations. The HyReS system
therefore served as an imaging method and provided a fluores-
cent readout that increased from a low background to a high
signal directly in response to hydrolysis of the substrate. To the
best of our knowledge, such a localized chemical imaging
system for cellulolytic activity has never been shown before

using fluorescence detection. Such a method could provide
distinct advantages in studies on cellulase synergy and sus-
ceptibility of cellulose substrates to degradation at specific lo-

cations (e.g. , branch points, fibril ends, and/or crystalline
faces).

To obtain more detailed information about the morphology
of the hydrogel formation on solid substrates, we employed

time resolved AFM imaging. DTAF-labeled cellulose was spin-
coated uniformly onto a coverslip and the HyReS system was
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applied for varying amounts of time. Afterwards, samples were
carefully rinsed and imaged in tapping mode in air (Figure 4 i–

l). The Cladophora celluose formed a dense mat on the glass
surface, consisting mostly of thin and long features corre-

sponding to single cellulose fibers or small fiber bundles (Fig-

ure 4 i). After 20 min, the HyReS system formed distinctive hy-
drogel features on the surface with heights of up to several

hundred nm. The number and size of the features clearly in-
creased with assay time. After an hour, large piles of hydrogel

with heights of up to hundreds of nm and widths of several
mm could be observed. This demonstrates the high signal am-

plification achieved by HyReS system because each hydroxyl
radical initiates chain propagation that incorporates several
hundred monomers into the growing gel. Additionally, the

signal is integrated over time as the gel builds up. These am-
plification and integration mechanisms convert the glucose
signal generated upon hydrolysis of nanometer-scale cellulose
fibers into micrometer-scale hydrogel formations. At the same

time, the size of the hydrogel formations originating from
small cellulose features sets the intrinsic limit to the spatial res-
olution of presented method. The negative control showed

small amounts of unspecific polymerization, consistent with
our observations from TIRF imaging.

Conclusion

We have shown that the HyReS
system, comprising a mixture of
cellulolytic enzymes, b-glucosi-
dase, GOx, FeII, ascorbic acid,
PEG diacrylate, and Rhod is a ver-
satile tool for detecting and
imaging cellulolytic enzyme ac-
tivity on a wide range of solid
and soluble cellulose substrates.
The system is compatible with
turbidity detection on soluble
substrates, and with fluores-
cence detection for insoluble
substrates. Using the turbidity
method, we have demonstrated
glucose sensitivity in the low mi-
cromolar range which is on par
with other bulk glucose determi-

nations (e.g. , DNS[31]). Analagous
to conventional GOx/HRP sys-

tems, our system includes an

amplification step as many viny-
lated monomers are incorporat-

ed into the growing gel for
every hydroxyl radical initiator

produced from glucose. Addi-
tionally, our system has other

added advantages, such as local-

ization of the signal to crystalline
solid–liquid interfaces, and inte-

gration of the signal over time and space. We have further-
more presented results that demonstrate the HyReS system as

an imaging platform for use in combination with TIRF micros-
copy and AFM, providing real-time imaging of cellulose hydrol-

ysis with high spatial resolution. Our AFM imaging results dem-

onstrate the extent of signal amplification that is possible
when attempting to observe cellulose digestibility on nanome-
ter-scale fibers. These unique features of the HyReS system can
contribute to our understanding of how substrate structure af-

fects enzymatic hydrolysis, and also move toward assaying the
activity of individual cellulolytic complexes (i.e. , cellulosomes)
deposited onto cellulosic substrates. These results taken to-

gether establish the HyReS system as a competitive cellulase
assay platform with the added advantage of spatially resolved
localized chemical imaging.

Experimental Section

Materials: Methacryloxyethyl thiocarbamoyl rhodamine B (Rhod)
was obtained from Polysciences Inc. (Warrington, PA, USA). Beta-
1,4-endoglucanase from T. emersonii was purchased from Mega-
zyme (Ireland). Glucose oxidase from A. niger and b-glucosidase
from almonds were purchased from Sigma–Aldrich. All other re-
agents were obtained from Sigma–Aldrich and used without fur-
ther purification. Composition of the standard reagent mixture

Figure 4. Time-lapse TIRF(a–h) and AFM (i–l) imaging. Cellulose fibers were covalently labelled with a fluorescein
derivative (DTAF) and patterned onto a cover slip. The stripes of patterned cellulose were clearly visible in blue
TIRF illumination, while a middle band of the cover slip remained cellulose-free (a and e). The HyReS mixture in-
cluding 35 nm Rhod and 2 mg mL�1 Tr cellulases was added and sample was imaged under green illumination for
60 min (b, c, and d). Polymerization of the fluorescent hydrogel clearly co-localized with locations of micropat-
terned cellulose. The negative control experiment lacking Tr enzymes (images f, g, and h) showed only low non-
specific background that did not co-localize with substrate locations. AFM height images (i–l) were obtained on
cellulose that was deposited uniformly across the entire cover glass and exposed to the HyReS mixture. Panel (l)
shows the negative control (60 min (�)) lacking Tr enzymes.
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used for cellulase activity detection is shown in Table 1. All experi-
ments used this standard mixture with slight variations noted in
the text. Reagents were premixed prior to each experiment. Poly-
(propylene) 96-well were purchased from Grenier (Bio-One).

Turbidity measurements on soluble substrates: For the glucose
calibration plot (Figure 2 a), wells of a 96-well plate were filled with
100 mL of acetate buffer containing twice the target concentration
of the HyReS system (Table 1). An equal volume of acetate buffer
(100 mL) containing twice the target glucose concentration was
added. Monitoring of the absorbance (600 nm) began immediately
and continued for 30 min inside a plate reader (Tecan M1000 Pro)
at 37 8C. The endoglucanase assay (Figure 2 b) was performed simi-
larly, using CMC in place of glucose. CMC (degree of substitution:
0.60–0.95) was dissolved in acetate buffer, pH 4.5. Each well was
filled with a total volume of 100 mL containing the indicated
amount of CMC, cellulolytic enzymes, and the standard HyReS re-
agent mixture (without Rhod dye). The plate was incubated at
37 8C inside a plate reader and absorbance was measured continu-
ously at 550 nm. The reported errors correspond to the standard
deviation of at least three independent measurements.

Fluorescence measurements on solid substrates: Filter paper
(Whatman #1, FP) was cut into disks (6 mm diameter, 2.5 mg cellu-
lose), placed into the wells of a 96-well plate and used as the cellu-
lose substrate. For calibration of the assay, 5 mL of glucose stand-
ards were allowed to soak into the FP disks, followed by addition
of 195 mL of HyReS system (lacking cellulases). After incubation at
37 8C, unreacted monomer was removed with a water rinse using
a microplate strip washer (ELx50, BioTek). Fluorescence at 580 nm
was measured in a plate reader with excitation at 555 nm. For the
cellulase assays, a total liquid volume of 200 mL containing cellulo-
lytic enzymes (range 0–1 mg mL�1) together with 3.5 mm Rhod and
the standard reagent mixture (Table 1) was added to each well.
After incubation at 37 8C, polymerization was stopped by removing
unreacted monomer with a water rinse using ELx50 Microplate
Strip Washer (BioTech). Fluorescence was measured immediately
with a plate reader (M1000pro, Tecan) with excitation at 555 nm,
and emission at 580 nm. The reported errors correspond to the
standard deviation of at least three independent measurements.

DTAF-grafted cellulose fibers (DTAF-CF): Cellulose fibers were ex-
tracted from fresh Cladophora algae according to published proto-
cols.[39, 40] Noncellulosic cell components were first extracted in
98 % ethanol at 50 8C for 24 h. Solid material was filtered and sub-
sequently boiled for 2 h in 0.1 m NaOH. After exchanging the
NaOH solution, cellulose was again extracted at 80 8C overnight.
Afterwards, the sample was immersed in 0.05 m HCl at room tem-
perature for 12 h, filtered, thoroughly washed with water and
freeze-dried. In order to obtain cellulose microcrystals, the sample
was further acid hydrolyzed in 40 % H2SO4 at 70 8C for 12 h. After
extensive centrifugal separation and washing, cellulose was dia-
lyzed against deionized water and the suspension was stored in
water at 4 8C in darkness for up to several weeks prior to use.
Cladophora cellulose fibers obtained in this way were covalently la-
beled with the fluorescent dye DTAF according to previously pub-
lished protocols.[38, 42] In short, 5 mg of DTAF was dissolved in 1 mL
of 0.2 m NaOH. The resulting solution was mixed with 500 mL of
the cellulose suspension in water and reacted for 24 h at room
temperature. Unreacted dye was removed by centrifugal washing
five times followed by dialysis against water.

Cellulose micropatterning: Round cover slips (borosilicate, 22 mm
dia. , 0.2 mm thickness, Thermo Fisher) were aminosilanized follow-

ing previously published procedures.[41] DTAF-labeled cellulose
fibers were patterned on aminosilanized cover slips under flow in
a PDMS microfluidic channel. A PDMS mold with two parallel chan-
nels 100 mm wide, 28 mm high and 2 cm long, spaced 15 mm apart
was produced using standard soft lithography methods, and ap-
plied onto an aminosilanized glass surface and cured at 65 8C over-
night. A suspension of DTAF-CF was sonicated for 3 min to dis-
perse fibrils, introduced into the channels and incubated for 5 min.
The negatively charged DTAF-CFs adhered to positively charged
aminosilanized glass surface. Afterwards, the channels were flushed
with water to remove weakly bound fibers. The flow channel was
then removed, and surfaces were blocked for 2 h by exposure to
a solution of 2 mg mL�1 BSA in acetate buffer (20 mm, pH 4.5) fol-
lowed by rinsing with water.

Total internal reflection fluorescence microscopy: Fluorescence
imaging was carried out in TIRF excitation on a custom-built multi-
color TIRF microscope, similar to the instrument described previ-
ously by Gumpp et al.[43] Blue DTAF dye was excited by the 488 nm
line and Rhod by the 561 nm line of the TOPTICA iChrome MLE-
LFA laser through a 100 � , NA 1.49 oil immersion objective lens
(Nikon Apochromat). We used ET525/36 and HC600/37 emission fil-
ters mounted in Optosplit III (Carin Research) for detection of DTAF
and Rhod fluorescence, respectively. The emitted light was detect-
ed using a 1024 � 1024 pixel back-illuminated EMCCD camera
(Andor iXon3 888).
The cover glass with micropatterned lines of DTAF-CFs was placed
in a liquid-tight holder and mounted on the fluorescence micro-
scope. First, cellulose fibers in buffer were imaged under buffer to
verify patterning fidelity. To visualize hydrogel build-up in real
time, 300 mL of the standard reagent mixture supplemented with
2 mg mL�1 Tr cellulolytic enzymes, and 35 nm Rhod were added
onto the sample. Time series were recorded in blue and green
channels with an integration time of 0.5 s per frame and 10 s be-
tween acquisitions. The Peltier-cooled CCD chip was typically oper-
ated at a temperature of �80 8C and an electron multiplication
gain of 150 � and 200 � was used for blue and green channels re-
spectively.

Atomic force microscopy: Measurements were carried out using
MFP-3D AFM (Asylum Research) in combination with AC160 canti-
levers (resonance frequency: 300 kHz, spring constant: 27 N m�1,
Olympus). All imaging studies were done in tapping mode with
amplitude of ~100 nm. DTAF-CFs were spin coated onto an amino-
silanized cover slip (3000 rpm, 60 s). The standard hydrogel reagent
mix including 1 mg mL�1 Tr cellulases was added to the cover slip
and sample was incubated for varying amounts of time at 37 8C.
Polymerization was stopped by a gentle rinse in a beaker of ultra-
pure water. The sample was blow dried with gentle nitrogen
stream and imaged in air.
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2.2 Associated publication P2

Quantifying synergy, thermostability, and targeting of cellulolytic

enzymes and cellulosomes with polymerization-based amplification

Summary

Associated publication P2 further develops the HyReS system introduced in publication P1

to allow for label-free, rapid and highly parallel determination of the potency of cellulolytic

enzyme formulations on solid lignocellulose. This implementation of the assay relies on mon-

itoring the attenuation of sample autofluorescence by growing the opaque hydrogel layer in

epifluorescence mode. As this one-pot assay requires only a single pipetting step and can

be implemented on any pretreated biomass substrate, we expect it to be applicable to high-

throughput enzyme screening for improved bioconversion of biomass.

Activity of cellulolytic cocktails is routinely assayed on easy to handle, standardized sub-

strates such as filter paper, CMC, or Avicel that have properties distinctly different from

those of industrially relevant pretreated biomass. The need for employing real lignocellulosic

substrates in screening of cellulases is recognized in the community. In the publication P2 we

propose an easy way to prepare 6mm discs of pretreated biomass that are compatible with

96-well plate format common in high-throughput applications. We demonstrate that inde-

pendent of biomass source, lignocellulosic substrates exhibit autofluorescence in the near-UV

spectral range. This property is exploited to eliminate the need for dyes and labels in the

HyReS assay altogether by instead relying on autofluorescence attenuation as a measure of

hydrogel buildup.

The label-free HyReS assay was first validated using a T. reesei enzymatic cocktail on

three different solid lignocellulosic materials. A data analysis method was developed that

uses the time at which the most rapid rate of hydrogel production is observed as a measure

of cellulolytic activity. Afterwards, we demonstrated the assay applicability by quantifying

synergistic effects between different cellulases as well as targeting effects of CBMs. We were

also able to measure thermostability of cellulolytic enzymes.

In summary, publication P2 demonstrates a new, parallelizable implementation of the

HyReS assay. High speed, ease of automation and parallelization together with applicability

to arbitrary lignocellulosic substrates puts the HyReS assay forward as a valuable method for

cellulolytic enzymes screening.
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Quantifying Synergy, Thermostability, and Targeting of Cellulolytic
Enzymes and Cellulosomes with Polymerization-Based Amplification
Klara H. Malinowska, Thomas Rind, Tobias Verdorfer, Hermann E. Gaub, and Michael A. Nash*

Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universitaẗ, 80799 Munich, Germany

ABSTRACT: We present a polymerization-based assay for determining the
potency of cellulolytic enzyme formulations on pretreated biomass substrates.
Our system relies on monitoring the autofluorescence of cellulose and
measuring the attenuation of this fluorescent signal as a hydrogel consisting
of poly(ethylene glycol) (PEG) polymerizes on top of the cellulose in
response to glucose produced during saccharification. The one-pot method
we present is label-free, rapid, highly sensitive, and requires only a single
pipetting step. Using model enzyme formulations derived from Trichoderma
reesei, Trichoderma longibrachiatum, Talaromyces emersonii and recombinant bacterial minicellulosomes from Clostridium
thermocellum, we demonstrate the ability to differentiate enzyme performance based on differences in thermostability, cellulose-
binding domain targeting, and endo/exoglucanase synergy. On the basis of its ease of use, we expect this cellulase assay platform
to be applicable to enzyme screening for improved bioconversion of lignocellulosic biomass.

A long-standing goal in the chemical sciences has been to
develop biobased systems for efficient conversion of

naturally occurring plant cell wall biomass into soluble sugars.
This second-generation route toward renewable fuels and
chemicals has the potential to alter the international landscape
governing energy and chemical commodity markets in the near
future. Efficient production of soluble fermentable sugars from
lignocellulosic biomass would provide a valuable input into
standard fermentation processes, or alternatively feed into
processes involving synthetic microorganisms for the produc-
tion of a wide range of chemicals, pharmaceuticals, and other
valuable products.
In order to improve biological enzyme-based conversion

systems for saccharification of lignocellulosic biomass, enzyme
formulations are being steadily improved through a combina-
tion of directed evolution and semirational design strategies.1−3

In terms of screening for enzyme activity, lignocellulosic
bioconversion systems present a unique challenge.4 The
lignocellulosic substrates are not easily standardized, and the
mass content of the primary components (lignin, hemi-
celluloses, and cellulose) will vary widely depending on the
nature of the feedstock, where it was grown, and how it was
pretreated.5 Also, microscopic structure of a substrate plays a
key role in enzyme adsorption, kinetics, and efficiency, as
shown by recent spatially and time-resolved studies utilizing
fluorescence6−9 and atomic force microscopy.10−12 New assays
for evaluating the effectiveness of enzyme formulations on real-
world industrially relevant pretreated biomass that are
straightforward to implement, compatible on natural substrates,
rapid, and highly sensitive are therefore clearly needed.
Here we present the use of a label-free hydrogel reagent

signaling system (HyReS) for assaying hydrolysis of lignocellu-
losic biomass. Formation of a cross-linked hydrogel at the
location of glucose production attenuates the autofluorescence
of cellulose and is used for quantifying total cellulolytic activity.

The HyReS assay has an ability to rapidly quantify activity,
thermostability, exo/endo synergy, and targeting effects in
cellulotytic enzyme formulations as well as to show digestibility
variations between different industrially relevant types of
biomass.13

Assay Principle. Most of the commonly used cellulase
activity assays rely on absorption or fluorescent dyes for signal
detection. Those include the IUPAC-standardized colorimetric
filter paper assay (FPA) in traditional14,15 and microplate16−18

formats, as well as bioenzymatic assays such as glucose oxidase
(GOx)/horseradish peroxidase systems with fluorescence
detection19,20 and hexokinase/glucose-6-phosphate dehydro-
genase systems based on nicotinamide adenine dinucleotide
absorbance in the near-UV.21,22 Novel glucose detection
techniques also use fluorescent dyes for readout.20,23−25

However, both cellulose and lignin exhibit autofluores-
cence,26,27 a property that was previously used to map changes
in cellulose and lignin content and their spatial distribution
during biomass pretreatment28 and to track changes in biomass
structure along with localization of cellulolytic enzymes in real
time.6 As we show in this work, the intrinsic fluorescence of
biomass can also be exploited to eliminate the need for dyes
and labels in cellulolytic assays altogether.
Activity of cellulolytic cocktails is routinely assayed on

standardized substrates such as filter paper, carboxymethyl
cellulose (CMC), or Avicel29 which, though readily available
and easy to handle, have properties distinctly different from
those of industrially relevant pretreated biomass.30 The need
for employing real lignocellulosic substrates in screening of
cellulases is recognized in the community.4,31,32 Several
solutions have been proposed including the use of finely
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ground substrate in suspension33 and preparation of substrate
discs from biomass sheets.34

The principle of our label-free HyReS system is the
attenuation of lignocellulose autofluorescence due to light
scattering on a hydrogel film formed at the location of glucose
production (Figure 1). The GOx/Fe(II) system, described

previously in detail by our group and others,25,35,36 enables
selective polymerization of poly(ethylene glycol) (PEG)
hydrogel in the presence of glucose. Glucose is oxidized by
GOx, and the resulting hydrogen peroxide further reacts with a
Fenton reagent (Fe2+ ions) producing ·OH radicals. The
resultant hydroxyl radicals then initiate free radical polymer-
ization of PEG diacrylate, resulting in a densely cross-linked gel.
Radical polymerization serves as a signal amplification step
since multiple monomers are incorporated into the hydrogel
network for each released glucose molecule. The Fenton
reagent can then be regenerated in the reaction of Fe3+ with
ascorbic acid.37 Substrate autofluorescence is measured in epi-
illumination mode from above, and formation of turbid gel is
detected via fluorescence signal attenuation.

■ RESULTS AND DISCUSSION
Substrate Characterization. We prepared 6 mm discs of

pretreated biomass (napier grass and miscanthus, Figure 2,
parts A and B) using standard laboratory equipment. As
opposed to filter paper, pretreated biomass contains traces of
lignin which influences its digestibility. Figure 2C shows Raman
spectra of substrates with bands attributed to cellulose (380,
435, 1095, 1123, 1377, and 2985 cm−1) present in all samples
and lignin (1600 cm−1) absent in filter paper.38 Autofluor-
escence spectral scans of all substrates (Figure 2D−F) were
dominated by broad cellulose peaks with maxima at λex =
365 nm and λem = 430 nm.27 An additional broad shoulder at
longer wavelengths present in the spectra of napier grass and
miscanthus originates from lignin,28 while multiple bands at

shorter wavelengths in the spectrum of filter paper were
attributed to optical brighteners.39 These results identify 365/
430 nm wavelength as an optimal choice for universal detection
of biomass substrates using the HyReS assay.
We note that drying of biomass can affect the crystalline

structure and digestability. The polymerization assay, however,
is also compatible with never-dried biomass. In our experience,
simple centrifugation of a biomass slurry in a 96-well plate
results in a compacted cellulose sediment at the bottom of the
wells that is sufficiently cohesive to withstand gentle addition of
liquid, allowing for the same autofluorescence measurement
(described below) to be performed with never-dried biomass.

Assay Validation. In a proof-of-principle experiment, we
used the label-free HyReS system to quantify cellulolytic
activity of a Trichoderma reesei enzyme cocktail. Cellulases over
a concentration range from 0 to 100 μg mL−1 were premixed
with components of the label-free HyReS assay and preheated
to 37 °C. Discs of pretreated biomass were placed in wells of a
microtiter plate, and the assay mix was added. The plate was
incubated at 37 °C, and cellulose fluorescence was monitored
over time.
The resulting time-resolved autofluorescence attenuation

patterns were similar for both biomass samples (Figure 3, parts
A and B, top). During the first 20 min of incubation,
fluorescence intensity decreased until a plateau was reached
at approximately 80% of initial signal intensity. This behavior
was consistent for all wells including the negative control
without cellulolytic enzymes present. This initial decrease was
due to changes in the liquid meniscus shape at early time
points, confirmed by time-lapse video microscopy of the wells
from the side. Control measurements indicated no significant
photobleaching of the sample under the experimental
conditions. After this initial decline in fluorescence, a second
drop in signal intensity down to approximately 40% of the
initial fluorescence was observed. The second drop in
autofluorescence was the result of formation of a thin, opaque
hydrogel film on the substrate surface. Afterward, the
fluorescence intensity rose slightly until the end of the
measurement, which can be explained by a gradual evaporation
of liquid from the wells, resulting in a decreased path length
through the liquid.
The time at which the hydrogel film formed and attenuated

the fluorescence signal was dependent on the concentration of
cellulases present in the sample. Higher concentrations of
cellulolytic enzymes resulted in a faster rise of glucose
concentration in the vicinity of the substrate and led to earlier
formation of the hydrogel film. To quantify this effect, we
developed a data analysis method involving normalization,
smoothing, and numerical differentiation of fluorescence time
traces (see the Experimental Section). The maximum value of
the derivative corresponds to the fastest signal attenuation per
unit time and, consequently, to the most rapid rate of hydrogel
production (Figure 3, parts A and B, bottom). The time at
which the maximal signal change occurred plotted against the
concentration of cellulolytic enzymes on a log scale (Figure
3C) shows that the relation between cellulose concentration
and attenuation time is nonlinear. The assay is sensitive down
to 3 and 1 μg mL−1 T. reesei enzymatic cocktail within 200 min
on napier grass and miscanthus, respectively. Longer incubation
times can increase sensitivity even further. In terms of absolute
glucose sensitivity, our prior work described calibration of a
similar HyReS assay that did not rely on substrate

Figure 1. Schematic overview of the label-free HyReS system. (A)
Cellulolytic enzymes (e.g., exo/endoglucanase and β-glucosidase)
hydrolyze lignocellulosic biomass producing glucose. Saccharification
products are oxidized by GOx creating hydrogen peroxide that reacts
with an Fe2+ Fenton reagent to produce short-lived hydroxyl radicals.
The hydroxyl radicals initiate free radical polymerization of a PEG
hydrogel, cross-linking PEG at the surface of the cellulosic substrate.
(B) Autofluorescence of cellulose in the near-UV range is used to
detect the hydrogel film. Prior to hydrogel formation, the optical path
between the excitation source and detector remains unobstructed and
the epifluorescence signal is collected. Once glucose release initiates
gel formation, both excitation and emission light is scattered by the
turbid gel, resulting in signal attenuation.
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autofluorescence. For that system, linear dynamic range was
between 0.05 and 5 mM glucose.25

