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Summary

In recent years, the sequencing of RNA (RNA-seq) using next generation sequencing (NGS)
technology has become a powerful tool for analyzing the transcriptomic state of a cell.
Modern NGS platforms allow for performing RNA-seq experiments in a few days, resulting
in millions of short sequencing reads. A crucial step in analyzing RNA-seq data generally
is determining the transcriptomic origin of the sequencing reads (= read mapping). In
principal, read mapping is a sequence alignment problem, in which the short sequencing
reads (30 - 500 nucleotides) are aligned to much larger reference sequences such as the
human genome (~3 billion nucleotides).

In this thesis, we present ContextMap, an RNA-seq mapping approach that evaluates
the context of the sequencing reads for determining the most likely origin of every read.
The context of a sequencing read is defined by all other reads aligned to the same genomic
region. The ContextMap project started with a proof of concept study, in which we showed
that our approach is able to improve already existing read mapping results provided by
other mapping programs. Subsequently, we developed a standalone version of ContextMap.
This implementation no longer relied on mapping results of other programs, but determined
initial alignments itself using a modification of the Bowtie short read alignment program.
However, the original ContextMap implementation had several drawbacks. In particular,
it was not able to predict reads spanning over more than two exons and to detect insertions
or deletions (indels). Furthermore, ContextMap depended on a modification of a specific
Bowtie version. Thus, it could neither benefit of Bowtie updates nor of novel developments
(e.g. improved running times) in the area of short read alignment software.

For addressing these problems, we developed ContextMap 2, an extension of the original
ContextMap algorithm. The key features of ContextMap 2 are the context-based resolution
of ambiguous read alignments and the accurate detection of reads crossing an arbitrary
number of exon-exon junctions or containing indels. Furthermore, a plug-in interface is
provided that allows for the easy integration of alternative short read alignment programs
(e.g. Bowtie 2 or BWA) into the mapping workflow. The performance of ContextMap 2
was evaluated on real-life as well as synthetic data and compared to other state-of-the-art
mapping programs. We found that ContextMap 2 had very low rates of misplaced reads
and incorrectly predicted junctions or indels. Additionally, recall values were as high as
for the top competing methods. Moreover, the runtime of ContextMap 2 was at least two
fold lower than for the best competitors.

In addition to the mapping of sequencing reads to a single reference, the ContextMap
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approach allows the investigation of several potential read sources (e.g. the human host
and infecting pathogens) in parallel. Thus, ContextMap can be applied to mine for infec-
tions or contaminations or to map data from meta-transcriptomic studies. Furthermore,
we developed methods based on mapping-derived statistics that allow to assess confidence
of mappings to identified species and to detect false positive hits. ContextMap was evalu-
ated on three real-life data sets and results were compared to metagenomics tools. Here,
we showed that ContextMap can successfully identify the species contained in a sample.
Moreover, in contrast to most other metagenomics approaches, ContextMap also provides
read mapping results to individual species. As a consequence, read mapping results deter-
mined by ContextMap can be used to study the gene expression of all species contained
in a sample at the same time. Thus, ContextMap might be applied in clinical studies, in
which the influence of infecting agents on host organisms is investigated.

The methods presented in this thesis allow for an accurate and fast mapping of RNA-
seq data. As the amount of available sequencing data increases constantly, these methods
will likely become an important part of many RNA-seq data analyses and thus contribute
valuably to research in the field of transcriptomics.



Zusammenfassung

In den letzten Jahren ist das Sequenzieren von RNA (RNA-Seq) mit Hilfe von Sequen-
zierungstechnologien der néchsten Generation (kurz als NGS-Technologien bezeichnet) zu
einer leistungsfahigen Methode bei der Analyse des transkriptionellen Zustandes einer Zelle
geworden. Moderne NGS-Technologien erlauben es, RNA-Seq-Experimente in wenigen
Tagen durchzufiithren. Hierbei werden die Sequenzen von Millionen von kurzen Fragmenten
abgelesen (engl. sequencing reads). Ein entscheidender Schritt bei der Analyse von RNA-
Seg-Daten ist im Allgemeinen die transkriptomische Herkunft dieser Reads zu bestimmen
(= Read-Mapping). Prinzipiell ist das Read-Mapping ein Sequenzalignment-Problem, bei
dem die kurzen Reads (30 - 500 Nukleotide) zu einer viel grofleren Referenzsequenz, wie
zum Beispiel das menschliche Genom (~ 3 Milliarden Nukleotide), aligniert werden.

In dieser Arbeit préasentieren wir ContextMap, ein RNA-Seq-Mapping-Ansatz, der den
Kontext der Reads evaluiert, um so die wahrscheinlichste Herkunft eines jeden Reads zu
bestimmen. Der Kontext eines Reads ist durch alle anderen Reads definiert, die in der gle-
ichen genomischen Region aligniert werden konnten. Das ContextMap-Projekt begann mit
einer Machbarkeitsstudie, in der wir gezeigt haben, dass unser Ansatz bereits existierende
Read-Mapping-Ergebnisse von anderen Programmen verbessern kann. Anschlielend haben
wir eine eigenstiandige Version von ContextMap entwickelt. Diese Implementierung war
nicht mehr von Mapping-Ergebnissen anderer Programme abhéngig, sondern konnte ini-
tiale Alignments mit Hilfe einer Modifikation des Bowtie Read-Alignment-Programms
berechnen. Dennoch hatte der urspriingliche ContextMap-Algorithmus mehrere Nachteile.
Im Wesentlichen konnte ContextMap keine Reads mappen, die iiber mehr als zwei Exons
spannen oder Insertionen oder Deletionen (Indels) beinhalten. Zudem war ContextMap von
einer spezifischen Bowtie-Version abhangig und konnte deshalb weder von Bowtie-Updates
noch von neuen Entwicklungen (z.B.: bessere Laufzeiten) im Bereich von Read-Alignment-
Software profitieren.

Um diese Probleme anzugehen, haben wir ContextMap 2 entwickelt, eine Erweiterung
des urspriinglichen ContextMap-Algorithmus. Die Hauptmerkmale von ContextMap 2 sind
das kontextbasierte Auflosen von mehrdeutigen Read-Alignments und eine akkurate De-
tektion von Reads, die eine beliebige Zahl von Exons iiberspannen oder Indels beinhalten.
Dariiberhinaus wird ein Plugin-Interface bereitgestellt, welches die Einbindung alterna-
tiver Read-Alignment-Programme (z.B.: Bowtie 2 oder BWA) in den Mapping-Workflow
erlaubt. Die Performance von ContextMap 2 wurde auf echten und synthetischen Daten
evaluiert und mit anderen state-of-the-art Mapping-Programmen verglichen. Wir haben
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festgestellt, dass ContextMap 2 sehr geringe Raten an fehlplatzierten Reads und falsch
vorhergesagten Junctions oder Indels aufweist. Zudem waren Recall-Werte genau so hoch
und Laufzeiten mindestens zweifach geringer als bei den besten konkurrierenden Methoden.

Neben dem Mapping von Reads zu einer einzigen Referenz, ist es mit dem ContextMap-
Ansatz moglich, mehrere potentielle Read-Herkiinfte (z.B.: der menschliche Wirt und in-
fizierende Krankheitserreger) gleichzeitig zu untersuchen. Deshalb kann ContextMap zur
Suche nach Infektionen oder Kontaminationen oder zum Mappen von meta-transkript-
omischen Daten verwendet werden. Zudem haben wir, basierend auf Read-Mapping Statis-
tiken, Methoden entwickelt, die es ermoglichen die Konfidenz von Mapping-Ergebnissen zu
identifizierten Spezies zu bewerten sowie falsch positive Hits zu detektieren. ContextMap
wurde auf drei realen Datensitzen ausgewertet und die Ergebnisse mit metagenomischen
Tools verglichen. Bei diesen Auswertungen konnten wir zeigen, dass ContextMap erfolg-
reich alle Spezies die in einem Sample enthalten sind identifiziert. Dartiberhinaus liefert
ContextMap Read-Mapping-Ergebnisse zu einzelnen Spezies, was fiir die meisten anderen
metagenomischen Anséatze nicht gilt. Daraus folgt, dass die mit ContextMap berechneten
Read-Mapping-Ergebnisse dazu verwendet werden konnen um zeitgleich Genexpressions-
werte von allen Spezies eines Samples zu untersuchen. Deshalb konnte ContextMap in
klinischen Studien Anwendung finden, bei denen Einfliisse infizierender Erreger auf den
Wirtsorganismus erforscht werden.

Die in dieser Arbeit prasentierten Methoden ermoglichen es, RNA-Seq-Daten akkurat
und schnell zu mappen. Durch den stetigen Zuwachs an verfiigharen RNA-Seq-Daten wer-
den diese Methoden wahrscheinlich zu einem wichtigen Teil vieler RNA-Seq-Datenanalysen
und so einen wertvollen Beitrag zur Forschung im Bereich der Transkriptomik leisten.



Chapter 1

Introduction

1.1 Overview and motivation

The deozyribonucleic acid (DNA) is the molecule that carries the genetic information of
all living organisms. The discovery of the DNA by Friedrich Miescher in 1869 (reviewed
in Dahm| [2008]) and the identification of the structure of DNA molecules by Watson and
Crick (Watson and Crick [1953]) in 1953 were groundbreaking novel insights in the field
of genetics. Based on this knowledge, Sanger and colleagues (Sanger et al.| [1977]) as well
as Maxam and Gilbert (Maxam and Gilbert| [1977]) were able to develop methods for
determining the exact order of nucleotides (= sequencing) of DNA molecules in 1977.

With the ability to sequence DNA, the dream of sequencing the entire human genome
(~3 billion nucleotides) emerged. However, for this purpose further technical improvements
of sequencing procedures were required. Therefore, it took until 1990 before researchers of
the publicly funded Human Genome Project (HGP) were able to start with the sequencing
of the genome. FEight years later, the company Celera announced that it would also attempt
to sequence the human genome. Eventually, both groups published a first rough draft of
the genome in 2001 (Lander et al.| [2001]; |Venter et al.| [2001]). However, it was the
HGP consortium who continued to refine their draft and finally published a complete
genome sequence in 2003, with about 20.500 identified genes (International Human Genome
Sequencing Consortium| [2004]). The HGP consumed around 3 billion US dollars, which
was an immense cost factor, in particular when compared to the 300 million US dollars
invested by Celera.

Encouraged by Celera and the HGP, other companies focused on commercializing se-
quencing by developing methods that were cheaper, faster and had higher throughput.
In 2005, the company 454 Life Science introduced the first high-throughput method for
sequencing DNA (Margulies et al.| [2005]), which marked the beginning of the era of next-
generation-sequencing (NGS) technologies (reviewed in van Dijk et al.| [2014]). Competing
companies such as Illumina and Applied Biosystems commercialized their own sequencing
platforms one and two years later, respectively. Modern NGS platforms allow for sequenc-
ing whole genomes in a few days at a much lower cost in comparison to the HGP or Celera
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(see Metzker| [2010] and Liu et al.| [2012] for a comparison of technologies). Due to techni-
cal limitations, all NGS methods have in common that only short fragments of huge DNA
molecules can be sequenced. Therefore, the DNA is fragmented prior to sequencing and a
typical NGS experiment results in millions of short so-called sequencing reads.

The application of NGS is not limited to the sequencing of genomes. For instance,
methods like ChIP-seq (reviewed in |[Park [2009]) or PAR-Clip (Hafner et al. [2010]) can be
applied for identifying and sequencing regions on the DNA that are bound by a particular
protein. Another application of NGS technologies is the sequencing of RNA (RNA-seq)
(reviewed in |Ozsolak and Milos| [2011]), which allows for the quantification of expression
levels of almost all expressed genes or transcripts in a cell. In theory, it offers various
advantages over hybridization based methods such as microarrays (reviewed in [Wang et al.
[2009]; [Hurd and Nelson| [2009]). In contrast to microarrays, RNA-seq does not require
prior knowledge about the genome or genomic features of the species to which it is ap-
plied. Furthermore, it has a higher dynamic range than hybridization based methods,
which means that RNA-seq is more suitable for measuring the expression of low and high
abundant transcripts simultaneously. Finally, RNA-seq has very low background signal, in
particular when compared to microarrays. Nevertheless, comparisons of the two techniques
showed that both methods are useful tools for studying transcriptomes (Malone and Oliver
[2011]; [Sirbu et al.| [2012]; [Yu et al|[2015]). RNA-seq was already successfully applied to
study alternative splicing (e.g. Sultan et al.| [2008]; Tang et al.|[2009]; Richard et al. [2010]),
to detect gene fusions (e.g. [Maher et al.| [2009]; Berger et al.| [2010]), antisense transcription
(e.g. [Yassour et al|[2010]; Lasa et al|[2011]; Bao et al.|[2015]) and non-coding RNAs (e.g.
Pauli et al.|[2012]; |Luo et al.|[2013]; |Jha et al. [2015]) and more.

The rapid development of NGS technologies and their broad field of applications comes
along with two major bioinformatic challenges. First, bioinformaticians have to deal with
the immense amount of data that is generated due to the dramatically decreasing prices
for sequencing (Hayden| [2014]) and large scale projects such as the 1000 genome project
(Abecasis et al.| [2010]) or ENCODE (ENCODE Project Consortium| [2012]). Currently,
most of the sequencing data is stored and organized in databases such as the Short Read
Archive (Shumway et al| [2010]) or the European Nucleotide Archive (Leinonen et al.
[2011]). However, there is a trend towards using cloud computing combined with discarding
large parts of the raw data after analysis (reviewed in Stein [2010]; [Stephens et al.| [2015]).
Second, biologists require algorithms and software solutions that are specifically designed
for analyzing data originating from certain experimental setups. These programs must be
fast and produce results that can be used for performing meaningful analyses.

When analyzing RNA-seq data, researchers basically have two options to start such
an analysis. The first option is to assemble the sequencing reads to complete transcripts,
for which a reference genome is not necessarily needed (reviewed in Martin and Wang
[2011]). The second option is to align the sequencing reads to a given reference sequence
(e.g. the genome) in order to determine the transcriptomic origin of every sequencing read
(= read mapping) (reviewed in [Trapnell and Salzberg [2009]; |Garber et al. [2011]). The
mapping of sequencing reads belongs to the category of sequence alignment problems and
thus to a classical challenge for bioinformatics.
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In the following, we provide the biological background knowledge that is relevant for
understanding the aims of RNA-seq experiments. Furthermore, we give a short overview
about procedures for sequencing RNA and algorithms for determining sequence alignments.
An introduction to RNA-seq read mapping approaches is provided in chapter [2]

1.2 Biological background

1.2.1 Overview

The DNA stores the information needed for producing proteins, the basic elements for
building a cell or a tissue of an organism. The two strands of the polymeric DNA molecule
consist of only four different monomers, namely the nucleotides. The nucleotides are com-
posed of a sugar molecule (deozyribose), a phosphate group and an organic base, which is
either adenine (A), cytosine (C), guanine (G) or thymine (T). For convenience, the four
different nucleotides are often abbreviated with the single letter of the respective bases A,
C, G or T. Each of the two DNA strands consists of a chain of nucleotides, which are linked
via phosphodiester bonds. The orientation of a DNA strand is defined by a nucleotide with
a free phosphate group at one end (5’ end) and a nucleotide with a free hydroxyl group of
the sugar molecule at the other end (3’ end) of the strand. Furthermore, the nucleotides
of the two different strands form hydrogen bonds between each other. Here, A bonds with
T, and G with C, respectively. These pairs are called base-pairs (bps), which have great
influence on the stability of the double heliz structure of the DNA (see the upper box of
Figure [1.1] for an illustration).

The information stored in the DNA is organized in genes, which are units of the DNA
that encode for proteins or functional ribonucleic acid (RNA) molecules. The chemical
structure of an RNA molecule is very similar to the structure of the DNA. RNA is a single
stranded molecule that consists of a chain of four different nucleotides. The sugar molecule
of these nucleotides is a ribose (instead of deoxyribose) and the four different bases are A,
C, G and wracil (U) (instead of thymine). When the central dogma of molecular biology
was formulated by Francis Crick in 1958 (Crick [1958]), it was well known that during
the process of protein synthesis the information contained in a gene is initially transferred
to an RNA molecule (see Gene expression (1.2.2)). At this time, it was assumed that
RNA functions in two ways only, namely as messenger between DNA and protein and as
molecules that are involved in the synthesis of proteins (e.g. rRNAs and tRNAs) (Hoagland
et al.|[1958]; Brenner et al.| [1961]).

Since then, these findings were further extended and we distinguish today between
non-coding and protein-coding genes. The former genes do not encode for proteins, but for
non-coding RNAs (ncRNAs). Researchers proved the existence of thousands of ncRNAs
encoded in the human genome (reviewed in Mattick and Makunin [2006]; [Morris and
Mattick| [2014]). Recent studies suggest that ncRNAs are involved in the regulation of
gene expression (e.g. miRNAs, long ncRNAs) (reviewed in |Fatica and Bozzoni| [2014];
Jonas and Izaurralde| [2015]).
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In general, the genes of eukaryotes are divided into exons and introns (see Figure .
However, only the exons are the sequence parts that contain the information needed for
synthesizing the final gene product, while the introns are removed during the so-called
splicing process (see section |1.2.2)).

Double-helix
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DNA R4 MW@M [0 9

Transcription
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Figure 1.1: Overview of the gene structure and expression of a protein-coding gene. The upper box
shows the structure of the DNA molecule, which is composed of two strands forming a double-helix. The
coding parts of the depicted gene (i.e. the exons) are separated by introns. During transcription, one of
the two DNA strands is copied to a single stranded preemRNA molecule. The pre-mRNA is subject to
post-transcriptional modifications and translated to proteins.
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1.2.2 Gene expression

For clarification purposes, we define the expression of a gene as the process of synthesizing
a functional gene product from the information contained in the respective gene. To be
more specific, the expression of protein-coding genes results in proteins and the expression
of non-coding genes in ncRNAs, respectively. The gene expression processes of protein-
coding and non-coding genes have the first two steps in common, while a last third step is
unique to the protein-coding genes (see Figure .

First, transcription generates a copy of one of the DNA strands, the so-called coding
strand. For this purpose, the enzyme RNA polymerase traverses along the template strand,
which is the counterpart of the coding strand, and synthesizes a single stranded RNA copy
of the coding strand. The resulting RNA molecule is denoted as pre-messenger RNA
(pre-mRNA) for protein-coding genes.

In the second step, the RNA undergoes post-transcriptional modifications. At the 3’
end of the RNA a poly(A)-tail is added, which consists of multiple adenine nucleotides.
At the 5’ end a modified guanine nucleotide is added, which is called the cap of an RNA.
Both, the tail and the cap are involved in the protection of the RNA from degradation and
are important for the export of the RNA from the nucleus. The maturation of the mRNA
into a so-called transcript is completed by the splicing process, which removes the introns
and joins the exons. Splicing can result in different exon compositions and thus in different
transcripts for the same gene. This process is known as alternative splicing. At the end of
this step, gene expression of a non-coding gene is completed.

For a protein-coding gene, ribosomes will eventually translate the nucleotides of each
mRNA into chains of amino acids. Each amino-acid chain folds into a three dimensional
structure, which results in functional proteins, the final product of a protein coding gene.

1.3 Sequencing of RNA

1.3.1 Overview

RNA-seq is a method for determining the exact order of the nucleotides in RNA molecules
using NGS technologies. In general, NGS methods are designed for sequencing DNA
molecules. Therefore, RNA molecules are reverse transcribed to DNA molecules prior
to sequencing (described below (1.3.2])). A common sequencing approach of available NGS
platforms is the sequencing-by-synthesis (SBS) method, in which the de-novo synthesis of
double stranded DNA molecules is monitored with imaging technology (reviewed in [Fuller
et al. [2009]). For this purpose, fragments of the original DNA molecules are immobilized
on a solid surface (e.g. a glass slide). Subsequently, the DNA fragments are denaturated
(= conversion to single-stranded molecules) and an enzymatically catalyzed synthesis of
double-stranded DNA is started with the addition of the four nucleotides A,C,G and T.
Modern optical devices are used to detect the incorporation of single nucleotides to each
fragment and a new cycle of nucleotide addition is performed. Eventually, after several
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Figure 1.2: Overview of a general RNA-seq experimental workflow. In an intial step, the complete set
of RNA is filtered for RNAs that are of interest for the experimental setup. Subsequently, the remaining
RNA molecules are fragmented into smaller pieces. These fragments are reverse transcribed into cDNA.
Usually, adaptor sequences are ligated to both ends of the cDNAs. The adaptors are used for attaching
the ¢cDNAs on a solid surface and for amplifying the molecules using PCR. The last step is the sequencing
of the cDNA ends. In the depicted example, both ends of the denaturated cDNA fragments are sequenced
(i.e. paired-end sequencing), which means that two sequencing reads are generated per cDNA.

cycles of nucleotide addition, the final nucleotide sequence is determined by evaluating the
imaging data.

NGS platforms performing SBS differ in some points, such as the surface the DNA
molecules are attached to, or the way how the nucleotides are made visible for the optical
devices (e.g. fluorescently labeled nucleotides) and more. However, even though there
are technical differences among individual sequencing technologies, all platforms have a
common strategy for preparing the sequencing libraries, which will be explained below.

1.3.2 A general RNA-seq experimental workflow

In the following, we describe a general and simplified RNA-seq workflow. The various
available NGS platforms have different protocols for sequencing RNA. However, almost all
methods have the same basic preparation steps in common (van Dijk et al.| [2014]) (see
Figure [1.2] for an overview).
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The workflow starts by extracting the type of RNA that is of interest for the underly-
ing experimental setup. In the given example, only RNAs with polyA-tails are extracted.
Subsequently, the extracted RNAs are fragmented at random positions into smaller seg-
ments by physical, enzymatic or chemical shearing. The fragmentation step is necessary
because current NGS platforms are limited to sequence up to a few hundred nucleotides
only, and thus are not able to sequence mRNAs in one piece. Following the fragmentation,
a filtering step is performed in which only fragments of suitable sizes (between 50-500 bps)
are selected.

The next step is the preparation of the library. For this purpose, the single stranded
RNA molecules are reverse transcribed into double stranded complementary DNA (cDNA)
molecules. Subsequently, adaptor sequences are added to the ends of the cDNA molecules.
In general, these adapters consist of parts required for amplifying the molecules as well as
for attaching them onto a solid surface. The latter is necessary for performing the SBS
method, which allows for real-time monitoring of DNA synthesis. After immobilization of
the cDNAs, the molecules are amplified with the polymerase chain reaction (PCR) in order
to generate sufficient quantities needed for capturing the synthesis with optical devices.

Finally, the cDNAs are denaturated and the de-novo synthesis of the double stranded
DNA molecules is started and monitored as described in the overview (section [1.3.1]).
Depending on the applied sequencing protocol, the synthesis can be performed from one
end only (i.e. single-end sequencing) or from both ends (i.e. paired-end sequencing). After
an evaluation of the images which are taken during the synthesis, the final outcome of the
experiment are millions of short sequencing reads (30-400 bps). Note that the sequencing
reads are generally shorter than the sequenced fragments and cover only the end of the
fragments. Thus, sequencing reads originating from fragments of a single copy of the
original mRNA do not necessarily cover the complete mRNA sequence. However, it is
assumed that the respective mRNA is available in many copies and that the randomly
chosen shearing positions during the fragmentation step result in equally distributed start
positions of the fragments along the mRNA. Therefore, in theory the sequencing reads
should cover the whole mRNA given enough sequencing depth.

1.4 Mapping of RNA-seq data

1.4.1 Overview

The mapping of RNA-seq data describes the process of assigning sequencing reads to
positions on a given reference sequence (e.g. a genome). Ideally, every read is assigned to
the position from where it was originally sampled during the experiment. The mapping
of sequencing reads basically is an alignment problem, in which similarities between the
sequencing reads and the given reference sequence are determined. Several methods exist
for determining sequence alignments, including approaches that were explicitly designed
for aligning millions of short sequencing reads (see section .

In Figure[1.3| we show four principle ways how RNA-seq reads can be aligned to a given
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Figure 1.3: Four different ways of read alignments to the genome. Small gaps are represented by dashes,
larger gaps by dotted lines. Nucleotides drawn in black are matches between read and reference, whereas
nucleotides drawn in red indicate for mismatches in the alignment. Further explanations are given in the
text.

reference genome. For the sake of simplicity, we depicted only a single event per alignment.
However, in real-life data the different types of alignments can appear in arbitrary combi-
nations for sequencing reads. Furthermore, a continuous alignment of an exact matching
sequencing read is not depicted, as this is the simplest event that can occur and is not as
challenging to determine as the other events are.

The first type of alignment occurs for sequencing reads that have mismatches against
the reference, which can arise from sequencing errors or single nucleotide polymorphisms
(SNPs). Sequencing errors are technical issues (see Dohm et al.| [2008]), whereas SNPs arise
from biological variance in DNA or RNA sequences. There are about 3 million SNPs per
human individual, some of which are suggested to be responsible for phenotypic differences,
drug responses and the susceptibility for disease (Ku et al. [2010]; Yang et al.| [2010]; Buch

et al. [2007]).

The second type of alignment arises when the sequencing read overlaps two or more
exons of a spliced mRNA. Such a sequencing read cannot be aligned continuously to the
genome as the connected exons of the mRNA are separated by introns on the genome.
Therefore, a so-called spliced alignment has to be determined, which contains gaps for
‘skipping’ the introns. The sequencing read depicted in Figure |1.3| overlaps two exons,
thus the respective spliced alignment contains a single gap only. However, with increasing
read lengths, the probability of observing sequencing reads that overlap more than two
exons increases.

Finally, the third and the fourth type of alignments occur for reads that either have
an insertion or a deletion (indel) of nucleotides compared to the reference. Indels and
SNPs are the two most frequent events that lead to genetic variation in humans (reviewed
in Mullaney et al.|[2010]). Recent studies showed that indels can also be responsible for
disease or alterations in human traits (reviewed in |Orr and Zoghbi [2007]).
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1.4.2 Algorithms for determining short read alignments

The major requirements of algorithms for determining alignments of sequencing reads to a
given reference sequence are the following. First, an alignment of a single sequencing read
must be determined very quickly because NGS experiments produce millions of short reads.
Second, the algorithms have to be tolerant against mismatches and indels, respectively.
Otherwise, the sequencing reads that differ from the reference sequence due to sequencing
errors or genetic variation cannot be aligned at all. Finally, if sequencing reads from an
RNA-seq experiment are aligned, the algorithm must be able to handle the large gaps
contained in spliced alignments.

In principal, alignments of sequencing reads can be determined with algorithms such as
the Needleman-Wunsch (Needleman and Wunsch| [1970]) or the Smith-Waterman (Smith
and Waterman| [1981]) algorithm. Both use dynamic programming and guarantee to find
optimal alignments in terms of the alignment score. An alignment score is obtained by
penalizing mismatches and gaps and awarding matches. However, determining optimal
alignments with these algorithms is relatively slow and takes quadratic time with respect
to the length of the input sequences.

To address this problem, heuristics were developed, such as FASTA (Lipman and Pear-
son [1985]), BLAST (Altschul et al.| [1990]) or BLAT (Kent| [2002]), to increase the align-
ment speed at the cost of sensitivity. BLAST was published in 1990 and was one of the
most cited articles in bioinformatics in 2014, with more than 35,000 citations (Van Noorden
et al. [2014]). Like FASTA and BLAT, BLAST is able to perform gapped alignments for
protein as well as nucleotide sequences. However, due to the fast development in sequencing
technology during the last decade, faster alignment algorithms for determining alignments
of millions of short sequencing reads were developed. Currently, there are two different
fundamental techniques that are widely used for determining such alignments (Flicek and
Birney| [2009]; |Li and Homer| [2010]).

The first group of methods consists of hash-based alignment programs. Here, either the
reference is stored in a hash-table (e.g. BFAST (Homer et al. [2009]), MOSAIK (Lee et al.
[2014]) and SOAP (Li et al. [2008b])) or the read sequences (e.g. ELAND, MAC, ZOOM
(Lin et al. [2008])). Hashing the reference may have a large, but fixed memory footprint,
depending on the size of the reference. But the reference has to be hashed only once and
a query can be performed in constant time. If the read sequences are hashed, the memory
usage may be smaller, but aligning a small number of read sequences can take a very long
time because the whole reference has to be searched.

The second group of methods is based on suffix arrays or related data structures.
The most prominent alignment programs of this category (e.g. Bowtie (Langmead et al.
[2009]), Bowtie 2 (Langmead and Salzberg [2012]), BWA (Li and Durbin| [2009])) rely on
the Burrows Wheeler Transform (BWT) (Burrows and Wheeler| [1994]) combined with an
Full-text index in Minute space (FM-index) (Ferragina and Manzini [2000]). The BWT can
be easily computed from a suffix array and thus is directly related to this data structure. In
brief, the BWT is a reversible permutation of the input reference text, such that sequences
of identical characters are generated. The FM-index consists of a compression of the
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permutated text and of additional data structures that allow recovering and searching the
original text. The memory footprint of the index and the time required for querying the
index are both of sublinear complexity with respect to the size of the input reference. Due
to the small memory footprint, tools based on this technique prefer to index the large
reference instead of the sequencing reads. In general, the index of the reference is queried
with small regions of each sequencing read (= seeds) only. Subsequently, seed hits are
extended to completing alignments. Here, different techniques have been developed to
increase sensitivity by allowing for inexact matches.

Both, the hash-based and suffix array-based techniques can be applied for determining
continuous alignments of sequencing reads to a given reference sequence. However, the
techniques are not capable of determining alignments with large gaps, which are contained
in spliced alignments of RNA-seq reads. Therefore, the algorithms for aligning RNA-seq
data most often apply sophisticated strategies for determining spliced alignments from
continuous alignments of only parts of the read. A variety of such strategies will be
introduced in the next chapter.

1.5 Outline of the thesis

The main focus of this thesis is the development of ContextMap, a novel approach for
mapping RNA-seq reads. The main difference to existing approaches is that ContextMap
determines the most likely origin of a sequencing read by evaluating the read context. The
context of a sequencing read is defined by all other reads aligned to the same stretch on
the genome.

In chapter [2, we provide an introduction to state-of-the-art mapping approaches, of
which many have been previously developed. Furthermore, a transcriptome-based mapping
workflow is introduced, which we developed before ContextMap. The application of this
workflow is demonstrated by presenting an analysis of a time-course RNA-seq experiment
(Windhager et al.| [2012]). This analysis is based on read mapping results determined with
our workflow. At the end of chapter 2, common drawbacks of our and other mapping
approaches are discussed.

In chapter [3| we present ContextMap 2 (Bonfert et al|[2012] [2015]), a context-based
RNA-seq mapping approach that was developed for addressing the problems of existing
approaches. In the first part of chapter [3| the ContextMap 2 algorithm is described in
detail. Subsequently, an evaluation of the method is performed on synthetic and real-life
data. A comparison to other RNA-seq mapping programs shows that ContextMap 2 is a
fast and accurate read mapping software.