In an analogous experiment we tested the ability of the
system to detect differences in combined cellulolytic activity of
exoglucanase (cellobiohydrolase I, EXG), endoglucanase
(ENG), and β-glucosidase (βG) upon changes in ENG
concentration. The concentrations of EXG and βG were kept
constant at 1 μM and 1 mg mL−1, respectively, while the
concentration of ENG was varied between 0 and 0.5 μM. The
position of the maximum rate of change of the fluorescence
signal correlated well with enzymatic activity (Figure 4).
Mixtures containing more ENG produced glucose faster and
thus enabled the formation of a hydrogel film in a much shorter
time.
Quantifying Synergistic and Targeting Effects. Syn-

ergy, or an enhanced activity of different types of cellulases
acting together, is an important design parameter for
development of multienzyme formulations.40,41 However,
synergistic effects in complex mixtures of enzymes can be
hard to predict, and the extent of synergy is strongly substrate-
dependent, competition being the most extreme case.42 Also,
the efficiency of targeting enzymes to the substrate by cellulose
binding modules (CBMs) is strongly dependent on the
microscopic structure of biomass.43 Because of these complex
enzyme−enzyme and enzyme−substrate dependencies, it is
important to experimentally evaluate various cellulase compo-
sitions on relevant biomass sources to adequately judge synergy
and targeting effects.
To address this point, we used the label-free HyReS assay to

assess cellulolytic activity of an enzyme mixture containing
1 μM EXG, 0.1 μM ENG, and 1 mg mL−1 βG on miscanthus

and napier grass (Figure 5). While EXG alone and combined
with βG was equally effective on both substrates, the rate of
glucose production from napier grass by ENG (with and
without βG) was much higher than from miscanthus. As
expected, combining EXG and ENG led to drastically increased
hydrolysis rates on both substrates. For example, the Tmax
values for individual EXG and ENG on miscanthus were 109
and 127 min, respectively, which corresponds to the activity of
approximately 4 and 1 mg mL−1 of T. reesei enzymatic mixture.
The combined EXG/ENG mixture had Tmax of 61 min, which
compares with the hydrolytic potential of approximately 15 mg
mL−1 of T. reesei cellulases. The activity of the EXG/ENG
mixture was much higher than the sum of activities of the
separate EXG and ENG enzymes independently, therefore
indicating their synergistic action on solid cellulose. It is worth
noting that a EXG/ENG/βG formulation was more effective on
pretreated napier grass than on miscanthus, contrary to the T.
reesei cocktail which hydrolyzed the latter substrate preferably
(Figure 3).
CBMs are known to increase cellulolytic activity both when

connected to single catalytic domains by flexible linkers and
when incorporated into cellulosomal scaffolding.44,45 We
evaluated the effect of CBM incorporation of cellulose
decomposition by comparing trimodular Cel8A-loaded mini-
cellulosomes with and without a CBM in the scaffold.
Concentrations of 0.2 μM of minicellulosomes (corresponding
to 0.6 μM of endoglucanase) showed a significant increase in
hydrolysis rate on various biomass types when loaded onto a
miniscaffold containing a CBM domain (Figure 6). This was
due to the high affinity of CBM to cellulose that prolonged the
bound lifetime of the catalytic domains on the substrate and

Figure 2. Pretreated biomass substrate characterization. Side and top view of cylindrical discs (6 mm in diameter) produced from (A) napier and (B)
miscanthus perennial grass. (C) Raman spectra of pretreated biomass substrates using 568 nm excitation. Bands at 380, 435, 1095, 1123, 1377, and
2985 cm−1 were attributed to cellulose, with lignin contribution visible at 1600 cm−1. Spectra were background-corrected and vertically offset for
clarity. Excitation/emission autofluorescence spectral scans of (D) filter paper, (E) miscanthus, and (F) napier grass exhibited a prominent cellulose
peak at ≈365/430 nm λex/λem. A lignin shoulder at longer wavelengths was present in miscanthus and napier grass samples.
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increased their concentration in the immediate proximity of the
substrate.
Quantifying Thermostability of Cellulases. One more

application that we foresee for the HyReS assay is selecting
cellulases for thermostability, a quality which can increase their
lifetime under the harsh conditions required for bioprocess-
ing.46 As an example, two cellulases, EXG and ENG, were heat-
shocked at 80 °C for variable time intervals from 0 to 90 min.

Afterward, their activity on filter paper was evaluated using
the dye-free HyReS assay (Figure 7). The gel formation in
presence of ENG was fast regardless of prolonged heat
exposure, indicating that activity of this thermophilic enzyme
remained largely unaffected by temperature. On the contrary,
activity of the EXG decreased drastically after 5 min of heat
shock, and after 9 min gel formation was not detectable,
indicating total loss of activity of this mesophilic enzyme.

Figure 3. Detecting the cellulolytic activity of the T. reesei enzymatic
cocktail. Attenuation of (A) napier grass and (B) miscanthus
autofluorescence by the hydrogel film formed in response to enzymatic
glucose production. (A and B, top) Changes of fluorescence signal in
time. The shadowed area represents standard deviation of five
independent measurements. (A and B, bottom) First derivative of
fluorescence signal over time. (C) Time at which the peak in
fluorescence derivative occurs plotted against the T. reesei enzymatic
cocktail concentration. Lower Tmax values represent high enzymatic
activity.

Figure 4. Detecting cellulolytic activity of an exo/endoglucanase mix
by measuring attenuation of (A) napier grass and (B) miscanthus
autofluorescence. (A and B, top) Changes of epifluorescent signal vs
time. Shadowed areas represent the standard deviation of five
measurements. (A and B, bottom) First derivative of fluorescence
signal vs time. (C) Time at which the peak in fluorescence derivative
occurs plotted against the ENG concentration. The concentration of
EXG was kept constant at 1 μM.
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■ CONCLUSIONS
Several qualities significantly differentiate the label-free HyReS
system from other cellulolytic activity assays, and from our
prior work.25 The simplicity of preparation of substrate discs
from virtually any type of pretreated biomass allows the
assessment of hydrolytic potential of enzymatic cocktails in
conditions relevant to the biomass-to-bioenergy industry. This
feature circumvents the issue of many commonly used assays,
including FPA, that are limited to artificial substrates.30

Directed evolution studies would especially benefit from
using natural biomass during screening processes. The
screening method is of course crucial in this context. As the
saying goes, “you get what you screen for”.4,47 In principle our
method of preparing pretreated biomass discs can be used in
combination with different sugar readout modes; however, the
impact of the substrate on assay results (e.g., unspecific
adsorption of dyes) should be carefully assessed.
Our label-free HyReS assay is compatible with 96-well plates

allowing for easy experiment parallelization and laboratory
automation. Liquid handling is relatively uninvolved, and all
assay components can be premixed in bulk. After applying
HyReS reagents onto biomass discs, no additional pipetting
steps are required and readout takes place from the same
microtiter plate. This is in contrast to the FPA and other
bioenzymatic assays where the addition of further reagents and
alteration of buffering conditions is necessary before developing
color in an additional incubation step. The general issue of
reproducibility and poor comparability due to extreme

sensitivity to experimental conditions is a widely acknowledged
problem for cellulase assays in general.5,29 Our one-step rapid
protocol simplifies the liquid handling and therefore improves
reproducibility on any cellulosic substrate of choice. It is also
possible to use HyReS system at elevated, more catalytically
relevant temperatures (i.e., 48 °C, data not shown).
Our prior work demonstrated that the same redox/enzyme

signaling pathway could be used to polymerize fluorescent
hydrogels incorporating a rhodamine-acryl compound.25 Our

Figure 5. Activity of trimodular endoglucanase-loaded minicellulo-
somes on pretreated napier and miscanthus grasses. (A, top) Changes
of epifluorescence signal in time. Shadow area represents standard
deviation of five measurements. (A, bottom) First derivative of
fluorescence signal over time. (B) Time at which the peak in
fluorescence derivative occurs for miniscaffolds with and without CBM
(see inset). ∗ P < 0.01, ∗∗ P < 0.005 in two-tailed unpaired Student t
test.

Figure 6. Detecting synergistic effects between exoglucanases (1 μM),
endocellulases (0.1 μM), and β-glucosidase (1 mg mL−1). (A and B,
top) Changes of epifluorescence signal in time. Shadowed areas
represent standard deviation of five measurements. (A and B, bottom)
First derivative of fluorescence signal over time. (C) Time at which the
peak in fluorescence derivative occurs for various enzyme
compositions.
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current method significantly differentiates itself from this prior
art in several ways. First, the current method is label-free,
requiring no dyes whatsoever. Instead we rely on the
fluorescent emission inherent to the substrate. Second, we
used here a fundamentally different measurement modality
based on absorbance/scattering of excitation and emission
beams, with a reflective component to the signal contributing in
epi-illumination. And third, we have demonstrated for the first
time the implementation of a hydrogel-based assay for
differentiation of cellulase mixtures based on endo/exo synergy
and CBM-targeting ability. Additionally we assayed thermo-
stability of enzymes with the one-pot polymerization assay.
We note the assay as implemented here is primarily a

threshold measurement, meaning a certain amount of glucose is
required to initiate polymerization. Once the amount of glucose
has been produced, polymerization occurs quickly and
concludes with relatively little continued gel growth at longer
time points. We took as the assay figure of merit the time
required to initiate polymerization and found this to be a
semiquantitative estimator of hydrolytic enzyme activity.
Despite its advantages, the HyReS system also has some

associated limitations. Our one-step protocol introduces
possible interference of assay components on cellulolytic
activity. In particular, changes in substrate structure and
enzyme−substrate interactions induced by PEG4050 could be
of potential concern. However, PEG has been shown to
enhance enzymatic hydrolysis of lignocellulose, and we do not
expect it to adversely affect most cellulase enzymes.5,48,49

Potential restrictions on the HyReS assay in terms of pH
requirements along with absolute glucose sensitivity are
discussed in detail in our previous work.25

We also note that due to the complex multistep signal
amplification mechanism, the response of our label-free HyReS
assay is nonlinear (see Figure 3A). We believe the assay is best
suited for determining early stage hydrolytic efficacy, before
trapping of enzymes inside the gel structure and transport
limitations become dominant. The HyReS assay cannot provide
an activity measure in terms of glucose production per unit of
time. It is most suitable for applications where direct
comparisons between cellulolytic activities at early time points
is preferred. However, we do not see this as compromising the
assay applicability. Complex synergistic relationships between
cellulases and an intricate interplay between substrate structure
and enzyme composition limits the predictive power of rational

design for enzymatic cocktails. In most cases a direct
comparative empirical approach is indeed necessary.4

In conclusion we developed a label-free, polymerization-
based HyReS for determining the hydrolysis of lignocellulosic
biomass. Through radical polymerization of a cross-linked
hydrogel at the location of glucose production, we achieve high
signal amplification and specificity for quantifying total
cellulolytic activity. Our assay is fast, easy to automate and
parallelize, and can be used in combination with arbitrary
(ligno)cellulose sources including pretreated biomass. The
ability to determine cellulolytic activity, thermostability, exo/
endo synergy, and targeting effects in cellulolytic enzyme
formulations and cellulosomes establishes the HyReS assay as a
valuable method for enzyme screening for improved bio-
conversion of lignocellulose.

■ EXPERIMENTAL SECTION
Materials. Exoglucanase (EXG, cellobiohydrolase I from

Trichoderma longibrachiatum, specific activity 0.1 U/mg at
40 °C, pH 4.5) and endoglucanase (ENG, endo-1,4-β-D-
glucanase from Talaromyces emersonii, specific activity 64 U/mg
at 40 °C, pH 4.5) were purchased from Megazyme (Ireland).
Cellulase from Trichoderma reesei ATCC 26921 (8 U/mg at 37
°C, pH 5), GOx from Aspergillus niger, and βG from almonds
(2.1 U/mg at 37 °C, pH 5.0) were purchased from Sigma-
Aldrich. Minicellulosomes consisting of three dockerin-
containing CelA enzymatic units (cellulase 8A from Clostridium
thermocellum) arranged on trimodular scaffoldin were pur-
chased from NZYtech (Portugal). Two different scaffoldins,
with (3xGH8 + Coh-CBM3-Coh-Coh) and without (3xGH8 +
Coh-Coh-Coh) family 3 CBM, were used. Black, flat-bottom
polypropylene 96-well plates were purchased from Grenier
(Bio-One). All other reagents were obtained from Sigma-
Aldrich and used without further purification.

Biomass Pretreatment. Two types of energy crops, napier
grass (Pennisetum purpureum) and miscanthus (Miscanthus ×
giganteus), were used as sources of biomass. Plant matter was
mechanically processed to produce coarse powder. Non-
cellulosic components were extracted with 0.1 M NaOH at
80 °C for 12 h with stirring. After thorough rinsing with water,
the biomass sample was delignified in 0.05 M HCl at room
temperature for 12 h with stirring. The sample was washed with
water until neutral pH was reached. The sample was filtered
through Whatman filter paper using Büchner funnel to produce
an entangled pad of ∼3 mm thickness. The pad was peeled of
filter paper and dried overnight at 37 °C. Discs of 6 mm were
cut out from the dry, paper-like product using a hole punch.

Raman Spectroscopy. Raman spectra were obtained using
T64000 triple grating Raman system (Horiba Scientific,
France). The measurements were performed in air using a
568 nm argon/krypton gas laser line (Coherent) and a 100×
MPlanN air objective (NA 0.9, Olympus). Spectra were
calibrated with the Raman line of silicon at 520.70 cm−1.

HyReS Assay. All measurements were performed in 20 mM
sodium acetate (NaAc) buffer at pH 4.5. The HyReS mix
supplemented with cellulolytic enzymes of interest was freshly
prepared before each experiment and preheated to 37 °C.
Composition of the standard reagent mixture is shown in Table
1.
A black 96-well polypropylene plate with flat bottom was first

cleaned with isopropyl alcohol and washed with deionized
water. The biomass discs were carefully placed at the bottom of
the plate wells, and the plate was preheated to 37 °C. The wells

Figure 7. Thermostability of cellulases. Time needed to reach
maximum of the gel growth rate is plotted against heat-shock time
at 80 °C. Linear fits serve as a guide for the eye.
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were then filled with 200 μL of HyReS components and
cellulase mixture using a multipipette and the plate was put into
a multiwell plate reader (Infinite M1000 Pro, Tecan). During
incubation at 37 °C the fluorescence intensity was measured
from the top using a time-resolved kinetic cycle. The excitation
wavelength of 365 nm and emission wavelength of 430 nm
were used, and 16 reads on 4 × 4 grid were performed in each
well.
Data Analysis. Each experiment was performed in

quintuplicate, and a mean autofluorescence f(t) with standard
deviation σf(t) was determined. Normalized autofluorescence
F(t) was calculated with respect to fluorescence at the
beginning of the experiment F(t) = f(t)/f(0). Error bars are
plotted as standard deviation of the normalized autofluor-
escence σF(t). Prior to numerical differentiation data was
smoothed using moving average function in Igor Pro software
package (Wavemetrics) using box sizes (2M + 1) between 20
and 200. It is important to notice that smoothed curves were
only used for numerical differentiation of data. Plots showing
changes of fluorescence in time in the manuscript represent
original, nonsmoothed data.
The time at which a maximum in the differentiated data

occurred tmax was used for assessing cellulolytic activity of assay
enzymes. It is reported with an error σtmax calculated from
σF(tmax) according to the following formula:

σ σ=
=
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⎝
⎜⎜

⎞
⎠
⎟⎟

F t
t

t
d ( )

d
( )

t t
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1

F max
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Thermostability Measurement. A 10 μM solution of
EXG/ENG in NaAc was heat-shocked at 80 °C for up to
90 min. Afterward it was cooled to room temperature and
mixed with HyReS reagents to obtain detection solutions
containing 2 μM EDG. Cellulolytic activity assay was
performed as described above.
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Enzyme- and affinity biomolecule-mediated polymerization systems

for biological signal amplification and cell screening

Summary

Polymerization-based signal amplification relies on harnessing the amplification inherent in

a radical chain polymerization to detect molecular recognition events. On the one hand,

initiation coupled to a molecular recognition event provides means for the development of

highly sensitive bioassays. On the other hand, enzyme-mediated polymerization is recently

gaining attention as a tool for material synthesis in bulk and at the nanoscale as a green

alternative to traditional organic chemistry synthesis.

Those two concepts were recently combined and applied to nanomaterial synthesis, biosens-

ing, high-throughput screening and chemical imaging. Two key features of enzyme- and

affinity biomolecule-mediated polymerization systems are exploited in those applications:

1. The high signal-to-noise ratio due to the dual amplification mechanism -

enzymatic amplification and amplification through chain-propagation.

2. The ability to localize the formation of polymeric structures at interfaces

through creation of insoluble hydrogels at the spot of molecular recognition events.

Publication P3 provides a focused review of enzyme-mediated polymerization and affinity

protein-mediated polymerization-based amplification systems with emphasis on recent imple-

mentations in the areas of biosensing, nanomaterials synthesis, and cell encapsulation/screen-

ing. On top of the literature analysis we discuss desirable improvements necessary to adapt

biomolecule-mediated polymerization systems to future applications.
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Enzyme- and affinity biomolecule-mediated
polymerization systems for biological signal
amplification and cell screening
Klara H Malinowska1 and Michael A Nash1,2,3

Enzyme-mediated polymerization and polymerization-based

signal amplification have emerged as two closely related

techniques that are broadly applicable in the nanobio sciences.

We review recent progress on polymerization systems mediated

by biological molecules (e.g., affinity molecules and enzymes),

and highlight newly developed formats and configurations of

these systems to perform such tasks as non-instrumented

biodetection, synthesis of core–shell nanomaterials, isolation of

rare cells, and high-throughput screening. We discuss useful

features of biologically mediated polymerization systems, such

as multiple mechanisms of amplification (e.g., enzymatic, radical

chain propagation), and the ability to localize structures at

interfaces and at cell surfaces with microscopic spatial

confinement. We close with a perspective on desirable

improvements that need to be addressed to adapt these

molecular systems to future applications.
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Introduction
Polymers play a central role in many aspects of our modern

society, ranging from consumer goods to industrial strength

materials to biotechnology and pharmaceutical products. At

the most basic level, polymers are created through a process

of polymerization entailing the formation of chemical lin-

kages between monomer units. Classically, polymerization

reactions have been performed using organic polymer

chemistry which often times requires the use of harsh

solvents and environmentally questionable compounds.

Given the multitude of environmental pressures facing

mankind today, researchers have made a concerted effort

to develop green methods for producing polymers. Ideally,

new environmentally compatible processes would not com-

promise on material performance, but could be carried out

under mild conditions and with reduced waste streams.

It is within this context of green chemistry that enzyme-

mediated radical polymerization is appreciated as a valu-

able approach to producing synthetic polymers. Enzymes

are desirable as polymerization catalysts due to their

ability to perform high stereo- and regioselective reac-

tions. As early as 1951, the concept of using enzymes to

produce initiators for free-radical chain propagation po-

lymerization was known, when xanthine oxidase was used

to polymerize methyl methacrylate [1]. In the 1980s

Klibanov et al. showed that horseradish peroxidase

(HRP) could be used to polymerize phenol compounds

from coal-conversion waste waters, and thereby perform

environmental remediation [2].

Currently, a range of enzymes are commonly used in the

bulk synthesis of phenolic and acrylic-based polymers [3],

including peroxidases (e.g., horseradish or soybean per-

oxidases), oxidases, and laccases. Prominent examples

include initiation of radical polymerization by glucose

oxidase [4,5] and sarcosine oxidase [6], biocatalytic atom-

transfer radical polymerization (ATRP) [7,8], enzyme-

mediated reversible addition fragmentation chain transfer

(RAFT) [9,10], and enzyme mimetic-catalyzed ATRP

[11]. We caution the reader that the numerous examples

of enzyme-mediated and affinity biomolecule-mediated

polymerization systems are too broad and varied to pro-

vide a complete overview of the relevant literature in a

single focused review article, therefore the references in

this article are not comprehensive. We also caution the

reader to take note of the difference between enzyme-

mediated polymerization and polymerization systems

where a radical initiator (typically photoinitiator) is con-

jugated to an affinity biomolecule. Both such approaches

fall under biologically mediated polymerization, and are

discussed in this article. Several relevant related reviews

are also provided in Refs. [3,12–25].

Here we focus on two aspects which demonstrate the

utility of biologically mediated polymerization systems:

(1) the high signal-to-noise ratio due to multiple amplifi-

cation mechanisms (i.e., enzymatic amplification and

amplification through chain-propagation), and (2) the

ability to localize the formation of polymeric structures
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through molecular recognition events. The first aspect

(i.e., multiple amplification mechanisms) is a direct result

of the nature of polymerization-based systems. When

enzymes are used to generate free radicals, the signal

generation benefits from enzymatic turnover, as well as

from the fact that a single free radical initiation event is

sufficient to polymerize hundreds or thousands of mono-

mer units, effectively amplifying the signal. The second

aspect (i.e., microscale spatial localization) works through

the localization of catalysts and initiators at interfaces, for

example at the surfaces of cells [26��] or cellulose nano-

crystals [27��]. As we outline below, both multi-mode

signal amplification and microscale spatial localization

enable new types of nanobio systems to be developed

for applications including biosensing, high-throughput

screening and chemical imaging.

Biosensing and signal amplification
The mechanism of radical polymerization, in which one

initiation event leads to inclusion of many monomers into

a growing polymer chain, is intrinsically an efficient signal

amplification scheme. If initiation is coupled to a molec-

ular recognition event, it provides a means for the devel-

opment of highly sensitive bioassays. Such systems for

biological detection fall under the category of polymeri-

zation-based amplification (PBA) [25]. In PBA biosensors,

affinity biomolecules (e.g., DNA, antibody) are coupled

with photoinitiators to amplify molecular recognition

events. A wide range of targets have been detected to

date using PBA, including nucleotide [28,29] and protein

targets [30–34]. The use of free-radical PBA systems for

biosensing applications were reviewed by Lou et al. [14],

and more recently by Wu et al. [16], as well as in the wider

context of signal amplification strategies by Scrimin et al.
[15]. The buildup of polymer in response to a biorecogni-

tion event can be detected in various ways, for example

by colorimetric [33�], fluorescence [5], and surface plas-

mon assays [35] (see Figure 1).

Enzyme-mediated polymerization has been implemen-

ted to detect proteins in an ELISA-style immunoassay,

where glucose oxidase (GOx) was coupled with antigen

recognition through a biotin–avidin linkage, triggering

redox polymerization in the presence of a Fenton reagent

and copolymerizing fluorescent dye [5]. The same prin-

ciple was used to create capillary-flow microfluidic valves

that responded to target antigen by clogging a microflui-

dic channel via rapidly growing hydrogelation. This sti-

muli-responsive channel blockage changed the fluid flow

in the device and resulted in a binary signal that was read

by eye (i.e., non-instrumented detection), a feature ad-

vantageous in point-of-use biosensing applications [36].

One of the recent trends includes the use of PBA with

plasmon-based detection. For example, when immobi-

lized at a glass surface, gold nanoparticles adhered to a

poly(2-vinylpyridine) film shifted their absorbance band

in response to GOx/Fe(II)-mediated methyl methacry-

late polymerization [35]. Other PBA approaches involving

plasmonic detection have included improving the sensi-

tivity of surface plasmon resonance (SPR) biosensing

through polymerization [37], and increasing the contrast

of SPR-imaging detection with polymerization [38]. In

bulk solution, flocculation of gold nanoparticles could also

be induced by enzymatic polymerization of polycations.

The plasmonic coupling of gold nanoparticles leads to yet

another level of non-linear signal amplification in such

systems, providing extremely low detection limits, down

to parts per billion levels for iron and copper [39��].

Nanomaterials synthesis
Apart from biodetection, enzyme-mediated polymeriza-

tion systems are powerful bottom-up tools to synthesize

functional nanomaterials, particularly core–shell, polymer-

grafted and multilayer nanoparticles in an environmental-

ly-friendly and efficient process. Several synthesis methods

were designed using HRP [40,41] or GOx [42,43] adsorbed

or immobilized within pre-formed particles (see Figure 2).

The enzymes trapped at the particle-solvent interface

then served as radical-generators, inducing polymerization

at the interface and enabling core–shell particle

synthesis. Monodisperse polystyrene nanoparticles with

diameters ranging from 50 to 300 nm were synthesized

by Kohri et al. using miniemulsion polymerization with a

polymerizable surfactant [44], as well as by heterogeneous,

emulsifier-free polymerization in presence of b-diketones

as initiators [45]. Miniemulsion polymerization was

used with polymerizable surfactants/monomers (surfmers)

to create functional polystyrene particles displaying

phosphonate moieties that were able to bind calcium

and initiate apatite growth [46], or alternatively to attach

fluorescence dyes via alkyne/azide click-chemistry [47�].
Particularly, the use of clickable-surfmers allows a multi-

tude of functionalizations through the use of simple, water-

based, biocompatible and bioorthogonal conjugation

chemistry.