In addition to the mapping of reads to a single species, ContextMap is also suitable for
mapping reads of any species with a sequenced genome in parallel. In chapter |4, we show
that this feature allows ContextMap to identify infections or contamination in RNA-seq
data and to map reads from meta-transcriptomic studies (Bonfert et al.|[2013]). Further-
more, methods based on mapping-derived statistics for assessing confidence of identified
species and detecting false positive hits are introduced.
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In the final chapter [ we summarize the presented work and provide an outlook to
future developments of the ContextMap project. This includes a short introduction of our
latest ContextMap 2 extension: a novel method for the prediction of poly(A) cleavage sites
by mapping poly(A)-tail RNA-seq reads (manuscript in preparation).
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Chapter 2

Introduction to RNNA-seq mapping
approaches

Motivation: This chapter starts with a short introduction to state-of-the-art RNA-seq
read mapping approaches. However, the presented overview is not exhaustive, as there
are currently at least 15 RNA-seq mapping programs available. Therefore, it would be
beyond the scope of this thesis to introduce all of them. For getting a complete overview,
we suggest to read the articles by Fonseca et al.| [2012] and |Alamancos et al.| [2014].

In the second part of the chapter we present a transcriptome-based mapping workflow
we developed before ContextMap. This workflow aligns sequencing reads sequentially to
different reference sequences, such as a given transcriptome and a genome. We demonstrate
the application of the workflow by presenting parts of our recently published analysis of a
time-course RNA-seq experiment (Windhager et al.| [2012]).

Finally, the chapter closes with a description of drawbacks that our workflow and other
mapping approaches have in common. These problems predominantly occur for sequenc-
ing reads that have more than one possible alignment to a given reference sequence. In
such a scenario it is important that the underlying read mapping approach investigates all
possible alignments of such a read and implements a strategy for deciding which of the
alignments is the correct one.

Publication: The study on the time-course RNA-seq experiment in which we applied
our workflow for mapping the sequencing data was published in Genome Research in 2012
(Windhager et al. [2012]). Here, we only included parts of the original manuscript to
demonstrate the usability of our mapping workflow.

Author contributions: In the study by Windhager et al. (Windhager et al| [2012]), I
performed the read mapping, generated count data and performed the quantification of
gene, exon and intron expression levels. Lukas Windhager and Caroline C. Friedel (CCF)
used these results for performing further downstream analysis of the data. Lars Dolken
(LD) and co-workers did the laboratory work. CCF and LD wrote the article and all co-
authors helped in revising the manuscript.
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2.1 Existing mapping approaches

2.1.1 TopHat

TopHat (Trapnell et al. [2009]) was one of the first RNA-seq mapping approaches that was
developed for the de novo discovery of canonical splice junctions. For this purpose, TopHat
operates in three phases (see Figure for an overview).

In the first phase, TopHat aligns the reads to a given reference genome using Bowtie
(Langmead et al.|[2009]). Here, TopHat uses all reads with at most n alignments (n = 10
per default) to the genome. Sequencing reads with more alignments are discarded, whereas
reads without any alignment are collected for a later processing step.

The second phase assembles contigs from the mapped reads using the assembly tool
Maq (Li et al| [2008a]). The resulting contigs are denoted as islands, which represent
putative exons. In general, the sequence of an island consists of the consensus sequence
defined by the reads covering the island. However, if the island is poorly covered, the
reference sequence will be used to represent the island.

In the third phase, TopHat enumerates all canonical donor (GT) and acceptor (AG)
splice sites within the island sequences. Subsequently, all pairs of canonical splice sites
(GT-AG) between neighboring, but not necessarily adjacent, islands are determined. In
addition, TopHat will generate pairs inside an island if the island is highly covered by
reads. Finally, unassigned reads are aligned to sequences around the generated splice site
pairs. Splice sites and associated spliced alignments will be reported if the coverage of the
respective site and the corresponding exons do not differ too much.

Input: Raw Reads 1) Alignment to reference genome 2) Island identification

- — Assembly of sequencing reads to

T = > ReaiA »'islands' islands

—_——= —_— _— == ==, i
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4) Splice-Junction mapping 3) Search for canonical splice sites

Mapping to novel exon-exon junctions Splice sites between neighboring islands
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Figure 2.1: The mapping workflow of TopHat. TopHat starts by aligning the sequencing reads to a given
reference genome using the Bowtie alignment program. Subsequently, aligned reads are assembled to
contigs (denoted as islands) by applying the program Maq. Canonical splice sites between neighboring
islands are annotated and, finally, spliced alignments are determined for unaligned reads.
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Figure 2.2: The mapping workflow of TopHat2. Sequencing reads are initially mapped to a transcriptome.
Subsequently, only the unmapped reads are aligned to the reference genome. For determining spliced
alignments, small segments of unmapped reads are aligned to the genome (details provided in the text).
Finally, alignment scores of multi-mapped reads are calculated and the best scoring alignments are retained.

2.1.2 TopHat 2

TopHat2 (Kim et al. [2013]) is a complete re-design of the original TopHat algorithm and
operates in four different phases (see Figure . In the first phase, reads are aligned
to a transcriptome (if provided) using Bowtie 2 (Langmead and Salzberg [2012]). Reads
with alignments that have an edit distance below a user-defined threshold are considered
as mapped and will not be re-aligned in any of the following steps. In the second phase,
unmapped reads are aligned to the reference genome. Again, all reads with alignments to
the genome that have an edit distance below the mentioned threshold are considered as
mapped.

In the third phase, TopHat2 detects reads that span over two or more exons. For this
purpose, unmapped reads are split into smaller segments and then aligned to the genome.
TopHat2 searches for segment alignments that are left and right neighbors of an unaligned
segment of the same read. Subsequently, TopHat2 extracts parts of the reference sequence
downstream of the left neighbor alignment and upstream of the right neighbor alignment.
These parts are concatenated and unaligned segments are aligned against them. Finally,
all aligned segments of a read are gathered to determine completing spliced alignments. At
the end of this step, TopHat2 checks if there are alignments overlapping annotated exon-
intron junctions by only a few nucleotides and re-aligns these reads to already detected
splice junctions.

In the final phase, TopHat2 identifies the most likely mapping locations of reads with
multiple alignments. For this purpose, alignment scores are calculated based on statistical
information such as the number of supporting reads for a relevant splice junction.
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Figure 2.3: The mapping workflow of MapSplice. First, reads are partitioned into small segments (1)
and subsequently aligned to the genome (2). Afterwards, aligned segments are used as anchor regions to
determine spliced alignments for unmapped segments (3). Finally, completing alignments are assembled
(4) and the best alignment is determined for each read (5).

2.1.3 MapSplice

MapSplice (Wang et al. [2010]) predicts canonical as well as non-canonical splice junctions
de novo from RNA-seq data (see Figure for an workflow overview). MapSplice starts
by dividing the reads into small segments of equal length. Afterwards, the segments are
aligned to the genome using Bowtie (Langmead et al.|[2009]). Segments with at least one
alignment are assumed to originate from exonic regions.

For reads with an unaligned segment s;, MapSplice searches for spliced alignments.
For this purpose, aligned segments of the same read are used as anchors. If segments
s;—1 and s;;1 both have an alignment, then a spliced alignment for segment s; is searched
between s;_; and s;;1 (see Figure . This strategy is denoted as the ‘double-anchored’
strategy. If only a single neighboring segment s;_; has an alignment, then an alignment
for a suffix of s; is determined in a genomic window downstream of s; ;. Similarly, if s;,;
is aligned, an alignment is determined for a prefix of s; in a window located upstream
of s;y1. Subsequently, the same double-anchored strategy can be applied as described.
Finally, all combinations of segment alignments are determined that result in the original
read sequence within a certain genomic region.

In the last step, MapSplice assigns a score to every alignment, which is based on the
number of mismatches and base call qualities. Furthermore, quality values are calculated
for splice junctions in order to be able to distinguish between spurious and true junctions.
Here, MapSplice assumes that the reads are uniformly distributed across the transcripts.
Therefore, the quality value will be high if the respective junction is supported by reads
with many different start positions on the genome. Finally, a combination of alignment
score and junction quality is used to find the best mapping location for reads with multiple
alignments.
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Figure 2.4: The mapping workflow of STAR. In contrast to MapSplice and TopHat, STAR. does not rely
on a short read alignment program (e.g. Bowtie) to determine alignments, but uses an uncompressed suffix
array of the reference instead. First, STAR performs a seed finding step, which is a sequential search for
Maximal Mappable Prefixes of each read (details provided in the text). Second, aligned seeds are gathered
for each read and combined to produce completing read alignments. Finally, a local alignment scoring
scheme is applied for identifying the best scoring alignments of each read.

2.1.4 STAR

STAR (Dobin et al. [2013]) was designed with the objective to map the vast amount of
RNA-seq data of the ENCODE project (ENCODE Project Consortium, [2012]) (> 80 billion
reads) significantly faster than all existing approaches. For this purpose, the authors of
STAR developed a novel RNA-seq mapping strategy that can be divided into three different

steps (see Figure [2.4).

First, an uncompressed suffix array of a given reference genome is queried with the
sequences of the reads. For every read sequence, the maximal mappable prefix (MMP) is
determined. A MMP is the longest exact matching substring of a read, starting from the
most 5" nucleotide. If a found MMP is shorter than the read sequence, this step will be
repeated with the unaligned portion of the read until the unaligned portion is too small
for another search.

In the second step, different MMPs of the same read are stitched together. For this
purpose, MMPs are collected that are aligned in proximity to each other. Subsequently,
STAR uses a dynamic programming algorithm to determine completing alignments that
allow for mismatches and indels.

The last step of STAR starts by determining a score for every alignment based on a
local alignment scoring scheme. Finally, every read is mapped to the position with the
best scoring alignment. A read will be mapped to multiple locations, if there are several
alignments of the same read with only small score differences from the best alignment.
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2.1.5 GSNAP

GSNAP (Wu and Nacul [2010]) is a mapping approach that aligns reads by using a hash-
based index of the reference. In contrast to other approaches, GSNAP does not align to
a single reference, but to a reference space. This space is defined by all combinations of
major and minor alleles of the reference derived from databases such as dbSNP (Sherry
et al.|[2001]). GSNAP has two modes to query the index, one for determining alignments
with many mismatches and one for alignments with relatively few mismatches.

In the latter mode, GSNAP generates a minimal and non-overlapping set of g-mers
for every read covering the complete read sequence. Subsequently, the hash-table of the
reference is queried with these sets in order to obtain regions of candidate read alignments.
In the next step, a lower bound on the mismatch count for completing read alignments
is determined by using the pigeonhole principle of the non-overlapping set of g-mers of
the reads. This means that the completing alignment of a read that has k missing g-mer
hits, has at least k mismatches. Candidate alignments with a lower bound below a certain
threshold are verified by determining the exact mismatch count via an alignment using the
gmap algorithm (Wu and Watanabe| [2005]).

In the second mode, the reference is queried with complete and overlapping sets of
g-mers that cover each read sequence. The resulting hits are used to determine alignments
that allow for many mismatches, which are used to detect indels and reads spanning splice-
junctions. For this purpose, pairs of regions with g-mer candidate alignments are combined
to completing read alignments such that a mismatch and gap penalty constrained is not
exceeded.

Finally, a read is mapped to the position where it was aligned to with the fewest
penalties (i.e. mismatches and gaps). As the original publication of GSNAP does not
clearly state a workflow for the mapping procedure, a corresponding workflow diagram is
not shown here.

2.1.6 RNASEQR

The mapping workflow of RNASEQR (Chen et al. [2012]) is very similar to the strategy
of TopHat2 (see Figure for an overview).

The workflow starts by aligning the reads to a reference transcriptome with Bowtie
(Langmead et al.| [2009]). If a read can be aligned uniquely, the respective alignment will
be used as the final read mapping. RNASEQR defines a read as uniquely aligned if there
is a single alignment that is best in terms of alignment score. For determining a score
of an alignment, the Hamming distance is applied between the sequencing read and the
reference at the location of the alignment. The Hamming distance calculates the minimum
number of substitutions needed to transform one string into another. In the second step,
unmapped reads are aligned to a reference genome using Bowtie. Again, only uniquely
aligned reads to the genome are considered as mapped.

The final step has the aim to determine spliced alignments for reads that cross exon-exon
junctions that are not part of the annotated transcriptome. For this purpose, RNASEQR
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Figure 2.5: The mapping workflow of RNASEQR. First, reads are mapped to a reference transcriptome.
Subsequently, the unmapped reads are aligned to the genome. Both alignment steps are performed with
Bowtie. Finally, RNASEQR determines spliced alignments by aligning fragments of unmapped reads to
the genome and determining completing alignments using BLAT.

uses a so called anchor-and-align strategy. For generating the anchors, unmapped reads are
split up into fragments of 25 nucleotides length. These anchors are aligned in parallel to
the reference transcriptome and genome using Bowtie. For reads with at least two anchors
pointing to the same genomic region, BLAT (Kent| [2002]) is used to determine completing
spliced alignments.

2.2 A transcriptome-based mapping workflow

2.2.1 Overview

In the beginning of 2011, we started to develop our own workflow for mapping RNA-seq
data. At that time, mapping programs for the de novo discovery of splice junctions (e.g.
TopHat, MapSplice or GSNAP) were already available. However, the computationally
expensive discovery of novel splice junctions was not our objective, but rather the fast
and straightforward mapping of sequencing reads to known transcripts or genes. For this
purpose, we developed a mapping approach that sequentially aligns the sequencing reads to
ribosomal RNA (if provided), a known transcriptome and a reference genome using Bowtie
(Langmead et al| [2009]). Finally, in an optional step, unmapped reads are mapped to
known microbial and viral genomes for detecting potential contaminants contained in the
data (see Figure for an overview). Reads mapped in one of these steps will not be
considered in any of the following steps, which guarantees a fast processing of the data.
Obviously, this mapping approach is very similar to the strategy of RNASEQR and
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Figure 2.6: Overview of our transcriptome-based mapping workflow. All alignment steps are performed
with Bowtie (Langmead et al.| [2009]) and the assembly is determined with Abyss (Simpson et al. [2009]).

TopHat2, which were published at the end of 2011 and 2013, respectively. We did not
try to publish our workflow because we realized that the strategy of a sequential mapping
approach is not optimal, as it will be discussed later in section 2.5 In the following, we
will describe the individual steps of our sequential mapping approach in more detail.

2.2.2 Filtering rRNA reads

The first step of the workflow is an optional filtering step, in which the read data is aligned
to ribosomal RNA (rRNA) using Bowtie. In general, the amount of rRNA contained in
a cell represents a large fraction of the total cellular RNA. For instance, in microbial and
mammalian cells the rRNA fraction accounts for more than 95% (Peano et al. [2013]) and
up to 90% (O’Neil et al.|[2013]), respectively.

In most cases, researchers are more interested in mRNAs than rRNAs and therefore try
to remove the rRNA prior to sequencing. However, depending on the sequencing protocol
the amount of reads originating from rRNA may still contribute to a large portion of the
whole data. Consequently, an alignment to the very short rRNA sequences can reduce the
input for the following steps significantly and thus improve the overall running time of the
workflow. We filter for reads that have at least one alignment to the rRNA sequences that
does not exceed a predefined mismatch threshold.
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Figure 2.7: The two reads r; and ry can be aligned to transcript A and B, respectively. The alignments
of the reads can be converted into genomic coordinates as described in the text. The transcriptomic
alignments of read r; are transformed into a unique genome alignment on the genome. On the contrary,
read ro has two different alignments after conversion to genomic coordinates. Therefore, read 1 is mapped,
whereas read r, is discarded.

2.2.3 Transcriptome and genome mapping

In the second step, the workflow aligns unmapped reads to known transcripts using Bowtie.
Here, every alignment record contains information about the chromosome, transcript and
the offset in the transcript a read was aligned to. Our workflow uses a hash-based data
structure to store genomic coordinates of the set of exons composing each transcript.
This allows to quickly convert transcriptomic alignment coordinates into the respective
genomic coordinates. The coordinate conversion is necessary because we only map reads
that are uniquely aligned to the genome. However, this can not be deduced directly from
a transcriptome alignment as about 95% of human multi-exon genes undergo alternative
splicing (Pan et al.| [2008]). Reads that originate from exons shared by several alternative
transcripts can be aligned to all of these transcripts. However, when transforming the
transcriptomic coordinates of these alignments into genomic coordinates, the result can
be a unique alignment (see Figure for an example). Before alignment coordinates are
converted, the workflow discards all alignments exceeding a predefined mismatch threshold.
Furthermore, alignments of a read that have more mismatches than the best alignment,
i.e. the alignment with the fewest mismatches, are also discarded. Eventually, alignment
coordinates are converted as described and all uniquely aligned reads are considered as
mapped.

In the third step of the workflow, unmapped reads are aligned to the reference genome.
All alignments that exceed the mismatch threshold or have more mismatches than the
best alignment of the respective read are discarded. Finally, all uniquely aligned reads are
considered as mapped.
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2.2.4 Identification of contamination

The last step aims at the identification of possible contaminants in the data. For this
purpose, the workflow assembles the remaining unmapped reads to contigs using Abyss
(Simpson et al. [2009]; Birol et al. [2009]). Subsequently, reads that are part of a contig
are aligned to a collection of microbial genomes with Bowtie. If all reads that are con-
tained in a contig can be aligned to a particular genome, there will be enough evidence
for contamination in the data. Thus, the workflow maps all these reads to the respective
microbe.

2.2.5 Setting up the workflow

Our mapping workflow can be configured via a single configuration file. The user is able to
set the parameters of Bowtie (e.g. seed length, allowed mismatches) for every alignment
step individually. Furthermore, the start and stop points of the pipeline can be specified.
This may be useful if a repetition of an intermediate step is necessary or if the execution
is not required for all workflow steps.

2.3 Application to 4sU-seq data

2.3.1 Background

Regulation of RNA levels of a cell may occur during the individual processes of RNA synthe-
sis (transcription), RNA processing and RNA degradation. It is well known that changes
in transcription (Wang et al. [2007]; Kim et al. [2009]) and degradation (Shalem et al.
[2008]; |Miller et al.| [2011]) can have a significant influence on gene expression. However,
it is little known about the contribution of RNA processing to changes in gene expression.

RNA processing can be monitored using 4sU-tagging, which is a method that uses a
naturally occurring uridine derivative (4-thiouridine) to metabolically label newly tran-
scribed RNA (Melvin et al.| [1978]; Friedel et al. [2009]). The labeled RNA can then be
separated from the pre-existing RNA using streptavidin-coated magnetic beads. Recent
studies showed that 4sU-tagging is compatible with microarray analysis (Dolken et al.
[2008]; [Friedel and Dolken! [2009]) and RNA-seq (Rabani et al.| [2011]; Schwanhausser et al.
[2011]).

The following analysis of a time-course experiment was taken from a publication by
Windhager et al|[2012]. In this study, we showed that progressive 4sU-tagging combined
with RNA-seq can be used to monitor the kinetics of RNA splicing and processing at the
nucleotide resolution. Here, 4sU-tagging was combined with sequencing of newly and un-
tagged RNA at five different time points after labeling. The first time point for sequencing
was already 5 minutes after labeling, which is an ultrashort labeling time that has not been
combined with RNA-seq before.
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2.3.2 Data set

Our collaborators Lars Dolken and colleagues performed a time-course experiment of 4sU-
tagging in DG75 human B-cells consisting of five samples with 60, 20, 15, 10, and 5 min of
4sU-tagging. Newly transcribed RNA from all five labeling conditions was purified and sub-
jected to RNA-seq analysis using sequencing by ligation (SOLiD II, Applied Biosystems).
In the following, we will refer to these samples as ‘5-min 4sU-RNA’ to ‘60-min 4sU-RNA’.
In addition to 4sU-RNA, total and untagged RNA following 60 min of 4sU-tagging were
sequenced.

2.3.3 Methods

Read mapping

We mapped the reads with our transcriptome-based mapping workflow in the following way.
First, reads were aligned to pre-TRNA sequences (18S, 5.8S, 28S, and spacer regions). The
remaining unmapped reads were aligned to all Ensembl transcripts (Ensembl version 60)
excluding pseudo-genes and haplotypes to identify exonic and exon-exon junction reads
(aligned reads overlapping an exon-exon junction by >= 1 bp). Reads that remained
unmapped after step two were aligned to the human reference genome (GRCh37/hgl9)
to identify intron and exon-intron junction reads (overlapping an exon-intron junction by
>=1 bp). The following Bowtie settings were used for all three steps: seed region = first
20 bps, three mismatches allowed in the seed, five in the whole alignment.

Quantification of gene, exon, and intron expression levels

Expression levels of genes, exons, and introns were estimated using the standard RPKM
measure (number of reads per kilobase of gene, exon, or intron per million mapped reads)
(Mortazavi et al| [2008]). The number of reads mapping to a gene was determined as
the total number of exon and exon-exon junction reads for this gene. To calculate RPKM
values for exons and introns respectively, only reads mapping completely within this region
were used. To account for problems in mapping reads to repetitive sequence regions, the
effective length of exons and introns was used instead of the actual length. The effective
length was calculated in the following way. First, in silico reads were simulated by sliding
a window across gene regions with the size of the read length in the experiment (35 bps).
Thus, the simulated read set contains exactly one read from each position in each gene. The
simulated reads were then mapped using the same three-step procedure described above.
The effective length was then defined as the number of positions within the respective
region (exon, intron, or gene), which had exactly one correctly and uniquely mapped read
starting at this position.
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Figure 2.8: (A) Distribution of the number of reads mapped to exons, exon-exon junctions, exon-intron junctions, and
intron regions for 5- to 60-min 4sU-RNA, total and untagged RNA. RNA in the untagged RNA samples is at least 60 min old.
This visualizes the maturation of transcripts over time. The expected distribution of reads for completely unspliced RNA
is shown in the left-most column (see Supplemental Methods of the original publication by [Windhager et al|[2012]). (B)
Normalized read frequencies were calculated by first dividing read numbers by the total number of reads on protein-coding
genes in the corresponding sample. Subsequently, frequencies for a specific read type were divided by the maximum frequency
observed for the corresponding read type in any sample.

2.3.4 Results
Gene feature mapping visualizes transcript maturation over time

We first assessed the contribution of intronic and exonic sequences in the seven RNA
samples. As expected, the number of reads mapping to intronic sequences increased with
reduced duration of 4sU-tagging from 18.9% in untagged RNA to 75.9% in 5-min 4sU-
RNA (see Figure A). As excised introns are generally believed to be rapidly degraded
(Lamond et al|[1988]; Nam et al|[1997]; (Clement et al|[1999]) this indicates the presence
of large amounts of unspliced pre-mRNAs in the newly transcribed RNA samples. If none
of the transcripts in 5-min 4sU-RNA had undergone any splicing events, the intronic reads
would have been predicted to contribute ~89% instead of 75.9% of all reads (see Figure
A). Thus, a substantial fraction of cellular transcripts in 5-min 4sU-RNA has already
undergone splicing events with > 65% (conservative estimate) of all introns already decayed
(see Supplemental Methods of the original publication on how this estimate was obtained).

Similar to the changes in the contribution of intronic reads over time, we observed a
strong correlation between the number of reads crossing exon-intron or exon-exon junctions
and the duration of 4sU-tagging (see Figure B). Exon-intron junction reads result from
unspliced or partially spliced transcripts. Accordingly, their contribution considerably
decreased with the duration of 4sU-tagging (from 1.1% in 5-min 4sU-RNA to 0.29% in
untagged RNA). Conversely, the frequency of exon-exon junction reads increased from
1.9% in 5-min 4sU-RNA to 12% in untagged RNA.
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Distinct classes of introns are defined by their splicing kinetics

To investigate differences in the kinetics of intron processing, we first focused on the most
highly expressed genes as intron expression levels in newly transcribed RNA, although
substantially higher than in total RNA, are much lower than the expression levels of the
surrounding exons. This is due to the large fraction of introns (> 65%) already spliced and
decayed in 5-min 4sU-RNA. Expression levels of genes were quantified in terms of reads per
kilobase of gene per million mapped reads (RPKM) after normalizing for mappability (see
Methods ), and the analysis was focused on genes with an RPKM > 11 in all RNA
samples (525 genes). For these genes, we distinguished between introns absent (RPKM
< 0.5: 1014 introns) or present (5838 introns) in 5-min 4sU-RNA. Even after excluding 50
absent introns (~ 5%) that were shorter than the read length (35 bps) and, thus, could not
contain any intronic reads, absent introns were significantly shorter than the present ones
(Wilcoxon test, P-value < 107'%). Furthermore, they were located closer to the 3’ end of
the gene than present introns (Wilcoxon test, P-value = 0.0042) with 12% of the absent
introns being the last intron of the gene compared with 7% for present introns (Fishers
exact test, P-value < 107%). This suggests that at least some of these introns were part of
longer transcript versions that were not transcribed in this form in the DG75 cells.

For other introns, possible explanations for their absence in 5-min 4sU-RNA might be
(1) very fast co-transcriptional splicing, (2) problems in sequencing, or (3) problems in
mapping these parts of the preemRNA, e.g., due to repetitive sequences. Interestingly,
in many absent introns, both neighboring exons were well expressed and precisely delim-
ited. This indicates rapid co-transcriptional splicing and intron degradation rather than
sequencing bias. In addition, there was no significant increase for the absent introns in the
frequency of repetitive sequences identified by RepeatMasker (Smit et al.| [1996]) or the
frequency of non-unique read mappings. Notably, the fraction of absent intron positions
contained within repetitive sequences was actually significantly smaller than for present
ones (Wilcoxon test, P-value < 107%). These analyses confirm that numerous transcripts
in 5-min 4sU-RNA (> 65%) had already been spliced and their introns had been degraded.

2.4 Application to other data sets

In a recent study by Marcinowski et al.| [2012], sequencing data was analyzed for another
4sU-seq experiment. Here, the investigated mouse cells were infected with the murine
cytomegalovirus and RNA-seq was performed at different time points after infection. Our
workflow was applied in the same way as described in section [2.3.3] However, we added
an alignment to the reference genome of the virus as a fourth mapping step. In summary;,
viral and host gene expression was monitored in parallel over time. We found interesting
responses (e.g. a fast inflammatory-response) of the host to the infection and revealed
novel insights into gene regulation of the cytomegalovirus during infection.

Most recently, the workflow was applied for mapping sequencing reads originating from
an RNA-seq as well as a ChIP-seq experiment (Hunten et al| [2015]). ChIP-seq is a
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method by Johnson et al.| [2007] that applies Chromatin Immunoprecipitation (ChIP) for
identifying regions on the genome bound by specific proteins. Subsequently, these regions
are sequenced using NGS technology. In the study by [Hunten et al.| [2015], ChIP-seq
was applied for the genome-wide identification of binding sites of the tumor suppressor
gene pb3. Furthermore, RNA-seq was performed in cells with and without induced p53
gene expression, respectively. For mapping the RNA-seq data, we applied the same three-
step procedure as described in section [2.3.3] For the ChIP-seq data, the transcriptome
alignment step was skipped. By combining ChIP-seq and RNA-seq analyses, we were able
to identify pb3 target genes and study the effect of p53 activation for these genes at the
same time.

2.5 Drawbacks of previous mapping approaches

One reason why our sequential approach is so fast is that the reads already mapped in an
intermediate alignment step will not be considered in any of the following steps. However,
this strategy, which in variation is also used by other RNA-seq mapping approaches, has
several drawbacks. These drawbacks will be discussed in the following.

2.5.1 Exon-intron junction vs. splice junction alignments

The first problem occurs for sequencing reads that can be aligned to an exon-intron junction
as well as to a splice junction. An example for such a scenario is given in Figure[2.9] Here, a
read can be aligned continuously to the genome. This results in an alignment that overlaps
a boundary between an exon and an intron. However, the same read can also be aligned
with a spliced alignment to the genome or a continuous alignment to the transcriptome.
Our study of the time course-experiment (see section showed that both mapping types
are relevant when analyzing a mixture of unspliced and spliced transcripts. The continuous
genome alignment indicates an unspliced transcript. On the contrary, the spliced alignment
provides evidence for a spliced transcript.

A mapping approach starting with a transcript alignment and subsequently aligning
only the remaining unmapped reads to the genome (e.g. our workflow or RNASEQR)
will always examine only one of the two mapping possibilities. Therefore, it possibly
determines the wrong mapping for the read. TopHat2 also starts with an alignment to
a known transcriptome. However, TopHat2 is able to identify both alignments by re-
aligning aligned reads that have an alignment with an edit distance larger or equal to
a user-defined threshold. If this threshold is set to 0, all reads will be aligned in every
step of TopHat2. However, per default this threshold is set to infinity, because otherwise
the running time of TopHat2 increases dramatically. Furthermore, TopHat2 assumes that
the spliced alignment is the correct one, and therefore it would most likely discard the
continuous genome alignment anyway.

There are genome-based mapping approaches that solely align to the reference genome
and perform a de novo prediction of spliced alignments (e.g. TopHat or MapSplice). At
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Figure 2.9: (A) This figure shows a read r1 that has both, a spliced alignment and a continuous alignment
to the genome. The latter overlaps an exon-intron junction and the spliced alignment overlaps an exon-
exon junction. (B) The same read r; can be continuously aligned to the transcriptome. Here, only the
alignment overlapping the exon-exon junction can be determined.

first glance, this strategy appears to circumvent the problem of approaches starting with
a transcriptome alignment. However, when the mapping workflows of these programs are
analyzed in more detail, it becomes apparent that they also have problems in determining
both alternative alignments. For instance, TopHat starts by determining continuous read
alignments to the genome and subsequently uses only unmapped reads for the prediction
of spliced alignments. Thus, it will not determine the spliced alignment of the read.
MapSplice starts by aligning small segments of the read to the genome. Following the
segment alignment, MapSplice predicts spliced alignments for reads that have unaligned
segments. However, in the example of Figure there will be no unaligned segment of the
given read and therefore MapSplice will not determine a spliced alignment.

2.5.2 Parent gene vs. pseudogene alignments

The next problem concerns the mapping of reads to genes that have an associated pseu-
dogene in the genome. Pseudogenes are copies of gene sequences that are integrated in
the genome at a new locus. In general, pseudogenes include some dysfunctional mutations,
which lead to the loss of protein coding ability (Mighell et al. [2000]). A subtype of pseudo-
genes are so-called processed pseudogenes, which are reverse-transcribed copies of spliced
mRNAs of the respective parent genes that were inserted into the genome. Processed pseu-
dogenes also lost their ability to code for a protein, but not necessarily due to mutations.
Here, additional reasons are incomplete copies of the original mRNAs or missing regulatory
sequence elements of the original gene (Vanin [1985]). The human genome contains about
8000 processed pseudogenes, which have sequence similarities of up to 86% to their parent
genes (Zhang et al|[2003]). Thus, it is likely that a read that can be aligned to a parent
gene may also have an alignment to an associated processed pseudogene.

For instance, the read depicted in Figure has a spliced alignment to a parent gene
and a continuous alignment to the respective processed pseudogene. We already discussed
that most of the presented genome-based mapping approaches do not determine a spliced
alignment if a continuous genome alignment also exists. However, in most cases mapping
reads to pseudogenes is wrong, as it has been suggested that only a very small fraction of
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Figure 2.10: (A) This figure shows a gene that has a single transcript, which is composed of three exons.
The read r is a spliced read that spans all three exons. (B) A processed pseudogene of the gene depicted
in (A) is shown. The spliced mRNA of the transcript has been reverse transcribed and inserted somewhere
else into the genome. Thus, the read r; can be continuously aligned to the pseudogene variant of the gene.

processed pseudogenes are transcribed (Harrison et al.| [2005]).

There may not be a problem in determining the alignment to the parent gene if the
mapping approach starts by aligning the reads to the transcriptome (e.g. our workflow).
However, if the transcriptome also contains the transcripts of (processed) pseudogenes, the
mapping approach would end up in determining the alignment to both, the parent gene
and to the pseudogene. In that case, the mapping approach can examine both alignments,
and hence needs a strategy for resolving ambiguously aligned reads, which will be discussed
in the next section.

2.5.3 Mapping of ambiguously aligned reads

The first two described drawbacks of existing mapping approaches concerned the missing
ability of examining all possible alignments of a sequencing read. However, even if a
mapping approach investigates all possible alignments of a read, it is not guaranteed that
it eventually maps the read to the correct location. For instance, all presented approaches
are able to determine multiple continuous read alignments of the same read to repetitive
regions on the genome, resulting in alignments to different loci. In the following, we denote
reads that can be aligned to multiple locations on the genome as ambiguously aligned reads.

Our workflow and RNASEQR discard ambiguously aligned reads in order to minimize
the number of false positively mapped reads. However, this strategy may underestimate
expression values for genes that contain repetitive regions (Robert and Watson| [2015];
Finotello and Di Camillo [2015]). To address this problem, we performed a gene length
normalization in the study presented in section 2.3] Nevertheless, the loss of information
due to discarded reads can still influence downstream analyses.

Other mapping approaches also have problems in resolving ambiguous read alignments.
STAR, TopHat 2, MapSplice and GSNAP implement scoring systems for determining the
best mapping location for such reads. However, these programs generally assign the same
score to continuous read alignments with the same number of mismatches. As consequence,
all mentioned approaches would map reads that originate from a repetitive region on the
genome to multiple locations, from which we know that only one is correct.



2.6 Conclusion 29

2.6 Conclusion

In this chapter, we introduced several state-of-the-art programs for mapping RNA-seq
data. Most of them rely on short read alignment programs such as Bowtie or BWA and
implement sophisticated strategies for determining spliced alignments. Here, STAR and
GSNAP are an exception as both programs implement their own methods for determining
alignments of sequencing reads. We also introduced a mapping workflow we developed,
which maps the reads sequentially to one reference sequence after another. A similar
strategy is pursued by RNASEQR, which was developed at the same time as our workflow.
Both approaches first align sequencing reads to a given transcriptome using Bowtie and
therefore determine alignments of reads overlapping annotated exon-exon junctions in a
straightforward and very fast way.

We demonstrated the usability of our workflow by presenting a study in which we
analyzed data from a time-course RNA-seq experiment. In this experiment, sequencing
reads were obtained from fully spliced, partly spliced and completely unspliced transcripts.
We showed that the mapping determined with our workflow can be used to visualize the
transcript maturation over time. Furthermore, count data derived from the mapping was
used to quantify gene, exon and intron expression levels. Based on the intron expression
levels, evidence for fast co-transcriptional splicing was found.

Finally, in the last part of the chapter, problems were discussed that our and other
RNA-seq mapping approaches have in common. These problems arise for sequencing reads
with several possible alignments. From a recent study (Li et al| [2010]) we know that
depending on the complexity of the transcriptome and read lengths a significantly large
fraction (between 17% to 52%) of reads in a dataset can be aligned to several different
genes. Therefore, analyses based on read mapping (e.g. gene expression quantification)
are directly influenced by the strategy of the underlying mapping approach for mapping
such reads.

We found that the different approaches either fail in determining all possible alignments
of a sequencing read or have no general concept for resolving ambiguously aligned reads.
The former can result in falsely mapped reads if the correct alignment is not part of
the evaluated alignments. In the latter case, sequencing reads originating from repetitive
regions cannot be confidently assigned to a particular region on the reference and are either
discarded or all possible alignments are included in the output.
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Chapter 3

ContextMap: Fast and accurate
context-based RN A-seq mapping

Motivation: In this chapter we introduce ContextMap, an RNA-seq mapping approach
that was designed for addressing the common drawbacks of other mapping approaches
that were presented in the previous chapter (see section of chapter [2| for details). The
basic idea of ContextMap is not to consider each read individually to decide about its
mapping location, but to take information provided by all other reads aligned to the same
genomic region — the so-called read context — into account. This mapping strategy allows
for an accurate resolution of ambiguously aligned reads, as we demonstrated in a proof of
concept study in 2012 (Bonfert et al.|[2012]). In this study, we developed a first prototype
implementation of ContextMap that aimed at improving already existing mapping results
determined by other programs such as TopHat (Trapnell et al.| [2009]) or MapSplice (Wang
et al.|[2010]). However, by relying on other programs to provide an initial mapping result
as input, ContextMap was not able to consider all possible alignments of each read.

Therefore, we extended our implementation to a standalone program that was able to
determine all possible initial read alignments on its own using a modified implementation
of the Bowtie alignment program (Langmead et al. [2009]). We were able to show that
the standalone version of ContextMap allows parallel mapping against several reference
genomes, e.g. the human host and infecting pathogens, in a straightforward way (see
chapter {4 and |Bonfert et al.| [2013]). Nevertheless, this ContextMap version still had some
substantial drawbacks. First, it was not able to map reads spanning over more than two
exons or to detect reads that contain indels. Second, due to the dependency on a specific
and modified version of the Bowtie alignment program, ContextMap could not benefit
of novel developments (e.g. improved alignment sensitivity) in the area of short read
alignment software.

In this chapter, we present ContextMap 2 (Bonfert et al. [2015]), an extension of the
ContextMap algorithm. ContextMap 2 determines initial read alignments with unmodified
short read alignment programs such as Bowtie, Bowtie 2 (Langmead and Salzberg| [2012])
or BWA (Li and Durbin| [2009]). Already existing mapping procedures of ContextMap were
further improved and newly developed methods integrated into ContextMap 2. In addition
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to the resolution of ambiguously aligned reads, ContextMap 2 is able to accurately map
reads spanning an arbitrary number of exons and to perform a context-based prediction
of indels. Furthermore, the ContextMap 2 implementation provides a plug-in structure for
an easy integration of newly developed alignment programs. We show using synthetic and
real-life data that ContextMap 2 can compete with the best state-of-the-art read mapping
approaches in terms of running time and mapping accuracy.

Publication: This chapter was published in BMC Bioinformatics (Bonfert et al.|[2015]).
I moved parts of the Supplementary Material of the original publication into the methods
section to provide a complete description of the methods implemented in ContextMap 2.
Furthermore, I adapted the layout of the text, added section [3.2.3 and Figure [3.2] to the
chapter and applied some minor changes to the text.

Author contributions: Gergely Csaba (GC) and I designed and GC implemented the
first prototype of ContextMap (Bonfert et al. [2012]). I implemented the first standalone
version of ContextMap with the exception of the modification of Bowtie, which was im-
plemented by GC. I implemented ContextMap 2 (Bonfert et al.| [2015]) independently and
without outside assistance. This includes, in particular, the development and implemen-
tation of novel methods for the prediction of reads that span over an arbitrary number of
exons. Furthermore, I implemented a context-based prediction of indels and performed a
evaluation of ContextMap 2 and of other mapping approaches on synthetic and real-life
data. Caroline C. Friedel (CCF) and I analyzed and discussed the results of this evaluation.
CCF wrote the article on the proof of concept study (Bonfert et al. [2012]) and CCF and
I co-wrote the article that is presented here (Bonfert et al. [2015]). CCF supervised the
work and Ralf Zimmer and GC helped to revise the manuscript. Evelyn Kirner prepared
the user manual and implemented scripts for example calls of ContextMap 2.

3.1 Background

Sequencing of RNA using next generation sequencing technology (RNA-seq) has become
the standard approach for analyzing the transcriptomic landscape of a cell (Wang et al.
[2009];|Ozsolak and Milos|[2011]). The first step in RNA-seq data analysis generally consists
in determining the transcriptomic origin of the sequenced reads (=read mapping) (Garber
et al| [2011]), i.e. the best alignment of each read against a transcript. Here, the major
challenge results from the fact that even for well-annotated species not all transcripts, in
particular rare or non-coding transcripts (Djebali et al. [2012]), are known. Thus, alignment
against known transcript sequences using short read alignment programs such as Bowtie
(Langmead et al.[2009]) cannot identify reads from novel transcripts, in particular spliced
reads crossing novel exon-exon junctions. Unspliced reads, in contrast, are easily mapped
using genome alignments.

Currently, many different RNA-seq mapping algorithms are available, such as TopHat
(Trapnell et al.| [2009]), TopHat2 (Kim et al.|[2013]), or MapSplice (Wang et al.| [2010])
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(see also |Alamancos et al.| [2014] for an overview). In most cases, these approaches com-
bine alignment against reference sequences (i.e. a genome and/or transcriptome) using
short read aligners, such as Bowtie (Langmead et al. [2009]) or Bowtie 2 (Langmead and
Salzberg [2012]), with sophisticated strategies for identifying spliced reads crossing exon-
exon junctions. A common strategy for this purpose involves splitting reads into smaller
segments before aligning and is used e.g. by TopHat2 and MapSplice. Other mapping ap-
proaches, such as STAR (Dobin et al. [2013]) or GSNAP (Wu and Nacu| [2010]), use their
own alignment methods to identify spliced reads without fragmenting read sequences.

Independent of the strategy for identifying spliced reads, existing RNA-seq mapping
approaches were implemented to use only specific short read alignment programs, in most
cases Bowtie. Thus, they cannot be easily extended to make use of novel developments
in short read alignment, e.g. Bowtie 2 (Langmead and Salzberg [2012]) or BWA (Li and
Durbin [2009]), which improve alignment speed, recall or precision (Lindner and Friedel
[2012]). Furthermore, they generally identify the best alignment for each read based only on
the number of mismatches and do not take into account information provided by alignments
of other reads. As a consequence thereof, the mapping problems that were described in the
previous chapter (see section will arise for those approaches. We recently proposed
a different approach, ContextMap, to identify the most likely mapping for a read based
on all reads aligned to the same general location, the so-called context (Bonfert et al.
[2012]). This approach also has the advantage that it allows parallel mapping against
several reference genomes in a straightforward way (Bonfert et al. [2013]).

In this chapter, we present ContextMap 2 (Bonfert et al. [2015]), an extension of the
ContextMap strategy, which among other improvements addresses the problem of integrat-
ing different short read alignment programs. The key features of ContextMap 2 are:

(i) It accurately predicts spliced reads and resolves ambiguous read alignments by consid-
ering the context of each read.

(ii) It provides an easy-to-use plug-in interface for integrating different short read align-
ment programs into the mapping workflow. This flexibility guarantees that ContextMap
can be quickly adapted to newly developed read alignment algorithms.

(iii) It extensively uses local read alignment options of novel short read alignment programs
such as Bowtie 2 or BWA to detect spliced reads, which overlap an arbitrary number of
exon-exon junctions.

(iv) It precisely predicts the exact position of deletions or insertions (indels) by using the
information provided by all reads in the same context.

We evaluated the performance of ContextMap 2 using Bowtie, Bowtie 2 and BWA as
integrated alignment programs on both simulated and real-life RNA-seq data used by the
RGASP consortium in a recent evaluation of RNA-seq mapping programs (Engstrom et al.
[2013]). The comparison of ContextMap 2 to the best performers of this study showed
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that it combined high recall with high precision on read placement, splice junctions, multi-
junction reads and indels. While individual competing RNA-seq mapping programs out-
performed ContextMap 2 on some of these tasks, none was consistently better or performed
comparably well in all of them. Furthermore, ContextMap 2 was generally at least twice
as fast as the best competing methods.

3.2 Methods

3.2.1 Overview of ContextMap 2

ContextMap 2 is based on the ContextMap approach for RNA-seq read mapping (Bonfert
et al.| [2012]). Here, the central concept is the so-called read context, which is defined as a
set of reads all originating from the same stretch of the genome and likely corresponding
to transcripts of the same or overlapping genes. The first implementation of ContextMap
was focused on improving initial mappings provided by other RNA-seq mapping programs,
but has more recently been extended into a standalone version that also allows parallel
mapping against several reference genomes (Bonfert et al.| [2013] and chapter [4)).

Similar to other mapping approaches, both of these implementations used a modi-
fied version of Bowtie for alignment. Thus, ContextMap suffered from the same problem
as most state-of-the-art mapping approaches that newly developed short read alignment
programs could not be easily integrated to replace the used Bowtie version. Furthermore,
variable read lengths were not supported and reads crossing multiple exon-exon junctions or
containing indels were not mapped. All of these problems are addressed by ContextMap 2
(Bonfert et al.| [2015]).

In the following, an overview of the five steps of the ContextMap 2 workflow is presented
(see Figure . The details of each step are described following this overview.

Step 1: Determination of initial alignments

This step includes both the determination of ungapped read alignments against one or
several genomes using the integrated short read alignment program, e.g. BWA, as well as
the extension of these alignments to alignments containing a splice junction (=split read
alignments, see Figure A). For this purpose, ContextMap 2 first performs a seeded
alignment of all reads against the reference sequences with user defined seed values of 20-
30 bps. Here, ContextMap 2 can use programs that determine only end-to-end alignments
(e.g. Bowtie) as well as programs that also determine local alignments (e.g. Bowtie 2 and
BWA). An end-to-end alignment starts at the read start and ends with the read end. In
contrast, a local alignment allows unaligned prefixes or suffixes of the read if this improves
the alignment score.

Parameters of the underlying alignment program are set such that all alignments for
which the seed can be aligned are retained, allowing for multiple alignments of each read.
The resulting alignments are then classified into four categories:
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Figure 3.1: Workflow of ContextMap 2. (A) Reads are aligned to the reference sequence(s) using the inte-
grated short read alignment program and the resulting alignments are classified into 4 different categories
(top box, right side: full alignment, candidate single-split alignment, candidate multi-split alignment,
and partial alignment). Dashed lines indicate unaligned sequence parts resulting from local alignments.
Candidate single- and multi-split alignments are extended to split alignments using the sliding window
approach (Figure . (B) Alignments less than d,,;, apart are assigned to the same context. The maxi-
mum context size dyq. can be defined by the user (default is the average length of a mammalian mRNA).
(C) Alignment extension of full (green box) and split alignments (see Methods section) to determine all
valid alignments for a read. (D) 4+ (E) Resolution of the best alignment for each read first within each
context (D, local resolution) and then between all contexts (E, global resolution). For this purpose, a
support score is calculated based on closely located alignments of other reads (bottom box, right side, and

Methods section).



36 3. ContextMap: Fast and accurate context-based RNA-seq mapping

(a) Full alignment: if the read could be aligned end-to-end to the genome with a maximum
number of mismatches (defined by the user).

(b) Candidate single-split alignment: if the seed could be aligned at the start or end of the
read, the end-to-end alignment of the read contains more than the allowed number of
mismatches and the last allowed mismatch is at least a predefined distance from the end
of the alignment. If the integrated short read alignment program also produces local
alignments, unaligned read positions are counted as mismatches for this classification.

(¢c) Partial alignment: if the same criteria apply as in (b) but the last allowed mismatch
is less than the predefined distance from the alignment end.

(d) Candidate multi-split alignment: if only a local alignment could be determined with
both a prefix and suffix of the read unaligned.

Following this classification, candidate single-split and multi-split alignments are extended
to complete split alignments as described further below.

Step 2: Context definition

The alignments identified in the previous step are used to define contexts. For this purpose,
read alignments are clustered into a context if their start or end positions on the genome are
at most a maximum distance apart (Figure B). Contexts are treated independently of
each other until step 5. This allows both mapping read sequences against several reference
genomes, e.g. of the human host and infecting pathogens (see chapter 4| or [Bonfert et al.
[2013]), as well as efficient parallelization of steps 3 and 4. Here, multiple alignments of
each read to the same context or different contexts are allowed, which will be resolved in
steps 4 and 5.

Step 3: Alignment extension

Once contexts have been defined, additional alignments are determined for each read based
on the alignments found in the first step (Figure C). This alignment extension is per-
formed in parallel for different contexts. Its objective is to identify all valid alignments for
each read with a maximum number of mismatches, such that the best supported alignment
can be selected in the subsequent steps.

For this purpose, full and partial read alignments are checked for an overlap with split
alignments of other reads. If overlaps are found, additional split alignments are created
for the corresponding reads using the splice junctions indicated by the overlapping split
alignments. Furthermore, all possible split alignments are generated for each read for which
at least one split alignment was identified in step 1 (see section for details). In all
cases, only alignments are used that do not exceed the maximum mismatch criterion. At
the end of this step, several different alignments have been created for each read, resulting
in multiple alignments both within and between contexts.
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Step 4: Local resolution of alignments within contexts

In this step, the best alignment for each read is determined within each context by taking
other read alignments into account (Figure D). For this purpose, the best supported
splice sites among overlapping splice sites are determined first using a score based on
the number of supporting reads, the number of mismatches and known splice signals (see
section for details). Split read alignments not using any of the three best supported
splice sites are discarded.

Subsequently, a support score is calculated for the remaining read alignments based
on the number of reads aligned within and around the read alignment. In principle, the
support score is a weighted sum of maximum read coverages in predefined windows around
the read alignment (see section for details). Among several alternative alignments for
the same read within each context, the one with the largest support score is then chosen.

Step 5: Global resolution of alignments between contexts

In this final step, multiple read alignments to several different contexts are resolved as
in step 4 after recalculating support scores based on the read alignments chosen for each
context (Figure E). Thus, at the end of each step, each read is aligned to only one
position in (at most) one context. If more than one reference sequence was provided, this
will also automatically result in the choice of one reference sequence of origin for each read.

3.2.2 Plug-in structure of ContextMap 2

ContextMap 2 provides a plug-in interface which allows for integrating any short read
alignment program without modification if it meets the following requirements:

(i) The alignment program has to support seeded alignments with adjustable seed lengths
to allow use of different seed lengths in different steps of ContextMap 2.

(ii) The alignment program has to provide a tool to prepare an index of any reference
sequence. Indexing reference sequences is a common strategy of all state-of-the-art
short read alignment programs to speed up alignment.

(iii) If the read alignment program includes an option to identify indels, it must be possible
to deactivate this option. ContextMap 2 uses its own context-based strategy for
predicting the exact position of indels.

(iv) The output has to be in SAM format (Li et al.| [2009)]).

The interface for plugging in a short read alignment program into ContextMap 2 is com-
posed of three methods, two for performing alignments at different steps of ContextMap 2
and one for indexing reference sequences. Implementing the interface requires implement-
ing methods for managing the external program calls. In addition, the alignment methods
have to collect the determined alignments. For this purpose, two classes can be reused that
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Figure 3.2: Candidate single-split alignment detection with alignment programs that only use a single seed
region at the start of the read (e.g. Bowtie). (A) Two reads crossing the same exon-exon junction. More
than half of the read sequence of read A can be aligned to exon 1 and only the remaining part to exon 2.
On the contrary, only a small part of read B can be aligned to exon 1 and more than half of the sequence
to exon 2. (B) During the initial alignment phase a candidate single-split alignment of read A is detected.
However, an alignment of read B cannot be determined if only a single seed region at the start of the read
is considered. (C) In the backward alignment step, ContextMap re-aligns the reverse complemented read
sequence of read B to the genome. Due to the reversion of the read a candidate split alignment starting
from the read end can be determined.

perform these tasks for Bowtie, Bowtie 2 and BWA, which have already been integrated
in ContextMap 2.

3.2.3 Detection of candidate single-split alignments

The detection of reads crossing a single exon-exon junction is based on the fact that these
reads overlap two exons only. Therefore, a complete single-split alignment can be divided
into two parts. One part consists of at least half of the read sequence, while the other
part consists of the remaining part of the read sequence (see Figure A). In the initial
alignment phase, the split detection starts by determining alignments for the larger part
containing at least half of the read sequence using relatively large seed sizes. An alignment
is classified as a candidate single-split alignment if the seed can be aligned at the start
or end of the read, but the whole alignment exceeds the allowed number of mismatches.
Furthermore, the last allowed mismatch has to be more than a predefined distance away
from the alignment end. If ContextMap finds candidate single-split alignments of a read,
then it will determine completing alignments of the remaining part of the read in a more
sensitive alignment step (see section [3.2.4)).

Novel alignment programs such as Bowtie 2 or BWA apply a so-called multi-seed heuris-
tic for determining alignments. Here, several different regions of the read sequence are
considered as seeds. This includes seed regions at the read start as well as at the read end.
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Thus, ContextMap 2 using Bowtie 2 or BWA detects candidate single split alignments with
the seed aligned at the start or at the end of the read during the initial alignment phase.
However, some alignment programs, e.g. Bowtie, consider only a single seed region starting
at the beginning of the read. These programs can miss candidate single-split alignments
(see Figure B for an example). For addressing this problem, we apply an additional
backward alignment step for alignment programs that place the seed only at the start of the
read (see Figure C). The backward alignment is performed with reverse complemented
read sequences. This allows to determine read alignments starting from the read end and
thus to increase alignment sensitivity.

3.2.4 Detection of complete single-split alignments

At the end of the initial alignment phase, ContextMap 2 extends candidate split alignments
to complete single-split alignments, i.e. alignments crossing one exon-exon junction only,
using a so-called sliding window approach (Figure A). This sliding window approach
works in the following way: The sliding window is initiated at the left-most candidate split
alignment on a chromosome and is extended to contain any overlapping alignment until
a pre-defined maximum window length is exceeded. All candidate single-split alignments
within this window are then extended to complete split alignments as described below.
Afterwards, the current window is discarded and the next window is determined starting
at the next candidate split alignment not completely contained in the previous window.
This is repeated until all candidate split-alignments have been processed.

To determine the complete split alignments within each window, an index is built for
the used short read alignment program covering the part of the reference sequence within
the current window. This sequence is extended by x nucleotides (x = average intron size,
can be defined by the user) downstream of the window if a candidate split alignment with
the seed at the read start ends too close to the window end (i.e. the distance is less than the
average intron size x). This allows finding split alignments that start within the window
but end downstream of the window end. Similarly, an upstream sequence is added to the
index if a candidate split alignment with the seed at the read end begins too close to the
window start.

Using this dynamically built index and the corresponding short read alignment program,
completing alignments of the unaligned read part are determined for each candidate split
alignment within the sliding window (Figure A). This restricts the search space to a
region covering only one or very few genes, allowing the use of smaller seed lengths of
10-15 bps. Since the window is very small and only a relatively small number of reads is
covered by the window, this step is very fast. The original candidate split alignment and
the completing alignment for each read are then combined into one split alignment and
included in the set of initial alignments in addition to the full and partial alignments.
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Figure 3.3: (A) Detection of single-split alignments as part of step 1 of ContextMap. First, reads are
aligned to the genome and candidate split alignments (A;) are identified. Second, reads with candidate
split alignments are re-aligned within a window around the initial alignment to determine a completing
alignment (As). The use of smaller seed lengths than in the initial alignment allows recovering completing
alignments shorter than the seed length used for the initial alignment. Finally, the alignments are combined
to a complete split alignment. (B) Detection of multi-split alignments. For every candidate multi-split
alignment, ContextMap creates two fragments of the respective read sequence (i.e. fi and fy for A; and
f3 and fy for As). Subsequently, single-split alignments are detected for these fragments. Finally, overlaps
of single-split alignments are combined to obtain a complete multi-split alignment after first identifying
the best splice site for each split alignment as part of the resolution of overlapping splice sites in step 4.

3.2.5 Detection of complete multi-split alignments

The detection of multi-split alignments, i.e. alignments crossing more than one exon-exon
junction, is a novel feature of ContextMap 2. It is based on local alignment options of
recently developed alignment programs such as Bowtie 2 or BWA. Essentially, the local
alignments are used to fragment the reads into smaller segments for which single-split
alignments are then determined (see Figure B). In contrast to other approaches that
fragment all reads into smaller equal-sized segments, only reads for which a local alignment
was determined, i.e. candidate multi-split alignments, are fragmented by ContextMap 2.

For this purpose, candidate multi-split alignments (=local alignments with suffix and
prefix of the read not aligned) to the same genomic region are collected using the same
sliding window approach used for the single-split alignment detection. In fact, ContextMap
uses a single run of the sliding window approach to process single- as well as multi-split
alignments.

For each candidate multi-split alignment in the current sliding window, two fragments
of the read sequence are generated. If read r = r...7; (I = read length) has been aligned
at positions r; ... r;, the first fragment consists of the subsequence fi = r;_c...7_17;...7j,
where e is the predefined minimum exon size (default 20 bps). If the unaligned prefix
(ry...7—1) of the read is smaller than the minimum exon size e, f; = ry...r;. Similarly,
the second fragment is defined as fo = r;...7jrj11...7j1.. If the unaligned suffix of the
read (rjiq...7;) is shorter than e, fo =r;... 1.
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Figure 3.4: (A) Example of a read with a deletion compared to the reference sequence. In this case, the
alignment length d is larger than the read length ! and the gap size is positive. (B) Example of a read with
an insertion compared to the reference sequence. Here, the alignment length d on the reference sequence
is smaller than the read length [ and the gap size is negative.

The original local alignment then provides candidate split alignments for f; and f,. The
completing alignments to these candidate split alignments are found within the sliding
window as described in the previous section. This results in single-split alignments for
the fragments, which are added to the list of initial alignments determined in step 1 of
ContextMap 2 and extended to all valid single-split alignments of the fragments in step 3.

The complete multi-split alignment of the whole read is determined in step 4 by merging
overlaps of the single-split alignments for fragments of the same read after the resolution
of pairwise overlapping splice sites. Thus, the precise location of the splice sites is first
determined for the single-split alignments of the fragments before combining them to the
complete multi-split alignments.

3.2.6 Detection of indels

Essentially, the prediction of reads containing a deletion to the reference is the same as
detecting spliced reads with a very small intron size (see Figure A). Similarly, a read
containing an insertion to the reference can be considered as a special case of a spliced read
spanning an intron with negative length (see Figure B). Thus, detection of deletions
and insertions could be incorporated seamlessly into the single- and multi-split alignment
detection procedure of ContextMap 2 by allowing both small and negative intron lengths,
respectively. Conveniently, this also allows the mapping of reads containing both indels
and splice sites by finding the corresponding multi-split alignment.

The distinction between indels and splice sites is only applied when preparing the output
at the very end of the ContextMap 2 run. At this point, the gap size is determined for each
split position in a single- or multi-split alignment (see Figure . The gap size is defined
as d — [, where d is the alignment length on the reference genome and [ is the read length.
If the gap size is negative and its absolute value at most a user defined maximum insertion
size (default = 10 bps), this split position is classified as an insertion. If the gap size is
between 1 and a user defined maximum deletion size (default = 10 bps), it is classified as
a deletion. If the gap size is between a user defined minimum intron size (default = 50
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Figure 3.5: (A) The single-split detection method in step 1 provides only one valid split alignment with
the minimum number of mismatches for each possible combination of alignment start and end. (B) By
shifting the position of the splice site, alternative split alignments with the same number of mismatches
or a few more (indicated by the maximum mismatch difference parameter) are determined. The range of
the search space is defined by the read length.

bps) and a user defined maximum intron size (default = 300,000 bps), the split is classified
as an intron. Split alignments with gap sizes that do not fall into these ranges are not
determined when detecting single- and multi-split alignments.

3.2.7 Alignment extension for split alignments

Similarly to the extension of full and partial read alignments, additional alignments are
determined for split alignments. The input for this extension is the set of single-split align-
ments (including single-split alignments of fragments of multi-split candidates) determined
in step 1. Each single-split alignment consists of a combination of continuous alignments
beginning at the read start and the read end separated by the predicted intron (Figure
A). The ends of this intron represent the predicted splice sites. Here, step 1 determines
only one split alignment with the minimum number of mismatches for each combination of
alignment start (anchor A in Figure A) and alignment end (anchor B in Figure A).

However, other split alignments may be possible for the same combination of alignment
start and end with the same number of mismatches or only a few more (the difference
in mismatches allowed is provided by the user using the maximum mismatch difference
[mmdiff] parameter). These alignments are determined by shifting the position of the
splice sites as shown in Figure 3.5 B.

Furthermore, single-split alignments (excluding single-split alignments of fragments of
multi-split candidates) are checked for overlaps with split alignments of other reads indi-
cating an additional split within the continuously aligned regions. If an overlap is found,
the single-split alignment is extended to a multi-split alignment. Here, only single-split
alignments of the whole read are extended to two-split alignments, but not single-split
alignments of read fragments obtained for candidate multi-split alignments (see Detection
of multi-split alignments).

In all cases, only alignments are used that do not exceed the maximum mismatch
criterion. At the end of this step, several different alignments have been created for each
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read, resulting in multiple alignments both within and between contexts. Resolution of
these multiple alignments is then performed in step 4 and 5 of ContextMap 2.

3.2.8 Resolution of overlapping splice sites

This is part of step 4 of ContextMap 2, in which multiple alignments are resolved within
contexts. Here, splice sites are eliminated which are very close to each other and suggested
by alternative split alignments of the same read with the same alignment start and end but
different position of the splice site. Elimination is based on the evidence for different splice
sites provided by all reads. Although it might appear counterintuitive that alternative split
alignments are first created in step 3 of ContextMap 2 and then some are deleted again,
this guarantees that all reads with a valid split alignment using this splice site are included
in calculating the evidence score.

Two splice sites (s11, $12) and (sa,1, S22) are considered overlapping if both |s11 — 91|
and |s12 — s2.2| are smaller than the maximum read length. Here, s;; denotes the genome
position of the end of the first exon and s;5 the start of the second exon. While in the
original ContextMap implementation only one splice site from a set of overlapping splice
sites was used, ContextMap 2 retains the three splice sites from each set with the highest
evidence score (see Figure . This allows the detection of alternative 3" or 5’ splice sites.

ContextMap 2 uses a similar evidence score as in the original ContextMap version. The
major difference involves the treatment of gene annotation (if provided) and known splice
signals. If at least one splice site within the set of overlapping splice sites corresponds
to an annotated exon-exon junction or shows a known splice signal, all other splice sites
not corresponding to a known exon-exon junction or having no known splice signal are
discarded. The evidence score used for evaluating the remaining splice sites is calculated as
follows. Let n; be the number of reads (full, split or partial) with ¢ mismatches supporting
the splice site pair and m the maximum number of mismatches allowed. Then the evidence

score is defined as:
m

evidence = Z(wz ;) (3.1)
=0

Here, w is a value < 1 (default w = 0.3). Thus, the score is the weighted sum of the
number of reads with the weight decreasing exponentially with the number of mismatches.
For each set of pairwise overlapping splice sites, the three splice sites with the highest
evidence scores are selected. Split read alignments containing the discarded splice sites are
discarded. If more than one split alignment remains for a read to any of the remaining three
splice sites, the split alignment to the splice site with highest evidence score is retained

and all others discarded.