In addition to core/shell and nanoparticle synthesis, an-

other current trend has been the use of polymersomes

[48–50], liposomes, and even protein chaperonins [51�] as

nanoreactors for enzyme-mediated polymerization reac-

tions. Confinement of polymerization reagents inside of

nanoreactors can be used to influence the activity through

co-encapsulation of other reactants or crowders that may

increase the viscosity or reactivity of compounds [52],

providing an added degree of control and in some cases

stabilizing enzyme catalysts against denaturation. For

example, polymersomes formed from diblock copolymers

of poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazo-

line) were used to encapsulate HRP enzymes and poly-

merize PEG methyl ether acrylate within a confined

nanoreactor [50]. In another report, lipase B of Candida
Antarctica was encapsulated within polystyrene–polyiso-

cyanopeptide polymersomes and used for ring-opening
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polymerization of lactones within the polymer vesicle

interiors [48]. These demonstrations of nanomaterials

synthesis suggest future opportunities in designing and

controlling soft materials at the nanoscale aided by en-

zyme-mediated polymerization systems.

Microscale localization and cell screening
Spatial localization is a feature of enzyme-mediated and

PBA systems that is beginning to be exploited by several

groups. Since many of the polymers created through

enzyme-mediated polymerization reactions are not solu-

ble (e.g., cross-linked gels), the reaction product will

precipitate immediately or shortly after formation. This

feature can be used to create large polymeric structures

that are spatially restricted to locations of enzymatic

activity, for example at crystalline–liquid interfaces

[27��] or cell surfaces [53]. The ability to confine poly-

merization reactions at interfaces has been exploited in a

series of novel applications, including cellular coating,

cell immunostaining, and time-resolved imaging of cel-

lulose hydrolysis. Microscale localization is also inherent-

ly a mechanism at work in the core–shell particle

formation reactions described above [41,43].

The potential of enzyme-mediated polymerization for cell

encapsulation was first explored by Johnson et al. [54] who
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Enzyme-mediated polymerization systems for signal amplification. (a) Molecular schematic depicting a competitive enzyme-linked immunoassay

with polymerization-based detection. A simple visual readout of polymerized hydrogel in a microchannel provides a non-instrumented readout for

a protein biosensor. Re-printed from Berron et al. [36] with permission from RSC. (b) The optical resonance of gold nanoparticles in response to

polymer formation provides an additional non-linear signal amplification mechanism to further boost sensitivity in polymerization-based biosensors.

Reprinted from Recco et al. [35] with permission from Wiley–VCH & ChemPubSoc Europe. (c) Enzyme-mediated polymerization of a cationic

polymer was used to induce flocculation of a gold nanoparticle solution resulting in a color change that was measured photometrically. Reprinted

from Gormley et al. [39��] Copyright 2014 American Chemical Society.
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(a) Synthesis of multi-layer nanomaterials via enzyme-mediated polymerization. (a, i) Synthetic route to filling self-assembled, enzyme-loaded

polymersomes with polymers. (a, ii–iii) Photo-permeabilized PMOXA-b-PDMS polymersomes before (ii), and after (iii) HRP-catalyzed ATRP within

the polymersomes. Reprinted from Dinu et al. [50] with permission from Wiley–VCH. (b) Formation of core–shell particles by interfacial radical

polymerization. (b, i) Spatial organization of the initiating components in the hydrogel core and the bulk media prior to interfacial polymerization,

with either glucose or GOx incorporated in the core. (b, ii–iii) Fluorescence images of the coated hydrogel cores for two concentrations of iron

(Fe2+) in the precursor solution. Reprinted from Shenoy et al. [43] Copyright 2013 American Chemical Society. (c) Generation of a three-

dimensional layered hydrogel using GOx-mediated interfacial polymerization. (c, i) A cylindrical cross-linked core hydrogel substrate (green),

pre-swollen with glucose, is immersed into an aqueous precursor solution (pink) that contains components necessary for initiating polymerization.

(c, ii) Fluorescence images of a multilayer cylindrical hydrogel cross-section. Reprinted from Johnson et al. [42] Copyright 2010 American

Chemical Society.
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showed that fibroblasts could be encapsulated in a

PEGTA20000 matrix formed through GOx-mediated redox

polymerization. In this implementation, all components

were premixed in bulk, encapsulating multiple cells into a

polymeric block while maintaining cell viability. Single-

cell encapsulation via the same GOx/Fe(II) polymerization

pathway was later demonstrated by Pitzler et al., who

performed a hydrogel-based flow cytometry directed evo-

lution and screening study to optimize hydrolytic enzymes

[26��]. Here, a fluorescent PEG-based hydrogel shell was

formed around E. coli cells expressing functionally active

phytase (YmPh) converting glucose-6-phosphate into

D-glucose. The reaction product diffused out of the cells,

resulting in locally initiated polymerization via reaction

with GOx in the medium. A YmPh mutant library was

sorted using flow cytometry by selecting for cells with the

highest fluorescent gel signal (see Figure 3b). A large

increase in specific activity in a single round of evolution

was achieved. This targeted coating technique was further

extended to other hydrolytic enzymes (e.g., cellulase,

lipase, and esterase) in follow up work [55].

In another approach to cell sorting, Romero et al. devel-

oped a method that they called antigen-specific lysis,

where a polymer shell was used to protect antigen-posi-

tive cells from lysis agents, allowing for enrichment of

minority cell populations from blood [56��]. In this appli-

cation, eosin conjugated antibodies were used to localize

photoinitiators onto CD45 antigen-positive cells. Polymer

coatings were formed upon photoirradiation of the cells

with 530 nm light. Only cells that were antigen positive

and therefore encapsulated in PEG polymer were able to
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Overview of microscale localization by polymerized films. Prominent examples include immunostaining, cellular coating/labelling and cellulose

degradation imaging. (a) Human endothelial cells stained for vimentin (1:50 000) (a, i) and von Willebrand factor (a, ii) using fluorescent

polymerization-based amplification. Scale bars are 5 mm. Reprinted from Avens et al. [57], with permission from SAGE. (a, iii–iv) Localization of

nuclear pore complex (iii) and vimentin (iv) in human dermal fibroblasts using bright-field microscopy with dyed polymer as a stain. Scale bars are

50 mm. Reprinted from Lilly et al. [58]. (b) Flow cytometer sorting principle of the fur-shell screening technology using a glucose phosphatase/

GOx-coupled reaction to initiate radical polymerization. Reprinted from Pitzler et al. [26��] with permission from Elsevier. (c) Overview of hydrogel

reagent signaling (HyReS) system for detecting and imaging the degradation of cellulosic substrateus sing enzymatic polymerization. (d) Time-

lapse TIRF imaging of cellulose hydrolysis by T. reesei cellulases (i–iv) in comparison to negative control (v–viii) using HyReS. (c–d) Reprinted from

Malinowska et al. [27��] with permission from Wiley and ChemPubSoc Europe.
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survive the subsequent lysis treatment. Incorporation of a

UV-degradable PEG monomer enabled removal of the

PEG coating after the sorting procedure using UV light.

This report did not directly use enzyme-mediated poly-

merization, however, the localization aspect of PBA was

crucial for the system to function. Enzyme-mediated po-

lymerization could conceivably be used with similar effect.

The unique spatial resolution of enzyme polymerization

can further be exploited to label cellular structures within

tissues. In this regard, Avens et al. developed a fluorescent

polymerization-based amplification approach for cell

immunostaining [57]. Cells were fixed and stained with

primary antibodies against membrane pore complex pro-

teins, vimentin or von Willebrand factor, followed by

labelling with biotinylated secondary antibodies. Strep-

tavidin coupled to eosin was then added and bound to

biotin. A mixture of PEG diacrylate monomers, a coin-

itiator (N-methyldiethanolamine), and polystyrene fluo-

rescent nanoparticles (NPs) was added. Upon visible light

irradiation, polymerization was initiated and the growing

hydrogel entrapped the fluorescent NPs, anchoring them

to the cell surfaces. Entrapment of multiple NPs per

recognition site generated strong fluorescent signal com-

parable to that obtained by enzymatic tyramide signal

amplification approach. The signal to noise ratio and

signal localization was superior for the PBA approach,

which is not prone to nonspecific staining in presence of

endogenous enzymes. Lilly et al. presented a similar

immunostaining technique, but instead of adding fluo-

rescent NPs during the polymerization step, they per-

formed staining with Evans Blue dye after polymerization

was completed. This way they achieved a colorimetric

staining method that allowed bright field observation of

both the spatial distribution of protein expression and cell

morphology (see Figure 3a) [58].

For our own part, in our group we employed enzyme-

mediated polymerization using the GOx/Fe(II) redox

system to detect and localize cellulose hydrolysis on

micropatterned cellulose substrates [27��,59]. This meth-

od allowed for total internal reflection fluorescence

(TIRF) microscopy of biomass degradation in real time.

In the one-pot detection scheme, glucose was produced

through the synergistic activity of endo/exoglucanases

and beta-glucosidase. The glucose was then converted

into hydroxyl radicals using GOx/Fe(II) and used to

initiate PEG hydrogel crosslinking. In addition to

PEG, a small amount of Rhodamine methacrylate was

also incorporated into the gels, increasing the local den-

sity of fluorophores while the sample fluorescence was

recorded using time-resolved TIRF microscopy. This

procedure effectively visualized hotspots of glucose pro-

duction from biomass decomposition (see Figure 3c). Our

approach was also further adapted into a sensitive assay

for quantifying synergy and thermostability of cellulases

and multi-enzyme cellulosome complexes [59]. The work

combined autofluorescence of biomass disks with PBA.

Attenuation of cellulose autofluorescence due to an in-

crease in turbidity and light scattering from the polymer-

ized hydrogel was used as the detection signal. The assay

has several advantages over existing cellulase assays,

including being rapid, one-step and label free. The

PEG hydrogel was formed as a thin film onto the cellulose

disks, and was found to exhibit controlled microscale

localization down to a length scale of a few mm.

Conclusions
We have provided an overview of enzyme-mediated

polymerization and affinity protein-mediated PBA. We

described the numerous successful implementations of

enzyme-mediated polymerization in several areas includ-

ing biosensing, nanomaterials synthesis, and cell encap-

sulation/screening.

Several key challenges remain which if solved could enable

new platforms or assays. Minimizing or restricting the

diffusion distances of radicals in systems relying on micro-

scale localization could improve the spatial resolution that

is ultimately achievable, ideally down into the nanoscale

regime. Effectively dealing with oxygen inhibition of

polymerization could address a limiting factor in signal

generation. Furthermore, polymerization-based signal

generation or localization is generally an irreversible reac-

tion. This irreversibility could limit the reusability of any

fluidic devices that are to be used in biosensing with PBA.

For cellular encapsulation, interactions between the en-

capsulating gel and the biological machinery of the cell will

have to be considered, along with any deleterious effects on

cell viability and proliferation rates. Also many applications

are likely to require disentangling cells from the gel matri-

ces. As we have already seen above, photodegradable PEG

is useful in this regard, but other solutions not relying on

UV light could provide greater flexibility for a range of

scenarios. Further work to address these challenges will

aim to bring enzyme-mediated polymerization and PBA

systems into the mainstream toolbox to address major

hurdles in diverse fields from nanobio sciences, to materials

chemistry and bioengineering.
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2.4 Outlook

Publications P1 and P2 present the use of a HyReS system for assaying hydrolysis of solid

lignocellulosic biomass in two modalities. On one hand, localization of the fluorescent signal

to the solid-liquid interface and integration of the signal over time and space can be used to

perform spatially resolved localized chemical imaging of cellulose degradation. On the other

hand label-free, fast and easy to automate assay implementation in microtiter format shows

promise for enzyme screening. Until now, however, both of the implementations are presented

only as a proof of concept.

In order to show feasibility of the HyReS system as a chemical imaging tool in biomass

degradation research, studies involving more complex lignocellulosic substrates are necessary.

In Publication P1 pure, DTAF-grafted cellulose fibers from algal source were patterned on

the surface allow for imaging in TIRF mode. In order to extend the system to natural

substrates with more complex 3D architecture, it might be necessary to move towards a

confocal microscopy setup. Moreover, grafting cellulose fibers with fluorescent dye might

change substrate susceptibility to hydrolysis. To exclude that effect, imaging method should

be modified to rely on lignin and cellulose autofluorescence, potentially bringing an additional

benefit of differentiating between those two compounds in the image. Independently of the

visualization method, spatial resolution of the HyReS system is limited by diffusion of soluble

intermediates, which precludes access to the nanometer scale. In order to overcome this

restriction, diffusion must be limited, for example by envisioning a shorter chemical path from

soluble analyte (glucose) to insoluble hydrogel. Incorporation of the cellulolytic enzymes, GOx

and CBH into a multi-enzyme particle may also improve localization. In the embodiments

shown so far, GOx was freely diffusing which also could limit spatial resolution.

Adapting the label-free HyReS assay to real-life HTS applications requires exhaustive char-

acterization of the assay as well as optimization to a particular biomass type and pretreatment

process. Screening cellulolytic enzymes and cocktails as expressed protein libraries should be

relatively straightforward to implement as it is a direct extension of the proof-of-principle

experiments presented in Publication P2. Whole cell based screening might be a method of

choice for some applications, particularly for engineering microorganisms that are able to per-

form single-step biomass hydrolysis and fermentation. To this end, cultivating cells in 96-well

plates on biomass discs or integration of the HyReS system with flow cytometry might be an

option.
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3 Mechanostability of cellulosomal

components

In the last years SMFS has evolved into a widely used technique to directly probe individual

proteins, nucleic acids, and synthetic polymers, as well as receptor-ligand interactions (see

Section 1.5.1). In a typical AFM-based SMFS experiment to investigate receptor-ligand bind-

ing, an AFM cantilever is modified with one of the binding partners, while a glass surface

is modified with the complementary binding partner. The functionalized cantilever tip is

brought into contact with the surface allowing the partners to bind. The tip is then with-

drawn at constant speed and the resultant force-distance data traces exhibit sawtooth-like

peaks that can be correlated to the unfolding of protein domains and subdomains. The

last peak corresponds to rupture of the binding interface. Kinetic and energetic information

about receptor-ligand dissociation can be extracted from the measured force spectrum by

applying suitable models. A detailed protocol for SMFS experiments employing site-specific

immobilization of protein complexes in a defined pulling geometry is described in associated

publication P4.

Mechanical forces play a fundamental role in biological systems in the context of struc-

tural stability as well as in a wide range of passive and active mechanical functionalities

at the molecular, cellular and histological level. At the molecular level, these behaviors

are governed by mechanostable and mechanically active proteins that sense and respond to

mechanical stress by undergoing various conformational changes. For example, many cellu-

losomal systems thrive in environments where strong flow gradients are present, such as the

cow rumen. Shear forces can mechanically stress cellulosomal scaffold components, particu-

larly those bridging bacterial cell and cellulosic carbon sources it adheres to (see Section 1.4).

Bacterial cellulosomes have evolved to withstand those conditions.

As the part of this thesis, I employed AFM-based SMFS to investigate the mechanics of

type III cohesin-dockerin complexes from R. flavefaciens. This non-covalent protein-protein

interaction links the cellulose-binding protein CttA to the cell surface. Unbinding experiments

place type III complex as the strongest bimolecular interaction reported to date, equivalent

to half the mechanical strength of a covalent bond, as presented in publication P5. With

the help of steered MD simulations performed by computational collaborators, the molecular

origins of this extreme mechanostability are explored. The X-module of previously unknown

function is shown to serve as a mechanical stabilizer. Moreover, force-induced rearrangement

of amino acid side chains at the binding interface leads to increased contact area between the

binding partners, suggesting a catch bond mechanism in action.

In publication P6 a novel combination of steered MD, network-based correlation analysis,
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and thermodynamic fluctuation theory, supported by SMFS experiments is implemented to

study force propagation through a protein complex subjected to mechanical pulling. A novel

analysis method is developed together with together with computational collaborators that

allows visualization of stiff paths along which force is transmitted. We use this new technique

to explore mechanical stability and anisotropy of the R. flavefaciens type III cohesin-dockerin

complex. We conclude that directing the force along a path with significant perpendicular

components to the pulling axis is yet another mechanism behind complex unprecedented

mechanical strength.
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3.1 Associated publication P4

Investigating receptor-ligand systems of the cellulosome with

AFM-based single-molecule force spectroscopy

Summary

Associated publication P4 presents a detailed protocol for studying protein-protein receptor-

ligand interactions with AFM-based single molecule force spectroscopy. Using site-specific

protein immobilization techniques in combination with PEG-based surface chemistry, highly

controlled pulling geometry and reliable binding density are achieved. Using domains with

known unfolding patterns as fingerprints allows an easy distinction between force-distance

curves showing single-molecule and multiple interactions. In combination with data transfor-

mation to contour length space, fingerprinting allows analysis of huge data sets by employing

automated pattern recognition, significantly increasing experimental throughput.

As a demonstration of the described protocol, a type I cohesin-dockerin pair from C. ther-

mocellum was investigated. Cohesin was expressed as a fusion protein with an N-terminal

CBM domain, and dockerin was expressed as a fusion with an N-terminal xylanase. Both

fingerprints contained engineered cysteine residues located towards the N-terminal side of the

proteins that were used for immobilization. The energy landscape of the cohesin-dockerin

interaction was probed by performing SMFS at four different pulling speeds. Fitted values

for koff and ∆x of 3.13× 10−5 s−1 and 0.70 nm, respectively, are in good agreement with

previously published results.62

In conclusion, a complete experimental protocol for the study of receptor-ligand interac-

tions using AFM-based single-molecule force spectroscopy is presented in publication P4.

The positioning accuracy and force sensitivity of the atomic force microscope in conjunc-

tion with versatile biomolecule immobilization strategies provide an excellent toolbox for the

investigation of receptor-ligand systems for structural biology studies.
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Abstract

Cellulosomes are discrete multienzyme complexes used by a subset of anaerobic bacteria and fungi to digest lignocellulosic substrates.
Assembly of the enzymes onto the noncatalytic scaffold protein is directed by interactions among a family of related receptor-ligand pairs
comprising interacting cohesin and dockerin modules. The extremely strong binding between cohesin and dockerin modules results in
dissociation constants in the low picomolar to nanomolar range, which may hamper accurate off-rate measurements with conventional bulk
methods. Single-molecule force spectroscopy (SMFS) with the atomic force microscope measures the response of individual biomolecules to
force, and in contrast to other single-molecule manipulation methods (i.e. optical tweezers), is optimal for studying high-affinity receptor-ligand
interactions because of its ability to probe the high-force regime (>120 pN). Here we present our complete protocol for studying cellulosomal
protein assemblies at the single-molecule level. Using a protein topology derived from the native cellulosome, we worked with enzyme-dockerin
and carbohydrate binding module-cohesin (CBM-cohesin) fusion proteins, each with an accessible free thiol group at an engineered cysteine
residue. We present our site-specific surface immobilization protocol, along with our measurement and data analysis procedure for obtaining
detailed binding parameters for the high-affinity complex. We demonstrate how to quantify single subdomain unfolding forces, complex rupture
forces, kinetic off-rates, and potential widths of the binding well. The successful application of these methods in characterizing the cohesin-
dockerin interaction responsible for assembly of multidomain cellulolytic complexes is further described.

Video Link

The video component of this article can be found at http://www.jove.com/video/50950/

Introduction

Cellulosomes are large multienzyme complexes displayed on the surface of anaerobic cellulolytic bacteria (e.g. C. thermocellum) that have
evolved to efficiently depolymerize plant cell wall lignocellulose into soluble oligosaccharides1. A central attribute of cellulosomes is the high-
affinity cohesin-dockerin interaction. In the most prominent paradigm, a highly conserved 60-75 amino acid type I dockerin module is displayed
at the C-terminal end of the various bacterial enzymes. The dockerin module directs assembly of synergistic combinations of enzymes onto the
noncatalytic scaffold protein ('scaffoldin'), which comprises a polyprotein of cohesin domains that are specific for the type I dockerin module. At
higher levels, cellulosome architecture can become very complex, incorporating alternative cohesin and dockerin pairs (e.g. type II, type III) that
anchor the structures to the cell surface and allow for the assembly of branched structures containing multiple scaffoldins2. The various cohesin-
dockerin types, despite having related structures, exhibit differential binding specificities suppressing cross reactivity with unintended scaffoldins
or components from other cellulosome-producing bacterial species. While bioinformatic approaches have successfully identified thousands of
unique cellulosomal components at the genetic level, comparatively few protein structures are known, and the mechanisms at work in cohesin-
dockerin specificity determination remains an active area of structural biology research.

Since the invention of the atomic force microscope (AFM) by Binnig et al.3, various AFM operational modes have been developed and
continuously improved, including noncontact imaging, oscillation mode imaging4, and single molecule force spectroscopy (SMFS)5,6. SMFS has
evolved into a widely used technique to directly probe individual proteins7-11, nucleic acids12-15, and synthetic polymers16-19. In a typical SMFS
experiment to investigate receptor-ligand binding20,21, an AFM cantilever tip is modified with one of the binding partners, while a flat glass surface
is modified with the complementary binding partner. The modified cantilever is brought into contact with the surface allowing the partners to bind.
The base of the cantilever is then withdrawn at constant speed and the force is measured using the optical lever deflection method. The resultant
force-distance data traces exhibit sawtooth-like peaks if binding was established. In cases where the binding partners are fused to multiple
protein domains, each peak in the force-distance trace can be correlated to the unfolding of a single protein domain or folded subdomain, while
the last peak corresponds to rupture of the protein binding interface. The specific positions of the force-resistant elements can be used as a
fingerprint to identify the various protein domains of interest. This method can be used to interrogate important amino acids involved in protein
folding and stabilization. Many models have been reported in the literature to treat the characteristic force extension behavior observed in SMFS
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experiments. The most commonly used models include the freely jointed chain (FJC) model22, the worm-like chain (WLC) model18,23-25, and the
freely rotating chain (FRC) model25,26.

In our prior work11, we used single-molecule force spectroscopy to investigate the interaction of cohesin and dockerin modules. Here, we present
an experimental protocol for glass surface and cantilever functionalization with enzyme-dockerin and CBM-cohesin protein constructs. We also
present an AFM-based SMFS protocol including data acquisition and analysis procedures. The described protocol can easily be generalized to
other molecular systems, and should prove particularly useful to researchers interested in high-affinity receptor ligand pairs.

Protocol

A schematic of the pulling geometry used in this work to probe the cohesin-dockerin interaction is shown in Figure 1A. The protein
immobilization protocol reported here for cantilever and cover glass functionalization is a modified version of the procedure published
previously27. The proteins were expressed from plasmid vectors in E. coli using conventional methods. The proteins were designed with a
solvent-accessible thiol group, which was used in combination with maleimide chemistry to tether the protein via a stable thioether linkage to
the cover glass surface and cantilever. The engineered cysteine residues in both the CBM-cohesin and xylanase-dockerin fusion proteins were
located towards the N-terminal side of the proteins, away from the cohesin-dockerin binding interface11. A detailed overview of the chemical
bonding employed in protein immobilization is shown in Figure 1B.

1. Sample Preparation

1. Buffers
1. Prepare Tris buffered saline supplemented with calcium (TBS): 25 mM TRIS, 75 mM NaCl, 1 mM CaCl2, pH 7.2
2. Prepare sodium borate buffer: 50 mM Na2B4O7, pH 8.5

The process flow diagram showing sample preparation steps is shown in Figure 2.

When handling cantilevers and cover glasses, self-locking tweezers are recommended.

2. Aminosilanization of cover glass (approximately 1.5 hr)
1. Place cover glass (24 mm diameter, 0.5 mm thickness) in a PTFE holder.
2. Sonicate cover glass in 1:1 ethanol : ultrapure water (v/v) for 15 min.
3. Rinse cover glass with ultrapure water.
4. Place cover glass in piranha solution (1:1 H2SO4 (concentrated) : H2O2 (30%) (v/v)) for 30 min, then thoroughly rinse with ultrapure

water. Dry cover glass under a gentle stream of N2. Caution: piranha solution is extremely corrosive. Eye and skin protection are
required.

5. Submerge cover glass in 45:5:1 ethanol : ultrapure water : 3-aminopropyl dimethyl ethoxysilane (v/v). Place on a shaker at RT for 60
min (approximately 50 rpm).

6. Submerge cover glass sequentially in ethanol and ultrapure water (2x each). Dry cover glass under a gentle stream of N2.
7. Bake cover glass in an oven (80 °C for 30 min).
8. Silanized cover glasses may be stored under argon for up to 6 weeks.