3.2.9 Resolution of multiple read alignments

ContextMap 2 resolves multiple read alignments first within each context in step 4 and
subsequently between the contexts in step 5. For this purpose, a support score is calculated
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Figure 3.6: Resolution of overlapping splice sites. Split alignments of reads r1 (red) and ro (blue) suggest
a set of three overlapping splice sites {(s1,1,51,2), (S2.1,$2,2), (83,1, 53,2)}. Here, (s1.1,51,2) and (s21,52,2)
are indicated by alternative split alignments of the same read r;. Assuming that all shown alignments
have zero mismatches, this results in the following evidence scores for the three splice sites: 1, 4 and
2. Although all three splice sites would be retained at first, the only supporting read for the splice site
(s1,1,81,2), i.e. 71, is assigned to the splice site (s2.1,52,2) with higher evidence score. As a consequence,
the splice site (s1,1, 51,2) is discarded as it is no longer supported by any reads.
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Figure 3.7: Illustration of the old (A) and new (B) support score definition. The definition for full
alignments is the same, with the exception that the region to which the read is aligned is continuous.

for each alignment based on the number of reads aligned to the same genomic region. In
the original ContextMap implementation, the score was defined as (see Figure A)

4
support = Z 247" |In(score;)]. (3.2)

i=1

Here, score; was defined as the maximum number of reads mapping to any position within
the region the read is aligned. scores was the maximum in a window of 200 nt either
upstream of the read start or downstream of the read end. scores was the maximum > 200
but < 500 nt from read start or end. Finally, score, was the maximum > 500 but < 1000
nt from read start or end.

To better distinguish between different alignments for a read that are identical on one
but not the other side of the read, the support score in ContextMap 2 was modified such
that maximum read counts on both sides of the of read alignment are included separately
in the score. Furthermore, we reduced the number of considered windows around the read
alignment and their respective sizes since the considered region was much larger than an
average exon (Figure B). The new support score is then defined as

support = 2% - |In(score;) |

+ Z 247" (|In(score_;)| + |In(score;)]) . (3.3)
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Here, score_; and score; were defined as the maximum read counts in the corresponding
intervals upstream and downstream of the read alignment, respectively. For reads with
multiple alignments, the count was 1/(#multiple alignments of read within context) for
step 4 and 1/(#multiple alignments of read between contexts) for step 5 of ContextMap 2.

Thus, if many reads are aligned to the same region, indicating that this region is actually
expressed, the score of the alignment is high. If only few other reads are aligned to the
same region as the read, the score of the alignment is low. Among several alternative
alignments for the same read within each context, the one with the largest support score
is then chosen. Finally, reads aligned to several different contexts are resolved in the same
way in step 5 after recalculating support scores based on the read alignments chosen for
each context.

3.3 Results and Discussion

3.3.1 Data sets and methods for evaluation

Evaluation of ContextMap 2 was performed on simulated and real data previously used
by the RGASP consortium for the systematic evaluation of RNA-seq mapping programs
(Engstrom et al.| [2013])(see Table [3.1{ for a summary).

The simulated data was generated using the simulation program BEERS, which is
provided with the RUM pipeline (Grant et al| [2011]). Two data sets were simulated,
each containing 80 million 76-nucleotide paired-end reads (= 40 million read pairs). The
second data set is more challenging than the first as higher rates of substitution errors,
indel polymorphisms and reads from unannotated isoforms were simulated.

The real data consists of RNA-seq data of the human K562 cell line (whole cell, cyto-
plasmic and nuclear fraction) from the ENCODE project (ENCODE Project Consortium
[2012]) (2 replicates each, resulting in 6 samples). Each sample consisted of ~200 million
76-nucleotide paired-end reads (~100 million read pairs).

We compared ContextMap 2 against the best performing RNA-seq mapping approaches
identified in the RGASP study. These included MapSplice (Wang et al.| [2010]), STAR
(Dobin et al. [2013]), and GSNAP (Wu and Nacu| [2010]). We also included TopHat
(Trapnell et al.| [2009]) (denoted as TopHatl in the following) and Tophat2 (Kim et al.
[2013]) as these are most commonly used RNA-seq mapping programs. Mapping results
of these programs on the used data sets as well as evaluation scripts were provided by
the authors of the RGASP study (https://github.com/RGASP-consortium/). For all
programs, we evaluated the performance without and with an annotation (indicated by
“ann”). For STAR, we evaluated both the 1- and 2-pass version. In the 2-pass version of
STAR, splice junctions detected in the first run (1-pass) are taken as an input for a second
run to improve mapping.

We applied the same evaluation scripts to evaluate ContextMap 2 mapping runs using
Bowtie (version 0.12.7), Bowtie 2 (version 2.1.0), or BWA (version 0.7.8) as internal short
read alignment programs. Additionally, we evaluated the performance of ContextMap 2
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Dataset ID # Sequenced fragments  # Reads
Simulation 1 NA 40000000 80000000
Simulation 2 NA 40000000 80000000
K562 whole cell replicate 1 LID16627 113588758 227177516
K562 whole cell replicate 2 LID16628 119053315 238106630
K562 cytoplasmic fraction replicate 1~ LID8465 124826068 249652136
K562 cytoplasmic fraction replicate 2 LID8466 88445339 176890678
K562 nuclear fraction replicate 1 LID8556 117113622 234227244
K562 nuclear fraction replicate 2 LID8557 105769104 211538208

Table 3.1: Data sets used for evaluation and number of sequenced fragments and reads for each data set.

using BWA and an annotation. Here, the annotation is only used for scoring splice junctions
when resolving overlapping splice sites (see Methods). As for the RGASP evaluation, the
annotation was taken from Ensembl version 62. Although we also performed evaluation of
the original ContextMap implementation, we did not include it in the thesis as it performed
worse in all evaluated metrics than ContextMap 2.

For runtime comparison, we applied all RNA-seq mapping programs with the same
parameter settings as described in the RGASP study. The only exception was MapSplice.
In this case, an internal version of MapSplice was used in the RGASP study, which is
not available for download. Most likely it was an unfinished predecessor of MapSplice 2,
which has since been made publicly available (http://www.netlab.uky.edu/p/bioinfo/
MapSplice2). It was not the published MapSplice 1.x version as options were used (e.g.
detection of indels with length > 3) that this version does not support. We thus included
an evaluation of MapSplice 2 in this work by applying it to all data sets using default
parameters. Since MapSplice 2 uses the annotation only to detect fusion junctions between
different genes, which was not simulated in the RGASP data sets, MapSplice 2 was only
applied without annotation.

3.3.2 Alignment yield

As a first metric, we evaluated the fraction of mapped reads for both simulated data
sets (see Supplementary Table . This showed significant differences between RNA-seq
mapping programs with GSNAP having the highest mapping rates (~99% and ~98% of
the reads for simulation 1 and 2) and TopHat1/2 and ContextMap 2 having lowest mapping
rates (89-96% of reads mapped in simulation 1 and 78-88% in simulation 2).

When investigating the fraction of reads mapped either perfectly, part correctly or
with no base correct (Figure and Supplementary Table , it became apparent that
mapping rates alone are not meaningful for comparing the performance of algorithms.
Despite GSNAP’s high overall mapping rate, the fraction of perfectly mapped reads was
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Figure 3.8: Fraction of perfectly mapped, part correctly mapped and incorrectly mapped reads for sim-
ulated unspliced and spliced reads of simulation 1 and 2, respectively. “CM Bwt1”, “CM Bwt2” , “CM
Bwa” denote ContextMap 2 used with Bowtie, Bowtie 2, and BWA as underlying alignment program,
respectively. If a gene annotation was provided, “ann” was added to the name of the respective program.

only 89% and 76% of reads of simulation 1 and 2, respectively. In contrast, ContextMap 2
using BWA mapped almost 95% and 87% of reads perfectly, which was better than for
all other evaluated methods except MapSplice 2. Consistently, both the fraction of part
correctly mapped reads and reads with no base mapped correctly were lower than for all
other methods (see also Figure . Thus, the higher mapping rates of other programs
came at the cost of higher error rates.

To investigate whether performance differed between unspliced and spliced reads, map-
ping rates were also calculated separately for both types of reads (Figure and Sup-
plementary Tables and . Indeed, the evaluated programs differed considerably
in performance between spliced and unspliced reads but not in any consistent fashion.
For ContextMap 2 using Bowtie, MapSplice, STAR 1-pass, TopHatl and GSNAP (and
TopHat2 on simulation 1), the fraction of reads mapped completely wrong increased by
more than 0.5 percentage points for spliced reads compared to unspliced reads. In contrast,
this fraction did increase less for ContextMap 2 using Bowtie 2 or BWA (and TopHat2
on simulation 2) and even decreased for the remaining tools. In all cases, however, the
number of part correctly mapped reads increased for spliced reads, but least for Con-
textMap 2 and TopHat2. This was likely due to a part of the read on one side of the splice
junction not being mapped correctly or not at all (e.g. in case of STAR, which can also
output clipped alignments). In particular for STAR and GSNAP, this lead to 10-50% part
correctly mapped reads.

In summary, these results show that ContextMap 2 using BWA had the lowest rate of
incorrectly mapped reads among all evaluated programs. Furthermore, it mapped more
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reads perfectly than any of the other programs except MapSplice 2. However, MapSplice 2
had ~2-fold higher rates of incorrectly mapped reads.

Interestingly, we observed that the choice of the underlying alignment program had a
significant influence on the performance in RNA-seq mapping. Both rates of perfectly and
incorrectly mapped reads are improved significantly when using BWA within ContextMap 2
instead of either Bowtie or Bowtie 2. The reduced number of perfectly mapped reads for
Bowtie is mostly due to its lower overall recall (Lindner and Friedel [2012]) and the fact that
it does not determine local alignments and thus does not support the detection of multi-
split read alignments and indels within ContextMap 2. The higher number of incorrectly
mapped spliced reads results from spliced reads for which the seed at the read start cannot
be aligned at the correct position, e.g. because the splice site in the read is closer to the
read start than the seed length, but the seed can be aligned to a wrong position. In this
case, no backward alignment is performed for the read in order to reduce runtime and only
the incorrect alignments are further analyzed.

The lower mapping quality using Bowtie 2 compared to BWA resulted from the fact
that — in contrast to Bowtie and BWA — Bowtie 2 has a dramatically increased runtime
if the maximum number of valid alignments reported per read (-k option) is set to even
moderately high values. Thus, per default we used a relatively low value of £ = 3. Using a
value of k& = 10 resulted in comparable mapping quality to ContextMap 2 with BWA (see
Supplementary Tables but runtime increased by at least 8 h compared to BWA
or Bowtie 2 with k& = 3 (see Table [3.3).

3.3.3 Alignment yield on real-life RNA-seq data

Consistent with evaluation results on simulated data, alignment yield of ContextMap 2
was lower on all samples for the K562 cell line than for MapSplice 2, STAR or GSNAP,
but similar or slightly higher than for TopHat1/2 (Figure . This was only partly due
to the relatively small number of mismatches (=4) allowed per default in ContextMap 2.
Nevertheless, the ranking of algorithms with regard to the number of mapped reads is
quite similar to the ranking on the simulated data. Thus, if we also extrapolate the results
on perfectly and incorrectly mapped reads from the simulation to the real-life data, this
would suggest that the difference in mapped reads between ContextMap 2 and most other
mapping programs are to a large extent due to incorrect mappings identified by the other
programs.

3.3.4 Spliced alignment

Since performance on spliced reads showed the largest differences among the mapping
approaches, these were analyzed in more detail (Figure A and Supplementary Figure
[A2)). For this purpose, splice recall and false discovery rate (FDR) were calculated as in
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Figure 3.9: Percentage of mapped reads and mismatch distribution for the mapped reads for both replicates
of the K562 whole cell RNA-seq samples. Results for all real-life samples are shown in Supplementary

Figure

the original RGASP study. Here, splice recall is defined as

#true positive splices

recall = (3.4)

#simulated splices
#true positive splices

B #true pos. splices + #false neg. splices’

In this case, a splice is defined as one junction in one particular read. Thus, if a simulated
junction within a read is recovered by the alignment for this read, it is considered a true
positive splice. If it is not recovered, it is a false negative splice. If the alignment contains
a junction that was not simulated for this read, it is considered a false positive splice. FDR
is then defined as 1 - precision, with

#true positive splices

(3.5)

recision =
P #predicted splices

#true positive splices

B #true pos. splices + #false pos. splices’

For the real data, recall and FDR could not be calculated as the correct mapping was
not known. Instead, the fraction of reads mapping to an annotated splice junction (=:
frequency of annotated splices) was compared to the fraction of reads mapping to a novel
splice junction (=: frequency of novel splices).

Consistent with the evaluation of alignment yield, this analysis showed that Con-
textMap 2 combined low FDR with high recall. Again the combination with BWA per-
formed best. Although some of the other mapping programs showed higher recall, this was
always accompanied by significantly higher FDR. Generally, the increase in recall com-
pared to ContextMap 2 was only modest with the exception of annotation-based GSNAP
on simulation 2.
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Figure 3.10: (A) Comparison of splice recall (y-axis) versus splice false discovery rate (FDR=1-precision,
x-axis) on simulation 1 and 2 (see equations and for definitions). For the human data sets, the
frequency of predicted novel splices was compared to the frequency of annotated splices for the Ensembl
annotation (see text for definitions, Supplementary Figure 5 for results for all real-life data sets). Further-
more, the number of identified annotated and novel junctions was evaluated (see Supplementary Figure
6 for results for all data sets). To obtain receiver operation characteristic (ROC)-like curves, numbers
were also calculated at increasing thresholds on the number of supporting reads for each junction. (B)
Number of correctly predicted (true) and incorrectly (false) junctions were compared for all junctions and
annotated and novel junctions separately. In contrast to the RGASP evaluation, we also included junctions
covered by only 1 read. ROC-like curves were calculated as in A. (A-B) For ContextMap 2 only results
using BWA are shown, results for Bowtie and Bowtie 2 can be found in Supplementary Figures
(for A) and |A.4| (for B).



52 3. ContextMap: Fast and accurate context-based RNA-seq mapping

The analysis of known and novel splices identified in the real data set showed that
ContextMap 2 mapped reads to novel splices with similar frequency as most other programs
except STAR 2-pass (Figure A and Supplementary Figure . In contrast, reads
were mapped to known splice junctions less frequently compared to most programs using an
annotation and more frequently than most programs without annotation. Unfortunately,
these results are difficult to interpret as alignments to novel junctions are not necessarily
wrong and alignments to annotated junctions not necessarily right.

To address this problem we also compared the number of novel and annotated junc-
tions predicted by all methods between the simulations and the real data sets (Figure
A and Supplementary Figure [A.3). Here, the same junction (in terms of the ge-
nomic coordinates) identified for several reads was counted only once. This consistently
showed that ContextMap 2 predicted significantly fewer novel junctions than STAR and
GSNAP (>50% less). Here, ContextMap 2 using BWA or Bowtie 2 and MapSplice showed
quite similar performance, whereas annotation-based ContextMap 2 using BWA and, in
particular, annotation-based TopHat2 predicted significantly more annotated junctions.
Interestingly, annotation-based ContextMap 2 identified almost precisely the correct num-
ber of annotated and novel junctions for both simulations. The high similarity of the results
between simulation and real data indicates that recall and FDR from the simulations can
again be extrapolated to the real data sets. This would suggest that ContextMap 2 using
BWA (both with and without an annotation) correctly identifies more reads with known
junctions than programs not using an annotation but is less biased towards annotated
junctions than other programs using an annotation.

This conclusion is also supported by the comparison of the number of correctly pre-
dicted junctions to false junctions (Figure B and Supplementary Figure [A.4). This
again shows that ContextMap 2 (in particular when using BWA) predicts much fewer
false junctions than approaches using an annotation, while missing relatively few of the
true junctions. For novel junctions ContextMap 2 is only outperformed in terms of re-
call and FDR by MapSplice 2, but the difference in performance is relatively small. For
annotated junctions, the ContextMap 2 version without annotation performs almost as
good as MapSplice 2, which has the lowest FDR, whereas the version using the annotation
has a significantly higher recall but also predicts more false junctions. Again, this high-
lights the problem in using an annotation, which might bias the results towards known
junctions. Nevertheless, ContextMap 2 appears to be less biased by the annotation than
STAR, GSNAP or Tophat2.

3.3.5 Detection of multi-junction reads

Since ContextMap 2 now also supports mapping of reads crossing multiple junctions, we
calculated recall and precision separately for reads containing different number of junctions
(Table and Supplementary Table . For this purpose, a read was considered a true
positive if all junctions in this read were identified correctly and no additional junctions
were predicted. If a different number of junctions were predicted than correct, it was
considered a false negative for this junction number and a false positive for the junction



3.3 Results and Discussion 53

number predicted by the alignment. If the correct number of junctions were predicted for
the read, but some of the junctions were wrong, it was considered a false positive for this
junction number. To evaluate the trade-off between precision and recall, we calculated
F-measure values defined as

precision - recall

F — measure = 2 - (3.6)

precision + recall”

This showed that ContextMap 2 using BWA (both with and without annotation) out-
performed all other programs on reads containing only one junction except STAR 2-pass
and annotation-based GSNAP. This includes the vast majority of all spliced reads. Here,
only annotation-based GSNAP performed significantly better, at least on simulation 2.
In general, F-measure decreased with increasing number of junctions for all programs,
mostly due to lower recall values. Precision generally remained above 90%. For reads with
two junctions, ContextMap 2 with BWA was still only outperformed by STAR 2-pass,
annotation-based GSNAP and now also annotation-based Tophat2, but the difference in
recall to these programs increased.

For three junctions, however, recall and thus F-measure of ContextMap 2 using BWA
or Bowtie 2 dropped dramatically, such that only MapSplice 2, STAR 1-pass and GSNAP
(both without annotation) performed worse. Since Bowtie does not perform local align-
ment, ContextMap 2 using Bowtie cannot identify multi-split alignments and therefore had
zero recall on three-junction reads. A small number of two-junction reads were mapped as
single-split alignments are extended to multi-split alignments in step 3 of ContextMap 2 if
they overlap an additional splice site.

Since ContextMap 2 by default only determines multi-split alignments for which internal
exons are at least 20 nt long (= minimum exon size €), we repeated the analysis only for
multi-junction reads fulfilling this condition. The results of this analysis are shown in the
last two columns of Table [3.2] and Supplementary Table [A.4] Here, ContextMap 2 using
BWA showed a significant improvement, resulting in similar or better performance for two-
junction reads than all programs except TopHat2 on simulation 1 and annotation-based
GSNAP. For three-junction reads, recall of ContextMap 2 was almost doubled, whereas
for other programs improvements were less pronounced and recall of MapSplice 2 actually
decreased to < 2%. In addition, ContextMap 2 using BWA generally showed a significantly
higher precision than the programs with particularly high recall.

3.3.6 Indel accuracy

Precision, recall and F-measure values were also calculated separately for reads containing
insertions and deletions (see Figure [3.11] Supplementary Figure [A.5] and Supplementary
Tables and . These results show that ContextMap 2 using BWA outperforms
all other approaches on both insertions and deletions except for GSNAP (both with and
without annotation) and annotation-based TopHat2. Furthermore, the latter programs
only performed comparably well to ContextMap 2 on reads with small indel size (1-4,
depending on the method). In almost all cases, precision of ContextMap 2 using BWA was
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Program Number of junctions spanned
1 (13808336) 2 (598297) 3 (11781) 2* (548382) 3* (6908)

CM Bwtl 91.47 14.24 - 15.16 -
CM Bwt2 94.03 78.47 50.21 82.37 72.66
CM Bwa 95.03 82.73 53.33 86.67 76.46
CM Bwa ann 95.74 84.65 53.9 88.47 76.79
MapSplice 2 92.42 79.18 27.27 80.65 3.44
STAR 1-pass 77.63 30.91 5.01 31.91 1.49
STAR 1-pass ann 93.55 81.65 75.71 82.57 82.17
STAR 2-pass 95.0 85.55 82.07 86.59 87.29
STAR 2-pass ann 95.07 86.28 82.55 87.02 86.49
TopHat1 87.83 77.51 63.57 80.42 75.56
TopHat1l ann 88.02 78.99 68.13 81.06 76.1
TopHat2 91.71 87.0 76.92 89.66 88.51
TopHat2 ann 94.84 90.79 85.92 92.05 90.35
GSNAP 83.13 43.45 18.52 42.35 12.29
GSNAP ann 96.47 88.59 79.51 89.86 84.67

Table 3.2: F-measure [in %] for spliced reads with different number of spanned junctions (simulation 1,
recall and precision values for both simulations can be found in Supplementary Table . Columns
marked with an asterisk show results only for reads for which all exons except the first and last exon had
length > 20 nt. For this evaluation, read alignments were only considered a true positive if all simulated
splice junctions in the read were recovered and no additional splice junctions were identified. Indels were
ignored for this purpose.
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Simulation 1

Insertions
CM Bwt1 71.46 74.34 70.89
CM Bwt2 82.66 86.8 82.64
CM Bwa 87.41 90.27 88.78 79.88
CM Bwa ann 87.6 90.47 89.04 79.42 79.87
MapSplice 2 83.9 74.81 73.94 69.23 66.07
STAR 1-pass 65.96 65.83 64.29 61.91 57.14
STAR 1-pass ann 71.09 70.12 67.43 63.5 67.48
STAR 2-pass 69.92 69.55 67.06 63.46 67.32 58 57.43
STAR 2-pass ann 71.36 70.48 67.61 67.84
TopHat1 77.73 82.83 80.25
TopHat1 ann 79.78 84.96 82.05
TopHat2 7829 80.2 73.02
TopHat2 ann 89.18 89.85 85.33
GSNAP 88.03 87.65 75.74
GSNAP ann 91.05 91.95 84.86
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Figure 3.11: F-Measure [in %] for insertion and deletions identified by all programs on simulation 1. NaN
indicates that no insertion or deletion of that size was identified. Insertion and deletion size are shown
below the column of the heatmap. The numbers in parentheses indicate the number of simulated reads for
each insertion or deletion size. Results for simulation 2 are shown in Supplementary Figure Recall
and precision values are listed in Supplementary Tables and
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Figure 3.12: Fraction of mapped reads with different indel sizes among all reads with indels for the first
replicate of the K562 whole cell sample. Numbers next to the barplots indicate the number of mapped
reads with indels divided by 10° (i.e. number of reads per 100,000). Results for all samples are shown in

Supplementary Figures 9 and 10.
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above 90% and higher than for the best competing programs. Similar to multi-junction
reads, the integration of Bowtie or Bowtie 2 in ContextMap 2 resulted in worse performance
on indels than for BWA, in particular for longer insertions.

Numbers of detected indels and indel length were also evaluated on the real-life se-
quencing data (Figure and Supplementary Figures and [A.7). Consistent with
their higher recall on the simulations, ContextMap 2 using BWA, TopHat2 and GSNAP
mapped at least twice as many reads with insertions than the other programs. Inter-
estingly, numbers of mapped insertions generally decreased significantly for TopHat2 and
GSNAP when not using an annotation, while there were hardly changed for ContextMap 2
using BWA. Since simulation results showed higher precision for annotation-based GSNAP
and TopHat2 compared to the runs without annotation but not lower recall, this indicates
that the lost mappings were largely false positive results. Furthermore, even compared
to annotation-based GSNAP and TopHat2, precision of ContextMap 2 was higher on the
simulations (in particular for long insertions, which were enriched among TopHat2 results)
indicating that many of the insertions additionally identified by these competing tools were
not correct.

With regard to deletions, only GSNAP consistently recovered more reads with dele-
tions than ContextMap 2 using BWA and again numbers decreased for annotation-based
GSNAP. As the latter had both higher recall and precision on the simulations than GSNAP
alone, this again suggests that the difference in mapped reads between GSNAP with and
without annotation were false positives. Compared to ContextMap 2, annotation-based
GSNAP identified a higher fraction of longer deletions. As the simulations showed a signifi-
cantly lower precision, in particular on long deletions, for GSNAP, this again indicates that
a significant fraction of the additional reads with deletions identified by annotation-based
GSNAP are incorrectly mapped.

3.3.7 Runtime comparison

Finally, we compared runtime between all evaluated programs on the simulated data sets
(Table . Here, ContextMap 2 was much faster than all evaluated programs except
STAR 1- and 2-pass. Here, STAR 1-pass was extremely fast, whereas STAR 2-pass was
only ~20-24% faster than ContextMap 2. However, the evaluation on the RGASP data
showed that this improved runtime came at the cost of both lower precision and recall for
all STAR variants, in particular STAR 1-pass, compared to ContextMap 2.

Highest runtime of all evaluated approaches was observed for GSNAP with >128 CPU
hours, i.e. more than 5 days. Thus, although it performed well on the detection of multi-
junction reads and indels, runtime is too large for practical purposes. Among the remaining
competing approaches, MapSplice 2 performed best in the evaluation of alignment quality,
but not consistently better than ContextMap 2 using BWA. With regard to runtime, how-
ever, it performed significantly worse with ~30 CPU hours on both simulations compared
to 11-16 CPU hours used by ContextMap 2. Here, lowest runtime was observed when using
Bowtie and highest using Bowtie 2, in particular when increasing the maximum number of
reported alignments &k to 10. Thus, BWA is the best choice as integral alignment algorithm
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Program Simulation 1  Simulation 2
ContextMap Bwt1 11.67 11.02
ContextMap Bwt2 (k = 3, default) 16.47 15.58
ContextMap Bwt2 (k = 10) 24.98 24.55
ContextMap Bwa 11.58 14.00
ContextMap Bwa ann 11.92 14.15
MapSplice 2 31.43 28.62
STAR 1-pass 0.82 1.28
STAR 1-pass ann 1.05 1.58
STAR 2-pass 9.60 10.28
STAR 2-pass ann 9.57 10.80
TopHat1 20.1 28.43
TopHatl ann 20.53 29.03
TopHat2 25.17 27.23
TopHat2 ann 34.32 39.68
GSNAP 147.73 128.15
GSNAP ann 160.78 140.27

Table 3.3: Runtime in CPU hours for each program on simulation 1 and 2, respectively. All
methods were run using 8 cores on the same machines and with the same parameter settings as
in the RGASP evaluation (Engstrom et al|[2013]). ContextMap with Bowtie 2 was run with the
maximum number of alignments reported per read (k) set to 3 (default setting used for evaluating
mapping quality) and 10, respectively. Runtime of STAR 2-pass includes the time required for
running STAR 1-pass, indexing the genome with splice sites found in the first STAR run and
re-running STAR.

for ContextMap 2 taking into account mapping quality and runtime.

3.4 Conclusion

In this chapter, we presented ContextMap 2, a new and improved version of the context-
based RNA-seq mapping program ContextMap. The key novel features of ContextMap 2
are the plug-in structure, which allows integrating new developments in short read align-
ment, as well as the detection of multi-split alignments, insertions and deletions. Perfor-
mance of ContextMap 2 integrating either Bowtie, Bowtie 2 or BWA was evaluated on data
sets from the recent RGASP evaluation of RNA-seq mapping programs and compared to
the best performers of this study.

This showed that performance of RNA-seq mapping can be improved substantially by
replacing the internal short read alignment program by more recent methods or versions.
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In this case, the use of BWA as integral alignment program generally improved recall and
precision of ContextMap 2 compared to Bowtie and Bowtie 2 at only slightly higher or
even lower runtime, respectively. Here, the plug-in structure of ContextMap 2 allows the
extension to future versions of these alignment programs or even newly developed short
read alignment programs with improved accuracy or runtime. Furthermore, this extension
can also be performed by developers of such programs or other users of ContextMap 2
by simply implementing the interface. In contrast, other existing RNA-seq alignment
programs are limited to one or at most two short read alignment programs. For instance,
MapSplice 2 still uses only Bowtie and TopHat2 only supports Bowtie and Bowtie 2.

ContextMap 2 with BWA performed similarly well or better than other state-of-the-art
RNA-seq mapping programs with regard to perfectly mapped reads on simulated data,
while having at least ~2-fold lower rates of reads mapped only part correctly or at com-
pletely wrong positions. Thus, reduced mapping rates of ContexMap on both simulated
and real data can be mostly explained by lower rates of incorrectly mapped reads. Con-
textMap 2 using BWA showed high precision and recall on all evaluated tasks, in particular
on the detection of long insertions and deletions. Furthermore, runtime was generally at
least 50% lower than for the best competing programs. Only STAR 1- and 2-pass were
faster, but showed significantly lower precision, in particular on spliced reads and splice
junctions, and low recall on reads containing indels.



Chapter 4

Mining RN A-seq data for infections
and contaminations

Motivation: RNA-seq mapping approaches are usually designed for mapping sequencing
reads derived from a single species only. Moreover, the possibility that underlying samples
are infected by microbes or viruses is generally completely ignored. In such a scenario,
the sequencing reads derived from an RNA-seq experiment originate from the host species
as well as from unknown microbes or viruses. In this study, we show that our mapping
software ContextMap can be applied for detecting infecting agents or contaminants in an
RNA-seq experiment. Furthermore, we present methods to assess confidence of mappings
to identified species and to detect false positive hits. Using several real-life data sets, we
show that ContextMap identifies species contained in a given sample with high precision
and compare our results to several state-of-the-art metagenomic programs.

Publication: This chapter was published in PLoS ONE (Bonfert et al. [2013]). I moved
Figure |4.1} and Figure 4.3| of the Supplementary Material of the original article to the main
text. The remaining parts of the Supplementary Material can be found in Appendix
Furthermore, I adapted the layout of the text and applied some minor changes to the text.
Please note that the ContextMap version used in this chapter and in the corresponding
publication is an earlier release than the ContextMap 2 version described in chapter
Nevertheless, all presented methods are also implemented in ContextMap 2 and can be
applied in the same way as described here.

Author contributions: Caroline C. Friedel (CCF) and I designed the study. I imple-
mented the ContextMap standalone version used here with the exception of a modification
of Bowtie, which was implemented by Gergely Csaba. CCF and I developed and I im-
plemented the methods for assessing confidence of mappings to identified species and for
detecting false positive hits. Furthermore, CCF and I analyzed the data and co-wrote the
article. Ralf Zimmer helped in revising the manuscript.
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4.1 Background

Next generation sequencing (NGS) technologies provide novel opportunities for transcrip-
tomic analyses beyond simple quantification of gene expression. As one of the major
challenges in analyzing RNA-seq data is the identification of the transcriptomic origin of
each sequencing read (mapping), this has inspired the development of several novel RNA-
seq mapping tools, e.g. TopHat (Trapnell et al. [2009]), TopHat2 (Kim et al.| [2013]),
MapSplice (Wang et al.| [2010]), RUM (Grant et al,| [2011]), and RNASEQR (Chen et al.
[2012]). While all of these rely on fast alignment algorithms such as Bowtie (Langmead
et al.| [2009]), they use different strategies to identify reads from exon-exon junctions, a
problem unique to RNA-seq data. In general, these approaches choose the alignment with
the minimum number of mismatches for each read and cannot resolve multiple possible
mappings for a read with the same alignment score.

This problem is addressed by our recently developed ContextMap method (see [Bonfert
et al| [2012, 2015] and chapter |3), which makes use of information provided by reads
mapped to the same genomic region and likely originating from transcripts of the same
gene. Thus, ContextMap does not aim at finding the mapping with the minimum number
of mismatches, but the most likely mapping in the context of all other reads, in this way
resolving non-unique mappings with high accuracy.

Independent of the mapping algorithm used, reads are usually only mapped against
the reference genome (and sometimes transcriptome) of the species for which samples were
collected. This completely ignores the possibility that reads may originate from other
sources, e.g. unexpected contamination of samples, such as Mycoplasma species which
are often found as contaminants in cell cultures, as well as viral or microbial infections
of patients from which samples were derived. As RNA-seq protocols cannot distinguish
between RNA from different species, mRNA from the infecting species will automatically
also be sequenced. Indeed, dual RNA-seq of a pathogen and its host has recently been
proposed for studying expression changes in both species simultaneously (Westermann
et al. [2012]) and we performed it already for MCMYV infection (Marcinowski et al.| [2012]).
While in this case the infecting species is known and an additional mapping against the
corresponding genome is sufficient, for most applications contaminations or infections are
not known beforehand.