3. Aminosilanization of cantilevers (approximately 1.5 hr)
 
NOTE: The presented protocol for tip functionalization is appropriate for silicon cantilever tips.

1. Place cantilevers on a clean glass slide. Treat with UV-ozone for 15 min.
2. Submerge cantilevers for 3 min in 1:1 ethanol : 3-aminopropyl dimethyl ethoxysilane (v/v) with a catalytic amount (0.25%, (v/v)) of

ultrapure water.
3. Rinse cantilevers with gentle stirring sequentially for 60 sec in beakers of toluene, ethanol, and ultrapure water. Carefully dry

cantilevers on filter paper between rinses.
4. Place levers on a clean glass slide and bake (80 °C for 30 min).

4. Protein disulfide reduction (approximately 3 hr)
 
All solutions should be prepared to obtain approximately 30 µl of diluted protein per cantilever and 20 µl of diluted protein per cover glass.
Protein solutions should be mixed with Tris(2-carboxyethyl)phosphine (TCEP) disulfide reducing gel in a ratio of 1:2 (v/v).

1. Prepare aliquots of TCEP disulfide reducing beads in micro-tubes. It is recommended to cut micropipette tips with scissors to widen the
hole diameter when pipetting the TCEP bead slurry.

2. Rinse TCEP bead slurry with 1 ml TBS buffer, and centrifuge at 850 rcf for 3 min.
3. Carefully remove and discard the supernatant with a micropipette.
4. Repeat steps 1.4.2-1.4.3 2x.
5. Apply concentrated protein solution (1-10 mg/ml) to the TCEP beads (1:2 protein : TCEP bead slurry (v/v)) and gently mix by stirring

with micropipette tip. Avoid introducing air bubbles.
6. Place protein/TCEP bead slurry mixture on a rotator for 2.5 hr.

5. PEGylation of cover glasses and cantilevers (approximately 1.5 hr)
1. Prior to modification with NHS-PEG-maleimide linkers, soak aminosilanized cantilevers and cover glasses in sodium borate buffer (pH

8.5) for 45 min to deprotonate primary amine groups on the surface.
2. Ensure that the NHS-PEG-maleimide powder is warmed up to RT before opening the cap and weighing the appropriate amount for a

25 mM solution. Unused NHS-PEG-maleimide should be stored under argon at -20 °C. Approximately 30 µl of polymer solution per
cantilever, and 90 µl per 2 cover glasses (sandwiched together) is required.
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3. After weighing the 5 kDa NHS-PEG-maleimide, add sodium borate buffer and vortex to obtain a 25 mM solution.
 
Note: The solution should be used as quickly as possible due to the extremely short half-life of NHS at pH 8.5. Vortexing and transfer of
the liquid onto the cantilevers/cover glasses should be completed within 1-2 min.

4. Incubate cantilevers in 30 µl droplets of NHS-PEG-maleimide solution in a Petri dish. For cover glasses, place 90 µl of NHS-PEG-
maleimide solution onto a single cover glass, and add a second cover glass on top creating a cover glass sandwich with NHS-PEG-
maleimide solution in the middle.

5. Incubate the cantilevers/cover glasses with the NHS-PEG-maleimide solution in a water-saturated atmosphere at RT for 1 hr.

6. Protein conjugation (approximately 2 hr)
 
Critical: Minimize the exposure of PEGylated cantilevers and cover glasses to air.

1. Centrifuge TCEP-bead/ reduced protein solutions at 100 rcf for 1 min and collect the supernatant.
2. Dilute protein solution with TBS. Aim for a protein concentration during surface conjugation in a range of 0.5-2 mg/ml. Set reduced and

diluted protein solutions aside for a few minutes while rinsing cantilevers and cover glasses.
3. Rinse cantilevers and cover glasses in three sequential beakers of ultrapure water.
4. Carefully remove residual liquid from cover glasses by carefully touching the edges to a filter paper under a gentle stream of N2.

Carefully remove residual liquid from cantilevers by touching to a filter paper. Apply diluted protein solution immediately.
5. Mount cover glasses in an appropriate sample holder that is compatible with the AFM instrument.
6. Incubate PEGylated cover glasses and cantilevers with respective diluted protein solutions at RT for 1-2 hr.
7. Rinse cantilevers in three sequential beakers with TBS to remove unbound proteins. Pipette rinse cover glasses at least 10x.
8. Store cantilevers and cover glasses under TBS prior to measurement.

2. Data Acquisition

In this work, a custom-built AFM28 controlled by an MFP-3D AFM controller from Asylum Research with custom written Igor Pro software was
used. Cantilever deflection is measured via the optical beam deflection method29. The sample preparation and data analysis protocols provided
here are applicable regardless of the exact AFM model used. However, the AFM model should be suitable for measuring in liquids and support
an accessible speed range on the z-piezo of approximately 200-5,000 nm/sec.

1. Mount the functionalized cantilever and glass surface on the AFM. During the whole procedure, the surface should stay covered with buffer.
When mounting the cantilever, minimize exposure to air. Upon correct adjustment of the laser beam, let the system equilibrate for at least 30
min to reduce any drift effects and readjust if necessary.

2. Record a thermal noise spectrum with the cantilever far away from the surface, i.e. in the absence of damping effects.
3. Use a minimally invasive method like the acoustic approach to find the surface without damaging the cantilever tip prior to measurement. If

possible, manually approach the surface with the cantilever and use headphones to listen to the thermal noise on the raw deflection output
from the AFM controller. As soon as the cantilever draws near the surface, a distinct change in sound is audible.
 
Note: The cantilever tip should now be within 2-5 µm of the surface. The nature of the sound change is dependent on the cantilever used.
The resonance frequency of the cantilever used in this work is approximately 25 kHz in water, above the human audible range. Due to
damping effects near the surface, the resonance is shifted towards lower frequencies bringing the cantilever resonance into the audible
range. Hence, an apparent increase in frequency and sound intensity is perceived.
 
In cases where an audio output of the deflection signal is not available, the surface can be approached with the z-piezo while an active
feedback on the deflection signal is enabled. As soon as the deflection signal increases by a defined amount due to indentation of the
surface, the approach is stopped.

4. Determine the inverse optical lever sensitivity, (InvOLS) which represents the tip displacement distance (in nm) per volt deflection signal.
Do this by indenting the surface with the cantilever tip. A deflection set point voltage corresponding to a cantilever tip displacement of
approximately 3 nm is recommended.

5. Determine the spring constant of the cantilever by fitting a simple harmonic oscillator response function to the thermal noise spectrum,
according to the equipartition theorem30,31.

6. Initialize an experimental routine. For this work, the following set of measurement parameters was used: approach speed: 3,000 nm/sec;
indentation force: 180 pN; surface dwell time: 10 msec; retract velocities: 0.2, 0.7, 2.0, 5.0 µm/sec with sampling rates of 2,000, 5,000,
15,000, 20,000 Hz respectively; retract distance: 500 nm.
 
Note: The sampling rate should not be set higher than 10 points/nm to avoid oversampling and to keep data sizes reasonable.

7. After each force-distance trace, actuate the x- and y-piezo stages to expose a new surface location to the cantilever in each force-distance
curve. This technique samples a larger area of the cover glass surface during long-term measurements.

8. Use periodic rezeroing of the deflection stage (i.e. photodiode position) and height of the z-piezo chassis during long-term measurements in
case the deflection signal drifts out of range, or contact is lost with the surface.

9. Upon completion of the measurement run, perform another InvOLS measurement with a significantly higher indentation force than used prior
to measurements to obtain a more precise InvOLS value.

10. Record another thermal noise spectrum far away from the surface. Determine the spring constant at the end of the experimental run.

3. Data Analysis

The flow diagram in Figure 3 illustrates the process of data analysis. Perform all data manipulations using an appropriate software package
such as Igor Pro or MATLAB. First convert the raw signal from the detector into units of force, and correct for offset and drift. Subsequently, use
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models of biopolymer elasticity to locate energy barriers in the unfolding pathways, and identify protein subdomains. Finally, kinetic and energetic
parameters of the receptor-ligand interaction are obtained.

1. Unit conversion and data corrections
1. Multiply the raw deflection signal (volts) by the InvOLS (nm/volt) and spring constant (pN/nm) to convert the detector voltage into units

of force.
2. Offset the data such that the unloaded cantilever has a force value of zero pN by first averaging the force values from the last 10% of

the force-distance trace (acquired farthest away from the surface), and then subtracting the average from all force values in the data
trace.

3. Offset each trace in the x-direction such that the first intercept with the distance axis occurs at a distance of 0 nm.
4. The InvOLS is dependent on the laser spot position on the cantilever. Even small amounts of drift in the optical readout system may

cause noticeable changes in the InvOLS when the footprint of the cantilever is comparable to the laser spot size. Correct for this by
analysis of the noise on the deflection signal at zero force. Assuming constant ambient conditions, noise on the deflection signal is
directly proportional to the InvOLS.

1. Measure the route mean square (RMS) deflection value (noise level under zero force) of the last 10% of each force-distance
trace.

2.
Plot the noise vs. the curve number and apply a suitable fit. Typically an exponential fit in the form of  will
work best, where N is the noise, ni is the curve number, and N0 and k are fit parameters. A linear fit may also be appropriate for
certain data sets.

3. Determine a scaling factor (SF) for each curve:
 
 
Equation 1:
 

 
where, ni is the curve number, nf is the final curve number, and C is an offset.

4. Next divide all the force values in each individual curve by the scaling factor. This procedure scales each curve by the ratio of the
RMS noise value of the current curve to the RMS noise value of the final trace that was acquired immediately prior to the InvOLS
measurement.

5. Perform a deflection correction to transform the distance axis (z) to molecular extension (z*). This accounts for bending of the
cantilever under force which shortens the distance between cantilever tip and sample from the value reported by the z-piezo
sensor position.
 
 
Equation 2:
 

 
Where z is the measured z-sensor position, F the force acting on the cantilever and k the spring constant.

2. Contour length analysis
 
The contour length of a protein is the maximum stretched length of the polypeptide chain. The folding state of a protein refers to its geometry
and end to end distance determined by secondary and tertiary structure. The contour length of a protein is directly related to its folding
state9,25,32. The position of specific ruptures in force-extension traces varies widely due to polydispersity of PEG linkers, as well as external
parameters such as temperature, buffer properties and loading rates. This complicates direct data analysis but can be overcome by
transforming force-extension data into contour length space. This technique enables averaging over huge datasets, and allows automatic
pattern recognition to be used to identify characteristic unfolding events. It is therefore possible to sort individual force traces depending on
the type of interaction exhibited. The following previously described procedure25 is used to transform force-extension data into contour length
space.

1. Solving the WLC model (Equation 3)23 for the contour length L at a fixed persistence length p results in Equation 4, which provides 
the contour length L(x,u). Here, x is the distance and u=F*p/kBT, where kB is Boltzmann's constant and T is the temperature. Only real
solutions can be considered. Additional constraints are x<L, F>0, L>0, x>0;
 
 
Equation 3:
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Equation 4:
 

 
where,
 

2. Plot the transformed data points in a force vs. contour length plot. Apply a force threshold of approximately 10 pN to exclude noise.
Unspecific interactions can be excluded by applying a long-pass length filter. Assemble a histogram of contour lengths.

3. Cross-correlate33 the obtained histograms with a template histogram, and offset along the x-axis to correct for PEG polydispersity. Use
the resulting correlation values to measure the similarity of individual data traces. Thereby, data traces can be sorted into predefined
classes to simplify further analysis.

4. Use a similar technique to find repeating features in a single trace by autocorrelation, e.g. for multiple Ig-domain unfolding.
5. Sort traces manually to investigate other unfolding events.

3. Loading Rate Analysis
 
Extract kinetic and energetic information about receptor-ligand dissociation by applying suitable models to the force spectrum, i.e. the rupture-
force vs. ln(loading-rate) plot.

1. For a given pulling speed, determine the rupture force and loading rate for rupture events of interest:
1. Perform a line fit to a force-time trace in the vicinity of the rupture event of interest. Determine the loading rate from the slope of

the line fit to the peak. Repeat this procedure for every trace showing the rupture event of interest.
2. Determine the most probable rupture force by applying a Gaussian fit to a histogram of the rupture forces. Alternative fit functions

are possible.
3. Determine the most probable loading rate.

2. Repeat steps 3.3.3.1 - 3.3.3.3 for all pulling speeds.
3. Plot the most probable rupture forces against the natural logarithm of the most probable loading rates to obtain the force spectrum.
4. Apply a suitable theoretical model to the force spectrum to extract kinetic and energetic parameters (Figure 4C). In many cases, the

linear Bell-Evans model20,34 can be used and will yield good estimates for koff, the dissociation rate in the absence of force, and Dx, the
distance to the transition state along the reaction coordinate, as shown in Equation 5.
 
 
Equation 5:
 

Representative Results

We used the described procedure to investigate a type I cohesin-dockerin pair from C. thermocellum. Upon successful binding of the cohesin-
dockerin pair, the recorded force distance traces showed characteristic peak patterns. A typical trace is shown in Figure 4a. Every peak in the
trace represents the unfolding of one protein subdomain with the last peak corresponding to the dissociation of the receptor-ligand complex.

For the CBM-cohesin-dockerin-xylanase complex investigated in this work, the initial rise in force corresponds to stretching of the PEG linker
molecules. The subsequent series of up to three descending force dips reflects the unfolding of the xylanase domain. The final peak represents
the rupture of the cohesin-dockerin binding interface.

All recorded force-distance traces were transformed to force-contour length space. The resulting barrier position histogram is shown in Figure
4B. The data show a contour length increment of approximately 89 nm. The xylanase domain consists of 378 amino acids, 260 of which are
located C-terminally from the engineered cysteine residue. From the crystal structure, the folded length of the domain is assumed to be 6 nm.
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Further assuming a length per stretched amino acid of 0.365 nm35, the measured 89 nm increment can be unambiguously assigned to the
unfolding of the xylanase domain. This is consistent with previously published results11.

To probe the energy landscape of the cohesin-dockerin interaction, we analyzed a total of 186 data traces obtained with four different pulling
speeds (0.2, 0.7, 2.0, and 5.0 µm/sec). The resulting force spectrum is shown in Figure 4C. Fitting Equation (5) to the data yields values for koff
and Dx of 3.13 x10-5/sec and 0.70 nm, respectively. These values are in good agreement with previously published results11.

 
Figure 1. Schematic of biomolecule immobilization. (A) Xylanase-dockerin fusion proteins are attached to the glass slide via PEG linkers.
The cantilever is similarly modified with a cohesin protein fused to a cellulose binding module (CBM). (B) Depiction of chemical bonding
employed in cover glass and cantilever functionalization. Click here to view larger image.

 
Figure 2. Process flow diagram showing sample preparation steps followed by data acquisition and analysis.Click here to view larger
image.
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Figure 3. Data analysis workflow diagram showing the processing steps involved in converting the raw detector signals into force-
extension traces. These traces are further analyzed to obtain information about receptor-ligand binding. The final results provide energetic and
kinetic parameters about specific domains. Click here to view larger image.
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Figure 4. Single molecule force spectroscopy data on cohesin-dockerin. (A) Typical unfolding trace showing PEG linker stretching,
xylanase unfolding, and rupture of the cohesin-dockerin binding interface. (B) Contour length histogram assembled from 314 force distance
traces exhibiting energy barrier positions along the contour length. (C) Dynamic force spectrum obtained from 186 force-extension traces. Large
blue circles represent the most probable rupture force at a given loading rate. The solid line represents a least squares fit to Equation 5. Rupture
event populations are shown in the background. Error bars represent standard deviation obtained from Gaussian fits. Click here to view larger
image.
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Discussion

To obtain meaningful data from single molecule force spectroscopy experiments, it is crucial to achieve well-defined and reproducible pulling
geometries. The protocol used here results in site-specific immobilization of protein complexes in a defined pulling geometry.

The cantilevers used in this study were chosen due to their force sensitivity and high resonance frequency in water. Moreover, the small tip
curvature of approximately 10 nm is advantageous for single molecule experiments due to reduced likelihood of multiple interactions. However,
the small footprint (38x16 µm2) of the cantilever arm complicates the adjustment of the laser beam when the optical deflection method29 is used.
The diameter of the focused laser beam in the setup used for this study is comparable to the width of the cantilever. As a result, obtaining a
steady sum signal can be difficult. The laser drift on the cantilever can be partially compensated for using noise analysis across the data curves
to correct the inverse optical lever sensitivity, as we have described. A new atomic force microscope with a shortened optical path and smaller
laser spot size is currently under development in our group to improve data quality.

To obtain reliable information about rupture events, analysis of many traces is necessary. Since single molecule force spectroscopy
measurements are subject to various fluctuations, averaging in force-extension space is not constructive. Barrier position histograms, however,
once aligned in contour length space can be averaged since they are independent of fluctuations. As a result, even tiny features in the unfolding
pathway are resolved. Conventional superposition of force extension traces does not achieve this kind of resolution.

In a force regime above 500 pN, a corrected WLC model accounting for electron cloud elasticity (QM-WLC) describes force-extension behavior
better than the classical WLC model18. The freely rotating chain26 model (FRC) can also be used in a high force regime. With rupture forces up
to 125 pN, the cohesin-dockerin interface shows one of the strongest receptor-ligand interactions reported in the literature. The WLC model was
used in this work and in practice there was little difference between WLC, QM-WLC, and FRC models for analysis of cohesin-dockerin unfolding
traces.

The conventional Bell-Evans20,34 model was used to analyze the force-loading rate dependency of the cohesin-dockerin binding interface.
Recent works36,37 have extended the theoretical framework for the interpretation of single molecule experiments. These models treat nonlinear
trends in the force spectra. Furthermore, they produce the free energy barrier height DG of the dissociation event. To observe distinct nonlinear
trends in the force spectra, loading rates need to be varied over many orders of magnitude. Realizing extremely low loading rates is theoretically
achievable using extremely slow z-piezo pulling speeds, however in practice this poses a challenge due to drift in the tip-substrate distance.
Extremely high loading rates can also be difficult to obtain since increasing noise might obscure certain features in the recorded force-distance
traces. Choice of the theoretical model must be balanced with these practical aspects of data acquisition while considering the specific proteins
under investigation. In many cases the linear Bell-Evans model is entirely sufficient.

In conclusion, a complete experimental protocol for the study of receptor-ligand interactions using AFM-based single-molecule force
spectroscopy has been presented. The positioning accuracy and force sensitivity of the atomic force microscope in conjunction with versatile
biomolecule immobilization strategies provide an excellent toolbox for the investigation of receptor-ligand systems for structural biology studies.
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Summary

Cellulolytic bacteria produce specialized, highly flexible enzymatic networks to effectively di-

gest lignocellulosic biomass. Bridging scaffold components of cellulosomes are mechanically

stressed in habitats exhibiting strong flow gradients, such as the cow rumen. Evolutionary

pressure to stay attached to cellulosic food sources leads to the cellulosome network design

where assembly is enabled by cohesin-dockerin interactions with commonplace biochemical

affinities and simultaneously extreme resistances to applied force. In publication P5 we char-

acterized mechanostability of the XMod-Doc:Coh ligand-receptor complex responsible for

substrate anchoring in the Ruminococcus flavefaciens cellulosome using single molecule force

spectroscopy (SMFS) and steered molecular dynamics (MD) simulations.

Using SMFS we show that XMod-Doc:Coh complex withstands forces ranging from 600

to 750 pN at loading rates from 1 to 2× 1010 nN s−1, representing the strongest bimolecular

interaction reported to date. These exceptionally high rupture forces are hugely dispropor-

tionate to the commonplace biochemical affinity of the complex. Steered MD was employed by

our collaborators to investigate the molecular mechanism behind this remarkable mechanos-

tability. The total contact area of interacting residues was found to increase due to side chain

rearrangement under mechanical load, suggesting the presence of a catch bond mechanism.

In 35–40% of SMFS traces, complex dissociation was observed to proceed in two steps with

the XMod unfolding before Doc:Coh interface rupture. In these cases, the final dissociation

occured at much lower force than the preceding XMod unfolding peak. A decrease in the most

probable unbinding force upon Xmod unfolding suggests that XMod serves as a mechanical

stabilizer and force-shielding effector subdomain. This is confirmed by MD simulation showing

that XMod unfolding leads to a decrease in hydrogen bonding between Doc and Coh even if

no force is being applied across the Doc:Coh binding interface.

Our findings demonstrate force activation and stabilization of the cohesin-dockerin complex,

and suggest that certain network components serve as mechanical effectors for maintaining

network integrity. We show that a catch bond mechanism is responsible for the remark-

able stability under force, summoning mechanical strength when needed, while still allowing

relatively fast assembly and disassembly of the complex at equilibrium.
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Challenging environments have guided nature in the development of ultrastable protein

complexes. Specialized bacteria produce discrete multi-component protein networks called

cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled

by protein interactions with commonplace affinities, we show that certain cellulosomal

ligand–receptor interactions exhibit extreme resistance to applied force. Here, we char-

acterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus

flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular

dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the

strongest bimolecular interactions reported, equivalent to half the mechanical strength of a

covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the

complex, and suggest that certain network components serve as mechanical effectors

for maintaining network integrity. This detailed understanding of cellulosomal network

components may help in the development of biocatalysts for production of fuels and

chemicals from renewable plant-derived biomass.
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C
ellulosomes are protein networks designed by nature
to degrade lignocellulosic biomass1. These networks
comprise intricate assemblies of conserved subunits

including catalytic domains, scaffold proteins, carbohydrate
binding modules (CBMs), cohesins (Cohs), dockerins (Docs)
and X-modules (XMods) of unknown function. Coh:Doc pairs
form complexes with high affinity and specificity2, and provide
connectivity to a myriad of cellulosomal networks with varying
Coh:Doc network topology3–5. The most intricate cellulosome
known to date is produced by Ruminococcus flavefaciens (R.f.)6,7

and contains several primary and secondary scaffolds along with
over 220 Doc-bearing protein subunits8.

The importance of cellulolytic enzymes for the production of
renewable fuels and chemicals from biomass has highlighted an
urgent need for improved fundamental understanding of how
cellulosomal networks achieve their impressive catalytic activity9.
Two of the mechanisms known to increase the catalytic activity of
cellulosomes are proximity and targeting effects10. Proximity
refers to the high local concentration of enzymes afforded by
incorporation into nanoscale networks, while targeting refers to
specific binding of cellulosomes to substrates. Protein scaffolds
and CBM domains are both critical in this context as they
mediate interactions between comparatively large bacterial cells
and cellulose particles. As many cellulosomal habitats (for
example, cow rumen) exhibit strong flow gradients, shear forces
will accordingly stress bridging scaffold components mechanically
in vivo. Protein modules located at stressed positions within
these networks should therefore be preselected for high
mechanostability. However, thus far very few studies on the
mechanics of carbohydrate-active proteins or cellulosomal
network components have been reported11.

In the present study we sought to identify cellulosomal network
junctions with maximal mechanical stability. We chose an XMod-
Doc:Coh complex responsible for maintaining bacterial adhesion
to cellulose in the rumen. The complex links the R. flavefaciens
cell wall to the cellulose substrate via two CBM domains located
at the N-terminus of the CttA scaffold, as shown in Fig. 1a. The

crystal structure of the complex solved by X-ray crystallography12

is shown in Fig. 1b. XMod-Doc tandem dyads such as this one are
a common feature in cellulosomal networks. Bulk biochemical
assays on XMod-Docs have demonstrated that XMods improve
Doc solubility and increase biochemical affinity of Doc:Coh
complex formation13. Crystallographic studies conducted on
XMod-Doc:Coh complexes have revealed direct contacts between
XMods and their adjacent Docs12,14. In addition, many XMods
(for example, PDB 2B59, 1EHX, 3PDD) have high b-strand
content and fold with N- and C-termini at opposite ends of the
molecule, suggestive of robust mechanical clamp motifs at
work15,16. These observations all suggest a mechanical role for
XMods. Here we perform AFM single-molecule force
spectroscopy experiments and steered molecular dynamics
simulations to understand the mechanostability of the XMod-
Doc:Coh cellulosomal ligand–receptor complex. We conclude
that the high mechanostability we observe originates from
molecular mechanisms, including stabilization of Doc by the
adjacent XMod domain and catch bond behaviour that causes the
complex to increase in contact area on application of force.

Results and Discussion
Single-molecule experiments. We performed single-molecule
force spectroscopy (SMFS) experiments with an atomic force
miscroscope (AFM) to probe the mechanical dissociation of
XMod-Doc:Coh. Xylanase (Xyn) and CBM fusion domains on
the XMod-Doc and Coh modules, respectively, provided identi-
fiable unfolding patterns permitting screening of large data sets of
force-distance curves17–19. Engineered cysteines and/or peptide
tags on the CBM and Xyn marker domains were used to
covalently immobilize the binding partners in a site-specific
manner to an AFM cantilever or cover glass via poly(ethylene
glycol) (PEG) linkers. The pulling configuration with Coh-CBM
immobilized on the cantilever is referred to as configuration I, as
shown in Fig. 1c. The reverse configuration with Coh-CBM on
the cover glass is referred to as configuration II. In a typical
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Figure 1 | System overview. (a) Schematic of selected components of the R. flavefaciens cellulosome. The investigated XMod–Doc:Coh complex

responsible for maintaining bacterial adhesion to cellulose is highlighted in orange. (b) Crystal structure of the XMod-Doc:Coh complex. Ca2þ ions

are shown as orange spheres. (c) Depiction of experimental pulling configuration I, with Coh-CBM attached to the cantilever tip and Xyn–XMod–Doc

attached to the glass surface.
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experimental run we collected about 50,000 force extension traces
from a single cantilever. We note that the molecules immobilized
on the cantilever and glass surfaces were stable over thousands of
pulling cycles.

We sorted the data by first searching for contour length
increments that matched our specific xylanase and CBM
fingerprint domains. After identifying these specific traces
(Fig. 2a), we measured the loading rate dependency of the final
Doc:Coh ruptures based on bond history. To assign protein
subdomains to the observed unfolding patterns, we transformed
the data into contour length space using a freely rotating
chain model with quantum mechanical corrections for peptide
backbone stretching (QM-FRC, Supplementary Note 1,
Supplementary Fig. 1)20,21. The fit parameter-free QM-FRC
model describes protein stretching at forces 4200 pN more
accurately than the commonly used worm-like chain (WLC)
model20,22. The resulting contour length histogram is shown in
Fig. 2b. Peak-to-peak distances in the histogram represent
contour length increments of unfolded protein domains.
Assuming a length per stretched amino acid of 0.365 nm and
accounting for the folded length of each subdomain, we
compared the observed increments to the polypeptide lengths
of individual subdomains of the Xyn-XMod-Doc and Coh-CBM
fusion proteins. Details on contour length estimates and domain
assignments are shown in Supplementary Table 1.

Unfolding patterns in configuration I showed PEG stretching
followed by a three-peaked Xyn fingerprint (Fig. 1a, top trace,
green), which added 90 nm of contour length to the system. Xyn
unfolding was followed by CBM unfolding at B150 pN with
55 nm of contour length added. Finally, the XMod-Doc:Coh
complex dissociated at an ultra-high rupture force of B600 pN.
The loading rate dependence of the final rupture event for curves
of subtype 1 is plotted in Fig. 2c (blue). The measured complex
rupture force distributions are shown in Supplementary Fig. 2.

Less frequently (35–40% of traces) we observed a two-step
dissociation process wherein the XMod unfolded before Doc:Coh
rupture as shown in Fig. 2a (middle trace, orange). In these cases,
the final dissociation exhibited a much lower rupture force
(B300 pN) than the preceding XMod unfolding peak, indicating
the strengthening effect of XMod was lost, and XMod was no
longer able to protect the complex from dissociation at high force.
The loading rate dependency of Doc:Coh rupture occurring
immediately following XMod unfolding is shown in Fig. 2c (grey).

In configuration II (Fig. 2a, bottom trace), with the Xyn-
XMod-Doc attached to the cantilever, the xylanase fingerprint
was lost after the first few force extension traces acquired in the
data set. This indicated the Xyn domain did not refold within the
timescale of the experiment once unfolded, consistent with prior
work17,18. CBM and XMod unfolding events were observed
repeatedly throughout the series of acquired force traces in both
configurations I and II, indicating these domains were able to
refold while attached to the cantilever over the course of the
experiment.

We employed the Bell-Evans model23 (Supplementary Note 2)
to analyse the final rupture of the complex through the effective
distance to the transition state (Dx) and the natural off-rate (koff).
The fits to the model yielded values of Dx¼ 0.13 nm and
koff¼ 7.3� 10� 7s� 1 for an intact XMod, and Dx¼ 0.19 nm and
koff¼ 4.7� 10� 4 s� 1 for the ‘shielded’ rupture following XMod
unfolding (Fig. 2c). These values indicate that the distance to the
transition state is increased following XMod unfolding, reflecting
an overall softening of the binding interface. Distances to the
transition state observed for other ligand–receptor pairs are
typically on the order of B0.7 nm (ref. 17). The extremely short
Dx of 0.13 nm observed here suggests that mechanical unbinding
for this complex is highly coordinated. We further analysed
the unfolding of XMod in the Bell-Evans picture and found
values of Dx¼ 0.15 and koff¼ 2.6� 10� 6s� 1. The loading
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rate dependence for this unfolding event is shown in
Supplementary Fig. 3.

The exceptionally high rupture forces measured experimentally
(Fig. 2) are hugely disproportionate to the XMod-Doc:Coh
biochemical affinity, which at KDB20 nM (ref. 12) is comparable
to typical antibody–antigen interactions. Antibody–antigen
interactions, however, will rupture at only B60 pN at similar
loading rates24, while bimolecular complexes found in muscle
exposed to mechanical loading in vivo will rupture at B140 pN
(ref. 25). Trimeric titin–telethonin complexes also found in
muscle exhibit unfolding forces around 700 pN (ref. 26), while Ig
domains from cardiac titin will unfold at B200 pN (ref. 27). The
XMod-Doc:Coh ruptures reported here fell in a range from 600 to
750 pN at loading rates ranging from 10 to 100 nN s� 1. At
around half the rupture force of a covalent gold-thiol bond28,
these bimolecular protein rupture forces are, to the best of our
knowledge, among the highest of their kind ever reported. The
covalent bonds in this system are primarily peptide bonds in the
proteins and C-C and C-O bonds in the PEG linkers. These are
significantly more mechanically stable than the quoted gold-thiol
bond rupture force (B1.2 nN) (ref. 29) and fall in a rupture force
range 42.5 nN at similar loading rates. Therefore, breakage of
covalent linkages under our experimental conditions is highly
unlikely. We note that the high mechanostability observed here is
not the result of fusing the proteins to the CBM or Xyn domains.
The covalent linkages and pulling geometry are consistent with
the wild-type complex and its dissociation pathway. In vivo, the
Coh is anchored to the peptidoglycan cell wall through its
C-terminal sortase motif. The XMod–Doc is attached to the
cellulose substrate through two N-terminal CBM domains. By
pulling the XMod–Doc through an N-terminal Xyn fusion
domain, and the Coh through a C-terminal CBM, we
established an experimental pulling geometry that matches

loading of the complex in vivo. This pulling geometry was also
used in all simulations. The discontinuity between its
commonplace biochemical affinity and remarkable resistance to
applied force illustrates how this complex is primed for
mechanical stability and highlights differences in the unbinding
pathway between dissociation at equilibrium and dissociation
induced mechanically along a defined pulling coordinate.

Steered molecular dynamics. To elucidate the molecular
mechanisms at play that enable this extreme mechanostability, we
carried out all-atom steered molecular dynamics (SMD) simula-
tions. The Xyn and CBM domains were not modelled to keep the
simulated system small and reduce the usage of computational
resources. This approximation was reasonable as we have no
indication that these domains significantly affect the XMod–
Doc:Coh binding strength30. After equilibrating the crystal
structure12, the N-terminus of XMod–Doc was harmonically
restrained while the C-terminus of Coh was pulled away at
constant speed. The force applied to the harmonic pulling spring
was stored at each time step. We tested pulling speeds of 0.25,
0.625 and 1.25 Å ns� 1, and note that the slowest simulated
pulling speed was B4,000 times faster than our fastest
experimental pulling speed of 6.4 mm s� 1. This difference is
considered not to affect the force profile, but it is known to
account for the scale difference in force measured by SMD and
AFM31,32.

SMD results showed the force increased with distance until the
complex ruptured for all simulations. At the slowest pulling speed
of 0.25 Å ns� 1 the rupture occurred at a peak force of B900 pN,
as shown in Supplementary Fig. 4 and Supplementary Movie 1.
We analysed the progression and prevalence of hydrogen bonded
contacts between the XMod–Doc and Coh domains to identify
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key residues in contact throughout the entire rupture process and
particularly immediately before rupture. These residues are
presented in Fig. 3a,c,d and Supplementary Figs 5,6. The
simulation results clearly reproduced key hydrogen bonding
contacts previously identified12 as important for Doc:Coh
recognition (Supplementary Fig. 5).

The main interacting residues are shown in Fig. 3a,b. Both Coh
and Doc exhibit a binding interface consisting of a hydrophobic
centre (grey) surrounded by a ring of polar (green) and charged
residues (blue, positive; red, negative). This residue pattern
suggests the hydrophilic side chains protect the interior
hydrophobic core from attack by water molecules, compensating
for the flat binding interface that lacks a deep pocket. The
geometry suggests a penalty to unbinding that stabilizes the
bound state. Further, we analysed the contact surface areas of
interacting residues (Fig. 3b–e). The total contact area was found
to increase due to rearrangement of the interacting residues when
the complex is mechanically stressed, as shown in Fig. 3e and
Supplementary Movie 2. Doc residues in the simulated binding
interface clamped down on Coh residues upon mechanical
loading, resulting in increased stability and decreased accessibility
of water into the hydrophobic core of the bound complex
(Fig. 3b). These results suggest that a catch bond mechanism is
responsible for the remarkable stability33 under force and provide
a molecular mechanism which the XMod–Doc:Coh complex uses
to summon mechanical strength when needed, while still allowing
relatively fast assembly and disassembly of the complex at
equilibrium. The residues that increase most in contact area
(Fig. 3c,d) present promising candidates for future mutagenesis
studies.

Among the 223 Doc sequences from R. flavefaciens, six
subfamilies have been explicitly identified using bioinformatics
approaches8. The XMod–Doc investigated here belongs to the
40-member Doc family 4a. A conserved feature of these Doc
modules is the presence of three sequence inserts that interrupt
the conserved duplicated F-hand motif Doc structure. In our
system, these Doc sequence inserts make direct contacts with
XMod in the crystallized complex (Fig. 1) and suggest an
interaction between XMod and Doc that could potentially
propagate to the Doc:Coh binding interface. To test this, an
independent simulation was performed to unfold XMod (Fig. 4).
The harmonic restraint was moved to the C-terminus of XMod so
that force was applied from the N- to C-terminus of XMod only,
while leaving Doc and Coh unrestrained. The results (Fig. 4b)
showed XMod unfolded at forces slightly higher than but similar
to the XMod–Doc:Coh complex rupture force determined from
the standard simulation at the same pulling speed. This suggested
XMod unfolding before Doc:Coh rupture was not probable, but
could be observed on occasion due to the stochastic nature of
domain unfolding. This was consistent with experiments where
XMod unfolding was observed in B35–40% of traces.
Furthermore, analysis of the H-bonding between Doc and
XMod (Fig. 4d, red) indicated loss of contact as XMod
unfolded, dominated by contact loss between the three Doc
insert sequences and XMod. Interestingly, XMod unfolding
clearly led to a decrease in H-bonding between Doc and Coh at
a later stage (B200 ns) well after XMod had lost most of its
contact with Doc, even though no force was being applied across
the Doc:Coh binding interface. This provided evidence for
direct stabilization of the Doc:Coh binding interface by XMod.
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As shown in Fig. 4e, the root mean squared deviation (RMSD) of
Doc increased throughout the simulation as XMod unfolded. Coh
RMSD remained stable until it started to lose H-bonds with Doc.
Taken together this suggests that, as XMod unfolded, Coh
and Doc became more mobile and lost interaction strength,
potentially explaining the increase in Dx from 0.13 to 0.19 nm on
unfolding of XMod in the experimental data sets. Apparently the
XMod is able to directly stabilize the Doc:Coh interface,
presumably through contact with Doc insert sequences that
then propagate this stabilizing effect to the Doc:Coh binding
interface.

In summary, we investigated an ultrastable XMod-Doc:Coh
complex involved in bacterial adhesion to cellulose. While
previously the role of XMod functioning in tandem XMod-Doc
dyads was unclear12,14, we show that XMod serves as a mecha-
nical stabilizer and force-shielding effector subdomain in the
ultrastable ligand–receptor complex. The Doc:Coh complex
presented here exhibits one of the most mechanically robust
protein–protein interactions reported thus far, and points
towards new mechanically stable artificial multi-component
biocatalysts for industrial applications, including production of
second-generation biofuels.

Methods
Site-directed mutagenesis. Site-directed mutagenesis of R. flavefaciens strain
FD1 chimeric cellulosomal proteins. A pET28a vector containing the previously
cloned R. flavefaciens CohE from ScaE fused to cellulose-binding module 3a
(CBM3a) from C. thermocellum, and a pET28a vector containing the previously
cloned R. flavefaciens XMod-Doc from the CttA scaffoldin fused to the XynT6
xylanase from Geobacillus stearothermophilus12 were subjected to QuikChange
mutagenesis34 to install the following mutations: A2C in the CBM and T129C in
the xylanase, respectively.

For the construction of the native configuration of the CohE-CBM A2C fusion
protein Gibson assembly35 was used. For further analysis CohE-CBM A2C was
modified with a QuikChange PCR36 to replace the two cysteins (C2 and C63) in the
protein with alanine and serine (C2A and C63S). All mutagenesis products were
confirmed by DNA sequencing analysis.

The XynT6-XDoc T129C was constructed using the following primers:
50-acaaggaaggtaagccaatggttaatgaatgcgatccagtgaaacgtgaac-30

50-gttcacgtttcactggatcgcattcattaaccattggcttaccttccttgt-30

The CBM-CohE A2C was constructed using the following primers:
50-ttaactttaagaaggagatataccatgtgcaatacaccggtatcaggcaatttgaag-30

50-cttcaaattgcctgataccggtgtattgcacatggtatatctccttcttaaagttaa-30

The CohE-CBM C2A C63S was constructed using the following phosphorylated
primers:

50-ccgaatgccatggccaatacaccgg-30

50-cagaccttctggagtgaccatgctgc-30

Expression and purification of Xyn-XMod-Doc. The T129C Xyn-XMod-Doc
protein was expressed in E. coli BL21 cells in kanamycin-containing media that also
contained 2 mM calcium chloride, overnight at 16 �C. After harvesting, cells were
lysed using sonication. The lysate was then pelleted, and the supernatant fluids
were applied to a Ni-NTA column and washed with tris-buffered saline (TBS)
buffer containing 20 mM imidazole and 2 mM calcium chloride. The bound protein
was eluted using TBS buffer containing 250 mM imidazole and 2 mM calcium
chloride. The solution was dialysed with TBS to remove the imidazole, and then
concentrated using an Amicon centrifugal filter device and stored in 50% (v/v)
glycerol at � 20 �C. The concentrations of the protein stock solutions were
determined to be B5 mg ml� 1 by absorption spectrophotometry.

Expression and purification of Coh-CBM. The Coh-CBM C2A, C63S fusion
protein was expressed in E. coli BL21(DE3) RIPL in kanamycin and chlor-
amphenicol containing ZYM-5052 media37 overnight at 22 �C. After harvesting,
cells were lysed using sonication. The lysate was then pelleted, and the supernatant
fluids were applied to a Ni-NTA column and washed with TBS buffer. The bound
protein was eluted using TBS buffer containing 200 mM imidazole. Imidazole was
removed with a polyacrylamide gravity flow column. The protein solution was
concentrated with an Amicon centrifugal filter device and stored in 50% (v/v)
glycerol at � 80 �C. The concentrations of the protein stock solutions were
determined to be B5 mg ml� 1 by absorption spectrophotometry.

Sample preparation. In sample preparation and single-molecule measurements
calcium supplemented TBS buffer (Ca-TBS) was used (25 mM TRIS, 72 mM NaCl,
1 mM CaCl2, pH 7.2). Cantilevers and cover glasses were functionalized according
to previously published protocols18,38. In brief, cantilevers and cover glasses were
cleaned by UV-ozone treatment and piranha solution, respectively. Levers and
glasses were silanized using (3-aminopropyl)-dimethyl-ethoxysilane (APDMES) to
introduce surface amine groups. Amine groups on the cantilevers and cover glasses
were subsequently conjugated to a 5 kDa NHS-PEG-Mal linker in sodium borate
buffer. Disulfide-linked dimers of the Xyn-XMod-Doc proteins were reduced for
2 h at room temperature using a TCEP disulfide reducing bead slurry. The protein/
bead mixture was rinsed with Ca-TBS measurement buffer, centrifuged at 850 r.c.f.
for 3 min, and the supernatant was collected with a micropipette. Reduced proteins
were diluted with measurement buffer (1:3 (v/v) for cantilevers, and 1:1 (v/v) for
cover glasses), and applied to PEGylated cantilevers and cover glasses for 1 h. Both
cantilevers and cover glasses were then rinsed with Ca-TBS to remove unbound
proteins and stored under Ca-TBS before force spectroscopy measurements.
Site-specific immobilization of the Coh-CBM-ybbR fusion proteins to previously
PEGylated cantilevers or coverglasses was carried out according to previously
published protocols39. In brief, PEGylated cantilevers or coverglasses were
incubated with Coenzyme A (CoA) (20 mM) stored in coupling buffer (50 mM
sodium phosphate, 50 mM NaCl, 10 mM EDTA, pH 7.2) for 1 h at room
temperature. Levers or surfaces were then rinsed with Ca-TBS to remove unbound
CoA. Coh-CBM-ybbR fusion proteins were then covalently linked to the CoA
surfaces or levers by incubating with Sfp phosphopantetheinyl transferase for 2 h at
room 37�. Finally, surfaces or levers were subjected to a final rinse with
Ca-TBS and stored under Ca-TBS before measurement.

Single-molecule force spectroscopy measurements. SMFS measurements were
performed on a custom built AFM40 controlled by an MFP-3D controller from
Asylum Research running custom written Igor Pro (Wavemetrics) software.
Cantilever spring constants were calibrated using the thermal noise/equipartition
method41. The cantilever was brought into contact with the surface and withdrawn
at constant speed ranging from 0.2 to 6.4 mm s� 1. An x-y stage was actuated after
each force-extension trace to expose the molecules on the cantilever to a new
molecule at a different surface location with each trace. Typically 20,000–50,000
force-extension curves were obtained with a single cantilever in an experimental
run of 18–24 h. A low molecular density on the surface was used to avoid
formation of multiple bonds. While the raw data sets contained a majority of
unusable curves due to lack of interactions or nonspecific adhesion of molecules to
the cantilever tip, select curves showed single-molecule interactions. We filtered the
data using a combination of automated data processing and manual classification
by searching for contour length increments that matched the lengths of our specific
protein fingerprint domains: Xyn (B89 nm) and CBM (B56 nm). After identifying
these specific traces, we measured the loading rate dependency of the final Doc:Coh
ruptures based on bond history.

Data analysis. Data were analysed using previously published protocols17,18,22.
Force extension traces were transformed into contour length space using the
QM-FRC model with bonds of length b¼ 0.11 nm connected by a fixed angle
g¼ 41� and and assembled into barrier position histograms using cross-correlation.
Detailed description of the contour length transformation can be found in
Supplementary Note 1 and Supplementary Fig. 1.

For the loading rate analysis, the loading rate at the point of rupture was
extracted by applying a line fit to the force vs time trace in the immediate vicinity
before the rupture peak. The loading rate was determined from the slope of the fit.
The most probable rupture forces and loading rates were determined by applying
Gaussian fits to histograms of rupture forces and loading rates at each pulling
speed.

Molecular dynamics simulations. The structure of the XMod-Doc:Coh complex
had been solved by means of X-ray crystallography at 1.97 Å resolution and is
available at the protein data bank (PDB:4IU3). A protonation analysis performed
in VMD42 did not suggest any extra protonation and all the amino-acid residues
were simulated with standard protonation states. The system was then solvated,
keeping also the water molecules present in the crystal structure, and the net charge
of the protein and the calcium ions was neutralized using sodium atoms as counter
ions, which were randomly arranged in the solvent. Two other systems, based on
the aforementioned one, were created using a similar salt concentration to the one
used in the experiments (75 mM of NaCl). This additional salt caused little or no
change in SMD results. The overall number of atoms included in MD simulations
varied from 300,000 in the majority of the simulations to 580,000 for the unfolding
of the X-Mod.

The MD simulations in the present study were performed employing the
NAMD molecular dynamics package43,44. The CHARMM36 force field45,46 along
with the TIP3 water model47 was used to describe all systems. The simulations were
done assuming periodic boundary conditions in the NpT ensemble with
temperature maintained at 300 K using Langevin dynamics for pressure, kept at
1 bar, and temperature coupling. A distance cut-off of 11.0 Å was applied to short-
range, non-bonded interactions, whereas long-range electrostatic interactions were
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treated using the particle-mesh Ewald (PME)48 method. The equations of motion
were integrated using the r-RESPA multiple time step scheme44 to update the van
der Waals interactions every two steps and electrostatic interactions every four
steps. The time step of integration was chosen to be 2 fs for all simulations
performed. Before the MD simulations all the systems were submitted to an
energy minimization protocol for 1,000 steps. The first two nanoseconds of the
simulations served to equilibrate systems before the production runs that varied
from 40 to 450 ns in the 10 different simulations that were carried out. The
equilibration step consisted of 500 ps of simulation where the protein backbone was
restrained and 1.5 ns where the system was completely free and no restriction or
force was applied. During the equilibration the initial temperature was set to zero
and was constantly increased by 1 K every 100 MD steps until the desired
temperature (300 K) was reached.

To characterize the coupling between Doc and Coh, we performed SMD
simulations49 of constant velocity stretching (SMD-CV protocol) employing three
different pulling speeds: 1.25, 0.625 and 0.25 Å ns� 1. In all simulations, SMD was
employed by restraining the position of one end of the XMod-Doc domain
harmonically (center of mass of ASN5), and moving a second restraint point, at the
end of the Coh domain (center of mass of GLY210), with constant velocity in the
desired direction. The procedure is equivalent to attaching one end of a harmonic
spring to the end of a domain and pulling on the other end of the spring. The force
applied to the harmonic spring is then monitored during the time of the molecular
dynamics simulation. The pulling point was moved with constant velocity along
the z-axis and due to the single anchoring point and the single pulling point the
system is quickly aligned along the z-axis. Owing to the flexibility of the linkers,
this approach reproduces the experimental set-up. All analyses of MD trajectories
were carried out employing VMD42 and its plug-ins. Secondary structures were
assigned using the Timeline plug-in, which employs STRIDE criteria50. Hydrogen
bonds were assigned based on two geometric criteria for every trajectory frame
saved: first, distances between acceptor and hydrogen should be o3.5 Å; second,
the angle between hydrogen-donor-acceptor should be o30�. Surface contact areas
of interacting residues were calculated employing Volarea51 implemented in VMD.
The area is calculated using a probe radius defined as an in silico rolling spherical
probe that is screened around the area of Doc exposed to Coh and also Coh area
exposed to Doc.
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Mapping mechanical force propagation through biomolecular

complexes

Summary

Mechanical forces play a fundamental role in biological systems as cells constantly sense

and respond to mechanical cues in their environment. These behaviors are governed by

mechanically active proteins that sense and respond to mechanical stress by undergoing var-

ious conformational changes. However, molecular mechanisms behind force-activation and

mechanoactivity are only partially understood. In publication P5, a novel combination of

steered MD, network-based correlation analysis, and thermodynamic fluctuation theory, sup-

ported by SMFS experiments is implemented to study force propagation through a protein

complex subjected to mechanical pulling at well defined geometries.

Experiments and simulations were performed on the XMod-Doc:Coh cellulosomal complex

from R. flavefaciens as a model system of an ultrastable receptor-ligand interaction, char-

acterized in Publication P5. To investigate the mechanisms behind high mechanostability,

we pulled the complex apart in a native and non-native configuration (C- vs. N-terminal

cohesin immobilization) using AFM-based SMFS. Interestingly, non-native pulling geometry

resulted in the complex dissociation along two competing pathways with distinct mechani-

cal characteristics, one of which was experimentally indistinguishable from the native pulling

case.