Such an application would be the diagnostic screening of patient samples for unknown
microbial or viral infections. Here, precise identification of the infecting agent is essential
for medical treatment. Furthermore, it can provide novel insights into diseases, in particular
tumorigenesis, by connecting them to otherwise undetected infections. One example that
shows this nicely are the cervical cancer-derived HeLa cells. Human papillomaviruses
(HPV), in particular HPV-16 and -18, have since been recognized as a predominant cause
of cervical cancer (Walboomers et al. [1999]; lzur Hausen| [2002]) and HeLa cells have been
shown to express transcripts of the integrated HPV-18 genome (Inagaki et al. [1988]).

As we show in this study, HPV-18 expression can be easily detected in RNA-seq data of
HeLa cells. While in this case this only confirms previous knowledge, in other cases novel
connections between viral infections and tumorigenesis can be detected. For instance,
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Castellarin et al. (Castellarin et al.| [2012]) used RNA-seq of tumor and normal tissue
samples to link colorectal carcinoma to Fusobacterium infection.

With standard RNA-seq mapping tools, mapping both against the host reference genome
and all available microbial and viral genomes is only possible using a sequential approach
(Moore et al.| [2011]) and requires additional steps for resolving non-unique read mappings
that often occur due to local or global similarities between genomes. In contrast, Con-
textMap can be directly applied to automatically mine for reads from an arbitrary number
of genomes since it already implements sophisticated strategies for resolving multiple read
alignments. This makes it possible to also apply ContextMap for metatranscriptomics of
species communities, e.g. the gut microbiome. While a number of such metatranscrip-
tomics studies have already been performed (Lim et al.| [2012]; Valles et al. [2012]; | Xiong
et al.| [2012]; Yu and Zhang [2012]), these generally used BLAST to identify the involved
species and did not even use existing metagenomics methods (e.g. MEGAN4 (Huson et al.
[2011]), GRAMMy (Xia et al.[2011]), or GASIiC (Lindner and Renard| [2013])) for species
identification.

In this study, we show how ContextMap can be easily used to identify reads from
multiple sources in parallel such as viral and microbial genomes. Furthermore, we present
methods based on mapping-derived statistics to assess confidence of mappings to the identi-
fied species/strains and identify false positive hits due to similarities between genomes and
missing genome sequences. While some of these methods require information only provided
by the ContextMap algorithm, they can in general also be extended to post-process output
of other mapping approaches. We illustrate the performance of the proposed methods on
three applications.

First, we use RNA-seq data of HeLa cells to characterize HPV-18 expression in these
cells and correlate this to ongoing cell proliferation. Second, we illustrate the potential
pitfalls of misidentifying species or strains in case of missing genome sequences based on
a re-analysis of the Castellarin et al. data and show how these pitfalls can be avoided.
Finally, for in-vitro sequencing data of a microbial community, we show how the in-
volved species/strains can be identified despite the presence of several very closely related
species/strains in the reference set and compare our results to MEGAN4, GRAMMy and
GASIC as well as a number of other metagenomics tools.

4.2 Materials and Methods

4.2.1 Identifying sequencing reads from multiple sources using
ContextMap

In the previous chapter, we introduced ContextMap, a novel mapping approach for RNA-
seq data (Bonfert et al. [2012, [2015]). The central concept of ContextMap is the so-called
read context. This is defined as a set of reads originating from the same stretch of the
genome, indicating that these reads were derived from the same transcript or different
transcripts of the same gene. These contexts are defined based on initial alignments de-
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Figure 4.1: Central idea of ContextMap. (1) Within each context, ambiguous mappings are identified for
each read with at most a maximum number of mismatches, including both full and spliced alignments.
These ambiguous mappings may point to different contexts and may suggest different positions in the same
context. (2) The best mapping within each context is identified for each read depending on the support
by other reads. (3) Among the mappings to different contexts, the optimal one is chosen resulting in one
unique mapping for the read.

termined with short read alignment programs such as Bowtie (Langmead et al. [2009]) or
BWA (Li and Durbin| [2009]). For each read not only the alignment with the minimum
number of mismatches but any alignment to any context with at most a maximum number
of mismatches is investigated. The unique mapping for the read to only one context is then
determined by first finding the best mapping for the read in each context and subsequently
finding the best context. For this purpose, a support score is used, taking into account the
number of reads mapping within and around the region to which the read is aligned. Until
the final step, contexts are treated independently of each other (see Figure .

As we show in this chapter, the advantage of this approach is that it allows investigating
many alternative sources of reads in parallel, such as TRNA sequences, which are generally
not included in reference genome assemblies of higher eukaryotes, as well as viral and
microbial genomes. Contexts are then identified separately for each genome including the
optimal context in each genome for each read. The final step is then used to decide for each
read which of these contexts in any of the genomes considered results in the best mapping.

The parallel multi-species mapping is implemented by ContextMap in the following way
(see Figure A). First, the underlying alignment program is used to create independent
indices for different potential read sources. Separate indices are necessary as, e.g. Bowtie
is limited to 232-1 characters per index. This is relevant as the human genome alone needs
73% of the maximum index size and all microbial genomes from the NCBI database taken
together require 134% of the maximum index size. We, thus, generally use one index for
rRNA sequences, one for the host genome, e.g. the human reference genome, one for virus
genomes and two for microbe genomes. This can be easily adjusted to more indices as soon
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Figure 4.2: (A) Approach for mapping sequencing reads in parallel to multiple sources of reads using
ContextMap. (B) After obtaining unique mappings to the species in the reference set, different questions
can be addressed. Random hits to only a small region of the genome can be identified by investigating
coverage. Strong similarities in terms of possible read mappings between different species in the reference
set can be identified by analyzing confidence and species clusterings. Finally, by analyzing mismatch
distributions in terms of the Jensen-Shannon divergence, it can be determined if reads have been mapped to
the correct genome or only to a close relative due to missing genome sequences or local genome similarities.

as the increasing number of sequenced virus and microbe genomes makes this necessary.

After performing the initial alignment against all indices, ContextMap is then run
without any further changes to define contexts, the optimal mapping for each read in each
context it may belong to and finally the optimal and unique mapping for each read to any
context.

In contrast to ContextMap, other RNA-seq mapping tools, which predominantly also
use Bowtie, cannot be used for this application as they do not support the use of multiple
indices required here due to the size and number of reference sequences and provide no
way to distinguish between alternative alignments for a read to two different but related
genomes with the same number of mismatches. Thus, they can only be applied sequen-
tially by mapping first all reads e.g. against TRNA sequences, then the unmapped reads
against the host reference genome, and then one microbe or virus genome one after the
other. However, the latter approach also poses problems as it can lead to different results
depending on the order in which genomes are mapped to in case of closely related species
or strains.

4.2.2 Analysis of species hits

The mapping of reads to reference genomes using any algorithm directly implies a set of
species potentially contained in the sample. Please note that in the following we use the
term species loosely, in particular in the context of misidentification of species, and it may
also refer to a particular strain of a species, represented by a specific genome sequence
in the reference database. In particular for bacteria, the distinction between strains and
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species is not clearly defined and species definition remains a difficult topic. The standard
approach is now to use genome sequence differences and a cutoff of 95% average nucleotide
identity is often used (Konstantinidis et al.| [2006]). However, for species/strains for which
no genome sequence is available, nucleotide identity to sequenced species/strains cannot
be calculated. Thus, it cannot be determined whether they represent a different species or
only a different strain of a species with known genome sequence.

Independent of which mapping algorithm was used to identify species potentially con-
tained in a sample, a number of problems arise that need to be addressed. First, local
similarities in the genome of one species not contained in the sample (species A) to a
species contained in the sample (species B) may result in reads erroneously mapped to
species A and the reporting of this species for the sample. Second, gaps in the reference
database may lead to both missing and incorrect hits. If no genome from the species itself
or closely related species is contained in the reference database, fast mapping algorithms,
including ContextMap, which tolerate only a limited number of sequence differences, will
fail to align the corresponding reads. This type of missing species hits is only a minor
problem as a slower but more permissive BLAST run applied to unmapped reads may at
least detect the infection by identifying more distant relatives of the infecting pathogen.

A more severe problem are misalignments in case that genome sequences are only
available for closely related species. In this case, reads are incorrectly aligned to these
related species, resulting in the identification of wrong species. For instance, in the recent
study by Castellarin et al. (Castellarin et al. [2012]) several Pseudomonas syringae strains,
which are plant pathogens, were likely misidentified in samples of colorectal carcinoma.

In the following, several statistics derived from read mappings are described that can
be used to address the described problems and confidently identify the species contained
in the sample (see Figure B). Coverage and divergence of mismatch distributions can
be calculated based on mappings provided by any algorithm. Calculation of species map-
ping confidence and distances between species relies on the support score calculated by
ContextMap for each read mapping, but can be adapted to methods evaluating only the
number of mismatches. All methods are available as part of the ContextMap software
suite.

Read numbers

The standard approach for identifying the species contained in a sample based on the read
mapping is to choose those species with the highest numbers of mapped reads. This is an
important measure as small read numbers tend to indicate less likely matches. However,
it can be misleading as local similarities to very small regions of the genome can lead to
artificially high read numbers. As a consequence, we use read numbers only as one criterion
for a hit and combine this with several other measures.
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Coverage

To identify random matches, i.e. cases in which many reads are mapped to a small genome
region only, we calculate the coverage of the genome by reads:

# positions with mapped reads

coverage —

(4.1)

genome size

Here, only the start positions of reads are counted. Mapping of reads to only a small
fraction of the genome will result in very small coverage, suggesting a random hit. However,
as coverage is influenced strongly by sequencing depth, low coverage for a correct hit may
be observed in case of low sequencing depth. Thus, other measures have to be used in
combination with coverage.

Mismatch distributions

Assuming that the average sequencing error is approximately the same for all species in the
sample, an increase in mismatches in aligned reads for a species indicates that the identified
species differs considerably from the actual species in the sample. To identify such cases, we
compare the distribution of sequencing errors on mapped reads for each predicted species
hit against a reference species for which we are certain that it is contained in the sample
(e.g. the host species). The difference between the two mismatch distributions is calculated
using the Kullback-Leibler divergence:

Dia(P|Q) = Y log (%) Pi). (12)

Here, P(i) and Q(i) are the fractions of mapped reads with ¢ mismatches for the species
under consideration and the reference species, respectively. Essentially, this quantifies
the amount of information lost if @) is used to approximate P. As the Kullback-Leibler
divergence is non-symmetric, i.e. Dgp,(P||Q) # Dkin(Q||P), we use a symmetric measure
based on Dk, the so-called Jensen-Shannon divergence:

Dys(P 1| Q) = 3 Dxa(P | M) + 5 Dier(Q | M), (4.3

where M = %(P + @). The advantage of D;g is that it is symmetric and has a clear-
defined upper bound (= 1 if the base 2 logarithm is used for calculating Dy, (Lin [1991])).
Furthermore, its square-root v/D g is a metric (Endres and Schindelin| [2003]). Thus, in the
following we will use /D s to quantify differences of mismatch distributions between the
identified species and the reference genome. Please note that for our examples Dy (P || Q)
and v/D;s(P || @) were highly correlated.

The Jensen-Shannon divergence provides a quantification of the divergence between
the actual species in the sample and the identified best hit but suggests no clear cutoff to
discard potential hits. Instead, the choice of the cutoff depends strongly on the application
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and the taxonomic level one is interested in. If the focus is on the genus level only, one may
accept higher values of v/ D ;s than for species identification. If one aims at identifying the
actual strain even lower values of /D ;g are acceptable.

As for the other measures proposed in this article, low /D ;g should not be considered
as the only criterion for a hit as it may result from random hits to a small region of a
genome with few mismatches. Thus, other measures as coverage and the species mapping
confidence as introduced below should also always be evaluated. In any case, high /D g
with a shift towards an increased number of mismatches indicates substantial divergence
of the sequenced genome from the species in the sample, suggesting misidentification of
the infecting species or strain.

Species mapping confidence

To identify mismappings due to similarities between genome sequences we calculate a
score quantifying the confidence of read mappings to each species. Here, confidence for an
individual read mapping is evaluated in terms of the support score difference between best
and second-best mapping provided by ContextMap. Please note that the final output of
ContextMap contains only the single best mapping for each read to any of the provided
reference genome sequences. Only the score of the second-best mapping is recorded for
calculation of mapping confidence. For each species A, we calculate the following mapping
confidence score relative to a set of other species S (A ¢ S):

conf(4, 5) =, ];A| 3 81(7’2_ s2(r). (4.4)

reERA 1<T>

where R, is the set of reads mapped to A, s1(r) the support score for r in species A, and
so(r) the best support score of r to a species in S. If a read r cannot be mapped at all
to any other species in S, so(r) = 0. As s1(r) > so(r), confidence is between 0 and 1 and
low species confidence indicates that many of the assigned reads might alternatively be
mapped to another species in S with only a little reduction in the score. The confidence
score definition can be easily adapted to other mapping approaches by defining a support
score measure for the corresponding mapping algorithm, e.g. based on the number of
mismatches.

Clustering of genome hits

As ContextMap always assigns unique mappings to reads, a number of reads may still
be mapped to related genomes for which they might be a better match due to sequencing
errors. This is in particular the case if the genome for the microbe or virus contained in the
sample is not known. In this case, reads from this microbe or virus may be dispersed over
many relatives depending on local similarities. To identify such reads that likely originate
from the same genome, we perform a clustering of genome hits using a dissimilarity function
that is based on the relative mapping confidence of two genomes with regard to each other
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as defined in equation [£.4] The mapping dissimilarity of genome X and Y is defined as

conf(X,{Y}) + conf(Y,{X})

d(X,Y) = .

(4.5)

Thus, if many reads mapped to genome X could alternatively be mapped almost as well
to genome Y and vice versa, d is small. Like the confidence function, d is in the range
of 0 and 1. Furthermore, it is symmetric and can be used with standard distance-based
clustering methods.

4.2.3 Data sets
RNA-seq of HeLa cells

RNA-seq data of HeLa cells were taken from the study of Guo et al. (Guo et al.|[2010]) who
analyzed regulation of mammalian cells by miRNAs using both RNA-seq and ribosome
profiling (Gene Expression Omnibus accession no. GSE22004). In this study, Illumina
RNA-seq was performed for miRNA transfected HeLa cells at 12 and 32 h post-transfection.
We used the RNA-seq data of mock and miR-155 transfected cells at 12 h post-transfection
(28,735,355 and 29,595,334 36 bp reads, respectively).

RNA-seq of human colorectal carcinoma samples

For the second analysis, we used RNA-seq data for matched pairs of colorectal carcinoma
and adjacent normal tissue samples from the study of Castellarin et al. (Castellarin et al.
[2012]). Sequencing reads (75 bps) for 12 pairs of tumor and normal tissue were downloaded
from the NCBI Sequence Read Archive (accession no. SRP007584). Although Castellarin
et al. reported only the analysis of 11 sample pairs, 12 were available for download and no
indication was given which of these were analyzed. Thus, we used all of them.

DNA-seq of in-vitro microbial communities

To compare our approach against standard metagenomics tools, we used pyrosequencing
data of an in-vitro simulated microbial community (Morgan et al. [2010]). In this study,
cultures for 10 species (yeast, Halobacterium sp. NRC-1, Pediococcus pentosaceous, Lac-
tobacillus brevis, Lactobacillus casei, Lactococcus lactis subsp. cremoris SK11, Lactococcus
lactis subsp. cremoris IL1403, Myxococcus xanthus DK 1622, Shewanella amazonensis
SB2B, Acidothermus cellulolyticus 11B) were grown, cell pellets from a known number
of cells for each species were mixed and DNA was extracted and sequenced. Thus, the
exact species contained in this sample were known beforehand. Sequencing reads for py-
rosequencing data were downloaded from the NCBI Short Read Archive (accession no.
SRA010765.1). To simulate NGS data, which in contrast to pyrosequencing data is char-
acterized by both a uniform read length as well as shorter reads, we trimmed reads to 100
bps and discarded reads shorter than 100 bps, resulting in 484,629 reads.
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Reference genomes

Reference genomes for human (GRCh37) and yeast (sacCer3) were downloaded from the
UCSC genome website (http://genome.ucsc.edu/). Completed microbe and virus genomes
from RefSeq release 52 were downloaded from the NCBI ftp site (2919 microbial and 4092
viral genomes). For the analysis of the colorectal carcinoma data, we additionally used
draft genome sequences from the Human Microbiome Project (NIH HMP Working Group
et al. [2009]).

4.3 Results and Discussion

4.3.1 HPV-18 expression in HeLa cells

RNA-seq data of HeLa cells from the study of Guo et al. (Guo et al.| [2010]) were mapped
using ContextMap against indices for human, viral and microbe genomes and human rRNA.
For the initial Bowtie runs a seed of 25 bps was used allowing up to 1 mismatch in the
seed, the same settings used by Guo et al. In total, 5 mismatches were allowed, resulting
in 11,040,798 (38.4%) and 10,162,289 (34.3%) mapped reads for the mock and miR-~155
transfected cells, respectively. This is only 0.4 and 1.8 million reads less than mapped by
Guo et al., although they allowed an arbitrary number of mismatches outside the seed, i.e.
up to 12 mismatches.

Although Guo et al. did not perform alignment against viral or microbial genomes (but
also TRNA), only few (~ 35,000) of the reads additionally mapped by ContextMap orig-
inated from viral or microbial genomes. Most reads additionally aligned by ContextMap
were discarded by Guo et al. due to non-unique alignments. Interestingly, ~ 1.94 million
reads originated from rRNA, which illustrates the importance of including rRNA sequences
in the mapping process even though poly-A selection was performed.

Table shows coverage, mapping confidence and /D ;g compared to the human
reference genome for all species with at least 1,000 mapped reads. Figure [4.3| illustrates
coverage for all microbial or virus hits. Here, HPV-18 is the only virus or microbe with
a coverage > 0.01 (0.34-0.37), high confidence (~ 1.0) and small v/D s (< 0.05) in both
samples. This confirms previous reports of HPV-18 expression in HeLa cells (Inagaki et al.
[1988]). In contrast, no reads were mapped to HPV-16, which is not expressed in HeLa
cells.

Figure A shows the distribution of reads across the HPV-18 genome both in the
mock and miR-155 transfected cells. Here, results were highly reproducible between the
two samples with peaks in read heights at the same genomic locations. The mapping to
genes showed that only the E6, E7 and E1 genes were strongly expressed. In addition,
weaker expression by an order of magnitude was observed for L1 as well as for a region
covering the end of E1 and the start of E2. However, as no reads were observed for the
rest of 2, it is likely not expressed. The same was true for genes E4, E5 and L2. These
observations are in accordance with recent results showing that the oncogenes E6 and E7
are essential for continued proliferation in cervical carcinoma (Magaldi et al. [2012]). Both
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species # reads coverage confidence +/Djg
A) mock transfected cells

Human papillomavirus - 18 22105 3.7e-01  1.000 0.048
Hepatitis C virus genotype 6 1278 2.3e-03  0.558 0.351
Encephalomyocarditis virus 3105 2.4e-03  0.239 0.382
Thermoanaerobacter wiegelii Rt8.B1 chr. 28366 5.6e-05  0.087 0.460
B) miR-155 transfected cells

Human papillomavirus - 18 18491 3.4e-01  1.000 0.045
Choristoneura occidentalis granulovirus 1144 2.4e-04  0.998 0.665
Encephalomyocarditis virus 4130 2.7e-03  0.258 0.418
Acinetobacter sp. ADP1 chromosome 1070 1.4e-04  0.070 0.077
Caviid herpesvirus 2 2215 2.1e-04  0.069 0.463
Thermoanaerobacter wiegelii Rt8.B1 chr. 24505 5.1e-05  0.063 0.508
Acinetobacter calcoaceticus PHEA-2 chr. 1480 1.9e-04  0.063 0.120
Acinetobacter baumannii ATCC 17978 1498 1.7¢e-04  0.020 0.121

Table 4.1: Microbial and virus species with at least 1000 mapped reads in the mock (A) and miR-155 (B)
transfected HeLa cells.

genes are transcriptionally repressed by the E2 protein and loss of E2 expression leads to
upregulation of E6 and E7 (Schweiger et al. [2007]). Thus, loss of E2 expression in HeLa
cells as well as high E6 and E7 expression is consistent with their origin from cervical
carcinoma cells and ongoing proliferation.

This shows that our approach is capable of identifying HPV-18 infection in HeLa cells
and distinguishing this from spurious matches to other species. However, as less than
1% of reads in our samples originated from HPV-18 (22,105 and 18,491, respectively),
the question remains which sequencing depth is necessary for confidently identifying such
an infection. To investigate this question, we randomly sampled reads from the miR-~155
data set with sample sizes between 10* and 107 (see Figure B). For each sample size, 10
random repetitions were performed and reads were mapped using ContextMap as described.
Here, a sequencing depth of as low as 500,000 reads (1.7% of all reads) was sufficient to
clearly distinguish the HPV-18 infection from spurious hits to other species. Although
only 303 HPV-18 reads were identified on average at this sample size, almost all of these
reads (90%) were mapped to distinct genome positions, resulting in a coverage of ~ 0.034.
Although this coverage is small, it is more than an order of magnitude larger than for any
of the other species at this sequencing depth and increases much faster with increasing
sequencing depth.

To compare the proposed method against alternative approaches, we performed megablast
alignments for the miR-~155 data set against all microbial and viral genomes as well as hu-
man rRNA sequences and the human mitochondrial genome. Alignments with an E-value
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Figure 4.3: Coverage of all species identified for the mock (left) and miR-155 (right) transfected HeLa cells
from the study of Guo et al., respectively. The only species identified with a coverage > 0.01 is Human
papillomavirus 18 (indicated in red) with coverages > 0.33.
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Figure 4.4: Characterization of HPV-18 infection in HeLa cells. (A) Distribution of reads across
the HPV-18 genome for the mock and miR-155 transfected cells. Read numbers are shown in log scale.
Expressed genes include E1 as well as E6 and E7, which are required for ongoing proliferation in cervical
carcinoma (Magaldi et al|[2012]). L1 also appeared to be weakly expressed, however the expression
pattern did not exactly correspond to the annotated gene coordinates. While the start of the gene was not
expressed, L1 expression was extended to a region downstream of the gene. (B) Coverage as a function of
increasing sequencing depth was evaluated by randomly sampling from the miR-155 data set. Coverage is
shown as an average of ten repeated samplings for HPV-18 (black) and other species (gray). Sample size
is annotated to the HPV-18 data points.
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< 0.01 were then evaluated using MEGAN4. A megablast comparison against the com-
plete human genome was aborted as output files already reached 10GB after mapping
only 28% of reads against 30% of the genome, which would have resulted in an estimated
120GB of output (for an input of only 0.84GB). Since GASiC and GRAMMy could only
be run in reasonable time on the > 60-fold smaller in-vitro microbial community data set
by restricting them to the 10 species in question, we did not evaluate them here.

MEGAN(4 results are shown in Supplementary Figure both with and without the
additional alignment against human rRNA and mitochondrial genome sequences. In both
cases, HPV-18 is clearly detected although 762 fewer reads (4.1%) are assigned than by
ContextMap despite the fact that an arbitrary number of mismatches and gaps are al-
lowed by BLAST. However, without additionally BLASTing against human rRNA and
the mitochondrial genome, > 11,000 reads each are assigned to one bacterial (Rickettsia
rickettsii str. Hino) and one viral (Choristoneura occidentalis granulovirus) species. When
including human sequences for mapping, most of these are assigned to the inner nodes “cel-
lular organisms” and “root”, reflecting sequence similarities between human rRNA and the
Rickettsia genome (lowest common ancestor (LCA) = “cellular organisms”) and the human
mitochondrial genome and the Choristoneura genome (LCA = “root”), respectively.

These results show the importance of also including the host species into mapping,
as otherwise Rickettsia and Choristoneura would be reported erroneously for this sample.
Here, MEGAN4 provides no direct way for identifying these hits as suspicious, e.g. by
calculating coverage or mismatch distributions, or for resolving the non-uniquely mapped
reads assigned to inner nodes. In contrast, ContextMap correctly assigns 90% of the
Choristoneura BLAST hits to human rRNA and only 5% to Choristoneura. Furthermore,
88% of the Rickettsia BLAST hits are correctly identified as originating from human RNA
(83% from mitochondrial RNA) by ContextMap and only 1% are assigned to Rickettsia. In
addition, the few Choristoneura and Rickettsia reads assigned by ContextMap are clearly
flagged as misalignments by very high values of /D g (> 0.55).

4.3.2 The microbiome of colorectal carcinoma

In the second analysis, we focused on the RNA-seq data of colorectal carcinoma and ad-
jacent normal tissue from the study of Castellarin et al. (Castellarin et al. |[2012]). This
data set was interesting as they identified a Fusobacterium to be enriched in colorectal
carcinoma cancer. In addition, they reported a number of microbes that are unlikely to
occur in colon tissue, e.g. Pseudomonas fluorescens SBW25, which was found at high levels
in all samples, and two Pseudomonas syringae strains. P. fluorescens is mostly found in
soil and water, whereas P. syringae are plant pathogens. While in the first case occurrence
in colon samples might still be possible, e.g. due to contamination, in the latter case it is
very unlikely. Although mapping with ContextMap also identified all three Pseudomonas
species in all tumor and normal tissue samples, v/ D ;s compared to the human reference
genome was larger than 0.2 in all three cases (Supplementary Figure , in particular
for Pseudomonas syringae pv. syringae where more than half of the reads had at least 3
mismatches (v/D;s = 0.458). This indicates that the actual Pseudomonas species con-
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Figure 4.5: Comparison of mismatch (mm) distributions for Fusobacteria. Results are shown for
species identified by ContextMap with at least 20 reads on the colorectal carcinoma samples for patient
1 using either only the completed microbe genomes as reference set (left) or also the human microbiome
draft genome sequences (right). Distributions are compared against the average mismatch distribution for
the human genome. Number of reads mapped to each genome and /D ;g are indicated in parentheses.

tained in the sample is not yet sequenced, resulting in reads from these species mapped to
a number of related Pseudomonas species.

Based on these observations, we performed the same analysis for Fusobacterium. Pre-
viously, Castellarin et al. identified Fusobacterium nucleatum subsp. nucleatum as over-
represented in the RNA-seq data of the tumor tissues. Subsequent DNA sequencing of
a Fusobacterium culture isolated from the tumor samples and mapping of reads against
additional Fusobacterium draft genomes from the Human Microbiome Project (HMP),
however identified Fusobacterium sp. 3_1_36A2 as a much better match than F. nuclea-
tum. As F. sp. 3_1_836A2 was extracted from the colon of a patient, this makes more sense
than F. nucleatum, which was isolated from the human oral cavity and is most commonly
found there.

To re-capitulate their analysis, we performed mapping of tumor samples using Con-
textMap both with and without the human microbiome in addition to the RefSeq genomes.
Without the human microbiome index, F. nucleatum was identified in all tumor samples,
in particular in samples from patient 1 (~ 100,000 reads, Figure . However, the mis-
match distribution differed considerably from the mismatch distribution for the human
genome (v/D ;5 = 0.203 for patient 1), clearly indicating that F. nucleatum subsp. nuclea-
tum is not contained in the sample but only a related species. Indeed, when performing
mapping including the human microbiome, almost all of the reads originally mapped to
F. nucleatum are mapped to contigs of other Fusobacteria species, such as sp. 3_1_33, sp.
11.3.2, sp. D11, sp. 7.1, and sp. 21_1A, which were isolated from biopsy tissues from
the gastrointestinal tract. Furthermore, the primer sequences used by Castellarin et al.
to confirm the presence of Fusobacterium are a better match to these species, with both
primers matching with at most 2 mismatches, whereas for Fusobacterium nucleatum one
primer has 3 mismatches.

Among the identified Fusobacteria, F. sp. 3.1_33 has the highest number of reads for
patient 1 (> 50,000) and smallest /D g (0.073). It is also enriched in the tumor sample
compared to the normal tissue, but not as strongly as some other species from the HMP



4.3 Results and Discussion 73

Human ref. genome (2843270, 0)
Fusobacterium sp. 3_1_33 (97886, 0.113)
Fusobacterium sp. 11_3 2 (95621, 0.111)

Fusobacterium sp. 21_1A (92414, 0.106)

Fusobacterium sp. D11 (90947, 0.114)
(82373, 0.101)
(56953, 0.075)
(56113, 0.075)
(
(
(

Human ref. genome (2843270, 0) [N [ []]

Fusobacterium sp. 7_1 (649, 0.083) (L] [ ][]

Fusobacterium sp. D11 (284, 0.11) [ (]

Fusobacterium sp. 11_3_2 (237, 0.123) [N [ [

Fusobacterium sp. 3_1_33 (132, 0.169) [ [

Fusobacterium sp. 21_1A (108, 0.117) [N (11

Fusobacterium nucleatum subsp. nucleatum ATCC 25586 (44,0.654) Il 1T [ |
Fusobacterium sp. 2_1_31 (35, 0.529) I (]

Fusobacterium periodonticum ATCC 33693 (17, 0.651)
Fusobacterium sp. oral taxon 370 str. F0437 (10, 0.574) | @ 1 mm ] [
Fusobacterium nucleatum subsp. nucleatum ATCC 23726 (3, 0.58) [| B 2mm
Fusobacterium sp. 12_1B (1,0.493) [l o 4mm

Fusobacterium sp. D12 (1, 0.366) [ 2 5™

Fusobacterium mortiferum ATCC 9817 (1, 0.453) [ ]

1

Fusobacterium sp. 7_1

Fusobacterium nucleatum subsp. nucleatum ATCC 23726
Fusobacterium nucleatum subsp. nucleatum ATCC 25586

Fusobacterium sp. 2_1_31 (47022, 0.061)

Fusobacterium periodonticum ATCC 33693 (43519, 0.051)

Fusobacterium sp. oral taxon 370 str. F0437 (22916, 0.101)

Fusobacterium mortiferum ATCC 9817 (10451, 0.125)

Fusobacterium necrophorum subsp. funduliforme 1_1_36S (9729, 0.077)

Fusobacterium sp. D12 (9712, 0.077)

Fusobacterium varium ATCC 27725 (8706, 0.106)

Fusobacterium sp. 12_1B (8706, 0.106)

10

Figure 4.6: Number of reads and mismatch distributions for the novoalign mapping on the
Fusobacteria. Results are shown for species identified by aligning with novoalign against viral and micro-
bial genomes and the human microbiome for the patient 1 colorectal carcinoma sample. Only reads were
used that were not mapped to human sequences by ContextMap. Mismatch distributions are compared
against the average mismatch distribution for the human genome derived from the ContextMap mapping.
Number of reads mapped to each genome and /D ;g are indicated in parentheses. The left-hand side
shows results if multiple read alignments with the same maximum score to different species are allowed.
The right-hand side shows the results for unique alignments only.

with fewer mapped reads, in particular some FE. coli strains (Table . Although a
comparatively small number of reads (1,372) are still assigned to F. nucleatum even with
the inclusion of the human microbiome, the mismatch distribution still diverges strongly
from the human reference (/D s = 0.253) and is unusual in that it has a higher number
of reads both with zero and with four mismatches. Together with the observations that
vV Djg for F. sp. 3_1.33 is still higher than in the HPV-18 example, a number of other
Fusobacteria are also found with substantial read numbers, and most of the F. sp. 5.1_33
reads can be aligned almost equally well to the other gastrointestinal Fusobacteria, this
suggests that F. sp. 3.1_33 is also not the actual strain in the sample. However, it appears
to be a much closer relative than F. nucleatum. This also shows that /D g should always
be analyzed in combination with read numbers as local similarities may allow the mapping
of some reads to a wrong species with few mismatches.