To understand the observed unbinding pathways, we sought to identify paths through the

molecule along which the externally applied load propagates. On the simple model we show

that the correlation of fluctuations of neighboring atoms is high when coupling between them

is strong. Consequently, paths with high correlation of motion describe the paths along

which force propagates through the system. This observation was a basis for developing a

novel network-based correlation analysis protocol of steered MD trajectories which allows

visualization of paths through the protein complex along which force is transmitted.

In publication P6 we conclude that the ultrastable XMod-Doc:Coh complex achieves its

remarkable mechanostability by actively directing an externally applied force toward an unfa-

vorable angle of attack at the binding interface, consequently requiring more force to achieve

a given amount of separation along the pulling direction. The new network-based correlation

analysis provides a basis for developing a deeper understanding of the functioning of various

mechanoactive proteins.
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ABSTRACT: Here we employ single-molecule force spec-
troscopy with an atomic force microscope (AFM) and steered
molecular dynamics (SMD) simulations to reveal force
propagation pathways through a mechanically ultrastable
multidomain cellulosome protein complex. We demonstrate
a new combination of network-based correlation analysis
supported by AFM directional pulling experiments, which
allowed us to visualize stiff paths through the protein complex
along which force is transmitted. The results implicate specific
force-propagation routes nonparallel to the pulling axis that are
advantageous for achieving high dissociation forces.

KEYWORDS: Force propagation, single molecule force spectroscopy, steered molecular dynamics, network analysis, cohesin−dockerin

Mechanical forces play a fundamental role in biological
systems. Cells are able to sense and respond to

mechanical cues in their environment by, for example,
modulating gene expression patterns,1 reshaping the extrac-
ellular matrix,2 or exhibiting differential biochemical activities.3

At the molecular level, these behaviors are governed by
mechanically active proteins. Such proteins are able to sense
and respond to force by undergoing conformational changes,4

exposing cryptic binding sequences,5 acting synergistically with
ion channels,6 or modulating their function in a variety of
ways.7−9

Experimental methods including AFM single-molecule force
spectroscopy (SMFS) allow direct measurement of molecular
mechanical properties. These studies have demonstrated the
importance of the shear topology involving parallel breakage of
hydrogen bonds in providing mechanical stability to protein
folds.10,11 Many globular domains and protein complexes also
exhibit a directional dependence in unfolding mechanics,
consisting of stiff and soft axes.12−18 Pulling geometry can be
defined by controlling the positions of the chemical linkages
between protein monomer units through a variety of
bioconjugate techniques.
Primary sequences of mechanically active proteins are

extremely diverse, essentially rendering them undetectable by
conventional bioinformatics approaches. Yet, another computa-
tional approach, namely, molecular dynamics (MD), allows

sampling of structural conformations of large and frequently
mechanostable protein complexes.19,20 Analysis of these
conformations from MD trajectories have recently led to the
development of network-based correlation methods for
investigating signal transmission and allosteric regulation in
proteins.21−23 In network models, local correlations of
positional fluctuations in a protein are represented as a web
of inter-residue connections. Within such a network, the
behavior of nodes that are highly correlated and within close
physical proximity can be analyzed to obtain the shortest path
between two network nodes (i.e., amino acids). This analysis
helps to identify which connecting residues are most important
for intramolecular communication.23−25 Examination of multi-
ple pathways, also known as suboptimal paths, within an
acceptable deviation from the optimal path helps to detect the
web of nodes critical for transmission of information.
Among MD methods, steered molecular dynamics (SMD)

simulations in which external forces are used to explore the
response and function of proteins have become a powerful tool
especially when combined with SMFS.6 SMD has been
successfully employed in a wide range of biological systems,
from the investigation of protein mechanotransduction,5,26 to
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permeability of membrane channels,27,28 and the character-
ization of protein−receptor interactions.29 SMD simulations
have also been used to study force propagation through
proteins by employing force distribution analysis (FDA).30,31 In
FDA, all pairwise forces, which are usually calculated in MD
simulations, are stored in N × N matrices, where N is the
number of atoms.32 These pairwise forces can then be used to
assess a protein’s response to a mechanical or allosteric signal.33

In the FDA approach, atoms under mechanical strain are
identified by subtracting forces of both loaded and unloaded
states for each pair of interacting atoms.31 However, to achieve
a sufficient signal-to-noise ratio, FDA will often require
exhaustive sampling of the conformational space.32,34 FDA,
therefore, requires more computational resources than usual
SMD studies, which are frequently already computationally
demanding. There is therefore a clear need for new analysis
methods that enable visualization of force propagation
pathways from a single SMD trajectory.
Here we implemented a novel combination of SMD,

network-based correlation analysis, and thermodynamic fluctu-
ation theory, supported by AFM-SMFS experiments to study
force propagation through a protein complex subjected to
different pulling geometries. We chose an ultrastable receptor−
ligand interaction as a model system because of its remarkably

high mechanical stability,29 which effectively improves the
signal-to-noise ratio. This complex consists of two interacting
protein domains called cohesin (Coh) and dockerin (Doc) that
maintain bacterial adhesion of Ruminococcus f lavefaciens to
cellulosic substrates. Doc is found within the same polypeptide
chain as a stabilizing ancillary domain called X-module
(XMod), located N-terminally of Doc. Based on its position
with the R. f lavefaciens cellulosomal network, Coh is
mechanically anchored in vivo at its C-terminal end to the
cell surface. Our prior work demonstrated that, when force is
applied to the complex in the native configuration (i.e., C-
terminal Coh, N-terminal XMod-Doc anchor points), the
complex is extremely stable, exhibiting high rupture forces of
600−750 pN at loading rates from 1−100 nN s−1.29 Since the
bulk equilibrium affinity of the complex is an unremarkable 20
nM,35 we hypothesized that the high mechanostability is
explained by a catch bond mechanism. AFM rupture force data
and SMD simulations supported this prediction, where it was
observed that the contact surface area of the two proteins
increased as mechanical force was applied.
To characterize the mechanisms behind Coh:Doc high

stability, here we additionally pulled the complex apart in a
non-native configuration (i.e., N-terminal Coh, N-terminal
XMod-Doc anchor points). In the non-native pulling

Figure 1. Single molecule force spectroscopy and steered molecular dynamics of XMod-Doc:Coh in two pulling configurations. (A) Crystal structure
of the XMod-Doc:Coh complex (PDB 4IU3) with orange spheres marking the termini where force was applied. (B) Experimental unfolding trace for
the native pulling configuration at a pulling speed of 1600 nm s−1. The inset shows a schematic of the pulling geometry. Unfolding signatures of the
Xyn and CBM marker domains are marked in orange and green, respectively. (C) Experimental unfolding trace for the non-native high force class
obtained at a pulling speed of 700 nm s−1. (D) Experimental unfolding trace for the non-native low force class obtained at a pulling speed of 700 nm
s−1. The additional 17−19 nm contour length increment attributed to N-terminal Coh unfolding is shown in red. (E) Dynamic force spectrum for
XMod-Doc:Coh unbinding in the native geometry obtained from experiment and simulations. Gray points and squares represent the rupture force/
loading rate pairs obtained from experiment and simulation, respectively. Black circles represent the most probable rupture force/loading rate
obtained from Gaussian fits to the experimental data at six pulling speeds. The black square shows the mean rupture force and loading rate for the
simulated rupture events. (F) Rupture force histograms obtained at a pulling speed of 800 nm s−1 for the native (gray, n = 46) and non-native high
force class (red, n = 48). Fitted probability densities p(F) are shown as solid black and red lines. Data for both pulling configurations were obtained
with the same cantilever to minimize calibration errors. (G) Dynamic force spectrum for XMod-Doc:Coh unbinding in the non-native low force class
obtained from experiments and simulation. The same representation as in (E) is used. (H,I,J) Unloaded and loaded surface contact areas for the
different pulling geometries ((H) native, (I) non-native high force class, and (J) non-native low force class).
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configuration, we found that the complex dissociated along two
competing pathways with very different mechanical character-
istics.
Our new dynamic network analysis protocol reveals how

different mechanical behaviors are attributable to differences in
the direction of force transmission across the binding interface.
Together, the experiments and simulations depict a simple
physical mechanism for achieving high complex rupture forces:
the complex directs force along pathways orthogonal to the
pulling axis.
Single-Molecule Pulling Experiments and SMD. For

SMFS experiments, XMod-Doc was produced as a fusion
protein with an N-terminal Xylanase (Xyn) domain. Coh was
produced as either an N- or C-terminal fusion domain with a
carbohydrate binding module (CBM). These fusion domains
were used for site specific immobilization to a glass surface and
AFM cantilever to achieve the two loading configurations
shown in Figure 1A and further served as marker domains with
known unfolding length increments to validate single-molecule
interactions and sort SMFS data traces.36

For the native pulling configuration found in vivo, Coh-CBM
and XMod-Doc are loaded from their C- and N-termini,
respectively (Figure 1A). A representative unbinding trace for
the native pulling configuration is shown in Figure 1B. We
measured the loading rate dependence of complex rupture
using both experimental and SMD data sets (unbinding trace
from SMD shown in Figure 3A) and plotted them on a
combined dynamic force spectrum (Figure 1E). The linear Bell
model produced fit parameters for the effective distance to the
transition state Δx = 0.13 nm, and the zero-force off rate kof f =
4.7 × 10−4 s−1. Both experimental and simulation data are well
described by a single Bell expression, despite the differences in
loading rates between experiments and simulation. The
observation suggests that the application of force does not
significantly change Δx for this particular configuration.
To test the influence of pulling geometry on mechanical

stability, we performed SMFS and SMD on the system where
Coh was pulled from the opposite terminus (i.e., non-native N-
terminus, cf. Figure 1A). Unlike the native pulling geometry,
this geometry exhibited two clearly distinct unbinding pathways
that are characterized by different force ranges (high or low) at
which the complex dissociated. We refer to these pathways as
non-native high force (HF) (Figure 1C) and non-native low
force (LF) (Figure 1D).
AFM data traces classified as non-native HF showed similar

characteristics as those in the native pulling configuration (cf.
Figure 1B,C,F). The non-native LF traces, however, exhibited a
markedly different unfolding behavior (Figure 1D). Xyn
unfolding (highlighted in orange) was regularly observed, but
CBM unfolding was only very rarely observed. The complex
usually did not withstand forces high enough to unfold CBM
when rupturing along the non-native LF path. Among non-
native LF curves, we regularly found an additional contour
length increment of 17−19 nm consistent with unfolding of
∼60 amino acids located at the N-terminus of Coh. This
unfolding occurred immediately following Xyn unfolding
(Figure 1D, red), or alternatively prior to Xyn unfolding, or
with a substep (Supplementary Figure S1). Taken together, it
appears that partial Coh unfolding from the N-terminus
destabilizes the complex, causing lower rupture forces (Figure
1G).
The experimental rupture forces from the non-native HF

class were indistinguishable from those arising in the native

configuration. To confirm this, we performed additional
measurements where both Coh configurations were alternately
probed with the same Xyn-XMod-Doc functionalized cantilever
(Supplementary Figure S2), eliminating inaccuracies intro-
duced through multiple cantilever calibration. Most probable
rupture forces at a pulling speed of 800 nm s−1 of 606 and 597
pN for the native configuration and non-native HF class,
respectively, were determined in the Bell Evans model (Figure
1F, Supplementary eq S2), demonstrating that the native and
non-native HF classes are experimentally indistinguishable.
For the LF class, we analyzed the final complex rupture event

and plotted the combined dynamic force spectrum (Figure
1G). Here, simulated and experimentally observed data were
not well described by a single Bell expression. In such cases
nonlinear models have been developed to obtain kinetic and
energetic information from dynamic force spectra.37,38 To fit
the combined data, we used the nonlinear Dudko−Hummer−
Szabo (DHS) model (Supplementary eq S3) and obtained
values of Δx = 0.42 nm and kof f = 0.005 s−1. The DHS model
further provides the free energy difference ΔG between the
bound state and the transition state as a fit parameter, which
was found to be ΔG = 129 kBT. The model fit produced a
distance to transition that was much longer than observed for
the native configuration. Independent SMD simulations for the
non-native pulling configuration were found to also lead to HF
and LF unbinding scenarios (see below, Figure 4A,D,
respectively).
The differential solvent contact area was calculated from

SMD simulations to estimate the intermolecular contact area in
the Doc:Coh complex. In the native configuration, the
simulated Doc:Coh contact area increased by 14% and 9%
for Coh and Doc, respectively (Figure 1H). For the non-native
HF class, the contact area increased by 11% and 12% for Coh
and Doc, respectively (Figure 1I). In the non-native LF class,
the contact area increased by only 7% for Coh and decreased by
3% for Doc (Figure 1J). Evidently, an increased surface contact
area for Doc in the native and non-native HF pathways
correlated with high mechanostability of the system.

Force Propagation Theory: A Simple Model. To further
understand the observed unbinding pathways, we sought to
identify paths through the molecule along which the externally
applied load propagates. From thermodynamic fluctuation
theory,39,40 it is known that the correlation of fluctuations of
atoms i and j and the force Fi on atom i are related through

⟨Δ Δ ⟩ =
∂
∂

k Tr r
r

Fi j
T j

i
B

(1)

where Δri = ri(t) − ⟨ri(t)⟩ and ri is the position of atom i. The
derivative on the right-hand side of eq 1 states that neighboring
atoms i and j will move with high correlation due to an external
force Fi acting on atom i if the coupling between them is strong.
Hence, a given element of a correlation matrix Mij = ⟨ΔriΔrjT⟩
will be large in the case of a strong interaction potential
between i and j. When force is propagated through a molecule,
soft degrees of freedom will be stretched out along the path of
force propagation, while stiff degrees become more important
for the dynamics of the system.
Consequently, paths with high correlation of motion describe

the paths along which force propagates through the system. To
illustrate this behavior for a toy system, we employed the
NAMD41 SMD42 constant velocity protocol to a test pattern of
identical spheres connected with harmonic springs of different
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stiffness (Figure 2A). The position of one sphere was fixed
during the simulation, while another sphere on the opposite

side of the structure was withdrawn at constant velocity. The
strained structure at the end of the simulation is shown in
Figure 2B. We assigned weights to the lines between spheres
according to the Pearson correlation coefficient Cij (Supple-
mentary eq S4) between those network nodes (Figure 2C).
The Pearson correlation coefficient differs from the left-hand
side of eq 1 by a normalization factor ⟨Δ ⟩⟨Δ ⟩ −t tr r( ( ) ( ) )i j

2 2 1/2

and was chosen to make our analysis mathematically more
tractable. For a detailed discussion on this choice of correlation
measure, see Supporting Information. In a harmonic potential
approximation, the equipartition theorem can be applied to this
normalization factor resulting in the following expression for
Cij:

=
∂
∂

C k k
r

Fij
j

i
i j,eff ,eff

(2)

where = + +
−⎛

⎝⎜
⎞
⎠⎟ki k k k,eff

1 1 1
1

xi yi zi
and kxi is the curvature of the

potential on atom i in the x direction. For a full derivation, see
Supporting Information. Equation 2 illustrates how Pearson
correlation is a suitable measure to identify the stiff paths in our
simple model. We then used dynamical network analysis
implemented in VMD49 to find the path of highest correlation
(Figure 2D). As expected from eq 1, we found this path to be
the one connected by the stiff springs.
Force Propagation through XMod-Doc:Coh Complex.

The simple pattern of spheres validated our general approach of
using local correlations to identify load-bearing pathways
through networks. We next employed dynamical network

analysis to understand force propagation through the XMod-
Doc:Coh complex.
The dynamic networks for the native configuration

(unloaded and loaded) are shown in Figure 3B,C, respectively.
While the network shows multiple suboptimal paths in the
unloaded scenario, the loaded case exhibits a well-defined main
path along which force propagates through the system.
Interestingly, in the loaded configuration, force propagates
through both binding helices of Doc, which results in a force
path with large normal components to the unbinding axis close
to the binding interface as illustrated in Figure 3D. It had been
shown for another ultrastable protein, namely, silk crystalline
units, that curving force paths distribute tension through the
entire system.31 A strategy that assumes an indirect path would
therefore allow the system to have more time to absorb the
tension from the applied force. The result here supports the
view that directing the force along a path with significant
perpendicular components to the pulling axis leads to high
mechanical stability. In a simple mechanical picture, a certain
amount of mechanical work, namely dW = F·ds, is required to
separate the two binding interfaces by a distance Δz and break
the interaction. In this simplified picture, ds points along the
unbinding axis, whereas the force F is locally largely
perpendicular to this direction. Consequently, a larger force is
required to break the interaction than in a scenario where the
force path would point along the unbinding axis.
To validate this picture, we repeated the same analysis for the

non-native HF and non-native LF pathways. The HF
simulation (Figure 4A) exhibited only a small stretching of
the flexible N-terminal region of Coh and complex dissociation
at approximately 800 pN and a pulling distance around 10 nm.
However, the LF case shown in Figure 4D exhibited a stepwise
N-terminal Coh unfolding, dissociating at a force of about 480
pN at a pulling distance of about 25 nm. This behavior
confirmed our assignment of the experimentally observed 17−
19 nm contour length increment to Coh unfolding up to
residue 62 in PDB 4IU3.
While the experimental data did not show a detectable

difference between the native configuration and the non-native
HF class, the propagation of force takes place along a different
pathway (Figure 4B). For N-terminal Coh pulling, helix 3 of
Doc is not involved in the propagation of force as it is for the
native geometry. In the native configuration, force propagates
through the center of Coh, while for non-native HF the path is
shifted toward the side of the molecule. Despite these
differences, there is a common feature between the native
and non-native HF pathways. At the binding interface, the
pathway again shows pronounced components perpendicular to
the unbinding axis (cf. Figure 4C), suggesting that this feature
is indeed responsible for the exceptional mechanical strength
observed for these two unbinding pathways.
Figure 4E shows the force propagation pathway for the non-

native LF class prior to rupture. Due to the unfolding of the N-
terminal Coh segment, the propagation of force is shifted even
further away from the central portion of Coh than for the non-
native HF class. Interestingly, force is propagated through the
small helical segment of Coh (ALA167-GLN179), a portion of
the molecule that is not involved in force propagation for any of
the other analyzed trajectories. Unlike in the aforementioned
scenarios, there is no pronounced tendency for perpendicular
force components at the binding interface for the non-native LF
class. In fact, the force is propagated along a path largely parallel
to the pulling axis (cf. Figure 4F). In cases where force

Figure 2. Network analysis test simulation. (A) Simulated pattern of
atoms depicted by spheres. Connecting lines between atoms represent
harmonic springs with different stiffnesses (red, k; blue, 5k; yellow,
7.5k; black, 10k). The green atom was fixed (anchor), while a second
green atom was withdrawn at constant speed (arrow). Black and
yellow atoms and their adjacent springs were introduced to maintain
the general shape of the pattern. (B) Deformed sphere pattern at the
end of the simulation. (C) Edges between nodes are weighted by the
corresponding correlation matrix elements. (D) The path with highest
correlation of motion is shown in red.
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propagation occurs parallel to the pulling axis, as in Figure 4E,
low mechanical stability was observed.
The aforementioned force propagation architecture along

with the effect of increasing contact surface area upon
mechanical loading combine for elevated mechanostability of
the system.29 In cases where we observed an N-terminal Coh
unfolding of 62 amino acids in the non-native geometry, the
system was no longer able to summon this mechanism, causing
dissociation at much lower forces.
Previously, our groups have reported on a family of

mechanically stable protein ligand receptor complexes that
are key building blocks of cellulosomes,29,44−46 the multi-
enzyme complexes used by select anaerobic bacteria to digest
lignocellulose. However, the molecular origins of the stability of
these complexes remained largely unclear. An initial clue was
obtained when, in a previous work, we were able to show that
contact surface area of the two proteins increased as mechanical
force was applied.29 In a different study,47 coarse-grained MD
simulations showed much smaller rupture forces at similar
loading rates both for native and non-native pulling than we
report here. This disagreement is likely due to the inability of
the coarse-grained model to capture the rearrangement of
amino acid side chains observed here. As we demonstrated,
force propagation calculation from network-based correlation
analysis helped in investigating the dramatic effect on the

mechanical stability of the Doc:Coh interaction when different
pulling geometries are applied. Our methodological approach,
to the best of our knowledge, has never been applied even
though network analysis of SMD trajectories was performed
before to probe the mechanism of allosteric regulation in
imidazole glycerol phosphate synthase.48

In summary, for both unbinding cases where we observed
high mechanostability, we found that across the binding
interface, force propagated along paths with strong normal
components to the pulling direction. Such a behavior was not
observed for the non-native LF class, where, presumably due to
N-terminal Coh unfolding, the system was no longer able to
direct the force across the binding interface at high angles.
From these findings, we conclude that the ultrastable complex
formed by Coh and Doc achieves its remarkable mechano-
stability by actively directing an externally applied force toward
an unfavorable angle of attack at the binding interface,
consequently requiring more force to achieve a given amount
of separation along the pulling direction. Our results show that
this mechanically stable complex uses an architecture that
exploits simple geometrical and physical concepts from
Newtonian mechanics to achieve high stability against external
forces. The analytical framework derived here provides a basis
for developing a deeper understanding of the functioning of
various mechanoactive proteins that are crucial for physiolog-

Figure 3. Force propagation through XMod-Doc:Coh in the native pulling configuration. (A) Unbinding trace of XMod-Doc:Coh obtained from
SMD at a pulling speed of 0.25 Å ns−1. The full trajectory is shown in gray. The black line represents a moving average with a box size of 500 steps.
The highlighted red areas denote the windows where dynamic networks and contact areas were calculated. (B) Network paths for the unloaded
system. The thickness of the orange tube represents the number of suboptimal correlation paths passing between two nodes. (C) Network paths for
the loaded system. A detailed 2D representation of the pathway, highlighting the amino acids present in the pathway, is shown in Supplementary
Figure S5. (D) Schematic model of force propagation across the Coh:Doc binding interface. Force takes a path across the binding interface with
large components perpendicular to the unbinding axis.
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ically relevant processes such as mechanotransduction, cellular
mechanosensing, and pathogenesis. Additionally, it could
provide a design platform for development of artificial
mechanoactive systems with applications as tissue engineering
scaffolds or components in engineered nanomaterials.
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3.4 Outlook

The type III XMod-Doc:Coh complex from R. flavefaciens, characterized in publications P5

and P6, is one of the most mechanostable protein-protein complexes reported so far. Extreme

dissociation forces necessary for unbinding make it an interesting tool for single molecule

studies and SMFS experiments in particular. In the scenario where high pulling forces need to

be exerted but covalent attachment is impossible or undesirable, type III Coh:Doc interaction

can serve as a non-covalent force handle. Advantages of such an approach include modularity

(for example one AFM cantilever can be used to unfold multiple domain of interest), wide

accessible force range and high experimental yields due to the remarkable robustness of the

complex. One of the binding partners can be recombinantly expressed with the protein domain

of interest, reducing the number of necessary conjugation steps, or bound covalently to the

domain of interest, for example using SpyTag/Catcher system227 or Sortase tag.228

An important finding of publication P6 is that the XMod-Doc(CttA):CohE complex ac-

tively redirects an externally applied force in a manner which maximizes mechanical stability.

The question remains open how widespread this kind of mechanism is, for example in ho-

mologous cohesin-dockerin complexes. One instance is another type III X-module dockerin

from R. flavefaciens adaptor scaffoldin ScaB, that binds to the same cohesin, as shown in

the Figure 3.1. The existence of a force-propagation pathway with significant components

perpendicular to the unbinding axis at the binding interface for ScaB XDoc would confirm

that the character of the described mechanism is not isolated to one complex, but is more

widespread in mechanostable cellulosomal components.

Yet another step forward would be an application of the analytical framework derived

in Publication P6 to develop a deeper understanding of the functioning of other, unrelated

mechanoactive proteins. Physiologically relevant systems taking part in mechanotransduc-

tion,229 cellular mechanosensing,230;231 or pathogenesis232 could be potential candidates, as

relation between structure and behavior under external force in those systems is still poorely
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Figure 3.1: Schematic representation of R. flavefaciens cellulosome with two type III cohesin-
dockerin interactions highlighted: XMod-DocIII(CttA):CohE is orange and XMod-
DocIII(ScaB):CohE in red.
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understood. Additionally, force propagation analysis could provide a platform for develop-

ment of artificial mechanoactive systems with possible applications in tissue engineering and

design of nanomaterials.
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Supporting figures 

 

 

 

Supporting Figure 2. pH-dependence of the HyReS signal on filter paper using 
fluorescence detection. Base catalyzed oxidation of the Fe(II) catalyst quenches the 
reaction above pH 5. 

 

Supporting Figure 1. Absorbance spectrum of the polymerized hydrogel. 20 mM 
CMC were mixed with 1mg/ml T. reesei enzymes and the hydrogel standard mix. 
After the full polymerization absorbance was measured using a plate reader (M1000 
pro, Tecan). 
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Supplementary Fig. 1: Assembly of contour length histograms. a Force-extension traces are trans-
formed into contour length space using a QM-corrected FRC model with parameters γ = 41◦, and
b = 0.11 nm. b In force-contour length space, force and contour length thresholds are applied and the
data are histogrammed with a bin width of 1 nm to obtain the histogram in c. To obtain a master
histogram, individual histograms reflecting a specific unfolding pathway are cross-correlated and aligned
by offsetting by the maximum correlation value.
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Supplementary Fig. 2: Complex rupture force histograms for pulling speeds ranging from 100 nm s−1

to 6400 nm s−1. Pulling speeds are indicated next to the histograms. Only traces with an intact XMod
were taken into account (no XMod unfolding observed, corresponding to Fig. 2, trace 1). At the slowest
pulling speed data suggest the presence of a lower rupture force population.
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Supplementary Fig. 3: Dynamic force spectrum for XMod unfolding obtained from 654 force-extension
traces. The gray points show single XMod unfolding events. Black circles represent the most probable
rupture forces and loading rates obtained by Gaussian fitting at each pulling speed. Error bars are
±1 standard deviation. The dashed line is a least squares fit to the Bell-Evans model that yielded
∆x = 0.15 nm and koff = 2.6× 10−6 s−1.
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Supplementary Fig. 4: Force distance trace obtained by SMD at a pulling speed of 0.25 Å ns−1. Force
values at each time step are shown in gray, with average force calculated every 200 ps in black. The inset
is a snapshot of the XMod-Doc:Coh complex immediately prior to rupture. XMod is shown in yellow,
Doc in red and Coh in blue.
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Supplementary Fig. 6: Hydrogen bond contacts between XMod-Doc (yellow and red surface, respec-
tively) and Coh (blue surface). The residues that have hydrogen bonds lasting for more than 10% of the
simulation time are represented in a glossy surface. In the bottom of the figure the five most prevalent
hydrogen bond interactions are presented. The letter S or B indicate if the respective interaction is made
by the amino acid side chain or backbone.
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Supplementary Tables

Module Xylanase CBM X-module Cohesin Dockerin
No. amino acids, NA 260 (378) 159 117 205 119
Folded length, LF [nm] 6 2 7 2 2
Expected increment, ∆LE [nm] 89 56 36 72 42
Observed increment, [nm] 90± 4 55± 3 34± 2 − −

Supplementary Table 1: Domain assignment of observed contour length increments. The expected
contour length increment (∆LE) for each protein domain was calculated according to ∆LE = NA ·
0.365 nm− LF , where LF is the folded length, NA is the number of amino acids, and 0.365 nm2 is the
length per stretched amino acid. LF was measured for Xyn, CBM, and XDoc:Coh from PDB structures
1R85, 1NBC, and 4IU3, respectively. For the Xyn domain, only amino acids located C-terminal of the
C129 mutation which served as attachment point are considered. Errors for the observed increments
were determined from Gaussian fits to the combined contour length histogram shown in Fig. 2b.
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Supplementary Notes

Supplementary Note 1: QM-FRC Model for Polymer Elasticity
The freely rotating chain model3 considers bonds of length b, connected by a fixed angle γ. The
torsional angles are not restricted. The stretching behavior in the FRC picture is given by

x

L
=


Fa

3kBT for Fb
kBT

< b
p

1−
(

4Fp
kBT

)− 1
2 for b

p <
Fb
kBT

< p
b

1−
(
cFb
kBT

)−1
for p

b <
Fb
kBT

(1)

where a = b 1+cos γ
(1−cos γ) cos γ2

is the Kuhn length, and p = b
cos γ2

| ln(cos γ)| is the effective persistence length
in the FRC picture.

To account for backbone elasticity of the polypeptide chain at high force, quantum mechanical
ab-initio calculations can be used to obtain the unloaded contour length at zero force. A polynomial
approximation to these calculations can be used to obtain the unloaded contour length at zero force
L0:

F = γ1

(
L

L0
− 1

)
+ γ2

(
L

L0
− 1

)2
(2)

where the γ1 = 27.4 nN, and γ2 = 109.8 nN are the elastic coefficients reported for polypeptides4.

Supplementary Note 2: Bell-Evans Model for Mechanically Induced Receptor Ligand
Dissociation
The Bell-Evans model was used to estimate the distance to the transition state (∆x) and the natural
off-rate (koff ) of individual rupture events:

〈F 〉 = kBT

∆x ln ∆x · Ḟ
koffkBT

(3)

where kB is Boltzmann’s constant, T is the temperature and Ḟ is the loading rate at the point of
rupture.
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Supplementary Methods

Materials
Silicon nitride cantilevers (Biolever mini, BL-AC40TS-C2, Olympus Corporation) with a nominal
spring constant of 100 pN/nm (25 kHz resonance frequency in water) were used. Circular coverglasses,
2.4 cm in diameter, were obtained from Menzel Gläser (Braunschweig, Germany). 3-Aminopropyl
dimethyl ethoxysilane (APDMES) was purchased from ABCR GmbH (Karlsruhe, Germany). NHS-
PEG-Maleimide (5 kDa) was purchased from Rapp Polymer (Tübingen, Germany). Immobilized
TCEP Disulfide Reducing Gel was obtained from Thermo Scientific (Pittsburgh, PA). The following
standard chemicals were obtained from Carl Roth (Karlsruhe, Germany) and used as received:
tris(hydroxymethyl)aminomethane (TRIS, >99% p.a.), CaCl2 (>99% p.a.), sodium borate (>99.8%
p.a), NaCl (>99.5% p.a.), ethanol (>99% p.a.), and toluene (>99.5% p.a.). Borate buffer was 150
mM, pH 8.5. The measurement buffer for force spectroscopy was Tris-buffered saline (TBS, 25 mM
TRIS, 75 mM NaCl, pH 7.2) supplemented with CaCl2 to a final concentration of 1 mM. All buffers
were filtered through a sterile 0.2µm polyethersulfone membrane filter (Nalgene, Rochester, NY,
USA) prior to use.

Protein Sequences
Sequences of protein constructs used in this work are listed here. Domains as well as engineered
tags and residues are color-coded.

Xyn-XModDoc

Xylanase T129C
Linker or extra residues
X-module
Dockerin type III

M S H H H H H H K N A D S Y A K K P H I S A L N A P Q L D Q R Y K N E F T I G A
A V E P Y Q L Q N E K D V Q M L K R H F N S I V A E N V M K P I S I Q P E E G K
F N F E Q A D R I V K F A K A N G M D I R F H T L V W H S Q V P Q W F F L D K E
G K P M V N E C D P V K R E Q N K Q L L L K R L E T H I K T I V E R Y K D D I K
Y W D V V N E V V G D D G K L R N S P W Y Q I A G I D Y I K V A F Q A A R K Y G
G D N I K L Y M N D Y N T E V E P K R T A L Y N L V K Q L K E E G V P I D G I G
H Q S H I Q I G W P S E A E I E K T I N M F A A L G L D N Q I T E L D V S M Y G
W P P R A Y P T Y D A I P K Q K F L D Q A A R Y D R L F K L Y E K L S D K I S N
V T F W G I A D N H T W L D S R A D V Y Y D A N G N V V V D P N A P Y A K V E K
G K G K D A P F V F G P D Y K V K P A Y W A I I D H K V V P N T V T S A V K T Q
Y V E I E S V D G F Y F N T E D K F D T A Q I K K A V L H T V Y N E G Y T G D D
G V A V V L R E Y E S E P V D I T A E L T F G D A T P A N T Y K A V E N K F D Y
E I P V Y Y N N A T L K D A E G N D A T V T V Y I G L K G D T D L N N I V D G R
D A T A T L T Y Y A A T S T D G K D A T T V A L S P S T L V G G N P E S V Y D D
F S A F L S D V K V D A G K E L T R F A K K A E R L I D G R D A S S I L T F Y T
K S S V D Q Y K D M A A N E P N K L W D I V T G D A E E E
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Coh-CBM C2A, C63S

CBM (C2A, C63S)
Linker or extra residues
CohIII
ybbR-Tag

M G T A L T D R G M T Y D L D P K D G S S A A T K P V L E V T K K V F D T A A D
A A G Q T V T V E F K V S G A E G K Y A T T G Y H I Y W D E R L E V V A T K T G
A Y A K K G A A L E D S S L A K A E N N G N G V F V A S G A D D D F G A D G V M
W T V E L K V P A D A K A G D V Y P I D V A Y Q W D P S K G D L F T D N K D S A
Q G K L M Q A Y F F T Q G I K S S S N P S T D E Y L V K A N A T Y A D G Y I A I
K A G E P G S V V P S T Q P V T T P P A T T K P P A T T I P P S D D P N A M A N
T P V S G N L K V E F Y N S N P S D T T N S I N P Q F K V T N T G S S A I D L S
K L T L R Y Y Y T V D G Q K D Q T F W S D H A A I I G S N G S Y N G I T S N V K
G T F V K M S S S T N N A D T Y L E I S F T G G T L E P G A H V Q I Q G R F A K
N D W S N Y T Q S N D Y S F K S A S Q F V E W D Q V T A Y L N G V L V W G K E P
G E L K L P R S R H H H H H H G S L E V L F Q G P D S L E F I A S K L A
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1 Materials and Methods
1.1 Site Directed Mutagenesis
We performed site-directed mutagenesis of Ruminococcus flavefaciens strain FD1 chimeric
cellulosomal proteins. A pET28a vector containing the previously cloned R. flavefaciens CohE
from ScaE fused to cellulose-binding module 3a (CBM3a) from C. thermocellum, and a pET28a
vector containing the previously cloned R. flavefaciens XMod-Doc from the CttA scaffoldin fused
to the XynT6 xylanase from Geobacillus stearothermophilus 1 were subjected to QuikChange
mutagenesis to install the mutations described in the prior paper2. All mutagenesis products
were confirmed by DNA sequencing analysis.

1.2 Expression and Purification of Cysteine-Mutated Xyn-XMod-Doc
The Xyn(T129C)-XMod-Doc protein was expressed in E. coli BL21 cells in kanamycin-containing
media that also contained 2 mM calcium chloride, overnight at 16◦C. After harvesting, cells
were lysed using sonication. The lysate was then pelleted, and the supernatant fluids were
applied to a Ni-NTA column and washed with TBS buffer containing 20 mM imidazole and
2mM calcium chloride. The bound protein was eluted using TBS buffer containing 250 mM
imidazole and 2 mM calcium chloride. The solution was dialyzed with TBS to remove the
imidazole, and then concentrated using an Amicon centrifugal filter device and stored in 50%
(v/v) glycerol at ∼ 20◦C. The concentrations of the protein stock solutions were determined to
be ∼ 5 mg/mL by absorption spectrophotometry.

1.3 Expression and Purification of Coh-CBM and mutated Coh-CBM C63S
The Coh-CBM (C63S) fusion protein was expressed in E. coli BL21(DE3) RIPL in kanamycin
and chloramphenicole containing ZYM-5052 media3 overnight at 22◦C. After harvesting, cells
were lysed using sonication. The lysate was then pelleted, and the supernatant fluids were
applied to a Ni-NTA column and washed with TBS buffer. The bound protein was eluted using
TBS buffer containing 200 mM imidazole. Imidazole was removed with a polyacrylamide gravity
flow column. The protein solution was concentrated with an Amicon centrifugal filter device
and stored in 50% (v/v) glycerol at −80◦C. The concentrations of the protein stock solutions
were determined to be ∼ 5 mg/mL by absorption spectrophotometry.

1.4 Sample Preparation
Cantilevers and cover glasses were functionalized according to previously published protocols4.
Briefly, cantilevers and cover glasses were cleaned by UV-ozone treatment and piranha solution,
respectively. Levers and glasses were silanized using (3-aminopropyl)-dimethyl-ethoxysilane
(APDMES) to introduce surface amine groups. Amine groups on the cantilevers and cover
glasses were subsequently conjugated to a 5 kDa NHS-PEG-Mal linker in sodium borate
buffer. Disulfide-linked dimers of the Xyl-XMod-Doc proteins were reduced for 2 hours at room
temperature using a TCEP disulfide reducing bead slurry. The protein/bead mixture was rinsed
with TBS measurement buffer, centrifuged at 850 rcf for 3 minutes, and the supernatant was
collected with a micropipette. Reduced proteins were diluted with measurement buffer (1:3
(v/v) for cantilevers, and 1:1 (v/v) for cover glasses), and applied to PEGylated cantilevers and
cover glasses for 1 h. Both cantilevers and cover glasses were then rinsed with TBS to remove

2
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unbound proteins, and stored under TBS prior to force spectroscopy measurements. Site specific
immobilization of the Coh-CBM-ybbR fusion proteins to PEGylated cantilevers or coverglasses
was carried out according to previously published protocols5. Briefly, PEGylated cantilevers or
coverglasses were incubated with Coenzyme A (CoA) (20 mM) stored in coupling buffer for 1h
at room temperature. Levers or surfaces were then rinsed with TBS to remove unbound CoA.
Coh-CBM-ybbR fusion proteins were then covalently linked to the CoA surfaces or levers by
incubating with Sfp phosphopantetheinyl transferase for 2 hours at room 37◦. Finally, surfaces
or levers were subjected to a final rinse with TBS and stored under TBS prior to measurement.

1.5 Single Molecule Force Spectroscopy Measurements
SMFS measurements were performed on a custom built AFM controlled by an MFP-3D
controller from Asylum Research running custom written Igor Pro (Wavemetrics) software.
Cantilever spring constants were calibrated using the thermal noise / equipartition method. The
cantilever was brought into contact with the surface and withdrawn at constant speed ranging
from 0.2–6.4 µm/s. An x-y stage was actuated after each force-extension trace to expose the
molecules on the cantilever to a new molecule at a different surface location with each trace.
Typically 20,000–50,000 force-extension curves were obtained with a single cantilever in an
experimental run of 18-24 hours. A low molecular density on the surface was used to avoid
formation of multiple bonds. While the raw datasets contained a majority of unusable curves
due to lack of interactions or nonspecific adhesion of molecules to the cantilever tip, select
curves showed single molecule interactions with CBM and Xyn unfolding length increments.
We sorted the data using a combination of automated data processing and manual classification
by searching for contour length increments that matched the lengths of our specific protein
fingerprint domains: the xylanase (∼89 nm) and the CBM (∼56 nm). After identifying these
specific traces, we measured the loading rate dependency of the final Doc:Coh ruptures based
on bond history.

1.6 Data Analysis
Data were analyzed using slight modifications to previously published protocols4;6;7. Force
extension traces were transformed into contour length space using the QM-FRC model with
bonds of length b = 0.11 nm connected by a fixed angle γ = 41◦ and and assembled into barrier
position histograms using cross-correlation. For the loading rate analysis, the loading rate at
the point of rupture was extracted by applying a line fit to the force vs. time trace in the
immediate vicinity prior to the rupture peak. The loading rate was determined from the slope
of the fit. The most probable rupture forces and loading rates were determined by applying
probability density fits to histograms of rupture forces and loading rates at each pulling speed.

1.7 Molecular Dynamics Simulations
Connecting dynamics to structural data from diverse experimental sources, molecular dynamics
simulations allow one to explore off-equilibrium properties of protein structure complexes in
unparalleled detail8. More specifically, molecular dynamics simulations have always been viewed
as a general sampling method for the study of conformational changes9. The structure of the
XMod-Doc:Coh complex had been solved by means of X-ray crystallography at 1.97Å resolution
and is available at the protein data bank (PDB:4IU3). The system was then solvated and the net
charge of the protein and the calcium ions was neutralized using sodium atoms as counter-ions,

3
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which were randomly arranged in the solvent. Total system size was approximately 580k atoms.
The MD simulations in the present study were performed employing the molecular dynamics
package NAMD10;11. The CHARMM36 force field12;13 along with the TIP3 water model14 was
used to describe all systems. The simulations were carried out assuming periodic boundary
conditions in the NpT ensemble with temperature maintained at 300 K using Langevin dynamics
for pressure, kept at 1 bar, and temperature coupling. A distance cut-off of 11.0 Å was applied to
short-range, non-bonded interactions, whereas long-range electrostatic interactions were treated
using the particle-mesh Ewald (PME)15 method. The equations of motion were integrated using
the r-RESPA multiple time step scheme11 to update the van der Waals interactions every two
steps and electrostatic interactions every four steps. The time step of integration was chosen
to be 2 fs for all simulations performed. The first two nanoseconds of the simulations served
to equilibrate systems before the production runs, which varied from 200 ns to 1.3 µs in the
different simulations. To characterize the coupling between dockerin and cohesin, we performed
SMD simulations16 of constant velocity stretching (SMD-CV protocol) with pulling speed of
0.25 Å/ns. In all simulations, SMD was employed by restraining the position of one end of the
XMod-Doc domain harmonically, and moving a second restraint point, at the end of the Coh
domain, with constant velocity in the desired direction. The procedure is equivalent to attaching
one end of a harmonic spring to the end of a domain and pulling on the other end of the spring.
The force applied to the harmonic pulling spring is then monitored during the time of the
molecular dynamics simulation. All analyses of MD trajectories were carried out employing
VMD17 and its plugins. Surface contact areas of interacting residues were calculated employing
Volarea18 implemented in VMD. The area is calculated using a probe radius defined as an in
silico rolling sphere that is scanned around the area of the dockerin exposed to the cohesin
and also the cohesin area exposed to the dockerin. The Network View plugin19 on VMD17 was
employed to perform dynamical network analysis. A network was defined as a set of nodes, all
α-carbons, with connecting edges. Edges connect pairs of nodes if corresponding monomers are
in contact, and 2 nonconsecutive monomers are said to be in contact if they fulfill a proximity
criterion, namely any heavy atoms (nonhydrogen) from the 2 monomers are within 4.5 Å of
each other for at least 75% of the frames analyzed. As suggested by Sethi et al.20, nearest
neighbors in sequence are not considered to be in contact as they lead to a number of trivial
suboptimal paths. The dynamical networks were constructed from 20 ns windows of the total
trajectories sampled every 400 ps. The probability of information transfer across an edge is
set as wij = −log (| Cij |), where Cij is the correlation matrix calculated with Carma21. Using
the Floyd-Warshall algorithm, the suboptimal paths were then calculated. The tolerance value
used for any path to be included in the suboptimal path was −log (0.5) = 0.69. To calculate
the relevance of off-diagonal terms in the correlation matrix we employed Carma to calculate a
correlation matrix where x, y, z components of each atom were considered independently.

2 Protein Sequences
Sequences of protein constructs used in this work are listed here. Domains as well as engineered
tags and residues are color-coded.

2.1 HIS-Xyn(T128C)-XDoc
X-module
Dockerin type III

4
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Xylanase
Linker or extra residues

M S H H H H H H K N A D S Y A K K P H I S A L N A P Q L D Q R Y K N E F T I G A
A V E P Y Q L Q N E K D V Q M L K R H F N S I V A E N V M K P I S I Q P E E G K
F N F E Q A D R I V K F A K A N G M D I R F H T L V W H S Q V P Q W F F L D K E
G K P M V N E C D P V K R E Q N K Q L L L K R L E T H I K T I V E R Y K D D I K
Y W D V V N E V V G D D G K L R N S P W Y Q I A G I D Y I K V A F Q A A R K Y G
G D N I K L Y M N D Y N T E V E P K R T A L Y N L V K Q L K E E G V P I D G I G
H Q S H I Q I G W P S E A E I E K T I N M F A A L G L D N Q I T E L D V S M Y G
W P P R A Y P T Y D A I P K Q K F L D Q A A R Y D R L F K L Y E K L S D K I S N
V T F W G I A D N H T W L D S R A D V Y Y D A N G N V V V D P N A P Y A K V E K
G K G K D A P F V F G P D Y K V K P A Y W A I I D H K V V P N T V T S A V K T Q
Y V E I E S V D G F Y F N T E D K F D T A Q I K K A V L H T V Y N E G Y T G D D
G V A V V L R E Y E S E P V D I T A E L T F G D A T P A N T Y K A V E N K F D Y
E I P V Y Y N N A T L K D A E G N D A T V T V Y I G L K G D T D L N N I V D G R
D A T A T L T Y Y A A T S T D G K D A T T V A L S P S T L V G G N P E S V Y D D
F S A F L S D V K V D A G K E L T R F A K K A E R L I D G R D A S S I L T F Y T
K S S V D Q Y K D M A A N E P N K L W D I V T G D A E E E

2.2 Coh-CBM(C2A,C63S)-HIS-ybbR
CohIII
CBM (C2A, C63S)
ybbR-Tag
Linker or extra residues

M G T A L T D R G M T Y D L D P K D G S S A A T K P V L E V T K K V F D T A A D
A A G Q T V T V E F K V S G A E G K Y A T T G Y H I Y W D E R L E V V A T K T G
A Y A K K G A A L E D S S L A K A E N N G N G V F V A S G A D D D F G A D G V M
W T V E L K V P A D A K A G D V Y P I D V A Y Q W D P S K G D L F T D N K D S A
Q G K L M Q A Y F F T Q G I K S S S N P S T D E Y L V K A N A T Y A D G Y I A I
K A G E P G S V V P S T Q P V T T P P A T T K P P A T T I P P S D D P N A M A N
T P V S G N L K V E F Y N S N P S D T T N S I N P Q F K V T N T G S S A I D L S
K L T L R Y Y Y T V D G Q K D Q T F W S D H A A I I G S N G S Y N G I T S N V K
G T F V K M S S S T N N A D T Y L E I S F T G G T L E P G A H V Q I Q G R F A K
N D W S N Y T Q S N D Y S F K S A S Q F V E W D Q V T A Y L N G V L V W G K E P
G E L K L P R S R H H H H H H G S L E V L F Q G P D S L E F I A S K L A

2.3 CBM(T2C)-Coh-HIS
CBM (T2C)
CohIII
Linker or extra residues

M C N T P V S G N L K V E F Y N S N P S D T T N S I N P Q F K V T N T G S S A I
D L S K L T L R Y Y Y T V D G Q K D Q T F W C D H A A I I G S N G S Y N G I T S

5
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N V K G T F V K M S S S T N N A D T Y L E I S F T G G T L E P G A H V Q I Q G R
F A K N D W S N Y T Q S N D Y S F K S A S Q F V E W D Q V T A Y L N G V L V W G
K E P G G S V V P S T Q P V T T P P A T T K P P A T T I P P S D D P N A M A L T
D R G M T Y D L D P K D G S S A A T K P V L E V T K K V F D T A A D A A G Q T V
T V E F K V S G A E G K Y A T T G Y H I Y W D E R L E V V A T K T G A Y A K K G
A A L E D S S L A K A E N N G N G V F V A S G A D D D F G A D G V M W T V E L K
V P A D A K A G D V Y P I D V A Y Q W D P S K G D L F T D N K D S A Q G K L M Q
A Y F F T Q G I K S S S N P S T D E Y L V K A N A T Y A D G Y I A I K A G E P L
E H H H H H H

3 Supplementary Discussion
The Pearson correlation matrices of the Xmod-Doc:Coh complex before and after applying force
in the native pulling configuration are presented in Supplementary Figure S3 and S4, respectively.
For the unloaded complex, movements within Doc domain are seen to be highly correlated,
while XMod is seen to be divided into two anti-correlated sub-domains, one comprising the
β-sheet fragment close to the N-terminus (residues 5-15 and 45-66) and the other constituting
the rest of the domain. Intra-domain correlations of Coh exhibit more a complex pattern to
which both secondary (anti-parallel β-strands and β-sheet at the binding interface) and tertiary
structure (vicinity of C- and N-termini) contribute. Some of the inter-domain correlations in
the complex originate from spatial vicinity and direct interactions, specifically at the Doc:Coh
binding interface and at XMod contacts with Doc inserts. However, coupling between distant
parts of the complex is also present. For example, fluctuations of the non-binding part of Coh
are correlated with the N-terminal part of XMod and strongly anti-correlated with Doc domain.