To compare our results against other approaches, we extracted all reads for the tu-
mor sample of patient 1 that were not mapped to human sequences (including rRNA) by
ContextMap (404,234 reads) and performed both megablast and novoalign alignments for
these reads against virus and microbe genomes and the human microbiome. Novoalign
(http://www.novocraft.com) was used by Castellarin et al. to align reads to the bacte-
rial and viral genomes after filtering out all reads that could be aligned to human rRNA,
cDNA or the reference genome using BWA (Li and Durbin| [2010]), a fast short read aligner
applying a similar strategy as Bowtie. Thus, we effectively recapitulated their analysis in
our study, this time also including the human microbiome. Again MEGAN4 was applied
to the BLAST output as shown in Supplementary Figure Almost all (> 99%) of the
Fusobacteria reads could be aligned to more than one Fusobacterium, thus, resulting in an
assignment of these reads to their LCA by MEGAN4. In addition, MEGAN4 allows no
further analysis as to which of the identified Fusobacteria is the most likely candidate or
closest relative of the species or strain contained in the sample.

Novoalign was applied in two modes: one outputting all alignments for a read with the
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same maximum score and one outputting only unique alignments (Figure. To compare
against the ContextMap results and calculate /D ;s compared to the reads mapped to
human by ContextMap, we then extracted only those alignments with at most 5 mismatches
and no gaps. Please note that read numbers were hardly increased for the Fusobacteria if
gaps were allowed. For evaluation of the novoalign mode allowing multiple alignments, we
used only one of the best alignments for each read for each genome, but allowed multiple
alignments with equal score to different genomes. Here, almost all reads could be aligned
equally well to more than one genome with < 1% unique read alignments per genome.
Although ~ 57,000 reads were still aligned to F. nucleatum, only 44 of these were unique
and ~ 98% were aligned equally well to F. sp. 3-1_33. Again, this illustrates the problems
similarities between sequenced genomes present for mapping algorithms that are based
only on the individual read alignments. Without taking into account alignments of other
reads, they may only either completely exclude or include non-unique alignments. In this
application, a restriction to unique alignments would vastly underestimate Fusobacterium
expression in the sample, whereas the inclusion of non-unique mappings would result in the
reporting of essentially all of the identified Fusobacterium species. In this case, evaluation
of v/D ;s is not meaningful as due to the multiple mappings the sets of reads assigned to
each species and, consequently, the calculated mismatch distributions are very similar.

4.3.3 Meta-transcriptomics for an in-vitro simulated microbial
community

For the final analysis, we analyzed DNA sequencing data for an in-vitro simulated mi-
crobial community by Morgan et al. (Morgan et al.| [2010]) and compared our results
against several state-of-the-art metagenomics tools, in particular MEGAN4 (Huson et al.
[2011]), GRAMMy (Xia et al. [2011]), and GASIiC (Lindner and Renard| [2013]). This
data set was selected as the species contained in the samples were known. Furthermore,
it constituted a challenging application due to strong similarities of the genomes of the
microbial strains contained in the sample to other sequenced genomes. One example for
this is Halobacterium sp. NRC-1, whose genome is almost identical to the Halobacterium
salinarum R1 genome (Pfeiffer et al.|[2008]). They differ only by 4 base changes, 5 single-
nucleotide indels and 3 longer indels between 133 and 10,007 bps long.

We investigated the performance of ContextMap on this data set using a reference
containing the yeast genome and all microbial and viral genomes downloaded from NCBI
(see methods) and allowing 5 mismatches. To compare our results against BLAST as well as
MEGAN4 and GRAMMy, which use BLAST alignments as input, we performed megablast
searches against the same genomes and extracted all alignments with the maximum score
for each read, using only alignments without gaps and at most 5 mismatches. Here, 12% of
reads could be aligned equally well to at least two different RefSeq entries using BLAST.
In addition, we applied GASIiC to all genomes from the same genus as any of the species
contained in the sample (122 RefSeq entries, 92 taxa). The same restriction was applied
to GRAMMy as both methods already took more than 7 CPU hours on this smaller set
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Figure 4.7: Hierarchical clustering (average linkage) of microbes and viruses. Results are shown
for hits with a coverage > 107° and at least 20 mapped reads as determined by ContextMap. Microbes
actually contained in the sample are indicated in red and by an asterisk and the three clusters discussed
in the text are marked by rectangles. In addition, number of reads, confidence and /D ;g are indicated
next to the microbe names.

compared to ~ 30 min for ContextMap on all microbes and viruses (Table |B.2)).

Table lists the microbe and virus hits identified by ContextMap with a coverage
> 107° and at least 20 reads. Here, ContextMap identified all of the microbial species
contained in the sample, but also several related strains and prophages. As Myzococcus
zanthus had the highest number of mapped reads, we used it as reference for calculating
v D js. Interestingly, all microbes that are contained in the sample had a higher mapping
confidence than all other hits despite low numbers of reads for some of them.

For five species, identification is straightforward based on this list. A. cellulolyticus,
S. amazonensis, L. brevis, and M. xanthus are characterized by high mapping confidence
(> 0.98), low v/D;s (< 0.05) and high number of reads and coverage. For P. pentosaceus
confidence is also high and /D g still relatively low (0.064), but coverage is quite small
(< 1073). However, as 90% of the reads map to distinct positions, it is clearly a correct
hit and the low coverage is likely due to low abundance of P. pentosaceus in the simulated
community. In the clustering of species hits, these five species also form distinct clusters
with no similarities to any of the other species hits (Figure .

For the remaining hits the situation is less clear-cut. Here, clustering identified three
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large groups among these: (1) a Halobacterium cluster, (2) a Lactococcus cluster, and (3) a
Lactobacillus cluster. In the first case, H. sp. NRC-1 clusters tightly with H. salinarum R1
and the plasmids also cluster together, reflecting the small number of sequence differences
between these. In all of these cases, /D g is relatively small (< 0.08), with the only
exception being H. sp. NRC-1 for which all 50 reads have zero mismatches, i.e. fewer
mismatches on average (Figure [B.4). Additionally, confidence for NRC-1 (0.37) is much
higher than for R1 (0.07). Thus, although significantly fewer reads are mapped to NRC-1,
all other mapping statistics support the presence of the NRC-1 strain rather than the R1
strain. However, since both strains are almost identical, /D ;g is still very low for the R1
strain (0.02).

In the second cluster, read numbers, confidence and v/ D ;g clearly indicate the presence
of L. lactis subsp. lactis 111403. Although /D ;5 (0.07) is somewhat increased compared to
the microbes identified unambiguously, it is not yet large enough to question this hit. For
all other Lactococcus lactis strains, in particular cremoris SK11, the number of mismatches
is significantly increased, indicating that these are not contained in the sample. This is
surprising as SK11 was part of the community. The reason for this is that 99% of the reads
potentially mapping to SK11 can be aligned equally well to other species, in particular to
L. lactis subsp. lactis 111403. As the latter is more abundant, it ends up with most of the
reads, apart from those with too many mismatches. Finally, analysis of the last cluster
confirms the presence of L. casei ATCC 33/ as it is characterized by high coverage and
confidence and sufficiently low /D g (0.06). The other strains in the cluster, in particular
the BL23 and Zhang L. casei strain, can be clearly excluded due to high /D s (> 0.31)
and low coverage (< 5-107*) and confidence (< 0.15).

In summary, these results show that ContextMap can be used to correctly identify all
species in the community including the strain, with the exception of cremoris SK11. How-
ever, analysis of results for MEGAN4 (Figure [B.5]), GASiC (Table and GRAMMy
(Table shows that none of these identify cremoris SK11, at least not with more con-
fidence than for other species/strains not contained in the community. MEGAN4 assigns
almost all of the cremoris SK11 reads to the LCA of the cremoris and lactis subspecies.
GASIC assigns a p-value of 1, i.e. considers it an insignificant hit. Finally, GRAMMy,
which only estimates relative abundances but performs no read mapping, assigns an abun-
dance of < 0.04%, less than assigned to L. lactis subsp. lactis KF147 (0.17%), which is
not part of the community.

Apart from cremoris SK11, GASIC fails to identify H. sp. NRC-1 and P. pentosaceus
but otherwise predicts only microbes contained in the community. Thus, GASIC is the
most restrictive of the analyzed approaches. MEGAN4 does not really resolve multiple
mappings but assigns reads with multiple mappings to the LCA of these microbes. Based
on the number of reads assigned uniquely to any of the children of such an LCA, the correct
microbes can then be predicted. In this example, the predictions would be correct with
the exception of SK11 and H. salinarum, where the NRC-1 strain cannot be properly
distinguished. Nevertheless, even when combining read numbers for the microbes and
the LCA, ContextMap generally identifies 2.5-6.5% more reads per microbe (including
plasmids). Furthermore, assignments to inner nodes of the phylogenetic tree by MEGAN4
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Figure 4.8: Comparison of abundance calculated by GRAMMy and coverage determined by
ContextMap on the microbial community data set. Results are shown for all taxa identified by
GRAMMy with a relative abundance of at least 0.1%. The green line indicates a linear fit to the data.

do not allow calculation of mismatch distributions as corresponding genome sequences are
not known. Even for the leaves of the taxonomic tree, additional statistics of alignment
quality or coverage are not directly accessible and can only be obtained by extracting the
assigned reads and performing this analysis using additional scripts.

GRAMMy correctly identifies 7 of the 9 microbes with an estimated abundance of
> 1%, but also assigns a very low abundance to P. pentosaceus (0.4%). Remarkably, the
relative frequency estimated by GRAMMy and the coverage calculated by ContextMap
are highly correlated (correlation coefficient 0.995), in particular for microbes with high
coverage (Figure . This indicates that coverage as determined by ContextMap provides
a reliable estimation of the relative frequencies identified by GRAMMy. As ContextMap
is much faster than GRAMMy, it can thus be used to replace GRAMMy for applications
where GRAMMYy is too inefficient.

We also evaluated a number of other metagenomics tools for binning/classifying se-
quencing reads or identifying relative abundance of species. This includes alignment-based
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approaches (MG-RAST (Meyer et al. [2008]), MetaPhyler (Liu et al.|[2011]), SOrt-ITEMS
(Monzoorul Haque et al.| [2009]), MARTA (Horton et al| [2010]), MLTreeMap (Stark
et al| [2010])), composition-based approaches (PhyloPhytiaS (McHardy et al. [2007]),
ClaMS (Pati et al.| [2011]), Phymm (Brady and Salzberg [2009])) and a hybrid approach
(PhymmBL (Brady and Salzberg| [2009])). Here, comparison of the results was difficult as
several approaches only perform classification at the genus- (MetaPhyler) or species-level
(MG-RAST, PhyloPythiaS, MARTA), but do not identify individual strains. Thus, we
could not evaluate their performance in distinguishing the Halobacterium and Lactococcus
lactis strains. Furthermore, only MG-RAST, MetaPhyler, Phymm and PhymmBL were de-
veloped for NGS reads as short as 100 bps, while the other tools require longer reads. Thus,
the meaningfulness of the comparison against these other approaches is limited. Results
for all tools are shown and discussed in Tables (MG-RAST), (MetaPhyler), [B.8
(SOrt-ITEMS), (MARTA), (MLTreeMap), (PhyloPhytiaS), (ClaMS)
and (Phymm and PhymmBL). In summary, although the correct species or at least
genera were usually identified, performance at the level of the individual strains was usually
poor as often wrong strains were ranked higher than strains contained in the community.
A particular poor performance was observed for the composition-based approaches Phylo-
PhytiaS and ClaMS, which likely suffered from the short sequencing read length.

The analysis of runtime and memory requirements on this data set (Table showed
that ContextMap was both faster than almost all other approaches (apart from Meta-
Phyler) and required less or a comparable amount of memory (with the exception of ML-
TreeMap and GRAMMYy if memory requirements of the BLAST run to provide the input
for GRAMMYy are not counted). The comparison for the other two data sets was less in-
formative as ContextMap was either applied on more reads as in the case of the colorectal
carcinoma data set or more reference sequences as in the case of the HeLa cell RNA-seq
data. In the first case, ContextMap took ~ 0.02 sec per read on the complete 5,343,842
read set for patient 1, whereas BLAST took ~ 0.19 sec per read on the smaller 404,234 read
set without human reads and novoalign only ~ 0.006 sec per read. Thus, ContextMap was
much faster than BLAST but slower than novoalign. In contrast, ContextMap required
much less memory with ~ 10G for the complete 5 million read set compared to the ~ 15G
required by novoalign for only 400k reads and > 27G required by BLAST. This large mem-
ory requirement (and also runtime) of BLAST for this relatively small data set was rather
remarkable, in particular in comparison to the similar-sized microbe data set and the much
larger HeLa data set, which both only required ~ 2.5G. The reason for this is the much
larger number of possible hits per read found by BLAST in the colorectal carcinoma data
set (~ 400 hits per read) as compared to the microbe (~ 8 hits per read) and HeLa data
set (~ 0.2 hits per read). It should be noted that in the latter case we did not perform
simultaneous mapping with BLAST against the complete human genome as the estimated
output size was too large. Thus, these results suggest that a complete run of BLAST on
the same references as used for the ContextMap run would have resulted in substantially
increased runtime and memory requirements compared to ContextMap.
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4.4 Conclusion

In contrast to microarray experiments, RNA-seq is not limited to previously defined probes
but allows quantification of all transcripts in the cell, including also transcripts expressed
by viral or microbial pathogens. However, current mapping approaches generally ignore
the possibility of multiple origins of reads and are not designed to resolve resulting non-
unique mappings. Thus, RNA-seq experiments are not routinely mined for the presence of
contaminations or infections. Previous studies explicitly focusing on metatranscriptomics
generally used only BLAST despite the availability of a number of metagenomics tools for
identifying the species in the sample. As some of these tools were published only very
recently, this might explain why they have not yet permeated the metatranscriptomics/-
genomics community.

In this study, we showed how different sources of reads can be easily investigated in
parallel using ContextMap without limitations to the number of potential sources inves-
tigated. This allows unbiased screening of RNA-seq data for transcripts of any species
with a sequenced genome. ContextMap is particularly suited to this task as it tolerates
a large degree of ambiguous mappings at intermediate steps, allowing multiple mappings
to different species during these steps. These multiple mappings are then resolved in the
final step using a support score calculated based on other reads aligned to the same region.
From this support score, a confidence value can be calculated for each individual read map-
ping and the confidence of mappings for identified species and similarity of two species in
terms of possible read mappings can be evaluated. This is of particular importance when
mining RNA-seq data for the presence of related species. As previously published mapping
methods generally cannot resolve multiple mappings and no scoring of alignments apart
from mismatch counting is performed, the number of reads they cannot uniquely assign to
a species is substantial. For instance, in the case of the microbial community, > 54% of L.
lactis subsp. lactis 111403 reads can be aligned equally well to other L. lactis subspecies
and thus cannot be resolved by mapping tools relying only on alignment quality.

Our approach was evaluated first on previously published RNA-seq data sets for HeLa
cells, where it allowed the identification and characterization of HPV-18 expression leading
to ongoing proliferation in this cervical carcinoma-derived cell line. Here, we showed that
relatively small sequencing depth can already be sufficient for reliable detection of pathogen
infections, e.g. for diagnostic purposes. A comparison against BLAST combined with
MEGAN4 showed the importance of aligning reads against both host and pathogen species,
as local sequence similarities of microbial or viral genome sequences to human sequences,
in particular rRNA and mitochondrial DNA, would otherwise lead to wrong microbial or
viral hits. While ContextMap correctly resolved most of the resulting non-unique hits,
MEGAN(4 effectively only flagged them as non-unique hits by assigning them to internal
nodes close or equal to the root of the phylogenetic tree.

A second problem arising in the context of both metatranscriptomics and metagenomics
are missing genome sequences for the species/strains in the sample, which may result in
misalignments of reads to related species or strains. To identify such cases, we proposed to
analyze differences of mismatch distributions compared to a reference species known to be
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in the sample, e.g. the host species. This can be automatically evaluated using the Jensen-
Shannon divergence and the usefulness of this approach was illustrated on the colorectal
carcinoma data from the Castellarin et al. study. Here we showed that divergence of the
mismatch distributions on the RNA-seq data suggested that F. nucleatum was not the
Fusobacterium species in the tumor sample. Instead, a different Fusobacterium sequenced
for the human microbiome project was identified as a more likely candidate. Again, ap-
plication of MEGAN4 to BLAST results only indicated the presence of Fusobacteria in
the sample, but could provide no further resolution as to which of the sequenced Fusobac-
teria is most likely present in the sample or most closely related to the species in the
sample. We also compared our approach against the strategy used by Castellarin et al.
by applying novoalign both to complete virus and microbe genomes and the human mi-
crobiome. Again, this approach suffered from the high similarity between Fusobacteria,
resulting almost exclusively in non-unique hits.

Finally, we applied ContextMap to metagenomics of the in-vitro simulated microbial
community to compare it against state-of-the-art metagenomics tools. Here, ContextMap
vastly outperformed both GASIiC and GRAMMy in terms of runtime, while also providing
more helpful results. GASIC missed 3 of 9 microbial species in the community and fur-
thermore allowed multiple alignments of reads to different species. In contrast, GRAMMy
only determines relative abundances and does not perform any mapping of reads. Thus, it
does not allow the analysis of gene expression or mismatch distributions. The latter also
applies to MEGAN4, which performs no real resolution of ambiguous alignments and only
assigns reads with multiple alignments to the lowest common ancestor of the corresponding
species. Thus, neither GRAMMy nor MEGAN4 offer the same possibilities for gene ex-
pression analysis of microbes and viruses and identification of missing genome sequences as
ContextMap, while GASiC is both much too slow and too restrictive for this application.
Finally, comparison against several other metagenomics tools showed that all of these had
problems in identifying the correct microbial strains contained in the sample.

Although analysis of coverage, confidence and Jensen-Shannon divergence provided by
ContextMap requires some user interaction, in particular for picking thresholds, the same
applies to GRAMMy, which also provides no natural cut-off on the predicted frequencies.
In contrast, both GASiC and MEGAN4 basically do not allow any user interaction to fine-
tune results. Despite the fact that GASIiC calculates p-values, these are in most cases either
0 or 1 (at least in our application), allowing no tuning of thresholds to trade off sensitivity
and specificity. Moreover, MEGAN4 provides no interface to resolve ambiguous mappings
of reads assigned to an LCA or evaluate alignment quality, coverage or the other useful
measures proposed here to improve the results. Finally, none of the other metagenomics
tools provides any clear cutoff to determine the actual species in the sample, but only allow
ranking of the possible hits, generally in terms of read numbers or estimated abundances.
In any case, defining fixed thresholds for any application is likely not meaningful, as appro-
priate thresholds will strongly depend on the particular research question. For instance,
if knowing the particular strain is of importance, e.g. in a diagnostic application where
pathogenic or antibiotic-resistant strains have to be correctly identified, much lower values
of Jensen-Shannon divergence would be allowed. In contrast, if only the genus or species
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is relevant, one might even merge species or strains into one group if they are clustered
together based on the mapping similarity measure we proposed.

An alternative approach that was not evaluated in this study is PathSeq (Kostic et al.
[2011]), a software explicitly focused on identifying microbes from sequencing data of hu-
man tissues. We did not evaluate this software as it could only be run using Amazon Web
Services, thus requiring payment for using the web services and making it not available
for free. However, the pipeline basically consists of a mapping of reads against human se-
quences first and then a mapping of unaligned reads against microbial and viral sequences
using BLAST, which is similar to the BLAST approach we evaluated in this study. Thus,
we expect PathSeq to encounter the same problems, i.e. high numbers of non-unique hits
due to similarities between microbial and viral species, no proper resolution of non-unique
hits and misidentifications in case of missing genome sequences.

Finally, it should be noted that the metrics we proposed here for evaluating potential
species hits are not limited to ContextMap but can be easily extended to other mapping
tools or meta-transcriptomic pipelines to further post-process their output. For coverage
and divergence of mismatch distributions, this is relatively straightforward but requires
a strategy to address non-unique mappings. As shown for the novoalign results on the
colorectal carcinoma data, mismatch distributions are not meaningful if high numbers of
non-unique alignments are allowed. For calculation of confidence and species clusterings,
a support score has to be defined to quantify the quality of an individual read alignment.
Here, even simple alignment scores may be used, although the resolution of any approach
based only on the individual read alignments is necessarily much lower than a more sophis-
ticated approach taking also into account alignments of other reads as used by ContextMap.
Thus, the methods proposed in this chapter will also be helpful for researchers preferring
to keep to their already established pipelines and only post-process their results.
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Chapter 5

Conclusion and Outlook

NGS and its application to RNA-seq allows for the quantification of all transcripts in a
cell. The extremely high throughput rates of modern NGS machines result in millions of
short sequencing reads per RNA-seq experiment. A crucial step in analyzing RNA-seq data
generally is to determine a mapping of the sequencing reads to a given reference sequence
(e.g. the genome).

In this work, we developed novel approaches for mapping RNA-seq data. In chapter
we introduced a straightforward mapping workflow that sequentially maps the sequencing
reads to one reference sequence after another. The workflow aligns the sequencing reads
first to a known transcriptome and subsequently the remaining unaligned reads to the
reference genome. We applied our workflow in a recent study (section and Windhager
et al| [2012]), in which we analyzed a time-course RNA-seq experiment. The resulting
read mapping allowed for visualizing the maturation of transcripts over time and provided
evidence for very fast co-transcriptional splicing.

However, we also realized that our workflow and other existing RNA-seq mapping
approaches have common drawbacks in their mapping strategies. These drawbacks either
result from the fact that the underlying mapping approach does not consider all possible
alignments of a sequencing read or has no general strategy for resolving ambiguous read
alignments. Both problems can result in wrong read mappings, which has a direct influence
on any downstream analyses.

For addressing these problems, we developed ContextMap, a context-based mapping
approach (see chapter [3| and Bonfert et al. [2015]). The central idea of ContextMap is to
determine the most likely origin of a read by considering all other reads aligned to the same
genomic region (i.e. the read context). By evaluating the read context, ContextMap is able
to accurately resolve ambiguous read alignments. We demonstrated in a proof of concept
study (Bonfert et al.| [2012]) that our first prototype implementation of ContextMap con-
siderably improved existing mapping results determined by other mapping programs (e.g.
MapSplice (Wang et al.| [2010]) or TopHat (Trapnell et al.| [2009])). However, by relying
on other programs to provide a mapping result as input, ContextMap could not explore
the whole alignment search space of all sequencing reads. Thus, ContextMap was not able
to fully exploit its mapping potential.
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Following the proof of concept study, we developed a standalone version of ContextMap.
This implementation no longer depended on an existing mapping result in the input, but
determined initial alignments itself using a modification of the Bowtie short read align-
ment program (Langmead et al.| [2009]). Therefore, the standalone implementation of
ContextMap was able to explore a larger alignment search space than its predecessor
implementation by considering all alignments determined with the Bowtie modification.
However, the ContextMap algorithm had several drawbacks. In particular, it was not
capable of detecting reads crossing more than one exon-exon junction or to predict in-
dels. Furthermore, due to the dependency on a modification of a specific Bowtie version,
the ContextMap implementation could not benefit from newly developed algorithms for
determining short read alignments.

In this thesis, we presented ContextMap 2, an extension of the original ContextMap al-
gorithm. The key features of ContextMap 2 are the context-based resolution of ambiguous
read alignments, the accurate prediction of reads crossing an arbitrary number of junctions
and the detection of indels. Furthermore, we provide a plug-in interface for integrating
alternative read alignment programs (e.g. Bowtie 2 (Langmead and Salzberg [2012]) or
BWA (Li and Durbin| [2009])) with improved accuracy or running times. We evaluated
ContextMap 2 on synthetic and real-life data sets from a recent RGASP study (Engstrom
et al. [2013]) and compared our results to other state-of-the-art approaches. Our results
showed that ContextMap 2 had very low rates of incorrectly mapped sequencing reads,
while the fraction of perfectly mapped reads was as high as of the best competing ap-
proaches. Moreover, the running time of ContextMap 2 was more than ~2-fold lower than
for programs with comparable high precision and recall values.

In addition to the mapping of RNA-seq data to a single species, ContextMap is also
suitable for screening the data in parallel for transcripts of any species with a sequenced
genome (see chapter 4| and Bonfert et al|[2013]). This feature is relevant in particular
when RNA-seq data is derived from cells that were infected by viruses or microbes or in
meta-transcriptomic studies. In such scenarios, it is very likely that sequencing reads can
be aligned equally well to different genome sequences of related species. In chapter [ we
demonstrated on real-life and in-vitro data sets that ContextMap is able to accurately
resolve those ambiguities. In addition, we developed mapping-derived statistics to assess
confidence of identified species and misidentifications caused by local similarities between
genomes or by completely missing genome sequences. Our results showed that our approach
can be used to routinely mine for infections or contaminations in RNA-seq experiments.
Additionally, as shown in a recent study (Rutkowski et al.| [2015]), the parallel mapping
of reads to a host species and a known pathogen allows to analyze the gene expression of
both species at the same time. In the study by [Rutkowski et al. [2015], we analyzed the
impact of Herpes simplex virus-1 on human transcription and RNA processing.

Nevertheless, there is room for further improvements and extensions of ContextMap 2.
Recently, we developed a method for predicting poly(A) cleavage sites by mapping reads
containing poly(A)-tails. This method uses the context-based approach of ContextMap 2,
as all reads supporting a putative cleavage site are considered for the exact localization of
the site. Furthermore, the method is seamlessly integrated into ContextMap 2 and has only
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little influence on the running time of a regular mapping run. Performance of the method
was evaluated on three different cell lines for which RNA-seq data as well as RNA-pet
data was made available by the ENCODE project (ENCODE Project Consortium [2012]).
RNA-pet is a method that identifies 3° and 5’ transcript ends using NGS technology (Ng
et al.| [2005]). We mapped the RNA-pet reads of each cell line to the human genome using
ContextMap. Subsequently, the mapped RNA-pet reads from the 3’ transcript ends were
used to define a gold standard of cleavage sites in each cell line. Finally, cleavage sites were
predicted with RNA-seq reads using ContextMap 2. We compared our results with KLEAT,
a program for predicting poly(A) cleavage sites from assembled transcripts of RNA-seq
reads (Birol et al|[2015]). Our evaluation shows that the predictions of ContextMap 2
are generally more accurate than the predictions of KLEAT. Currently, we are preparing a
manuscript that contains a comprehensive evaluation of RNA-seq data for more ENCODE
cell lines as well as recently published RNA-seq data sets of cells infected with various
viruses.

Another extension of ContextMap 2 could be the development of alternative scoring
models for evaluating the context of a sequencing read. These scoring models can be
specifically designed for different types of sequencing data. For instance, the development of
a scoring scheme for mapping ribosomal profiling reads might improve mapping accuracy of
such data. Ribosome profiling is a technique that allows for the genome-wide measurement
of translation by sequencing mRNA fragments protected by ribosomes (Ingolia et al.| [2009];
Ingolia, [2014]). Ideally, a mapping of ribosomal profiling reads to the genome allows for the
identification of the exact genomic position of each ribosome bound to an mRNA. Thus,
the reading frame of each ribosome can be inferred from the read mapping. Different
ribosomes that translate an mRNA into the same protein elongate the mRNA in the same
reading frame. Therefore, an associated scoring model could assign a high support score to
a read, if many other reads are aligned to the same reading frame indicating for a frequently
translated mRNA. On the contrary, if only few other reads are aligned to the same reading
frame, then a low score will be assigned.

Finally, we are confident that technological advances in sequencing (e.g. increasing read
lengths) can be successfully integrated into our context-based mapping strategy in order
to improve mapping quality and running times.
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Appendix A

Supplementary Material for
chapter 3

In this chapter, we present the Supplementary Material for chapter[3] All figures and tables
shown here were taken from the Supplementary Material of the ContextMap 2 article that
was published at BMC Bioinformatics in 2015 (Bonfert et al.|[2015]). I moved parts of
the original Supplementary Material to chapter |3| and slightly modified the layout of the
tables.
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Figure A.1: Percentage of mapped reads and mismatch distribution for the mapped reads for all evaluated
real-life data sets.
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all evaluated RNA-seq mapping programs. To obtain receiver operation characteristic (ROC)-like curves,
numbers were also calculated at increasing thresholds on the number of supporting reads for each junction.
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Figure A.4: Comparison of true and false junctions for all evaluated RNA-seq mapping programs. Number
of correctly predicted (true) and incorrectly (false) junctions were compared for all junctions and annotated
and novel junctions separately (symbols). To obtain receiver operation characteristic (ROC)-like curves,
numbers were also calculated at increasing thresholds on the number of supporting reads for each junction.
In contrast to the RGASP evaluation, we also included junctions covered by only 1 read.
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Simulation 2
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Figure A.5: F-Measure [in %] for insertion and deletion prediction for all programs on simulation 2. NaN
indicates that no insertion or deletion of that size were predicted. Insertion and deletion size are shown
below the column of the heatmap. The numbers in parentheses indicate the number of simulated reads
for each insertion or deletion size. Recall and precision values are listed in Supplementary Tables 6 and 7.
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Figure A.6: Fraction of mapped reads with different indel sizes among all reads with indels for the second
replicate of the K562 whole cell sample and both replicates of the K562 cytoplasmic fraction sample.
Numbers next to the barplots indicate the number of mapped reads with indels divided by 10° (i.e.
number of reads per 100,000).
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Figure A.7: Fraction of mapped reads with different indel sizes among all reads with indels for both
replicates of the K562 nuclear fraction sample. Numbers next to the barplots indicate the number of
mapped reads with indels divided by 10° (i.e. number of reads per 100,000).
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Program Uniquely mapped reads All reads (primary alignments only)

Overall Perfectly  Part  Correctly Incorrectly | Overall Perfectly  Part Correctly Incorrectly
mapped mapped correctly mapped mapped |mapped mapped correctly mapped mapped

reads reads  mapped bases bases reads reads  mapped bases bases

A Simulation 1
All Reads
CM Bwtl 89.28 87.82 0.60 88.38 0.90 89.28 87.82 0.60 88.38 0.90
CM Bwt2 (k = 3) 95.12 93.44 0.57 93.97 1.15 95.12 93.44 0.57 93.97 1.15
CM Bwt2 (k=10) 95.78 94.45 0.58 95.00 0.78 95.78 94.45 0.58 95.00 0.78
CM Bwa 95.99 94.68 0.55 95.20 0.79 95.99 94.68 0.55 95.20 0.79
CM Bwa ann 96.24 94.95 0.54 95.46 0.78 96.24 94.95 0.54 95.46 0.78
MapSplice 2 96.54 93.47 2.49 95.52 0.61 ‘ 98.89 94.78 2.52 96.86 1.61
STAR 1-pass 96.14 84.61 11.20 94.87 0.47 98.72 85.81 11.35 96.20 1.70
STAR 1-pass ann 95.56 88.83 6.60 95.06 0.16 98.81 90.64 6.94 97.19 1.27
STAR 2-pass 95.48 89.11 6.24 95.01 0.16 98.82 91.05 6.57 97.26 1.23
STAR 2-pass ann 95.29 89.00 6.16 94.84 0.15 98.81 91.08 6.52 97.26 1.25
TopHat1 93.37 90.12 1.96 92.00 1.37 95.23 90.87 2.00 92.79 2.44
TopHatl ann 93.51 90.21 2.00 92.13 1.37 95.39 90.97 2.05 92.94 2.45
TopHat2 91.38 90.41 0.46 90.84 0.54 93.81 91.45 0.56 91.96 1.85
TopHat2 ann 92.00 91.35 0.36 91.69 0.31 94.62 92.64 0.54 93.16 1.46
GSNAP 95.65 82.99 12.39 94.68 0.37 99.23 84.90 12.66 96.84 1.75
GSNAP ann 95.72 87.04 8.62 95.30 0.07 99.24 89.07 8.82 97.52 1.35
B Simulation 2
All Reads

CM Bwtl 80.59 78.74 0.95 79.64 0.95 80.59 78.74 0.95 79.64 0.95
CM Bwt2 (k = 3) 86.38 84.08 0.98 85.01 1.37 86.38 84.08 0.98 85.01 1.37
CM Bwt2 (k =10) 87.39 85.30 1.00 86.25 1.13 87.39 85.30 1.00 86.25 1.13
CM Bwa 87.91 86.20 0.92 87.07 0.84 87.91 86.20 0.92 87.07 0.84
CM Bwa ann 88.28 86.58 0.91 87.44 0.83 88.28 86.58 0.91 87.44 0.83
MapSplice 2 93.53 85.58 7.03 90.77 0.94 95.93 86.97 7.13 92.23 1.84
STAR 1-pass 93.36 72.55 20.39 90.75 0.62 96.23 73.72 20.74 92.21 1.96
STAR 1-pass ann 93.33 76.53 16.55 91.66 0.36 96.71 78.10 17.11 93.73 1.60
STAR 2-pass 93.24 76.80 16.14 91.58 0.39 96.77 78.54 16.74 93.85 1.58
STAR 2-pass ann 93.08 76.85 15.98 91.51 0.35 96.77 78.67 16.61 93.90 1.59
TopHat1 83.98 80.94 2.04 82.90 1.08 86.09 81.76 2.14 83.82 2.27
TopHat1l ann 84.40 81.32 2.08 83.32 1.07 86.53 82.16 2.19 84.26 2.27
TopHat2 75.53 74.31 0.87 75.13 0.40 77.92 75.29 0.97 76.18 1.74
TopHat2 ann 77.05 75.94 0.83 76.73 0.32 79.65 77.14 1.02 78.10 1.55
GSNAP 94.28 70.94 22.95 92.48 0.47 97.95 72.54 23.45 94.55 2.01
GSNAP ann 94.31 74.66 19.48 93.17 0.19 97.97 76.35 19.91 95.27 1.70

Table A.1: Fraction [in %] of overall mapped reads, perfectly mapped reads, part correctly mapped reads
(of all simulated reads) as well as fraction of correctly and incorrectly mapped bases (of all bases in all
simulated reads) on both simulated data sets. Results are shown separately for uniquely mapped reads
and all mapped reads. In the latter case, only the primary alignment was evaluated. “CM Bwt1”, “CM
Bwt2” , “CM Bwa” denote ContextMap 2 used with Bowtie, Bowtie 2, and BWA as underlying alignment
program, respectively. ContextMap 2 with Bowtie 2 was run with the maximum number of alignments
reported per read (k) set to 3 (default setting used for evaluating mapping quality) and 10, respectively.
If a gene annotation was provided, “ann” was added to the name of the respective program.
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Program Uniquely mapped reads All reads (primary alignments only)

Overall Perfectly Part  Correctly Incorrectly | Overall Perfectly  Part Correctly Incorrectly
mapped mapped correctly mapped mapped |mapped mapped correctly mapped  mapped

reads reads  mapped bases bases reads reads  mapped bases bases
A Simulation 1
Unspliced Reads
CM Bwtl 89.99 89.19 0.11 89.29 0.70 89.99 89.19 0.11 89.29 0.70
CM Bwt2 (k = 3) 95.65 94.49 0.11 94.58 1.07 95.65 94.49 0.11 94.58 1.07
CM Bwt2 (k =10) 96.26 95.37 0.13 95.48 0.78 96.26 95.37 0.13 95.48 0.78
CM Bwa 96.45 95.59 0.12 95.69 0.76 96.45 95.59 0.12 95.69 0.76
CM Bwa ann 96.48 95.59 0.15 95.72 0.75 96.48 95.59 0.15 95.72 0.75
MapSplice 2 96.32 95.28 0.74 95.81 0.30 ‘ 99.05 96.86 0.75 97.40 1.43
STAR 1-pass 96.01 90.69 5.17 95.68 0.15 98.70 92.04 5.25 97.10 1.41
STAR 1-pass ann 95.76 90.43 5.22 95.46 0.12 98.73 92.08 5.33 97.21 1.32
STAR 2-pass 95.73 90.42 5.21 95.45 0.10 98.73 92.11 5.33 97.24 1.30
STAR 2-pass ann 95.65 90.29 5.24 95.34 0.12 98.73 92.04 5.37 97.21 1.33
TopHat1 93.76 92.87 0.13 93.00 0.77 95.77 93.70 0.14 93.83 1.94
TopHatl ann 93.76 92.86 0.13 92.99 0.77 95.77 93.70 0.14 93.83 1.94
TopHat2 92.20 91.78 0.14 91.92 0.29 94.73 92.89 0.15 93.03 1.70
TopHat2 ann 92.19 91.67 0.19 91.85 0.34 94.65 92.85 0.25 93.08 1.57
GSNAP 95.46 87.50 7.85 95.03 0.11 99.21 89.64 8.03 97.35 1.52
GSNAP ann 95.45 87.51 7.89 95.08 0.05 99.21 89.68 8.09 97.44 1.42
B Simulation 2
Unspliced Reads
CM Bwtl 83.86 82.70 0.38 83.06 0.80 83.86 82.70 0.38 83.06 0.80
CM Bwt2 (k = 3) 88.16 86.48 0.40 86.86 1.30 88.16 86.48 0.40 86.86 1.30
CM Bwt2 (k =10) 89.25 87.72 0.41 88.10 1.15 89.25 87.72 0.41 88.10 1.15
CM Bwa 89.50 88.36 0.39 88.72 0.78 89.50 88.36 0.39 88.72 0.78
CM Bwa ann 89.53 88.37 0.41 88.75 0.78 89.53 88.37 0.41 88.75 0.78
MapSplice 2 94.19 89.61 4.06 92.49 0.52 ‘ 97.01 91.31 4.13 94.25 1.54
STAR 1-pass 93.74 79.84 13.68 92.64 0.26 96.65 81.13 13.90 94.14 1.64
STAR 1-pass ann 93.66 79.71 13.74 92.55 0.25 96.77 81.20 14.02 94.30 1.58
STAR 2-pass 93.56 79.59 13.76 92.45 0.26 96.79 81.18 14.07 94.33 1.57
STAR 2-pass ann 93.51 79.52 13.77 92.39 0.26 96.79 81.14 14.09 94.31 1.59
TopHat1 85.55 84.41 0.59 84.97 0.58 87.77 85.29 0.63 85.89 1.88
TopHatl ann 85.56 84.41 0.59 84.98 0.58 87.78 85.29 0.63 85.90 1.87
TopHat2 77.90 77.20 0.51 77.69 0.21 80.44 78.25 0.54 78.76 1.68
TopHat2 ann 78.01 77.15 0.55 77.68 0.33 80.41 78.22 0.62 78.80 1.61
GSNAP 94.29 75.62 18.47 93.21 0.18 98.10 77.39 18.89 95.38 1.77
GSNAP ann 94.28 75.64 18.50 93.26 0.13 98.10 77.42 18.93 95.44 1.71

Table A.2: Fraction [in %] of overall mapped reads, perfectly mapped reads, part correctly mapped reads
(of all simulated unspliced reads) as well as fraction of correctly and incorrectly mapped bases (of all bases
in all simulated unspliced reads) on both simulated data sets. Results are shown separately for uniquely
mapped reads and all mapped reads. In the latter case, only the primary alignment was evaluated.
“CM Bwtl1”, “CM Bwt2” , “CM Bwa” denote ContextMap 2 used with Bowtie, Bowtie 2, and BWA as
underlying alignment program, respectively. ContextMap 2 with Bowtie 2 was run with the maximum
number of alignments reported per read (k) set to 3 (default setting used for evaluating mapping quality)
and 10, respectively. If a gene annotation was provided, “ann” was added to the name of the respective
program.
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Program Uniquely mapped reads All reads (primary alignments only)

Overall Perfectly  Part  Correctly Incorrectly | Overall Perfectly  Part Correctly Incorrectly
mapped mapped correctly mapped mapped |mapped mapped correctly mapped mapped

reads reads mapped bases bases reads reads mapped bases bases
A Simulation 1
Spliced Reads
CM Bwtl 86.40 82.22 2.58 84.69 1.71 86.40 82.22 2.58 84.69 1.71
CM Bwt2 (k = 3) 92.96 89.13 2.43 91.45 1.51 92.96 89.13 2.43 91.45 1.51
CM Bwt2 (k=10) 93.82 90.71 2.44 93.04 0.78 93.82 90.71 2.44 93.04 0.78
CM Bwa 94.09 90.99 2.28 93.17 0.92 94.09 90.99 2.28 93.17 0.92
CM Bwa ann 95.27 92.32 2.13 94.38 0.89 95.27 92.32 2.13 94.38 0.89
MapSplice 2 97.42 86.04 9.68 94.36 1.88 98.23 86.27 9.77 94.66 2.37
STAR 1-pass 96.68 59.73 35.86 91.57 1.79 98.81 60.31 36.32 92.53 2.88
STAR 1-pass ann 94.73 82.28 12.26 93.43 0.35 99.14 84.77 13.53 97.11 1.03
STAR 2-pass 94.46 83.70 10.47 93.22 0.41 99.18 86.72 11.66 97.34 0.95
STAR 2-pass ann 93.82 83.73 9.90 92.80 0.29 99.16 87.13 11.23 97.46 0.93
TopHat1 91.77 78.88 9.43 87.93 3.84 93.03 79.29 9.64 88.53 4.50
TopHatl ann 92.48 79.36 9.66 88.63 3.85 93.81 79.82 9.89 89.30 4.51
TopHat2 88.01 84.78 1.78 86.42 1.59 90.02 85.57 2.23 87.56 2.46
TopHat2 ann 91.24 90.04 1.08 91.06 0.18 94.51 91.82 1.75 93.47 1.04
GSNAP 96.44 64.51 31.00 93.21 1.44 99.31 65.51 31.61 94.78 2.68
GSNAP ann 96.82 85.14 11.58 96.20 0.18 99.36 86.57 11.81 97.84 1.07
B Simulation 2
Spliced Reads
CM Bwtl 67.13 62.39 3.31 65.56 1.57 67.13 62.39 3.31 65.56 1.57
CM Bwt2 (k = 3) 79.05 74.17 3.38 77.39 1.65 79.05 74.17 3.38 77.39 1.65
CM Bwt2 (k=10) 79.70 75.35 3.42 78.61 1.09 79.70 75.35 3.42 78.61 1.09
CM Bwa 81.33 77.29 3.11 80.27 1.06 81.33 77.29 3.11 80.27 1.06
CM Bwa ann 83.11 79.19 2.97 82.05 1.05 83.11 79.19 2.97 82.05 1.05
MapSplice 2 90.80 68.99 19.29 83.68 2.67 91.47 69.07 19.48 83.91 3.05
STAR 1-pass 91.80 42.50 48.05 82.96 2.14 94.50 43.11 48.93 84.26 3.30
STAR 1-pass ann 91.98 63.42 28.13 87.96 0.80 96.47 65.30 29.87 91.37 1.69
STAR 2-pass 91.89 65.27 25.99 87.96 0.95 96.70 67.61 27.80 91.90 1.62
STAR 2-pass ann 91.34 65.81 25.10 87.89 0.73 96.71 68.46 26.98 92.22 1.59
TopHat1 77.46 66.62 8.04 74.35 3.11 79.17 67.23 8.38 75.26 3.91
TopHat1l ann 79.59 68.59 8.23 76.49 3.10 81.39 69.26 8.60 77.50 3.90
TopHat2 65.76 62.38 2.35 64.57 1.19 67.56 63.07 2.73 65.54 2.02
TopHat2 ann 73.10 70.93 1.99 72.81 0.29 76.50 72.68 2.67 75.18 1.32
GSNAP 94.22 51.61 41.43 89.48 1.66 97.36 52.53 42.26 91.15 3.02
GSNAP ann 94.43 70.60 23.51 92.82 0.44 97.45 71.93 23.97 94.59 1.65

Table A.3: Fraction [in %] of overall mapped reads, perfectly mapped reads, part correctly mapped reads
(of all simulated spliced reads) as well as fraction of correctly and incorrectly mapped bases (of all bases in
all simulated spliced reads) on both simulated data sets. Results are shown separately for uniquely mapped
reads and all mapped reads. In the latter case, only the primary alignment was evaluated. “CM Bwt1”,
“CM Bwt2” | “CM Bwa” denote ContextMap 2 used with Bowtie, Bowtie 2, and BWA as underlying
alignment program, respectively. ContextMap 2 with Bowtie 2 was run with the maximum number of
alignments reported per read (k) set to 3 (default setting used for evaluating mapping quality) and 10,
respectively. If a gene annotation was provided, “ann” was added to the name of the respective program.
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Program Recall for simulated Precision for simulated
reads spanning different reads spanning different
numbers of junctions numbers of junctions
1 2 3 2% 3* 1 2 3 2% 3*
(13808336) (598297) (11781) (548382) (6908)

A Simulation 1
CM Bwtl 85.64 7.72 0.0 8.26 0.0 |[98.15 92.09 - 92.14 -
CM Bwt2 90.3 65.87 33.6 71.56 57.3 [98.07 97.04 99.3 97.03 99.3
CM Bwa 91.94 72.05 36.44 78.27 62.13 | 98.34 97.12 994 97.09 99.37
CM Bwa ann 93.27 74.89 37.07 81.19 62.97 | 98.35 97.34 98.76 97.18 98.37
MapSplice 2 87.62 66.53 15.89 68.58 1.75 |97.78 97.78 96.15 97.88 98.37
STAR 1-pass 65.28 18.47 2.58 19.18 0.75 [ 95.74 94.68 87.86 94.89 94.55
STAR 1-pass ann 90.54 71.62 65.19 73.06 72.05 | 96.77 94.95 90.29 94.93 95.6
STAR 2-pass 92.41 76.57 71.54 78.23 78.58 | 97.74 96.91 96.23 96.94 98.19
STAR 2-pass ann 92.88 78.15 73.25 79.49 78.42 197.36 96.28 94.57 96.12 96.41
TopHat1 79.94 67.5 49.45 72.01 66.24 | 97.44 91.0 88.99 91.05 87.92
TopHat1 ann 80.41 70.21 55.28 73.63 67.49 | 97.23 90.27 88.77 90.16 87.22
TopHat2 86.13 78.64 63.27 83.07 80.2 [98.06 97.35 98.07 97.39 98.75
TopHat2 ann 92.27 87.42 80.47 89.59 88.26 | 97.55 94.44 92.16 94.65 92.55
GSNAP 73.31 28.39 10.86 27.27 6.56 |95.99 92.54 63.04 94.66 98.26
GSNAP ann 94.87 82.17 68.42 83.78 74.22 198.12 96.09 94.88 96.9 98.54
B Simulation 2

1 2 3 2% 3* 1 2 3 2% 3*

(14962090) (622980) (11701) (509939) (5602)

CM Bwtl 65.27 5.0 0.0 5.94 0.0 |97.54 89.21 - 89.16 -
CM Bwt2 75.74 50.33 19.63 60.99 41.0 [97.17 95.92 99.39 95.51 99.39
CM Bwa 78.63 57.26 20.96 69.35 43.75 | 97.77 96.28 98.71 95.79 98.63
CM Bwa ann 80.73 59.85 21.49 72.08 44.59 | 97.75 96.59 99.02 95.66 98.39
MapSplice 2 72.71 45.76 12.89 51.51 0.71 |96.33 94.97 97.42 94.83 97.56
STAR 1-pass 51.7 11.13 0.63 12.73 0.34 |94.78 93.35 89.16 92.83 70.37
STAR 1-pass ann 79.05 53.75 44.14 55.96 50.34 | 95.13 90.88 90.23 89.59 93.28
STAR 2-pass 81.47 59.59 47.77 63.35 56.19 | 95.87 92.55 92.05 91.45 94.11
STAR 2-pass ann 82.74 61.49 48.43 64.08 56.16 | 95.67 91.54 89.06 90.12 92.15
TopHat1 68.33 55.08 33.33 65.21 61.53 | 96.57 89.63 87.96 89.59 92.12
TopHat1 ann 70.45 58.86 44.22 67.64 63.39 | 96.58 88.91 88.37 88.47 89.72
TopHat2 64.11 56.92 38.39 65.37 60.55 | 96.96 95.63 95.37 95.62 95.36
TopHat2 ann 73.8 68.66 64.37 71.27 73.97 196.37 91.22 88.94 91.42 91.34
GSNAP 68.15 23.82 8.97 22.19 3.86 [95.39 86.77 82.22 93.58 96.0
GSNAP ann 90.99 76.41 56.16 78.55 60.96 | 97.41 92.81 88.85 94.33 96.09

Table A.4: Recall and precision [in %] for spliced reads with different number of spanned junctions for
simulation 1 and 2. Columns marked with an asterisk show results only for reads for which all exons except
the first and last exon had length > 20 nt.
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Program Recall for individual insertion lengths Precision for individual insertion lengths

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Simulation 1

Insertions
CM Bwtl 56.6 60.0 57.0 0.0 0.0 0.0 0.0 0.0(969 97.7 93.7 - - - - -
CM Bwt2 72.0 778 741 16 05 0.0 0.0 0.0 [97.0 982 93.3 69.6 30.7 0.0 - 0.0
CM Bwa 78.9 83.5 82.7 69.9 70.3 60.1 73.4 64.1[97.9 98.3 95.8 92.0 92.5 924 93.7 37.0
CM Bwa ann 79.2 83.7 83.0 69.9 70.3 60.1 73.4 64.1]98.0 98.4 96.0 92.0 92.4 924 93.6 37.2
MapSplice 2 73.7 60.4 59.8 55.1 50.7 39.7 0.0 0.0 {974 98.2 97.0 93.1 94.8 90.6 - -
STAR 1-pass 49.8 49.5 48.0 45.6 40.4 26.8 40.8 31.5]97.6 98.4 97.1 96.2 97.5 99.1 985 95.6
STAR 1-pass ann 55.8 54.5 51.7 47.4 51.9 28.5 41.0 41.8]97.9 98.3 96.8 96.1 96.5 99.1 98.6 96.6
STAR 2-pass 54.4 53.8 51.2 47.3 51.3 27.7 41.1 41.8|97.8 984 97.2 96.3 97.9 82.7 985 91.9
STAR 2-pass ann 56.1 54.9 51.9 47.8 51.9 28.7 41.1 41.8|97.9 98.3 96.8 96.1 97.9 99.1 98.5 96.6
TopHat1 659 727 722 00 00 00 0.0 0.0]948 96.2 90.3 - - - - -
TopHatl ann 68.8 76.0 749 00 00 0.0 0.0 0.0949 96.4 90.7 - - - - -
TopHat2 70.5 72.5 69.6 65.9 64.0 55.0 70.0 52.4|88.0 89.7 76.8 63.5 38.2 183 214 1.1
TopHat2 ann 84.8 86.0 84.8 82.7 86.8 85.9 86.4 90.1|94.0 94.1 85.9 81.3 65.2 41.5 43.5 4.2
GSNAP 85.2 87.2 85.8 53.9 54.2 49.6 54.7 54.6|91.1 88.1 67.8 87.9 93.7 62.7 86.2 18.0
GSNAP ann 87.0 88.5 87.2 53.9 54.9 50.7 55.3 54.9]95.5 95.7 82.7 89.2 92.9 67.7 93.9 52.1
Simulation 1
Deletions
Recall for individual deletion lengths Precision for individual deletion lengths

1 2 3 4 5 6 7 8|1 2 3 4 5 6 7 8
CM Bwtl 61.2 60.1 58.0 54.1 69.7 43.5 51.1 50.3|97.7 97.1 91.8 95.3 92.2 60.8 924 84.9
CM Bwt2 74.8 73.3 73.3 64.1 80.6 68.3 52.9 61.0|97.7 97.3 93.9 87.2 934 85.0 81.4 93.1
CM Bwa 78.9 76.7 79.1 67.5 84.8 73.6 51.3 66.2|98.3 979 94.9 95.0 93.0 77.8 82.8 794
CM Bwa ann 79.3 772 79.4 69.4 85.0 73.6 51.3 67.2]98.3 98.1 95.0 96.4 93.1 779 922 79.6
MapSplice 2 77.9 76.0 799 68.0 83.3 63.7 0.0 0.0 |{98.4 98.7 949 96.4 99.3 99.9 - -
STAR 1-pass 57.1 56.2 59.6 47.0 54.9 43.1 28.7 299|979 97.3 949 96.2 95.3 96.2 91.8 664
STAR 1-pass ann 64.5 62.5 65.0 53.7 57.9 43.8 29.1 30.8|984 96.5 96.5 92.3 94.6 97.8 96.9 55.7
STAR 2-pass 63.2 60.2 64.0 52.5 55.9 43.8 29.1 30.2|98.6 97.6 96.6 96.2 95.3 97.6 92.0 55.6
STAR 2-pass ann 64.9 62.8 65.7 54.2 57.9 43.8 29.1 30.8|98.5 96.6 96.6 92.3 94.6 97.8 96.9 55.7
TopHat1 69.7 69.2 71.0 00 00 0.0 0.0 0.01]953 96.2 92.6 - - - - -
TopHat1 ann 726 72.6 73.7 0.0 0.0 0.0 0.0 00 [954 96.4 92.8 - - - - -
TopHat2 70.4 68.6 674 57.0 65.3 43.4 53.8 31.9(/93.1 95.6 92.8 93.6 89.8 84.0 87.0 83.8
TopHat2 ann 84.0 82.0 81.3 73.6 81.5 66.9 72.9 37.9|95.7 96.3 94.2 91.6 93.5 77.7 93.8 64.3
GSNAP 86.5 83.8 85.9 78.9 81.9 76.2 68.9 70.3|924 87.7 71.0 47.7 24.7 9.8 74.3 57.0
GSNAP ann 87.7 85.8 87.0 82.7 83.3 783 84.6 74.1|96.2 93.9 87.6 85.3 66.8 48.1 89.7 63.6

Table A.5: Recall and precision for insertions and deletions in simulation 1.
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Program Recall for individual insertion lengths Precision for individual insertion lengths
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Simulation 2

Insertions
CM Bwtl 41.7 419 419 0.0 0.0 0.0 0.0 0.0 [958 96.2 93.6 - - - - -
CM Bwt2 58.3 58.1 59.7 0.1 01 0.0 0.0 0.2 96.2 96.3 94.2 63.7 949 0.0 0.0 44.4
CM Bwa 65.0 65.5 66.6 61.2 62.1 43.6 64.6 61.8|97.1 97.3 95.1 94.7 96.1 81.1 85.8 63.2
CM Bwa ann 65.2 65.7 66.8 61.4 67.6 44.2 64.7 61.8[97.1 97.3 95.1 94.6 96.4 81.3 85.8 65.6
MapSplice 2 54.6 42.8 42.7 38.3 429 33.2 0.0 0.0 |95.5 96.6 96.0 94.4 94.5 85.3 - -
STAR 1-pass 39.4 35.8 35.2 31.8 37.5 26.1 33.9 20.8]95.3 93.8 93.0 91.6 92.8 63.1 93.6 55.8
STAR 1-pass ann 44.9 40.4 39.3 34.6 38.3 28.7 38.6 23.1|95.8 94.1 92.4 91.7 924 55.6 93.7 55.6
STAR 2-pass 44.3 40.2 39.2 34.2 38.3 31.2 38.2 23.0[95.8 94.3 92,5 91.9 92.3 60.2 93.7 53.8
STAR 2-pass ann 45.4 41.0 40.0 34.9 38.3 28.9 39.0 23.1]95.9 94.1 92.5 91.7 92.3 55.7 93.7 54.9
TopHat1 52.2 54.6 54.0 0.0 00 0.0 0.0 0.0 [93.0 949 93.3 - - - - -
TopHatl ann 54.7 573 56.3 0.0 0.0 0.0 0.0 0.0 (933 95.1 935 - - - - -
TopHat2 55.4 54.5 53.9 48.2 589 474 482 49.1|92.5 92.4 89.2 84.3 85.7 43.3 31.8 6.3
TopHat2 ann 67.9 67.8 68.2 69.6 67.9 62.1 67.6 61.1[94.6 94.7 92.7 89.4 91.2 55.3 49.5 7.5
GSNAP 78.3 78.8 78.9 41.7 482 43.1 47.3 38.5(93.2 92.8 87.5 93.8 96.5 76.5 84.2 50.1
GSNAP ann 80.0 80.9 81.4 42.1 48.3 43.7 47.7 38.1]94.1 94.1 91.0 93.1 96.8 77.8 90.0 62.6
Simulation 2

Deletions

Recall for individual deletion lengths Precision for individual deletion lengths
1 2 3 4 5 6 7 8|1 2 3 4 5 6 7 8

CM Bwtl 46.2 45.5 479 46.5 47.9 48.3 61.0 44.5]96.7 94.3 93.0 95.3 90.0 85.2 93.5 74.3
CM Bwt2 60.9 61.3 61.2 62.3 64.4 63.7 73.0 58.0[96.2 95.1 92.7 94.1 90.9 87.5 83.9 784
CM Bwa 66.4 66.0 67.1 64.7 66.9 70.5 76.6 59.9|97.4 95.7 94.3 95.8 90.7 88.2 92.6 64.6
CM Bwa ann 66.7 66.3 67.3 64.9 67.3 70.8 77.1 59.9[97.4 95.7 94.4 95.7 90.8 88.1 92.5 62.1
MapSplice 2 58.5 58.5 58.8 581 55.2 39.0 0.0 0.0 |96.8 96.6 95.8 96.6 91.8 90.6 - -
STAR 1-pass 45.0 44.3 44.3 43.3 38.3 34.6 36.0 31.9]95.7 94.3 91.5 92,5 87.3 89.2 90.1 88.3
STAR 1-pass ann 50.1 49.9 48.5 47.0 43.1 41.2 38.0 33.2]96.0 94.1 91.7 90.2 87.9 87.6 90.4 60.5
STAR 2-pass 49.3 49.1 48.1 46.4 40.9 39.6 36.1 33.2]96.1 94.2 91.7 91.1 87.8 83.7 90.0 87.9
STAR 2-pass ann 50.4 50.3 48.8 47.3 43.0 41.5 37.3 33.3]96.1 94.1 91.8 90.4 87.8 87.7 90.3 68.2
TopHat1 58.1 58.3 56.9 00 00 0.0 0.0 0.0 (948 93.1 935 - - - - -
TopHatl ann 60.4 60.9 59.3 0.0 0.0 0.0 0.0 0.0 948 93.3 93.7 - - - - -
TopHat2 56.1 54.6 51.2 48.8 42.8 43.7 46.9 37.9|93.8 94.1 94.2 93.7 91.2 91.8 95.7 85.0
TopHat2 ann 66.5 65.4 629 61.1 55.3 59.0 55.3 46.5|94.7 95.0 94.5 92.8 91.3 91.7 95.8 53.1
GSNAP 79.1 79.4 78.2 74.6 723 76.3 60.6 61.2|93.4 91.5 86.1 79.1 64.4 389 87.5 47.0
GSNAP ann 80.6 81.0 80.0 783 759 79.3 72.1 71.4]94.1 92.8 89.3 88.2 82.8 65.9 87.7 49.8

Table A.6: Recall and precision for insertions and deletions in simulation 2.
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In this chapter, we present the Supplementary Material for chapter[d] All figures and tables
shown here were taken from the Supplementary Material of an article that was published
at PLoS ONE in 2013 (Bonfert et al. [2013]). I moved parts of the original Supplementary
Material to chapter [4] removed some figures and slightly modified the layout of the tables.
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Figure B.1: Phylogenetic tree of the species identified by MEGAN4 for the miR-155 transfected HeLa cells.
Assigned read numbers are annotated next to the species name and node size is proportional to the number
of reads assigned to the node. On the top, results are shown for megablast runs only against microbial and
viral genomes, on the bottom results including also rRNA and mitochondrial genome sequences. HPV-18
is indicated in red. Blue and green indicates reads mapped to one bacterial and viral species, respectively,
if human sequences are not also used for mapping. If they are used, these reads are assigned to the node
“cellular organism” and the root, respectively.
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Figure B.3: Phylogenetic tree of the species identified by MEGAN4 on the colorectal carcinoma samples for
patient 1 after aligning with megablast against viral and microbial genomes and the human microbiome.
Only reads were used that were not mapped to human sequences by ContextMap. Assigned read numbers
are annotated next to the species name and node size is proportional to the number of reads assigned to
the node.
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Figure B.4: Average mismatch (mm) distributions for the microbe and virus hits identified by ContextMap
on the microbial community data set. Results are shown for species with coverage > 107> and at least
20 reads. Numbers in parentheses indicate the number of reads mapped to the species and the divergence
(VDys) of the mismatch distribution from the reference genome, in this case Myzococcus zanthus DK
1622.
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Figure B.5: Phylogenetic tree of the species identified by MEGAN4 for the in-vitro simulated microbial
community. Assigned read numbers are annotated next to the species name and node size is proportional
to the number of reads assigned to the node. Species contained in the sample are colored in red.
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species DB #reads +/Djg Freads +/Djg  enrichment
tumor  tumor normal normal
Escherichia coli 83972 HMP 6707 0.1164 0 NA 1526.07
Escherichia coli MS 200-1 HMP 3844 0.1103 3 0.4135  546.95
Escherichia coli MS 187-1 HMP 1857 0.0835 0 NA 423.35
Selenomonas sputigena ATCC 35185 RS 13586 0.1258 39 0.2827  351.15
ADGF01000000 HMP 1085 0.0347 0 NA 247.83
Fusobacterium sp. 11.3.2 HMP 24678 0.1053 126 0.1255  214.20
Fusobacterium sp. 3-1_33 HMP 50588 0.0730 307 0.1343 184.34
ACAC01000000 HMP 3098 0.1023 25 0.1169 117.59
Bacteroides sp. 2_1 HMP 8436 0.1461 128 0.4059  72.15
ACID01000000 HMP 1169 0.0841 17 0.3428  60.67
Fusobacterium sp. D11 HMP 11375 0.1422 222 0.1167  56.99
Escherichia coli MS 45-1 HMP 1777 0.0506 38 0.0469 47.11
Escherichia coli MS 21-1 HMP 2028 0.1151 54 0.1480  39.17
Granulicatella adiacens ATCC 49175 HMP 3475 0.1031 120 0.0656  31.65
Bacteroides fragilis YCH46 RS 24448 0.1415 927 0.1620  29.83
Bacteroides fragilis NCTC 9343 RS 3605 0.1132 172 0.1178  23.19
Bilophila sp. 4.1_30 HMP 2360 0.1065 123 0.0689  21.00
Bilophila wadsworthia 3_1_6 HMP 1753 0.1255 94 0.2020  20.19
Bacteroides fragilis 638R RS 7508 0.1325 497 0.1965 17.01
Gemella morbillorum M424 HMP 2130 0.0935 144 0.0869  16.29
Clostridium asparagiforme DSM 15981 HMP 6062 0.0949 424 0.4643  16.08
Solobacterium moorei F0204 HMP 1015 0.1098 88 0.0678  12.47
ACAA01000000 HMP 5239 0.0889 643 0.1148  9.20
Peptostreptococcus stomatis DSM 17678 HMP 1877 0.1233 423 0.0790  5.00
Collinsella aerofaciens ATCC 25986 HMP 1008 0.1308 352 0.1924  3.23
Desulfovibrio piger ATCC 29098 HMP 1253 0.1457 936 0.2271  1.52

Table B.1: Species identified by ContextMap in RNA-seq data of tumor and normal tissue for patient 1
from the colorectal carcinoma data set. This table shows results for all species with at least 1000 mapped
reads in at least one sample and vDjgs < 0.15 in the tumor tissue. The second column indicates the
database from which the genome sequence was obtained: RS=RefSeq and HMP=the Human Microbiome
Project. The last column indicates the enrichment of the particular species in the tumor sample compared
to the normal tissue. Only hits with an enrichment > 1 are shown. For calculating enrichment, read
numbers were first divided by the number of reads mapped to any species in the corresponding sample.