4 Supplementary Notes
4.1 Constant Barrier Distance Model
The constant barrier distance model16, also referred to as the Bell-Evans model22, is commonly
used to estimate the distance to the transition state ∆x and the natural off-rate k0 of mechanically
induced receptor ligand dissociation from single-molecule force spectroscopy experiments. It
predicts that the most probable rupture force 〈F 〉 is linearly dependent on the logarithm of the
force loading rate16:

〈F (r)〉 = kBT

∆x ln ∆x · r
k0kBT

(S1)

where kB is Boltzmann’s constant, T is the temperature and r is the loading rate at the point
of rupture.

The probability density distribution of rupture forces at given loading rate r in this model is
given as16:

p (F ) = k0
r

exp
[ ∆x
kBT

F − k0 · kBT
∆x · r

(
e

∆x
kBT

F − 1
)]

(S2)

6
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4.2 Dudko-Hummer-Szabo Model
The Dudko-Hummer-Szabo (DHS)23;24 model describes a non-linear dependence for the most
probable rupture force on loading rate:

〈F (r)〉 = ∆G
ν∆x

{
1−

[
kBT

∆G ln
(
kBTk0
∆xr e

∆G
kBT

+γ
)]ν}

(S3)

where ∆G is the free energy of activation and γ = 0.577 is the Euler-Mascheroni constant. The
model parameter ν defines the single-well free-energy surface model used (ν = 2

3 for linear-cubic
and 1

2 for cusp free-energy. For ν = 1 and ∆G→∞ independent of ν the Eqs. (S1) and (S2)
are recovered.

4.3 Pearson Correlation and covariance matrix
4.3.1 Validation

An N ×N matrix of Pearson correlation coefficients Cij (Supporting Eq. S4) was calculated
from each atom’s x, y, z position throughout the simulation trajectory, which inherently ignores
off-diagonal elements of the atomic 3 × 3 submatrices Dmn

ij from the full normalized 3N ×
3N covariance matrix (i.e., correlations along orthogonal axes are neglected, see Supporting
Eqs. (S5) and (S6)) and Supporting Fig S8.

Although this quasi-harmonic approximation is commonly employed in correlation analy-
sis19;25–29, it is not a priori justified for complicated biomolecular interactions30. To validate
the use of Pearson correlations, we therefore first analyzed independently the contributions
from diagonal and off-diagonal elements of each 3 x 3 covariance submatrix for each pair of
α-carbons within the structure (Fig. S9A and B). Both with and without applied force, the
off-diagonal elements roughly follow Gaussian distributions centered around a correlation value
of 0. Interestingly, as force was applied, the standard deviation of the distribution of off-diagonal
correlation values decreased from σunloaded = 0.45 to σloaded = 0.29. This indicated a lesser
influence of off-diagonal elements on the highly (anti-)correlated motion within the system
under force (see Supporting Discussion 3). The diagonal elements of the sub-matrices that are
used for calculating the Pearson correlation values showed a dramatically different behavior.
Both in the unloaded and loaded state, the resulting distributions were strongly shifted towards
highly correlated motion, and the shape of the distribution remained mostly unchanged after
application of force. Since our analysis relies on the identification of paths of highest correlation
through proximate residues, the quasi-harmonic approximation implied by the use of Pearson
correlation is justified, especially for suboptimal pathway analysis. The resulting distributions of
on- and off-diagonal matrix elements of each covariance submatrix for the loaded configuration
HF class (Fig. S10A) and LF class (Fig. S10B) exhibited the same characteristics as previously
described for the native configuration, with off-diagonal elements showing symmetric correlations
around zero and diagonal elements showing highly correlated motions.

4.3.2 Supplementary Equations

The Pearson correlation coefficient Cij used in our dynamical network analysis protocol is given
by:

Cij = 〈∆ri (t) ·∆rj (t)〉(〈
∆ri (t)2

〉〈
∆rj (t)2

〉) 1
2

(S4)

7

128 A. Supporting information



where ∆ri (t) = ri (t)− 〈ri (t)〉.
The full 3N × 3N covariance matrix Mij for atoms i and j consists of 3× 3 submatrices of

the form: 〈
∆ri (t) ∆rj (t)T

〉
= Mij =

 Mxx
ij Mxy

ij Mxz
ij

Myx
ij Myy

ij Myz
ij

M zx
ij M zy

ij M zz
ij

 (S5)

The full normalized correlation matrix is calculated from Mij :

Dmn
ij =

Mmn
ij√

Mmm
ij Mnn

ij

(S6)

Consequently, the Pearson correlation coefficient is calculated as the trace of the normalized
3× 3 submatrices (Cij = TrDij).

4.3.3 Derivation of Main Text Equation 2

Eq. 1 from the main text reads: 〈
∆ri∆rTj

〉
= kBT

∂rj
∂Fi

(S7)

Combining Eqs. (S7) and (S4) yields:

Cij = kBT
∂rj
∂Fi
·
(〈

∆r2
i (t)

〉〈
∆r2

j (t)
〉)− 1

2 (S8)

For an arbitrary potential Ui (r) of atom i, a Taylor expansion around the potential minimum
(set to be at 0) yields:

Ui (r) = 0 + rTi ∇U (0)︸ ︷︷ ︸
=0

+1
2rTi H (0) ri + ... (S9)

where H (0) is the Hessian matrix evaluated at the potential minimum. Assuming Schwarz’
theorem holds for Ui (r), H (0) is a symmetric matrix and therefore has real eigenvalues and
orthonormal eigenvectors. Hence, a change to the eigenbasis of H (0) is a rotation of the
coordinate system. In this new basis the Hessian is diagonal:

H (0)→ H ′ (0) =

kx′ 0 0
0 ky′ 0
0 0 kz′

 (S10)

This yields a simple expression for the second order term in Eq. (S9):

Ui
(
r′
)

= 1
2r′TH ′ (0) r′ = 1

2
(
kx′x

′2 + ky′y
′2 + kz′z

′2
)

(S11)

Now we inspect the normalization of Cij :

〈∆r2
i (t)〉 = 〈r2

i (t)− 2ri (t) 〈ri (t)〉+ 〈ri (t)〉2〉 (S12)

8
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In the harmonic approximation of the potential of atom i, 〈ri (t)〉 = 0, and therefore 〈∆ri (t)2〉 =
〈r2
i (t)〉. In the basis of H ′ (0) this becomes:

〈r′2i (t)〉 = 〈x′i (t)2 + y′i (t)2 + z′i (t)2〉 = 〈x′i (t)2〉+ 〈y′i (t)2〉+ 〈z′i (t)2〉 (S13)

Applying the equipartition theorem to this result yields:

〈x′i (t)2〉 = kBT

k′xi

(S14)

And therefore:
〈∆r′i (t)2〉 = kBT

(
1
k′xi

+ 1
k′yi

+ 1
k′zi

)
= kBT

k′i,eff
(S15)

Plugging this result into Eq. (S8), one finds:

Cij = kBT
∂rj
∂Fi
·
(
kBT

k′i,eff

)− 1
2 (
〈∆rj (t)2〉

)− 1
2 (S16)

Repeating the above steps for atom j yields the final result:

Cij = kBT
∂rj
∂Fi
·
(
kBT

k′i,eff

)− 1
2
(
kBT

k′j,eff

)− 1
2

(S17)

= ∂rj
∂Fi
·
√
k′i,eff · k′j,eff (S18)

5 Supplementary Figures

9
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Fig. S1: SMFS of the non-native low force curve class. A Typical unfolding fingerprints. All traces
showed a characteristic Xyn fingerprint (blue). A 17 − 19 nm increment corresponding to partial N-
terminal Coh unfolding (orange) occurs either prior to Xyn unfolding (traces 1-4), or just before complex
rupture (trace 5). It was observed as a single event (traces 1,3 and 5) or showed substructure (traces
2 and 4). B Traces were grouped and assembled into contour length histograms. One or more of the
unassigned increments combined into a 17− 19 nm increment.
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Fig. S2: Comparing the native geometry with the non-native high force class. Two exclude uncertainties in
cantilever calibration when comparing the native geometry with the non-native HF class, we immobilized
both Coh-CBM (native) and CBM-Coh (non-native) on two spatially separated spots on a single cover
glass. These spots where then alternately probed with the same Xyn-XMod-Doc functionalized cantilever.
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Fig. S3: Heat maps of the Pearson Correlation coefficient (Cij) of the unloaded Xmod-Doc:Coh complex.
α-helices and β-strands are highlighted with brown and orange rectangles, respectively. Black circles
indicate binding residues from the Coh and Doc binding interface.
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Fig. S4: Heat maps of the Pearson Correlation coefficient (Cij) of the Xmod-Doc:Coh complex loaded
with force in the native pulling geometry. α-helices and β-strands are highlighted with brown and orange
rectangles, respectively. Black circles indicate binding residues from Coh and Doc binding interfaces and
orange circles represent residues on the force propagation path.
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Fig. S5: Force propagation pathway through the loaded XMod-Doc:Coh complex in the native pulling
geometry (N-terminal pulling of Xmod-Doc, C-terminal pulling of Coh) obtained from dynamical network
analysis. Residues belonging to Xmod, Doc and Coh are colored in yellow, red and blue, respectively.
Connecting lines between residues represent edges identified in our Network Analysis protocol and
constitute the suboptimal paths between the pulling points. Edge thickness represents the number of
suboptimal paths going through the edge.
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Fig. S7: Force propagation pathway through the loaded XMod-Doc:Coh complex in the non-native
pulling geometry (N-terminal pulling of Xmod-Doc, N-terminal pulling of Coh) showing low-force
unbinding characteristics and partial N-terminal Coh unfolding. Residues belonging to Xmod, Doc and
Coh are colored in yellow, red and blue, respectively. Connecting lines between residues represent edges
identified in our Network Analysis protocol and constitute the suboptimal paths between the pulling
points. Edge thickness represents the number of suboptimal paths going through the edge.
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Fig. S8: Full unnormalized covariance Matrix Mij for a five atom system from which the full normalized
covariance matrix is calculated according to Eq. (S6). On- and off-diagonal elements from one of the
atomic submatrices are highlighted in yellow and blue, respectively.
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Fig. S9: Histograms showing contributions of diagonal and off-diagonal terms of the full covariance
matrix elements fulfilling proximity criteria for A, the native unloaded, and B the native loaded, scenario.
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Fig. S10: Histograms showing contributions of diagonal and off-diagonal terms of the full covariance
matrix elements fulfilling proximity criteria for A, the non-native HF, and B the non-native LF, scenario.
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4IU3 EGK.YATTGYHIYWDER.LEVVATK..TG....AY.AKKGAALED...SS...LAKAENN 104
2ZF9 ADK.YAATGLHIQFDPK.LKLIPDE..DG....AL.ATAGRAARL...LE...LKKAEAD 97
4N2O DXQ.WNXCGIHIIYPDI.LKPEXK...DP.EERTVAFQKGDALEA...AT...GIVCXEW 106
1ANU PSKGIANCDFVFRYDPNVLEIIG.............IDPGDII.VDP..NPTKSFDTAIY 69
1TYJ T.N.FSGYQFNIKYNTTYLQPWDTIADEAYT.DSTMPDYGTLLQGR..FNA..TDMSKHN 80
2B59 K.N.FAGFQVNIVYDPKVLMAVDPETGKEFT.SSTFPPGRTVLKNN.AYGP..IQIADND 83
conservation ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

↑ ↑ ↑ ↑↑ ↑ ↑ ↑↑↑

4IU3 .G............NGVFVASGA...DD...D....FG.ADGVXWTVELKVPADAKAGDV 140
2ZF9 TD............NSFFTATGS...ST...N....NG.KDGVLWSFVLQVPADAQPGDK 134
4N2O .QEGLPPVLTENKKGCLFLTAXF...SG...N....QG.GEGDXATFRFKVPDNAEPGAV 154
1ANU PD.R..........KIIVFLFAEDSGTG.AY.....AITKDGVFAKIRATVKSSA....P 108
1TYJ LS.Q..........GVLNFGRLY..MNLSAYRASGKPE.STGAVAKVTFKVIKEIPA..E 124
2B59 PE.K..........GILNFALAY..SYIAGYKETGVAE.ESGIIAKIGFKILQKK....S 125
conservation ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

↑ ↑ ↑↑ ↑

4IU3 .YP.IDVAYQWDPSKG.D.....LFTDNKDSAQGKLXQA.Y.FFTQGIKSSSNPSTDEYL 190
2ZF9 .YD.VQVAYQSRTTNE.D.....LFTNVKKDEEGLLXQA.W.TFTQGIE........... 173
4N2O .YN.LGYYYXN..T...D.....LFINEQNI...PTYQK.Y.AFTH.XE........... 185
1ANU .GY.ITFD............EVGGFADNDLV...E..QK...V..S.FI........... 132
1TYJ GIKLATFENGS..SMNNAVDGT.MLFDWDGN...M..YSSSAY..K.VV........... 162
2B59 .TA.VKFQDTL..SMPGAISGT.QLFDWDGE...V..IT.G.Y..E.VI........... 159
conservation ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

↑↑ ↑ ↑↑↑

4IU3 VKANATYADGY.I.AIKA 206
2ZF9 ........QGY.I.QVES 181
4N2O ........GGT.I.TVEL 193
1ANU ........DGG.VNV... 138
1TYJ ........QPGLI.YPK. 170
2B59 ........QPDVL.SL.. 166
conservation ••••••••••••••••••

1

Fig. S11: Structure-aligned sequences of six crystallized cohesins. Residues on the force propagation
path are highlighted in yellow. Arrows indicate binding residues. Residue conservation is color-coded
from blue - lack of conservation, to red - residue fully conserved. Crystal structures used: 4IU3 ScaE Rf
FD-1, 2ZF9 ScaE Rf strain 17, 4N2O CohG Rf FD-1, 1ANU CohC2 CipC Ct, 1TYJ CohA11 ScaA Bc,
2B59 SdbA Ct.
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Fig. S12: Structure and sequence conservation of the force propagation pathway residues in Coh. CohE
from the ScaE cell anchoring protein, Rf FD-1 used in this work (PDB 4IU3) is highlighted in green.
Highly homologous structures of CohE from Rf strain 17 (PDB 2ZF9) and Coh G from Rf FD-1 (PDB
4A2O) are colored in orange and yellow, respectively. Residues lying in the force propagation path are
shown as sticks. XDoc from the CttA Rf FD-1 scaffold used in this work is shown in gray.

18

A.3 Supporting information to publication P6 139



References
[1] Orly Salama-Alber, Maroor K Jobby, Seth Chitayat, Steven P Smith, Bryan A White, Linda

J W Shimon, Raphael Lamed, Felix Frolow, and Edward A Bayer. Atypical cohesin-dockerin
complex responsible for cell-surface attachment of cellulosomal components: binding fidelity,
promiscuity, and structural buttresses. J. Biol. Chem., 288(23):16827–16838, April 2013.

[2] Constantin Schoeler, Klara H Malinowska, Rafael C Bernardi, Lukas F Milles, Markus A
Jobst, Ellis Durner, Wolfgang Ott, Daniel B Fried, Edward A Bayer, Klaus Schulten,
Hermann E Gaub, and Michael A Nash. Ultrastable cellulosome-adhesion complex tightens
under load. Nat. Commun., 5:1–8, December 2014.

[3] F William Studier. Protein production by auto-induction in high-density shaking cultures.
Protein Expres. Purif., 41(1):207–234, May 2005.

[4] Markus A Jobst, Constantin Schoeler, and Michael A Nash. Investigating receptor-ligand
systems of the cellulosome with AFM-based single-molecule force spectroscopy. J. Vis.
Exp., 82(82):e50950, 2013.

[5] Jun Yin, Alison J Lin, David E Golan, and Christopher T Walsh. Site-specific protein
labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc., 1(1):280–285, June 2006.

[6] Stefan W Stahl, Michael A Nash, Daniel B Fried, Michal Slutzki, Yoav Barak, Edward A
Bayer, and Hermann E Gaub. Single-molecule dissection of the high-affinity cohesin-
dockerin complex. Proc. Natl. Acad. Sci. U.S.A., 109(50):20431–20436, December 2012.

[7] Elias M Puchner, Gereon Franzen, Mathias Gautel, and Hermann E Gaub. Comparing
proteins by their unfolding pattern. Biophys. J., 95(1):426–434, July 2008.

[8] Juan R Perilla, Boon Chong Goh, C Keith Cassidy, Bo Liu, Rafael C Bernardi, Till
Rudack, Hang Yu, Zhe Wu, and Klaus Schulten. Molecular dynamics simulations of large
macromolecular complexes. Curr. Opin. Struct. Biol., 31:64–74, 2015.

[9] R C Bernardi, M C R Melo, and K Schulten. Enhanced sampling techniques in molecular
dynamics simulations of biological systems. Biochim. Biophys. Acta, 1850(5):872–877,
2015.
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remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc. Natl.

Acad. Sci. U.S.A., 106(33), 13791–13796.

[130] Jobst, M.A., Schoeler, C., Malinowska, K., and Nash, M.A. (2013). Investigating



154 Bibliography

receptor-ligand systems of the cellulosome with AFM-based single-molecule force spec-

troscopy. J. Vis. Exp., 82, e50950.

[131] Otten, M., Ott, W., Jobst, M.A., Milles, L.F., Verdorfer, T., et al. (2014). From genes

to protein mechanics on a chip. Nat. Methods, 11(11), 1127–1130.

[132] Xu, J. and Smith, J.C. (2010). Probing the mechanism of cellulosome attachment to

the Clostridium thermocellum cell surface: computer simulation of the Type II cohesin-

dockerin complex and its variants. Protein Eng. Des. Sel., 23(10), 759–768.

[133] Wojciechowski, M., Thompson, D., and Cieplak, M. (2014). Mechanostability of

cohesin-dockerin complexes in a structure-based model: Anisotropy and lack of uni-

versality in the force profiles. J. Chem. Phys., 141(24), 245103.

[134] Chwastyk, M., Galera-Prat, A., Sikora, M., Gómez-Sicilia, À., Carrión-Vázquez, M.,
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160 Bibliography

response of silk crystalline units from force-distribution analysis. Biophys. J., 96(10),

3997–4005.

[225] Nash, M.A., Verdorfer, T., and Malinowska, K.H. (2015). Method of determining the

degradation of cellulosic materials. World patent application WO2015091772 A1.

[226] Malinowska, K. and Nash, M.A. (2016). Enzyme- and affinity biomolecule-mediated

polymerization systems for biological signal amplification and cell screening. Curr.

Opin. Biotechnol., 39, 68–75.

[227] Zakeri, B., Fierer, J.O., Celik, E., Chittock, E.C., Schwarz-Linek, U., et al. (2012).

Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial

adhesin. Proc. Natl. Acad. Sci. U.S.A., 109(12), 690–697.

[228] Warden-Rothman, R., Caturegli, I., Popik, V., and Tsourkas, A. (2013). Sortase-Tag

Expressed Protein Ligation: Combining Protein Purification and Site-Specific Biocon-

jugation into a Single Step. Anal. Chem., 85(22), 11090–11097.

[229] Katsumi, A., Orr, A.W., Tzima, E., and Schwartz, M.A. (2004). Integrins in Mechan-

otransduction. J. Biol. Chem., 279(13), 12001–12004.

[230] Rognoni, L., Stigler, J., Pelz, B., Ylänne, J., and Rief, M. (2012). Dynamic force

sensing of filamin revealed in single-molecule experiments. Proc. Natl. Acad. Sci. U.S.A.,

109(48), 19679–19684.

[231] Austen, K., Ringer, P., Mehlich, A., Chrostek-Grashoff, A., Kluger, C., et al. (2015).

Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell

Biol., 17(12), 1597–1606.

[232] Echelman, D.J., Alegre-Cebollada, J., Badilla, C.L., Chang, C., Ton-That, H., et al.

(2016). CnaA domains in bacterial pili are efficient dissipaters of large mechanical

shocks. Proc. Natl. Acad. Sci. U.S.A., 113(9), 2490–2495.





162



List of Figures

1.1 The structure of lignocellulosic biomass . . . . . . . . . . . . . . . . . . . . . 6

1.2 Structure of microcrystalline cellulose . . . . . . . . . . . . . . . . . . . . . . 7

1.3 “Free” enzyme and cellulosome paradigms of cellulose decomposition . . . . . 8

1.4 Schematic representation of C. thermocellum cellulosome . . . . . . . . . . . . 10

1.5 Comparison of cohesin structures . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Comparison of dockerin structures . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Overview of hydrogel reagent signaling system . . . . . . . . . . . . . . . . . . 17

1.8 Mechanical stability of cohesin domains . . . . . . . . . . . . . . . . . . . . . 19

1.9 Force spectroscopy of the type I cohesin-dockerin interaction . . . . . . . . . 20

1.10 Catch bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.11 Atomic force microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.12 Energy landscape of a of a receptor ligand bond . . . . . . . . . . . . . . . . . 25

3.1 Schematic representatoion of R. flavefaciens cellulosome . . . . . . . . . . . . 101



164 Acknowledgments



Acknowledgments

I wanted to thank all the people that helped me not only to finish this work, but also to have

an amazing time doing so:

My supervisors

Prof. Hermann Gaub for encouraging supervision, expertise, contacts to the scientific com-

munity resulting in fruitful collaborations, abundant opportunities to travel, and for

creating the dynamic, inspiring and friendly atmosphere in the group.

Prof. Michael Nash For his day-to-day engagement in every step of research projects, stimu-

lating creativity and innovation among the students, maintaining a personal connection

with the group, as well as for the productivity tips and the unforgeable motivation

speech in August 2012.

The NashCats

Collectively for fun and friendly atmosphere, willingness to help with any problems of scien-

tific, technical or organizational nature and for the ingenious office decorations.

Constantin for all the work we did together including long hours in the Keller, for the positive

ranting and for being the best colleague and a genuine friend from the day one.

Elliiis for building, improving and fixing instruments (and more), and for making me feel

better when I procrastinate.

Lukas for his indispensable analysis software, his broad knowledge and for testing myriad of

proteins that could be interesting.

Markus for his enthusiasm for good science and care for detail, and his tasty home-brewed

beer.

Tobias for the work we did together, for his candid opinions on things, amazing stories and

for being the fun person to be around.

Wolfgang for his broad expertise and willingness to share it, taking a lot of responsibility for

the functioning of the chem lab, for fun time in Israel and his universal skepticism.

The Gambi Crew

En masse for making LS Gaub the most welcoming, lively and inspiring place.

Angelika for impeccable work involved in keeping the lab running, technical help and teaching

me the basic biochemical techniques.

Aylin, Thomas & Victor for their hard work on the hydrogel project and resulting papers

that are the part of this thesis.



166 Acknowledgments

Daniela for the first-hand know-how on how to write and defend a always jumping into action

when necessary to make the Lehrstuhl run smoothly.

Diana for the patience to answer questions in the chemistry lab, and sizable organizational

effort in the lab upstairs.

Katy for help with many protocols and the little lab tricks, her language expertise and for

all the friendly chats that made working here so much more enjoyable.

Phillip for the abundant sweet treats, notably the muffins, ans some refreshing sarcasm.

Sabine & Sylvia for all the organizational help that I can not be appreciate enough and for

tending to all the students with much needed care.

Tom for uncountable surfaces, invaluable help with protein purification and for energizing

music in the chem lab.

Collaborators

Rafael for all the SMD results, amazing graphic in unreasonably high resolution and for

supplying computational proof that Schnitzel goes well with corn.

Prof. Klaus Schulten for serving as a role model and allowing me the inspiring visit in

Urbana-Champagne.

Prof. Ed Bayer for his unmatched knowledge of cellulosomes, foremost scientific intuition

and his contagious positive energy.

And all the others

Lipfert Lab people for being great colleagues to have around.

CeNS and NIM staff, and Dr. Susanne Hennig and Marilena Pinto in particular, for their

organizational support.

Henrik for all the adventures he is always willing to participate in, for Kaiserschmarrn and

for his never-ending enthusiasm for life.

Jochanna for being the dream flatmate, reliable friend in times of need and the most fun

person to hang around with.

Nikolai for many great undertakings, for being an indulgent tent-mate and for always making

sure the extra food finds a good use.

Asia, Anita & Monika for a little bubble of Warsaw in Germany.

Janek for encouraging me to come here in the first place.

My polish friends to whom I always can come back: Tomek & Marta, Kamil, Karol & Jola,

Mateusz, Ula, Piotr, Maciek, and all my highshool and university buddies.

My parents for years of encouragement on my scientific track and for not asking ”how the

thesis is going“ too often.





Ich versichere, diese Arbeit selbstständig angefertigt und dazu nur die
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