Furthermore, a pseudocount of 5 was used for each sample to address the problem of 0 reads in one sample.
(# species reads in tumor+5)-(# mapped reads for normal tissue)

This means that enrichment is calculated as (# mapped reads for tumor)-(# species reads in normal tissue+5) *
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Program # Reads Reference Set Max Max Real User
Virtual Resident  Time CPU
memory Set Size [min] Time
[MB] [MB] [min]

Simulated microbial community

ContextMap 484,629 microbes, viruses, 5295 2489 9 29
yeast
GASiC 484,629 genus 3018 2821 298 905
GRAMMy 484,629 genus 588 331 443 443
BLAST (megablast) 484,629 microbes 2568 2440 43 43
MetaPhyler 484,629 microbes 3538 3478 1 2
SOrt-ITEMS 484,629 microbes 2975 2915 1594 677
MARTA 484,629 microbes 6845 4870 2207 13164
MLTreeMap 484,629 microbes 287 224 2659 2636
ClaMS 484,629 microbes 47153 34050 138 275
Phymm/PhymmBL 484,629 microbes 35865 35819 5666 5528

RNA-seq of colorectal carcinoma (Patient 1)

ContextMap 5,343,842  rDNA, hgl9, 16480 10641 276 1771
microbes, hm,
viruses

BLAST (megablast) 404,234 microbes, hm, 29766 28612 1301 1288
viruses

Novoalign 404,234 microbes, hm, 15223 15127 42 38
viruses

RNA-seq of HeLa-cells (miR-155 set)

ContextMap 29,595,334 rRNA, hgl9, 25077 15957 1358 8336
microbes, viruses
BLAST (megablast) 29,595,334 rRNA, mtDNA, 2495 2382 497 493

microbes, viruses

hgl9 = human reference genome, hm = human microbiome

Table B.2: Runtime and memory requirements of ContextMap and all evaluated tools on all three data sets
(sorted according to data set size). The third column indicates the reference set. Here, ‘genus’ indicates
that only genomes from the same genus as the microbes in the simulated microbial community were used.
Both the maximum virtual memory and the resident set size (portion of a process’s memory held in
RAM) are shown. For programs implemented in Java (ContextMap, MARTA, ClaMS) the latter is more
informative, as Java will allocate the amount of memory provided by the -Xmx option regardless of whether
it needs it or not. For runtime both real and user CPU time were determined using the unix program
‘time’ and rounded to minutes.

The GRAMMy and GASiC runs on all species were aborted after 48 hours without results. Thus, only the
results for a mapping against the ‘genus’ set is shown. Runtime and memory to obtain the BLAST input
for GRAMMy are not included in its runtime and memory. MG-RAST and PhyloPhytiaS are provided as
web servers and thus could not be evaluated.

For BLAST-based approaches that perform analysis individually for each read (BLAST,
Phymm/PhymmBL, MARTA, and SOrt-ITEMS), the read set was split into five subsets to per-
form some parallelization and approaches were run separately on each read set. CPU times for the five
runs were added up and the average memory of any of the runs is shown in the table. Please note that
this a lower bound on the maximum memory required as all reads combined may require more memory.
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Species Type Coverage CM CM vDjs BLAST BLAST
#reads confid. #reads conf.
L. brevis ATCC 367 plasmid 1 S 1.1e-01 1686 1.000 0.042 1605 1.00000
Acidothermus cellulolyticus 11B S 2.0e-02 52361 1.000 0.018 50458  0.99988
Pediococcus pentosaceus ATCC S 3.4e-04 681 0.999 0.064 843 0.85053
25745
Shewanella amazonensis SB2B S 1.5e-02 68521 0.997 0.035 65504  0.99609
L. brevis ATCC 367 S 2.3e-02 57636 0.992 0.019 56240 0.98131
Myxococcus xanthus DK 1622 S 1.1e-02 111535 0.985 0.000 108008 0.98982
L. lactis subsp. cremoris SK11 S 6.1e-04 30 0.956 0.404 101 0.24752
plasmid 4
L. brevis ATCC 367 plasmid 2 S 1.4e-01 5648 0.768 0.032 5449 0.76766
L. lactis subsp. cremoris SK11 S 3.1e-04 27 0.587 0.487 117 0.11111
plasmid 3
L. casei ATCC 334 plasmid 1 S 5.4e-02 1763 0.567 0.059 1917 0.54199
L. lactis subsp. lactis 111403 S 5.1e-03 12935 0.435 0.074 13305  0.45133
L. casei ATCC 334 S 1.4e-02 45256 0.393 0.034 46082  0.42958
Halobacterium sp. NRC-1 S 2.2e-05 50 0.370 0.117 3456 0.00376
L. lactis subsp. cremoris SK11 S 1.2e-05 31 0.344 0.647 658 0.00912
L. lactis subsp. cremoris R 6.8e-05 191 0.262 0.441 871 0.03100
MG1363
Lactococcus prophage bIL286 8.6e-04 37 0.195 0.205 74 0.00000
Lactococcus prophage bIL311 8.8e-03 144 0.182 0.124 166 0.00000
L. lactis subsp. lactis KF147 R 3.3e-04 927 0.171 0.293 6537 0.02937
L. casei BL23 R 4.3e-04 1467 0.153 0.305 21019  0.00081
Lactobacillus buchneri NRRL B- R? 2.3e-03 51 0.148 0.482 640 0.00000
30929 plasmid pLBUC02
Lactococcus prophage bIL309 2.0e-03 81 0.138 0.114 205 0.00976
Halobacterium salinarum R1 R 3.5e-04 71 0.121 0.079 540 0.00000
plasmid PHS2
Lactococcus prophage bIL285 8.2e-04 29 0.116 0.174 176 0.00000
L. casei str. Zhang R 2.8e-04 902 0.110 0.328 18885  0.00111
Halobacterium sp. NRC-1 plas- S 7.1e-04 141 0.109 0.073 959 0.00104

mid pNRC100
Lactobacillus rhamnosus Lc 705 R? 3.2e-03 272 0.105 0.381 884 0.00000
plasmid pLC1

Halobacterium sp. NRC-1 plas- S 4.9e-04 187 0.093 0.044 1269 0.00079
mid pNRC200

Halobacterium salinarum R1 R 1.4e-03 426 0.090 0.041 509 0.00000
plasmid PHS3

Halobacterium salinarum R1 R 3.6e-03 577 0.084 0.040 823 0.00000
plasmid PHS1

Halobacterium salinarum R1 R 1.6e-03 3409 0.070 0.023 3414 0.00029
Lactococcus prophage bIL310 1.8e-03 28 0.041 0.199 101 0.00000
Lactobacillus rhamnosus GG R? 5.0e-05 205 0.034 0.258 1220 0.00000
Lactobacillus fermentum IFO R? 2.7e-05 81 0.022 0.184 692 0.00000

3956

L. brevis = Lactobacillus brevis, L. lactis = Lactococcus lactis, L. casei = Lactobacillus casei

Table B.3: List of microbe and virus hits identified by ContextMap (CM) on the in-vitro simulated microbe
community data with a coverage > 107° and at least 20 reads. Entries are sorted according to ContextMap
confidence. The type of the hit is indicated in the following way: S = the species is contained in the sample;
R = a close relation is contained in the sample; R? = a more distant relation is contained in the sample; P
= a prophage of a species in the sample. For both ContextMap and BLAST, the number of reads mapped
to the species and the confidence are provided. In case of BLAST, the number of mapped reads includes
also reads that can be mapped equally well to any other species, thus including multiple mappings. BLAST
confidence is defined as the fraction of reads that can be mapped uniquely to this species using BLAST.
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Species Type # reads P-value
Lactobacillus casei BL23 41484 0.89
Lactobacillus casei str. Zhang 38760 0.97
Lactococcus lactis subsp. lactis 111403 S 14438 0.00
Shewanella amazonensis SB2B S 68526 0.00
Lactobacillus brevis ATCC 367 S 58571 0.00
Lactobacillus brevis ATCC 367 plasmid 2 S 5700 0.00
Acidothermus cellulolyticus 11B S 52376 0.00
Myxococcus xanthus DK 1622 S 111547  0.00
Lactobacillus casei ATCC 334 S 48607 0.00

Table B.4: List of taxa identified by GASiC with p-value < 1. Species contained in the sample are indicated
by an S in the second column. Please note that GASIC performs mapping independently for each species.
Thus, reads can be mapped to more than one species. An additional 113 species identified by GASiC with
a p-value of 1 are not shown.

Species Type Abundance
Lactobacillus brevis ATCC 367 S 0.27110
Acidothermus cellulolyticus 11B S 0.20900
Lactobacillus casei ATCC 334 S 0.16500
Shewanella amazonensis SB2B S 0.15400
Myxococcus xanthus DK 1622 S 0.11970
Lactococcus lactis subsp. lactis 111403 S 0.05579
Halobacterium sp. NRC-1 S 0.01847
Pediococcus pentosaceus ATCC 25745 S 0.00400
Lactococcus lactis subsp. lactis KF147 0.00169
Lactococcus lactis subsp. cremoris SK11 S 0.00036
Lactobacillus casei str. Zhang 0.00028
Lactobacillus casei BL23 0.00023
Halobacterium salinarum R1 0.00022
Lactococcus lactis subsp. cremoris MG1363 0.00016

Table B.5: List of taxa identified by GRAMMy with a relative abundance of at least 0.1% (14 out of 63
species identified in total). Species contained in the sample are indicated by an S in the second column.
GRAMMy only estimates relative abundances of species in the sample from alignments (in this case BLAST
alignments), but performs no resolution of non-unique mappings.
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species abundance avg. E-value avg. % ident avg. alignment # hits
length
Myxococcus xanthus 19161 -7.07 98.75 27.24 9355
Shewanella amazonensis 6438 -7.16 99.12 27.27 3195
Lactobacillus brevis 5416 -7.34 97.35 27.73 2481
Lactobacillus casei 4837 -6.44 98.93 26.08 2899
Acidothermus cellulolyticus 4311 -6.24 99.15 25.76 2367
Lactococcus lactis 2014 -6.26 97.75 26.23 1828
Lactobacillus paracasei 1567 -6.3 98.91 25.94 1129
Halobacterium salinarum 590 -7.26 98.99 27.43 590
unassigned 566 -6.66 92.85 27.72 566
Stigmatella aurantiaca 223 -5.54 87.66 26.58 223
Shewanella baltica 181 -6.25 97.78 25.74 181
Saccharomyces cerevisiae 175 -7.49 98.12 27.51 175
Pediococcus pentosaceus 144 -6.18 98.16 25.4 144
Shewanella sp. 142 -5.37 96.2 25.02 142
Brevibacillus brevis 132 -5.45 85.71 27.55 132
Shewanella putrefaciens 112 -5.85 95.03 25.81 112
Shewanella oneidensis 100 -5.77 93.95 26.01 100
Lactobacillus plantarum 94 -5.39 93.05 25.71 94
Bacillus thuringiensis 72 -6.04 97.58 25.19 72
Halobacterium sp. 70 -6.98 99.02 26.87 68
Shewanella violacea 46 -5.71 87.91 27.46 46
Shewanella loihica 44 -5.81 96.85 25.45 44
Shewanella sp. W3-18-1 42 -5.37 96.69 24.87 42
Shewanella denitrificans 41 -5.84 94.37 25.65 41
Shewanella sp. MR-7 41 -5.16 98.14 24.37 41
Shewanella sp. MR-4 39 -5.44 96.77 24.93 39
Shewanella pealeana 36 -5.23 97.08 24.24 36
Shewanella sp. ANA-3 36 -5.75 98 25.4 36
Shewanella frigidimarina 33 -5.12 91.54 25.57 33
Enterococcus faecalis 31 -6.19 93.8 27.54 31
Shewanella sediminis 27 -5.67 96.81 24.96 27
Bacillus cereus 25 -6.03 95.82 26.17 25
Vibrio cholerae 21 -6.68 97.06 27.24 21

Table B.6: This table shows the evaluation results for MG-RAST on the in-vitro simulated microbial
community. MG-RAST estimates abundance of individual species based on a protein similarity search
between predicted proteins and a reference database. Here, we used the following cutoffs: maximum
E-value = le-5, minimum identity = 60%, minimum alignment length = 15 amino acids and minimum
abundance=20. As MG-RAST only identifies species but not individual strains, it cannot distinguish the
cremoris SK11 subspecies. Furthermore, several species not contained in the sample were found to be
more abundant than Pediococcus pentosaceus and Halobacterium sp., which are contained in the sample.
The latter probably represents Halobacterium sp. NRC-1, whereas Halobacterium salinarum, which was
also found, probably represents the R1 strain.
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genus % abundance depth of coverage number similarity with
of reads reference
Lactobacillus 45.77 3.74 666 99.33
Acidothermus 17.81 1.45 296 99.58
Shewanella 17.1 1.39 289 99.4
Lactococcus 9.25 0.75 143 99.58
Myxococcus 7.43 0.6 144 99.66
Halobacterium 1.16 0.09 18 99.77
Myxococcales{order} 0.37 0.03 7 92.14
Bacillus 0.33 0.02 4 98.75
Pediococcus 0.24 0.01 3 100
Actinomycetales{order} 0.2 0.01 4 91.25
Firmicutes{phylum} 0.13 0.01 2 90
Gammaproteobacteria{class} 0.06 0 1 90
Sphingomonas 0.05 0 1 96
Halobacteriaceae{family } 0.04 0 1 93

Table B.7: This table shows the results for MetaPhyler on the in-vitro simulated microbial community.
MetaPhyler performs taxonomic classification based on phylogenetic marker genes. As a consequence,
the number of reads assigned is relatively small, as few originate from the marker genes. Furthermore,
MetaPhyler only performs classification of the genus and not species or strains. Thus, performance in dis-
tinguishing the Lactococcus and Halobacterium species/strains cannot be evaluated. The genera contained
in the sample are correctly identified with the exception of Bacillus (which is found to be more frequent
than Pediococcus) and Sphingomonas.
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species read count
Lactobacillus 115169
Myxococcus 89568
Shewanella 66810
Acidothermus 43734
Lactococcus 14820
Myxococcales 10574
Lactobacillaceae 4225
Halobacterium 3699
cellular organisms 3654
Lactobacillales 3312
Gammaproteobacteria 2906
Myxococcaceae 2692
Bacteria 2638
Cystobacterineae 2343
Actinomycetales 2090
Bacillus 1544
Proteobacteria 1219
Shewanellaceae 1196
Firmicutes 1096
Saccharomyces 1076
Streptococcaceae 1022
Paenibacillaceae 878
Pediococcus 841
root 791
Alteromonadales 754
Halobacteriaceae 655
Bacilli 498
Bacillaceae 329
Acidothermaceae 320
Streptococcus 315
Bacillales 272
Chondromyces 262
Enterobacteriaceae 258
Brevibacillus 252
Actinobacteria 171
Enterococcus 167
Vibrio 145
Polyangiaceae 140
Frankineae 137
Streptomyces 103

Table B.8: This table shows the results for SOrt-ITEMS on the in-vitro simulated microbial community.
SOrt-ITEMS assigns reads to a taxon based on significant BLAST hits and performs read assignment at
the genus level or higher. All hits with at least 100 assigned reads are shown. The top-ranked hits indeed
correspond to genera contained in the sample. However, Pediococcus is ranked very low, below other taxa
not contained in the sample.
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species read count avg. E-value avg. score
Myxococcus xanthus 82489 8.3e-36 196
Shewanella amazonensis 52513 3.1e-35 194
Lactobacillus brevis 49061 1.5e-35 195
Acidothermus cellulolyticus 39097 1.1e-35 195
Lactobacillus casei 36942 3.2e-35 194
Lactococcus lactis 11457 6.0e-35 193
Halobacterium salinarum 3622 1.1e-35 196
Pediococcus pentosaceus 630 1.3e-34 192
Bacillus cereus 335 6.7e-34 181
Lactobacillus rhamnosus 215 1.9e-37 192
Pediococcus claussenii 88 4.6e-43 195
Lactobacillus plantarum 63 9.5e-36 194
Lactobacillus buchneri 55 1.8e-33 190
Lactobacillus fermentum 51 1.2e-38 192
Lactobacillus helveticus 48 8.3e-37 189
Myxococcus fulvus 43 2.1e-34 178
Methylobacterium extorquens 24 8.9e-42 187
Lactobacillus delbrueckii 17 1.8e-43 195
Bacillus anthracis 17 1.2e-34 175
Streptococcus thermophilus 16 3.8e-38 192
Bacillus thuringiensis 14 1.4e-36 176
Methylobacterium radiotolerans 12 1.7e-37 186
Brevibacillus brevis 11 1.8e-38 185

Table B.9: This table shows the results for MARTA, an approach for performing taxonomic classification
for BLAST hits, on the in-vitro simulated microbial community. All identified species with >10 assigned
reads are shown. MARTA performs classification only at the species- not strain-level, thus performance

in distinguishing Halobacterium sp. NRC-1 and Lactococcus lactis subsp.

cremoris SK11 cannot be

evaluated. However, all 8 species contained in the sample are ranked higher than all other species in terms

of read counts.
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placement species

weight [%]

22.1802 Acidothermus cellulolyticus (351607)

12.2243 Myxococcus xanthus (246197)

9.0737 Shewanella oneidensis (211586)

9.0737 Lactococcus lactis 1403 (272623)

9.0107 Lactobacillus plantarum (220668)

6.4902 Pediococcus pentosaceus (278197)

2.8355 LCA of Lactobacillus plantarum (220668) and Pediococcus pentosaceus (278197)

1.8904 Enterococcus faecalis (226185)

1.7013 Halobacterium sp. (64091)

1.5753 LCA of Leuconostoc mesenteroides (203120) and Oenococcus oeni (203123)

1.5123 LCA of Leuconostoc mesenteroides (203120), Oenococcus oeni (203123), Lactobacillus
plantarum (220668) and Pediococcus pentosaceus (278197)

1.1972 Streptococcus pneumoniae TIGR4 (170187)

1.0082 LCA of Streptococcus pneumoniae TIGR4 (170187), Leuconostoc mesenteroides
(203120), Oenococcus oeni (203123), Lactobacillus plantarum (220668), Enterococ-
cus faecalis (226185), Lactococcus lactis 1403 (272623) and Pediococcus pentosaceus
(278197)

0.9452 Leuconostoc mesenteroides (203120)

0.8822 Oenococcus oeni (203123)

0.7561 Pseudoalteromonas haloplanktis (326442)

0.6931 LCA of Wigglesworthia glossinidia (36870), Haemophilus influenzae KW20 (71421),
Escherichia coli K12 (83333), Buchnera aphidicola APS (107806), Colwellia psychrery-
thraea (167879), Shigella flexneri 301 (198214), Blochmannia floridanus (203907),
Shewanella oneidensis (211586), Yersinia pestis C0O92 (214092), Erwinia caro-
tovora (218491), Salmonella enterica CT18 (220341), Mannheimia succiniciproducens
(221988), Photorhabdus luminescens (243265), Vibrio cholerac N16961 (243277),
Klebsiella pneumoniae (272620), Pasteurella multocida (272843), Citrobacter koseri
(290338), Enterobacter sakazakii (290339), Photobacterium profundum (298386), Pseu-
doalteromonas haloplanktis (326442), Sodalis glossinidius (343509), Psychromonas in-
grahamii (357804), Aeromonas hydrophila (380703), Serratia proteamaculans (399741)
and Actinobacillus pleuropneumoniae (416269)

0.6301 Photobacterium profundum (298386)

0.6301 Listeria innocua (272626)

0.5671 Frankia sp. CcI3 (106370)

0.5041 LCA of Streptococcus pneumoniae TIGR4 (170187), Enterococcus faecalis (226185)
and Lactococcus lactis 1403 (272623)

0.5041 LCA of Shewanella oneidensis (211586) and Psychromonas ingrahamii (357804)

0.5041 LCA of Escherichia coli K12 (83333), Shigella flexneri 301 (198214), Salmonella enterica
CT18 (220341) and Citrobacter koseri (290338)

0.5041 Psychromonas ingrahamii (357804)

0.5041 Geobacillus kaustophilus (235909)

0.5041 Bacillus subtilis (224308)

0.5041 Aeromonas hydrophila (380703)

Table B.10: This table shows the results for MLTreeMap on the in-vitro simulated microbial community.
All results with a placement weight of at least 0.05% are shown. Numbers in parenthesis indicate the taxon
identifier of the corresponding species. LCA is short for lowest common ancestor. Although only species
names are provided by MLTreeMap, classification is performed at the strain-level as indicated by the taxon
identifiers. Here, the highest-ranking hits are enriched for the correct species but often only the correct
genus is identified. The following species/strains are missed: Lactobacillus brevis, Lactobacillus casei,
Lactobacillus casei, Lactococcus lactis subsp. cremoris SK11, and Shewanella amazonensis. Furthermore,
Halobacterium sp. is ranked below Enterococcus faecalis, which is not contained in the sample.
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species read count
Desulfovibrio vulgaris 3063
Lactobacillus plantarum 2172
Lactobacillus casei 2170
Bifidobacterium animalis 1972
Bifidobacterium longum 1814
Xylella fastidiosa 1266
Lactococcus lactis 1046
Streptococcus equi 1020
Lactobacillus delbrueckii 740
Streptococcus suis 609
Pseudomonas putida 524
Pseudomonas aeruginosa 514
Vibrio cholerae 510
Prochlorococcus 409
Bacillus subtilis 398
Rhodobacter sphaeroides 363
Streptococcus pyogenes 317
Methanococcus maripaludis 316
Shewanella baltica 226
Clostridium difficile 178
Neisseria meningitidis 167
Mycobacterium tuberculosis 153
Streptococcus thermophilus 134
Haemophilus influenzae 131
Mycobacterium bovis 127
Actinobacillus pleuropneumoniae 127
Vibrio vulnificus 124
Xanthomonas oryzae 121
Streptococcus agalactiae 117
Francisella tularensis 112
Helicobacter pylori 110
Streptococcus pneumoniae 110

Table B.11: This table shows the results for PhyloPhytiaS, a composition-based approach for species
identification, on the in-vitro simulated microbial community. PhyloPhytiaS performs classification only
at the species- not the strain-level. Here, results were obtained using the generic model provided by the
webserver and all hits with > 100 reads were retained. With the exception of two species, none of these
predicted species are contained in the sample.
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species read average
count distance

Herpetosiphon aurantiacus DSM 785 30551 0.018
Dichelobacter nodosus VCS1703A 16059 0.019
Acidaminococcus fermentans DSM 20731 11506 0.018
Conexibacter woesei DSM 14684 11443 0.024
Synechococcus sp. RCC307 10286 0.018
Kribbella flavida DSM 17836 10142 0.022
Stenotrophomonas maltophilia JV3 9192 0.021
Stenotrophomonas maltophilia R551-3 9127 0.020
Moraxella catarrhalis RH4 8709 0.020
Cellulomonas fimi ATCC 484 8615 0.028
Leptothrix cholodnii SP-6 8414 0.021
Mycoplasma gallisepticum str. R(low) 8061 0.020
Beutenbergia cavernae DSM 12333 7185 0.025
Spirochaeta thermophila DSM 6192 6698 0.019
Methylibium petroleiphilum PM1 6696 0.018
Myxococcus fulvus HW-1 6468 0.019
Kineococcus radiotolerans SRS30216 plasmid pKRADO02 6358 0.024
Mycoplasma suis str. Illinois 6296 0.022
Treponema brennaborense DSM 12168 6075 0.019
Helicobacter pylori B8 plasmid HPB8p 5926 0.019
Anaeromyxobacter sp. Fw109-5 5803 0.025
Thermus thermophilus HBS8 5506 0.026
Anaeromyxobacter dehalogenans 2CP-C 5395 0.027
Phenylobacterium zucineum HLK1 5089 0.022
Eubacterium eligens ATCC 27750 plasmid unnamed 5058 0.020
Nitrosopumilus maritimus SCM1 4950 0.021
Ramlibacter tataouinensis TTB310 4895 0.020
Micromonospora sp. L5 4785 0.022
Sanguibacter keddieii DSM 10542 4046 0.022
Cellvibrio gilvus ATCC 13127 3985 0.024
Blattabacterium sp. (Mastotermes darwiniensis) str. MADAR plasmid 3714 0.020
pMADAR_001

Halogeometricum borinquense DSM 11551 plasmid pHBORO05 3646 0.019
Cellulomonas flavigena DSM 20109 3616 0.026
Mycobacterium ulcerans AGY99 plasmid pMUMO001 3393 0.017
Brevundimonas subvibrioides ATCC 15264 3359 0.019
Rhodospirillum centenum SW 3295 0.021
Escherichia coli O26:H11 str. 11368 plasmid pO26_2 3292 0.018
Persephonella marina EX-H1 3275 0.017
Nakamurella multipartita DSM 44233 3255 0.019
Candidatus Riesia pediculicola USDA plasmid pPAN 3214 0.022
Staphylococcus epidermidis ATCC 12228 plasmid pSE-12228-03 3135 0.019
Helicobacter bizzozeronii CIII-1 3065 0.016

Table B.12: This table shows the results for ClaMS, a composition-based approach, on the in-vitro simu-
lated microbial community. ClaMS models each sequence as a walk in a de Bruijn graph with underlying
Markov chain properties. For each read to be binned, a signature is calculated and compared to a training
set of signatures from genome sequence. If the normalized distance to the best signature match exceeds
a certain threshold, it is assigned to this genome, otherwise the sequence is not binned. Here, we used a
distance cutoff of 0.05 as the recommended cutoff of 0.01 resulted in no assigned reads. In the table all all
hits with > 3000 reads are shown. As can be seen, none of these are are contained in the sample and only
one belongs to a correct genus.
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Phymm species Phymm | PhymmBL species PhymmBL
read read
count count

Shewanella amazonensis SB2B 41000 Myxococcus xanthus DK 1622 132734

Myxococcus xanthus DK 1622 40760 Shewanella amazonensis SB2B 91286

Lactobacillus brevis ATCC 367 31059 Acidothermus cellulolyticus 11B 64763

Acidothermus cellulolyticus 11B 26688 Lactobacillus brevis ATCC 367 54952

Lactobacillus brevis KB290 19695 Lactobacillus casei ATCC 334 41734

Lactobacillus casei ATCC 334 15668 Lactobacillus brevis KB290 27817

Myxococcus fulvus HW-1 13534 Lactococcus lactis subsp. lactis 111403 9525

Lactobacillus casei str. Zhang 8154 Lactobacillus casei str. Zhang 9396

Corallococcus coralloides DSM 2259 6155 Lactococcus lactis subsp. lactis CV56 7056

Myxococcus stipitatus DSM 14675 5448 Lactobacillus casei LC2W 5083

Lactobacillus casei LC2W 4385 Lactobacillus casei W56 4209

Lactobacillus casei BL23 3926 Lactobacillus casei BD-II 4202

Lactobacillus casei BD-II 3801 Lactobacillus casei BL.23 4164

Lactobacillus casei W56 3624 Halobacterium salinarum R1 2909

Lactococcus lactis subsp. lactis 111403 3596 Lactococcus lactis subsp. lactis 2882

KF147

Lactococcus lactis subsp. lactis CV56 3076 Halobacterium sp. NRC-1 2873

Halobacterium salinarum R1 2211 Lactococcus lactis subsp. lactis 10-1 1968

Halobacterium sp. NRC-1 2180 Pediococcus pentosaceus ATCC 25745 1166

Lactococcus lactis subsp. lactis 1779 Myxococcus fulvus HW-1 913

KF147

Stigmatella aurantiaca DW4SLASH3- 1770 Lactococcus lactis subsp. cremoris 702

1 A76

Lactococcus lactis subsp. lactis IO-1 1764 Lactobacillus plantarum subsp. plan- 621

tarum P-8

Azospirillum brasilense Sp245 1119 Lactobacillus plantarum WCFS1 334

Deinococcus gobiensis I-0 1113 Lactobacillus rhamnosus Lc 705 275

Lactobacillus plantarum subsp. plan- 1026 Bacillus cereus FRI-35 243

tarum P-8

Pseudonocardia dioxanivorans 925 Lactococcus lactis subsp. cremoris 208

CB1190 SK11

Sinorhizobium fredii USDA 257 921 Nonlabens dokdonensis DSW-6 200

Kineococcus radiotolerans SRS30216 911 Pediococcus claussenii ATCC BAA- 173

344

Frankia symbiont of Datisca glomer- 894 Lactococcus lactis subsp. cremoris 171

ata MG1363

Lactococcus lactis subsp. cremoris 885 Bacillus cereus ATCC 10987 153

A76

Streptomyces cattleya NRRL 8057 = 878 Bacillus cereus AH187 146

DSM 46488

Table B.13: This table shows the results for Phymm, a composition-based approach, and PhymmBL, a
hybrid approach combining Phymm and BLAST results, on the in-vitro simulated microbial community.
The top 30 hits for either method are listed. In both cases, the correct strains are enriched towards
the top of the tables. However, a number of related species or strains are ranked higher than correct
hits, in particular higher than Halobacterium sp. NRC-1, Pediococcus pentosaceus, and Lactococcus lactis
subsp. cremoris SK11. Here, the hybrid approach PhymmBL seems to perform better than the (only)
composition-based Phymm approach as most of the highly ranked wrong hits are at least in the correct
species even if not the correct strain.
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